WorldWideScience

Sample records for n-chloramine disinfectant compounds

  1. Rates of Decomposition of N-Chloramine Disinfectant Compounds in Aqueous Solutions

    International Nuclear Information System (INIS)

    EI-Bellihi, E.E.

    2009-01-01

    The effect of temperature, ph, and salt effects on the decomposition kinetics of hydrolysis of N-chloramine disinfectant compounds [chloramine-B, chloramine-T, N-chlorosuccinimide (NCS), and 1,3-dichloro-5,5-dimethyl hydantoin (DCDMH or Halane)] in aqueous solutions was studied. The results should that the hydrolytic stability of CB and CT is greater than that of NCS and halane. Using CT, which is practical in use for its long contact times, reduced its initial concentration in aqueous solution from 100 ppm to about 20 ppm after a period of 6 months. The study also showed that the rate of hydrolysis of NCS is almost independent on the H + ions concentration. On the other hand, the rates of hydrolysis of CB and CT depend strongly on the hydrogen ion (H + ) concentration where the kinetic of the reaction changes from zero-order to a first order. The thermodynamic parameters of activation were calculated and showed that the entropies of activation have large negative values due to the increase in electrostriction and in a loss of freedom of the solvent water molecules associated with the separation of ions in the transition state. A linear compensation between ΔH and ΔS suggests that in the pure aqueous solutions, the reaction mechanism is almost the same for all the chloramine compounds under investigation

  2. Organic chloramines in chlorine-based disinfected water systems: A critical review.

    Science.gov (United States)

    How, Zuo Tong; Kristiana, Ina; Busetti, Francesco; Linge, Kathryn L; Joll, Cynthia A

    2017-08-01

    This paper is a critical review of current knowledge of organic chloramines in water systems, including their formation, stability, toxicity, analytical methods for detection, and their impact on drinking water treatment and quality. The term organic chloramines may refer to any halogenated organic compounds measured as part of combined chlorine (the difference between the measured free and total chlorine concentrations), and may include N-chloramines, N-chloramino acids, N-chloraldimines and N-chloramides. Organic chloramines can form when dissolved organic nitrogen or dissolved organic carbon react with either free chlorine or inorganic chloramines. They are potentially harmful to humans and may exist as an intermediate for other disinfection by-products. However, little information is available on the formation or occurrence of organic chloramines in water due to a number of challenges. One of the biggest challenges for the identification and quantification of organic chloramines in water systems is the lack of appropriate analytical methods. In addition, many of the organic chloramines that form during disinfection are unstable, which results in difficulties in sampling and detection. To date research has focussed on the study of organic monochloramines. However, given that breakpoint chlorination is commonly undertaken in water treatment systems, the formation of organic dichloramines should also be considered. Organic chloramines can be formed from many different precursors and pathways. Therefore, studying the occurrence of their precursors in water systems would enable better prediction and management of their formation. Copyright © 2017. Published by Elsevier B.V.

  3. Basic Information about Chloramines and Drinking Water Disinfection

    Science.gov (United States)

    Chloramines are disinfectants used to treat drinking water. Chloramines are most commonly formed when ammonia is added to chlorine to treat drinking water. Chloramines provide longer-lasting disinfection as the water moves through pipes to consumers.

  4. Formation of Haloacetonitriles, Haloacetamides, and Nitrogenous Heterocyclic Byproducts by Chloramination of Phenolic Compounds.

    Science.gov (United States)

    Nihemaiti, Maolida; Le Roux, Julien; Hoppe-Jones, Christiane; Reckhow, David A; Croué, Jean-Philippe

    2017-01-03

    The potential formation of nitrogenous disinfection byproducts (N-DBPs) was investigated from the chloramination of nitrogenous and non-nitrogenous aromatic compounds. All molecules led to the formation of known N-DBPs (e.g., dichloroacetonitrile, dichloroacetamide) with various production yields. Resorcinol, a major precursor of chloroform, also formed di/trichloroacetonitrile, di/trichloroacetamide, and haloacetic acids, indicating that it is a precursor of both N-DBPs and carbonaceous DBPs (C-DBPs) upon chloramination. More detailed experiments were conducted on resorcinol to understand N-DBPs formation mechanisms and to identify reaction intermediates. Based on the accurate mass from high resolution Quadrupole Time-of-Flight GC-MS (GC-QTOF) and fragmentation patterns from electronic impact and positive chemical ionization modes, several products were tentatively identified as nitrogenous heterocyclic compounds (e.g., 3-chloro-5-hydroxy-1H-pyrrole-2-one with dichloromethyl group, 3-chloro-2,5-pyrroledione). These products were structurally similar to the heterocyclic compounds formed during chlorination, such as the highly mutagenic MX (3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone) or halogenated pyrroles. To our knowledge, this is the first time that the formation of halogenated nitrogenous heterocyclic compounds is reported from chloramination process. The formation of these nitrogenous byproducts during chloramination might be of concern considering their potential toxicity.

  5. Formation of emerging DBPs from the chlorination and chloramination of seawater algal organic matter and related model compounds

    KAUST Repository

    Nihemaiti, Maolida

    2014-05-01

    Limited studies focused on reactions occurring during disinfection and oxidation processes of seawater. The aim of this work was to investigate disinfection by-products (DBPs) formation from the chlorination and chloramination of seawater algal organic matter and related model compounds. Simulated algal blooms directly growing in Red Sea, red tide samples collected during an algal bloom event and Hymenomonas sp. monoculture were studied as algal organic matter sources. Experiments were conducted in synthetic seawater containing bromide ion. A variety of DBPs was formed from the chlorination and chloramination of algal organic matter. Brominated DBPs (bromoform, DBAA, DBAN and DBAcAm) were the dominant species. Iodinated DBPs (CIAcAm and iodinated THMs) were detected, which are known to be highly toxic compared to their chlorinated or brominated analogues. Algal organic matter was found to incorporate important precursors of nitrogenous DBPs (N-DBPs), which have been reported to be more toxic than regulated THMs and HAAs. Isotopically-labeled monochloramine (15N- NH2Cl) was used in order to investigate the nitrogen source in N-DBPs. High formation of N-DBPs was found from Hymenomonas sp. sample in exponential growth phase, which was enriched in nitrogen-containing organic compounds. High inorganic nitrogen incorporation was found from the algal samples enriched in humic-like compounds. HAcAms formation was studied from chlorination and chloramination of amino acids. Asparagine, aspartic acid and other amino acids with an aromatic structure were found to be important precursors of HAcAms and DCAN. Factors affecting HAcAms formation (Cl2/ amino acid molar ratio and pH) were evaluated. Studies on the formation kinetics of DCAcAm and DCAN from asparagine suggested a rapid formation of DCAcAm from organic nitrogen (amide group) and a slower incorporation of inorganic nitrogen coming from monochloramine to form DCAN. High amounts of DCAN and DCAcAm were detected from the

  6. Chlorination and chloramines formation

    International Nuclear Information System (INIS)

    Yee, Lim Fang; Mohd Pauzi Abdullah; Sadia Ata; Abbas Abdullah; Basar IShak; Khairul Nidzham

    2008-01-01

    Chlorination is the most important method of disinfection in Malaysia which aims at ensuring an acceptable and safe drinking water quality. The dosing of chlorine to surface water containing ammonia and nitrogen compounds may form chloramines in the treated water. During this reaction, inorganic and organic chloramines are formed. The recommended maximum acceptable concentration (MAC) for chloramines in drinking water is 3000 μg/L. The production of monochloramine, dichloramine and trichloramine is highly dependent upon pH, contact time and the chlorine to ammonia molar ratio. The purpose of this study is to examine the formation of chloramines that occur upon the chlorination during the treatment process. Chloramines were determined using the N,N-diethyl-p-phenylenediamine (DPD) colorimetric method. The influences of ammonia, pH and chlorine dosage on the chloramines formation were also studied. This paper presents a modeling approach based on regression analysis which is designed to estimate the formation of chloramines. The correlation between the concentration of chloramines and the ammonia, pH and chlorine dosage was examined. In all cases, the quantity of chloramines formed depended linearly upon the amount of chlorine dosage. On the basis of this study it reveals that the concentration of chloramines is a function of chlorine dosage and the ammonia concentration to the chlorination process. PH seems to not significantly affect the formation of chloramines. (author)

  7. Characterization of unknown iodinated disinfection byproducts during chlorination/chloramination using ultrahigh resolution mass spectrometry

    International Nuclear Information System (INIS)

    Wang, Xin; Wang, Juan; Zhang, Yahe; Shi, Quan; Zhang, Haifeng; Zhang, Yu; Yang, Min

    2016-01-01

    Iodinated disinfection byproducts (I-DBPs), formed from the reaction of disinfectant(s) with organic matter in the presence of iodide in raw water, have recently been focused because of their more cytotoxic and genotoxic properties than their chlorinated or brominated analogues. To date, only a few I-DBPs in drinking water have been identified. In this study, C18 solid phase extraction coupled with electrospray ionization ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was used to characterize unknown I-DBPs in chloraminated/chlorinated water spiked with iodide and humic substances. In total, 178 formulas for one-iodine-containing products, 13 formulas for two-iodine-containing products, and 15 formulas for one-chlorine and one-iodine-containing products were detected in the chloraminated water sample, while only 9 formulas for one-iodine-containing products and 6 formulas for one-chlorine and one-iodine-containing products were found in the chlorinated water sample. Most I-DBPs have corresponding chlorine-containing analogues with identical CHO compositions. As indicated by the modified aromaticity index (AI mod ), in the C18 extracts, more than 68% of the I-DBPs have aromatic structures or polycyclic aromatic structures. This result demonstrates that the use of chloramination as an alternative disinfection method may lead to the formation of abundant species of I-DBPs in the presence of iodide. Thus, the suitability of adopting chloramination as an alternative disinfection method should be reevaluated, particularly when iodide is present in raw water. - Highlights: • The formulas of 206 iodinated DBPs in chloraminated drinking water were proposed. • More than 68% of the I-DBPs might have aromatic or polycyclic aromatic structures. • Precursors with high aromaticity is preferential to form iodinated DBPs.

  8. Characterization of unknown iodinated disinfection byproducts during chlorination/chloramination using ultrahigh resolution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Wang, Juan [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Zhang, Yahe; Shi, Quan [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Zhang, Haifeng; Zhang, Yu [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Yang, Min, E-mail: yangmin@rcees.ac.cn [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2016-06-01

    Iodinated disinfection byproducts (I-DBPs), formed from the reaction of disinfectant(s) with organic matter in the presence of iodide in raw water, have recently been focused because of their more cytotoxic and genotoxic properties than their chlorinated or brominated analogues. To date, only a few I-DBPs in drinking water have been identified. In this study, C18 solid phase extraction coupled with electrospray ionization ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was used to characterize unknown I-DBPs in chloraminated/chlorinated water spiked with iodide and humic substances. In total, 178 formulas for one-iodine-containing products, 13 formulas for two-iodine-containing products, and 15 formulas for one-chlorine and one-iodine-containing products were detected in the chloraminated water sample, while only 9 formulas for one-iodine-containing products and 6 formulas for one-chlorine and one-iodine-containing products were found in the chlorinated water sample. Most I-DBPs have corresponding chlorine-containing analogues with identical CHO compositions. As indicated by the modified aromaticity index (AI{sub mod}), in the C18 extracts, more than 68% of the I-DBPs have aromatic structures or polycyclic aromatic structures. This result demonstrates that the use of chloramination as an alternative disinfection method may lead to the formation of abundant species of I-DBPs in the presence of iodide. Thus, the suitability of adopting chloramination as an alternative disinfection method should be reevaluated, particularly when iodide is present in raw water. - Highlights: • The formulas of 206 iodinated DBPs in chloraminated drinking water were proposed. • More than 68% of the I-DBPs might have aromatic or polycyclic aromatic structures. • Precursors with high aromaticity is preferential to form iodinated DBPs.

  9. The effect of inorganic precursors on disinfection byproduct formation during UV-chlorine/chloramine drinking water treatment.

    Science.gov (United States)

    Lyon, Bonnie A; Dotson, Aaron D; Linden, Karl G; Weinberg, Howard S

    2012-10-01

    Ultraviolet (UV) disinfection is being increasingly used in drinking water treatment. It is important to understand how its application to different types of water may influence finished water quality, particularly as anthropogenic activity continues to impact the quality of source waters. The objective of this study was to evaluate the effect of inorganic precursors on the formation of regulated and unregulated disinfection byproducts (DBPs) during UV irradiation of surface waters when combined with chlorination or chloramination. Samples were collected from three drinking water utilities supplied by source waters with varying organic and inorganic precursor content. The filtered samples were treated in the laboratory with a range of UV doses delivered from low pressure (LP, UV output at 253.7 nm) and medium pressure (MP, polychromatic UV output 200-400 nm) mercury lamps followed by chlorination or chloramination, in the presence and absence of additional bromide and nitrate. The regulated trihalomethanes and haloacetic acids were not affected by UV pretreatment at disinfection doses (40-186 mJ/cm²). With higher doses (1000 mJ/cm²), trihalomethane formation was increased 30-40%. While most effects on DBPs were only observed with doses much higher than typically used for UV disinfection, there were some effects on unregulated DBPs at lower doses. In nitrate-spiked samples (1-10 mg N/L), chloropicrin formation doubled and increased three- to six-fold with 40 mJ/cm² MP UV followed by chloramination and chlorination, respectively. Bromopicrin formation was increased in samples containing bromide (0.5-1 mg/L) and nitrate (1-10 mg N/L) when pretreated with LP or MP UV (30-60% with 40 mJ/cm² LP UV and four- to ten-fold increase with 40 mJ/cm² MP UV, after subsequent chlorination). The formation of cyanogen chloride doubled and increased three-fold with MP UV doses of 186 and 1000 mJ/cm², respectively, when followed by chloramination in nitrate-spiked samples but

  10. The role of aromatic precursors in the formation of haloacetamides by chloramination of dissolved organic matter

    KAUST Repository

    Le Roux, Julien

    2015-10-21

    Water treatment utilities are diversifying their water sources and often rely on waters enriched in nitrogen-containing compounds (e.g., ammonia, organic nitrogen such as amino acids). The disinfection of waters exhibiting high levels of nitrogen has been associated with the formation of nitrogenous disinfection byproducts (N-DBPs) such as haloacetonitriles (HANs) and haloacetamides (HAcAms). While the potential precursors of HANs have been extensively studied, only few investigations are available regarding the nature of HAcAm precursors. Previous research has suggested that HAcAms are hydrolysis products of HANs. Nevertheless, it has been recently suggested that HAcAms can be formed independently, especially during chloramination of humic substances. When used as a disinfectant, monochloramine can also be a source of nitrogen for N-DBPs. This study investigated the role of aromatic organic matter in the formation of N-DBPs (HAcAms and HANs) upon chloramination. Formation kinetics were performed from various fractions of organic matter isolated from surface waters or treated wastewater effluents. Experiments were conducted with 15N-labeled monochloramine (15NH2Cl) to trace the origin of nitrogen. N-DBP formation showed a two-step profile: (1) a rapid formation following second-order reaction kinetics and incorporating nitrogen atom originating from the organic matrix (e.g., amine groups); and (2) a slower and linear increase correlated with exposure to chloramines, incorporating inorganic nitrogen (15N) from 15NH2Cl into aromatic moieties. Organic matter isolates showing high aromatic character (i.e., high SUVA) exhibited high reactivity characterized by a major incorporation of 15N in N-DBPs. A significantly lower incorporation was observed for low-aromatic-content organic matter. 15N-DCAcAm and 15N-DCAN formations exhibited a linear correlation, suggesting a similar behavior of 15N incorporation as SUVA increases. Chloramination of aromatic model compounds (i

  11. Chloramination of nitrogenous contaminants (pharmaceuticals and pesticides): NDMA and halogenated DBPs formation

    KAUST Repository

    Le Roux, Julien; Gallard, Hervé ; Croue, Jean-Philippe

    2011-01-01

    Disinfection with chloramines is often used to reduce the production of regulated disinfection by-products (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs). However, chloramination can lead to the formation of N

  12. Comparison of N-nitrosodimethylamine formation mechanisms from dimethylamine during chloramination and ozonation: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong Dong, E-mail: ydliu@bjut.edu.cn; Zhong, Rugang

    2017-01-05

    Highlights: • NDMA formation mechanisms from dimethylamine in chloramination/ozonation were reinvestigated by G4 method. • The reactivity order of halo-/hydroxyl-amines reacting with dimethylamine is NHCl{sub 2} ∼ NHBrCl > NH{sub 2}Cl >> NH{sub 2}OH. • Nitrene compound is an important intermediate to form NDMA in oxidation reaction. • Oxidation of unsymmetrical dimethylhydrazine by O{sub 2} is significantly less feasible compared to that by O{sub 3}. • The amines containing the second nitrogen source are potential NDMA precursors in ozonation. - Abstract: N-nitrosodimethylamine (NDMA) as a disinfection by-product has recently become the focus of considerable research interest due to its unusually high carcinogenicity. In this study, the formation mechanisms of NDMA from dimethylamine (DMA) during chloramination and ozonation were investigated by using the quantum chemical G4 method. The reactivity of haloamines and hydroxylamine reacting with DMA was found in the order: NHCl{sub 2} ∼ NHBrCl (Br{sup -}leaving) > NHBr{sub 2} > NH{sub 2}Cl ∼ NH{sub 2}Br >> NH{sub 2}OH. This offers a theoretical support for the experimentally proposed mechanism that dimethylamine reacts with NHCl{sub 2} rather than NH{sub 2}Cl to form chlorinated unsymmetrical dimethylhydrazine intermediate and the existence of bromochloramine in the presence of bromide during chloramination, and explains the observation that NDMA yield during ozonation is much lower than that during chloramination. Importantly, an N,N-dimethylaminonitrene was found to be a significant intermediate to form NDMA in oxidation reactions by molecular oxygen and ozone. Additionally, results suggest that the amines containing the second nitrogen source directly connecting or close to the N-(CH{sub 3}){sub 2} moiety are potential significant NDMA precursors upon ozonation. The findings of this study are helpful for expanding the knowledge of NDMA formation mechanism, and predicting potential NDMA precursors

  13. Degradation of amine-based water treatment polymers during chloramination as N-nitrosodimethylamine (NDMA) precursors.

    Science.gov (United States)

    Park, Sang-Hyuck; Wei, Shuting; Mizaikoff, Boris; Taylor, Amelia E; Favero, Cedrick; Huang, Ching-Hua

    2009-03-01

    Recent studies indicated that water treatment polymers such as poly(epichlorohydrin dimethylamine) (polyamine) and poly(diallyldimethylammonium chloride) (polyDADMAC) may form N-nitrosodimethylamine (NDMA) when in contact with chloramine water disinfectants. To minimize such potential risk and improve the polymer products, the mechanisms of how the polymers behave as NDMA precursors need to be elucidated. Direct chloramination of polymers and intermediate monomers in reagent water was conducted to probe the predominant mechanisms. The impact of polymer properties including polymer purity, polymer molecular weight and structure, residual dimethylamine (DMA), and other intermediate compounds involved in polymer synthesis, and reaction conditions such as pH, oxidant dose, and contact time on the NDMA formation potential (NDMA-FP) was investigated. Polymer degradation after reaction with chloramines was monitored at the molecular level using FT-IR and Raman spectroscopy. Overall, polyamines have greater NDMA-FP than polyDADMAC, and the NDMA formation from both polymers is strongly related to polymer degradation and DMA release during chloramination. Polyamines' tertiary amine chain ends play a major role in their NDMA-FP, while polyDADMACs' NDMA-FP is related to degradation of the quaternary ammonium ring group.

  14. Formation of nitrogenous disinfection by-products in 10 chlorinated and chloraminated drinking water supply systems.

    Science.gov (United States)

    Liew, Deborah; Linge, Kathryn L; Joll, Cynthia A

    2016-09-01

    The presence of nitrogenous disinfection by-products (N-DBPs) in drinking water supplies is a public health concern, particularly since some N-DBPs have been reported to be more toxic than the regulated trihalomethanes and haloacetic acids. In this paper, a comprehensive evaluation of the presence of N-DBPs in 10 drinking water supply systems in Western Australia is presented. A suite of 28 N-DBPs, including N-nitrosamines, haloacetonitriles (HANs), haloacetamides (HAAms) and halonitromethanes (HNMs), were measured and evaluated for relationships with bulk parameters in the waters before disinfection. A number of N-DBPs were frequently detected in disinfected waters, although at generally low concentrations (water, N-DBP concentrations were significantly correlated with dissolved organic carbon (DOC) and ammonia, and these, in addition to high bromide in one of the waters, led to elevated concentrations of brominated HANs (26.6 μg/L of dibromoacetonitrile). There were significant differences in the occurrence of all classes of N-DBPs between chlorinated and chloraminated waters, except for HNMs, which were detected at relatively low concentrations in both water types. Trends observed in one large distribution system suggest that N-DBPs can continue to form or degrade within distribution systems, and redosing of disinfectant may cause further by-product formation.

  15. [Hydrogen peroxide, chloramine T and chlorhexidrine in the disinfection of acrylic resin].

    Science.gov (United States)

    Czerwińska, W; Kedzia, A; Kałowski, M

    1978-01-01

    The effectiveness of 3% h drogen peroxide, 5% chloramine T and 0,5% chlorhexidine gluconate solutions in disinfection of acrylic resine plates massively infected with oral flora was analysed. The acrylic resine plates used for investigations, were infected in vitro with mixed salivary flora characterized by small numbers of yeast-like fungi (1st group), or great number of these microorganisms (2nd group). Infected plates were exposed to solutions of analysed disinfectants during various time periods. After rinsing or inactivation of disinfectant residues, acrylic plates were put into bacteriological medium and incubated during 7 days period in 37 degrees C. The results of this study indicated the effectiveness of acrylic plates disinfection to be dependent on used disinfectant, time of exposition, and microorganisms present on the surface of acrylic resine. The solutions of disinfectants were less active in the cases of plates infected with material containing great numbers of yeast-like microorganisms. Among analysed disinfectants 0,5% solution of chlorhexidine was characterized by most effective and rapid activity, whereas 3% solution of hydrogen peroxide was found to be the least effective.

  16. [Effect of chloramines disinfection for biofilm formation control on copper and stainless steel pipe materials].

    Science.gov (United States)

    Zhou, Ling-ling; Zhang, Yong-ji; Li, Xing; Li, Gui-bai

    2008-12-01

    Two rotating annular bioreactors (RABs) with copper and stainless steel pipe materials were adopted in the study, the effects of these two pipe materials and chloramines disinfection on biofilms formation in drinking water distribution system were evaluated. The maximum viable bacterial number in biofilm of copper and stainless steel reached 5.5 x 10(3) CFU/cm2 and 2.5 x 10(5) CFU/cm2 at 18th and 21st day without chloramines, and the viable bacterial number at the apparent steady state was 1.0 x 10(3) CFU/cm2 and 1.3 x 10(5) CFU/cm2 respectively. It was obvious that the biomass on copper materials was lower than that of the stainless steel. The maximum viable bacterial on copper and stainless steel under chloramines was 5.0 x 10(2) CFU/cm2 and 5.0 x 10(4) CFU/cm2, which was one order of magnitude lower than that of without chloramines, and its number was 10 CFU/cm2 and 3.5 x 10(4) CFU/cm2 at the steady state. These results illustrated that chloramines had apparent ability in controlling biomass when the biofilm was on steady states, especially for copper material. There was exponential relationship between biomass in biofilm and residue chloramines, which meant less biomass with more chloramines, synergistic effects were observed between chloramines and copper materials on biomass in biofilms inactivation.

  17. Toxic impact of bromide and iodide on drinking water disinfected with chlorine or chloramines.

    Science.gov (United States)

    Yang, Yang; Komaki, Yukako; Kimura, Susana Y; Hu, Hong-Ying; Wagner, Elizabeth D; Mariñas, Benito J; Plewa, Michael J

    2014-10-21

    Disinfectants inactivate pathogens in source water; however, they also react with organic matter and bromide/iodide to form disinfection byproducts (DBPs). Although only a few DBP classes have been systematically analyzed for toxicity, iodinated and brominated DBPs tend to be the most toxic. The objectives of this research were (1) to determine if monochloramine (NH2Cl) disinfection generated drinking water with less toxicity than water disinfected with free chlorine (HOCl) and (2) to determine the impact of added bromide and iodide in conjunction with HOCl or NH2Cl disinfection on mammalian cell cytotoxicity and genomic DNA damage induction. Water disinfected with chlorine was less cytotoxic but more genotoxic than water disinfected with chloramine. For both disinfectants, the addition of Br(-) and I(-) increased cytotoxicity and genotoxicity with a greater response observed with NH2Cl disinfection. Both cytotoxicity and genotoxicity were highly correlated with TOBr and TOI. However, toxicity was weakly and inversely correlated with TOCl. Thus, the forcing agents for cytotoxicity and genotoxicity were the generation of brominated and iodinated DBPs rather than the formation of chlorinated DBPs. Disinfection practices need careful consideration especially when using source waters containing elevated bromide and iodide.

  18. Real-time ArcGIS and heterotrophic plate count based chloramine disinfectant control in water distribution system.

    Science.gov (United States)

    Bai, Xiaohui; Zhi, Xinghua; Zhu, Huifeng; Meng, Mingqun; Zhang, Mingde

    2015-01-01

    This study investigates the effect of chloramine residual on bacteria growth and regrowth and the relationship between heterotrophic plate counts (HPCs) and the concentration of chloramine residual in the Shanghai drinking water distribution system (DWDS). In this study, models to control HPCs in the water distribution system and consumer taps are also developed. Real-time ArcGIS was applied to show the distribution and changed results of the chloramine residual concentration in the pipe system by using these models. Residual regression analysis was used to get a reasonable range of the threshold values that allows the chloramine residual to efficiently inhibit bacteria growth in the Shanghai DWDS; the threshold values should be between 0.45 and 0.5 mg/L in pipe water and 0.2 and 0.25 mg/L in tap water. The low residual chloramine value (0.05 mg/L) of the Chinese drinking water quality standard may pose a potential health risk for microorganisms that should be improved. Disinfection by-products (DBPs) were detected, but no health risk was identified.

  19. Formation of emerging DBPs from the chlorination and chloramination of seawater algal organic matter and related model compounds

    KAUST Repository

    Nihemaiti, Maolida

    2014-01-01

    Limited studies focused on reactions occurring during disinfection and oxidation processes of seawater. The aim of this work was to investigate disinfection by-products (DBPs) formation from the chlorination and chloramination of seawater algal

  20. Chloramine-induced anaphylaxis while showering: a case report.

    Science.gov (United States)

    D'Alò, Simona; De Pasquale, Tiziana; Incorvaia, Cristoforo; Illuminati, Ilenia; Mistrello, Gianni; Roncarolo, Daniela; Pucci, Stefano

    2012-09-25

    Sodium-N-chlorine-p-toluene sulfonamide, commonly known as chloramine-T, is a derivative of chlorine which is widely used as a disinfectant. For many years, chloramine-T has been described as a cause of immediate-type hypersensitivity, especially with regard to asthma and rhinitis, and as a cause of occupational dermatoses in cleaning personnel in hospitals, although no anaphylactic reaction has yet been reported. Hence, to the best of our knowledge we present the first case of anaphylaxis to chloramine-T with evidence of specific immunoglobulin E antibodies. We describe the case of a 25-year-old Caucasian woman who was in good health and with a negative history for atopy, including no respiratory symptoms of rhinitis or asthma, and with no professional exposure to chloramine-T. She, while showering, applied a chloramine-T solution to a skin area with folliculitis on her leg, and within a few minutes developed generalized urticaria and angioedema, followed by vomiting and collapse with loss of consciousness. A skin prick test with a chloramine-T solution at 10mg/mL concentration was positive, and specific immunoglobulin E to chloramine-T was quantified at a value of 2.9 optical density as measured by the enzyme allergosorbent test technique. The strict cause-effect relationship and the results of the skin test and the in vitro test make certain the causative role of chloramine-T in this case of anaphylaxis. This suggests that chloramine-T, based on its wide use as a disinfectant, should be considered a possible cause in anaphylaxis of unknown origin.

  1. Degradation kinetics of organic chloramines and formation of disinfection by-products during chlorination of creatinine.

    Science.gov (United States)

    Zhang, Tianyang; Xu, Bin; Wang, Anqi; Cui, Changzheng

    2018-03-01

    Organic chloramines can interfere with the measurement of effective combined chlorine in chlorinated water and are potential intermediate products of highly toxic disinfection by-products (DBPs). In order to know more about the degradation and transformation of organic chloramines, a typical organic chloramine precursor creatinine was selected for investigation and a corresponding individual organic chloramine chlorocreatinine was prepared in this study. The preparation condition of chlorocreatinine by chlorination was established as chlorine/creatinine = 1 M/M, reaction time = 2 h and pH = 7.0. Then the degradation kinetics of chlorocreatinine during further chlorination was studied, and a second-order rate constant of 1.16 (±0.14) M -1 s -1 was obtained at pH 7.0. Solution pH significantly influenced the degradation rate, and the elementary rate constants of chlorocreatinine with HOCl+H + , HOCl, OCl - and chlorocreatinine - with OCl - were calculated as 2.43 (±1.55) × 10 4  M -2  s -1 , 1.05 (±0.09) M -1 s -1 , 2.86 (±0.30) M -1 s -1 and 3.09 (±0.24) M -1 s -1 , respectively. Besides, it was found that chlorocreatinine could be further converted into several C-DBPs (chloroform and trichloroacetone) and N-DBPs (dichloroacetonitrile (DCAN) and trichloronitromethane (TCNM)) during chlorination. The total yield of DBPs increased obviously with increasing pH, especially for TCNM. In addition, the presence of humic acid in creatinine solution could increase the formation of DCAN obviously during chlorination. Based on the UPLC-Q-TOF-MS analysis, the conversion pathways of chlorocreatinine were proposed. Several kinds of intermediate products were also identified as organic chloramines and some of them could even exist stably during the further chlorination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Ammonia-oxidizing bacteria in a chloraminated distribution system: seasonal occurrence, distribution and disinfection resistance.

    Science.gov (United States)

    Wolfe, R L; Lieu, N I; Izaguirre, G; Means, E G

    1990-02-01

    Nitrification in chloraminated drinking water can have a number of adverse effects on water quality, including a loss of total chlorine and ammonia-N and an increase in the concentration of heterotrophic plate count bacteria and nitrite. To understand how nitrification develops, a study was conducted to examine the factors that influence the occurrence of ammonia-oxidizing bacteria (AOB) in a chloraminated distribution system. Samples were collected over an 18-month period from a raw-water source, a conventional treatment plant effluent, and two covered, finished-water reservoirs that previously experienced nitrification episodes. Sediment and biofilm samples were collected from the interior wall surfaces of two finished-water pipelines and one of the covered reservoirs. The AOB were enumerated by a most-probable-number technique, and isolates were isolated and identified. The resistance of naturally occurring AOB to chloramines and free chlorine was also examined. The results of the monitoring program indicated that the levels of AOB, identified as members of the genus Nitrosomonas, were seasonally dependent in both source and finished waters, with the highest levels observed in the warm summer months. The concentrations of AOB in the two reservoirs, both of which have floating covers made of synthetic rubber (Hypalon; E.I. du Pont de Nemours & Co., Inc., Wilmington, Del.), had most probable numbers that ranged from less than 0.2 to greater than 300/ml and correlated significantly with temperature and levels of heterotrophic plate count bacteria. No AOB were detected in the chloraminated reservoirs when the water temperature was below 16 to 18 degrees C. The study indicated that nitrifiers occur throughout the chloraminated distribution system. Higher concentrations of AOB were found in the reservoir and pipe sediment materials than in the pipe biofilm samples. The AOB were approximately 13 times more resistant to monochloramine than to free chlorine. After 33 min

  3. Chloramine-induced anaphylaxis while showering: a case report

    Directory of Open Access Journals (Sweden)

    D’Alò Simona

    2012-09-01

    Full Text Available Abstract Introduction Sodium-N-chlorine-p-toluene sulfonamide, commonly known as chloramine-T, is a derivative of chlorine which is widely used as a disinfectant. For many years, chloramine-T has been described as a cause of immediate-type hypersensitivity, especially with regard to asthma and rhinitis, and as a cause of occupational dermatoses in cleaning personnel in hospitals, although no anaphylactic reaction has yet been reported. Hence, to the best of our knowledge we present the first case of anaphylaxis to chloramine-T with evidence of specific immunoglobulin E antibodies. Case presentation We describe the case of a 25-year-old Caucasian woman who was in good health and with a negative history for atopy, including no respiratory symptoms of rhinitis or asthma, and with no professional exposure to chloramine-T. She, while showering, applied a chloramine-T solution to a skin area with folliculitis on her leg, and within a few minutes developed generalized urticaria and angioedema, followed by vomiting and collapse with loss of consciousness. A skin prick test with a chloramine-T solution at 10mg/mL concentration was positive, and specific immunoglobulin E to chloramine-T was quantified at a value of 2.9 optical density as measured by the enzyme allergosorbent test technique. Conclusion The strict cause-effect relationship and the results of the skin test and the in vitro test make certain the causative role of chloramine-T in this case of anaphylaxis. This suggests that chloramine-T, based on its wide use as a disinfectant, should be considered a possible cause in anaphylaxis of unknown origin.

  4. Formation of Emerging Disinfection By-products by Chlorination/Chloramination of Seawater Impacted by Algal Organic Matter

    KAUST Repository

    Nihemaiti, Maolida; Le Roux, Julien; Croue, Jean-Philippe

    2015-01-01

    The aim of this work was to study the formation of haloacetamides (HAcAms) and other DBPs during chlorination and chloramination of algal organic matter (AlOM). The HAcAms formation potentials of different precursors (amino acids, simulated algal blooms grown in the Red Sea) were evaluated. Experiments with simulated algal blooms were conducted in the presence of bromide ion (synthetic seawater containing 800 μg/L Br−) to assess the formation of brominated analogues of HAcAms in conditions close to the disinfection of real seawater. Chlorination produced more HAcAms than chloramination from real algae (Synecococcus sp.), thus indicating that the nitrogen of HAcAms comes predominantly from DON through the decarboxylation of amino acids rather than from NH2Cl. Dibrominated species of DBPs (i.e., DBAcAm, DBAA and DBAN) were the dominant species formed by both chlorination and chloramination of algal bloom samples. Chloramination of the amino acid asparagine produced an important amount of DCAcAm as compared to chlorination, indicating the existence of a specific reaction pathway.

  5. Formation of Emerging Disinfection By-products by Chlorination/Chloramination of Seawater Impacted by Algal Organic Matter

    KAUST Repository

    Nihemaiti, Maolida

    2015-08-31

    The aim of this work was to study the formation of haloacetamides (HAcAms) and other DBPs during chlorination and chloramination of algal organic matter (AlOM). The HAcAms formation potentials of different precursors (amino acids, simulated algal blooms grown in the Red Sea) were evaluated. Experiments with simulated algal blooms were conducted in the presence of bromide ion (synthetic seawater containing 800 μg/L Br−) to assess the formation of brominated analogues of HAcAms in conditions close to the disinfection of real seawater. Chlorination produced more HAcAms than chloramination from real algae (Synecococcus sp.), thus indicating that the nitrogen of HAcAms comes predominantly from DON through the decarboxylation of amino acids rather than from NH2Cl. Dibrominated species of DBPs (i.e., DBAcAm, DBAA and DBAN) were the dominant species formed by both chlorination and chloramination of algal bloom samples. Chloramination of the amino acid asparagine produced an important amount of DCAcAm as compared to chlorination, indicating the existence of a specific reaction pathway.

  6. Reduction of N-nitrosodimethylamine formation from ranitidine by ozonation preceding chloramination: influencing factors and mechanisms.

    Science.gov (United States)

    Zou, Rusen; Liao, Xiaobin; Zhao, Lei; Yuan, Baoling

    2018-05-01

    Formation of toxic N-nitrosodimethylamine (NDMA) by chloramination of ranitidine, a drug to block histamine, was still an ongoing issue and posed a risk to human health. In this study, the effect of ozonation prior to chloramination on NDMA formation and the transformation pathway were determined. Influencing factors, including ozone dosages, pH, hydroxyl radical scavenger, bromide, and NOM, were studied. The results demonstrated that small ozone dosage (0.5 mg/L) could effectively control NDMA formation from subsequent chloramination (from 40 to 0.8%). The NDMA molar conversion was not only influenced by pH but also by ozone dosages at various pre-ozonation pH (reached the highest value of 5% at pH 8 with 0.5 mg/L O 3 but decreased with the increasing pH with 1 mg/L O 3 ). The NDMA molar yield by chloramination of ranitidine without pre-ozonation was reduced by the presence of bromide ion due to the decomposition of disinfectant. However, due to the formation of brominated intermediate substances (i.e., dimethylamine (DMA), dimethyl-aminomethyl furfuryl alcohol (DFUR)) with higher NDMA molar yield than their parent substances, more NDMA was formed than that without bromide ion upon ozonation. Natural organic matter (NOM) and hydroxyl radical scavenger (tert-butyl alcohol, tBA) enhanced NDMA generation because of the competition of ozone and more ranitidine left. The NDMA reduction mechanism by pre-ozonation during chloramination of ranitidine may be due to the production of oxidation products with less NDMA yield (such as DMA) than parent compound. Based on the result of Q-TOF and GC-MS/MS analysis, three possible transformation pathways were proposed. Different influences of oxidation conditions and water quality parameters suggest that strategies to reduce NDMA formation should vary with drinking water sources and choose optimal ozone dosage.

  7. Chloramination of nitrogenous contaminants (pharmaceuticals and pesticides): NDMA and halogenated DBPs formation.

    Science.gov (United States)

    Le Roux, Julien; Gallard, Hervé; Croué, Jean-Philippe

    2011-05-01

    Disinfection with chloramines is often used to reduce the production of regulated disinfection by-products (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs). However, chloramination can lead to the formation of N-nitrosamines, including N-nitrosodimethylamine (NDMA), a probable human carcinogen. Previous research used dimethylamine (DMA) as a model precursor of NDMA, but certain widely used tertiary dimethylamines (e.g. the pharmaceutical ranitidine) show much higher conversion rates to NDMA than DMA. This study investigates the NDMA formation potential of several tertiary amines including pharmaceuticals and herbicides. The reactivity of these molecules with monochloramine (NH(2)Cl) is studied through the formation of NDMA, and other halogenated DBPs such as haloacetonitriles (HANs) and AOX (Adsorbable Organic Halides). Several compounds investigated formed NDMA in greater amounts than DMA, revealing the importance of structural characteristics of tertiary amines for NDMA formation. Among these compounds, the pharmaceutical ranitidine showed the highest molar conversion to NDMA. The pH and dissolved oxygen content of the solution were found to play a major role for the formation of NDMA from ranitidine. NDMA was formed in higher amounts at pH around pH 8 and a lower concentration of dissolved oxygen dramatically decreased NDMA yields. These findings seem to indicate that dichloramine (NHCl(2)) is not the major oxidant involved in the formation of NDMA from ranitidine, results in contradiction with the reaction mechanisms proposed in the literature. Dissolved oxygen was also found to influence the formation of other oxygen-containing DBPs (i.e. trichloronitromethane and haloketones). The results of this study identify several anthropogenic precursors of NDMA, indicating that chloramination of waters impacted by these tertiary amines could lead to the formation of significant amounts of NDMA and other non-regulated DBPs of potential health concern (e

  8. Chloramination of nitrogenous contaminants (pharmaceuticals and pesticides): NDMA and halogenated DBPs formation

    KAUST Repository

    Le Roux, Julien

    2011-05-01

    Disinfection with chloramines is often used to reduce the production of regulated disinfection by-products (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs). However, chloramination can lead to the formation of N-nitrosamines, including N-nitrosodimethylamine (NDMA), a probable human carcinogen. Previous research used dimethylamine (DMA) as a model precursor of NDMA, but certain widely used tertiary dimethylamines (e.g. the pharmaceutical ranitidine) show much higher conversion rates to NDMA than DMA. This study investigates the NDMA formation potential of several tertiary amines including pharmaceuticals and herbicides. The reactivity of these molecules with monochloramine (NH2Cl) is studied through the formation of NDMA, and other halogenated DBPs such as haloacetonitriles (HANs) and AOX (Adsorbable Organic Halides). Several compounds investigated formed NDMA in greater amounts than DMA, revealing the importance of structural characteristics of tertiary amines for NDMA formation. Among these compounds, the pharmaceutical ranitidine showed the highest molar conversion to NDMA. The pH and dissolved oxygen content of the solution were found to play a major role for the formation of NDMA from ranitidine. NDMA was formed in higher amounts at pH around pH 8 and a lower concentration of dissolved oxygen dramatically decreased NDMA yields. These findings seem to indicate that dichloramine (NHCl2) is not the major oxidant involved in the formation of NDMA from ranitidine, results in contradiction with the reaction mechanisms proposed in the literature. Dissolved oxygen was also found to influence the formation of other oxygen-containing DBPs (i.e. trichloronitromethane and haloketones). The results of this study identify several anthropogenic precursors of NDMA, indicating that chloramination of waters impacted by these tertiary amines could lead to the formation of significant amounts of NDMA and other non-regulated DBPs of potential health concern (e

  9. Genotoxicity of drinking water treated with different disinfectants and effects of disinfection conditions detected by umu-test.

    Science.gov (United States)

    Nie, Xuebiao; Liu, Wenjun; Zhang, Liping; Liu, Qing

    2017-06-01

    The genotoxicity of drinking water treated with 6 disinfection methods and the effects of disinfection conditions were investigated using the umu-test. The pretreatment procedure of samples for the umu-test was optimized for drinking water analysis. The results of the umu-test were in good correlation with those of the Ames-test. The genotoxicity and production of haloacetic acids (HAAs) were the highest for chlorinated samples. UV+chloramination is the safest disinfection method from the aspects of genotoxicity, HAA production and inactivation effects. For chloramination, the effects of the mass ratio of Cl 2 to N of chloramine on genotoxicity were also studied. The changes of genotoxicity were different from those of HAA production, which implied that HAA production cannot represent the genotoxic potential of water. The genotoxicity per chlorine decay of chlorination and chloramination had similar trends, indicating that the reaction of organic matters and chlorine made a great contribution to the genotoxicity. The results of this study are of engineering significance for optimizing the operation of waterworks. Copyright © 2016. Published by Elsevier B.V.

  10. Effects of antecedent fermentative and respiratory growth on the detection of chloramine-stressed Escherichia coil and Salmonella typhimurium.

    Science.gov (United States)

    Thunberg, R L; Sexstone, A J; Calabrese, J P; Bissonnette, G K

    2001-08-01

    In vitro laboratory studies were performed to assess the effects of antecedent growth conditions on the recovery of Escherichia coli ATCC 25922 and Salmonella typhimurium ATCC 14028 following chloramine disinfection. Six- and 18-h cultures of each organism were grown under aerobic, fermentative, and nitrate-reducing conditions prior to disinfection. At predetermined time intervals during a 10-min exposure to chloramine, survivors were surface plated on nonselective recovery media to determine C(n)t values. It was observed that nitrate-reducing growth predisposed the test organisms towards an increased sensitivity to chloramine stress over cells grown under fermentation or aerobic conditions (p < 0.01).

  11. The roles of tertiary amine structure, background organic matter and chloramine species on NDMA formation.

    Science.gov (United States)

    Selbes, Meric; Kim, Daekyun; Ates, Nuray; Karanfil, Tanju

    2013-02-01

    N-nitrosodimethylamine (NDMA), a probable human carcinogen, is a disinfection by-product that has been detected in chloraminated and chlorinated drinking waters and wastewaters. Formation mechanisms and precursors of NDMA are still not well understood. The main objectives of this study were to systematically investigate (i) the effect of tertiary amine structure, (ii) the effect of background natural organic matter (NOM), and (iii) the roles of mono vs. dichloramine species on the NDMA formation. Dimethylamine (DMA) and 20 different tertiary aliphatic and aromatic amines were carefully examined based on their functional groups attached to the basic DMA structure. The wide range (0.02-83.9%) of observed NDMA yields indicated the importance of the structure of tertiary amines, and both stability and electron distribution of the leaving group of tertiary amines on NDMA formation. DMA associated with branched alkyl groups or benzyl like structures having only one carbon between the ring and DMA structure consistently gave higher NDMA yields. Compounds with electron withdrawing groups (EWG) reacted preferentially with monochloramine, whereas compounds with electron donating group (EDG) showed tendency to react with dichloramine to form NDMA. When the selected amines were present in NOM solutions, NDMA formation increased for compounds with EWG while decreased for compounds with EDG. This impact was attributed to the competitions between NOM and amines for chloramine species. The results provided additional information to the commonly accepted mechanism for NDMA formation including chloramine species reacting with tertiary amines and the role of the leaving group on overall NDMA conversion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Impact of disinfection on drinking water biofilm bacterial community.

    Science.gov (United States)

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination. Copyright © 2015. Published by Elsevier B.V.

  13. Determinants of disinfectant pretreatment efficacy for nitrosamine control in chloraminated drinking water.

    Science.gov (United States)

    McCurry, Daniel L; Krasner, Stuart W; von Gunten, Urs; Mitch, William A

    2015-11-01

    Utilities using chloramines need strategies to mitigate nitrosamine formation to meet potential future nitrosamine regulations. The ability to reduce NDMA formation under typical post-chloramination conditions of pretreatment with ultraviolet light from a low pressure mercury lamp (LPUV), free chlorine (HOCl), ozone (O3), and UV light from a medium pressure mercury lamp (MPUV) were compared at exposures relevant to drinking water treatment. The order of efficacy after application to waters impacted by upstream wastewater discharges was O3 > HOCl ≈ MPUV > LPUV. NDMA precursor abatement generally did not correlate well between oxidants, and waters exhibited different behaviors with respect to pH and temperature, suggesting a variety of source-dependent NDMA precursors. For wastewater-impacted waters, the observed pH dependence for precursor abatement suggested the important role of secondary or tertiary amine precursors. Although hydroxyl radicals did not appear to be important for NDMA precursor abatement during O3 or MPUV pretreatment, the efficacy of MPUV correlated strongly with dissolved organic carbon concentration (p = 0.01), suggesting alternative indirect photochemical pathways. The temperature dependences during pre- and post-disinfection indicated that NDMA formation is likely to increase during warm seasons for O3 pretreatment, decrease for HOCl pretreatment, and remain unchanged for MPUV treatment, although seasonal changes in source water quality may counteract the temperature effects. For two waters impacted by relatively high polyDADMAC coagulant doses, pretreatment with HOCl, O3, and MPUV increased NDMA formation during post-chloramination. For O3 pretreatment, hydroxyl radicals likely led to precursor formation from the polymer in the latter tests. MPUV treatment of polymer-impacted water increased subsequent NDMA formation through an indirect photochemical process. Many factors may mitigate the importance of this increased NDMA formation

  14. Specific and total N-nitrosamines formation potentials of nitrogenous micropollutants during chloramination.

    Science.gov (United States)

    Piazzoli, Andrea; Breider, Florian; Aquillon, Caroline Gachet; Antonelli, Manuela; von Gunten, Urs

    2018-05-15

    N-nitrosamines are a group of potent human carcinogens that can be formed during oxidative treatment of drinking water and wastewater. Many tertiary and quaternary amines present in consumer products (e.g., pharmaceuticals, personal care and household products) are known to be N-nitrosodimethylamine (NDMA) precursors during chloramination, but the formation of other N-nitrosamines has been rarely studied. This study investigates the specific and total N-nitrosamine (TONO) formation potential (FP) of various precursors from nitrogen-containing micropollutants (chlorhexidine, metformin, benzalkonium chloride and cetyltrimethylammonium chloride) and tertiary and quaternary model amines (trimethyl amine, N,N-dimethylbutyl amine, N,N-dimethylbenzyl amine and tetramethyl ammonium). All the studied nitrogenous micropollutants displayed quantifiable TONO FP, with molar yields in the range 0.04-11.92%. However, the observed TONO pools constituted mostly of uncharacterized species, not included in US-EPA 8270 N-nitrosamines standard mix. Only the quaternary ammonium compound benzalkonium chloride showed quantifiable NDMA FP (0.56% molar yield), however, explaining only a minor fraction of the observed TONO FP. The studied model amines showed molar NDMA yields from 0.10% (trimethyl amine) to 5.05% (N,N-dimethylbenzyl amine), very similar to the molar TONO yields. The comparison of the FPs of micropollutants and model compounds showed that the presence of electron donating functional groups (such as a benzyl group) in tertiary and quaternary amine precursors leads to a higher formation of NDMA and uncharacterized N-nitrosamines, respectively. LC-qTOF screening of a list of proposed N-nitrosamine structures has enabled to identify a novel N-nitrosamine (N-nitroso-N-methyldodecylamine) from the chloramination of benzalkonium chloride. This finding supports the hypothesis that different functional groups in quaternary amines can act as leaving groups during chloramination and

  15. Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater

    KAUST Repository

    Ling, Fangqiong

    2013-01-01

    This study evaluated the continuous impact of monochloramine disinfection on laboratory-grown biofilms through the characterization of biofilm architecture and microbial community structure. Biofilm development and disinfection were achieved using CDC (Centers for Disease Control and Prevention) biofilm reactor systems with polyvinyl chloride (PVC) coupons as the substratum and sand filter-pretreated groundwater as the source of microbial seeding and growth nutrient. After 2 weeks of growth, the biofilms were subjected to chloramination for 8 more weeks at concentrations of 7.5±1.4 to 9.1±0.4 mg Cl2 L-1. Control reactors received no disinfection during the development of biofilms. Confocal laser scanning microscopy and image analysis indicated that chloramination could lead to 81.4-83.5% and 86.3-95.6% reduction in biofilm biomass and thickness, respectively, but could not eliminate biofilm growth. 16S rRNA gene terminal restriction fragment length polymorphism analysis indicated that microbial community structures between chloraminated and non-chloraminated biofilms exhibited different successional trends. 16S rRNA gene pyrosequencing analysis further revealed that chloramination could select members of Actinobacteria and Acidobacteria as the dominant populations, whereas natural development leads to the selection of members of Nitrospira and Bacteroidetes as dominant biofilm populations. Overall, chloramination treatment could alter the growth of multi-species biofilms on the PVC surface, shape the biofilm architecture, and select a certain microbial community that can survive or proliferate under chloramination.

  16. Do Iodine Contrast Media Compounds Used for Medical Imaging Contribute to the Formation of Iodinated Disinfection By-Products in Drinking Water?

    Science.gov (United States)

    Iodinated disinfection byproducts (DBPs) have recently gained attention due to their cyto- and genotoxicity and increased formation in drinking water treated with chloramine, which has become an increasingly popular disinfectant in the United States. One of these—iodoacetic acid...

  17. Ammonia- and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system.

    Science.gov (United States)

    Regan, John M; Harrington, Gregory W; Noguera, Daniel R

    2002-01-01

    Nitrification in drinking water distribution systems is a common operational problem for many utilities that use chloramines for secondary disinfection. The diversity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the distribution systems of a pilot-scale chloraminated drinking water treatment system was characterized using terminal restriction fragment length polymorphism (T-RFLP) analysis and 16S rRNA gene (ribosomal DNA [rDNA]) cloning and sequencing. For ammonia oxidizers, 16S rDNA-targeted T-RFLP indicated the presence of Nitrosomonas in each of the distribution systems, with a considerably smaller peak attributable to Nitrosospira-like AOB. Sequences of AOB amplification products aligned within the Nitrosomonas oligotropha cluster and were closely related to N. oligotropha and Nitrosomonas ureae. The nitrite-oxidizing communities were comprised primarily of Nitrospira, although Nitrobacter was detected in some samples. These results suggest a possible selection of AOB related to N. oligotropha and N. ureae in chloraminated systems and demonstrate the presence of NOB, indicating a biological mechanism for nitrite loss that contributes to a reduction in nitrite-associated chloramine decay.

  18. Quantitation and identification of organic N-chloramines formed in stomach fluid on ingestion of aqueous hypochlorite

    Energy Technology Data Exchange (ETDEWEB)

    Scully, F.E. Jr.; Mazina, K.; Sonenshine, D.; Kopfler, F.

    1986-11-01

    The chemical reactions that hypochlorite undergoes in the body when chlorinated water is ingested have received very little attention. Because amino nitrogen compounds are important components of the average diet, the reactions of hypochlorite with amino compounds in the stomach were investigated. Stomach fluid was recovered from Sprague-Dawley rats that had been fasted for 48 hr and administered 4 mL deionized water. The chlorine demand of the stomach fluid was determined. At least part of the chlorine demand is associated with amino acids present in the stomach fluid. Amino acids were identified and quantified in the stomach fluid by precolumn derivatization with o-phthalaldehyde and high-pressure liquid chromatography (HPLC). When stomach fluid is chlorinated to concentrations of chlorine between 200 and 1000 mg/L, organic N-chloramines are formed. After derivatization of chlorinated stomach fluid with dansyl sulfinic acid, fluorescent derivatives of chloramines were separated by HPLC. Three chloramino acid derivatives, N-chloroalanine, N-chloroglycine, and N-chlorophenylalanine, were identified by cochromatography with known standards using two chromatographic methods. The yield of a chloramine that would form in stomach fluid on administration of hypochlorite to animals as determined using tritiated piperidine and doses of 200 and 1000 mg/L chlorine. Yields of tritiated N-chloropiperidine in recovered stomach fluid were 70% and 42%, respectively, of the theoretical amount expected.

  19. Effects of two water disinfectants (chloramine T and peracetic acid) on the epidermis and gills of Garra rufa used in human ichthyotherapy.

    Science.gov (United States)

    Sirri, R; Zaccaroni, A; Di Biase, A; Mordenti, O; Stancampiano, L; Sarli, G; Mandrioli, L

    2013-01-01

    Doctor fish (Garra rufa) have recently been used for aesthetic purposes and as a medical treatment in patients with psoriasis (ichthyotherapy). For this particular kind of human therapy it is essential to guarantee adequate hygienic conditions for both people and fish. The aim of this study was to test two concentrations of water disinfectants, chloramine T and peracetic acid, on Garra rufa to ascertain possible exposure damage to the epidermis and gills. Fish were exposed to 2 mg/l and 10 mg/l of chloramine T and to 15 microl/l and 45 microl/l of peracetic acid in a 40-minute static bath up to six times a day for one week. The epidermis and gills were checked for histological changes and the number of epidermal mucous cells, club cells and taste buds were quantified; mucous cells were also characterized histochemically to detect alterations in mucin production. No mortality or severe histological changes were found in treated or control fish. Cell count showed a significant increase (p peracetic acid independently of the dose. Club cell number showed a significant (p peracetic acid (mean 78.17 +/- 10.5) compared to controls (mean 107.0 +/- 19.2). Histochemical evaluation of mucous cells did not reveal changes in mucin type in fish exposed to the two disinfectants. The results suggest a good tolerability of Garra rufa to the two disinfectants at the concentrations tested.

  20. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated throug...

  1. Occurrences of nitrosamines in chlorinated and chloraminated drinking water in three representative cities, China.

    Science.gov (United States)

    Luo, Qian; Wang, Donghong; Wang, Zijian

    2012-10-15

    An investigation of the occurrence of nine nitrosamines in drinking water following different water treatment processes was conducted using samples from seven drinking water treatment plants in three cities and tap waters in one city in China. The total nitrosamine levels ranged from not detected (n.d.) to 43.45 ng/L. The species and concentrations of the nine nitrosamines varied with disinfection methods and source waters. N-nitrosodimethylamine (NDMA), which is the nitrosamines of greatest concern, was identified in raw water, disinfecting water, finished water and tap water samples, ranging from 0.8 to 21.6, 0.12 to 24.2, n.d. to 8.8, and n.d. to 13.3 ng/L, respectively. Chloramination alone produced the most significant amounts of NDMA, while ozonation followed by chloramination led to moderately reduced levels. Additionally, chlorination produced relatively less NDMA, while low pressure ultraviolet radiation followed by chlorination could also significantly reduce them. Total organic carbon is one of the most important factors influencing nitrosamines formation in disinfecting water. In contrast, the addition of chlorine following any other disinfection was found to increase the formation of the other eight species of nitrosamines. The three nitrosamines recommended for monitoring by the US EPA were detected in the tap water samples, but most were present at levels below those that pose a risk to human health. Nevertheless, the occurrence and concentration of nitrosamines regulated in the Drinking Water Contaminant Candidate List could cause some potential human effects and therefore warrant attention. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Enumeration of Enterobacter cloacae after chloramine exposure.

    Science.gov (United States)

    Watters, S K; Pyle, B H; LeChevallier, M W; McFeters, G A

    1989-01-01

    Growth of Enterobacter cloacae on various media was compared after disinfection. This was done to examine the effects of monochloramine and chlorine on the enumeration of coliforms. The media used were TLY (nonselective; 5.5% tryptic soy broth, 0.3% yeast extract, 1.0% lactose, and 1.5% Bacto-Agar), m-T7 (selective; developed to recover injured coliforms), m-Endo (selective; contains sodium sulfite), TLYS (TLY with sodium sulfite), and m-T7S (m-T7 with sodium sulfite). Sodium sulfite in any medium improved the recovery of chloramine-treated E. cloacae. However, sodium sulfite in TLYS and m-T7S did not significantly improve the detection of chlorine-treated E. cloacae, and m-Endo was the least effective medium for recovering chlorinated bacteria. Differences in recovery of chlorine- and chloramine-treated E. cloacae are consistent with mechanistic differences between the disinfectants. PMID:2619309

  3. N-nitrosodimethylamine (NDMA) formation from the ozonation of model compounds.

    Science.gov (United States)

    Marti, Erica J; Pisarenko, Aleksey N; Peller, Julie R; Dickenson, Eric R V

    2015-04-01

    Nitrosamines are a class of toxic disinfection byproducts commonly associated with chloramination, of which several were included on the most recent U.S. EPA Contaminant Candidate List. Nitrosamine formation may be a significant barrier to ozonation in water reuse applications, particularly for direct or indirect potable reuse, since recent studies show direct formation during ozonation of natural water and treated wastewaters. Only a few studies have identified precursors which react with ozone to form N-nitrosodimethylamine (NDMA). In this study, several precursor compound solutions, prepared in ultrapure water and treated wastewater, were subjected to a 10 M excess of ozone. In parallel experiments, the precursor solutions in ultrapure water were exposed to gamma radiation to determine NDMA formation as a byproduct of reactions of precursor compounds with hydroxyl radicals. The results show six new NDMA precursor compounds that have not been previously reported in the literature, including compounds with hydrazone and carbamate moieties. Molar yields in deionized water were 61-78% for 3 precursors, 12-23% for 5 precursors and NDMA formation for the other precursors. NDMA formation due to chloramination was minimal compared to formation due to ozonation, suggesting distinct groups of precursor compounds for these two oxidants. Hydroxyl radical reactions with the precursors will produce NDMA, but formation is much greater in the presence of molecular ozone. Also, hydroxyl radical scavenging during ozonation leads to increased NDMA formation. Molar conversion yields were higher for several precursors in wastewater as compared to deionized water, which could be due to catalyzed reactions with constituents found in wastewater or hydroxyl radical scavenging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Occurrences of nitrosamines in chlorinated and chloraminated drinking water in three representative cities, China

    International Nuclear Information System (INIS)

    Luo, Qian; Wang, Donghong; Wang, Zijian

    2012-01-01

    An investigation of the occurrence of nine nitrosamines in drinking water following different water treatment processes was conducted using samples from seven drinking water treatment plants in three cities and tap waters in one city in China. The total nitrosamine levels ranged from not detected (n.d.) to 43.45 ng/L. The species and concentrations of the nine nitrosamines varied with disinfection methods and source waters. N-nitrosodimethylamine (NDMA), which is the nitrosamines of greatest concern, was identified in raw water, disinfecting water, finished water and tap water samples, ranging from 0.8 to 21.6, 0.12 to 24.2, n.d. to 8.8, and n.d. to 13.3 ng/L, respectively. Chloramination alone produced the most significant amounts of NDMA, while ozonation followed by chloramination led to moderately reduced levels. Additionally, chlorination produced relatively less NDMA, while low pressure ultraviolet radiation followed by chlorination could also significantly reduce them. Total organic carbon is one of the most important factors influencing nitrosamines formation in disinfecting water. In contrast, the addition of chlorine following any other disinfection was found to increase the formation of the other eight species of nitrosamines. The three nitrosamines recommended for monitoring by the US EPA were detected in the tap water samples, but most were present at levels below those that pose a risk to human health. Nevertheless, the occurrence and concentration of nitrosamines regulated in the Drinking Water Contaminant Candidate List could cause some potential human effects and therefore warrant attention. Highlights: ► Nitrosamines in disinfected drinking water in three Chinese cities were investigated. ► Some nitrosamines could be detected in raw water. ► Advanced treatment affects nitrosamine levels both positively and negatively. ► Organic matters contribute to increased nitrosamine level. ► Nitrosamine levels in this study were below the EPA MAC but

  5. Chloramine demand estimation using surrogate chemical and microbiological parameters.

    Science.gov (United States)

    Moradi, Sina; Liu, Sanly; Chow, Christopher W K; van Leeuwen, John; Cook, David; Drikas, Mary; Amal, Rose

    2017-07-01

    A model is developed to enable estimation of chloramine demand in full scale drinking water supplies based on chemical and microbiological factors that affect chloramine decay rate via nonlinear regression analysis method. The model is based on organic character (specific ultraviolet absorbance (SUVA)) of the water samples and a laboratory measure of the microbiological (F m ) decay of chloramine. The applicability of the model for estimation of chloramine residual (and hence chloramine demand) was tested on several waters from different water treatment plants in Australia through statistical test analysis between the experimental and predicted data. Results showed that the model was able to simulate and estimate chloramine demand at various times in real drinking water systems. To elucidate the loss of chloramine over the wide variation of water quality used in this study, the model incorporates both the fast and slow chloramine decay pathways. The significance of estimated fast and slow decay rate constants as the kinetic parameters of the model for three water sources in Australia was discussed. It was found that with the same water source, the kinetic parameters remain the same. This modelling approach has the potential to be used by water treatment operators as a decision support tool in order to manage chloramine disinfection. Copyright © 2017. Published by Elsevier B.V.

  6. Developing a chloramine decay index to understand nitrification: A case study of two chloraminated drinking water distribution systems.

    Science.gov (United States)

    Moradi, Sina; Liu, Sanly; Chow, Christopher W K; van Leeuwen, John; Cook, David; Drikas, Mary; Amal, Rose

    2017-07-01

    The management of chloramine decay and the prevention of nitrification are some of the critical issues faced by water utilities that use chloramine as a disinfectant. In this study, potential association between high performance size exclusion chromatography (HPSEC) data obtained with multiple wavelength Ultraviolet (UV) detection from two drinking water distribution systems in Australia and nitrification occurrence was investigated. An increase in the absorbance signal of HPSEC profiles with UV detection at λ=230nm between apparent molecular weights of 200 to 1000Da was observed at sampling sites that experienced rapid chloramine decay and nitrification while its absorbance signal at λ=254nm decreased. A chloramine decay index (C.D.I) defined as the ratio of area beneath the HPSEC spectra at two different wavelengths of 230 and 254nm, was used in assessing chloramine decay occurrences. The C.D.Is of waters at locations that experienced nitrification were consistently higher than locations not experiencing nitrification. A simulated laboratory study showed that the formation of nitrite/nitrate and/or soluble microbial products and/or the release of extracellular polymeric substances (EPS) during nitrification may contribute to the C.D.I. increase. These findings suggest that C.D.I derived from HPSEC with multiple wavelength UV detection could be an informative index to track the occurrence of rapid chloramine decay and nitrification. Copyright © 2016. Published by Elsevier B.V.

  7. Comparison of chlorine and chloramine in the release of mercury from dental amalgam.

    Science.gov (United States)

    Stone, Mark E; Scott, John W; Schultz, Stephen T; Berry, Denise L; Wilcoxon, Monte; Piwoni, Marv; Panno, Brent; Bordson, Gary

    2009-01-01

    The purpose of this project was to compare the ability of chlorine (HOCl/OCl(-)) and monochloramine (NH(2)Cl) to mobilize mercury from dental amalgam. Two types of amalgam were used in this investigation: laboratory-prepared amalgam and samples obtained from dental-unit wastewater. For disinfectant exposure simulations, 0.5 g of either the laboratory-generated or clinically obtained amalgam waste was added to 250 mL amber bottles. The amalgam samples were agitated by end-over-end rotation at 30 rpm in the presence of 1 mg/L chlorine, 10 mg/L chlorine, 1 mg/L monochloramine, 10 mg/L monochloramine, or deionized water for intervals of 0 h, 2 h, 4 h, 8 h, and 24 h for the clinically obtained amalgam waste samples and 4 h and 24 h for the laboratory-prepared samples. Chlorine and monochloramine concentrations were measured with a spectrophotometer. Samples were filtered through a 0.45 microm membrane filter and analyzed for mercury with USEPA standard method 245.7. When the two sample types were combined, the mean mercury level in the 1 mg/L chlorine group was 0.020 mg/L (n=25, SD=0.008). The 10 mg/L chlorine group had a mean mercury concentration of 0.59 mg/L (n=25, SD=1.06). The 1 mg/L chloramine group had a mean mercury level of 0.023 mg/L (n=25, SD=0.010). The 10 mg/L chloramine group had a mean mercury level of 0.024 mg/L (n=25, SD=0.011). Independent samples t-tests showed that there was a significant difference between the natural log mercury measurements of 10 mg/L chlorine compared to those of 1 mg/L and 10 mg/L chloramine. Changing from chlorine to chloramine disinfection at water treatment plants would not be expected to produce substantial increases in dissolved mercury levels in dental-unit wastewater.

  8. Changes in blood lead levels associated with use of chloramines in water treatment systems.

    Science.gov (United States)

    Miranda, Marie Lynn; Kim, Dohyeong; Hull, Andrew P; Paul, Christopher J; Galeano, M Alicia Overstreet

    2007-02-01

    More municipal water treatment plants are using chloramines as a disinfectant in order to reduce carcinogenic by-products. In some instances, this has coincided with an increase in lead levels in drinking water in those systems. Lead in drinking water can be a significant health risk. We sought to test the potential effect of switching to chloramines for disinfection in water treatment systems on childhood blood lead levels using data from Wayne County, located in the central Coastal Plain of North Carolina. We constructed a unified geographic information system (GIS) that links blood lead screening data with age of housing, drinking water source, and census data for 7,270 records. The data were analyzed using both exploratory methods and more formal multivariate techniques. The analysis indicates that the change to chloramine disinfection may lead to an increase in blood lead levels, the impact of which is progressively mitigated in newer housing. Introducing chloramines to reduce carcinogenic by-products may increase exposure to lead in drinking water. Our research provides guidance on adjustments in the local childhood lead poisoning prevention program that should accompany changes in water treatment. As similar research is conducted in other areas, and the underlying environmental chemistry is clarified, water treatment strategies can be optimized across the multiple objectives that municipalities face in providing high quality drinking water to local residents.

  9. Comparative efficacy of several disinfectants in suspension and carrier tests against Haemophilus parasuis serovars 1 and 5.

    Science.gov (United States)

    Rodríguez Ferri, E F; Martínez, S; Frandoloso, R; Yubero, S; Gutiérrez Martín, C B

    2010-06-01

    The comparative efficacy of 16 active compounds (including the most commonly used chemical groups) and 10 commercial formulations against Haemophilus parasuis serovars 1 and 5 was studied. These organisms were tested in suspension and carrier tests in the presence and absence of serum as representative of organic matter. Chloramine-T and half of the formulations from commercial sources (most of them including quaternary ammonium compounds) were effective in both in vitro tests, regardless of the presence or absence of organic load. All 26 disinfectants except for an iodophor (0.1% available iodine) resulted in at least 3-log(10) reduction in colony-forming units in suspension test, and most of them resulted in the maximal level of detection (>6-log(10) reduction). On the other hand, disinfectants were not as effective in carrier test as in suspension test, and the presence of serum considerably reduced the activities of most of the compounds tested, especially in carrier test. These results suggest the importance of selecting suitable disinfection for routine use on surfaces contaminated with H. parasuis, particularly when organic matter is present. Chloramine-T and formulations 2 and 7-10 are recommended for a complete inactivation of H. parasuis in swine herds. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. The role of chloramine species in NDMA formation.

    Science.gov (United States)

    Selbes, Meric; Beita-Sandí, Wilson; Kim, Daekyun; Karanfil, Tanju

    2018-09-01

    N-nitrosodimethylamine (NDMA), a probable human carcinogen disinfection by-product, has been detected in chloraminated drinking water systems. Understanding its formation over time is important to control NDMA levels in distribution systems. The main objectives of this study were to investigate the role of chloramine species (i.e., monochloramine and dichloramine); and the factors such as pH, sulfate, and natural organic matter (NOM) influencing the formation of NDMA. Five NDMA precursors (i.e., dimethylamine (DMA), trimethylamine (TMA), N,N-dimethylisopropylamine (DMiPA), N,N-dimethylbenzylamine (DMBzA), and ranitidine (RNTD)) were carefully selected based on their chemical structures and exposed to varying ratios of monochloramine and dichloramine. All amine precursors reacted relatively fast to form NDMA and reached their maximum NDMA yields within 24 h in the presence of excess levels of chloramines (both mono- and dichloramine) or excess levels of dichloramine conditions (with limited monochloramine). When the formation of dichloramine was suppressed (i.e., only monochloramine existed in the system) over the 5 day contact time, NDMA formation from DMA, TMA, and DMiPA was drastically reduced (∼0%). Under monochloramine abundant conditions, however, DMBzA and RNTD showed 40% and 90% NDMA conversions at the end of 5 day contact time, respectively, with slow formation rates, indicating that while these amine precursors react preferentially with dichloramine to form NDMA, they can also react with monochloramine in the absence of dichloramine. NOM and pH influenced dichloramine levels that affected NDMA yields. NOM had an adverse effect on NDMA formation as it created a competition with NDMA precursors for dichloramine. Sulfate did not increase the NDMA formation from the two selected NDMA precursors. pH played a key role as it influenced both chloramine speciation and protonation state of amine precursors and the highest NDMA formation was observed at the p

  11. Occurrences of nitrosamines in chlorinated and chloraminated drinking water in three representative cities, China

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Qian; Wang, Donghong; Wang, Zijian

    2012-10-15

    An investigation of the occurrence of nine nitrosamines in drinking water following different water treatment processes was conducted using samples from seven drinking water treatment plants in three cities and tap waters in one city in China. The total nitrosamine levels ranged from not detected (n.d.) to 43.45 ng/L. The species and concentrations of the nine nitrosamines varied with disinfection methods and source waters. N-nitrosodimethylamine (NDMA), which is the nitrosamines of greatest concern, was identified in raw water, disinfecting water, finished water and tap water samples, ranging from 0.8 to 21.6, 0.12 to 24.2, n.d. to 8.8, and n.d. to 13.3 ng/L, respectively. Chloramination alone produced the most significant amounts of NDMA, while ozonation followed by chloramination led to moderately reduced levels. Additionally, chlorination produced relatively less NDMA, while low pressure ultraviolet radiation followed by chlorination could also significantly reduce them. Total organic carbon is one of the most important factors influencing nitrosamines formation in disinfecting water. In contrast, the addition of chlorine following any other disinfection was found to increase the formation of the other eight species of nitrosamines. The three nitrosamines recommended for monitoring by the US EPA were detected in the tap water samples, but most were present at levels below those that pose a risk to human health. Nevertheless, the occurrence and concentration of nitrosamines regulated in the Drinking Water Contaminant Candidate List could cause some potential human effects and therefore warrant attention. Highlights: Black-Right-Pointing-Pointer Nitrosamines in disinfected drinking water in three Chinese cities were investigated. Black-Right-Pointing-Pointer Some nitrosamines could be detected in raw water. Black-Right-Pointing-Pointer Advanced treatment affects nitrosamine levels both positively and negatively. Black-Right-Pointing-Pointer Organic matters

  12. Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Postigo, Cristina [Institute for Environmental Assessment and Water Research (IDAEA)—Spanish National Research Council (CID-CSIC), Barcelona (Spain); Richardson, Susan D., E-mail: richardson.susan@sc.edu [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC (United States)

    2014-08-30

    Graphical abstract: - Highlights: • Review of transformation pathways of pharmaceuticals during disinfection processes. • DBPs are formed with chlorine, chloramine, ozone, chlorine dioxide, UV, or UV/H{sub 2}O{sub 2}. • Chlorine reacts with amine and reduced sulfur groups and activated aromatic systems. • Chlorine dioxide and ozone react with electron-rich functional groups. • Potential health effects are noted for some pharmacuetical DBPs when available. - Abstract: Pharmaceuticals are emerging contaminants of concern and are widespread in the environment. While the levels of these substances in finished drinking waters are generally considered too low for human health concern, there are now concerns about their disinfection by-products (DBPs) that can form during drinking water treatment, which in some cases have been proven to be more toxic than the parent compounds. The present manuscript reviews the transformation products of pharmaceuticals generated in water during different disinfection processes, i.e. chlorination, ozonation, chloramination, chlorine dioxide, UV, and UV/hydrogen peroxide, and the main reaction pathways taking place. Most of the findings considered for this review come from controlled laboratory studies involving reactions of pharmaceuticals with these oxidants used in drinking water treatment.

  13. Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment

    International Nuclear Information System (INIS)

    Postigo, Cristina; Richardson, Susan D.

    2014-01-01

    Graphical abstract: - Highlights: • Review of transformation pathways of pharmaceuticals during disinfection processes. • DBPs are formed with chlorine, chloramine, ozone, chlorine dioxide, UV, or UV/H 2 O 2 . • Chlorine reacts with amine and reduced sulfur groups and activated aromatic systems. • Chlorine dioxide and ozone react with electron-rich functional groups. • Potential health effects are noted for some pharmacuetical DBPs when available. - Abstract: Pharmaceuticals are emerging contaminants of concern and are widespread in the environment. While the levels of these substances in finished drinking waters are generally considered too low for human health concern, there are now concerns about their disinfection by-products (DBPs) that can form during drinking water treatment, which in some cases have been proven to be more toxic than the parent compounds. The present manuscript reviews the transformation products of pharmaceuticals generated in water during different disinfection processes, i.e. chlorination, ozonation, chloramination, chlorine dioxide, UV, and UV/hydrogen peroxide, and the main reaction pathways taking place. Most of the findings considered for this review come from controlled laboratory studies involving reactions of pharmaceuticals with these oxidants used in drinking water treatment

  14. Acute Oral Toxicity of 3-Chloro-4,4-dimethyl-2-oxazolidinone (Compound 1) in ICR Mice

    Science.gov (United States)

    1990-10-01

    number) FIELD GROUP SUB-GROUP Acute Oral Toxicity, N- Chloramine , Mouse, Mammalian Toxicology, Water Disinfectant , 3-Chloro-4, 4 -dimethyl-2...Amer Ind Hyg Assoc Q 1943; 10:93-96. 7. Mora EC, Kohl HH, Wheatley WB, et al. Properties or a new chloramine disinfectant and detoxicant. Poultry Sci...ORGANIZATION Mammalian Toxicology (If applicable) US Army Biomedical Research Division of Toxicology SGRD-ULE- T and Development Laboratory 6c. ADDRESS

  15. Disinfection by-product formation during chlor(am)ination of algal organic matters (AOM) extracted from Microcystis aeruginosa: effect of growth phases, AOM and bromide concentration.

    Science.gov (United States)

    Chen, Juxiang; Gao, Naiyun; Li, Lei; Zhu, Mingqiu; Yang, Jing; Lu, Xian; Zhang, Yansen

    2017-03-01

    Algae organic matter (AOM), including extracellular organic matter (EOM) and intracellular organic matter (IOM), has caused a series of problems to the water quality, among which formation of disinfection by-products (DBPs) during subsequent chlor(am)ination process was especially serious and concerned. This study characterized physicochemical properties of the EOM and IOM solution extracted from different growth phases of Microcystis aeruginosa and investigated the corresponding formation potential of DBPs during chlor(am)ination process. Besides, the effects of initial concentration of xEOM, IOM, and Br - on the yields of disinfection by-product formation potential were studied. The results indicated that the specific UV absorbance (SUVA 254 ) values of IOM and EOM (1.09 and 2.66 L/mg m) were considerably lower than that of natural organic matter (NOM) (4.79 L/mg m). Fluorescence dates showed the soluble microbial by-product was dominant in both EOM and IOM, and the tryptophan was the main component of AOM. From the excitation-emission matrix figure of EOM and IOM, we found that the content of the high molecular weight protein substance in IOM was higher than EOM. During chlorination of EOM and IOM, the yields of four kinds of DBPs followed the order trichloroethene (TCM) > 1,1-DCP > dichloride acetonitrile (DCAN) > trichloronitromethane (TCNM), while the order was TCM > DCAN > TCNM > 1,1-DCP during chloramination process. The bromine substitution factor (BSF) value increased with the increasing of the concentration of Br - . When the concentration of Br - was 500 μg/L, the BSF values of chlorination EOM and IOM were 51.1 and 68.4%, respectively. As the concentration of Br - increased, the formation of Cl-DBPs was inhibited and the formation of Br-DBPs was promoted. Graphical abstract ᅟ.

  16. Formation and Control of N-Nitrosodimethylamine (NDMA) in Wastewater Reclaimed for Indirect Potable Reuse

    OpenAIRE

    Sgroi, Massimiliano

    2014-01-01

    A large variety of disinfection by-products (DBPs) are formed during water treatment processes using chlorination. Disinfection with chloramines is often used to significantly reduce the formation of regulated DBPs. However, chloramination favours the formation of N-nitrosamines, which are emerging by-products of health concern. Of all the nitrosamines, N-nitrosodimethylamine (NDMA) has been most commonly detected in drinking water and wastewater. Nitrosamines can also be produced using diffe...

  17. Ammonia- and Nitrite-Oxidizing Bacterial Communities in a Pilot-Scale Chloraminated Drinking Water Distribution System

    OpenAIRE

    Regan, John M.; Harrington, Gregory W.; Noguera, Daniel R.

    2002-01-01

    Nitrification in drinking water distribution systems is a common operational problem for many utilities that use chloramines for secondary disinfection. The diversity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the distribution systems of a pilot-scale chloraminated drinking water treatment system was characterized using terminal restriction fragment length polymorphism (T-RFLP) analysis and 16S rRNA gene (ribosomal DNA [rDNA]) cloning and sequencing. For ammon...

  18. [Effect on the microbicidal efficacy of formaldehyde, glutardialdehyde, peracetic acid, chloramine T (N-chloro-4-toluenesulfonamide), m-cresol, ethanol and benzyldimethyldodecacylammonium bromide by blood (model experiments for chemical disinfection of instruments)].

    Science.gov (United States)

    Spicher, G; Peters, J

    1998-02-01

    In a preceding paper (Zbl. Hyg. 191 [1991] 457-477) we reported on the dependence of the microbicidal efficacy of active agents of the disinfection of instruments on the amount of coagulated blood adhering to the instruments. In the present investigation, we were interested in the dependence of the microbicidal effects on the amount of blood in the solutions of the active agents. Test areas of 2 cm2 were contaminated with 50 and 100 microliters coagulating blood, respectively, containing cells of Staphylococcus aureus as test germ. The solutions of the microbicidal agents were contaminated with heparinized blood up to a concentration of 4% immediately before starting the disinfection and 24 hours before, respectively. After a period of action lasting 1 hour at 20 degrees C, the relative number of test germs capable of multiplying (N/N0) was determined. The concentration of the microbicidal substances reducing the relative number of test germs capable to multiply to 10(-4) served for estimating the dependence of the microbicidal efficacy of the agents on the blood content of the solutions. The experimental results depended on the thickness of the layer of coagulated blood. The dependence of the efficacy of the microbicidal substances on the blood content of the solutions was the higher the thinner the blood layer was. At a thickness of the layer of the coagulated blood of 0.25 mm, a blood content of the solution of 4%, and applying it immediately after adding the blood, the concentration of glutardialdehyde had to be 1.6 times that without blood to reach the same microbicidal efficacy. When applying the solution 24 hours after adding the blood, the concentration of glutardialdehyde had to be 4.2 times that without blood. The quaternary ammonium compound reacted faster with the blood than did glutardialdehyde; the respective factors were 2.6 and 4.5. The concentration factors of chloramine T were 3.3 and 3.8. Under the conditions of the test, peracetic acid exhibited

  19. Formation of halogenated C-, N-DBPs from chlor(am)ination and UV irradiation of tyrosine in drinking water

    International Nuclear Information System (INIS)

    Chu Wenhai; Gao Naiyun; Krasner, Stuart W.; Templeton, Michael R.; Yin Daqiang

    2012-01-01

    The formation of regulated and emerging halogenated carbonaceous (C-) and nitrogenous disinfection by-products (N-DBPs) from the chlor(am)ination and UV irradiation of tyrosine (Tyr) was investigated. Increased chlorine contact time and/or Cl 2 /Tyr ratio increased the formation of most C-DBPs, with the exception of 4-chlorophenol, dichloroacetonitrile, and dichloroacetamideChloroform and dichloroacetic acid increased with increasing pH, dichloroacetonitrile first increased and then decreased, and other DBPs had maximum yields at pH 7 or 8. The addition of ammonia significantly reduced the formation of most C-DBPs but increased 4-chlorophenol, dichloroacetonitrile, dichloroacetamide, and trichloroacetonitrile yields for short prechlorination contact times before dosing ammonia. When UV irradiation and chlorination were performed simultaneously, the concentrations of the relatively stable C-DBPs increased, and the concentrations of dichloroacetonitrile, dichloroacetamide, and 4-chlorophenol decreased with increasing UV dose. This information was used to develop a mechanistic model for the formation of intermediate DBPs and end products from the interaction of disinfectants with tyrosine. Highlights: ► Increased contact time and/or Cl 2 /Tyr decreased the formation of some N-DBPs. ► Changing the pH of disinfection decreases the formation of some N-DBPs. ► N-DBP yields increased for short prechlorination contact time before dosing ammonia. ► Low pressure UV before chlorination did not impact the formation of DBPs from Tyr. ► A novel integrated formation pathway of halogenated C-, N-DBPs is proposed. - Exploring the integrated formation mechanism of regulated and emerging highly toxic DBPs, which is expected to preferably reduce their occurrence in drinking water.

  20. [The activity of formaldehyde, glutardialdehyde, peracetic acid, chloramine T (N-chlor-4-toluolsulfonamide), m-cresol, ethanol and benzyldimethyldodecylammonium bromide against bacteria which are found in coagulated blood. (Model studies for chemical disinfection of instruments].

    Science.gov (United States)

    Spicher, G; Peters, J

    1991-05-01

    The experiments were performed using frosted glass as carrier with its surface being contaminated with whole blood containing Staphylococcus aureus as test organism. At the time of sampling, a heparin preparation was added to the blood to prevent premature coagulation. After addition of the staphylococci, coagulation was initiated by means of a heparin antagonist. 10, 25, 50, 100, and 150 microliters, respectively, of the blood were homogeneously spread on rectangular test areas of 10 x 20 mm. After the blood had coagulated, each of the test objects was placed in 15 ml of the solution (20 degrees C) containing the active ingredient tested for 60 min. After that, the test objects were removed from the disinfectant and, in order to inactivate any adhering active components, treated with a neutralizing solution of suitable composition. The number of viable germs (colony-forming units) was determined quantitatively. The blood samples were ground together with quartz sand. Aliquots of the diluted suspensions were mixed with molten agar medium. The plates then were incubated at 37 degrees C over a period of 14 days. The relative number of viable germs (N/No) per test object was calculated from the number of colonies. Plotting of the microbicidal effects obtained (log N/No] versus the concentration of the active substance (see Figs. 1-3) yielded curves differing in some characteristics as e.g. curvature, slope of the lower curve section (log N/No). less than -3), concentration range according to the layer thickness of the contamination. To visualize the reduction of the efficacy of the respective disinfectants caused by blood, the concentrations of active components were determined which are necessary to achieve a microbicidal effect of log (N/No) = -4. These concentrations were plotted versus the amounts of blood per test area (Fig. 4). The resulting curve for formaldehyde was slightly U-shaped. With a raising amount of blood, the concentration required slightly

  1. [Experiments on disinfection of vaccinia virus embedded in scabs and/or at the hand].

    Science.gov (United States)

    Schümann, K; Grossgebauer, K

    1977-01-01

    Vaccinia viruses embedded in rabbit dermal scabs were subjected to physical and chemical disinfection procedures. Scabs were suspended in vitro without saline or in physiological saline, and left for 1 hour at 70 to 90 degrees C. A complete inactivation was achived only in those scab samples which had been incubated at 90 degrees C for 1 hour and suspended in physiological saline. Scabs which had been placed in a disinfecting apparatus (Vacudes 4000) filled with mattrasses consistently proved to be free of infectious vaccinia viruses in each of the chosen programs. In addition scabs were subjected to disinfection by means of chemical disinfecting agents. The scabs had been placed in a chemical disinfecting suspension and left there for 90 minutes. Complete disinfection was obtained with glutaraldehyde 2%, formaldehyde 2%, Lysoformin 2% or 3%, phenol 5% and chloramine T 2%. Complete disinfection was likewise achieved after 3 hours treatment with some alchohols (ethylalcohol 80%, isopropylalcohol 7%, n-propylalcohol 60%), Amocid 5% and formaldehyde 1%.0.5% formaldehyde caused complete disinfection when applied for 6 hours. The only exception was a Quat which did not disinfect fully even after 18 hours application. Concerning the tests to disinfect the hands complete disinfection occurs when using chloramine T (1.5%) or isopropylalcohol (70%) in 2 to 5 minutes. Further tests were performed with scabs which were placed in sick rooms that were terminally disinfected with formaline vapor. It could be confirmed that the usual terminal disinfection with formaldehyde vapor was unable to completely disinfect the scabs. It is necessary to double the amount of formaldehyde (10 g formaldehyde per cubic metre of space) and prolong the period of treatment to 24 hours to achieve a greater degree of disinfection rate.

  2. N-nitrosodimethylamine (NDMA) formation potential of amine-based water treatment polymers: Effects of in situ chloramination, breakpoint chlorination, and pre-oxidation.

    Science.gov (United States)

    Park, Sang Hyuck; Padhye, Lokesh P; Wang, Pei; Cho, Min; Kim, Jae-Hong; Huang, Ching-Hua

    2015-01-23

    Recent studies show that cationic amine-based water treatment polymers may be important precursors that contribute to formation of the probable human carcinogen N-nitrosodimethylamine (NDMA) during water treatment and disinfection. To better understand how water treatment parameters affect NDMA formation from the polymers, the effects of in situ chloramination, breakpoint chlorination, and pre-oxidation on the NDMA formation from the polymers were investigated. NDMA formation potential (NDMA-FP) as well as dimethylamine (DMA) residual concentration were measured from poly(epichlorohydrin dimethylamine) (polyamine) and poly(diallyldimethylammonium chloride) (polyDADMAC) solutions upon reactions with oxidants including free chlorine, chlorine dioxide, ozone, and monochloramine under different treatment conditions. The results supported that dichloramine (NHCl2) formation was the critical factor affecting NDMA formation from the polymers during in situ chloramination. The highest NDMA formation from the polymers occurred near the breakpoint of chlorination. Polymer chain breakdown and transformation of the released DMA and other intermediates were important factors affecting NDMA formation from the polymers in pre-oxidation followed by post-chloramination. Pre-oxidation generally reduced NDMA-FP of the polymers; however, the treatments involving pre-ozonation increased polyDADMAC's NDMA-FP and DMA release. The strategies for reducing NDMA formation from the polymers may include the avoidance of the conditions favorable to NHCl2 formation and the avoidance of polymer exposure to strong oxidants such as ozone. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Two in-vivo protocols for testing virucidal efficacy of handwashing and hand disinfection.

    Science.gov (United States)

    Steinmann, J; Nehrkorn, R; Meyer, A; Becker, K

    1995-01-01

    Whole-hands and fingerpads of seven volunteers were contaminated with poliovirus type 1 Sabin strain in order to evaluate virucidal efficacy of different forms of handwashing and handrub with alcohols and alcohol-based disinfectants. In the whole-hand protocol, handwashing with unmedicated soap for 5 min and handrubbing with 80% ethanol yielded a log reduction factor (RF) of > 2, whereas the log RF by 96.8% ethanol exceeded 3.2. With the fingerpad model ethanol produced a greater log RF than iso- or n-propanol. Comparing five commercial hand disinfectants and a chlorine solution (1.0% chloramine T-solution) for handrub, Desderman and Promanum, both composed of ethanol, yielded log RFs of 2.47 and 2.26 respectively after an application time of 60 s, similar to 1.0% chloramine T-solution (log RF of 2.28). Autosept, Mucasept, and Sterillium, based on n-propanol and/or isopropanol, were found to be significantly less effective (log RFs of 1.16, 1.06 and 1.52 respectively). A comparison of a modified whole-hand and the fingerpad protocol with Promanum showed similar results with the two systems suggesting both models are suitable for testing the in-vivo efficacy of handwashing agents and hand disinfectants which are used without any water.

  4. [On the bactericidal action of dibromoisocyanuric acid; experiments concerning the disinfection of hands (author's transl)].

    Science.gov (United States)

    Gottardi, W; Puritscher, M

    1976-07-01

    The action of dibromoisocyanuric acid (DBI), C12, Br2, trichloroisocyanuric acid (TCI) and chloramine T against Staph. aureus SG 511 was compared. Using the suspension test DBI and Br2 showed the strongest, chloramine T however, the weakest bactericidal power (Tab 2). Under the conditions of the "Hygienic disinfection of hands" a 0.005 M solution of DBI met the requirements specified in the "Richtlinien für die Prüfung chemischer Desinfektionsmittel" (3. Ed., Stuttgart: Gustav Fischer Verlag, 1972), and was comparable to a chloramine T solution containing the same amount of active halogen (Tab. 3). The decrease of disinfection power compared with the suspension test can be attributed to a great error induced by protein.

  5. Recent advances in drinking water disinfection: successes and challenges.

    Science.gov (United States)

    Ngwenya, Nonhlanhla; Ncube, Esper J; Parsons, James

    2013-01-01

    , it is recommended that water disinfection should never be compromised by attempting to control DBPs. The reason for this is that the risks of human illness and death from pathogens in drinking water are much greater than the risks from exposure to disinfectants and disinfection by-products. Nevertheless, if DBP levels exceed regulatory limits, strategies should focus on eliminating organic impurities that foster their formation, without compromising disinfection. As alternatives to chlorine, disinfectants such as chloramines, ozone, chlorine dioxide, and UV disinfection are gaining popularity. Chlorine and each of these disinfectants have individual advantage and disadvantage in terms of cost, efficacy-stability, ease of application, and nature of disinfectant by-products (DBPs). Based on efficiency, ozone is the most efficient disinfectant for inactivating bacteria, viruses, and protozoa. In contrast, chloramines are the least efficient and are not recommended for use as primary disinfectants. Chloramines are favored for secondary water disinfection, because they react more slowly than chlorine and are more persistent in distribution systems. In addition, chloramines produce lower DBP levels than does chlorine, although microbial activity in the distribution system may produce nitrate from monochloramine, when it is used as a residual disinfectant, Achieving the required levels of water quality, particularly microbial inactivation levels, while minimizing DBP formation requires the application of proper risk and disinfection management protocols. In addition, the failure of conventional treatment processes to eliminate critical waterborne pathogens in drinking water demand that improved and/or new disinfection technologies be developed. Recent research has disclosed that nanotechnology may offer solutions in this area, through the use of nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes, and nanoparticle-enhanced filtration.

  6. Culture-Independent Techniques for Rapid Detection of Bacteria Associated with Loss of Chloramine Residual in a Drinking Water System

    OpenAIRE

    Hoefel, Daniel; Monis, Paul T.; Grooby, Warwick L.; Andrews, Stuart; Saint, Christopher P.

    2005-01-01

    Chloramination is often the disinfection regimen of choice for extended drinking water systems. However, this process is prone to instability due to the growth of nitrifying bacteria. This is the first study to use alternative approaches for rapid investigation of chloraminated drinking water system instability in which flow cytometric cell sorting of bacteria with intact membranes (membrane-intact fraction) (BacLight kit) or with active esterases (esterase-active fraction) (carboxyfluorescei...

  7. Succession of Biofilm Microbial Community during Nitrification in Lab-Scale Reactors Simulating Chloraminated Drinking Water Distribution System Conditions: the Impact of Simultaneously Increasing Monochloramine and Chlorine to Nitrogen Mass Ratios

    Science.gov (United States)

    Chloramination has been shown to promote nitrifying bacteria and 30 to 63% of utility plants using secondary chloramine disinfection experience nitrification episodes. Although nitrifying bacteria are not considered human pathogens, nitrification can affect drinking water qualit...

  8. [Sensitivity to disinfectants of Candid albicans strains isolated from the hospital environment].

    Science.gov (United States)

    Tadeusiak, B

    1998-01-01

    In recent years an increase of the incidence of Candida infections caused mainly by C. albicans strains especially in high risk inpatients with neoplasms, decreased immunity, burns and after treatment with multiple antibiotics has been observed. Candida organisms are particularly dangerous for newborns being responsible for about 30% of septicaemia cases in newborns in intensive care units. Fungal infections can be endogenous in origin but exogenous infection sources occur in hospitals. The cause of the latter are errors in aseptic management and insufficiently disinfected medical instruments and equipment. The purpose of the study was a comparison of the sensitivity to disinfectants of C. albicans belonging to two laboratory strains C. albicans PZH and C. albicans ATCC 10231 used for the determination of concentrations of two disinfectants used. Besides that, this sensitivity was determined in 14 strains isolated from the patients and one from the circuit of dialysis solution supply to artificial kidney. The study was carried out by the qualitative suspension method, in which the cells in the fluid were subjected to the action of disinfectants, and by the carrier method in which the cells of the microorganisms were present on the surface of metal cylinders. By the suspension method the sensitivity was determined to chloramine T in concentrations from 5.0% to 0.001%, formalin from 10.0% to 0.25%, glutaraldehyde from 2.0% to 0.1%, Septyl from 3.5% to 0.25%. The exposure time was 5, 10, 15, 30 and 60 minutes. The tested strains differed in their sensitivity to the disinfectants used. The greatest interstrain differences were observed in the sensitivity to the disinfectants used. The greatest interstrain differences were observed in the sensitivity to chloramine T. The highest concentrations were tolerated by the strains isolated from the patients and from the artificial kidney circuit as well as by the standard strain ATCC 10231. In the 10-minute exposure time

  9. Formation mechanism of NDMA from ranitidine, trimethylamine, and other tertiary amines during chloramination: a computational study.

    Science.gov (United States)

    Liu, Yong Dong; Selbes, Meric; Zeng, Chengchu; Zhong, Rugang; Karanfil, Tanju

    2014-01-01

    Chloramination of drinking waters has been associated with N-nitrosodimethylamine (NDMA) formation as a disinfection byproduct. NDMA is classified as a probable carcinogen and thus its formation during chloramination has recently become the focus of considerable research interest. In this study, the formation mechanisms of NDMA from ranitidine and trimethylamine (TMA), as models of tertiary amines, during chloramination were investigated by using density functional theory (DFT). A new four-step formation pathway of NDMA was proposed involving nucleophilic substitution by chloramine, oxidation, and dehydration followed by nitrosation. The results suggested that nitrosation reaction is the rate-limiting step and determines the NDMA yield for tertiary amines. When 45 other tertiary amines were examined, the proposed mechanism was found to be more applicable to aromatic tertiary amines, and there may be still some additional factors or pathways that need to be considered for aliphatic tertiary amines. The heterolytic ONN(Me)2-R(+) bond dissociation energy to release NDMA and carbocation R(+) was found to be a criterion for evaluating the reactivity of aromatic tertiary amines. A structure-activity study indicates that tertiary amines with benzyl, aromatic heterocyclic ring, and diene-substituted methenyl adjacent to the DMA moiety are potentially significant NDMA precursors. The findings of this study are helpful for understanding NDMA formation mechanism and predicting NDMA yield of a precursor.

  10. Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment.

    Science.gov (United States)

    Postigo, Cristina; Richardson, Susan D

    2014-08-30

    Pharmaceuticals are emerging contaminants of concern and are widespread in the environment. While the levels of these substances in finished drinking waters are generally considered too low for human health concern, there are now concerns about their disinfection by-products (DBPs) that can form during drinking water treatment, which in some cases have been proven to be more toxic than the parent compounds. The present manuscript reviews the transformation products of pharmaceuticals generated in water during different disinfection processes, i.e. chlorination, ozonation, chloramination, chlorine dioxide, UV, and UV/hydrogen peroxide, and the main reaction pathways taking place. Most of the findings considered for this review come from controlled laboratory studies involving reactions of pharmaceuticals with these oxidants used in drinking water treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Interactive Effects of Corrosion, Copper, and Chloramines on Legionella and Mycobacteria in Hot Water Plumbing.

    Science.gov (United States)

    Rhoads, William J; Pruden, Amy; Edwards, Marc A

    2017-06-20

    Complexities associated with drinking water plumbing systems can result in undesirable interactions among plumbing components that undermine engineering controls for opportunistic pathogens (OPs). In this study, we examine the effects of plumbing system materials and two commonly applied disinfectants, copper and chloramines, on water chemistry and the growth of Legionella and mycobacteria across a transect of bench- and pilot-scale hot water experiments carried out with the same municipal water supply. We discovered that copper released from corrosion of plumbing materials can initiate evolution of >1100 times more hydrogen (H 2 ) from water heater sacrificial anode rods than does presence of copper dosed as soluble cupric ions. H 2 is a favorable electron donor for autotrophs and causes fixation of organic carbon that could serve as a nutrient for OPs. Dosed cupric ions acted as a disinfectant in stratified stagnant pipes, inhibiting culturable Legionella and biofilm formation, but promoted Legionella growth in pipes subject to convective mixing. This difference was presumably due to continuous delivery of nutrients to biofilm on the pipes under convective mixing conditions. Chloramines eliminated culturable Legionella and prevented L. pneumophila from recolonizing biofilms, but M. avium gene numbers increased by 0.14-0.76 logs in the bulk water and were unaffected in the biofilm. This study provides practical confirmation of past discrepancies in the literature regarding the variable effects of copper on Legionella growth, and confirms prior reports of trade-offs between Legionella and mycobacteria if chloramines are applied as secondary disinfectant residual.

  12. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems (abstract)

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. Here, we used 16S rRNA sequencing data to generate high-resolution taxonomic profiles of...

  13. Fungicidal effect of 15 disinfectants against 25 fungal contaminants commonly found in bread and cheese manufacturing.

    Science.gov (United States)

    Bundgaard-Nielsen, K; Nielsen, P V

    1996-03-01

    Resistance of 19 mold and 6 yeast species to 15 commercial disinfectants was investigated by using a suspension method in which the fungicidal effect and germination time were determined at 20 degrees C. Disinfectants containing 0.5% dodecyldiethylentriaminacetic acid, 10 g of chloramine-T per 1, 2.0% formaldehyde, 0.1% potassium hydroxide, 3.0% hydrogen peroxide, or 0.3% peracetic acid were ineffective as fungicides. The fungicidal effect of quaternary ammonium compounds and chlorine compounds showed great variability between species and among the six isolates of Penicillium roqueforti var. roqueforti tested. The isolates of P roqueforti var. carneum, P. discolor, Aspergillus versicolor, and Eurotium repens examined were resistant to different quaternary ammonium compounds. Conidia and vegetative cells were killed by alcohols, whereas ascospores were resistant. Resistance of ascospores to 70% ethanol increased with age. Both P. roqueforti var. roqueforti and E. repens showed great variability of resistance within isolates of each species.

  14. Enhanced formation of disinfection byproducts in shale gas wastewater-impacted drinking water supplies.

    Science.gov (United States)

    Parker, Kimberly M; Zeng, Teng; Harkness, Jennifer; Vengosh, Avner; Mitch, William A

    2014-10-07

    The disposal and leaks of hydraulic fracturing wastewater (HFW) to the environment pose human health risks. Since HFW is typically characterized by elevated salinity, concerns have been raised whether the high bromide and iodide in HFW may promote the formation of disinfection byproducts (DBPs) and alter their speciation to more toxic brominated and iodinated analogues. This study evaluated the minimum volume percentage of two Marcellus Shale and one Fayetteville Shale HFWs diluted by fresh water collected from the Ohio and Allegheny Rivers that would generate and/or alter the formation and speciation of DBPs following chlorination, chloramination, and ozonation treatments of the blended solutions. During chlorination, dilutions as low as 0.01% HFW altered the speciation toward formation of brominated and iodinated trihalomethanes (THMs) and brominated haloacetonitriles (HANs), and dilutions as low as 0.03% increased the overall formation of both compound classes. The increase in bromide concentration associated with 0.01-0.03% contribution of Marcellus HFW (a range of 70-200 μg/L for HFW with bromide = 600 mg/L) mimics the increased bromide levels observed in western Pennsylvanian surface waters following the Marcellus Shale gas production boom. Chloramination reduced HAN and regulated THM formation; however, iodinated trihalomethane formation was observed at lower pH. For municipal wastewater-impacted river water, the presence of 0.1% HFW increased the formation of N-nitrosodimethylamine (NDMA) during chloramination, particularly for the high iodide (54 ppm) Fayetteville Shale HFW. Finally, ozonation of 0.01-0.03% HFW-impacted river water resulted in significant increases in bromate formation. The results suggest that total elimination of HFW discharge and/or installation of halide-specific removal techniques in centralized brine treatment facilities may be a better strategy to mitigate impacts on downstream drinking water treatment plants than altering

  15. Changes in the Expression of Biofilm-Associated Surface Proteins in Staphylococcus aureus Food-Environmental Isolates Subjected to Sublethal Concentrations of Disinfectants

    Directory of Open Access Journals (Sweden)

    Lenka Cincarova

    2016-01-01

    Full Text Available Sublethal concentrations (sub-MICs of certain disinfectants are no longer effective in removing biofilms from abiotic surfaces and can even promote the formation of biofilms. Bacterial cells can probably adapt to these low concentrations of disinfectants and defend themselves by way of biofilm formation. In this paper, we report on three Staphylococcus aureus biofilm formers (strong B+++, moderate B++, and weak B+ that were cultivated with sub-MICs of commonly used disinfectants, ethanol or chloramine T, and quantified using Syto9 green fluorogenic nucleic acid stain. We demonstrate that 1.25–2.5% ethanol and 2500 μg/mL chloramine T significantly enhanced S. aureus biofilm formation. To visualize differences in biofilm compactness between S. aureus biofilms in control medium, 1.25% ethanol, or 2500 μg/mL chloramine T, scanning electron microscopy was used. To describe changes in abundance of surface-exposed proteins in ethanol- or chloramine T-treated biofilms, surface proteins were prepared using a novel trypsin shaving approach and quantified after dimethyl labeling by LC-LTQ/Orbitrap MS. Our data show that some proteins with adhesive functions and others with cell maintenance functions and virulence factor EsxA were significantly upregulated by both treatments. In contrast, immunoglobulin-binding protein A was significantly downregulated for both disinfectants. Significant differences were observed in the effect of the two disinfectants on the expression of surface proteins including some adhesins, foldase protein PrsA, and two virulence factors.

  16. [Control of disinfection in buildings used for poultry raising].

    Science.gov (United States)

    Maris, P

    1989-01-01

    During a 2-year survey in turkey breeding farms, it was possible to compare six disinfection procedures by monitoring 14 first disinfections following the breeding house cleaning and 14 second disinfections prior to animal return. By swabbing all the germs from asbestos concrete surfaces, we noted that in the case of first disinfection the chloramine T-based product was more effective than phenol or quaternary ammonium-aldehyde-based products. For the second disinfection, it was demonstrated that a minimal dose of 15 kg of formaldehyde was necessary for disinfection to be satisfactory; 12 to 15 kg paraformaldehyde was as effective as 40 to 60 liters of 30-35% formol for buildings, the ground surface of which covered between 1,000 and 1,300 m2.

  17. Fungicidal effect of 15 disinfectants against 24 fungal contaminants commonly found in bread and cheese manufacturing

    DEFF Research Database (Denmark)

    Bundgaard-Nielsen, Kirsten; Nielsen, Per Væggemose

    1996-01-01

    Resistance of 19 mold- and 6 yeast- species against 15 commercial disinfectants was investigated by a suspension-method in which the fungicidal effect and germination time were determined at 20 °C. Disinfectants containing 0.5 % dodecyldiethylentriaminacetic acid, 10 g/l chloramine-T, 2.0 % forma...

  18. Immunotoxicological profile of chloramine in female B6C3F1 mice when administered in the drinking water for 28 days.

    Science.gov (United States)

    Guo, Tai L; Germolec, Dori R; Collins, Bradley J; Luebke, Robert W; Auttachoat, Wimolnut; Smith, Matthew J; White, Kimber L

    2011-01-01

    Monochloramine has been used to provide a disinfecting residual in water distribution systems where it is difficult to maintain an adequate free-chlorine residual or where disinfection by-product formation is of concern. The goal of this study was to characterize the immunotoxic effects of chloramine in female B(6)C(3)F(1) mice when administered via the drinking water. Mice were exposed to chloramine-containing deionized tap water at 2, 10, 20, 100, or 200 ppm for 28 days. No statistically significant differences in drinking water consumption, body weight, body weight gain, organ weights, or hematological parameters between the exposed and control animals were noted during the experimental period. There were no changes in the percentages and numbers of total B-lymphocytes, T-lymphocytes, CD4(+) and CD8(+) T-lymphocytes, natural killer (NK) cells, and macrophages in the spleen. Exposure to chloramine did not affect the IgM antibody-forming cell response to sheep red blood cells (SRBC) or anti-SRBC IgM antibody production. Minimal effects, judged to be biologically insignificant, were observed in the mixed-leukocyte response and NK activity. In conclusion, chloramine produced no toxicological and immunotoxic effects in female B(6)C(3)F(1) mice when administered for 28 days in the drinking water at concentrations ranging from 2-200 ppm.

  19. Formation of iodo-trihalomethanes, iodo-acetic acids, and iodo-acetamides during chloramination of iodide-containing waters: Factors influencing formation and reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shaogang [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085 (China); Guangxi Colleges and Universities Key Laboratory of Food Safety and Pharmaceutical Analytical Chemistry, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, Guangxi (China); Li, Zhenlin [Guangxi Colleges and Universities Key Laboratory of Food Safety and Pharmaceutical Analytical Chemistry, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, Guangxi (China); Dong, Huiyu [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085 (China); Goodman, Bernard A. [College of Physical Science and Engineering, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 520004, Guangxi (China); Qiang, Zhimin, E-mail: qiangz@rcees.ac.cn [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085 (China)

    2017-01-05

    This study investigated systematically the factors influencing the formation of iodinated disinfection by-products (I-DBPs) during chloramination of I{sup −}-containing waters, including reaction time, NH{sub 2}Cl dose, I{sup −} concentration, pH, natural organic matter (NOM) concentration, Br{sup −}/I{sup −} molar ratio, and water matrix. Among the I-DBPs detected, iodoform (CHI{sub 3}), iodoacetic acid (IAA), diiodoacetic acid (DIAA), triiodoacetic acid (TIAA), and diiodoacetamide (DIAcAm) were the major species produced from reactions between reactive iodine species (HOI/I{sub 2}) and NOM. A kinetic model involving the reactions of NH{sub 2}Cl auto-decomposition, iodine species transformation and NOM consumption was developed, which could well describe NH{sub 2}Cl decay and HOI/I{sub 2} evolution. Higher concentrations of CHI{sub 3}, IAA, DIAA, TIAA, and DIAcAm were observed in chloramination than in chlorination, whereas IO{sub 3}{sup −} was only formed significantly in chlorination. Maximum formation of I-DBPs occurred at pH 8.0, but acidic conditions favored the formation of iodinated haloacetic acids and DIAcAm. Increasing Br{sup −}/I{sup −} molar ratio from 1 to 10 did not increase the total amount of I-DBPs, but produced more bromine-substituting species. In addition, chloramination of 18 model compounds indicated that low-SUVA{sub 254} (specific ultraviolet absorbance at 254 nm) NOM generally favored the formation of I-DBPs compared to high-SUVA{sub 254} NOM. Finally, potential pathways for I-DBPs formation from chloramination of NOM were proposed.

  20. Chloramination of Concentrated Drinking Water for Disinfection Byproduct Mixtures Creation- Indianapolis

    Science.gov (United States)

    Complex mixtures of disinfection by-products (DBPs) are formed when the disinfectant oxidizes constituents (e.g., natural organic matter (NOM) and organic pollutants) found in the source water. Since 1974, over 600 DBPs have been identified in drinking water. Despite intense iden...

  1. Reactivity of selenium-containing compounds with myeloperoxidase-derived chlorinating oxidants

    DEFF Research Database (Denmark)

    Carroll, Luke; Pattison, David I.; Fu, Shanlin

    2015-01-01

    and N-chloramines, causes damage to host tissue. Low molecular mass thiol compounds, including glutathione (GSH) and methionine (Met), have demonstrated efficacy in scavenging MPO-derived oxidants, which prevents oxidative damage in vitro and ex vivo. Selenium species typically have greater reactivity...... compounds (selenomethionine, methylselenocysteine, 1,4-anhydro-4-seleno-L-talitol, 1,5-anhydro-5-selenogulitol) studied. In general, selenomethionine was the most reactive with N-chloramines (k2 0.8-3.4×10(3)M(-1) s(-1)) with 1,5-anhydro-5-selenogulitol and 1,4-anhydro-4-seleno-L-talitol (k2 1.1-6.8×10(2)M......(-1) s(-1)) showing lower reactivity. This resulted in the formation of the respective selenoxides as the primary oxidation products. The selenium compounds demonstrated greater ability to remove protein N-chloramines compared to the analogous sulfur compounds. These reactions may have implications...

  2. Solar water disinfecting system using compound parabolic concentrating collector

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghetany, H.H.; Saitoh, T.S. [Tohoku Univ., Sendai (Japan)

    2000-05-31

    Solar water disinfection is an alternative technology using solar radiation and thermal treatment to inactivate and destroy pathogenic microorganisms present in water. The Compound Parabolic Concentrating, (CPC) collector can be used as an efficient key component for solar disinfectanting system. Two types of the CPC collectors are studied, namely the transparent-tube and the Copper-tube CPC collector. It is found that after 30 minutes of exposing the water sample to solar radiation or heating it up to 65 degree C for a few minuets all the coliform bacterial present in the contaminated water sample were completely eliminated. In this article, the effect of water temperature on the disinfecting process was presented. Thermal and micro-biological measurements were also made to evaluate the system performance. (author)

  3. Efficacy of chemical disinfectants for the containment of the salamander chytrid fungus Batrachochytrium salamandrivorans

    OpenAIRE

    Van Rooij, Pascale; Pasmans, Frank; Coen, Yanaïka; Martel, An

    2017-01-01

    The recently emerged chytrid fungus Batrachochytrium salamandrivorans (Bsal) causes European salamander declines. Proper hygiene protocols including disinfection procedures are crucial to prevent disease transmission. Here, the efficacy of chemical disinfectants in killing Bsal was evaluated. At all tested conditions, Biocidal (R), Chloramine-T (R), Dettol medical (R), Disolol (R), ethanol, F10 (R), Hibiscrub (R), potassium permanganate, Safe4 (R), sodium hypochlorite, and Virkon S (R), were ...

  4. Alternative disinfection technology for water purification systems; Josui shori ni okeru enso daitai shodoku gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, T. [The Institute of Public Health, Tokyo (Japan)

    1998-09-10

    This paper describes chlorination substituting disinfection technologies used in water purification systems. Chloramine treatment is regarded as effective in reducing trihalomethane (THM). Chlorine is injected in the initial stage in the form of free chlorine to disinfect pathogenic microorganisms in a short time, which is then added with ammonia to convert it into chloramine for further utilization. Chlorine dioxide has not been used in Japan, but introduced in Europe and America to treat THM. Ozone has the strongest oxidizing power, and is used for disinfection, virus inactivation, decomposition of THM precursors, and removal of fungus odor. The ozone treatment will produce aldehyde if an organic matter is present, but aldehyde can be removed by treatment using organismic activated carbon. Ultraviolet ray treatment has an advantage of being difficult of producing byproducts. This system was experimentally compared with free chlorine treatment on disinfection effect, mutagenicity, suppression of producing THM byproducts, and odor removal. In order to assure reliability of microorganismic and chemical safety in tap water supply systems, assurance by considering the entire system is important, not only by operating the disinfection units, but also combining such physical water purifying technologies as coagulation, sedimentation, filtration, and membrane treatment. The use of chlorine substituting disinfectants is also a part of the conception. 6 refs., 8 figs., 5 tabs.

  5. [Control of disinfection in the buildings of pig farms].

    Science.gov (United States)

    Maris, P

    1990-01-01

    A survey carried out in pig farms was undertaken in order to compare 4 disinfectants used in 13 disinfecting operations, during the vacation period. It was immediately noticeable that after swabbing and counting the staphylococci, the chloramine T-based preparation was more effective than the quaternary ammonium-aldehyde association, phenolic acid derivatives or the quaternary ammonium preparations. We then observed that although the number of organisms decreased by 99.8%, their number on slatted floors still ranged between 0.02 x 10(4) and 3 x 10(4) per cm2.

  6. The impact of iodinated X-ray contrast agents on formation and toxicity of disinfection by-products in drinking water.

    Science.gov (United States)

    Jeong, Clara H; Machek, Edward J; Shakeri, Morteza; Duirk, Stephen E; Ternes, Thomas A; Richardson, Susan D; Wagner, Elizabeth D; Plewa, Michael J

    2017-08-01

    The presence of iodinated X-ray contrast media (ICM) in source waters is of high concern to public health because of their potential to generate highly toxic disinfection by-products (DBPs). The objective of this study was to determine the impact of ICM in source waters and the type of disinfectant on the overall toxicity of DBP mixtures and to determine which ICM and reaction conditions give rise to toxic by-products. Source waters collected from Akron, OH were treated with five different ICMs, including iopamidol, iopromide, iohexol, diatrizoate and iomeprol, with or without chlorine or chloramine disinfection. The reaction product mixtures were concentrated with XAD resins and the mammalian cell cytotoxicity and genotoxicity of the reaction mixture concentrates was measured. Water containing iopamidol generated an enhanced level of mammalian cell cytotoxicity and genotoxicity after disinfection. While chlorine disinfection with iopamidol resulted in the highest cytotoxicity overall, the relative iopamidol-mediated increase in toxicity was greater when chloramine was used as the disinfectant compared with chlorine. Four other ICMs (iopromide, iohexol, diatrizoate, and iomeprol) expressed some cytotoxicity over the control without any disinfection, and induced higher cytotoxicity when chlorinated. Only iohexol enhanced genotoxicity compared to the chlorinated source water. Copyright © 2017. Published by Elsevier B.V.

  7. Superior bactericidal activity of N-bromine compounds compared to their N-chlorine analogues can be reversed under protein load.

    Science.gov (United States)

    Gottardi, W; Klotz, S; Nagl, M

    2014-06-01

    To investigate and compare the bactericidal activity (BA) of active bromine and chlorine compounds in the absence and presence of protein load. Quantitative killing tests against Escherichia coli and Staphylococcus aureus were performed both in the absence and in the presence of peptone with pairs of isosteric active chlorine and bromine compounds: hypochlorous and hypobromous acid (HOCl and HOBr), dichloro- and dibromoisocyanuric acid, chlorantine and bromantine (1,3-dibromo- and 1,3 dichloro-5,5-dimethylhydantoine), chloramine T and bromamine T (N-chloro- and N-bromo-4-methylbenzenesulphonamide sodium), and N-chloro- and N-bromotaurine sodium. To classify the bactericidal activities on a quantitative basis, an empirical coefficient named specific bactericidal activity (SBA), founded on the parameters of killing curves, was defined: SBA= mean log reductions/(mean exposure times x concentration) [mmol 1(-1) min (-1)]. In the absence of peptone, tests with washed micro-organisms revealed a throughout higher BA of bromine compounds with only slight differences between single substances. This was in contrast to chlorine compounds, whose killing times differed by a factor of more than four decimal powers. As a consequence, also the isosteric pairs showed according differences. In the presence of peptone, however, bromine compounds showed an increased loss of BA, which partly caused a reversal of efficacy within isosteric pairs. In medical practice, weakly oxidizing active chlorine compounds like chloramines have the highest potential as topical anti-infectives in the presence of proteinaceous material (mucous membranes, open wounds). Active bromine compounds, on the other hand, have their chance at insensitive body regions with low organic matter, for example skin surfaces. The expected protein load is one of the most important parameters for selection of a suited active halogen compound. © 2014 The Society for Applied Microbiology.

  8. Inhalation exposure to chloramine T induces DNA damage and inflammation in lung of Sprague-Dawley rats.

    Science.gov (United States)

    Shim, Ilseob; Seo, Gyun-Baek; Oh, Eunha; Lee, Mimi; Kwon, Jung-Taek; Sul, Donggeun; Lee, Byung-Woo; Yoon, Byung-Il; Kim, Pilje; Choi, Kyunghee; Kim, Hyun-Mi

    2013-01-01

    Chloramine T has been widely used as a disinfectant in many areas such as kitchens, laboratories and hospitals. It has been also used as a biocide in air fresheners and deodorants which are consumer products; however, little is known about its toxic effects by inhalation route. This study was performed to identify the subacute inhalation toxicity of chloramine T under whole-body inhalation exposure conditions. Male and female groups of rats were exposed to chloramine T at concentrations of 0.2, 0.9 and 4.0 mg/m³ for 6 hr/day, 5 days/week during 4 weeks. After 28-day repeated inhalation of chloramine T, there were dose-dependently significant DNA damage in the rat tissues evaluated and inflammation was histopathologically noted around the terminal airways of the lung in both genders. As a result of the expression of three types of antioxidant enzymes (SOD-2, GPx-1, PRX-1) in rat's lung after exposure, there was no significant change of all antioxidant enzymes in the male and female rats. The results showed that no observed adverse effect level (NOAEL) was 0.2 mg/m³ in male rats and 0.9 mg/m³ in female rats under the present experimental condition.

  9. Formation of nitrosodimethylamine (NDMA) during chlorine disinfection of wastewater effluents prior to use in irrigation systems.

    Science.gov (United States)

    Pehlivanoglu-Mantas, Elif; Hawley, Elisabeth L; Deeb, Rula A; Sedlak, David L

    2006-01-01

    The probable human carcinogen nitrosodimethylamine (NDMA) is produced when wastewater effluent is disinfected with chlorine. In systems where wastewater effluent is used for landscape or crop irrigation, relatively high chlorine doses (i.e., up to 2,000,mg-min/L) are often used to ensure adequate disinfection and to minimize biofouling in the irrigation system. To assess the formation of NDMA in such systems, samples were collected from several locations in full-scale wastewater treatment systems and their associated irrigation systems. Up to 460 ng/L of NDMA was produced in full-scale systems in which chloramines were formed when wastewater effluent was disinfected with chlorine in the presence of ammonia. Less than 20 ng/L of NDMA was produced in systems that used free chlorine (i.e., HOCl/OCl(-)) for disinfection in the absence of ammonia. The production of NDMA in ammonia-containing systems was correlated with the concentration of NDMA precursors in the wastewater effluent and the overall dose of chlorine applied. Much of the NDMA formation occurred in chlorine contact basins or in storage basins where water that contained chloramines was held after disinfection. When landscape or crop irrigation is practiced with ammonia-containing wastewater effluent, NDMA production can be controlled by use of lower chlorine doses or by application of alternative disinfectants.

  10. Effect of Ozonation and Biological Activated Carbon Treatment of Wastewater Effluents on Formation of N-nitrosamines and Halogenated Disinfection Byproducts.

    Science.gov (United States)

    Chuang, Yi-Hsueh; Mitch, William A

    2017-02-21

    Ozonation followed by biological activated carbon (O 3 /BAC) is being considered as a key component of reverse osmosis-free advanced treatment trains for potable wastewater reuse. Using a laboratory-scale O 3 /BAC system treating two nitrified wastewater effluents, this study characterized the effect of different ozone dosages (0-1.0 mg O 3 /mg dissolved organic carbon) and BAC empty bed contact times (EBCT; 15-60 min) on the formation after chlorination or chloramination of 35 regulated and unregulated halogenated disinfection byproducts (DBPs), 8 N-nitrosamines, and bromate. DBP concentrations were remarkably similar between the two wastewaters across O 3 /BAC conditions. Ozonation increased bromate, TCNM, and N-nitrosodimethylamine, but ozonation was less significant for other DBPs. DBP formation generally decreased significantly with BAC treatment at 15 min EBCT, but little further reduction was observed at higher EBCT where low dissolved oxygen concentrations may have limited biological activity. The O 3 /BAC-treated wastewaters met regulatory levels for trihalomethanes (THMs), haloacetic acids (HAAs), and bromate, although N-nitrosodimethylamine exceeded the California Notification Level in one case. Regulated THMs and HAAs dominated by mass. When DBP concentrations were weighted by measures of their toxic potencies, unregulated haloacetonitriles, haloacetaldehydes, and haloacetamides dominated. Assuming toxicity is additive, the calculated DBP-associated toxicity of the O 3 /BAC-treated chloraminated effluents were comparable or slightly higher than those calculated in a recent evaluation of Full Advanced Treatment trains incorporating reverse osmosis.

  11. Phototransformation of iodate by UV irradiation: Kinetics and iodinated trihalomethane formation during subsequent chlor(am)ination

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Fu-Xiang [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Hu, Xiao-Jun, E-mail: hu-xj@mail.tsinghua.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Xu, Bin; Zhang, Tian-Yang; Gao, Yu-Qiong [State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2017-03-15

    Highlights: • IO{sub 3}{sup −} can be photodegraded by UV irradiation with pseudo-first order kinetics. • Solution pH has no remarkable influence on the photodegradation rate of IO{sub 3}{sup −}. • The I{sup −} and HOI derived from the photoreduction of IO{sub 3}{sup −} were determined. • The presence of NOM greatly enhanced the photolysis rate of IO{sub 3}{sup −}. • NOM sources can affect the formation of I-THMs in UV-chlor(am)ination of IO{sub 3}{sup −}. - Abstract: The photodegradation of IO{sub 3}{sup −} at 254 nm and the formation of iodinated trihalomethanes (I-THMs) during subsequent chlorination or chloramination in the presence of natural organic matter (NOM) were investigated in this study. The thermodynamically stable IO{sub 3}{sup −} can be degraded by UV irradiation with pseudo-first order kinetics and the quantum yield was calculated as 0.0591 mol einstein{sup −1}. Solution pH posed no remarkable influence on the photolysis rate of IO{sub 3}{sup −}. The UV phototransformation of IO{sub 3}{sup −} was evidenced by the determination of iodide (I{sup −}) and hypoiodous acid (HOI) in solution. NOM sources not only enhanced the photodegradation rate of IO{sub 3}{sup −} by photoejecting solvated electrons, but also greatly influenced the production I-THMs in subsequent chlor(am)ination processes. In UV irradiation and sequential oxidation processes by chlorine or chloramine, the I-THMs formation was susceptible to NOM sources, especially the two major fractions of aqueous humic substances (humic acid and fulvic acid). The toxicity of disinfected waters greatly increased in chloramination over chlorination of the UV photodecomposed IO{sub 3}{sup −}, as far more I-THMs especially CHI{sub 3}, were formed. As “the fourth iodine source” of iodinated disinfection by-products, the occurrence, transportation and fate of IO{sub 3}{sup −} in aquatic environment should be of concern instead of being considered a desired

  12. Effect of disinfecting teats post-milking or pre- and post-milking on intramammary infection and somatic cell count.

    Science.gov (United States)

    Williamson, J H; Lacy-Hulbert, S J

    2013-09-01

    To determine the effects of (a) post-milking teat disinfection compared with no disinfection and (b) pre- and post-milking teat disinfection compared with post-milking disinfection alone, on the incidence of new intramammary infection (IMI), somatic cell count (SCC) and teat skin abnormalities in dairy cows. In Experiment 1, dairy cows in five dairy herds were randomly allocated to a post-milking teat disinfection group (n=230), that was sprayed with an iodine-based disinfectant (TeatguardPlus) for a complete lactation, or to a non-disinfected group (n=239). In Experiment 2, cows were randomly allocated to post-milking teat disinfection (n=239) or both pre- and post-milking teat disinfection (n=235), using a chloramine-T-based disinfectant (Teatsweet) for both treatments, from calving to 118-127 days in milk. The incidence of new IMI was determined by aseptic sampling of all quarters at calving, during lactation, and at trial end or at drying-off, with clinical mastitis cases sampled on detection. SCC and teat skin abnormalities were measured at 2-monthly intervals during lactation. In both experiments, disinfectant was applied by spray application. Cows that received post-milking teat disinfection had a lower incidence of new IMI caused by Staphylococcus aureus, Streptococcus uberis, Corynebacterium spp and coagulase negative staphylococci, had lower bulk milk SCC during lactation, and had fewer teat skin abnormalities compared with the non-disinfected cows (p disinfection, in addition to post-milking teat disinfection, did not reduce the incidence of new IMI for any pathogens and did not reduce SCC (p> 0.05). Post-milking teat disinfection applied as a spray is a key component in mastitis control in New Zealand. There was no benefit from the addition of pre-milking disinfection. This study confirms previous findings of the effectiveness of post-milking teat disinfection in reducing the incidence of IMI caused by the common mastitis-causing pathogens in New

  13. Formation and Occurrence of N-Chloro-2,2-dichloroacetamide, a Previously Overlooked Nitrogenous Disinfection Byproduct in Chlorinated Drinking Waters.

    Science.gov (United States)

    Yu, Yun; Reckhow, David A

    2017-02-07

    Haloacetamides (HAMs) are a class of newly identified nitrogenous disinfection byproducts (N-DBPs) whose occurrence in drinking waters has recently been reported in several DBP surveys. As the most prominent HAM species, it is commonly acknowledged that 2,2-dichloroacetamide (DCAM) is mainly generated from dichloroacetonitrile (DCAN) hydrolysis because the concentrations of these two compounds are often well correlated. Instead of DCAM, a previously unreported N-DBP, N-chloro-2,2-dichloroacetamide (N-Cl-DCAM), was confirmed in this study as the actual DCAN degradation product in chlorinated drinking waters. It is suspected that N-Cl-DCAM has been erroneously identified as DCAM, because its nitrogen-bound chlorine is readily reduced by most commonly used quenching agents. This hypothesis is supported by kinetic studies that indicate almost instantaneous N-chlorination of DCAM even at low chlorine residuals. Therefore, it is unlikely that DCAM can persist as a long-lived DCAN decomposition product in systems using free chlorine as a residual disinfectant. Instead, chlorination of DCAM will lead to the formation of an equal amount of N-Cl-DCAM by forming a hydrogen bond between hypochlorite oxygen and amino hydrogen. Alternatively, N-Cl-DCAM can be produced directly from DCAN chlorination via nucleophilic addition of hypochlorite on the nitrile carbon. Due to its relatively low pK a value, N-Cl-DCAM tends to deprotonate under typical drinking water pH conditions, and the anionic form of N-Cl-DCAM was found to be very stable in the absence of chlorine. N-Cl-DCAM can, however, undergo acid-catalyzed decomposition to form the corresponding dichloroacetic acid (DCAA) when chlorine is present, although those acidic conditions that favor N-Cl-DCAM degradation are generally atypical for finished drinking waters. For these reasons, N-Cl-DCAM is predicted to have very long half-lives in most distribution systems that use free chlorine. Furthermore, an analytical method using

  14. Improved radioiodination of biomolecules using exhaustive Chloramine-T oxidation

    International Nuclear Information System (INIS)

    Robles, Ana M.; Balter, Henia S.; Oliver, Patricia; Welling, Mick M.; Pauwels, Ernest K.J.

    2001-01-01

    To improve standardization in analytical reagents we investigated Chloramine-T radioiodination ( 125 I) of several biomolecules based on the use of a single amount of the oxidizing agent Chloramine-T as the limiting reagent being exhausted during the course of the reaction. Whenever the labeling yield resulted in less than one atom 125 I/molecule, a second amount of the oxidizing agent was added. Thereafter, the integrity of the various biomolecules was assessed using radioimmunoassays, radioreceptor binding assays, or radioimmunometric assays. Purification yields were done by gel permeation (56%±19%, n=230) or by precipitation with trichloroacetic acid (59%±19%, n=230). Specific activity (117±61 MBq/nmol) and the degree of iodine incorporation (1.4±0.8 atoms of 125 I/molecule) were achieved after 300 sec of incubation. A second addition of Chloramine-T resulted in an increased labeling yield of all biomolecules tested by a mean factor of 1.8±0.9. After the second addition of Chloramine-T, we observed for some biomolecules a significant (p<0.001) decreased effect in biological performance. In conclusion, the use of Chloramine-T as a limiting reagent resulted in molecules with appropriate immunological and biological performance. In general, tracers were minimally damaged and assessment of the shelf life as well as storing conditions showed the usefulness of the standardization of biomolecule labeling

  15. Disinfection by-products and extractable organic compounds in South African tap water

    Directory of Open Access Journals (Sweden)

    Carien Nothnagel

    2008-04-01

    Full Text Available An important step in urban purification of drinking water is disinfection by e.g. chlorination where potential pathogenic micro-organisms in the water supply are killed. The presence of organic material in natural water leads to the formation of organic by- products during disinfection. Over 500 of these disinfection by-products (DBPs have been identified and many more are estimated to form during the disinfection step. Several DBPs such as trihalomethanes (THMs, which is carcinogenic, poses serious health risks to the community. There is very few quantitative data available which realizes the actual levels of these compounds present in drinking water. The levels of four THMs present in drinking water were measured. It included chloroform, bromodichloromethane, chlorodibromomethane and bromoform. Although microbiological parameters are considered to get more attention than disinfection by-products, the measurement of the levels of these compounds in South-African drinking water is essential together with establishing minimum acceptable concentration levels. The target range for total trihalomethanes (TTHMs established by the US EPA at the end of 2003 is 0-0.08ug/mL. The aim of this paper is to create an awareness of the problem as well as presenting preliminary results obtained with the method of analysis. Preliminary results indicate that urgent attention must be given to the regulation and monitoring of DBPs in South African drinking water.

  16. Effect Of Storage And Disinfection Methods Of Extracted Bovine Teeth On Bond Strength To Dentin

    OpenAIRE

    Humel M.M.C.; Oliveira M.T.; Cavalli V.; Giannini M.

    2007-01-01

    The aim of this study was to evaluate the effect of storage and disinfection methods (SDM) on bond strength (BS) to bovine dentin, using two adhesive systems. Adper Single Bond and Clearfil Protect Bond. Method: Extracted bovine teeth were assigned to the following SDM: 100% Humidity (HU); Gamma Radiation (GR); Autoclave (AU): 0.10g/mL Thymol (TH); 10% Formatin (FO); Frozen (FR); 0.2% Sodium Azide (SA) and 0.5% Chloramine T (CT) (n=10). The GR and AU groups were submitted to sterilization met...

  17. Formation and occurrence of new polar iodinated disinfection byproducts in drinking water.

    Science.gov (United States)

    Pan, Yang; Li, Wenbin; An, Hao; Cui, Hao; Wang, Ying

    2016-02-01

    During drinking water disinfection, iodinated disinfection byproducts (I-DBPs) can be generated through reactions between iodide, disinfectants, and natural organic matter. Drinking water I-DBPs have been increasingly attracting attention as emerging organic pollutants as a result of their significantly higher toxicity and growth inhibition than their chloro- and bromo-analogues. In this study, by adopting ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry precursor ion scan, multiple reaction monitoring, and product ion scan analyses, 11 new polar I-DBPs with confirmed structures and eight new polar I-DBPs with proposed structures were detected in simulated drinking water samples. Chloramination of simulated raw waters containing natural organic matter with higher aromaticity produced higher levels of new phenolic I-DBPs. Formation of new polar I-DBPs and total organic iodine (TOI) was most favored in chloramination, followed by chlorine dioxide treatment, and relatively minor in chlorination. Lower pH in chloramination substantially enhanced the formation of new polar I-DBPs and TOI. NH2Cl and dissolved organic nitrogen could be important nitrogen sources and precursors for formation of the two new nitrogenous phenolic I-DBPs. Notably, in tap water samples collected from nine major cities located in the Yangtze River Delta region of China, seven of the 11 new polar I-DBPs with confirmed structures were detected at levels from 0.11 to 28 ng/L, and the two new nitrogenous phenolic I-DBPs were ubiquitous with concentrations from 0.12 to 24 ng/L, likely due to the relatively high dissolved organic nitrogen levels in regional source waters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Microbial community dynamics of an urban drinking water distribution system subjected to phases of chloramination and chlorination treatments.

    Science.gov (United States)

    Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L; LeChevallier, Mark W; Liu, Wen-Tso

    2012-11-01

    Water utilities in parts of the U.S. control microbial regrowth in drinking water distribution systems (DWDS) by alternating postdisinfection methods between chlorination and chloramination. To examine how this strategy influences drinking water microbial communities, an urban DWDS (population ≅ 40,000) with groundwater as the source water was studied for approximately 2 years. Water samples were collected at five locations in the network at different seasons and analyzed for their chemical and physical characteristics and for their microbial community composition and structure by examining the 16S rRNA gene via terminal restriction fragment length polymorphism and DNA pyrosequencing technology. Nonmetric multidimension scaling and canonical correspondence analysis of microbial community profiles could explain >57% of the variation. Clustering of samples based on disinfection types (free chlorine versus combined chlorine) and sampling time was observed to correlate to the shifts in microbial communities. Sampling location and water age (chlorinated water, and Methylophilaceae, Methylococcaceae, and Pseudomonadaceae were more abundant in chloraminated water. No correlation was observed with minor populations that were detected frequently (water and survived through the treatment process. Transient microbial populations including Flavobacteriaceae and Clostridiaceae were also observed. Overall, reversible shifts in microbial communities were especially pronounced with chloramination, suggesting stronger selection of microbial populations from chloramines than chlorine.

  19. The efficiency of different disinfecting agents in inactivating microorganisms detected in natural and treated waters; Eficiencia de diferentes agentes desinfectantes en la inactivacion de microorganismos detectados en aguas naturales y tratadas

    Energy Technology Data Exchange (ETDEWEB)

    Perez Recuerda, R.; Sanchez, J.M.; Borrego, J.J.

    1998-12-01

    The efficiency of microbial inactivation and sublethal injury of six disinfectants (chlorine, chloramines, uV-light, potassium permanganate, fluor and ozone) applied at different dose on several bacterial strains, yeast and viruses has been studied comparatively. Disinfectant effect was higher on Gramnegative bacteria (Salmonella, Pseudomonas, Escherichia and Klebsiella) than on Gram-positive (Clostridium, Enterococcus and Stanphylococcus); although the least inactivation effect was obtained on the MS-2 bacteriophage. The global efficiency ranking of the disinfectants assayed to produce the microbial inactivation was as follows; ozone>chlorine>UV-light>chloramines>permanganate>fluor. On the other hand, on Escherichia coli and Pseudomonas aerugionosa were observed the highest sublethal injuries provokes by the disinfectants and dose assayed. Therefore, these microorganisms are the main candidates to regrow and to form biofilm in drinking water distribution systems. 34 refs. (Author)

  20. Model tests for the efficacy of disinfectants on surfaces. IV. Communication: dependence of test results on the amount of contamination and the kind of active substance.

    Science.gov (United States)

    Peters, J; Spicher, G

    1998-12-01

    In the assessment of efficacy of surface disinfectants, many influencing factors have to be taken into account. One essential item is whether the surface to be disinfected is clean or soiled. Among the feasible soilings, the blood is of particular consequences because it ads impediments to many disinfecting agents. This paper shows to what extent the impairment of the efficacy of typical active agents depends on the blood burden of the surfaces. Therefore, test surfaces (varnished plywood) were contaminated with 0.01 to 0.08 ml of coagulating blood per test area (3 cm2). The blood contained cells of Staphylococcus aureus as test germs. The disinfection was effected by immersing the test objects in the disinfecting solution for 5 seconds and mingling the adhering disinfecting solution (about 0.02 ml) with the coagulated blood on the test surface with a glass spatula for about 20 seconds. Subsequently, the test objects remained in a horizontal position at room conditions for 4 hours and then the numbers of surviving test germs were determined. The graphical representation of the results shows that the efficacy curves of formaldehyde and phenol lie very closely together, i.e. their effect is hardly impaired by the different blood burdens of the test areas. The efficacy curves of glutaraldehyde, peracetic acid, chloramine T, and quaternary ammonium compounds lie very far apart from each other. To achieve the same microbicidal effect (log N/N0 = -5) when the contaminating amount is raised from 10 microliters/3 cm2 to 80 microliters/3 cm2, the concentration of chloramine T has to be raised by a factor of 5.4, peracetic acid by a factor of 9, glutaraldehyde by a factor of 24, quaternary ammonium compound even by a factor of 67. Ethanol and sodium hypochlorite showed a divergent behaviour. For ethanol, the efficacy diminution produced by increasing the contamination amount by a factor of 4 can be compensated by raising the concentration from 50% to about 70%. But again and

  1. Is free halogen necessary for disinfection?

    Science.gov (United States)

    Williams, D E; Elder, E D; Worley, S D

    1988-10-01

    The principle of Le Chatelier was used in demonstrating that 3-chloro-4,4-dimethyl-2-oxazolidinone (compound 1) itself kills Staphylococcus aureus rather than the very small amount of free chlorine in hydrolysis equilibrium with compound 1. On the other hand, when the N-bromo analog of compound 1 (compound 1B) was used as the disinfectant, the mixture of combined compound 1B and free bromine formed in the hydrolysis equilibrium provided disinfection. When the hydrolysis equilibrium for 1B was suppressed to the level at which a negligible amount of free bromine remained in solution, combined compound 1B was much more efficacious than combined compound 1 at killing S. aureus.

  2. Effect of medium-pressure UV-lamp treatment on disinfection by-products in chlorinated seawater swimming pool waters

    DEFF Research Database (Denmark)

    Cheema, Waqas Akram; Manasfi, Tarek; Kaarsholm, Kamilla Marie Speht

    2017-01-01

    Several brominated disinfection by-products (DBPs) are formed in chlorinated seawater pools, due to the high concentration of bromide in seawater. UV irradiation is increasingly employed in freshwater pools, because UV treatment photodegrades harmful chloramines. However, in freshwater pools it has...

  3. Nitrogenous disinfection byproducts in English drinking water supply systems: Occurrence, bromine substitution and correlation analysis.

    Science.gov (United States)

    Bond, Tom; Templeton, Michael R; Mokhtar Kamal, Nurul Hana; Graham, Nigel; Kanda, Rakesh

    2015-11-15

    Despite the recent focus on nitrogenous disinfection byproducts in drinking water, there is limited occurrence data available for many species. This paper analyses the occurrence of seven haloacetonitriles, three haloacetamides, eight halonitromethanes and cyanogen chloride in 20 English drinking water supply systems. It is the first survey of its type to compare bromine substitution factors (BSFs) between the haloacetamides and haloacetonitriles. Concentrations of the dihalogenated haloacetonitriles and haloacetamides were well correlated. Although median concentrations of these two groups were lower in chloraminated than chlorinated surface waters, median BSFs for both in chloraminated samples were approximately double those in chlorinated samples, which is significant because of the higher reported toxicity of the brominated species. Furthermore, median BSFs were moderately higher for the dihalogenated haloacetamides than for the haloacetonitriles. This indicates that, while the dihalogenated haloacetamides were primarily generated from hydrolysis of the corresponding haloacetonitriles, secondary formation pathways also contributed. Median halonitromethane concentrations were remarkably unchanging for the different types of disinfectants and source waters: 0.1 μg · mgTOC(-1) in all cases. Cyanogen chloride only occurred in a limited number of samples, yet when present its concentrations were higher than the other N-DBPs. Concentrations of cyanogen chloride and the sum of the halonitromethanes were not correlated with any other DBPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Efficacy of a variety of disinfectants against Listeria spp.

    Science.gov (United States)

    Best, M; Kennedy, M E; Coates, F

    1990-02-01

    The efficacy of 14 disinfectants against Listeria innocua and two strains of Listeria monocytogenes in the presence of organic matter was studied. Quantitative efficacy tests were used. Many of the disinfectants tested were not as effective on Listeria spp. when the test organisms were dried onto the surface of steel disks (carrier tests) as they were when the organisms were placed in suspension (suspension test). The presence of whole serum and milk (2% fat) further reduced the disinfectant capacities of most of the formulations studied. Only three disinfectants (povidone-iodine, chlorhexidine gluconate, and glutaraldehyde) were effective in the carrier test in the presence of serum; however, all three were ineffective when challenged with milk (2% fat). Only one solution, sodium dichloroisocyanurate, was effective in the presence of milk. All but four formulations (chloramine-T, phosphoric acid, an iodophor, and formaldehyde) were effective in the suspension tests, regardless of the organic load. L. monocytogenes was observed to be slightly more resistant to disinfection than L. innocua was. There was no difference in disinfectant susceptibility between the two strains of L. monocytogenes. These findings emphasize the need for caution in selecting an appropriate disinfectant for use on contaminated surfaces, particularly in the presence of organic material.

  5. Chloraminated Concentrated Drinking Water for Disinfection Byproduct Mixtures Research: Evaluating Free Chlorine Contact Times

    Science.gov (United States)

    Complex mixtures of disinfection by-products (DBPs) are formed when the disinfectant oxidizes constituents (e.g., natural organic matter (NOM) and organic pollutants) present in the source water. Since 1974, over 600 DBPs have been identified in drinking water, yet a large portio...

  6. Chloramination of Concentrated Drinking Water: Evaluation of Disinfection Byproduct Formation and Dosing Scenarios - Portland

    Science.gov (United States)

    Complex mixtures of disinfection by-products (DBPs) are formed when the disinfectant oxidizes constituents (e.g., natural organic matter (NOM) and organic pollutants) found in the source water. Since 1974, over 600 DBPs have been identified in drinking water. Despite intense iden...

  7. Assessing microbiological water quality in drinking water distribution systems with disinfectant residual using flow cytometry.

    Science.gov (United States)

    Gillespie, Simon; Lipphaus, Patrick; Green, James; Parsons, Simon; Weir, Paul; Juskowiak, Kes; Jefferson, Bruce; Jarvis, Peter; Nocker, Andreas

    2014-11-15

    Flow cytometry (FCM) as a diagnostic tool for enumeration and characterization of microorganisms is rapidly gaining popularity and is increasingly applied in the water industry. In this study we applied the method to obtain a better understanding of total and intact cell concentrations in three different drinking water distribution systems (one using chlorine and two using chloramines as secondary disinfectants). Chloramine tended to result in lower proportions of intact cells than chlorine over a wider residual range, in agreement with existing knowledge that chloramine suppresses regrowth more efficiently. For chlorinated systems, free chlorine concentrations above 0.5 mg L(-1) were found to be associated with relatively low proportions of intact cells, whereas lower disinfectant levels could result in substantially higher percentages of intact cells. The threshold for chlorinated systems is in good agreement with guidelines from the World Health Organization. The fact that the vast majority of samples failing the regulatory coliform standard also showed elevated proportions of intact cells suggests that this parameter might be useful for evaluating risk of failure. Another interesting parameter for judging the microbiological status of water, the biological regrowth potential, greatly varied among different finished waters providing potential help for investment decisions. For its measurement, a simple method was introduced that can easily be performed by water utilities with FCM capability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Occurrence of disinfection byproducts in United States wastewater treatment plant effluents

    KAUST Repository

    Krasner, Stuart W.; Westerhoff, Paul K.; Chen, Baiyang; Rittmann, Bruce E.; Amy, Gary L.

    2009-01-01

    Effluents from wastewater treatment plants (WWTPs) contain disinfection byproducts (DBPs) of health concern when the water is utilized downstream as a potable water supply. The pattern of DBP formation was strongly affected by whether or not the WWTP achieved good nitrification. Chlorine addition to poorly nitrified effluents formed low levels of halogenated DBPs, except for (in some cases) dihalogenated acetic acids, but often substantial amounts of N-nitrosodimethyamine (NDMA). Chlorination of well-nitrified effluent typically resulted in substantial formation of halogenated DBPs but much less NDMA. For example, on a median basis after chlorine addition, the well-nitrified effluents had 57 μg/L of trihalomethanes [THMs] and 3 ng/L of NDMA, while the poorly nitrified effluents had 2 μg/L of THMs and 11 ng/L of NDMA. DBPs with amino acid precursors (haloacetonitriles, haloacetaldehydes) formed at substantial levels after chlorination of well-nitrified effluent. The formation of halogenated DBPs but not that of NDMA correlated with the formation of THMs in WWTP effluents disinfected with free chlorine. However, THM formation did not correlate with the formation of other DBPs in effluents disinfected with chloramines. Because of the relatively high levels of bromide in treated wastewater, bromine incorporation was observed in various classes of DBPs. © 2009 American Chemical Society.

  9. Occurrence of disinfection byproducts in United States wastewater treatment plant effluents

    KAUST Repository

    Krasner, Stuart W.

    2009-11-01

    Effluents from wastewater treatment plants (WWTPs) contain disinfection byproducts (DBPs) of health concern when the water is utilized downstream as a potable water supply. The pattern of DBP formation was strongly affected by whether or not the WWTP achieved good nitrification. Chlorine addition to poorly nitrified effluents formed low levels of halogenated DBPs, except for (in some cases) dihalogenated acetic acids, but often substantial amounts of N-nitrosodimethyamine (NDMA). Chlorination of well-nitrified effluent typically resulted in substantial formation of halogenated DBPs but much less NDMA. For example, on a median basis after chlorine addition, the well-nitrified effluents had 57 μg/L of trihalomethanes [THMs] and 3 ng/L of NDMA, while the poorly nitrified effluents had 2 μg/L of THMs and 11 ng/L of NDMA. DBPs with amino acid precursors (haloacetonitriles, haloacetaldehydes) formed at substantial levels after chlorination of well-nitrified effluent. The formation of halogenated DBPs but not that of NDMA correlated with the formation of THMs in WWTP effluents disinfected with free chlorine. However, THM formation did not correlate with the formation of other DBPs in effluents disinfected with chloramines. Because of the relatively high levels of bromide in treated wastewater, bromine incorporation was observed in various classes of DBPs. © 2009 American Chemical Society.

  10. Chemical disinfection of non-porous inanimate surfaces experimentally contaminated with four human pathogenic viruses.

    Science.gov (United States)

    Sattar, S A; Springthorpe, V S; Karim, Y; Loro, P

    1989-06-01

    The chemical disinfection of virus-contaminated non-porous inanimate surfaces was investigated using coxsackievirus B3, adenovirus type 5, parainfluenza virus type 3 and coronavirus 229E as representatives of important nosocomial viral pathogens. A 10 microliter amount of the test virus, suspended in either faeces or mucin, was placed onto each stainless steel disk (about 1 cm in diameter) and the inoculum allowed to dry for 1 h under ambient conditions. Sixteen disinfectant formulations were selected for this study based on the findings of an earlier investigation with a human rotavirus. After 1 min exposure to 20 microliters of the disinfectant, the virus from the disks was immediately eluted into tryptose phosphate broth and plaque assayed. Using an efficacy criterion of a 3 log10 or greater reduction in virus infectivity titre and irrespective of the virus suspending medium, only the following five disinfectants proved to be effective against all the four viruses tested: (1) 2% glutaraldehyde normally used as an instrument soak, (2) a strongly alkaline mixture of 0.5% sodium o-benzyl-p-chlorophenate and 0.6% sodium lauryl sulphate, generally used as a domestic disinfectant cleaner for hard surfaces, (3) a 0.04% solution of a quaternary ammonium compound containing 7% hydrochloric acid, which is the basis of many toilet bowl cleaners, (4) chloramine T at a minimum free chlorine level of 3000 p.p.m. and (5) sodium hypochlorite at a minimum free chlorine concentration of 5000 p.p.m. Of those chemicals suitable for use as topical antiseptics, 70% ethanol alone or products containing at least 70% ethanol were ineffective only against coxsackievirus B3. These results emphasize the care needed in selecting chemical disinfectants for routine use in infection control.

  11. Resistance of common carp (Cyprinus carpio L.) to oxidative stress after chloramine-T treatment is increased by microalgae carotenoid-rich diet.

    Science.gov (United States)

    Stara, Alzbeta; Sergejevova, Magda; Kozak, Pavel; Masojidek, Jiri; Velisek, Josef; Kouba, Antonin

    2014-01-01

    In fish aquaculture, disinfectants are used against bacterial and protozoal infections. These compounds cause oxidative stress that may stimulate the generation of reactive oxygen species, and subsequently the alteration in antioxidant systems of exposed organisms. Antioxidants like carotenoids present in microalgae increase carp resistance to oxidative stress after chemical treatment. The aim of these experiments was to prove increased resistance of common carp (Cyprinus carpio L.) juveniles fed on experimental diets with microalgae biomass supplement (Algadiets) to oxidative stress caused by a disinfectant chloramine-T. In indoor experiments fish were fed on laboratory-prepared extruded diets containing supplement of Chlorella spp. (cf. C. vulgaris Beijerinck) biomass which contains antioxidants (carotenoids) like lutein. The young-of-the-year-old fish were acclimatized and fed on basal diet (control group) and the on diets containing 1, 2, 5 and 10% (w/w) of spray-dried Chlorella biomass (Algadiet 1, 2, 5 and 10) for 14 days followed by 6 weeks. Consequently, fish were treated daily with chloramine-T (Chl-T) at concentration of 10 mg x l(-1) for 1 h in three consecutive days. After this treatment, the indices of oxidative stress and antioxidant enzyme activity were assayed in fish gill, muscle and hepatopancreas. The fish fed on different Algadiets had increased antioxidant enzyme activities of glutathione peroxidase, glutathione reductase and catalase in flesh after the exposure to Chl-T. Higher activities of superoxide dismutase, glutathione peroxidase and glutathione reductase were also observed in the hepatopancreas in all tested concentrations compared to the control group fed on the basal diet. The increased production and activity of antioxidant enzymes confirmed improved protection ability of fish tissues against oxidative damage when microalgae biomass was supplemented to the fish diet which was more pronounced by higher microalgae supplement in

  12. Liquid chromatographic determination of chloramine-T and its primary degradation product, p-toluenesulfonamide, in water

    Science.gov (United States)

    Dawson, Verdel K.; Davis, Ruth A.

    1997-01-01

    N-sodium-N-chloro-rho-toluenesulfonamide (chloramine-T) effectively controls bacterial gill disease (BGD) in cultured fishes, BGD, a common disease of hatchery-reared salmonids, causes more fish losses than any other disease among these species. This study describes a liquid chromatographic (LC) method that is capable of direct, simultaneous analysis of chloramine-T and its primary degradation product, rho-toluenesulfonamide (rho-TSA), in water. The procedure involves reversed-phase (C-18) LC analysis with ion suppression, using 0.01 M phosphate buffer at pH 3. The mobile phase is phosphate buffer-acetonitrile (60 + 40) at 1 mL/min. Both chemicals can be detected with a UV spectrophotometer at 229 nm; the method is linear up to 40 mg, chloramine-T or rho-TSA/L. Mean recoveries were 96.4 +/- 6.1% for water samples fortified with 0.03 mg chloramine-T/L and 95.3 +/- 4.6% for water samples fortified with 0.005 mg rho-TSA/L. Limits of detection without sample enrichment for chloramine-T and rho-TSA are 0.01 mg/L and 0.001 mg/L, respectively.

  13. A proposed abiotic reaction scheme for hydroxylamine and monochloramine under chloramination relevant drinking water conditions.

    Science.gov (United States)

    Wahman, David G; Speitel, Gerald E; Machavaram, Madhav V

    2014-09-01

    Drinking water monochloramine (NH2Cl) use may promote ammonia-oxidizing bacteria (AOB). AOB use (i) ammonia monooxygenase for biological ammonia (NH3) oxidation to hydroxylamine (NH2OH) and (ii) hydroxylamine oxidoreductase for NH2OH oxidation to nitrite. NH2Cl and NH2OH may react, providing AOB potential benefits and detriments. The NH2Cl/NH2OH reaction would benefit AOB by removing the disinfectant (NH2Cl) and releasing their growth substrate (NH3), but the NH2Cl/NH2OH reaction would also provide a possible additional inactivation mechanism besides direct NH2Cl reaction with cells. Because biological NH2OH oxidation supplies the electrons required for biological NH3 oxidation, the NH2Cl/NH2OH reaction provides a direct mechanism for NH2Cl to inhibit NH3 oxidation, starving the cell of reductant by preventing biological NH2OH oxidation. To investigate possible NH2Cl/NH2OH reaction implications on AOB, an understanding of the underlying abiotic reaction is first required. The present study conducted a detailed literature review and proposed an abiotic NH2Cl/NH2OH reaction scheme (RS) for chloramination relevant drinking water conditions (μM concentrations, air saturation, and pH 7-9). Next, RS literature based kinetics and end-products were evaluated experimentally between pHs 7.7 and 8.3, representing (i) the pH range for future experiments with AOB and (ii) mid-range pHs typically found in chloraminated drinking water. In addition, a (15)N stable isotope experiment was conducted to verify nitrous oxide and nitrogen gas production and their nitrogen source. Finally, the RS was slightly refined using the experimental data and an AQUASIM implemented kinetic model. A chloraminated drinking water relevant RS is proposed and provides the abiotic reaction foundation for future AOB biotic experiments. Published by Elsevier Ltd.

  14. NDMA formation kinetics from three pharmaceuticals in four water matrices.

    Science.gov (United States)

    Shen, Ruqiao; Andrews, Susan A

    2011-11-01

    N, N-nitrosodimethylamine (NDMA) is an emerging disinfection by-product (DBP) that has been widely detected in many drinking water systems and commonly associated with the chloramine disinfection process. Some amine-based pharmaceuticals have been demonstrated to form NDMA during chloramination, but studies regarding the reaction kinetics are largely lacking. This study investigates the NDMA formation kinetics from ranitidine, chlorphenamine, and doxylamine under practical chloramine disinfection conditions. The formation profile was monitored in both lab-grade water and real water matrices, and a statistical model is proposed to describe and predict the NDMA formation from selected pharmaceuticals in various water matrices. The results indicate the significant impact of water matrix components and reaction time on the NDMA formation from selected pharmaceuticals, and provide fresh insights on the estimation of ultimate NDMA formation potential from pharmaceutical precursors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms.

    Science.gov (United States)

    Wang, Jun-Jian; Liu, Xin; Ng, Tsz Wai; Xiao, Jie-Wen; Chow, Alex T; Wong, Po Keung

    2013-05-15

    Disinfection byproduct (DBP) formation is commonly attributed to the reaction between natural organic matters and disinfectants, yet few have considered the contribution from disinfecting bacterial materials - the essential process of water disinfection. Here, we explored the DBP formation from chlorination and chloramination of Escherichia coli and found that most selected DBPs were detectable, including trihalomethanes, haloacetonitriles, chloral hydrate, chloropicrin, and 1,1,1-trichloro-2-propanone. A positive correlation (P = 0.08-0.09) between DBP formation and the log reduction of E. coli implied that breaking down of bacterial cells released precursors for DBP formation. As Pseudomonas aeruginosa is a dominant bacterial species in pipeline biofilms, the DBP formation potentials (DBPFPs) from its planktonic cells and biofilms were characterized. Planktonic cells formed 7-11 times greater trihalomethanes per carbon of those from biofilms but significantly lower (P biofilms on polyvinyl chloride compared to that on galvanized zinc. This study revealed both the in situ disinfection of bacterial planktonic cells in source water and ex situ reaction between biofilms and residual chlorine in pipeline networks as hitherto unknown DBP sources in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. FATE OF REVERSE OSMOSIS (RO) MEMBRANES DURING OXIDATION BY DISINFECTANTS USED IN WATER TREATMENT: IMPACT ON MEMBRANE STRUCTURE AND PERFORMANCES

    KAUST Repository

    Maugin, Thomas

    2013-12-01

    Providing pretreatment prior RO filtration is essential to avoid biofouling and subsequent loss of membrane performances. Chlorine is known to degrade polymeric membrane, improving or reducing membrane efficiency depending on oxidation conditions. This study aimed to assess the impact of alternative disinfectant, NH2Cl, as well as secondary oxidants formed during chloramination of seawater, e.g. HOBr, HOI, or used in water treatment e.g. ClO2, O3, on membrane structure and performances. Permeability, total and specific rejection (Cl-, SO4 2-, Br-, Boron), FTIR profile, elemental composition were analyzed. Results showed that each oxidant seems to react differently with the membrane. HOCl, HOBr, ClO2 and O3 improved membrane permeability but decreased rejection in different extent. In comparison, chloramines resulted in identical trends but oxidized membrane very slowly. On the contrary, iodine improved membrane rejection e.g. boron, but decreased permeability. Reaction conducted with chlorine, bromine, iodine and chloramines resulted in the incorporation of halogen in the membrane structure. All oxidant except iodine were able to break amide bonds of the membrane structure in our condition. In addition, chloramine seemed to react with membrane differently, involving a potential addition of nitrogen. Chloramination of seawater amplified membrane performances evolutions due to generation of bromochloramine. Moreover, chloramines reacted both with NOM and membrane during oxidation in natural seawater, leading to additional rejection drop.

  17. Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation.

    Science.gov (United States)

    Tugulea, A-M; Bérubé, D; Giddings, M; Lemieux, F; Hnatiw, J; Priem, J; Avramescu, M-L

    2014-10-01

    untreated Ottawa River water, with a dissolved organic carbon concentration of 6 mg/L, was significantly higher than the stability of the nano-silver dispersions in distilled, organic-free water. Nano-silver particles suspended in the groundwater agglomerated and were quickly and quantitatively removed from the solution. Our data confirm previous observations that natural dissolved organic matter stabilizes nano-silver particles, while the high-ionic strength of groundwater appears to favor their agglomeration and precipitation. As expected, nano-silver was not stable in Ottawa River water through the chlorination process, but survived for many days when added to the Ottawa River water after treatment with chlorine or chloramines. Stirring appeared to have minimal effect on nano-silver stability in untreated and treated Ottawa River water. The profile of DBPs formed in the presence of nAg differed significantly from the profile of DBPs formed in the absence of nAg only at the 1 mg/L nAg concentration. The differences observed consisted mainly in reduced formation of some brominated DBPs and a small increase in the formation of cyanogen chloride. The reduced formation of brominated congeners may be explained by the decrease in available bromide due to the presence of Ag(+) ions. It should be noted that a concentration of 1 mg/L is significantly higher than nAg concentrations that would be expected to be present in surface waters, but these results could be significant for the disinfection of some wastewaters with comparably high nano-silver concentrations.

  18. Environmental Quality: Environmental Protection and Enhancement

    Science.gov (United States)

    2002-01-17

    and maximum residual disinfectant levels (MRDLs) for three chemical disinfectants : chlorine, chloramine , and chlorine dioxide (see table 2-1 at the end... DISINFECTANT RESIDUALSl Chlorine 4 Monthlyq Monthlyq Chloramine 4 Monthlyq Monthlyq Chlorine dioxideo 0.8 Daily Daily RADIOCHEMICALS - Monitoring in...Adequate filtration/ disinfection must be provided to meet applicable CT [product of disinfectant concentration (c) and disinfectant contact time ( T

  19. Fort Campbell Childers House: Historic Maintenance and Repair Manual

    Science.gov (United States)

    2006-09-01

    swimming pool supply distributor, or water and sanitation sup- ply distributor. -OR- Chloramine - T : Chloramine is any of various compounds...ERDC/CERL). The CERL Project Manager was Adam Smith. Dr. Dick Gebhart is Acting Chief, CN-C, and Dr. John T . Bandy is Chief, CN. The Director of...NaOCl): a. An unstable salt produced usually in aqueous solution and used as a bleaching and disinfecting agent. b. Other chemical or common names

  20. Nitrification in Chloraminated Drinking Water Distribution Systems - Occurrence

    Science.gov (United States)

    This chapter discusses available information on nitrification occurrence in drinking water chloraminated distribution systems. Chapter 4 provides an introduction to causes and controls for nitrification in chloraminated drinking water systems. Both chapters are intended to serve ...

  1. Impact of Nitrification on the Formation of N-Nitrosamines and Halogenated Disinfection Byproducts within Distribution System Storage Facilities.

    Science.gov (United States)

    Zeng, Teng; Mitch, William A

    2016-03-15

    Distribution system storage facilities are a critical, yet often overlooked, component of the urban water infrastructure. This study showed elevated concentrations of N-nitrosodimethylamine (NDMA), total N-nitrosamines (TONO), regulated trihalomethanes (THMs) and haloacetic acids (HAAs), 1,1-dichloropropanone (1,1-DCP), trichloroacetaldehyde (TCAL), haloacetonitriles (HANs), and haloacetamides (HAMs) in waters with ongoing nitrification as compared to non-nitrifying waters in storage facilities within five different chloraminated drinking water distribution systems. The concentrations of NDMA, TONO, HANs, and HAMs in the nitrifying waters further increased upon application of simulated distribution system chloramination. The addition of a nitrifying biofilm sample collected from a nitrifying facility to its non-nitrifying influent water led to increases in N-nitrosamine and halogenated DBP formation, suggesting the release of precursors from nitrifying biofilms. Periodic treatment of two nitrifying facilities with breakpoint chlorination (BPC) temporarily suppressed nitrification and reduced precursor levels for N-nitrosamines, HANs, and HAMs, as reflected by lower concentrations of these DBPs measured after re-establishment of a chloramine residual within the facilities than prior to the BPC treatment. However, BPC promoted the formation of halogenated DBPs while a free chlorine residual was maintained. Strategies that minimize application of free chlorine while preventing nitrification are needed to control DBP precursor release in storage facilities.

  2. A comparison of disinfection by-products formation during sequential or simultaneous disinfection of surface waters with chlorine dioxide and chlor(am)ine.

    Science.gov (United States)

    Shi, Yanwei; Ling, Wencui; Qiang, Zhimin

    2013-01-01

    The effect of chlorine dioxide (ClO2) oxidation on the formation of disinfection by-products (DBPs) during sequential (ClO2 pre-oxidation for 30 min) and simultaneous disinfection processes with free chlorine (FC) or monochloramine (MCA) was investigated. The formation of DBPs from synthetic humic acid (HA) water and three natural surface waters containing low bromide levels (11-27 microg/L) was comparatively examined in the FC-based (single FC, sequential ClO2-FC, and simultaneous ClO2/FC) and MCA-based (single MCA, ClO2-MCA, and ClO2/MCA) disinfection processes. The results showed that much more DBPs were formed from the synthetic HA water than from the three natural surface waters with comparative levels of dissolved organic carbon. In the FC-based processes, ClO2 oxidation could reduce trihalomethanes (THMs) by 27-35% and haloacetic acids (HAAs) by 14-22% in the three natural surface waters, but increased THMs by 19% and HAAs by 31% in the synthetic HA water after an FC contact time of 48 h. In the MCA-based processes, similar trends were observed although DBPs were produced at a much lower level. There was an insignificant difference in DBPs formation between the sequential and simultaneous processes. The presence of a high level of bromide (320 microg/L) remarkably promoted the DBPs formation in the FC-based processes. Therefore, the simultaneous disinfection process of ClO2/MCA is recommended particularly for waters with a high bromide level.

  3. Interaction of Human Enteric Viruses with Microbial Compounds: Implication for Virus Persistence and Disinfection Treatments.

    Science.gov (United States)

    Waldman, Prunelle; Meseguer, Alba; Lucas, Françoise; Moulin, Laurent; Wurtzer, Sébastien

    2017-12-05

    Although the interaction between phages and bacteria has already been well described, it only recently emerged that human viruses also interact with bacteria in the mammalian gut. We studied whether this interaction could occur in tap water and thus confer enteric viruses protection against temperature and the classical disinfection treatments used in drinking water production. We demonstrated that the addition of lipopolysaccharide or peptidoglycan of bacterial origin to enterovirus provides thermal protection through stabilization of the viral capsid. This interaction plays a role when viruses are exposed to disinfection that targets the capsid, but less so when the virus genome is directly targeted. The interaction seems to be serotype-specific, suggesting that the capsid protein sequence could be important. The protection is linked to a direct association between viral particles and bacterial compounds as observed by microscopy. These results show that bacterial compounds present in the environment can affect virus inactivation.

  4. Strontium Adsorption and Desorption Reactions in Model Drinking Water Distribution Systems

    Science.gov (United States)

    2014-02-04

    disinfected drinking water and the other with the same water with secondary chloramine disinfection . Flow...systems (DWDS). One system was maintained with chlorine- disinfected drinking water and the other with the same water with secondary chloramine... disinfectant concen- tration in drinking water can decrease during periods of stagnation, i.e., minimal to no water flow (Al-Jasser 2007). These

  5. Evaluating Evidence for Association of Human Bladder Cancer with Drinking-Water Chlorination Disinfection By-Products

    Science.gov (United States)

    Hrudey, Steve E.; Backer, Lorraine C.; Humpage, Andrew R.; Krasner, Stuart W.; Michaud, Dominique S.; Moore, Lee E.; Singer, Philip C.; Stanford, Benjamin D.

    2015-01-01

    Exposure to chlorination disinfection by-products (CxDBPs) is prevalent in populations using chlorination-based methods to disinfect public water supplies. Multifaceted research has been directed for decades to identify, characterize, and understand the toxicology of these compounds, control and minimize their formation, and conduct epidemiologic studies related to exposure. Urinary bladder cancer has been the health risk most consistently associated with CxDBPs in epidemiologic studies. An international workshop was held to (1) discuss the qualitative strengths and limitations that inform the association between bladder cancer and CxDBPs in the context of possible causation, (2) identify knowledge gaps for this topic in relation to chlorine/chloramine-based disinfection practice(s) in the United States, and (3) assess the evidence for informing risk management. Epidemiological evidence linking exposures to CxDBPs in drinking water to human bladder cancer risk provides insight into causality. However, because of imprecise, inaccurate, or incomplete estimation of CxDBPs levels in epidemiologic studies, translation from hazard identification directly to risk management and regulatory policy for CxDBPs can be challenging. Quantitative risk estimates derived from toxicological risk assessment for CxDBPs currently cannot be reconciled with those from epidemiologic studies, notwithstanding the complexities involved, making regulatory interpretation difficult. Evidence presented here has both strengths and limitations that require additional studies to resolve and improve the understanding of exposure response relationships. Replication of epidemiologic findings in independent populations with further elaboration of exposure assessment is needed to strengthen the knowledge base needed to better inform effective regulatory approaches. PMID:26309063

  6. Evaluating Evidence for Association of Human Bladder Cancer with Drinking-Water Chlorination Disinfection By-Products.

    Science.gov (United States)

    Hrudey, Steve E; Backer, Lorraine C; Humpage, Andrew R; Krasner, Stuart W; Michaud, Dominique S; Moore, Lee E; Singer, Philip C; Stanford, Benjamin D

    2015-01-01

    Exposure to chlorination disinfection by-products (CxDBPs) is prevalent in populations using chlorination-based methods to disinfect public water supplies. Multifaceted research has been directed for decades to identify, characterize, and understand the toxicology of these compounds, control and minimize their formation, and conduct epidemiologic studies related to exposure. Urinary bladder cancer has been the health risk most consistently associated with CxDBPs in epidemiologic studies. An international workshop was held to (1) discuss the qualitative strengths and limitations that inform the association between bladder cancer and CxDBPs in the context of possible causation, (2) identify knowledge gaps for this topic in relation to chlorine/chloramine-based disinfection practice(s) in the United States, and (3) assess the evidence for informing risk management. Epidemiological evidence linking exposures to CxDBPs in drinking water to human bladder cancer risk provides insight into causality. However, because of imprecise, inaccurate, or incomplete estimation of CxDBPs levels in epidemiologic studies, translation from hazard identification directly to risk management and regulatory policy for CxDBPs can be challenging. Quantitative risk estimates derived from toxicological risk assessment for CxDBPs currently cannot be reconciled with those from epidemiologic studies, notwithstanding the complexities involved, making regulatory interpretation difficult. Evidence presented here has both strengths and limitations that require additional studies to resolve and improve the understanding of exposure response relationships. Replication of epidemiologic findings in independent populations with further elaboration of exposure assessment is needed to strengthen the knowledge base needed to better inform effective regulatory approaches.

  7. Disinfection byproduct formation in drinking water sources: A case study of Yuqiao reservoir.

    Science.gov (United States)

    Zhai, Hongyan; He, Xizhen; Zhang, Yan; Du, Tingting; Adeleye, Adeyemi S; Li, Yao

    2017-08-01

    This study investigated the potential formation of disinfection byproducts (DBPs) during chlorination and chloramination of 20 water samples collected from different points of Yuqiao reservoir in Tianjin, China. The concentrations of dissolved organic matter and ammonia decreased downstream the reservoir, while the specific UV absorbance (SUVA: the ratio of UV 254 to dissolved organic carbon) increased [from 0.67 L/(mg*m) upstream to 3.58 L/(mg*m) downstream]. The raw water quality played an important role in the formation of DBPs. During chlorination, haloacetic acids (HAAs) were the major DBPs formed in most of the water samples, followed by trihalomethanes (THMs). CHCl 3 and CHCl 2 Br were the major THM species, while trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) were the major HAA species. Chloramination, on the other hand, generally resulted in lower concentrations of THMs (CHCl 3 ), HAAs (TCAA and DCAA), and haloacetonitriles (HANs). All the species of DBPs formed had positive correlations with the SUVA values, and HANs had the highest one (R 2  = 0.8). The correlation coefficients between the analogous DBP yields and the SUVA values in chlorinated samples were close to those in chloraminated samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. [Decontamination of dental unit waterlines using disinfectants and filters].

    Science.gov (United States)

    Monarca, S; Garusi, G; Gigola, P; Spampinato, L; Zani, C; Sapelli, P L

    2002-10-01

    Bacterial contamination of the dental unit water system can become a health problem for patients, particularly if they are immunodepressed. The present study has had the purpose of evaluating the effectiveness of methods of chemical decontamination using different disinfectants (peracetic acid, hydrogen peroxide, silver salts, chloramine T, glutaraldehyde T4) and methods of physical decontamination using synthetic membranes for the filtration of water. A preliminary removal procedure of the biofilm present in the waterline has been followed in a dental unit prepared on purpose for the research; subsequently different 2-week long maintenance procedures were applied using disinfectants injected by a pump and finally the bacterial contamination of the water flowing from the waterline was evaluated. The physical decontamination was performed using 0.22 mm membrane filters, which have been installed also in another dental unit, and the filtered water was analyzed to detect bacterial contamination. The preliminary procedure of biofilm removal succeeded obtaining germ-free water. Among the disinfectants used for the maintenance of the water quality only glutaraldehyde T4 was able to reduce the bacterial contamination under the limit suggested by the ADA. The membrane filter system was not able to purify the water, but when a disinfectant (peracetic acid) was used in the last part of the waterline good results were obtained. At present no decontamination system of dental waterline is available, and glutaraldehyde T4 seems to be the best disinfectant only if integrated with periodic biofilm removal for the maintenance of the water quality.

  9. Antibacterial surface design - Contact kill

    Science.gov (United States)

    Kaur, Rajbir; Liu, Song

    2016-08-01

    Designing antibacterial surfaces has become extremely important to minimize Healthcare Associated Infections which are a major cause of mortality worldwide. A previous biocide-releasing approach is based on leaching of encapsulated biocides such as silver and triclosan which exerts negative impacts on the environment and potentially contributes to the development of bacterial resistance. This drawback of leachable compounds led to the shift of interest towards a more sustainable and environmentally friendly approach: contact-killing surfaces. Biocides that can be bound onto surfaces to give the substrates contact-active antibacterial activity include quaternary ammonium compounds (QACs), quaternary phosphoniums (QPs), carbon nanotubes, antibacterial peptides, and N-chloramines. Among the above, QACs and N-chloramines are the most researched contact-active biocides. We review the engineering of contact-active surfaces using QACs or N-chloramines, the modes of actions as well as the test methods. The charge-density threshold of cationic surfaces for desired antibacterial efficacy and attempts to combine various biocides for the generation of new contact-active surfaces are discussed in detail. Surface positive charge density is identified as a key parameter to define antibacterial efficacy. We expect that this research field will continue to attract more research interest in view of the potential impact of self-disinfective surfaces on healthcare-associated infections, food safety and corrosion/fouling resistance required on industrial surfaces such as oil pipes and ship hulls.

  10. Reactions of phenylurea compounds with aqueous chlorine: Implications for herbicide transformation during drinking water disinfection

    International Nuclear Information System (INIS)

    Chusaksri, Sarinma; Sutthivaiyakit, Somyote; Sedlak, David L.; Sutthivaiyakit, Pakawadee

    2012-01-01

    Highlights: ► Mechanism of chlorine reaction with phenylurea compounds has been studied. ► It depends on both chlorinating species and substitutents on the compounds. ► Main products were identified using LC–MS/MS and authentic standards. ► Their transformation under normal drinking water disinfection was predicted. - Abstract: Phenylurea herbicides have been known to contaminate surface waters serving as potable supplies. To access the potential for transformation of these compounds during drinking water treatment, reactions of phenylurea compounds with aqueous chlorine at different pHs were investigated. The effect of substitution at the amino-N on the rate of transformation depends upon pH. Under acidic conditions, all of the phenylurea studied except 3,4-dichloro-3′-N-methylphenylurea (3,4-DCMPU) exhibited third-order kinetics, second order with respect to chlorine and first order with respect to phenylurea, while the reactions of 3,4-DCMPU were first order with respect to both chlorine and the organic compound. Under neutral and alkaline conditions, all compounds exhibited second-order kinetics that was first order with respect to chlorine and the organic compound. Apparent second-order rate constants at 25 °C and pH 7 were 0.76 ± 0.16, 0.52 ± 0.11, 0.39 ± 0.02, 0.27 ± 0.04 and 0.23 ± 0.05 M −1 s −1 for phenylurea, 3, 4-dichlorophenylurea, 3, 4-DCMPU, metoxuron and monuron, respectively. Studies of the chlorination products, monitored by LC/MS/MS, under different pH values indicated the reaction to take place at both N atoms and also at ortho- and para- positions of the phenylurea aromatic group. The main chlorinating species were found to be different in different pH ranges. Under conditions typically encountered in drinking water treatment systems, transformation of these compounds by chlorine will be incomplete.

  11. Efficacy of chemical disinfectants for the containment of the salamander chytrid fungus Batrachochytrium salamandrivorans.

    Science.gov (United States)

    Van Rooij, Pascale; Pasmans, Frank; Coen, Yanaika; Martel, An

    2017-01-01

    The recently emerged chytrid fungus Batrachochytrium salamandrivorans (Bsal) causes European salamander declines. Proper hygiene protocols including disinfection procedures are crucial to prevent disease transmission. Here, the efficacy of chemical disinfectants in killing Bsal was evaluated. At all tested conditions, Biocidal®, Chloramine-T®, Dettol medical®, Disolol®, ethanol, F10®, Hibiscrub®, potassium permanganate, Safe4®, sodium hypochlorite, and Virkon S®, were effective at killing Bsal. Concentrations of 5% sodium chloride or lower, 0.01% peracetic acid and 0.001-1% copper sulphate were inactive against Bsal. None of the conditions tested for hydrogen peroxide affected Bsal viability, while it did kill Batrachochytrium dendrobatidis (Bd). For Bsal, enzymatic breakdown of hydrogen peroxide by catalases and specific morphological features (clustering of sporangia, development of new sporangia within the original sporangium), were identified as fungal factors altering susceptibility to several of the disinfectants tested. Based on the in vitro results we recommend 1% Virkon S®, 4% sodium hypochlorite and 70% ethanol for disinfecting equipment in the field, lab or captive setting, with a minimal contact time of 5 minutes for 1% Virkon S® and 1 minute for the latter disinfectants. These conditions not only efficiently target Bsal, but also Bd and Ranavirus.

  12. Efficacy of chemical disinfectants for the containment of the salamander chytrid fungus Batrachochytrium salamandrivorans.

    Directory of Open Access Journals (Sweden)

    Pascale Van Rooij

    Full Text Available The recently emerged chytrid fungus Batrachochytrium salamandrivorans (Bsal causes European salamander declines. Proper hygiene protocols including disinfection procedures are crucial to prevent disease transmission. Here, the efficacy of chemical disinfectants in killing Bsal was evaluated. At all tested conditions, Biocidal®, Chloramine-T®, Dettol medical®, Disolol®, ethanol, F10®, Hibiscrub®, potassium permanganate, Safe4®, sodium hypochlorite, and Virkon S®, were effective at killing Bsal. Concentrations of 5% sodium chloride or lower, 0.01% peracetic acid and 0.001-1% copper sulphate were inactive against Bsal. None of the conditions tested for hydrogen peroxide affected Bsal viability, while it did kill Batrachochytrium dendrobatidis (Bd. For Bsal, enzymatic breakdown of hydrogen peroxide by catalases and specific morphological features (clustering of sporangia, development of new sporangia within the original sporangium, were identified as fungal factors altering susceptibility to several of the disinfectants tested. Based on the in vitro results we recommend 1% Virkon S®, 4% sodium hypochlorite and 70% ethanol for disinfecting equipment in the field, lab or captive setting, with a minimal contact time of 5 minutes for 1% Virkon S® and 1 minute for the latter disinfectants. These conditions not only efficiently target Bsal, but also Bd and Ranavirus.

  13. Reaction of protein chloramines with DNA and nucleosides

    DEFF Research Database (Denmark)

    Hawkins, Clare Louise; Pattison, David I; Davies, Michael Jonathan

    2002-01-01

    Stimulated phagocyte cells produce the oxidant HOCl, via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl is important in bacterial cell killing, but excessive or misplaced generation can damage the host tissue and may lead to the development of certain diseases such as cance......, 50-80% of the HOCl is predicted to react with histone lysine and histidine residues to yield chloramines. The yield and stability of such chloramines predicted by these modelling studies agrees well with experimental data. Decomposition of these species gives protein-derived, nitrogen......-centred radicals, probably on the lysine side chains, as characterized by the EPR and spin-trapping experiments. It is shown that isolated lysine, histidine, peptide and protein chloramines can react with plasmid DNA to cause strand breaks. The protection against such damage afforded by the radical scavengers...... to give nucleobase radicals. Further evidence for the formation of such covalent cross-links has been obtained from experiments performed using (3)H-lysine and (14)C-histidine chloramines. These results are consistent with the predictions of the kinetic model and suggest that histones are major targets...

  14. [Antiseptic effect of compound lysostaphin disinfectant and its preventive effect on infection of artificial dermis after graft on full-thickness skin defect wound in rats].

    Science.gov (United States)

    Jin, J; Zhou, H; Cui, Z C; Wang, L; Luo, P F; Ji, S Z; Hu, X Y; Ma, B; Wang, G Y; Zhu, S H; Xia, Z F

    2018-04-20

    Objective: To study the antiseptic effect of compound lysostaphin disinfectant and its preventive effect on infection of artificial dermis after graft on full-thickness skin defect wound in rats. Methods: (1) Each one standard strain of Klebsiella pneumoniae, Acinetobacter baumannii, and Staphylococcus aureus were selected. Each 20 clinical strains of Klebsiella pneumoniae, Acinetobacter baumannii, and Staphylococcus aureus were collected from those isolated from wound exudates of burn patients hospitalized in our wards from January 2014 to December 2016 according to the random number table. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of compound lysostaphin disinfectant to above-mentioned strains were detected. The experiment was repeated 3 times. Compared with the corresponding standard strain, the clinical strain with higher MIC and/or MBC was considered as having decreased sensitivity to the disinfectant. The percentage of strains of each of the three kinds of bacteria with decreased sensitivity was calculated. (2) Artificial dermis pieces were soaked in compound lysostaphin disinfectant for 5 min, 1 h, 2 h, and 4 h, respectively, with 21 pieces at each time point. After standing for 0 (immediately), 12, 24, 36, 48, 60, 72 h (with 3 pieces at each time point), respectively, the diameters of their inhibition zones to standard strains of Klebsiella pneumoniae, Acinetobacter baumannii, and Staphylococcus aureus were measured. The experiment was repeated 3 times. The shortest soaking time corresponding to the longest standing time, after which the disinfectant-soaked artificial dermis could form an effective inhibition zone (with diameter more than 7 mm), was the sufficient soaking time of the disinfectant to the artificial dermis. (3) Forty Sprague-Dawley rats were divided into post injury day (PID) 3, 7, 14, and 21 sampling groups according to the random number table, with 10 rats in each group. A full-thickness skin

  15. Drinking Water Microbiome as a Screening Tool for ...

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. Here, we used 16S rRNA sequencing data to generate high-resolution taxonomic profiles of the bulk water (BW) microbiome from a chloraminated drinking water distribution system (DWDS) simulator. The DWDS was operated through four successive operational schemes, including two stable events (SS) and an episode of nitrification (SF), followed by a ‘chlorine burn’ (SR) by switching disinfectant from chloramine to free chlorine. Specifically, this study focuses on biomarker discovery and their potential use to classify SF episodes. Principal coordinate analysis identified two major clusters (SS and SF; PERMANOVA, p 0.976, p < 0.01). Furthermore, models were able to correctly predict 95% (AUC = 0.983, n = 104) and 96% (AUC = 0.973, n = 72) of samples of the DWDS (community structure of two published studies) and water quality datasets, respectively. The results from this study demonstrate the feasibility of selected BW microbiome signatures as predictive biomarkers of nitrification in DWDS. This new information can be used to optimize current nitrification monitoring plans. The purpose of this research is to add to our knowledge of chloramine and chlorine disinfectants, with regards to effects on the microbial communities in drinking water distribution systems. We used a

  16. The reaction of monochloramine and hydroxylamine: implications for ammonia–oxidizing bacteria in chloraminated drinking water

    Science.gov (United States)

    Drinking water chloramine use may promote ammonia–oxidizing bacteria (AOB) growth because of naturally occurring ammonia, residual ammonia remaining from chloramine formation, and ammonia released from chloramine decay and demand. A rapid chloramine residual loss is often associa...

  17. Understanding the operational parameters affecting NDMA formation at Advanced Water Treatment Plants.

    Science.gov (United States)

    Farré, Maria José; Döderer, Katrin; Hearn, Laurence; Poussade, Yvan; Keller, Jurg; Gernjak, Wolfgang

    2011-01-30

    N-nitrosodimethylamine (NDMA) can be formed when secondary effluents are disinfected by chloramines. By means of bench scale experiments this paper investigates operational parameters than can help Advanced Water Treatment Plants (AWTPs) to reduce the formation of NDMA during the production of high quality recycled water. The formation of NDMA was monitored during a contact time of 24h using dimethylamine as NDMA model precursor and secondary effluent from wastewater treatment plants. The three chloramine disinfection strategies tested were pre-formed and in-line formed monochloramine, and pre-formed dichloramine. Although the latter is not employed on purpose in full-scale applications, it has been suggested as the main contributing chemical generating NDMA during chloramination. After 24h, the NDMA formation decreased in both matrices tested in the order: pre-formed dichloramine>in-line formed monochloramine≫pre-formed monochloramine. The most important parameter to consider for the inhibition of NDMA formation was the length of contact time between disinfectant and wastewater. Formation of NDMA was initially inhibited for up to 6h with concentrations consistently NDMA concentrations were reduced by a factor of 20 by optimizing the disinfection strategy. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Transformation among Aromatic Iodinated Disinfection Byproducts in the Presence of Monochloramine: From Monoiodophenol to Triiodophenol and Diiodonitrophenol.

    Science.gov (United States)

    Gong, Tingting; Tao, Yuxian; Zhang, Xiangru; Hu, Shaoyang; Yin, Jinbao; Xian, Qiming; Ma, Jian; Xu, Bin

    2017-09-19

    Aromatic iodinated disinfection byproducts (DBPs) are a newly identified category of highly toxic DBPs. Among the identified aromatic iodinated DBPs, 2,4,6-triiodophenol and 2,6-diiodo-4-nitrophenol have shown relatively widespread occurrence and high toxicity. In this study, we found that 4-iodophenol underwent transformation to form 2,4,6-triiodophenol and 2,6-diiodo-4-nitrophenol in the presence of monochloramine. The transformation pathways were investigated, the decomposition kinetics of 4-iodophenol and the formation of 2,4,6-triiodophenol and 2,6-diiodo-4-nitrophenol were studied, the factors affecting the transformation were examined, the toxicity change during the transformation was evaluated, and the occurrence of the proposed transformation pathways during chloramination of source water was verified. The results revealed that 2,4,6-triiodophenol and 2,6-diiodo-4-nitrophenol, which could account for 71.0% of iodine in the transformed 4-iodophenol, were important iodinated transformation products of 4-iodophenol in the presence of monochloramine. The transformation pathways of 4-iodophenol in the presence of monochloramine were proposed and verified. The decomposition of 4-iodophenol in the presence of monochloramine followed a pseudo-second-order decay. Various factors including monochloramine dose, pH, temperature, nitrite concentration, and free chlorine contact time (before chloramination) affected the transformation. The cytotoxicity of the chloraminated 4-iodophenol samples increased continuously with contact time. The proposed transformation pathways occurred during chloramination of source water.

  19. The fate of wastewater-derived NDMA precursors in the aquatic environment.

    Science.gov (United States)

    Pehlivanoglu-Mantas, Elif; Sedlak, David L

    2006-03-01

    To assess the stability of precursors of the chloramine disinfection byproduct N-nitrosodimethylamine (NDMA) under conditions expected in effluent-dominated surface waters, effluent samples from four municipal wastewater treatment plants were subjected to chlorination and chloramination followed by incubation in the presence of inocula derived from activated sludge. Samples subjected to free chlorine disinfection showed lower initial concentrations of NDMA precursors than those that were not chlorinated or were disinfected with pre-formed chloramines. For chloraminated and control (unchlorinated) treatments, the concentration of NDMA precursors decreased by an average of 24% over the 30-day incubation in samples from three of the four facilities. At the fourth facility, where samples were collected on three different days, NDMA precursor concentrations decreased by approximately 80% in one sample and decreased by less than 20% in the other two samples. In contrast to the low reactivity of the NDMA precursors, NDMA disappeared within 30 days under the conditions employed in these experiments. These results and measurements made in an effluent-dominated river suggest that although NDMA may be removed after wastewater effluent is discharged, wastewater-derived NDMA precursors could persist long enough to form significant concentrations of NDMA in drinking water treatment plants that use water originating from sources that are subjected to wastewater effluent discharges.

  20. Inactivation of influenza A virus H1N1 by disinfection process.

    Science.gov (United States)

    Jeong, Eun Kyo; Bae, Jung Eun; Kim, In Seop

    2010-06-01

    Because any patient, health care worker, or visitor is capable of transmitting influenza to susceptible persons within hospitals, hospital-acquired influenza has been a clinical concern. Disinfection and cleaning of medical equipment, surgical instruments, and hospital environment are important measures to prevent transmission of influenza virus from hospitals to individuals. This study was conducted to evaluate the efficacy of disinfection processes, which can be easily operated at hospitals, in inactivating influenza A virus H1N1 (H1N1). The effects of 0.1 mol/L NaOH, 70% ethanol, 70% 1-propanol, solvent/detergent (S/D) using 0.3% tri (n-butyl)-phosphate and 1.0% Triton X-100, heat, and ethylene oxide (EO) treatments in inactivating H1N1 were determined. Inactivation of H1N1 was kinetically determined by the treatment of disinfectants to virus solution. Also, a surface test method, which involved drying an amount of virus on a surface and then applying the inactivation methods for 1 minute of contact time, was used to determine the virucidal activity. H1N1 was completely inactivated to undetectable levels in 1 minute of 70% ethanol, 70% 1-propanol, and solvent/detergent treatments in the surface tests as well as in the suspension tests. H1N1 was completely inactivated in 1 minute of 0.1 mol/L NaOH treatment in the suspension tests and also effectively inactivated in the surface tests with the log reduction factor of 3.7. H1N1 was inactivated to undetectable levels within 5 minutes, 2.5 minutes, and 1 minute of heat treatment at 70, 80, and 90 degrees C, respectively in the suspension tests. Also, H1N1 was completely inactivated by EO treatment in the surface tests. Common disinfectants, heat, and EO tested in this study were effective at inactivating H1N1. These results would be helpful in implementing effective disinfecting measures to prevent hospital-acquired infections. Copyright 2010 Association for Professionals in Infection Control and Epidemiology, Inc

  1. In vitro evaluation of the disinfection efficacy on Eimeria tenella unsporulated oocysts isolated from broilers.

    Science.gov (United States)

    Guimarães, José S; Bogado, Alexey L Gomel; da Cunha, Thiago Cezar B; Garcia, João Luis

    2007-01-01

    The objective of this study was to evaluate in vitro the action of eight chemical principles by disinfection efficacy (DE) of Eimeria tenella oocysts. Disinfection efficacy was evaluated by either destruction or sporulation inhibition of the oocysts. Eight treatments were performed: T1 (Glutaraldehyde 42.5 g + Benzalkonium Chloride 7.5 g); T2 (Benzalkonium chloride + quaternary ammonium salt); T3 (formol 37% + Sodium Dodecylbenzene Sulfonate 12%); T4 (sodium hypochlorite 2%); T5 (Orthodichlorobenzene 60% + Xylene 30%); T6 (Polyoctyl polyamino ethyl glycine + Polyoxyethylene alkylphenol ether + Sodium Chloride); T7 (Chloramine T) and finally T8 (free iodine 2.25% + Phosphoric acid 15 g). The control test was carried out with distilled water (T9). The best DE were observed, respectively, in T3 (79.49%), T5 (75.60%) and T4 (65.56%) treatments.

  2. Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater

    KAUST Repository

    Ling, Fangqiong; Liu, Wen-Tso

    2013-01-01

    structures between chloraminated and non-chloraminated biofilms exhibited different successional trends. 16S rRNA gene pyrosequencing analysis further revealed that chloramination could select members of Actinobacteria and Acidobacteria as the dominant

  3. Evaluation of three different decontamination techniques on biofilm formation, and on physical and chemical properties of resin composites.

    Science.gov (United States)

    André, Carolina Bosso; Dos Santos, Andressa; Pfeifer, Carmem Silvia; Giannini, Marcelo; Girotto, Emerson Marcelo; Ferracane, Jack Liborio

    2018-04-01

    This study evaluated three different sterilization/disinfection techniques for resin composites on bacterial growth and surface modification after decontamination. Two resin composites were sterilized/disinfected with three different techniques: UV light, 1% chloramine T, and 70% ethanol. Four different times were used for each technique to determine the shortest time that the solution or UV light was effective. The influence of sterilization/disinfection technique on bacterial growth was evaluated by analyzing the metabolic activity, using the AlamarBlue™ assay, bacterial viability, and SEM images from biofilms of Streptococcus mutans. The surface change, after the process, was analyzed with ATR/FTIR and SEM images. The solutions used for decontamination (1% chloramine-T and 70% ethanol) were analyzed with 1 H-NMR to identify any resin compounds leached during the process. One minute of decontamination was efficient for all three methods tested. Chloramine-T increased the surface porosity on resin composites, no changes were observed for UV light and 70% ethanol, however, 1 H-NMR identified leached monomers only when 70% ethanol was used. No chemical change of the materials was found under ATR/FTIR analyses after the decontamination process. Chloramine-T, with no previous wash, increased the bacterial viability for both resin composites and increased the bacterial metabolism for the resin composite without fluoride. UV light had no interference on the resin composites properties tested using 1 min of exposure compared to the other decontamination methods. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 945-953, 2018. © 2017 Wiley Periodicals, Inc.

  4. Overseas Environmental Baseline Guidance Document

    Science.gov (United States)

    2007-05-01

    milligrams per liter (mg/L) determined before or at the first customer, and the corresponding disinfectant contact time, T , in minutes. CT values...for a CWS and NTNCWS that adds a disinfectant (oxidant, such as chlorine, chlorine dioxide, chloramines , or ozone) to any part of its treatment...drinking water. Operators may increase residual disinfectant levels of chlorine or chloramines (but not chlorine dioxide) in the distribution system to a

  5. 40 CFR 142.16 - Special primacy requirements.

    Science.gov (United States)

    2010-07-01

    ...), table 3.1 (disinfection with chloramines)—Determine the conditions to be met to insure 99.99 percent... chloramines or ozone for primary disinfection. (iii) Section 141.172(c) of this chapter—How the State will... 40 CFR part 141, Subpart T Enhanced Filtration and Disinfection—Systems Serving Fewer than 10,000...

  6. NDMA formation by chloramination of ranitidine: Kinetics and mechanism

    KAUST Repository

    Le Roux, Julien

    2012-10-16

    The kinetics of decomposition of the pharmaceutical ranitidine (a major precursor of NDMA) during chloramination was investigated and some decomposition byproducts were identified by using high performance liquid chromatography coupled with mass spectrometry (HPLC-MS). The reaction between monochloramine and ranitidine followed second order kinetics and was acid-catalyzed. Decomposition of ranitidine formed different byproducts depending on the applied monochloramine concentration. Most identified products were chlorinated and hydroxylated analogues of ranitidine. In excess of monochloramine, nucleophilic substitution between ranitidine and monochloramine led to byproducts that are critical intermediates involved in the formation of NDMA, for example, a carbocation formed from the decomposition of the methylfuran moiety of ranitidine. A complete mechanism is proposed to explain the high formation yield of NDMA from chloramination of ranitidine. These results are of great importance to understand the formation of NDMA by chloramination of tertiary amines. © 2012 American Chemical Society.

  7. Disinfection Contact Time study plan (100-N Area tracer protocol). Revision 1

    International Nuclear Information System (INIS)

    Kretzschmar, S.P.; Bedi, G.S.; Martinez, P.; Ervin, K.

    1996-07-01

    Bechtel Hanford, Inc. will prepare an Engineering Tracer Study Protocol for the determination of contact time for the disinfection process at Group A Non-transient Non-community water treatment plant for the 100-N Water Plant at the Hanford Site in Richland, Washington. Included in this report are the results of a study that determine the actual detention time within the plant clearwell, and thus the disinfection contact time at several clearwell effluent flow rates

  8. Effect of X-ray Contrast Media, Chlorination, and Chloramination on Zebrafish Development

    Science.gov (United States)

    Effect of X-ray Contrast Media, Chlorination, and Chloramination on Zebrafish Development Little is known about the vertebrate developmental toxicity of chlorinated or chloraminated drinking water (DW), iodinated X-ray contrast media (ICM, a common contaminate of DW) or how the c...

  9. The effect of various disinfectants on detection of avian influenza virus by real time RT-PCR.

    Science.gov (United States)

    Suarez, D L; Spackman, E; Senne, D A; Bulaga, L; Welsch, A C; Froberg, K

    2003-01-01

    An avian influenza (AI) real time reverse transcriptase-polymerase chain reaction (RRT-PCR) test was previously shown to be a rapid and sensitive method to identify AI virus-infected birds in live-bird markets (LBMs). The test can also be used to identify avian influenza virus (AIV) from environmental samples. Consequently, the use of RRT-PCR was being considered as a component of the influenza eradication program in the LBMs to assure that each market was properly cleaned and disinfected before allowing the markets to be restocked. However, the RRT-PCR test cannot differentiate between live and inactivated virus, particularly in environmental samples where the RRT-PCR test potentially could amplify virus that had been inactivated by commonly used disinfectants, resulting in a false positive test result. To determine whether this is a valid concern, a study was conducted in three New Jersey LBMs that were previously shown to be positive for the H7N2 AIV. Environmental samples were collected from all three markets following thorough cleaning and disinfection with a phenolic disinfectant. Influenza virus RNA was detected in at least one environmental sample from two of the three markets when tested by RRT-PCR; however, all samples were negative by virus isolation using the standard egg inoculation procedure. As a result of these findings, laboratory experiments were designed to evaluate several commonly used disinfectants for their ability to inactivate influenza as well as disrupt the RNA so that it could not be detected by the RRT-PCR test. Five disinfectants were tested: phenolic disinfectants (Tek-trol and one-stroke environ), a quaternary ammonia compound (Lysol no-rinse sanitizer), a peroxygen compound (Virkon-S), and sodium hypochlorite (household bleach). All five disinfectants were effective at inactivating AIV at the recommended concentrations, but AIV RNA in samples inactivated with phenolic and quaternary ammonia compounds could still be detected by RRT

  10. Relationship between THMs/NDMA formation potential and molecular weight of organic compounds for source and treated water in Shanghai, China.

    Science.gov (United States)

    An, Dong; Gu, Bin; Sun, Sainan; Zhang, Han; Chen, Yanan; Zhu, Huifeng; Shi, Jian; Tong, Jun

    2017-12-15

    Molecular weight (MW) distributions in source and treated water in Shanghai, China were investigated to understand the relationship between trihalomethanes formation potential/N-nitrosodimethylamine formation potential (THMFP/NDMAFP) and dissolved organic carbon (DOC) for different MW ranges (30KDa). The result of MW distributions in source water indicated a relationship between THMFP/NDMAFP and DOC such that DOC for 30KDa THMFP was totally removed whereas NDMA according to the results for treated water between DOC and NDMAFP (R 2 =0.94 and 0.93 for sand and GAC filtration, respectively). The results may provide researchers with targeted treatment strategies to destroy, remove, or reduce the occurrence of THMs and NDMA precursors. The findings presented in this study will be of great value in future work for selecting suitable drinking water treatment processes to minimize the formation of disinfection by-products using chlorine or chloramine disinfection. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Inactivation of Helicobacter pylori by Chloramination

    Science.gov (United States)

    Three strains of Helicobacter pylori (H. pylori) were studied to determine their resistance to chloramination. H. pylori is an organism listed on the U.S. Environmental Protection Agency’s (USEPA) Contaminant Control List (CCL). H. pylori was exposed to 2ppm of pre-formed monoc...

  12. Seasonal evaluation of disinfection by-products throughout two full-scale drinking water treatment plants.

    Science.gov (United States)

    Zhong, Xin; Cui, Chongwei; Yu, Shuili

    2017-07-01

    Carbonyl compounds can occur alpha-hydrogens or beta-diketones substitution reactions with disinfectants contributed to halogenated by-products formation. The objective of this research was to study the occurrence and fate of carbonyl compounds as ozonation by-products at two full-scale drinking water treatment plants (DWTPs) using different disinfectants for one year. The quality of the raw water used in both plants was varied according to the season. The higher carbonyl compounds concentrations were found in raw water in spring. Up to 15 (as the sum of both DWTPs) of the 24 carbonyl compounds selected for this work were found after disinfection. The dominant carbonyl compounds were formaldehyde, glyoxal, methyl-glyoxal, fumaric, benzoic, protocatechuic and 3-hydroxybenzoic acid at both DWTPs. In the following steps in each treatment plant, the concentration patterns of these carbonyl compounds differed depending on the type of disinfectant applied. Benzaldehyde was the only aromatic aldehyde detected after oxidation with ozone in spring. As compared with DWTP 1, five new carbonyl compounds were formed (crotonaldehyde, benzaldehyde, formic, oxalic and malonic acid) disinfection by ozone, and the levels of the carbonyl compounds increased. In addition, pre-ozonation (PO) and main ozonation (OZ) increased the levels of carbonyl compounds, however coagulation/flocculation (CF), sand filtration (SF) and granular activated carbon filtration (GAC) decreased the levels of carbonyl compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Culture-Independent Techniques for Rapid Detection of Bacteria Associated with Loss of Chloramine Residual in a Drinking Water System

    Science.gov (United States)

    Hoefel, Daniel; Monis, Paul T.; Grooby, Warwick L.; Andrews, Stuart; Saint, Christopher P.

    2005-01-01

    Chloramination is often the disinfection regimen of choice for extended drinking water systems. However, this process is prone to instability due to the growth of nitrifying bacteria. This is the first study to use alternative approaches for rapid investigation of chloraminated drinking water system instability in which flow cytometric cell sorting of bacteria with intact membranes (membrane-intact fraction) (BacLight kit) or with active esterases (esterase-active fraction) (carboxyfluorescein diacetate) was combined with 16S rRNA gene-directed PCR and denaturing gradient gel electrophoresis (DGGE). No active bacteria were detected when water left the water treatment plant (WTP), but 12 km downstream the chloramine residual had diminished and the level of active bacteria in the bulk water had increased to more than 1 × 105 bacteria ml−1. The bacterial diversity in the system was represented by six major DGGE bands for the membrane-intact fraction and 10 major DGGE bands for the esterase-active fraction. PCR targeting of the 16S rRNA gene of chemolithotrophic ammonia-oxidizing bacteria (AOB) and subsequent DGGE and DNA sequence analysis revealed the presence of an active Nitrosospira-related species and Nitrosomonas cryotolerans in the system, but no AOB were detected in the associated WTP. The abundance of active AOB was then determined by quantitative real-time PCR (qPCR) targeting the amoA gene; 3.43 × 103 active AOB ml−1 were detected in the membrane-intact fraction, and 1.40 × 104 active AOB ml−1 were detected in the esterase-active fraction. These values were several orders of magnitude greater than the 2.5 AOB ml−1 detected using a routine liquid most-probable-number assay. Culture-independent techniques described here, in combination with existing chemical indicators, should allow the water industry to obtain more comprehensive data with which to make informed decisions regarding remedial action that may be required either prior to or during an

  14. N-nitrosodimethylamine (NDMA) formation at an indirect potable reuse facility.

    Science.gov (United States)

    Sgroi, Massimiliano; Roccaro, Paolo; Oelker, Gregg L; Snyder, Shane A

    2015-03-01

    Full-scale experiments to evaluate N-nitrosodimethylamine (NDMA) formation and attenuation were performed within an advanced indirect potable reuse (IPR) treatment system, which includes, sequentially: chloramination for membrane fouling control, microfiltration (MF), reverse osmosis (RO), ultraviolet irradiation with hydrogen peroxide (UV/H₂O₂), final chloramination, and pH stabilization. Results of the study demonstrate that while RO does effectively remove the vast majority of NDMA precursors, RO permeate can still contain significant concentrations of NDMA precursors resulting in additional NDMA formation during chloramination. Thus, it is possible for this advanced treatment system to produce water with NDMA levels higher than regional requirements for potable applications (10 ng/L). The presence of H2O2 during UV oxidation reduced NDMA photolysis efficiency and increased NDMA formation (∼22 ng/L) during the secondary chloramination and lime stabilization. This is likely due to formation of UV/H₂O₂ degradation by-products with higher NDMA formation rate than the parent compounds. However, this effect was diminished with higher UV doses. Bench-scale experiments confirmed an enhanced NDMA formation during chloramination after UV/H2O2 treatment of dimethylformamide, a compound detected in RO permeate and used as model precursor in this study. The effect of pre-ozonation for membrane fouling control on NDMA formation was also evaluated at pilot- (ozone-MF-RO) and bench-scale. Relatively large NDMA formation (117-227 ng/L) occurred through ozone application that was dose dependent, whereas chloramination under typical dosages and contact times of IPR systems resulted in only a relatively small increase of NDMA (∼20 ng/L). Thus, this research shows that NDMA formation within a potable water reuse facility can be challenging and must be carefully evaluated and controlled. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Detection, formation and occurrence of 13 new polar phenolic chlorinated and brominated disinfection byproducts in drinking water.

    Science.gov (United States)

    Pan, Yang; Wang, Ying; Li, Aimin; Xu, Bin; Xian, Qiming; Shuang, Chendong; Shi, Peng; Zhou, Qing

    2017-04-01

    Recently, 13 new polar phenolic chlorinated and brominated disinfection byproducts (Cl- and Br-DBPs) were identified and quantified in simulated chlorinated drinking water by adopting product ion scan, precursor ion scan, and multiple reaction monitoring (MRM) analyses using ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry (UPLC/ESI-tqMS). The 13 new DBPs have been drawing increasing concern not only because they possess significantly higher growth inhibition, developmental toxicity, and chronic cytotoxicity than commonly known aliphatic DBPs, but also because they act as intermediate DBPs that can decompose to form the U.S. EPA regulated DBPs. In this study, through MS parameter optimization of the UPLC/ESI-tqMS MRM analysis, the instrument detection and quantitation limits of the 13 new DBPs were substantially lowered to 0.42-6.44 and 1.35-16.51 μg/L, respectively. The total levels of the 13 new DBPs formed in chlorination were much higher than those formed in chloramination within a contact time of 3 d. In chlorination, the 13 new DBPs formed quickly and decomposed rapidly, and their total concentration kept on decreasing with contact time. In chloramination, the levels of the dominant species (i.e., trihalo-phenols) firstly increased and then decreased with contact time, whereas the levels of the other new DBPs were relatively low and kept on increasing with contact time. An increasing of pH from 6.0 to 9.0 decreased the formation of the 13 new DBPs by 57.8% and 62.3% in chlorination and chloramination, respectively. Gallic acid was found to be present in various simulated and real source water samples and was demonstrated to be a precursor of the 13 new DBPs with elucidated formation pathways. Furthermore, 12 of the 13 new DBPs were detected in 16 tap water samples obtained from major cities in East China, at total levels from 9.5 to 329.8 ng/L. The concentrations of the new DBPs were higher in samples

  16. Detection of Legionella, L. pneumophila and Mycobacterium avium complex (MAC) along potable water distribution pipelines.

    Science.gov (United States)

    Whiley, Harriet; Keegan, Alexandra; Fallowfield, Howard; Bentham, Richard

    2014-07-18

    Inhalation of potable water presents a potential route of exposure to opportunistic pathogens and hence warrants significant public health concern. This study used qPCR to detect opportunistic pathogens Legionella spp., L. pneumophila and MAC at multiple points along two potable water distribution pipelines. One used chlorine disinfection and the other chloramine disinfection. Samples were collected four times over the year to provide seasonal variation and the chlorine or chloramine residual was measured during collection. Legionella spp., L. pneumophila and MAC were detected in both distribution systems throughout the year and were all detected at a maximum concentration of 103 copies/mL in the chlorine disinfected system and 106, 103 and 104 copies/mL respectively in the chloramine disinfected system. The concentrations of these opportunistic pathogens were primarily controlled throughout the distribution network through the maintenance of disinfection residuals. At a dead-end and when the disinfection residual was not maintained significant (p pipeline and sampling period. Total coliforms were not present in any water sample collected. This study demonstrates the ability of Legionella spp., L. pneumophila and MAC to survive the potable water disinfection process and highlights the need for greater measures to control these organisms along the distribution pipeline and at point of use.

  17. Acid-base and ionic fluxes in rainbow trout (Oncorhynchus mykiss) during exposure to chloramine-T

    Energy Technology Data Exchange (ETDEWEB)

    Powell, M.D.; Perry, S.F. [Department of Biology, University of Ottawa, 30 Marie Curie Ottawa, Ontario, K1N 6N5 (Canada)

    1998-09-01

    The effects of chloramine-T and its degradation products, sodium hypochlorite (NaOCl) and para-toluenesulphonamide (pTSA), on whole body acid-base and branchial and renal ion (Na{sup +}and Cl{sup -}) fluxes were examined in rainbow trout (Oncorhynchus mykiss). Exposure to chloramine-T (3.5 h, 18 mg l{sup -1}) resulted in increases in plasma total CO{sub 2} but no coincident rise in P{sub a}CO{sub 2} or reduction in blood pH. Exposure of fish to 2, 9 or 18 mg l{sup -1} chloramine-T (3.5 h duration) resulted in a reduction in net acid uptake suggesting the development of a metabolic alkalosis. Exposure to the chloramine-T breakdown product pTSA (dissolved in DMSO) resulted in increased net acid uptake (decreased acid excretion) suggesting a metabolic acidosis. Whole body ion fluxes demonstrated increases in the losses of both Na{sup +}and Cl{sup -} with chloramine-T, NaOCl and pTSA. However, the effect of DMSO alone could not be isolated. Confirmatory studies using fish in which the urinary bladder (to allow collection of urine) and dorsal aorta (to allow injection of [{sup 14}C]polyethylene glycol 4000 ([{sup 14}C]PEG), an extracellular fluid marker) were catheterised, revealed that changes in whole body ion fluxes during chloramine-T exposure could not be explained by increased renal efflux through urine flow, glomerular filtration or renal clearance. Branchial effluxes of [{sup 14}C]PEG were not significantly affected by chloramine-T exposure suggesting that the changes in whole body ionic fluxes were caused by transcellular rather than paracellular processes. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. Acid-base and ionic fluxes in rainbow trout (Oncorhynchus mykiss) during exposure to chloramine-T

    International Nuclear Information System (INIS)

    Powell, M.D.; Perry, S.F.

    1998-01-01

    The effects of chloramine-T and its degradation products, sodium hypochlorite (NaOCl) and para-toluenesulphonamide (pTSA), on whole body acid-base and branchial and renal ion (Na + and Cl - ) fluxes were examined in rainbow trout (Oncorhynchus mykiss). Exposure to chloramine-T (3.5 h, 18 mg l -1 ) resulted in increases in plasma total CO 2 but no coincident rise in P a CO 2 or reduction in blood pH. Exposure of fish to 2, 9 or 18 mg l -1 chloramine-T (3.5 h duration) resulted in a reduction in net acid uptake suggesting the development of a metabolic alkalosis. Exposure to the chloramine-T breakdown product pTSA (dissolved in DMSO) resulted in increased net acid uptake (decreased acid excretion) suggesting a metabolic acidosis. Whole body ion fluxes demonstrated increases in the losses of both Na + and Cl - with chloramine-T, NaOCl and pTSA. However, the effect of DMSO alone could not be isolated. Confirmatory studies using fish in which the urinary bladder (to allow collection of urine) and dorsal aorta (to allow injection of [ 14 C]polyethylene glycol 4000 ([ 14 C]PEG), an extracellular fluid marker) were catheterised, revealed that changes in whole body ion fluxes during chloramine-T exposure could not be explained by increased renal efflux through urine flow, glomerular filtration or renal clearance. Branchial effluxes of [ 14 C]PEG were not significantly affected by chloramine-T exposure suggesting that the changes in whole body ionic fluxes were caused by transcellular rather than paracellular processes. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. N-nitrosamine formation by monochloramine, free chlorine, and peracetic acid disinfection with presence of amine precursors in drinking water system.

    Science.gov (United States)

    West, Danielle M; Wu, Qihua; Donovan, Ariel; Shi, Honglan; Ma, Yinfa; Jiang, Hua; Wang, Jianmin

    2016-06-01

    In this study, the formation of eight N-nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine, N-nitrosomethylamine, N-nitrosodi-n-propylamine, N-nitrosodi-n-butylamine, N-Nitrosopiperidine, N-Nitrosopyrrolidine, N-Nitrosomorpholine, were systematically evaluated with respect to seven N-nitrosamine precursors (dimethylamine, trimethylamine, 3-(dimethylaminomethyl)indole, 4-dimethylaminoantipyrine, ethylmethylamine, diethylamine, dipropylamine) and three disinfectants (monochloramine, free chlorine, peracetic acid) under variable dosages, exposure times, and pH in a drinking water system. Without the presence of the seven selected N-nitrosamine precursors N-nitrosamine formation was not observed under any tested condition except very low levels of N-Nitrosopyrrolidine under some conditions. With selected N-nitrosamine precursors present N-nitrosamines formed at different levels under different conditions. The highest N-nitrosamine formation was NDMA with a maximum concentration of 1180 ng/L by monochloramine disinfection with precursors present; much lower levels of N-nitrosamines were formed by free chlorine disinfection; and no detectable level of N-nitrosamines were observed by peracetic acid disinfection except low level of N-Nitrosodi-n-propylamine under some conditions. NDMA formation was not affected by pH while four other N-nitrosamine formations were slightly affected by sample pH tested between 7 and 9, with formation decreasing with increasing pH. Monochloramine exposure time study displayed fast formation of N-nitrosamines, largely formed in four hours of exposure and maximized after seven days. This was a systematic study on the N-nitrosamine formation with the seven major N-nitrosamine precursors presence and absence under different conditions, including peracetic acid disinfection which has not been studied elsewhere. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Biomarkers of end of shift exposure to disinfection byproducts in nurses.

    Science.gov (United States)

    Ioannou, Solomon; Andrianou, Xanthi D; Charisiadis, Pantelis; Makris, Konstantinos C

    2017-08-01

    Increased disinfectant use commonly takes place in hospitals and other health care settings. A cross-sectional study among active nurses in two Cypriot public hospitals (n=179) was conducted to examine the prevalence of exposure to disinfection byproducts (DBPs), such as trihalomethanes (THMs) using both self-reported information and biomarker measurements. The objectives of this study were to: i) quantify the magnitude and variability of occupational exposure to disinfectants/DBPs in nurses, ii) generate job exposure matrices (JEM) and job task exposure matrices (JTEM) for disinfectants, and iii) assess the major determinants of urinary THMs in nurses. End of shift urinary total THM values showed high variability among the nurses, but did not differ between hospitals. The disinfectant group of alcohols/phenols was used by >98% of nurses, followed by octenidine (82%), iodine and chlorine (39%, each), chlorhexidine (25%), formaldehyde (12%), hydrogen peroxide (11%), and peracetic acid/ammonia/quaternary ammonium compounds (QACs), all being Nurses were exposed to nearly double the levels of TTHMs and BrTHMs (median and IQR, 1027 [560, 2475] ng/g and 323 [212, 497] ng/g, respectively) when compared to those of the general population (552 [309,989] ng/g and 152 [87,261] ng/g, respectively). This was the first occupational health dataset reporting measurements of biomarkers of end of shift exposures to disinfectants/DBPs. Copyright © 2017. Published by Elsevier B.V.

  1. Stoichiometric iodination and purification of porcine insulin with chloramine T for radioimmunoassay

    International Nuclear Information System (INIS)

    Toledo e Souza, I.T. de; Giannella Neto, D.; Wajchenberg, B.L.

    1986-01-01

    Stoichiometric iodination and purification of porcine insulin was performed to the general method of Hunter and Greenwood (classical chloramine T) with modifications recommended by Roth (chloramine T is added in limiting amounts in multiple small additions). Satisfactory specific activity of the labeled hormone was obtained and the characteristics of the radioimmunoassay, based on the competition of the 125-I labeled porcine and cold insulin for specific antibody were studied. (Author) [pt

  2. [Experimental evaluation of the spraying disinfection efficiency on dental models].

    Science.gov (United States)

    Zhang, Yi; Fu, Yuan-fei; Xu, Kan

    2013-08-01

    To evaluate the disinfect effect after spraying a new kind of disinfectant on the dental plaster models. The germ-free plaster samples, which were smeared with bacteria compound including Staphylococcus aureus, Escherichia coli, Saccharomyces albicans, Streptococcus mutans and Actinomyces viscosus were sprayed with disinfectants (CaviCide) and glutaraldehyde individually. In one group(5 minutes later) and another group(15 minutes later), the colonies were counted for statistical analysis after sampling, inoculating, and culturing which were used for evaluation of disinfecting efficiency. ANOVA was performed using SPSS12.0 software package. All sample bacteria were eradicated after spraying disinfectants(CaviCide) within 5 minutes and effective bacteria control was retained after 15 minutes. There was significant difference between the disinfecting efficiency of CaviCide and glutaraldehyde. The effect of disinfection with spraying disinfectants (CaviCide) on dental models is quick and effective.

  3. [Survey of synthetic disinfectants in grapefruit seed extract and its compounded products].

    Science.gov (United States)

    Sugimoto, Naoki; Tada, Atsuko; Kuroyanagi, Masanori; Yoneda, Yuko; Yun, Young Sook; Kunugi, Akira; Sato, Kyoko; Yamazaki, Takeshi; Tanamoto, Ken-Ichi

    2008-02-01

    Grapefruit seed extract (GSE), derived from the seeds of grapefruit (Citrus paradisi MCAF.), is listed as a natural food additive in Japan. Products containing GSE are used as disinfectants made from only natural sources, especially after Japanese researchers found that GSE prevents the growth of norovirus. On the other hand, recent overseas studies indicated that synthetic disinfectants, such as benzalkonium and benzethonium chlorides, were present in some commercial GSE products. To confirm the quality of commercial GSE products available in Japanese markets, we carried out comprehensive research to identify the major constituents of commercial GSE products which are used as food additives (13 products from 6 manufacturers), dietary supplements (5 products from 4 manufacturers), cosmetic materials (16 products from 10 manufacturers) and disinfectant or deodorant sprays (7 products from 7 manufacturers). By means of NMR and LC/MS analysis, synthetic disinfectants such as benzethonium or benzalkonium salts were detected in most of the commercial GSE products.

  4. Nitrite ion mitigates the formation of N-nitrosodimethylamine (NDMA) during chloramination of ranitidine.

    Science.gov (United States)

    Seid, Mingizem Gashaw; Cho, Kangwoo; Lee, Changha; Park, Hyun-Mee; Hong, Seok Won

    2018-08-15

    Ranitidine (RNT) has been an important tertiary amine precursor of N-nitrosodimethylamine (NDMA) in chlorine-based water treatment, due to reaction with monochloramine (NH 2 Cl) with exceptionally high molar yields up to 90%. This study examined the effects of nitrite ions (NO 2 - ) on the kinetics of NDMA formation during the chloramination of RNT under variable concentrations of dissolved oxygen (DO, 0.7-7.5mg/L), RNT (5-30μM), NH 2 Cl (5-20mM), NO 2 - or NO 3 - (0-2mM) and pH (5.6-8.6). In the absence of the NO 2 - , the ultimate molar yield of NDMA after 6h of reaction was primarily influenced by [DO] and pH, while marginally affected by initial [RNT] and [NH 2 Cl]. A kinetic model, prepared in accordance with the reaction sequence of NDMA formation, suggested that the rate determining step was accelerated with increasing [NH 2 Cl] 0 , [DO], and pH. A Kinetic study together with ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometer (UPLC-Q-TOF MS) and gas chromatography (GC)/TOF MS analyses in parallel demonstrated that the nitrite ion inhibited the nucleophilic substitution of the terminal amine on NH 2 Cl, and reduced the pseudo-steady state concentration of N-peroxyl radicals, significantly decreasing the ultimate yields of NDMA. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Resilience of microbial communities in a simulated drinking water distribution system subjected to disturbances: role of conditionally rare taxa and potential implications for antibiotic-resistant bacteria

    Science.gov (United States)

    Many US water utilities using chloramine as their secondary disinfectant have experienced nitrification episodes that detrimentally impact water quality in their distribution systems. A semi-closed pipe-loop chloraminated drinking water distribution system (DWDS) simulator was u...

  6. Kinetic model for the radical degradation of tri-halonitromethane disinfection byproducts in water

    International Nuclear Information System (INIS)

    Mezyk, Stephen P.; Mincher, Bruce J.; Cooper, William J.; Kirkham Cole, S.; Fox, Robert V.; Gardinali, Piero R.

    2012-01-01

    The halonitromethanes (HNMs) are byproducts of the ozonation and chlorine/chloramine treatment of drinking waters. Although typically occurring at low concentrations HNMs have high cytotoxicity and mutagenicity, and may therefore represent a significant human health hazard. In this study, we have investigated the radical based mineralization of fully-halogenated HNMs in water using the congeners bromodichloronitromethane and chlorodibromonitromethane. We have combined absolute reaction rate constants for their reactions with the hydroxyl radical and the hydrated electron as measured by electron pulse radiolysis and analytical measurements of stable product concentrations obtained by 60 Co steady-state radiolysis with a kinetic computer model that includes water radiolysis reactions and halide/nitrogen oxide radical chemistry to fully elucidate the reaction pathways of these HNMs. These results are compared to our previous similar study of the fully chlorinated HNM chloropicrin. The full optimized computer model, suitable for predicting the behavior of this class of compounds in irradiated drinking water, is provided. - Highlights: ► Radical-based mineralization of aqueous halonitromethane disinfection byproducts. ► Constructed kinetic computer model for tri-halogenated halonitromethane removal. ► Model predicted that superoxide reaction is unimportant for halonitromethanes. ► Measured superoxide reaction with chloropicrin was negligibly slow, 4 M −1 s −1 . ► Determined that superoxide reaction with nitrate also insignificant at ∼10 4 M −1 s −1 .

  7. Detection of Legionella, L. pneumophila and Mycobacterium Avium Complex (MAC) along Potable Water Distribution Pipelines

    Science.gov (United States)

    Whiley, Harriet; Keegan, Alexandra; Fallowfield, Howard; Bentham, Richard

    2014-01-01

    Inhalation of potable water presents a potential route of exposure to opportunistic pathogens and hence warrants significant public health concern. This study used qPCR to detect opportunistic pathogens Legionella spp., L. pneumophila and MAC at multiple points along two potable water distribution pipelines. One used chlorine disinfection and the other chloramine disinfection. Samples were collected four times over the year to provide seasonal variation and the chlorine or chloramine residual was measured during collection. Legionella spp., L. pneumophila and MAC were detected in both distribution systems throughout the year and were all detected at a maximum concentration of 103 copies/mL in the chlorine disinfected system and 106, 103 and 104 copies/mL respectively in the chloramine disinfected system. The concentrations of these opportunistic pathogens were primarily controlled throughout the distribution network through the maintenance of disinfection residuals. At a dead-end and when the disinfection residual was not maintained significant (p < 0.05) increases in concentration were observed when compared to the concentration measured closest to the processing plant in the same pipeline and sampling period. Total coliforms were not present in any water sample collected. This study demonstrates the ability of Legionella spp., L. pneumophila and MAC to survive the potable water disinfection process and highlights the need for greater measures to control these organisms along the distribution pipeline and at point of use. PMID:25046636

  8. Combined toxicity of free chlorine, chloramine, and temperature to stage 1 larvae of the American lobster Homarus americanus

    Energy Technology Data Exchange (ETDEWEB)

    Capuzzo, J M; Lawrence, S A; Davidson, J A

    1976-01-01

    The differential effects of free chlorine and chloramine on stage I larvae of the American lobster Homarus americanus have been investigated in continuous flow bioassay units. Applied chloramine was more toxic than corresponding concentrations of applied free chlorine to lobster larvae with estimated LC/sub 50/ values at 25/sup 0/ of 16.30 mg/l applied free chlorine and 2.02 mg/l applied chloramine. The synergistic effect of temperature on the toxicity of both free chlorine and chloramine has also been demonstrated. Exposure to applied free chlorine at 20/sup 0/ resulted in no significant mortality of test organisms, whereas exposure at 30/sup 0/ resulted in an estimated LC/sub 50/ value of 2.50 mg/l. Applied chloramine was considerably more toxic with an estimated LC/sub 50/ value at 20/sup 0/ of 4.08 mg/l and at 30/sup 0/ of 0.56 mg/l. The action of each toxicant appeared to be an alteration of standard metabolic activity as revealed by changes in respiration rates during and after exposure to applied free chlorine and chloramine. Initial respiratory stress was detected during exposure to 0.05 mg/l applied chloramine and 5.00 mg/l applied free chlorine. Reductions in respiration rates 48 h after exposure were observed with exposure to all concentrations tested, similar results being obtained following exposure to 0.05 mg/l applied chloramine and 0.10 mg/l applied free chlorine. These results are indicative of the need for information in addition to that obtained in standard bioassays for an adequate assessment of chlorine toxicity.

  9. Characterization of N-nitrosodimethylamine formation from the ozonation of ranitidine.

    Science.gov (United States)

    Lv, Juan; Wang, Lin; Li, Yongmei

    2017-08-01

    N-nitrosodimethylamine (NDMA) is an emerging disinfection by-product which is formed during water disinfection in the presence of amine-based precursors. Ranitidine, as one kind of amine-based pharmaceuticals, has been identified as NDMA precursor with high NDMA molar conversion during chloramination. This study focused on the characterization of NDMA formation during ozonation of ranitidine. Influences of operational variables (ozone dose, pH value) and water matrix on NDMA generation as well as ranitidine degradation were evaluated. The results indicate high reactivity of ranitidine with ozone. Dimethylamine (DMA) and NDMA were generated due to ranitidine oxidation. High pH value caused more NDMA accumulation. NDMA formation was inhibited under acid conditions (pH≤5) mainly due to the protonation of amines. Water matrix such as HCO 3 - and humic acid impacted NDMA generation due to OH scavenging. Compared with OH, ozone molecules dominated the productions of DMA and NDMA. However, OH was a critical factor in NDMA degradation. Transformation products of ranitidine during ozonation were identified using gas chromatography-mass spectrometry. Among these products, just DMA and N,N-dimethylformamide could contribute to NDMA formation due to the DMA group in the molecular structures. The NDMA formation pathway from ranitidine ozonation was also proposed. Copyright © 2017. Published by Elsevier B.V.

  10. NDMA formation by chloramination of ranitidine: Kinetics and mechanism

    KAUST Repository

    Le Roux, Julien; Gallard, Hervé ; Croue, Jean-Philippe; Papot, Sé bastien; Deborde, Marie

    2012-01-01

    The kinetics of decomposition of the pharmaceutical ranitidine (a major precursor of NDMA) during chloramination was investigated and some decomposition byproducts were identified by using high performance liquid chromatography coupled with mass

  11. Effect of disinfection on irreversible hydrocolloid and alternative impression materials and the resultant gypsum casts.

    Science.gov (United States)

    Suprono, Montry S; Kattadiyil, Mathew T; Goodacre, Charles J; Winer, Myron S

    2012-10-01

    Many new products have been introduced and marketed as alternatives to traditional irreversible hydrocolloid materials. These alternative materials have the same structural formula as addition reaction silicone, also known as vinyl polysiloxane (VPS), impression materials. Currently, there is limited in vitro and in vivo research on these products, including on the effects of chemical disinfectants on the materials. The purpose of this study was to compare the effects of a spray disinfecting technique on a traditional irreversible hydrocolloid and 3 new alternative impression materials in vitro. The tests were performed in accordance with the American National Standards Institute/American Dental Association (ANSI/ADA) Specification Nos. 18 and 19. Under standardized conditions, 100 impressions were made of a ruled test block with an irreversible hydrocolloid and 3 alternative impression materials. Nondisinfected irreversible hydrocolloid was used as the control. The impressions were examined for surface detail reproduction before and after disinfection with a chloramine-T product. Type III and Type V dental stone casts were evaluated for linear dimensional change and gypsum compatibility. Comparisons of linear dimensional change were analyzed with 2-way ANOVA of mean ranks with the Scheffé post hoc comparisons (α=.05). Data for surface detail reproduction were analyzed with the Wilcoxon Signed-Rank procedure and gypsum compatibility with the Kruskal-Wallis Rank procedure (α=.05). The alternative impression materials demonstrated significantly better outcomes with all 3 parameters tested. Disinfection with chloroamine-T did not have any effect on the 3 alternative impression materials. The irreversible hydrocolloid groups produced the most variability in the measurements of linear dimensional change. All of the tested materials were within the ADA's acceptable limit of 1.0% for linear dimensional change, except for the disinfected irreversible hydrocolloid

  12. Surface disinfection tests with Salmonella and a putative indicator bacterium, mimicking worst-case scenarios in poultry houses

    DEFF Research Database (Denmark)

    Gradel, K.O.; Sayers, A.R.; Davies, R.H.

    2004-01-01

    Surface disinfection studies mimicking worst-case scenarios in badly cleaned poultry houses were made with 3 bacterial isolates (Salmonella enteritidis, Salmonella senftenberg, and Enterococcus faecalis), and 3 1% disinfectant solutions, formaldehyde (F; 24.5% vol/vol), glutaraldehyde...... hard water, except when feed chain links with fats were disinfected using 30degreesC before and after disinfection, for which the peroxygen compound seemed more effective. Enterococcus faecalis was equally or less susceptible than S. enteritidis and S. senftenberg, indicating its suitability...... as an indicator bacterium. For the peroxygen compound, S. senftenberg was more susceptible than S. enteritidis in spite of higher minimum inhibitory concentrations to this disinfectant for the former....

  13. ASSESSMENT OF ACTION OF DISINFECTANTS AGAINST LISTERIA MONOCYTOGENES BIOFILMS

    Directory of Open Access Journals (Sweden)

    T. K. CABEÇA

    2008-12-01

    Full Text Available

    The purpose of this study was to assess the action of various disinfectants used in food industry against biofilm cells of Listeria monocytogenes formed on stainless steel surfaces during 24, 72 and 120 hours. Numbers of viable biofilm cells decreased after treatment with all the tested disinfectants (iodine, biguanide, quaternary ammonium compounds, peracetic acid and sodium hypochlorite. Sodium hypochlorite was the most effective disinfectant against the biofilm cells, while biguanide and iodine were the least. Scanning electron microscopy observations demonstrated attached cells on stainless steel surfaces after treatment with all the disinfectants. These observations showed that microorganisms were not completely removed from stainless steel surfaces after treatment with the disinfectants, however, the attachment did not means the viability of remaining cells. The biofilm age in hours (24, 72 and 120 had no apparent influence on resistance of microbiological cells to the disinfectants under study. In conclusion biofilm cells of L. monocytogenes can withstand disinfectants action.

  14. Disinfection of dental impressions - compliance to accepted standards.

    Science.gov (United States)

    Almortadi, N; Chadwick, R G

    2010-12-18

    The responsibility of ensuring impressions have been cleaned and disinfected before dispatch to the dental laboratory lies solely with the dentist. Uncertainty of impression disinfection risks both the health of the receiving dental technician and potential repeat disinfection of an already disinfected impression with detrimental consequences for its dimensions. To ascertain, from the perspectives of dentists and dental technicians, current impression decontamination and disinfection practices with, in the case of the technicians, an estimate of the relative prevalence of contaminated voids within apparently disinfected impressions. Anonymous postal questionnaire. Dentist (n = 200) and dental technician (n = 200) potential participants, selected at random from the registers held by the General Dental Council, were invited to complete an anonymous postal questionnaire that sought to establish current practices and perceived effectiveness of impression disinfection. Questionnaire return rates of 42.1% and 31.2% were recorded for dentists and dental technicians respectively. A wide range of solutions, at different dilutions of the same product, was used by the dentists to disinfect dental impressions. 37.2% rinsed the impressions with water, and 2.6% always brushed debris away, before disinfection. 24.7% of dentists did not inform the laboratory of disinfection. Irrespective of the disinfection status of the received impressions, 50% of the responding dental technicians disinfected all impressions. 95% of them had received blood-contaminated impressions. 15% had encountered blood-filled voids upon trimming back the peripheries of impressions. 64.7% were confident that the impressions received by them had been disinfected by the dentists. Compliance with good practice is less than ideal and education in impression disinfection for both dentists and dental technicians is required to address this.

  15. Tolerance to quaternary ammonium compound disinfectants may enhance growth of Listeria monocytogenes in the food industry.

    Science.gov (United States)

    Møretrø, Trond; Schirmer, Bjørn C T; Heir, Even; Fagerlund, Annette; Hjemli, Pernille; Langsrud, Solveig

    2017-01-16

    The antibacterial effect of disinfectants is crucial for the control of Listeria monocytogenes in food processing environments. Tolerance of L. monocytogenes to sublethal levels of disinfectants based on quaternary ammonium compounds (QAC) is conferred by the resistance determinants qacH and bcrABC. The presence and distribution of these genes have been anticipated to have a role in the survival and growth of L. monocytogenes in food processing environments where QAC based disinfectants are in common use. In this study, a panel of 680 L. monocytogenes from nine Norwegian meat- and salmon processing plants were grouped into 36 MLVA profiles. The presence of qacH and bcrABC was determined in 101 isolates from the 26 most common MLVA profiles. Five MLVA profiles contained qacH and two contained bcrABC. Isolates with qacH and bcrABC showed increased tolerance to the QAC Benzalkonium chloride (BC), with minimal inhibitory concentrations (MICs) of 5-12, 10-13 and 100ppm). A sample with lower BC concentrations (14ppm of chain length C-12 and 2.7ppm of chain length C-14) inhibited growth of L. monocytogenes not containing bcrABC or qacH, compared to strains with these genes. The study has shown that L. monocytogenes harbouring the QAC resistance genes qacH and bcrABC are prevalent in the food industry and that residuals of QAC may be present in concentrations after sanitation in the industry that result in a growth advantage for bacteria with such resistance genes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Chloramine-T induced binding of monoclonal antibody B72. 3 to concanavalin-A

    Energy Technology Data Exchange (ETDEWEB)

    Cole, W.C.; Jhingran, S.G. (Methodist Hospital, Houston, TX (United States) Baylor Coll. of Medicine, Houston, TX (United States))

    1993-07-01

    The effects of chloramine-T (CT) on monoclonal antibody B72.3 were studied with particular reference to Con-A lectin binding. After exposure to chloramine-T concentrations from 0.8 to 4.0 mg/mL (115-574 mol CT/mol B72.3), B72.3 showed progressive binding to agarose-linked Con-A. This behavior was paralleled by decreasing immunoreactivity and increasing fragmentation and aggregation of B72.3 demonstrated by SDS-PAGE and size exclusion HPLC. (Author).

  17. Hospital disinfection: efficacy and safety issues.

    Science.gov (United States)

    Dettenkofer, Markus; Block, Colin

    2005-08-01

    To review recent publications relevant to hospital disinfection (and cleaning) including the reprocessing of medical instruments. The key question as to whether the use of disinfectants on environmental surfaces rather than cleaning with detergents only reduces nosocomial infection rates still awaits conclusive studies. New disinfectants, mainly peroxygen compounds, show good sporicidal properties and will probably replace more problematical substances such as chlorine-releasing agents. The safe reprocessing of medical devices requires a well-coordinated approach, starting with proper cleaning. New methods and substances show promising activity for preventing the transmission of prions. Different aspects of virus inactivation have been studied, and the transmissibility, e.g. of norovirus, shows the need for sound data on how different disinfectant classes perform. Biofilms or other forms of surface-adherent organisms pose an extraordinary challenge to decontamination. Although resistance to biocides is generally not judged to be as critical as antibiotic resistance, scientific data support the need for proper use, i.e. the avoidance of widespread application, especially in low concentrations and in consumer products. Chemical disinfection of heat-sensitive instruments and targeted disinfection of environmental surfaces are established components of hospital infection control. To avoid danger to staff, patients and the environment, prudent use as well as established safety precautions are required. New technologies and products should be evaluated with sound methods. As emerging resistant pathogens will challenge healthcare facilities in the future even more than at present, there is a need for well-designed studies addressing the role of disinfection in hospital infection control.

  18. Disinfection Methods for Swimming Pool Water: Byproduct Formation and Control

    Directory of Open Access Journals (Sweden)

    Huma Ilyas

    2018-06-01

    Full Text Available This paper presents a comprehensive and critical comparison of 10 disinfection methods of swimming pool water: chlorination, electrochemically generated mixed oxidants (EGMO, ultraviolet (UV irradiation, UV/chlorine, UV/hydrogen peroxide (H2O2, UV/H2O2/chlorine, ozone (O3/chlorine, O3/H2O2/chlorine, O3/UV and O3/UV/chlorine for the formation, control and elimination of potentially toxic disinfection byproducts (DBPs: trihalomethanes (THMs, haloacetic acids (HAAs, haloacetonitriles (HANs, trihaloacetaldehydes (THAs and chloramines (CAMs. The statistical comparison is carried out using data on 32 swimming pools accumulated from the reviewed studies. The results indicate that O3/UV and O3/UV/chlorine are the most promising methods, as the concentration of the studied DBPs (THMs and HANs with these methods was reduced considerably compared with chlorination, EGMO, UV irradiation, UV/chlorine and O3/chlorine. However, the concentration of the studied DBPs including HAAs and CAMs remained much higher with O3/chlorine compared with the limits set by the WHO for drinking water quality. Moreover, the enhancement in the formation of THMs, HANs and CH with UV/chlorine compared with UV irradiation and the increase in the level of HANs with O3/UV/chlorine compared with O3/UV indicate the complexity of the combined processes, which should be optimized to control the toxicity and improve the quality of swimming pool water.

  19. Disinfectant and antibiotic activities: a comparative analysis in Brazilian hospital bacterial isolates

    Directory of Open Access Journals (Sweden)

    Guimarães Márcia Aparecida

    2000-01-01

    Full Text Available Nosocomial infections are an important cause of morbidity and mortality all over the world. It has been shown that appropriate environmental hygienic and disinfection practices can be very helpful to hospital infection control. The purpose of this study was to evaluate the bactericidal activity of some disinfectants against antibiotic-susceptible and antibiotic-resistant hospital bacterial isolates. The susceptibility of 27 clinical isolates to disinfectants and antibiotics was determined by the Association of Official Analytical Chemist?s (AOAC Use-Dilution method and by the Kirby-Bauer method, respectively. All strains tested were susceptible to sodium hypochlorite, glutaraldehyde and to the association quaternary ammonium - formaldehyde - ethyl alcohol disinfectants. However, the susceptibility of strains to phenol and to one quaternary ammonium compound was variable. Among twenty-one antibiotic-multiresistant strains (methicillin-resistant staphylococci, Enterococcus spp, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens and Escherichia coli eleven (52% and eight (38% strains were resistant to the quaternary ammonium and phenol compounds, respectively. Among six isolates that demonstrated susceptibility to antibiotics (staphylococci, Enterococcus spp, P. mirabilis, E. cloacae and E. coli two strains (33% showed resistance to these disinfectants. The results demonstrated the lack of correlation between antibiotic-susceptibility and susceptibility to disinfectants in hospital strains.

  20. The role of aromatic precursors in the formation of haloacetamides by chloramination of dissolved organic matter

    KAUST Repository

    Le Roux, Julien; Nihemaiti, Maolida; Croue, Jean-Philippe

    2015-01-01

    Water treatment utilities are diversifying their water sources and often rely on waters enriched in nitrogen-containing compounds (e.g., ammonia, organic nitrogen such as amino acids). The disinfection of waters exhibiting high levels of nitrogen

  1. Spontaneous and continuous anti-virus disinfection from nonstoichiometric perovskite-type lanthanum manganese oxide

    Directory of Open Access Journals (Sweden)

    Ding Weng

    2015-06-01

    Full Text Available Viral pathogens have threatened human being׳s health for a long time, from periodically breakout flu epidemics to recent rising Ebola virus disease. Herein, we report a new application of nonstoichiometric Perovskite-type LaxMnO3 (x=1, 0.95, and 0.9 compounds in spontaneous and continuous disinfection of viruses. Perovskite-type LaxMnO3 (x=1, 0.95, and 0.9 is well-known for their catalytic properties involving oxidization reactions, which are usually utilized as electrodes in fuel cells. By utilizing superb oxidative ability of LaxMnO3 (x=1, 0.95, and 0.9, amino acid residues in viral envelope proteins are oxidized, thus envelope proteins are denatured and infectivity of the virus is neutralized. It is of great importance that this process does not require external energy sources like light or heat. The A/PR/8/34H1N1 influenza A virus (PR8 was employed as the sample virus in our demonstration, and high-throughput disinfections were observed. The efficiency of disinfection was correlated to oxidative ability of LaxMnO3 (x=1, 0.95, and 0.9 by EPR and H2-TPR results that La0.9MnO3 had the highest oxidative ability and correspondingly gave out the best disinfecting results within three nonstoichiometric compounds. Moreover, denaturation of hemagglutinin and neuraminidase, the two key envelope proteins of influenza A viruses, was demonstrated by HA unit assay with chicken red blood cells and NA fluorescence assay, respectively. This unique disinfecting application of La0.9MnO3 is considered as a great make up to current sterilizing methods especially to photocatalyst based disinfectants and can be widely applied to cut-off spread routes of viruses, either viral aerosol or contaminated fluid, and help in controlling the possibly upcoming epidemics like flus and hemorrhagic fever.

  2. Spatial and temporal occurrence of N-nitrosamines in seven drinking water supply systems.

    Science.gov (United States)

    Brisson, Isabelle J; Levallois, Patrick; Tremblay, Hélène; Sérodes, Jean; Deblois, Christian; Charrois, Jeffrey; Taguchi, Vincent; Boyd, Jessica; Li, Xingfang; Rodriguez, Manuel J

    2013-09-01

    The spatiotemporal presence of eight N-nitrosamines in the water of seven supply systems in Quebec considered to be susceptible to these emerging disinfection by-products was evaluated. This is the first study on the presence of N-nitrosamines in drinking water utilities in Quebec. Seven sampling campaigns were carried out at several sampling points in each of the systems over a period of 1 year. The results show that N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), were not commonly detected in the water of the facilities under study (10 % of samples). The concentrations measured were lower than those reported in recent North American studies. None of the 195 samples taken exceeded the Ontario standard of 9 ng/L for NDMA (maximum value observed of 3.3 ng/L). N-nitrosomethylethylamine and N-nitrosopiperidine were detected once, with concentrations of 3.7 and 6.0 ng/L, respectively. Chloramination was identified as being the main risk factor regarding the presence of N-nitrosamines, but water quality and some operating parameters, in particular disinfectant residual, also seem to be related to their presence. NDMA concentrations at the end of the distribution systems were generally higher than water leaving the plant. No seasonal trends were observed for the formation of N-nitrosamines in the investigated supply systems. Finally, an association between the presence of N-nitrosamines and the levels of trihalomethanes and haloacetic acids was observed in some facilities.

  3. Environmental Survival, Military Relevance, and Persistence of Burkholderia Pseudomallei

    Science.gov (United States)

    2007-04-01

    products used for disinfection and decontamination (Sagripanti and Bonifacino, 1996, 1999, 2000). 20 Preliminary results indicate that chloramine may be...CONTENTS 1. IN T R O D U C T IO N ............................................................................................. 9 2. IMPACT OF THE...pseudomallei. Moreover, the intracellular nature of melioidosis makes stimulation of T cell immunity difficult. Therefore, a vaccine to provide complete

  4. Labelling of S(-) BZM with Iodine-125 using Chloramine- T and Iodogen as Oxidizing Agents

    International Nuclear Information System (INIS)

    El-Ghany, E.A.; Farouk, N.; Raieh, M.; El-Kolaly, M.T.

    2000-01-01

    Labelling of (S)-N-[(1-ethyl-2-pyrrolidinyl) methyl]-2-hydroxy-3-iodo-6-methoxy benzamide [ S(-)-BZM] with iodine-125 using chloramine- T and iodogen as oxidizing agents was studied. The labelling yield was highly dependent on the ph of the reaction medium, S(-) BZM concentration, amounts of oxidizing agents and on the reaction time. High labelling yield greater than 90% was obtained by reacting 0.24 mu-M S(-)BZM solution with 0.24 μ M chloramine-T solution in phosphate buffer of ph 3 at room temperature for not more than 3 min. When iodogen was used as oxidizing agent, the labelling yield was found ≥ 80 % under the same conditions mentioned earlier. The advantages of the use of iodogen as oxidizing agent are : its molar ratio to substrate doses not has a great effect on the percent yield, no side products were produced as a result of the prolongation of the reaction time, and finally it is easy to be removed from the reaction mixture

  5. Nitrification in Chloraminated Drinking Water Distribution Systems: Factors Affecting Occurrence

    Science.gov (United States)

    Drinking water distribution systems with ammonia present from either naturally occurring ammonia or ammonia addition during chloramination are at risk for nitrification. Nitrification in drinking water distribution systems is undesirable and may result in water quality degradatio...

  6. Factors affecting THMs, HAAs and HNMs formation of Jin Lan Reservoir water exposed to chlorine and monochloramine.

    Science.gov (United States)

    Hong, Huachang; Xiong, Yujing; Ruan, Mengyong; Liao, Fanglei; Lin, Hongjun; Liang, Yan

    2013-02-01

    The formations of THMs, HAAs, and HNMs from chlorination and chloramination of water from Jinlan Reservoir were investigated in this study. Results showed that monochloramine rather than chlorine generally resulted in lower concentration of DBPs, and the DBPs formation varied greatly as the treatment conditions changed. Specifically, the yields of THMs, HAAs and HNMs all increased with the high bromide level and high disinfectant dose both during chlorination and chloramination. The longer reaction time had a positive effect on the formation of THMs, HAAs and HNMs during chlorination and HNMs during chloramination. However, no time effect was observed on the formation of THMs and HAAs during chloramination. An increase in pH enhanced the levels of THMs and HNMs upon chlorination but reduced levels of HNMs upon chloramination. As for the THMs in chloramination and HAAs in chlorination and chloramination, no obvious pH effect was observed. The elevated temperature significantly increased the yields of THMs during chlorination and HNMs during chloramination, but has no effect on THMs and HAAs yields during chloramination. In the same temperature range, the formation of HAAs and HNMs in chlorination showed a first increasing and then a decreasing trend. In chloramination study, addition of nitrite markedly increased the formation of HNMs but had little impact on the formation of THMs and HAAs. While in chlorination study, the presence of high nitrite levels significantly reduced the yields of THMs, HAAs and HNMs. Range analysis revealed that the bromide and disinfectant levels were the major factors affecting THMs, HAAs and HNMs formation, in both chlorination and chloramination. Finally, comparisons of the speciation of mono-halogenated, di-halogenated, tri-halogenated HAAs and HNMs between chlorination and monochloramination were also conducted, and factors influencing the speciation pattern were identified. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Assessment of Diiodoacetic Effects on Eye Malformations in a Developmental Toxicity Screen with F344 Rats

    Science.gov (United States)

    Diiodoacetic acid (DIA) is an iodinated haloacetic acid and a drinking water disinfection by-product (DBP) formed in drinking water treated by chloramination (chlorine plus ammonia) to prevent microbial contamination and regrowth. Although disinfection of drinking water has prove...

  8. Insusceptibility to disinfectants in bacteria from animals, food and humans – is there a link to antimicrobial resistance?

    Directory of Open Access Journals (Sweden)

    Karin eSchwaiger

    2014-03-01

    Full Text Available Enterococcus faecalis (n = 834 and Enterococcus faecium (n = 135 from blood and feces of hospitalized humans, from feces of outpatients and livestock and from food were screened for their susceptibility to a quaternary ammonium compound (didecyldimethyl-ammoniumchloride, DDAC and to 28 antibiotics by micro-/macrodilution. The maximum DDAC-MIC in our field study was 3.5 mg/l, but after adaptation in the laboratory, MIC values of 21.9 mg/l were observed. Strains for which DDAC had MICs > 1.4 mg/l (non-wildtype, in total: 46 of 969 isolates / 4. 7 % were most often found in milk and dairy products (14.6 %, while their prevalence in livestock was generally low (0-4 %. Of human isolates, 2.9 to 6.8 % had a non-wildtype phenotype. An association between reduced susceptibility to DDAC, high-level-aminoglycoside resistance and aminopenicillin resistance was seen in E. faecium (p In addition, bacteria (n = 42 of different genera were isolated from formic acid based boot bath disinfectant (20 ml of 55 % formic acid /l. The MICs of this disinfectant exceeded the wildtype MICs up to 20fold (staphylococci, but were still one to three orders of magnitude below the used concentration of the disinfectant (i. e. 1.1 % formic acid. In conclusion, the bacterial susceptibility to disinfectants still seems to be high. Thus, the proper use of disinfectants in livestock surroundings along with a good hygiene praxis should still be highly encouraged. Hints to a link between antibiotic resistance and reduced susceptibility for disinfectants – as seen for E. faecium - should be substantiated in further studies and might be an additional reason to confine the use of antibiotics.

  9. Activity of disinfectants against foodborne pathogens in suspension and adhered to stainless steel surfaces

    Directory of Open Access Journals (Sweden)

    Tatiane Karen Cabeça

    2012-09-01

    Full Text Available The purpose of this study was to investigate and compare the efficacy of various disinfectants on planktonic cells and biofilm cells of Listeria monocytogenes, Staphylococcus aureus and Escherichia coli. Numbers of viable biofilm cells decreased after treatment with all tested disinfectants (iodine, biguanide, quaternary ammonium compounds, peracetic acid and sodium hypochlorite. Sodium hypochlorite was the most effective disinfectant against biofilm cells, while biguanide was the least effective. Scanning electron microscopy observations revealed that cells adhered on stainless steel surface after treatment with the disinfectants. No viable planktonic cells were observed after treatment with the same disinfectants. Based on our findings, we concluded that biofilm cells might be more resistant to disinfectants than plancktonic cells.

  10. Determination of several common disinfection by-products in frozen foods.

    Science.gov (United States)

    Cardador, Maria Jose; Gallego, Mercedes

    2018-01-01

    Disinfected water and/or disinfectants are commonly used by the freezing industry in such processes as sanitising, washing, blanching, cooling and transporting the final product. For this reason, disinfection by-products (DBPs) can be expected in frozen foods. This study focused on the presence of DBPs in a wide variety of frozen vegetables, meats and fish. For this purpose, the 14 halogenated DBPs more prevalent in disinfected water were selected (four trihalomethanes, seven haloacetic acids, two haloacetonitriles and trichloronitromethane). Up to seven DBPs were found in vegetables, whereas only four DBPs were present in meats and fish, and at lower concentrations, since their contact with disinfected water is lower than in frozen vegetables. It is important to emphasise that trichloronitromethane (the most abundant nitrogenous DBP in disinfected water) was found for the first time in foods. Finally, it was concluded that the freezing process can keep the compounds stable longer than other preservation processes (viz. sanitising, canning) and, therefore, frozen foods present higher DBP concentrations than other food categories (minimally processed vegetables, or canned vegetables and meats).

  11. Formation of Staphylococcus aureus Biofilm in the Presence of Sublethal Concentrations of Disinfectants Studied via a Transcriptomic Analysis Using Transcriptome Sequencing (RNA-seq)

    Science.gov (United States)

    Oppelt, J.; Cincarova, L.

    2017-01-01

    ABSTRACT Staphylococcus aureus is a common biofilm-forming pathogen. Low doses of disinfectants have previously been reported to promote biofilm formation and to increase virulence. The aim of this study was to use transcriptome sequencing (RNA-seq) analysis to investigate global transcriptional changes in S. aureus in response to sublethal concentrations of the commonly used food industry disinfectants ethanol (EtOH) and chloramine T (ChT) and their combination (EtOH_ChT) in order to better understand the effects of these agents on biofilm formation. Treatment with EtOH and EtOH_ChT resulted in more significantly altered expression profiles than treatment with ChT. Our results revealed that EtOH and EtOH_ChT treatments enhanced the expression of genes responsible for regulation of gene expression (sigB), cell surface factors (clfAB), adhesins (sdrDE), and capsular polysaccharides (cap8EFGL), resulting in more intact biofilm. In addition, in this study we were able to identify the pathways involved in the adaptation of S. aureus to the stress of ChT treatment. Further, EtOH suppressed the effect of ChT on gene expression when these agents were used together at sublethal concentrations. These data show that in the presence of sublethal concentrations of tested disinfectants, S. aureus cells trigger protective mechanisms and try to cope with them. IMPORTANCE So far, the effect of disinfectants is not satisfactorily explained. The presented data will allow a better understanding of the mode of disinfectant action with regard to biofilm formation and the ability of bacteria to survive the treatment. Such an understanding could contribute to the effort to eliminate possible sources of bacteria, making disinfectant application as efficient as possible. Biofilm formation plays significant role in the spread and pathogenesis of bacterial species. PMID:29030437

  12. Association of high-level humidifier disinfectant exposure with lung injury in preschool children.

    Science.gov (United States)

    Park, Dong-Uk; Ryu, Seung-Hun; Roh, Hyun-Suk; Lee, Eun; Cho, Hyun-Ju; Yoon, Jisun; Lee, So-Yeon; Cho, Young Ah; Do, Kyung-Hyun; Hong, Soo-Jong

    2018-03-01

    Children aged ≤6years reportedly account for 52% of victims of humidifier disinfectant-associated lung injuries. To evaluate the association of humidifier disinfectants with lung injury risk among children aged ≤6years. Patients with humidifier disinfectant-associated lung injuries (n=214) who were clinically evaluated to have a definite (n=108), probable (n=49), or possible (n=57) association with humidifier disinfectants as well as control patients (n=123) with lung injury deemed unlikely to be associated with humidifier disinfectant use were evaluated to determine factors associated with increased risk of humidifier disinfectant-associated lung injury using unconditional multiple logistic regression analysis. For estimated airborne humidifier disinfectant concentrations, risk of humidifier disinfectant-associated lung injury increased ≥two-fold in a dose-dependent manner in the highest quartile (Q4, 135-1443μg/m 3 ) compared with that in the lowest quartile (Q1, ≤33μg/m 3 ). Registered patients using more than two humidifier disinfectant brands were at an increased risk of humidifier disinfectant-associated lung injury (adjusted OR, 2.2; 95% confidence interval, 1.3-3.8) compared with those using only one brand. With respect to the duration of humidifier disinfectant use, risk of humidifier disinfectant-associated lung injury increased ≥two-fold in the lowest quartile (≤5months) compared with that in the highest quartile (≥14months; adjusted OR 0.3; 95% confidence interval, 0.2-0.6). Younger children are more vulnerable to HDLI when exposed to HD chemicals within short period in early life. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Destruction of disinfection byproducts and their precursors in swimming pool water by combined UV treatment and ozonation

    DEFF Research Database (Denmark)

    Cheema, Waqas Akram; Kaarsholm, Kamilla Marie Speht; Andersen, Henrik Rasmus

    Both UV treatment and ozonation are used to reduce different types of disinfection byproducts (DBP) in swimming pools. UV treatment is most common as it is particularly efficient in removing the repulsive chlorine like smelling chloramines (combined chlorine). UV treatment of a pool water increased...... chlorine reactivity and formation of chlor-organic DBP such as trihalomethanes. Based on the similar selective reactivity of ozone and chlorine we hypothesized that the created reactivity towards chlorine by UV treatment of dissolved organic matter in pool water might also be expressed as an increased...... reactivity towards ozone and that ozonation might saturate the chlorine reactivity created by UV treatment and mitigate the increased DBP formation. By experimentally treating pool water samples, we found that UV treatment makes pool water highly reactive to ozone. The created reactivity towards chlorine...

  14. Survival of cool and warm freshwater fish following chloramine-T exposure

    Science.gov (United States)

    Gaikowski, M.P.; Larson, W.J.; Gingerich, W.H.

    2008-01-01

    Chloramine-T is presently available in the USA to control mortalities associated with bacterial gill disease or external columnaris only through an Investigational New Animal Drug Permit authorized by the US Food and Drug Administration (FDA). Its US approval hinges on FDA's acceptance of several key data, including those describing animal safety. Chloramine-T is presently applied in US aquaculture, by permit only, once daily on consecutive or alternate days for 1??h at 10 to 20??mg/L to control mortalities associated with bacterial gill disease or external columnaris. Our objective was to determine the safety of chloramine-T bath exposures at multiples of the proposed maximum treatment concentration (i.e., 0, 20, 60, 100, and 200??mg/L) administered on four consecutive days at 20????C to lake sturgeon Acipenser fulvescens, northern pike Esox lucius, and walleye Sander vitreum, or at 27????C to channel catfish Ictalurus punctatus, and largemouth bass Micropterus salmoides. All fish were tested as five to eight week old fry except for walleye and channel catfish which were tested as both fry and fingerling (fingerlings were at least four weeks older than the fry tested). Walleye and channel catfish were selected to evaluate the effects of life stage (fry vs. fingerling), temperature (walleye - 15, 20, or 25????C; channel catfish - 22, 27, or 32????C), exposure duration (60 vs. 180??min), and water chemistry (walleye only - reconstituted soft water vs. well water). Except for channel catfish fry, survival was significantly reduced only when fish were treated at 100 or 200??mg/L. Channel catfish fry survival was significantly reduced when exposed at 60??mg/L for 180??min at 27????C. Based on our mortality data, chloramine-T administered once daily for 60??min on four consecutive days at concentrations of up to 20??mg/L is not likely to adversely affect survival of cool or warmwater fish cultured in freshwater. Crown Copyright ?? 2007.

  15. Susceptibility to disinfectants in antimicrobial-resistant and -susceptible isolates of Escherichia coli, Enterococcus faecalis and Enterococcus faecium from poultry-ESBL/AmpC-phenotype of E. coli is not associated with resistance to a quaternary ammonium compound, DDAC.

    Science.gov (United States)

    Wieland, N; Boss, J; Lettmann, S; Fritz, B; Schwaiger, K; Bauer, J; Hölzel, C S

    2017-06-01

    The spread of bacteria that are simultaneously resistant to disinfectants and antimicrobials would constitute an unsettling scenario. In order to explore an association between antimicrobial resistance and reduced susceptibility to biocides/microbicides (disinfectants) in agriculture, we investigated Escherichia coli (n = 438) and enterococci (n = 120) isolated from six different flocks of the same poultry farm with known history of antimicrobial treatment. Susceptibility to disinfectants (formic acid and a quaternary ammonium compound (QAC), didecyldimethylammoniumchloride-DDAC) was assessed by macrodilution according to guidelines of the German Veterinary Society. Escherichia coli, Enterococcus faecalis and Enterococcus faecium were screened (i) for reduced biocide susceptibility and (ii) for an association of biocide susceptibility and antimicrobial resistance including the production of extended-spectrum beta-lactamases (ESBL) and the hyperproduction of AmpC-type beta-lactamases. DDAC inhibited ESBL/AmpC(hyper)-producing E. coli (n = 53) from poultry at similar or slightly lower inhibitory concentrations, compared with non-ESBL/AmpC strains (median MIC = 0·36 vs 1·44 mg l -1 ). In contrast, DDAC-MICs were positively correlated with several other antibiotic MICs (e.g. piperacillin and sulphamethoxazole + trimethoprim in E. coli, chloramphenicol in E. faecalis) and increased DDAC-MICs were statistically linked to high-level aminoglycoside resistance in enterococci (streptomycin high level). DDAC-MICs did not correlate with the presence of the integron marker qacEDelta1. This study provides indication that residual disinfectant might be able to select antimicrobial-resistant enterococci, but not ESBL-/AmpC (hyper)producing E. coli from poultry. While ESBL-/AmpC-E. coli were inhibited at disinfectant concentrations comparable to or lower than wildtype values, low concentrations of QACs might be able to select other antimicrobial-resistant E

  16. Disinfection in Wastewater Treatment Plants: Evaluation of Effectiveness and Acute Toxicity Effects

    Directory of Open Access Journals (Sweden)

    Maria Cristina Collivignarelli

    2017-09-01

    Full Text Available In Italy, urban wastewater disinfection is regulated in the third part of Legislative Decree n. 152/2006, which states that wastewater treatment plants (WWTPs must include a disinfection unit, with a capacity exceeding 2000 Population Equivalent (PE. This treatment shall ensure microbial quality and health security. The legislation provides the following limits for wastewater: Escherichia coli (E. coli concentration below 5000 CFU 100 mL−1 (recommended value, active chlorine concentration below 0.2 mg L−1 and lack of acute toxicity. The compliance with these conditions is shown by means of the study of correct disinfectant dosage, which also depends on wastewater characteristics. An investigation at the regional level (from 2013 to 2016 shows a correlation between acute toxicity discharge and disinfection treatment through chemical reagents (mainly with the use of chlorine compounds and peracetic acid. The experimental work concerns two active sludge WWTPs in northern Italy with small capacity (10,000–12,000 PE. The activities provide the assessment of microbiological quality and toxicity of WWTPs effluents in relation to the dosage of sodium hypochlorite and peracetic acid, by means of the use of batch tests. The results show that with similar disinfectant dosage and comparable initial E. coli concentration, peracetic acid exhibits the best performance in terms of microbial removal (with removal yields up to 99.99%. Moreover, the acute toxicity was evident at higher doses and therefore with higher residuals of peracetic acid (2.68 mg L−1 compared to the free residual chlorine (0.17 mg L−1.

  17. Halogenating reaction activity of aromatic organic compounds during disinfection of drinking water

    International Nuclear Information System (INIS)

    Guo Gaimei; Chen Xiaodong

    2009-01-01

    The halogenating reactions of five aromatic organic compounds (AOCs) with aqueous chlorine (HOCl/OCl - ) and aqueous bromine (HOBr/OBr - ) were studied with an aim to compare the formation properties of haloacetic acids (HAAs) for the corresponding chlorination or bromination reactions of AOCs, respectively. The experiment results indicated that the HAAs substitution efficiency for the bromination reactions of AOCs was greater than that for the chlorination reactions, and the formation of HAAs had a strong dependence on the chemical structure of AOCs. The chlorination or bromination reaction activities for the AOCs with electron donating functional groups were higher than that for them with electron withdrawing functional groups. The kinetic experiments indicated that the reactions of aqueous bromine with phenol were faster than those of aqueous chlorine with phenol and the halogen consumption exhibited rapid initial and slower consumption stages for the reactions of phenol with aqueous chlorine and bromine, respectively. In addition, the HAAs production for the chlorination reaction of phenol decreased with the increase of pH. These conclusions could provide the valuable information for the effective control of the disinfection by-products during drinking water treatment operation

  18. Comparative studies of Iodo-bead and chloramine-T methods for the radioiodination of human alpha-fetoprotein

    International Nuclear Information System (INIS)

    Lee, D.S.C.; Griffiths, B.W.

    1984-01-01

    Human alpha-fetoprotein (h-AFP) of iodination grade was radiolabeled with Na 125 I by chloramine-T (conventional method) and by Iodo-bead (solid-phase method) under standard and varied conditions, such as quantity of h-AFP and volume of the reaction mixture. The authors have modified the chloramine-T method and developed a protocol for the Iodo-bead method of iodination. The results show that while the chloramine-T method yields radiolabeled h-AFP of apparently 40% higher specific radioactivity (SR) than those of the Iodo-bead method, the latter appears to be a simpler, more controllable and milder method, giving rise to a more stable population of [ 125 I]h-AFP. This is supported by the results of radioactive counting of [ 125 I]h-AFP collected from a Sephadex G-50 column after radioiodination, storage stability and immunoreactivity with anti-h-AFP. (Auth.)

  19. Development of a Standard Test to Assess the Resistance of Staphylococcus aureus Biofilm Cells to Disinfectants

    NARCIS (Netherlands)

    Luppens, S.B.I.; Reij, M.W.; Heijden, van der R.W.; Rombouts, F.M.; Abee, T.

    2002-01-01

    A standardized disinfectant test for Staphylococcus aureus cells in biofilms was developed. Two disinfectants, the membrane-active compound benzalkonium chloride (BAC) and the oxidizing agent sodium hypochlorite, were used to evaluate the biofilm test. S. aureus formed biofilms on glass, stainless

  20. Water disinfection agents and disinfection by-products

    Science.gov (United States)

    Ilavský, J.; Barloková, D.; Kapusta, O.; Kunštek, M.

    2017-10-01

    The aim of this work is to describe factors of water quality change in the distribution network and legislative requirements in Slovakia for disinfectants and disinfection byproducts (DBPs). In the experimental part, the time dependence of the application of the chlorine dioxide and sodium hypochlorite on the formation of some by-products of disinfection for drinking water from WTP Hriňová is studied. We monitored trihalomethanes, free chlorine, chlorine dioxide and chlorites.

  1. Quillaja saponaria Saponins with Potential to Enhance the Effectiveness of Disinfection Processes in the Beverage Industry

    Directory of Open Access Journals (Sweden)

    Hubert Antolak

    2018-03-01

    Full Text Available This study examines the in vitro effect of Quillaja saponaria extracts on Asaia spp. planktonic cells and biofilms, in comparison and combination with two disinfectants: peracetic acid and N-ethyl-N,N-dimethylhexadecylammonium bromide. The growth of six bacterial strains was evaluated spectrophotometrically. Biofilm eradication was determined using the plate count method and luminometry. The planktonic cells were characterized by relatively high resistance to peracetic acid and higher sensitivity to N-ethylo-N,N-dimethylohexadecylioamonium bromide. In almost all the tested strains, growth was inhibited by 0.125% (v/v peracetic acid and 0.0313% (w/v quaternary ammonium compound. However, combinations of cell pretreatment using saponin and peracetic acid action were the most efficient against both planktonic and biofilm cells. The minimum inhibitory concentrations for peracetic acid were 4–8 times lower than those for bacterial strains without preliminary saponin action. Eradication of Asaia spp. biofilms reduced the number of living cells by 4–5 logarithmic units. These results demonstrate the synergetic action of saponin extract and disinfectant, and could be useful in the development of industrial strategies against Asaia spp. biofilms.

  2. Surface disinfection of tomatoes using the natural plant compound trans-cinnamaldehyde

    NARCIS (Netherlands)

    Smid, E.J.; Hendriks, L.; Boerrigter, H.A.M.; Gorris, L.G.M.

    1996-01-01

    Tomatoes are particularly vulnerable to microbial spoilage at calyces and wound sites on the fruit surface. Compared to the fruit surface, the calyx carries the major part of the microbial load, consisting of epiphytic bacteria and moulds. Disinfection of tomato fruits, as a means of extending

  3. Disinfectants - bacterial cells interactions in the view of hygiene and public health

    Directory of Open Access Journals (Sweden)

    Marta Książczyk

    2015-09-01

    Full Text Available In recent years, the use of biocides has increased rapidly. One common example is triclosan, with wide application in households as well as medical and industrial fields, especially food industry and animal husbandry. Chemical disinfection is a major mean to control and eliminate pathogenic bacteria, particularly those with multidrug resistance (MDR phenotype. However, exposition to biocides results in an adaptive response in microorganisms, causing them to display a wide range of resistance mechanisms. Numerous microorganisms are characterized by either natural resistance to chemical compounds or an ability to adapt to biocides using various strategies, such as: modification of cell surface structures (lipopolisaccharide, membrane fatty acids, over-expression of efflux pumps (a system for active transport of toxic compounds out of bacterial cell, enzymatic inactivation of biocides or altering biocide targets. For instance, it was shown that in vitro exposition of Salmonella Typhimurium to subinhibitory concentration of biocides (triclosan, quaternary ammonium compounds [QACs] resulted in selection of variants resistant to tested biocides and, additionally, to acridine dyes and antibiotics. Bacillus subtilis and Micrococcus luteus strains isolated from chlorine dioxide containing disinfection devices were found to be resistant to chlorine dioxide and also to other oxidizing compounds, such as peracetic acid and hydrogen peroxide. Interaction between chemical compounds, including disinfectants and microbial cells, can create a serious threat to public health and sanitary-hygienic security. This phenomenon is connected with factor risk that intensify the probability of selection and dissemination of multidrug resistance among pathogenic bacteria.

  4. Chemical Facility Security: Reauthorization, Policy Issues, and Options for Congress

    Science.gov (United States)

    2010-12-10

    gaseous chlorine disinfection to chloramine disinfection —a change identified by some advocacy groups as being an inherently safer substitution—as being...chemicals, such as chlorine, for purposes such as disinfection .29 Advocates for their inclusion in security regulations cite the presence of such...Science and Technology (S& T ) Directorate is engaged in a Chemical Infrastructure Risk Assessment Project that, among other goals, will assess the

  5. Spiral-shaped disinfection reactors

    KAUST Repository

    Ghaffour, Noreddine

    2015-08-20

    This disclosure includes disinfection reactors and processes for the disinfection of water. Some disinfection reactors include a body that defines an inlet, an outlet, and a spiral flow path between the inlet and the outlet, in which the body is configured to receive water and a disinfectant at the inlet such that the water is exposed to the disinfectant as the water flows through the spiral flow path. Also disclosed are processes for disinfecting water in such disinfection reactors.

  6. Carbon nanoparticles for solar disinfection of water.

    Science.gov (United States)

    Maddigpu, Pratap Reddy; Sawant, Bhairavi; Wanjari, Snehal; Goel, M D; Vione, Davide; Dhodapkar, Rita S; Rayalu, S

    2018-02-05

    The present manuscript deals with the application of carbon nano particles (CNP) and chitosan (CHIT) in the form of CHIT-CNP composite for the disinfection of water. The CHIT-CNP composite was prepared by the solution casting method and characterized by TEM, XRD and elemental analysis. In the present investigation we study the disinfection efficiency towards E. coli bacteria of both CNP and CHIT-CNP, under sunlight (SODIS) in identical experimental conditions. Both CNP and CHIT-CNP enhanced disinfection as compared to SODIS alone, and comparable performance was achieved when the same dose of CNP in the two materials was applied. However, the CHIT-CNP composite is in the form of a fabric and it is easier to use and handle as compared to the CNP powder, especially in rural and resource-constrained areas. Moreover the SODIS-CHIT-CNP setup, when used in a compound parabolic collector (CPC) reactor showed high bactericidal efficiency compared to SODIS alone, which is promising for practical applications. The disinfection potential of the CNP powder was compared with that of the well-known material TiO 2 Degussa P25 (DP 25 ): DP 25 gave 6-log kill of bacteria in 180min, whereas CNP produced 6-log kill in 150min. Copyright © 2017. Published by Elsevier B.V.

  7. Characterization of Cleaning and Disinfecting Tasks and Product Use Among Hospital Occupations

    Science.gov (United States)

    Saito, Rena; Virji, M. Abbas; Henneberger, Paul K.; Humann, Michael J.; LeBouf, Ryan F.; Stanton, Marcia L.; Liang, Xiaoming; Stefaniak, Aleksandr B.

    2016-01-01

    Background Healthcare workers have an elevated prevalence of asthma and related symptoms associated with the use of cleaning/disinfecting products. The objective of this study was to identify and characterize cleaning/disinfecting tasks and products used among hospital occupations. Methods Workers from 14 occupations at five hospitals were monitored for 216 shifts, and work tasks and products used were recorded at five-minute intervals. The major chemical constituents of each product were identified from safety data sheets. Results Cleaning and disinfecting tasks were performed with a high frequency at least once per shift in many occupations. Medical equipment preparers, housekeepers, floor strippers/waxers, and endoscopy technicians spent on average 108–177 min/shift performing cleaning/disinfecting tasks. Many occupations used products containing amines and quaternary ammonium compounds for > 100 min/shift. Conclusions This analysis demonstrates that many occupations besides housekeeping incur exposures to cleaning/disinfecting products, albeit for different durations and using products containing different chemicals. PMID:25351791

  8. Assessment of peracetic acid disinfected effluents by microbiotests.

    Science.gov (United States)

    Antonelli, M; Mezzanotte, V; Panouillères, M

    2009-09-01

    Bioassays were performed by commercially available kits on peracetic acid (PAA) solutions, at different concentrations, and on secondary effluents (from two different wastewater treatment plants) after disinfection at bench-scale, considering both samples containing residual active PAA and the same samples where residual PAA was quenched. Four indicator organisms were used: Vibrio fischeri, Thamnocephalus platyurus, Daphnia magna, and Selenastrum capricornutum. The experiments lead to conclude that Thamnocephalus platyurus is a very sensitive organism, probably not adequate to perform a reliable toxicity assessment of effluents for monitoring purposes. The presence of specific organic compounds deriving from human metabolism and urban pollution, even at very low concentrations, can affect the results of bioassays, especially those performed on Vibrio fischeri. PAA is toxic for bacteria and crustaceans even at concentrations lower than the ones commonly used in wastewater disinfection (2-5 mg/L), while its effect on algae is smaller. The toxic effect on bacteria was expected, as PAA is used for disinfection, but its possible influence on biological processes in the receiving aquatic environment should be considered. Toxicity on crustaceans would confirm the fact that discharging disinfected effluents could raise some environmental problems.

  9. Limpieza y desinfección: riesgo toxicológico Cleaning and disinfection: toxicological risk

    Directory of Open Access Journals (Sweden)

    Sebastián Sánchez-Fortún Rodríguez

    2006-12-01

    Full Text Available La utilización de biocidas para la desinfección de superficies, como las torres de refrigeración, ha llegado a ser un elemento clave para la prevención de enfermedades, como es el caso de la legionelosis. Pero su utilización conlleva asumir una serie de riesgos, tanto para la Salud Pública como para el entorno medioambiental donde las descargas procedentes de los puntos de aplicación pueden provocar profundas alteraciones en el medio acuático. El análisis efectuado en el presente trabajo, acerca de los diferentes parámetros para la evaluación del riesgo que supone la utilización de estos formulados, lleva a la conclusión de que, aún entendiendo que todo biocida podría provocar efectos no deseados sobre los seres vivos y el medioambiente, un correcto equilibrio entre los criterios de eficacia y seguridad es la única pauta viable para prevenir el riesgo toxicológico generado por las necesarias pautas de limpieza y desinfección de estas superficies.The use of biocides for the surfaces disinfection, as cooling towers, has ended up being a key element for the prevention of illnesses, like it is the case of legionelosis disease. But their use bears to assume risks, as much for the Public and Environmental Health where the discharges can cause deep alterations in the aquatic ecosystems. The analysis apply in this work, about the different parameters for the risk evaluation that supposes the use of these formulated, takes to the conclusion that, still understanding that all biocide could cause adverse effects on organisms and environments, a correct balance among effectiveness and security approaches is the only viable rule to prevent the toxicological risk generated by the necessary cleaning and disinfection rules of these surfaces.

  10. Role of Chlorine Dioxide in N-Nitrosodimethylamine Formation from Oxidation of Model Amines.

    Science.gov (United States)

    Gan, Wenhui; Bond, Tom; Yang, Xin; Westerhoff, Paul

    2015-10-06

    N-Nitrosodimethylamine (NDMA) is an emerging disinfection byproduct, and we show that use of chlorine dioxide (ClO2) has the potential to increase NDMA formation in waters containing precursors with hydrazine moieties. NDMA formation was measured after oxidation of 13 amines by monochloramine and ClO2 and pretreatment with ClO2 followed by postmonochloramination. Daminozide, a plant growth regulator, was found to yield 5.01 ± 0.96% NDMA upon reaction with ClO2, although no NDMA was recorded during chloramination. The reaction rate was estimated to be ∼0.0085 s(-1), and on the basis of our identification by mass spectrometry of the intermediates, the reaction likely proceeds via the hydrolytic release of unsymmetrical dimethylhydrazine (UDMH), with the hydrazine structure a key intermediate in NDMA formation. The presence of UDMH was confirmed by gas chromatography-mass spectrometry analysis. For 10 of the 13 compounds, ClO2 preoxidation reduced NDMA yields compared with monochloramination alone, which is explained by our measured release of dimethylamine. This work shows potential preoxidation strategies to control NDMA formation may not impact all organic precursors uniformly, so differences might be source specific depending upon the occurrence of different precursors in source waters. For example, daminozide is a plant regulator, so drinking water that is heavily influenced by upstream agricultural runoff could be at risk.

  11. The effect of pre-oxidation on NDMA formation and the influence of pH.

    Science.gov (United States)

    Selbes, Meric; Kim, Daekyun; Karanfil, Tanju

    2014-12-01

    N-nitrosodimethylamine (NDMA), a probable human carcinogen, is a disinfection by-product that has been detected in chloraminated drinking water systems. Pre-oxidation of the NDMA precursors prior to chloramination can be a viable approach for water utilities to control the NDMA levels. This study examined the effects of (i) commonly used oxidants (i.e., chlorine, chlorine dioxide and ozone) in water treatment, (ii) oxidant concentration and contact time (CT), and (iii) pre-oxidation pH on the formation of NDMA from subsequent chloramination. Fifteen model precursors with NDMA molar yields ranging from approximately 0.1%-90% were examined. Pre-chlorination reduced NDMA formation from most precursors by 10%-50% except quaternary amine polymers (i.e., PolyDADMAC, PolyACRYL, PolyAMINE). Pre-oxidation with chlorine dioxide and ozone achieved the same or higher deactivation of NDMA precursors (e.g., ranitidine) while increasing NDMA formation for some other precursors (e.g., daminozid). The increases with chlorine dioxide exposure were attributed to the release of oxidation products with dimethylamine (DMA) moiety, which may form more NDMA upon chloramination than the unoxidizied parent compound. On the other hand, chlorine dioxide was effective, if a precursors NDMA yield were higher than DMA. The ozone-triggered increases could be related to direct NDMA formation from DMA which are released by ozonation of amines with DMA moiety, amides or hydrazines. However, hydroxyl radicals formed from the decomposition of ozone would be also involved in decomposition of formed NDMA, reducing the overall NDMA levels at longer contact times. pH conditions influenced significantly the effectiveness of deactivation of precursors depending on the type of precursor and oxidant used. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Generation of ozone foam and its application for disinfection

    Science.gov (United States)

    Hiragaki, Keisuke; Ishimaru, Tomiya; Nakanishi, Masaru; Muraki, Ryouji; Nieda, Masanori; Yamabe, Chobei

    2015-07-01

    Generated ozone foam was applied to the disinfection of Pseudomonas fluorescens. The effect of disinfection has been confirmed experimentally and new equipment for the disinfection of hands using this ozone foam has been put on the market for the practical use. The ozone foam was produced in the foam generator after mixing the water including surfactant (30 mL/min) and air including ozone (1000 ppm = 2.14 g/m3 ~ 1600 ppm = 3.4 g/m3, 300 mL/min). The liquid-to-gas ratio is 100 L/m3. The concentration of dissolved ozone in the thin liquid films of the bubbles was about 3 mg/L which was measured by the chemical method of the KI absorption and titration of sodium thiosulfate solution. The disinfection test samples were prepared using the PET disk on which Pseudomonas fluorescens of its number of more than 108 were attached. Test sample was inserted into ozone foam set on the glass plate for one to 6 min. The survival rate log (N/N0 decreased with time and its value of about-2.6 (i.e., ~1/400) was obtained at 6 min (2 min × 3 times repeated). It was also confirmed that the ozone foam was useful for the disinfection of hands. For more effective disinfection (in case of taking a long time for foam melting), the ozone foam was broken by force and changed into ozone water by which the survival rate decreased ×4 (i.e., N/N0 = 1/10 000) at 4 ~ 6 min. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  13. Environmentally friendly disinfectant: Production, disinfectant action and efficiency

    Directory of Open Access Journals (Sweden)

    Čekerevac Milan I.

    2006-01-01

    Full Text Available Silver is a known disinfectant from ancient times, and it has been widely used for various purposes: for food and water disinfection, curing of wounds and as a universal antibiotic for a wide spectrum of diseases - until the Second World War and the discovery of penicillin. Until recently, it was assumed that silver, being a heavy metal, was toxic for humans and living beings. However, the newest research provides facts that the usage of silver, even for drinking water disinfection, is benign if it is added in small concentrations (in parts per billion. It has been shown in the newer scientific and technical literature that silver in colloidal form is a powerful (secondary disinfectant for drinking water, that it can be effectively used for the disinfection of water containers including swimming pools, installations in food industry, medicine, etc. Particularly, it has been shown that colloidal silver combined with hydrogen peroxide shows synergism having strong bactericidal and antiviral effects. The combination can be successfully used as a disinfectant in agriculture, food production and medicine. The original electrochemical process of production, the mechanism of physical-chemical reactions in that process and the mechanism of the antiseptic affect of the environmentally friendly disinfectant, based on the synergism of colloidal silver and hydrogen peroxide and the activity of electrochemically activated water, is shown. The starting solution was anolyte, obtained in electrochemical activation by water electrolysis of a highly diluted solution of K-tartarate in demineralized water (5.5-1CT4 M. The problem of electrolysis of very dilute aqueous solutions in membrane cells was particularly treated. It was shown that the efficiency of the electrolysis depends on the competition between the two processes: the rates of the processes of hydrogen and oxygen generation at the electrodes and the process of diffusion of hydrogen and hydroxyl ions

  14. Overview of Causes and Control of Nitrification in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    This chapter provides an integrated overview of nitrification causes and control in chloraminated drinking water distribution systems, leading to an in-depth discussion of nitrification microbiology, monitoring, prevention, response, and engineering improvements in subsequent man...

  15. Monitoring the prevalence of nitrosamines in South African waters and their removal using cyclodextrin polyurethanes

    Science.gov (United States)

    Mhlongo, Sthembile H.; Mamba, Bhekie B.; Krause, Rui W.

    The prevalence of nitrosamines, especially N-nitrosodimethylamine (NDMA), was monitored in three South African water supplies. NDMA a disinfection by-product (DBP) and potent carcinogen, has recently been detected in many drinking water supplies internationally. Besides direct industrial or human-derived contamination, nitrosodimethylamine can be formed through a chemical reaction between monochloroamine and an organic based compound such as dimethylamine which is frequently detected in surface water. It has been suggested that chloramination of surface waters with a high concentration of dissolved organic carbon (DOC) could result in elevated NDMA formation. Growing evidence suggests that NDMA occurs more frequently and at higher concentrations in drinking water systems that practise chloramination compared to systems that use chlorination. In gauging the extent of water contamination by nitrosamines in water distribution systems, especially NDMA, water samples collected from three different water treatment plants that practise chemical drinking water disinfection were qualitatively analysed for the presence of nitrosamines. Solid phase microextraction (SPME) was employed in the extraction of nitrosamines from the water samples and gas chromatography-mass spectrometry (GC-MS), was used in the analysis of the water samples. Trace amounts of NDMA were detected at one of the water treatment plants and in the distribution network. The application of water-insoluble cyclodextrin (CD) polymers in the removal of nitrosamines and potential amine precursors from the water samples was tested. Quantitative removal of NDMA (based on peak area) from the water samples was achieved which suggests that in the water treatment train the use of these nanosponges can be applied in the mitigation of trace contaminants such as NDMA.

  16. Influence of sublethal concentrations of common disinfectants on expression of virulence genes in Listeria monocytogenes

    DEFF Research Database (Denmark)

    Kastbjerg, Vicky Gaedt; Larsen, M. H.; Gram, Lone

    2010-01-01

    Listeria monocytogenes is a food-borne human pathogen that causes listeriosis, a relatively rare infection with a high fatality rate. The regulation of virulence gene expression is influenced by several environmental factors, and the aim of the present study was to determine how disinfectants use......, such as antibiotic resistance....... by Northern blot analysis. Eleven disinfectants representing four different groups of active components were evaluated in this study. Disinfectants with the same active ingredients had a similar effect on gene expression. Peroxy and chlorine compounds reduced the expression of the virulence genes...

  17. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals.

    Science.gov (United States)

    Boyce, John M

    2016-01-01

    Experts agree that careful cleaning and disinfection of environmental surfaces are essential elements of effective infection prevention programs. However, traditional manual cleaning and disinfection practices in hospitals are often suboptimal. This is often due in part to a variety of personnel issues that many Environmental Services departments encounter. Failure to follow manufacturer's recommendations for disinfectant use and lack of antimicrobial activity of some disinfectants against healthcare-associated pathogens may also affect the efficacy of disinfection practices. Improved hydrogen peroxide-based liquid surface disinfectants and a combination product containing peracetic acid and hydrogen peroxide are effective alternatives to disinfectants currently in widespread use, and electrolyzed water (hypochlorous acid) and cold atmospheric pressure plasma show potential for use in hospitals. Creating "self-disinfecting" surfaces by coating medical equipment with metals such as copper or silver, or applying liquid compounds that have persistent antimicrobial activity surfaces are additional strategies that require further investigation. Newer "no-touch" (automated) decontamination technologies include aerosol and vaporized hydrogen peroxide, mobile devices that emit continuous ultraviolet (UV-C) light, a pulsed-xenon UV light system, and use of high-intensity narrow-spectrum (405 nm) light. These "no-touch" technologies have been shown to reduce bacterial contamination of surfaces. A micro-condensation hydrogen peroxide system has been associated in multiple studies with reductions in healthcare-associated colonization or infection, while there is more limited evidence of infection reduction by the pulsed-xenon system. A recently completed prospective, randomized controlled trial of continuous UV-C light should help determine the extent to which this technology can reduce healthcare-associated colonization and infections. In conclusion, continued efforts to

  18. Efficacy of disinfectants and detergents intended for a pig farm environment where Salmonella is present.

    Science.gov (United States)

    Gosling, Rebecca J; Mawhinney, Ian; Vaughan, Kelly; Davies, Robert H; Smith, Richard P

    2017-05-01

    Disinfection is a useful component of disease control, although products and chemical groups vary in their activity against different pathogens. This study investigated the ability of fifteen disinfectants to eliminate pig-associated Salmonella. Active compounds of products included chlorocresol, glutaraldehyde/formaldehyde, glutaraldehyde/quaternary ammonium compounds (QAC), iodine, peracetic acid and potassium peroxomonosulphate. Six detergents were also tested for their ability to dislodge faecal material, and interactions with specific disinfectants. Eight serovars were screened against all products using dilution tests and a monophasic Salmonella Typhimurium strain was selected for further testing. The disinfectants were tested using models to replicate boot dip (faecal suspension) and animal housing (surface contamination) disinfection respectively at the Department for Environment, Food and Rural Affairs Approved Disinfectant General Orders (GO) concentration, half GO and twice GO. Stability over time and ability to eliminate Salmonella in biofilm was also assessed. The most effective products were then field tested. Most products at GO concentration eliminated Salmonella in the faecal suspension model. One glutaraldehyde/QAC and one glutaraldehyde/formaldehyde-based product at GO concentration eliminated Salmonella in the surface contamination model. Chlorocresol-based products were more stable in the faecal suspension model. One chlorocresol and the glutaraldehyde/formaldehyde-based product were most successful in eliminating Salmonella from biofilms. All products tested on farm reduced bacterial log counts; the glutaraldehyde/QAC based product produced the greatest reduction. The type of product and the application concentration can impact on efficacy of farm disinfection; therefore, clearer guidance is needed to ensure the appropriate programmes are used for specific environments. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  19. Disinfection of herbal spa pool using combined chlorine dioxide and sodium hypochlorite treatment.

    Science.gov (United States)

    Hsu, Ching-Shan; Huang, Da-Ji

    2015-02-01

    The presence of pathogenic microorganisms in public spa pools poses a serious threat to human health. The problem is particularly acute in herbal spas, in which the herbs and microorganisms may interact and produce undesirable consequences. Accordingly, the present study investigated the effectiveness of a combined disinfectant containing chlorine dioxide and sodium hypochlorite in improving the water quality of a public herbal spa in Taiwan. Water samples were collected from the spa pool and laboratory tests were then performed to measure the variation over time of the microorganism content (total CFU and total coliforms) and residual disinfectant content given a single disinfection mode (SDM) with disinfectant concentrations of 5.2 × 10, 6.29 × 10, 7.4 × 10, and 11.4 × 10(-5) N, respectively. Utilizing the experience gained from the laboratory tests, a further series of on-site investigations was performed using three different disinfection modes, namely SDM, 3DM (once every 3 h disinfection mode), and 2DM (once every 2 h disinfection mode). The laboratory results showed that for all four disinfectant concentrations, the CFU concentration reduced for the first 6 h following SDM treatment, but then increased. Moreover, the ANOVA results showed that the sample treated with the highest disinfectant concentration (11.4 × 10(-5) N) exhibited the lowest rate of increase in the CFU concentration. In addition, the on-site test results showed that 3DM and 2DM treatments with disinfectant concentrations in excess of 9.3 × 10 and 5.5 × 10(-5) N, respectively, provided an effective reduction in the total CFU concentration. In conclusion, the experimental results presented in this study provide a useful source of reference for spa businesses seeking to improve the water quality of their spa pools.

  20. Comparative susceptibility of Salmonella Typhimurium biofilms of different ages to disinfectants.

    Science.gov (United States)

    Wong, Hui San; Townsend, Kirsty M; Fenwick, Stan G; Maker, Garth; Trengove, Robert D; O'Handley, Ryan M

    2010-10-01

    There is a general consensus that with increasing age a biofilm shows increased resistance to antimicrobials. In this study the susceptibility of 3-, 5- and 7-day-old Salmonella enterica serovar Typhimurium biofilms to disinfectants was evaluated. It was hypothesized that 7-day-old biofilms would be more resistant to disinfectants compared to 3- and 5-day-old biofilms. Biofilms were formed using the MBEC™ system and treated with six chemical disinfectants for 1 and 5 min. Four disinfectants at the highest concentration available showed 100% reduction in viable cells from all ages of biofilms after exposure for 5 min, and ethanol at 70% v/v was the least effective against biofilms, followed by chlorhexidine gluconate (CG). At the recommended user concentrations, only sodium hypochlorite showed 100% reduction in viable cells from all ages of biofilms. Benzalkonium chloride and CG were the least effective against biofilms, followed by quaternary ammonium compound which only showed 100% reduction in viable cells from 5-day-old biofilms. Overall, the results from this study do not display enhanced resistance in 7-day-old biofilms compared to 3- and 5-day-old biofilms. It is concluded that under the conditions of this study, the age of biofilm did not contribute to resistance towards disinfectants. Rather, the concentration of disinfectant and an increased contact time were both shown to play a role in successful sanitization.

  1. [Disinfectants and main sanitary and preventive measures for protection of ventilation and air-conditioning systems from Legionella contamination].

    Science.gov (United States)

    Gerasimov, V N; Golov, E A; Khramov, M V; Diatlov, I A

    2008-01-01

    The study was devoted to selection and assessment of disinfecting preparations for prevention of contamination by Legionella. Using system of criteria for quality assessment of disinfectants, seven newdomestic ones belonging to quaternary ammonium compounds class or to oxygen-containing preparations and designed for disinfecting of air-conditioning and ventilation systems were selected. Antibacterial and disinfecting activities of working solutions of disinfectants were tested in laboratory on the test-surfaces and test-objects of premises' air-conditioning and ventilation systems contaminated with Legionella. High antimicrobial and disinfecting activity of new preparations "Dezactiv-M", "ExtraDez", "Emital-Garant", "Aquasept Plus", "Samarovka", "Freesept", and "Ecobreeze Oxy" during their exposure on objects and materials contaminated with Legionella was shown. Main sanitary and preventive measures for defending of air-conditioning and ventilation systems from contamination by Legionella species were presented.

  2. Comparison of different techniques for disinfection of teeth internal space in preclinical teaching

    Directory of Open Access Journals (Sweden)

    Tabrizizadeh M.

    2009-12-01

    Full Text Available "nBackground and Aim: Extracted teeth used in preclinic should be disinfected. The aim of this study was to evaluate the effects of some disinfectants on microorganisms cultured from pulp chamber of extracted teeth."nMaterials and Methods: In this experimental study 54 intact human teeth were collected. After access cavity preparation, 10 8 B. streothermophillus endospors were inoculated into pulp chamber. Then cavities were sealed with a temporary restorative material. Teeth were divided into 5 groups of 10 each. The teeth were then stored in these disinfectants: 5.25% hypochlorite sodium, 5% Microten, 5% Deconex, 2% Glutaraldehyd, and 10% Formalin for 48 hours. Two teeth were autoclaved as negative controls and two were stored in normal saline as positive controls. The teeth were then sectioned in cervical area and cultured in Trypticase Soy Broth. After three days turbidity in tubes was evaluated. Statistical analysis was done by Fisher's exact test."nResults: None of these solutions were able to prevent microorganism growth in all samples; however, Formalin was better in six cases than that of other disinfectants. Differences between these five groups were not statistically significant (P=0.384."nConclusion: Sterilization of the teeth with autoclave is the only absolute method for disinfecting the root canals of extracted teeth and disinfectants are not reliable for this purpose.

  3. In Vitro Evaluation of Dimensional Stability of Alginate Impressions after Disinfection by Spray and Immersion Methods

    Directory of Open Access Journals (Sweden)

    Fahimeh Hamedi Rad

    2010-12-01

    Full Text Available Background and aims. The most common method for alginate impression disinfection is spraying it with disinfecting agents, but some studies have shown that these impressions can be immersed, too. The aim of this study was to evaluate the dimensional stability of alginate impressions following disinfecting by spray and immersion methods. Materials and methods. Four common disinfecting agents (Sodium Hypochlorite, Micro 10, Glutaraldehyde and Deconex were selected and the impressions (n=108 were divided into four groups (n=24 and eight subgroups (n=12 for disinfecting by any of the four above-mentioned agents by spray or immersion methods. The control group (n=12 was not disinfected. Then the impressions were poured by type III Dental Stone Plaster in a standard method. The results were analyzed by descriptive methods (mean and standard deviation, t-test, two-way analysis of variance (ANOVA and Duncan test, using SPSS 14.0 software for windows. Results. The mean changes of length and height were significant between the various groups and disinfecting methods. Regarding the length, the greatest and the least amounts were related to Deconex and Micro 10 in the immersion method, respectively. Regarding height, the greatest and the least amounts were related to Glutaraldehyde and Deconex in the immersion method, respectively. Conclusion. Disinfecting alginate impressions by Sodium Hypochlorite, Deconex and Glutaraldehyde by immersion method is not recommended and it is better to disinfect alginate impressions by spraying of Micro 10, Sodium Hypochlorite, Glutaraldehyde and immersion in Micro 10.

  4. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals

    Directory of Open Access Journals (Sweden)

    John M. Boyce

    2016-04-01

    Full Text Available Abstract Experts agree that careful cleaning and disinfection of environmental surfaces are essential elements of effective infection prevention programs. However, traditional manual cleaning and disinfection practices in hospitals are often suboptimal. This is often due in part to a variety of personnel issues that many Environmental Services departments encounter. Failure to follow manufacturer’s recommendations for disinfectant use and lack of antimicrobial activity of some disinfectants against healthcare-associated pathogens may also affect the efficacy of disinfection practices. Improved hydrogen peroxide-based liquid surface disinfectants and a combination product containing peracetic acid and hydrogen peroxide are effective alternatives to disinfectants currently in widespread use, and electrolyzed water (hypochlorous acid and cold atmospheric pressure plasma show potential for use in hospitals. Creating “self-disinfecting” surfaces by coating medical equipment with metals such as copper or silver, or applying liquid compounds that have persistent antimicrobial activity surfaces are additional strategies that require further investigation. Newer “no-touch” (automated decontamination technologies include aerosol and vaporized hydrogen peroxide, mobile devices that emit continuous ultraviolet (UV-C light, a pulsed-xenon UV light system, and use of high-intensity narrow-spectrum (405 nm light. These “no-touch” technologies have been shown to reduce bacterial contamination of surfaces. A micro-condensation hydrogen peroxide system has been associated in multiple studies with reductions in healthcare-associated colonization or infection, while there is more limited evidence of infection reduction by the pulsed-xenon system. A recently completed prospective, randomized controlled trial of continuous UV-C light should help determine the extent to which this technology can reduce healthcare-associated colonization and infections

  5. Alternative methods for chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Fiessinger, F; Rook, J J; Duguet, J P

    1985-12-01

    Existing disinfectants are oxidative agents which all present negative effects on subsequent treatment processes. None of them has decisive advantages over chlorine, although chlorine-dioxide and chloramines might at times be preferable. Optimum treatment practices will improve the removal of organic precursors before final disinfection which could then consist in a light chlorine addition. A philosophy of radical change in water treatment technology encompassing physical treatment without chemicals such as membrane filtration, solid disinfectants is presented.

  6. NDMA Formation during Chlorination and Chloramination of Aqueous Diuron Solutions

    OpenAIRE

    Young, Thomas M

    2008-01-01

    Formation of the potent carcinogen N-nitrosodimethylamine (NDMA) during chlorine disinfection of water containing secondary amines is now generally acknowledged. The phenylurea herbicide diuron is one of the most widely used herbicides in California, has been frequently detected in California’s water sources with a transient nature of appearance, and has a structure that suggests it might be an NDMA precursor. This study sought to quantify the potential for NDMA formation from aqueous diuron ...

  7. Assessment of air and water contamination by disinfection by-products at 41 indoor swimming pools.

    Science.gov (United States)

    Tardif, Robert; Catto, Cyril; Haddad, Sami; Simard, Sabrina; Rodriguez, Manuel

    2016-07-01

    This study was aimed at assessing the profiles (occurrence and speciation) of disinfection by-product (DBP) contamination in air and water of a group of 41 public indoor swimming pools in Québec (Canada). The contaminants measured in the water included the traditional DBPs [i.e., four trihalomethanes (THMs), six haloacetic acids (HAAs)] but also several emergent DBPs [i.e., halonitriles, halonitromethanes, haloketones and nitrosodimethylamine (NDMA)]. Those measured in the air comprised THMs and chloramines (CAMs). Overall, extremely variable DBP levels were found from one pool to another (both quantitatively and in terms of speciation). For instance, in water, among the four THMs, chloroform was usually the most abundant compound (37.9±25.7µg/L). Nevertheless, the sum of the three other brominated THMs represented more than 25% of total THMs at almost half the facilities visited (19 cases). In 13 of them, the levels of brominated THMs (66±24.2µg/L) even greatly outweighed the levels of chloroform (15.2±6.31µg/L). Much higher levels of HAAs (294.8±157.6µg/L) were observed, with a consistent preponderance of brominated HAAs in the swimming pools with more brominated THMs. NDMA levels which were measured in a subset of 8 pools ranged between 2.8ng/L and 105ng/L. With respect to air, chloroform was still the most abundant THM globally (119.4±74.2µg/m(3)) but significant levels of brominated THMs were also observed in various cases, particularly in the previously evoked group of 13 swimming pools with preponderant levels of brominated THMs in water. CAM levels (0.23±0.15mg/m(3)) varied highly, ranging from not detected to 0.56mg/m(3). Overall, the levels were generally relatively high compared to current guidelines or reference values from several countries, and they point to a relatively atypical presence of brominated compounds, and to significant levels of emergent DBPs for which health risk is less documented. Copyright © 2016 Elsevier Inc. All rights

  8. High-performance, low-cost solar collectors for disinfection of contaminated water.

    Science.gov (United States)

    Vidal, A; Diaz, A I

    2000-01-01

    Although the germicidal action of sunlight has long been recognized, its potential for practical applications has to be researched more thoroughly. This paper summarizes the progress made toward a commercially practical collector for solar disinfection applications. Nontracking compound parabolic collectors (CPCs), developed originally for capturing solar photons for thermal energy applications, were examined as potential solar photoreactors. A field demonstration of solar disinfection treatment using commercially manufactured solar reactors was conducted. Field tests showed successful destruction of Escherichia coli and Enterococcus faecalis and have provided data for full-scale design of water treatment systems. From above observations, a throughput value of 50 L/m2 h for the low-cost CPC reactor tested was estimated. For a 190 m3/d (0.05 MGD) facility, the estimated total costs for disinfection using UV-A is U.S. $0.19/m3 ($0.70/1000 gal). The use of near-UV sunlight to disinfect water supplies seems promising in rural communities of developing countries where treated water is unavailable.

  9. Solar light (hv) and H2O2/hv photo-disinfection of natural alkaline water (pH 8.6) in a compound parabolic collector at different day periods in Sahelian region.

    Science.gov (United States)

    Ndounla, J; Pulgarin, C

    2015-11-01

    The photo-disinfection of natural alkaline surface water (pH 8.6 ± 0.3) for drinking purposes was carried out under solar radiation treatments. The enteric bacteria studied were the wild total coliforms/Escherichia coli (10(4) CFU/ml) and Salmonella spp. (10(4) CFU/ml) naturally present in the water. The photo-disinfection of a 25-l water sample was carried out in a solar compound parabolic collector (CPC) in the absence and in the presence of hydrogen peroxide (H2O2). The addition of H2O2 (10 mg/L) to the sample water was sufficient to enhance the photo-disinfection and ensure an irreversible lethal action on the wild enteric bacteria contents of the sample. The inactivation kinetic of the system was significantly enhanced compared to the one carried out without H2O2 addition. The effect of the solar radiation parameters on the efficiency of the photo-disinfection were assessed. The pH has increased during the treatment in all the photo-disinfection processes (hv and H2O2/hv). The Salmonella spp strain has shown the best effective inactivate time in alkaline water than the one recorded under acidic or near-neutral conditions. The evolution of some physico-chemical parameters of the water (turbidity, NO2(-), NO3(-), NH4(+), HPO4(2-), and bicarbonate (HCO3(-))) was monitored during the treatment. Finally, the possible mechanistic process involved during the enteric bacteria inactivation was suggested.

  10. Long-term spatial and temporal microbial community dynamics in a large-scale drinking water distribution system with multiple disinfectant regimes.

    Science.gov (United States)

    Potgieter, Sarah; Pinto, Ameet; Sigudu, Makhosazana; du Preez, Hein; Ncube, Esper; Venter, Stephanus

    2018-08-01

    Long-term spatial-temporal investigations of microbial dynamics in full-scale drinking water distribution systems are scarce. These investigations can reveal the process, infrastructure, and environmental factors that influence the microbial community, offering opportunities to re-think microbial management in drinking water systems. Often, these insights are missed or are unreliable in short-term studies, which are impacted by stochastic variabilities inherent to large full-scale systems. In this two-year study, we investigated the spatial and temporal dynamics of the microbial community in a large, full scale South African drinking water distribution system that uses three successive disinfection strategies (i.e. chlorination, chloramination and hypochlorination). Monthly bulk water samples were collected from the outlet of the treatment plant and from 17 points in the distribution system spanning nearly 150 km and the bacterial community composition was characterised by Illumina MiSeq sequencing of the V4 hypervariable region of the 16S rRNA gene. Like previous studies, Alpha- and Betaproteobacteria dominated the drinking water bacterial communities, with an increase in Betaproteobacteria post-chloramination. In contrast with previous reports, the observed richness, diversity, and evenness of the bacterial communities were higher in the winter months as opposed to the summer months in this study. In addition to temperature effects, the seasonal variations were also likely to be influenced by changes in average water age in the distribution system and corresponding changes in disinfectant residual concentrations. Spatial dynamics of the bacterial communities indicated distance decay, with bacterial communities becoming increasingly dissimilar with increasing distance between sampling locations. These spatial effects dampened the temporal changes in the bulk water community and were the dominant factor when considering the entire distribution system. However

  11. 40 CFR 141.72 - Disinfection.

    Science.gov (United States)

    2010-07-01

    ... PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.72 Disinfection. A public water... the direct influence of surface water and provides filtration treatment must provide disinfection...) Disinfection requirements for public water systems which provide filtration. Each public water system that...

  12. Reduced Efficiency of Chlorine Disinfection of Naegleria fowleri in a Drinking Water Distribution Biofilm.

    Science.gov (United States)

    Miller, Haylea C; Wylie, Jason; Dejean, Guillaume; Kaksonen, Anna H; Sutton, David; Braun, Kalan; Puzon, Geoffrey J

    2015-09-15

    Naegleria fowleri associated with biofilm and biological demand water (organic matter suspended in water that consumes disinfectants) sourced from operational drinking water distribution systems (DWDSs) had significantly increased resistance to chlorine disinfection. N. fowleri survived intermittent chlorine dosing of 0.6 mg/L for 7 days in a mixed biofilm from field and laboratory-cultured Escherichia coli strains. However, N. fowleri associated with an attached drinking water distribution biofilm survived more than 30 times (20 mg/L for 3 h) the recommended concentration of chlorine for drinking water. N. fowleri showed considerably more resistance to chlorine when associated with a real field biofilm compared to the mixed laboratory biofilm. This increased resistance is likely due to not only the consumption of disinfectants by the biofilm and the reduced disinfectant penetration into the biofilm but also the composition and microbial community of the biofilm itself. The increased diversity of the field biofilm community likely increased N. fowleri's resistance to chlorine disinfection compared to that of the laboratory-cultured biofilm. Previous research has been conducted in only laboratory scale models of DWDSs and laboratory-cultured biofilms. To the best of our knowledge, this is the first study demonstrating how N. fowleri can persist in a field drinking water distribution biofilm despite chlorination.

  13. Spiral-shaped disinfection reactors

    KAUST Repository

    Ghaffour, NorEddine; Ait-Djoudi, Fariza; Naceur, Wahib Mohamed; Soukane, Sofiane

    2015-01-01

    This disclosure includes disinfection reactors and processes for the disinfection of water. Some disinfection reactors include a body that defines an inlet, an outlet, and a spiral flow path between the inlet and the outlet, in which the body

  14. A review on wastewater disinfection

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2013-01-01

    Full Text Available Changes in regulations and development of new technologies have affected the selection of alternative for treated wastewater disinfection. Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. Driving forces include water scarcity and drinking water supply, irrigation, rapid industrialization, using reclaimed water, source protection, overpopulation, and environmental protection. The safe operation of water reuse depends on effluent disinfection. Understanding the differences in inactivation mechanisms is critical to identify rate-limiting steps involved in the inactivation process as well as to develop more effective disinfection strategies. Disinfection byproducts discharged from wastewater treatment plants may impair aquatic ecosystems and downstream drinking-water quality. Numerous inorganic and organic micropollutants can undergo reactions with disinfectants. Therefore, to mitigate the adverse effects and also to enhance that efficiency, the use of alternative oxidation/disinfection systems should be evaluated as possible alternative to chlorine. This review gives a summary of the traditional, innovative, and combined disinfection alternatives and also disinfection byproducts for effluent of municipal wastewater treatment plants.

  15. Addition compounds between lanthanide trifluoromethane sulphonates and N,N,N',N' - tetrametilmalonamida (TMMA)

    International Nuclear Information System (INIS)

    Bellis, V.M. de.

    1984-01-01

    The preparation and characterization of the addiction compounds between lanthanide trifluoromethanesulphonates with the N,N,N',N' - tetramethylmodomamide (TMMA) are reported. The characterization of the compounds obtained by microanalytical procedures, infrared spectra, conductance measurements, X-ray powder patterns, absorption spectra of the praseodymium, neodymium, holmium and erbium and the emission spectra of the europium and the europium-doped lanthanum and lutetium adducts were made. (M.J.C.) [pt

  16. Formation of Toxic Iodinated Disinfection By-Products from Compounds Used in Medical Imaging

    Science.gov (United States)

    Iodinated X-ray contrast media (ICM) were investigated as a source of iodine in the formation of iodo-trihalomethane (iodo-THM) and iodo-acid disinfection byproducts (DBPs), both of which are highly genotoxic and/or cytotoxic in mammalian cells. ICM are widely used at medical cen...

  17. Assessment of the Performance of Iodine-Treated Biocidal Filters and Characterization of Virus Aerosols

    Science.gov (United States)

    2009-07-01

    residues into diiodotyrosine. Small-scale preparations adding chloramine - T to similar concentrations of K131I in water achieved fast and efficient...release disinfectants . CRC Crit Rev Environ Contr 19 (4), 277-290. Marchin, G. L., Fina, L. R., Lambert, J. L. and Fina, G. T . (1983) Effect of resin...iodinated by the chloramine - T method appear to be degraded at an abnormally rapid rate after endocytosis. Proc Natl Acad Sci 77, 1556–1560. OSHA

  18. Effect of bactericidal activity of three disinfectants on methicillin-resistant Staphylococcus aureus (MRSA

    Directory of Open Access Journals (Sweden)

    Cesar Augusto Marchionatti Avancini

    2017-05-01

    Full Text Available Background and Objectives: Methicillin-resistant Staphylococcus aureus (MRSA can cause hospital-acquired infections (HA-MRSA, community- acquired ones (CA-MRSA, and infections transmitted by pets and animals raised for food production (livestock-acquired or LA-MRSA. The conduct to control the transmission of these diseases requires a careful action against the causative agents on surfaces in the environment and the choice of disinfectants and antiseptics is crucial. The objective of the present study was to evaluate the effect of the bactericidal activity of sodium hypochlorite (SH, iodophor (I and a quaternary ammonium compound (QAC, cetyl-trimethyl-ammonium chloride, commonly used in hospital and animal production settings, on 21 MRSA isolates and a control bacterium, and test the hypothesis of cross resistance of antibiotics and disinfectants. Methods: The bactericidal activity of four successive dilutions of the disinfectants was evaluated through the suspension test, using an initial inoculum population density of 107 CFU/mL, after contact times of 5, 15 and 30 minutes. Results: Five minutes of contact of SH 25 ppm, I 12.5 ppm and QAC 125 ppm sufficed to inactivate the reference bacterium S. aureus ATCC 6538 and all MRSA. Conclusions: Once the factors that influence the efficiency of disinfectants are controlled, sodium hypochlorite, iodophor and the quaternary ammonium compound are suitable for controlling MRSA in the sources of infection. No resistance relationship was observed in the methicillin-resistant isolates with these substances.

  19. Can pulsed xenon ultraviolet light systems disinfect aerobic bacteria in the absence of manual disinfection?

    Science.gov (United States)

    Jinadatha, Chetan; Villamaria, Frank C; Ganachari-Mallappa, Nagaraja; Brown, Donna S; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-04-01

    Whereas pulsed xenon-based ultraviolet light no-touch disinfection systems are being increasingly used for room disinfection after patient discharge with manual cleaning, their effectiveness in the absence of manual disinfection has not been previously evaluated. Our study indicates that pulsed xenon-based ultraviolet light systems effectively reduce aerobic bacteria in the absence of manual disinfection. These data are important for hospitals planning to adopt this technology as adjunct to routine manual disinfection. Published by Elsevier Inc.

  20. Methodological approaches to disinfection of human hepatitis B virus.

    OpenAIRE

    Prince, D L; Prince, H N; Thraenhart, O; Muchmore, E; Bonder, E; Pugh, J

    1993-01-01

    Three commercial disinfectants (two quaternary formulations and one phenolic) were tested against human hepatitis B virus (HHBV). The treated virus was assayed for infectivity by the chimpanzee assay and for morphological alteration by the Morphological Alteration and Disintegration Test. The same agents were tested against duck hepatitis B virus in a duck hepatocyte infectivity assay. It is apparent that human and duck hepatitis viruses were relatively susceptible to disinfection, becoming n...

  1. Continuous formation of N-chloro-N,N-dialkylamine solutions in well-mixed meso-scale flow reactors

    Science.gov (United States)

    Jolley, Katherine E

    2015-01-01

    Summary The continuous flow synthesis of a range of organic solutions of N,N-dialkyl-N-chloramines is described using either a bespoke meso-scale tubular reactor with static mixers or a continuous stirred tank reactor. Both reactors promote the efficient mixing of a biphasic solution of N,N-dialkylamine in organic solvent, and aqueous sodium hypochlorite to achieve near quantitative conversions, in 72–100% in situ yields, and useful productivities of around 0.05 mol/h with residence times from 3 to 20 minutes. Initial calorimetric studies have been carried out to inform on reaction exotherms, rates and safe operation. Amines which partition mainly in the organic phase require longer reaction times, provided by the CSTR, to compensate for low mass transfer rates in the biphasic system. The green metrics of the reaction have been assessed and compared to existing procedures and have shown the continuous process is improved over previous procedures. The organic solutions of N,N-dialkyl-N-chloramines produced continuously will enable their use in tandem flow reactions with a range of nucleophilic substrates. PMID:26734089

  2. Continuous formation of N-chloro-N,N-dialkylamine solutions in well-mixed meso-scale flow reactors

    Directory of Open Access Journals (Sweden)

    A. John Blacker

    2015-12-01

    Full Text Available The continuous flow synthesis of a range of organic solutions of N,N-dialkyl-N-chloramines is described using either a bespoke meso-scale tubular reactor with static mixers or a continuous stirred tank reactor. Both reactors promote the efficient mixing of a biphasic solution of N,N-dialkylamine in organic solvent, and aqueous sodium hypochlorite to achieve near quantitative conversions, in 72–100% in situ yields, and useful productivities of around 0.05 mol/h with residence times from 3 to 20 minutes. Initial calorimetric studies have been carried out to inform on reaction exotherms, rates and safe operation. Amines which partition mainly in the organic phase require longer reaction times, provided by the CSTR, to compensate for low mass transfer rates in the biphasic system. The green metrics of the reaction have been assessed and compared to existing procedures and have shown the continuous process is improved over previous procedures. The organic solutions of N,N-dialkyl-N-chloramines produced continuously will enable their use in tandem flow reactions with a range of nucleophilic substrates.

  3. Disinfection Alternatives for Small Communities in Puerto Rico

    Science.gov (United States)

    Disinfection Alternatives for Small Communities in Puerto Rico Craig Patterson1, Graciela Ramirez Toro2, Harvey Minnigh2, Cristina Maldonado3, and Rajib Sinha4 1U.S. EPA Office of Research and Development, 2Centro de Educación, Conservación e Interpretación Ambiental (CECIA),...

  4. Treatment of municipal wastewater treatment plant effluents with modified photo-Fenton as a tertiary treatment for the degradation of micro pollutants and disinfection.

    Science.gov (United States)

    Klamerth, Nikolaus; Malato, Sixto; Agüera, Ana; Fernández-Alba, Amadeo; Mailhot, Gilles

    2012-03-06

    The goal of this paper was to develop a modified photo-Fenton treatment able to degrade micro pollutants in municipal wastewater treatment plant (MWTP) effluents at a neutral pH with minimal iron and H(2)O(2) concentrations. Complexation of Fe by ethylenediamine-N,N'-disuccinic acid (EDDS) leads to stabilization and solubilization of Fe at natural pH. Photo-Fenton experiments were performed in a pilot compound parabolic collector (CPC) solar plant. Samples were treated with solid phase extraction (SPE) and analyzed by HPLC-Qtrap-MS. The rapid degradation of contaminants within the first minutes of illumination and the low detrimental impact on degradation of bicarbonates present in the water suggested that radical species other than HO(•) are responsible for the efficiency of such photo-Fenton process. Disinfection of MWTP effluents by the same process showed promising results, although disinfection was not complete.

  5. An environmental disinfection odyssey: evaluation of sequential interventions to improve disinfection of Clostridium difficile isolation rooms.

    Science.gov (United States)

    Sitzlar, Brett; Deshpande, Abhishek; Fertelli, Dennis; Kundrapu, Sirisha; Sethi, Ajay K; Donskey, Curtis J

    2013-05-01

    OBJECTIVE. Effective disinfection of hospital rooms after discharge of patients with Clostridium difficile infection (CDI) is necessary to prevent transmission. We evaluated the impact of sequential cleaning and disinfection interventions by culturing high-touch surfaces in CDI rooms after cleaning. DESIGN. Prospective intervention. SETTING. A Veterans Affairs hospital. INTERVENTIONS. During a 21-month period, 3 sequential tiered interventions were implemented: (1) fluorescent markers to provide monitoring and feedback on thoroughness of cleaning facility-wide, (2) addition of an automated ultraviolet radiation device for adjunctive disinfection of CDI rooms, and (3) enhanced standard disinfection of CDI rooms, including a dedicated daily disinfection team and implementation of a process requiring supervisory assessment and clearance of terminally cleaned CDI rooms. To determine the impact of the interventions, cultures were obtained from CDI rooms after cleaning and disinfection. RESULTS. The fluorescent marker intervention improved the thoroughness of cleaning of high-touch surfaces (from 47% to 81% marker removal; P disinfection, whereas during interventions periods 1, 2, and 3 the percentages of CDI rooms with positive cultures after disinfection were reduced to 57%, 35%, and 7%, respectively. CONCLUSIONS. An intervention that included formation of a dedicated daily disinfection team and implementation of a standardized process for clearing CDI rooms achieved consistent CDI room disinfection. Culturing of CDI rooms provides a valuable tool to drive improvements in environmental disinfection.

  6. Using micro-quantity of chloramine T in chicken pro-latin labelling and radioimmunoassay

    International Nuclear Information System (INIS)

    Shi Zhendan; Huang Zuhan

    2000-01-01

    A radioimmunoassay was developed for measurement of chicken plasma prolactin. The assay used chPRL(AFP-10328B) as reference standard, chPRL(AFP-4444B) as the radio labelled ligand, rabbit anti-chicken PRL (AFP-151040789) as first antibody, and donkey anti-rabbit IgG antiserum as second antibody. For iodide ratio labelling of chicken PRL, a modified chloramine T method which reduced the amount of chloramine T and omitted sodium metabisulfite, and produced the labelled hormone with a specific activity of 29μCi/μg was used. The assay sensitivity was 0.34 ng/ml. the ED75, ED50 and ED25 of standard curve were 1.30, 3.71 and 10.60 ng/ml, respectively. Both coefficients of variations between and within assay were less than 15%. Serial dilutions of chicken samples showed a parallel inhibition curve to that of the standards. Plasma PRL concentrations of samples from hens at different reproductive states measured by this assay revealed significant differences and rational changing trends. These results validate the assay

  7. Microbiological evaluation of ultrasonic nebulization for disinfecting dental impressions.

    Science.gov (United States)

    Mendonca, Marcio Jose; Rafael, Renata Santos; Camilotti, Veridiana; Menolli, Rafael Andrade; Sicoli, Eliseu Augusto; Teixeira, Nancielli; Sinhoreti, Mario Alexandre Coelho

    2013-07-01

    Disinfecting dental impressions is necessary to decrease the risk of cross-contamination in dental offices. Ultrasonic nebulization has been mentioned as a microbicidal technique that can be used to disinfect contaminated dental impressions. This study compared the microbicidal effect of 2% glutaraldehyde and 0.2% peracetic acid for the disinfection of dental impressions made with vinyl polysiloxane, using 2 disinfection methods: immersion and ultrasonic nebulization. Bactericial efficacy was examined using Staphylococcus aureus and Bacillus atrophaeus as indicators. Thirty impressions were obtained and distributed randomly in 5 groups (n = 6). Group 1 was immersed in 2% glutaraldehyde immersion for 10 minutes, Group 2 was immersed in 0.2% peracetic acid for 10 minutes, Group 3 underwent ultrasonic nebulization for 10 minutes in 2% glutaraldehyde solution, Group 4 underwent ultrasonic nebulization for 10 minutes in 0.2% peracetic acid solution, and Group 5 was a control group that received no disinfectant. Both solutions experienced a 100% reduction in microorganisms following ultrasonic nebulization, as did peracetic acid following immersion; however, immersion in glutaraldehyde demonstrated lower values of reduction in B atrophaeus group, with a statistically significant difference compared with the other experimental groups.

  8. A bacteriological study of hospital beds before and after disinfection with phenolic disinfectant

    Directory of Open Access Journals (Sweden)

    Andrade Denise de

    2000-01-01

    Full Text Available In hospitals, one of the ways to control microbial contamination is by disinfecting the furniture used by patients. This study's main objective was to evaluate the microbiological condition of hospital mattresses before and after such disinfection, in order to identify bacteria that are epidemiologically important in nosocomial infection, such as Staphylococcus aureus and Pseudomonas aeruginosa. RODAC plates with two different culture media were used to collect specimens. Patient beds were selected according to previously established criteria, and surface areas on the mattresses were chosen at random. From the total of 1 040 plate cultures from 52 mattresses, positive results were obtained from 500 of them (48.1%, 263 before disinfection and 237 after disinfection. Considering the selectivity of the culture media, the positivity rate was high. There were high prevalences of S. aureus both before and after mattress disinfection. The study results suggest that the usual disinfection procedures, instead of diminishing the number of microbes, merely displace them from one part of the mattress to another, and the number of microorganisms remains the same.

  9. A bacteriological study of hospital beds before and after disinfection with phenolic disinfectant

    Directory of Open Access Journals (Sweden)

    Denise de Andrade

    2000-03-01

    Full Text Available In hospitals, one of the ways to control microbial contamination is by disinfecting the furniture used by patients. This study's main objective was to evaluate the microbiological condition of hospital mattresses before and after such disinfection, in order to identify bacteria that are epidemiologically important in nosocomial infection, such as Staphylococcus aureus and Pseudomonas aeruginosa. RODAC plates with two different culture media were used to collect specimens. Patient beds were selected according to previously established criteria, and surface areas on the mattresses were chosen at random. From the total of 1 040 plate cultures from 52 mattresses, positive results were obtained from 500 of them (48.1%, 263 before disinfection and 237 after disinfection. Considering the selectivity of the culture media, the positivity rate was high. There were high prevalences of S. aureus both before and after mattress disinfection. The study results suggest that the usual disinfection procedures, instead of diminishing the number of microbes, merely displace them from one part of the mattress to another, and the number of microorganisms remains the same.

  10. Biological Treatment of Water Disinfection Byproducts using ...

    Science.gov (United States)

    Major disinfection by-products (DBPs) from the chlorination process of drinking water include trihalomethanes (THMs) and haloacetic acides (HAA5). THMs mainly consist of chloroform, and other harsh chemicals. Prolonged consumptions of drinking water containing high levels of THMs has been linked with diseases of the liver, kidneys, bladder, or central nervous system and may increase likelihood of cancer. A risk also exists for THMs exposure via inhalation while showering, bathing or washing clothes and dishes. Due to these risks, the U.S. EPA regulate THMs content in drinking water. This research investigates biological degradation of THM using chloroform as a model compound. The study aims to decrease possible risks of THMs through filtration. Throughout this year’s presentations, there is a common theme of health and safety concerns. UC researchers are working hard to clean water ways of naturally occurring contaminates as well as man-made toxins found in our waterways. The significance of these presentations translates into the promise of safer environments, and more importantly saved lives, as UC’s faculty continues to produce real-world solutions to problems threatening the world around us. A biotech process has been developed and demonstrated that effectively remove and treat volatile disinfection by-products from drinking water. The process strips low concentration disinfection by-products, such as trihalomethanes, that are formed during the chlori

  11. Chemical Facility Security: Issues and Options for the 112th Congress

    Science.gov (United States)

    2011-04-19

    between two approved disinfectants —chlorine and chloramine —as correlated with an unexpected increase in levels of lead in drinking water due to...treatment facilities possess large amounts of potentially hazardous chemicals, such as chlorine, for purposes such as disinfection .50 Advocates for their...Works, June 21, 2006, S.Hrg. 109-1044. 89 The DHS Science and Technology (S& T ) Directorate is engaged in a Chemical Infrastructure Risk Assessment

  12. Estimating retrospective exposure of household humidifier disinfectants.

    Science.gov (United States)

    Park, D U; Friesen, M C; Roh, H S; Choi, Y Y; Ahn, J J; Lim, H K; Kim, S K; Koh, D H; Jung, H J; Lee, J H; Cheong, H K; Lim, S Y; Leem, J H; Kim, Y H; Paek, D M

    2015-12-01

    We conducted a comprehensive humidifier disinfectant exposure characterization for 374 subjects with lung disease who presumed their disease was related to humidifier disinfectant use (patient group) and for 303 of their family members (family group) for an ongoing epidemiological study. We visited the homes of the registered patients to investigate disinfectant use characteristics. Probability of exposure to disinfectants was determined from the questionnaire and supporting evidence from photographs demonstrating the use of humidifier disinfectant, disinfectant purchase receipts, any residual disinfectant, and the consistency of their statements. Exposure duration was estimated as cumulative disinfectant use hours from the questionnaire. Airborne disinfectant exposure intensity (μg/m(3)) was estimated based on the disinfectant volume (ml) and frequency added to the humidifier per day, disinfectant bulk level (μg/ml), the volume of the room (m(3)) with humidifier disinfectant, and the degree of ventilation. Overall, the distribution patterns of the intensity, duration, and cumulative exposure to humidifier disinfectants for the patient group were higher than those of the family group, especially for pregnant women and patients ≤6 years old. Further study is underway to evaluate the association between the disinfectant exposures estimated here with clinically diagnosed lung disease. Retrospective exposure to household humidifier disinfectant as estimated here can be used to evaluate associations with clinically diagnosed lung disease due to the use of humidifier disinfectant in Korea. The framework, with modifications to account for dispersion and use patterns, can also be potentially adapted to assessment of other household chemical exposures. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Evaluating a new paradigm for comparing surface disinfection in clinical practice.

    Science.gov (United States)

    Carling, Philip C; Perkins, Jennifer; Ferguson, JoAnn; Thomasser, Anita

    2014-11-01

    Despite an increasing understanding of the importance of near-patient surfaces in the transmission of healthcare-associated pathogens, there remains a need to define the relative clinical effectiveness of disinfection interventions. A serial 2-phase evaluation of the clinical effectiveness of 2 surface disinfectants. A general acute care hospital. A unique system for quantifying bioburden reduction while monitoring the possible impact of differences in cleaning thoroughness was used to compare the clinical effectiveness of a traditional quaternary ammonium compound (QAC) and a novel peracetic acid/hydrogen peroxide disinfectant (ND) as part of terminal room cleaning. As a result of QAC cleaning, 93 (40%) of 237 cleaned surfaces confirmed by fluorescent marker (DAZO) removal were found to have complete removal of aerobic bioburden. During the ND phase of the study, bioburden was removed from 211 (77%) of 274 cleaned surfaces. Because there was no difference in the thoroughness of cleaning with either disinfectant (65.3% and 66.4%), the significant ([Formula: see text]) difference in bioburden reduction can be attributed to better cleaning efficacy with the ND. In the context of the study design, the ND was 1.93 times more effective in removing bacterial burden than the QAC ([Formula: see text]). Furthermore, the study design represents a new research paradigm in which 2 interventions can be compared by concomitantly and objectively analyzing both the product and process variables in a manner that can be used to define the relative effectiveness of all disinfection cleaning interventions.

  14. Comparative Virucidal Efficacy of Seven Disinfectants Against Murine Norovirus and Feline Calicivirus, Surrogates of Human Norovirus.

    Science.gov (United States)

    Zonta, William; Mauroy, Axel; Farnir, Frederic; Thiry, Etienne

    2016-03-01

    Human noroviruses (HuNoV) are the leading cause of acute non-bacterial gastroenteritis in humans and can be transmitted either by person-to-person contact or by consumption of contaminated food. A knowledge of an efficient disinfection for both hands and food-contact surfaces is helpful for the food sector and provides precious information for public health. The aim of this study was to evaluate the effect of seven disinfectants belonging to different groups of biocides (alcohol, halogen, oxidizing agents, quaternary ammonium compounds, aldehyde and biguanide) on infectious viral titre and on genomic copy number. Due to the absence of a cell culture system for HuNoV, two HuNoV surrogates, such as murine norovirus and feline calicivirus, were used and the tests were performed in suspension, on gloves and on stainless steel discs. When, as criteria of efficacy, a log reduction >3 of the infectious viral titre on both surrogates and in the three tests is used, the most efficacious disinfectants in this study appear to be biocidal products B, C and D, representing the halogens, the oxidizing agents group and a mix of QAC, alcohol and aldehyde, respectively. In addition, these three disinfectants also elicited a significant effect on genomic copy number for both surrogate viruses and in all three tests. The results of this study demonstrate that a halogen compound, oxidizing agents and a mix of QAC, alcohol and aldehyde are advisable for HuNoV disinfection of either potentially contaminated surfaces or materials in contact with foodstuffs.

  15. Disinfection protocols for necropsy equipment in rabies laboratories: Safety of personnel and diagnostic outcome.

    Science.gov (United States)

    Aiello, Roberta; Zecchin, Barbara; Tiozzo Caenazzo, Silvia; Cattoli, Giovanni; De Benedictis, Paola

    2016-08-01

    In the last decades, molecular techniques have gradually been adopted for the rapid confirmation of results obtained through gold standard methods. However, international organisations discourage their use in routine laboratory investigations for rabies post-mortem diagnosis, as they may lead to false positive results due to cross-contamination. Cleaning and disinfection are essential to prevent cross-contamination of samples in the laboratory environment. The present study evaluated the efficacy of selected disinfectants on rabies-contaminated necropsy equipment under organic challenge using a carrier-based test. The occurrence of detectable Rabies virus (RABV) antigen, viable virus and RNA was assessed through the gold standard Fluorescent Antibody Test, the Rabies Tissue Culture Infection Test and molecular techniques, respectively. None of the tested disinfectants proved to be effective under label conditions. Off label disinfection protocols were found effective for oxidizing agents and phenolic, only. Biguanide and quaternary ammonium compound were both ineffective under all tested conditions. Overall, discordant results were obtained when different diagnostic tests were compared, which means that in the presence of organic contamination common disinfectants may not be effective enough on viable RABV or RNA. Our results indicate that an effective disinfection protocol should be carefully validated to guarantee staff safety and reliability of results. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Developing Fluorescence Sensor Systems for Early Detection of Nitrification Events in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Detection of nitrification events in chloraminated drinking water distribution systems remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification events ...

  17. Relation between chlorine with the quality of crude water

    International Nuclear Information System (INIS)

    Lim, Fang Yee; Mohd Pauzi Abdullah

    2008-01-01

    Chlorine as disinfection agent in drinking water was used widely since it was successfully been practiced in drinking water in Jersey City, 1908. Mostly, water treatment plants in Malaysia were using chlorine as disinfection agent to kill pathogen and contaminated materials that can be dangerous to consumer. Because of chlorine was a strongly disinfection agent, it also can react with another chemical components such as manganese, hydrogen, sulfides, ammonia and phenol in water. These reactions happen very fast, and chlorine will not react as disinfection agent unless all the organic and inorganic substitution presented in water reacts with chlorine. These reactions between components will increase demand of chlorine in water. The demand of chlorine in water must be filled before the free radical chlorine occurred. These free radical chlorine will decay into hypochlorous acid and hypochlorite ion that so important in disinfection process to kill pathogens and pollutants in water. Most of water treatment plant to maintain free chlorine up to 0.2 mg/ L in distribution system to consumer. These researches involved determination of parameters that can be trusted to react with the chlorine in nine sampling station along Semenyih River and four stations in water treatment plants. These parameters were determined from ammonia, cyanides, sulfides, phenol, phosphorus, nitrite, manganese, iron and sum of organic carbons. Overall, these researches concluded that ammonia and sum of organic carbons were the most compounds that react with the chlorine to produce tryhalometane and chloramines. Besides that, the concentration of cyanides compounds, sulfide, phenol, phosphorus, nitrite, manganese and iron also decrease after the chlorination process. Results can used to evaluate demanding levels of chlorine in Semenyih River. (author)

  18. Applications of Photocatalytic Disinfection

    Directory of Open Access Journals (Sweden)

    Joanne Gamage

    2010-01-01

    Full Text Available Due to the superior ability of photocatalysis to inactivate a wide range of harmful microorganisms, it is being examined as a viable alternative to traditional disinfection methods such as chlorination, which can produce harmful byproducts. Photocatalysis is a versatile and effective process that can be adapted for use in many applications for disinfection in both air and water matrices. Additionally, photocatalytic surfaces are being developed and tested for use in the context of “self-disinfecting” materials. Studies on the photocatalytic technique for disinfection demonstrate this process to have potential for widespread applications in indoor air and environmental health, biological, and medical applications, laboratory and hospital applications, pharmaceutical and food industry, plant protection applications, wastewater and effluents treatment, and drinking water disinfection. Studies on photocatalytic disinfection using a variety of techniques and test organisms are reviewed, with an emphasis on the end-use application of developed technologies and methods.

  19. Antimicrobial activity of a new intact skin antisepsis formulation.

    Science.gov (United States)

    Russo, Antonello; Viotti, Pier Luigi; Vitali, Matteo; Clementi, Massimo

    2003-04-01

    Different antiseptic formulations have shown limitations when applied to disinfecting intact skin, notably short-term tolerability and/or efficacy. The purpose of this study was optimizing a new antiseptic formulation specifically targeted at intact skin disinfection and evaluating its in vitro microbicidal activity and in vivo efficacy. The biocidal properties of the antiseptic solution containing 0.5% chloramine-T diluted in 50% isopropyl alcohol (Cloral; Eurospital SpA Trieste, Italy) were measured in vitro versus gram-positive-, gram-negative-, and acid-alcohol-resistant germs and fungi with standard suspension tests in the presence of fetal bovine serum. Virus-inhibiting activity was evaluated in vitro against human cytomegalovirus, herpes simplex virus, poliovirus, hepatitis B virus, and hepatitis C virus. Tests used different methods for the different biologic and in vitro replication capacity of these human viruses. Lastly, Cloral tolerability and skin colonization retardation efficacy after disinfection were studied in vivo. The antiseptic under review showed fast and sustained antimicrobial activity. The efficacy of Cloral against clinically important bacterial and viral pathogens and fungi was highlighted under the experimental conditions described in this article. Finally, microbial regrowth lag and no side effects were documented in vivo after disinfection of 11 volunteers. A stable chloramine-T solution in isopropyl alcohol may be suggested for intact skin antisepsis.

  20. Research and applications of N-halamine biocidal materials

    Directory of Open Access Journals (Sweden)

    KANG Zhenzhen

    2012-10-01

    Full Text Available N-halamines,a new class of biocides,overcome some of the disadvantages caused by the traditional biocides in practical applications.They are environmentally friendly germicides due to their fast and efficient sterilization,storage stability,and regeneration.Earlier studies on N-halamines mainly focused on the syntheses and applications of small molecular organic N-halamines such as fivemembered and six-membered heterocyclic N-halamine compounds.Compared to traditional inorganic halogen-containing disinfectants such as chlorine gas,sodium hypochlorite,chlorine dioxide,these heterocyclic N-halamines can maintain disinfection capacity in the water for longer time due to their better stability.Since the late 20th century,non-leaching biocial N-halamine materials have received much attention.Some novel N-halmine precursors with binding groups have been covalently bounded to various materials such as cellulose fiber,silica gel,polystyrene,polyethylene,and polyurethane to produce nonleaching biocidal materials.Specially,the successful development of macroporous cross-linked N-halamine polymer resin materials (Halopure and related technologies created a new era for the applications of N-halamine materials in the disinfection of drinking water.In this review paper,the antibacterial mechanism and synthetic methods of N-halamine biocidal materials and their application prospects in various fields of daily life were introduced.Their development prospects were also made.

  1. Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system.

    Science.gov (United States)

    Wang, Haibo; Hu, Chun; Hu, Xuexiang; Yang, Min; Qu, Jiuhui

    2012-03-15

    The effects of disinfection and biofilm on the corrosion of cast iron pipe in a model reclaimed water distribution system were studied using annular reactors (ARs). The corrosion scales formed under different conditions were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM), while the bacterial characteristics of biofilm on the surface were determined using several molecular methods. The corrosion scales from the ARs with chlorine included predominantly α-FeOOH and Fe2O3, while CaPO3(OH)·2H2O and α-FeOOH were the predominant phases after chloramines replaced chlorine. Studies of the consumption of chlorine and iron release indicated that the formation of dense oxide layers and biofilm inhibited iron corrosion, causing stable lower chlorine decay. It was verified that iron-oxidizing bacteria (IOB) such as Sediminibacterium sp., and iron-reducing bacteria (IRB) such as Shewanella sp., synergistically interacted with the corrosion product to prevent further corrosion. For the ARs without disinfection, α-FeOOH was the predominant phase at the primary stage, while CaCO3 and α-FeOOH were predominant with increasing time. The mixed corrosion-inducing bacteria, including the IRB Shewanella sp., the IOB Sediminibacterium sp., and the sulfur-oxidizing bacteria (SOB) Limnobacter thioxidans strain, promoted iron corrosion by synergistic interactions in the primary period, while anaerobic IRB became the predominant corrosion bacteria, preventing further corrosion via the formation of protective layers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Impact de la demande en chlore et de la chloration sur la ...

    African Journals Online (AJOL)

    SARAH

    31 mars 2014 ... Les chloramines éliminent 100% des coliformes totaux et réduisent au maximum le nombre de ... Impact of the application for chlorine and chlorine disinfection of well ...... H. Shayeb, T. Riabi, M. Roustan et A. Hassan, 1998,.

  3. A Summary of Publications on the Development of Mode-of-Action Information and Statistical Tools for Evaluating Health Outcomes from Drinking Water Disinfection By-Product (DBP) Exposures

    Science.gov (United States)

    Chemical contaminants are formed as a consequence of chemical disinfection of public drinking waters. Chemical disinfectants, which are used to kill harmful microorganisms, react with natural organic matter (NOM), bromide, iodide, and other compounds, forming complex mixtures...

  4. In situ growing Bi_2MoO_6 on g-C_3N_4 nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation

    International Nuclear Information System (INIS)

    Li, Juan; Yin, Yunchao; Liu, Enzhou; Ma, Yongning; Wan, Jun; Fan, Jun; Hu, Xiaoyun

    2017-01-01

    Graphical abstract: TEM image and schematic diagram of photocatalytic mechanism of Bi_2MoO_6/g-C_3N_4 composite. - Highlights: • BM/CNNs heterojunctions were obtained by an in situ solvothermal method. • 2D CNNs are superior to CN as photocatalysts and supporting materials. • The photocatalytic hydrogen evolution of BM/CNNs has been first studied. • The photocatalytic disinfection of bacteria by BM/CNNs has been first studied. • The photocatalytic mechanism of BM/CNNs heterojunction was described. - Abstract: Bi_2MoO_6/g-C_3N_4 heterojunctions were fabricated by an in situ solvothermal method using g-C_3N_4 nanosheets. The photocatalytic activities of as-prepared samples were evaluated by hydrogen evolution from water splitting and disinfection of bacteria under visible light irradiation. The results indicate that exfoliating bulk g-C_3N_4 to g-C_3N_4 nanosheets greatly enlarges the specific surface area and shortens the diffusion distance for photogenerated charges, which could not only promote the photocatalytic performance but also benefit the sufficient interaction with Bi_2MoO_6. Furthermore, intimate contact of Bi_2MoO_6 (BM) and g-C_3N_4 nanosheets (CNNs) in the BM/CNNs composites facilitates the transfer and separation of photogenetrated electron-hole pairs. 20%-BM/CNNs heterojunction exhibits the optimal photocatalytic hydrogen evolution as well as photocatalytic disinfection of bacteria. Furthermore, h"+ was demonstrated as the dominant reactive species which could make the bacteria cells inactivated in the photocatalytic disinfection process. This study extends new chance of g-C_3N_4-based photocatalysts to the growing demand of clean new energy and drinking water.

  5. Vitality of Enterococcus faecalis inside dentinal tubules after five root canal disinfection methods

    OpenAIRE

    Vatkar, Niranjan Ashok; Hegde, Vivek; Sathe, Sucheta

    2016-01-01

    Aim: To compare the vitality of Enterococcus faecalis within dentinal tubules after subjected to five root canal disinfection methods. Materials and Methods: Dentin blocks (n = 60) were colonized with E. faecalis. After 4 weeks of incubation, the dentin blocks were divided into one control and five test groups (n = 10 each). The root canals of test groups were subjected to one of the disinfection methods, namely, normal saline (NS), sodium hypochlorite (NaOCl), chlorhexidine digluconate (C...

  6. Radiation effects on n-hexane-urea inclusion compound

    International Nuclear Information System (INIS)

    Ohta, Nobuaki; Ozasa, Senichi; Ichikawa, Takahisa

    1987-01-01

    n-hexane-urea inclusion compounds were γ-irradiated at room temperature and dimers from n-hexane were found to form. Additive effects of 1-hexene, 1-chloropentane, and n-hexylamine to the formation of the dimers have been studied. For the comparison liquid n-hexane systems were also γ-irradiated under the same conditions. The radiation-induced reactions in the inclusion compounds are discussed together with the reactions in the liquid n-hexane systems. The dimers from n-hexane in the inclusion compounds are presumably formed by dimerization of hexyl radicals; the hexyl radicals are possibly produced by hydrogen abstraction of hydrogen atom and/or urea radicals from n-hexane included in urea. (author)

  7. Improving stethoscope disinfection at a children's hospital.

    Science.gov (United States)

    Zaghi, Justin; Zhou, Jing; Graham, Dionne A; Potter-Bynoe, Gail; Sandora, Thomas J

    2013-11-01

    Stethoscopes are contaminated with pathogenic bacteria and pose a risk for transmission of infections, but few clinicians disinfect their stethoscope after every use. We sought to improve stethoscope disinfection rates among pediatric healthcare providers by providing access to disinfection materials and visual reminders to disinfect stethoscopes. Prospective intervention study. Inpatient units and emergency department of a major pediatric hospital. Physicians and nurses with high anticipated stethoscope use. Baskets filled with alcohol prep pads and a sticker reminding providers to regularly disinfect stethoscopes were installed outside of patient rooms. Healthcare providers' stethoscope disinfection behaviors were directly observed before and after the intervention. Multivariable logistic regression models were created to identify independent predictors of stethoscope disinfection. Two hundred twenty-six observations were made in the preintervention period and 261 in the postintervention period (83% were of physicians). Stethoscope disinfection compliance increased significantly from a baseline of 34% to 59% postintervention (P stethoscope disinfection supplies and visible reminders outside of patient rooms significantly increased stethoscope disinfection rates among physicians and nurses at a children's hospital. This simple intervention could be replicated at other healthcare facilities. Future research should assess the impact on patient infections.

  8. Spiral-shaped reactor for water disinfection

    KAUST Repository

    Soukane, Sofiane; Ait-Djoudi, Fariza; Naceur, Wahib M.; Ghaffour, NorEddine

    2016-01-01

    Chlorine-based processes are still widely used for water disinfection. The disinfection process for municipal water consumption is usually carried out in large tanks, specifically designed to verify several hydraulic and disinfection criteria

  9. Disinfection by-products/precursor control using an innovative treatment process -- high energy electron beam irradiation

    International Nuclear Information System (INIS)

    Sawal, K.; Millington, B.; Slifker, R.A.; Cooper, W.J.; Nickelsen, M.G.; Kurucz, C.N.; Waite, T.D.

    1993-01-01

    When waters containing naturally occurring humic substances, precursors, are chlorinated, reaction (disinfection) by-products (DBPs) that may compromise the chemical water quality of the drinking water are formed. Two options exist for the treatment of THMs and other DBPs, removal of precursor material prior to chlorination, or destruction of the by-products once they are formed. The authors have initiated a study using an innovative process, high energy electron beam irradiation, as an alternative treatment for the destruction of toxic organic compounds. Preliminary studies indicated that the process would also be effective in the removal of precursors. An added advantage of this process is that is would serve as a primary disinfectant, destroying any toxic compounds in the source water and may assist in the removal of algae and cyanobacteria toxins. This paper discusses studies in precursor removal and control of THMs

  10. Draft Genome Sequences of Six Mycobacterium immunogenum, Strains Obtained from a Chloraminated Drinking Water Distribution System Simulator

    Science.gov (United States)

    We report the draft genome sequences of six Mycobacterium immunogenum isolated from a chloraminated drinking water distribution system simulator subjected to changes in operational parameters. M. immunogenum, a rapidly growing mycobacteria previously reported as the cause of hyp...

  11. Correlation Between qacE and qacE∆1 Efflux Pump Genes, Antibiotic and Disinfectant Resistant Among Clinical Isolates of E.coli.

    Science.gov (United States)

    Shafaati, Maryam; Boroumand, Mohammadali; Nowroozi, Jamileh; Amiri, Pouya; Kazemian, Hossein

    2016-01-01

    Antiseptics and disinfectants have been used widely in hospitals and other health care settings to control the growth of microorganisms. However, some disinfectant resistant strains were reported. The objectives of our study were to evaluate correlation between the efflux pump genes, drugs and disinfectant resistant among clinical isolates of E.coli. A total of 102 of E. coli strains were isolated from urine sample of hospitalized patients. The antibiotic susceptibility was carried out by disc diffusion method. Didecyl di-methyl ammonium chloride (DDDMAC) was used as Quaternary ammonium compound (QAC) disinfectant which was used in Heart Center Hospital. PCR reaction was carried out for detection of qacE and qac∆E efflux pump genes. Almost all the strains had higher resistance to ampicillin, ciproflaxacin, cotrimaxazole and cephalothin. Totally 49% (n: 50) of strains were produced ESBL. Almost all the strains have MIC value between 0.00195 to 0.0078 mg/l for DDDMAC. Correlation between presence of qacE and qac∆E genes and antibiotic resistance was perceived. Presence of qacE and qac∆E genes among strains that have high disinfectant MIC value were 96.9% and 93.7% respectively. In addition, 98% of ESBL producing strains harbored qacE gene and 94% of ESBL producing strains harbored qac∆E gene. Our study indicated that there was a strong correlation between presence of qacE and qac∆E genes with resistance to some antibiotics and growth in media which contain high concentration of disinfectant. In conclusion, other mechanisms also play important role in resistant to antimicrobial agents but the role of efflux pumps in resistant to antimicrobial agents should not be neglected. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Sensitivity to disinfection of bacterial indicator organisms for monitoring the Salmonella Enteritidis status of layer farms after cleaning and disinfection.

    Science.gov (United States)

    Dewaele, I; Ducatelle, R; Herman, L; Heyndrickx, M; De Reu, K

    2011-06-01

    The present study evaluated Escherichia coli, Enterococcus faecalis, and Enterococcus hirae as potential indicator organisms for the possible Salmonella Enteritidis (SE) presence in layer farms after cleaning and disinfection by comparing their susceptibility to disinfection. A quantitative suspension disinfection test according to European Standard EN1656 was performed using disinfection products CID20 and Virocid (both from CID Lines, Ieper, Belgium). In a preliminary test, the sensitivity to both disinfection products was compared between ATCC strains of SE, E. coli, En. faecalis, and En. hirae. The sensitivity of SE to disinfection was most comparable to that of E. coli. A second disinfection test compared the elimination of E. coli to SE ATCC strains as well as field strains. Results showed no significant effect regarding the strain (P > 0.05 for CID20 and Virocid), meaning that no difference was detected in sensitivity toward disinfection. When comparing the sensitivity in general at species level for all concentrations of disinfectant used, no significant difference was found between E. coli and SE in sensitivity to Virocid (P > 0.05). In conclusion, because of its similar response to disinfection in a suspension disinfection test, E. coli could be used as an indicator for possible Salmonella presence after cleaning and disinfection.

  13. Avaliação de desinfetantes químicos de uso doméstico contra Vibrio cholerae EL TOR (amostra não toxigênica Evaluation of the effect of chemical domestic disinfectants on Vibrio cholerae EL TOR (non toxigenic strain

    Directory of Open Access Journals (Sweden)

    Jorge Timenetsky

    1992-10-01

    Full Text Available As metodologias de avaliação microbiológica de desinfetantes são permanentemente questionadas porque os protocolos laboratoriais não representam as condições reais de uso desses produtos. Em 1985, adotou-se no Brasil, a metodologia da Diluição-Uso da AOAC, para a qualificação microbiológica de desinfetantes químicos, para fins comerciais. Desta maneira, os desinfetantes domésticos são testados contra amostras padrões de Salmonella choleraesuis e Staphylococcus aureus. Pesquisou-se o emprego de Vibrio cholerae devido a sua atual importância, no Brasil, em termos de Saúde Pública, associada ao estudo da atividade antimicrobiana de desinfetantes. Dezenove produtos desinfetantes de uso doméstico encontrados no comércio foram microbiologicamente avaliados. A metodologia foi a Diluição-Uso com 10 carreadores. Os compostos ativos dos produtos incluíam: formaldeído, fenóis, cresóis, amônio quaternário, cloro e etanol, sendo que sete, eram de composição associada. Conforme as recomendações de uso, dezesseis produtos, devem ser utilizados sem diluição. Nestas condições, 9 desinfetantes foram vibriocidas e sete não revelaram tal atividade antibacteriana. Quatro produtos em diluições não esclarecedoras para a desinfecção também mostraram-se ineficazes. Os produtos vibriocidas que devem ser utilizados sem diluição, foram reavaliados diluídos ao dobro. Estas soluções não inativaram V.cholerae, demonstrando microbiologicamente que os seus compostos ativos estão em concentrações limítrofes. O álcool comercial (95,5° GL a 1:3, a "água sanitária" (2,8% de cloro ativo a 1:200, creolina a 1:10 e o "Lysoform" a 1:20 atingiram os padrões do teste.The methodology of microbiological evaluation of disinfectants is permanently being questioned because the laboratorial protocols do not correspond to the real conditions under which these products are used. In 1985 the Use-Dilution method of AOAC was adopted in

  14. Microbiological Efficacy Test Methods of Disinfectants

    OpenAIRE

    Şahiner, Aslı

    2015-01-01

    Disinfection process is required in every area where microbiological contamination and infection risk is present, especially in medical sector, food, veterinary and general common living areas hence many disinfectants and antiseptics are being produced for different purposes. Disinfectants are made up a large group of biocidal products. Depending on the chemical properties of active substances, targeted microorganisms may differ While some disinfectants are effective in a large spectrum, othe...

  15. DISINFECTION BY-PRODUCT FORMATION BY ALTERNATIVE DISINFECTANTS AND REMOVAL BY GRANULAR ACTIVATED CARBON

    Science.gov (United States)

    The effects of the use of the alternative disinfectants on the formation of halogenated disinfection by–products (DBPs) including total organic halide, trihalomethanes, haloacetic acids, haloacetonitriles, haloketones, chloral hydrate, and chloropicrin, were examined along ...

  16. Bromination of Marine Dissolved Organic Matter following Full Scale Electrochemical Ballast Water Disinfection.

    Science.gov (United States)

    Gonsior, Michael; Mitchelmore, Carys; Heyes, Andrew; Harir, Mourad; Richardson, Susan D; Petty, William Tyler; Wright, David A; Schmitt-Kopplin, Philippe

    2015-08-04

    An extensively diverse array of brominated disinfection byproducts (DBPs) were generated following electrochemical disinfection of natural coastal/estuarine water, which is one of the main treatment methods currently under consideration for ballast water treatment. Ultra-high-resolution mass spectrometry revealed 462 distinct brominated DBPs at a relative abundance in the mass spectra of more than 1%. A brominated DBP with a relative abundance of almost 22% was identified as 2,2,4-tribromo-5-hydroxy-4-cyclopentene-1,3-dione, which is an analogue to several previously described 2,2,4-trihalo-5-hydroxy-4-cyclopentene-1,3-diones in drinking water. Several other brominated molecular formulas matched those of other known brominated DBPs, such as dibromomethane, which could be generated by decarboxylation of dibromoacetic acid during ionization, dibromophenol, dibromopropanoic acid, dibromobutanoic acid, bromohydroxybenzoic acid, bromophenylacetic acid, bromooxopentenoic acid, and dibromopentenedioic acid. Via comparison to previously described chlorine-containing analogues, bromophenylacetic acid, dibromooxopentenoic acid, and dibromopentenedioic acid were also identified. A novel compound at a 4% relative abundance was identified as tribromoethenesulfonate. This compound has not been previously described as a DBP, and its core structure of tribromoethene has been demonstrated to show toxicological implications. Here we show that electrochemical disinfection, suggested as a candidate for successful ballast water treatment, caused considerable production of some previously characterized DBPs in addition to novel brominated DBPs, although several hundred compounds remain structurally uncharacterized. Our results clearly demonstrate that electrochemical and potentially direct chlorination of ballast water in estuarine and marine systems should be approached with caution and the concentrations, fate, and toxicity of DBP need to be further characterized.

  17. Photodecomposition of iodinated contrast media and subsequent formation of toxic iodinated moieties during final disinfection with chlorinated oxidants.

    Science.gov (United States)

    Allard, Sébastien; Criquet, Justine; Prunier, Anaïs; Falantin, Cécilia; Le Person, Annaïg; Yat-Man Tang, Janet; Croué, Jean-Philippe

    2016-10-15

    Large amount of iodinated contrast media (ICM) are found in natural waters (up to μg.L(-)(1) levels) due to their worldwide use in medical imaging and their poor removal by conventional wastewater treatment. Synthetic water samples containing different ICM and natural organic matter (NOM) extracts were subjected to UV254 irradiation followed by the addition of chlorine (HOCl) or chloramine (NH2Cl) to simulate final disinfection. In this study, two new quantum yields were determined for diatrizoic acid (0.071 mol.Einstein(-1)) and iotalamic acid (0.038 mol.Einstein(-1)) while values for iopromide (IOP) (0.039 mol.Einstein(-1)), iopamidol (0.034 mol.Einstein(-1)) and iohexol (0.041 mol.Einstein(-1)) were consistent with published data. The photodegradation of IOP led to an increasing release of iodide with increasing UV doses. Iodide is oxidized to hypoiodous acid (HOI) either by HOCl or NH2Cl. In presence of NOM, the addition of oxidant increased the formation of iodinated disinfection by-products (I-DBPs). On one hand, when the concentration of HOCl was increased, the formation of I-DBPs decreased since HOI was converted to iodate. On the other hand, when NH2Cl was used the formation of I-DBPs was constant for all concentration since HOI reacted only with NOM to form I-DBPs. Increasing the NOM concentration has two effects, it decreased the photodegradation of IOP by screening effect but it increased the number of reactive sites available for reaction with HOI. For experiments carried out with HOCl, increasing the NOM concentration led to a lower formation of I-DBPs since less IOP are photodegraded and iodate are formed. For NH2Cl the lower photodegradation of IOP is compensated by the higher amount of NOM reactive sites, therefore, I-DBPs concentrations were constant for all NOM concentrations. 7 different NOM extracts were tested and almost no differences in IOP degradation and I-DBPs formation was observed. Similar behaviour was observed for the 5 ICM

  18. What happens with organic micropollutants during UV disinfection in WWTPs? A global perspective from laboratory to full-scale.

    Science.gov (United States)

    Paredes, L; Omil, F; Lema, J M; Carballa, M

    2018-01-15

    The phototransformation of 18 organic micropollutants (OMPs) commonly detected in wastewater treatment plant (WWTP) effluents was examined attempting to explain their fate during UV disinfection in WWTPs. For this purpose, a lab-scale UV reactor (lamp emitting at 254nm) was used to study the influence of the operational conditions (UV dose, temperature and water matrix) on OMPs abatement and disinfection efficiency. Chemical properties of OMPs and the quality of treated effluent were identified as key factors affecting the phototransformation rate of these compounds. Sampling campaigns were carried out at the inlet and outlet of UV systems of three WWTPs, and the results evidenced that only the most photosensitive compounds, such as sulfamethoxazole and diclofenac, are eliminated. Therefore, despite UV treatment is an effective technology to phototransform OMPs, the UV doses typically applied for disinfection (10-50mJ/cm 2 ) are not sufficient to remove them. Consequently, small modifications (increase of UV dose, use of catalysts) should be applied in WWTPs to enhance the abatement of OMPs in UV systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Ultraviolet disinfection of treated municipal wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Vander Laan, H; Cairns, B

    1993-12-31

    A wastewater disinfection system developed by a Canadian company, Trojan Technologies Inc., was discussed. Disinfection for pathogen reduction prior to discharge of treated municipal wastewater back into rivers and lakes has been either ignored or treated by the use of chemicals. In 1979 the first pilot ultraviolet (UV) wastewater disinfection system was established. Since then, over 500 municipal UV installations have been commissioned. The largest installation can process 212 million gallons of water per day. The advantages of UV as a disinfectant are: (1) It is more effective than chlorine. (2) There are no mutagenic/carcinogenic byproducts formed with UV. (3) No toxic chemical residuals are discharged. (4) UV is safe to both the operators and the public. (5) It is cost effective. Europe has not been as active in wastewater disinfection as has North America. One result of the absence of wastewater disinfection in Europe is that the Rhine River, for example, carries 50 million salmonella per second. Disinfection of wastewater effluents is, of course, indispensable in protecting our drinking water supply. 2 figs.

  20. Disinfection Pilot Trial for Little Miami WWTP | Science ...

    Science.gov (United States)

    There is a serious interest growing nationally towards the use of PAA at various stages of public waste water treatment facilities; one of such use is secondary waste water treatment. MSDGC is currently interested in improving efficiency and economic aspects of waste water treatment. MSDGC requested for ORD’s support to evaluate alternative cost-effective disinfectants. This report herein is based on the data generated from the field pilot test conducted at the Little Miami Wastewater Treatment Plant. Chlorine assisted disinfection of wastewaters created the concern regarding the formation of high levels of toxic halogenated disinfection byproducts (DBPs) detrimental to aquatic life and public health. Peracetic acid is emerging as a green alternative to chlorine and claimed to have economic and social benefits. In addition, it is a relatively simple retrofit to the existing chlorine treated wastewater treatment facilities. PAA is appealed to possess a much lower aquatic toxicity profile than chlorine and decays rapidly in the environment, even if overdosed. As a result, PAA generally does not need a quenching step, such as dechlorination, reducing process complexity, sodium pollution and cost. PAA treatment does not result in the formation of chlorinated disinfection by-products such as trihalomethanes (THMs), haloacetic acids and other byproducts such as cyanide and n-Nitrosodimethylamine (NDMA).

  1. Photoreactivation Study of Wastewater Treatment Effluent Disinfected by UV-disinfection for Water Reuse

    International Nuclear Information System (INIS)

    Yoon, C.G.; Jung, K.W.; Ham, J.H.; Jeon, J.H.

    2003-01-01

    Photoreactivation of microorganism following UV-disinfection is one of the research topics of interest in assessing the UV-disinfection performance. Apparent photoreactivation was examined under fluorescent lamp and solar radiation as well as in darkness. Total coliform, fecal coliform, and Escherichia coli were used as indicator microorganisms, and their concentration of 10~30 MPN/100mL increased to the level of 100 MPN/100mL after 24 hours, which implied that part of damaged microorganisms by UV-disinfection might be repairable with time

  2. Assessment of Iodine-treated Filter Media for Removal and Inactivation of MS2 Bacteriophase Aerosols

    Science.gov (United States)

    2009-04-01

    adding chloramine - T to similar concentrations of K131I in water achieved fast and efficient incorporation of the small amount of 131I into human...Triiodide Demand-Type Disinfectant . Appl Environ Microbiol 44, 1370–1373. Foarde, K. K. and James, T . H. (2001) Determine the efficacy of antimicrobial...Fina, G. T . (1983) Effect of Resin disinfectants I3 and I5 on Giardia muris and Giardia lamblia. Appl Environ Microbiol 46, 965–969. Marchin, G. L

  3. 9 CFR 166.14 - Cleaning and disinfecting.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cleaning and disinfecting. 166.14... AGRICULTURE SWINE HEALTH PROTECTION SWINE HEALTH PROTECTION General Provisions § 166.14 Cleaning and disinfecting. (a) Disinfectants to be used. Disinfection required under the regulations in this Part shall be...

  4. N-nitroso compounds in the air environment

    International Nuclear Information System (INIS)

    Fine, D.H.; Edwards, G.S.; Krull, I.S.; Wolf, M.H.

    1979-01-01

    The measurement and chemistry of N-nitroso compounds, most of which are known carcinogens, in the air are discussed. Methods for the analysis of N-nitroso compounds in the ambient air usually employ a nitrosamine-specific detector, coupled to a gas chromatograph or a high-pressure liquid chromatograph, with structural confirmation by high-resolution mass spectroscopy and extensive artifact experiments required. Airborne N-nitrosamines have been detected at significant trace levels near leather tanneries, rocket fuel plants, tire factories, tobacco smoke, amine factories, cooking vapors and in the ambient air. Nitrosation of amines has been demonstrated with nitrogen oxides, certain C-nitro compounds and nitrous acid, and tertiary amines, tertiary amine oxides and primary amines have been nitrosated

  5. UV disinfection in drinking water supplies.

    Science.gov (United States)

    Hoyer, O

    2000-01-01

    UV disinfection has become a practical and safely validatable disinfection procedure by specifying the requirements for testing and monitoring in DVGW standard W 294. A standardized biodosimetric testing procedure and monitoring with standardized UV sensors is introduced and successfully applied. On-line monitoring of irradiance can be counterchecked with handheld reference sensors and makes it possible that UV systems can be used for drinking water disinfection with the same level of confidence and safety as is conventional chemical disinfection.

  6. Understanding the antimicrobial activity of selected disinfectants against methicillin-resistant Staphylococcus aureus (MRSA.

    Directory of Open Access Journals (Sweden)

    Ebrahim Aboualizadeh

    Full Text Available Disinfectants and biocidal products have been widely used to combat Methicillin-resistant Staphylococcus aureus (MRSA infections in homes and healthcare environments. Although disruption of cytoplasmic membrane integrity has been documented as the main bactericidal effect of biocides, little is known about the biochemical alterations induced by these chemical agents. In this study, we used Fourier transform infrared (FT-IR spectroscopy and chemometric tools as an alternative non-destructive technique to determine the bactericidal effects of commonly used disinfectants against MRSA USA-300. FTIR spectroscopy permits a detailed characterization of bacterial reactivity, allowing an understanding of the fundamental mechanism of action involved in the interaction between bacteria and disinfectants. The disinfectants studied were ethanol 70% (N = 5, isopropanol (N = 5, sodium hypochlorite (N = 5, triclosan (N = 5 and triclocarban (N = 5. Results showed less than 5% colony forming units growth of MRSA treated with triclocarban and no growth in the other groups. Nearly 70,000 mid-infrared spectra from the five treatments and the two control (untreated; N = 4 groups of MRSA (bacteria grown in TSB and incubated at 37°C (Control I / at ambient temperature (Control II, for 24h were pre-processed and analyzed using principal component analysis followed by linear discriminant analysis (PCA-LDA. Clustering of strains of MRSA belonging to five treatments and the discrimination between each treatment and two control groups in MRSA (untreated were investigated. PCA-LDA discriminatory frequencies suggested that ethanol-treated spectra are the most similar to isopropanol-treated spectra biochemically. Also reported here are the biochemical alterations in the structure of proteins, lipid membranes, and phosphate groups of MRSA produced by sodium hypochlorite, triclosan, and triclocarban treatments. These findings provide mechanistic information involved in the

  7. Understanding the antimicrobial activity of selected disinfectants against methicillin-resistant Staphylococcus aureus (MRSA).

    Science.gov (United States)

    Aboualizadeh, Ebrahim; Bumah, Violet V; Masson-Meyers, Daniela S; Eells, Janis T; Hirschmugl, Carol J; Enwemeka, Chukuka S

    2017-01-01

    Disinfectants and biocidal products have been widely used to combat Methicillin-resistant Staphylococcus aureus (MRSA) infections in homes and healthcare environments. Although disruption of cytoplasmic membrane integrity has been documented as the main bactericidal effect of biocides, little is known about the biochemical alterations induced by these chemical agents. In this study, we used Fourier transform infrared (FT-IR) spectroscopy and chemometric tools as an alternative non-destructive technique to determine the bactericidal effects of commonly used disinfectants against MRSA USA-300. FTIR spectroscopy permits a detailed characterization of bacterial reactivity, allowing an understanding of the fundamental mechanism of action involved in the interaction between bacteria and disinfectants. The disinfectants studied were ethanol 70% (N = 5), isopropanol (N = 5), sodium hypochlorite (N = 5), triclosan (N = 5) and triclocarban (N = 5). Results showed less than 5% colony forming units growth of MRSA treated with triclocarban and no growth in the other groups. Nearly 70,000 mid-infrared spectra from the five treatments and the two control (untreated; N = 4) groups of MRSA (bacteria grown in TSB and incubated at 37°C (Control I) / at ambient temperature (Control II), for 24h) were pre-processed and analyzed using principal component analysis followed by linear discriminant analysis (PCA-LDA). Clustering of strains of MRSA belonging to five treatments and the discrimination between each treatment and two control groups in MRSA (untreated) were investigated. PCA-LDA discriminatory frequencies suggested that ethanol-treated spectra are the most similar to isopropanol-treated spectra biochemically. Also reported here are the biochemical alterations in the structure of proteins, lipid membranes, and phosphate groups of MRSA produced by sodium hypochlorite, triclosan, and triclocarban treatments. These findings provide mechanistic information involved in the interaction

  8. Cinética de desinfección para cinco desinfectantes utilizados en industria farmacéutica Disinfection kinetics of five disifectants used in pharmaceutical industry

    Directory of Open Access Journals (Sweden)

    Lena Carolina Echeverri Prieto

    2007-08-01

    Full Text Available Para evaluar la actividad desinfectante de cada agente químico se implementó una metodología cuantitativa por medio de la neutralización de estos con el medio Dey-Engley y recuperar las células viables después de cada ensayo y calcular la cinética de desinfección la cual es expresada como coeficiente de letalidad (k. Se observó que este valor era inversamente proporcional al tiempo de contacto para los tratamientos con B. subtilis frente a todos los desinfectantes, y para A. niger con el alcohol etílico al 70 %, el amonio cuaternario catiónico y el hipoclorito de sodio.To assess disinfectant activity from each chemical agent, a quantitative methodology was implemented by means of its neutralization with Dey-Engley medium, and thus to achieve recovery of viable cells after each assay and to estimate disinfection kynetics, which is expressed as lethal coefficient (k. It was observed that this value was proportionally inverse to contact time for treatments with B. subtilis versus all the disinfectants, and for A. niger with 70 % ethyl alcohol, ionic quaternary ammonium, and the sodium hypochlorite.

  9. Induction of Antimicrobial Resistance in Escherichia coli and Non-Typhoidal Salmonella Strains after Adaptation to Disinfectant Commonly Used on Farms in Vietnam

    Directory of Open Access Journals (Sweden)

    Nguyen T. Nhung

    2015-10-01

    Full Text Available In Vietnam, commercial disinfectants containing quaternary ammonium compounds (QACs are commonly used in pig and poultry farms to maintain hygiene during production. We hypothesized that sustained exposure to sub-bactericidal concentrations of QAC-based disinfectants may result in increased levels of antimicrobial resistance (AMR among Enterobacteriacea due to the increase of efflux pump expression. To test this hypothesis we exposed six antimicrobial-susceptible Escherichia coli (E. coli and six antimicrobial-susceptible non-typhoidal Salmonella (NTS isolates to increasing concentrations of a commonly used commercial disinfectant containing a mix of benzalkonium chloride and glutaraldehyde. Over the 12-day experiment, strains exhibited a significant change in their minimum inhibitory concentration (MIC of the disinfectant product (mean increase of 31% (SD ± 40 (p = 0.02, paired Wilcoxon test. Increases in MIC for the disinfectant product were strongly correlated with increases in MIC (or decreases in inhibition zone for all antimicrobials (Pearson’s correlation coefficient 0.71–0.83, all p < 0.01. The greatest increases in MIC (or decreases in inhibition zone were observed for ampicillin, tetracycline, ciprofloxacin, and chloramphenicol, and the smallest for gentamicin, trimethoprim/sulphamethoxazole. The treatment of 155 representative E. coli isolates from farmed and wild animals in the Mekong Delta (Vietnam with phenyl-arginine beta-naphthylamide (PAβN, a generic efflux pump inhibitor, resulted in reductions in the prevalence of AMR ranging from 0.7% to 3.3% in these organisms, indicating a small contribution of efflux pumps on the observed prevalence of AMR on farms. These results suggest that the mass usage of commercial disinfectants, many of which contain QACs, is potentially a contributing factor on the generation and maintenance of AMR in animal production in Vietnam.

  10. Oxidation of Tetracaine Hydrochloride by Chloramine-B in Acid Medium: Kinetic Modeling

    Directory of Open Access Journals (Sweden)

    Jayachamarajapura Pranesh Shubha

    2014-01-01

    Full Text Available Tetracaine hydrochloride (TCH is one of the potent local anaesthetics. A kinetic study of oxidation of tetracaine hydrochloride by sodium N-chlorobenzenesulfonamide (chloramine-B or CAB has been carried in HClO4 medium at 303 K. The rate shows first-order dependence on [CAB]o, shows fractional–order dependence on [substrate]o, and is self-governing on acid concentration. Decrease of dielectric constant of the medium, by adding methanol, increased the rate. Variation of ionic strength and addition of benzenesulfonamide or NaCl have no significant effect on the rate. The reaction was studied at different temperatures and the activation parameters have been evaluated. The stoichiometry of the reaction was found to be 1 : 5 and the oxidation products were identified by spectral analysis. The conjugate free acid C6H5SO2NHCl of CAB is postulated as the reactive oxidizing species. The observed results have been explained by plausible mechanism and the related rate law has been deduced.

  11. Compounds of addition between yttrium and rare-earths (III) nitrates and the N,N,N'N'-tetramethyladipamide (TMAA)

    International Nuclear Information System (INIS)

    Lima, W.N. de.

    1974-01-01

    The synthesis of addition compounds between hydrated rare-earths and yttrium nitrates with the diamine N,N,N',N'-tetramethyladipamide (TMAA) in ethanol, is described. The compounds were characterized by elemental analisys, infrared, Raman, visible and near infrared spectra, molar conductance and molecular weight measurements, conductometric titrations and X-ray powder patterns. (Author) [pt

  12. Color stability of maxillofacial silicone with nanoparticle pigment and opacifier submitted to disinfection and artificial aging.

    Science.gov (United States)

    Filié Haddad, Marcela; Coelho Goiato, Marcelo; Micheline Dos Santos, Daniela; Moreno, Amália; Filipe D'almeida, Nuno; Alves Pesqueira, Aldiéris

    2011-09-01

    The purpose of this study was to evaluate the color stability of a maxillofacial elastomer with the addition of a nanoparticle pigment and∕or an opacifier submitted to chemical disinfection and artificial aging. Specimens were divided into four groups (n = 30): group I: silicone without pigment or opacifier, group II: ceramic powder pigment, group III: Barium sulfate (BaSO(4)) opacifier, and group IV: ceramic powder and BaSO(4) opacifier. Specimens of each group (n = 10) were disinfected with effervescent tablets, neutral soap, or 4% chlorhexidine gluconate. Disinfection was done three times a week during two months. Afterward, specimens were submitted to different periods of artificial aging. Color evaluation was initially done, after 60 days (disinfection period) and after 252, 504, and 1008 h of artificial aging with aid of a reflection spectrophotometer. Data were analyzed by three-way ANOVA and Tukey test (α = 0.05). The isolated factor disinfection did not statistically influence the values of color stability among groups. The association between pigment and BaSO(4) opacifier (GIV) was more stable in relationship to color change (△E). All values of △E obtained, independent of the disinfectant and the period of artificial aging, were considered acceptable in agreement with the norms presented in literature.

  13. Free Radical Chemistry of Disinfection Byproducts 1: Kinetics of Hydrated Electron and Hydroxyl Radical Reactions with Halonitromethanes in Water

    International Nuclear Information System (INIS)

    B. J. Mincher; R. V. Fox; S. P. Mezyk; T. Helgeson; S. K. Cole; W. J. Cooper; P. R. Gardinali

    2006-01-01

    Halonitromethanes are disinfection-byproducts formed during ozonation and chlorine/chloramine treatment of waters that contain bromide ion and natural organic matter. In this study, the chemical kinetics of the free-radical-induced degradations of a series of halonitromethanes were determined. Absolute rate constants for hydroxyl radical, OH, and hydrated electron, e aq - , reaction with both chlorinated and brominated halonitromethanes were measured using the techniques of electron pulse radiolysis and transient absorption spectroscopy. The bimolecular rate constants obtained, k (M -1 s -1 ), for e aq - /OH, respectively, were the following: chloronitromethane (3.01 ± 0.40) x 10 10 /(1.94 ± 0.32) x 10 8 ; dichloronitromethane (3.21 ± 0.17) x 10 10 /(5.12 ± 0.77) x 10 8 ; bromonitromethane (3.13 ± 0.06) x 10 10 /(8.36 ± 0.57) x 107; dibromonitromethane (3.07 ± 0.40) x 10 10 /(4.75 ± 0.98) x 10 8 ; tribromonitromethane (2.29 ± 0.39) x 10 10 /(3.25 ± 0.67) x 10 8 ; bromochloronitromethane (2.93 ± 0.47) x 10 10 /(4.2 ± 1.1) x 10 8 ; bromodichloronitromethane (2.68 ± 0.13) x 10 10 /(1.02 ± 0.15) x 10 8 ; and dibromochloronitromethane (2.95 ± 0.43) x 10 10 /(1.80 ± 0.31) x 10 8 at room temperature and pH ∼7. Comparison data were also obtained for hydroxyl radical reaction with bromoform (1.50 ± 0.05) x 10 8 , bromodichloromethane (7.11 ± 0.26) x 10 7 , and chlorodibromomethane (8.31 ± 0.25) x 10 7 M -1 s -1 , respectively. These rate constants are compared to recently obtained data for trichloronitromethane and bromonitromethane, as well as to other established literature data for analogous compounds

  14. Humidifier disinfectants, unfinished stories

    Directory of Open Access Journals (Sweden)

    Yeyong Choi

    2016-02-01

    Full Text Available Once released into the air, humidifier disinfectants became tiny nano-size particles, and resulted in chemical bronchoalveolitis. Families had lost their most beloved members, and even some of them became broken. Based on an estimate of two million potential victims who had experienced adverse effects from the use of humidifier disinfectants, we can say that what we have observed was only the tip of the iceberg. Problems of entire airways, as well as other systemic effects, should be examined, as we know these nano-size particles can irritate cell membranes and migrate into systemic circulation. The story of humidifier disinfectant is not finished yet.

  15. Environmental cleaning and disinfection.

    Science.gov (United States)

    Traverse, Michelle; Aceto, Helen

    2015-03-01

    The guidelines in this article provide veterinarians, veterinary technicians, and veterinary health care workers with an overview of evidence-based recommendations for the best practices associated with environmental cleaning and disinfection of a veterinary clinic that deals with small animals. Hospital-associated infections and the control and prevention programs necessary to alleviate them are addressed from an environmental perspective. Measures of hospital cleaning and disinfection include understanding mechanisms and types of contamination in veterinary settings, recognizing areas of potential concern, addressing appropriate decontamination techniques and selection of disinfectants, the management of potentially contaminated equipment, laundry, and waste management, and environmental surveillance strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Radio-iodination of a rabbit fibrinogen by the chloramine-T method

    Energy Technology Data Exchange (ETDEWEB)

    Moza, A K; Kumar, M; Belavalgidad, M I; Sapru, R P [Post-Graduate Inst. of Medical Education and Research, Chandigarh (India). Dept. of Experimental Medicine

    1974-01-01

    A method for radio-iodination of fibrinogen using chloramine-T has been described. Samples of greater than 90% clottable counts were obtained. Electrophoretic mobility and immunodiffusion showed that the entire radioactivity was present in the fibrinogen band. In vivo studies on the turnover of this labelled product in rabbits showed a half-life of 52.8 to 61.7 hrs in two batches of animals. The results compare very well with the reported results obtained from fibrinogen labelled with radioactive iodine by the iodine-monochloride method. The advantages of the new method have been pointed out.

  17. Study and application of herbal disinfectants in China.

    Science.gov (United States)

    Chen, Zhao-Bin

    2004-12-01

    Disinfection means killing or removing pathogenic microorganisms in media to realize a harmless process. A disinfectant, which is also referred to as a disinfection medicine in relevant regulations, is the medicine used to kill microorganisms for the purpose of disinfection. The disinfectants prepared from plants (including traditional Chinese herbal medicines) and the extracts thereof are called herbal disinfectants. China has a long history of using herbal disinfectants. As early as in 533 A.D., the use of Cornel to sterilize well water was recorded in Necessary Techniques for Qi People by Jia Enxie of the Beiwei Dynasty. During the Dragon Boat Festival, people often use fumigants made of traditional Chinese herbal medicines like Chinese Atractylodes, Argy Wormwood Leaf and Red Arsenic Sulfide to smoke their houses, so as to ward off plagues and drive away evils. In fact this is now a kind of disinfection practice.

  18. Predictors of stethoscope disinfection among pediatric health care providers.

    Science.gov (United States)

    Muniz, Jeanette; Sethi, Rosh K V; Zaghi, Justin; Ziniel, Sonja I; Sandora, Thomas J

    2012-12-01

    Stethoscopes are contaminated with bacteria, but predictors of stethoscope disinfection frequency are unknown. We sought to describe health care provider stethoscope disinfection attitudes and practices and determine predictors of frequent disinfection. We used an anonymous online survey of nurses, nurse practitioners, and physicians at a pediatric hospital. We assessed frequency and methods of disinfection, perceptions of contamination, and barriers to disinfection. Multivariate logistic regression models were used to identify independent predictors of disinfecting after every use. One thousand four hundred one respondents completed the survey: 76% believed that infection transmission occurs via stethoscopes, but only 24% reported disinfecting after every use. In multivariate analyses, belief that infection transmission occurs via stethoscopes significantly increased the odds of disinfection after every use (odds ratio [OR], 2.06 [95% confidence interval (CI): 1.38-3.06]). The odds of disinfection after every use were significantly decreased in those who perceived the following barriers: lack of time (OR, 0.31 [95% CI: 0.18-0.54]), lack of access to disinfection material (OR, 0.41 [95% CI: 0.29-0.57]), or lack of visual reminders to disinfect (OR, 0.22 [95% CI: 0.14-0.34]). Only a minority of pediatric health care providers reported disinfecting their stethoscopes after every use. Increasing access to disinfection materials and visual reminders in health care facilities may improve stethoscope disinfection practices. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  19. Emergency Disinfection of Drinking Water

    Science.gov (United States)

    How to boil and disinfect water to kill most disease-causing microorganisms during emergency situations where regular water service has been interrupted and local authorities recommend using only bottled water, boiled water, or disinfected water.

  20. Resistance to phenicol compounds following adaptation to quaternary ammonium compounds in Escherichia coli.

    Science.gov (United States)

    Soumet, C; Fourreau, E; Legrandois, P; Maris, P

    2012-07-06

    Bacterial adaptation to quaternary ammonium compounds (QACs) is mainly documented for benzalkonium chloride (BC) and few data are available for other QACs. The aim of this study was to assess the effects of repeated exposure to different quaternary ammonium compounds (QACs) on the susceptibility and/or resistance of bacteria to other QACs and antibiotics. Escherichia coli strains (n=10) were adapted by daily exposure to increasingly sub-inhibitory concentrations of a QAC for 7 days. Three QACs were studied. Following adaptation, we found similar levels of reduction in susceptibility to QACs with a mean 3-fold increase in the minimum inhibitory concentration (MIC) compared to initial MIC values, whatever the QAC used during adaptation. No significant differences in antibiotic susceptibility were observed between the tested QACs. Antibiotic susceptibility was reduced from 3.5- to 7.5-fold for phenicol compounds, β lactams, and quinolones. Increased MIC was associated with a shift in phenotype from susceptible to resistant for phenicol compounds (florfenicol and chloramphenicol) in 90% of E. coli strains. Regardless of the QAC used for adaptation, exposure to gradually increasing concentrations of this type of disinfectant results in reduced susceptibility to QACs and antibiotics as well as cross-resistance to phenicol compounds in E. coli strains. Extensive use of QACs at sub-inhibitory concentrations may lead to the emergence of antibiotic-resistant bacteria and may represent a public health risk. Published by Elsevier B.V.

  1. Addition compounds between trifluoromethanessulfonates and N,N-Dimethylacetamide (DMA)

    International Nuclear Information System (INIS)

    1984-01-01

    Rare-earth complex ions were prepared using dissolution of hydrated lanthnide compounds in the species used as ligand, N,N-dimethylacetamide (DMA) followed by evaporation of the ligand excess, and by crystallization of the dissolved complexes in DMA medium using chloroform as precipitating agent. (M.J.C.) [pt

  2. Zinc oxide nanoparticles for water disinfection

    Directory of Open Access Journals (Sweden)

    Emelita Asuncion S. Dimapilis

    2018-03-01

    Full Text Available The world faces a growing challenge for adequate clean water due to threats coming from increasing demand and decreasing supply. Although there are existing technologies for water disinfection, their limitations, particularly the formation of disinfection-by-products, have led to researches on alternative methods. Zinc oxide, an essential chemical in the rubber and pharmaceutical industries, has attracted interest as antimicrobial agent. In nanoscale, zinc oxide has shown antimicrobial properties which make its potential great for various applications. This review discusses the synthesis of zinc oxide with focus on precipitation method, its antimicrobial property and the factors affecting it, disinfection mechanisms, and the potential application to water disinfection.

  3. Cleaning and Disinfection of Bacillus cereus Biofilm.

    Science.gov (United States)

    Deal, Amanda; Klein, Dan; Lopolito, Paul; Schwarz, John Spencer

    2016-01-01

    Methodology has been evolving for the testing of disinfectants against bacterial single-species biofilms, as the difficulty of biofilm remediation continues to gain much-needed attention. Bacterial single-species biofilm contamination presents a real risk to good manufacturing practice-regulated industries. However, mixed-species biofilms and biofilms containing bacterial spores remain an even greater challenge for cleaning and disinfection. Among spore-forming microorganisms frequently encountered in pharmaceutical manufacturing areas, the spores of Bacillus cereus are often determined to be the hardest to disinfect and eradicate. One of the reasons for the low degree of susceptibility to disinfection is the ability of these spores to be encapsulated within an exopolysachharide biofilm matrix. In this series of experiments, we evaluated the disinfectant susceptibility of B. cereus biofilms relative to disassociated B. cereus spores and biofilm from a non-spore-forming species. Further, we assessed the impact that pre-cleaning has on increasing that susceptibility. Methodology has been evolving for the testing of disinfectants against bacterial single-species biofilms, as the difficulty of biofilm remediation continues to gain much-needed attention. Bacterial single-species biofilm contamination presents a real risk to good manufacturing practice-regulated industries. However, mixed-species biofilms and biofilms containing bacterial spores remain an even greater challenge for cleaning and disinfection. Among spore-forming microorganisms frequently encountered in pharmaceutical manufacturing areas, the spores of Bacillus cereus are often determined to be the hardest to disinfect and eradicate. One of the reasons for the low degree of susceptibility to disinfection is the ability of these spores to be encapsulated within an exopolysachharide biofilm matrix. In this series of experiments, we evaluated the disinfectant susceptibility of B. cereus biofilms relative to

  4. In situ growing Bi{sub 2}MoO{sub 6} on g-C{sub 3}N{sub 4} nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan [School of Chemical Engineering, Northwest University, Xi’an, 710069 (China); School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023 (China); Yin, Yunchao; Liu, Enzhou; Ma, Yongning; Wan, Jun [School of Chemical Engineering, Northwest University, Xi’an, 710069 (China); Fan, Jun, E-mail: fanjun@nwu.edu.cn [School of Chemical Engineering, Northwest University, Xi’an, 710069 (China); Hu, Xiaoyun, E-mail: hxy3275@nwu.edu.cn [School of Physics, Northwest University, Xi’an, 710069 (China)

    2017-01-05

    Graphical abstract: TEM image and schematic diagram of photocatalytic mechanism of Bi{sub 2}MoO{sub 6}/g-C{sub 3}N{sub 4} composite. - Highlights: • BM/CNNs heterojunctions were obtained by an in situ solvothermal method. • 2D CNNs are superior to CN as photocatalysts and supporting materials. • The photocatalytic hydrogen evolution of BM/CNNs has been first studied. • The photocatalytic disinfection of bacteria by BM/CNNs has been first studied. • The photocatalytic mechanism of BM/CNNs heterojunction was described. - Abstract: Bi{sub 2}MoO{sub 6}/g-C{sub 3}N{sub 4} heterojunctions were fabricated by an in situ solvothermal method using g-C{sub 3}N{sub 4} nanosheets. The photocatalytic activities of as-prepared samples were evaluated by hydrogen evolution from water splitting and disinfection of bacteria under visible light irradiation. The results indicate that exfoliating bulk g-C{sub 3}N{sub 4} to g-C{sub 3}N{sub 4} nanosheets greatly enlarges the specific surface area and shortens the diffusion distance for photogenerated charges, which could not only promote the photocatalytic performance but also benefit the sufficient interaction with Bi{sub 2}MoO{sub 6}. Furthermore, intimate contact of Bi{sub 2}MoO{sub 6} (BM) and g-C{sub 3}N{sub 4} nanosheets (CNNs) in the BM/CNNs composites facilitates the transfer and separation of photogenetrated electron-hole pairs. 20%-BM/CNNs heterojunction exhibits the optimal photocatalytic hydrogen evolution as well as photocatalytic disinfection of bacteria. Furthermore, h{sup +} was demonstrated as the dominant reactive species which could make the bacteria cells inactivated in the photocatalytic disinfection process. This study extends new chance of g-C{sub 3}N{sub 4}-based photocatalysts to the growing demand of clean new energy and drinking water.

  5. Examination of the behaviour of escherichia coli in biofilms established in laboratory- scale units receiving chlorinated and chloraminated water

    CSIR Research Space (South Africa)

    Momba, MNB

    1999-09-01

    Full Text Available Groundwater was treated with chlorine and chloramine to study the incorporation and survival of Escherichia coli (E. coli) in developing biofilms in laboratory-scale units. Membrane filter and standard spread plate procedure were used to enumerate...

  6. Small molecule n-(alpha-peroxy) indole compounds and methods of use

    KAUST Repository

    Wang, Xinbo; Lai, Zhiping; Pan, Yupeng; Huang, Kuo-Wei; Wang, Zhigang

    2017-01-01

    The invention relates to novel N-(α-peroxy)indole compounds of Formula I and methods for use. (I) The N-(α-peroxy)indole compounds described herein are useful for treating or preventing parasitic infections, bacterial infections, and cancer in subjects. The methods include administering an N-(α-peroxy)indole compound as described herein to a subject. Also described herein are methods for synthesizing N-(α-peroxy )indole compounds.

  7. Small molecule n-(alpha-peroxy) carbazole compounds and methods of use

    KAUST Repository

    Wang, Xinbo; Lai, Zhiping; Pan, Yupeng; Huang, Kuo-Wei

    2017-01-01

    The invention relates to novel N-(α-peroxy)carbazole compounds of Formula I and methods for use. (I) The N-(α-peroxy)carbazole compounds described herein are useful for treating or preventing parasitic infections, bacterial infections, and cancer in subjects. The methods include administering an N-(α-peroxy)carbazole compound as described herein to a subject. Also described herein are methods for synthesizing N-(α-peroxy)carbazole compounds.

  8. Small molecule n-(alpha-peroxy) indole compounds and methods of use

    KAUST Repository

    Wang, Xinbo

    2017-11-16

    The invention relates to novel N-(α-peroxy)indole compounds of Formula I and methods for use. (I) The N-(α-peroxy)indole compounds described herein are useful for treating or preventing parasitic infections, bacterial infections, and cancer in subjects. The methods include administering an N-(α-peroxy)indole compound as described herein to a subject. Also described herein are methods for synthesizing N-(α-peroxy )indole compounds.

  9. Small molecule n-(alpha-peroxy) carbazole compounds and methods of use

    KAUST Repository

    Wang, Xinbo

    2017-11-16

    The invention relates to novel N-(α-peroxy)carbazole compounds of Formula I and methods for use. (I) The N-(α-peroxy)carbazole compounds described herein are useful for treating or preventing parasitic infections, bacterial infections, and cancer in subjects. The methods include administering an N-(α-peroxy)carbazole compound as described herein to a subject. Also described herein are methods for synthesizing N-(α-peroxy)carbazole compounds.

  10. compounds with N=N, C≡C or conjugated double-bonded systems

    Indian Academy of Sciences (India)

    Unusual products in the reactions of phosphorus(III) compounds with. N=N, C≡C or conjugated double-bonded systems. K C KUMARA SWAMY,* E BALARAMAN, M PHANI PAVAN, N N BHUVAN KUMAR,. K PRAVEEN KUMAR and N SATISH KUMAR. School of Chemistry, University of Hyderabad, Hyderabad 500 046.

  11. Resistance of pathogenic and spoilage microorganisms to disinfectants in the presence of organic matter and their residual effect on stainless steel and polypropylene.

    Science.gov (United States)

    Iñiguez-Moreno, Maricarmen

    2018-04-23

    The effectiveness of disinfectants can vary according to the microorganism, type of residues and surface. Hence, the aim of this study was to determine the effectiveness of four disinfectants in the presence of organic matter and their residual effect on stainless steel grade 304 (SS) and polypropylene B (PP-B). The disinfectant effectiveness in the presence of meat extract, yolk egg and whole milk was determined according to AOAC and UNE-EN 1040:2015; the residual effect was realized according to UNE-EN 13697:2015, using approved strains. The disinfectant effectiveness was affect at different grades depending on the organic matter present; disinfectant A (400μgmL -1 , fifth generation quaternary ammonium compound, QAC) was most effective in the presence of 10% meat extract, while the disinfectant C (200μgmL -1 , peracetic acid) had better activity in the presence of 10% egg yolk and whole milk. In the evaluation of residual effect onto SS and PP-B, the QAC had the better effect, reducing 6 Log 10 CFU mL -1 of Listeria monocytogenes ATCC 19111 24h after their application. Conversely, the disinfectants had no residual effect against Pseudomonas aeruginosa ATCC 15442. The antimicrobial activity of disinfectants tested against pathogenic and spoilage microorganisms was affected according to the type of organic matter. Disinfectant A had a more residual effect than the other disinfectants evaluated. Moreover, the residual effect of a disinfectant is greater on SS than on PP-B and dependent on the microorganism tested. Copyright © 2018. Published by Elsevier Ltd.

  12. Evaluation of toothbrush disinfection via different methods

    Directory of Open Access Journals (Sweden)

    Adil BASMAN

    2016-01-01

    Full Text Available The aim of this study was to compare the efficacy of using a dishwasher or different chemical agents, including 0.12% chlorhexidine gluconate, 2% sodium hypochlorite (NaOCl, a mouthrinse containing essential oils and alcohol, and 50% white vinegar, for toothbrush disinfection. Sixty volunteers were divided into five experimental groups and one control group (n = 10. Participants brushed their teeth using toothbrushes with standard bristles, and they disinfected the toothbrushes according to instructed methods. Bacterial contamination of the toothbrushes was compared between the experimental groups and the control group. Data were analyzed by Kruskal–Wallis and Duncan's multiple range tests, with 95% confidence intervals for multiple comparisons. Bacterial contamination of toothbrushes from individuals in the experimental groups differed from those in the control group (p < 0.05. The most effective method for elimination of all tested bacterial species was 50% white vinegar, followed in order by 2% NaOCl, mouthrinse containing essential oils and alcohol, 0.12% chlorhexidine gluconate, dishwasher use, and tap water (control. The results of this study show that the most effective method for disinfecting toothbrushes was submersion in 50% white vinegar, which is cost-effective, easy to access, and appropriate for household use.

  13. In vitro study on the disinfectability of two split-septum needle-free connection devices using different disinfection procedures

    Directory of Open Access Journals (Sweden)

    Engelhart, Steffen

    2015-12-01

    Full Text Available This in vitro study investigated the external disinfection of two needle-free connection devices (NFC using Octeniderm (spraying and wiping technique vs. Descoderm pads (wiping technique. The split-septum membrane of the NFC was contaminated with >10 CFU . The efficacy of the disinfection at 30 sec. exposure time was controlled by taking a swab sample and by flushing the NFC with sterile 0.9% sodium chloride solution. Disinfection with octenidine dihydrochloride 0.1 g, 1-Propanol 30.0 g, and 2-Propanol 45.0 g in solution was highly effective (CFU reduction ≥4 log against both microorganisms, whereas the use of 63.1 g 2-Propanol in 100 ml solution led to residual contamination with . Our investigation underlines that (i in clinical practice disinfection of NFCs before use is mandatory, and that (ii details of disinfection technique are of utmost importance regarding their efficacy. Our investigation revealed no significant differences between both split-septum NFC types. Clinical studies are needed to confirm a possible superiority of disinfectants with long-lasting residual antimicrobial activity.

  14. Enhanced terminal room disinfection and acquisition and infection caused by multidrug-resistant organisms and Clostridium difficile (the Benefits of Enhanced Terminal Room Disinfection study): a cluster-randomised, multicentre, crossover study

    Science.gov (United States)

    Anderson, Deverick J; Chen, Luke F; Weber, David J; Moehring, Rebekah W; Lewis, Sarah S; Triplett, Patricia F; Blocker, Michael; Becherer, Paul; Schwab, J Conrad; Knelson, Lauren P; Lokhnygina, Yuliya; Rutala, William A; Kanamori, Hajime; Gergen, Maria F; Sexton, Daniel J

    2018-01-01

    Summary Background Patients admitted to hospital can acquire multidrug-resistant organisms and Clostridium difficile from inadequately disinfected environmental surfaces. We determined the effect of three enhanced strategies for terminal room disinfection (disinfection of a room between occupying patients) on acquisition and infection due to meticillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, C difficile, and multidrug-resistant Acinetobacter. Methods We did a pragmatic, cluster-randomised, crossover trial at nine hospitals in the southeastern USA. Rooms from which a patient with infection or colonisation with a target organism was discharged were terminally disinfected with one of four strategies: reference (quaternary ammonium disinfectant except for C difficile, for which bleach was used); UV (quaternary ammonium disinfectant and disinfecting ultraviolet [UV-C] light except for C difficile, for which bleach and UV-C were used); bleach; and bleach and UV-C. The next patient admitted to the targeted room was considered exposed. Every strategy was used at each hospital in four consecutive 7-month periods. We randomly assigned the sequence of strategies for each hospital (1:1:1:1). The primary outcomes were the incidence of infection or colonisation with all target organisms among exposed patients and the incidence of C difficile infection among exposed patients in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT01579370. Findings 31 226 patients were exposed; 21 395 (69%) met all inclusion criteria, including 4916 in the reference group, 5178 in the UV group, 5438 in the bleach group, and 5863 in the bleach and UV group. 115 patients had the primary outcome during 22 426 exposure days in the reference group (51·3 per 10 000 exposure days). The incidence of target organisms among exposed patients was significantly lower after adding UV to standard cleaning strategies (n=76; 33·9 cases per 10 000

  15. The electrophilic lodi nation with 125 I/ 131 I of gamma globulin: Comparison between a solid-phase oxidizing agent (Iodogen), chloramine-T, iodine mono chloride and N-Bromo succinimide

    International Nuclear Information System (INIS)

    El-Wetery, A.S.; Ayyoub, S.; El-Mohty, A.A.; Raieh, M.; Ghonaim, A.Kh.

    1997-01-01

    A new available oxidizing agent, 1, 3, 4, 6-tetra chloro-3α, diphenyl glycoluril(iodogen) was compared with chloramine-T (Ch-T), Iodine-mono chloride (I Cl) and N-Bromo succinimide (NBS) in the radio-iodination of gamma-globulin (γ-G) with 'no-carrier-added' (nca) Na 131 I (T 1/2=8 d). In Phosphate and acetate buffer solution, the optimum reaction conditions with respect to PH, concentration of oxidizing agent, reaction time and concentration of γ-G were determined. The optimum conditions which were found require 100μ l of buffer (pH 7.4, 0.025 M), 500μg γ-G (0.003 μmol), (10-40) μg of oxidizing agent and the desired amount of carrier-free radioiodine. Highest radiochemical yield (>85-90%) were obtained at pH 7.4. Separation and identification of the labelled products were achieved by means of high performance liquid chromatography (HPLC) and thin layer chromatography (TLC). 8 figs., 1 tab

  16. Sanitizers and Disinfectants Guide. Revised

    Science.gov (United States)

    Healthy Schools Network, Inc., 2012

    2012-01-01

    Sanitizers and disinfectants can play an important role in protecting public health. They are designed to kill "pests," including infectious germs and other microorganisms such as bacteria, viruses, and fungi. Unfortunately, sanitizers and disinfectants also contain chemicals that are "pesticides." Exposure to persistent toxic…

  17. Wheelchair cleaning and disinfection in Canadian health care facilities: "That's wheelie gross!".

    Science.gov (United States)

    Gardner, Paula; Muller, Matthew P; Prior, Betty; So, Ken; Tooze, Jane; Eum, Linda; Kachur, Oksana

    2014-11-01

    Wheelchairs are complex equipment that come in close contact with individuals at increased risk of transmitting and acquiring antibiotic-resistant organisms and health care-associated infection. The purpose of this study was to determine the status of wheelchair cleaning and disinfection in Canadian health care facilities. Acute care hospitals (ACHs), chronic care hospitals (CCHs), and long-term care facilities (LTCFs) were contacted and the individual responsible for oversight of wheelchair cleaning and disinfection was identified. A structured interview was conducted that focused on current practices and concerns, barriers to effective wheelchair cleaning and disinfection, and potential solutions. Interviews were completed at 48 of the 54 facilities contacted (89%), including 18 ACHs, 16 CCHs, and 14 LTCFs. Most (n = 24) facilities had 50-200 in-house wheelchairs. Respondents were very concerned about wheelchair cleaning as an infection control issue. Specific concerns included the lack of reliable systems for tracking and identifying dirty and clean wheelchairs (71%, 34/48), failure to clean and disinfect wheelchairs between patients (52%, 25/48), difficulty cleaning cushions (42%, 20/48), lack of guidelines (35%, 27/48), continued use of visibly soiled wheelchairs (29%, 14/48) and lack of resources (25%, 12/48). Our results suggest that wheelchair cleaning and disinfection is not optimally performed at many Canadian hospitals and LTCFs. Specific guidance on wheelchair cleaning and disinfection is necessary. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  18. The role of surface disinfection in infection prevention

    Science.gov (United States)

    Gebel, Jürgen; Exner, Martin; French, Gary; Chartier, Yves; Christiansen, Bärbel; Gemein, Stefanie; Goroncy-Bermes, Peter; Hartemann, Philippe; Heudorf, Ursel; Kramer, Axel; Maillard, Jean-Yves; Oltmanns, Peter; Rotter, Manfred; Sonntag, Hans-Günther

    2013-01-01

    Background: The Rudolf Schuelke Foundation addresses topics related to hygiene, infection prevention and public health. In this context a panel of scientists from various European countries discussed “The Role of Surface Disinfection in Infection Prevention”. The most important findings and conclusions of this meeting are summarised in the present consensus paper. Aim: Although the relevance of surface disinfection is increasingly being accepted, there are still a number of issues which remain controversial. In particular, the following topics were addressed: Transferral of microbes from surface to patients as a cause of infection, requirements for surface disinfectants, biocidal resistance and toxicity, future challenges. Methods and findings: After discussion and review of current scientific literature the authors agreed that contaminated surfaces contribute to the transmission of pathogens and may thus pose an infection hazard. Targeted surface disinfection based on a risk profile is seen as an indispensable constituent in a multibarrier approach of universal infection control precautions. Resistance and cross-resistance depend on the disinfectant agent as well as on the microbial species. Prudent implementation of surface disinfection regimens tested to be effective can prevent or minimize adverse effects. Conclusions: Disinfection must be viewed as a holistic process. There is a need for defining standard principles for cleaning and disinfection, for ensuring compliance with these principles by measures such as written standard operating procedures, adequate training and suitable audit systems. Also, test procedures must be set up in order to demonstrate the efficacy of disinfectants including new application methods such as pre-soaked wipes for surface disinfection. PMID:23967396

  19. The role of surface disinfection in infection prevention

    Directory of Open Access Journals (Sweden)

    Gebel, Jürgen

    2013-04-01

    Full Text Available [english] Background: The Rudolf Schuelke Foundation addresses topics related to hygiene, infection prevention and public health. In this context a panel of scientists from various European countries discussed “The Role of Surface Disinfection in Infection Prevention”. The most important findings and conclusions of this meeting are summarised in the present consensus paper.Aim: Although the relevance of surface disinfection is increasingly being accepted, there are still a number of issues which remain controversial. In particular, the following topics were addressed: Transferral of microbes from surface to patients as a cause of infection, requirements for surface disinfectants, biocidal resistance and toxicity, future challenges.Methods and findings: After discussion and review of current scientific literature the authors agreed that contaminated surfaces contribute to the transmission of pathogens and may thus pose an infection hazard. Targeted surface disinfection based on a risk profile is seen as an indispensable constituent in a multibarrier approach of universal infection control precautions. Resistance and cross-resistance depend on the disinfectant agent as well as on the microbial species. Prudent implementation of surface disinfection regimens tested to be effective can prevent or minimize adverse effects.Conclusions: Disinfection must be viewed as a holistic process. There is a need for defining standard principles for cleaning and disinfection, for ensuring compliance with these principles by measures such as written standard operating procedures, adequate training and suitable audit systems. Also, test procedures must be set up in order to demonstrate the efficacy of disinfectants including new application methods such as pre-soaked wipes for surface disinfection.

  20. Bent CNN bond of diazo compounds, RR'(Cdbnd N+dbnd N-)

    Science.gov (United States)

    Akita, Motoko; Takahashi, Mai; Kobayashi, Keiji; Hayashi, Naoto; Tukada, Hideyuki

    2013-02-01

    The reaction of ninhydrin with benzophenone hydrazone afforded 2-diazo-3-diphenylmethylenehydrazono-1-indanone 1 and 2-diazo-1,3-bis(diphenylmethylenehydrazono)indan 2. X-ray crystal structure analyses of these products showed that the diazo functional group Cdbnd N+dbnd N- of 1 is bent by 172.9°, while that of 2 has a linear geometry. The crystal structure data of diazo compounds have been retrieved from the Cambridge Structural Database (CSD), which hit 177 entries to indicate that the angle of 172.9° in 1 lies in one of the most bent structures. The CSD search also indicated that diazo compounds consisting of a distorted diazo carbon tend to bend the Cdbnd N+dbnd N- bond. On the basis of DFT calculations (B3LYP/6-311++G(d,p)) of model compounds, it was revealed that the bending of the CNN bond is principally induced by steric factors and that the neighboring carbonyl group also plays a role in bending toward the carbonyl side owing to an electrostatic attractive interaction. The potential surface along the path of Cdbnd N+dbnd N- bending in 2-diazopropane shows a significantly shallow profile with only 4 kcal/mol needed to bend the Cdbnd N+dbnd N- bond from 180° to 160°. Thus, the bending of the diazo group in 1 is reasonable as it is provided with all of the factors for facile bending disclosed in this investigation.

  1. Genotoxicity of the disinfection by-products resulting from peracetic acid- or hypochlorite-disinfected sewage wastewater.

    Science.gov (United States)

    Crebelli, R; Conti, L; Monarca, S; Feretti, D; Zerbini, I; Zani, C; Veschetti, E; Cutilli, D; Ottaviani, M

    2005-03-01

    Wastewater disinfection is routinely carried out to prevent the spread of human pathogens present in wastewater effluents. To this aim, chemical and physical treatments are applied to the effluents before their emission in water bodies. In this study, the influence of two widely used disinfectants, peracetic acid (PAA) and sodium hypochlorite (NaClO), on the formation of mutagenic by-products was investigated. Wastewater samples were collected before and after disinfection, in winter and in summer, at a pilot plant installed in a municipal wastewater-treatment plant. Samples were adsorbed using silica C18 cartridges and the concentrates were tested for mutagenicity in the Salmonella typhimurium reversion test with strains TA98 and TA100. Non-concentrated water samples were tested with two plant genotoxicity assays (the Allium cepa root anaphase aberration test and the Tradescantia/micronucleus test). Mutagenicity assays in bacteria and in Tradescantia showed borderline mutagenicity in some of the wastewater samples, independent of the disinfection procedure applied. Negative results were obtained in the A. cepa anaphase aberration test. These results indicate that, in the conditions applied, wastewater disinfection with PAA and NaClO does not lead to the formation of significant amounts of genotoxic by-products.

  2. Ingested Nitrate, Disinfection By-products, and Kidney Cancer Risk in Older Women.

    Science.gov (United States)

    Jones, Rena R; Weyer, Peter J; DellaValle, Curt T; Robien, Kim; Cantor, Kenneth P; Krasner, Stuart; Beane Freeman, Laura E; Ward, Mary H

    2017-09-01

    N-nitroso compounds formed endogenously after nitrate/nitrite ingestion are animal renal carcinogens. Previous epidemiologic studies of drinking water nitrate did not evaluate other potentially toxic water contaminants, including the suspected renal carcinogen chloroform. In a cohort of postmenopausal women in Iowa (1986-2010), we used historical measurements to estimate long-term average concentrations of nitrate-nitrogen (NO3-N) and disinfection by-products (DBP) in public water supplies. For NO3-N and the regulated DBP (total trihalomethanes [THM] and the sum of five haloacetic acids [HAA5]), we estimated the number of years of exposure above one-half the current maximum contaminant level (>½-MCL NO3-N; >5 mg/L). Dietary intakes were assessed via food frequency questionnaire. We estimated hazard ratios (HRs) and 95% confidence intervals (CIs) with Cox models, and evaluated interactions with factors influencing N-nitroso compound formation. We identified 125 incident kidney cancers among 15,577 women reporting using water from public supplies >10 years. In multivariable models, risk was higher in the 95th percentile of average NO3-N (HRp95vsQ1 = 2.3; CI: 1.2, 4.3; Ptrend = 0.33) and for any years of exposure >½-MCL; adjustment for total THM did not materially change these associations. There were no independent relationships with total THM, individual THMs chloroform and bromodichloromethane, or with haloacetic acids. Dietary analyses yielded associations with high nitrite intake from processed meats but not nitrate or nitrite overall. We found no interactions. Relatively high nitrate levels in public water supplies were associated with increased risk of renal cancer. Our results also suggest that nitrite from processed meat is a renal cancer risk factor.

  3. [DESIDENT CaviCide a new disinfectant].

    Science.gov (United States)

    Severa, J; Klaban, V

    2009-01-01

    The properties of the new disinfection agent DESIDENT CaviCide, such as characteristics, disinfection efficiency, biological degradability and ecotoxicity are described. Also areas and forms of usage this biocidal agent are mentioned.

  4. Ultraviolet disinfection of potable water

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, R. L. [Metropolitan Water District of Southern California, Los Angeles, CA (United States)

    1990-06-15

    Because of upcoming surface and groundwater regulations regarding the control of microbiological and chemical contaminants, there is a need to evaluate the feasibility and effectiveness of ultraviolet (UV) radiation for primary disinfection of potable water supplies. Data is presented on microbicidal wavelengths of UV and distribution of energy output for low and medium-pressure arc lamps. Both systems were found to perform equally well for inactivating microorganisms, but each had distinct advantages in different applications. Approximate dosages for 90% inactivation of selected microorganisms by UV is presented in a table. Cost analysis for disinfection is presented in two tables as well as the advantages and disadvantages of UV disinfection.

  5. Ultraviolet disinfection of potable water

    International Nuclear Information System (INIS)

    Wolfe, R.L.

    1990-01-01

    Because of upcoming surface and groundwater regulations regarding the control of microbiological and chemical contaminants, there is a need to evaluate the feasibility and effectiveness of ultraviolet (UV) radiation for primary disinfection of potable water supplies. Data is presented on microbicidal wavelengths of UV and distribution of energy output for low and medium-pressure arc lamps. Both systems were found to perform equally well for inactivating microorganisms, but each had distinct advantages in different applications. Approximate dosages for 90% inactivation of selected microorganisms by UV is presented in a table. Cost analysis for disinfection is presented in two tables as well as the advantages and disadvantages of UV disinfection

  6. Kinetics of the oxidation of cylindrospermopsin and anatoxin-a with chlorine, monochloramine and permanganate.

    Science.gov (United States)

    Rodríguez, Eva; Sordo, Ana; Metcalf, James S; Acero, Juan L

    2007-05-01

    Cyanobacteria produce toxins that may contaminate drinking water sources. Among others, the presence of the alkaloid toxins cylindrospermopsin (CYN) and anatoxin-a (ANTX) constitutes a considerable threat to human health due to the acute and chronic toxicity of these compounds. In the present study, not previously reported second-order rate constants for the reactions of CYN and ANTX with chlorine and monochloramine and of CYN with potassium permanganate were determined and the influence of pH and temperature was established for the most reactive cases. It was found that the reactivity of CYN with chlorine presents a maximum at pH 7 (rate constant of 1265 M(-1)s(-1)). However, the oxidation of CYN with chloramine and permanganate are rather slow processes, with rate constants chlorination product of CYN was found to be 5-chloro-CYN (5-Cl-CYN), which reacts with chlorine 10-20 times slower than the parent compound. The reactivity of ANTX with chlorine and chloramines is also very low (kchlorine dose of 1.5 mg l(-1) was enough to oxidize CYN almost completely. However, 3 mg l(-1) of chlorine was able to remove only 8% of ANTX, leading to a total formation of trihalomethanes (TTHM) at a concentration of 150 microg l(-1). Therefore, chlorination is a feasible option for CYN degradation during oxidation and disinfection processes but not for ANTX removal. The permanganate dose required for CYN oxidation is very high and not applicable in waterworks.

  7. Draft genome sequence of two Shingopyxis sp. strains H107 and H115 isolated from a chloraminated drinking water distriburion system simulator

    Data.gov (United States)

    U.S. Environmental Protection Agency — Draft genome sequence of two Shingopyxis sp. strains H107 and H115 isolated from a chloraminated drinking water distriburion system simulator. This dataset is...

  8. Resistance of Acanthamoeba Cysts to Disinfection Treatments Used in Health Care Settings▿

    Science.gov (United States)

    Coulon, Céline; Collignon, Anne; McDonnell, Gerald; Thomas, Vincent

    2010-01-01

    Free-living amoebae that belong to the genus Acanthamoeba are widespread in the environment, including water. They are responsible for human infections and can host pathogenic microorganisms. Under unfavorable conditions, they form cysts with high levels of resistance to disinfection methods, thus potentially representing a threat to public health. In the present study we evaluated the efficacies of various biocides against trophozoites and cysts of several Acanthamoeba strains. We demonstrated that disinfectant efficacy varied depending on the strains tested, with environmental strains demonstrating greater resistance than collection strains. Trophozoites were inactivated by all treatments except those using glutaraldehyde as an active compound: for these treatments, we observed resistance even after 30 min exposure. Cysts resisted many treatments, including certain conditions with glutaraldehyde and other biocides. Moist heat at 55°C was not efficient against cysts, whereas exposure at 65°C was. Several chemical formulations containing peracetic acid, hydrogen peroxide, or ortho-phthalaldehyde presented greater efficacy than glutaraldehyde, as did ethanol and sodium hypochlorite; however, some of these treatments required relatively long incubation times to achieve cyst inactivation. Amoebal cysts can be highly resistant to some high-level disinfectants, which has implications for clinical practice. These results highlight the need to consider the effective disinfection of protozoa in their vegetative and resistant forms due to their intrinsic resistance. This is important not only to prevent the transmission of protozoa themselves but also due to the risks associated with a range of microbial pathogens that are found to be associated intracellularly with these microorganisms. PMID:20519477

  9. 9 CFR 83.7 - Shipping containers; cleaning and disinfection.

    Science.gov (United States)

    2010-01-01

    ... HEMORRHAGIC SEPTICEMIA § 83.7 Shipping containers; cleaning and disinfection. (a) All live fish that are to be... been cleaned and disinfected. (1) Cleaning and disinfection of shipping containers must be monitored by... who issues the ICI. (2) Cleaning and disinfection must be sufficient to neutralize any VHS virus to...

  10. A bacteriological study of hospital beds before and after disinfection with phenolic disinfectant

    OpenAIRE

    Denise de Andrade; Emília L. S. Angerami; Carlos Roberto Padovani

    2000-01-01

    In hospitals, one of the ways to control microbial contamination is by disinfecting the furniture used by patients. This study's main objective was to evaluate the microbiological condition of hospital mattresses before and after such disinfection, in order to identify bacteria that are epidemiologically important in nosocomial infection, such as Staphylococcus aureus and Pseudomonas aeruginosa. RODAC plates with two different culture media were used to collect specimens. Patient beds were se...

  11. Peracetic Acid as a Green Disinfectant for Combined Sewer ...

    Science.gov (United States)

    This cooperative research and development agreement between U.S. EPA, Solvay, MSDGC, and CB&I is evaluating the potential of PAA for disinfection of Muddy Creek CSO wastewater and comparing that with sodium hypochlorite disinfection. This presentation will document the effectiveness of sodium hypochlorite and PAA for the inactivation of E. coli in CSO wastewater using laboratory bench-scale jar tests and Muddy Creek field site studies based on the following items:•Storage, shelf life, and application of the disinfectants.•Effectiveness of the disinfectants in the inactivation of E. coli.•Formation of harmful byproducts by the disinfectants.•Operation and maintenance costs, including the cost of the disinfectant, its storage, application, and neutralizing agent for the disinfectant to maintain the Ohio EPA guideline for residual disinfectant at the discharge point. Like many cities in the USA, Cincinnati, Ohio is attempting to find the best way to meet state and federal requirements concerning combined sewer overflow (CSO) wastewater. The Muddy Creek CSO treatment facility was constructed to provide treatment for CSO Numbers 198 and 216 from the Westwood Trunk sewer. The Metropolitan Sewer District of Greater Cincinnati (MSDGC) is currently using sodium hypochlorite for disinfection in this treatment facility. Because of degradation of hypochlorite during storage and the formation of chlorinated disinfection byproducts (DBPs), MSDGC is evaluating alternat

  12. Vitality of Enterococcus faecalis inside dentinal tubules after five root canal disinfection methods.

    Science.gov (United States)

    Vatkar, Niranjan Ashok; Hegde, Vivek; Sathe, Sucheta

    2016-01-01

    To compare the vitality of Enterococcus faecalis within dentinal tubules after subjected to five root canal disinfection methods. Dentin blocks (n = 60) were colonized with E. faecalis. After 4 weeks of incubation, the dentin blocks were divided into one control and five test groups (n = 10 each). The root canals of test groups were subjected to one of the disinfection methods, namely, normal saline (NS), sodium hypochlorite (NaOCl), chlorhexidine digluconate (CHX), neodymium-doped yttrium aluminum garnet (Nd: YAG) laser, and diode laser. The effect of disinfection methods was assessed by LIVE/DEAD BacLight stain under the confocal laser scanning microscopy to determine the "zone of dead bacteria" (ZDB). Mean values were calculated for ZDB and the difference between groups was established. Penetration of E. faecalis was seen to a depth of >1000 μm. Viable bacteria were detected with NS irrigation. NaOCl and CHX showed partial ZDB. When the root canals were disinfected with Nd: YAG and diode lasers, no viable bacteria were found. E. faecalis has the ability to colonize inside dentinal tubules to a depth of >1000 μm. In contrast to conventional irrigants, both Nd: YAG and diode lasers were effective in eliminating the vitality of E. faecalis. NS, NaOCl, and CHX showed viable bacteria remaining in dentinal tubules.

  13. Persistence of microbial contamination on transvaginal ultrasound probes despite low-level disinfection procedure.

    Directory of Open Access Journals (Sweden)

    Fatima M'Zali

    Full Text Available AIM OF THE STUDY: In many countries, Low Level Disinfection (LLD of covered transvaginal ultrasound probes is recommended between patients' examinations. The aim of this study was to evaluate the antimicrobial efficacy of LLD under routine conditions on a range of microorganisms. MATERIALS AND METHODS: Samples were taken over a six month period in a private French Radiology Center. 300 specimens derived from endovaginal ultrasound probes were analyzed after disinfection of the probe with wipes impregnated with a quaternary ammonium compound and chlorhexidine. Human papillomavirus (HPV was sought in the first set of s100 samples, Chlamydia trachomatis and mycoplasmas were searched in the second set of 100 samples, bacteria and fungi in the third 100 set samples. HPV, C. trachomatis and mycoplasmas were detected by PCR amplification. PCR positive samples were subjected to a nuclease treatment before an additional PCR assay to assess the likely viable microorganisms. Bacteria and fungi were investigated by conventional methods. RESULTS: A substantial persistence of microorganisms was observed on the disinfected probes: HPV DNA was found on 13% of the samples and 7% in nuclease-resistant form. C. trachomatis DNA was detected on 20% of the probes by primary PCR but only 2% after nuclease treatment, while mycoplasma DNA was amplified in 8% and 4%, respectively. Commensal and/or environmental bacterial flora was present on 86% of the probes, occasionally in mixed culture, and at various levels (10->3000 CFU/probe; Staphylococcus aureus was cultured from 4% of the probes (10-560 CFU/probe. No fungi were isolated. CONCLUSION: Our findings raise concerns about the efficacy of impregnated towels as a sole mean for disinfection of ultrasound probes. Although the ultrasound probes are used with disposable covers, our results highlight the potential risk of cross contamination between patients during ultrasound examination and emphasize the need for reviewing

  14. Effect of different heat treatments and disinfectants on the survival of Prototheca zopfii.

    Science.gov (United States)

    Lassa, Henryka; Jagielski, Tomasz; Malinowski, Edward

    2011-03-01

    Bovine mastitis caused by the yeast-like alga Prototheca zopfii represents a serious veterinary problem and may result in heavy economic losses to particular dairy farms. The purpose of this study was to evaluate the survival of 50 isolates of P. zopfii in milk subjected to different heat treatments and the survival of further 106 P. zopfii isolates after exposure to three classes of teat disinfectants: iodine (Dipal), quaternary ammonium compounds (Teat), and dodecylbenzenesulphonic acid (Blu-gard). Of the 50 isolates tested for thermal tolerance, 29 (58%) survived heat treatment at 62 °C for 30 s and 13 (26% of all isolates) of those survived after heat treatment at 72 °C for 15 s. None of the 106 isolates were able to withstand the in-use concentrations of the three disinfectants tested. The highest disinfectant concentrations that permitted survival of at least one isolate were dilutions: 1:1,000 for Dipal (survival rate of 52.8-57.5%), 1:100 for Teat (88.7-90.6%), and 1:10 for Blu-gard (100%). No differences in the survival rates of P. zopfii were observed with respect to the duration of exposure to disinfectant. The results of this study support the previous findings that P. zopfii may resist high-temperature treatments, including that applied in the high-temperature, short-time (HTST) pasteurization process. The obtained data also demonstrate the efficacy of the three classes of teat disinfectants against P. zopfii, with the efficacy of iodine being most pronounced. The study emphasizes the necessity of using higher temperatures in the pasteurization of raw milk to kill the Prototheca algae, as well as the particular suitability of the iodine for the control procedures of protothecal mastitis.

  15. 40 CFR 141.172 - Disinfection profiling and benchmarking.

    Science.gov (United States)

    2010-07-01

    ... benchmarking. 141.172 Section 141.172 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Disinfection-Systems Serving 10,000 or More People § 141.172 Disinfection profiling and benchmarking. (a... sanitary surveys conducted by the State. (c) Disinfection benchmarking. (1) Any system required to develop...

  16. Disinfectant effect of Methylated Ethanol against Listeria species

    Directory of Open Access Journals (Sweden)

    Y Yakubu

    2012-04-01

    Full Text Available This study was carried out in order to determine the disinfectant effect of Methylated spirit® (95% methanol and 5% ethanol as a teat dip against Listeria species. Hand milking was employed to collect 576 (288 x 2 raw milk samples from different lactating cows within Sokoto metropolis (Nigeria. 288 samples were collected before disinfecting the udder teats with Methylated spirit®, while the other 288 were collected after disinfection with Methylated spirit®. The samples were analyzed using selective culture and isolation technique in which the 288 samples collected before disinfection, 114 (39.6% were positive for Listeria species. Among the positive samples 44 (38.6% were Listeria innocua, 16 (14.0% Listeria ivanovii, 36 (31.6% Listeria monocytogenes, 11 (9.6% Listeria welshimeri and 7 (6.1% Listeria seeligeri, while none of the 288 samples collected after disinfection was positive. The study has shown high prevalence of Listeria species in milk collected without washing/disinfecting the teats and has also established the sensitivity of Listeria species to methylated ethanol which can be used as dip for disinfecting udder teats before milking in order to prevent contamination with Listeria species and other methylated spirit-sensitive organisms. This study is essential to educate Fulani herdsmen and other milk handlers on the importance of disinfecting udder teats before milking. [Vet. World 2012; 5(2.000: 91-93

  17. Candida auris: Disinfectants and Implications for Infection Control.

    Science.gov (United States)

    Ku, Tsun S N; Walraven, Carla J; Lee, Samuel A

    2018-01-01

    Candida auris is a rapidly emerging pathogen and is able to cause severe infections with high mortality rates. It is frequently misidentified in most clinical laboratories, thus requiring more specialized identification techniques. Furthermore, several clinical isolates have been found to be multidrug resistant and there is evidence of nosocomial transmission in outbreak fashion. Appropriate infection control measures will play a major role in controlling the management and spread of this pathogen. Unfortunately, there are very few data available on the effectiveness of disinfectants against C. auris . Chlorine-based products appear to be the most effective for environmental surface disinfection. Other disinfectants, although less effective than chlorine-based products, may have a role as adjunctive disinfectants. A cleaning protocol will also need to be established as the use of disinfectants alone may not be sufficient for maximal decontamination of patient care areas. Furthermore, there are fewer data on the effectiveness of antiseptics against C. auris for patient decolonization and hand hygiene for healthcare personnel. Chlorhexidine gluconate has shown some efficacy in in vitro studies but there are reports of patients with persistent colonization despite twice daily body washes with this disinfectant. Hand hygiene using soap and water, with or without chlorhexidine gluconate, may require the subsequent use of alcohol-based hand sanitizer for maximal disinfection. Further studies will be needed to validate the currently studied disinfectants for use in real-world settings.

  18. Evaluation of the efficiency of the photo Fenton disinfection of natural drinking water source during the rainy season in the Sahelian region

    Energy Technology Data Exchange (ETDEWEB)

    Ndounla, J., E-mail: juliette.ndounla@epfl.ch [Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering GPAO, Station 6, CH 1015 Lausanne (Switzerland); Institut International d' Ingénierie de l' Eau et de l' Environnement, Laboratoire Eau, Dépollution, Ecosystème et Santé (LEDES), 01 BP 594 Ouagadougou 01 (Burkina Faso); Pulgarin, C., E-mail: Cesar.pulgarin@epfl.ch [Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering GPAO, Station 6, CH 1015 Lausanne (Switzerland)

    2014-09-15

    The photo-disinfection of water from two different wells (W1, pH: 4.6–5.1 ± 0.02) and (W2 pH: 5.6–5.7 ± 0.02) was carried out during the rainy season at Ouagadougou–Burkina Faso, West Africa. The weather variation during the rainy season significantly affects the photo-disinfection processes (solar disinfection and photo-Fenton). The dilution of the water by rainwater highly affected the chemical composition of the wells' water used in this study; very low iron contents Compared to the ones recorded during the dry season were recorded in all water samples. Both photo-disinfection processes were used to treat 25 L of water in a compound parabolic collector (CPC). None of them have shown the total inactivation of both wild enteric bacteria strains (total coliforms/E. coli and Salmonella spp.) involved in the treatment. However, the total coliforms/E. coli strains were totally inactivated during the exposure under most of the photo-Fenton treatment. Also, the remaining strains, especially those of Salmonella spp. were achieved during the subsequent 24 h of dark storage under the action of the Fenton process. Under uniquely solar radiation, total inactivation was recorded only in the total coliforms/E. coli strains. The impact of the available irradiance on the efficiency of the photo-Fenton disinfection of natural water was highlighted during the exposure under high intermittent solar radiation. The impact of the HCO{sub 3}{sup −} concentration of both wells' water on the evolution of the pH during the photo-disinfection was recorded. Drastic decrease was noticed after the initial fast increase in presence of low HCO{sub 3}{sup −} concentration while a steady state was observed after the increase in presence of higher concentration. The redox activities of the nitrogen components of the water during both photo-disinfection processes have led to increased concentration of nitrite in all the cases and variations were noticed in that of nitrate and

  19. Evaluation of the efficiency of the photo Fenton disinfection of natural drinking water source during the rainy season in the Sahelian region

    International Nuclear Information System (INIS)

    Ndounla, J.; Pulgarin, C.

    2014-01-01

    The photo-disinfection of water from two different wells (W1, pH: 4.6–5.1 ± 0.02) and (W2 pH: 5.6–5.7 ± 0.02) was carried out during the rainy season at Ouagadougou–Burkina Faso, West Africa. The weather variation during the rainy season significantly affects the photo-disinfection processes (solar disinfection and photo-Fenton). The dilution of the water by rainwater highly affected the chemical composition of the wells' water used in this study; very low iron contents Compared to the ones recorded during the dry season were recorded in all water samples. Both photo-disinfection processes were used to treat 25 L of water in a compound parabolic collector (CPC). None of them have shown the total inactivation of both wild enteric bacteria strains (total coliforms/E. coli and Salmonella spp.) involved in the treatment. However, the total coliforms/E. coli strains were totally inactivated during the exposure under most of the photo-Fenton treatment. Also, the remaining strains, especially those of Salmonella spp. were achieved during the subsequent 24 h of dark storage under the action of the Fenton process. Under uniquely solar radiation, total inactivation was recorded only in the total coliforms/E. coli strains. The impact of the available irradiance on the efficiency of the photo-Fenton disinfection of natural water was highlighted during the exposure under high intermittent solar radiation. The impact of the HCO 3 − concentration of both wells' water on the evolution of the pH during the photo-disinfection was recorded. Drastic decrease was noticed after the initial fast increase in presence of low HCO 3 − concentration while a steady state was observed after the increase in presence of higher concentration. The redox activities of the nitrogen components of the water during both photo-disinfection processes have led to increased concentration of nitrite in all the cases and variations were noticed in that of nitrate and ammonia. - Graphical

  20. Disinfection aboard cruise liners and naval units: formation of disinfection by-products using chlorine dioxide in different qualities of drinking water.

    Science.gov (United States)

    Ufermann, Petra; Petersen, Hauke; Exner, Martin

    2011-12-01

    The world-wide deployment of cruise liners and naval units has caused an increased need for the disinfection of drinking water. The main cause for this is the unknown quality of drinking water in foreign harbours--besides the formation of bio-films due to the climatically disadvantageous conditions in the operational area. Water conduits on board are currently disinfected with calcium hypochlorite in case of microbiological contamination. Chemical and physical analyses after disinfection with calcium hypochlorite have shown that organic by-products consisting of trihalomethanes develop in considerable amounts during disinfection. Furthermore, the method is susceptible to handling errors and thus often leads to insufficient disinfection results. Hitherto, the use of other disinfection methods allowed by government regulations, especially chlorine dioxide, is not widely spread. Unlike disinfection with calcium hypochlorite, chlorine dioxide does not lead to the formation of trihalomethanes. Typical disinfection by-products (DBP) are the anions chlorite and chlorate, which are formed in oxidative processes. The formation conditions of these anions have not yet been elucidated. For this reason, the probability of the generation of inorganic by-products after disinfection with chlorine dioxide has been determined, and their occurrence in drinking water on board has been examined with respect to a possible correlation between water quality and the formation of chlorate and chlorite. Therefore, a chromatographic method was developed and validated in order to determine the periodical development of chlorate and chlorite from chorine dioxide in purified water at different pH-values as well as in actual drinking water samples from water conduits on board. The formation of the by-products chlorite and chlorate after disinfection with chlorine dioxide is influenced neither by pH-value nor by chemical properties of the disinfected water. Considering the examined conditions

  1. On the factors influencing the performance of solar reactors for water disinfection with photosensitized singlet oxygen.

    Science.gov (United States)

    Manjón, Francisco; Villén, Laura; García-Fresnadillo, David; Orellana, Guillermo

    2008-01-01

    Two solar reactors based on compound parabolic collectors (CPCs) were optimized for water disinfection by photosensitized singlet oxygen (1O2) production in the heterogeneous phase. Sensitizing materials containing Ru(II) complexes immobilized on porous silicone were produced, photochemically characterized, and successfully tested for the inactivation of up to 10(4) CFU mL(-1) of waterborne Escherichia coli (gram-negative) or Enterococcus faecalis (gram-positive) bacteria. The main factors determining the performance of the solar reactors are the type of photosensitizing material, the sensitizer loading, the CPC collector geometry (fin- vs coaxial-type), the fluid rheology, and the balance between concurrent photothermal--photolytic and 1O2 effects on the microorganisms' inactivation. In this way, at the 40 degrees N latitude of Spain, water can be disinfected on a sunny day (0.6-0.8 MJ m(-2) L(-1) accumulated solar radiation dose in the 360-700 nm range, typically 5-6 h of sunlight) with a fin-type reactor containing 0.6 m2 of photosensitizing material saturated with tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) (ca. 2.0 g m(-2)). The optimum rheological conditions require laminar-to-transitional water flow in both prototypes. The fin-type system showed better inactivation efficiency than the coaxial reactor due to a more important photolytic contribution. The durability of the sensitizing materials was tested and the operational lifetime of the photocatalyst is at least three months without any reduction in the bacteria inactivation efficiency. Solar water disinfection with 1O2-generating films is demonstrated to be an effective technique for use in isolated regions of developing countries with high yearly average sunshine.

  2. Effect of mixing techniques on bacterial attachment and disinfection time of polyether impression material.

    Science.gov (United States)

    Guler, Umut; Budak, Yasemin; Ruh, Emrah; Ocal, Yesim; Canay, Senay; Akyon, Yakut

    2013-09-01

    The aim of this study was 2-fold. The first aim was to evaluate the effects of mixing technique (hand-mixing or auto-mixing) on bacterial attachment to polyether impression materials. The second aim was to determine whether bacterial attachment to these materials was affected by length of exposure to disinfection solutions. Polyether impression material samples (n = 144) were prepared by hand-mixing or auto-mixing. Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa were used in testing. After incubation, the bacterial colonies were counted and then disinfectant solution was applied. The effect of disinfection solution was evaluated just after the polymerization of impression material and 30 min after polymerization. Differences in adherence of bacteria to the samples prepared by hand-mixing and to those prepared by auto-mixing were assessed by Kruskal-Wallis and Mann-Whitney U-tests. For evaluating the efficiency of the disinfectant, Kruskal-Wallis multiple comparisons test was used. E. coli counts were higher in hand-mixed materials (P 2.394). The methods used for mixing polyether impression material did not affect bacterial attachment to impression surfaces. In contrast, the disinfection procedure greatly affects decontamination of the impression surface.

  3. Gamma irradiation of cultural artifacts for disinfection using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Choi, Jong-il; Yoon, Minchul; Kim, Dongho

    2012-01-01

    In this study, it has been investigated the disinfection of Korean cultural artifacts by gamma irradiation, simulating the absorbed dose distribution on the object with the Monte Carlo methodology. Fungal contamination was identified on two traditional Korean agricultural tools, Hongdukkae and Holtae, which had been stored in a museum. Nine primary species were identified from these items: Bjerkandera adusta, Dothideomycetes sp., Penicillium sp., Cladosporium tenuissimum, Aspergillus versicolor, Penicillium sp., Entrophospora sp., Aspergillus sydowii, and Corynascus sepedonium. However, these fungi were completely inactivated by gamma irradiation at an absorbed dose of 20 kGy on the front side. Monte Carlo N Particle Transport Code was used to simulate the doses applied to these cultural artifacts, and the measured dose distributions were well predicted by the simulations. These results show that irradiation is effective for the disinfection of cultural artifacts and that dose distribution can be predicted with Monte Carlo simulations, allowing the optimization of the radiation treatment. - Highlights: ► Radiation was applied for the disinfection of Korean cultural artifacts. ► Fungi on the artifacts were completely inactivated by the irradiation. ► Monte Carlo N Particle Transport Code was used to predict the dose distribution. ► This study is applicable for the preservation of cultural artifacts by irradiation.

  4. Peracetic acid for secondary effluent disinfection: a comprehensive performance assessment.

    Science.gov (United States)

    Antonelli, M; Turolla, A; Mezzanotte, V; Nurizzo, C

    2013-01-01

    The paper is a review of previous research on secondary effluent disinfection by peracetic acid (PAA) integrated with new data about the effect of a preliminary flash-mixing step. The process was studied at bench and pilot scale to assess its performance for discharge in surface water and agricultural reuse (target microorganisms: Escherichia coli and faecal coliform bacteria). The purposes of the research were: (1) determining PAA decay and disinfection kinetics as a function of operating parameters, (2) evaluating PAA suitability as a disinfectant, (3) assessing long-term disinfection efficiency, (4) investigating disinfected effluent biological toxicity on some aquatic indicator organisms (Vibrio fischeri, Daphnia magna and Selenastrum capricornutum), (5) comparing PAA with conventional disinfectants (sodium hypochlorite, UV irradiation). PAA disinfection was capable of complying with Italian regulations on reuse (10 CFU/100 mL for E. coli) and was competitive with benchmarks. No regrowth phenomena were observed, as long as needed for agricultural reuse (29 h after disinfection), even at negligible concentrations of residual disinfectant. The toxic effect of PAA on the aquatic environment was due to the residual disinfectant in the water, rather than to chemical modification of the effluent.

  5. Dose requirements for UVC disinfection of catheter biofilms

    DEFF Research Database (Denmark)

    Bak, Jimmy; Ladefoged, Søren D.; Tvede, Michael

    2009-01-01

    Bacterial biofilms on permanent catheters are the major sources of infection. Exposure to ultraviolet-C (UVC) light has been proposed as a method for disinfecting the inner surface of catheters. Specification of a UVC-based device for in vivo disinfection is based on the knowledge of the required...... doses to kill catheter biofilm. Given these doses and the power of available UVC light sources, calculation of the necessary treatment times is then possible. To determine the required doses, contaminated urinary catheters were used as test samples and UVC treated in vitro. Patient catheters (n = 67......) were collected and cut into segments of equal size and treated with various UVC doses. After treatment, the biofilm was removed by scraping and quantified by counting colony forming units. Percentage killing rates were determined by calculating ratios between UVC-treated samples and controls (no UVC...

  6. Chemical aspects of peracetic acid based wastewater disinfection ...

    African Journals Online (AJOL)

    Peracetic acid (PAA) has been studied for wastewater disinfection applications for some 30 years and has been shown to be an effective disinfectant against many indicator microbes, including bacteria, viruses, and protozoa. One of the key advantages compared to, e.g., chlorine is the lack of harmful disinfection ...

  7. Radiation induced chemical changes in and disinfection of organic wastes suitable for supplemental feed

    International Nuclear Information System (INIS)

    Groneman, A.F.

    1980-01-01

    Ionizing radiation has been found to disinfect organic wastes and simultaneously ease the separation of suspended solids from water. Because these effects can have important favourable impacts on the technology of upgrading organic wastes to animal feed or fertilizers, experimental studies are reported on the rationale of effects of gamma irradiation or disinfection and separation of the solid and the liquid phase of organic waste systems. The radiation inactivation of microorganisms occurs by direct and indirect action. Mechanisms of inactivation are discussed and measures are proposed how the indirect action of the radiation inactivation of microorganisms can be increased. Effects of gamma irradiation on dewatering properties of organic wastes were indirectly caused by the oxidizing OH radicals produced by the irradiation of water. OH radicals react with organic components of the solid phase which leads to their solubilisation resulting in an increase of the total organic carbon concentration in the liquid phase. Results of a mutagenicity test indicate that the solvated compounds exhibited no mutagenic activity. Microbiological case studies on the disinfection and upgrading of liquid and solid organic wastes to animal feed are discussed and the acceptance of radiation processing is evaluated. (Auth.)

  8. Effects of some antiseptics and disinfectants on Staphylococcus ...

    African Journals Online (AJOL)

    A total of 6 antiseptics and disinfectants at varying concentrations (20% - 100%) and contact time (10-60 minutes) were tested for the efficacy in the reduction of Staphylococcus aureus isolated from the hands of volunteers. Disinfectant 1 was the most effective disinfectant being bactericidal to S. aureus at 100% ...

  9. Candida auris: Disinfectants and Implications for Infection Control

    Directory of Open Access Journals (Sweden)

    Tsun S. N. Ku

    2018-04-01

    Full Text Available Candida auris is a rapidly emerging pathogen and is able to cause severe infections with high mortality rates. It is frequently misidentified in most clinical laboratories, thus requiring more specialized identification techniques. Furthermore, several clinical isolates have been found to be multidrug resistant and there is evidence of nosocomial transmission in outbreak fashion. Appropriate infection control measures will play a major role in controlling the management and spread of this pathogen. Unfortunately, there are very few data available on the effectiveness of disinfectants against C. auris. Chlorine-based products appear to be the most effective for environmental surface disinfection. Other disinfectants, although less effective than chlorine-based products, may have a role as adjunctive disinfectants. A cleaning protocol will also need to be established as the use of disinfectants alone may not be sufficient for maximal decontamination of patient care areas. Furthermore, there are fewer data on the effectiveness of antiseptics against C. auris for patient decolonization and hand hygiene for healthcare personnel. Chlorhexidine gluconate has shown some efficacy in in vitro studies but there are reports of patients with persistent colonization despite twice daily body washes with this disinfectant. Hand hygiene using soap and water, with or without chlorhexidine gluconate, may require the subsequent use of alcohol-based hand sanitizer for maximal disinfection. Further studies will be needed to validate the currently studied disinfectants for use in real-world settings.

  10. Application of a high-level peracetic acid disinfection protocol to re-process antibiotic disinfected skin allografts.

    Science.gov (United States)

    Lomas, R J; Huang, Q; Pegg, D E; Kearney, J N

    2004-01-01

    Skin allografts, derived from cadaveric donors, are widely used for the treatment of burns and ulcers. Prior to use in clinical situations, these allografts are disinfected using a cocktail of antibiotics and then cryopreserved. Unfortunately, this antibiotic disinfection procedure fails to decontaminate a significant proportion and these contaminated grafts can not be used clinically. We have investigated whether it is possible to apply a second, more potent disinfection procedure to these contaminated grafts and effectively to re-process them for clinical use. Cadaveric skin grafts, treated with antibiotics and cryopreserved, were thawed and a peracetic acid (PAA) disinfection protocol applied. The grafts were then preserved in a high concentration of glycerol or propylene glycol, and properties thought to be essential for successful clinical performance assessed. The cytotoxicity of the grafts was assessed using both extract and contact assays; damage to the skin collagen was assessed using a collagenase susceptibility assay and the capacity of the grafts to elicit an inflammatory response in vitro was assessed by quantifying the production of the pro-inflammatory cytokine TNF-alpha by human peripheral blood mononuclear phagocytes. PAA disinfection, in conjunction with either glycerol or propylene glycol preservation, did not render the grafts cytotoxic, pro-inflammatory, or increase their susceptibility to collagenase digestion. The rates of penetration of glycerol and propylene glycol into the re-processed skin were comparable to those of fresh skin. This study has demonstrated that PAA disinfection combined with immersion in high concentrations of either glycerol or propylene glycol was an effective method for re-processing contaminated skin allografts, and may justify their clinical use.

  11. 9 CFR 52.7 - Disinfection of premises, conveyances, and materials.

    Science.gov (United States)

    2010-01-01

    ... cleaning and disinfection, unless an official pseudorabies epidemiologist determines that a shorter or... and disinfection, except for cleaning and disinfection of the conveyances used to transport the swine... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Disinfection of premises, conveyances...

  12. Inactivation of an enterovirus by airborne disinfectants

    Science.gov (United States)

    2013-01-01

    Background The activity of airborne disinfectants on bacteria, fungi and spores has been reported. However, the issue of the virucidal effect of disinfectants spread by fogging has not been studied thoroughly. Methods A procedure has been developed to determine the virucidal activity of peracetic acid-based airborne disinfectants on a resistant non-enveloped virus poliovirus type 1. This virus was laid on a stainless carrier. The products were spread into the room by hot fogging at 55°C for 30 minutes at a concentration of 7.5 mL.m-3. Poliovirus inoculum, supplemented with 5%, heat inactivated non fat dry organic milk, were applied into the middle of the stainless steel disc and were dried under the air flow of a class II biological safety cabinet at room temperature. The Viral preparations were recovered by using flocked swabs and were titered on Vero cells using the classical Spearman-Kärber CPE reading method, the results were expressed as TCID50.ml-1. Results The infectious titer of dried poliovirus inocula was kept at 105 TCID50.mL-1 up to 150 minutes at room temperature. Dried inocula exposed to airborne peracetic acid containing disinfectants were recovered at 60 and 120 minutes post-exposition and suspended in culture medium again. The cytotoxicity of disinfectant containing medium was eliminated through gel filtration columns. A 4 log reduction of infectious titer of dried poliovirus inocula exposed to peracetic-based airborne disinfectant was obtained. Conclusion This study demonstrates that the virucidal activity of airborne disinfectants can be tested on dried poliovirus. PMID:23587047

  13. Modeling the formation of N-nitrosodimethylamine (NDMA) from the reaction of natural organic matter (NOM) with monochloramine.

    Science.gov (United States)

    Chen, Zhuo; Valentine, Richard L

    2006-12-01

    This paper presents mechanistic studies on the formation of NDMA, a newly identified chloramination disinfection byproduct, from reactions of monochloramine with natural organic matter. A kinetic model was developed to validate proposed reactions and to predict NDMA formation in chloraminated water during the time frame of 1-5 days. This involved incorporating NDMA formation reactions into an established comprehensive model describing the oxidation of humic-type natural organic matter by monochloramine. A rate-limiting step involving the oxidation of NOM is theorized to control the rate of NDMA formation which is assumed to be proportional to the rate of NOM oxidized by monochloramine. The applicability of the model to describe NDMA formation in the presence of three NOM sources over a wide range in water quality (i.e., pH, DOC, and ammonia concentrations) was evaluated. Results show that with accurate measurement of monochloramine demand for a specific supply, NDMA formation could be modeled over an extended range of experimental conditions by considering a single NOM source-specific value of thetaNDMA, a stoichiometric coefficient relating the amount of NDMA produced to the amount of NOM oxidized, and several kinetic parameters describing NOM oxidation. Furthermore, the oxidation of NOM is the rate-limiting step governing NDMA formation. This suggests that NDMA formation over a 1-5 day time frame may be estimated from information on the chloramine or free chlorine demand of the NOM and the source-specific linear relationship between this demand and NDMA formation. Although the proposed model has not yet been validated for shorter time periods that may better characterize the residence time in some distribution systems, the improved understanding of the important reactions governing NDMA formation and the resulting model should benefit the water treatment industry as a tool in developing strategies that minimize NDMA formation.

  14. 9 CFR 55.4 - Disinfection of premises, conveyances, and materials.

    Science.gov (United States)

    2010-01-01

    ... paid will be responsible for expenses incurred in connection with the cleaning and disinfection, except that APHIS or a State will pay for cleaning and disinfection of the conveyances used to transport the... disinfecting premises when the procedures needed to conduct effective cleaning and disinfection are unusually...

  15. Biofilm formation and disinfectant resistance of Salmonella sp. in mono- and dual-species with Pseudomonas aeruginosa.

    Science.gov (United States)

    Pang, X Y; Yang, Y S; Yuk, H G

    2017-09-01

    This study aimed to evaluate the biofilm formation and disinfectant resistance of Salmonella cells in mono- and dual-species biofilms with Pseudomonas aeruginosa, and to investigate the role of extracellular polymeric substances (EPS) in the protection of biofilms against disinfection treatment. The populations of Salmonella in mono- or dual-species biofilms with P. aeruginosa on stainless steel (SS) coupons were determined before and after exposure to commercial disinfectant, 50 μg ml -1 chlorine or 200 μg ml -1 Ecolab ® Whisper™ V (a blend of four effective quaternary ammonium compounds (QAC)). In addition, EPS amount from biofilms was quantified and biofilm structures were observed using scanning electron microscopy (SEM). Antagonistic interactions between Salmonella and P. aeruginosa resulted in lower planktonic population level of Salmonella, and lower density in dual-species biofilms compared to mono-species biofilms. The presence of P. aeruginosa significantly enhanced disinfectant resistance of S. Typhimurium and S. Enteritidis biofilm cells for 2 days, and led to an average of 50% increase in polysaccharides amount in dual-species biofilms than mono-species biofilms of Salmonella. Microscopy observation showed the presence of large microcolonies covered by EPS in dual-species biofilms but not in mono-species ones. The presence of P. aeruginosa in dual-species culture inhibited the growth of Salmonella cells in planktonic phase and in biofilms, but protected Salmonella cells in biofilms from disinfection treatment, by providing more production of EPS in dual-species biofilms than mono-species ones. This study provides insights into inter-species interaction, with regard to biofilm population dynamics and disinfectant resistance. Thus, a sanitation protocol should be designed considering the protective role of secondary species to pathogens in biofilms on SS surface which has been widely used at food surfaces and manufacturers. © 2017 The Society

  16. Safety and durability of low-density polyethylene bags in solar water disinfection applications.

    Science.gov (United States)

    Danwittayakul, Supamas; Songngam, Supachai; Fhulua, Tipawan; Muangkasem, Panida; Sukkasi, Sittha

    2017-08-01

    Solar water disinfection (SODIS) is a simple point-of-use process that uses sunlight to disinfect water for drinking. Polyethylene terephthalate (PET) bottles are typically used as water containers for SODIS, but a new SODIS container design has recently been developed with low-density polyethylene (LDPE) bags and can overcome the drawbacks of PET bottles. Two nesting layers of LDPE bags are used in the new design: the inner layer containing the water to be disinfected and the outer one creating air insulation to minimize heat loss from the water to the surroundings. This work investigated the degradation of LDPE bags used in the new design in actual SODIS conditions over a period of 12 weeks. The degradation of the LDPE bags was investigated weekly using a scanning electron microscope, Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometer, and tensile strength tester. It was found that the LDPE bags gradually degraded under the sunlight due to photo-oxidation reactions, especially in the outer bags, which were directly exposed to the sun and surroundings, leading to the reduction of light transmittance (by 11% at 300 nm) and tensile strength (by 33%). In addition, possible leaching of organic compounds into the water contained in the inner bags was examined using gas chromatography-mass spectrometer. 2,4-Di-tert-butylphenol was found in some SODIS water samples as well as the as-received water samples, in the concentration range of 1-4 μg/L, which passes the Environmental Protection Agency Drinking Water Guidance on Disinfection By-Products.

  17. Liquid chromatographic determination of para-toluenesulfonamide in edible fillet tissues from three species of fish

    Science.gov (United States)

    Meinertz, J.R.; Schmidt, L.J.; Stehly, G.R.; Gingerich, W.H.

    1999-01-01

    Chloramine-T (N-sodium-N-chloro-p-toluene-sulfonamide) is a candidate therapeutic drug for treating bacterial gill disease, a predominant disease of a variety of fish species. Research has been initiated to obtain the U.S. Food and Drug Administration's (FDA) approval for the use of chloramine-T on a variety of fish species. An attribute of a therapeutic aquaculture drug that must be characterized before the FDA approves its use is depletion of the drug's marker residue (the drug's parent compound or metabolite of highest concentration in an edible tissue). Para-Toluenesulfonamide (p-TSA) is the primary degradation product and marker residue for chloramine-T in rainbow trout. To conduct residue depletion studies for chloramine-T in fish, a robust analytical method sensitive and specific for p-TSA residues in edible fillet tissue from a variety of fish was required. Homogenized fillet tissues from rainbow trout (Oncorhynchus mykiss), walleye (Stizostedion vitreum), and channel catfish (Ictalurus punctatus) were fortified at nominal p-TSA concentrations of 17, 67, 200, 333, and 1000 ng/g. Samples were analyzed by isocratic reversed-phase liquid chromatography (LC) with absorbance detection at 226 nm. Mean recoveries of p-TSA ranged from 77 to 93.17%; relative standard deviations ranged from 1.5 to 14%; method quantitation limits ranged from 13 to 18 ng/g; and method detection limits ranged from 3.8 to 5.2 ng/g. The LC parameters produced p-TSA peaks without coelution of endogenous compounds and excluded chromatographic interference from at least 20 chemicals and drugs of potential use in aquaculture.

  18. The Role of Hydroxylamine as a Nitrification Intermediate in N-nitrosamine Formation

    Science.gov (United States)

    The formation of N-nitrosamines, and in particular N-nitrosodimethylamine (NDMA), in drinking water systems that use chloramines is a concern because of their potential carcinogenicity and occurrences in finished waters at toxicologically relevant levels. The widely accepted mech...

  19. Assessment of the bacteriological activity associated with granular activated carbon treatment of drinking water.

    Science.gov (United States)

    Stewart, M H; Wolfe, R L; Means, E G

    1990-01-01

    Bacteriological analyses were performed on the effluent from a conventional water treatment pilot plant in which granular activated carbon (GAC) had been used as the final process to assess the impact of GAC on the microbial quality of the water produced. Samples were collected twice weekly for 160 days from the effluents of six GAC columns, each of which used one of four different empty-bed contact times (7.5, 15, 30, and 60 min). The samples were analyzed for heterotrophic plate counts and total coliforms. Effluent samples were also exposed to chloramines and free chlorine for 60 min (pH 8.2, 23 degrees C). Bacterial identifications were performed on the disinfected and nondisinfected effluents. Additional studies were conducted to assess the bacteriological activity associated with released GAC particles. The results indicated that heterotrophic plate counts in the effluents from all columns increased to 10(5) CFU/ml within 5 days and subsequently stabilized at 10(4) CFU/ml. The heterotrophic plate counts did not differ at different empty-bed contact times. Coliforms (identified as Enterobacter spp.) were recovered from the nondisinfected effluent on only two occasions. The disinfection results indicated that 1.5 mg of chloramines per liter inactivated approximately 50% more bacteria than did 1.0 mg of free chlorine per liter after 1 h of contact time. Chloramines and chlorine selected for the development of different bacterial species--Pseudomonas spp. and Flavobacterium spp., respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2082828

  20. Formation of brominated disinfection byproducts from natural organic matter isolates and model compounds in a sulfate radical-based oxidation process

    KAUST Repository

    Wang, Yuru; Le Roux, Julien; Zhang, Tao; Croue, Jean-Philippe

    2014-01-01

    A sulfate radical-based advanced oxidation process (SR-AOP) has received increasing application interest for the removal of water/wastewater contaminants. However, limited knowledge is available on its side effects. This study investigated the side effects in terms of the production of total organic bromine (TOBr) and brominated disinfection byproducts (Br-DBPs) in the presence of bromide ion and organic matter in water. Sulfate radical was generated by heterogeneous catalytic activation of peroxymonosulfate. Isolated natural organic matter (NOM) fractions as well as low molecular weight (LMW) compounds were used as model organic matter. Considerable amounts of TOBr were produced by SR-AOP, where bromoform (TBM) and dibromoacetic acid (DBAA) were identified as dominant Br-DBPs. In general, SR-AOP favored the formation of DBAA, which is quite distinct from bromination with HOBr/OBr- (more TBM production). SR-AOP experimental results indicate that bromine incorporation is distributed among both hydrophobic and hydrophilic NOM fractions. Studies on model precursors reveal that LMW acids are reactive TBM precursors (citric acid > succinic acid > pyruvic acid > maleic acid). High DBAA formation from citric acid, aspartic acid, and asparagine was observed; meanwhile aspartic acid and asparagine were the major precursors of dibromoacetonitrile and dibromoacetamide, respectively.

  1. Formation of brominated disinfection byproducts from natural organic matter isolates and model compounds in a sulfate radical-based oxidation process

    KAUST Repository

    Wang, Yuru

    2014-12-16

    A sulfate radical-based advanced oxidation process (SR-AOP) has received increasing application interest for the removal of water/wastewater contaminants. However, limited knowledge is available on its side effects. This study investigated the side effects in terms of the production of total organic bromine (TOBr) and brominated disinfection byproducts (Br-DBPs) in the presence of bromide ion and organic matter in water. Sulfate radical was generated by heterogeneous catalytic activation of peroxymonosulfate. Isolated natural organic matter (NOM) fractions as well as low molecular weight (LMW) compounds were used as model organic matter. Considerable amounts of TOBr were produced by SR-AOP, where bromoform (TBM) and dibromoacetic acid (DBAA) were identified as dominant Br-DBPs. In general, SR-AOP favored the formation of DBAA, which is quite distinct from bromination with HOBr/OBr- (more TBM production). SR-AOP experimental results indicate that bromine incorporation is distributed among both hydrophobic and hydrophilic NOM fractions. Studies on model precursors reveal that LMW acids are reactive TBM precursors (citric acid > succinic acid > pyruvic acid > maleic acid). High DBAA formation from citric acid, aspartic acid, and asparagine was observed; meanwhile aspartic acid and asparagine were the major precursors of dibromoacetonitrile and dibromoacetamide, respectively.

  2. Studies on Disinfection By-Products and Drinking Water

    Science.gov (United States)

    Rostad, Colleen E.

    2007-01-01

    Drinking water is disinfected with chemicals to remove pathogens, such as Giardia and Cryptosproridium, and prevent waterborne diseases such as cholera and typhoid. During disinfection, by-products are formed at trace concentrations. Because some of these by-products are suspected carcinogens, drinking water utilities must maintain the effectiveness of the disinfection process while minimizing the formation of by-products.

  3. A review on wastewater disinfection

    OpenAIRE

    Mohammad Mehdi Amin; Hassan Hashemi; Amir Mohammadi Bovini; Yung Tse Hung

    2013-01-01

    Changes in regulations and development of new technologies have affected the selection of alternative for treated wastewater disinfection. Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. Driving forces include water scarcity and drinking water supply, irrigation, rapid industrialization, using reclaimed water, source protection, overpopulation, and environmental protection. The safe operation of water reuse depends on effluent d...

  4. Kinetics and Mechanistic Chemistry of Oxidation of Butacaine Sulfate by Chloramine-B in Acid Medium

    International Nuclear Information System (INIS)

    Shubha, Jayachamarajapura Pranesh; Kotabagi, Vinutha; Puttaswamy

    2012-01-01

    Butacaine sulfate is an ester of p-aminobenzoic acid which has been widely used as a local anaesthetic and it is a long standing agent particularly for spinal anaesthesia. For this reason, a kinetic study of oxidation of butacaine sulfate by sodium N-chlorobenzenesulfonamide (chloramine-B or CAB) has been carried out in HClO 4 medium at 303 K in order to explore this redox system mechanistic chemistry. The rate shows a first-order dependence on both [CAB] o , and [substrate] o , and a fractional-order dependence on acid concentration. Decrease of dielectric constant of the medium, by adding methanol, increases the rate of the reaction. Variation of ionic strength and addition of benzenesulfonamide or NaCl have no significant effect on the rate. The reaction was studied at different temperatures and the activation parameters have been evaluated. The stoichiometry of the reaction has been found to be 1:2 and the oxidation products have been identified by spectral analysis. The observed results have been explained by plausible mechanism and the related rate law has been deduced

  5. Sensory aspects and water quality impacts of chlorinated and chloraminated drinking water in contact with HDPE and cPVC pipe.

    Science.gov (United States)

    Heim, Timothy H; Dietrich, Andrea M

    2007-02-01

    Pipes constructed with high-density polyethylene (HDPE) or chlorinated polyvinyl chloride (cPVC) are commonly used in drinking water distribution systems and premise plumbing. In this comprehensive investigation, the effects on odor, organic chemical release, trihalomethane (THM) formation, free chlorine demand and monochloramine demand were determined for water exposed to HDPE and cPVC pipes. The study was conducted in accordance with the Utility Quick Test (UQT), a migration/leaching protocol for analysis of materials in contact with drinking water. The sensory panel consistently attributed a weak to moderate intensity of a "waxy/plastic/citrus" odor to the water from the HDPE pipes but not the cPVC-contacted water samples. The odor intensity generated by the HDPE pipe remained relatively constant for multiple water flushes, and the odor descriptors were affected by disinfectant type. Water samples stored in both types of pipe showed a significant increase in the leaching of organic compounds when compared to glass controls, with HDPE producing 0.14 microgTOC/cm(2) pipe surface, which was significantly greater than the TOC release from cPVC. Water stored in both types of pipe showed disinfectant demands of 0.1-0.9 microg disinfectant/cm(2) pipe surface, with HDPE exerting more demand than cPVC. No THMs were detected in chlorinated water exposed to the pipes. The results demonstrate the impact that synthetic plumbing materials can have on sensory and chemical water quality, as well as the significant variations in drinking water quality generated from different materials.

  6. Validation of a simple method for predicting the disinfection performance in a flow-through contactor.

    Science.gov (United States)

    Pfeiffer, Valentin; Barbeau, Benoit

    2014-02-01

    Despite its shortcomings, the T10 method introduced by the United States Environmental Protection Agency (USEPA) in 1989 is currently the method most frequently used in North America to calculate disinfection performance. Other methods (e.g., the Integrated Disinfection Design Framework, IDDF) have been advanced as replacements, and more recently, the USEPA suggested the Extended T10 and Extended CSTR (Continuous Stirred-Tank Reactor) methods to improve the inactivation calculations within ozone contactors. To develop a method that fully considers the hydraulic behavior of the contactor, two models (Plug Flow with Dispersion and N-CSTR) were successfully fitted with five tracer tests results derived from four Water Treatment Plants and a pilot-scale contactor. A new method based on the N-CSTR model was defined as the Partially Segregated (Pseg) method. The predictions from all the methods mentioned were compared under conditions of poor and good hydraulic performance, low and high disinfectant decay, and different levels of inactivation. These methods were also compared with experimental results from a chlorine pilot-scale contactor used for Escherichia coli inactivation. The T10 and Extended T10 methods led to large over- and under-estimations. The Segregated Flow Analysis (used in the IDDF) also considerably overestimated the inactivation under high disinfectant decay. Only the Extended CSTR and Pseg methods produced realistic and conservative predictions in all cases. Finally, a simple implementation procedure of the Pseg method was suggested for calculation of disinfection performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Susceptibility of different bacterial species isolated from food animals to copper sulphate, zinc chloride and antimicrobial substances used for disinfection

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Hasman, Henrik

    2004-01-01

    that Danish bacterial isolates from livestock so far have not or have only to a limited degree developed resistance to antimicrobial compounds commonly used for disinfection. Acquired copper resistance was only found in enterococci. There were large differences in the intrinsic susceptibility of the different...... of susceptibilities to the different antimicrobial agents. Large variations were observed in the susceptibility of the different bacterial species to the different compounds. Staphylococci were in general very susceptible to all antimicrobial compounds tested. The Salmonella isolates were in general less susceptible...

  8. OPTIMAL SCHEDULING OF BOOSTER DISINFECTION IN WATER DISTRIBUTION SYSTEMS

    Science.gov (United States)

    Booster disinfection is the addition of disinfectant at locations distributed throughout a water distribution system. Such a strategy can reduce the mass of disinfectant required to maintain a detectable residual at points of consumption in the distribution system, which may lea...

  9. Sewage sludges disinfection

    International Nuclear Information System (INIS)

    Alexandre, D.

    1977-01-01

    There is an hygienic risk in using biological sewage sludges for agriculture. Systematic analysis carried out on sludges samples obtained from purification plants in East and South part of France, show the almost uniform presence of pathogenic microorganisms. Some of it survive more than 9 months after soil application. Conventional process for disinfection: liming and heat are not suitable for agricultural use. On the other hand, irradiation involves no modification in structure and composition of sludges. Radiation doses required for disinfection vary according to microorganisms. If some of them are eliminated with rather light doses (200 krad) mycobacteria, viruses and eggs of worms resist to more important doses. Security dose is estimated around 1000 krad

  10. Disinfection by electrohydraulic treatment.

    Science.gov (United States)

    Allen, M; Soike, K

    1967-04-28

    Electrohydraulic treatment was applied to suspensions of Escherichia coli, spores of Bacillus subtilis var. niger, Saccharomyces cerevisiae, and bacteriophage T2 at an input energy that, in most cases, was below the energy required to sterilize. The input energy was held relatively constant for each of these microorganisms, but the capacitance and voltage were varied. Data are presented which show the degree of disinfection as a function of capacitance and voltage. In all cases, the degree of disinfection for a given input energy increases as both capacitance and voltage are lowered.

  11. Potential Impact of the Resistance to Quaternary Ammonium Disinfectants on the Persistence of Listeria monocytogenes in Food Processing Environments.

    Science.gov (United States)

    Martínez-Suárez, Joaquín V; Ortiz, Sagrario; López-Alonso, Victoria

    2016-01-01

    The persistence of certain strains of Listeria monocytogenes, even after the food processing environment has been cleaned and disinfected, suggests that this may be related to phenomena that reduce the concentration of the disinfectants to subinhibitory levels. This includes (i) the existence of environmental niches or reservoirs that are difficult for disinfectants to reach, (ii) microorganisms that form biofilms and create microenvironments in which adequate concentrations of disinfectants cannot be attained, and (iii) the acquisition of resistance mechanisms in L. monocytogenes, including those that lead to a reduction in the intracellular concentration of the disinfectants. The only available data with regard to the resistance of L. monocytogenes to disinfectants applied in food production environments refer to genotypic resistance to quaternary ammonium compounds (QACs). Although there are several well-characterized efflux pumps that confer resistance to QACs, it is a low-level resistance that does not generate resistance to QACs at the concentrations applied in the food industry. However, dilution in the environment and biodegradation result in QAC concentration gradients. As a result, the microorganisms are frequently exposed to subinhibitory concentrations of QACs. Therefore, the low-level resistance to QACs in L. monocytogenes may contribute to its environmental adaptation and persistence. In fact, in certain cases, the relationship between low-level resistance and the environmental persistence of L. monocytogenes in different food production chains has been previously established. The resistant strains would have survival advantages in these environments over sensitive strains, such as the ability to form biofilms in the presence of increased biocide concentrations.

  12. Chemical disinfection of combined sewer overflows

    DEFF Research Database (Denmark)

    Chhetri, Ravi Kumar

    of the residual disinfectants PFA, PAA and chlorine dioxide (ClO2), and their degradation products hydrogen peroxide and chlorite, in relation to organisms in the aquatic ecosystem was studied. With the help of ecotoxicity data, a preliminary environmental risk assessment of PFA, PAA and ClO2 for CSO disinfection...

  13. The Role of Hydroxylamine as a Nitrification Intermediate in N-Nitrosamine Formation- Indianapolis

    Science.gov (United States)

    The formation of N-nitrosamines, and in particular N-nitrosodimethylamine (NDMA), in drinking water systems that use chloramines is a concern because of their potential carcinogenicity and occurrences in finished waters at toxicologically relevant levels. The widely accepted mech...

  14. Microbial community response to chlorine conversion in a chloraminated drinking water distribution system.

    Science.gov (United States)

    Wang, Hong; Proctor, Caitlin R; Edwards, Marc A; Pryor, Marsha; Santo Domingo, Jorge W; Ryu, Hodon; Camper, Anne K; Olson, Andrew; Pruden, Amy

    2014-09-16

    Temporary conversion to chlorine (i.e., "chlorine burn") is a common approach to controlling nitrification in chloraminated drinking water distribution systems, yet its effectiveness and mode(s) of action are not fully understood. This study characterized occurrence of nitrifying populations before, during and after a chlorine burn at 46 sites in a chloraminated distribution system with varying pipe materials and levels of observed nitrification. Quantitative polymerase chain reaction analysis of gene markers present in nitrifying populations indicated higher frequency of detection of ammonia oxidizing bacteria (AOB) (72% of samples) relative to ammonia oxidizing archaea (AOA) (28% of samples). Nitrospira nitrite oxidizing bacteria (NOB) were detected at 45% of samples, while presence of Nitrobacter NOB could not be confirmed at any of the samples. During the chlorine burn, the numbers of AOA, AOB, and Nitrospira greatly reduced (i.e., 0.8-2.4 log). However, rapid and continued regrowth of AOB and Nitrospira were observed along with nitrite production in the bulk water within four months after the chlorine burn, and nitrification outbreaks appeared to worsen 6-12 months later, even after adopting a twice annual burn program. Although high throughput sequencing of 16S rRNA genes revealed a distinct community shift and higher diversity index during the chlorine burn, it steadily returned towards a condition more similar to pre-burn than burn stage. Significant factors associated with nitrifier and microbial community composition included water age and sampling location type, but not pipe material. Overall, these results indicate that there is limited long-term effect of chlorine burns on nitrifying populations and the broader microbial community.

  15. The efficacy of different cleaning and disinfection procedures to reduce Salmonella and Enterobacteriaceae in the lairage environment of a pig abattoir.

    Science.gov (United States)

    Walia, Kavita; Argüello, Hector; Lynch, Helen; Grant, Jim; Leonard, Finola C; Lawlor, Peadar G; Gardiner, Gillian E; Duffy, Geraldine

    2017-04-04

    This study investigated several cleaning and disinfection protocols for their ability to eliminate Salmonella and to reduce levels of Enterobacteriaceae, within the lairage pens of a commercial pig abattoir. Eight protocols were evaluated in each of 12 lairage pens at the end of the slaughtering day on 3 occasions (36 pens/protocol): (P1) high-pressure cold water wash (herein referred to as high-pressure wash); (P2) high-pressure wash followed by a quaternary ammonium compound (QAC)-based disinfectant without rinsing; (P3) high-pressure wash followed by a chlorocresol-based disinfectant without rinsing; (P4) high-pressure wash followed by a sodium hydroxide/sodium hypochlorite detergent with rinsing; (P5) P4 followed by P2; (P6) P4 followed by P3; (P7) P5 with drying for 24-48h; and (P8) P6 with drying for 24-48h. Two floor swabs and one wall swab were taken from each lairage pen before and after each protocol was applied, and examined for the presence of Salmonella and enumeration of Enterobacteriaceae. High-pressure washing alone (P1) did not reduce the prevalence of Salmonella in the lairage pens. When high-pressure washing, the probability of detecting Salmonella following application of the chlorocresol-based disinfectant (P3) was lower than with the QAC-based disinfectant, P2 (14.2% versus 34.0%, respectively; pEnterobacteriaceae counts to below the limit of detection (LOD; 10CFU/cm 2 ) was achieved following cleaning with detergent and disinfection with the chlorocresol-based disinfectant, regardless of drying (pEnterobacteriaceae counts to below the LOD. Therefore ensuring that lairage pens are allowed to dry after intensive cleaning with detergent and a chlorocresol-based disinfectant is recommended as the most effective hygiene routine to eliminate Salmonella and reduce Enterobacteriaceae counts. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Enumeration of Enterobacter cloacae after chloramine exposure.

    OpenAIRE

    Watters, S K; Pyle, B H; LeChevallier, M W; McFeters, G A

    1989-01-01

    Growth of Enterobacter cloacae on various media was compared after disinfection. This was done to examine the effects of monochloramine and chlorine on the enumeration of coliforms. The media used were TLY (nonselective; 5.5% tryptic soy broth, 0.3% yeast extract, 1.0% lactose, and 1.5% Bacto-Agar), m-T7 (selective; developed to recover injured coliforms), m-Endo (selective; contains sodium sulfite), TLYS (TLY with sodium sulfite), and m-T7S (m-T7 with sodium sulfite). Sodium sulfite in any m...

  17. 9 CFR 91.41 - Cleaning and disinfecting of aircraft.

    Science.gov (United States)

    2010-01-01

    ... of this chapter. The time at which the cleaning and disinfection is performed must be approved by the inspector, who will give approval only if he or she determines that the cleaning and disinfection will be... time, the inspector shall determine whether further cleaning and disinfection are necessary. The...

  18. Feasibility of Wide-Area Decontamination of Bacillus anthracis Spores Using a Germination-Lysis Approach

    Science.gov (United States)

    2011-11-16

    Security, LLC 2011 CBD S& T Conference November 16, 2011 LLNL-PRES-508394 Lawrence Livermore National Laboratory LLNL-PRES-  Background...PRES-  Gruinard Island 5% formaldehyde  Sverdlosk Release UNKNOWN: but washing, chloramines , soil disposal believed to have been used...508394 Lawrence Livermore National Laboratory LLNL-PRES- 4 Disinfectant >6 Log Reduction on Materials (EPA, 2010a,b; Wood et al., 2011

  19. Photolytic removal of DBPs by medium pressure UV in swimming pool water

    OpenAIRE

    Hansen, Kamilla Marie Speht; Zortea, R.; Piketty, A.; Rodriguez Vega, S.; Andersen, Henrik Rasmus

    2013-01-01

    Medium pressure UV is used for controlling the concentration of combined chlorine (chloramines) in many public swimming pools. Little is known about the fate of other disinfection by-products (DBPs) in UV treatment. Photolysis by medium pressure UV treatment was investigated for 12 DBPs reported to be found in swimming pool water: chloroform, bromodichloromethane, dibromochloromethane, bromoform, dichloroacetonitrile, bromochloroacetonitrile, dibromoacetronitrile, trichloroacetonitrile, trich...

  20. Disinfection of contaminated water by using solar irradiation.

    Science.gov (United States)

    Caslake, Laurie F; Connolly, Daniel J; Menon, Vilas; Duncanson, Catriona M; Rojas, Ricardo; Tavakoli, Javad

    2004-02-01

    Contaminated water causes an estimated 6 to 60 billion cases of gastrointestinal illness annually. The majority of these cases occur in rural areas of developing nations where the water supply remains polluted and adequate sanitation is unavailable. A portable, low-cost, and low-maintenance solar unit to disinfect unpotable water has been designed and tested. The solar disinfection unit was tested with both river water and partially processed water from two wastewater treatment plants. In less than 30 min in midday sunlight, the unit eradicated more than 4 log10 U (99.99%) of bacteria contained in highly contaminated water samples. The solar disinfection unit has been field tested by Centro Panamericano de Ingenieria Sanitaria y Ciencias del Ambiente in Lima, Peru. At moderate light intensity, the solar disinfection unit was capable of reducing the bacterial load in a controlled contaminated water sample by 4 log10 U and disinfected approximately 1 liter of water in 30 min.

  1. Influence of disinfection with peracetic acid and hypochlorite in dimensional alterations of casts obtained from addition silicone and polyether impressions.

    Science.gov (United States)

    Queiroz, Daher Antonio; Peçanha, Marcelo Massaroni; Neves, Ana Christina Claro; Frizzera, Fausto; Tonetto, Mateus Rodrigues; Silva-Concílio, Laís Regiane

    2013-11-01

    Dental impressions disinfection is important to reduce the risk of cross contamination but this process may produce dimensional distortions. Peracetic acid is a disinfectant agent with several favorable characteristics yet underutilized in Dentistry. The aim of this paper is to compare the dimensional stability of casts obtained from addition silicone and polyether impressions that were immersed for 10 minutes in a solution of 0.2% peracetic acid or 1% sodium hypochlorite. Sixty samples in type IV gypsum were produced after a master cast that simulated a full crown preparation of a maxillary premolar. Samples were divided in 6 groups (n = 10) according to the impression material and disinfection agent: Group AC--addition silicone control (without disinfectant); Group APA--addition silicone + 0.2% peracetic acid; Group AH--addition silicone + 1% sodium hypochlorite; Group PC--polyether control (without disinfectant); Group PPA--polyether + 0.2% peracetic acid; Group PH--polyether + 1% sodium hypochlorite. Cast height, base and top diameter were measured and a mean value was obtained for each sample and group all data was statistically analyzed (ANOVA, p polyether impressions regardless of the disinfectant materials. It can be concluded that disinfection with the proposed agents did not produce significant alterations of the impressions and the peracetic acid could be considered a reliable material to disinfect dental molds.

  2. Thermal expansion and magnetostriction in Pr(n+2)(n+1)Nin(n-1)+2Sin(n+1) compounds

    International Nuclear Information System (INIS)

    Jiles, D.C.; Song, S.H.; Snyder, J.E.; Pecharsky, V.K.; Lograsso, T.A.; Wu, D.; Pecharsky, A.O.; Mudryk, Ya.; Dennis, K.W.; McCallum, R.W.

    2006-01-01

    Thermal expansion and magnetostriction of members of a homologous series of compounds based on the alloy series Pr (n+2)(n+1) Ni n(n-1)+2 Si n(n+1) have been measured. The crystal structures of these compounds are closely interrelated because they form trigonal prismatic columns in which the number of trigonal prisms that form the base of the trigonal columns is determined by the value of n in the chemical formula. Two compositions were investigated, Pr 5 Ni 2 Si 3 and Pr 15 Ni 7 Si 10 , corresponding to n=3 and n=4, respectively. The results were analyzed and used to determine the location of magnetic phase transitions by calculating the magnetic contribution to thermal expansion using the Gruneisen-Debye theory. This allowed more precise determination of the magnetic transition temperatures than could be achieved using the total thermal expansion. The results show two phase transitions in each material, one corresponding to the Curie temperature and the other at a lower temperature exhibiting characteristics of a spin reorientation transition

  3. Sewage sludges disinfection

    International Nuclear Information System (INIS)

    Alexandre, D.; Gevaudan, P.P.

    1977-01-01

    There is a hygienic risk in using biological sewage sludges for agriculture. Systematic analyses carried out on sludge samples obtained from purification plants in the Eastern and Southern part of France, show the almost uniform presence of pathogenic microorganisms. Some of them survive more than nine months after application to the soil. Conventional processes for disinfection, liming and heat, make the sludge unsuitable for agricultural use. On the other hand, irradiation involves no modification of structure and composition of sludges. Radiation doses required for disinfection vary according to the type of microorganism. Some of them are eliminated at rather low doses (200 krad), but mycobacteria, viruses and eggs of worms resist to more important doses. The security dose is estimated to be approx. 1000 krad

  4. Synthesis of organic compounds 15 N enriched

    International Nuclear Information System (INIS)

    Oliveira, Claudineia Raquel de; Bendassolli, Jose Albertino; Prestes, Clelber Vieira; Tavares, Glauco Arnold

    2002-01-01

    The aim of this work was to develop urea- 15 N and glycine- 15 N synthesis for agronomic and biological studies. The production of these compounds was evaluated due to the fact of increasing use of urea, comparing to others solid fertilizers and the importance of glycine in the studies of protein metabolism. A non-conventional method was carried out to synthesize urea. The process involved reaction among Co, NH 3 anidrid and S at low temperature (100 deg C) and of pressure (0,81 mPa) compared to the conventional method. Monolise halets reaction was carried out for glycine synthesis with chloroacetic and ammonia 2 deg C. Both compounds are economic viable, they can be produced at a lower price than the trade market one. (author)

  5. Surface roughness of polyvinyl siloxane impression materials following chemical disinfection, autoclave and microwave sterilization.

    Science.gov (United States)

    Al Kheraif, Abdulaziz Abdullah

    2013-05-01

    Autoclave sterilization and microwave sterilization has been suggested as the effective methods for the disinfection of elastomeric impressions, but subjecting elastomeric impressions to extreme temperature may have adverse effects on critical properties of the elastomers. To evaluate the effect of chemical disinfection as well as autoclave and microwave sterilization on the surface roughness of elastomeric impression materials. The surface roughness of five commercially available polyvinyl siloxane impression materials (Coltene President, Affinis Perfect impression, Aquasil, 3M ESPE Express and GC Exafast) were evaluated after subjecting them to chemical disinfection, autoclaving and microwave sterilization using a Talysurf Intra 50 instrument. Twenty specimens from each material were fabricated and divided into four equal groups, three experimental and one control (n=25). The differences in the mean surface roughness between the treatment groups were recorded and statistically analyzed. No statistically significant increase in the surface roughness was observed when the specimens were subjected to chemical disinfection and autoclave sterilization, increase in roughness and discoloration was observed in all the materials when specimens were subjected to microwave sterilization. Chemical disinfection did not have a significant effect but, since it is less effective, autoclave sterilization can be considered effective and autoclaving did not show any specimen discoloration as in microwave sterilization. Microwave sterilization may be considered when impressions are used to make diagnostic casts. A significant increase in surface roughness may produce rougher casts, resulting in rougher tissue surfaces for denture and cast restorations. Autoclave sterilization of vinyl polysiloxane elastomeric impressions for 5 minutes at 134°C at 20 psi may be considered an effective method over chemical disinfection and microwave sterilization, because chemical disinfection does

  6. Silver disinfection in water distribution systems

    Science.gov (United States)

    Silvestry Rodriguez, Nadia

    Silver was evaluated as disinfectant to maintain water quality in water distribution system. It was used to inhibit growth of two opportunistic bacteria in planktonik form and in biofilm formation in Robbins devices with stainless steel and PVC surfaces. The results of this work show that silver is a potential secondary disinfectant to be used in water distribution systems.

  7. Evaluation of Vinegar as a Disinfectant for Extracted Human Teeth - An in-Vitro Study.

    Science.gov (United States)

    Gogineni, Sindhuja; Ganipineni, Kiranmai; Babburi, Suresh; Venigalla, Aparna; Pinnisetti, Soujanya; Kotti, Ajay Benarji; Kalapala, Lavanya

    2016-07-01

    In dentistry, extracted human teeth are routinely used to learn technical and preclinical skills. Since human teeth harbour many pathogens these should be disinfected before use to minimize the risk of infections. Some commonly used disinfectants in laboratories are 10% formalin, 3% hydrogen peroxide (H2O2), 5.25% Sodium Hypochlorite (NaOCl), 70% alcohol and normal saline which have their own disadvantages like carcinogenicity, toxicity, cost effectiveness etc. Many studies have been conducted using these solutions but there is no evidence to suggest a suitable alternative for disinfecting extracted teeth. Vinegar is a sour liquid comprised mainly of acetic acid. It is cheap and commercially available shown to be effective in the prevention and control of microbial contamination. The present study was conducted for evaluation of vinegar as a disinfectant for extracted teeth. In this study a total of 40 (n=40) extracted non carious teeth were taken which were disinfected with various physical methods such as sterilization, autoclaving and chemical methods by using Vinegar, 70% Alcohol, 10% Formalin, 3% Hydrogen peroxide and 5.25% NaOCL. Later, teeth from each group were placed individually in separate test tubes containing 10ml of brain heart infusion broth at 37°C for 48 hrs to observe the evidence of growth of microorganisms. Results were analyzed using Kruskal-Wallis test. Vinegar, 10% Formalin and 3% Hydrogen peroxide were effective. The results were statistically significant with Kruskal-Wallis test value 28.053 and p-value was <0.001. Vinegar can be used as an effective disinfectant for extracted human teeth.

  8. UV disinfection of water

    International Nuclear Information System (INIS)

    Skipperud, E.; Johansen; Myhrstad, J.A.

    1978-01-01

    UV radiation has been found to have advantages over chloration for the disinfection of water. New regulations for dietary conditions on Norwegian ships introduced in 1974 led to increased use of UV disinfection, and this has in the following years spread to waterworks. The present article is based on a study to determine possible limitation. The nature of the injuries to the microorganisms is first discussed, together with repair mechanisms. A table is given showing the energy required for 90 and 100 percent inactivation of a number of microorganisms. Some other factors affecting UV inactivation are briefly mentioned. (JIW)

  9. Bacterial spores survive treatment with commercial sterilants and disinfectants.

    Science.gov (United States)

    Sagripanti, J L; Bonifacino, A

    1999-09-01

    This study compared the activity of commercial liquid sterilants and disinfectants on Bacillus subtilis spores deposited on three types of devices made of noncorrodible, corrodible, or polymeric material. Products like Renalin, Exspor, Wavicide-01, Cidexplus, and cupric ascorbate were tested under conditions specified for liquid sterilization. These products, at the shorter times indicated for disinfection, and popular disinfectants, like Clorox, Cavicide, and Lysol were also studied. Data obtained with a sensitive and quantitative test suggest that commercial liquid sterilants and disinfectants are less effective on contaminated surfaces than generally acknowledged.

  10. Inactivation model for disinfection of biofilms in drinking water

    International Nuclear Information System (INIS)

    Karlicki, A.; O'Leary, K.C.; Gagnon, G.A.

    2002-01-01

    The purpose of the project was to investigate experimentally the effects of free chlorine, monochloramine and chlorine dioxide on the removal of biofilm growth in water as it applies to drinking water in distribution systems. In particular, biofilm kill for a particular dosage of disinfectant was measured as a function of time for each disinfectant over a range of disinfectant concentrations. These results were used to formulate concentration-time (Ct) inactivation values for each disinfectant to compare the efficacy of the three disinfectants for biofilm control. The biofilm reactor system consisted of a 125 mL columns, each containing tightly packed 3 mm glass beads on which heterotrophic bacterial biofilm is established. Following an initial biofilm inoculation period, the glass beads were removed from the columns and placed into glass jars for disinfection with free chlorine, monochloramine and chlorine dioxide. Cell counts were determined on a time series basis with the goal of achieving a Ct inactivation model that is similar to models presently used for inactivation of suspended cells. Ultimately this research could be used to develop a rationale method for setting regulatory values for secondary disinfection in drinking water distribution systems, which presently in only a few states and provinces. (author)

  11. 21 CFR 880.6890 - General purpose disinfectants.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use... disinfectant is a germicide intended to process noncritical medical devices and equipment surfaces. A general... prior to terminal sterilization or high level disinfection. Noncritical medical devices make only...

  12. Ultraviolet (UV) Disinfection for Drinking Water Systems

    Science.gov (United States)

    UV disinfection is an effective process for inactivating many microbial pathogens in water with potential to serve as stand-alone treatment or in combination with other disinfectants. USEPA provided guidance on the validation of UV reactors nearly a decade ago. Since then, lesson...

  13. Clinical and cost effectiveness of eight disinfection methods for terminal disinfection of hospital isolation rooms contaminated with Clostridium difficile 027.

    Science.gov (United States)

    Doan, L; Forrest, H; Fakis, A; Craig, J; Claxton, L; Khare, M

    2012-10-01

    Clostridium difficile spores can survive in the environment for months or years, and contaminated environmental surfaces are important sources of nosocomial C. difficile transmission. To compare the clinical and cost effectiveness of eight C. difficile environmental disinfection methods for the terminal cleaning of hospital rooms contaminated with C. difficile spores. This was a novel randomized prospective study undertaken in three phases. Each empty hospital room was disinfected, then contaminated with C. difficile spores and disinfected with one of eight disinfection products: hydrogen peroxide vapour (HPV; Bioquell Q10) 350-700 parts per million (ppm); dry ozone at 25 ppm (Meditrox); 1000 ppm chlorine-releasing agent (Actichlor Plus); microfibre cloths (Vermop) used in combination with and without a chlorine-releasing agent; high temperature over heated dry atomized steam cleaning (Polti steam) in combination with a sanitizing solution (HPMed); steam cleaning (Osprey steam); and peracetic acid wipes (Clinell). Swabs were inoculated on to C. difficile-selective agar and colony counts were performed pre and post disinfection for each method. A cost-effectiveness analysis was also undertaken comparing all methods to the current method of 1000 ppm chlorine-releasing agent (Actichlor Plus). Products were ranked according to the log(10) reduction in colony count from contamination phase to disinfection. The three statistically significant most effective products were hydrogen peroxide (2.303); 1000 ppm chlorine-releasing agent (2.223) and peracetic acid wipes (2.134). The cheaper traditional method of using a chlorine-releasing agent for disinfection was as effective as modern methods. Copyright © 2012 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. Disinfectant effect of Methylated Ethanol against Listeria species

    OpenAIRE

    Y Yakubu; M D Salihu; O O Faleke; M B Abubakar; A A Magaji,A U Junaidu

    2012-01-01

    This study was carried out in order to determine the disinfectant effect of Methylated spirit® (95% methanol and 5% ethanol) as a teat dip against Listeria species. Hand milking was employed to collect 576 (288 x 2) raw milk samples from different lactating cows within Sokoto metropolis (Nigeria). 288 samples were collected before disinfecting the udder teats with Methylated spirit®, while the other 288 were collected after disinfection with Methylated spirit®. The ...

  15. Overcoming the problem of residual microbial contamination in dental suction units left by conventional disinfection using novel single component suction handpieces in combination with automated flood disinfection.

    Science.gov (United States)

    Boyle, M A; O'Donnell, M J; Russell, R J; Galvin, N; Swan, J; Coleman, D C

    2015-10-01

    Decontaminating dental chair unit (DCU) suction systems in a convenient, safe and effective manner is problematic. This study aimed to identify and quantify the extent of the problems using 25 DCUs, methodically eliminate these problems and develop an efficient approach for reliable, effective, automated disinfection. DCU suction system residual contamination by environmental and human-derived bacteria was evaluated by microbiological culture following standard aspiration disinfection with a quaternary ammonium disinfectant or alternatively, a novel flooding approach to disinfection. Disinfection of multicomponent suction handpieces, assembled and disassembled, was also studied. A prototype manual and a novel automated Suction Tube Cleaning System (STCS) were developed and tested, as were novel single component suction handpieces. Standard aspiration disinfection consistently failed to decontaminate DCU suction systems effectively. Semi-confluent bacterial growth (101-500 colony forming units (CFU) per culture plate) was recovered from up to 60% of suction filter housings and from up to 19% of high and 37% of low volume suction hoses. Manual and automated flood disinfection of DCU suction systems reduced this dramatically (ranges for filter cage and high and low volume hoses of 0-22, 0-16 and 0-14CFU/plate, respectively) (P<0.0001). Multicomponent suction handpieces could not be adequately disinfected without prior removal and disassembly. Novel single component handpieces, allowed their effective disinfection in situ using the STCS, which virtually eliminated contamination from the entire suction system. Flood disinfection of DCU suction systems and single component handpieces radically improves disinfection efficacy and considerably reduces potential cross-infection and cross-contamination risks. DCU suction systems become heavily contaminated during use. Conventional disinfection does not adequately control this. Furthermore, multicomponent suction handpieces

  16. Radiation disinfection of sewage sludge and composting of the irradiated sludge

    International Nuclear Information System (INIS)

    Hashimoto, Shoji; Nishimura, Koichi; Watanabe, Hiromasa; Kawakami, Waichiro

    1985-01-01

    In the radiation disinfected sewage sludge, its stabilization is necessary with the composting. In this disinfected sludge, there is no need of keeping it at high temperature at the cost of fermentation velocity. The fermentation velocity can thus be set to obtain its maximum value. In sewage sludge utilization of farm land, to prevent the contamination with pathogenic bacteria and the secondary pollution, the radiation disinfection of dehydrated sludge and the composting of the disinfected sludge have been studied. The disinfection effect when an electron accelerator is used for the radiation source is described. Then, the composting of the disinfected sludge is described in chemical kinetics of the microorganisms. (Mori, K.)

  17. Radioiodination of olive oil VIA iodinemonochloride and chloramine-T in organic medium

    International Nuclear Information System (INIS)

    Elwetery, A.S.; Elbayoumy, S.; Elgarhy, M.

    1992-01-01

    Olive oil is one of the neutral oils, composed of many fatty acids, some are saturated while others are unsaturated. This paper reports the results of comparative radioiodination study performed using iodine mono chloride I CI and chloramine-T as oxidising agents in organic solvents. On labelling using 125 I Cl in different solvents, benzene, petroleum ether, diethyl ether and n-heptane a yield of > 70% was found in case of diethyl ether within 5 minutes for olive oil while it was 80% for oleic acid under the same conditions. In case of benzene as a solvent the labelling yield was reached a maximum labelling of 37% and > 43% for olive oil and oleic acid respectively within 60 minutes after which labelling decreased with time. So benzene was chosen as the solvent for labelling of oleic acid using commercial 125 I Cl to compare with I CI prepared in the laboratory. Using unpurified commercial 125 I CI as labelling agent a yield of 65% was reached within 15 minutes while purified commercial I CI gave ∼ 40% after 15 minutes and 22% using the prepared 125 I CI. This reduction in the yield in case of purified I CI indicates that other iodine species I 2 , I - 3 and I OH plays great role in the labelling process depending on the medium used. Further studies were carried out using method for labelling olive oil as well as oleic acid in organic solvents n-heptane, benzene, acetone and methyl n-butyl ketone (MnBK) at a temperature just below the boiling point of each solvent. A maximum labelling yield of 28% for olive oil in the n-heptane solvent against 50% labelling yield of oleic acid under the same conditions of solvent, temperature and reaction time. Using actions as solvent it was found that the labelling yield decreases with reaction time.4 fig

  18. Chemistry of organogold compounds I. Syntheses and properties of dihalogold(III) N,N-dialkyldithiocarbamates and dialkylgold(III) N,N-dialkyldithiocarbamates

    NARCIS (Netherlands)

    Blaauw, H.J.A.; Nivard, R.J.F.; Kerk, G.J.M. van der

    Monomeric dialkylgold(III) N,N-dialkyldithiocarbamates (R2AuSSCNR'2) can be prepared in good yields from monomeric dibromogold(III) N,N-dialkyldithiocarbamates (Br2AuSSCNR'2) and alkylmagnesium halides or dialkylcadmium compounds. In addition N-ethylpiperidinium tetrachloroaurate can be converted

  19. A pilot solar water disinfecting system: performance analysis and testing

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, T.S.; El-Ghetany, H.H. [Tohoku University, Sendai (Japan). Dept. of Aeronautics and Space Engineering

    2002-07-01

    In most countries, contaminated water is the major cause of most water-borne diseases. Disinfection of water may be accomplished by a number of different physical-chemical treatments including direct application of thermal energy, chemical and filtration techniques. Solar energy also can be used effectively in this field because inactivation of microorganisms is done either by heating water to a disinfecting temperature or by exposing it to ultraviolet solar radiation. A pilot solar system for disinfecting contaminated water is designed, constructed and tested. Investigations are carried out to evaluate the performance of a wooden hot box solar facility as a solar disinfectant. Experimental data show that solar energy is viable for the disinfection process. A solar radiation model is presented and compared with the experimental data. A mathematical model of the solar disinfectant is also presented. The governing equations are solved numerically via the fourth-order Runge-Kutta method. The effects of environmental conditions (ambient temperature, wind speed, solar radiation, etc.) on the performance of the solar disinfectant are examined. Results showed that the system is affected by ambient temperature, wind speed, ultraviolet solar radiation intensity, the turbidity of the water, the quantity of water exposed, the contact area between the transparent water container in the solar disinfectant and the absorber plate as well as the geometrical parameters of the system. It is pointed out that for partially cloudy conditions with a low ambient temperature and high wind speeds, the thermal efficiency of the solar disinfectant is at a minimum. The use of solar energy for the disinfection process will increase the productivity of the system while completely eliminating the coliform group bacteria at the same time. (author)

  20. Contamination levels of human pharmaceutical compounds in French surface and drinking water.

    Science.gov (United States)

    Mompelat, S; Thomas, O; Le Bot, B

    2011-10-01

    The occurrence of 20 human pharmaceutical compounds and metabolites from 10 representative therapeutic classes was analysed from resource and drinking water in two catchment basins located in north-west France. 98 samples were analysed from 63 stations (surface water and drinking water produced from surface water). Of the 20 human pharmaceutical compounds selected, 16 were quantified in both the surface water and drinking water, with 22% of the values above the limit of quantification for surface water and 14% for drinking water). Psychostimulants, non-steroidal anti-inflammatory drugs, iodinated contrast media and anxiolytic drugs were the main therapeutic classes of human pharmaceutical compounds detected in the surface water and drinking water. The results for surface water were close to results from previous studies in spite of differences in prescription rates of human pharmaceutical compounds in different countries. The removal rate of human pharmaceutical compounds at 11 water treatment units was also determined. Only caffeine proved to be resistant to drinking water treatment processes (with a minimum rate of 5%). Other human pharmaceutical compounds seemed to be removed more efficiently (average elimination rate of over 50%) by adsorption onto activated carbon and oxidation/disinfection with ozone or chlorine (not taking account of the disinfection by-products). These results add to the increasing evidence of the occurrence of human pharmaceutical compounds in drinking water that may represent a threat to human beings exposed to a cocktail of human pharmaceutical compounds and related metabolites and by-products in drinking water.

  1. Surface detail reproduction and dimensional accuracy of stone models: influence of disinfectant solutions and alginate impression materials.

    Science.gov (United States)

    Guiraldo, Ricardo Danil; Borsato, Thaís Teixeira; Berger, Sandrine Bittencourt; Lopes, Murilo Baena; Gonini, Alcides; Sinhoreti, Mário Alexandre Coelho

    2012-01-01

    This study compared the surface detail reproduction and dimensional accuracy of stone models obtained from molds disinfected with 2% sodium hypochlorite, 2% chlorhexidine digluconate or 0.2% peracetic acid to models produced using molds which were not disinfected, with 3 alginate materials (Cavex ColorChange, Hydrogum 5 and Jeltrate Plus). The molds were prepared over matrix containing 20-, 50-, and 75-µm lines, performed under pressure with perforated metal tray. The molds were removed following gelation and either disinfected (using one of the solutions by spraying followed by storage in closed jars for 15 min) or not disinfected. The samples were divided into 12 groups (n=5). Molds were filled with dental gypsum Durone IV and 1 h after the start of the stone mixing the models were separated from the tray. Surface detail reproduction and dimensional accuracy were evaluated using optical microscopy on the 50-µm line with 25 mm in length, in accordance with the ISO 1563 standard. The dimensional accuracy results (%) were subjected to ANOVA. The 50 µm-line was completely reproduced by all alginate impression materials regardless of the disinfection procedure. There was no statistically significant difference in the mean values of dimensional accuracy in combinations between disinfectant procedure and alginate impression material (p=0.2130) or for independent factors. The disinfectant solutions and alginate materials used in this study are no factors of choice regarding the surface detail reproduction and dimensional accuracy of stone models.

  2. Effects of disinfecting alginate impressions on the scratch hardness of stone models.

    Science.gov (United States)

    Hiraguchi, Hisako; Nakagawa, Hisami; Wakashima, Mitsuru; Miyanaga, Kohichi; Saigo, Masataka; Nishiyama, Minoru

    2006-03-01

    This study investigated the effects of disinfecting alginate impressions on the scratch depth of resultant stone models. Eleven brands of alginate impression material and two disinfectants, 1% sodium hypochlorite and 2% glutaraldehyde, were used. Impressions were immersed in disinfectant solutions or stored in sealed bags after spraying with disinfectants, and then poured with a type V dental stone. The scratch depth of the stone model obtained from disinfected impression was measured. The storage of alginate impressions after spraying with disinfectants did not increase the scratch depth of resultant stone models. However, the effect of immersion in disinfectants on scratch depth varied with the brand of the alginate impression material.

  3. Sterilization, high-level disinfection, and environmental cleaning.

    Science.gov (United States)

    Rutala, William A; Weber, David J

    2011-03-01

    Failure to perform proper disinfection and sterilization of medical devices may lead to introduction of pathogens, resulting in infection. New techniques have been developed for achieving high-level disinfection and adequate environmental cleanliness. This article examines new technologies for sterilization and high-level disinfection of critical and semicritical items, respectively, and because semicritical items carry the greatest risk of infection, the authors discuss reprocessing semicritical items such as endoscopes and automated endoscope reprocessors, endocavitary probes, prostate biopsy probes, tonometers, laryngoscopes, and infrared coagulation devices. In addition, current issues and practices associated with environmental cleaning are reviewed. Copyright © 2011. Published by Elsevier Inc.

  4. Chlorine disinfection of grey water for reuse: effect of organics and particles.

    Science.gov (United States)

    Winward, Gideon P; Avery, Lisa M; Stephenson, Tom; Jefferson, Bruce

    2008-01-01

    Adequate disinfection of grey water prior to reuse is important to prevent the potential transmission of disease-causing microorganisms. Chlorine is a widely utilised disinfectant and as such is a leading contender for disinfection of grey water intended for reuse. This study examined the impact of organics and particles on chlorine disinfection of grey water, measured by total coliform inactivation. The efficacy of disinfection was most closely linked with particle size. Larger particles shielded total coliforms from inactivation and disinfection efficacy decreased with increasing particle size. Blending to extract particle-associated coliforms (PACs) following chlorine disinfection revealed that up to 91% of total coliforms in chlorinated grey water were particle associated. The organic concentration of grey water affected chlorine demand but did not influence the disinfection resistance of total coliforms when a free chlorine residual was maintained. Implications for urban water reuse are discussed and it is recommended that grey water treatment systems target suspended solids removal to ensure removal of PACs prior to disinfection.

  5. Antiferromagnetic Coupling in the Polynuclear Compound [Cu(II) (Allopurinolate) (OH-)] n

    Science.gov (United States)

    Acevedo-Chávez, Rodolfo; Costas, María. Eugenia; Escudero-Derat, Roberto

    1994-11-01

    Synthetic, spectral, and magnetic studies of the Cu(II) polynuclear coordination compound [Cu(HL(OH-)]n with bridging OH- and HL (allopurinolate; C5H3N4O-) ligands are reported. The compound is obtained from aqueous media (at several pH values and from CI-, Br-, NO-3, SO2-4, ClO-4, and CH3CO-2 Cu(II) salts), from DMSO at ca. 70°C using several of the above salts, and under refluxing methanol employing Cu(SO4) or Cu(CH3CO2)2. The results suggest that the compound [Cu(HL)(OH-)]n has a polynuclear form in which the bridging allopurinolate is coordinated through the N(1) and N(2) atoms of the pyrazolic moiety. All attempts to grow crystals suitable for X-ray studies were unsuccessful, and an amorphous compound was always obtained. Magnetic studies show the existence of a strong antiferromagnetic coupling, which may be associated with a favorable structural arrangement between the metallic centers and the bridging ligands. This magnetic behavior is remarkable for a Cu(II) polynuclear coordination compound. Spectral and magnetic results together with the coordination modes of the bridging groups let us postulate as a possible arrangement a cyclic polynuclear structure presenting the allopurinolate and OH- bridging ligands in a mutually trans configuration. This work is the first EPR spectral and magnetic study reported for a coordination compound with the allopurinol heterocycle as a ligand and, thus for the first example of a polynuclear coordination compound combining allopurinolate and OH- as bridging groups.

  6. Effect of ultrasonic pretreatment on purified water disinfection

    International Nuclear Information System (INIS)

    Simon Andreu, P.; Lardin Mifsut, C.; Vergara Romero, L.; Polo Canas, P. M.; Perez Sanchez, P.; Rancano Perez, A.

    2009-01-01

    Due to the importance of a suitable water disinfection in order to insure a pollutant effect minimization against environment, this work has been carried out to determine how can affect an ultrasonic pre-treatment upon disinfection step. It has been confirmed the ultrasonic disintegration of bacterial cells in treated water and disinfectant power of treatment by itself, which is not enough to be used as a single method in water disinfection. It has also been proved that from a technical and economical point of view the combination of UV and ultrasound improves the UV treatment performance. Finally, it has been detected that an ultrasonic pre-treatment increases chlorination effectiveness, however the high cost in this combination makes it unfeasible of industrial scale. (Author) 6 refs

  7. Drinking water disinfection by means of ultraviolet radiation

    International Nuclear Information System (INIS)

    Gelzhaeuser, P.; Bewig, F.; Holm, K.; Kryschi, R.; Reich, G.; Steuer, W.

    1985-01-01

    The book presents all lectures held during a course at Technical Academy Esslingen, on September 10, 1985, on the subject of 'Drinking water disinfection by means of ultraviolet radiation'. The methods hitherto used for disinfection are no longer suitable because of the increasing amounts of organic pollutants found in the untreated water, and because of the necessity to make drinking water disinfection less expensive, non-polluting and thus environmentally compatible. U.V. irradiation is a method allowing technically simple and safe disinfection of the water, and also does not have any effect on the natural taste of the drinking water. The lectures presented discuss all aspects of the method, the equipment, and the performance of irradiation systems in practice. (orig./PW) [de

  8. Analysis of haloacetic acids, bromate, and dalapon in natural waters by ion chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Wu, Shimin; Anumol, Tarun; Gandhi, Jay; Snyder, Shane A

    2017-03-03

    The addition of oxidants for disinfecting water can lead to the formation of potentially carcinogenic compounds referred to as disinfection byproducts (DBPs). Haloacetic acids (HAAs) are one of the most widely detected DBPs in US water utilities and some of them are regulated by the US Environmental Protection Agency (USEPA). The present study developed a method to analyze all the compounds in the USEPA method 557 (nine HAAs, bromate and dalapon) plus four potentially more toxic iodinated HAAs in water by coupling ion chromatography with tandem mass spectrometry (IC-MS/MS). This aqueous direct injection method has significant advantages over traditional GC methods, which require a derivatization and sample extraction that are laborious, time-consuming, and can negatively impact reproducibility. The method developed in this study requires half the time of the current USEPA method 557 on IC-MS/MS while including more compounds and achieving sub-μg/L level method detection limits (MDLs) for all 15 target analytes. The single laboratory lowest concentration minimum reporting level (LCMRL) has also been determined in reagent water, which ranged from 0.011 to 0.62μg/L for the analytes. The mean recoveries of the analytes during matrix spike recovery tests were 77-125% in finished drinking water and 81-112% in surface water. This method was then applied to untreated, chlorinated, and chloraminated groundwater and surface water samples. Bromate and 9 HAAs were detected at different levels in some of these samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Fresh water disinfection by pulsed low electric field

    International Nuclear Information System (INIS)

    Zheng, C; Xu, Y; Liu, Z; Yan, K

    2013-01-01

    In this paper, we describe a pulsed low electric field process for water disinfection. Electric intensity of 0.6–1.7 kV cm −1 is applied. Experiments are performed with a 1.2 L axis-cylinder reactor. A bipolar pulsed power source with pulsed width of 25 μs and frequency of 100–3000 Hz is used. Water conductivity of 3–200 μs cm −1 is investigated, which can significantly affect pulsed voltage-current waveforms and injected energy. Energy per pulse rises with increased water conductivity. The initial E. Coli density and water conductivity are two major factors influencing the disinfection. No disinfection effect is performed with deionized water of 3 μs cm −1 . When water conductivity is 25 μs cm −1 and bacteria density is 10 4 –10 6 cfu ml −1 , significant disinfection effect is observed. More than 99% of the cells can be disinfected with an energy density of less than 70 J ml −1 , while water temperature is below 30 °C.

  10. Adaptive Mechanisms Underlying Microbial Resistance to Disinfectants

    Science.gov (United States)

    2016-02-01

    11775]). E.coli is a gram-negative, facultative anaerobic, and rod-shaped bacteria commonly found in warm-blooded animals . 2.1.2 Disinfectants...Nisbet, D.J. Disinfectant and Antibiotic Susceptibility Profiles of Escherichia coli O157:H7 Strains from Cattle Carcasses , Feces, and Hides and

  11. Seasonal evaluation of the presence of 46 disinfection by-products throughout a drinking water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Maria; Montesinos, Isabel; Cardador, M.J.; Silva, Manuel; Gallego, Mercedes, E-mail: mercedes.gallego@uco.es

    2015-06-01

    In this work, we studied a total of 46 regulated and non-regulated disinfection by-products (DBPs) including 10 trihalomethanes (THMs), 13 haloacetic acids (HAAs), 6 halonitromethanes (HNMs), 6 haloacetonitriles (HANs) and 11 aldehydes at different points in a drinking water treatment plant (DWTP) and its distribution network. Determining an increased number of compounds and using accurate, sensitive analytical methodologies for new DBPs can be useful to overcome some challenges encountered in the comprehensive assessment of the quality and safety of drinking water. This paper provides a detailed picture of the spatial and seasonal variability of DBP concentrations from raw water to distribution network. Samples were collected on a monthly basis at seven different points in the four seasons of a year to acquire robust data for DBPs and supplementary quality-related water parameters. Only 5 aldehydes and 2 HAAs were found in raw water. Chlorine dioxide caused the formation of 3 new aldehydes (benzaldehyde included), 5 HAAs and chloroform. The concentrations of DBPs present in raw water were up to 6 times higher in the warmer seasons (spring and summer). The sedimentation process further increased their concentrations and caused the formation of three new ones. Sand filtration substantially removed aldehydes and HAAs (15–50%), but increased the levels of THMs, HNMs and HANs by up to 70%. Chloramination raised the levels of 8 aldehydes and 7 HAAs; also, it caused the formation of monoiodoacetic acid, dibromochloromethane, dichloroiodomethane and bromochloroacetonitrile. Therefore, this treatment increases the levels of existing DBPs and leads to the formation of new ones to a greater extent than does chlorine dioxide. Except for 5 aldehydes, the 23 DBPs encountered at the DWTP exit were found at increased concentrations in the warmer seasons (HAAs by about 50% and THMs by 350%). - Highlights: • Occurrence of 46 regulated and non-regulated DBPs through a DWTP was

  12. Seasonal evaluation of the presence of 46 disinfection by-products throughout a drinking water treatment plant

    International Nuclear Information System (INIS)

    Serrano, Maria; Montesinos, Isabel; Cardador, M.J.; Silva, Manuel; Gallego, Mercedes

    2015-01-01

    In this work, we studied a total of 46 regulated and non-regulated disinfection by-products (DBPs) including 10 trihalomethanes (THMs), 13 haloacetic acids (HAAs), 6 halonitromethanes (HNMs), 6 haloacetonitriles (HANs) and 11 aldehydes at different points in a drinking water treatment plant (DWTP) and its distribution network. Determining an increased number of compounds and using accurate, sensitive analytical methodologies for new DBPs can be useful to overcome some challenges encountered in the comprehensive assessment of the quality and safety of drinking water. This paper provides a detailed picture of the spatial and seasonal variability of DBP concentrations from raw water to distribution network. Samples were collected on a monthly basis at seven different points in the four seasons of a year to acquire robust data for DBPs and supplementary quality-related water parameters. Only 5 aldehydes and 2 HAAs were found in raw water. Chlorine dioxide caused the formation of 3 new aldehydes (benzaldehyde included), 5 HAAs and chloroform. The concentrations of DBPs present in raw water were up to 6 times higher in the warmer seasons (spring and summer). The sedimentation process further increased their concentrations and caused the formation of three new ones. Sand filtration substantially removed aldehydes and HAAs (15–50%), but increased the levels of THMs, HNMs and HANs by up to 70%. Chloramination raised the levels of 8 aldehydes and 7 HAAs; also, it caused the formation of monoiodoacetic acid, dibromochloromethane, dichloroiodomethane and bromochloroacetonitrile. Therefore, this treatment increases the levels of existing DBPs and leads to the formation of new ones to a greater extent than does chlorine dioxide. Except for 5 aldehydes, the 23 DBPs encountered at the DWTP exit were found at increased concentrations in the warmer seasons (HAAs by about 50% and THMs by 350%). - Highlights: • Occurrence of 46 regulated and non-regulated DBPs through a DWTP was

  13. Organocatalyzed α-Sulfenylation of carbonyl compounds using N-formly/Acyl Sulfenmides

    International Nuclear Information System (INIS)

    Noh, Hyeon Wan; Lee, Chan; Jang, Hye Young

    2017-01-01

    α-Sulfenylation of aldehydes and ketones using N-formyl and N-acyl sulfenamides, prepared by Cu-catalyzed aerobic coupling of amides and thiols, was achieved in the presence of cyclic secondary amine⋅HCl catalysts. To obtain various sulfur-functionalized carbonyl compounds, sulfenamides containing aromatic and aliphatic organosulfur were investigated. As carbonyl compounds, cyclic and acyclic ketones, 1,3-dicarbonyl compounds, and aldehydes were investigated, affording the desired α-sulfenylation products in good yields

  14. Organocatalyzed α-Sulfenylation of carbonyl compounds using N-formly/Acyl Sulfenmides

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyeon Wan; Lee, Chan; Jang, Hye Young [Dept. of Energy Systems Research, Ajou University, Suwon (Korea, Republic of)

    2017-03-15

    α-Sulfenylation of aldehydes and ketones using N-formyl and N-acyl sulfenamides, prepared by Cu-catalyzed aerobic coupling of amides and thiols, was achieved in the presence of cyclic secondary amine⋅HCl catalysts. To obtain various sulfur-functionalized carbonyl compounds, sulfenamides containing aromatic and aliphatic organosulfur were investigated. As carbonyl compounds, cyclic and acyclic ketones, 1,3-dicarbonyl compounds, and aldehydes were investigated, affording the desired α-sulfenylation products in good yields.

  15. 9 CFR 53.7 - Disinfection of premises, conveyances, and materials.

    Science.gov (United States)

    2010-01-01

    ... least 7 days following such cleaning and disinfection, unless the Administrator determines that a... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Disinfection of premises, conveyances... LIVESTOCK OR POULTRY § 53.7 Disinfection of premises, conveyances, and materials. All premises, including...

  16. Influence of ozone and paracetic acid disinfection on adhesion of resilient liners to acrylic resin.

    Science.gov (United States)

    Ekren, Orhun; Ozkomur, Ahmet

    2016-08-01

    The aim of this study was to evaluate the effect of paracetic acid (PAA) and ozone disinfection on the tensile bond strength (TBS) of silicone-based resilient liners to acrylic resins. One hundred and twenty dumbbell shaped heat-polymerized acrylic resins were prepared. From the mid segment of the specimens, 3 mm of acrylic were grinded off and separated parts were reattached by resilient liners. The specimens were divided into 2 control (control1, control7) and 4 test groups of PAA and ozone disinfection (PAA1, PAA7, ozone1 and ozone7; n=10). While control groups were immersed in distilled water for 10 min (control1) and 7 days (control7), test groups were subjected to PAA (16 g/L) or ozone rich water (4 mg/L) for 1 cycle (10 min for PAA and 60 min for ozone) per day for 7 days prior to tensile tests. Measurements of the TBS were analyzed using 3-way ANOVA and Tukey's HSD test. Adhesive strength of Mollosil decreased significantly by application of ozone disinfection. PAA disinfection had no negative effect on the TBS values of Mollosil and Molloplast B to acrylic resin. Single application of ozone disinfection did not have any negative effect on TBS values of Molloplast B, but prolonged exposure to ozone decreased its adhesive strength. The adhesion of resilient liners to acrylic was not adversely affected by PAA disinfection. Immersion in ozonated water significantly decreased TBS of Mollosil. Prolonged exposure to ozone negatively affects adhesion of Molloplast B to denture base materials.

  17. Application and study of conjunctival sac disinfectants in ophthalmic surgeries

    Directory of Open Access Journals (Sweden)

    Yan-Fei Luo

    2016-01-01

    Full Text Available Postoperative endophthalmitis is the most serious complications of ophthalmic surgeries. Conjunctival sac disinfection is currently recognized as an effectively important way to reduce the risk of endophthalmitis. At present, there are some disinfectants has been used in clinic or in the researches:mercury agent, gentamicin, povidone iodine and acid electrolytic water. All kinds of disinfectants play the role of disinfection by different ways. Povidone iodine is the most widely used conjunctival sac disinfectant. Mercurial and gentamicin have been rarely used because they pollute the environment, are easy to cause drug resistant bacteria, localized side reactions and so on. The acid electrolyte water is not used in clinic at present. With the popularization and development of the ophthalmic surgeries, the ophthalmologists have become more and more concerned about the postoperative eye comfort, the research and application of conjunctival sac disinfectant in the future will continue to be updated and developed.

  18. Anaerobic effluent disinfection using ozone: Byproducts formation

    NARCIS (Netherlands)

    Silva, G.H.R.; Daniel, L.A.; Bruning, H.; Rulkens, W.H.

    2010-01-01

    This research was aimed at studying oxidation processes, coliform inactivation effectiveness and disinfection byproducts (DBPs) associated with the disinfection of anaerobic sanitary wastewater effluent with ozone applied at doses of 5.0, 8.0 and 10.0mg O(3)L(-1) for contact times of 5, 10 and 15

  19. 40 CFR 141.709 - Developing the disinfection profile and benchmark.

    Science.gov (United States)

    2010-07-01

    ... Cryptosporidium Disinfection Profiling and Benchmarking Requirements § 141.709 Developing the disinfection profile...) of the water before or at the first customer and prior to each additional point of disinfectant...) before or at the first customer during peak hourly flow. (ii) Determine successive CTcalc/CT99.9 values...

  20. 9 CFR 51.8 - Disinfection of premises, conveyances, and materials.

    Science.gov (United States)

    2010-01-01

    ... facilities, conveyances, or other materials on the premises that would require such cleaning and disinfection... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Disinfection of premises, conveyances... ANIMALS DESTROYED BECAUSE OF BRUCELLOSIS Indemnity for Cattle, Bison, and Swine § 51.8 Disinfection of...

  1. UV Photolysis of Chloramine and Persulfate for 1,4-Dioxane Removal in Reverse-Osmosis Permeate for Potable Water Reuse.

    Science.gov (United States)

    Li, Wei; Patton, Samuel; Gleason, Jamie M; Mezyk, Stephen P; Ishida, Kenneth P; Liu, Haizhou

    2018-06-05

    A sequential combination of membrane treatment and UV-based advanced oxidation processes (UV/AOP) has become the industry standard for potable water reuse. Chloramines are used as membrane antifouling agents and therefore carried over into the UV/AOP. In addition, persulfate (S 2 O 8 2- ) is an emerging oxidant that can be added into a UV/AOP, thus creating radicals generated from both chloramines and persulfate for water treatment. This study investigated the simultaneous photolysis of S 2 O 8 2- and monochloramine (NH 2 Cl) on the removal of 1,4-dioxane (1,4-D) for potable-water reuse. The dual oxidant effects of NH 2 Cl and S 2 O 8 2- on 1,4-D degradation were examined at various levels of oxidant dosage, chloride, and solution pH. Results showed that a NH 2 Cl-to-S 2 O 8 2- molar ratio of 0.1 was optimal, beyond which the scavenging by NH 2 Cl of HO • , SO 4 •- , and Cl 2 •- radicals decreased the 1,4-D degradation rate. At the optimal ratio, the degradation rate of 1,4-D increased linearly with the total oxidant dose up to 6 mM. The combined photolysis of NH 2 Cl and S 2 O 8 2- was sensitive to the solution pH due to a disproportionation of NH 2 Cl at pH lower than 6 into less-photoreactive dichloramine (NHCl 2 ) and radical scavenging by NH 4 + . The presence of chloride transformed HO • and SO 4 •- to Cl 2 •- that is less-reactive with 1,4-D, while the presence of dissolved O 2 promoted gaseous nitrogen production. Results from this study suggest that the presence of chloramines can be beneficial to persulfate photolysis in the removal of 1,4-D; however, the treatment efficiency depends on a careful control of an optimal NH 2 Cl dosage and a minimal chloride residue.

  2. Chemical cleaning/disinfection and ageing of organic UF membranes: a review.

    Science.gov (United States)

    Regula, C; Carretier, E; Wyart, Y; Gésan-Guiziou, G; Vincent, A; Boudot, D; Moulin, P

    2014-06-01

    Membrane separation processes have become a basic unit operation for process design and product development. These processes are used in a variety of separation and concentration steps, but in all cases, the membranes must be cleaned regularly to remove both organic and inorganic material deposited on the surface and/or into the membrane bulk. Cleaning/disinfection is a vital step in maintaining the permeability and selectivity of the membrane in order to get the plant to its original capacity, to minimize risks of bacteriological contamination, and to make acceptable products. For this purpose, a large number of chemical cleaning/disinfection agents are commercially available. In general, these cleaning/disinfection agents have to improve the membrane flux to a certain extent. However, they can also cause irreversible damages in membrane properties and performances over the long term. Until now, there is considerably less literature dedicated to membrane ageing than to cleaning/disinfection. The knowledge in cleaning/disinfection efficiency has recently been improved. But in order to develop optimized cleaning/disinfection protocols there still remains a challenge to better understand membrane ageing. In order to compensate for the lack of correlated cleaning/disinfection and ageing data from the literature, this paper investigates cleaning/disinfection efficiencies and ageing damages of organic ultrafiltration membranes. The final aim is to provide less detrimental cleaning/disinfection procedures and to propose some guidelines which should have been taken into consideration in term of membrane ageing studies. To carry out this study, this article will detail the background of cleaning/disinfection and aging membrane topics in a first introductive part. In a second part, key factors and endpoints of cleaning/disinfection and aging membranes will be discussed deeply: the membrane role and the cleaning parameters roles, such as water quality, storing conditions

  3. Less skin irritation from alcohol-based disinfectant than from detergent used for hand disinfection

    DEFF Research Database (Denmark)

    Pedersen, L K; Held, E; Johansen, J D

    2005-01-01

    and forearms of 17 healthy volunteers. A control area was included. After 4 weeks an SLS patch was applied to each area. Irritant reactions were quantified with a visual score recording and measurements of transepidermal water loss (TEWL) and skin colour were performed on days 1, 5, 11, 38 and 40. RESULTS...... was found on the disinfectant-treated area compared with the control area and detergent area, and a similar trend was found for TEWL, although it was not statistically significant. CONCLUSION: Alcohol-based disinfectant caused less visible skin irritation and less skin barrier disruption than the use...

  4. Disinfection for small water supplies: a technical guide

    CSIR Research Space (South Africa)

    Solsona, F

    1990-01-01

    Full Text Available This guide will present some disinfection systems, which will be useful in supporting disinfection programmes. The description of the different systems will provide a guideline for the selection of equipment base on balancing the simplicity...

  5. Bacterial Spores Survive Treatment with Commercial Sterilants and Disinfectants

    OpenAIRE

    Sagripanti, Jose-Luis; Bonifacino, Aylin

    1999-01-01

    This study compared the activity of commercial liquid sterilants and disinfectants on Bacillus subtilis spores deposited on three types of devices made of noncorrodible, corrodible, or polymeric material. Products like Renalin, Exspor, Wavicide-01, Cidexplus, and cupric ascorbate were tested under conditions specified for liquid sterilization. These products, at the shorter times indicated for disinfection, and popular disinfectants, like Clorox, Cavicide, and Lysol were also studied. Data ob...

  6. HIGH-RATE DISINFECTION TECHNIQUES FOR COMBIND SEWER OVERFLOW

    Science.gov (United States)

    This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH )...

  7. In-Use Evaluation of Peracetic Acid for High-Level Disinfection of Endoscopes.

    Science.gov (United States)

    Chenjiao, Wu; Hongyan, Zhang; Qing, Gu; Xiaoqi, Zhong; Liying, Gu; Ying, Fang

    2016-01-01

    Many high-level disinfectants have been used for disinfection of endoscopes such as 2% glutaraldehyde (GA), 0.55% ortho-phthalaldehyde (OPA), and peracetic acid (PAA). Both GA and OPA are widely used in disinfection of endoscopes and have been previously discussed, but there is little research on the practical use of PAA as an endoscope disinfectant. An experimental model of a flexible gastrointestinal endoscope being contaminated with 9 strains of microorganism was designed. After the cleaning and disinfecting procedure was completed, we evaluated the biocidal activity (850 ppm PAA, 2% GA, and 0.55% OPA) on our flexible gastrointestinal endoscope model. We also evaluated sterilization effectiveness of PAA on other bacteria, including some antibiotic-resistant bacteria (methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and Clostridium difficile). The residual bacterial colony count number of the PAA-disinfected endoscope was significantly lower than that of the GA- and OPA-disinfected endoscopes. The biocidal effect and efficiency of the endoscope disinfection by PAA appeared to be better than either the GA- or OPA-disinfected endoscope. PAA has demonstrated a good sterilization effect on other bacterial species; of particular note are common antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and Clostridium difficile. The results of this study demonstrate that PAA is a fast and effective high-level disinfectant for use in the reprocessing of flexible endoscopes.

  8. Sewage disinfection towards protection of drinking water resources.

    Science.gov (United States)

    Kolch, A

    2000-01-01

    Wastewater applied in agriculture for irrigation could replace the use of natural drinking-water resources. With respect to high concentrations of human pathogens wastewater has to be disinfected prior to use. This paper introduces disinfection methods with emphasis on UV irradiation.

  9. Diverse Cd(II) compounds based on N-benzoyl-L-glutamic acid and N-donor ligands: Structures and photoluminescent properties

    Science.gov (United States)

    Ma, Ning; Guo, Wei-Ying; Song, Hui-Hua; Yu, Hai-Tao

    2016-01-01

    Five new Cd(II) coordination polymers with N-benzoyl-L-glutamic acid (H2bzgluO) and different N-donor ligands, [Cd(bzgluO)(2,2‧-bipy)(H2O)]n (1), [Cd(bzgluO)(2,4‧-bipy)2(H2O)·3H2O]n (2), [Cd(bzgluO)(phen)·H2O]n (3), [Cd(bzgluO)(4,4‧-bipy)(H2O)]n (4), [Cd(bzgluO)(bpp)(H2O)·2H2O]n (5) were synthesized (2,2‧-bipy=2,2‧-bipyridine, 2,4‧-bipy=2,4‧-bipyridine, phen=1,10-phenanthroline, 4,4‧-bipy=4,4‧-bipyridine, bpp=1,3-di(4-pyridyl)propane). Compounds 1-2 exhibit a 1D single-chain structure. Compound 1 generates a 2D supramolecular structure via π-π stacking and hydrogen bonding, 3D architecture of compound 2 is formed by hydrogen bonding. Compound 3 features a 1D double-chain structure, which are linked by π-π interactions into a 2D supramolecular layer. Compounds 4-5 display a 2D network structure. Neighboring layers of 4 are extended into a 3D supramolecular architecture through hydrogen bonding. The structural diversity of these compounds is attributed to the effect of ancillary N-donor ligands and coordination modes of H2bzgluO. Luminescent properties of 1-5 were studied at room temperature. Circular dichroism of compounds 1, 2 and 5 were investigated.

  10. New chlorinated amphetamine-type-stimulants disinfection-by-products formed during drinking water treatment.

    Science.gov (United States)

    Huerta-Fontela, Maria; Pineda, Oriol; Ventura, Francesc; Galceran, Maria Teresa

    2012-06-15

    Previous studies have demonstrated high removal rates of amphetamine-type-stimulants (ATSs) through conventional drinking water treatments; however the behaviour of these compounds through disinfection steps and their transformation into disinfection-by-products (DBPs) is still unknown. In this work, for the first time, the reactivity of some ATSs such as amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyethylamphetamine (MDEA) with chlorine has been investigated under simulated and real drinking water treatment conditions in order to evaluate their ability to give rise to transformation products. Two new DBPs from these illicit drugs have been found. A common chlorinated-by-product (3-chlorobenzo)-1,3-dioxole, was identified for both MDA and MDEA while for MDMA, 3-chlorocatechol was found. The presence of these DBPs in water samples collected through drinking water treatment was studied in order to evaluate their formation under real conditions. Both compounds were generated through treatment from raw river water samples containing ATSs at concentration levels ranging from 1 to 15 ng/L for MDA and from 2.3 to 78 ng/L for MDMA. One of them, (3-chlorobenzo)-1,3-dioxole, found after the first chlorination step, was eliminated after ozone and GAC treatment while the MDMA DBP mainly generated after the postchlorination step, showed to be recalcitrant and it was found in final treated waters at concentrations ranging from 0.5 to 5.8 ng/L. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Diverse Cd(II) compounds based on N-benzoyl-L-glutamic acid and N-donor ligands: Structures and photoluminescent properties

    International Nuclear Information System (INIS)

    Ma, Ning; Guo, Wei-Ying; Song, Hui-Hua; Yu, Hai-Tao

    2016-01-01

    Five new Cd(II) coordination polymers with N-benzoyl-L-glutamic acid (H_2bzgluO) and different N-donor ligands, [Cd(bzgluO)(2,2′-bipy)(H_2O)]_n (1), [Cd(bzgluO)(2,4′-bipy)_2(H_2O)·3H_2O]_n (2), [Cd(bzgluO)(phen)·H_2O]_n (3), [Cd(bzgluO)(4,4′-bipy)(H_2O)]_n (4), [Cd(bzgluO)(bpp)(H_2O)·2H_2O]_n (5) were synthesized (2,2′-bipy=2,2′-bipyridine, 2,4′-bipy=2,4′-bipyridine, phen=1,10-phenanthroline, 4,4′-bipy=4,4′-bipyridine, bpp=1,3-di(4-pyridyl)propane). Compounds 1–2 exhibit a 1D single-chain structure. Compound 1 generates a 2D supramolecular structure via π–π stacking and hydrogen bonding, 3D architecture of compound 2 is formed by hydrogen bonding. Compound 3 features a 1D double-chain structure, which are linked by π–π interactions into a 2D supramolecular layer. Compounds 4-5 display a 2D network structure. Neighboring layers of 4 are extended into a 3D supramolecular architecture through hydrogen bonding. The structural diversity of these compounds is attributed to the effect of ancillary N-donor ligands and coordination modes of H_2bzgluO. Luminescent properties of 1–5 were studied at room temperature. Circular dichroism of compounds 1, 2 and 5 were investigated. - Graphical abstract: Five new Cd(II) metal coordination compounds with H_2bzgluO and different N-donor ligands were synthesized and characterized. Compounds 1, 2 and 3 present 1D structures, compounds 4 and 5 display 2D networks. Results indicate that auxiliary ligands and coordination modes of H_2bzgluO play an important role in governing the formation of final frameworks, and the hydrogen-bonding and π–π stacking interactions contribute the formation of the diverse supramolecular architectures. Furthermore, the different crystal structures influence the emission spectra significantly. - Highlights: • It is rarely reported that complexes prepared with N-benzoyl-L-glutamic acid. • Each complex displays diverse structures and different supramolecular

  12. Development of the electrical discharge method for water disinfection

    International Nuclear Information System (INIS)

    Vojtenko, L.M.; Kononov, O.V.; Starchik, P.D.; Samojlenko, L.S.; Stavs'ka, S.S.

    1995-01-01

    Studies of processes of bacterially polluted water disinfection by the method of pulse electrical discharge in water are presented. The studies was performed to improve the disinfection technology. Main attention was concentrated to clear up effect of discharge instability on the disinfection. An influence of the shape and sizes of electrodes on repeatability of discharges was also investigated. It was found that salts solved in water greatly influence ultraviolet radiation absorption coefficients

  13. Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product.

    Science.gov (United States)

    Choi, Junghoon; Valentine, Richard L

    2002-02-01

    Studies have been conducted specifically to investigate the hypothesis that N-nitrosodimethylamine (NDMA) can be produced by reactions involving monochloramine. Experiments were conducted using dimethylamine (DMA) as a model precursor. NDMA was formed from the reaction between DMA and monochloramine indicating that it should be considered a potential disinfection by-product. The formation of NDMA increased with increased monochloramine concentration and showed maximum in yield when DMA was varied at fixed monochloramine concentrations. The mass spectra of the NDMA formed from DMA and 15N isotope labeled monochloramine (15NH2Cl) showed that the source of one of the nitrogen atoms in the nitroso group in NDMA was from monochloramine. Addition of 0.05 and 0.5 mM of preformed monochloramine to a secondarily treated wastewater at pH 7.2 also resulted in the formation of 3.6 and 111 ng/L of NDMA, respectively, showing that this is indeed an environmentally relevant NDMA formation pathway. The proposed NDMA formation mechanism consists of (i) the formation of 1,1-dimethylhydrazine (UDMH) intermediate from the reaction of DMA with monochloramine followed by, (ii) the oxidation of UDMH by monochloramine to NDMA, and (iii) the reversible chlorine transfer reaction between monochloramine and DMA which is parallel to (i). We conclude that reactions involving monochloramine in addition to classical nitrosation reactions are potentially important pathways for NDMA formation.

  14. Effect of medium-pressure UV-lamp treatment on disinfection by-products in chlorinated seawater swimming pool waters.

    Science.gov (United States)

    Cheema, Waqas A; Manasfi, Tarek; Kaarsholm, Kamilla M S; Andersen, Henrik R; Boudenne, Jean-Luc

    2017-12-01

    Several brominated disinfection by-products (DBPs) are formed in chlorinated seawater pools, due to the high concentration of bromide in seawater. UV irradiation is increasingly employed in freshwater pools, because UV treatment photodegrades harmful chloramines. However, in freshwater pools it has been reported that post-UV chlorination promotes the formation of other DBPs. To date, UV-based processes have not been investigated for DBPs in seawater pools. In this study, the effects of UV, followed by chlorination, on the concentration of three groups of DBPs were investigated in laboratory batch experiments using a medium-pressure UV lamp. Chlorine consumption increased following post-UV chlorination, most likely because UV irradiation degraded organic matter in the pool samples to more chlorine-reactive organic matter. Haloacetic acid (HAA) concentrations decreased significantly, due to photo-degradation, but the concentrations of trihalomethanes (THMs) and haloacetonitriles (HANs) increased with post-UV chlorination. Bromine incorporation in HAAs was significantly higher in the control samples chlorinated without UV irradiation but decreased significantly with UV treatment. Bromine incorporation was promoted in THM and HAN after UV and chlorine treatment. Overall, the accumulated bromine incorporation level in DBPs remained essentially unchanged in comparison with the control samples. Toxicity estimates increased with single-dose UV and chlorination, mainly due to increased HAN concentrations. However, brominated HANs are known in the literature to degrade following further UV treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Environmental and personal determinants of the uptake of disinfection by-products during swimming.

    Science.gov (United States)

    Font-Ribera, Laia; Kogevinas, Manolis; Schmalz, Christina; Zwiener, Christian; Marco, Esther; Grimalt, Joan O; Liu, Jiaqi; Zhang, Xiangru; Mitch, William; Critelli, Rossana; Naccarati, Alessio; Heederik, Dick; Spithoven, Jack; Arjona, Lourdes; de Bont, Jeroen; Gracia-Lavedan, Esther; Villanueva, Cristina M

    2016-08-01

    Trihalomethanes (THMs) in exhaled breath and trichloroacetic acid (TCAA) in urine are internal dose biomarkers of exposure to disinfection by-products (DBPs) in swimming pools. We assessed how these biomarkers reflect the levels of a battery of DBPs in pool water and trichloramine in air, and evaluated personal determinants. A total of 116 adults swam during 40min in a chlorinated indoor pool. We measured chloroform, bromodichloromethane, dibromochloromethane and bromoform in exhaled breath and TCAA in urine before and after swimming, trichloramine in air and several DBPs in water. Personal determinants included sex, age, body mass index (BMI), distance swum, energy expenditure, heart rate and 12 polymorphisms in GSTT1, GSTZ1 and CYP2E1 genes. Median level of exhaled total THMs and creatinine adjusted urine TCAA increased from 0.5 to 14.4µg/m(3) and from 2.5 to 5.8µmol/mol after swimming, respectively. The increase in exhaled brominated THMs was correlated with brominated THMs, haloacetic acids, haloacetonitriles, haloketones, chloramines, total organic carbon and total organic halogen in water and trichloramine in air. Such correlations were not detected for exhaled chloroform, total THMs or urine TCAA. Exhaled THM increased more in men, urine TCAA increased more in women, and both were affected by exercise intensity. Genetic variants were associated with differential increases in exposure biomarkers. Our findings suggest that, although affected by sex, physical activity and polymorphisms in key metabolizing enzymes, brominated THMs in exhaled breath could be used as a non-invasive DBP exposure biomarker in swimming pools with bromide-containing source waters. This warrants confirmation with new studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Effect of alginate chemical disinfection on bacterial count over gypsum cast

    OpenAIRE

    Haralur, Satheesh B.; Al-Dowah, Omir S.; Gana, Naif S.; Al-Hytham, Abdullah

    2012-01-01

    PURPOSE To evaluate the efficacy of sodium hypochlorite (1 : 10) and iodophor disinfectants on alginate impressions along with their effect on the survived bacterium count on the gypsum cast. MATERIALS AND METHODS Four alginate impression on each dentate patients were made, of which Group I were not washed or disinfected, Group II impressions were merely washed with water, Group III were disinfected by spraying with sodium hypochlorite (1 : 10), Group IV were disinfected with iodophor (1 : 21...

  17. [A novel vapor dynamic headspace enrichment equipment for nontarget screening of volatile organic compounds in drinking water].

    Science.gov (United States)

    Ma, Huilian; Zhang, Haijun; Tian, Yuzeng; Wang, Longxing; Chen, Jiping

    2011-09-01

    A novel vapor dynamic headspace enrichment device was set up for nontarget screening of volatile organic compounds (VOCs) in drinking water. The main operating parameters of this device, such as length of distillation tube, volume of collected condensate, and choice of absorbent, were optimized. In this device, vapor was utilized as a purge gas and water was utilized as a absorbent. With the help of the device, one liter of water sample could be concentrated to 5 mL and the sensitivity of traditional purge and trap-gas chromatography-mass spectrometry (P&T-GC-MS) could be improved 1-2 orders of magnitude. Source and disinfected water samples from a water treatment plant were analyzed with this method. Compared with the traditional P&T-GC-MS analysis without pre-enrichment, the numbers of identified VOCs were improved from 0 to 16 for source water and 5 to 35 for disinfected water samples. It is also shown that there are many halide compounds in VOCs in disinfected water which do not exist in source water.

  18. Intracellular mechanisms of solar water disinfection

    Science.gov (United States)

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  19. Role of disinfection in the Infection Prevention Multibarrier System

    OpenAIRE

    Kramer, Axel

    2007-01-01

    The role of disinfection in infection prevention has been analyzed over the past 50 years both in the form of benefit-risk evaluations as well as in an epidemiological sense. This has served as the basis for not only national and international guidelines and recommendations, but has also created the legal and normative framework for regulation of infection control (and hence of disinfection) in numerous and acts and ordinances. Likewise, today the efficacy of disinfection measures, user safet...

  20. Efficacy of a variety of disinfectants against Listeria spp.

    OpenAIRE

    Best, M; Kennedy, M E; Coates, F

    1990-01-01

    The efficacy of 14 disinfectants against Listeria innocua and two strains of Listeria monocytogenes in the presence of organic matter was studied. Quantitative efficacy tests were used. Many of the disinfectants tested were not as effective on Listeria spp. when the test organisms were dried onto the surface of steel disks (carrier tests) as they were when the organisms were placed in suspension (suspension test). The presence of whole serum and milk (2% fat) further reduced the disinfectant ...

  1. A practical evaluation of detergent and disinfectant solutions on ...

    African Journals Online (AJOL)

    Student01

    2012-01-06

    Jan 6, 2012 ... Nine sanitation chemical solutions: benzalkonium chloride, sodium hypochlorite, nitric ... cleaning and disinfection in reducing selected bacteria levels as required by ..... bacteria targeted during disinfection are attached to a.

  2. Peracetic acid (PAA) disinfection of primary, secondary and tertiary treated municipal wastewaters.

    Science.gov (United States)

    Koivunen, J; Heinonen-Tanski, H

    2005-11-01

    The efficiency of peracetic acid (PAA) disinfection against enteric bacteria and viruses in municipal wastewaters was studied in pilot-scale. Disinfection pilot-plant was fed with the primary or secondary effluent of Kuopio municipal wastewater treatment plant or tertiary effluent from the pilot-scale dissolved air flotation (DAF) unit. Disinfectant doses ranged from 2 to 7 mg/l PAA in the secondary and tertiary effluents, and from 5 to 15 mg/l PAA in the primary effluents. Disinfection contact times were 4-27 min. Disinfection of secondary and tertiary effluents with 2-7 mg/l PAA and 27 min contact time achieved around 3 log reductions of total coliforms (TC) and enterococci (EC). PAA disinfection also significantly improved the hygienic quality of the primary effluents: 10-15 mg/l PAA achieved 3-4 log reductions of TC and EC, 5 mg/l PAA resulting in below 2 log reductions. F-RNA coliphages were more resistant against the PAA disinfection and around 1 log reductions of these enteric viruses were typically achieved in the disinfection treatments of the primary, secondary and tertiary effluents. Most of the microbial reductions occurred during the first 4-18 min of contact time, depending on the PAA dose and microorganism. The PAA disinfection efficiency remained relatively constant in the secondary and tertiary effluents, despite of small changes of wastewater quality (COD, SS, turbidity, 253.7 nm transmittance) or temperature. The disinfection efficiency clearly decreased in the primary effluents with substantially higher microbial, organic matter and suspended solids concentrations. The results demonstrated that PAA could be a good alternative disinfection method for elimination of enteric microbes from different wastewaters.

  3. In situ disinfection of sewage contaminated shallow groundwater: a feasibility study.

    Science.gov (United States)

    Bailey, Morgan M; Cooper, William J; Grant, Stanley B

    2011-11-01

    Sewage-contaminated shallow groundwater is a potential cause of beach closures and water quality impairment in marine coastal communities. In this study we set out to evaluate the feasibility of several strategies for disinfecting sewage-contaminated shallow groundwater before it reaches the coastline. The disinfection rates of Escherichia coli (EC) and enterococci bacteria (ENT) were measured in mixtures of raw sewage and brackish shallow groundwater collected from a coastal community in southern California. Different disinfection strategies were explored, ranging from benign (aeration alone, and aeration with addition of brine) to aggressive (chemical disinfectants peracetic acid (PAA) or peroxymonosulfate (Oxone)). Aeration alone and aeration with brine did not significantly reduce the concentration of EC and ENT after 6 h of exposure, while 4-5 mg L(-1) of PAA or Oxone achieved >3 log reduction after 15 min of exposure. Oxone disinfection was more rapid at higher salinities, most likely due to the formation of secondary oxidants (e.g., bromine and chlorine) that make this disinfectant inappropriate for marine applications. Using a Lagrangian modeling framework, we identify several factors that could influence the performance of in-situ disinfection with PAA, including the potential for bacterial regrowth, and the non-linear dependence of disinfection rate upon the residence time of water in the shallow groundwater. The data and analysis presented in this paper provide a framework for evaluating the feasibility of in-situ disinfection of shallow groundwater, and elucidate several topics that warrant further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Selection criteria for water disinfection techniques in agricultural practices.

    Science.gov (United States)

    Haute, Sam van; Sampers, Imca; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2015-01-01

    This paper comprises a selection tool for water disinfection methods for fresh produce pre- and postharvest practices. A variety of water disinfection technologies is available on the market and no single technology is the best choice for all applications. It can be difficult for end users to choose the technology that is best fit for a specific application. Therefore, the different technologies were characterized in order to identify criteria that influence the suitability of a technology for pre- or postharvest applications. Introduced criteria were divided into three principal components: (i) criteria related to the technology and which relate to the disinfection efficiency, (ii) attention points for the management and proper operation, and (iii) necessities in order to sustain the operation with respect to the environment. The selection criteria may help the end user of the water disinfection technology to obtain a systematic insight into all relevant aspects to be considered for preliminary decision making on which technologies should be put to feasibility testing for water disinfection in pre- and postharvest practices of the fresh produce chain.

  5. Visible light photocatalytic disinfection of E. coli with TiO_2–graphene nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyrin

    International Nuclear Information System (INIS)

    Rahimi, Rahmatollah; Zargari, Solmaz; Yousefi, Azam; Yaghoubi Berijani, Marzieh; Ghaffarinejad, Ali; Morsali, Ali

    2015-01-01

    Graphical abstract: TiO_2–graphene nanocomposites with different content of graphene were synthesized via a facile one-step solvothermal method. Photoelectrochemical responses of prepared photocatalysts were measured to determine the optimum content of graphene in TG nanocomposites. The results show that the TG nanocomposite with 3% of graphene has the highest photoactivity. This compound was sensitized with tetrakis(4-carboxyphenyl)porphyrin (TGP). The prepared photocatalysts were used for photocatalytic disinfection of E. coli. The results showed that the photocatalytic disinfection of the TG nanocomposite was increased after sensitization with porphyrin. The enhanced photocatalytic performance could be attributed to the synergistic effect between TiO_2, graphene and porphyrin sensitizer in the TGP photocatalyst. - Highlights: • TiO_2–graphene nanocomposites (TG) were synthesized with different content of graphene. • The TG nanocomposite with different content of graphene was sensitized with porphyrin (TGP). • The disinfection of E. coli using TGP was investigated in the visible light. • Porphyrin sensitizer increases effectively the photocatalytic disinfection efficiency of TGP. - Abstract: The present research deals with the development of a new heterogeneous photocatalysis system for disinfection of bacteria from wastewater by using TiO_2–graphene (TG) nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyrin (TCPP). The disinfection of wastewater using this photocatalyst is not reported in the literature yet. All the synthesized materials were thoroughly characterized by Raman, XRD, DRS, BET, and SEM analysis. The optimum content of graphene in the TiO_2–graphene nanocomposite was determined by photocurrent responses of prepared photocatalysts. Subsequently, the photocurrent measurements demonstrate that the TiO_2–graphene nanocomposite with 3% graphene content has higher photoactivity. Furthermore, sensitization of the TiO_2

  6. Disinfection of drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Ensenauer, P

    1977-01-01

    Some methods for disinfecting drinking water are described, e.g. UV irradiation (optimal wavelength 210-250mm) with the advantage of constant water composition and the resulting danger of re-infection.

  7. Physical properties of layered homologous RE-B-C(N) compounds

    International Nuclear Information System (INIS)

    Mori, Takao; Zhang Fuxiang; Leithe-Jasper, Andreas

    2004-01-01

    Physical properties of a series of homologous RE-B-C(N) B 12 cluster compounds REB 17 CN, REB 22 C 2 N, and REB 28.5 C 4 (RE=Er,Ho) were investigated. The structures of the compounds are layer-like along the c-axis, with rare earth and B 6 octahedral layers separated by B 12 icosahedral and C-B-C chain layers whose number increases successively from two B 12 layers for the REB 17 CN compound to four for the REB 28.5 C 4 compound. The rare earth atoms are configured in two triangular flat layers which are stacked on top of one another in AB stacking where the nearest-neighbor rare earth directions are the three atoms forming a triangle in the adjacent layer. The series of homologous compounds exhibit a spin glass transition with T f shifting in correspondence with variations of the basal plane lattice constants, consistent with the magnetic interaction being effective in the basal planes. The isothermal remanent magnetization shows a stretched exponential decay I m (t)∝ exp[-Ct -(1-n) ]. Exponents determined for the different homologous compounds were scaled as a function of T r =T/T f and found to follow the empirical dependency determined for typical spin glasses. It is indicated that a mixture of disorder originating from the partial occupancy of the rare earth sites and frustration of interactions due to the unique configuration is responsible for the manifestation of spin glass transitions in these homologous systems

  8. Does disinfection of environmental surfaces influence nosocomial infection rates? A systematic review.

    Science.gov (United States)

    Dettenkofer, Markus; Wenzler, Sibylle; Amthor, Susanne; Antes, Gerd; Motschall, Edith; Daschner, Franz D

    2004-04-01

    To review the evidence on the effects of disinfection of environmental surfaces in hospitals (as compared with cleaning without use of disinfectants) on the occurrence of nosocomial infections. Systematic review of experimental and nonexperimental intervention studies dealing with environmental disinfection or cleaning in different health care settings. A total of 236 scientific articles were identified. None described a meta-analysis, systematic review, or randomized controlled trial. Only 4 articles described completed cohort studies matching the inclusion criteria. None of these studies showed lower infection rates associated with routine disinfection of surfaces (mainly floors) versus cleaning with detergent only. Disinfectants may pose a danger to staff, patients, and the environment and require special safety precautions. However, targeted disinfection of certain environmental surfaces is in certain instances an established component of hospital infection control. Given the complex, multifactorial nature of nosocomial infections, well-designed studies that systematically investigate the role of surface disinfection are required.

  9. Recent N-Atom Containing Compounds from Indo-Pacific Invertebrates

    Directory of Open Access Journals (Sweden)

    Ashgan Bishara

    2010-11-01

    Full Text Available A large variety of unique N-atom containing compounds (alkaloids without terrestrial counterparts, have been isolated from marine invertebrates, mainly sponges and ascidians. Many of these compounds display interesting biological activities. In this report we present studies on nitrogenous compounds, isolated by our group during the last few years, from Indo-Pacific sponges, one ascidian and one gorgonian. The major part of the review deals with metabolites from the Madagascar sponge Fascaplysinopsis sp., namely, four groups of secondary metabolites, the salarins, tulearins, taumycins and tausalarins.

  10. Chemical surface disinfection of eggs of Baltic cod, Gadus morhua L

    DEFF Research Database (Denmark)

    Overton, J L; Bruun, Morten Sichlau; Dalsgaard, Inger

    2010-01-01

    The effect of two disinfectants on eggs and larvae of Baltic cod, Gadus morhua, was investigated. The eggs were disinfected for 10 min using various concentrations of either glutaraldehyde (100, 200, 400, 600 and 800 mg L−1) or iodophor (10, 50, 100 and 150 mg L−1), 1–4-days post......-fertilization. Bactericidal effect of disinfection, survival to hatching, hatching success and larval abnormalities were assessed. Larval survival was recorded at 5-, 10- and 15-days post-hatch (dph). Although Baltic cod eggs have an unusually thin chorion, they could tolerate surface disinfection. A reduction in bacterial...... growth was observed with increased concentrations of disinfectant (3.0 × 107–1.6 × 101 CFU mL−1). Abnormalities in newly hatched larvae were not related to disinfection. Survival of the yolk sac larvae was significantly better for eggs treated with 400 mg L−1 glutaraldehyde for 10 min at 10 and 15 dph...

  11. A Review of Heterogeneous Photocatalysis for Water and Surface Disinfection

    Directory of Open Access Journals (Sweden)

    John Anthony Byrne

    2015-03-01

    Full Text Available Photo-excitation of certain semiconductors can lead to the production of reactive oxygen species that can inactivate microorganisms. The mechanisms involved are reviewed, along with two important applications. The first is the use of photocatalysis to enhance the solar disinfection of water. It is estimated that 750 million people do not have accessed to an improved source for drinking and many more rely on sources that are not safe. If one can utilize photocatalysis to enhance the solar disinfection of water and provide an inexpensive, simple method of water disinfection, then it could help reduce the risk of waterborne disease. The second application is the use of photocatalytic coatings to combat healthcare associated infections. Two challenges are considered, i.e., the use of photocatalytic coatings to give “self-disinfecting” surfaces to reduce the risk of transmission of infection via environmental surfaces, and the use of photocatalytic coatings for the decontamination and disinfection of medical devices. In the final section, the development of novel photocatalytic materials for use in disinfection applications is reviewed, taking account of materials, developed for other photocatalytic applications, but which may be transferable for disinfection purposes.

  12. Diverse Cd(II) compounds based on N-benzoyl-L-glutamic acid and N-donor ligands: Structures and photoluminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ning; Guo, Wei-Ying; Song, Hui-Hua, E-mail: songhuihua@mail.hebtu.edu.cn; Yu, Hai-Tao, E-mail: haitaoyu@mail.hebtu.edu.cn

    2016-01-15

    Five new Cd(II) coordination polymers with N-benzoyl-L-glutamic acid (H{sub 2}bzgluO) and different N-donor ligands, [Cd(bzgluO)(2,2′-bipy)(H{sub 2}O)]{sub n} (1), [Cd(bzgluO)(2,4′-bipy){sub 2}(H{sub 2}O)·3H{sub 2}O]{sub n} (2), [Cd(bzgluO)(phen)·H{sub 2}O]{sub n} (3), [Cd(bzgluO)(4,4′-bipy)(H{sub 2}O)]{sub n} (4), [Cd(bzgluO)(bpp)(H{sub 2}O)·2H{sub 2}O]{sub n} (5) were synthesized (2,2′-bipy=2,2′-bipyridine, 2,4′-bipy=2,4′-bipyridine, phen=1,10-phenanthroline, 4,4′-bipy=4,4′-bipyridine, bpp=1,3-di(4-pyridyl)propane). Compounds 1–2 exhibit a 1D single-chain structure. Compound 1 generates a 2D supramolecular structure via π–π stacking and hydrogen bonding, 3D architecture of compound 2 is formed by hydrogen bonding. Compound 3 features a 1D double-chain structure, which are linked by π–π interactions into a 2D supramolecular layer. Compounds 4-5 display a 2D network structure. Neighboring layers of 4 are extended into a 3D supramolecular architecture through hydrogen bonding. The structural diversity of these compounds is attributed to the effect of ancillary N-donor ligands and coordination modes of H{sub 2}bzgluO. Luminescent properties of 1–5 were studied at room temperature. Circular dichroism of compounds 1, 2 and 5 were investigated. - Graphical abstract: Five new Cd(II) metal coordination compounds with H{sub 2}bzgluO and different N-donor ligands were synthesized and characterized. Compounds 1, 2 and 3 present 1D structures, compounds 4 and 5 display 2D networks. Results indicate that auxiliary ligands and coordination modes of H{sub 2}bzgluO play an important role in governing the formation of final frameworks, and the hydrogen-bonding and π–π stacking interactions contribute the formation of the diverse supramolecular architectures. Furthermore, the different crystal structures influence the emission spectra significantly. - Highlights: • It is rarely reported that complexes prepared with N-benzoyl-L-glutamic acid

  13. Environmental Compliance Assessment and Management System Program (ECAMP). U.S. Air Force Georgia Supplement

    Science.gov (United States)

    1994-02-01

    his designee. 1.22. Disinfectant - any oxidant, including but not limited to chlorine, chlorine dioxide, chloramines , and ozone added to water in any...CECER-ECP, was Associate Investigator. Dr. Diane K. Mann, CECER-ECP, is Acting Team Leader. Dr. John T . Bandy is Acting Chief, CECER-EC, and William...Subpart R - Primary Lead Smelters, as amended. Subpart S - Primary Aluminum Reduction Plants, as amended. Subpart T - Phosphate Fertilizer Industry: Wet

  14. PROBIOTIC CLEANING PREPARATIONS VERSUS CHEMICAL DISINFECTANTS

    Directory of Open Access Journals (Sweden)

    W. Luepcke

    2017-12-01

    Full Text Available Probiotic detergents are increasingly used and are a real alternative for limiting the use of chemical cleaners, chemical disinfectants and antibiotics. They therefore have a great future because they contribute to animal health, to the hygienic production of food products of animal origin and to their harmlessness and to consumer health and environmental protection where they even have a beneficial effect on the microflora apart from chemical disinfectants that have a negative impact and destroy the beneficial microflora.

  15. Nitrogen-oxy compounds formation in moist - N2 gaseous systems

    International Nuclear Information System (INIS)

    Dey, G.R.; Das, Tomi Nath

    2015-01-01

    In any high ionizing radiation zone continuous generation of nitrogen compounds such as NO 2 , NO 2 - and NO 3 - in aqueous and gas phase is a normal phenomena. Their formation mechanisms, and the control processes still pose a challenge with reference to the resulting corrosive environment generated, and it's effect on various structural materials used in nuclear industry. The source(s) of nitrogen for these products are mainly air which ingresses into the system, and/or nitrogen compounds such as ammonia, hydrazine, volatile amines used in different parts of the nuclear power plants to control pH and scavenge dissolved oxygen in coolant/moderator systems. Under high radiation environment their subsequent chemistry leads to the formation of various N-O compounds. With the objective to elucidate such reaction mechanisms, we studied and compared the chemistry of nitrogen in water and moist-nitrogen systems under the complimentary initiation techniques of cold plasma, wherein free electrons in eV energy range initiate the radical induced chemistry. In the gas phase, cold plasma produced NO and NO 2 which were confirmed on-line by respective absorbance measurement at 204, 214.5, 226 and 400 nm, while NO 2 - was analyzed as additional product after wet-chemical sampling in sulphanalic acid (0.5%) and N (1-naphthyl) ethylene diamine dihydrochloride (0.1%) mixed solution followed by absorbance measurement at 540 nm. This work was explored in three different systems: (i) N 2 from commercial high purity N 2 gas cylinder, (ii) N 2 from such source pretreated with activated silica gel (to reduce/minimize moisture concentration further) and (iii) N 2 bubbled through water (saturated moisture in N 2 system). The observed concentration of NO 2 - was found to be higher in moisture saturated N 2 system. In this presentation a brief summary of the results on various aspect of the formation of different N-O compounds during radiolysis of aqueous systems and gas phase cold

  16. Disinfecting the iPad: evaluating effective methods.

    Science.gov (United States)

    Howell, V; Thoppil, A; Mariyaselvam, M; Jones, R; Young, H; Sharma, S; Blunt, M; Young, P

    2014-06-01

    Tablet computers are increasingly used in healthcare, but they may carry nosocomial pathogens. There are few data available on how to clean an iPad effectively for use in the clinical setting. We aimed to identify the most effective method of decontaminating the Apple iPad, without causing damage, and establish the duration of any residual effect. Following contamination with a microbial broth (meticillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococcus (VRE) and Clostridium difficile), we examined efficacy of iPad disinfection in the laboratory using six different disinfectant wipes: Sani-Cloth CHG 2% (chlorhexidine 2%/alcohol 70%), Clorox, Tristel, Trigene, soap and water, and plain cloth. Following cleaning, iPads were recontaminated to examine residual activity. After 480 Sani-Cloth CHG 2% disinfecting episodes, functional and visual analysis of iPads was performed by blinded subjects. With the exception of Clostridium difficile, Sani-Cloth CHG 2% and Clorox wipes were most effective against MRSA and VRE, and they were significantly better than the Apple-recommended plain cloth (P ≤ 0.001). A substantial residual antimicrobial effect was seen for >6h after wiping the iPad with Sani-Cloth CHG 2% despite repeated recontamination and without further disinfection. The functionality or visual appearance of the iPad was not damaged by repeated use of Sani-Cloth CHG 2% wipes. Sani-Cloth CHG 2% wipes effectively disinfect the iPad against MRSA and VRE, with a residual antibacterial effect and without causing damage. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  17. Disinfection of drinking water

    International Nuclear Information System (INIS)

    Ensenauer, P.

    1977-01-01

    Some methods for disinfecting drinking water are described, e.g. UV irradiation (optimal wavelength 210-250mm) with the advantage of constant water composition and the resulting danger of re-infection. (AJ) [de

  18. Composting of gamma-radiation disinfected sewage sludge

    International Nuclear Information System (INIS)

    Kawakami, W.; Hashimoto, S.; Watanabe, H.; Nishimura, K.; Watanabe, H.; Ito, H.; Takehisa, M.

    1981-01-01

    The composting of radiation disinfected sewage sludge has been studied since 1978, aiming to present a new process of sludge composting for agricultural uses. This process is composed of two steps: irradiation step to disinfect sludge, and composting step to remove odor and easily decomposable organics in sludge. In this paper, the gamma-irradiation effect on sludge cake and composting condition of irradiated sludge are discussed. (author)

  19. Technical considerations during disinfection by UV

    International Nuclear Information System (INIS)

    Ekhtiarzadeh, Z.; Sadeghpur, H.

    2002-01-01

    The use of new methods for treatment of water and wastewater in the country is one the rise and therefore the theoretical and practical knowledge of the industry's engineers should increase simultaneously. Ultraviolet is one of the new technologies used both for treatment of water as well as wastewater. The UV disinfection system consists of different components such as the lamp, ballast and the lamp fixtures. Each has a specification, which should be taken into account prior to design, order and purchase. The subject of price is also among the important considerations. The article presents figures cost comparison in various sections. It does not try to either approve or reject other disinfection systems such as chlorination, but the writer believes that any method should find its own practice and conditions of use, and the disinfection system designers should opt for the best system suited to their plans and avoid limiting themselves to a single one

  20. Disinfection of bore well water with chlorine dioxide/sodium hypochlorite and hydrodynamic cavitation.

    Science.gov (United States)

    Wang, Yifei; Jia, Aiyin; Wu, Yue; Wu, Chunde; Chen, Lijun

    2015-01-01

    The effect of hydrodynamic cavitation (HC) on potable water disinfection of chemicals was investigated. The bore well water was introduced into HC set-up to examine the effect of HC alone and combination of HC and chemicals such as chlorine dioxide and sodium hypochlorite. The effect of inlet pressure and geometrical parameters on disinfection was studied using HC alone and the results showed that increasing inlet pressure and using more and bigger holes of orifice plates can result in a higher disinfection rates. When HC was combined with chemicals, HC can reduce the doses of the chemicals and shorten the time of disinfection. It was also found that the decrease in bacteria concentration followed a first-order kinetic model. As for the experiment of combination of HC and sodium hypochlorite for disinfection, HC not only improves the disinfection rate but also degrades natural organic matter and chloroform. Compared with only sodium hypochlorite disinfection, combined processes get higher disinfection rate and lower production of chloroform, particularly the pretreatment with HC enhances the disinfection rate by 32% and there is a simultaneous reduction in production of chloroform by 39%.

  1. Wettability changes in polyether impression materials subjected to immersion disinfection.

    Science.gov (United States)

    Shetty, Shweta; Kamat, Giridhar; Shetty, Rajesh

    2013-07-01

    Disinfection of impression materials prevents cross-contamination; however, the disinfectants may alter the wettability property. The purpose of this investigation was to evaluate the wettability changes of polyether impression material after immersing in four different chemical disinfectant solutions for a period of 10 min and 30 min, respectively. A total of 45 samples of polyether dental impression material (Impregum soft, 3MESPE, St. Paul, MN, USA) were randomly divided into nine groups with five specimens each. Each specimen was disc shaped, flat of 32 mm diameter and 3 mm thickness. The samples were immersed in four disinfectant solutions: 2% Glutaraldehyde, 5% sodium hypochlorite, 0.05% iodophor, and 5.25% phenol for 10 min and 30 min, respectively. The control was without disinfection. Wettability of the samples was assessed by measuring the contact angle by using the Telescopic Goniometer. Data were subjected to analysis of variance (Fisher's test) and Tukey's post hoc test for multiple comparisons at 5% level of significance. The contact angle of 20.21° ± 0.22° were recorded in the control samples. After 10 min, the samples that were immersed in 5% sodium hypochlorite and 5.25% phenol showed significant statistical increase in the contact angle as compared to the control (P polyether material. Within the limitations of the study, 2% glutaraldehyde proved safe for 10 min of immersion disinfection while 0.05% iodophor holds promise as an effective disinfectant without affecting the wettability of the material.

  2. Drinking Water Supply without Use of a Disinfectant

    Science.gov (United States)

    Rajnochova, Marketa; Tuhovcak, Ladislav; Rucka, Jan

    2018-02-01

    The paper focuses on the issue of drinking water supply without use of any disinfectants. Before the public water supply network operator begins to consider switching to operation without use of chemical disinfection, initial assessment should be made, whether or not the water supply system in question is suitable for this type of operation. The assessment is performed by applying the decision algorithm. The initial assessment is followed by another decision algorithm which serves for managing and controlling the process of switching to drinking water supply without use of a disinfectant. The paper also summarizes previous experience and knowledge of this way operated public water supply systems in the Czech Republic.

  3. Immobilization of N-Heterocyclic Carbene Compounds: A Synthetic Perspective.

    Science.gov (United States)

    Zhong, Rui; Lindhorst, Anja C; Groche, Florian J; Kühn, Fritz E

    2017-02-08

    Over the course of the past 15 years the success story of N-heterocyclic carbene (NHC) compounds in organic, inorganic, and organometallic chemistry has been extended to another dimension. The immobilization of NHC compounds, undergoing continuous diversification, broadens their range of applications and leads to new solutions for challenges in catalytic and synthetic chemistry. This review intends to present a synthetic toolkit for the immobilization of NHC compounds, giving the reader an overview on synthetic techniques and strategies available in the literature. By individually summarizing and assessing the synthetic steps of the immobilization process, a comprehensive picture of the strategies and methodologies for the immobilization of NHC compounds is presented. Furthermore, the characterization of supported NHC compounds is discussed in detail in order to set up necessary criteria for an in-depth analysis of the immobilized derivatives. Finally, the catalytic applications of immobilized NHC compounds are briefly reviewed to illustrate the practical use of this technique for a broad variety of reaction types.

  4. Effect of drinking water disinfection by-products in human peripheral blood lymphocytes and sperm.

    Science.gov (United States)

    Ali, Aftab; Kurzawa-Zegota, Malgorzata; Najafzadeh, Mojgan; Gopalan, Rajendran C; Plewa, Michael J; Anderson, Diana

    2014-12-01

    Drinking water disinfection by-products (DBPs) are generated by the chemical disinfection of water and may pose hazards to public health. Two major classes of DBPs are found in finished drinking water: haloacetic acids (HAAs) and trihalomethanes (THMs). HAAs are formed following disinfection with chlorine, which reacts with iodide and bromide in the water. Previously the HAAs were shown to be cytotoxic, genotoxic, mutagenic, teratogenic and carcinogenic. To determine the effect of HAAs in human somatic and germ cells and whether oxidative stress is involved in genotoxic action. In the present study both somatic and germ cells have been examined as peripheral blood lymphocytes and sperm. The effects of three HAA compounds: iodoacetic acid (IAA), bromoacetic acid (BAA) and chloroacetic acid (CAA) were investigated. After determining appropriate concentration responses, oxygen radical involvement with the antioxidants, butylated hydroxanisole (BHA) and the enzyme catalase, were investigated in the single cell gel electrophoresis (Comet) assay under alkaline conditions, >pH 13 and the micronucleus assay. In the Comet assay, BHA and catalase were able to reduce DNA damage in each cell type compared to HAA alone. In the micronucleus assay, micronuclei (MNi) were found in peripheral lymphocytes exposed to all three HAAs and catalase and BHA were in general, able to reduce MNi induction, suggesting oxygen radicals play a role in both assays. These observations are of concern to public health since both human somatic and germ cells show similar genotoxic responses. Copyright © 2014. Published by Elsevier B.V.

  5. UV disinfection for reuse applications in North America.

    Science.gov (United States)

    Sakamoto, G; Schwartzel, D; Tomowich, D

    2001-01-01

    In an effort to conserve and protect limited water resources, the States of Florida and California have actively promoted wastewater reclamation and have implemented comprehensive regulations covering a range of reuse applications. Florida has a semi-tropical climate with heavy summer rains that are lost due to run off and evaporation. Much of California is arid and suffers periodic droughts, low annual rainfall and depleted ground water supplies. The high population density combined with heavy irrigation demands has depleted ground water supplies resulting in salt-water intrusion. During the past decade, Florida reuse sites have increased dramatically from 118 to 444 plants representing a total flow capacity of 826 MGD. California presently has over 250 plants producing 1 BGD with a projected increase of 160 sites over the next 20 years. To prevent the transmission of waterborne diseases, disinfection of reclaimed water is controlled by stringent regulations. Many states regulate wastewater treatment processes, nutrient removal, final effluent quality and disinfection criteria based upon the specific reuse application. As a rule, the resulting effluents have low turbidity and suspended solids. For such effluents, UV technology can economically achieve the most stringent disinfection targets that are required by the States of California and Florida for restricted and unrestricted reuse. This paper compares UV disinfection for wastewater reuse sites in California and Florida and discusses the effect of effluent quality on UV disinfection.

  6. Effectiveness of Four Disinfectants against Ebola Virus on Different Materials

    Directory of Open Access Journals (Sweden)

    Sophie Smither

    2016-07-01

    Full Text Available The West Africa Ebola virus (EBOV outbreak has highlighted the need for effective disinfectants capable of reducing viral load in a range of sample types, equipment and settings. Although chlorine-based products are widely used, they can also be damaging to equipment or apparatus that needs continuous use such as aircraft use for transportation of infected people. Two aircraft cleaning solutions were assessed alongside two common laboratory disinfectants in a contact kill assay with EBOV on two aircraft relevant materials representative of a porous and non-porous surface. A decimal log reduction of viral titre of 4 is required for a disinfectant to be deemed effective and two of the disinfectants fulfilled this criteria under the conditions tested. One product, Ardrox 6092, was found to perform similarly to sodium hypochlorite, but as it does not have the corrosive properties of sodium hypochlorite, it could be an alternative disinfectant solution to be used for decontamination of EBOV on sensitive apparatus.

  7. N-nitrosodimethylamine (NDMA) formation during ozonation of N,N-dimethylhydrazine compounds: Reaction kinetics, mechanisms, and implications for NDMA formation control.

    Science.gov (United States)

    Lim, Sungeun; Lee, Woongbae; Na, Soyoung; Shin, Jaedon; Lee, Yunho

    2016-11-15

    Compounds with N,N-dimethylhydrazine moieties ((CH 3 ) 2 N-N-) form N-nitrosodimethylamine (NDMA) during ozonation, but the relevant reaction chemistry is hitherto poorly understood. This study investigated the reaction kinetics and mechanisms of NDMA formation during ozonation of unsymmetrical dimethylhydrazine (UDMH) and daminozide (DMZ) as structural model N,N-dimethylhydrazine compounds. The reaction of ozone with these NDMA precursor compounds was fast, and k O3 at pH 7 was 2 × 10 6  M -1  s -1 for UDMH and 5 × 10 5  M -1  s -1 for DMZ. Molar NDMA yields (i.e., Δ[NDMA]/Δ[precursor] × 100) were 84% and 100% for UDMH and DMZ, respectively, determined at molar ozone dose ratio ([O 3 ] 0 /[precursor] 0 ) of ≥4 in the presence of tert-butanol as hydroxyl radical (OH) scavenger. The molar NDMA yields decreased significantly in the absence of tert-butanol, indicating OH formation and its subsequent reaction with the parent precursors forming negligible NDMA. The k OH at pH 7 was 4.9 × 10 9  M -1  s -1 and 3.4 × 10 9  M -1  s -1 for UDMH and DMZ, respectively. Reaction mechanisms are proposed in which an ozone adduct is formed at the nitrogen next to N,N-dimethylamine which decomposes via homolytic and heterolytic cleavages of the -N + -O-O-O - bond, forming NDMA as a final product. The heterolytic cleavage pathway explains the significant OH formation via radical intermediates. Overall, significant NDMA formation was found to be unavoidable during ozonation or even O 3 /H 2 O 2 treatment of waters containing N,N-dimethylhydrazine compounds due to their rapid reaction with ozone forming NDMA with high yield. Thus, source control or pre-treatment of N,N-dimethylhydrazine precursors and post-treatment of NDMA are proposed as the mitigation options. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Impact of universal disinfectant cap implementation on central line-associated bloodstream infections.

    Science.gov (United States)

    Merrill, Katreena Collette; Sumner, Sharon; Linford, Lorraine; Taylor, Carrie; Macintosh, Christopher

    2014-12-01

    Central line-associated bloodstream infections (CLABSIs) result in increased length of stay, cost, and patient morbidity and mortality. One CLABSI prevention method is disinfection of intravenous access points. The literature suggests that placing disinfectant caps over needleless connectors decreases CLABSI risk. A quasi-experimental intervention study was conducted in a >430-bed trauma I center. In addition to an existing standard central line bundle, a new intervention consisting of a luer-lock disinfectant cap with 70% alcohol was implemented in all intravenous (IV) needleless connectors on patients with peripheral and central lines. Compliance to the disinfectant cap was monitored weekly. A generalized linear model using a Poisson distribution was fit to determine if there were significant relationships between CLABSIs and disinfectant cap use. Impacts on costs were also examined. The rate of CLABSI decreased following implementation of the disinfectant cap. The incidence rate ratios (.577, P = .004) for implementing the disinfectant caps was statistically significant, indicating that the rate of patient infections decreased by >40%. Increased compliance rates were associated with lower infection rates. Disinfectant cap use was associated with an estimated savings of almost $300,000 per year in the hospital studied. Use of a disinfectant cap on IV needleless connectors in addition to an existing standard central line bundle was associated with decreased CLABSI and costs. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  9. Resistance of bacterial biofilms formed on stainless steel surface to disinfecting agent.

    Science.gov (United States)

    Królasik, Joanna; Zakowska, Zofia; Krepska, Milena; Klimek, Leszek

    2010-01-01

    The natural ability of microorganisms for adhesion and biofilm formation on various surfaces is one of the factors causing the inefficiency of a disinfection agent, despite its proven activity in vitro. The aim of the study was to determine the effectiveness of disinfecting substances on bacterial biofilms formed on stainless steel surface. A universally applied disinfecting agent was used in the tests. Bacterial strains: Listeria innocua, Pseudomonas putida, Micrococcus luteus, Staphylococcus hominis strains, were isolated from food contact surfaces, after a cleaning and disinfection process. The disinfecting agent was a commercially available acid specimen based on hydrogen peroxide and peroxyacetic acid, the substance that was designed for food industry usage. Model tests were carried out on biofilm formed on stainless steel (type 304, no 4 finish). Biofilms were recorded by electron scanning microscope. The disinfecting agent in usable concentration, 0.5% and during 10 minutes was ineffective for biofilms. The reduction of cells in biofilms was only 1-2 logarithmic cycles. The use of the agent in higher concentration--1% for 30 minutes caused reduction of cell number by around 5 logarithmic cycles only in the case of one microorganism, M. luteus. For other types: L. innocua, P. putida, S. hominis, the requirements placed on disinfecting agents were not fulfilled. The results of experiments proved that bacterial biofilms are resistant to the disinfectant applied in its operational parameters. Disinfecting effectiveness was achieved after twofold increase of the agent's concentration.

  10. Visible light photocatalytic disinfection of E. coli with TiO{sub 2}–graphene nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Rahmatollah, E-mail: rahimi_rah@iust.ac.ir [Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114 (Iran, Islamic Republic of); Zargari, Solmaz [Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114 (Iran, Islamic Republic of); Yousefi, Azam [School of Chemical Engineering, Iran University of Science and Technology, Tehran 16846-13114 (Iran, Islamic Republic of); Yaghoubi Berijani, Marzieh; Ghaffarinejad, Ali [Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114 (Iran, Islamic Republic of); Morsali, Ali [Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14115-175 (Iran, Islamic Republic of)

    2015-11-15

    Graphical abstract: TiO{sub 2}–graphene nanocomposites with different content of graphene were synthesized via a facile one-step solvothermal method. Photoelectrochemical responses of prepared photocatalysts were measured to determine the optimum content of graphene in TG nanocomposites. The results show that the TG nanocomposite with 3% of graphene has the highest photoactivity. This compound was sensitized with tetrakis(4-carboxyphenyl)porphyrin (TGP). The prepared photocatalysts were used for photocatalytic disinfection of E. coli. The results showed that the photocatalytic disinfection of the TG nanocomposite was increased after sensitization with porphyrin. The enhanced photocatalytic performance could be attributed to the synergistic effect between TiO{sub 2}, graphene and porphyrin sensitizer in the TGP photocatalyst. - Highlights: • TiO{sub 2}–graphene nanocomposites (TG) were synthesized with different content of graphene. • The TG nanocomposite with different content of graphene was sensitized with porphyrin (TGP). • The disinfection of E. coli using TGP was investigated in the visible light. • Porphyrin sensitizer increases effectively the photocatalytic disinfection efficiency of TGP. - Abstract: The present research deals with the development of a new heterogeneous photocatalysis system for disinfection of bacteria from wastewater by using TiO{sub 2}–graphene (TG) nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyrin (TCPP). The disinfection of wastewater using this photocatalyst is not reported in the literature yet. All the synthesized materials were thoroughly characterized by Raman, XRD, DRS, BET, and SEM analysis. The optimum content of graphene in the TiO{sub 2}–graphene nanocomposite was determined by photocurrent responses of prepared photocatalysts. Subsequently, the photocurrent measurements demonstrate that the TiO{sub 2}–graphene nanocomposite with 3% graphene content has higher photoactivity. Furthermore

  11. Monte-Carlo and multi-exposure assessment for the derivation of criteria for disinfection byproducts and volatile organic compounds in drinking water: Allocation factors and liter-equivalents per day.

    Science.gov (United States)

    Akiyama, Megumi; Matsui, Yoshihiko; Kido, Junki; Matsushita, Taku; Shirasaki, Nobutaka

    2018-06-01

    The probability distributions of total potential doses of disinfection byproducts and volatile organic compounds via ingestion, inhalation, and dermal exposure were estimated with Monte Carlo simulations, after conducting physiologically based pharmacokinetic model simulations to takes into account the differences in availability between the three exposures. If the criterion that the 95th percentile estimate equals the TDI (tolerable daily intake) is regarded as protecting the majority of a population, the drinking water criteria would be 140 (trichloromethane), 66 (bromodichloromethane), 157 (dibromochloromethane), 203 (tribromomethane), 140 (dichloroacetic acid), 78 (trichloroacetic acid), 6.55 (trichloroethylene, TCE), and 22 μg/L (perchloroethylene). The TCE criterion was lower than the Japanese Drinking Water Quality Standard (10 μg/L). The latter would allow the intake of 20% of the population to exceed the TDI. Indirect inhalation via evaporation from water, especially in bathrooms, was the major route of exposure to compounds other than haloacetic acids (HAAs) and accounted for 1.2-9 liter-equivalents/day for the median-exposure subpopulation. The ingestion of food was a major indirect route of exposure to HAAs. Contributions of direct water intake were not very different for trihalomethanes (30-45% of TDIs) and HAAs (45-52% of TDIs). Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Disinfection of sewage

    International Nuclear Information System (INIS)

    Arenas, J.

    1984-01-01

    Laboratory studies at IPEN and SEDAPAL have shown the effectiveness disinfection of sewage by means of ionizing radiations. A dose of 1 Kilo Gray reduces the coliforms and salmonella under the permissible levels. This method should allow to use again the liquids in the agriculture or its disposal like sea nutrient

  13. Antimicrobial Products Registered for Disinfection Use against Avian Influenza on Poultry Farms and Other Facilities

    Science.gov (United States)

    EPA registers disinfectants against Avian Influenza A. Although there are no antimicrobial products registered for the H5N2 subtype of Avian Influenza A virus, based on available scientific information these products will work against other HPAI strains.

  14. Disinfection of a probe used in ultrasound-guided prostate biopsy.

    Science.gov (United States)

    Rutala, William A; Gergen, Maria F; Weber, David J

    2007-08-01

    Transrectal ultrasound (TRUS)-guided prostate biopsies are among the most common outpatient diagnostic procedures in urology clinics and carry the risk of introducing pathogens that may lead to infection. To investigate the effectiveness of procedures for disinfecting a probe used in ultrasound-guided prostate biopsy. The effectiveness of disinfection was determined by inoculating 10(7) colony forming units (cfu) of Pseudomonas aeruginosa at the following 3 sites on the probe: the interior lumen of the biopsy needle guide, the outside surface of the biopsy needle guide, and the interior lumen of the ultrasound probe where the needle guide passes through the transducer. Each site was investigated separately. After inoculation, the probe was immersed in 2% glutaraldehyde for 20 minutes and then assessed for the level of microbial contamination. The results demonstrated that disinfection (ie, a reduction in bacterial load of greater than 7 log(10) cfu) could be achieved if the needle guide was removed from the probe. However, if the needle guide was left in the probe channel during immersion in 2% glutaraldehyde, disinfection was not achieved (ie, the reduction was approximately 1 log(10) cfu). Recommendations for probe disinfection are provided and include disassembling the device and immersing the probe and the needle guide separately in a high-level disinfectant.

  15. Efficiency of hydrogen peroxide in improving disinfection of ICU rooms.

    Science.gov (United States)

    Blazejewski, Caroline; Wallet, Frédéric; Rouzé, Anahita; Le Guern, Rémi; Ponthieux, Sylvie; Salleron, Julia; Nseir, Saad

    2015-02-02

    The primary objective of this study was to determine the efficiency of hydrogen peroxide (H₂O₂) techniques in disinfection of ICU rooms contaminated with multidrug-resistant organisms (MDRO) after patient discharge. Secondary objectives included comparison of the efficiency of a vaporizator (HPV, Bioquell) and an aerosolizer using H₂O₂, and peracetic acid (aHPP, Anios) in MDRO environmental disinfection, and assessment of toxicity of these techniques. This prospective cross-over study was conducted in five medical and surgical ICUs located in one University hospital, during a 12-week period. Routine terminal cleaning was followed by H₂O₂ disinfection. A total of 24 environmental bacteriological samplings were collected per room, from eight frequently touched surfaces, at three time-points: after patient discharge (T0), after terminal cleaning (T1) and after H₂O₂ disinfection (T2). In total 182 rooms were studied, including 89 (49%) disinfected with aHPP and 93 (51%) with HPV. At T0, 15/182 (8%) rooms were contaminated with at least 1 MDRO (extended spectrum β-lactamase-producing Gram-negative bacilli 50%, imipenem resistant Acinetobacter baumannii 29%, methicillin-resistant Staphylococcus aureus 17%, and Pseudomonas aeruginosa resistant to ceftazidime or imipenem 4%). Routine terminal cleaning reduced environmental bacterial load (P disinfection efficiency.

  16. Development and validation of a gas chromatography/mass spectrometry procedure for confirmation of para-toluenesulfonamide in edible fish fillet tissue.

    Science.gov (United States)

    Idowu, Olutosin R; Kijak, Philip J; Meinertz, Jeffery R; Schmidt, Larry J

    2004-01-01

    Chloramine-T is a disinfectant being developed as a treatment for bacterial gill disease in cultured fish. As part of the drug approval process, a method is required for the confirmation of chloramine-T residues in edible fish tissue. The marker residue that will be used to determine the depletion of chloramine-T residues from the edible tissue of treated fish is para-toluenesulfonamide (p-TSA), a metabolite of chloramine-T. The development and validation of a procedure for the confirmation of p-TSA is described. Homogenized fish tissue is dried by mixing with anhydrous sodium sulfate, and the mixture is extracted with methylene chloride. The extract is passed through a silica gel solid-phase extraction column, from which p-TSA is subsequently eluted with acetonitrile. The acetonitrile extract is evaporated, and the oily residue is dissolved in hexane. The hexane solution is shaken with fresh acetonitrile. The acetonitrile solution is evaporated and the residue is redissolved in dilute potassium hydroxide solution. The aqueous solution is extracted with methylene chloride to further remove more of the fat co-extractive. The aqueous solution is reacted with pentafluorobenzyl bromide in presence of tetrabutylammonium hydrogensulfate. The resulting di-(pentafluorobenzyl) derivative of p-TSA is analyzed by gas chromatography/mass spectrometry. This method permits the confirmation of p-TSA in edible fish tissue at 20 ppb.

  17. Disinfection of Spacecraft Potable Water Systems by Photocatalytic Oxidation Using UV-A Light Emitting Diodes

    Science.gov (United States)

    Birmele, Michele N.; O'Neal, Jeremy A.; Roberts, Michael S.

    2011-01-01

    Ultraviolet (UV) light has long been used in terrestrial water treatment systems for photodisinfection and the removal of organic compounds by several processes including photoadsorption, photolysis, and photocatalytic oxidation/reduction. Despite its effectiveness for water treatment, UV has not been explored for spacecraft applications because of concerns about the safety and reliability of mercury-containing UV lamps. However, recent advances in ultraviolet light emitting diodes (UV LEDs) have enabled the utilization of nanomaterials that possess the appropriate optical properties for the manufacture of LEDs capable of producing monochromatic light at germicidal wavelengths. This report describes the testing of a commercial-off-the-shelf, high power Nichia UV-A LED (250mW A365nnJ for the excitation of titanium dioxide as a point-of-use (POD) disinfection device in a potable water system. The combination of an immobilized, high surface area photocatalyst with a UV-A LED is promising for potable water system disinfection since toxic chemicals and resupply requirements are reduced. No additional consumables like chemical biocides, absorption columns, or filters are required to disinfect and/or remove potentially toxic disinfectants from the potable water prior to use. Experiments were conducted in a static test stand consisting of a polypropylene microtiter plate containing 3mm glass balls coated with titanium dioxide. Wells filled with water were exposed to ultraviolet light from an actively-cooled UV-A LED positioned above each well and inoculated with six individual challenge microorganisms recovered from the International Space Station (ISS): Burkholderia cepacia, Cupriavidus metallidurans, Methylobacterium fujisawaense, Pseudomonas aeruginosa, Sphingomonas paucimobilis and Wautersia basilensis. Exposure to the Nichia UV-A LED with photocatalytic oxidation resulted in a complete (>7-log) reduction of each challenge bacteria population in UV-A LEDs and semi

  18. Drinking water contamination and it's disinfection

    International Nuclear Information System (INIS)

    Shah, P.M.J.

    2005-01-01

    High quality water is necessary for the survival of human life. In this paper, an effort has been made to highlight the various causes of water contamination. Some of the most common impurities present in water are pathogenic microorganisms along with organize and in organize pollutants. Different treatment methods are adopted to ensure the potability of water. They include physical, chemical and ultra viable treatment along with solar disinfection etc. The adoption of a particular disinfection strategy depends on the level of treatment required and the resources available to carry out such a treatment. (author)

  19. The influence of disinfectants on mutagenicity and on toxicity of urban waste water; Valutazione di trattamenti di disinfezione di acque reflue urbane mediante test di tossicita' e di mutagenesi

    Energy Technology Data Exchange (ETDEWEB)

    Monarca, S. [Brescia Univ., Brescia (IT). Dipt. di Medicina Sperimentale e Applicata] [and others

    1999-12-01

    The aim of the research was to study the influence of disinfectants alternative to chlorine, such as chlorine dioxide, ozone, peracetic acid and UV radiation, have on the formation of mutagenic and toxic compounds in waste water disinfection. Preliminary results are presented and discussed. [Italian] Scopo del lavoro e' stato lo studio dell'azione antimicrobica di diversi disinfettanti su acque reflue urbane dopo trattamento secondario, correlando tale parametro con l'attivita' tossica e genotossica prodotta dalla disinfezione. I risultati vengono presentati e discussi.

  20. Electrofabrication of functional materials: Chloramine-based antimicrobial film for infectious wound treatment.

    Science.gov (United States)

    Qu, Xue; Liu, Huan; Zhang, Chuchu; Lei, Yu; Lei, Miao; Xu, Miao; Jin, Dawei; Li, Peng; Yin, Meng; Payne, Gregory F; Liu, Changsheng

    2018-06-01

    Electrical signals can be imposed with exquisite spatiotemporal control and provide exciting opportunities to create structure and confer function. Here, we report the use of electrical signals to program the fabrication of a chloramine wound dressing with high antimicrobial activity. This method involves two electrofabrication steps: (i) a cathodic electrodeposition of an aminopolysaccharide chitosan triggered by a localized region of high pH; and (ii) an anodic chlorination of the deposited film in the presence of chloride. This electrofabrication process is completed within several minutes and the chlorinated chitosan can be peeled from the electrode to yield a free-standing film. The presence of active NCl species in this electrofabricated film was confirmed with chlorination occurring first on the amine groups and then on the amide groups when large anodic charges were used. Electrofabrication is quantitatively controllable as the cathodic input controls film growth during deposition and the anodic input controls film chlorination. In vitro studies demonstrate that the chlorinated chitosan film has antimicrobial activities that depend on the chlorination degree. In vivo studies with a MRSA infected wound healing model indicate that the chlorinated chitosan film inhibited bacterial growth, induced less inflammation, developed reorganized epithelial and dermis structures, and thus promoted wound healing compared to a bare wound or wound treated with unmodified chitosan. These results demonstrate the fabrication of advanced functional materials (i.e., antimicrobial wound dressings) using controllable electrical signals to both organize structure through non-covalent interactions (i.e., induce chitosan's reversible self-assembly) and to initiate function-conferring covalent modifications (i.e., generate chloramine bonds). Potentially, electrofabrication may provide a simple, low cost and sustainable alternative for materials fabrication. We believe this work is

  1. Activity and action screening of selected disinfectants

    Directory of Open Access Journals (Sweden)

    Kateřina Balharová

    2006-01-01

    Full Text Available This research work is aimed to monitoring of selected disinfectants´activity in operational conditions. Hereby there have been monitored two acidic disinfectants Despon K and Mikasan D, which have had-by their producer-stated different recommended concentration. These solutions were monitored in viewpoint of their activity at different temperature, time of circulation, pH and water hardness. In this work there were measured pH of solutions in unloaded medium to be compared with pH of solutions in loaded medium and this measuring was carried out regularly each week within a one month period. During this period there was also monitored total plate count (TPC, which was stated in the dairy, where samples were taken two-times monthly. It has been found, that the disinfectants Mikasan D and Mikal 94D are effective even by high water hardness.

  2. Evaluation of disinfectants in the domestic environment under 'in use' conditions.

    Science.gov (United States)

    Scott, E.; Bloomfield, S. F.; Barlow, C. G.

    1984-01-01

    An 'in use' test was developed to investigate effectiveness of disinfectant application and of detergent of hot water cleaning at kitchen, bathroom and toilet sites in the domestic environment. Detergent and hot water cleaning produced no observable reduction in microbial contamination. Single and daily application tests demonstrated that hypochlorite and phenolic disinfectants can be used to produce substantial reductions in bacterial contamination in the home. Results indicate that maximum protection afforded by disinfection is relatively brief; 3-6 h after disinfection, contamination levels were only marginally less than those observed at pretreatment. Some suggestions are made for improvements in home hygiene. PMID:6323576

  3. Effectiveness of Disinfectants on Antimicrobial and Physical Properties of Dental Impression Materials.

    Science.gov (United States)

    Demajo, Jean Karl; Cassar, Valter; Farrugia, Cher; Millan-Sango, David; Sammut, Charles; Valdramidis, Vasilis; Camilleri, Josette

    2016-01-01

    The aim of this study was to assess the antimicrobial activity of chemical disinfectants on alginate and silicone impression materials. The effect of chemical disinfectants on the dimensional stability of the impression materials was also assessed. For the microbiologic assessment, impressions of the maxillary arch were taken from 14 participants, 7 using alginate and 7 using an addition silicone. The impressions were divided into three sections. Each section was subjected to spraying with MD 520 or Minuten or no disinfection (control), respectively. Antimicrobial action of the chemical disinfectants was assessed by measuring microbial counts in trypticase soy agar (TSA) media and expressing the results in colony-forming units/cm2. The surface area of the dental impressions was calculated by scanning a stone cast using computer-aided design/computer-assisted manufacture and analyzing the data using a custom computer program. The dimensional stability of the impression materials after immersion in disinfectants was assessed by measuring the linear displacement of horizontally restrained materials using a traveling microscope. The percent change in length over 3 hours was thus determined. Alginate exhibited a higher microbial count than silicone. MD 520 eliminated all microbes as opposed to Minuten. The bacterial growth after Minuten disinfection was almost twice as much for alginate than for addition silicone impressions. The chemical disinfectants affected the alginate dimensional stability. Minuten reduced the shrinkage sustained by alginate during the first hour of storage. Alginate harbors three times more microorganisms than silicone impression material. Chemical disinfection by glutaraldehyde-based disinfectant was effective in eliminating all microbial forms for both alginate and silicone without modifying the dimensional stability. Alcohol-based disinfectants, however, reduced the alginate shrinkage during the first 90 minutes of setting. The current studies

  4. Influence of nitrogen source on NDMA formation during chlorination of diuron.

    Science.gov (United States)

    Chen, Wei-Hsiang; Young, Thomas M

    2009-07-01

    N-Nitrosodimethylamine (NDMA) is formed during chlorination of water containing the herbicide diuron (N'-(3,4-dichlorophenyl)-N,N-dimethylurea) but formation is greatly enhanced in the presence of ammonia (chloramination). Groundwater impacted by agricultural runoff may contain diuron and relatively high total nitrogen concentrations; this study examines the impact of the nitrogen form (ammonium, nitrite or nitrate) on NDMA formation during chlorination of such waters. NDMA formation during chlorination of diuron increased in the order nitriteNDMA formation in the presence of ammonium. Nitrate unexpectedly enhanced nitrosation of diuron derivatives to form NDMA compared to the cases of no added nitrogen or nitrite addition. Nitrite addition is less effective because it consumes more chlorine and produces intermediates that react rapidly with diuron and its aromatic byproducts. Differences between surface water and groundwater in nitrogen forms and concentrations and disinfection approaches suggest strategies to reduce NDMA formation should vary with drinking water source.

  5. Evaluation of different sterilization and disinfection methods on commercially made preformed crowns.

    Science.gov (United States)

    Yilmaz, Y; Guler, C

    2008-12-01

    The aim of this study was to evaluate the changes caused by different sterilization or disinfection methods on the vestibular surface of four commercially made preformed crowns using stereomicroscopy and scanning electron microscopy (SEM). Preformed crowns (NuSmile Primary Anterior Crown (NSC), Kinder Krowns (KK), Pedo Pearls (PP) and polycarbonate crowns (PC)) were sterilized and/or disinfected by one of the following techniques: no sterilization or disinfection (G1 control group); steam autoclaving at 134 degrees C (30 psi) for 4 min (G2); steam autoclaving at 134 degrees C (30 psi) for 12 min (G3); steam autoclaving at 121 degrees C (15 psi) for 30 min (G4); and ultrasonication in a bath containing 4% Lysetol AF for 5 min at room temperature (chemical disinfection) (G5). Scanning electron micrographs of the crowns were taken before and after their sterilization or disinfection. The changes on the vestibular surface were then scored for the presence or absence of crazing, contour alteration, fracturing, and vestibular surface changes. The data were analyzed statistically using the chi-square test. No changes were observed before and after sterilization or disinfection in the stereomicroscopic evaluation of the vestibular surface of the crowns. However, all methods in which steam autoclaving was used to sterilize the crowns caused significant (P < 0.05) crazing and contour alterations of the vestibular surface of the crowns when they were examined by SEM. Chemical disinfection using an aldehyde-free disinfectant is the preferred method of disinfection for crowns that have been used previously in other dental patients.

  6. Ozone reactions with indoor materials during building disinfection

    DEFF Research Database (Denmark)

    Poppendieck, D.; Hubbard, H.; Ward, M.

    2007-01-01

    , and particularly after several hours of disinfection, surface reaction resistance dominated the overall resistance to ozone deposition for nearly all materials. Total building disinfection by-products (all carbonyls) were quantified per unit area of each material for the experimental period. Paper, office...... partition, and medium density fiberboard each released greater than 38 mg m(-2) of by-products....

  7. Reducing the chlorine dioxide demand in final disinfection of drinking water treatment plants using activated carbon.

    Science.gov (United States)

    Sorlini, Sabrina; Biasibetti, Michela; Collivignarelli, Maria Cristina; Crotti, Barbara Marianna

    2015-01-01

    Chlorine dioxide is one of the most widely employed chemicals in the disinfection process of a drinking water treatment plant (DWTP). The aim of this work was to evaluate the influence of the adsorption process with granular activated carbon (GAC) on the chlorine dioxide consumption in final oxidation/disinfection. A first series of tests was performed at the laboratory scale employing water samples collected at the outlet of the DWTP sand filter of Cremona (Italy). The adsorption process in batch conditions with seven different types of GAC was studied. A second series of tests was performed on water samples collected at the outlet of four GAC columns installed at the outlet of the DWTP sand filter. The results showed that the best chlorine dioxide demand (ClO2-D) reduction yields are equal to 60-80% and are achieved in the first 30 min after ClO2 addition, during the first 16 days of the column operation using a mineral, coal-based, mesoporous GAC. Therefore, this carbon removes organic compounds that are more rapidly reactive with ClO2. Moreover, a good correlation was found between the ClO2-D and UV absorbance at wavelength 254 nm using mineral carbons; therefore, the use of a mineral mesoporous GAC is an effective solution to control the high ClO2-D in the disinfection stage of a DWTP.

  8. 9 CFR 77.41 - Cleaning and disinfection of premises, conveyances, and materials.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cleaning and disinfection of premises... PRODUCTS TUBERCULOSIS Captive Cervids § 77.41 Cleaning and disinfection of premises, conveyances, and... health officials. Cleaning and disinfection must be completed before the premises, conveyances, or...

  9. Study on inactivation kinetics of hepatitis A virus and enteroviruses with peracetic acid and chlorine. New ICC/PCR method to assess disinfection effectiveness.

    Science.gov (United States)

    Bigliardi, L; Sansebastiano, G

    2006-06-01

    The virucidal activity of chlorine-compounds was studied using hepatitis A virus (HAV) and Poliovirus 2 and comparing the disinfectant efficiency of peracetic acid. HAV presented a higher resistance to HClO than Poliovirus did. With ClO2 the inactivation times of HAV were markedly shorter. A comparison between these data and those resulting from the kinetics with peracetic acid (PA) showed that PA is less effective than chlorine. As a preliminary to future research, the PCR-test integrated with cell-cultures was experimentally introduced for a quick evaluation of the HAV-infectiveness, with the aim of possible application in the field of disinfection and of viruses-isolation from environmental and food samples.

  10. Resistance to disinfection of a polymicrobial association contaminating the surface of elastomeric dental impressions.

    Science.gov (United States)

    Giammanco, Giovanni M; Melilli, Dario; Rallo, Antonio; Pecorella, Sonia; Mammina, Caterina; Pizzo, Giuseppe

    2009-04-01

    The aim of this study was to evaluate the ability to resist disinfection of a polymicrobial association contaminating the surface of dental impressions obtained with two different elastomers: a polyether (Impregum) and an addition-polymerized silicone (Elite). Impressions were contaminated with a mixture of three biofilm-forming microorganisms (Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans) and disinfected immediately after contamination, or after microbial layers were allowed to develop during a six-hour storage. Two commercial disinfectants were tested: MD 520 containing 0.5% glutaraldehyde and Sterigum Powder without glutaraldehyde. Residual contamination was recovered by mechanical rinsing immediately after disinfection and after a six-hour storage of disinfected impressions, and assessed by colony counting. Both disinfectants tested were shown to be effective in reducing the microbial presence on the impression materials, achieving at least a 102 reduction of microbial counts compared to water rinsing. However, Sterigum was generally less effective on the Elite elastomer and could not grant disinfection on six-hour aged P. aeruginosa and C. albicans microbial layers. The results of this study suggest that the materials used for the impressions influence the efficacy of disinfection. Disinfectants should be tested according to conditions encountered in everyday clinical practice and the need for immediate disinfection of impressions should be clearly indicated by manufacturers.

  11. Resistance of Pseudomonas aeruginosa isolates to hydrogel contact lens disinfection correlates with cytotoxic activity.

    Science.gov (United States)

    Lakkis, C; Fleiszig, S M

    2001-04-01

    One of the most common pathogens in infection of hydrogel contact lens wearers is Pseudomonas aeruginosa, which can gain access to the eye via contamination of the lens, lens case, and lens care solutions. Only one strain per species is used in current regulatory testing for the marketing of chemical contact lens disinfectants. The aim of this study was to determine whether P. aeruginosa strains vary in their susceptibility to hydrogel contact lens disinfectants. A method for rapidly screening bacterial susceptibility to contact lens disinfectants was developed, based on measurement of the MIC. The susceptibility of 35 P. aeruginosa isolates to two chemical disinfectants was found to vary among strains. MICs ranged from 6.25 to 100% for both disinfectants at 37 degrees C, and a number of strains were not inhibited by a 100% disinfectant concentration in the lens case environment at room temperature (22 degrees C). Resistance to disinfection appeared to be an inherent rather than acquired trait, since some resistant strains had been isolated prior to the introduction of the disinfectants and some susceptible P. aeruginosa strains could not be made more resistant by repeated disinfectant exposure. A number of P. aeruginosa strains which were comparatively more resistant to short-term disinfectant exposure also demonstrated the ability to grow to levels above the initial inoculum in one chemical disinfectant after long-term (24 to 48 h) disinfectant exposure. Resistance was correlated with acute cytotoxic activity toward corneal epithelial cells and with exsA, which encodes a protein that regulates cytotoxicity via a complex type III secretion system. These results suggest that chemical disinfection solutions may select for contamination with cytotoxic strains. Further investigation of the mechanisms and factors responsible for resistance may also lead to strategies for reducing adverse responses to contact lens wear.

  12. Organic Compounds in Clackamas River Water Used for Public Supply near Portland, Oregon, 2003-05

    Science.gov (United States)

    Carpenter, Kurt D.; McGhee, Gordon

    2009-01-01

    Organic compounds studied in this U.S. Geological Survey (USGS) assessment generally are man-made, including pesticides, gasoline hydrocarbons, solvents, personal care and domestic-use products, disinfection by-products, and manufacturing additives. In all, 56 compounds were detected in samples collected approximately monthly during 2003-05 at the intake for the Clackamas River Water plant, one of four community water systems on the lower Clackamas River. The diversity of compounds detected suggests a variety of different sources and uses (including wastewater discharges, industrial, agricultural, domestic, and others) and different pathways to drinking-water supplies (point sources, precipitation, overland runoff, ground-water discharge, and formation during water treatment). A total of 20 organic compounds were commonly detected (in at least 20 percent of the samples) in source water and (or) finished water. Fifteen compounds were commonly detected in source water, and five of these compounds (benzene, m- and p-xylene, diuron, simazine, and chloroform) also were commonly detected in finished water. With the exception of gasoline hydrocarbons, disinfection by-products, chloromethane, and the herbicide diuron, concentrations in source and finished water were less than 0.1 microgram per liter and always less than human-health benchmarks, which are available for about 60 percent of the compounds detected. On the basis of this screening-level assessment, adverse effects to human health are assumed to be negligible (subject to limitations of available human-health benchmarks).

  13. Experience of using heat citric acid disinfection method in central dialysis fluid delivery system.

    Science.gov (United States)

    Sakuma, Koji; Uchiumi, Nobuko; Sato, Sumihiko; Aida, Nobuhiko; Ishimatsu, Taketo; Igoshi, Tadaaki; Kodama, Yoshihiro; Hotta, Hiroyuki

    2010-09-01

    We applied the heat citric acid disinfection method in the main part of the central dialysis fluid delivery system (MPCDDS), which consists of a multiple-patient dialysis fluid supply unit, dialysis console units, and dialysis fluid piping. This disinfection method has been used for single-patient dialysis machines, but this is the first trial in the MPCDDS. We examined, by points of safety and disinfection effect, whether this disinfection method is comparable to conventional disinfection methods in Japan. The conventional disinfection method is a combination of two disinfectants, sodium hypochlorite and acetic acid, used separately for protein removal and decalcification. Consequently, total microbial counts and endotoxin concentrations fully satisfied the microbiological requirements for standard dialysis fluid of ISO 11663. From our results and discussion, this heat citric acid disinfection method is proved to be safe and reliable for MPCDDS. However, to satisfy the microbiological requirements for ultrapure dialysis fluid, further consideration for this method in MPCDDS including the reverse osmosis device composition and piping is necessary.

  14. [Scanning electron microscope study of chemically disinfected endodontic files].

    Science.gov (United States)

    Navarro, G; Mateos, M; Navarro, J L; Canalda, C

    1991-01-01

    Forty stainless steel endodontic files were observed at scanning electron microscopy after being subjected to ten disinfection cycles of 10 minutes each one, immersed in different chemical disinfectants. Corrosion was not observed on the surface of the files in circumstances that this study was made.

  15. 9 CFR 77.19 - Cleaning and disinfection of premises, conveyances, and materials.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cleaning and disinfection of premises... PRODUCTS TUBERCULOSIS Cattle and Bison § 77.19 Cleaning and disinfection of premises, conveyances, and... health officials. Cleaning and disinfection must be completed before the premises, conveyances, or...

  16. Ultraviolet (UV) disinfection of grey water: particle size effects.

    Science.gov (United States)

    Winward, G P; Avery, L M; Stephenson, T; Jefferson, B

    2008-02-01

    The impact of water quality on the ultraviolet (UV) disinfection of grey water was investigated with reference to urban water reuse. Direct UV disinfection of grey water did not meet the stringent California State Title 22 criteria for unrestricted urban water reuse due to the presence of particulate material ranging from or = 2000 microm in size. Grey water was manipulated by settling to produce fractions of varying particle size distributions and blending was employed post-disinfection to extract particle-associated coliforms (PACs). The efficacy of UV disinfection was found to be linked to the particle size of the grey water fractions. The larger particle size fractions with a mean particle size of 262 microm and above were observed to shield more coliforms from UV light than did the smaller particles with a mean particle size below 119 microm. Up to 70% of total coliforms in the larger particle size fractions were particle-associated following a UV dose (fluence) of 260 mJ.cm(-2) and would remain undetected by standard coliform enumeration techniques. Implications for urban water reuse are discussed and recommendations made for grey water treatment to ensure removal of particle-associated indicator bacteria and pathogens prior to UV disinfection.

  17. Evaluation of the efficiency of the photo Fenton disinfection of natural drinking water source during the rainy season in the Sahelian region.

    Science.gov (United States)

    Ndounla, J; Pulgarin, C

    2014-09-15

    The photo-disinfection of water from two different wells (W1, pH: 4.6-5.1 ± 0.02) and (W2 pH: 5.6-5.7 ± 0.02) was carried out during the rainy season at Ouagadougou-Burkina Faso, West Africa. The weather variation during the rainy season significantly affects the photo-disinfection processes (solar disinfection and photo-Fenton). The dilution of the water by rainwater highly affected the chemical composition of the wells' water used in this study; very low iron contents Compared to the ones recorded during the dry season were recorded in all water samples. Both photo-disinfection processes were used to treat 25 L of water in a compound parabolic collector (CPC). None of them have shown the total inactivation of both wild enteric bacteria strains (total coliforms/E. coli and Salmonella spp.) involved in the treatment. However, the total coliforms/E. coli strains were totally inactivated during the exposure under most of the photo-Fenton treatment. Also, the remaining strains, especially those of Salmonella spp. were achieved during the subsequent 24h of dark storage under the action of the Fenton process. Under uniquely solar radiation, total inactivation was recorded only in the total coliforms/E. coli strains. The impact of the available irradiance on the efficiency of the photo-Fenton disinfection of natural water was highlighted during the exposure under high intermittent solar radiation. The impact of the HCO3(-) concentration of both wells' water on the evolution of the pH during the photo-disinfection was recorded. Drastic decrease was noticed after the initial fast increase in presence of low HCO3(-) concentration while a steady state was observed after the increase in presence of higher concentration. The redox activities of the nitrogen components of the water during both photo-disinfection processes have led to increased concentration of nitrite in all the cases and variations were noticed in that of nitrate and ammonia. Copyright © 2014 Elsevier B

  18. Evaluation of possible use of disinfectant based on chlorine dioxide in dairy plant

    Directory of Open Access Journals (Sweden)

    Rakić-Martinez Mira

    2009-01-01

    Full Text Available Poor sanitation of food contact surfaces has been a contributing factor in food borne disease outbreaks, especially those involving Listeria monocytogenes, Salmonella spp., Escherichia coli, Staphylococcus aureus etc. The objectives of this study were therefore to: 1. Determine the efficiency of a disinfectant based on chlorine dioxide in suspension in a closed system in a dairy plant. 2. Evaluate the possibility of disinfection of working surfaces with a disinfectant based on chlorine dioxide. In order to determine the germicidal effect of the disinfectant based on chlorine dioxide by suspension test (BSEN 1276:1997; the following test organisms were used: Listeria monocytogenes, Proteus mirabilis, Escherichia coli, Bacillus cereus, Staphylococcus aureus and Pseudomonas aeruginosa clinical isolate. The corrosive properties of the disinfectant based on chlorine dioxide were tested by IDF 077:1977 standard. The efficacy of this disinfectant was investigated in a closed system in a dairy plant. Results indicated a 100% reduction of >108 cfu/ml L. monocytogenes, E. coli, Proteus mirabilis, Pseudomonas aeruginosa, S. aureus, viable count after 1 minute of exposure to 100 ppm of the disinfectant based on chlorine dioxide and 400 ppm for Bacillus cereus. In the presence of 2% skim milk and 4 % skim milk concentrations of 200 and 250 ppm resulted in 100% reduction in numbers of the five of six test microorganisms, respectively. The spore former, Bacillus cereus is less susceptible to the disinfectant. Therefore, the efficient concentration for 100% reduction in viable count after 1 minute exposure was 500 ppm. The corrosive properties of the disinfectant were not determined. In the case of closed system disinfection in a dairy plant, reduction in viable count after 15 minute exposure to 100 ppm of disinfectant based on chlorine dioxide ranged from 80 to 100%.

  19. Evaluation of disinfection efficiency in pet's hospital by using chlorine dioxide

    Directory of Open Access Journals (Sweden)

    Ching-Shan Hsu

    2016-07-01

    Full Text Available Microbial aerosols could cause various human and animal health problems and their control is becoming a significant scientific and technological topic for consideration. The main objectives of this study were to monitor bioaerosol levels of the pet's hospital and then to perform disinfection efficiency by applying chlorine dioxide. The air quality within these pet's hospitals should satisfy the guidelines specified by the Taiwan Environmental Protection Administration (TEPA. Accordingly, this study performed an experimental investigation into the efficiency of two different gaseous chlorine dioxide (0.3 mg m−3 treatments in disinfecting a local pet's hospital, namely a single, one-off application and a multiple-daily application. In both cases, the ClO2 was applied using strategically-placed aerosol devices. The air quality before and after disinfection was evaluated by measuring the bioaerosol levels of bacteria and fungi. The experimental results found that the average background levels of bacteria and fungi prior to ClO2 disinfection were found to be 2014 ± 1350 and 1002 ± 669 CFU m−3, respectively. A single ClO2 application was found to total disinfected bacteria and fungi concentration levels by as much as 57.3 and 57.6%. By contrast, a multiple-daily ClO2 application was found to total disinfected bacteria and fungi concentration levels by as much as 65.1 and 57.6%. Among the two disinfection methods, the multiple-daily ClO2 application method was found to yield a higher disinfection efficiency for bacteria, i.e., 16.28 ± 0.92%. Thus, using a ClO2 disinfectant to maintain the air quality is of great importance to reduce infectious diseases in the pet's hospital. Therefore, the results suggest that the air quality guidelines prescribed by the TEPA for pet's hospital and other animal facilities can best be achieved by applying chlorine dioxide at regular intervals. The ClO2 aerosol devices can effectively restrain or

  20. Effectiveness of Surface Cleaning and Disinfection in a Brazilian Healthcare Facility

    Science.gov (United States)

    Santos-Junior, Aires G.; Ferreira, Adriano M.; Frota, Oleci P.; Rigotti, Marcelo A.; Barcelos, Larissa da S.; Lopes de Sousa, Alvaro Francisco; de Andrade, Denise; Guerra, Odanir G.; R. Furlan, Mara C.

    2018-01-01

    Background: Failures in the processes of cleaning and disinfecting health service surfaces may result in the spread and transfer of pathogens that are often associated with healthcare-related infections and outbreaks. Aims: To assess the effectiveness of environmental surface cleaning and disinfection in a hospital clinic. Method: The study was conducted in a nursing ward with 45 beds. A total of 80 samples from five high-touch surfaces were evaluated before and after cleaning and disinfection, using the following methods: visual inspection, adenosine triphosphate bioluminescence assay, aerobic colony count, Staphylococcus aureus colony count, and evaluation of resistance to methicillin. The data analysis used nonparametric comparative and correlative tests to observe any differences in the pre- and post- cleaning and disinfection results for the surfaces assessed. Results: Effective cleaning and disinfection had a significant effect on only two surfaces when measured for the presence of adenosine triphosphate, the inner bathroom door handle (p=0.007) and the toilet bowl (p=0.01). When evaluated for Staphylococcus aureus colony count, the toilet flush handle also demonstrated a significant effect (p=0.04). Conclusion: The effectiveness of cleaning and disinfection of the surfaces tested was not satisfactory. An educational intervention is recommended for the cleaning and disinfection staff and the nursing team at the healthcare facility. Relevance to Clinical Practice: The data in the study revealed that daily hospital cleaning and disinfection in the sampled sites are not sufficient in medical and surgical wards. Hospital cleanliness must be reevaluated from the point of view of materials, such as an adequate supply of clean cloths, in addition to establishing more precise cleanliness protocols and accurate monitoring systems. PMID:29643951