WorldWideScience

Sample records for n-alkane chain lengths

  1. Anomaly in the Chain Length Dependence of n-Alkane Diffusion in ZIF-4 Metal-Organic Frameworks.

    Science.gov (United States)

    Hwang, Seungtaik; Gopalan, Arun; Hovestadt, Maximilian; Piepenbreier, Frank; Chmelik, Christian; Hartmann, Martin; Snurr, Randall Q; Kärger, Jörg

    2018-03-15

    Molecular diffusion is commonly found to slow down with increasing molecular size. Deviations from this pattern occur in some host materials with pore sizes approaching the diameters of the guest molecules. A variety of theoretical models have been suggested to explain deviations from this pattern, but robust experimental data are scarcely available. Here, we present such data, obtained by monitoring the chain length dependence of the uptake of n- alkanes in the zeolitic imidazolate framework ZIF-4. A monotonic decrease in diffusivity from ethane to n- butane was observed, followed by an increase for n- pentane, and another decrease for n- hexane. This observation was confirmed by uptake measurements with n- butane/ n -pentane mixtures, which yield faster uptake of n- pentane. Further evidence is provided by the observation of overshooting effects, i.e., by transient n- pentane concentrations exceeding the (eventually attained) equilibrium value. Accompanying grand canonical Monte Carlo simulations reveal, for the larger n- alkanes, significant differences between the adsorbed and gas phase molecular configurations, indicating strong confinement effects within ZIF-4, which, with increasing chain length, may be expected to give rise to configurational shifts facilitating molecular propagation at particular chain lengths.

  2. Anomaly in the Chain Length Dependence of n-Alkane Diffusion in ZIF-4 Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Seungtaik Hwang

    2018-03-01

    Full Text Available Molecular diffusion is commonly found to slow down with increasing molecular size. Deviations from this pattern occur in some host materials with pore sizes approaching the diameters of the guest molecules. A variety of theoretical models have been suggested to explain deviations from this pattern, but robust experimental data are scarcely available. Here, we present such data, obtained by monitoring the chain length dependence of the uptake of n-alkanes in the zeolitic imidazolate framework ZIF-4. A monotonic decrease in diffusivity from ethane to n-butane was observed, followed by an increase for n-pentane, and another decrease for n-hexane. This observation was confirmed by uptake measurements with n-butane/n-pentane mixtures, which yield faster uptake of n-pentane. Further evidence is provided by the observation of overshooting effects, i.e., by transient n-pentane concentrations exceeding the (eventually attained equilibrium value. Accompanying grand canonical Monte Carlo simulations reveal, for the larger n-alkanes, significant differences between the adsorbed and gas phase molecular configurations, indicating strong confinement effects within ZIF-4, which, with increasing chain length, may be expected to give rise to configurational shifts facilitating molecular propagation at particular chain lengths.

  3. Crystallisation and chain conformation of long chain n-alkanes

    International Nuclear Information System (INIS)

    Gorce, J.

    2000-06-01

    Hydrocarbon chains are a basic component in a number of systems as diverse as biological membranes, phospholipids and polymers. A better understanding of the physical properties of n-alkane chains should provide a better understanding of these more complex systems. With this aim, vibrational spectroscopy has been extensively used. This technique, sensitive to molecular details, is the only one able to both identify and quantify conformational disorder present in paraffinic systems. To achieve this, methyl deformations have been widely used as ''internal standards'' for the normalisation of peak areas. However, in the case of n-alkanes with short chain length, such as n-C 44 H 90 for example, the infrared spectra recorded at liquid nitrogen temperature and reported here show the sensitivity of these latter peaks to the various crystal structures formed. Indeed, the main frequencies of the symmetric methyl bending mode were found between 1384 cm -1 and 1368 cm -1 as a function of the crystal form. Changes in the frequency of the first order of the L.A.M. present in the Raman spectra were also observed. At higher temperatures, non all-trans conformers, inferred from different infrared bands present in the wagging mode region, were found to be essentially placed at the end of the n-alkane chains. At the monoclinic phase transition, the concentration of end-gauche conformers, proportional to the area of the infrared band at 1342 cm -1 , increases abruptly. On the contrary, in the spectra recorded at liquid nitrogen temperature no such band is observed. We also studied the degree of disorder in two purely monodisperse long chain n-alkanes, namely n-C 198 H 398 and n-C 246 H 494 . The chain conformation as well as the tilt angle of the chains from the crystal surfaces were determined by means of low frequency Raman spectroscopy and S.A.X.S. measurements on solution-crystallised samples. The increase in the number of end-gauche conformers which was expected to occur with

  4. C14–22 n-Alkanes in Soil from the Freetown Layered Intrusion, Sierra Leone: Products of Pt Catalytic Breakdown of Natural Longer Chain n-Alkanes?

    Directory of Open Access Journals (Sweden)

    John F. W. Bowles

    2018-03-01

    Full Text Available Soil above a platinum-group element (PGE-bearing horizon within the Freetown Layered Intrusion, Sierra Leone, contains anomalous concentrations of n-alkanes (CnH2n+2 in the range C14 to C22 not readily attributable to an algal or lacustrine origin. Longer chain n-alkanes (C23 to C31 in the soil were derived from the breakdown of leaf litter beneath the closed canopy humid tropical forest. Spontaneous breakdown of the longer chain n-alkanes to form C14–22 n-alkanes without biogenic or abiogenic catalysts is unlikely as the n-alkanes are stable. In the Freetown soil, the catalytic properties of the PGE (Pt in particular may lower the temperature at which oxidation of the longer chain n-alkanes can occur. Reaction between these n-alkanes and Pt species, such as Pt2+(H2O2(OH2 and Pt4+(H2O2(OH4 can bend and twist the alkanes, and significantly lower the Heat of Formation. Microbial catalysis is a possibility. Since a direct organic geochemical source of the lighter n-alkanes has not yet been identified, this paper explores the theoretical potential for abiogenic Pt species catalysis as a mechanism of breakdown of the longer n-alkanes to form C14–22 alkanes. This novel mechanism could offer additional evidence for the presence of the PGE in solution, as predicted by soil geochemistry.

  5. Contamination profiles of short-chain polychlorinated n-alkanes in foodstuff samples from Japan

    Energy Technology Data Exchange (ETDEWEB)

    Matsukami, Hidenori; Kurunthachalam, S.; Ohi, Etsumasa; Takasuga, Takumi [Shimadzu Techno Research, Inc., Kyoto (Japan); Iino, Fukuya; Nakanishi, Junko [National Inst. of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2004-09-15

    Polychlorinated n-alkanes (PCAs) are group of chemicals manufactured by chlorination of liquid n-paraffin or paraffin wax that contain 30 to 70% chlorine by weight. Large amounts of PCAs are widely used as plasticizers for vinyl chloride, lubricants, paints, and flame retardants and number of other industrial applications. Annual global production of PCAs is approximately 300 kilo tones, with a majority having medium-carbon-chain (C14-C19) length. According to the investigation made by Kagaku Kogyo Nippon-Sha, the annual consumption of PCAs in Japan was about 83,000 tons in between 1986-2001. Short-carbon-chain (C10-C13) has been placed on the Priority Substance List under Canadian Environmental Protection Act and on the Environmental Protection Agency Toxic Release Inventory in the USA due to its potential to act as tumor promoters in mammals. Data on environment levels of PCAs is meager, nevertheless, PCAs have been measured at relatively high concentrations in biota from Sweden, biota, sediment from Canada and marine biota and human milk from the Canadian Arctic. In our earlier study, we reported concentrations of short-chain PCAs from sewage treatment plant (STP) collected from Tama River, Tokyo and river water and sediment from Tokyo and Osaka. STP influent water contained greater shortchain PCAs concentrations than STP effluent. In addition, some river water and sediment samples contained detectable concentrations of short-chain PCAs, which was similar to other industrial countries. However, there is no study conducted to explore the contamination profiles of short-chain PCAs in human foodstuff samples. In the present study, we analyzed eleven foodstuff samples that were purchased from various supermarkets in order to know the short-chain PCAs concentrations in the foodstuff and possible human total daily intake (TDI) amounts.

  6. Two novel alkane hydroxylase-rubredoxin fusion genes isolated from a Dietzia bacterium and the functions of fused rubredoxin domains in long-chain n-alkane degradation.

    Science.gov (United States)

    Nie, Yong; Liang, Jieliang; Fang, Hui; Tang, Yue-Qin; Wu, Xiao-Lei

    2011-10-01

    Two alkane hydroxylase-rubredoxin fusion gene homologs (alkW1 and alkW2) were cloned from a Dietzia strain, designated DQ12-45-1b, which can grow on crude oil and n-alkanes ranging in length from 6 to 40 carbon atoms as sole carbon sources. Both AlkW1 and AlkW2 have an integral-membrane alkane monooxygenase (AlkB) conserved domain and a rubredoxin (Rd) conserved domain which are fused together. Phylogenetic analysis showed that these two AlkB-fused Rd domains formed a novel third cluster with all the Rds from the alkane hydroxylase-rubredoxin fusion gene clusters in Gram-positive bacteria and that this third cluster was distant from the known AlkG1- and AlkG2-type Rds. Expression of the alkW1 gene in DQ12-45-1b was induced when cells were grown on C(8) to C(32) n-alkanes as sole carbon sources, but expression of the alkW2 gene was not detected. Functional heterologous expression in an alkB deletion mutant of Pseudomonas fluorescens KOB2Δ1 suggested the alkW1 could restore the growth of KOB2Δ1 on C(14) and C(16) n-alkanes and induce faster growth on C(18) to C(32) n-alkanes than alkW1ΔRd, the Rd domain deletion mutant gene of alkW1, which also caused faster growth than KOB2Δ1 itself. In addition, the artificial fusion of AlkB from the Gram-negative P. fluorescens CHA0 and the Rds from both Gram-negative P. fluorescens CHA0 and Gram-positive Dietzia sp. DQ12-45-1b significantly increased the degradation of C(32) alkane compared to that seen with AlkB itself. In conclusion, the alkW1 gene cloned from Dietzia species encoded an alkane hydroxylase which increased growth on and degradation of n-alkanes up to C(32) in length, with its fused rubredoxin domain being necessary to maintain the functions. In addition, the fusion of alkane hydroxylase and rubredoxin genes from both Gram-positive and -negative bacteria can increase the degradation of long-chain n-alkanes (such as C(32)) in the Gram-negative bacterium.

  7. Solid-Liquid equilibrium of n-alkanes using the Chain Delta Lattice Parameter model

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Andersen, Simon Ivar; Stenby, Erling Halfdan

    1996-01-01

    -liquid equilibrium of n-alkanes ranging from n-C_20 to n-C_40.The model is further modified to achieve a more correct temperature dependence because it severely underestimates the excess enthalpy. It is shown that the ratio of excess enthalpy and entropy for n-alkane solid solutions, as happens for other solid...... mixtures, is related with the values of the melting temperatures by a function common to the entire homologous series. When applied to systems with a symmetric behavior, this yields a correct description of both the enthalpic and entropic parts of the excess Gibbs free energy with the CDLP model...

  8. The phase behavior of a hard sphere chain model of a binary n-alkane mixture

    International Nuclear Information System (INIS)

    Malanoski, A. P.; Monson, P. A.

    2000-01-01

    Monte Carlo computer simulations have been used to study the solid and fluid phase properties as well as phase equilibrium in a flexible, united atom, hard sphere chain model of n-heptane/n-octane mixtures. We describe a methodology for calculating the chemical potentials for the components in the mixture based on a technique used previously for atomic mixtures. The mixture was found to conform accurately to ideal solution behavior in the fluid phase. However, much greater nonidealities were seen in the solid phase. Phase equilibrium calculations indicate a phase diagram with solid-fluid phase equilibrium and a eutectic point. The components are only miscible in the solid phase for dilute solutions of the shorter chains in the longer chains. (c) 2000 American Institute of Physics

  9. Solid-Liquid equilibrium of n-alkanes using the Chain Delta Lattice Parameter model

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Andersen, Simon Ivar; Stenby, Erling Halfdan

    1996-01-01

    degrees of success.An attempt to describe the equilibrium between the high temperature form of a paraffinic solid solution, commonly known as rotator phase, and the liquid phase is performed. The Chain Delta Lattice Parameter model (CDLP) is developed allowing a successful description of the solid...... mixtures, is related with the values of the melting temperatures by a function common to the entire homologous series. When applied to systems with a symmetric behavior, this yields a correct description of both the enthalpic and entropic parts of the excess Gibbs free energy with the CDLP model......The formation of a solid phase in liquid mixtures with large paraffinic molecules is a phenomenon of interest in the petroleum, pharmaceutical, and biotechnological industries among onters. Efforts to model the solid-liquid equilibrium in these systems have been mainly empirical and with different...

  10. The Roles of Microbial Communities in n-Alkane Distribution of The Nanjenshan Lowland Subtropical Rainforest in Taiwan

    Science.gov (United States)

    Chen, Y. W.; Huang, T. Y.; Fan, C. W.; Chao, W. C.; Yang, T. N.; Huang, C. P.; Hsu, B. M.

    2016-12-01

    Analysis of total organic carbon in Nanjenshan, a lowland subtropical rainforest in southern Taiwan, revealed that the carbon storage of litter-layer was about 35% lower in ravine area than in windward and leeward areas, while the soil storage in these areas were similar. In this one year follow-up study, we aimed to investigate the kinetic changes of n-alkane (C14-C35) concentration from litter fall, litter-layer, surface soil, soil in -10 cm depth, and soil in -30 cm depth by a GC-FID method. The n-alkane distribution and n-alkane flux of these areas were also analyzed. Next generation sequencing was carried out to examine the metagenomics of uncultured microbial community in litter-layer of these areas. Our results showed that the net weight of one year-litter fall in ravine area was 30% higher than the others. The average concentration of n-alkane in leaves in ravine was 90% and 50% higher than in windward area and leeward area, respectively. Although the n-alkane flux in ravine area was twice higher than the other areas, the n-alkane concentrations in litter-layer and soils of different layers were similar among all areas, suggesting a rapid degradation of n-alkane in liter layer in ravine area. Interestingly, the character of odd over even predominance of n-alkane was gradually lost in soil layer in ravine area. Metagenomic data have showed that the structure of microbial abundance in ravine area was different from windward and leeward areas. In ravine area, the numbers in phyla of Bacteroidetes, Actinobacteria, and Proteobacteria, were higher than the other areas, while in phyla of Acidobacteria and Planctomycetes were lower. Our data provided evidence that microbial communities may not only play a role on n-alkane degradation but also change the profile in abundance of high-chain length n-alkanes.

  11. Stable isotope labeled n-alkanes to assess digesta passage kinetics through the digestive tract of ruminants.

    Directory of Open Access Journals (Sweden)

    Daniel Warner

    Full Text Available We describe the use of carbon stable isotope ((13C labeled n-alkanes as a potential internal tracer to assess passage kinetics of ingested nutrients in ruminants. Plant cuticular n-alkanes originating from intrinsically (13C labeled ryegrass plants were pulse dosed intraruminally in four rumen-cannulated lactating dairy cows receiving four contrasting ryegrass silage treatments that differed in nitrogen fertilization level (45 or 90 kg nitrogen ha(-1 and maturity (early or late. Passage kinetics through the gastrointestinal tract were derived from the δ(13C (i.e. the ratio (13C:(12C in apparently undigested fecal material. Isotopic enrichment was observed in a wide range of long-chain n-alkanes (C27-C36 and passage kinetics were determined for the most abundant C29, C31 and C33 n-alkanes, for which a sufficiently high response signal was detected by combustion isotope ratio mass spectrometry. Basal diet treatment and carbon chain length of n-alkanes did not affect fractional passage rates from the rumen (K 1 among individual n-alkanes (3.71-3.95%/h. Peak concentration time and transit time showed a quantitatively small, significant (p≤0.002 increase with carbon chain length. K 1 estimates were comparable to those of the (13C labeled digestible dry matter fraction (3.38%/h; r = 0.61 to 0.71; p≤0.012. A literature review has shown that n-alkanes are not fermented by microorganisms in the rumen and affirms no preferential depletion of (13C versus (12C. Our results suggest that (13C labeled n-alkanes can be used as nutrient passage tracers and support the reliability of the δ(13C signature of digestible feed nutrients as a tool to measure nutrient-specific passage kinetics.

  12. Distribution and sources of n-alkanes and polycyclic aromatic hydrocarbons in shellfish of the Egyptian Red Sea coast

    Directory of Open Access Journals (Sweden)

    Ahmed El Nemr

    2016-06-01

    Full Text Available Aromatic hydrocarbons and n-alkanes were analyzed in shellfish collected from 13 different sites along the Egyptian Red Sea coast. All samples were analyzed for n-alkanes (C8–C40 and polycyclic aromatic hydrocarbons (EPA list of PAHs. n-Alkanes in shellfish samples from 13 locations were found to be in the range of 71.0–701.1 ng/g with a mean value of 242.2 ± 192.1 ng/g dry wt. Different indices were calculated for the n-alkanes to assess their sources. These were carbon preference index (CPI, average chain length (ACL, terrigenous/aquatic ratio (TAR, natural n-alkane ratio (NAR and proxy ratio (Paq. Most of the collected samples of n-alkanes were discovered to be from natural sources. Aromatic hydrocarbons (16 PAHs from 13 sites varied between 1.3 and 160.9 ng/g with an average of 47.9 ± 45.5 ng/g dry wt. Benzo(apyrine (BaP, a cancer risk assessment, was calculated for the PAHs and resulted in ranges between 0.08 and 4.47 with an average of 1.25 ng/g dry wt.

  13. Distribution and sources of n-alkanes in surface sediments of Taihu Lake, China

    Directory of Open Access Journals (Sweden)

    Yu Yunlong

    2016-03-01

    Full Text Available The last study on n-alkanes in surface sediments of Taihu Lake was in 2000, only 13 surface sediment samples were analysed, in order to have a comprehensive and up-to-date understanding of n-alkanes in the surface sediments of Taihu Lake, 41 surface sediment samples were analyzed by GC-MS. C10 to C37 were detected, the total concentrations of n-alkanes ranged from 2109 ng g−1 to 9096 ng g−1 (dry weight. There was strong odd carbon predominance in long chain n-alkanes and even carbon predominance in short chain n-alkanes. When this finding was combined with the analysis results of wax n-alkanes (WaxCn, carbon preference index (CPI, unresolved complex mixture (UCM, hopanes and steranes, it was considered that the long chain n-alkanes were mainly from terrigenous higher plants, and that the short chain n-alkanes mainly originated from bacteria and algae in the lake, compared with previous studies, there were no obvious anthropogenic petrogenic inputs. Terrestrial and aquatic hydrocarbons ratio (TAR and C21−/C25+ indicated that terrigenous input was higher than aquatic sources and the nearshore n-alkanes were mainly from land-derived sources. Moreover, the distribution of short chain n-alkanes presented a relatively uniform pattern, while the long chain n-alkanes presented a trend that concentrations dropped from nearshore places to the middle of lake.

  14. A nonequilibrium simulation method for calculating tracer diffusion coefficients of small solutes in n-alkane liquids and polymers

    NARCIS (Netherlands)

    van der Vegt, N.F.A.; Briels, Willem J.; Wessling, Matthias; Strathmann, H.

    1998-01-01

    The tracer diffusion coefficients of methane in n-alkane liquids of increasing chain length were calculated by measuring the friction from short time nonequilibrium molecular dynamics simulations. The frictional constant was calculated from the exponentially decaying distance between two methane

  15. Light scattering by low-frequency excitations in quasi-periodic n-alkane/urea adducts

    Science.gov (United States)

    Ollivier, J.; Ecolivet, C.; Beaufils, S.; Guillaume, F.; Breczewski, T.

    1998-09-01

    High-resolution light scattering spectroscopy has been performed on a series of n-alkane CnH2n + 2/urea inclusion compounds with n = 12,14,17 - 19. The elastic constants of these incommensurate composite crystals have been determined and found to be independent of the chain length of the guest molecules. In addition, no extraneous acoustic-like mode appeared in all spectra. However, quasi-elastic components with different widths are observed for different polarizations. In one of them the characteristics of the scattered light suggest that the quasi-elastic broadening could be generated by a sliding mode, whereas the other detected component is assigned to the reorientational motions of the n-alkane chains about their long axis.

  16. Variability of n-alkanes and nonacosan-10-ol in natural populations of Picea omorika.

    Science.gov (United States)

    Nikolić, Biljana; Tešević, Vele; Ðorđević, Iris; Todosijević, Marina; Jadranin, Milka; Bojović, Srdjan; Marin, Petar D

    2013-03-01

    This is the first report of population variability of the contents of n-alkanes and nonacosan-10-ol in the needle epicuticular waxes of Serbian spruce (Picea omorika). The hexane extracts of needle samples originated from three natural populations in Serbia (Vranjak, Zmajevački potok, and Mileševka Canyon) were investigated by GC and GC/MS analyses. The amount of nonacosan-10-ol varied individually from 50.05 to 74.42% (65.74% in average), but the differences between the three investigated populations were not statistically confirmed. The results exhibited variability of the composition of n-alkanes in the epicuticular waxes with their size ranging from C(18) to C(35). The most abundant n-alkanes were C(29), C(31), and C(27) (35.22, 13.77, and 12.28% in average, resp.). The carbon preference index of all the n-alkanes (CPI(total)) of the P. omorika populations (average of populations I-III) ranged from 3.3 to 11.5 (mean of 5.9), while the average chain length (ACL) ranged from 26.6 to 29.2. The principal component and cluster analyses of the contents of nine n-alkanes showed the greatest difference for the population growing in the Mileševka Canyon. The obtained results were compared with previous literature data given for other Picea species, and this comparison was briefly discussed. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  17. Investigating C4 Grass Contributions to N-alkane Based Paleoclimate Reconstructions

    Science.gov (United States)

    Doman, C. E.; Enders, S. K.; Chadwick, O.; Freeman, K. H.

    2014-12-01

    Plant wax n-alkanes are long-chain, saturated hydrocarbons contained within the protective waxy cuticle on leaves. These lipids are pervasive and persistent in soils and sediments and thus are ideal biomarkers of ancient terrestrial organic matter. In ecosystems dominated by C3 plants, the relationship between the carbon isotopic value of whole leaves and lipids is fairly well documented, but this relationship has not been fully investigated for plants that use C4 photosynthesis. In both cases, it is unclear if the isotopic relationships are sensitive to environmental conditions, or reflect inherited characteristics. This study used a natural climate gradient on the Kohala peninsula of Hawaii to investigate relationships between climate and the δ13C and δ2H values of n-alkanes in C3 and C4 plants. δ13C of C3 leaves and lipids decreased 5 ‰ from the driest to the wettest sites, consistent with published data. Carbon isotope values of C4 plants showed no relationship to moisture up to 1000 mm mean annual precipitation (MAP). Above this threshold, δ 13C values were around 10‰ more depleted, likely due to a combination of canopy effects and C4 grasses growing in an uncharacteristically wet and cold environment. In C3 plants, the fractionation between leaf and lipid carbon isotopes did not vary with MAP, which allows estimations of δ13C leaf to be made from alkanes preserved in ancient sediments. Along this transect, C3 plants produce around twice the quantity of n-alkanes as C4 grasses. C4 grasses produce longer carbon chains. As a result, n-alkanes in the geologic record will be biased towards C3 plants, but the presence of alkanes C33 and C35 indicate the contributions of C4 grasses. In both C3 and C4 plants, average chain length increased with mean annual precipitation, but the taxonomic differences in chain length were greater than environmental differences. Hydrogen isotopes of n-alkanes show no trends with MAP, but do show clear differences between plant

  18. Re-assessing the role of plant community change and climate in the PETM n-alkane record

    Science.gov (United States)

    Bush, R. T.; Baczynski, A. A.; McInerney, F. A.; Chen, D.

    2012-12-01

    The terrestrial leaf wax n-alkane record of the Paleocene-Eocene Thermal Maximum (PETM) in the Bighorn Basin, Wyoming, shows large excursions in both carbon isotope (δ13C) values and n-alkane average chain length (ACL). At the onset of the PETM, ACL values increase from ~28.5 to ~30.1 while the negative carbon isotope excursion (CIE) is 4-6‰ in magnitude and larger than δ13C records from other materials. It has been hypothesized previously that both the ACL excursion and the large magnitude of the CIE were caused by a concurrent turnover in the local flora from a mixed conifer/angiosperm community before the PETM to a different suite of angiosperm species during the PETM. Here, we present the results of a meta-analysis of data (>2000 data from 89 sources, both published and unpublished) on n-alkane amounts and chain length distributions in modern plants from around the world. We applied the data in two sets of comparisons: 1) within and among plant groups such as herbs and graminoids, and 2) between plants and climate, using reported collection locations for outdoor plants and climate values generated via GIS extraction of WorldClim modeled data. We show that angiosperms, as group, produce more n-alkanes than do gymnosperms by 1-2 orders of magnitude, and this means that the gymnosperm contribution to a mixed soil n-alkane pool would be negligible, even in an ecosystem where gymnosperms dominated (i.e. the pre/post-PETM ecosystems). The modern plant data also demonstrate that turnover of the plant community during the PETM, even among only the angiosperm species, is likely not the source of the observed ACL excursion. First, we constructed "representative" groups of PETM and pre/post-PETM communities using living relative species at the Chicago Botanic Garden and find no significant difference in chain length distributions between the two groups. Second and moreover, the modern plant data reveal that n-alkane chain length distributions are tremendously variable

  19. Biodegradation of n-alkanes on oil-seawater interfaces at different temperatures and microbial communities associated with the degradation.

    Science.gov (United States)

    Lofthus, Synnøve; Netzer, Roman; Lewin, Anna S; Heggeset, Tonje M B; Haugen, Tone; Brakstad, Odd Gunnar

    2018-04-01

    Oil biodegradation studies have mainly focused on microbial processes in dispersions, not specifically on the interfaces between the oil and the seawater in the dispersions. In this study, a hydrophobic adsorbent system, consisting of Fluortex fabrics, was used to investigate biodegradation of n-alkanes and microbial communities on oil-seawater interfaces in natural non-amended seawater. The study was performed over a temperature range from 0 to 20 °C, to determine how temperature affected biodegradation at the oil-seawater interfaces. Biodegradation of n-alkanes were influenced both by seawater temperature and chain-length. Biotransformation rates of n-alkanes decreased by reduced seawater temperature. Low rate coefficients at a seawater temperature of 0 °C were probably associated with changes in physical-chemical properties of alkanes. The primary bacterial colonization of the interfaces was predominated by the family Oceanospirillaceae at all temperatures, demonstrating the wide temperature range of these hydrocarbonoclastic bacteria. The mesophilic genus Oleibacter was predominant at the seawater temperature of 20 °C, and the psychrophilic genus Oleispira at 5 and 0 °C. Upon completion of n-alkane biotransformation, other oil-degrading and heterotrophic bacteria became abundant, including Piscirickettsiaceae (Cycloclasticus), Colwelliaceae (Colwellia), Altermonadaceae (Altermonas), and Rhodobacteraceae. This is one of a few studies that describe the biodegradation of oil, and the microbial communities associated with the degradation, directly at the oil-seawater interfaces over a large temperature interval.

  20. Effect of Thermal Maturation on n-alkanes and Kerogen in Preserved Organic Matter: Implications for Paleoenvironment Biomarkers

    Science.gov (United States)

    Craven, O. D.; Longbottom, T. L.; Hockaday, W. C.; Blackaby, E.

    2017-12-01

    Understanding the effects of maturity on biomarkers is vital in assessing biomarker reliability in mature sediments. It is well known for n-alkanes that increased maturity shortens chain lengths and decreases the odd over even preference however, the amount of change in these variables has not been determined for different maturities and types of preserved organic matter. For this reason, it is difficult to judge the trustworthiness of even lightly matured samples for paleoenvironment reconstruction. Another complication is the difficulty of accurately determining maturity as many maturity indicators are error-prone or not appropriate at low maturities. Using hydrous pyrolysis, we artificially matured black shale samples with type I (lacustrine) and type II (marine) kerogen to measure changes in n-alkane length and odd over even preference. Whole rock samples underwent hydrous pyrolysis for 72 hours, at 250 °C, 300 °C, 325 °C, 350 °C, and 375 °C to cover a wide maturity range. From the immature and artificially matured samples, the bitumen was extracted and the saturate fraction was separated using column chromatography. The saturate fraction was analyzed for n-alkanes using gas chromatography-mass spectroscopy. Kerogen structural changes were also measured using solid-state 13C NMR to relate changes in n-alkane biomarkers to changes in kerogen structure. Results show that for type I bitumen the n-alkanes did not change at low maturities considered premature in terms of oil generation (FaC) decreases greatly from immature to low maturities, leveling off between 300 °C and 325 °C, allowing FaC to be a tool for determining low maturities.

  1. Anaerobic Coculture of Microalgae with Thermosipho globiformans and Methanocaldococcus jannaschii at 68°C Enhances Generation of n-Alkane-Rich Biofuels after Pyrolysis

    Science.gov (United States)

    Matsuyama, Shigeru; Igarashi, Kensuke; Utsumi, Motoo; Shiraiwa, Yoshihiro; Kuwabara, Tomohiko

    2013-01-01

    We tested different alga-bacterium-archaeon consortia to investigate the production of oil-like mixtures, expecting that n-alkane-rich biofuels might be synthesized after pyrolysis. Thermosipho globiformans and Methanocaldococcus jannaschii were cocultured at 68°C with microalgae for 9 days under two anaerobic conditions, followed by pyrolysis at 300°C for 4 days. Arthrospira platensis (Cyanobacteria), Dunaliella tertiolecta (Chlorophyta), Emiliania huxleyi (Haptophyta), and Euglena gracilis (Euglenophyta) served as microalgal raw materials. D. tertiolecta, E. huxleyi, and E. gracilis cocultured with the bacterium and archaeon inhibited their growth and CH4 production. E. huxleyi had the strongest inhibitory effect. Biofuel generation was enhanced by reducing impurities containing alkanenitriles during pyrolysis. The composition and amounts of n-alkanes produced by pyrolysis were closely related to the lipid contents and composition of the microalgae. Pyrolysis of A. platensis and D. tertiolecta containing mainly phospholipids and glycolipids generated short-carbon-chain n-alkanes (n-tridecane to n-nonadecane) and considerable amounts of isoprenoids. E. gracilis also produced mainly short n-alkanes. In contrast, E. huxleyi containing long-chain (31 and 33 carbon atoms) alkenes and very long-chain (37 to 39 carbon atoms) alkenones, in addition to phospholipids and glycolipids, generated a high yield of n-alkanes of various lengths (n-tridecane to n-pentatriacontane). The gas chromatography-mass spectrometry (GC-MS) profiles of these n-alkanes were similar to those of native petroleum crude oils despite containing a considerable amount of n-hentriacontane. The ratio of phytane to n-octadecane was also similar to that of native crude oils. PMID:23183975

  2. Sensitive detection of n-alkanes using a mixed ionization mode proton-transfer-reaction mass spectrometer

    Directory of Open Access Journals (Sweden)

    O. Amador-Muñoz

    2016-11-01

    NO+ were determined to be a good metric with which to compare sensitivities for n-alkane detection between experiments. Double hydride abstraction was observed from the reaction with O2+. Sensitivity to CT increased with carbon chain length from n-pentane to n-dodecane, sensitivity to HA increased from n-heptane to n-dodecane and sensitivity to PT increased from n-decane to n-tridecane. Sensitivity to CT exponentially decreased with molecular ionization energy, which is inversely related to the carbon chain length. We introduce a calibrated fragmentation algorithm as a method to determine the concentrations of n-alkanes and demonstrate its effectiveness using a custom n-alkane mixture and a much more complex oil example representing perhaps the most difficult mixture available for application of the method. We define optimum conditions for using the mixed ionization mode to measure n-alkanes in conventional PTR-MS instruments regardless of whether they are equipped with switchable reagent ion (SRI capabilities.

  3. Growth factor controls on the distribution and carbon isotope composition of n-alkanes in leaf wax

    Science.gov (United States)

    Jia, C.; Xie, S.; Huang, X.

    2012-12-01

    Cuticular wax plays pivotal physiological and ecological roles in the interactions between plants and the environments in which they grow. Plant-derived long-chain alkanes are more resistant to decay than other biochemical polymers. n-Alkane distributions (Carbon Preference Index (CPI) values and Average Chain Length (ACL) values) and carbon isotopic values are used widely in palaeoenvironmental reconstruction. However, there is little information available on how growth stages of the plant might influence the abundance of n-alkanes in the natural environment. In this study, we analyzed n-alkane distributions and carbon isotope data from two tree species (Cinnamomum camphora (L.) Presl. and Liquidambar formosana Hance) collected monthly from 2009 to 2011 in Nanwang Shan, Wuhan, Hubei Province. CPI values for n-alkanes from C. camphora remained stable in autumn and winter but fluctuated dramatically during spring and autumn each year. Positive correlations between CPI values and the relative content of (C27+C29) were observed in both sun and shade leaves of C. camphora from April to July. In L. formosana, CPI values decreased gradually from April to December. A similar trend was observed in all three years suggesting that growth stages rather than temperature or relative humidity affected the CPI values on a seasonal timescale. In the samples of L. formosana ACL values were negatively correlated with CPI values in the growing season (from April to July) and positively correlated with CPI values in the other seasons. The δ13C values of C29 and C31 n-alkanes displayed more negative carbon isotopic values in autumn and winter compared with leaves sampled at the start of the growing season from both trees. The δ13C values of C29 and C31 n-alkanes of L. formosana decreased from April to December. These results demonstrate the importance of elucidating the growing factors that influence the distribution and δ13C values of alkanes in modern leaves prior to using CPI

  4. Degradation of Hydrocarbons by Members of the Genus Candida II. Oxidation of n-Alkanes and 1-Alkenes by Candida lipolytica

    Science.gov (United States)

    Klug, M. J.; Markovetz, A. J.

    1967-01-01

    Candida lipolytica ATCC 8661 was grown in a mineral-salts hydrocarbon medium. n-Alkanes and 1-alkenes with 14 through 18 carbon atoms were used as substrates. Ether extracts of culture fluids and cells obtained from cultures grown on the various substrates were analyzed by thin-layer and gas-liquid chromatography. Analyses of fluids from cultures grown on n-alkanes indicated a predominance of fatty acids and alcohols of the same chain length as the substrate. In addition, numerous other fatty acids and alcohols were present. Analyses of saponifiable and nonsaponifiable material obtained from the cells revealed essentially the same products. The presence of primary and secondary alcohols, as well as fatty acids, of the same chain length as the n-alkane substrate suggested that attack on both the methyl and α-methylene group was occurring. The significance of these two mechanisms in the degradation of n-alkanes by this organism was not evident from the data presented. Analyses of fluids from cultures grown on 1-alkenes indicated the presence of 1,2-diols, as well as ω-unsaturated fatty acids, of the same chain length as the substrate. Alcohols present were all unsaturated. Saponifiable and nonsaponifiable material obtained from cells contained essentially the same products. The presence of 1,2-diols and ω-unsaturated fatty acids of the same chain length as the substrate from cultures grown on 1-alkenes indicated that both the terminal methyl group and the terminal double bond were being attacked. PMID:6025303

  5. Plant Wax n-Alkane and n-Alkanoic Acid Signatures Overprinted by Microbial Contributions and Old Carbon in Meromictic Lake Sediments

    Science.gov (United States)

    Makou, Matthew; Eglinton, Timothy; McIntyre, Cameron; Montluçon, Daniel; Antheaume, Ingrid; Grossi, Vincent

    2018-01-01

    Specific n-alkanes and n-alkanoic acids are commonly used as biomarkers in paleoenvironmental reconstruction, yet any individual homologue may originate from multiple biological sources. Here we improve source and age controls for these compounds in meromictic systems by measuring the radiocarbon (14C) ages of specific homologues preserved in twentieth century Lake Pavin (France) sediments. In contrast to many studies, 14C ages generally decreased with increasing carbon chain length, from 7.3 to 2.6 ka for the C14-C30 n-alkanoic acids and from 9.2 to 0.3 ka for the C21-C33 n-alkanes. Given a known hard water effect, these values suggest that aquatic microbial sources predominate and contributed to most of the homologues measured. Only the longest chain n-alkanes exclusively represent inputs of higher plant waxes, which were previously sequestered in soils over centennial to millennial timescales prior to transport and deposition. These findings suggest that biomarker source and age should be carefully established for lacustrine settings.

  6. Re-evaluating the isotopic divide between angiosperms and gymnosperms using n-alkane δ13C values

    Science.gov (United States)

    Bush, R. T.; McInerney, F. A.

    2009-12-01

    Angiosperm δ13C values are typically 1-3‰ more negative than those of co-occurring gymnosperms. This is known for both bulk leaf and compound-specific values from n-alkanes, which are stable, straight-chain hydrocarbons (C23-C35) found in the epicuticular leaf wax of vascular plants. For n-alkanes, there is a second distinction between the δ13C values of angiosperms and gymnosperms—δ13C values generally decrease with increasing chain-length in angiosperms, while in gymnosperms they increase. These two distinctions have been used to support the ‘plant community change hypothesis’ explaining the difference between the terrestrial and marine carbon isotope excursions during the Paleocene-Eocene Thermal Maximum (PETM.) Preserved n-alkanes from terrestrial paleosols in the Bighorn Basin, Wyoming reveal a negative carbon isotope excursion during the PETM of 4-5‰, which is 1-2‰ greater than the excursion recorded by marine carbonates. The local plant community, known from macrofossils as well as palynoflora, shifted from a deciduous, mixed angiosperm/gymnosperm flora to a suite of evergreen angiosperm species during the PETM. At the end of the PETM, the community returned to a mixed deciduous flora very similar to the original. This change in the plant community could thus magnify the terrestrial negative carbon isotope excursion to the degree necessary to explain its divergence from the marine record. However, the comparison between modern angiosperms and gymnosperms has been made mostly between broadleaf, deciduous angiosperms and evergreen, coniferous gymnosperms. New data analyzing deciduous, coniferous gymnosperms, including Metasequoia glyptostroboides and Taxodium distichum, suggests that the division previously ascribed to taxonomy may actually be based on leaf habit and physiology, specifically broadleaf, deciduous versus needle-leaf, evergreen plants. If differences in n-alkane δ13C values can be described not as angiosperms versus gymnosperms

  7. Angiosperm n-alkane distribution patterns and the geologic record of C4 grassland evolution

    Science.gov (United States)

    Henderson, A.; Graham, H. V.; Patzkowsky, M.; Fox, D. L.; Freeman, K. H.

    2012-12-01

    n-Alkane average chain-length (ACL) patterns vary regionally with community composition and climate. To clarify the influence of phylogenetic and community patterns, we compiled and analyzed a global database of published n-alkane abundance for n-C27 to C35 homologs in modern plant specimens (n=205). ACL for waxes in C4 non-woody plants are longer than for woody plants, suggesting ACL can serve as an indicator of the three-dimensional structure of local vegetation. Further, these findings suggest compound-specific isotopic data for longer alkane homologs (C31, C33, C35) will proportionately represent non-woody vegetation and isotope measurements of C29 are more representative of woody vegetation. Thus, the combination of ACL and carbon isotope compositions should allow us to disentangle C3 woody, C3 non-woody, and C4 non-woody signals in terrestrial paleorecords. Application of this approach to the geologic record of Miocene C4 grassland expansion in the US Great Plains and the Siwaliks in Pakistan illustrate two very different transition scenarios. Alkane-specific isotopic data indicate C4 grasslands appeared 2.5 Ma in the Great Plains and 6.5 Ma in the Siwaliks, and ACL analysis indicates that this transition involved the replacement of woody vegetation in the US and the replacement of C3 grasses in Pakistan. Our analysis illustrates that, consistent with differences in the timing of C4 grassland, the drivers of change were likely not the same in these regions. Oxygen isotope records suggest that the more recent transition in the Great Plains was associated with climate cooling and possibly changes in disturbance regimes and that the transition in the Siwaliks was likely associated with warming and drying.

  8. Plant n-alkane production from litterfall altered the diversity and community structure of alkane degrading bacteria in litter layer in lowland subtropical rainforest in Taiwan

    Science.gov (United States)

    Huang, Tung-Yi; Hsu, Bing-Mu; Chao, Wei-Chun; Fan, Cheng-Wei

    2018-03-01

    n-Alkane and alkane-degrading bacteria have long been used as crucial biological indicators of paleoecology, petroleum pollution, and oil and gas prospecting. However, the relationship between n-alkane and alkane-degrading bacteria in natural forests is still poorly understood. In this study, long-chain n-alkane (C14-C35) concentrations in litterfall, litter layer, and topsoil as well as the diversity and abundance of n-alkane-degrading bacterial communities in litter layers were investigated in three habitats across a lowland subtropical rainforest in southern Taiwan: ravine, windward, and leeward habitats in Nanjenshan. Our results demonstrate that the litterfall yield and productivity of long-chain n-alkane were highest in the ravine habitats. However, long-chain n-alkane concentrations in all habitats were decreased drastically to a similar low level from the litterfall to the bulk soil, suggesting a higher rate of long-chain n-alkane degradation in the ravine habitat. Operational taxonomic unit (OTU) analysis using next-generation sequencing data revealed that the relative abundances of microbial communities in the windward and leeward habitats were similar and different from that in the ravine habitat. Data mining of community amplicon sequencing using the NCBI database revealed that alkB-gene-associated bacteria (95 % DNA sequence similarity to alkB-containing bacteria) were most abundant in the ravine habitat. Empirical testing of litter layer samples using semi-quantitative polymerase chain reaction for determining alkB gene levels confirmed that the ravine habitat had higher alkB gene levels than the windward and leeward habitats. Heat map analysis revealed parallels in pattern color between the plant and microbial species compositions of the habitats, suggesting a causal relationship between the plant n-alkane production and microbial community diversity. This finding indicates that the diversity and relative abundance of microbial communities in the

  9. Molecular dynamics simulation studies of mid-size liquid n-Alkanes, C12–C160

    International Nuclear Information System (INIS)

    Kwon, Tae Woo; Lee, Song Hi

    2015-01-01

    In this study, we report the results of molecular dynamics simulations (MD) for model systems of mid-size liquid n-alkanes (C 12 –C 160 ) at several temperatures (⁓2700 K) in canonical ensembles to calculate structural and dynamic properties (viscosity η, self-diffusion constant D, and monomeric friction constant ζ). For the small n-alkanes for n ≤ 80, the chains are clearly ≥ 1, which leads to the conclusion that the liquid n-alkanes are far away from the Rouse regime, but for the n-alkanes for n ≥ 120, the chains are ⁓ 1 and they are Gaussian. It is found that the long chains of these n-alkanes at high temperatures show abnormalities in density, viscosity, and monomeric friction constant. The mass and temperature dependences of structural and dynamic properties (η, D, and ζ) are discussed

  10. Separation of pathogenic bacteria by chain length.

    Science.gov (United States)

    Beech, Jason P; Ho, Bao Dang; Garriss, Geneviève; Oliveira, Vitor; Henriques-Normark, Birgitta; Tegenfeldt, Jonas O

    2018-02-13

    Using Deterministic Lateral Displacement devices optimized for sensitivity to particle length, we separate subpopulations of bacteria depending on known properties that affect their capability to cause disease (virulence). For the human bacterial pathogen Streptococcus pneumoniae, bacterial chain length and the presence of a capsule are known virulence factors contributing to its ability to cause severe disease. Separation of cultured pneumococci into subpopulations based on morphological type (single cocci, diplococci and chains) will enable more detailed studies of the role they play in virulence. Moreover, we present separation of mixed populations of almost genetically identical encapsulated and non-encapsulated pneumococcal strains in our device. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Very-long-chain aldehydes promote in vitro prepenetration processes of Blumeria graminis in a dose- and chain length-dependent manner.

    Science.gov (United States)

    Hansjakob, Anton; Bischof, Sebastian; Bringmann, Gerhard; Riederer, Markus; Hildebrandt, Ulrich

    2010-12-01

    Surface properties of aerial plant organs have been shown to affect the interaction of fungal plant pathogens and their hosts. Conidial germination and differentiation - the so-called prepenetration processes - of the barley powdery mildew fungus (Blumeria graminis f. sp. hordei) are known to be triggered by n-hexacosanal (C(26)-aldehyde), a minor constituent of barley leaf wax. In order to analyze the differentiation-inducing capabilities of typical aldehyde wax constituents on conidia of wheat and barley powdery mildew, synthetic even-numbered very-long-chain aldehydes (C(22)-C(30)) were assayed, applying an in vitro system based on Formvar(®)/n-hexacosane-coated glass slides. n-Hexacosanal was the most effective aldehyde tested. Germination and differentiation rates of powdery mildew conidia increased with increasing concentrations of very-long-chain aldehydes. Relative to n-hexacosanal, the other aldehyde compounds showed a gradual decrease in germination- and differentiation-inducing capabilities with both decreasing and increasing chain length. In addition to n-hexacosanal, several other ubiquitous very-long-chain aldehyde wax constituents were capable of effectively stimulating B. graminis prepenetration processes in a dose- and chain length-dependent manner. Other wax constituents, such as n-alkanes, primary alcohols (with the exception of n-hexacosanol), fatty acids and alkyl esters, did not affect fungal prepenetration. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  12. Reconstructing tropical cyclone frequency using hydrogen isotope ratios of sedimentary n-alkanes in northern Queensland, Australia

    NARCIS (Netherlands)

    Soelen, E.E. van; Wagner-Cremer, F.; Sinninghe Damsté, J.S.; Reichart, G.-J.

    2013-01-01

    A peat record from Quincan Crater (Queensland, Australia), spanning the past 200 years, was used to test if hydrogen isotope ratios of leaf wax long-chain n-alkanes derived of higher plants can be used to reconstruct past tropical cyclone activity. Queensland is frequently impacted by tropical

  13. Carbon isotope analysis of n-alkanes in dust from the lower atmosphere over the eastern Atlantic

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schefuß, E.; Ratmeyer, V.; Stuut, J-B.W.; Jansen, J.H.F.

    2003-01-01

    Atmospheric dust samples collected along a transect off the West African coast have been investigated for their lipid content and compound-specific stable carbon isotope compositions. The saturated hydrocarbon fractions of the organic solvent extracts consist mainly of long-chain n-alkanes derived

  14. Predictive Local Composition Models for Solid/Liquid Equilibrium in n-Alkane Systems: Wilson Equation for Multicomponent Systems

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Stenby, Erling Halfdan

    1996-01-01

    The predictive local composition model is applied to multicomponent hydrocarbon systems with long-chain n-alkanes as solutes. The results show that it can successfully be extended to highorder systems and accurately predict the solid appearance temperature, also known as cloud point, in solutions...

  15. Neutron chain length distributions in subcritical systems

    International Nuclear Information System (INIS)

    Nolen, S.D.; Spriggs, G.

    1999-01-01

    In this paper, the authors present the results of the chain-length distribution as a function of k in subcritical systems. These results were obtained from a point Monte Carlo code and a three-dimensional Monte Carlo code, MC++. Based on these results, they then attempt to explain why several of the common neutron noise techniques, such as the Rossi-α and Feynman's variance-to-mean techniques, are difficult to perform in highly subcritical systems using low-efficiency detectors

  16. Degradation of n-alkanes and PAHs from the heavy crude oil using salt-tolerant bacterial consortia and analysis of their catabolic genes.

    Science.gov (United States)

    Gurav, Ranjit; Lyu, Honghong; Ma, Jianli; Tang, Jingchun; Liu, Qinglong; Zhang, Hairong

    2017-04-01

    In the present study, salt-tolerant strains, Dietzia sp. HRJ2, Corynebacterium variabile HRJ4, Dietzia cinnamea HRJ5 and Bacillus tequilensis HRJ6 were isolated from the Dagang oil field, China. These strains degraded n-alkanes and polycyclic aromatic hydrocarbons (PAHs) aerobically from heavy crude oil (HCO) in an experiment at 37 °C and 140 rpm. The GC/MS investigation for degradation of different chain lengths of n-alkanes (C8-C40) by individual strains showed the highest degradation of C8-C19 (HRJ5), C20-C30 (HRJ4) and C31-C40 (HRJ5), respectively. Moreover, degradation of 16 PAHs with individual strains demonstrated that the bicyclic and pentacyclic aromatic hydrocarbons (AHs) were mostly degraded by HRJ5, tricyclic and tetracyclic AHs by HRJ6 and hexacyclic AHs by HRJ2. However, the highest degradation of total petroleum hydrocarbons (TPHs), total saturated hydrocarbons (TSH), total aromatic hydrocarbons (TAH), n-alkanes (C8-C40) and 16 PAHs was achieved by a four-membered consortium (HRJ2 + 4 + 5 + 6) within 12 days, with the predominance of HRJ4 and HRJ6 strains which was confirmed by denaturing gradient gel electrophoresis. The abundance of alkB and nah genes responsible for catabolism of n-alkanes and PAHs was quantified using the qPCR. Maximum copy numbers of genes were observed in HRJ2 + 4 + 5 + 6 consortium (gene copies l -1 ) 2.53 × 10 4 (alkB) and 3.47 × 10 3 (nah) at 12 days, which corresponded to higher degradation rates of petroleum hydrocarbons. The superoxide dismutase (SOD) (total SOD (T-SOD), Cu 2+ Zn 2+ -SOD), catalase (CAT) and ascorbate peroxidase (APX) activities in Allium sativum and Triticum aestivum were lower in the HRJ2 + 4 + 5 + 6-treated HCO as compared to the plantlets exposed directly to HCO. The present results revealed the effective degradation of HCO-contaminated saline medium using the microbial consortium having greater metabolic diversity.

  17. Solid acid catalysts in heterogeneous n-alkanes hydroisomerisation ...

    African Journals Online (AJOL)

    As the current global environmental concerns have prompted regulations to reduce the level of aromatic compounds, particularly benzene and its derivatives in gasoline, ydroisomerisation of n-alkanes is becoming a major alternative for enhancing octane number. Series of solid acid catalysts comprising of Freidel crafts, ...

  18. n-Alkanes in surficial sediments of Visakhapatnam harbour, east ...

    Indian Academy of Sciences (India)

    characterised at molecular level, they provide valu- able information on the sources of OM (Meyers. 2003; Volkman 2006). For example, lipid com- pounds such as n-alkanes, sterols, alcohols and fatty acids are used to assess sources of OM in marine and terrestrial sediments (Volkman et al. 1992; Tolosa et al. 2009).

  19. Thermodynamic parameters for the adsorption of volatile n-alkane ...

    African Journals Online (AJOL)

    user

    Thermodynamic parameters for the adsorption of volatile n-alkane hydrocarbons on water hyacinth. (Eichhornia crassipes) root biomass: Effect of organic solvent and mineral acid treatment. Netai Mukaratirwa-Muchanyereyi1,2, Jameson Kugara1 and Mark Fungayi Zaranyika1*. 1Chemistry Department, University of ...

  20. Fossil Leaves and Fossil Leaf n-Alkanes: Reconstructing the First Closed Canopied Rainforests

    Science.gov (United States)

    Graham, H. V.; Freeman, K. H.

    2013-12-01

    Although the age and location is disputed, the rise of the first closed-canopy forest is likely linked with the expansion of angiosperms in the late Cretacous or early Cenozoic. The carbon isotope 'canopy effect' reflects the extent of canopy closure, and is well documented in δ13C values of the leaves and leaf lipids in modern forests. To test the extent of canopy closure among the oldest documented angiosperm tropical forests, we analyzed isotopic characteristics of leaf fossils and leaf waxes from the Guaduas and Cerrejón Formations. The Guaduas Fm. (Maastrichtian) contains some of the earliest angiosperm fossils in the Neotropics, and both leaf morphology and pollen records at this site suggest an open-canopy structure. The Cerrejón Fm. (Paleocene) contains what are believed to be the first recorded fossil leaves from a closed-canopy forest. We analyzed the bulk carbon isotope content (δ13Cleaf) of 199 fossil leaves, as well as the n-alkane concentration and chain-length distribution, and δ13C of alkanes (δ13Clipid) of 73 fossil leaves and adjacent sediment samples. Fossil leaves are dominated by eudicots and include ten modern plant families (Apocynaceae, Bombaceae, Euphorbaceae, Fabaceae, Lauraceae, Malvaceae, Meliaceae, Menispermaceae, Moraceae, Sapotaceae). We interpreted extent of canopy coverage based on the range of δ13Cleaf values. The narrow range of δ13C values in leaves from the Guaduas Fm (2.7‰) is consistent with an open canopy. A significantly wider range in values (6.3‰) suggests a closed-canopy signature for site 0315 of the Cerrejón Fm,. In contrast, at Site 0318, a lacustrine deposit, leaves had a narrow range (3.3‰) in δ13C values, and this is not consistent with a closed-canopy, but is consistent with leaf assemblages from a forest edge. Leaves that accumulate in lake sediments tend to be biased toward plants living at the lake edge, which do not experience closed-canopy conditions, and do not express the isotopic

  1. Cuticular n-alkane in leaves of seven Neotropical species of the family Lecythidaceae: a contribution to chemotaxonomy

    Directory of Open Access Journals (Sweden)

    Rejane Maria da Silva

    Full Text Available ABSTRACT Biosynthesized from very long-chain fatty acid wax precursors, n-alkanes make a valuable contribution to the taxonomy of plants. The alkane components of foliar epicuticles of seven Neotropical species of Lecythidaceae were investigated: Bertholletia excelsa, Cariniana legalis, Couroupita guianensis, Eschweilera alvimii, Eschweilera ovata, Gustavia augusta and Lecythis pisonis. Specimens were collected in the metropolitan area of Recife, Pernambuco, and their n-alkane fractions were analyzed by gas chromatography. The chemical relationships among the species were then evaluated using cophenetic correlation and UPGMA. Among the seven species, a total of 15 n-alkanes, with 21-35 carbon atoms, were identified and formed a consistent group of B. excelsa, C. guianensis, E. ovata, G. augusta, and L. pisonis with n-C31. The greatest similarities were found between B. excelsa and L. pisonis, and between C. guianensis and G. augusta. Nevertheless, a phenetic analysis based on a larger number of species is needed to better understand the chemotaxonomic value of epicuticular n-alkanes within the Lecythidaceae.

  2. Flash Points of Secondary Alcohol and n-Alkane Mixtures.

    Science.gov (United States)

    Esina, Zoya N; Miroshnikov, Alexander M; Korchuganova, Margarita R

    2015-11-19

    The flash point is one of the most important characteristics used to assess the ignition hazard of mixtures of flammable liquids. To determine the flash points of mixtures of secondary alcohols with n-alkanes, it is necessary to calculate the activity coefficients. In this paper, we use a model that allows us to obtain enthalpy of fusion and enthalpy of vaporization data of the pure components to calculate the liquid-solid equilibrium (LSE) and vapor-liquid equilibrium (VLE). Enthalpy of fusion and enthalpy of vaporization data of secondary alcohols in the literature are limited; thus, the prediction of these characteristics was performed using the method of thermodynamic similarity. Additionally, the empirical models provided the critical temperatures and boiling temperatures of the secondary alcohols. The modeled melting enthalpy and enthalpy of vaporization as well as the calculated LSE and VLE flash points were determined for the secondary alcohol and n-alkane mixtures.

  3. Analytical calculation of chain length in ferrofluids

    Indian Academy of Sciences (India)

    The response of a typical ferrofluid (FF) lies in its explicit property of chain formation of magnetic nanoparticles. The most significant magneto-optic (MO) and magneto-viscous (MV) effects of FF are attributed to chaining effect. In the present research, an effort was made to analytically justify the dependence of the structure ...

  4. Analytical calculation of chain length in ferrofluids

    Indian Academy of Sciences (India)

    The response of a typical ferrofluid (FF) lies in its explicit property of chain formation of magnetic ... magnetic field. The favourable condition for chain forma- tion of the dispersed particles is. ≫ 1. Again, reports show that different measurable parameters related ..... properties of nanomaterials (New York: AIP Publishing) 495.

  5. Theory and Experiment of Binary Diffusion Coefficient of n-Alkanes in Dilute Gases.

    Science.gov (United States)

    Liu, Changran; McGivern, W Sean; Manion, Jeffrey A; Wang, Hai

    2016-10-10

    Binary diffusion coefficients were measured for n-pentane, n-hexane, and n-octane in helium and of n-pentane in nitrogen over the temperature range of 300 to 600 K, using reversed-flow gas chromatography. A generalized, analytical theory is proposed for the binary diffusion coefficients of long-chain molecules in simple diluent gases, taking advantage of a recently developed gas-kinetic theory of the transport properties of nanoslender bodies in dilute free-molecular flows. The theory addresses the long-standing question about the applicability of the Chapman-Enskog theory in describing the transport properties of nonspherical molecular structures, or equivalently, the use of isotropic potentials of interaction for a roughly cylindrical molecular structure such as large normal alkanes. An approximate potential energy function is proposed for the intermolecular interaction of long-chain n-alkane with typical bath gases. Using this potential and the analytical theory for nanoslender bodies, we show that the diffusion coefficients of n-alkanes in typical bath gases can be treated by the resulting analytical model accurately, especially for compounds larger than n-butane.

  6. Leaf physiological processes strongly affect δH2 values of leaf wax n-alkanes in C3 and C4 grasses.

    Science.gov (United States)

    Gamarra, Bruno; Sachse, Dirk; Kahmen, Ansgar

    2013-04-01

    Leaf wax n-alkanes are naturally synthesized saturated hydrocarbons. They are synthesized as part of plant leaf cuticle as a mechanism to prevent water losses. Two of the most important features of n-alkanes are their enormous environmental persistence and terrestrial ubiquity making them a solid and reliable long-term and large-scale biomarker. Their hydrogen isotopic composition (δH2) of leaf wax n-alkanes has been traditionally related to precipitation. Leaf wax n-alkanes and their δH2 values have thus been celebrated as biomarkers to reconstruct hydrological changes. δH2 values of leaf wax n-alkanes are yet to be fully comprehended. They are basically determined by three mechanisms: (1) The δH2 value of the plant source water (2) leaf water evaporative enrichment in H2 and (3) biosynthetic fractionation and depletion in H2during their biosynthesis from leaf water. Out of these three, the exact degree by which the evaporative H2-enrichment of leaf water influences the δH2 values of leaf wax n-alkanes is still unknown. We conducted an experiment where we tested and quantified the effects of leaf water evaporative H2-enrichment on the leaf wax n-alkane δH2 values of different grass species. We grew 12 C3 and C4 grass species under controlled environmental conditions in growth chambers. The plants were exposed to 3 different levels of air relative humidity (45, 65 and 85%). These treatments were to generate different degrees of leaf water H2-enrichment in the plants. The goal of our experiment was to determine by what degree the different levels of leaf water H2-enrichment influence the δH2 values of the different C3 and C4 grass species. Additional measurements of gas exchange, evapotranspiration and leaf length and area accompanied the isotopic analysis in order to explain species variability. Our experiments showed that leaf water evaporative H2-enrichment has a critical impact on leaf wax n-alkane δH2 values of all studied plants. The magnitude was

  7. Physical properties of {anisole + n-alkanes} at temperatures between (293.15 and 303.15) K

    International Nuclear Information System (INIS)

    Al-Jimaz, Adel S.; Al-Kandary, Jasem A.; Abdul-latif, Abdul-Haq M.; Al-Zanki, Adnan M.

    2005-01-01

    Density ρ, viscosity η, and refractive index n D , values of {anisole + hexane, or heptane, or octane, or nonane, or decane, or dodecane} binary mixtures over the entire range of mole fraction at temperatures (293.15, 298.15, and 303.15) K, have been investigated at atmospheric pressure. The excess molar volume V E , has been calculated from the experimental measurements. These results were fitted to Redlich and Kister polynomial equation to estimate the binary interaction parameters. The viscosity data were correlated with equations of Grunberg and Nissan, and McAllister. The refractive indices data were used to calculate the specific refractivity R 12 , and also correlated with Lorentz-Lorenz equation. While the excess molar volumes of {anisole + hexane} are negative, and {anisole + heptane} are sigmoidal S-shaped, the remaining binary mixtures are positive. The effects of n-alkanes chain length as well as the temperature on the excess molar volume have been studied. The calculated values have been qualitatively used to explain the intermolecular interaction between the mixing components

  8. Palladium Catalysts for Fatty Acid Deoxygenation: Influence of the Support and Fatty Acid Chain Length on Decarboxylation Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Ford, JP; Immer, JG; Lamb, HH

    2012-03-29

    Supported metal catalysts containing 5 wt% Pd on silica, alumina, and activated carbon were evaluated for liquid-phase deoxygenation of stearic (octadecanoic), lauric (dodecanoic), and capric (decanoic) acids under 5 % H-2 at 300 A degrees C and 15 atm. On-line quadrupole mass spectrometry (QMS) was used to measure CO + CO2 yield, CO2 selectivity, H-2 consumption, and initial decarboxylation rate. Post-reaction analysis of liquid products by gas chromatography was used to determine n-alkane yields. The Pd/C catalyst was highly active and selective for stearic acid (SA) decarboxylation under these conditions. In contrast, SA deoxygenation over Pd/SiO2 occurred primarily via decarbonylation and at a much slower rate. Pd/Al2O3 exhibited high initial SA decarboxylation activity but deactivated under the test conditions. Similar CO2 selectivity patterns among the catalysts were observed for deoxygenation of lauric and capric acids; however, the initial decarboxylation rates tended to be lower for these substrates. The influence of alkyl chain length on deoxygenation kinetics was investigated for a homologous series of C-10-C-18 fatty acids using the Pd/C catalyst. As fatty acid carbon number decreases, reaction time and H-2 consumption increase, and CO2 selectivity and initial decarboxylation rate decrease. The increase in initial decarboxylation rates for longer chain fatty acids is attributed to their greater propensity for adsorption on the activated carbon support.

  9. Terrestrial environmental changes around the Gulf of Aden over the last 210 kyr deduced from the sediment n-alkane record: Implications for the dispersal of Homo sapiens

    Science.gov (United States)

    Isaji, Yuta; Kawahata, Hodaka; Ohkouchi, Naohiko; Murayama, Masafumi; Tamaki, Kensaku

    2015-03-01

    We analyzed long-chain (C25-C36) n-alkanes and pollen grains in sediments from the Gulf of Aden covering the last 212 kyr to reconstruct the surrounding terrestrial environment, a critical region for the dispersal of Homo sapiens. Substantial increases in the flux of n-alkanes during 200-185, 120-95, and 70-50 ka were interpreted to indicate enhanced vegetation biomass in the Arabian Peninsula and the northern part of the Horn of Africa or increase in lithogenic material inputs. Periods of enhanced n-alkane flux occurred during or immediately after pluvial episodes, indicating that the increased precipitation may have induced substantially enhanced vegetation biomass, creating favorable conditions for Homo sapiens. Additionally, vegetation may have increased due to moderate precipitation unrecorded by speleothems or in accordance with the lowering of sea level, indicating that the dispersal might have been possible even after the shift to an arid environment indicated by the speleothems.

  10. Characterization of polychlorinated n-alkanes using comprehensive two-dimensional gas chromatography-electron-capture negative ionization time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Korytar, P.; Parera, J.; Leonards, P.E.G.; Santos, F.J.; Boer, de J.; Brinkman, U.A.Th.

    2005-01-01

    Comprehensive two-dimensional gas chromatography with electron-capture negative ionization time-of-flight mass spectrometry (GC × GC¿ECNI-TOF-MS) is used to study the composition and characteristics of short-, medium- and long-chain polychlorinated n-alkane (PCA) mixtures. Distinct ordered

  11. Thermal, Mutual and Self-Diffusivities in Binary Liquid Mixtures Consisting of n-Alkanes with Dissolved Gases at Infinite Dilution.

    Science.gov (United States)

    Giraudet, Cédric; Klein, Tobias; Zhao, Guanjia; Rausch, Michael Heinrich; Koller, Thomas M; Fröba, Andreas Paul

    2018-02-27

    for the mass diffusivity of the studied gases dissolved in n-alkanes of varying chain length at infinite dilution as a function of temperature. The generalized expression requiring only information on the kinematic viscosity and molar mass of the pure solvent as well as the molar mass and acentric factor of the solute represents the database from this work and further literature with an absolute average deviation of about 11%.

  12. Chain length effect on dynamical structure of poly (vinyl pyrrolidone ...

    Indian Academy of Sciences (India)

    The formation of complexes and effect of PVP chain length on the molecular dynamics, chain flexibility and stretching of PEG molecules in PVP–PEG mixtures were explored from the comparative values of dielectric relaxation time. Further, relaxation time values in dioxane and benzene solvent confirm the viscosity ...

  13. Similarity and Scaling of Turbulent Flame Speeds for Expanding Premixed Flames of C4-C8 n -alkanes

    Science.gov (United States)

    Wu, Fujia; Saha, Abhishek; Chaudhuri, Swetaprovo; Yang, Sheng; Law, Chung K.

    2013-11-01

    We experimentally investigated the propagation speed of constant-pressure expanding flames in near isotropic turbulence using a dual-chamber, fan-stirred vessel. The motivation is to test whether the fuel similarity concept among C4-C8 n-alkanes on laminar flames also holds for turbulent flames. Previously it was found that the laminar flame speed and Markstein length are almost identical for C4-C8 n-alkanes. If this fuel similarity concept can also be shown for turbulent flames, it will suggest a canonical flame structure for large hydrocarbon fuels, i . e . , large fuels always decompose to small C0-C4 fuel fragments before being oxidized, and would significantly simplify the description of the flames. Preliminary results show that in the flamelet and thin-reaction zone, turbulent flame speeds of C4-C8 n-alkanes are indeed largely similar at various conditions, thereby suggesting the fuel similarity for turbulent flames. In addition, it is found that the normalized turbulent flame speed also approximately scales with the square root of an appropriately-defined Reynolds number recently found for C0-C4 fuels. This work was supported by the AFOSR under the technical monitoring of Dr. Chiping Li.

  14. Effect of Amphiphilic Alkyl Chain Length Upon Purified LATEX Stability

    International Nuclear Information System (INIS)

    Amira Amir Hassan; Amir Hashim Mohd Yatim

    2015-01-01

    Rubber particles in purified latex (PL) are stabilized by a film of protein and fatty acid soap (surfactant). Saturated straight-chain fatty acid soaps can assist an enhancement of latex stability. However, whether the alkyl chain length plays an important role in increasing the stability is still an issue. The aim of this study is to investigate the effect of alkyl chain length of anionic surfactant on the stability of purified latex. The fatty acid soap of decanoate (9), laurate (11), sodium dodecyl sulphate (SDS) (12) and palmitate (15) were used. The numbers in parentheses indicating the number of carbon present in alkyl chain of the soap. The results showed that the impact of alkyl chain length on the stability of latex is in the order of laurate > decanoate > SDS > palmitate > purified latex accordingly. The alkyl chain length does giving a significant effect on latex stability after longer stirring time. The particle size of latex with the presence of surfactant is greater compare to a single particle itself due to extension of particles diameter. Thus suitable interaction of the nonpolar tail of surfactant with the hydrophobic regions of latex surface played a major role in maintaining a stable latex system. (author)

  15. The Effect of Compositional Changes of Binary Mixtures of n-alkane ...

    African Journals Online (AJOL)

    The Effect of Compositional Changes of Binary Mixtures of n-alkane solvents on the Precipitation of Heavy Organics from a Solution of Crude Oil Residue. ... The results have shown that the quantity of HO precipitate decreases with increasing quantity of higher carbon number of n-alkane solvent to a minimum value at 2:1 ...

  16. The use of n-alkane markers to estimate the intake and apparent ...

    African Journals Online (AJOL)

    The n-alkane marker (dosed marker, dotriacontane, C32, herbage markers C31, C33 and C35) technique was evaluated for use in feed intake and digestibility studies with horses. The mean retention time of digesta in the digestive tract was determined in horses following a single dose of C32. The n-alkane technique was ...

  17. Leaf cuticular n-alkanes as markers in the chemotaxonomy of the eggplant (Solanum melongena L.) and related species.

    Science.gov (United States)

    Haliński, L P; Szafranek, J; Stepnowski, P

    2011-11-01

    The complex of species formed by eggplant (Solanum melongena L.) and its wild and weedy relatives (mainly S. incanum L. and S. insanum L.) is characterised by an extreme morphological divergence that is not always associated with genetic variation. The taxonomy of so-called 'spiny Solanum' species (subgenus Leptostemonum) is therefore extremely unclear. Cultivated eggplant lacks resistance to pests that frequently occur among the wild forms and species. As these wild plants are a potential gene pool for improvement of eggplant cultivars, knowledge of the characteristics of taxonomic relations between plants of different origin is crucial. We suggest using the leaf cuticular n-alkane chain length distribution pattern as an alternative taxonomic marker for eggplant and related species. The results are in good agreement with current knowledge of the systematics of these plants; at the same time, the method developed here is useful for verifying plant identification based on morphological traits. Analysis of 13 eggplant cultivars, five accessions of S. incanum and two lines of S. macrocarpon enabled the intraspecific variation within eggplant to be assessed as low. There was wide variability among S. incanum accessions, probably because plants described as S. incanum are members of a number of different species. Some Asian accessions (sometimes described as S. insanum) were found to be almost identical to S. melongena, while a truly wild African S. incanum plant showed extensive similarity. The usefulness of the chemotaxonomic approach in dealing with the S. melongena-S. incanum complex is discussed. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. n-Alkane distributions as palaeoclimatic proxies in ombrotrophic peat: The role of decomposition and dominant vegetation

    NARCIS (Netherlands)

    Schellekens, J.; Buurman, P.

    2011-01-01

    n-Alkane distributions are frequently used as palaeoclimate proxies in ombrotrophic peat deposits. Although n-alkane distributions differ strongly between plant species, n-alkanes are not species-specific molecules. For a proper interpretation, it is important to understand the different abundances

  19. The Chain-Length Distribution in Subcritical Systems

    International Nuclear Information System (INIS)

    Nolen, Steven Douglas

    2000-01-01

    The individual fission chains that appear in any neutron multiplying system provide a means, via neutron noise analysis, to unlock a wealth of information regarding the nature of the system. This work begins by determining the probability density distributions for fission chain lengths in zero-dimensional systems over a range of prompt neutron multiplication constant (K) values. This section is followed by showing how the integral representation of the chain-length distribution can be used to obtain an estimate of the system's subcritical prompt multiplication (MP). The lifetime of the chains is then used to provide a basis for determining whether a neutron noise analysis will be successful in assessing the neutron multiplication constant, k, of the system in the presence of a strong intrinsic source. A Monte Carlo transport code, MC++, is used to model the evolution of the individual fission chains and to determine how they are influenced by spatial effects. The dissertation concludes by demonstrating how experimental validation of certain global system parameters by neutron noise analysis may be precluded in situations in which the system K is relatively low and in which realistic detector efficiencies are simulated

  20. Study of Perfluoroalkyl Chain-Specific Band Shift in Infrared Spectra on the Chain Length.

    Science.gov (United States)

    Shimoaka, Takafumi; Sonoyama, Masashi; Amii, Hideki; Takagi, Toshiyuki; Kanamori, Toshiyuki; Hasegawa, Takeshi

    2017-11-09

    The CF 2 symmetric stretching vibration (ν s (CF 2 )) band of a perfluoroalkyl (Rf) group in an infrared (IR) spectrum exhibits a unique character, that is, an apparent high wavenumber shift with increasing the chain length, which is an opposite character to that of the CH stretching vibration band of a normal alkyl chain. To reveal the mechanism of the unusual IR band shift, two vibrational characters of an Rf chain are focused: (1) a helical conformation of an Rf chain, (2) the carbon (C) atoms having a smaller mass than the fluorine (F) atom dominantly vibrate as a coupled oscillator leaving F atoms stay relatively unmoved. These indicate that a "coupled oscillation of the skeletal C atoms" of an Rf chain should be investigated considering the helical structure. In the present study, therefore, the coupled oscillation of the Rf chain dependent on the chain length is investigated by Raman spectroscopy, which is suitable for investigating a skeletal vibration. The Raman-active ν s (CF 2 ) band is found to be split into two bands, the splitting is readily explained by considering the helical structure and length with respect to group theory, and the unusual peak shift is concluded to be explained by the helical length.

  1. Third O2 addition reactions promote the low-temperature auto-ignition of n-alkanes

    KAUST Repository

    Wang, Zhandong

    2016-01-20

    Comprehensive low-temperature oxidation mechanisms are needed to accurately predict fuel auto-ignition properties. This paper studies the effects of a previously unconsidered third O2 addition reaction scheme on the simulated auto-ignition of n-alkanes. We demonstrate that this extended low-temperature oxidation scheme has a minor effect on the simulation of n-pentane ignition; however, its addition significantly improves the prediction of n-hexane auto-ignition under low-temperature rapid compression machine conditions. Additional simulations of n-hexane in a homogeneous charge compression ignition engine show that engine-operating parameters (e.g., intake temperature and combustion phasing) are significantly altered when the third O2 addition kinetic mechanism is considered. The advanced combustion phasing is initiated by the formation and destruction of additional radical chain-branching intermediates produced in the third O2 addition process, e.g. keto-dihydroperoxides and/or keto-hydroperoxy cyclic ethers. Our results indicate that third O2 addition reactions accelerate low-temperature radical chain branching at conditions of relevance to advance engine technologies, and therefore these chemical pathways should also be considered for n-alkanes with 6 or more carbon atoms. © 2015 The Combustion Institute.

  2. An investigation of the role of carbon-chain length of precipitating ...

    African Journals Online (AJOL)

    The precipitates were obtained from the n-pentane (n-C5), n-hexane (n-C6) and n-heptane (n-C7) solvents using a modified ASTM D6560 method. Precipitation of heavy organics, Dissolution of heavy organics precipitates of lower molecular weight n-alkane solvents by higher molecular weight n-alkane solvents and ...

  3. Heat conduction in chain polymer liquids: molecular dynamics study on the contributions of inter- and intramolecular energy transfer.

    Science.gov (United States)

    Ohara, Taku; Yuan, Tan Chia; Torii, Daichi; Kikugawa, Gota; Kosugi, Naohiro

    2011-07-21

    In this paper, the molecular mechanisms which determine the thermal conductivity of long chain polymer liquids are discussed, based on the results observed in molecular dynamics simulations. Linear n-alkanes, which are typical polymer molecules, were chosen as the target of our studies. Non-equilibrium molecular dynamics simulations of bulk liquid n-alkanes under a constant temperature gradient were performed. Saturated liquids of n-alkanes with six different chain lengths were examined at the same reduced temperature (0.7T(c)), and the contributions of inter- and intramolecular energy transfer to heat conduction flux, which were identified as components of heat flux by the authors' previous study [J. Chem. Phys. 128, 044504 (2008)], were observed. The present study compared n-alkane liquids with various molecular lengths at the same reduced temperature and corresponding saturated densities, and found that the contribution of intramolecular energy transfer to the total heat flux, relative to that of intermolecular energy transfer, increased with the molecular length. The study revealed that in long chain polymer liquids, thermal energy is mainly transferred in the space along the stiff intramolecular bonds. This finding implies a connection between anisotropic thermal conductivity and the orientation of molecules in various organized structures with long polymer molecules aligned in a certain direction, which includes confined polymer liquids and self-organized structures such as membranes of amphiphilic molecules in water.

  4. Application of a Crossover Equation of State to Describe Phase Equilibrium and Critical Properties of n-Alkanes and Methane/n-Alkane Mixtures

    DEFF Research Database (Denmark)

    P. C. M. Vinhal, Andre; Yan, Wei; Kontogeorgis, Georgios M.

    2017-01-01

    and the asymptotic one near the critical point. Although several crossover EOSs have been developed in the last decades their use in modeling industrial processes is rather limited. In this work, we use the crossover Soave–Redlich–Kwong (CSRK) to describe phase equilibrium and critical properties of pure n......-alkanes and methane/n-alkane binary mixtures and compare the results to two other modeling approaches of the SRK EOS. In the case of the pure fluids, CSRK gives an accurate overall description of the phase equilibrium and critical properties; nevertheless, a minor increase in the deviation of the saturation pressure...

  5. Abundance of macroalgal organic matter in biofilms: Evidence from n-alkane biomarkers

    Digital Repository Service at National Institute of Oceanography (India)

    Garg, A.; Bhosle, N.B.

    Biofilm development on titanium panels immersed in the surface waters of Dona Paula Bay, Goa, India was investigated using molecular biomarkers such as n-alkanes and other chemical and biological parameters. Biofilm biomass measured as organic...

  6. Comprehensive chemical kinetic modeling of the oxidation of C8 and larger n-alkanes and 2-methylalkanes

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M; Togbe, C; Dagaut, P; Wang, H; Oehlschlaeger, M; NIemann, U; Seshadri, K; Veloo, P S; Ji, C; Egolfopoulos, F; Lu, T

    2011-03-16

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed and reduced chemical kinetic mechanism for singly methylated iso-alkanes (i.e., 2-methylalkanes) ranging from C{sub 8} to C{sub 20}. The mechanism also includes an updated version of our previously published C{sub 8} to C{sub 16} n-alkanes model. The complete detailed mechanism contains approximately 7,200 species 31,400 reactions. The proposed model is validated against new experimental data from a variety of fundamental combustion devices including premixed and nonpremixed flames, perfectly stirred reactors and shock tubes. This new model is used to show how the presence of a methyl branch affects important combustion properties such as laminar flame propagation, ignition, and species formation.

  7. Molecular dynamics insight to phase transition in n-alkanes with carbon nanofillers

    Directory of Open Access Journals (Sweden)

    Monisha Rastogi

    2015-05-01

    Full Text Available The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant- pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs.

  8. Molecular dynamics insight to phase transition in n-alkanes with carbon nanofillers

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Monisha [School of Engineering, Indian Institute of Technology Mandi, Himachal Pradesh 175 001 (India); Vaish, Rahul, E-mail: rahul@iitmandi.ac.in [School of Engineering, Indian Institute of Technology Mandi, Himachal Pradesh 175 001 (India); Materials Research Centre, Indian Institute of Science, Bangalore 560 012 (India)

    2015-05-15

    The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT) and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs) and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant- pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs.

  9. Expected value of finite fission chain lengths of pulse reactors

    International Nuclear Information System (INIS)

    Liu Jianjun; Zhou Zhigao; Zhang Ben'ai

    2007-01-01

    The average neutron population necessary for sponsoring a persistent fission chain in a multiplying system, is discussed. In the point reactor model, the probability function θ(n, t 0 , t) of a source neutron at time t 0 leading to n neutrons at time t is dealt with. The non-linear partial differential equation for the probability generating function G(z; t 0 , t) is derived. By solving the equation, we have obtained an approximate analytic solution for a slightly prompt supercritical system. For the pulse reactor Godiva-II, the mean value of finite fission chain lengths is estimated in this work and shows that the estimated value is reasonable for the experimental analysis. (authors)

  10. Stochastic Simulation of a Full-Chain Reptation Model with Constraint Release, Chain-Length Fluctuations and Chain Stretching

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Schieber, Jay D.

    1999-01-01

    A self-consistent reptation model that includes chain stretching, chain-length fluctuations, segment connectivity and constraint release is used to predict transient and steady flows. Quantitative comparisons are made with entangledsolution data. The model is able to capture quantitatively all...... for differentmolecular weight, the transient and steady-state behavior of the extinction angle, and the stress relaxation in cessation of steady shear flow....

  11. Flow reactor studies of non-equilibrium plasma-assisted oxidation of n-alkanes.

    Science.gov (United States)

    Tsolas, Nicholas; Lee, Jong Guen; Yetter, Richard A

    2015-08-13

    The oxidation of n-alkanes (C1-C7) has been studied with and without the effects of a nanosecond, non-equilibrium plasma discharge at 1 atm pressure from 420 to 1250 K. Experiments have been performed under nearly isothermal conditions in a flow reactor, where reactive mixtures are diluted in Ar to minimize temperature changes from chemical reactions. Sample extraction performed at the exit of the reactor captures product and intermediate species and stores them in a multi-position valve for subsequent identification and quantification using gas chromatography. By fixing the flow rate in the reactor and varying the temperature, reactivity maps for the oxidation of fuels are achieved. Considering all the fuels studied, fuel consumption under the effects of the plasma is shown to have been enhanced significantly, particularly for the low-temperature regime (T<800 K). In fact, multiple transitions in the rates of fuel consumption are observed depending on fuel with the emergence of a negative-temperature-coefficient regime. For all fuels, the temperature for the transition into the high-temperature chemistry is lowered as a consequence of the plasma being able to increase the rate of fuel consumption. Using a phenomenological interpretation of the intermediate species formed, it can be shown that the active particles produced from the plasma enhance alkyl radical formation at all temperatures and enable low-temperature chain branching for fuels C3 and greater. The significance of this result demonstrates that the plasma provides an opportunity for low-temperature chain branching to occur at reduced pressures, which is typically observed at elevated pressures in thermal induced systems. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Chemical similarity among domesticated and wild genotypes of peanut based on n-alkanes profiles

    Directory of Open Access Journals (Sweden)

    Renata Janaína Carvalho de Souza

    2010-11-01

    Full Text Available The objective of this work was to analyze the epicuticular n-alkane profile of domesticated and wild peanut genotypes. Foliar epicuticular n-alkanes of four Arachis hypogaea genotypes and two wild species - A. monticola and A. stenosperma - were analyzed by gas chromatography. Chemical relationships between them were evaluated using the Dice coefficient and UPGMA method. Two clusters were formed: one with four A. hypogaea genotypes and the other with the two wild species. There is more similarity between the BR1 and LIGO-PE06 genotypes and between the BRS 151 L-7 and BRS Havana genotypes.

  13. Long n-alkanes isomerization by medium pore zeolites with pore mouth and key lock mechanisms; Isomerisation des paraffines longues par des zeolithes a pores moyens selon les mecanismes ouverture de pore et cle serrure

    Energy Technology Data Exchange (ETDEWEB)

    Claude, M.

    1999-10-01

    Skeletal isomerization of long n-alkanes is practiced to improve cold flow properties of diesel and lubricant fractions. In this work, model long n-alkanes (n-C{sub 10} - n-C{sub 24}) were hydro-isomerized in a fixed bed down flow vapour phase reactor loaded with bifunctional Pt/H-ZSM-22 zeolite catalyst. The skeletal isomers were analysed and identified with GC/MS. High isomer yields were obtained. The distribution of positional mono-methyl-branched isomers obtained from n-C{sub 12} to n-C{sub 24} are typically bimodal. This is explained by adsorption and reaction of the alkanes in pore mouths and locks on the external surface of the zeolite crystals. The pore mouth mode favours branching at C{sub 2} and C{sub 3}. The 'key lock' type proceeds by penetration of the two ends of the hydrocarbon chain into a different pore opening and favours more central mono-branching of the chain. The contribution of the key lock mode increases with increasing chain length and with the reaction temperature. The preferentially formed dimethyl-branched isomers have a separation between branchings of three up to fourteen carbon atoms. The formation of the second methyl-branching occurs preferentially from a centrally branched mono-methyl-branched isomer, so that the second branching is generated always more toward the end of the chain. Owing to the differences in adsorption entropy among the locks, at higher temperatures the largest lock is preferred and the distance between the two branching along the carbon chain in the preferred isomers is biggest. Thus the work resulted in the formulation of structure-selectivity relationships. n-C{sub 18} was hydro-isomerized on other zeolites. The nature and distribution of the isomers obtained suggest that the tubular 10-ring zeolites ZSM-23, ZSM-35 and SAPO-11 also operate according to pore mouth and key lock concepts. Zeolites with 12-rings show typical product patterns for catalysis in absence of steric hindrance. (author)

  14. Stable Hydrogen Isotopes of Terrestrial n-alkanes record the Mid Younger Dryas Event in European Lakes

    Science.gov (United States)

    Muegler, I.; Gleixner, G.; Sachse, D.; Grafenstein, U. V.

    2007-12-01

    Compound-specific hydrogen isotope measurements (expressed as δD values) on lacustrine long- chained n-alkanes are a potentially promising means of reconstructing variations in the isotopic composition of continental precipitation in the geological past. Long-chain n-alkanes are produced in the leaf waxes of terrestrial higher plants and have been shown to preserve the hydrogen isotope composition of precipitation being influenced by atmospheric moisture source, evaporation as well as plant physiology. Since δD values are determined directly on carbon-bound hydrogen, which is non-exchangeable even at higher temperatures biological and environmental source conditions can be preserved over geological timescales. Here, we present a record of n-alkane δD values, \\( nC27 - nC31 \\), from the Ammersee, southern Germany and Lac d'Annecy, French Alps spanning the time period from the Oldest Dryas to Preboreal (14 ka to 11 ka BP). We compare biomarker hydrogen isotopic signatures to oxygen-isotope ratios of precipitation inferred from deep-lake ostracods from the Ammersee as well to GRIP \\(δ18\\)O values. The remarkable climate shift at the onset of the Younger Dryas (YD) (12.9 to 11.6 ka BP) is recorded in the \\(δ18\\)O values as well as the hydrogen isotope signal with a pronounced drop of approx. - 40‰ in D at the Ammersee and a minor negative excursion of - (20‰) in D at Lac d'Annecy. This depletion is consistent with a colder and dryer climate and the expansion of grasslands in the lake catchments as recorded in a significant increase of grass-derived \\( nC31 \\). A sudden remarkable deuterium enrichment of about 100‰ in D is apparent in both lakes and marks the mid-Younger Dryas event (MYDE), which is also reflected in the GRIP and Ammersee \\(δ18\\)O values. δD values during this event reach or even exceed the following Holocene level. The simultaneous appearance of this event in different locations suggests a climate driven by mechanisms like the

  15. Stable isotope labeled n-alkanes to assess digesta passage kinetics through the digestive tract of ruminants

    NARCIS (Netherlands)

    Warner, D.; Ferreira, L.M.M.; Breuer, M.J.H.; Dijkstra, J.; Pellikaan, W.F.

    2013-01-01

    We describe the use of carbon stable isotope (13C) labeled n-alkanes as a potential internal tracer to assess passage kinetics of ingested nutrients in ruminants. Plant cuticular n-alkanes originating from intrinsically 13C labeled ryegrass plants were pulse dosed intraruminally in four

  16. Data from: Stable isotope labeled n-alkanes to assess digesta passage kinetics through the digestive tract of ruminants

    NARCIS (Netherlands)

    Warner, D.; Ferreira, L.M.M.; Breuer, M.J.H.; Dijkstra, J.; Pellikaan, W.F.

    2013-01-01

    We describe the use of carbon stable isotope (13C) labeled n-alkanes as a potential internal tracer to assess passage kinetics of ingested nutrients in ruminants. Plant cuticular n-alkanes originating from intrinsically 13C labeled ryegrass plants were pulse dosed intraruminally in four

  17. Evaluation of n-alkanes and their carbon isotope enrichments (d13C) as diet composition markers

    NARCIS (Netherlands)

    Derseh, M.B.; Pellikaan, W.F.; Tolera, A.; Hendriks, W.H.

    2011-01-01

    Plant cuticular n-alkanes have been successfully used as markers to estimate diet composition and intake of grazing herbivores. However, additional markers may be required under grazing conditions in botanically diverse vegetation. This study was conducted to describe the n-alkane profiles and the

  18. Cool-flame Extinction During N-Alkane Droplet Combustion in Microgravity

    Science.gov (United States)

    Nayagam, Vedha; Dietrich, Daniel L.; Hicks, Michael C.; Williams, Forman A.

    2014-01-01

    Recent droplet combustion experiments onboard the International Space Station (ISS) have revealed that large n-alkane droplets can continue to burn quasi-steadily following radiative extinction in a low-temperature regime, characterized by negative-temperaturecoefficient (NTC) chemistry. In this study we report experimental observations of n-heptane, n-octane, and n-decane droplets of varying initial sizes burning in oxygen/nitrogen/carbon dioxide and oxygen/helium/nitrogen environments at 1.0, 0.7, and 0.5 atmospheric pressures. The oxygen concentration in these tests varied in the range of 14% to 25% by volume. Large n-alkane droplets exhibited quasi-steady low-temperature burning and extinction following radiative extinction of the visible flame while smaller droplets burned to completion or disruptively extinguished. A vapor-cloud formed in most cases slightly prior to or following the "cool flame" extinction. Results for droplet burning rates in both the hot-flame and cool-flame regimes as well as droplet extinction diameters at the end of each stage are presented. Time histories of radiant emission from the droplet captured using broadband radiometers are also presented. Remarkably the "cool flame" extinction diameters for all the three n-alkanes follow a trend reminiscent of the ignition delay times observed in previous studies. The similarities and differences among the n-alkanes during "cool flame" combustion are discussed using simplified theoretical models of the phenomenon

  19. Effect of temperature on atom-atom collision chain length in metals

    International Nuclear Information System (INIS)

    Makarov, A.A.; Demkin, N.A.; Lyashchenko, B.G.

    1981-01-01

    Focused atom-atom collision chain lengths are calculated for fcc-crystals with account of thermal oscillations. The model of solid spheres with the Born-Merier potential has been used in the calculations. The dependence of chain lengths on the temperature, energy and movement direction of the first chain atom for Cu, Au, Ag, Pb, Ni is considered. The plot presented shows that the chain lengths strongly decrease with temperature growth, for example, for the gold at T=100 K the chain length equals up to 37 interatomic spacings, whereas at T=1000 K their length decreases down to 5 interatomic distances. The dependence of the energy loss by the chain atoms on the atom number in the chain is obtained in a wide range of crystal temperature and the primary chain atom energy [ru

  20. Self-Assembly of Alkylammonium Chains on Montmorillonite: Effect of Interlayer Cations, CEC, and Chain Length

    Science.gov (United States)

    Chen, Hua; Li, Yingjun; Zhou, Yuanlin; Wang, Shanqiang; Zheng, Jian; He, Jiacai

    2017-12-01

    Recently, polymeric materials have been filled with synthetic or natural inorganic compounds in order to improve their properties. Especially, polymer clay nanocomposites have attracted both academic and industrial attention. Currently, the structure and physical phenomena of organoclays at molecular level are difficultly explained by existing experimental techniques. In this work, molecular dynamics (MD) simulation was executed using the CLAYFF and CHARMM force fields to evaluate the structural properties of organoclay such as basal spacing, interlayer density, energy and the arrangement of alkyl chains in the interlayer spacing. Our results are in good agreement with available experimental or other simulation data. The effects of interlayer cations (Na+, K+, Ca2+), the cation exchange capacity, and the alkyl chain length on the basal spacing and the structural properties are estimated. These simulations are expected to presage the microstructure of organo-montmorillonite and lead relevant engineering applications.

  1. Distribution and variability of n-alkanes in epicuticular waxes of sedum species from the central Balkan Peninsula: chemotaxonomic importance.

    Science.gov (United States)

    Jovanović, Snežana Č; Zlatković, Bojan K; Stojanović, Gordana S

    2015-05-01

    For the first time, the n-alkane distribution and variability of the epicuticular waxes within 22 Sedum taxa was reported with focus on the chemotaxonomy of native Sedum representatives from the central Balkan Peninsula, compared to their relations with four other species of the Crassulaceae family. By GC/MS and GC-FID identification and quantification, it was established that n-alkanes C27 , C29 , C31 , C33 , and C35 were the dominant constituents of the examined epicuticular wax samples. Applying multivariate statistical analyses including agglomerative hierarchical clustering (AHC) and principal component analysis (PCA), the relation according to the n-alkane composition between the examined samples was established. It was shown that the n-alkane variability of the central Balkan Sedum species was considerable and that n-alkanes might not be very reliable taxonomic markers for these species. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  2. Biodegradation of Variable-Chain-Length Alkanes at Low Temperatures by a Psychrotrophic Rhodococcus sp.

    Science.gov (United States)

    Whyte, Lyle G.; Hawari, Jalal; Zhou, Edward; Bourbonnière, Luc; Inniss, William E.; Greer, Charles W.

    1998-01-01

    The psychrotroph Rhodococcus sp. strain Q15 was examined for its ability to degrade individual n-alkanes and diesel fuel at low temperatures, and its alkane catabolic pathway was investigated by biochemical and genetic techniques. At 0 and 5°C, Q15 mineralized the short-chain alkanes dodecane and hexadecane to a greater extent than that observed for the long-chain alkanes octacosane and dotriacontane. Q15 utilized a broad range of aliphatics (C10 to C21 alkanes, branched alkanes, and a substituted cyclohexane) present in diesel fuel at 5°C. Mineralization of hexadecane at 5°C was significantly greater in both hydrocarbon-contaminated and pristine soil microcosms seeded with Q15 cells than in uninoculated control soil microcosms. The detection of hexadecane and dodecane metabolic intermediates (1-hexadecanol and 2-hexadecanol and 1-dodecanol and 2-dodecanone, respectively) by solid-phase microextraction–gas chromatography-mass spectrometry and the utilization of potential metabolic intermediates indicated that Q15 oxidizes alkanes by both the terminal oxidation pathway and the subterminal oxidation pathway. Genetic characterization by PCR and nucleotide sequence analysis indicated that Q15 possesses an aliphatic aldehyde dehydrogenase gene highly homologous to the Rhodococcus erythropolis thcA gene. Rhodococcus sp. strain Q15 possessed two large plasmids of approximately 90 and 115 kb (shown to mediate Cd resistance) which were not required for alkane mineralization, although the 90-kb plasmid enhanced mineralization of some alkanes and growth on diesel oil at both 5 and 25°C. PMID:9647833

  3. Antibacterial effect of phosphates and polyphosphates with different chain length.

    Science.gov (United States)

    Lorencová, Eva; Vltavská, Pavlína; Budinský, Pavel; Koutný, Marek

    2012-01-01

    The aim of this study was to monitor the antibacterial effect of seven phosphate salts on selected strains of Gram-negative and Gram-positive bacteria, which could be considered responsible for food-borne diseases (Bacillus cereus, Bacillus subtilis, Enterococcus faecalis, Micrococcus luteus, Staphylococcus aureus, Citrobacter freundii, Escherichia coli, Proteus mirabilis, Salmonella enterica ser. Enteritidis and Pseudomonas aeruginosa). For these purposes, phosphates differing in chain length were used. The tested concentrations were in the range of 0.1-2.0% (wt v(-1)) applied at the model conditions. In the majority of cases the visible inhibitory effect on the growth of observed microorganisms could be seen. Due to the chemical structure of salts and their dissociation both the pH values of cultivation broth and similarly the growth characteristics of bacterial strains were affected. The inhibition of above mentioned bacteria was apparently supported by this dissociation. Phosphates obviously made the development of most Gram-positive bacteria impossible. Especially Micrococcus luteus was extremely sensitive to the presence of these substances. On the other hand, Gram-negative bacteria seemed to be resistant to the phosphate incidence. The exemption clause from the tested salts was represented by a high alkaline trisodium phosphate. It should be pointed out that generally the most significant antibacterial effects were shown by polyphosphates HEXA68 and HEXA70, trisodium phosphate undecahydrate, tetrasodium pyrophosphate and finally trisodium phosphate. By comparing the inhibitory effects of various phosphate salts can be concluded that the antibacterial activity was not determined only by the condensation degree but there was also proved the dependence on pH values.

  4. The roles of productivity and ecosystem size in determining food chain length in tropical terrestrial ecosystems.

    Science.gov (United States)

    Young, Hillary S; McCauley, Douglas J; Dunbar, Robert B; Hutson, Michael S; Ter-Kuile, Ana Miller; Dirzo, Rodolfo

    2013-03-01

    Many different drivers, including productivity, ecosystem size, and disturbance, have been considered to explain natural variation in the length of food chains. Much remains unknown about the role of these various drivers in determining food chain length, and particularly about the mechanisms by which they may operate in terrestrial ecosystems, which have quite different ecological constraints than aquatic environments, where most food chain length studies have been thus far conducted. In this study, we tested the relative importance of ecosystem size and productivity in influencing food chain length in a terrestrial setting. We determined that (1) there is no effect of ecosystem size or productive space on food chain length; (2) rather, food chain length increases strongly and linearly with productivity; and (3) the observed changes in food chain length are likely achieved through a combination of changes in predator size, predator behavior, and consumer diversity along gradients in productivity. These results lend new insight into the mechanisms by which productivity can drive changes in food chain length, point to potential for systematic differences in the drivers of food web structure between terrestrial and aquatic systems, and challenge us to consider how ecological context may control the drivers that shape food chain length.

  5. n-alkanes from Paepalanthus Mart. species (Eriocaulaceae n-alcanos de espécies de Paepalanthus Mart. (Eriocaulaceae

    Directory of Open Access Journals (Sweden)

    Lourdes Campaner dos Santos

    2005-12-01

    Full Text Available This work presents the study of nonpolar compounds from plants belonging to the genus Paepalanthus Mart. (Eriocaulaceae. Long-chain linear aliphatic hydrocarbons were identified by GC-FID and GC-MS. The results indicate that Paepalanthus subg. Platycaulon species present a very homogenous profile, with carbon chains of n-alkanes ranging from C25 to C31, most samples presenting higher frequencies of C27 and C29 homologues. Paepalanthus subg. Paepalocephalus species may be distinguished from one another by the distribution of main n-alkanes. P. macrocephalus, subsect. Aphorocaulon species, presents alkanes with odd-carbon numbers and P. denudatus and P. polyanthus, Actinocephalus species, present alkanes with quite distinctive profiles, with many shorter chains and a high frequency of even-carbon number, especially P. polyanthus. The results obtained indicate that the distribution of alkanes can be a useful taxonomic character, as do polar compounds like flavonoid glycosides.Este trabalho apresenta o estudo de substâncias apolares obtidas a partir de plantas pertencentes ao gênero Paepalanthus Mart. (Eriocaulaceae. Hidrocarbonetos alifáticos de cadeias longas lineares foram identificados por CG-DIC e CG-EM. Os resultados indicam que as espécies de Paepalanthus subg. Platycaulon apresentam perfil homogêneo, com cadeias carbônicas de n-alcanos variando de C25 a C31, com a maioria das amostras apresentando freqüências maiores dos homólogos C27 e C29. As espécies do subgênero Paepalocephalus podem ser diferenciadas pela distribuição dos n-alcanos principais. P. macrocephalus, uma espécie da subseção Aphorocaulon, apresenta perfil com alcanos de cadeia ímpar, enquanto P. denudatus e P. polyanthus, espécies da seção Actinocephalus, apresentam perfil bem distinto, com grande número de cadeias mais curtas e alta freqüência de cadeias com número par de carbonos, especialmente P. polyanthus. Os resultados obtidos indicam que a

  6. Biodegradation of crude oil and n-alkanes by fungi isolated from Oman

    International Nuclear Information System (INIS)

    Elshafie, Abdulkadir; AlKindi, Abdulaziz Yahya; Al-Busaidi, Sultan; Bakheit, Charles; Albahry, S.N.

    2007-01-01

    Ten fungal species isolated from tar balls collected from the beaches of Oman were tested for their abilities to grow and degrade n-alkanes and crude oil. The abilities of Aspergillus niger, A. ochraceus and Penicillium chrysogenum to degrade n-alkanes (C13-C18), crude oil were compared and their mycelial biomass was measured. Significant differences were found in the utilization of C15, C16, C17 and C18 by the three fungi. Similarly, significant differences we found in the amount of biomass produced by the three fungi growing on C13, C17, C18 and crude oil. The correlation coefficient of biomass and oil utilization was not statistically significant for Aspergillus niger, significant for Aspergillus terreus and highly significant for P. chrysogenum

  7. Experimental measurements and prediction of liquid densities for n-alkane mixtures

    International Nuclear Information System (INIS)

    Ramos-Estrada, Mariana; Iglesias-Silva, Gustavo A.; Hall, Kenneth R.

    2006-01-01

    We present experimental liquid densities for n-pentane, n-hexane and n-heptane and their binary mixtures from (273.15 to 363.15) K over the entire composition range (for the mixtures) at atmospheric pressure. A vibrating tube densimeter produces the experimental densities. Also, we present a generalized correlation to predict the liquid densities of n-alkanes and their mixtures. We have combined the principle of congruence with the Tait equation to obtain an equation that uses as variables: temperature, pressure and the equivalent carbon number of the mixture. Also, we present a generalized correlation for the atmospheric liquid densities of n-alkanes. The average absolute percentage deviation of this equation from the literature experimental density values is 0.26%. The Tait equation has an average percentage deviation of 0.15% from experimental density measurements

  8. How chain length and charge affect surfactant denaturation of acyl coenzyme a binding protein (ACBP)

    DEFF Research Database (Denmark)

    Andersen, Kell; Otzen, Daniel

    2009-01-01

    Using intrinsic tryptophan fluorescence, equilibria and kinetics of unfolding of acyl coenzyme A binding protein (ACBP) have been investigated in sodium alkyl sulfate surfactants of different chain length (8-16 carbon atoms) and with different proportions of the nonionic surfactant dodecyl...... maltoside (DDM). The aim has been to determine how surfactant chain length and micellar charge affect the denaturation mechanism. ACBP denatures in two steps irrespective of surfactant chain length, but with increasing chain length, the potency of the denaturant rises more rapidly than the critical micelle...... constants increases linearly with denaturant concentration below the cmc but declines at higher concentrations. Both shortening chain length and decreasing micellar charge reduce the overall kinetics of unfolding and makes the dependence of unfolding rate constants on surfactant concentration more complex...

  9. Chain length effect on dynamical structure of poly(vinyl pyrrolidone ...

    Indian Academy of Sciences (India)

    interpreted by the consideration of a wait-and-switch model in the local structure of self- associated ethyl alcohol ... effect of PVP chain length on the molecular dynamics, chain flexibility and stretching of PEG molecules in .... of PVP monomer unit as compared to the group moment value of the chain end hydroxyl group of ...

  10. Polyurethanes elastomers with amide chain extenders of uniform length

    NARCIS (Netherlands)

    van der Schuur, J.M.; Noordover, B.A.J.; Noordover, Bart; Gaymans, R.J.

    2006-01-01

    Toluene diisocyanate based polyurethanes with amide extenders were synthesized poly(propylene oxide) with a number average molecular weight of 2000 and endcapped with toluene diisocyanate was used as the polyether segment. The chain extenders were based on poly(hexamethylene terephthalamide):

  11. Quantum discord length is enhanced while entanglement length is not by introducing disorder in a spin chain.

    Science.gov (United States)

    Sadhukhan, Debasis; Roy, Sudipto Singha; Rakshit, Debraj; Prabhu, R; Sen De, Aditi; Sen, Ujjwal

    2016-01-01

    Classical correlation functions of ground states typically decay exponentially and polynomially, respectively, for gapped and gapless short-range quantum spin systems. In such systems, entanglement decays exponentially even at the quantum critical points. However, quantum discord, an information-theoretic quantum correlation measure, survives long lattice distances. We investigate the effects of quenched disorder on quantum correlation lengths of quenched averaged entanglement and quantum discord, in the anisotropic XY and XYZ spin glass and random field chains. We find that there is virtually neither reduction nor enhancement in entanglement length while quantum discord length increases significantly with the introduction of the quenched disorder.

  12. High-resolution TOF-SIMS study of varying chain length self-assembled monolayer surfaces.

    Science.gov (United States)

    Wolf, Kurt V; Cole, David A; Bernasek, Steven L

    2002-10-01

    A high-resolution time-of-flight secondary ionization mass spectrometer (TOF-SIMS) has been used to investigate chain length effects in hydrocarbon seff-assembled monolayer (SAM) surfaces on gold substrates. A wide range of n-alkanethiols was used to make homogeneous SAM surfaces, which included both odd and even hydrocarbon chain length thiols. Variations in coverage, extent of oxidation, and high-mass cluster formation as a function of hydrocarbon chain length of the alkanethiol SAM surfaces were investigated. Long-short chain length effects were observed for the relative coverage of the SAM surfaces, which directly influences the extent of oxidation for the thin films. The formation of gold-sulfur and gold-adsorbate cluster ions was also observed, since the mass range of the TOF-SIMS made it possible to monitor all of the cluster ions that were formed following the high-energy ion/surface interactions.

  13. Parameterizing amylose chain-length distributions for biosynthesis-structure-property relations.

    Science.gov (United States)

    Nada, Sharif S; Zou, Wei; Li, Changfeng; Gilbert, Robert G

    2017-11-01

    Amylose, one of the components of starch, is a glucose polymer consisting largely of long, linear chains with a few long-chain branch points. The chain-length (molecular weight) distribution (CLD) of the component chains of amylose can provide information on amylose biosynthesis-structure-property relations, as has been done previously by fitting amylopectin CLDs to a model with physically meaningful parameters. Due to the presence of long chains, the CLD of amylose can currently best be obtained by size-exclusion chromatography, a technique that suffers from band-broadening effects which alter the observed distribution. The features of the multiple regions present in amylose chain-length distributions are also difficult to resolve, an issue that combines with band broadening to compound the difficulty of analysis and subsequent parameterization of the structural characteristics of amylose. A new method is presented to fit these distributions with biologically meaningful parameters in a way that accounts for band broadening. This is achieved by assuming that band broadening takes the form of a simple Gaussian over a relatively small region and that chain stoppage is a random process independent of the length of the substrate chain over the same region; these assumptions are relatively weak and expected to be frequently applicable. The method provides inbuilt consistency tests for its applicability to a given data set and, in cases where it is applicable, allows for the first nonempirical parameterization of amylose biosynthesis-structure-property relations from CLDs by using parameters directly linked to the activities of the enzymes responsible for chain growth and chain stoppage. Graphical abstract Model calculation illustrating the method described and showing the division between the three characteristic regions of a typical amylose chain-length distribution.

  14. Effect of the chain length on the thermal and analytical properties of laterally biforked nematogens.

    Science.gov (United States)

    Dahmane, Mohamed; Athman, Fatiha; Sebih, Saïd; Guermouche, Moulay-Hassane; Bayle, Jean-Pierre; Boudah, Soulimane

    2010-10-15

    Three laterally substituted liquid crystals were synthesized in order to investigate the effect of a lateral biforked chain on the thermal and analytical properties. The mesogenic molecules have the same core containing four aromatic rings connected by two ester and one diazo linkages, they differ by the length of one chain within the lateral biforked substituent. The phase transition temperatures were obtained by polarized light microscopy and differential scanning calorimetry (DSC). The clearing temperature and the nematic range decrease with increasing length of the lateral biforked chain. The stationary phases derived from these nematogens provide excellent resolution of various classes of compounds, including aromatic hydrocarbons (AH), substituted benzenes, polycyclic aromatic hydrocarbons (PAH), phenols and volatile organic compounds (VOC) present in the essential oils. The selectivities of the stationary phases were found to decrease according to the length of the side chain. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Preparation of Quinolinium Salts Differing in the Length of the Alkyl Side Chain

    Directory of Open Access Journals (Sweden)

    Kamil Kuca

    2012-05-01

    Full Text Available Quaternary quinolinium salts differing in alkyl chain length are members of a widespread group of cationic surfactants. These compounds have numerous applications in various branches of industry and research. In this work, the preparation of quinoline-derived cationic surface active agents differing in the length of the side alkyl chains (from C8 to C20 is described. An HPLC method was successfully developed for distinction of all members of the series of prepared long-chain quinolinium derivatives. In conclusion, some possibilities of intended tests or usage have been summarized. In vitro testing using a microdilution broth method showed good activity of a substance with a C12 chain length against Gram-positive cocci and Candida species.

  16. Paleoclimatic implications of the hydrogen isotopic composition of terrigenous n-alkanes from Lake Yamzho, southern Tibetan Plateau

    International Nuclear Information System (INIS)

    Xia Zhonghuan; Xu Baiqing; Wu Guangjian; Zhu Liping; Muegler Ines; Gleixner, Gerd; Sachse, Dirk

    2009-01-01

    The hydrogen isotopic composition (δD) of leaf water used for biosynthesis of n-alkanes can be modified by climate. Therefore, the δD can be considered as potential paleolimatic proxy to explore. We compared measured δD values of alkanes (n-C 25 to n-C 31 ) extracted from a short sediment profile spanning the past 50 years with a 7-year resolution from Lake Yamzho, southern Tibetan Plateau. Climatic control was reconstructed using meteorological records of the nearby Langkazi and Lhasa weather stations. We found that the δD values of the n-alkanes correlated with the mean annular air temperature and significantly correlated with the mean growing season air temperature. On the other hand, the δD values show poor correlations with both rainfall amount and relative humidity. These results indicate that stable isotope composition of n-alkanes could be an excellent proxy for paleotemperature reconstruction. (author)

  17. Influence of N-alkanes on adhesion of an air bubble to the surface of low-rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Janczuk, B.; Wojcik, W.; Bialopiotrowicz, T. (Maria Curie-Sklodowska University, Lublin (Poland). Dept. of Physical Chemistry)

    1989-10-10

    Measurements of the detachment force of an air bubble from the surface of coals of the ranks: 31.1, 31.2, 32.1 and 32.2 were carried out. The coal surface was precovered with n-alkane film in the homologous series from n-hexane to n-hexadecane. The forces were compared with those calculated theoretically on the basis of the previously determined values of the surface free energy components and of the contact angles measured in a coal/n-alkane film-air bubble-water system. On the basis of the conducted measurements and calculations it was confirmed that the stability of the coal/n-alkane film-air bubble-water systems depends on the rank of the coal studied, the thickness and kind of the hydrocarbon film present on the coal surface, and on the water film pressure under the air bubble. The stability of n-alkane films on the surface of the coals studied is confirmed as smaller than the stability of these films on the surface of typical hydrophobic solids. By comparison of the measured and calculated stabilities of the coal/n-alkane film-air bubble-water system it appeared that the stabilities of such systems may be predicted on the basis of the contact angle of the coal/n-alkane film-air bubble-water system and of the dispersion and nondispersion components of the surface free energy of coal. 28 refs., 3 figs., 3 tabs.

  18. The effect of initial diameter on rainbow positions and temperature distributions of burning single-component n-Alkane droplets

    Science.gov (United States)

    Li, Haipeng; Rosebrock, Christopher D.; Wriedt, Thomas; Mädler, Lutz

    2017-07-01

    The effect of initial diameter on rainbow positions of burning single-component n-Alkane droplets has been investigated experimentally for the first time. The droplet diameters are determined with interferometric laser imaging for droplet sizing, and the temperature distributions inside burning droplets are assessed by rainbow refractometry together with a droplet combustion model developed in our previous work. Temperature gradients inside burning droplets influence rainbow positions, which first make the experimental scattering angles of the rainbow maxima increase and then decrease. The variations of initial diameter lead to variations of both experimental rainbow maxima and simulated temperature of n-Alkane burning droplets.

  19. Predictions of homogeneous nucleation rates for n-alkanes accounting for the diffuse phase interface and capillary waves.

    Science.gov (United States)

    Planková, Barbora; Vinš, Václav; Hrubý, Jan

    2017-10-28

    Homogeneous droplet nucleation has been studied for almost a century but has not yet been fully understood. In this work, we used the density gradient theory (DGT) and considered the influence of capillary waves (CWs) on the predicted size-dependent surface tensions and nucleation rates for selected n-alkanes. The DGT model was completed by an equation of state (EoS) based on the perturbed-chain statistical associating fluid theory and compared to the classical nucleation theory and the Peng-Robinson EoS. It was found that the critical clusters are practically free of CWs because they are so small that even the smallest wavelengths of CWs do not fit into their finite dimensions. The CWs contribute to the entropy of the system and thus decrease the surface tension. A correction for the effect of CWs on the surface tension is presented. The effect of the different EoSs is relatively small because by a fortuitous coincidence their predictions are similar in the relevant range of critical cluster sizes. The difference of the DGT predictions to the classical nucleation theory computations is important but not decisive. Of the effects investigated, the most pronounced is the suppression of CWs which causes a sizable decrease of the predicted nucleation rates. The major difference between experimental nucleation rate data and theoretical predictions remains in the temperature dependence. For normal alkanes, this discrepancy is much stronger than observed, e.g., for water. Theoretical corrections developed here have a minor influence on the temperature dependency. We provide empirical equations correcting the predicted nucleation rates to values comparable with experiments.

  20. Signal Recognition Particle-ribosome Binding Is Sensitive to Nascent Chain Length*

    Science.gov (United States)

    Noriega, Thomas R.; Tsai, Albert; Elvekrog, Margaret M.; Petrov, Alexey; Neher, Saskia B.; Chen, Jin; Bradshaw, Niels; Puglisi, Joseph D.; Walter, Peter

    2014-01-01

    The signal recognition particle (SRP) directs ribosome-nascent chain complexes (RNCs) displaying signal sequences to protein translocation channels in the plasma membrane of prokaryotes and endoplasmic reticulum of eukaryotes. It was initially proposed that SRP binds the signal sequence when it emerges from an RNC and that successful binding becomes impaired as translation extends the nascent chain, moving the signal sequence away from SRP on the ribosomal surface. Later studies drew this simple model into question, proposing that SRP binding is unaffected by nascent chain length. Here, we reinvestigate this issue using two novel and independent fluorescence resonance energy transfer assays. We show that the arrival and dissociation rates of SRP binding to RNCs vary according to nascent chain length, resulting in the highest affinity shortly after a functional signal sequence emerges from the ribosome. Moreover, we show that SRP binds RNCs in multiple and interconverting conformations, and that conversely, RNCs exist in two conformations distinguished by SRP interaction kinetics. PMID:24808175

  1. Measurement and modelling of hydrogen bonding in 1-alkanol plus n-alkane binary mixtures

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Jensen, Lars; Kofod, Jonas L.

    2007-01-01

    Two equations of state (simplified PC-SAFT and CPA) are used to predict the monomer fraction of 1-alkanols in binary mixtures with n-alkanes. It is found that the choice of parameters and association schemes significantly affects the ability of a model to predict hydrogen bonding in mixtures, eve...... studies, which is clarified in the present work. New hydrogen bonding data based on infrared spectroscopy are reported for seven binary mixtures of alcohols and alkanes. (C) 2007 Elsevier B.V. All rights reserved....... though pure-component liquid densities and vapour pressures are predicted equally accurately for the associating compound. As was the case in the study of pure components, there exists some confusion in the literature about the correct interpretation and comparison of experimental data and theoretical...

  2. Viscosity and Liquid Density of Asymmetric n-Alkane Mixtures: Measurement and Modelling

    DEFF Research Database (Denmark)

    Queimada, António J.; Marrucho, Isabel M.; Coutinho, João A.P.

    2005-01-01

    Viscosity and liquid density Measurements were performed, at atmospheric pressure. in pure and mixed n-decane. n-eicosane, n-docosane, and n-tetracosane from 293.15 K (or above the melting point) up to 343.15 K. The viscosity was determined with a rolling ball viscometer and liquid densities...... with a vibrating U-tube densimeter. Pure component results agreed, oil average, with literature values within 0.2% for liquid density and 3% for viscosity. The measured data were used to evaluate the performance of two models for their predictions: the friction theory coupled with the Peng-Robinson equation...... of state and a corresponding states model recently proposed for surface tension, viscosity, vapor pressure, and liquid densities of the series of n-alkanes. Advantages and shortcoming of these models are discussed....

  3. Recommended Vapor-Liquid Equilibrium Data. Part 1: Binary n-Alkanol-n-Alkane Systems

    Science.gov (United States)

    Góral, Marian; Oracz, Paweł; Skrzecz, Adam; Bok, Andrzej; Ma̧czyński, Andrzej

    2002-09-01

    The recommended vapor-liquid equilibrium (VLE) data for 39 binary n-alcohol-n-alkane systems have been obtained after critical evaluation of all data (490 data sets) reported in the open literature up to the middle of 2001. The evaluation procedure consisted in combining the thermodynamic consistency tests, data correlation, comparison with enthalpy of mixing data, and comparison of VLE data for various mixtures. The data were correlated with equations based on the local compositions concept as well as with the equation of state appended with a chemical term (EoSC) proposed by Góral. The recommended data are presented in the form of individual pages containing tables of data, figures, and auxiliary information. Each page corresponds to one system and contains three isotherms (spaced by at least 15 K) and one isobar (preferably at 101.32 kPa). Experimental gaps were completed with the predicted data.

  4. Nutrient-enhanced n-alkanes biodegradation and succession of bacterial communities

    Science.gov (United States)

    Sun, Yanyu; Wang, Hui; Li, Junde; Wang, Bin; Qi, Cancan; Hu, Xiaoke

    2017-11-01

    Bioremediation, is an effective and environment-friendly method of cleaning up crude oil pollution after an oil spill. However, the in situ bioremediation of crude oil is usually inhibited by deficiency of inorganic nutrients. To understand the effects of nutrient addition on the bioremediation of crude oil and the succession of bacterial communities during process of bioremediation, microcosms containing oil-contaminated sediments were constructed and biodegradation of crude oil was assessed based on the depletion of different ingredients. We used two culture-independent methods, denaturing gradient gel electrophoresis and a 16S rRNA gene based clone library, to analyze the succession of bacterial communities. The results suggested n-alkanes were degraded after 30 days and that nutrient amendments significantly improved the efficiency of their biodegradation. Moreover, oil contamination and nutrient amendments could dramatically change bacterial community structures. Lower diversity was detected after being contaminated with oil. For instance, bacterial clones affiliated with the phylum Armatimonadetes, Firmicutes, Gemmatimonadetes, and Planctomycetes and the class Deltaproteobacteria and Epsilonproteobacteria could not be identified after 30 days of incubation with crude oil. However, "professional hydrocarbonocastic bacteria" became abundant in samples treated with oil during the bioremediation period, while these clones were almost completely absent from the control plots. Interestingly, bioinformatics analysis showed that even when dramatic differences in oil biodegradation efficiency were observed, bacterial communities in the plots with nutrient amendments were not significantly different from those in plots treated with oil alone. These findings indicated that nutrient amendments could stimulate the process of biodegradation but had less impact on bacterial communities. Overall, nutrient amendments might be able to stimulate the growth of n-alkane degrading

  5. Influence of the Length of the Lipooligosaccharide α Chain on Its Sialylation in Neisseria meningitidis

    OpenAIRE

    Tsai, Chao-Ming; Kao, George; Zhu, Peixuan

    2002-01-01

    The sialylation of lipooligosaccharide (LOS) in Neisseria meningitidis plays a role in the resistance of the organism to killing by normal human serum. The length of the α chain extending out from the heptose I [Hep (I)] moiety of LOS influenced sialylation of N. meningitidis LOS in vitro and in vivo. The α chain required a terminal Gal and a trisaccharide or longer oligosaccharide to serve as an acceptor for sialylation. The disaccharide lactose (Galβ1-4Glc) in the α chain of immunotype L8 L...

  6. Isomeric Detergent Comparison for Membrane Protein Stability: Importance of Inter-Alkyl-Chain Distance and Alkyl Chain Length.

    Science.gov (United States)

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S; Du, Yang; Nielsen, Anne K; Byrne, Bernadette; Kobilka, Brian K; Loland, Claus J; Guan, Lan; Chae, Pil Seok

    2016-12-14

    Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C 12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile-lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Knotting dynamics of DNA chains of different length confined in nanochannels

    International Nuclear Information System (INIS)

    Suma, Antonio; Micheletti, Cristian; Orlandini, Enzo

    2015-01-01

    Langevin dynamics simulations are used to characterize the typical mechanisms governing the spontaneous tying, untying and the dynamical evolution of knots in coarse-grained models of DNA chains confined in nanochannels. In particular we focus on how these mechanisms depend on the chain contour length, L c , at a fixed channel width D = 56 nm corresponding to the onset of the Odijk scaling regime where chain backfoldings and hence knots are disfavoured but not suppressed altogether. We find that the lifetime of knots grows significantly with L c , while that of unknots varies to a lesser extent. The underlying kinetic mechanisms are clarified by analysing the evolution of the knot position along the chain. At the considered confinement, in fact, knots are typically tied by local backfoldings of the chain termini where they are eventually untied after a stochastic motion along the chain. Consequently, the lifetime of unknots is mostly controlled by backfoldings events at the chain ends, which is largely independent of L c . The lifetime of knots, instead, increases significantly with L c because knots can, on average, travel farther along the chain before being untied. The observed interplay of knots and unknots lifetimes underpins the growth of the equilibrium knotting probability of longer and longer chains at fixed channel confinement. (paper)

  8. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels.

    Science.gov (United States)

    Dickman, Elizabeth M; Newell, Jennifer M; González, María J; Vanni, Michael J

    2008-11-25

    The efficiency of energy transfer through food chains [food chain efficiency (FCE)] is an important ecosystem function. It has been hypothesized that FCE across multiple trophic levels is constrained by the efficiency at which herbivores use plant energy, which depends on plant nutritional quality. Furthermore, the number of trophic levels may also constrain FCE, because herbivores are less efficient in using plant production when they are constrained by carnivores. These hypotheses have not been tested experimentally in food chains with 3 or more trophic levels. In a field experiment manipulating light, nutrients, and food-chain length, we show that FCE is constrained by algal food quality and food-chain length. FCE across 3 trophic levels (phytoplankton to carnivorous fish) was highest under low light and high nutrients, where algal quality was best as indicated by taxonomic composition and nutrient stoichiometry. In 3-level systems, FCE was constrained by the efficiency at which both herbivores and carnivores converted food into production; a strong nutrient effect on carnivore efficiency suggests a carryover effect of algal quality across 3 trophic levels. Energy transfer efficiency from algae to herbivores was also higher in 2-level systems (without carnivores) than in 3-level systems. Our results support the hypothesis that FCE is strongly constrained by light, nutrients, and food-chain length and suggest that carryover effects across multiple trophic levels are important. Because many environmental perturbations affect light, nutrients, and food-chain length, and many ecological services are mediated by FCE, it will be important to apply these findings to various ecosystem types.

  9. Chain length distribution and kinetic characteristics of an enzymatically produced polymer

    NARCIS (Netherlands)

    Mulders, K.J.M.; Beeftink, H.H.

    2013-01-01

    Non-processive enzymatic polymerization leads to a distribution of polymer chain lengths. A polymerization model was developed to investigate the relation between the extent of this distribution on one hand, and the polymerization start conditions and reaction kinetics on the other hand. The model

  10. Biosynthesis of medium chain length alkanes for bio-aviation fuel by metabolic engineered Escherichia coli.

    Science.gov (United States)

    Wang, Meng; Nie, Kaili; Cao, Hao; Xu, Haijun; Fang, Yunming; Tan, Tianwei; Baeyens, Jan; Liu, Luo

    2017-09-01

    The aim of this work was to study the synthesis of medium-chain length alkanes (MCLA), as bio-aviation product. To control the chain length of alkanes and increase the production of MCLA, Escherichia coli cells were engineered by incorporating (i) a chain length specific thioesterase from Umbellularia californica (UC), (ii) a plant origin acyl carrier protein (ACP) gene and (iii) the whole fatty acid synthesis system (FASs) from Jatropha curcas (JC). The genetic combination was designed to control the product spectrum towards optimum MCLA. Decanoic, lauric and myristic acid were produced at concentrations of 0.011, 0.093 and 1.657mg/g, respectively. The concentration of final products nonane, undecane and tridecane were 0.00062mg/g, 0.0052mg/g, and 0.249mg/g respectively. Thioesterase from UC controlled the fatty acid chain length in a range of 10-14 carbons and the ACP gene with whole FASs from JC significantly increased the production of MCLA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effect of chain length on the adhesion behaviour of n-alkanethiol self ...

    Indian Academy of Sciences (India)

    are reported to be highly dependent on several physical factors such as chain length, packing density and phase state [8]. The use of unmodified tips offers the flexibility of retrieving separate information on the van der Waal's forces and capillary forces. In the present study, alkanethiol monolayers on highly oriented Au(1 1 ...

  12. The effect of chain length and lipid phase transitions on the selective permeability properties of liposomes

    NARCIS (Netherlands)

    Blok, M.C.; Neut-Kok, E.C.M. van der; Deenen, L.L.M. van; Gier, J. de

    1975-01-01

    This paper describes experiments showing the importance of the fatty acid chain length on the barrier properties of liposomal bilayers, prepared from saturated lecithins, under conditions of lateral phase separation. 1. 1.|Above the gel to liquid crystalline phase transition temperature,

  13. Production chains in an interregional framework : Identification by means of average propagation lengths

    NARCIS (Netherlands)

    Dietzenbacher, Erik; Romero, Isidoro

    2007-01-01

    When linkages between industries are studied from the perspective of production chains, sequencing is important. In this respect, both the strength of the linkages and the distance between industries are relevant. Distance is measured by the average propagation length, defined as the average number

  14. Modification of eucalyptus pulp fiber using silane coupling agents with aliphatic side chains of different length

    Science.gov (United States)

    The objective of this work was to evaluate the effect of three silane coupling agents with different aliphatic chain lengths on the hydrophobicity of eucalyptus pulp fiber. The three silanes coupling agents used (isobutyltrimethoxysilane, methyltrimethoxysilane, and n-octyltriethoxysilane [OTES]) we...

  15. Chain length effects of p-oligophenyls with comparison of benzene by Raman scattering

    Science.gov (United States)

    Zhang, Kai; Chen, Xiao-Jia

    2018-02-01

    Raman scattering measurements are performed on benzene and a number of p-oligophenyls including biphenyl, p-terphenyl, p-quaterphenyl, p-quinquephenyl, and p-sexiphenyl at ambient conditions. The vibrational modes of the intra- and intermolecular terms in these materials are analyzed and compared. Chain length effects on the vibrational properties are examined for the C-H in-plane bending mode and the inter-ring C-C stretching mode at around 1200 cm-1 and 1280 cm-1, respectively, and the C-C stretching modes at around 1600 cm-1. The complex and fluctuating properties of these modes result in an imprecise estimation of the chain length of these molecules. Meanwhile, the obtained ratio of the intensities of the 1200 cm-1 mode and 1280 cm-1 mode is sensitive to the applied lasers. A librational motion mode with the lowest energy is found to have a monotonous change with the increase in the chain length. This mode is simply relevant to the c axis of the unit cell. Such an obvious trend makes it a better indicator for determining the chain length effects on the physical and chemical properties in these molecules.

  16. Anti-Caries Effects of Dental Adhesives Containing Quaternary Ammonium Methacrylates with Different Chain Lengths

    Directory of Open Access Journals (Sweden)

    Qi Han

    2017-06-01

    Full Text Available The objectives of this study were to investigate the effects of dental adhesives containing quaternary ammonium methacrylates (QAMs with different alkyl chain lengths (CL on ecological caries prevention in vitro. Five QAMs were synthesized with a CL = 3, 6, 9, 12, and 16 and incorporated into adhesives. Micro-tensile bond strength and surface charge density were used to measure the physical properties of the adhesives. The proportion change in three-species biofilms consisting of Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii was tested using the TaqMan real-time polymerase chain reaction. Lactic acid assay, MTT [3-(4,5-dimethyl-thiazol-2-yl-2,5-diphenyltetrazolium bromide] assay, exopolysaccharide staining, live/dead staining, scanning electron microscopy (SEM, and transverse microradiography (TMR were performed to study the anti-biofilm and anti-demineralization effects of the dental adhesives. The results showed that incorporating QAMs with different alkyl chain lengths into the adhesives had no obvious effect on the dentin bond strength. The adhesives containing QAMs with a longer alkyl chain developed healthier biofilms. The surface charge density, anti-biofilm, and anti-demineralization effects of the adhesives increased with a CL of the QAMs from 3 to 12, but decreased slightly with a CL from 12 to 16. In conclusion, adhesives containing QAMs with a tailored chain length are promising for preventing secondary caries in an “ecological way”.

  17. Characterization of Binary Organogels Based on Some Azobenzene Compounds and Alkyloxybenzoic Acids with Different Chain Lengths

    Directory of Open Access Journals (Sweden)

    Yongmei Hu

    2014-01-01

    Full Text Available In this work the gelation behaviors of binary organogels composed of azobenzene amino derivatives and alkyloxybenzoic acids with different lengths of alkyl chains in various organic solvents were investigated and characterized. The corresponding gelation behaviors in 20 solvents were characterized and shown as new binary organic systems. It showed that the lengths of substituent alkyl chains in compounds have played an important role in the gelation formation of gelator mixtures in present tested organic solvents. Longer methylene chains in molecular skeletons in these gelators seem more suitable for the gelation of present solvents. Morphological characterization showed that these gelator molecules have the tendency to self-assemble into various aggregates from lamella, wrinkle, and belt to dot with change of solvents and gelator mixtures. Spectral characterization demonstrated different H-bond formation and hydrophobic force existing in gels, depending on different substituent chains in molecular skeletons. Meanwhile, these organogels can self-assemble to form monomolecular or multilayer nanostructures owing to the different lengths of due to alkyl substituent chains. Possible assembly modes for present xerogels were proposed. The present investigation is perspective to provide new clues for the design of new nanomaterials and functional textile materials with special microstructures.

  18. [Eco-environmental evolution inferred from n-alkanes and delta13C records in the sediments of Shijiu Lake].

    Science.gov (United States)

    Ou, Jie; Wang, Yan-Hua; Yang, Hao; Hu, Jian-Fang; Chen, Xia; Zou, Jun; Xie, Yun

    2013-02-01

    The study of global changes has focused on the reconstruction of paleovegetation and paleoclimate by n-alkanes and delta13C. 210Pb contents were measured for dating. The distribution characteristics of n-alkanes and delta13C were used to indicate the source of the organic matter in the sediments of Shijiu Lake. The relationship between modern eco-environmental evolution and human behaviors was discussed in this paper. The combination characteristics of n-alkanes showed a significant odd-even predominance in high-carbon number and main peak at C29, suggesting that the organic matter in the sediments were mainly derived from macrophytes and terrestrial higher plants. The delta13C contents of C27, C29 and C31 n-alkanes were analyzed. Results indicated that C3 plants are the dominant species. The distribution characteristics of n-alkanes and delta13C in different periods revealed the impact of human behaviors on Shijiu Lake. From 1862 to 1970, the low relative content of TOC, TN, C17-C25 and the light delta13C25-31 values showed that there were less human behaviors effects on Shijiu Lake and the eco-environment around the lake was stable. From 1970 to 1983, the relative content of TOC, TN and C17-C25 increased significantly, the delta13C25-31 values became weight. In this period, large areas of Shijiu Lake turned into farmland; pollution by fertilizers and pesticides was serious; large amounts of industrial and domestic wastewater were discharged into the lake. All these human behaviors resulted in the degradation of terrestrial higher plants around the lake. Meanwhile, the eutrophication levels were significantly increased. From 1983 to 2010, the relative contents of TOC, TN and C17-C25 were still in high-value ranges, the problem of eutrophication was not effectively controlled and the eco-environment of Shijiu Lake was relatively degradated.

  19. Comparing plastic syringes and disposable columns to extract n-alkanes in forage and concentrate feeds Comparação de seringas plásticas e colunas descartáveis para extração de n-alcanos em forragens e concentrados

    Directory of Open Access Journals (Sweden)

    Dimas Estrasulas de Oliveira

    2010-08-01

    Full Text Available Saturated aliphatic hydrocarbons (n-alkanes were extracted from feed, orts, and bovine fecal samples using disposable, plastic 5mL-syringes as an alternative material to disposable columns, which are normally used in the liquid-solid extraction phase of n-alkanes. For both methods, the n-alkane extracts (carbon chain length between 31 and 36 atoms were identified using gas chromatography. The linear regression between methods were: 1 feces: column Alkane=2.63+0.92×syringeAlkane [r²=0.94, square root of the mean square error (RMSE=13.7mg kg-1, n=30] from which the intercept and the slope did not simultaneously differ from zero and unity (P>0.05, respectively; 2 feeds: column Alkane=0.36+1.12×syringeAlkane (r²=0.85, RMSE=1.9mg kg-1, n=21 from which the intercept and the slope did not simultaneously differ from zero and unity (P>0.05, respectively; 3 orts: column Alkane=0.49+0.92×syringeAlkane (r²=0.98, RMSE=1.2mg kg-1, n=15 from which the intercept and the slope did not simultaneously differ from zero and unity (P>0.05, respectively. Materials with low concentration of n-alkanes may affect the values obtained in both methods. These results suggested that disposable plastic syringes might be a viable alternative to columns thus, reducing analytical costs.N-alcanos foram extraídos de alimentos, sobras e fezes de bovinos com a utilização de seringas plásticas descartáveis de 5mL como um material alternativo às colunas descartáveis que são normalmente utilizadas para a fase de extração líquido-sólido. Para ambos os métodos, os n-alcanos (cadeias de carbono entre 31 e 36 átomos foram identificados usando cromatografia gasosa. As regressões lineares entre métodos foram: 1 fezes: coluna Alcano=2,63+0,92×seringa Alcano [r²=0,94, raiz do quadrado médio do erro (RMSE=13,7mg kg-1, n=30], em que o intercepto e o coeficiente angular não diferiram simultaneamente de zero e um (P>0,05, respectivamente; 2 alimentos: coluna Alcano=0

  20. Infinite coherence time of edge spins in finite-length chains

    Science.gov (United States)

    Maceira, Ivo A.; Mila, Frédéric

    2018-02-01

    Motivated by the recent observation that exponentially long coherence times can be achieved for edge spins in models with strong zero modes, we study the impact of level crossings in finite-length spin chains on the dynamics of the edge spins. Focusing on the X Y spin-1 /2 chain with a transverse or longitudinal magnetic field, two models relevant to understanding recent experimental results on cobalt adatoms, we show that the edge spins can remain coherent for an infinite time even for a finite-length chain if the magnetic field is tuned to a value at which there is a level crossing. Furthermore, we show that the edge spins remain coherent for any initial state for the integrable case of a transverse field because all states have level crossings at the same value of the field, while the coherence time is increasingly large for lower temperatures in the case of a longitudinal field, which is nonintegrable.

  1. Chain-Length Heterogeneity Allows for the Assembly of Fatty Acid Vesicles in Dilute Solutions

    Science.gov (United States)

    Budin, Itay; Prwyes, Noam; Zhang, Na; Szostak, Jack W.

    2014-01-01

    A requirement for concentrated and chemically homogeneous pools of molecular building blocks would severely restrict plausible scenarios for the origin of life. In the case of membrane self-assembly, models of prebiotic lipid synthesis yield primarily short, single-chain amphiphiles that can form bilayer vesicles only at very high concentrations. These high critical aggregation concentrations (cacs) pose significant obstacles for the self-assembly of single-chain lipid membranes. Here, we examine membrane self-assembly in mixtures of fatty acids with varying chain lengths, an expected feature of any abiotic lipid synthesis. We derive theoretical predictions for the cac of mixtures by adapting thermodynamic models developed for the analogous phenomenon of mixed micelle self-assembly. We then use several complementary methods to characterize aggregation experimentally, and find cac values in close agreement with our theoretical predictions. These measurements establish that the cac of fatty acid mixtures is dramatically lowered by minor fractions of long-chain species, thereby providing a plausible route for protocell membrane assembly. Using an NMR-based approach to monitor aggregation of isotopically labeled samples, we demonstrate the incorporation of individual components into mixed vesicles. These experiments suggest that vesicles assembled in dilute, mixed solutions are depleted of the shorter-chain-length lipid species, a finding that carries implications for the composition of primitive cell membranes. PMID:25296310

  2. Optimization of the alkyl side chain length of fluorine-18-labeled 7α-alkyl-fluoroestradiol

    International Nuclear Information System (INIS)

    Okamoto, Mayumi; Shibayama, Hiromitsu; Naka, Kyosuke; Kitagawa, Yuya; Ishiwata, Kiichi; Shimizu, Isao; Toyohara, Jun

    2016-01-01

    Introduction: Several lines of evidence suggest that 7α-substituted estradiol derivatives bind to the estrogen receptor (ER). In line with this hypothesis, we designed and synthesized 18 F-labeled 7α-fluoroalkylestradiol (Cn-7α-[ 18 F]FES) derivatives as molecular probes for visualizing ERs. Previously, we successfully synthesized 7α-(3-[ 18 F]fluoropropyl)estradiol (C3-7α-[ 18 F]FES) and showed promising results for quantification of ER density in vivo, although extensive metabolism was observed in rodents. Therefore, optimization of the alkyl side chain length is needed to obtain suitable radioligands based on Cn-7α-substituted estradiol pharmacophores. Methods: We synthesized fluoromethyl (23; C1-7α-[ 18 F]FES) to fluorohexyl (26; C6-7α-[ 18 F]FES) derivatives, except fluoropropyl (C3-7α-[ 18 F]FES) and fluoropentyl derivatives (C5-7α-[ 18 F]FES), which have been previously synthesized. In vitro binding to the α-subtype (ERα) isoform of ERs and in vivo biodistribution studies in mature female mice were carried out. Results: The in vitro IC 50 value of Cn-7α-FES tended to gradually decrease depending on the alkyl side chain length. C1-7α-[ 18 F]FES (23) showed the highest uptake in ER-rich tissues such as the uterus. Uterus uptake also gradually decreased depending on the alkyl side chain length. As a result, in vivo uterus uptake reflected the in vitro ERα affinity of each compound. Bone uptake, which indicates de-fluorination, was marked in 7α-(2-[ 18 F]fluoroethyl)estradiol (C2-7α-[ 18 F]FES) (24) and 7α-(4-[ 18 F]fluorobutyl)estradiol (C4-7α-[ 18 F]FES) (25) derivatives. However, C1-7α-[ 18 F]FES (23) and C6-7α-[ 18 F]FES (26) showed limited uptake in bone. As a result, in vivo bone uptake (de-fluorination) showed a bell-shaped pattern, depending on the alkyl side chain length. C1-7α-[ 18 F]FES (23) showed the same levels of uptake in uterus and bone compared with those of 16α-[ 18 F]fluoro-17β-estradiol. Conclusions: The optimal alkyl

  3. A Detailed Chemical Kinetic Reaction Mechanism for n-Alkane Hydrocarbons From n-Octane to n-Hexadecane

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Pitz, W J; Herbinet, O; Curran, H J; Silke, E J

    2008-02-08

    Detailed chemical kinetic reaction mechanisms have been developed to describe the pyrolysis and oxidation of nine n-alkanes larger than n-heptane, including n-octane (n-C{sub 8}H{sub 18}), n-nonane (n-C{sub 9}H{sub 20}), n-decane (n-C{sub 10}H{sub 22}), n-undecane (n-C{sub 11}H{sub 24}), n-dodecane (n-C{sub 12}H{sub 26}), n-tridecane (n-C{sub 13}H{sub 28}), n-tetradecane (n-C{sub 14}H{sub 30}), n-pentadecane (n-C{sub 15}H{sub 32}), and n-hexadecane (n-C{sub 16}H{sub 34}). These mechanisms include both high temperature and low temperature reaction pathways. The mechanisms are based on our previous mechanisms for the primary reference fuels n-heptane and iso-octane, using the reaction class mechanism construction first developed for n-heptane. Individual reaction class rules are as simple as possible in order to focus on the parallelism between all of the n-alkane fuels included in the mechanisms, and these mechanisms will be refined further in the future to incorporate greater levels of accuracy and predictive capability. These mechanisms are validated through extensive comparisons between computed and experimental data from a wide variety of different sources. In addition, numerical experiments are carried out to examine features of n-alkane combustion in which the detailed mechanisms can be used to compare reactivities of different n-alkane fuels. The mechanisms for all of these n-alkanes are presented as a single detailed mechanism, which can be edited to produce efficient mechanisms for any of the n-alkanes included, and the entire mechanism, with supporting thermochemical and transport data, together with an explanatory glossary explaining notations and structural details, will be available for download from our web page.

  4. Increasing the Carbon Flux toward Synthesis of Short-Chain-Length-Medium-Chain-Length Polyhydroxyalkanoate in the Peroxisome of Saccharomyces cerevisiae through Modification of the β-Oxidation Cycle

    OpenAIRE

    de Oliveira, Valeria Cora; Maeda, Isamu; Delessert, Syndie; Poirier, Yves

    2004-01-01

    Short-chain-length-medium-chain-length polyhydroxyalkanoates were synthesized in Saccharomyces cerevisiae from intermediates of the β-oxidation cycle by expressing the polyhydroxyalkanoate synthases from Aeromonas caviae and Ralstonia eutropha in the peroxisomes. The quantity of polymer produced was increased by using a mutant of the β-oxidation-associated multifunctional enzyme with low dehydrogenase activity toward R-3-hydroxybutyryl coenzyme A.

  5. No effect of saturated fatty acid chain length on meal-induced thermogenesis in overweight men.

    Science.gov (United States)

    Nguo, Kay; Huggins, Catherine E; Truby, Helen; Sinclair, Andrew J; Clarke, Rachel E; Bonham, Maxine P

    2018-02-02

    Monounsaturated (MUFA) fatty acids have been shown to induce greater meal-induced thermogenesis (MIT) than saturated fatty acids (SFA) in some studies, however, the effect of SFA chain length has not been examined. We hypothesized that a meal rich in short- to medium-chain SFA would elicit a greater MIT than one rich in long-chain SFA, and that MIT responses would be comparable between the short- to medium-chain SFA and the MUFA rich meal. A 3-arm crossover study was conducted with healthy overweight men, aged 18 to 40 years. Participants consumed either an iso-energetic (3780 ± 4.3 kJ), high fat (45%) meal rich in short-/medium-chain SFA (SMCSFA) (2-12 carbons); long-chain SFA (LCSFA) (14-24 carbons), and MUFA. MIT, fat oxidation, triglyceride and subjective appetite were measured for 6 hours post-prandial. Data were analyzed as total area under the curve and compared using a one-way repeated-measures ANOVA. The mean BMI of participants (n =13) was 29.3 ± 0.6 kg/m 2 and mean age 23.8±1.4 years. MIT was not different between the meals: MUFA (204.2 ± 20.5 kJ/6 h), SMCSFA (192.6 ± 21.8 kJ/6 h), LCSFA (198.1 ± 21.5 kJ/6 h) (P = .888). Fat oxidation, plasma triglyceride, and hunger and fullness were similar after each meal (P > .05 all values). This study demonstrated that in healthy overweight men, SFA chain length, and fatty acid saturation have no acute differential effect on MIT, fat oxidation, triglyceride, or subjective appetite responses. Copyright © 2018. Published by Elsevier Inc.

  6. Heat capacities and thermal diffusivities of n-alkane acid ethyl esters—biodiesel fuel components

    Science.gov (United States)

    Bogatishcheva, N. S.; Faizullin, M. Z.; Nikitin, E. D.

    2017-09-01

    The heat capacities and thermal diffusivities of ethyl esters of liquid n-alkane acids C n H2 n-1O2C2H5 with the number of carbon atoms in the parent acid n = 10, 11, 12, 14, and 16 are measured. The heat capacities are measured using a DSC 204 F1 Phoenix heat flux differential scanning calorimeter (Netzsch, Germany) in the temperature range of 305-375 K. Thermal diffusivities are measured by means of laser flash method on an LFA-457 instrument (Netzsch, Germany) at temperatures of 305-400 K. An equation is derived for the dependence of the molar heat capacities of the investigated esters on temperature. It is shown that the dependence of molar heat capacity C p,m (298.15 K) on n ( n = 1-6) is close to linear. The dependence of thermal diffusivity on temperature in the investigated temperature range is described by a first-degree polynomial, but thermal diffusivity a (298.15 K) as a function of n has a minimum at n = 5.

  7. An investigation of heat effects in N-alkanes and asphaltenes systems

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, C.; Grolier, J.P.E.; Randzio, S.L. [Univ. Blaise Pascal, Lab. de Thermodynamiqueet Genie Chimique, Aubiere (France); Achard, C.; Rogalski, M.; Voguie, J.R. [Univ. de Metz, Lab. de Thermodynamique et d' Analyse Chimique, Metz (France)

    2000-08-01

    We report results of studies carried out on the heat effects observed during the dilution of asphaltenic crude oil by n-alkanes. The dilution process induces aspheltene flocculation. However, the flocculation is not a first order phase transition and no strong heat effect is expected. The experimental results show that significant endo- and exo-thermic effects occur in this case. Titration calorimetry and inverse chromatography were used to elucidate the nature and the intensity of these thermal phenomena. The calorimetric titration of two crude oils by n-heptane was performed at ambient temperature. Then, the two oils were stabilised with behenic and titrated by n-heptane. Behenic acid, CH{sub 3}(CH{sub 2}){sub 20} CO{sub 2}H, has dispersing effect on asphaltenes and influences the flocculation onset. The chromatographic study was performed using columns coated with asphaltenes or with mixtures containing asphaltenes, in the temperature range between 340 and 520 K. Indirect enthalpic data obtained by this method over wide temperature ranges complete the direct calorimetric measurements. It can be hypothesised that observed heat effects are mainly due to the modifications of the asphaltenes structure. The objective of this work is to evaluate the possibility of using calorimetric methods to controlling flocculation processes in crude oils. (ln)

  8. Effect of Composition and Chain Length on χ Parameter of Polyolefin Blends: A Molecular Dynamics Study

    Science.gov (United States)

    Khare, Rajesh; Ravichandran, Ashwin; Chen, Chau-Chyun

    Polymer blends exhibit complex phase behavior which is governed by several factors including temperature, composition and molecular weight of components. The thermodynamics of polymer blends is commonly described using the χ parameter. While variety of experimental studies exist on identifying the factors affecting the χ parameter, a detailed molecular scale understanding of these is a topic of current research. We have studied the effect of blend composition and chain length on χ parameter values for two model polyolefin blends. The blends studied are: polyisobutylene (PIB)/polybutadiene (PBD) and polyethylene (PE)/atactic polypropylene (aPP). Molecular dynamics simulations in combination with the integral equation theory formalism proposed by Schweizer and Curro [Journal of Chemical Physics, 91, 5059 (1989)] are used to determine the χ parameter for these systems and thereby study the effect of blend composition and chain length. The resulting χ parameter values are explained in terms of the molecular structure of these polymeric systems.

  9. Effects of Nanoparticle Morphology and Acyl Chain Length on Spontaneous Lipid Transfer Rates.

    Science.gov (United States)

    Xia, Yan; Li, Ming; Charubin, Kamil; Liu, Ying; Heberle, Frederick A; Katsaras, John; Jing, Benxin; Zhu, Yingxi; Nieh, Mu-Ping

    2015-12-01

    We report on studies of lipid transfer rates between different morphology nanoparticles and lipids with different length acyl chains. The lipid transfer rate of dimyristoylphosphatidylcholine (di-C14, DMPC) in discoidal "bicelles" (0.156 h(-1)) is 2 orders of magnitude greater than that of DMPC vesicles (ULVs) (1.1 × 10(-3) h(-1)). For both bicellar and ULV morphologies, increasing the acyl chain length by two carbons [going from di-C14 DMPC to di-C16, dipalmitoylphosphatidylcholine (DPPC)] causes lipid transfer rates to decrease by more than 2 orders of magnitude. Results from small angle neutron scattering (SANS), differential scanning calorimetry (DSC), and fluorescence correlation spectroscopy (FCS) are in good agreement. The present studies highlight the importance of lipid dynamic processes taking place in different morphology biomimetic membranes.

  10. Communication disruption of guava moth (Coscinoptycha improbana) using a pheromone analog based on chain length.

    Science.gov (United States)

    Suckling, D M; Dymock, J J; Park, K C; Wakelin, R H; Jamieson, L E

    2013-09-01

    The guava moth, Coscinoptycha improbana, an Australian species that infests fruit crops in commercial and home orchards, was first detected in New Zealand in 1997. A four-component pheromone blend was identified but is not yet commercially available. Using single sensillum recordings from male antennae, we established that the same olfactory receptor neurons responded to two guava moth sex pheromone components, (Z)-11-octadecen-8-one and (Z)-12-nonadecen-9-one, and to a chain length analog, (Z)-13-eicosen-10-one, the sex pheromone of the related peach fruit moth, Carposina sasakii. We then field tested whether this non-specificity of the olfactory neurons might enable disruption of sexual communication by the commercially available analog, using male catch to synthetic lures in traps in single-tree, nine-tree and 2-ha plots. A disruptive pheromone analog, based on chain length, is reported for the first time. Trap catches for guava moth were disrupted by three polyethylene tubing dispensers releasing the analog in single-tree plots (86% disruption of control catches) and in a plots of nine trees (99% disruption). Where peach fruit moth pheromone dispensers were deployed at a density of 1000/ha in two 2-ha areas, pheromone traps for guava moth were completely disrupted for an extended period (up to 470 days in peri-urban gardens in Mangonui and 422 days in macadamia nut orchards in Kerikeri). In contrast, traps in untreated areas over 100 m away caught 302.8 ± 128.1 moths/trap in Mangonui and 327.5 ± 78.5 moths/ trap in Kerikeri. The longer chain length in the pheromone analog has greater longevity than the natural pheromone due to its lower volatility. Chain length analogs may warrant further investigation for mating disruption in Lepidoptera, and screening using single-sensillum recording is recommended.

  11. Mutagenicity Assessment of Organophosphates using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism Assay

    OpenAIRE

    Bhinder, Preety; Chaudhry, Asha

    2013-01-01

    Objectives: In this study we have evaluated the mutagenicity of organophosphate pesticides acephate, chlorpyrifos, and profenofos using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay with the mosquito Culex quinquefasciatus taken as an experimental model. Materials and Methods: Second instar larvae were treated with LC20 of each pesticide for 24 h and mutations induced in the sequence of mitochondrial COII gene (690bp) were studied from restriction pattern...

  12. Molar mass dependence of critical amplitudes for chain-molecule solutions

    Science.gov (United States)

    An, Xueqin; Jiang, Fuguo; Chen, Chuanyin; Shen, Weiguo

    1998-01-01

    The power-law dependences of critical amplitudes on molar mass for coexistence curve, correlation length and susceptibility have been derived from a Landau-Ginsburg-Wilson type model for chain-molecule solutions of both small molecules and polymers. A series of turbidity measurements and determinations of coexistence curves for solutions of n-alkane in polar liquids and polymethylmethacrylate in 3-octanone have been conducted. Our experimental results and those of polystyrene solutions indicate that this model is satisfied within experimental errors.

  13. MHC class II distribution in dendritic cells and B cells is determined by ubiquitin chain length

    Science.gov (United States)

    Ma, Jessica K.; Platt, Mia Y.; Eastham-Anderson, Jeffrey; Shin, Jeoung-Sook; Mellman, Ira

    2012-01-01

    Dendritic cells (DCs) and B cells present antigen-derived peptides bound to MHC class II (MHC II) molecules for recognition by CD4-positive T lymphocytes. DCs control the intracellular traffic of peptide–MHC II complexes by regulating the ubiquitination of MHC II. In resting or “immature” DCs, ubiquitinated MHC II molecules are targeted to lysosomes, but upon pathogen-induced “maturation,” ubiquitination is down-regulated and MHC II can accumulate on the plasma membrane of mature DCs. Although B cells constitutively ubiquitinate their MHC II, it unexpectedly remains at the surface. We find that DCs and B cells differ in MHC II-conjugated ubiquitin (Ub) chain length: four to six Ub in immature DCs vs. two to three in B cells. In both cell types, experimentally increasing Ub chain length led to efficient lysosomal transport of MHC II, whereas MHC II with fewer than two Ubs did not reach lysosomes. Thus, Ub chain length plays a crucial role in regulating the intracellular fate and function of MHC II in DCs and B cells. PMID:22566640

  14. Abnormal glycogen chain length pattern, not hyperphosphorylation, is critical in Lafora disease.

    Science.gov (United States)

    Nitschke, Felix; Sullivan, Mitchell A; Wang, Peixiang; Zhao, Xiaochu; Chown, Erin E; Perri, Ami M; Israelian, Lori; Juana-López, Lucia; Bovolenta, Paola; Rodríguez de Córdoba, Santiago; Steup, Martin; Minassian, Berge A

    2017-07-01

    Lafora disease (LD) is a fatal progressive epilepsy essentially caused by loss-of-function mutations in the glycogen phosphatase laforin or the ubiquitin E3 ligase malin. Glycogen in LD is hyperphosphorylated and poorly hydrosoluble. It precipitates and accumulates into neurotoxic Lafora bodies (LBs). The leading LD hypothesis that hyperphosphorylation causes the insolubility was recently challenged by the observation that phosphatase-inactive laforin rescues the laforin-deficient LD mouse model, apparently through correction of a general autophagy impairment. We were for the first time able to quantify brain glycogen phosphate. We also measured glycogen content and chain lengths, LBs, and autophagy markers in several laforin- or malin-deficient mouse lines expressing phosphatase-inactive laforin. We find that: (i) in laforin-deficient mice, phosphatase-inactive laforin corrects glycogen chain lengths, and not hyperphosphorylation, which leads to correction of glycogen amounts and prevention of LBs; (ii) in malin-deficient mice, phosphatase-inactive laforin confers no correction; (iii) general impairment of autophagy is not necessary in LD We conclude that laforin's principle function is to control glycogen chain lengths, in a malin-dependent fashion, and that loss of this control underlies LD. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  15. Effect of the alkyl chain length of the ionic liquid anion on polymer electrolytes properties

    International Nuclear Information System (INIS)

    Leones, Rita; Sentanin, Franciani; Nunes, Sílvia Cristina; Esperança, José M.S.S.; Gonçalves, Maria Cristina

    2015-01-01

    New polymer electrolytes (PEs) based on chitosan and three ionic liquid (IL) families ([C 2 mim][C n SO 3 ], [C 2 mim][C n SO 4 ] and [C 2 mim][diC n PO 4 ]) were synthesized by the solvent casting method. The effect of the length of the alkyl chain of the IL anion on the thermal, morphological and electrochemical properties of the PEs was studied. The solid polymer electrolytes SPE membranes were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), polarized optical microscopy (POM), atomic force microscopy (AFM), complex impedance spectroscopy (ionic conductivity) and cyclic voltammetry (CV). The obtained results evidenced an influence of the alkyl chain length of the IL anion on the temperature of degradation, birefringence, surface roughness and ionic conductivity of the membranes. The DSC, XRD and CV results showed independency from the length of the IL-anion-alkyl chain. The PEs displayed an predominantly amorphous morphology, a minimum temperature of degradation of 135 °C, a room temperature (T = 25 °C) ionic conductivity of 7.78 × 10 −4 S cm −1 and a wide electrochemical window of ∼ 4.0 V.

  16. Surface Properties of Silane-Treated Diatomaceous Earth Coatings: Effect of Alkyl Chain Length.

    Science.gov (United States)

    Perera, Helanka J; Mortazavian, Hamid; Blum, Frank D

    2017-03-21

    Modification of diatomaceous earth (DE) was performed using alkyltrimethoxysilanes of different chain lengths (C3, C8, C12, C16, and C18), and their resultant properties were determined. The thermal properties of these alkyltrimethoxysilane-treated DE powders were probed using thermogravimetric analysis and temperature-modulated differential scanning calorimetry, and the surface/porosity was studied using nitrogen adsorption and electron microscopy. Crystallinity of the hydrocarbon tails occurred when the chain lengths were C12 or larger, and the adsorbed hydrocarbon amounts were 1.6 mg/m 2 or more. The wettability of functionalized DE-containing surfaces was studied using water contact angle measurements. At larger adsorbed amounts of 2.2 mg/m 2 or more, the treated DE formed superhydrophobic coatings (with water contact angles ≥150°) with a polyurethane binder. These coatings required a minimum of 30% particle loadings, which allowed the DE particles to dominate the surface. At loadings larger than approximately 50%, there was a decrease in the contact angles corresponding to a reduction in roughness on the surface. Samples with adsorbed amounts less than 2.2 mg/m 2 or chain lengths shorter than C12 were only hydrophobic. These results were in agreement with scanning electron microscopy and Brunauer-Emmett-Teller specific surface area and pore volume measurements.

  17. Acute Toxicity of Imidazole Nitrate Ionic Liquids with Varying Chain Lengths to Earthworms (Eisenia foetida).

    Science.gov (United States)

    Shao, Yuting; Du, Zhongkun; Zhang, Cheng; Zhu, Lusheng; Wang, Jinhua; Wang, Jun

    2017-08-01

    When ionic liquids (ILs) first came into use, we thought that they were safe. However, upon further investigation, researchers found that ILs are not harmless. In this study, the model soil organism, earthworms (Eisenia foetida), were used to study the acute toxicity of imidazole nitrate ionic liquids with varying chain lengths from 2 to 12. The experiment used two different methods, a filter paper contact test (48 h) and an artificial soil test (14 days), to determine the toxicity. These results demonstrated that the toxicity increased with the length of carbon chains until C 8 and that the cut-off effect occurred at 1-octyl-3-methyl imidazole nitrates.Then, the toxicity began to increase again. At the same time, the concentrations of [C 10 mim]NO 3 and [C 12 mim]NO 3 were determined by high performance liquid chromatography and demonstrated that ILs were stable throughout the experiment. The present study revealed the acute toxicity of ILs with varying chain lengths.

  18. Structure-oriented substrate specificity engineering of aldehyde-deformylating oxygenase towards aldehydes carbon chain length.

    Science.gov (United States)

    Bao, Luyao; Li, Jian-Jun; Jia, Chenjun; Li, Mei; Lu, Xuefeng

    2016-01-01

    Aldehyde-deformylating oxygenase (ADO) is an important enzyme involved in the biosynthetic pathway of fatty alk(a/e)nes in cyanobacteria. However, ADO exhibits quite low chain-length specificity with respect to the substrates ranging from C4 to C18 aldehydes, which is not suitable for producing fuels with different properties or different chain lengths. Based on the crystal structures of cADOs (cyanobacterial ADO) with substrate analogs bound, some amino acids affecting the substrate specificity of cADO were identified, including the amino acids close to the aldehyde group and the hydrophobic tail of the substrate and those along the substrate channel. Using site-directed mutagenesis, selected amino acids were replaced with bulky ones introducing steric hindrance to the binding pocket via large functional groups. All mutants were overexpressed, purified and kinetically characterized. All mutants, except F87Y, displayed dramatically reduced activity towards C14,16,18 aldehydes. Notably, the substrate preferences of some mutants towards different chain-length substrates were enhanced: I24Y for n-heptanal, I27F for n-decanal and n-dodecanal, V28F for n-dodecanal, F87Y for n-decanal, C70F for n-hexanal, A118F for n-butanal, A121F for C4,6,7 aldehydes, V184F for n-dodecanal and n-decanal, M193Y for C6-10 aldehydes and L198F for C7-10 aldehydes. The impact of the engineered cADO mutants on the change of the hydrocarbon profile was demonstrated by co-expressing acyl-ACP thioesterase BTE, fadD and V184F in E. coli, showing that n-undecane was the main fatty alkane. Some amino acids, which can control the chain-length selectivity of substrates of cADO, were identified. The substrate specificities of cADO were successfully changed through structure-guided protein engineering, and some mutants displayed different chain-length preference. The in vivo experiments of V184F in genetically engineered E. coli proved the importance of engineered cADOs on the distribution of the

  19. Oil contamination in surface sediment of Anzali Wetland in Iran is primarily even carbon number n-alkanes.

    Science.gov (United States)

    Azimi-Yancheshmeh, Rokhsareh; Riyahi-Bakhtiari, Alireza; Savabieasfahani, Mozhgan

    2017-10-29

    To determine the extent of oil contamination and biodegradation in Anzali Wetland of Iran, we examined aliphatic hydrocarbons in surface sediment of this area (n=20). Petroleum hydrocarbon levels (mean 1585 ± 1117; range 316 to 4358 μg g- 1 dry weight) were similar in value to reports from other highly contaminated areas, such as New York Bight, Saudi and Kuwaiti coasts of the Persian Gulf, and Dubai shorelines. Even carbon homologs dominated distribution of n-alkanes in surface sediment of Anzali, which is rarely reported elsewhere. Multiple factors used in our study point to petrogenic source for n-alkanes in Anzali Wetland. Anzali receives multiple industrial and agricultural runoffs from the surrounding area. Shipping industry and oil industry are responsible for a major portion of pollutants entering Anzali. Municipal wastewater discharges are another source of Anzali pollution. To determine why even carbon number n-alkanes predominate in Anzali, we examined the following indices: existence of unresolved complex mixtures (UCM), ratio of UCM to resolved alkanes (RA), ratio of low-molecular weight to high-molecular weight molecules, presence of degraded oil residue, high-relative biodegradation, and the degree of hydrocarbon weathering in the surface sediment of the area. Our findings corroborate with such predominance.

  20. Does alkyl chain length really matter? Structure–property relationships in thermochemistry of ionic liquids

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Zaitsau, Dzmitry H.; Emel’yanenko, Vladimir N.; Ralys, Ricardas V.; Yermalayeu, Andrei V.; Schick, Christoph

    2013-01-01

    Graphical abstract: We have shown that enthalpies of formation, enthalpies of vaporization, and lattice potential energies of alkylsubstituted imidazolium, pyridinium, and pyrrolidinium based ionic liquids with Cl and Br anions are linearly dependant on the alkyl chain length. The thermochemical properties of ILs are generally obey the group additivity rules and the values of the additivity parameters for enthalpies of formation and vaporization are very close to those for molecular compounds. - Highlights: • Alkyl substituted imidazolium, pyridinium, and pyrrolidinium based ionic liquids with anions [Cl] and [Br] were studied using DSC and ab initio methods. • The thermochemical properties of ILs generally obey the group additivity rules. • A linear dependence on the chain length of the alkyl chain of cation was found. - Abstract: DSC was used for determination of reaction enthalpies of synthesis of ionic liquids [C n mim][Cl]. A combination of DSC with quantum chemical calculations presents an indirect way to study thermodynamics of ionic liquids. The indirect procedure for vaporization enthalpy was validated with the direct experimental measurements by using thermogravimetry. First-principles calculations of the enthalpy of formation in the gaseous phase have been performed for the ionic species using the CBS-QB3 and G3 (MP2) theory. Experimental DSC data for homologous series of alkyl substituted imidazolium, pyridinium, and pyrrolidinium based ionic liquids with anions [Cl] and [Br] were collected from the literature. We have shown that enthalpies of formation, enthalpies of vaporization, and lattice potential energies are linearly dependant on the alkyl chain length. The thermochemical properties of ILs generally obey the group additivity rules and the values of the additivity parameters for enthalpies of formation and vaporization seem to be very close to those for molecular compounds

  1. Hopane, sterane and n-alkane distributions in shallow sediments hosting high arsenic groundwaters in Cambodia

    International Nuclear Information System (INIS)

    Dongen, Bart E. van; Rowland, Helen A.L.; Gault, Andrew G.; Polya, David A.; Bryant, Charlotte; Pancost, Richard D.

    2008-01-01

    The presence of elevated As in ground waters exploited for drinking water and irrigation in South-East Asia is causing serious impacts on human health. A key mechanism that causes the mobilization of As in these waters is microbially mediated reductive transformation of As-bearing Fe(III) hydrated oxides and the role of degradable organic matter (OM) in this process is widely recognized. A number of different types of OM that drive As release in these aquifers have been suggested, including petroleum derived hydrocarbons naturally seeping into shallow sediments from deeper thermally mature source rocks. However, the amount of information on the characteristics of the OM in South-East Asian aquifers is limited. Here the organic geochemical analyses of the saturated hydrocarbon fractions and radiocarbon analysis, of two additional sites in SE Asia are reported. The results show that the OM in a given sedimentary horizon likely derives from multiple sources including naturally occurring petroleum. The importance of naturally occurring petroleum as one of the sources was clearly indicated by the n-alkane CPI of approximately 1, the presence of an unresolved complex mixture, and hopane (dominated by 17α(H),21β(H) hopanes) and sterane distribution patterns. The results also indicate that the OM in these aquifers varies tremendously in content, character and potential bioavailability. Furthermore, the presence of petroleum derived OM in sediments at both sites doubles the number of locations where their presence has been observed in association with As-rich, shallow aquifers, suggesting that the role of petroleum derived OM in microbially mediated As release might occur over a wider range of geographical locations than previously thought

  2. Critical wetting of n-alkanes on water; Mouillage critique des alcanes sur l`eau

    Energy Technology Data Exchange (ETDEWEB)

    Ragil, K.

    1996-10-18

    This study concerns the wetting properties of n-alkanes on water under thermodynamic equilibrium conditions, a problem that is interesting for the petroleum industry as well as for the fundamental understanding of wetting phenomena. An experimental study using ellipsometry reveals that pentane on water undergoes a continuous or critical wetting transition at a temperature equal to 53.1 deg. C. This is the first experimental observation of such a transition, confirming theoretical predictions made on this subject over ten years. This transition is characterized by a continuous and reversible evolution of the thickness of the film of pentane with temperature from a thick (but finite film) to a macroscopic film. The critical wetting transition occurs when the Hamaker constant of the system, which gives the net interaction between the two interfaces bounding the wetting layer of pentane in terms of the van der Waals forces, changes sign. A theoretical approach based on the Cahn-Landau theory, which takes into account long range forces (van der Waals forces), enables us to explain the mechanism of the critical wetting transition and to show that a first-order wetting transition should precede it. Because of their similar dispersive properties, linear alkanes could all be able to show such a succession of transitions. An ellipsometry study performed on a brine/hexane/vapor system confirms that a discontinuous transition from a thin microscopic film to a thick but finite adsorbed film takes place. THis study demonstrates that the wetting of alkanes on water is determined by subtle interplay between short range and long range forces, which can lead to an intermediary state between partial and complete wetting. (author)

  3. Liposomes coated with hydrophobically modified hydroxyethyl cellulose: Influence of hydrophobic chain length and degree of modification.

    Science.gov (United States)

    Smistad, Gro; Nyström, Bo; Zhu, Kaizheng; Grønvold, Marthe Karoline; Røv-Johnsen, Anne; Hiorth, Marianne

    2017-08-01

    Nanoparticulate systems with an uncharged hydrophilic surface may have a great potential in mucosal drug delivery. In the present study liposomes were coated with hydrophobically modified hydroxyethyl cellulose (HM-HEC) to create a sterically stabilized liposomal system with an uncharged surface. The aim was to clarify the influence of the amount of hydrophobic modification of HEC and the length of the hydrophobic moiety, on the stability of the system and on the release properties. HM-HEC with different degrees of hydrophobic modification (1 and 2mol%) and hydrophobic groups with different chain lengths (C8, C12, C16) were included in the study, as well as fluid phase and gel phase liposomes. Both types of liposomes were successfully coated with HM-HEC containing 1mol% of hydrophobic groups, while 2mol% did not work for the intended pharmaceutical applications. The polymer coated gel phase liposomes were stable (size, zeta potential, leakage) for 24 weeks at 4°C, with no differences between the C8 and C16 HM-HEC coating. For the fluid phase liposomes a size increase was observed after 24 weeks at 4°C for all formulations; the C8 HM-HEC coated liposomes increased the most. No differences in the leakage during storage at 4°C or in the release at 35°C were observed between the fluid phase formulations. To conclude; HM-HEC with a shorter hydrophobic chain length resulted in a less stable product for the fluid phase liposomes, while no influence of the chain length was observed for the gel phase liposomes (1mol% HM). Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Polymer chain length effects on fibroblast attachment on nylon-3-modified surfaces.

    Science.gov (United States)

    Liu, Runhui; Masters, Kristyn S; Gellman, Samuel H

    2012-04-09

    Nylon-3 polymers have a polyamide backbone reminiscent of that found in proteins (β- vs α-amino acid residues, respectively), which makes these materials interesting for biological applications. Because of the versatility of the ring-opening polymerization process and the variety of β-lactam starting materials available, the structure of nylon-3 copolymers is highly amenable to alteration. A previous study showed that relatively subtle changes in the structure or ratio of hydrophobic and cationic subunits that comprise these polymers can result in significant changes in the ability of nylon-3-bearing surfaces to support cell adhesion and spreading. In the present study, we have exploited the highly tailorable nature of these polymers to synthesize new versions possessing a wide range of chain lengths, with the intent of optimizing these materials for use as cell-supportive substrates. We find that longer nylon-3 chains lead to better fibroblast attachment on modified surfaces and that at the optimal chain lengths less hydrophobic subunits are superior. The best polymers we identified are comparable to an RGD-containing peptide in supporting fibroblast attachment. The results described here will help to focus future efforts aimed at refining nylon-3 copolymer substrates for specific tissue engineering applications.

  5. Estimativa da ingestão e digestibilidade de erva e bolota em porcos alentejanos pela técnica dos n-alcanos Estimation of intake and digestibility of pasture and acorns by alentejano pigs using n-alkanes

    Directory of Open Access Journals (Sweden)

    C. Mendes

    2007-01-01

    Full Text Available Com o objectivo de estimar, em porcos Alentejanos, a ingestão e a digestibilidade de erva e bolota, foi realizado um ensaio utilizando n-alcanos de cadeia longa como marcadores fecais. Oito animais, alojados em caixas metabólicas, distribuídos aleatoriamente em 2 grupos de 4 animais cada, foram sujeitos a dois tratamentos. Cada animal do grupo 1 recebeu um bolinho por dia, contendo 100 mg de C32 e 150 mg de C36 e do grupo 2, dois bolinhos por dia contendo 50 mg de C32 e 75 mg de C36. Os animais foram alimentados com erva e bolota ao longo de todo o ensaio. A ingestão e a digestibilidade da dieta foram determinadas individualmente, através da medição das quantidades de alimento ingeridas e de fezes produzidas durante 5 dias e estimadas através da utilização da técnica dos n-alcanos. As estimativas da digestibilidade feitas através da utilização dos n-alcanos naturais C25 e C27 permitiram a obtenção de resultados muito próximos das medições in vivo. Os C29 e C31, em combinação com os nalcanos artificiais (C32 e C36, forneceram as estimativas da digestibilidade mais próximas da determinada, sendo os pares C29:C32 e C29:C36 os que forneceram as melhores estimativas para a ingestão. A administração dos C32 e C36 uma ou duas vezes por dia não demonstrou ter qualquer influência nas estimativas realizadas. A composição da dieta (bolota e erva, estimada pelos n-alcanos, apresentou valores próximos dos medidos in vivo, sendo as melhores estimativas dadas pelas combinações dos n-alcanos C29 e C31.The aim of this experiment was to estimate intake and digestibility of grass and acorns in Alentejano pigs, using long chain n-alkanes as fecal markers. Eight male Alentejano pigs, housed in metabolic cages were randomly allocated into two groups. Group 1 received one small cake per animal per day containing 100 mg of C32 and 150 mg of C36 and group 2 received two small cakes per animal per day containing 50 mg of C32 and 75 mg of C

  6. Chemotaxonomic implications of the n-alkane composition and the nonacosan-10-ol content in Picea omorika, Pinus heldreichii, and Pinus peuce.

    Science.gov (United States)

    Nikolić, Biljana; Tešević, Vele; Bojović, Srdjan; Marin, Petar D

    2013-04-01

    The n-alkane composition and the nonacosan-10-ol content in the needle cuticular waxes of Serbian spruce (Picea omorika), Bosnian pine (Pinus heldreichii), and Macedonian pine (Pinus peuce) were compared. The amount of nonacosan-10-ol in the needle waxes of P. omorika was higher than those in P. heldreichii and P. peuce. The range of n-alkanes was also wider in P. omorika (C18 -C35 ) than in P. heldreichii and P. peuce (C18 -C33 ). The dominant n-alkanes were C29 in the needle waxes of P. omorika, C23 , C27 , and C25 in those of P. heldreichii, and C29 , C25 , C27 , and C23 in those of P. peuce. The waxes of P. omorika contained higher amounts of n-alkanes C29 , C31 , and C33 , while those of P. heldreichii and P. peuce had higher contents of n-alkanes C21 , C22 , C23 , C24 , and C26 . The principal component analysis of the contents of nine n-alkanes showed a clear separation of the Serbian spruce populations from those of the two investigated pine species, which partially overlapped. The separation of the species was due to high contents of the n-alkanes C29 and C31 (P. omorika), C19 , C20 , C21 , C22 , C23 , and C24 (P. heldreichii), and C28 (P. peuce). Cluster analysis also showed a clear separation between the P. omorika populations on one side and the P. heldreichii and P. peuce populations on the other side. The n-alkane and terpene compositions are discussed in the light of their usefulness in chemotaxonomy as well as with regard to the biogeography and phylogeny of these rare and endemic conifers. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  7. Chain length and temperature dependence of alkanedithiol molecular conductance under ultra high vacuum.

    Science.gov (United States)

    Pires, Ellis; Macdonald, J Emyr; Elliott, Martin

    2013-10-07

    We report scanning tunnelling microscope (STM) measurements of the single molecule conductance of α,ω-alkanedithiols for a large range of molecular chain lengths (N = 3-10) and temperatures (180-390 K) under ultra high vacuum. Two STM-based measurement techniques were employed on molecules trapped between tip and substrate: (i) the well established current-distance or I(z) technique and (ii) a new I(V,z) technique in which the current-voltage characteristics are determined as the tip-substrate distance z is varied. Low, medium, and high conductance groups were observed for each molecular length, which were temperature independent over the range examined, consistent with off-resonance tunnelling. For N > 4 the current-voltage characteristics and conductance trend with chain length is well described using a simple rectangular tunnel barrier model with parameters in excellent agreement with previously reported values. However, both 1,3-propanedithiol (N = 3) and 1,4-butanedithiol (N = 4) show an anomalous behaviour which is qualitatively similar to, but much less pronounced than, that reported by Haiss et al. (Phys. Chem. Chem. Phys., 2009, 11, 10831) for measurements performed under air and nitrogen gas.

  8. The role of discharge variation in scaling of drainage area and food chain length in rivers

    Science.gov (United States)

    Sabo, John L.; Finlay, Jacques C.; Kennedy, Theodore A.; Post, David M.

    2010-01-01

    Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.

  9. Micellar dipolar rearrangement is sensitive to hydrophobic chain length: Implication for structural switchover of piroxicam.

    Science.gov (United States)

    Sethy, Dasaratha; Chakraborty, Hirak

    2016-10-01

    The interfacial properties of the membrane are exceptionally vital in drug-membrane interaction. They not only select out a particular prototropic form of the drug molecule for incorporation, but are also potent enough to induce structural switchover of these drugs in several cases. In this work, we quantitatively monitored the change in dipolar rearrangement of the micellar interface (as a simplified membrane mimic) by measuring the dielectric constant and dipole potential with the micellization of SDS at pH 3.6. The dielectric constant and dipole potential were measured utilizing the fluorescence of polarity sensitive probe, pyrene and potential-sensitive probe, di-8-ANEPPS, respectively. Our study demonstrates that the change in dipolar rearrangement directly influences the switchover equilibrium between the anionic and neutral from of piroxicam. We have further extended our work to evaluate the effect of hydrophobic chain length of the surfactants on the dipolar rearrangement and its effect on the structural switchover of piroxicam. It is interesting that the extent of switchover of piroxicam is directly correlated with the dipolar rearrangement induced bythe varying hydrophobic chain length of the surfactants. To the best of our knowledge, our results constitute the first report to show the dependence of dipole potential on the hydrophobic chain length of the surfactant and demonstrate that the dipolar rearrangement directly tunes the extent of structural switchover of piroxicam, which was so far only intuitive. We consider that this new finding would have promising implication in drug distribution and drug efficacy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Dependence of micelle size and shape on detergent alkyl chain length and head group.

    Science.gov (United States)

    Oliver, Ryan C; Lipfert, Jan; Fox, Daniel A; Lo, Ryan H; Doniach, Sebastian; Columbus, Linda

    2013-01-01

    Micelle-forming detergents provide an amphipathic environment that can mimic lipid bilayers and are important tools for solubilizing membrane proteins for functional and structural investigations in vitro. However, the formation of a soluble protein-detergent complex (PDC) currently relies on empirical screening of detergents, and a stable and functional PDC is often not obtained. To provide a foundation for systematic comparisons between the properties of the detergent micelle and the resulting PDC, a comprehensive set of detergents commonly used for membrane protein studies are systematically investigated. Using small-angle X-ray scattering (SAXS), micelle shapes and sizes are determined for phosphocholines with 10, 12, and 14 alkyl carbons, glucosides with 8, 9, and 10 alkyl carbons, maltosides with 8, 10, and 12 alkyl carbons, and lysophosphatidyl glycerols with 14 and 16 alkyl carbons. The SAXS profiles are well described by two-component ellipsoid models, with an electron rich outer shell corresponding to the detergent head groups and a less electron dense hydrophobic core composed of the alkyl chains. The minor axis of the elliptical micelle core from these models is constrained by the length of the alkyl chain, and increases by 1.2-1.5 Å per carbon addition to the alkyl chain. The major elliptical axis also increases with chain length; however, the ellipticity remains approximately constant for each detergent series. In addition, the aggregation number of these detergents increases by ∼16 monomers per micelle for each alkyl carbon added. The data provide a comprehensive view of the determinants of micelle shape and size and provide a baseline for correlating micelle properties with protein-detergent interactions.

  11. Dependence of micelle size and shape on detergent alkyl chain length and head group.

    Directory of Open Access Journals (Sweden)

    Ryan C Oliver

    Full Text Available Micelle-forming detergents provide an amphipathic environment that can mimic lipid bilayers and are important tools for solubilizing membrane proteins for functional and structural investigations in vitro. However, the formation of a soluble protein-detergent complex (PDC currently relies on empirical screening of detergents, and a stable and functional PDC is often not obtained. To provide a foundation for systematic comparisons between the properties of the detergent micelle and the resulting PDC, a comprehensive set of detergents commonly used for membrane protein studies are systematically investigated. Using small-angle X-ray scattering (SAXS, micelle shapes and sizes are determined for phosphocholines with 10, 12, and 14 alkyl carbons, glucosides with 8, 9, and 10 alkyl carbons, maltosides with 8, 10, and 12 alkyl carbons, and lysophosphatidyl glycerols with 14 and 16 alkyl carbons. The SAXS profiles are well described by two-component ellipsoid models, with an electron rich outer shell corresponding to the detergent head groups and a less electron dense hydrophobic core composed of the alkyl chains. The minor axis of the elliptical micelle core from these models is constrained by the length of the alkyl chain, and increases by 1.2-1.5 Å per carbon addition to the alkyl chain. The major elliptical axis also increases with chain length; however, the ellipticity remains approximately constant for each detergent series. In addition, the aggregation number of these detergents increases by ∼16 monomers per micelle for each alkyl carbon added. The data provide a comprehensive view of the determinants of micelle shape and size and provide a baseline for correlating micelle properties with protein-detergent interactions.

  12. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    Energy Technology Data Exchange (ETDEWEB)

    Ngoi, Kuan Hoon; Chia, Chin-Hua, E-mail: chia@ukm.edu.my; Zakaria, Sarani [School of Applied Physics, Faculty Science and Technology, University Kebangsaan Malaysia 43600 UKM Bangi, Selangor (Malaysia); Chiu, Wee Siong [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur (Malaysia)

    2015-09-25

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature.

  13. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum.

    Science.gov (United States)

    Heinrich, Daniel; Raberg, Matthias; Fricke, Philipp; Kenny, Shane T; Morales-Gamez, Laura; Babu, Ramesh P; O'Connor, Kevin E; Steinbüchel, Alexander

    2016-10-15

    The purple nonsulfur alphaproteobacterium Rhodospirillum rubrum S1 was genetically engineered to synthesize a heteropolymer of mainly 3-hydroxydecanoic acid and 3-hydroxyoctanoic acid [P(3HD-co-3HO)] from CO- and CO 2 -containing artificial synthesis gas (syngas). For this, genes from Pseudomonas putida KT2440 coding for a 3-hydroxyacyl acyl carrier protein (ACP) thioesterase (phaG), a medium-chain-length (MCL) fatty acid coenzyme A (CoA) ligase (PP_0763), and an MCL polyhydroxyalkanoate (PHA) synthase (phaC1) were cloned and expressed under the control of the CO-inducible promoter P cooF from R. rubrum S1 in a PHA-negative mutant of R. rubrum P(3HD-co-3HO) was accumulated to up to 7.1% (wt/wt) of the cell dry weight by a recombinant mutant strain utilizing exclusively the provided gaseous feedstock syngas. In addition to an increased synthesis of these medium-chain-length PHAs (PHA MCL ), enhanced gene expression through the P cooF promoter also led to an increased molar fraction of 3HO in the synthesized copolymer compared with the P lac promoter, which regulated expression on the original vector. The recombinant strains were able to partially degrade the polymer, and the deletion of phaZ2, which codes for a PHA depolymerase most likely involved in intracellular PHA degradation, did not reduce mobilization of the accumulated polymer significantly. However, an amino acid exchange in the active site of PhaZ2 led to a slight increase in PHA MCL accumulation. The accumulated polymer was isolated; it exhibited a molecular mass of 124.3 kDa and a melting point of 49.6°C. With the metabolically engineered strains presented in this proof-of-principle study, we demonstrated the synthesis of elastomeric second-generation biopolymers from renewable feedstocks not competing with human nutrition. Polyhydroxyalkanoates (PHAs) are natural biodegradable polymers (biopolymers) showing properties similar to those of commonly produced petroleum-based nondegradable polymers. The

  14. Kinetics and mechanistic study of n-alkane hydroisomerization reaction on Pt-doped γ-alumina catalyst

    Directory of Open Access Journals (Sweden)

    Abhishek Dhar

    2017-12-01

    Full Text Available The catalysts γ-alumina (GA, the reference catalyst and Pt doped γ-alumina (PGA-s were synthesized using a simple sol-gel technique, in which at first preparation of porous base (GA, then impregnation of platinum salt over the base and finally reduction of platinum in the surface of the support were done. These catalysts prepared in different mole ratios of Pt:Al as 2:1, 1:1 and 1:2 are named as PGA-1, PGA-2 and PGA-3 respectively. The isomerization of n-alkanes (n-hexane, n-heptane and n-octane were investigated over the synthesized catalysts. The 2-methyl pentane (2-MP, 2,2-dimethyl pentane (2,2-DMP and 2,3-dimethyl hexane (2,3-DMH are the major products of respective isomerization of n-hexane, n-heptane and n-octane, besides a small amount of other branched isomers are also produced. The product distribution is comparable to that reported for Pt based other catalysts. The optimal mole ratios of Pt:Al is 1:1 (PGA-2 gives quite good catalytic activity for isomerization of n-alkane. Even through in reusability study, PGA-2 gives better performance than others. We have mainly focused on kinetic study, reaction mechanism behind isomerization and calculated the order of reactions and activation energies of the isomerization reactions in the present work. Keywords: Isomerization, n-alkanes, Catalyst, Reaction mechanism, Kinetics study, Activation energy

  15. Particle size distribution of n-alkanes and polycyclic aromatic hydrocarbons (PAHS) in urban and industrial aerosol of Algiers, Algeria.

    Science.gov (United States)

    Ladji, R; Yassaa, N; Balducci, C; Cecinato, A

    2014-02-01

    The distribution of ambient air n-alkanes and polycyclic aromatic hydrocarbons (PAHs) associated to particles with aerodynamic diameters lesser than 10 μm (PM(10)) into six fractions (five stages and a backup filter) was studied for the first time in Algeria. Investigation took place during September of 2007 at an urban and industrial site of Algiers. Size-resolved samples (<0.49, 0.49-0.95, 0.95-1.5, 1.5-3.0, 3.0-7.2, and 7.2-10 μm) were concurrently collected at the two sampling sites using five-stage high-volume cascade impactors. Most of n-alkanes (~72 %) and PAHs (~90 %) were associated with fine particles ≤ 1.5 μm in both urban and industrial atmosphere. In both cases, the n-alkane contents exhibited bimodal or weakly bimodal distribution peaking at the 0.95-1.5-μm size range within the fine mode and at 7.3-10 μm in the coarse mode. Low molecular weight PAHs displayed bimodal patterns peaking at 0.49-0.95 and 7.3-10 μm, while high molecular weight PAHs exhibited mono-modal distribution with maximum in the <0.49-μm fraction. While the mass mean diameter of total n-alkanes in the urban and industrial sites was 0.70 and 0.84 μm, respectively, it did not exceed 0.49 μm for PAHs. Carbon preference index (~1.1), wax% (10.1-12.8), and the diagnostic ratios for PAHs all revealed that vehicular emission was the major source of these organic compounds in PM(10) during the study periods and that the contribution of epicuticular waxes emitted by terrestrial plants was minor. According to benzo[a]pyrene-equivalent carcinogenic power rates, ca. 90 % of overall PAH toxicity across PM(10) was found in particles ≤ 0.95 μm in diameter which could induce adverse health effects to the population living in these areas.

  16. Evaluation of the organic matter sources using the δ13C composition of individual n-alkanes in sediments from Brazilian estuarine systems by GC/C/IRMS

    Science.gov (United States)

    Maioli, Otávio Luiz Gusso; de Oliveira, Cristiane Rossi; Dal Sasso, Marco Aurélio; Madureira, Luiz Augusto dos Santos; Azevedo, Débora de Almeida; de Aquino Neto, Francisco Radler

    2012-12-01

    The δ13C composition of individual n-alkanes (from C16 to C34) was measured from surface sediments of five Brazilian estuarine systems affected by different organic matter sources, such as harbor area, industries, urban centers and sugar cane crops, in order to determine the origins of the organic matter. The aliphatic hydrocarbon fraction was analyzed by gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS). The levels of n-alkanes in the studied areas ranged from 0.34 to 18.14 μg kg-1, being relatively low in comparison to high polluted environments. The Carbon Preference Index (CPI) calculated in the C23-C34 range indicates that n-alkanes are mainly inherited from cuticular waxes of higher plants. The δ13C composition of all n-alkanes detected in the sediment samples ranged from -39.6 to -18.3‰ showing different sources for the studied estuarine systems. Through Principal Component Analysis (PCA) it was possible to verify the petrogenic influence in the n-alkane sources, especially in the Paraíba do Sul sediment samples. Differences up to 15‰ of the δ13C values between n-alkanes of odd and even carbon number (C26 and C27) also indicated mixture of petrogenic and biogenic sources in Paraíba do Sul River. High (less negative) δ13C n-alkane values of odd carbon number were obtained from two sampling sites located close to an ethanol plant, indicating residues discharge of sugar cane (C4 plant). Influence of C3 plants that are the main components of dense ombrophile forest was observed in the Itajaí-Açu sediments by the decrease of δ13C (about 10‰ compared to the Paraíba do Sul River δ13C).

  17. The Role of Chain Length in Nonergodicity Factor and Fragility of Polymers

    DEFF Research Database (Denmark)

    Dalle-Ferrie, Cecile; Niss, Kristine; Sokolov, Alexei

    2010-01-01

    The mechanism that leads to different fragility values upon approaching the glass transition remains a topic of active discussion. Many researchers are trying to find an answer in the properties of the frozen glassy state. Following this approach, we focus here on a previously proposed relationship...... between the fragility of glass-formers and their nonergodicity factor, determined by inelastic X-ray scattering (IXS) in the glass. We extend this molecular liquid study to two model polymers— polystyrene (PS) and polyisobutylene (PIB)—for which we change the molecular weight. Polymers offer...... the opportunity to change the fragility without altering the chemical structure, just by changing the chain length. Thus, we specifically chose PS and PIB because they exhibit opposite dependences of fragility with molecular weight. Our analysis for these two polymers reveals no unique correlation between...

  18. Chain length effects on the vibrational structure and molecular interactions in the liquid normal alkyl alcohols

    Science.gov (United States)

    Kiefer, Johannes; Wagenfeld, Sabine; Kerlé, Daniela

    2018-01-01

    Alkyl alcohols are widely used in academia, industry, and our everyday lives, e.g. as cleaning agents and solvents. Vibrational spectroscopy is commonly used to identify and quantify these compounds, but also to study their structure and behavior. However, a comprehensive investigation and comparison of all normal alkanols that are liquid at room temperature has not been performed, surprisingly. This study aims at bridging this gap with a combined experimental and computational effort. For this purpose, the alkyl alcohols from methanol to undecan-1-ol have been analyzed using infrared and Raman spectroscopy. A detailed assignment of the individual peaks is presented and the influence of the alkyl chain length on the hydrogen bonding network is discussed. A 2D vibrational mapping allows a straightforward visualization of the effects. The conclusions drawn from the experimental data are backed up with results from Monte Carlo simulations using the simulation package Cassandra.

  19. Synthesis of medium-chain length capsinoids from coconut oil catalyzed by Candida rugosa lipases.

    Science.gov (United States)

    Trbojević Ivić, Jovana; Milosavić, Nenad; Dimitrijević, Aleksandra; Gavrović Jankulović, Marija; Bezbradica, Dejan; Kolarski, Dušan; Veličković, Dušan

    2017-03-01

    A commercial preparation of Candida rugosa lipases (CRL) was tested for the production of capsinoids by esterification of vanillyl alcohol (VA) with free fatty acids (FA) and coconut oil (CO) as acyl donors. Screening of FA chain length indicated that C8-C12 FA (the most common FA found in CO triglycerides) are the best acyl-donors, yielding 80-85% of their specific capsinoids. Hence, when CO, which is rich in these FA, was used as the substrate, a mixture of capsinoids (vanillyl caprylate, vanillyl decanoate and vanillyl laurate) was obtained. The findings presented here suggest that our experimental method can be applied for the enrichment of CO with capsinoids, thus giving it additional health promoting properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Chain length distributions in linear polyaddition proceeding in nano-scale small volumes without mass transfer

    Science.gov (United States)

    Szymanski, R.; Sosnowski, S.

    2017-01-01

    Computer simulations (Monte Carlo and numerical integration of differential equations) and theoretical analysis show that the statistical nature of polyaddition, both irreversible and reversible one, affects the way the macromolecules of different lengths are distributed among the small volume nano-reactors (droplets in this study) at any reaction time. The corresponding droplet distributions in respect to the number of reacting chains as well as the chain length distributions depend, for the given reaction time, on rate constants of polyaddition kp and depolymerization kd (reversible process), and the initial conditions: monomer concentration and the number of its molecules in a droplet. As a model reaction, a simple polyaddition process (M)1+(M)1 ⟶ ⟵ (M)2 , (M)i+(M)j ⟶ ⟵ (M)i+j was chosen, enabling to observe both kinetic and thermodynamic (apparent equilibrium constant) effects of a small number of reactant molecules in a droplet. The average rate constant of polymerization is lower than in a macroscopic system, depending on the average number of reactant molecules in a droplet. The apparent equilibrium constants of polymerization Ki j=[(M)i +j] ¯ /([(M)i] ¯ [(M)j] ¯ ) appear to depend on oligomer/polymer sizes as well as on the initial number of monomer molecules in a droplet. The corresponding equations, enabling prediction of the equilibrium conditions, were derived. All the analyzed effects are observed not only for ideally dispersed systems, i.e. with all droplets containing initially the same number of monomer (M)1 molecules, but also when initially the numbers of monomer molecules conform the Poisson distribution, expected for dispersions of reaction mixtures.

  1. Effect of varying polyglutamate chain length on the structure and stability of ferricytochrome c.

    Science.gov (United States)

    Antalík, Marián; Bágel'ová, Jaroslava; Gazová, Zuzana; Musatov, Andrej; Fedunová, Diana

    2003-03-21

    The effect of varying polyglutamate chain length on local and global stability of horse heart ferricytochrome c was studied using scanning calorimetry and spectroscopy methods. Spectral data indicate that polyglutamate chain lengths equal or greater than eight monomer units significantly change the apparent pK(a) for the alkaline transition of cytochrome c. The change in pK(a) is comparable to the value when cytochrome c is complexed with cytochrome bc(1). Glutamate and diglutamate do not significantly alter the temperature transition for cleavage of the Met(80)-heme iron bond of cytochrome c. At low ionic strength, polyglutamates consisting of eight or more glutamate monomers increase midpoint of the temperature transition from 57.3+/-0.2 to 66.9+/-0.2 degrees C. On the other hand, the denaturation temperature of cytochrome c decreases from 85.2+/-0.2 to 68.8+/-0.2 degrees C in the presence of polyglutamates with number of glutamate monomers n >or approximately equal 8. The rate constant for cyanide binding to the heme iron of cytochrome c of cytochrome c-polyglutamate complex also decreases by approximately 42.5% with n>or approximately equal 8. The binding constant for the binding of octaglutamate (m.w. approximately 1000) to cyt c was found to be 1.15 x 10(5) M(-1) at pH 8.0 and low ionic strength. The results indicate that the polyglutamate (n>or approximately equal 8) is able to increase the stability of the methionine sulfur-heme iron bond of cytochrome c in spite of structural differences that weaken the overall stability of the cyt c at neutral and slightly alkaline pH.

  2. Modeling of asphaltene precipitation due to steam and n-alkane co-injection in the ES-SAGD process

    Energy Technology Data Exchange (ETDEWEB)

    Badamchizadeh, A.; Kohse, Bruce F.; Kumar, A. [Computer Modelling Group Ltd (Canada)

    2011-07-01

    This paper provides an insight into the SAGD process in general, and the formation of asphaltene participates in the hybrid ES-SAGD process in particular. The objective of this work was to build an EoS model able to calculate the physical and chemical properties of the bitumen and n-alkane mixture, develop a model to quantify asphaltene participates in bitumen due to n-alkane injection, and investigate their effect on the ES-SAGD process. Athabasca bitumen properties identified under various test conditions and from the results of previous efforts, mainly the SimDist experimental data, were illustrated. These data were used to develop the EoS model, which in turn was used to generate the STARS thermal simulator. Overall, the EoS model was successfully developed and hence was able to predict bitumen and n-heptane properties. Moreover, asphaltene deposition in the ES-SAGD process was modeled in the thermal simulator its effect in causing oil blockage and restrictions in the steam chamber over a long run of the process was demonstrated.

  3. Acidic ionic liquids for n-alkane isomerization in a liquid-liquid or slurry-phase reaction mode

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.; Hager, V.; Geburtig, D.; Kohr, C.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer Chemische Reaktionstechnik; Haumann, M. [Chemical Reaction Engineering, FAU Busan Campus, Korea (Korea, Republic of)

    2011-07-01

    Highly acidic ionic liquid (IL) catalysts offer the opportunity to convert n-alkanes at very low reaction temperatures. The results of IL catalyzed isomerization and cracking reactions of pure n-octane are presented. Influence of IL composition, [C{sub 4}C{sub 1}Im]Cl / AlCl{sub 3} / H{sub 2}SO{sub 4} and [C{sub 4}C{sub 1}Im]Cl / AlCl{sub 3} / 1-chlorooctane, on catalyst activity and selectivities to branched alkanes was investigated. Acidic chloroaluminate IL catalysts form liquid-liquid biphasic systems with unpolar organic product mixtures. Thus, recycling of the acidic IL is enabled by simple phase separation in the liquid-liquid biphasic reaction mode or the IL can be immobilized on an inorganic support with a large specific surface area. These supported ionic liquid phase (SILP) catalysts offer the advantage to get a macroscopically heterogeneous system while still preserving all benefits of the homogeneous catalyst which can be used for the slurry-phase n-alkane isomerization. The interaction of the solid support and acidic IL influences strongly the catalytic activity. (orig.)

  4. Supplemental Dietary Inulin of Variable Chain Lengths Alters Intestinal Bacterial Populations in Young Pigs123

    Science.gov (United States)

    Patterson, Jannine K.; Yasuda, Koji; Welch, Ross M.; Miller, Dennis D.; Lei, Xin Gen

    2010-01-01

    Previously, we showed that supplementation of diets with short-chain inulin (P95), long-chain inulin (HP), and a 50:50 mixture of both (Synergy 1) improved body iron status and altered expression of the genes involved in iron homeostasis and inflammation in young pigs. However, the effects of these 3 types of inulin on intestinal bacteria remain unknown. Applying terminal restriction fragment length polymorphism analysis, we determined the abundances of luminal and adherent bacterial populations from 6 segments of the small and large intestines of pigs (n = 4 for each group) fed an iron-deficient basal diet (BD) or the BD supplemented with 4% of P95, Synergy 1, or HP for 5 wk. Compared with BD, all 3 types of inulin enhanced (P inulin on bacterial populations in the lumen contents were found. Meanwhile, all 3 types of inulin suppressed the less desirable bacteria Clostridium spp. and members of the Enterobacteriaceae in the lumen and mucosa of various gut segments. Our findings suggest that the ability of dietary inulin to alter intestinal bacterial populations may partially account for its iron bioavailability-promoting effect and possibly other health benefits. PMID:20980641

  5. Chain length dependence of polyol synthesis of zinc ferrite nanoparticles: why is diethylene glycol so different?

    Science.gov (United States)

    Rishikeshi, Supriya N; Joshi, Satyawati S; Temgire, Mayur K; Bellare, Jayesh R

    2013-04-21

    Superparamagnetic ZnFe2O4 nanoparticles with size range of 28-38 nm were synthesized by polyol process based on use of varying chain length glycols as solvent. We have offered, for the first time, the plausible mechanism behind in situ formation of zinc ferric oxalate hydroxide hydrate [Fe2Zn(C2O4)2(OH)3](+)·4H2O complex from diethylene and polyethylene glycol. We are also reporting, the magnetic properties of above complexes. We have found a ferromagnetic ordering in precursor complex compounds. The intermediate hydrocarbon chain between the oxalato bridged metal cations plays a crucial role in obtaining anomalous magnetic behavior. ZnFe2O4 nanoparticles obtained after annealing the DEGylated precursor complex (precursor complex formed in diethylene glycol) showed the highest superparamagnetic (SPM) behavior (22.4 emu g(-1)) among others. The reasons for anomalous SPM behavior of ZnFe2O4 nanoparticles are explained on the basis of the degree of inversion of the spinel structure, high surface-to-volume ratio, which causes non-collinear spin arrangement in a surface layer and higher oxygen concentration on the surface of dead organic layer, which increases the unpaired valence electrons leading to uncompensated surface spins.

  6. Tuning the Mechanical Properties of Polymer Nanocomposites Filled with Grafted Nanoparticles by Varying the Grafted Chain Length and Flexibility

    Directory of Open Access Journals (Sweden)

    Zixuan Wang

    2016-08-01

    Full Text Available By employing coarse-grained molecular dynamics simulation, we simulate the spatial organization of the polymer-grafted nanoparticles (NPs in homopolymer matrix and the resulting mechanical performance, by particularly regulating the grafted chain length and flexibility. The morphologies ranging from the agglomerate, cylinder, sheet, and string to full dispersion are observed, by gradually increasing the grafted chain length. The radial distribution function and the total interaction energy between NPs are calculated. Meanwhile, the stress–strain behavior of each morphology and the morphological evolution during the uniaxial tension are simulated. In particular, the sheet structure exhibits the best mechanical reinforcement compared to other morphologies. In addition, the change of the grafted chain flexibility to semi-flexibility leads to the variation of the morphology. We also find that at long grafted chain length, the stress–strain behavior of the system with the semi-flexible grafted chain begins to exceed that of the system with the flexible grafted chain, attributed to the physical inter-locking interaction between the matrix and grafted polymer chains. A similar transition trend is as well found in the presence of the interfacial chemical couplings between grafted and matrix polymer chains. In general, this work is expected to help to design and fabricate high performance polymer nanocomposites filled with grafted NPs with excellent and controllable mechanical properties.

  7. Changes in the n-alkane composition of avocado pulp oil ( Persea americana, Mill. during fruit ripening

    Directory of Open Access Journals (Sweden)

    Giuffrè, A. M.

    2005-03-01

    Full Text Available The n-alkane composition of Avocado pulp oil (cv. Hass was investigated during fruit ripening. Three samples of fruit were harvested on March 3, 2003, March 18, 2003 and April 2, 2003. Glass gravity column chromatography was employed to separate n-alkanes from other minor components contained in the unsaponifiable fraction. Gas chromatography was used to analyze the eluate. Fourteen compounds were detected ranging from n -C21 to n -C34; mainly n -C24, followed by n -C25 and then by n -C23. Quantities of n -C21, n -C22, n -C23, n -C27 and n -C28 progressively increased during ripening, whereas n -C24, n -C25, n -C26, n -C29, n -C30 and n -C34 decreased from the first harvest date to the third harvest date. While odd-numbered carbon n-alkanes increased (52.38 %, 52.85 % and 53.06 % for the three samples respectively, even-numbered carbon n-alkanes decreased as the fruit ripened (47.62 %, 47.15 % and 46.94 %. The total n-alkane content decreased during ripening, from 25.20 mg/Kg (first harvest date to 16.77 mg/Kg (third harvest date. In order to minimize.Se ha analizado la composición en hidrocarburos lineales saturados del aceite de la pulpa de aguacate (variedad Hass. Tres muestras fueron recolectadas: el 3 de marzo 2003, el 18 de marzo 2003 y el 2 de abril 2003. La separación de los hidrocarburos lineales saturados se realizó mediante fraccionamiento del insaponificable por cromatografía gravimétrica de adsorción en columna y la determinación de los mismos hidrocarburos por cromatografía gaseosa. 14 compuestos fueron detectados del n- C21 al n- C34. El n- C24 fue el mayoritario, seguido del n- C25 y el n- C23. El porcentaje de n- C21, n- C22, n- C23, n- C27 y n- C28, aumentó durante la maduración, mientras que el porcentaje de n- C24, n- C25, n- C26, n- C29, n- C30 y C34 disminuyó desde el 3 de marzo 2003 hasta el 2 de abril 2003. Los hidrocarburos lineales saturados con número impar de átomos de carbono aumentaron (52.38 %, 52

  8. Effects of particle size and chain length on flotation of quaternary ammonium salts onto kaolinite

    Science.gov (United States)

    Longhua, Xu; Yuehua, Hu; Faqin, Dong; Hao, Jiang; Houqin, Wu; Zhen, Wang; Ruohua, Liu

    2015-06-01

    Effects of particle size and chain length on flotation of quaternary ammonium salts (QAS) onto kaolinite have been investigated by flotation tests. Dodecyltrimethylammonium chloride (DTAC) and cetyltrimethylammonium chloride (CTAC) were used as collectors for kaolinite in different particle size fractions (0.075 ~ 0.01 mm, 0.045 ~ 0.075 mm, 0 ~ 0.045 mm). The anomalous flotation behavior of kaolinite have been further explained based on crystal structure considerations by adsorption tests and molecular dynamics (MD) simulation. The results show that the flotation recovery of kaolinite in all different particle size fractions decreases with an increase in pH. As the concentration of collectors increases, the flotation recovery increases. The longer the carbon chain of QAS is, the higher the recoveries of coarse kaolinite (0.075 ~ 0.01 mm and 0.045 ~ 0.075 mm) are. But the flotation recovery of the finest kaolinite (0 ~ 0.045 mm) decreases with chain lengths of QAS collectors increasing, which is consistent with the flotation results of unscreened kaolinite (0 ~ 0.075 mm). It is explained by the froth stability related to the residual concentration of QAS collector in mineral pulp. In lower residual concentration, the froth stability becomes worse. Within the range of flotation collector concentration, it's easy of CTAC to be completely adsorbed by kaolinite in the particle size fraction (0-0.045 mm), which led to lower flotation recovery. Moreover, it is interesting that the coarser particle size of kaolinite is, the higher flotation recovery is. The anomalous flotation behavior of kaolinite is rationalized based on crystal structure considerations. The results of MD simulations show that the (001) kaolinite surface has the strongest interaction with DTAC, compared with the (00 1) face, (010) and (110) edges. On the other hand, when particle size of kaolinite is altered, the number of basal planes and edge planes is changed. It is observed that the finer kaolinite

  9. Well-defined block copolymers for gene delivery to dendritic cells: probing the effect of polycation chain-length.

    Science.gov (United States)

    Tang, Rupei; Palumbo, R Noelle; Nagarajan, Lakshmi; Krogstad, Emily; Wang, Chun

    2010-03-03

    The development of safe and efficient polymer carriers for DNA vaccine delivery requires mechanistic understanding of structure-function relationship of the polymer carriers and their interaction with antigen-presenting cells. Here we have synthesized a series of diblock copolymers with well-defined chain-length using atom transfer radical polymerization and characterized the influence of polycation chain-length on the physico-chemical properties of the polymer/DNA complexes as well as the interaction with dendritic cells. The copolymers consist of a hydrophilic poly(ethylene glycol) block and a cationic poly(aminoethyl methacrylate) (PAEM) block. The average degree of polymerization (DP) of the PAEM block was varied among 19, 39, and 75, with nearly uniform distribution. With increasing PAEM chain-length, polyplexes formed by the diblock copolymers and plasmid DNA had smaller average particle size and showed higher stability against electrostatic destabilization by salt and heparin. The polymers were not toxic to mouse dendritic cells (DCs) and only displayed chain-length-dependent toxicity at a high concentration (1mg/mL). In vitro gene transfection efficiency and polyplex uptake in DCs were also found to correlate with chain-length of the PAEM block with the longer polymer chain favoring transfection and cellular uptake. The polyplexes induced a modest up-regulation of surface markers for DC maturation that was not significantly dependent on PAEM chain-length. Finally, the polyplex prepared from the longest PAEM block (DP of 75) achieved an average of 20% enhancement over non-condensed anionic dextran in terms of uptake by DCs in the draining lymph nodes 24h after subcutaneous injection into mice. Insights gained from studying such structurally well-defined polymer carriers and their interaction with dendritic cells may contribute to improved design of practically useful DNA vaccine delivery systems. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Geochemical characteristics of n-alkanes and isoprenoids in coal seams from Zhuji coal mine, Huainan coalfield, China, and their relationship with coal-forming environment.

    Science.gov (United States)

    Wang, Shanshan; Liu, Guijian; Liu, Jingjing

    2018-01-26

    Ten coal seams in Upper Shihezi Formation, Lower Shihezi Formation, and Shanxi Formation from the Zhuji mine, Huainan coalfield, China, were analyzed for n-alkanes and isoprenoids (pristine and phytane) using gas chromatography-mass spectrometry (GC-MS), with an aim of reconstructing the coal-forming plants and depositional environments along with organic carbon isotope analyses. The total n-alkane concentrations ranged from 34.1 to 481 mg/kg. Values of organic carbon isotope (δ 13 C org ) ranged from - 24.6 to - 23.7‰. The calorific value (Q b,d ), maximum vitrinite reflectance (Ro max ), proximate, and ultimate analysis were also determined but showed no correlation with n-alkane concentrations. Carbon Preference Index (CPI) values ranged from 0.945 to 1.30, suggesting no obvious odd/even predominance of n-alkane. The predominance of C 11 and C 17 n-alkanes implied that the coal may be deposited in the fresh and mildly brackish environment. According to the contrary changing trend of pristine/phytane (Pr/Ph) ratio and boron concentrations, Pr/Ph can be used as an indicator to reconstruct the marine transgression-regression in sedimentary environment of coal formation. The influence of marine transgression may lead to the enrichment of pyrite sulfur in the coal seam 4-2. C3 plants (- 32 to - 21‰) and marine algae (- 23 to - 16‰) were probably the main coal-forming plants in the studied coal seams. No correlation of the n-alkane concentration and redox condition of the depositional environment with organic carbon isotope composition were found.

  11. Control of in vivo disposition and immunogenicity of polymeric micelles by adjusting poly(sarcosine) chain lengths on surface

    Science.gov (United States)

    Kurihara, Kensuke; Ueda, Motoki; Hara, Isao; Ozeki, Eiichi; Togashi, Kaori; Kimura, Shunsaku

    2017-07-01

    Four kinds of A3B-type amphiphilic polydepsipeptides, (poly(sarcosine))3- b-poly( l-lactic acid) (the degree of polymerization of poly(sarcosine) are 10, 33, 55, and 85; S10 3 , S33 3 , S55 3 , and S85 3 ) were synthesized to prepare core-shell type polymeric micelles. Their in vivo dispositions and stimulations to trigger immune system to produce IgM upon multiple administrations to mice were examined. With increasing poly(sarcosine) chain lengths, the hydrophilic shell became thicker and the surface density at the most outer surface decreased on the basis of dynamic and static light scattering measurements. These two physical elements of polymeric micelles elicited opposite effects on the immune response in light of the chain length therefore to show an optimized poly(sarcosine) chain length existing between 33mer and 55mer to suppress the accelerated blood clearance phenomenon associated with polymeric micelles.

  12. Structure localization relationship of different chain length 1-[C-11]-labeled betamethyl fatty acids

    International Nuclear Information System (INIS)

    Livni, E.; Elmaleh, D.R.; Strauss, H.W.; Brownell, G.L.

    1984-01-01

    Recently, the authors proposed the use of [1-/sup 11/C] betamethyl heptadecanoic acid ([1-/sup 11/C]BMHA) a branched chain fatty acid as a potential myocardial metabolic tracer for positron emission tomography. In this study a series of fatty acids of betamethyl varying chain length was prepared. The compounds synthesized were [1-/sup 11/C] betamethyl undecanoic acid [1-/sup 11/C]BMUA, [1-/sup 11/C] betamethyl palmitic acid ([1/sup 11/C]BMPA), [1-/sup 11/C]BMHA, [1/sup 11/C] betamethyl octadecanoic acid ([1-/sup 11/C]BMOA), and [1-/sup 11/C] betamethyl heneicasanoic acid ([1-/sup 11/C]BMIA). For each compound, biodistribution in rats was performed at various times following intravenous administration. The percentage of radioactivity released as /sup 11/CO/sub 2/ was determined by trapping /sup 11/CO/sub 2/ in KOH solution. The biodistribution study demonstrates that [1-/sup 11/C]BMHA stands out as the compound with highest myocardial uptake and highest ratios of target (heart) to nontarget (blood, lungs and liver), where [1-/sup 11/C] BMUA showed lowest heart uptake at all times. The fact that for all the [C-11] betamethyl fatty acids studies some of the activity is released as /sup 11/CO/sub 2/ suggests that α and or ω-oxidation is taking place to some extent. Imaging studies in dogs with [1-/sup 11/C] BMHA and [1-/sup 11/C]BMPA showed similar behaviour. The syntheses and biodistribution results are reported

  13. Source apportionment of PAHs and n-alkanes bound to PM1 collected near the Venice highway.

    Science.gov (United States)

    Valotto, Gabrio; Rampazzo, Giancarlo; Gonella, Francesco; Formenton, Gianni; Ficotto, Silvia; Giraldo, Giorgia

    2017-04-01

    n-Alkanes and polycyclic aromatic hydrocarbons (PAHs) bound to atmospheric particulate matter (PM 1 ) were investigated in a traffic site located in an urban area of Venice Province (Eastern Po Valley, Italy) during the cold season. Considering the critical situation affecting the Veneto Region concerning the atmospheric pollution and the general lack of information on PM 1 composition and emission in this area, this experimental study aims at determining the source profile, their relative contributions and the dispersion of finer particles. Four sources were identified and quantified using the Positive Matrix Factorization receptor model: (1) mixed combustions related to the residential activities, (2) agricultural biomass burning in addition to the resuspension of anthropogenic and natural debris carried by the wind, (3) gasoline and (4) diesel traffic-related combustions. The role of local atmospheric circulation was also investigated to identify the pollutant sources. Copyright © 2016. Published by Elsevier B.V.

  14. Elevation-dependent changes in n-alkane δD and soil GDGTs across the South Central Andes

    Science.gov (United States)

    Nieto-Moreno, Vanesa; Rohrmann, Alexander; van der Meer, Marcel T. J.; Sinninghe Damsté, Jaap S.; Sachse, Dirk; Tofelde, Stefanie; Niedermeyer, Eva M.; Strecker, Manfred R.; Mulch, Andreas

    2016-11-01

    Surface uplift of large plateaus may significantly influence regional climate and more specifically precipitation patterns and temperature, sometimes complicating paleoaltimetry interpretations. Thus, understanding the topographic evolution of tectonically active mountain belts benefits from continued development of reliable proxies to reduce uncertainties in paleoaltimetry reconstructions. Lipid biomarker-based proxies provide a novel approach to stable isotope paleoaltimetry and complement authigenic or pedogenic mineral proxy materials, in particular outside semi-arid climate zones where soil carbonates are not abundant but (soil) organic matter has a high preservation potential. Here we present δD values of soil-derived n-alkanes and mean annual air temperature (MAT) estimates based on branched glycerol dialkyl glycerol tetraether (brGDGT) distributions to assess their potential for paleoelevation reconstructions in the southern central Andes. We analyzed soil samples across two environmental and hydrological gradients that include a hillslope (26-28°S) and a valley (22-24°S) transect on the windward flanks of Central Andean Eastern Cordillera in NW Argentina. Our results show that present-day n-alkane δD values and brGDGT-based MAT estimates are both linearly related with elevation and in good agreement with present-day climate conditions. Soil n-alkanes show a δD lapse rate (Δ (δD)) of - 1.64 ‰ / 100 m (R2 = 0.91, p Colombia and Bolivia and the Equatorial and Peruvian Andes. BrGDGT-derived soil temperatures are similar to monitored winter temperatures in the region and show a lapse rate of ΔT = - 0.51 °C / 100 m (R2 = 0.91, p < 0.01), comparable with lapse rates from in situ soil temperature measurements, satellite-derived land-surface temperatures at this transect, and weather stations from the Eastern Cordillera at similar latitude. As a result of an increasing leeward sampling position along the valley transect lapse rates are biased towards

  15. Production of medium-chain, a, omega-bifunctional monomers from fatty acids and n-alkanes

    NARCIS (Netherlands)

    Nuland, Youri M.

    2017-01-01

    In chapter 1, we give an introduction to bifunctional monomers that play an important role in the chemical industry. Briefly, the conventional production processes of α,ω-dicarboxylic acids and α,ω-diols are discussed. Strategies for more sustainable

  16. Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins

    Directory of Open Access Journals (Sweden)

    Amy V. Callaghan

    2013-05-01

    Full Text Available Anaerobic microorganisms play key roles in the biogeochemical cycling of methane and non-methane alkanes. To date, there appear to be at least three proposed mechanisms of anaerobic methane oxidation (AOM. The first pathway is mediated by consortia of archaeal anaerobic methane oxidizers and sulfate-reducing bacteria via ‘reverse methanogenesis’ and is catalyzed by a homologue of methyl-coenzyme M reductase. The second pathway is also mediated by anaerobic methane oxidizers and sulfate-reducing bacteria, wherein the archaeal members catalyze both methane oxidation and sulfate reduction and zero-valent sulfur is a key intermediate. The third AOM mechanism is a nitrite-dependent, intra-aerobic pathway described for the denitrifying bacterium, ‘Candidatus Methylomirabilis oxyfera.’ It is hypothesized that AOM proceeds via reduction of nitrite to nitric oxide, followed by the conversion of two nitric oxide molecules to dinitrogen and molecular oxygen. The latter can be used to functionalize the methane via a particulate methane monooxygenase. With respect to non-methane alkanes, there also appears to be novel mechanisms of activation. The most well-described pathway is the addition of non-methane alkanes across the double bond of fumarate to form alkyl-substituted succinates via the putative glycyl radical enzyme, alkylsuccinate synthase (also known as methylalkylsuccinate synthase. Other proposed mechanisms include anaerobic hydroxylation via ethylbenzene dehydrogenase-like enzymes and an ‘intra-aerobic’ denitrification pathway similar to that described for ‘M. oxyfera.’

  17. Molecular identification of Giardia duodenalis in Ecuador by polymerase chain reaction-restriction fragment length polymorphism

    Directory of Open Access Journals (Sweden)

    Richard Atherton

    2013-06-01

    Full Text Available The aim of this study was to determine the genetic diversity of Giardia duodenalis present in a human population living in a northern Ecuadorian rain forest. All Giardia positive samples (based on an ELISA assay were analysed using a semi-nested polymerase chain reaction-restriction fragment length polymorphism assay that targets the glutamate dehydrogenase (gdh gene; those amplified were subsequently genotyped using NlaIV and RsaI enzymes. The gdh gene was successfully amplified in 74 of 154 ELISA positive samples; 69 of the 74 samples were subsequently genotyped. Of these 69 samples, 42 (61% were classified as assemblage B (26 as BIII and 16 as BIV, 22 (32% as assemblage A (3 as AI and 19 as AII and five (7% as mixed AII and BIII types. In this study site we observe similar diversity in genotypes to other regions in Latin America, though in contrast to some previous studies, we found similar levels of diarrheal symptoms in those individuals infected with assemblage B compared with those infected with assemblage A.

  18. Energy-Efficient Unequal Chain Length Clustering for Wireless Sensor Networks in Smart Cities

    Directory of Open Access Journals (Sweden)

    Mohammad Baniata

    2017-01-01

    Full Text Available The recent advances in sensing and communication technologies such as wireless sensor networks (WSN have enabled low-priced distributed monitoring systems that are the foundation of smart cities. These advances are also helping to monitor smart cities and making our living environments workable. However, sensor nodes are constrained in energy supply if they have no constant power supply. Moreover, communication links can be easily failed because of unequal node energy depletion. The energy constraints and link failures affect the performance and quality of the sensor network. Therefore, designing a routing protocol that minimizes energy consumption and maximizes the network lifetime should be considered in the design of the routing protocol for WSN. In this paper, we propose an Energy-Efficient Unequal Chain Length Clustering (EEUCLC protocol which has a suboptimal multihop routing algorithm to reduce the burden on the cluster head and a probability-based cluster head selection algorithm to prolong the network lifetime. Simulation results show that the EEUCLC mechanism enhanced the energy balance and prolonged the network lifetime compared to other related protocols.

  19. Embedding the outer chain movement for main partition of β-number with length [1, 0, 0,…

    Science.gov (United States)

    Mohommed, Eman F.; Ibrahim, Haslinda; Ahmad, Nazihah; Mahmood, Ammar

    2016-08-01

    One of the graphical representations for any partition of a non-negative integers in the modular representation theory of diagram algebra is James abacus using Beta numbers. In this work James abacus is divided positions into several chains. A new diagram Atco is introduced by employing on the outer chain with length [1, 0, 0,…] on the active James abacus. Finally a consecutive new diagram of b2, b3,…, be can be found from active diagram Atco which is found after applying chain movement.

  20. Oh Magadi! Interpreting isoGDGTs and n-alkanes in a saline tropical lake: Lake Magadi, Kenya

    Science.gov (United States)

    Ferland, T. M.; Werne, J. P.; Castañeda, I. S.; Cohen, A. S.; Lowenstein, T. K.; Deocampo, D.; Renaut, R.; Bernhart, O. R.

    2017-12-01

    The Hominin Sites and Paleolakes Drilling Project (HSPDP) seeks to understand the paleoclimatic and paleoenvironmental context of hominin adaptation and evolution by analysis of paleolacustrine cores taken near key hominin fossil and artifact localities in Kenya and Ethiopia. We present biomarker and compound specific isotope data from a 200 m drill core from Lake Magadi, Kenya. Located 20 km from the Koora Plain in the southern Kenya Rift, and adjacent to the Olorgesailie basin, Lake Magadi is in one of the richest Early-Late Pleistocene archaeological localities in Africa, a region that has been key in debates about the relationship between climate and evolution. Present-day Lake Magadi is a saline pan, a descendant of a series of paleolakes that have occupied its drainage basin and progressively dried for approximately one million years. Nearly 70% of samples analyzed for n-alkanes recorded a robust terrestrial signal. The majority of samples did not contain the complete suite of branched GDGTs necessary to reconstruct temperature from the Methylation of Branched Tetraethers and Cyclisation of Branched Tetraethers (MBT/CBT; Weijers et al., 2007) proxy. The TetraEther indeX with 86 carbon atoms (TEX86; Schouten et al., 2002) temperature proxy was established for 90% of samples analyzed for isoGDGTs, however the Methane and Ring Indices (Zhang et al., 2011; Zhang et al., 2016) suggest that the TEX86 is not applicable to temperature reconstruction at Magadi. Despite this, the Magadi TEX86 temperature reconstruction appears to agree with not only the trends in our n-alkane data but with other regional and global records, including the GRIP-2 δ18O record. We compare our temperature data to other records in the region, and investigate influences on our TEX86 data including microbial community turnover and lake drying.

  1. The effect of environmental factors on stable isotopic composition of n-alkanes in Mediterranean olive oils

    Science.gov (United States)

    Pedentchouk, Nikolai; Mihailova, Alina; Abbado, Dimitri

    2014-05-01

    Traceability of the geographic origin of olive oils is an important issue from both commercial and health perspectives. This study evaluates the impact of environmental factors on stable C and H isotope compositions of n-alkanes in extra virgin olive oils from Croatia, France, Greece, Italy, Morocco, Portugal, Slovenia, and Spain. The data are used to investigate the applicability of stable isotope methodology for olive oil regional classification in the Mediterranean region. Analysis of stable C isotope composition of n-C29 alkane showed that extra virgin olive oils from Portugal and Spain have the most positive n-C29 alkane delta13C values. Conversely, olive oils from Slovenia, northern and central Italy are characterized by the most negative values. Overall, the n-C29 alkane delta13C values show a positive correlation with the mean air temperature during August-December and a negative correlation with the mean relative humidity during these months. Analysis of stable H isotope composition of n-C29 alkane revealed that the deltaD values are the most positive in olive oils from Greece and Morocco and the most negative in oils from northern Italy. The deltaD values of oils show significant correlation with all the analyses geographical parameters: the mean air temperature and relative humidity during August-December, the total amount of rainfall (the same months) and the annual deltaD values of precipitation. As predictor variables in the Categorical Data Analysis, the n-C29 alkane deltaD values show the most significant discriminative power, followed by the n-C29 alkane delta13C values. Overall, 93.4% of olive oil samples have been classified correctly into one of the production regions. Our findings suggest that an integrated analysis of C and H isotope compositions of n-alkanes extracted from extra virgin olive oil could become a useful tool for geographical provenancing of this highly popular food commodity.

  2. Controlling the kinetic chain length of the crosslinks in photo-polymerized biodegradable networks

    NARCIS (Netherlands)

    Jansen, J.; Ghaffar, A.; van der Horst, T.N.S.; Mihov, G.; van der Wal, S.; Feijen, J.; Grijpma, D.W.

    2013-01-01

    Biodegradable polymer networks were prepared by photo-initiated radical polymerization of methacrylate functionalized poly(D, L-lactide) oligomers. The kinetic chains formed in this radical polymerization are the multifunctional crosslinks of the networks. These chains are carbon-carbon chains that

  3. HLA-DPB1 typing with polymerase chain reaction and restriction fragment length polymorphism technique in Danes

    DEFF Research Database (Denmark)

    Hviid, T V; Madsen, H O; Morling, N

    1992-01-01

    We have used the polymerase chain reaction (PCR) in combination with the restriction fragment length polymorphism (RFLP) technique for HLA-DBP1 typing. After PCR amplification of the polymorphic second exon of the HLA-DPB1 locus, the PCR product was digested with seven allele-specific restriction...

  4. Development of environmentally friendly coatings and paints using medium-chain-length poly(3-hydroxyalkanoates) as the polymer binder

    NARCIS (Netherlands)

    Walle, van der G.A.M.; Buisman, F.J.H.; Weusthuis, R.A.; Eggink, G.

    1999-01-01

    Unsaturated medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHAs) produced by Pseudomonas putida from linseed oil fatty acids (LOFA) and tall oil fatty acids (TOFA), were used as the polymer binder in the formulation of high solid alkyd-like paints. The relatively high concentration of

  5. Molecular dynamic study of Shock wave response of bulk amorphous polyvinyl chloride: effect of chain length and force field

    Science.gov (United States)

    Neogi, Anupam; Mitra, Nilanjan

    2015-06-01

    Atomistic molecular dynamics in conjunction with multi-scale shock technique is utilized to investigate shock wave response of bulk amorphous polyvinyl chloride. Dependence of chain length on physical and mechanical behaviour of polymeric material at ambient condition of temperature and pressure are well known but unknown for extreme conditions. Non-reactive force fields PCFF, COMPASS and PCFF+ were used to determine applicability of the force field for the study of the material subjected to shock loads. Several samples of PVC with various chain lengths were subjected to a range of shock compression from 1.5-10.0 km/s. Even though dependence of chain length was observed for lower shock strengths but was not for intense shock loads. The principle Hugoniot points, calculated by applying hydrostatic Rankine-Hugoniot equations and as well as multi-scale shock technique, were compared against LASL experimental shock data, demonstrating superior performance of PCFF+ force-field over PCFF and COMPASS. Shock induced melting characteristic and vibrational spectroscopic study were conducted and compared with experimental data to observe differences in response with relation to different force fields, chain length of the material for different shock intensities.

  6. Chain length dependence of the helix orientation in Langmuir-Blodgett monolayers of alpha-helical diblock copolypeptides

    NARCIS (Netherlands)

    Nguyen, Le-Thu T.; Ardana, Aditya; Vorenkamp, Eltjo J.; ten Brinke, Gerrit; Schouten, Arend J.

    2010-01-01

    The effect of chain length on the helix orientation of alpha-helical diblock copolypeptides in Langmuir and Langmuir-Blodgett monolayers is reported for the first time. Amphiphilic diblock copolypeptides (PLGA-b-PMLGSLGs) of poly(alpha-L-glutamic acid) (PLGA) and

  7. Biosynthesis of Colabomycin E, a New Manumycin-Family Metabolite, Involves an Unusual Chain-Length Factor

    Czech Academy of Sciences Publication Activity Database

    Petříčková, Kateřina; Pospíšil, Stanislav; Kuzma, Marek; Tylová, Tereza; Jágr, Michal; Tomek, P.; Chroňáková, Alica; Brabcová, E.; Anděra, Ladislav; Krištůfek, Václav; Petříček, Miroslav

    2014-01-01

    Roč. 15, č. 9 (2014), s. 1334-1345 ISSN 1439-4227 R&D Projects: GA MZd(CZ) NT13012 Institutional support: RVO:61388971 ; RVO:60077344 ; RVO:68378050 Keywords : biosynthesis * chain-length factors * manumycins Subject RIV: CE - Biochemistry Impact factor: 3.088, year: 2014

  8. Heat capacity and Joule-Thomson coefficient of selected n-alkanes at 0.1 and 10 MPa in broad temperature ranges

    DEFF Research Database (Denmark)

    Regueira Muñiz, Teresa; Varzandeh, Farhad; Stenby, Erling Halfdan

    2017-01-01

    Isobaric heat capacity of six n-alkanes, i.e. n-hexane, n-octane, n-decane, n-dodecane, n-tetradecane and n-hexadecane, was determined with a Calvet type differential heat-flux calorimeter at 0.1 and 10 MPa in a broad temperature range. The measured isobaric heat capacity data were combined...

  9. Distribution and origins of n-alkanes, hopanes, and steranes in rivers and marine sediments from Southwest Caspian coast, Iran: implications for identifying petroleum hydrocarbon inputs.

    Science.gov (United States)

    Shirneshan, Golshan; Bakhtiari, Alireza Riyahi; Memariani, Mahmoud

    2016-09-01

    The occurrence of n-alkanes and biomarkers (hopane and sterane) in surface sediments from Southwestern coasts of Caspian Sea and 28 rivers arriving to this lake, determined with a gas chromatography-mass spectrometry method, was used to assess the impacts of anthropogenic activities in the studied area. The concentrations of total n-alkanes (Σ21 n-alkane) in costal and riverine sediments varied from 249.2 to 3899.5 and 56 to 1622.4 μg g(-1), respectively. An evaluation of the source diagnostic indices indicated that petroleum related sources (petrogenic) were mainly contributed to n-alkanes in costal and most riverine sediments. Only the hydrocarbons in sediment of 3 rivers were found to be mainly of biogenic origin. Principal component analysis using hopane diagnostic ratios in costal and riverine sediments, and Anzali, Turkmenistan, and Azerbaijan oils were used to identify the sources of hydrocarbons in sediments. It was indicated that the anthropogenic contributions in most of the costal sediment samples are dominated with inputs of oil spills from Turkmenistan and Azerbaijan countries.

  10. Molecular dynamics simulation of radiation grafted FEP films as proton exchange membranes: Effects of the side chain length

    DEFF Research Database (Denmark)

    Li, Xue; Zhao, Yang; Li, Weiwei

    2017-01-01

    In order to study the microstructure of the prepared potential proton exchange membrane (PEM), molecular dynamics (MD) simulations were used to lucubrate the transport behavior of water molecules and hydronium ions inside the hydrated sulfonated styrene grafted fluorinated ethylene propylene (FEP...... whereas larger water clusters formed. The results of the mean square displacements (MSDs) show that the proton conductivities of the membranes with the proposed side chain lengths were about three fifths of the experimental data, of which the membrane with side chain length of 7 sulfonic styrene units...... was supposed to exhibit the highest proton conductivity, that is 115.69 mS cm-1. All of the supposed membrane models presented good proton conductivity that could definitely meet the application requirements of the proton exchange membranes. The MD simulations can provide an insight to the chain structure...

  11. Identification of fungemia agents using the polymerase chain reaction and restriction fragment length polymorphism analysis

    Directory of Open Access Journals (Sweden)

    M.S. Santos

    2010-08-01

    Full Text Available Prompt and specific identification of fungemia agents is important in order to define clinical treatment. However, in most cases conventional culture identification can be considered to be time-consuming and not without errors. The aim of the present study was to identify the following fungemia agents: Candida albicans, Candida parapsilosis, Candida tropicalis, Candida glabrata, Cryptococcus neoformans, Cryptococcus gattii, and Histoplasma capsulatum using the polymerase chain reaction and restriction fragment length polymorphism analysis (PCR/RFLP. More specifically: a to evaluate 3 different amplification regions, b to investigate 3 different restriction enzymes, and c to use the best PCR/RFLP procedure to indentify 60 fungemia agents from a culture collection. All 3 pairs of primers (ITS1/ITS4, NL4/ITS5 and Primer1/Primer2 were able to amplify DNA from the reference strains. However, the size of these PCR products did not permit the identification of all the species studied. Three restriction enzymes were used to digest the PCR products: HaeIII, Ddel and Bfal. Among the combinations of pairs of primers and restriction enzymes, only one (primer pair NL4/ITS5 and restriction enzyme Ddel produced a specific RFLP pattern for each microorganism studied. Sixty cultures of fungemia agents (selected from the culture collection of Fundação de Medicina Tropical do Amazonas - FMTAM were correctly identified by PCR/RFLP using the prime pair NL4/ITS5 and Ddel. We conclude that the method proved to be both simple and reproducible, and may offer potential advantages over phenotyping methods.

  12. Fructans of chicory: intestinal transport and fermentation of different chain lengths and relation to fructose and sorbitol malabsorption.

    Science.gov (United States)

    Rumessen, J J; Gudmand-Høyer, E

    1998-08-01

    Fructans (fructooligosaccharides and inulin) are of increasing interest to clinical nutritionists as functional food additives. The chemically closely related food carbohydrates fructose and sorbitol are implicated in functional bowel disease. Intestinal handling of these carbohydrates is incompletely understood. Intestinal absorption, transit, and fermentation (breath hydrogen and methane, venous acetate, blood glucose, and urine fructans) after ingestion of 10-30 g short- and long-chain fructans from chicory were studied by single-blind, crossover randomization in 10 healthy adults. Responses were compared with responses after ingestion of lactulose, fructose, and sorbitol. Breath hydrogen and venous acetate production increased in proportion to increasing fructan dose and were similar to responses to lactulose. The transit times of long-chain fructans were longer than those of short-chain fructans (75 compared with 30 min, Pmalabsorption than were breath-hydrogen curves (Pmalabsorption of 50 g fructose, resulting in significantly more symptoms than 20 g fructose (Pmalabsorption or abdominal distress. Abdominal symptoms after fructans increased with increasing dose and decreasing chain length. The overall gastrointestinal effects of short-chain fructans seem similar to those of lactulose. Fructans with different chain lengths may have different physiologic properties and further studies of fructans in disease states are warranted.

  13. Association mapping of starch chain length distribution and amylose content in pea (Pisum sativum L.) using carbohydrate metabolism candidate genes.

    Science.gov (United States)

    Carpenter, Margaret A; Shaw, Martin; Cooper, Rebecca D; Frew, Tonya J; Butler, Ruth C; Murray, Sarah R; Moya, Leire; Coyne, Clarice J; Timmerman-Vaughan, Gail M

    2017-08-01

    Although starch consists of large macromolecules composed of glucose units linked by α-1,4-glycosidic linkages with α-1,6-glycosidic branchpoints, variation in starch structural and functional properties is found both within and between species. Interest in starch genetics is based on the importance of starch in food and industrial processes, with the potential of genetics to provide novel starches. The starch metabolic pathway is complex but has been characterized in diverse plant species, including pea. To understand how allelic variation in the pea starch metabolic pathway affects starch structure and percent amylose, partial sequences of 25 candidate genes were characterized for polymorphisms using a panel of 92 diverse pea lines. Variation in the percent amylose composition of extracted seed starch and (amylopectin) chain length distribution, one measure of starch structure, were characterized for these lines. Association mapping was undertaken to identify polymorphisms associated with the variation in starch chain length distribution and percent amylose, using a mixed linear model that incorporated population structure and kinship. Associations were found for polymorphisms in seven candidate genes plus Mendel's r locus (which conditions the round versus wrinkled seed phenotype). The genes with associated polymorphisms are involved in the substrate supply, chain elongation and branching stages of the pea carbohydrate and starch metabolic pathways. The association of polymorphisms in carbohydrate and starch metabolic genes with variation in amylopectin chain length distribution and percent amylose may help to guide manipulation of pea seed starch structural and functional properties through plant breeding.

  14. Relationship between Length and Surface-Enhanced Raman Spectroscopy Signal Strength in Metal Nanoparticle Chains: Ideal Models versus Nanofabrication

    Directory of Open Access Journals (Sweden)

    Kristen D. Alexander

    2012-01-01

    Full Text Available We have employed capillary force deposition on ion beam patterned substrates to fabricate chains of 60 nm gold nanospheres ranging in length from 1 to 9 nanoparticles. Measurements of the surface-averaged SERS enhancement factor strength for these chains were then compared to the numerical predictions. The SERS enhancement conformed to theoretical predictions in the case of only a few chains, with the vast majority of chains tested not matching such behavior. Although all of the nanoparticle chains appear identical under electron microscope observation, the extreme sensitivity of the SERS enhancement to nanoscale morphology renders current nanofabrication methods insufficient for consistent production of coupled nanoparticle chains. Notwithstanding this fact, the aggregate data also confirmed that nanoparticle dimers offer a large improvement over the monomer enhancement while conclusively showing that, within the limitations imposed by current state-of-the-art nanofabrication techniques, chains comprising more than two nanoparticles provide only a marginal signal boost over the already considerable dimer enhancement.

  15. The effect of the chain length distribution of free fatty acids on the mixing properties of stratum corneum model membranes.

    Science.gov (United States)

    Oguri, Masashi; Gooris, Gert S; Bito, Kotatsu; Bouwstra, Joke A

    2014-07-01

    The stratum corneum (SC) plays a fundamental role in the barrier function of the skin. The SC consists of corneocytes embedded in a lipid matrix. The main lipid classes in the lipid matrix are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). The aim of this study was to examine the effect of the chain length of FFAs on the thermotropic phase behavior and mixing properties of SC lipids. Fourier transform infrared spectroscopy and Raman imaging spectroscopy were used to study the mixing properties using either protonated or deuterated FFAs. We selected SC model lipid mixtures containing only a single CER, CHOL and either a single FFA or a mixture of FFAs mimicking the FFA SC composition. The single CER consists of a sphingoid base with 18 carbon atoms and an acyl chain with a chain length of 24 carbon atoms. When using lignoceric acid (24 carbon atoms) or a mixture of FFAs, the CER and FFAs participated in mixed crystals, but hydration of the mixtures induced a slight phase separation between CER and FFA. The mixed crystalline structures did not phase separate during storage even up to a time period of 3months. When using palmitic acid (16 carbon atoms), a slight phase separation was observed between FFA and CER. This phase separation was clearly enhanced during hydration and storage. In conclusion, the thermotropic phase behavior and the mixing properties of the SC lipid mixtures were shown to strongly depend on the chain length and chain length distribution of FFAs, while hydration enhanced the phase separation. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Enhancement of medium-chain-length polyhydroxyalkanoates biosynthesis from glucose by metabolic engineering in Pseudomonas mendocina.

    Science.gov (United States)

    Wang, Yuanyuan; Zhao, Fengjie; Fan, Xu; Wang, Shufang; Song, Cunjiang

    2016-02-01

    To enhance the biosynthesis of medium-chain-length polyhydroxyalkanoates (PHAMCL) from glucose in Pseudomonas mendocina NK-01, metabolic engineering strategies were used to block or enhance related pathways. Pseudomonas mendocina NK-01 produces PHAMCL from glucose. Besides the alginate oligosaccharide biosynthetic pathway proved by our previous study, UDP-D-glucose and dTDP-L-rhamnose biosynthetic pathways were identified. These might compete for glucose with the PHAMCL biosynthesis. First, the alg operon, galU and rmlC gene were deleted one by one, resulting in NK-U-1(∆alg), NK-U-2 (∆alg∆galU), NK-U-3(alg∆galU∆rmlC). After fermentation for 36 h, the cell dry weight (CDW) and PHAMCL production of these strains were determined. Compared with NK-U: 1) NK-U-1 produced elevated CDW (from 3.19 ± 0.16 to 3.5 ± 0.11 g/l) and equal PHAMCL (from 0.78 ± 0.06 to 0.79 ± 0.07 g/l); 2) NK-U-2 produced more CDW (from 3.19 ± 0.16 to 3.55 ± 0.23 g/l) and PHAMCL (from 0.78 ± 0.06 to 1.05 ± 0.07 g/l); 3) CDW and PHAMCL dramatically decreased in NK-U-3 (1.53 ± 0.21 and 0.41 ± 0.09 g/l, respectively). Additionally, the phaG gene was overexpressed in strain NK-U-2. Although CDW of NK-U-2/phaG decreased to 1.29 ± 0.2 g/l, PHA titer (%CDW) significantly increased from 24.5 % up to 51.2 %. The PHAMCL biosynthetic pathway was enhanced by blocking branched metabolic pathways in combination with overexpressing phaG gene.

  17. Development of environmentally friendly coatings and paints using medium-chain-length poly(3-hydroxyalkanoates) as the polymer binder.

    Science.gov (United States)

    van der Walle, G A; Buisman, G J; Weusthuis, R A; Eggink, G

    1999-01-01

    Unsaturated medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHAs) produced by Pseudomonas putida from linseed oil fatty acids (LOFA) and tall oil fatty acids (TOFA), were used as the polymer binder in the formulation of high solid alkyd-like paints. The relatively high concentration of unsaturated alkyl side chains incorporated into the PHA resins resulted in oxidative drying PHA paints having excellent coating properties. The homogeneously pigmented PHA coatings yielded high-gloss, smooth and strong films upon curing and showed an excellent flexibility, a good adhesion to different substrates, cohesive film properties and resistance to chipping.

  18. σ-Bond Electron Delocalization in Oligosilanes as Function of Substitution Pattern, Chain Length, and Spatial Orientation

    Directory of Open Access Journals (Sweden)

    Johann Hlina

    2016-08-01

    Full Text Available Polysilanes are known to exhibit the interesting property of σ-bond electron delocalization. By employing optical spectroscopy (UV-vis, it is possible to judge the degree of delocalization and also differentiate parts of the molecules which are conjugated or not. The current study compares oligosilanes of similar chain length but different substitution pattern. The size of the substituents determines the spatial orientation of the main chain and also controls the conformational flexibility. The chemical nature of the substituents affects the orbital energies of the molecules and thus the positions of the absorption bands.

  19. The effect of the cation alkyl chain length on density and diffusion in dialkylpyrrolidinium bis(mandelato)borate ionic liquids.

    Science.gov (United States)

    Filippov, Andrei; Taher, Mamoun; Shah, Faiz Ullah; Glavatskih, Sergei; Antzutkin, Oleg N

    2014-12-28

    The physicochemical properties of ionic liquids are strongly affected by the selective combination of the cations and anions comprising the ionic liquid. In particular, the length of the alkyl chains of ions has a clear influence on the ionic liquid's performance. In this paper, we study the self-diffusion of ions in a series of halogen-free boron-based ionic liquids (hf-BILs) containing bis(mandelato)borate anions and dialkylpyrrolidinium cations with long alkyl chains CnH2n+1 with n from 4 to 14 within a temperature range of 293-373 K. It was found that the hf-BILs with n = 4-7 have very similar diffusion coefficients, while hf-BILs with n = 10-14 exhibit two liquid sub-phases in almost the entire temperature range studied (293-353 K). Both liquid sub-phases differ in their diffusion coefficients, while values of the slower diffusion coefficients are close to those of hf-BILs with shorter alkyl chains. To explain the particular dependence of diffusion on the alkyl chain length, we examined the densities of the hf-BILs studied here. It was shown that the dependence of the density on the number of CH2 groups in long alkyl chains of cations can be accurately described using a "mosaic type" model, where regions of long alkyl chains of cations (named 'aliphatic' regions) and the residual chemical moieties in both cations and anions (named 'ionic' regions) give additive contributions. Changes in density due to an increase in temperature and the number of CH2 groups in the long alkyl chains of cations are determined predominantly by changes in the free volume of the 'ionic' regions, while 'aliphatic' regions are already highly compressed by van der Waals forces, which results in only infinitesimal changes in their free volumes with temperature.

  20. Predominance of even carbon-numbered n-alkanes from lacustrine sediments in Linxia Basin, NE Tibetan Plateau: Implications for climate change

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yongli [Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000 (China)] [Institute of Tibetan and Plateau Research, Chinese Academy of Sciences, Beijing 100085 (China); Fang Xiaomin, E-mail: fangxm@itpcas.ac.cn [Institute of Tibetan and Plateau Research, Chinese Academy of Sciences, Beijing 100085 (China)] [Key Laboratory of Western Resources and Environment of Education Ministry, College at Earth and Environment Sciences, University of Lanzhou, Lanzhou 730000 (China); Zhang Tongwei [Key Laboratory of Western Resources and Environment of Education Ministry, College at Earth and Environment Sciences, University of Lanzhou, Lanzhou 730000 (China); Li Yuanmao; Wu Yingqin; He Daxiang; Wang Youxiao [Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2010-10-15

    Research highlights: {yields} This study reports the first observation of predominant even carbon-numbered n-alkanes of sediments in the continuous lacustrine-sedimentary section (Maogou) from the Late Miocene to the Early Pliocene (13-4.4 Ma) in the Linxia Basin, NE Tibetan Plateau. {yields} Certain types of special autochthonous bacteria are a possible source for the special distribution of even carbon-numbered n-alkanes in lacustrine sediments. {yields} These bacteria may have a high production rate in weak oxic-anoxic and arid depositional environments, in which a variety of geochemical parameters have recorded palaeoclimate change. {yields} A close correspondence among the low ratio of n-C{sub 27}/n-C{sub 31}, the heavy {delta}{sup 13}C values of TOC and a strong even carbon-number predominance (low OEP{sub 16-20} values) from approximately 6.5 to 4.4 Ma and at approximately 8 Ma in the studied section suggests that n-alkanes with a high predominance of even carbon-numbers may be treated as geochemical proxies for arid climate. - Abstract: This study reports the first observation of predominant even C-numbered n-alkanes from sediments in the continuous lacustrine-sedimentary section (Maogou) from the Late Miocene to the Early Pliocene (13-4.4 Ma) in the Linxia Basin, NE Tibetan Plateau. The n-alkanes showed a bimodal distribution that is characterised by a centre at n-C{sub 16}-n-C{sub 20} with maximum values at n-C{sub 18} and n-C{sub 27}-n-C{sub 31} as well as at n-C{sub 29}. The first mode shows a strong even C-number predominance (OEP{sub 16-20} 0.34-0.66). In contrast, the second mode has a strong odd C-number predominance (OEP{sub 27-31} 1.20-2.45). Certain types of special autochthonous bacteria are a possible source for this distribution of even C-numbered n-alkanes in lacustrine sediments. These bacteria may have a high production rate in weak oxic-anoxic and arid depositional environments, in which a variety of geochemical parameters have recorded

  1. Predominance of even carbon-numbered n-alkanes from lacustrine sediments in Linxia Basin, NE Tibetan Plateau: Implications for climate change

    International Nuclear Information System (INIS)

    Wang Yongli; Fang Xiaomin; Zhang Tongwei; Li Yuanmao; Wu Yingqin; He Daxiang; Wang Youxiao

    2010-01-01

    Research highlights: → This study reports the first observation of predominant even carbon-numbered n-alkanes of sediments in the continuous lacustrine-sedimentary section (Maogou) from the Late Miocene to the Early Pliocene (13-4.4 Ma) in the Linxia Basin, NE Tibetan Plateau. → Certain types of special autochthonous bacteria are a possible source for the special distribution of even carbon-numbered n-alkanes in lacustrine sediments. → These bacteria may have a high production rate in weak oxic-anoxic and arid depositional environments, in which a variety of geochemical parameters have recorded palaeoclimate change. → A close correspondence among the low ratio of n-C 27 /n-C 31 , the heavy δ 13 C values of TOC and a strong even carbon-number predominance (low OEP 16-20 values) from approximately 6.5 to 4.4 Ma and at approximately 8 Ma in the studied section suggests that n-alkanes with a high predominance of even carbon-numbers may be treated as geochemical proxies for arid climate. - Abstract: This study reports the first observation of predominant even C-numbered n-alkanes from sediments in the continuous lacustrine-sedimentary section (Maogou) from the Late Miocene to the Early Pliocene (13-4.4 Ma) in the Linxia Basin, NE Tibetan Plateau. The n-alkanes showed a bimodal distribution that is characterised by a centre at n-C 16 -n-C 20 with maximum values at n-C 18 and n-C 27 -n-C 31 as well as at n-C 29 . The first mode shows a strong even C-number predominance (OEP 16-20 0.34-0.66). In contrast, the second mode has a strong odd C-number predominance (OEP 27-31 1.20-2.45). Certain types of special autochthonous bacteria are a possible source for this distribution of even C-numbered n-alkanes in lacustrine sediments. These bacteria may have a high production rate in weak oxic-anoxic and arid depositional environments, in which a variety of geochemical parameters have recorded palaeoclimate change.

  2. Inelastic neutron scattering study on the polytypism of even-numbered n-alkanes

    Science.gov (United States)

    Kubota, Hideki; Kaneko, Fumitoshi; Kawaguchi, Tatsuya

    2005-02-01

    The thermodynamic properties of the two polytypes of n-hexatriacontane ( n- C36H74), single-layered structure Mon and double-layered structure Orth II, have been studied with incoherent inelastic neutron scattering and solubility measurements. The solubility measurements show that Orth II is more stable than Mon, because of its larger entropy. The neutron scattering measurements reveal that the vibrational modes of Orth II shift to the lower frequencies compared with those of Mon in the frequency region below 120 cm-1. The vibrational modes in this region make a dominant contribution to the vibrational entropy of a system, and the advantage of Orth II in vibrational entropy due to the low-frequency shifts is estimated to be 7.8 J K-1 mol-1 at 288 K under the harmonic approximation, which is in good agreement with the entropy difference between Mon and Orth II determined by solubility measurements. These results suggest that the relative stability of polytypic structures of long-chain compounds is mainly determined by the vibrational entropy of the low-frequency modes.

  3. effect of side chain length on the stability and structural properties of 3

    African Journals Online (AJOL)

    Preferred Customer

    DOOPT) and their dimers studied by Hartree-Fock (HF) and Density Functional Theory (DFT) methods. The DFT calculations suggest that dimers of the dialkoxyphenylthiophenes with longer side chains are thermodynamically more stable by ...

  4. Effect of side chain length on the stability and structural properties of 3

    African Journals Online (AJOL)

    thiophene (DOOPT) and their dimers studied by Hartree-Fock (HF) and Density Functional Theory (DFT) methods. The DFT calculations suggest that dimers of the dialkoxyphenylthiophenes with longer side chains are thermodynamically more ...

  5. Effect of Difference in Fatty Acid Chain Lengths of Medium- Chain Lipids on Lipid/Surfactant/Water Phase Diagrams and Drug Solubility

    Directory of Open Access Journals (Sweden)

    Hetal N. Prajapati

    2011-09-01

    Full Text Available Lipids consisting of medium chain fatty acids are commonly used in the development of lipid-based selfemulsifying and self-microemulsifying drug delivery systems. However, no systematic approach to selecting one lipid over another has been reported in the literature. In this study, propylene glycol (PG monoester (PG monocaprylate, Capmul PG-8® and PG diester (PG dicaprylocaprate, Captex 200P® of C8-fatty acids were compared with PG monoester (PG monolaurate, Capmul PG-12® and PG diester (PG dilaurate, Capmul PG-2L® of C12-fatty acids with respect to their phase diagrams, and especially for their ability to form microemulsions in the presence of a common surfactant, Cremophor EL®, and water. The solubility of two model drugs, danazol and probucol, in the lipids and lipid/surfactant mixtures were also compared. The effect of the chain length of medium-chain fatty acids (C8 versus C12 on the phase diagrams of the lipids was minimal. Both shorter and longer chain lipids formed essentially similar microemulsion and emulsion regions in the presence of Cremophor EL® and water, although the C12-fatty acid esters formed larger gel regions in the phase diagrams than the C8-fatty acid esters. When monoesters were mixed with their respective diesters at 1:1 ratios, larger microemulsion regions with lower lipid particle sizes were observed compared to those obtained with individual lipids alone. While the solubility of both danazol and probucol increased greatly in all lipids studied, compared to their aqueous solubility, the solubility in C12-fatty acid esters was found to be lower than in C8-fatty acid esters when the lipids were used alone. This difference in solubility due to the difference in fatty acid chain length, practically disappeared when the lipids were combined with the surfactant.

  6. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels

    OpenAIRE

    Dickman, Elizabeth M.; Newell, Jennifer M.; González, María J.; Vanni, Michael J.

    2008-01-01

    The efficiency of energy transfer through food chains [food chain efficiency (FCE)] is an important ecosystem function. It has been hypothesized that FCE across multiple trophic levels is constrained by the efficiency at which herbivores use plant energy, which depends on plant nutritional quality. Furthermore, the number of trophic levels may also constrain FCE, because herbivores are less efficient in using plant production when they are constrained by carnivores. These hypotheses have not ...

  7. Directed assembly of optoelectronically active alkyl-π-conjugated molecules by adding n-alkanes or π-conjugated species

    Science.gov (United States)

    Hollamby, Martin J.; Karny, Maciej; Bomans, Paul H. H.; Sommerdjik, Nico A. J. M.; Saeki, Akinori; Seki, Shu; Minamikawa, Hiroyuki; Grillo, Isabelle; Pauw, Brian R.; Brown, Paul; Eastoe, Julian; Möhwald, Helmuth; Nakanishi, Takashi

    2014-08-01

    Supramolecular assembly can yield ordered structures by taking advantage of the cumulative effect of multiple non-covalent interactions between adjacent molecules. The thermodynamic origin of many self-assembled structures in water is the balance between the hydrophilic and hydrophobic segments of the molecule. Here, we show that this approach can be generalized to use solvophobic and solvophilic segments of fully hydrophobic alkylated fullerene molecules. Addition of n-alkanes results in their assembly—due to the antipathy of C60 towards n-alkanes—into micelles and hexagonally packed gel-fibres containing insulated C60 nanowires. The addition of pristine C60 instead directs the assembly into lamellar mesophases by increasing the proportion of π-conjugated material in the mixture. The assembled structures contain a large fraction of optoelectronically active material and exhibit comparably high photoconductivities. This method is shown to be applicable to several alkyl-π-conjugated molecules, and can be used to construct organized functional materials with π-conjugated sections.

  8. High Amounts of n-Alkanes in the Composition of Asphodelus aestivus Brot. Flower Essential Oil from Cyprus.

    Science.gov (United States)

    Polatoğlu, Kaan; Demirci, Betül; Can Başer, Kemal Hüsnü

    2016-10-01

    There is only a couple of reports indicating essential oil composition of Asphodelus species in the literature. However, from the members of this genus many non-volatile secondary metabolites were isolated. In Cyprus, Asphodelus aestivus Brot. can be found abundantly in all regions of the island. This plant has various ethnobotanical uses in Cyprus. There is no report on the volatiles nor the essential oil composition of A. aestivus. The smell of A. aestivus flowers resembles that of a cat pee which caught our attention. Therefore, we have carried out GC, GC/MS analysis of the essential oil (yield: 0.01 v/w) obtained from Asphodelus aestivus flowers. Seventeen compounds were identified in the essential oil comprising 96.2% of the oil. The major components of the essential oil were hexadecanoic acid 35.6%, pentacosane 17.4%, tricosane 13.4% and heptacosane 8.4%. In our results, we expected to see sulfur containing cat pee odorants due to the odor of the flower whereas high amounts of n-alkanes, saturated fatty acids and minor amounts of acyclic diterpenes were observed.

  9. Transport behavior of n-alkane penetrants into castor oil based polyurethane-polyester nonwoven fabric composites

    International Nuclear Information System (INIS)

    Satheesh Kumar, M.N.; Manjula, K.S.; Siddaramaiah

    2007-01-01

    Castor oil based polyurethane (PU)-polyester nonwoven fabric composites were fabricated by impregnating the polyester nonwoven fabric in a composition containing castor oil and diisocyanate. Composites were fabricated with two different isocyanates such as toluene-2,4-diisocyanate (TDI) and hexamethylene diisocyanate (HMDI). Transport behavior of n-alkane penetrants (pentane, hexane and heptane) into both PUs and PU-polyester nonwoven fabric composites were studied. Sorption studies were carried out at different temperatures. From the sorption results, the diffusion (D) and permeation (P) coefficients of penetrants have been calculated. Significant increase in the diffusion and permeation coefficients was observed with increase in the temperature of sorption experiments. Drastical reduction in diffusion and permeation coefficients was noticed in the composites compared to neat PUs. Attempts were made to estimate the empirical parameters like n, which suggests the mode of transport and K is a constant depends on the structural characteristics of the composite in addition to its interaction with penetrants. The temperature dependence of the transport coefficients has been used to estimate the activation energy parameter for diffusion (E D ) and permeation (E P ) processes from Arrhenius plots. Furthermore, the sorption results have been interpreted in terms of the thermodynamic parameters such as enthalpy (ΔH) and entropy (ΔS)

  10. Fabrication, thermal properties and thermal stabilities of microencapsulated n-alkane with poly(lauryl methacrylate) as shell

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xiaolin, E-mail: shirleyqiu2009@gmail.com [Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122 (China); Lu, Lixin; Wang, Ju [Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122 (China); Tang, Guoyi [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China); Song, Guolin [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2015-11-20

    Highlights: • Microencapsulation of octadecane and paraffin by crosslinked poly(lauryl methacrylate). • Octadecane microcapsules have a melting enthalpy of about 118 J g{sup −1}. • Weight loss temperatures of the microcapsules were increased by 67 °C and 28 °C. • Phase change enthalpies decreased by around 10 wt% after 500 thermal cycles. • Foams with microcapsules can be applied for passive temperature control. - Abstract: Microencapsulation of n-octadecane or paraffin with poly(lauryl methacrylate) (PLMA) shell was performed by a suspension-like polymerization. The polymer shell was crosslinked by pentaerythritol tetraacrylate (PETRA). The surface morphologies of microcapsules were investigated by scanning electron microscopy (SEM). Phase change properties, thermal reliabilities and thermal stabilities of microcapsules were determined by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The n-octadecane microcapsule exhibits higher melting enthalpy (118.0 J g{sup −1}) and crystallization enthalpy (108.3 J g{sup −1}) compared with the paraffin microcapsule. The thermal resistant temperatures were enhanced by more than 25 °C when n-alkanes were microencapsulated by PLMA. The PCM contents of microcapsules decreased by less than 4 wt% and 6 wt% after 500 and 1000 thermal cycles, respectively. Heat-up experiments indicated that microcapsule-treated foams exhibited upgraded thermal regulation capacities. Consequently, microencapsulated n-octadecane or paraffin with PLMA as shell possesses good potentials for heat storage and thermal regulation.

  11. Fabrication, thermal properties and thermal stabilities of microencapsulated n-alkane with poly(lauryl methacrylate) as shell

    International Nuclear Information System (INIS)

    Qiu, Xiaolin; Lu, Lixin; Wang, Ju; Tang, Guoyi; Song, Guolin

    2015-01-01

    Highlights: • Microencapsulation of octadecane and paraffin by crosslinked poly(lauryl methacrylate). • Octadecane microcapsules have a melting enthalpy of about 118 J g −1 . • Weight loss temperatures of the microcapsules were increased by 67 °C and 28 °C. • Phase change enthalpies decreased by around 10 wt% after 500 thermal cycles. • Foams with microcapsules can be applied for passive temperature control. - Abstract: Microencapsulation of n-octadecane or paraffin with poly(lauryl methacrylate) (PLMA) shell was performed by a suspension-like polymerization. The polymer shell was crosslinked by pentaerythritol tetraacrylate (PETRA). The surface morphologies of microcapsules were investigated by scanning electron microscopy (SEM). Phase change properties, thermal reliabilities and thermal stabilities of microcapsules were determined by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The n-octadecane microcapsule exhibits higher melting enthalpy (118.0 J g −1 ) and crystallization enthalpy (108.3 J g −1 ) compared with the paraffin microcapsule. The thermal resistant temperatures were enhanced by more than 25 °C when n-alkanes were microencapsulated by PLMA. The PCM contents of microcapsules decreased by less than 4 wt% and 6 wt% after 500 and 1000 thermal cycles, respectively. Heat-up experiments indicated that microcapsule-treated foams exhibited upgraded thermal regulation capacities. Consequently, microencapsulated n-octadecane or paraffin with PLMA as shell possesses good potentials for heat storage and thermal regulation.

  12. The effect of polyelectrolyte chain length on layer-by-layer protein/polyelectrolyte assembly - an experimental study

    Czech Academy of Sciences Publication Activity Database

    Houska, Milan; Brynda, Eduard; Bohatá, Karolína

    2004-01-01

    Roč. 273, č. 1 (2004), s. 140-147 ISSN 0021-9797 R&D Projects: GA AV ČR IAA4050006; GA ČR GA203/02/1326; GA ČR GA102/03/0633 Institutional research plan: CEZ:AV0Z4050913 Keywords : layer-by-layer adsorption * protein/polyelectrolyte assemblies * effect of polyelectrolyte chain length Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.784, year: 2004

  13. Synthesis and antimicrobial activity of dimethyl- and trimethyl-substituted phosphonium salts with alkyl chains of various lengths.

    Science.gov (United States)

    Kanazawa, A; Ikeda, T; Endo, T

    1994-01-01

    Various phosphonium salts possessing single or double alkyl chains of various lengths (C10 to C18) were prepared as cationic biocides, and their antimicrobial activities against 11 typical strains of microorganisms including methicillin-resistant Staphylococcus aureus (MRSA) were evaluated. The phosphonium salts with long alkyl chains were found to show high levels of antimicrobial activity. Their activities depended strongly on the molecular structure, and a correlation between antimicrobial activity and molecular structure was observed. In the alkyltrimethylphosphonium salts, the bactericidal activity against S. aureus and Escherichia coli increased with increasing alkyl chain length, and the compound with the longest alkyl chain (C18) killed all the bacterial cells (ca. 10(7) cells per ml) within 30 min of contact at concentrations of 2.8 and 28 microM, respectively. In contrast, the bactericidal activity of dialkyldimethylphosphonium salts was found to decrease as the chain length of the substituents increased. It is significant that the phosphonium biocide containing double decyl groups exhibited the broadest spectrum of activity against microorganisms tested and showed the greatest bacteriostatic activity against MRSA (MIC = 0.78 micrograms/ml). Furthermore, we systematically investigated differences in bactericidal activity between the phosphonium salts and commonly available ammonium salts with the same hydrophobic structure. It was observed that the phosphonium salts showed an advantage over the corresponding ammonium salts in bactericidal activity and killing rate. For example, tetradecyltrimethyl- and didecyldimethylphosphonium chlorides killed all S. aureus organisms (ca. 10(7) cells per ml) within 60 and 30 min of exposure at 28 and 2.8 microM, respectively, while tetradecyltrimethyl- and didecyldimethylammonium chlorides which are representative of the existing cationic disinfectants did not kill all the bacteria even at the longest exposure time (120

  14. Improving Vegetable Oil Properties by Transforming Fatty Acid Chain Length in Jatropha Oil and Coconut Oil Blends

    Directory of Open Access Journals (Sweden)

    Wahyudi

    2018-02-01

    Full Text Available Efforts to improve the physical and chemical properties of vegetable oils as diesel fuels such as viscosity and calorific value are indispensable with the depletion of fossil oil reserves. Jatropha oil with long chain fatty acids and high degree of unsaturation is mixed with short chain saturated fatty acid coconut oil in various compositions. The mixture was heated and stirred for 30 min at 90 °C. This mixing leads to a decrease in viscosity which allows for the breaking of the bond. The fatty acid molecule structure undergoes transformation that changes the degree of unsaturation and the average length of the carbon chain. Consequently, the kinematic viscosity and flash point of the mixture decreases while its calorific value increases.

  15. Synthesis and electrochromic properties of trans-stilbene bearing copolymers obtained with different repeat unit and chain length

    International Nuclear Information System (INIS)

    Karakus, Melike; Nurioglu, Ayda Goycek; Akpinar, Hava Zekiye; Toppare, Levent; Cirpan, Ali

    2013-01-01

    Highlights: • Benzotriazole, thiophene and trans-stilbene were used to obtain random copolymers. • Polymer chain length effect was examined via reaction times and feed ratio. • Polymers show processability, multichromicity and fast switching times. -- Abstract: Three new random copolymers containing benzotriazole (BTz), thiophene (Th) and trans-stilbene (St) were synthesized via Stille coupling technique with different monomer ratios. In order to determine the effect of stilbene quantity on electrochromic properties of the polymers, feed ratios of the monomers were altered in chemical polymerization. Polymer chain length effect was also investigated via using different reaction times and the same feed ratio. The characteristics of the synthesized copolymers were compared based on their quantity of stilbene moiety and chain length. Redox potentials and HOMO/LUMO energy levels of all polymers were characterized by cyclic voltammetry. To evaluate the optical properties of the electrochromic copolymers, spectroelectrochemistry technique was used. Optical band gap values of the copolymers were found in the range between 1.85 and 2.06 eV. Optical contrasts and switching ability of the polymer films were determined by square wave chronoamperometry. Solution processable polymers reveal multichromicity upon oxidation and reduction at low potentials, fast switching times and low band gap

  16. Self-consistent field theoretic simulations of amphiphilic triblock copolymer solutions: Polymer concentration and chain length effects

    Directory of Open Access Journals (Sweden)

    X.-G. Han

    2014-06-01

    Full Text Available Using the self-consistent field lattice model, polymer concentration φP and chain length N (keeping the length ratio of hydrophobic to hydrophilic blocks constant the effects on temperature-dependent behavior of micelles are studied, in amphiphilic symmetric ABA triblock copolymer solutions. When chain length is increased, at fixed φP, micelles occur at higher temperature. The variations of average volume fraction of stickers φcos and the lattice site numbers Ncols at the micellar cores with temperature are dependent on N and φP, which demonstrates that the aggregation of micelles depends on N and φP. Moreover, when φP is increased, firstly a peak appears on the curve of specific heat CV for unimer-micelle transition, and then in addition a primary peak, the secondary peak, which results from the remicellization, is observed on the curve of CV. For a long chain, in intermediate and high concentration regimes, the shape of specific heat peak markedly changes, and the peak tends to be a more broad peak. Finally, the aggregation behavior of micelles is explained by the aggregation way of amphiphilic triblock copolymer. The obtained results are helpful in understanding the micellar aggregation process.

  17. Spectral sensitization of TiO2 by new hemicyanine dyes in dye solar cell yielding enhanced photovoltage: Probing chain length effect on performance

    International Nuclear Information System (INIS)

    Fadadu, Kishan B.; Soni, Saurabh S.

    2013-01-01

    Graphical abstract: New hemicyanine dyes based on indolenine moiety were utilized as light harvesting materials in dye sensitized solar cell. Chain lengths of the molecules were varied in order to study its effect of chain length on the performance of DSSC. Electron transfer kinetic of the solar cell was studied and it was found that the chain length changes the electron transfer kinetic. We have achieved remarkable photovoltage and overall performance of DSSC. Highlights: ► New hemicyanine dyes based on indolenine moiety were utilized as light harvesting materials in dye sensitized solar cell. ► Chain lengths of the molecules were varied in order to study its effect of chain length on the performance of DSSC. ► Electron transfer kinetic of the solar cell was studied and it was found that the chain length changes the electron transfer kinetic. -- Abstract: New hemicyanine dyes having indole nucleus with different alkyl chain length were synthesized and characterized using 1 H NMR and mass spectroscopy. These dyes were used to sensitize the TiO 2 film in dye sensitized solar cell. Nanocrystalline dye solar cells were fabricated and characterized using various electrochemical techniques. It has been found that the alkyl chain length present in the dye molecules greatly affects the overall performance of dye solar cell. Molecules having longer alkyl chain are having better sensitizers which enhance V oc to significant extent. Chain length dependent performance was further investigated using Tafel polarization and impedance method. Hemicyanine dye having hexyl chain has outperformed by attaining 2.9% solar to electricity conversion efficiency

  18. Prediction of fatty acid chain length and unsaturation of milk fat by mid-infrared milk analysis.

    Science.gov (United States)

    Wojciechowski, Karen L; Barbano, David M

    2016-11-01

    Our objective was to develop partial least squares (PLS) models to predict fatty acid chain length and total unsaturation of milk fat directly from a mid-infrared (MIR) spectra of milk at 40°C and then determine the feasibility of using those measures as correction factors to improve the accuracy of milk fat determination. A set of 268 milks (modified milks, farm bulk tank milks, and individual cow) were analyzed for fat, true protein, and anhydrous lactose with chemical reference methods, and in addition a MIR absorption spectra was collected for each milk. Fat was extracted from another portion of each milk, the fat was saponified to produce free fatty acids, and the free fatty acids were converted to methyl esters and quantified using gas-liquid chromatography. The PLS models for predicting the average chain length (carbons per fatty acid) and unsaturation (double bonds per fatty acid) of fatty acids in the fat portion of a milk sample from a MIR milk spectra were developed and validated. The validation performance of the prediction model for chain length and unsaturation had a relative standard deviation of 0.43 and 3.3%, respectively. These measures are unique in that they are fat concentration independent characteristics of fat structure that were predicted directly with transmission MIR analysis of milk. Next, the real-time data output from the MIR spectrophotometer for fatty acid chain length and unsaturation of milk were used to correct the fat A (C=O stretch) and fat B (C-H stretch) measures to improve accuracy of fat prediction. The accuracy validation was done over a period of 5 mo with 12 sets of 10 individual farm milks that were not a part of the PLS modeling population. The correction of a traditional fat B virtual filter result (C-H stretch) for sample-to-sample variation in unsaturation reduced the Euclidean distance for predicted fat from 0.034 to 0.025. The correction of a traditional fat A virtual filter result (C=O stretch) modified with

  19. Thermoresponsive Poly(2-oxazoline) Molecular Brushes by Living Ionic Polymerization: Kinetic Investigations of Pendant Chain Grafting and Cloud Point Modulation by Backbone and Side Chain Length Variation

    KAUST Repository

    Zhang, Ning

    2012-04-17

    Molecular brushes of poly(2-oxazoline)s were prepared by living anionic polymerization of 2-iso-propenyl-2-oxazoline to form the backbone and subsequent living cationic ring-opening polymerization of 2-n- or 2-iso-propyl-2-oxazoline for pendant chain grafting. In situ kinetic studies indicate that the initiation efficiency and polymerization rates are independent from the number of initiator functions per initiator molecule. This was attributed to the high efficiency of oxazolinium salt and the stretched conformation of the backbone, which is caused by the electrostatic repulsion of the oxazolinium moieties along the macroinitiator. The resulting molecular brushes showed thermoresponsive properties, that is, having a defined cloud point (CP). The dependence of the CP as a function of backbone and side chain length as well as concentration was studied. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Reconstruction of palaeoenvironmental change in a late Miocene peatland, as deduced from distribution patterns of lipid biomarkers and the carbon isotopic composition of individual n-alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Johnny Briggs; David Large [University of Nottingham, Nottingham (United Kingdom). School of Chemical, Environmental and Mining Engineering

    2007-07-01

    In order to comprehend the processes of peatland evolution, and to make projections concerning the long-term response of the peatland carbon reservoir to environmental change, we consider thick lignite deposits formed over periods of 1 my. To explore the long-term response of peatland to changing climate, we have investigated the reaction of peatland plant communities to changes in the exogenic carbon cycle on timescales exceeding 100 ky. This was achieved by examining variations in bulk {delta}{sup 13}C, biomarker distributions, and compound specific {delta}{sup 13}C compositions of plant derived n-alkanes, from orbitally tuned early Miocene lignite. 21 samples were analysed from the Morwell 1B lignite, Gippsland Basin, Australia. These samples encompassed 27.8 m of lignite, thought to correspond to the time interval of 22.29 - 22.68 Ma. Prior to analysis by GC-IR-MS, the n-alkanes were purified using urea adduction. Analysis of the relative distributions of n-alkanes and aliphatic Terpenoid biomarkers was undertaken by GC-MS. The distributions of Terpenoid biomarkers indicated that no correlation exists between bulk {delta}{sup 13}C and the relative contribution of angiosperm to gymnosperm type vegetation. The n-alkane distributions demonstrated a link between bulk {delta}{sup 13}C and aquatic macrophytes, (greatest contributor to the C{sub 29} homologue in peat forming vegetation is terrestrial plants, whereas the C{sub 25} homologue is a proxy for aquatic macrophytes). This suggests that after accounting for atmospheric {delta}{sup 13}C, bulk carbon isotopes carry a signature for the hydrological conditions of plant growth. 22 refs., 4 figs.

  1. Novel Strategies for Production of Medium and High Chain Length Alcohols

    NARCIS (Netherlands)

    Lopez Contreras, A.M.; Kuit, W.; Springer, J.; Claassen, P.A.M.

    2011-01-01

    Fermentation-derived ethanol is currently widely used as transport fuel, both as such or as a blending component in gasoline (Antoni et al. 2007; Mielenz 2001). However, longer chain alcohols have higher energy densities and are less soluble in water than ethanol, which are important advantages for

  2. Simulated glass-forming polymer melts: dynamic scattering functions, chain length effects, and mode-coupling theory analysis.

    Science.gov (United States)

    Frey, S; Weysser, F; Meyer, H; Farago, J; Fuchs, M; Baschnagel, J

    2015-02-01

    We present molecular-dynamics simulations for a fully flexible model of polymer melts with different chain length N ranging from short oligomers (N = 4) to values near the entanglement length (N = 64). For these systems we explore the structural relaxation of the supercooled melt near the critical temperature T c of mode-coupling theory (MCT). Coherent and incoherent scattering functions are analyzed in terms of the idealized MCT. For temperatures T > T c we provide evidence for the space-time factorization property of the β relaxation and for the time-temperature superposition principle (TTSP) of the α relaxation, and we also discuss deviations from these predictions for T ≈ T c. For T larger than the smallest temperature where the TTSP holds we perform a quantitative analysis of the dynamics with the asymptotic MCT predictions for the late β regime. Within MCT a key quantity, in addition to T c, is the exponent parameter λ. For the fully flexible polymer models studied we find that λ is independent of N and has a value (λ = 0.735 ) typical of simple glass-forming liquids. On the other hand, the critical temperature increases with chain length toward an asymptotic value T c (∞) . This increase can be described by T c (∞) - T c(N) ∼ 1/N and may be interpreted in terms of the N dependence of the monomer density ρ, if we assume that the MCT glass transition is ruled by a soft-sphere-like constant coupling parameter Γ c = ρ c T c (-1/4), where ρ c is the monomer density at T c. In addition, we also estimate T c from a Hansen-Verlet-like criterion and MCT calculations based on structural input from the simulation. For our polymer model both the Hansen-Verlet criterion and the MCT calculations suggest T c to decrease with increasing chain length, in contrast to the direct analysis of the simulation data.

  3. Carbon and Hydrogen Isotopic Composition of Plant Wax n-Alkanes: A Tool for Characterizing Soil Provenance in Forensic Science

    Science.gov (United States)

    Pedentchouk, N.; Wagner, T.; Jones, M.

    2009-04-01

    Forensic science is an integrative discipline that requires material evidence from diverse sources. Geochemical evidence derived from inorganic and organic substances is becoming increasingly popular among law enforcement agencies in industrialized countries. Previous investigations indicate that the relative distributions of individual plant-derived biomarkers found in soils are linked to the biomarker patterns found in the overlying vegetation. However, identification of soil provenance based on the distribution of plant-derived biomarkers for forensic purposes is inhibited by the fact that a significant number of terrestrial plant species have overlapping biomarker distributions. In order to enhance the resolving power of plant-derived biomarker signal, we propose to enhance the molecular approach by adding a stable isotope component, i.e. the delta13C/deltaD values of individual biomarkers. The first objective of this project is to determine the delta13C/deltaD signatures of n-alkanes derived from various higher plant types commonly growing in the UK. The second objective is to investigate whether the same species/plant types differ isotopically between two locations affected by different weather patterns in the UK: a relatively warmer and drier Norwich, Norfolk and a cooler and wetter Newcastle-upon-Tyne in NE England. The n-C29 alkane data from 14 tree species sampled during July 2007 and August 2008 in Newcastle show a clear negative trend between delta13C and deltaD values. When these data are plotted against each other, the six deciduous angiosperms (delta13C: c. -39 to -35 per mil; deltaD: c. -155 to -130 per mil) are completely separated from four evergreen angiosperms (delta13C: c. -33 to -28 per mil; deltaD: c. -195 to -165 per mil). The four gymnosperm species data plot between those of the deciduous and evergreen angiosperms. Because all 14 species in Newcastle experience the same environmental conditions, we suggest that the observed isotopic

  4. Polypropylene non-woven meshes with conformal glycosylated layer for lectin affinity adsorption: the effect of side chain length.

    Science.gov (United States)

    Ye, Xiang-Yu; Huang, Xiao-Jun; Xu, Zhi-Kang

    2014-03-01

    The unique characteristics of polypropylene non-woven meshes (PPNWMs), like random network of overlapped fibers, multiple connected pores and overall high porosity, make them high potentials for use as separation or adsorption media. Meanwhile, carbohydrates can specifically recognize certain lectin through multivalent interactions. Therefore glycosylated PPNWMs, combing the merits of both, can be regarded as superior affinity membranes for lectin adsorption and purification. Here, we describe a versatile strategy for the glycosylation of PPNWMs. Two hydrophilic polymers with different side chain length, poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(oligo(ethylene glycol) methacrylate) (POEGMA), were first conformally tethered on the polypropylene fiber surface by a modified plasma pretreatment and benzophenone (BP) entrapment UV irradiation process. Then glucose ligands were bound through the reaction between the hydroxyl group and acetyl glucose. Chemical changes of the PPNWMs surface were monitored by FT-IR/ATR. SEM pictures show that conformal glucose ligands can be achieved through the modified process. After deprotection, the glycosylated PPNWMs became superhydrophilic and had high specific recognition capability toward Concanavalin A (Con A). Static Con A adsorption experiments were further performed and the results indicate that fast adsorption kinetics and high binding capacity can be accomplished at the same time. We also found that increasing the side chain length of polymer brushes had positive effect on protein binding capacity due to improved chain mobility. Model studies suggest a multilayer adsorption behavior of Con A. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Ion solvation in polymer blends and block copolymer melts: effects of chain length and connectivity on the reorganization of dipoles.

    Science.gov (United States)

    Nakamura, Issei

    2014-05-29

    We studied the thermodynamic properties of ion solvation in polymer blends and block copolymer melts and developed a dipolar self-consistent field theory for polymer mixtures. Our theory accounts for the chain connectivity of polymerized monomers, the compressibility of the liquid mixtures under electrostriction, the permanent and induced dipole moments of monomers, and the resultant dielectric contrast among species. In our coarse-grained model, dipoles are attached to the monomers and allowed to rotate freely in response to electrostatic fields. We demonstrate that a strong electrostatic field near an ion reorganizes dipolar monomers, resulting in nonmonotonic changes in the volume fraction profile and the dielectric function of the polymers with respect to those of simple liquid mixtures. For the parameter sets used, the spatial variations near an ion can be in the range of 1 nm or larger, producing significant differences in the solvation energy among simple liquid mixtures, polymer blends, and block copolymers. The solvation energy of an ion depends substantially on the chain length in block copolymers; thus, our theory predicts the preferential solvation of ions arising from differences in chain length.

  6. Electrical contacts to nanorod networks at different length scales: From macroscale ensembles to single nanorod chains

    KAUST Repository

    Lavieville, Romain

    2013-11-01

    The nature of metal-semiconductor interfaces at the nanoscale is an important issue in micro- and nanoelectronic engineering. The study of charge transport through chains of CdSe semiconductor nanorods linked by Au particles represents an ideal model system for this matter, because the metal semiconductor interface is an intrinsic feature of the nanosystem. Here we show the controlled fabrication of all-inorganic hybrid metal-semiconductor networks with different size, in which the semiconductor nanorods are linked by Au domains at their tips. We demonstrate different approaches to selectively contact the networks and single nanorod chains with planar electrodes, and we investigate their charge transport at room temperature. © 2013 Elsevier B.V. All rights reserved.

  7. The effect of the alkyl chain length on physicochemical features of (ionic liquids + γ-butyrolactone) binary mixtures

    International Nuclear Information System (INIS)

    Papović, Snežana; Bešter-Rogač, Marija; Vraneš, Milan; Gadžurić, Slobodan

    2016-01-01

    Highlights: • Influence of alkyl substituent length on IL properties was studied. • Nature of interactions between studied [C n C 1 im][NTf 2 ] and GBL were discussed. • Angell strength parameter indicates [C n C 1 im][NTf 2 ] are fragile liquids. • ILs properties regularly change with increase of the alkyl chain length. • Absence of GBL self-association upon addition of IL is observed. - Abstract: Densities and viscosities were determined and analysed for γ-butyrolactone (GBL) binary mixtures with 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids (where alkyl = ethyl, hexyl, octyl) as a function of temperature at atmospheric pressure (p = 0.1 MPa) and over the whole composition range. Excess molar volumes have been calculated from the experimental densities and were fitted using Redlich–Kister’s polynomial equation. Other volumetric parameters have been also calculated in order to obtain information about interactions between GBL and imidazolium based ionic liquids with different alkyl chain length. From the viscosity measurements, the Angell strength parameter was calculated for pure ionic liquids indicating that all investigated electrolytes are “fragile” liquids.

  8. Size-distributions of n-alkanes, PAHs and hopanes and their sources in the urban, mountain and marine atmospheres over East Asia

    Directory of Open Access Journals (Sweden)

    Z. Wang

    2009-11-01

    Full Text Available Size-segregated (9 stages n-alkanes, polycyclic aromatic hydrocarbons (PAHs and hopanes in the urban (Baoji city in inland China, mountain (Mt. Tai in east coastal China and marine (Okinawa Island, Japan atmospheres over East Asia were studied using a GC/MS technique. Ambient concentrations of n-alkanes (1698±568 ng m−3 in winter and 487±145 ng m−3 in spring, PAHs (536±80 and 161±39 ng m−3, and hopanes (65±24 and 20±2.4 ng m−3 in the urban air are 1–2 orders of magnitude higher than those in the mountain aerosols and 2–3 orders of magnitude higher than those in the marine samples. Mass ratios of n-alkanes, PAHs and hopanes clearly demonstrate coal-burning emissions as their major source. Size distributions of fossil fuel derived n-alkane, PAHs and hopanes were found to be unimodal in most cases, peaking at 0.7–1.1 μm size. In contrast, plant wax derived n-alkanes presented a bimodal distribution with two peaks at the sizes of 0.7–1.1 μm and >4.7 μm in the summer mountain and spring marine samples. Among the three types of samples, geometric mean diameter (GMD of the organics in fine mode (<2.1 μm was found to be smallest (av. 0.63 μm in spring for the urban samples and largest (1.01 μm for the marine samples, whereas the GMD in coarse mode (≥2.1 μm was found to be smallest (3.48 μm for the marine aerosols and largest (4.04 μm for the urban aerosols. The fine mode GMDs of the urban and mountain samples were larger in winter than in spring and summer. Moreover, GMDs of 3- and 4-ring PAHs were larger than those of 5- and 6-ring PAHs in the three types of atmospheres. Such differences in GMDs can be interpreted by the repartitioning of organic compounds and the coagulation and hygroscopic growth of particles during a long-range transport from the inland continent to the marine area, as well as the difference in their sources among the three regions.

  9. Dental plaque microcosm response to bonding agents containing quaternary ammonium methacrylates with different chain lengths and charge densities.

    Science.gov (United States)

    Zhou, Han; Li, Fang; Weir, Michael D; Xu, Hockin H K

    2013-11-01

    Antibacterial bonding agents are promising to combat bacteria and caries at tooth-restoration margins. The objectives of this study were to incorporate new quaternary ammonium methacrylates (QAMs) to bonding agent and determine the effects of alkyl chain length (CL) and quaternary amine charge density on dental plaque microcosm bacteria response for the first time. Six QAMs were synthesized with CL=3, 6, 9, 12, 16, 18. Each QAM was incorporated into Scotchbond multi-purpose (SBMP). To determine the charge density effect, dimethylaminododecyl methacrylate (DMAHDM, CL=16) was mixed into SBMP at mass fraction=0%, 2.5%, 5%, 7.5%, 10%. Charge density was measured using a fluorescein dye method. Dental plaque microcosm using saliva from ten donors was tested. Bacteria were inoculated on resins. Early-attachment was tested at 4h. Biofilm colony-forming units (CFU) were measured at 2 days. Incorporating QAMs into SBMP reduced bacteria early-attachment. Microcosm biofilm CFU for CL=16 was 4 log lower than SBMP control. Charge density of bonding agent increased with DMAHDM content. Bacteria early-attachment decreased with increasing charge density. Biofilm CFU at 10% DMAHDM was reduced by 4 log. The killing effect was similarly-strong against total microorganisms, total streptococci, and mutans streptococci. Increasing alkyl chain length and charge density of bonding agent was shown for the first time to decrease microcosm bacteria attachment and reduce biofilm CFU by 4 orders of magnitude. Novel antibacterial resins with tailored chain length and charge density are promising for wide applications in bonding, cements, sealants and composites to inhibit biofilms and caries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Immobilization of Lipases on Alkyl Silane Modified Magnetic Nanoparticles: Effect of Alkyl Chain Length on Enzyme Activity

    Science.gov (United States)

    Wang, Jiqian; Meng, Gang; Tao, Kai; Feng, Min; Zhao, Xiubo; Li, Zhen; Xu, Hai; Xia, Daohong; Lu, Jian R.

    2012-01-01

    Background Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. Methodology/Principal Findings Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18) modified Fe3O4 were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. Conclusions/Significance The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for enzyme immobilization

  11. Dental plaque microcosm response to bonding agents containing quaternary ammonium methacrylates with different chain lengths and charge densities

    Science.gov (United States)

    Zhou, Han; Li, Fang; Weir, Michael D.; Xu, Hockin H.K.

    2013-01-01

    Objectives Antibacterial bonding agents are promising to combat bacteria and caries at tooth-restoration margins. The objectives of this study were to incorporate new quaternary ammonium methacrylates (QAMs) to bonding agent and determine the effects of alkyl chain length (CL) and quaternary amine charge density on dental plaque microcosm bacteria response for the first time. Methods Six QAMs were synthesized with CL = 3, 6, 9, 12, 16, 18. Each QAM was incorporated into Scotchbond Multi-purpose (SBMP). To determine the charge density effect, dimethylaminododecyl methacrylate (DMAHDM, CL = 16) was mixed into SBMP at mass fraction = 0%, 2.5%, 5%, 7.5%, 10%. Charge density was measured using a fluorescein dye method. Dental plaque microcosm using saliva from ten donors was tested. Bacteria were inoculated on resins. Early-attachment was tested at 4 hours. Biofilm colony-forming units (CFU) were measured at 2 days. Results Incorporating QAMs into SBMP reduced bacteria early-attachment. Microcosm biofilm CFU for CL = 16 was 4 log lower than SBMP control. Charge density of bonding agent increased with DMAHDM content. Bacteria early-attachment decreased with increasing charge density. Biofilm CFU at 10% DMAHDM was reduced by 4 log. The killing effect was similarly-strong against total microorganisms, total streptococci, and mutans streptococci. Conclusions Increasing alkyl chain length and charge density of bonding agent was shown for the first time to decrease microcosm bacteria attachment and reduce biofilm CFU by 4 orders of magnitude. Novel antibacterial resins with tailored chain length and charge density are promising for wide applications in bonding, cements, sealants and composites to inhibit biofilms and caries. PMID:23948394

  12. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.

    Directory of Open Access Journals (Sweden)

    Jiqian Wang

    Full Text Available BACKGROUND: Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. METHODOLOGY/PRINCIPAL FINDINGS: Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18 modified Fe(3O(4 were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. CONCLUSIONS/SIGNIFICANCE: The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for

  13. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.

    Science.gov (United States)

    Wang, Jiqian; Meng, Gang; Tao, Kai; Feng, Min; Zhao, Xiubo; Li, Zhen; Xu, Hai; Xia, Daohong; Lu, Jian R

    2012-01-01

    Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18) modified Fe(3)O(4) were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for enzyme immobilization enabling efficient enzyme recovery and recycling.

  14. Variable camshaft timing system utilizing changes in length of portions of a chain or belt

    Energy Technology Data Exchange (ETDEWEB)

    Butterfield, R.P.; Smith, F.R.

    1992-10-06

    This patent describes an internal combustion engine. It comprises: a first rotatable member, the first rotatable member being rotatable about a first axis; a second rotatable member; endless drive means interconnecting the first rotatable member and the second rotatable member for simultaneous rotation of the rotatable members; first hydraulic tensioning means; and means for transferring hydraulic fluid from one of the first tensioning means and the second tensioning means to the other of the first tensioning means and the second tensioning means to increase the length of one of the first portion and the second portion and decrease the length of the other of the first portion and the portion and thereby change the position of the second rotatable member about its axis of rotation relative to the first rotatable member.

  15. On the possibility of using short chain length mono-carboxylic acids for stabilization of magnetic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Avdeev, Mikhail V. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna Moscow Region (Russian Federation)]. E-mail: avd@nf.jinr.ru; Bica, Doina [Laboratory of Magnetic Fluids, CFATR, Romanian Academy, Timisoara Division, Timisoara (Romania); Vekas, Ladislau [National Center for Engineering of Systems with Complex Fluids, University Politehnica, Timisoara (NC ESCF-UPT) (Romania); Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele (Romania); Marinica, Oana [National Center for Engineering of Systems with Complex Fluids, University Politehnica, Timisoara (NC ESCF-UPT) (Romania); Balasoiu, Maria [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna Moscow Region (Russian Federation); Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, Budapest (Hungary); Aksenov, Victor L. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna Moscow Region (Russian Federation); Rosta, Laszlo [Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele (Romania); Garamus, Vasil M. [GKSS Research Centre, Geesthacht (Germany); Schreyer, Andreas [GKSS Research Centre, Geesthacht (Germany)

    2007-04-15

    Short chain length mono-carboxylic acids (lauric and myristic acids) are used to coat magnetite nanoparticles in non-polar organic liquids, which results in highly stable magnetic fluids. The new fluids are compared with classical organic fluids stabilized by oleic acid (OA). Magnetic granulometry and small-angle neutron scattering (polarized mode) reveal a great difference in the particle size distribution function for the studied magnetic fluids, particularly a decrease in the characteristic particle radius of magnetite when lauric and myristic acids are used instead of OA.

  16. Perfil de n-alcanos em cinco espécies de plantas forrageiras tropicais - DOI: 10.4025/actascianimsci.v27i3.1207 Profile of n-alkanes in five species of plants tropical forages - DOI: 10.4025/actascianimsci.v27i3.1207

    Directory of Open Access Journals (Sweden)

    Antônio Ferriani Branco

    2005-03-01

    Full Text Available O objetivo do experimento foi estudar o perfil de n-alcanos em espécies de gramíneas (Brachiaria brizantha, Cynodon dactylon e Panicum maximum e leguminosas (Arachis pintoi e Glycine wightii. Foram identificados e quantificados por meio de cromatografia gasosa, os n-alcanos C24 a C35, sendo C32 e C34 padrões internos. As concentrações dos n-alcanos nas diferentes espécies e respectivas frações (lâminas foliares, colmos porções superior e inferior e matéria morta para gramíneas; folhas, caule porção superior e inferior e matéria morta para leguminosas foram submetidas à análise de variância e teste de média (Tukey. Nos períodos de primavera e inverno, para a maioria das espécies e frações, há predomínio dos n-alcanos de cadeia ímpar. Houve maior concentração de C29, C31 e C33 na primavera, C27, C28, C29, C30 e C31, no verão e C27, C29, C31 e C33 no invernoThis experiment aimed to study the profile of n-alkanes in tropical grasses species (Brachiaria brizantha, Cynodon dactylon and Panicum maximum and legumes (Arachis pintoi and Glycine wightii. They were identified and quantified, through gas cromatography, the n-alkanes C24 to C35, being the alkanes C32 and C34 internal indices. The n-alkanes concentrations in the different species and respective fractions (leaf blade, stem higher and lower portion and dead matter for grasses; leaves, stem higher portion, stem lower portion and dead matter for legumes were submitted to variance analysis and mean test (Tukey. For most of the species and fractions, there is prevalence of odd chain n-alkanes during springtime and winter. There was larger concentration of the alkanes C29, C31 and C33 in springtime, C27, C28, C29, C30 and C31 in summer and C27, C29, C31 and C33 in winter

  17. Collapse of Langmuir monolayer at lower surface pressure: Effect of hydrophobic chain length

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kaushik, E-mail: kaushikdas2089@gmail.com; Kundu, Sarathi [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035 (India)

    2016-05-23

    Long chain fatty acid molecules (e.g., stearic and behenic acids) form a monolayer on water surface in the presence of Ba{sup 2+} ions at low subphase pH (≈ 5.5) and remain as a monolayer before collapse generally occurs at higher surface pressure (π{sub c} > 50 mN/m). Monolayer formation is verified from the surface pressure vs. area per molecule (π-A) isotherms and also from the atomic force microscopy (AFM) analysis of the films deposited by single upstroke of hydrophilic Si (001) substrate through the monolayer covered water surface. At high subphase pH (≈ 9.5), barium stearate molecules form multilayer structure at lower surface pressure which is verified from the π-A isotherms and AFM analysis of the film deposited at 25 mN/m. Such monolayer to multilayer structure formation or monolayer collapse at lower surface pressure is unusual as at this surface pressure generally fatty acid salt molecules form a monolayer on the water surface. Formation of bidentate chelate coordination in the metal containing headgroups is the reason for such monolayer to multilayer transition. However, for longer chain barium behenate molecules only monolayer structure is maintained at that high subphase pH (≈ 9.5) due to the presence of relatively more tail-tail hydrophobic interaction.

  18. Unique effects of the chain lengths and anions of tetra-alkylammonium salts on quenching pyrene excimer.

    Science.gov (United States)

    Jang, Hyun-Sook; Zhao, Jing; Lei, Yu; Nieh, Mu-Ping

    2014-09-10

    Pyrene (Py) excimer, through its unique fluorescence quenching, exhibits high sensitivity and high selectivity in detecting specific electron-deficient molecules, providing a potential platform for sensing technology, optical switch, and probing hydrophobicity of molecular environment. In solution state, its quenching mechanism has been well-studied. However, there remain many unknown properties regarding the quenching mechanism of the solid-state Py excimer. In this paper, the effects of a series of tetra-alkylammonium salts (with a variety of chain lengths and anions) on Py excimer quenching are investigated to identify the controlling parameters of the fluorescence quenching in the binary system. Several experimental approaches including steady-state fluorescence spectroscopy, UV absorption, (13)C-nuclear magnetic resonance (NMR) spectra, X-ray diffraction, scanning electron microscopy, and time-dependent fluorescence decay are employed to seek for the fundamental understanding of the quenching mechanism. The result indicates a unique quenching effect of tetrabutylammonium cation on the pyrene excimer, and which is not observed in the other cations with different chain lengths (the same associated hexafluorophosphate anions). Meanwhile, hexafluorophosphate anion (in the presence of tetrabutylammonium) is able to effectively retain Py excimer fluorescence when the system is prepared by evaporating solvent at high temperature. It is also confirmed that dynamic quenching is involved in the process. Hydrophobic environment around Py molecules shows strong correlation with the formation of Py excimer. The knowledge obtained in this study provides the insights to how the interaction between salt and Py molecule affects the excimer fluorescence.

  19. Antiaromatic bisindeno-[n]thienoacenes with small singlet biradical characters: Syntheses, structures and chain length dependent physical properties

    KAUST Repository

    Shi, Xueliang

    2014-01-01

    Recent studies demonstrated that aromaticity and biradical character play important roles in determining the ground-state structures and physical properties of quinoidal polycyclic hydrocarbons and oligothiophenes, a kind of molecular materials showing promising applications for organic electronics, photonics and spintronics. In this work, we designed and synthesized a new type of hybrid system, the so-called bisindeno-[n]thienoacenes (n = 1-4), by annulation of quinoidal fused α-oligothiophenes with two indene units. The obtained molecules can be regarded as antiaromatic systems containing 4n π electrons with small singlet biradical character (y0). Their ground-state geometry and electronic structures were studied by X-ray crystallographic analysis, NMR, ESR and Raman spectroscopy, assisted by density functional theory calculations. With extension of the chain length, the molecules showed a gradual increase of the singlet biradical character accompanied by decreased antiaromaticity, finally leading to a highly reactive bisindeno[4]thienoacene (S4-TIPS) which has a singlet biradical ground state (y0= 0.202). Their optical and electronic properties in the neutral and charged states were systematically investigated by one-photon absorption, two-photon absorption, transient absorption spectroscopy, cyclic voltammetry and spectroelectrochemistry, which could be correlated to the chain length dependent antiaromaticity and biradical character. Our detailed studies revealed a clear structure-aromaticity-biradical character-physical properties-reactivity relationship, which is of importance for tailored material design in the future. This journal is

  20. Modification of soy protein hydrolysates by Maillard reaction: Effects of carbohydrate chain length on structural and interfacial properties.

    Science.gov (United States)

    Li, Weiwei; Zhao, Haibo; He, Zhiyong; Zeng, Maomao; Qin, Fang; Chen, Jie

    2016-02-01

    This study investigated the effects of carbohydrate chain length on the structural and interfacial properties of the Maillard reaction conjugates of soy protein hydrolysates (Mw>30 kDa). The covalent attachment of sugars to soy peptides was confirmed by amino acid analysis and examination of the Fourier-transform infrared spectra. The results suggested that the emulsion stability of the conjugates increased as the length of the carbohydrate chains increased. The surface activity measurement revealed that the soy peptide-dextran conjugates were closely packed and that each molecule occupied a small area of the interface. It was further confirmed that the soy peptide-dextran conjugates formed a thick adsorbed layer at the oil-water interface, as observed in the confocal laser scanning micrographs. The interfacial layer of soy peptides was rheologically complex with broad linear viscoelastic region and strong elastic modulus, and the soy peptide-dextran conjugates might form multilayer adsorption at the interface. This study suggested that the improved surface properties of the soy peptide-dextran conjugates were a result of the strong membrane formed by the closely packed molecular and multilayer adsorption at the interface, which provided steric hindrance to flocculation. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Fatty acid biosynthesis VII. Substrate control of chain-length of products synthesised by rat liver fatty acid synthetase

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Carey, E.M.; Dils, R.

    1970-01-01

    - 1. Gas-liquid and paper chromatography have been used to determine the chain-lengths of fatty acids synthesised by purified rat liver fatty acid synthetase from [1-14C]acetyl-CoA, [1,3-14C2]malonyl-CoA and from [1-14C]acetyl-CoA plus partially purified rat liver acetyl-CoA carboxylase. - 2....... A wide range (C4:0–C18:0) of fatty acids was synthesised and the proportions were modified by substrate concentrations in the same manner as for purified rabbit mammary gland fatty acid synthetase. - 3. The relative amount of radioactivity incorporated from added acetyl-CoA and malonyl-CoA depended...... on the substrate concentrations used. At excess acetyl-CoA to malonyl-CoA, greater amounts of acetyl-CoA were incorporated than theoretically expected from the malonyl-CoA pathway. At excess malonyl-CoA, less acetyl-CoA was incorporated than theoretically expected. - 4. An increase in the chain-length of fatty...

  2. Dynamic photoinduced realignment processes in photoresponsive block copolymer films: effects of the chain length and block copolymer architecture.

    Science.gov (United States)

    Sano, Masami; Shan, Feng; Hara, Mitsuo; Nagano, Shusaku; Shinohara, Yuya; Amemiya, Yoshiyuki; Seki, Takahiro

    2015-08-07

    A series of block copolymers composed of an amorphous poly(butyl methacrylate) (PBMA) block connected with an azobenzene (Az)-containing liquid crystalline (PAz) block were synthesized by changing the chain length and polymer architecture. With these block copolymer films, the dynamic realignment process of microphase separated (MPS) cylinder arrays of PBMA in the PAz matrix induced by irradiation with linearly polarized light was studied by UV-visible absorption spectroscopy, and time-resolved grazing incidence small angle X-ray scattering (GI-SAXS) measurements using a synchrotron beam. Unexpectedly, the change in the chain length hardly affected the realignment rate. In contrast, the architecture of the AB-type diblock or the ABA-type triblock essentially altered the realignment feature. The strongly cooperative motion with an induction period before realignment was characteristic only for the diblock copolymer series, and the LPL-induced alignment change immediately started for triblock copolymers and the PAz homopolymer. Additionally, a marked acceleration in the photoinduced dynamic motions was unveiled in comparison with a thermal randomization process.

  3. Complete genome sequence of Tsukamurella sp. MH1: A wide-chain length alkane-degrading actinomycete.

    Science.gov (United States)

    Chiciudean, Iulia; Nie, Yong; Tănase, Ana-Maria; Stoica, Ileana; Wu, Xiao-Lei

    2018-02-20

    Tsukamurella sp. strain MH1, capable to use a wide range of n-alkanes as the only carbon source, was isolated from petroleum-contaminated soil (Pitești, Romania) and its complete genome was sequenced. The 4,922,396 bp genome contains only one circular chromosome with a G + C content of 71.12%, much higher than the type strains of this genus (68.4%). Based on the 16S rRNA genes sequence similarity, strain MH1 was taxonomically identified as Tsukamurella carboxydivorans. Genome analyses revealed that strain MH1 is harboring only one gene encoding for the alkB-like hydroxylase, arranged in a complete alkane monooxygenase operon. This is the first complete genome of the specie T. carboxydivorans, which will provide insights into the potential of Tsukamurella sp. MH1 and related strains for bioremediation of petroleum hydrocarbons-contaminated sites and into the environmental role of these bacteria. Copyright © 2017. Published by Elsevier B.V.

  4. Second-generation functionalized medium-chain-length polyhydroxyalkanoates: the gateway to high-value bioplastic applications.

    Science.gov (United States)

    Tortajada, Marta; da Silva, Luiziana Ferreira; Prieto, María Auxiliadora

    2013-03-01

    Polyhydroxyalkanoates (PHAs) are biodegradable biocompatible polyesters, which accumulate as granules in the cytoplasm of many bacteria under unbalanced growth conditions. Medium-chain-length PHAs (mcl-PHAs), characterized by C6-C14 branched monomer chains and typically produced by Pseudomonas species, are promising thermoelastomers, as they can be further modified by introducing functional groups in the side chains. Functionalized PHAs are obtained either by feeding structurally related substrates processed through the beta-oxidation pathway, or using specific strains able to transform sugars or glycerol into unsaturated PHA by de novo fatty-acid biosynthesis. Functionalized mcl-PHAs provide modified mechanical and thermal properties, and consequently have new processing requirements and highly diverse potential applications in emergent fields such as biomedicine. However, process development and sample availability are limited due to the toxicity of some precursors and still low productivity, which hinder investigation. Conversely, improved mutant strains designed through systems biology approaches and cofeeding with low-cost substrates may contribute to the widespread application of these biopolymers. This review focuses on recent developments in the production of functionalized mcl-PHAs, placing particular emphasis on strain and bioprocess design for cost-effective production.

  5. The effect of varying the peptide linker length in a single chain variable fragment antibody against wogonin glucuronide.

    Science.gov (United States)

    Paudel, Madan Kumar; Sakamoto, Seiichi; Van Huy, Le; Tanaka, Hiroyuki; Miyamoto, Tomofumi; Morimoto, Satoshi

    2017-06-10

    Peptide linkers of three different lengths were constructed to join the variable regions of the heavy chain (VH) and the light chain (VL) in a single-chain variable fragment antibody (scFv) specific for wogonin glucuronide (Wgn) that has the structure VH-(GGGGS) n -VL (n=3, 5, or 7). The scFv antibodies, which were expressed in Escherichia coli, were derived from an anti-Wgn monoclonal antibody (315A). An indirect competitive enzyme-linked immunosorbent assay (icELISA) was used to evaluate their reactivity and sensitivity, which is also used for quantitative analysis of Wgn. Our results, showed that the reactivity and specificity of the three different scFvs were, in fact, similar. Subsequently, the scFv having a VH-(GGGGS) 3 -VL linker which was slightly better that other two scFvs against Wgn, was applied to indirect competitive ELISA (icELISA) to analyze Scutellariae Radix (S. Radix). The utility of the icELISA was demonstrated for quality control and analysis of S. Radix in this report. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effects of Chain Length and Saturability of Fatty Acids on Phospholipids and Proteins in Plasma Membranes of Bovine Mammary Gland.

    Science.gov (United States)

    Yan, Qiongxian; Tang, Shaoxun; Han, Xuefeng; Bamikole, Musibau Adungbe; Zhou, Chuanshe; Kang, Jinhe; Wang, Min; Tan, Zhiliang

    2016-12-01

    Free fatty acids (FFAs) in plasma are essential substrates for de novo synthesis of milk fat, or directly import into mammary cells. The physico-chemical properties of mammary cells membrane composition affected by FFAs with different chain lengths and saturability are unclear yet. Employing GC, FTIR and fluorescence spectroscopy, the adsorption capacity, phospholipids content, membrane proteins conformation, lipid peroxidation product, and free sulfhydryl of plasma membranes (PMs) interacted with different FFAs were determined. The mammary cells PMs at 38 and 39.5 °C showed different adsorption capacities: acetic acid (Ac) > stearic acid (SA) > β-hydroxybutyric acid (BHBA) > trans10, cis12 CLA. In the FTIR spectrum, the major adsorption peaks appeared at 2920 and 2850 cm -1 for phospholipids, and at 1628 and 1560 cm -1 for membrane proteins. The intensities of PMs-FFAs complexes were varied with the FFAs species and their initial concentrations. The β-sheet and turn structures of membrane proteins were transferred into random coil and α-helix after BHBA, SA and trans10, cis12 CLA treatments compared with Ac treatment. The quenching effects on the fluorescence of endogenous membrane protein, 1, 8-ANS, NBD-PE, and DHPE entrapped in PMs by LCFA were different from those of short chain FFAs. These results indicate that the adsorption of FFAs could change membrane protein conformation and polarity of head group in phospholipids. This variation of the mammary cells PMs was regulated by carbon chain length and saturability of FFAs.

  7. Application of nitrogen and carbon stable isotopes (δ(15N and δ(13C to quantify food chain length and trophic structure.

    Directory of Open Access Journals (Sweden)

    Matthew J Perkins

    Full Text Available Increasingly, stable isotope ratios of nitrogen (δ(15N and carbon (δ(13C are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR using δ(15N, and carbon range (CR using δ(13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15N or δ(13C from source to consumer between trophic levels and among food chains. δ(15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰, and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority

  8. Application of Nitrogen and Carbon Stable Isotopes (δ15N and δ13C) to Quantify Food Chain Length and Trophic Structure

    Science.gov (United States)

    Perkins, Matthew J.; McDonald, Robbie A.; van Veen, F. J. Frank; Kelly, Simon D.; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ15N, and carbon range (CR) using δ13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ15N or δ13C from source to consumer) between trophic levels and among food chains. δ15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of ecological systems

  9. Application of nitrogen and carbon stable isotopes (δ(15)N and δ(13)C) to quantify food chain length and trophic structure.

    Science.gov (United States)

    Perkins, Matthew J; McDonald, Robbie A; van Veen, F J Frank; Kelly, Simon D; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ(15)N, and carbon range (CR) using δ(13)C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15)N or δ(13)C from source to consumer) between trophic levels and among food chains. δ(15)N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13)C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13)C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of

  10. Comment on "Changes in atmospheric CO2 levels recorded by the isotopic signature of n-alkanes from plants" from K.S. Machado and S. Froehner

    Science.gov (United States)

    Köhler, Peter; Nehrbass-Ahles, Christoph; Schmitt, Jochen; Stocker, Thomas F.; Fischer, Hubertus

    2017-09-01

    The recently published invited research article by Machado and Froehner (2017) is presenting δ13C values from sedimentary organic matter (n-alkane), measured on samples collected in the Barigui watershed (Brazil) covering the last 400 years. The derived δ13C time series based on C27n-alkane, beginning approximately in the calendar year 1600 (or 1600 CE; with CE for Common Era) until recent times is subsequently - in their Fig. 3 - compared with a record, which is believed to be a representative reconstruction of atmospheric CO2 concentrations covering approximately the last 650 years (with respect to the year 2005 CE). The final conclusion of this article, as reflected in its title, is that changes in atmospheric CO2 levels are recorded in isotopic signatures on n-alkane from plants. We argue, that this conclusion can not be drawn from the study of Machado and Froehner (2017), since what is shown in their Fig. 3 is not a time series of atmospheric CO2 concentration of the last 650 years. The authors show reconstructions of atmospheric CO2 concentrations based on Antarctic ice cores over the past 650,000 years and use them for the past 650 years by ignoring the fact that the time scale in IPCC (2007), from which, according to the caption of their Fig. 3, they took this CO2 time series, is in kyr (1 kyr = 1 kilo year = 1000 years). This is wrong and any conclusion based on this comparison is incorrect. Instead they should have used for a correct CO2 time series for the comparison with their measurements.

  11. CD2 probe infrared method for determining polymethylene chain conformation

    International Nuclear Information System (INIS)

    Maroncelli, M.; Strauss, H.L.; Snyder, R.G.

    1985-01-01

    The rocking mode frequency of a CD 2 group substituted in a polymethylene chain is sensitive to conformation in the immediate vicinity of the CD 2 group. This sensitivity forms the basis of a commonly used infrared method for determining site-specific conformation in polymethylene systems. In the present work, the CD 2 probe method has been extended and quantified with the use of infrared data on model CD 2 -substituted n-alkanes. The frequency of the CD 2 rocking band is determined primarily by the conformation of adjoining CC bonds, i.e., by tt, gt, and gg pairs. However, we have found that there are significant frequency shifts associated with other factors. These include the conformation of the next nearest CC bonds, both with the CD 2 positioned at the end and in the interior of the chain, and chain length. In addition, the ratio of the absorptivities of the tt to gt bands has been established. These results enable the method to provide new details about the conformation of the chains in polymethylene systems and reliable estimates of the concentrations of specific kinds of short conformational sequences. 14 references, 6 figures, 2 tables

  12. PEGylation of Phytantriol-Based Lyotropic Liquid Crystalline Particles-The Effect of Lipid Composition, PEG Chain Length, and Temperature on the Internal Nanostructure

    DEFF Research Database (Denmark)

    Nilsson, Christa; Ostergaard, Jesper; Larsen, Susan Weng

    2014-01-01

    of these lipidic nonlamellar liquid crystalline particles by using DSPE-mPEGs with three different block lengths of the hydrophilic PEG segment. The effects of lipid composition, PEG chain length, and temperature on the morphology and internal nanostructure of these self-assembled lipidic aqueous dispersions based...

  13. Influence of spacer chain lengths and polar terminal groups on the mesomorphic properties of tethered 5-phenylpyrimidines

    Directory of Open Access Journals (Sweden)

    Gundula F. Starkulla

    2009-11-01

    Full Text Available Based on 5-(4-hydroxyphenyl-2-octylpyrimidine 8, 5-phenylpyrimidine derivatives 3–7, 9 with different spacer chain lengths (C2 up to C6 and different terminal polar groups (Br, Cl, N3, OH, CN were synthesized by etherification and nucleophilic substitution. The mesomorphic behaviour of these compounds was investigated by differential scanning calorimetry (DSC, polarizing optical microscopy (POM and X-ray diffraction (WAXS and SAXS and revealed smectic A mesophases for bromides, chlorides and azides 3, 4 and 6. For these compounds a maximum phase width was observed for the C5 spacer regardless of the terminal group, whereas the hydroxy- and cyano-substituted derivatives 5 and 7, respectively, were non mesomorphic and showed only melting transitions.

  14. Production of Medium Chain Length Polyhydroxyalkanoates From Oleic Acid Using Pseudomonas putida PGA1 by Fed Batch Culture

    Directory of Open Access Journals (Sweden)

    Sidik Marsudi

    2010-10-01

    Full Text Available Bacterial polyhydroxyalkanoates (PHAs are a class of p0lymers currently receiving much attention because of their potential as renewable and biodegradable plastics. A wide variety of bacteria has been reported to produce PHAs including Pseudomonas strains. These strains are known as versatile medium chain length PHAs (PHAs-mcl producers using fatty acids as carbon source. Oleic acid was used to produce PHAs-mcl using Pseudomonas putida PGA 1 by continuous feeding of both nitrogen and carbon source, in a fed batch culture. During cell growth, PHAs also accumulated, indicating that PHA production in this organism is growth associated. Residual cell increased until the nitrogen source was depleted. At the end of fermentation, final cell concentration, PHA content, and roductivity were 30.2 g/L, 44.8 % of cell dry weight, and 0.188 g/l/h, respectively.

  15. Modulation of saturation and chain length of fatty acids in Saccharomyces cerevisiae for production of cocoa butter-like lipids

    DEFF Research Database (Denmark)

    Bergenholm, David; Gossing, Michael; Wei, Yongjun

    2018-01-01

    Chain length and degree of saturation plays an important role for the characteristics of various products derived from fatty acids, such as fuels, cosmetics, and food additives. The seeds of Theobroma cacao are the source of cocoa butter, a natural lipid of high interest for the food and cosmetics...... industry. Cocoa butter is rich in saturated fatty acids that are stored in the form of triacylglycerides (TAGs). One of the major TAG species of cocoa butter, consisting of two stearic acid molecules and one oleic acid molecule (stearic acid-oleic acid-stearic acid, sn-SOS), is particularly rare in nature...... as the saturated fatty acid stearic acid is typically found only in low abundance. Demand for cocoa butter is increasing, yet T. cacao can only be cultivated in some parts of the tropics. Alternative means of production of cocoa butter lipids (CBLs) are, therefore, sought after. Yeasts also store fatty acids...

  16. Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins

    DEFF Research Database (Denmark)

    Kingshott, P.; Thissen, H.; Griesser, H.J.

    2002-01-01

    The effects of pinning density, chain length, and 'cloud point' (CP) versus non-CP grafting conditions have been studied on the ability of polyethylene glycol (PEG) layers to minimize adsorption from a multicomponent (lysozyme, human serum albumin (HSA), IgG and lactoferrin) protein solution......-ray photoelectron spectroscopy (XPS) showed that under these conditions, PEG(ald)(2) produced a thick linear PEG layer, most likely by aldol condensation. Protein adsorption was assessed using XPS and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS) in the surface mode...... density) r.f.g.d. polymer layers. The PEG graft density was varied also by increasing the temperature and salt (K2SO4) content of the grafting solution; it reached a maximum at the CP of the PEGs. The CP reaction conditions were critical for producing PEG layers capable of minimizing protein adsorption. X...

  17. Interaction and dynamics of (alkylamide + electrolyte) deep eutectics: Dependence on alkyl chain-length, temperature, and anion identity

    International Nuclear Information System (INIS)

    Guchhait, Biswajit; Das, Suman; Daschakraborty, Snehasis; Biswas, Ranjit

    2014-01-01

    Here we investigate the solute-medium interaction and solute-centered dynamics in (RCONH 2 + LiX) deep eutectics (DEs) via carrying out time-resolved fluorescence measurements and all-atom molecular dynamics simulations at various temperatures. Alkylamides (RCONH 2 ) considered are acetamide (CH 3 CONH 2 ), propionamide (CH 3 CH 2 CONH 2 ), and butyramide (CH 3 CH 2 CH 2 CONH 2 ); the electrolytes (LiX) are lithium perchlorate (LiClO 4 ), lithium bromide (LiBr), and lithium nitrate (LiNO 3 ). Differential scanning calorimetric measurements reveal glass transition temperatures (T g ) of these DEs are ∼195 K and show a very weak dependence on alkyl chain-length and electrolyte identity. Time-resolved and steady state fluorescence measurements with these DEs have been carried out at six-to-nine different temperatures that are ∼100–150 K above their individual T g s. Four different solute probes providing a good spread of fluorescence lifetimes have been employed in steady state measurements, revealing strong excitation wavelength dependence of probe fluorescence emission peak frequencies. Extent of this dependence, which shows sensitivity to anion identity, has been found to increase with increase of amide chain-length and decrease of probe lifetime. Time-resolved measurements reveal strong fractional power dependence of average rates for solute solvation and rotation with fraction power being relatively smaller (stronger viscosity decoupling) for DEs containing longer amide and larger (weaker decoupling) for DEs containing perchlorate anion. Representative all-atom molecular dynamics simulations of (CH 3 CONH 2 + LiX) DEs at different temperatures reveal strongly stretched exponential relaxation of wavevector dependent acetamide self dynamic structure factor with time constants dependent both on ion identity and temperature, providing justification for explaining the fluorescence results in terms of temporal heterogeneity and amide clustering in these multi

  18. Synthesis of Medium-Chain-Length Polyhydroxyalkanoate Homopolymers, Random Copolymers, and Block Copolymers by an Engineered Strain of Pseudomonas entomophila.

    Science.gov (United States)

    Wang, Ying; Chung, Ahleum; Chen, Guo-Qiang

    2017-04-01

    Medium-chain-length polyhydroxyalkanoates (mcl-PHAs), widely used in medical area, are commonly synthesized by Pseudomonas spp. This study tries to use β-oxidation pathways engineered P. entomophila to achieve single source of a series of mcl-monomers for microbial production of PHA homopolymers. The effort is proven successful for the first time to obtain a wide range of mcl-PHA homopolymers from engineered P. entomophila LAC23 grown on various fatty acids, respectively, ranging from poly(3-hydroxyheptanoate) to poly(3-hydroxytetradecanoate). Effects of a PHA monomer chain length on thermal and crystallization properties including the changes of T m , T g , and T d5% are investigated. Additionally, strain LAC23 is used to synthesize random copolymers of 3-hydroxyoctanoate (3HO) and 3-hydroxydodecanoate (3HDD) or 3-hydroxytetradecanoates, their compositions could be controlled by adjusting the ratios of two related fatty acids. Meanwhile, block copolymer P(3HO)-b-P(3HDD) is synthesized by the same strain. It is found for the first time that even- and odd number mcl-PHA homopolymers have different physical properties. When the gene of the PHA synthase in the engineered P. entomophila is replaced by phaC from Aeromonas hydrophila 4AK4, poly(3-hydroxybutyrate-co-30 mol%-3-hydroxyhexanoate) is synthesized. Therefore, P. entomophila can be used to synthesize the whole range of PHA (C7-C14) homopolymers, random- and block copolymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of the number, position and length of alkyl chains on the physical properties of polysubstituted pyridinium ionic liquids

    International Nuclear Information System (INIS)

    Verdía, Pedro; Hernaiz, Marta; González, Emilio J.; Macedo, Eugénia A.; Salgado, Josefa; Tojo, Emilia

    2014-01-01

    Highlights: • Synthesis of five polysubstituted pyridinium based-ionic liquids. • Physical properties of the pure ionic liquids were measured at several temperatures. • Thermal analysis of the pure ionic liquids was carried out by DSC and TGA techniques. • Density, speed of sound, and refractive index were fitted with a linear expression. • Viscosity data were correlated using the VFT equation. -- Abstract: The knowledge of the physical properties of ionic liquids is of high importance in order to evaluate their potential applicability for a given purpose. In the last few years, ionic liquids have been proposed as promising solvents for extractive desulfurization of fuels. Among them, recent studies have shown that ionic liquids derived from pyridinium affords excellent S-compounds removal capacity. In this work, the thermal analysis of five ionic liquids derived from pyridinium cation polysubstituted with different alkyl chains was carried out by Differencial Scanning Calorimetry (DSC) and Thermal Gravimetric Analysis (TGA). Furthermore, the density, speed of sound, refractive index and dynamic viscosity for all the pure ionic liquids were also measured from T = (298.15 to 343.15) K. The effect of the number of cation alkyl chains, their length, and their position on the pyridinium ring, on the ionic liquid physical properties is also analyzed and discussed

  20. Influence of the chain length of surfactant in the modification of zeolites and clays. Removal of atrazine from water solutions.

    Science.gov (United States)

    Toledo-Jaldin, Helen Paola; Blanco-Flores, Alien; Sánchez-Mendieta, Víctor; Martín-Hernández, Osnieski

    2017-08-30

    Removal potentials of a surfactant modified zeolite (SMZ) and clay (SMC) for atrazine adsorption were evaluated. Materials were modified with hexadecyl trimethyl ammonium bromide (HDTMA-Br) and benzyl octadecyl dimethyl ammonium (BODA) chloride considering the critical micellar concentration (CMC) of each one (0.94 and 0.041 meq/L, respectively). The influence of the surfactant was analyzed in detail, particularly the formation of surfactant layers (complete or partial) connected with the length of the surfactant tail (16 and 18 methyl groups or number of carbons in the chain). Raw materials were characterized by XRD and Fourier transform infrared spectroscopy (FTIR), SMZ and SMC were analyzed by FTIR. Results obtained from kinetic adsorption experiments shown that equilibrium time is less for materials modified with HDTMA (8 h) than materials with BODA (10 and 12 h). Materials modified with the largest chain surfactant (BODA) showed more resistance to atrazine masse transference. The chemisorption was presented in the adsorption mechanisms of atrazine and adsorbent materials. Based on the results of adsorption isotherms Langmuir isotherms showed the better correlation coefficients value. The q max is greater for materials modified with BODA (0.9232 and 4.2448 mg/g) than for materials modified with HDTMA (0.6731 and 3.9121 mg/g). Therefore, SMZ and SMC modified with the largest chain surfactant has more affinity for the pesticide. The removal process at high concentration of atrazine depends of the partition process but at lower concentration, it occurs not only by this process but also by absorption process.

  1. Effect of suppression of arabinoxylan synthetic genes in wheat endosperm on chain length of arabinoxylan and extract viscosity.

    Science.gov (United States)

    Freeman, Jackie; Lovegrove, Alison; Wilkinson, Mark David; Saulnier, Luc; Shewry, Peter Robert; Mitchell, Rowan Andrew Craig

    2016-01-01

    Arabinoxylan (AX) is the dominant component within wheat (Triticum aestivum L.) endosperm cell walls, accounting for 70% of the polysaccharide. The viscosity of aqueous extracts from wheat grain is a key trait influencing the processing for various end uses, and this is largely determined by the properties of endosperm AX. We have previously shown dramatic effects on endosperm AX in transgenic wheat by down-regulating either TaGT43_2 or TaGT47_2 genes (orthologues to IRX9 and IRX10 in Arabidopsis, respectively) implicated in AX chain extension and the TaXAT1 gene responsible for monosubstitution by 3-linked arabinose. Here, we use these transgenic lines to investigate the relationship between amounts of AX in soluble and insoluble fractions, the chain-length distribution of these measured by intrinsic viscosity and the overall effect on extract viscosity. In transgenic lines expressing either the TaGT43_2 or TaGT47_2 RNAi transgenes, the intrinsic viscosities of water-extractable (WE-AX) and of a water-insoluble alkaline-extracted fraction (AE-AX) were decreased by between 10% and 50% compared to control lines. In TaXAT1 RNAi lines, there was a 15% decrease in intrinsic viscosity of WE-AX but no consistent effect on that of AE-AX. All transgenic lines showed decreases in extract viscosity with larger effects in TaGT43_2 and TaGT47_2 RNAi lines (by up to sixfold) than in TaXAT1 RNAi lines (by twofold). These effects were explained by the decreases in amount and chain length of WE-AX, with decreases in amount having the greater influence. Extract viscosity from wheat grain can therefore be greatly decreased by suppression of single gene targets. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Excess molar volumes of the ternary system {methylcyclohexane (1)+cyclohexane (2)+n-alkanes (3)} at T=298.15 K

    International Nuclear Information System (INIS)

    Iloukhani, Hossein; Rezaei-Sameti, Mahdi

    2005-01-01

    Densities were experimentally determined in the whole range of composition at T=298.15 K for the ternary system {methylcyclohexane (1)+cyclohexane (2)+n-alkanes (3)} and for the seven corresponding binary systems. The n-alkanes include n-hexane, n-heptane, and n-octane. Excess molar volumes, V E , were calculated for the binaries and ternaries systems. The V 123 E data are positive over the entire range of composition for the systems {methylcyclohexane (1)+cyclohexane (2)+n-heptane (3) or n-octane (3)} at three fixed compositions (f m =X 1 /X 2 ). For the system {methylcyclohexane (1)+cyclohexane (2)+n-hexane (3)}, the V E values showed positive for f m =0.3 and negative for f m =3. The V E data exhibit, an inversion in sign in the mixture containing f m =1 for later ternary system. Several empirical expressions are used to predict and correlate the ternary excess molar volumes from experimental results on the constituted binaries and analyzed to gain insight about liquid mixture interactions

  3. Effects of hydrophobic helix length and side chain chemistry on biomimicry in peptoid analogues of SP-C.

    Science.gov (United States)

    Brown, Nathan J; Wu, Cindy W; Seurynck-Servoss, Shannon L; Barron, Annelise E

    2008-02-12

    The hydrophobic proteins of lung surfactant (LS), SP-B and SP-C, are critical constituents of an effective surfactant replacement therapy for the treatment of respiratory distress syndrome. Because of concerns and difficulties associated with animal-derived surfactants, recent investigations have focused on the creation of synthetic analogues of the LS proteins. However, creating an accurate mimic of SP-C that retains its biophysical surface activity is extraordinarily challenging given the lipopeptide's extreme hydrophobicity and propensity to misfold and aggregate. One successful approach that overcomes these difficulties is the use of poly-N-substituted glycines, or peptoids, to mimic SP-C. To develop a non-natural, bioactive mimic of SP-C and to investigate the effects of side chain chemistry and length of the helical hydrophobic region, we synthesized, purified, and performed in vitro testing of two classes of peptoid SP-C mimics: those having a rigid alpha-chiral aromatic helix and those having a biomimetic alpha-chiral aliphatic helix. The length of the two classes of mimics was also systematically altered. Circular dichroism spectroscopy gave evidence that all of the peptoid-based mimics studied here emulated SP-C's secondary structure, forming stable helical structures in solution. Langmuir-Wilhelmy surface balance, fluorescence microscopy, and pulsating bubble surfactometry experiments provide evidence that the aromatic-based SP-C peptoid mimics, in conjunction with a synthetic lipid mixture, have superior surface activity and biomimetic film morphology in comparison to the aliphatic-based mimics and that there is an increase in surface activity corresponding to increasing helical length.

  4. Technical note: Evaluation of markers for estimating duodenal digesta flow and ruminal digestibility: Acid detergent fiber, sulfuric acid detergent lignin, and n-alkanes.

    Science.gov (United States)

    Kozloski, G V; Stefanello, C M; Mesquita, F R; Alves, T P; Ribeiro Filho, H M N; Almeida, J G R; Moraes Genro, T C

    2014-03-01

    The amount of digesta flowing to the duodenum is a relevant measurement for the evaluation of nutrient supply to ruminants, which is usually estimated in animals fitted with a duodenal T-type cannula using internal or external markers. This study evaluated acid detergent fiber (ADF) compared with external (C32n-alkane) and internal [sulfuric acid lignin (ADL) and n-alkanes C31 and C33] markers for estimating duodenal flow and(or) ruminal digestibility of dry matter (DM) in cattle and sheep. In the first assay, 4 duodenally cannulated Holstein steers housed in metabolism cages, dosed with C32n-alkane, and fed Avena strigosa plus concentrate and increasing levels of tannin extract to reduce ruminal digestibility, were used in a Latin square design. The mobile-bag technique was used to measure the intestinal disappearance of ADL and ADF from forage (Avena strigosa, Pennisetum purpureum, Cynodon dactylon, and Medicago sativa) and concentrate (corn grain, soybean meal, and sunflower meal) samples that were previously incubated in the rumen of additional fistulated steer for 12, 24, 36, or 48 h. The ADF concentration in residues recovered in the feces was strongly related to the ADF concentration in residues at the duodenum (R(2)=0.93, standard deviation=30.0, n=901). This relationship showed a lower precision for ADL fraction (R(2)=0.88, standard deviation=12.6, n=590). In a second assay, duodenal flow and ruminal DM digestibility were calculated from the duodenal and fecal concentration of either marker. We observed a significant effect of marker type on ruminal DM digestibility values, and the effect of tannin treatments was observed only when ADF or ADL was used as the marker. The lowest residual error was obtained for ADF. Ruminal DM digestibility was, on average, higher for C31 and C(33)n-alkanes, and the use of dosed C(32)n-alkane resulted in a negative value. In the third assay, a data set of 235 individual observations was compiled from digestibility trials to

  5. Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon: Effect of SAM alkyl chain length

    International Nuclear Information System (INIS)

    Huo, Lixia; Du, Pengcheng; Zhou, Hui; Zhang, Kaifeng; Liu, Peng

    2017-01-01

    Highlights: • n-Alkyltrimethoxysilanes with various chain lengths were self-assembled on silicon. • Effect of alkyl chain lengths (C6, C12, or C18) on the SAMs was investigated. • Surface roughness of the SAMs decreased with increasing the alkyl chain lengths. • The C 12 -SAM possessed superior friction reduction and wear resistance. - Abstract: It is well known that the self-assembled organic molecules on a solid surface exhibit the friction-reducing performance. However, the effect of the molecular size of the self-assembled organic molecules has not been established. In the present work, self-assembled monolayers (SAMs) of n-alkyltrimethoxysilanes with different alkyl chain lengths (C 6 , C 12 , or C 18 ) were fabricated on silicon substrate. The water contact angles of the SAMs increased from 26.8° of the hydroxylated silicon substrate to near 60° after self-assembly. The atomic force microscopy (AFM) analysis results showed that the mean roughness (R a ) of the SAMs decreased with increasing the alkyl chain length. The tribological properties of the SAMs sliding against Al 2 O 3 ball were evaluated on an UMT-2 tribometer, and the worn surfaces of the samples were analyzed by means of Nano Scratch Tester and surface profilometry. It was found that lowest friction coefficient and smallest width of wear were achieved with the SAMs of C 12 alkyl chain (C 12 -SAM). The superior friction reduction and wear resistance of the SAMs in comparison with the bare silicon substrate are attributed to good adhesion of the self-assembled films to the substrate, especially the C 12 -SAM with desirable alkyl chain length.

  6. Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon: Effect of SAM alkyl chain length

    Energy Technology Data Exchange (ETDEWEB)

    Huo, Lixia [National Key Laboratory of Science and Technology on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou, Gansu 730010 (China); Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu 730000 (China); Du, Pengcheng [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu 730000 (China); Zhou, Hui; Zhang, Kaifeng [National Key Laboratory of Science and Technology on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou, Gansu 730010 (China); Liu, Peng, E-mail: pliu@lzu.edu.cn [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu 730000 (China)

    2017-02-28

    Highlights: • n-Alkyltrimethoxysilanes with various chain lengths were self-assembled on silicon. • Effect of alkyl chain lengths (C6, C12, or C18) on the SAMs was investigated. • Surface roughness of the SAMs decreased with increasing the alkyl chain lengths. • The C{sub 12}-SAM possessed superior friction reduction and wear resistance. - Abstract: It is well known that the self-assembled organic molecules on a solid surface exhibit the friction-reducing performance. However, the effect of the molecular size of the self-assembled organic molecules has not been established. In the present work, self-assembled monolayers (SAMs) of n-alkyltrimethoxysilanes with different alkyl chain lengths (C{sub 6}, C{sub 12}, or C{sub 18}) were fabricated on silicon substrate. The water contact angles of the SAMs increased from 26.8° of the hydroxylated silicon substrate to near 60° after self-assembly. The atomic force microscopy (AFM) analysis results showed that the mean roughness (R{sub a}) of the SAMs decreased with increasing the alkyl chain length. The tribological properties of the SAMs sliding against Al{sub 2}O{sub 3} ball were evaluated on an UMT-2 tribometer, and the worn surfaces of the samples were analyzed by means of Nano Scratch Tester and surface profilometry. It was found that lowest friction coefficient and smallest width of wear were achieved with the SAMs of C{sub 12} alkyl chain (C{sub 12}-SAM). The superior friction reduction and wear resistance of the SAMs in comparison with the bare silicon substrate are attributed to good adhesion of the self-assembled films to the substrate, especially the C{sub 12}-SAM with desirable alkyl chain length.

  7. Improvement in performance of affinity gels containing Gly-D-Phe as a ligand to thermolysin due to increasing the spacer chain length.

    Science.gov (United States)

    Inouye, Kuniyo; Nakamura, Koji; Kusano, Masayuki; Yasukawa, Kiyoshi

    2007-08-01

    The aim of this study was to improve the performance of affinity gels containing glycyl-D-phenylalanine (Gly-D-Phe) as a ligand to thermolysin. Gly-D-Phe was immobilized to the resin through spacers of varying chain lengths. The resulting affinity gels had spacer chain lengths of 2 carbon atoms and 11 and 13 carbon-and-oxygen atoms (designated T2, T11, and T13), and were characterized for their binding abilities to thermolysin. Measurement of adsorption isotherms showed that the association constants to thermolysin were in the order T13 > T11 > T2. In affinity column chromatography, in which 5 mg thermolysin was applied onto 1-ml volumes of the gels, the adsorption ratios of thermolysin were also in the order T13 > T11 > T2. These results indicate that the performance of affinity gels is improved by increasing the spacer chain length to 13 carbon-and-oxygen atoms.

  8. Radionuclide migration through fractured rock for arbitrary-length decay chain: Analytical solution and global sensitivity analysis

    Science.gov (United States)

    Shahkarami, Pirouz; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2015-01-01

    This study presents an analytical approach to simulate nuclide migration through a channel in a fracture accounting for an arbitrary-length decay chain. The nuclides are retarded as they diffuse in the porous rock matrix and stagnant zones in the fracture. The Laplace transform and similarity transform techniques are applied to solve the model. The analytical solution to the nuclide concentrations at the fracture outlet is governed by nine parameters representing different mechanisms acting on nuclide transport through a fracture, including diffusion into the rock matrices, diffusion into the stagnant water zone, chain decay and hydrodynamic dispersion. Furthermore, to assess how sensitive the results are to parameter uncertainties, the Sobol method is applied in variance-based global sensitivity analyses of the model output. The Sobol indices show how uncertainty in the model output is apportioned to the uncertainty in the model input. This method takes into account both direct effects and interaction effects between input parameters. The simulation results suggest that in the case of pulse injections, ignoring the effect of a stagnant water zone can lead to significant errors in the time of first arrival and the peak value of the nuclides. Likewise, neglecting the parent and modeling its daughter as a single stable species can result in a significant overestimation of the peak value of the daughter nuclide. It is also found that as the dispersion increases, the early arrival time and the peak time of the daughter decrease while the peak value increases. More importantly, the global sensitivity analysis reveals that for time periods greater than a few thousand years, the uncertainty of the model output is more sensitive to the values of the individual parameters than to the interaction between them. Moreover, if one tries to evaluate the true values of the input parameters at the same cost and effort, the determination of priorities should follow a certain

  9. Photoluminescence and self-assembly of cesium lead halide perovskite nanocrystals: Effects of chain length of organic amines and reaction temperature

    International Nuclear Information System (INIS)

    Yuan, Yi; Liu, Zheming; Liu, Zhenyang; Peng, Lan; Li, Yongjie; Tang, Aiwei

    2017-01-01

    Highlights: • CsPbBr 3 perovskite nanocrystals have been synthesized in the presence of organic amines with different hydrocarbon length. • The photoluminescence of the CsPbBr 3 nanocrystals is affected by the varying the carbon length of the organic amines. • The lower reaction temperature and hydrocarbon chain length of the organic ligands play a significant role in the self-assembly of CsPbBr 3 nanocrystals. - Abstract: All-inorganic halide perovskites have become one of the most prospective materials for lightening and display technology due to their color-tunable and narrow-band emission. Herein, we have systematically studied the effects of organic amines with different hydrocarbon chain length on the optical properties and morphology as well as the crystal structure of colloidal CsPbBr 3 nanocrystals (NCs), which were synthesized in the presence of oleic acid (OA) and organic amines by using a simple hot-injection approach. The hydrocarbon chain length has shown an independent correlation to the morphology and crystal structure of the as-obtained CsPbBr 3 NCs at 160 °C, but their optical properties can be affected to some extent. The photoluminescence quantum yields (PLQYs) of the CsPbBr 3 NCs synthesized in the presence of organic amines with long carbon chain length are generally in the range of 55–80% for different reaction time, but the PLQYs of less than 20% are obtained for the products synthesized in the presence of octylamine (OTAm) with short carbon chain length. The effects of the reaction temperature on the optical properties, size and crystal structure of the CsPbBr 3 NCs synthesized in the presence of cetylamine (CTAm) are studied. Interestingly, some nanoplates also appear in these CsPbBr 3 NCs obtained at relatively low temperatures (120 and 140 °C), which have a strong tendency to self-assemble into face-to-face nanostructures. Such a similar self-assembly behavior is also observed in the product synthesized in the presence of

  10. Photoluminescence and self-assembly of cesium lead halide perovskite nanocrystals: Effects of chain length of organic amines and reaction temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yi; Liu, Zheming; Liu, Zhenyang; Peng, Lan; Li, Yongjie; Tang, Aiwei, E-mail: awtang@bjtu.edu.cn

    2017-05-31

    Highlights: • CsPbBr{sub 3} perovskite nanocrystals have been synthesized in the presence of organic amines with different hydrocarbon length. • The photoluminescence of the CsPbBr{sub 3} nanocrystals is affected by the varying the carbon length of the organic amines. • The lower reaction temperature and hydrocarbon chain length of the organic ligands play a significant role in the self-assembly of CsPbBr{sub 3} nanocrystals. - Abstract: All-inorganic halide perovskites have become one of the most prospective materials for lightening and display technology due to their color-tunable and narrow-band emission. Herein, we have systematically studied the effects of organic amines with different hydrocarbon chain length on the optical properties and morphology as well as the crystal structure of colloidal CsPbBr{sub 3} nanocrystals (NCs), which were synthesized in the presence of oleic acid (OA) and organic amines by using a simple hot-injection approach. The hydrocarbon chain length has shown an independent correlation to the morphology and crystal structure of the as-obtained CsPbBr{sub 3} NCs at 160 °C, but their optical properties can be affected to some extent. The photoluminescence quantum yields (PLQYs) of the CsPbBr{sub 3} NCs synthesized in the presence of organic amines with long carbon chain length are generally in the range of 55–80% for different reaction time, but the PLQYs of less than 20% are obtained for the products synthesized in the presence of octylamine (OTAm) with short carbon chain length. The effects of the reaction temperature on the optical properties, size and crystal structure of the CsPbBr{sub 3} NCs synthesized in the presence of cetylamine (CTAm) are studied. Interestingly, some nanoplates also appear in these CsPbBr{sub 3} NCs obtained at relatively low temperatures (120 and 140 °C), which have a strong tendency to self-assemble into face-to-face nanostructures. Such a similar self-assembly behavior is also observed in the

  11. Effects of Odd–Even Side Chain Length of Alkyl-Substituted Diphenylbithiophenes on First Monolayer Thin Film Packing Structure

    KAUST Repository

    Akkerman, Hylke B.

    2013-07-31

    Because of their preferential two-dimensional layer-by-layer growth in thin films, 5,5′bis(4-alkylphenyl)-2,2′-bithiophenes (P2TPs) are model compounds for studying the effects of systematic chemical structure variations on thin-film structure and morphology, which in turn, impact the charge transport in organic field-effect transistors. For the first time, we observed, by grazing incidence X-ray diffraction (GIXD), a strong change in molecular tilt angle in a monolayer of P2TP, depending on whether the alkyl chain on the P2TP molecules was of odd or even length. The monolayers were deposited on densely packed ultrasmooth self-assembled alkane silane modified SiO2 surfaces. Our work shows that a subtle change in molecular structure can have a significant impact on the molecular packing structure in thin film, which in turn, will have a strong impact on charge transport of organic semiconductors. This was verified by quantum-chemical calculations that predict a corresponding odd-even effect in the strength of the intermolecular electronic coupling. © 2013 American Chemical Society.

  12. Limits of a rapid identification of common Mediterranean sandflies using polymerase chain reaction-restriction fragment length polymorphism.

    Science.gov (United States)

    Bounamous, Azzedine; Lehrter, Véronique; Hadj-Henni, Leila; Delecolle, Jean-Claude; Depaquit, Jérôme

    2014-07-01

    A total of 131 phlebotomine Algerian sandflies have been processed in the present study. They belong to the species Phlebotomus bergeroti, Phlebotomus alexandri, Phlebotomus sergenti, Phlebotomus chabaudi, Phlebotomus riouxi, Phlebotomus perniciosus, Phlebotomus longicuspis, Phlebotomus perfiliewi, Phlebotomus ariasi, Phlebotomus chadlii, Sergentomyia fallax, Sergentomyia minuta, Sergentomyia antennata, Sergentomyia schwetzi, Sergentomyia clydei, Sergentomyia christophersi and Grassomyia dreyfussi. They have been characterised by sequencing of a part of the cytochrome b (cyt b), t RNA serine and NADH1 on the one hand and of the cytochrome C oxidase I of the mitochondrial DNA (mtDNA) on the other hand. Our study highlights two sympatric populations within P. sergenti in the area of its type-locality and new haplotypes of P. perniciosus and P. longicuspis without recording the specimens called lcx previously found in North Africa. We tried to use a polymerase chain reaction-restriction fragment length polymorphism method based on a combined double digestion of each marker. These method is not interesting to identify sandflies all over the Mediterranean Basin.

  13. Limits of a rapid identification of common Mediterranean sandflies using polymerase chain reaction-restriction fragment length polymorphism

    Directory of Open Access Journals (Sweden)

    Azzedine Bounamous

    2014-07-01

    Full Text Available A total of 131 phlebotomine Algerian sandflies have been processed in the present study. They belong to the species Phlebotomus bergeroti, Phlebotomus alexandri, Phlebotomus sergenti, Phlebotomus chabaudi, Phlebotomus riouxi, Phlebotomus perniciosus, Phlebotomus longicuspis, Phlebotomus perfiliewi, Phlebotomus ariasi, Phlebotomus chadlii, Sergentomyia fallax, Sergentomyia minuta, Sergentomyia antennata, Sergentomyia schwetzi, Sergentomyia clydei, Sergentomyia christophersi and Grassomyia dreyfussi. They have been characterised by sequencing of a part of the cytochrome b (cyt b, t RNA serine and NADH1 on the one hand and of the cytochrome C oxidase I of the mitochondrial DNA (mtDNA on the other hand. Our study highlights two sympatric populations within P. sergenti in the area of its type-locality and new haplotypes of P. perniciosus and P. longicuspis without recording the specimens called lcx previously found in North Africa. We tried to use a polymerase chain reaction-restriction fragment length polymorphism method based on a combined double digestion of each marker. These method is not interesting to identify sandflies all over the Mediterranean Basin.

  14. The Impact of Polyether Chain Length on the Iron Clearing Efficiency and Physiochemical Properties of Desferrithiocin Analogues

    Science.gov (United States)

    Bergeron, Raymond J.; Bharti, Neelam; Wiegand, Jan; McManis, James S.; Singh, Shailendra; Abboud, Khalil A.

    2010-01-01

    (S)-2-(2,4-Dihydroxyphenyl)-4,5-dihydro-4-methyl-4-thiazolecarboxylic acid (2) was abandoned in clinical trials as an iron chelator for the treatment of iron overload disease because of its nephrotoxicity. However, subsequent investigations revealed that replacing the 4′-(HO) of 2 with a 3,6,9-trioxadecyloxy group, ligand 4, increased iron clearing efficiency (ICEa) and ameliorated the renal toxicity of 2. This compelled a closer look at additional polyether analogues, the subject of this work. The 3,6,9,12-tetraoxatridecyloxy analogue of 4, chelator 5, an oil, had twice the ICE in rodents of 4, although its ICE in primates was reduced relative to 4. The corresponding 3,6-dioxaheptyloxy analogue of 2, 6 (a crystalline solid), had high ICEs in both the rodent and primate models. It significantly decorporated hepatic, renal, and cardiac iron, with no obvious histopathologies. These findings suggest that polyether chain length has a profound effect on ICE, tissue iron decorporation, and ligand physiochemical properties. PMID:20232803

  15. Haplotyping the human T-cell receptor β-chain gene complex by use of restriction fragment length polymorphisms

    International Nuclear Information System (INIS)

    Charmley, P.; Chao, A.; Gatti, R.A.; Concannon, P.; Hood, L.

    1990-01-01

    The authors have studied the genetic segregation of human T-cell receptor β-chain (TCRβ) genes on chromosome 7q in 40 CEPH (Centre d'Etude du Polymorphisme Humain) families by using restriction fragment length polymorphisms (RFLPs). They constructed haplotypes from eight RFLPs by using variable- and constant-region cDNA probes, which detect polymorphisms that span more than 600 kilobases of the TCRβ gene complex. Analysis of allele distributions between TCRβ genes revealed significant linkage disequilibrium between only 6 of the 28 different pairs of RFLPs. This linkage disequilibrium strongly influences the most efficient order to proceed for typing of these RFLPs in order to achieve maximum genetic informativeness, which in this study revealed a 97.3% level of heterozygosity within the TCRβ gene complex. The results should provide new insight into recent reports of disease associations with the TCRβ gene complex and should assist in designing future experiments to detect or confirm the existence of disease-susceptibility loci in this region of the human genome

  16. Identification of Echinococcus granulosus strains using polymerase chain reaction-restriction fragment length polymorphism amongst livestock in Moroto district, Uganda.

    Science.gov (United States)

    Chamai, Martin; Omadang, Leonard; Erume, Joseph; Ocaido, Michael; Oba, Peter; Othieno, Emmanuel; Bonaventure, Straton; Kitibwa, Annah

    2016-07-29

    A descriptive study was conducted to identify the different strains of Echinococcus granulosus occurring in livestock in Moroto district, Uganda. Echinococcus cysts from 104 domestic animals, including cattle, sheep, goats and camels, were taken and examined by microscopy, polymerase chain reaction with restriction fragment length polymorphism and Sanger DNA sequencing. Echinococcus granulosus genotypes or strains were identified through use of Bioinformatics tools: BioEdit, BLAST and MEGA6. The major finding of this study was the existence of a limited number of E. granulosus genotypes from cattle, goats, sheep and camels. The most predominant genotype was G1 (96.05%), corresponding to the common sheep strain. To a limited extent (3.95%), the study revealed the existence of Echinococcus canadensis G6/7 in three (n = 3) of the E. granulosus-positive samples. No other strains of E. granulosus were identified. It was concluded that the common sheep strain of Echinococcus sensu stricto and G6/7 of E. canadensis were responsible for echinococcal disease in Moroto district, Uganda.

  17. Molecular differentiation of Angiostrongylus costaricensis, A. cantonensis, and A. vasorum by polymerase chain reaction- restriction fragment length polymorphism

    Directory of Open Access Journals (Sweden)

    Caldeira Roberta L

    2003-01-01

    Full Text Available Angiostrongylus cantonensis, A. costaricensis, and A. vasorum are etiologic agents of human parasitic diseases. Their identification, at present, is only possible by examining the adult worm after a 40-day period following infection of vertebrate hosts with the third-stage larvae. In order to obtain a diagnostic tool to differentiate larvae and adult worm from the three referred species, polymerase chain reaction-restriction fragment length polymorphism was carried out. The rDNA second internal transcribed spacer (ITS2 and mtDNA cytochrome oxidase I regions were amplified, followed by digestion of fragments with the restriction enzymes RsaI, HapII, AluI, HaeIII, DdeI and ClaI. The enzymes RsaI and ClaI exhibited the most discriminating profiles for the differentiation of the regions COI of mtDNA and ITS2 of rDNA respectively. The methodology using such regions proved to be efficient for the specific differentiation of the three species of Angiostrongylus under study.

  18. Rapid differentiation of closely related isolates of two plant viruses by polymerase chain reaction and restriction fragment length polymorphism analysis.

    Science.gov (United States)

    Barbara, D J; Morton, A; Spence, N J; Miller, A

    1995-09-01

    Immunocapture reverse transcriptase-polymerase chain reaction (RT-PCR) followed by restriction fragment length polymorphism (RFLP) analysis of the product has been shown to be an effective procedure for discriminating serologically indistinguishable isolates of two plant viruses, raspberry bushy dwarf (RBDV) and zucchini yellow mosaic (ZYMV). For both viruses, only limited sequence information was available at the time of primer design, but most of the isolates which were tested could be amplified (the one exception being a serologically quite distinct isolate of ZYMV). Restriction endonucleases revealing diagnostic RFLPs were readily identified. Each of two isolates of ZYMV could be detected in the presence of the other and the relative proportions approximately quantified by visual estimation of the relative intensity of the appropriate bands. A range of isolates of different RBDV pathotypes were compared; isolates were grouped in ways that accorded with their known history. Computer analysis of the published sequence from which the primers had been derived showed the sequenced isolate to be identical with an isolate imported from the USSR. The PCR/RFLP procedure is rapid (it can be completed in less than 2 days), effective and will probably be generally applicable to distinguishing closely related virus isolates, even where little sequence information is available.

  19. An Assessment of Weight-Length Relationships for Muskellunge,Northern Pike, and Chain Pickerel In Carlander's Handbook of Freshwater Fishery Biology

    OpenAIRE

    Daviscourt, Joshua; Huertas, Joshua; Courtney, Michael

    2011-01-01

    Carlander's Handbook of Freshwater Fishery Biology (1969) contains life history data from many species of freshwater fish found in North America. It has been cited over 1200 times and used to produce standard-weight curves for some species. Recent work (Cole-Fletcher et al. 2011) suggests Carlander (1969) contains numerous errors in listed weight-length equations. This paper assesses the weight-length relationships listed in Carlander for muskellunge, northern pike, and chain pickerel by comp...

  20. Equation of state modeling of the phase equilibria of asymmetric CO2+n-alkane binary systems using mixing rules cubic with respect to mole fraction

    DEFF Research Database (Denmark)

    Cismondi, Martin; Mollerup, Jørgen M.; Zabaloy, Marcelo S.

    2010-01-01

    Both the equation of state (EOS) and the quadratic mixing rules proposed by van der Waals towards the end of the XIX century were enormous contributions to the understanding and modeling of fluids phase behavior. They set the basis for a consistent and useful representation of phase equilibria...... interaction parameters) in modern equations of state.In particular, the phase equilibria of binary mixtures containing CO2 and heavy n-alkanes have been studied by an important number of authors and using different types of models, achieving only partially accurate results and realizing the difficulties...... that these systems showing type III phase behavior (from C14 on) present for predicting or even correlating their phase equilibrium data in wide ranges of temperature and pressure.Cubic mixing rules (CMRs), implemented as a natural extension of the classical quadratic mixing rules, constitute the simplest...

  1. Detailed chemical kinetic models for large n-alkanes and iso-alkanes found in conventional and F-T diesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Pitz, W J; Mehl, M; Curran, H J

    2009-03-09

    n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for both primary reference fuels, a new capability is now available to model diesel fuel ignition. Additionally, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. These chemical kinetic models are used to predict the effect of the aforementioned fuel components on ignition characteristics under conditions found in internal combustion engines.

  2. Paleoclimatic changes at the Pliensbachian-Toarcian transition recorded by δD of n-alkanes and δ15Norg in a continental section of central Asia

    Science.gov (United States)

    Tramoy, Romain; Schnyder, Johann; Thui Nguyen Tu, Thanh; Yans, Johan; Jeremy, Jacob; Sebilo, Mathieu; Derenne, Sylvie; Baudin, François

    2015-04-01

    Major paleoenvironmental changes have been recognized at the Pliensbachian-Toarcian transition. Cooler conditions are suggested during the Late Pliensbachian before a drastic increase of temperatures in the Early Toarcian. Most studies were realized on European marine sediments, with little information on the environmental conditions that prevailed in terrestrial ecosystems. Here we present results on a continental section from Taskomirsai (Kazakhstan, Central Asia) showing a succession of sedimentary cycles made of lignites, clayey layers and silty-sandstones most probably deposited in a fluvial/lacustrine environment with nearby swampy areas. Rock-Eval pyrolysis indicates a type-III organic matter, i.e. mainly derived from terrestrial plants. A multi-isotope approach based on bulk organic nitrogen isotopes (δ15Norg) and hydrogen isotopic composition (δD) of n-alkanes was developed to document paleoclimatic changes in the area. In the literature, δ15Norg measured on modern or Quaternary plants has been positively correlated with temperature and negatively correlated with precipitations. According to these observations, δ15Norg measured on lignites and clayey layers has been recently used to support humid/dry cycles around the Paleocene-Eocene transition. In Taskomirsai, δ15Norg values ranged from 0.5o to 4.5o with low values in lignite beds interpreted as humid periods and high values in clayey layers interpreted as drier periods. The δD values of n-alkanes (C17 to C35) ranged from -248o to -151o. Two groups of n-alkanes could be distinguished: an aquatic group (C17 to C23) and a terrestrial group (C25 to C35). In the aquatic group, low δD values in lignites (-219±17; n=10) suggest wetter and/or cooler climate during their deposition, whereas high values in clayey layers (-179±13; n=6) suggest a drier and/or warmer climate. Low δD values recorded in the aquatic pool prior to the Pliensbachian-Toarcian transition suggest a relatively cooler and wetter

  3. Solvation molar enthalpies and heat capacities of n-alkanes and n-alkylbenzenes on stationary phases of wide-ranging polarity.

    Science.gov (United States)

    Lebrón-Aguilar, Rosa; Quintanilla-López, Jesús Eduardo; Santiuste, José María

    2010-12-03

    A comparison of the most usual gas chromatographic methods for the calculation of partial molar enthalpies of solvation (Δ(sol)H(o)) has been carried out. Those methods based on the fitting of lnV(g) or ln(k/T) vs. 1/T and ln(k/T) vs. (1/T and the temperature arrangement, T(a)) are the most adequate ones for obtaining Δ(sol)H(o) values. However, the latter is the only reliable option for Δ(sol)H(o) estimation when commercial WCOT capillary columns are used, since in this case the estimation of some variables involved in the V(g) determination is less accurate or even impossible. Consequently, in this paper, Δ(sol)H(o) obtained from ln(k/T) vs. (1/T+T(a)) fitting at 373.15 and 298.15K for n-alkanes and n-alkylbenzenes on 12 commercial capillary columns coated with stationary phases covering the 203-3608 McReynolds polarity range are reported. Moreover, molar heat capacities of solvation at constant pressure (Δ(sol)C(p)(o)) have also been calculated using this method. A clear influence on Δ(sol)H(o) of the type and content of the substitution group in the stationary phase was observed. In addition, a linear relationship of Δ(sol)C(p)(o) with the van der Waals volume of the n-alkanes and the temperature gradient of density of the stationary phase was found. The effect of the size of the hydrocarbon on both thermodynamic variables was also investigated. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Liposome encapsulation of lipophilic N-alkyl-propanediamine platinum complexes: impact on their cytotoxic activity and influence of the carbon chain length

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Heveline; Fontes, Ana Paula S. [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil). Dept. de Quimica; Lopes, Miriam Teresa P. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Farmacologia; Frezard, Frederic, E-mail: frezard@icb.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisiologia e Biofisica

    2010-07-01

    Antitumor platinum(II) complexes derived from N-alkyl-propanediamine differing in the length of their carbon chain (C8, C10, C12 and C14) were incorporated in liposomes and the cytotoxic activity of these formulations was evaluated against tumor (A{sub 549}, MDA-MB-231, B16-F1 and B16-F10) and non-tumor (BHK-21 and CHO) cell lines. Stable and monodisperse liposome suspensions incorporating the platinum complexes were obtained from the lipid composition consisting of distearoyl-sn-glycero-3-phosphocholine, cholesterol and 1,2-distearoyl-sn-glycero- 3-phosphoethanolamine-N-(methoxy(polyethylene glycol)-2000) at 5:3:0.3 molar ratio. The entrapment efficiency (EE%) of the platinum complexes in liposomes increased with the carbon chain length. EE% was higher than 80% in C12- and C14-derivatives. The effect of liposome encapsulation on the cytotoxic activity of the complexes was found to depend on the carbon chain length. These data indicate that the highest drug bioavailability from liposome formulations was achieved with the complex showing intermediate carbon chain length and partition between the liposome membrane and aqueous phase. (author)

  5. Inhibition of nuclear T3 binding by fatty acids: dependence on chain length, unsaturated bonds, cis-trans configuration and esterification

    NARCIS (Netherlands)

    Wiersinga, W. M.; Platvoet-ter Schiphorst, M.

    1990-01-01

    1. Fatty acids have the capacity for inhibition of nuclear T3 binding (INB). The present studies were undertaken to describe the INB-activity of fatty acids as a function of chain length, unsaturated bonds, cis-trans configuration, and esterification. 2. Isolated rat liver nuclei were incubated with

  6. Chain length-dependent effects of inulin-type fructan dietary fiber on human systemic immune responses against hepatitis-B

    NARCIS (Netherlands)

    Vogt, Leonie M; Elderman, Marlies E; Borghuis, Theo; de Haan, Bart J; Faas, Marijke M; de Vos, Paul

    2017-01-01

    Scope: In vivo studies demonstrating that only specific dietary-fibers contribute to immunity are still inconclusive, as measuring immune effects in healthy humans remains difficult. We applied a relatively inefficacious vaccination-challenge to study chain length-dependent effects of inulin-type

  7. Characterisation of Toxoplasma gondii isolates using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) of the non-coding Toxoplasma gondii (TGR)-gene sequences

    DEFF Research Database (Denmark)

    Høgdall, Estrid; Vuust, Jens; Lind, Peter

    2000-01-01

    of using TGR gene variants as markers to distinguish among T. gondii isolates from different animals and different geographical sources. Based on the band patterns obtained by restriction fragment length polymorphism (RFLP) analysis of the polymerase chain reaction (PCR) amplified TGR sequences, the T...

  8. Lid opening and conformational stability of T1 Lipase is mediated by increasing chain length polar solvents

    Directory of Open Access Journals (Sweden)

    Jonathan Maiangwa

    2017-05-01

    Full Text Available The dynamics and conformational landscape of proteins in organic solvents are events of potential interest in nonaqueous process catalysis. Conformational changes, folding transitions, and stability often correspond to structural rearrangements that alter contacts between solvent molecules and amino acid residues. However, in nonaqueous enzymology, organic solvents limit stability and further application of proteins. In the present study, molecular dynamics (MD of a thermostable Geobacillus zalihae T1 lipase was performed in different chain length polar organic solvents (methanol, ethanol, propanol, butanol, and pentanol and water mixture systems to a concentration of 50%. On the basis of the MD results, the structural deviations of the backbone atoms elucidated the dynamic effects of water/organic solvent mixtures on the equilibrium state of the protein simulations in decreasing solvent polarity. The results show that the solvent mixture gives rise to deviations in enzyme structure from the native one simulated in water. The drop in the flexibility in H2O, MtOH, EtOH and PrOH simulation mixtures shows that greater motions of residues were influenced in BtOH and PtOH simulation mixtures. Comparing the root mean square fluctuations value with the accessible solvent area (SASA for every residue showed an almost correspondingly high SASA value of residues to high flexibility and low SASA value to low flexibility. The study further revealed that the organic solvents influenced the formation of more hydrogen bonds in MtOH, EtOH and PrOH and thus, it is assumed that increased intraprotein hydrogen bonding is ultimately correlated to the stability of the protein. However, the solvent accessibility analysis showed that in all solvent systems, hydrophobic residues were exposed and polar residues tended to be buried away from the solvent. Distance variation of the tetrahedral intermediate packing of the active pocket was not conserved in organic solvent

  9. The modality of enterobacterial common antigen polysaccharide chain lengths is regulated by o349 of the wec gene cluster of Escherichia coli K-12.

    Science.gov (United States)

    Barr, K; Klena, J; Rick, P D

    1999-10-01

    The assembly of the phosphoglyceride-linked form of enterobacterial common antigen (ECA(PG)) occurs by a mechanism that involves modulation of polysaccharide chain length. However, the genetic determinant of this modulation has not been identified. Site-directed mutagenesis of o349 of the Escherichia coli K-12 wec gene cluster revealed that this locus encodes a Wzz protein that specifically modulates the chain length of ECA(PG) polysaccharides, and we have designated this locus wzz(ECA). The Wzz(ECA)-mediated modulation of ECA(PG) polysaccharide chains is the first demonstrated example of Wzz regulation involving a polysaccharide that is not linked to the core-lipid A structure of lipopolysaccharide.

  10. 4-N, 4-S & 4-O Chloroquine Analogues: Influence of Side Chain Length and Quinolyl Nitrogen pKa on Activity vs. Chloroquine Resistant Malaria+, #

    Science.gov (United States)

    Natarajan, Jayakumar K.; Alumasa, John; Yearick, Kimberly; Ekoue-Kovi, Kekeli A.; Casabianca, Leah B.; de Dios, Angel C.; Wolf, Christian; Roepe, Paul D.

    2009-01-01

    Using predictions from heme – quinoline antimalarial complex structures, previous modifications of chloroquine (CQ), and hypotheses for chloroquine resistance (CQR), we synthesize and assay CQ analogues that test structure – function principles. We vary side chain length for both monoethyl and diethyl 4N CQ derivatives. We alter the pKa of the quinolyl N by introducing alkylthio or alkoxy substituents into the 4 position, and vary side chain length for these analogues. We introduce an additional titratable amino group to the side chain of 4O analogues with promising CQR strain selectivity and increase activity while retaining selectivity. We solve atomic resolution structures for complexes formed between representative 4N, 4S and 4O derivatives vs. μ-oxo dimeric heme, measure binding constants for monomeric vs. dimeric heme, and quantify hemozoin (Hz) formation inhibition in vitro. The data provide additional insight for the design of CQ analogues with improved activity vs. CQR malaria. PMID:18512900

  11. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP for rapid diagnosis of neonatal sepsis

    Directory of Open Access Journals (Sweden)

    Anusha Rohit

    2016-01-01

    Full Text Available Background & objectives: The difficulties in diagnosis of neonatal sepsis are due to varied clinical presentation, low sensitivity of blood culture which is considered the gold standard and empirical antibiotic usage affecting the outcome of results. Though polymerase chain reaction (PCR based detection of bacterial 16S rRNA gene has been reported earlier, this does not provide identification of the causative agent. In this study, we used restriction fragment length polymorphism (RFLP of amplified 16S rRNA gene to identify the organisms involved in neonatal sepsis and compared the findings with blood culture. Methods: Blood samples from 97 neonates were evaluated for diagnosis of neonatal sepsis using BacT/Alert (automated blood culture and PCR-RFLP. Results: Bacterial DNA was detected by 16S rRNA gene PCR in 55 cases, while BacT/Alert culture was positive in 34 cases. Staphylococcus aureus was the most common organism detected with both methods. Klebsiella spp. was isolated from four samples by culture but was detected by PCR-RFLP in five cases while Acinetobacter spp. was isolated from one case but detected in eight cases by PCR-RFLP. The sensitivity of PCR was found to be 82.3 per cent with a negative predictive value of 85.7 per cent. Eighty of the 97 neonates had prior exposure to antibiotics. Interpretation & conclusions:The results of our study demonstrate that PCR-RFLP having a rapid turnaround time may be useful for the early diagnosis of culture negative neonatal sepsis.

  12. Modulation of saturation and chain length of fatty acids in Saccharomyces cerevisiae for production of cocoa butter-like lipids.

    Science.gov (United States)

    Bergenholm, David; Gossing, Michael; Wei, Yongjun; Siewers, Verena; Nielsen, Jens

    2018-04-01

    Chain length and degree of saturation plays an important role for the characteristics of various products derived from fatty acids, such as fuels, cosmetics, and food additives. The seeds of Theobroma cacao are the source of cocoa butter, a natural lipid of high interest for the food and cosmetics industry. Cocoa butter is rich in saturated fatty acids that are stored in the form of triacylglycerides (TAGs). One of the major TAG species of cocoa butter, consisting of two stearic acid molecules and one oleic acid molecule (stearic acid-oleic acid-stearic acid, sn-SOS), is particularly rare in nature as the saturated fatty acid stearic acid is typically found only in low abundance. Demand for cocoa butter is increasing, yet T. cacao can only be cultivated in some parts of the tropics. Alternative means of production of cocoa butter lipids (CBLs) are, therefore, sought after. Yeasts also store fatty acids in the form of TAGs, but these are typically not rich in saturated fatty acids. To make yeast an attractive host for microbial production of CBLs, its fatty acid composition needs to be optimized. We engineered Saccharomyces cerevisiae yeast strains toward a modified fatty acid synthesis. Analysis of the fatty acid profile of the modified strains showed that the fatty acid content as well as the titers of saturated fatty acids and the titers of TAGs were increased. The relative content of potential CBLs in the TAG pool reached up to 22% in our engineered strains, which is a 5.8-fold increase over the wild-type. SOS content reached a level of 9.8% in our engineered strains, which is a 48-fold increase over the wild type. © 2018 Wiley Periodicals, Inc.

  13. Genetic divergence between Mexican Opuntia accessions inferred by polymerase chain reaction-restriction fragment length polymorphism analysis.

    Science.gov (United States)

    Samah, S; Valadez-Moctezuma, E; Peláez-Luna, K S; Morales-Manzano, S; Meza-Carrera, P; Cid-Contreras, R C

    2016-06-03

    Molecular methods are powerful tools in characterizing and determining relationships between plants. The aim of this study was to study genetic divergence between 103 accessions of Mexican Opuntia. To accomplish this, polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis of three chloroplast intergenic spacers (atpB-rbcL, trnL-trnF, and psbA-trnH), one chloroplast gene (ycf1), two nuclear genes (ppc and PhyC), and one mitochondrial gene (cox3) was conducted. The amplified products from all the samples had very similar molecular sizes, and there were only very small differences between the undigested PCR amplicons for all regions, with the exception of ppc. We obtained 5850 bp from the seven regions, and 136 fragments were detected with eight enzymes, 37 of which (27.2%) were polymorphic. We found that 40% of the fragments from the chloroplast regions were polymorphic, 9.8% of the bands detected in the nuclear genes were polymorphic, and 20% of the bands in the mitochondrial locus were polymorphic. trnL-trnF and psbA-trnH were the most variable regions. The Nei and Li/Dice distance was very short, and ranged from 0 to 0.12; indeed, 77 of the 103 genotypes had the same genetic profile. All the xoconostle accessions (acidic fruits) were grouped together without being separated from three genotypes of prickly pear (sweet fruits). We assume that the genetic divergence between prickly pears and xoconostles is very low, and question the number of Opuntia species currently considered in Mexico.

  14. Effects of quaternary ammonium chain length on the antibacterial and remineralizing effects of a calcium phosphate nanocomposite

    Science.gov (United States)

    Zhang, Ke; Cheng, Lei; Weir, Michael D; Bai, Yu-Xing; Xu, Hockin HK

    2016-01-01

    Composites containing nanoparticles of amorphous calcium phosphate (NACP) remineralize tooth lesions and inhibit caries. A recent study synthesized quaternary ammonium methacrylates (QAMs) with chain lengths (CLs) of 3–18 and determined their effects on a bonding agent. This study aimed to incorporate these QAMs into NACP nanocomposites for the first time to simultaneously endow the material with antibacterial and remineralizing capabilities and to investigate the effects of the CL on the mechanical and biofilm properties. Five QAMs were synthesized: DMAPM (CL3), DMAHM (CL6), DMADDM (CL12), DMAHDM (CL16), and DMAODM (CL18). Each QAM was incorporated into a composite containing 20% NACP and 50% glass fillers. A dental plaque microcosm biofilm model was used to evaluate the antibacterial activity. The flexural strength and elastic modulus of nanocomposites with QAMs matched those of a commercial control composite (n = 6; P > 0.1). Increasing the CL from 3 to 16 greatly enhanced the antibacterial activity of the NACP nanocomposite (P control composite. The NACP nanocomposite with a CL of 16 produced 2-log decreases in the colony-forming units (CFU) of total microorganisms, total streptococci, and mutans streptococci. In conclusion, QAMs with CLs of 3–18 were synthesized and incorporated into an NACP nanocomposite for the first time to simultaneously endow the material with antibacterial and remineralization capabilities. Increasing the CL reduced the metabolic activity and acid production of biofilms and caused a 2-log decrease in CFU without compromising the mechanical properties. Nanocomposites exhibiting strong anti-biofilm activity, remineralization effects, and mechanical properties are promising materials for tooth restorations that inhibit caries. PMID:27025265

  15. New insights into the effect of medium-chain-length lactones on yeast membranes. Importance of the culture medium.

    Science.gov (United States)

    Ta, Thi Minh Ngoc; Cao-Hoang, Lan; Phan-Thi, Hanh; Tran, Hai Dang; Souffou, Nadhuirata; Gresti, Joseph; Marechal, Pierre-André; Cavin, Jean-François; Waché, Yves

    2010-07-01

    In hydrophobic compounds biotechnology, medium-chain-length metabolites often perturb cell activity. Their effect is usually studied in model conditions of growth in glucose media. Here, we study whether culture on lipids has an impact on the resistance of Yarrowia lipolytica to such compounds: Cells were cultured on glucose or oleate and submitted to gamma-dodecalactone. After a 60-min exposure to 3 g L(-1), about 80% of the glucose-grown cells (yeast extract peptone dextrose (YPD) cells) had lost their cultivability, 38% their membrane integrity, and 31% their reducing capacity as shown with propidium iodide and methylene blue, respectively. For oleate-grown cells, treatment at 6 g L(-1) did not alter cultivability despite some transient loss of membrane integrity from 3 g L(-1). It was shown with diphenylhexatriene and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene that oleate-grown cells had membranes more fluid and less sensitive to the lactone-induced fluidization. Analyses revealed also higher contents of ergosterol but, for YPD- and minimum-oleate-grown cells (YNBO cells), the addition of lactone provoked a decrease in the concentration of ergosterol in a way similar to the depletion by methyl-beta-cyclodextrin and an important membrane fluidization. Ergosterol depletion or incorporation increased or decreased, respectively, cell sensitivity to lactone. This study shows that the embedment of oleate moieties into membranes as well as higher concentrations of sterol play a role in the higher resistance to lactone of oleate-grown cells (YPO cells). Similar oleate-induced increase in resistance was also observed for Rhodotorula and Candida strains able to grow on oleate as the sole carbon source whereas Saccharomyces and Sporidiobolus cells were more sensitive after induction.

  16. Determination of n-alkanes in C. annuum (bell pepper) fruit and seed using GC-MS: comparison of extraction methods and application to samples of different geographical origin

    NARCIS (Netherlands)

    de Rijke, E.; Fellner, C.; Westerveld, J.; Lopatka, M.; Cerli, C.; Kalbitz, K.; de Koster, C.G.

    2015-01-01

    An efficient extraction and analysis method was developed for the isolation and quantification of n-alkanes from bell peppers of different geographical locations. Five extraction techniques, i.e., accelerated solvent extraction (ASE), ball mill extraction, ultrasonication, rinsing, and shaking, were

  17. Synthesis of Peptides from α- and β-Tubulin Containing Glutamic Acid Side-Chain Linked Oligo-Glu with Defined Length

    Directory of Open Access Journals (Sweden)

    Werner Tegge

    2010-01-01

    Full Text Available Side-chain oligo- and polyglutamylation represents an important posttranslational modification in tubulin physiology. The particular number of glutamate units is related to specific regulatory functions. In this work, we present a method for the synthesis of building blocks for the Fmoc synthesis of peptides containing main chain glutamic acid residues that carry side-chain branching with oligo-glutamic acid. The two model peptide sequences CYEEVGVDSVEGEG-E(E-EEGEEY and CQDATADEQG-E(E-FEEEEGEDEA from the C-termini of mammalian α1- and β1-tubulin, respectively, containing oligo-glutamic acid side-chain branching with lengths of 1 to 5 amino acids were assembled in good yield and purity. The products may lead to the generation of specific antibodies which should be important tools for a more detailed investigation of polyglutamylation processes.

  18. Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon: Effect of SAM alkyl chain length

    Science.gov (United States)

    Huo, Lixia; Du, Pengcheng; Zhou, Hui; Zhang, Kaifeng; Liu, Peng

    2017-02-01

    It is well known that the self-assembled organic molecules on a solid surface exhibit the friction-reducing performance. However, the effect of the molecular size of the self-assembled organic molecules has not been established. In the present work, self-assembled monolayers (SAMs) of n-alkyltrimethoxysilanes with different alkyl chain lengths (C6, C12, or C18) were fabricated on silicon substrate. The water contact angles of the SAMs increased from 26.8° of the hydroxylated silicon substrate to near 60° after self-assembly. The atomic force microscopy (AFM) analysis results showed that the mean roughness (Ra) of the SAMs decreased with increasing the alkyl chain length. The tribological properties of the SAMs sliding against Al2O3 ball were evaluated on an UMT-2 tribometer, and the worn surfaces of the samples were analyzed by means of Nano Scratch Tester and surface profilometry. It was found that lowest friction coefficient and smallest width of wear were achieved with the SAMs of C12 alkyl chain (C12-SAM). The superior friction reduction and wear resistance of the SAMs in comparison with the bare silicon substrate are attributed to good adhesion of the self-assembled films to the substrate, especially the C12-SAM with desirable alkyl chain length.

  19. Effect of surfactant alkyl chain length on the dispersion, and thermal and dynamic mechanical properties of LDPE/organo-LDH composites

    Directory of Open Access Journals (Sweden)

    2011-05-01

    Full Text Available Low density polyethylene/layered double hydroxide (LDH composites were prepared via melt compounding using different kinds of organo-LDHs and polyethylene-grafted maleic anhydride as the compatibilizer. The organo-LDHs were successfully prepared by converting a commercial MgAl-carbonate LDH into a MgAl-nitrate LDH, which was later modified by anion exchange with linear and branched sodium alkyl sulfates having different alkyl chain lengths (nc = 6, 12 and 20. It was observed that, depending on the size of the surfactant alkyl chain, different degrees of polymer chain intercalation were achieved, which is a function of the interlayer distance of the organo-LDHs, of the packing level of the alkyl chains, and of the different interaction levels between the surfactant and the polymer chains. In particular, when the number of carbon atoms of the surfactant alkyl chain is larger than 12, the intercalation of polymer chains in the interlayer space and depression of the formation of large aggregates of organo-LDH platelets are favored. A remarkable improvement of the thermal-oxidative degradation was evidenced for all of the composites; whereas only a slight increase of the crystallization temperature and no significant changes of both melting temperature and degree of crystallinity were achieved. By thermodynamic mechanical analysis, it was evidenced that a softening of the matrix is may be due to the plasticizing effect of the surfactant.

  20. Photoluminescence and self-assembly of cesium lead halide perovskite nanocrystals: Effects of chain length of organic amines and reaction temperature

    Science.gov (United States)

    Yuan, Yi; Liu, Zheming; Liu, Zhenyang; Peng, Lan; Li, Yongjie; Tang, Aiwei

    2017-05-01

    All-inorganic halide perovskites have become one of the most prospective materials for lightening and display technology due to their color-tunable and narrow-band emission. Herein, we have systematically studied the effects of organic amines with different hydrocarbon chain length on the optical properties and morphology as well as the crystal structure of colloidal CsPbBr3 nanocrystals (NCs), which were synthesized in the presence of oleic acid (OA) and organic amines by using a simple hot-injection approach. The hydrocarbon chain length has shown an independent correlation to the morphology and crystal structure of the as-obtained CsPbBr3 NCs at 160 °C, but their optical properties can be affected to some extent. The photoluminescence quantum yields (PLQYs) of the CsPbBr3 NCs synthesized in the presence of organic amines with long carbon chain length are generally in the range of 55-80% for different reaction time, but the PLQYs of less than 20% are obtained for the products synthesized in the presence of octylamine (OTAm) with short carbon chain length. The effects of the reaction temperature on the optical properties, size and crystal structure of the CsPbBr3 NCs synthesized in the presence of cetylamine (CTAm) are studied. Interestingly, some nanoplates also appear in these CsPbBr3 NCs obtained at relatively low temperatures (120 and 140 °C), which have a strong tendency to self-assemble into face-to-face nanostructures. Such a similar self-assembly behavior is also observed in the product synthesized in the presence of oleylamine (OLAm), but only flat nanoplates are observed in the products in the presence of OTAm at 120 °C. The results indicate that the lower reaction temperature and hydrocarbon chain length of the organic ligands play a significant role in the self-assembly of CsPbBr3 NCs. This work opens up an alternative approach to controllable-synthesis of perovskite NCs through varying the carbon chain length of organic surfactants, and enlightens

  1. Application of Nitrogen and Carbon Stable Isotopes (δ15N and δ13C) to Quantify Food Chain Length and Trophic Structure

    OpenAIRE

    Perkins, Matthew J.; McDonald, Robbie A.; van Veen, F. J. Frank; Kelly, Simon D.; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ(15)N, and carbon range (CR) using δ(13)C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of kn...

  2. Site-specific PEGylation of hemoglobin at Cys-93(beta): correlation between the colligative properties of the PEGylated protein and the length of the conjugated PEG chain.

    Science.gov (United States)

    Manjula, B N; Tsai, A; Upadhya, R; Perumalsamy, K; Smith, P K; Malavalli, A; Vandegriff, K; Winslow, R M; Intaglietta, M; Prabhakaran, M; Friedman, J M; Acharya, A S

    2003-01-01

    Increasing the molecular size of acellular hemoglobin (Hb) has been proposed as an approach to reduce its undesirable vasoactive properties. The finding that bovine Hb surface decorated with about 10 copies of PEG5K per tetramer is vasoactive provides support for this concept. The PEGylated bovine Hb has a strikingly larger molecular radius than HbA (1). The colligative properties of the PEGylated bovine Hb are distinct from those of HbA and even polymerized Hb, suggesting a role for the colligative properties of PEGylated Hb in neutralizing the vasoactivity of acellular Hb. To correlate the colligative properties of surface-decorated Hb with the mass of the PEG attached and also its vasoactivity, we have developed a new maleimide-based protocol for the site-specific conjugation of PEG to Hb, taking advantage of the unusually high reactivity of Cys-93(beta) of oxy HbA and the high reactivity of the maleimide to protein thiols. PEG chains of 5, 10, and 20 kDa have been functionalized at one of their hydroxyl groups with a maleidophenyl moiety through a carbamate linkage and used to conjugate the PEG chains at the beta-93 Cys of HbA to generate PEGylated Hbs carrying two copies of PEG (of varying chain length) per tetramer. Homogeneous preparations of (SP-PEG5K)(2)-HbA, (SP-PEG10K)(2)-HbA, and (SP-PEG20K)(2)-HbA have been isolated by ion exchange chromatography. The oxygen affinity of Hb is increased slightly on PEGylation, but the length of the PEG-chain had very little additional influence on the O(2) affinity. Both the hydrodynamic volume and the molecular radius of the Hb increased on surface decoration with PEG and exhibited a linear correlation with the mass of the PEG chain attached. On the other hand, both the viscosity and the colloidal osmotic pressure (COP) of the PEGylated Hbs exhibited an exponential increase with the increase in PEG chain length. In contrast to the molecular volume, viscosity, and COP, the vasoactivity of the PEGylated Hbs was not a

  3. Hydrogen isotope ratios of terrestrial leaf wax n-alkanes from the Tibetan Plateau: Controls on apparent enrichment factors, effect of vapor sources and implication for altimetry

    Science.gov (United States)

    Zhang, Xiaolong; Xu, Baiqing; Günther, Franziska; Mügler, Ines; Lange, Markus; Zhao, Huabiao; Li, Jiule; Gleixner, Gerd

    2017-08-01

    Empirical evidence suggested that the altitudinal dependence of hydrogen isotope ratios of leaf wax n-alkanes (δDwax) can be used to estimate paleoaltitudinal changes. However, the application of δDwax-based paleoaltimetry remains difficult, as the impacts of evaporative, transpirative and biosynthetic processes on hydrogen isotope fractionations in changing environments and the influence of likely changing water vapor sources are not well explored. For this study, we sampled stream waters, soils and plant leaves along two transects spanning large gradients of altitude, precipitation amount, vapor source, temperature and vegetation type on the Tibetan Plateau (TP). δD values of stream water (as an approximation for δDp), soil water (δDsw) and plant leaf water (δDlw) as well as leaf wax n-alkanes were measured in order to quantify isotopic fractionations in the formation of leaf waxes. Most interestingly, we found a strong negative correlation between the evapotranspirative enrichment of leaf water against precipitation (εlw-p), which combines the effects of soil evaporation and leaf transpiration, and the biosynthetic hydrogen isotope fractionation (εwax-lw), which describes isotopic enrichment between leaf wax and leaf water. The relationship yields a steady apparent isotopic enrichment factor (εwax-p) between leaf wax and precipitation, which is independent from climatic parameters and has an average value of -107 ± 26‰ for grasses (monocotyledons) and -77 ± 22‰ for trees (dicotyledons). Since the terrestrial n-alkanes, especially n-C27 and n-C29, in sediments are derived from trees and grasses, the likely change of the vegetation type in the uplift of mountains can change the isotopic estimates by about ±30‰, which corresponds to an altitudinal change of ∼1600 m. We, therefore, suggest that hydrogen isotope ratio of sedimentary n-C31 alkane, which is mainly derived from grasses might be better proxies to reconstruct paleoaltitudes. Our large

  4. Digestibilidade determinada pelo método indireto usando o n-alcano C35 Digestibility determinate by indirect method using C35 n-alkane

    Directory of Open Access Journals (Sweden)

    Dimas Estrásulas de Oliveira

    2000-06-01

    Full Text Available Foi feito um trabalho de extração e análise de n-alcanos com o objetivo de investigar o uso do n-alcano (C35 presente nas forragens como um indicador interno para determinação de digestibilidade. Foram utilizadas amostras de experimentos de digestibilidade convencional realizados previamente entre os anos de 1978 e 1982. O C35 subestimou as digestibilidades da matéria seca e orgânica, apresentando diferença média, em relação ao método in vivo, de 4,68 (± 0,69 e 4,43 (± 0,85 unidades percentuais, respectivamente. O coeficiente de regressão não diferiu da unidade, indicando que os métodos foram equivalentes, havendo, porém, a necessidade de um fator de correção. Os coeficientes de correlação para a matéria seca e orgânica, observados entre os dois métodos, foram 0,87 e 0,85, respectivamente. O C35 apresentou recuperação fecal média de 91,76% (± 7,94, que contribuiu para o vício da técnica.An experiment was conducted, on extraction and analysis of n-alkanes, to investigate the use of n-alkane (C35 present in forages as an internal marker for the digestibility determination. Samples of forages and feces were taken from conventional digestibility trials, which were previous conducted from 1978 to 1982. The C35 underestimated the dry matter and organic matter digestibilities, presenting an average difference in relation to in vivo of 4.68 (± 0.69 and 4,43 (± 0.85 perceptual units, respectively. The coefficient of regression did not differ from the unit, indicating that both methods were equivalent, having, however, the necessity of a correction factor. The coefficients of correlation observed for the dry and organic matter between the two methods were 0.87 and 0.85, respectively. The average fecal recovery of C35 was 91.76% (± 7.94, and this contributed to the bias of the method.

  5. Hydrogen isotopes of n-alkanes and n-alkanoic acids as tracers of precipitation in a temperate forest and implications for paleorecords

    Science.gov (United States)

    Freimuth, Erika J.; Diefendorf, Aaron F.; Lowell, Thomas V.

    2017-06-01

    The hydrogen isotopic composition of leaf waxes (δDwax) primarily reflects that of plant source water. Therefore, sedimentary δDwax records are increasingly used to reconstruct the δD of past precipitation (δDp) and to investigate paleohydrologic changes. Such reconstructions rely on estimates of apparent fractionation (εapp) between δDp and the resulting δDwax. However, εapp values are modified by numerous environmental and biological factors during leaf wax production. As a result, εapp can vary widely among plant species and growth forms. This complicates estimation of accurate εapp values and presents a central challenge to quantitative leaf wax paleohydrology. During the 2014 growing season, we examined εapp in the five deciduous angiosperm tree species (Prunus serotina, Acer saccharinum, Quercus rubra, Quercus alba, and Ulmus americana) that dominate the temperate forest at Brown's Lake Bog, Ohio, USA. We sampled individuals of each species at weekly to monthly intervals from March to October and report δD values of n-C29 alkanes (δDn-C29 alkane) and n-C28 alkanoic acids (δDn-C28 acid), as well as xylem (δDxw) and leaf water (δDlw). n-Alkane synthesis was most intense 2-3 weeks after leaf emergence and ceased thereafter, whereas n-alkanoic acid synthesis continued throughout the entire growing season. During bud swell and leaf emergence, δDlw was a primary control on δDn-C29 alkane and δDn-C28 acid values, which stabilized once leaves became fully expanded. Metabolic shifts between young and mature leaves may be an important secondary driver of δDwax changes during leaf development. In mature autumn leaves of all species, the mean εapp for n-C29 alkane (-107‰) was offset by approximately -19‰ from the mean εapp for n-C28 alkanoic acid (-88‰). These results indicate that in temperate settings n-alkanes and n-alkanoic acids from deciduous trees are distinct with respect to their abundance, timing of synthesis, and εapp values.

  6. Bacterial membrane activity of a-peptide/b-peptoid chimeras: Influence of amino acid composition and chain length on the activity against different bacterial strains

    DEFF Research Database (Denmark)

    Hein-Kristensen, Line; Knapp, Kolja M; Franzyk, Henrik

    2011-01-01

    acid only had a minor effect on MIC values, whereas chain length had a profound influence on activity. All chimeras were less active against Serratia marcescens (MICs above 46 μM). The chimeras were bactericidal and induced leakage of ATP from Staphylococcus aureus and S. marcescens with similar time......BACKGROUND: Characterization and use of antimicrobial peptides (AMPs) requires that their mode of action is determined. The interaction of membrane-active peptides with their target is often established using model membranes, however, the actual permeabilization of live bacterial cells...... and subsequent killing is usually not tested. In this report, six α-peptide/β-peptoid chimeras were examined for the effect of amino acid/peptoid substitutions and chain length on the membrane perturbation and subsequent killing of food-borne and clinical bacterial isolates. RESULTS: All six AMP analogues...

  7. A Study on the Impact of Poly(3-hexylthiophene Chain Length and Other Applied Side-Chains on the NO2 Sensing Properties of Conducting Graft Copolymers

    Directory of Open Access Journals (Sweden)

    Marcin Procek

    2018-03-01

    Full Text Available The detection and concentration measurements of low concentrations of nitrogen dioxide (NO2 are important because of its negative effects on human health and its application in many fields of industry and safety systems. In our approach, conducting graft copolymers based on the poly(3-hexylthiophene (P3HT conducting polymer and other side-chains, polyethylene glycol (PEG and dodec-1-en, grafted on a poly(methylhydrosiloxane backbone, were investigated. The grafts containing PEG (PEGSil and dodec-1-en (DodecSil in two variants, namely, fractions with shorter (hexane fraction -H and longer (chloroform fraction -CH side-chains of P3HT, were tested as receptor structures in NO2 gas sensors. Their responses to NO2, within the concentration range of 1–20 ppm, were investigated in an nitrogen atmosphere at different operating temperatures—room temperature (RT = 25 °C, 50 °C, and 100 °C. The results indicated that both of the copolymers with PEG side-chains had higher responses to NO2 than the materials with dodec-1-en side-chains. Furthermore, the results indicated that, in both cases, H fractions were more sensitive than CH fractions. The highest response to 1 ppm of NO2, from the investigated graft copolymers, had PEGSil H, which indicated a response of 1330% at RT and 1980% at 100 °C. The calculated lower-limit of the detection of this material is lower than 300 ppb of NO2 at 100 °C. This research indicated that graft copolymers of P3HT had great potential for low temperature NO2 sensing, and that the proper choice of other side-chains in graft copolymers can improve their gas sensing properties.

  8. Effect of side chain length on the stability and structural properties of 3-(2’,5’-dialkoxy-phenylthiophenes: a theoretical study

    Directory of Open Access Journals (Sweden)

    Taye Beyene Demissie

    2010-04-01

    Full Text Available We report on the effect of the alkoxy chain length on the thermodynamic properties of neutral and the corresponding radical cations of 3-(2’,5’-dibutyloxyphenylthiophene (DBOPT, 3-(2’,5’-diheptyloxyphenylthiophene (DHOPT, and 3-(2’,5’-dioctyloxyphenylthiophene (DOOPT and their dimers studied by Hartree-Fock (HF and Density Functional Theory (DFT methods. The DFT calculations suggest that dimers of the dialkoxyphenylthiophenes with longer side chains are thermodynamically more stable by about 61.39 kJ/mol than the ones with shorter side chains at the radical cation state. The results correlate well with the experimental observations made during the electrochemical synthesis of these polymers from their monomers.

  9. Examining the effect of chain length polydispersity on the phase behavior of polymer solutions with the statistical associating fluid theory (Wertheim TPT1) using discrete and continuous distributions.

    Science.gov (United States)

    Paricaud, Patrice; Galindo, Amparo; Jackson, George

    2007-10-21

    Polymers are naturally polydisperse. Polydispersity may have a large effect on the phase behavior of polymer solutions, in particular, on the liquid-liquid phase equilibria. In this paper, we determine the cloud and shadow curves bounded by lower critical solution temperatures for a number of polymer+solvent systems where the polymer is polydisperse in terms of molecular weight (chain length). The moment method [P. Sollich, P. B. Warren, and M. E. Cates, Adv. Chem. Phys. 116, 265 (2001)] is applied with the SAFT approach to determine cloud and shadow curves with continuous Schulz-Flory distributions. It is seen that chain length polydispersity always enhances the extent of liquid-liquid phase equilibria. The predicted cloud curves obtained for continuous distributions are very similar to those obtained for simple ternary mixtures with the same polydispersity index, while the corresponding shadow curves can be very different depending on the composition of the parent distribution. The ternary phase behavior can be used to provide an understanding of the shape of the cloud and shadow curves. Regions of phase equilibria between three liquid phases are found for ternary systems when the chain length distribution is very asymmetrical; such regions are not observed for Schulz-Flory distributions even in the case of a large degree of polydispersity.

  10. Bond length and electric current oscillation of long linear carbon chains: Density functional theory, MpB model, and quantum spin transport studies

    International Nuclear Information System (INIS)

    Oeiras, R. Y.; Silva, E. Z. da

    2014-01-01

    Carbon linear atomic chains attached to graphene have experimentally been produced. Motivated by these results, we study the nature of the carbon bonds in these nanowires and how it affects their electrical properties. In the present study we investigate chains with different numbers of atoms and we observe that nanowires with odd number of atoms present a distinct behavior than the ones with even numbers. Using graphene nanoribbons as leads, we identify differences in the quantum transport of the chains with the consequence that even and odd numbered chains have low and high electrical conduction, respectively. We also noted a dependence of current with the wire size. We study this unexpected behavior using a combination of first principles calculations and simple models based on chemical bond theory. From our studies, the electrons of carbon nanowires present a quasi-free electron behavior and this explains qualitatively the high electrical conduction and the bond lengths with unexpected values for the case of odd nanowires. Our study also allows the understanding of the electric conduction dependence with the number of atoms and their parity in the chain. In the case of odd number chains a proposed π-bond (MpB) model describes unsaturated carbons that introduce a mobile π-bond that changes dramatically the structure and transport properties of these wires. Our results indicate that the nature of bonds plays the main role in the oscillation of quantum electrical conduction for chains with even and odd number of atoms and also that nanowires bonded to graphene nanoribbons behave as a quasi-free electron system, suggesting that this behavior is general and it could also remain if the chains are bonded to other materials

  11. Nighttime oxidation of surfactants at the air-water interface: effects of chain length, head group and saturation

    Science.gov (United States)

    Sebastiani, Federica; Campbell, Richard A.; Rastogi, Kunal; Pfrang, Christian

    2018-03-01

    Reactions of the key atmospheric nighttime oxidant NO3 with organic monolayers at the air-water interface are used as proxies for the ageing of organic-coated aqueous aerosols. The surfactant molecules chosen for this study are oleic acid (OA), palmitoleic acid (POA), methyl oleate (MO) and stearic acid (SA) to investigate the effects of chain length, head group and degree of unsaturation on the reaction kinetics and products formed. Fully and partially deuterated surfactants were studied using neutron reflectometry (NR) to determine the reaction kinetics of organic monolayers with NO3 at the air-water interface for the first time. Kinetic modelling allowed us to determine the rate coefficients for the oxidation of OA, POA and MO monolayers to be (2.8±0.7) × 10-8, (2.4±0.5) × 10-8and (3.3±0.6) × 10-8 cm2 molecule-1 s-1 for fitted initial desorption lifetimes of NO3 at the closely packed organic monolayers, τd, NO3, 1, of 8.1±4.0, 16±4.0 and 8.1±3.0 ns, respectively. The approximately doubled desorption lifetime found in the best fit for POA compared to OA and MO is consistent with a more accessible double bond associated with the shorter alkyl chain of POA facilitating initial NO3 attack at the double bond in a closely packed monolayer. The corresponding uptake coefficients for OA, POA and MO were found to be (2.1±0.5) × 10-3, (1.7±0.3) × 10-3 and (2.1±0.4) × 10-3, respectively. For the much slower NO3-initiated oxidation of the saturated surfactant SA we estimated a loss rate of approximately (5±1) × 10-12 cm2 molecule-1 s-1, which we consider to be an upper limit for the reactive loss, and estimated an uptake coefficient of ca. (5±1) × 10-7. Our investigations demonstrate that NO3 will contribute substantially to the processing of unsaturated surfactants at the air-water interface during nighttime given its reactivity is ca. 2 orders of magnitude higher than that of O3. Furthermore, the relative contributions of NO3 and O3 to the oxidative

  12. Nighttime oxidation of surfactants at the air–water interface: effects of chain length, head group and saturation

    Directory of Open Access Journals (Sweden)

    F. Sebastiani

    2018-03-01

    Full Text Available Reactions of the key atmospheric nighttime oxidant NO3 with organic monolayers at the air–water interface are used as proxies for the ageing of organic-coated aqueous aerosols. The surfactant molecules chosen for this study are oleic acid (OA, palmitoleic acid (POA, methyl oleate (MO and stearic acid (SA to investigate the effects of chain length, head group and degree of unsaturation on the reaction kinetics and products formed. Fully and partially deuterated surfactants were studied using neutron reflectometry (NR to determine the reaction kinetics of organic monolayers with NO3 at the air–water interface for the first time. Kinetic modelling allowed us to determine the rate coefficients for the oxidation of OA, POA and MO monolayers to be (2.8±0.7 × 10−8, (2.4±0.5 × 10−8and (3.3±0.6 × 10−8 cm2 molecule−1 s−1 for fitted initial desorption lifetimes of NO3 at the closely packed organic monolayers, τd, NO3, 1, of 8.1±4.0, 16±4.0 and 8.1±3.0 ns, respectively. The approximately doubled desorption lifetime found in the best fit for POA compared to OA and MO is consistent with a more accessible double bond associated with the shorter alkyl chain of POA facilitating initial NO3 attack at the double bond in a closely packed monolayer. The corresponding uptake coefficients for OA, POA and MO were found to be (2.1±0.5 × 10−3, (1.7±0.3 × 10−3 and (2.1±0.4 × 10−3, respectively. For the much slower NO3-initiated oxidation of the saturated surfactant SA we estimated a loss rate of approximately (5±1 × 10−12 cm2 molecule−1 s−1, which we consider to be an upper limit for the reactive loss, and estimated an uptake coefficient of ca. (5±1 × 10−7. Our investigations demonstrate that NO3 will contribute substantially to the processing of unsaturated surfactants at the air–water interface during nighttime given its reactivity is ca. 2 orders of magnitude higher

  13. Effect of Difference in Fatty Acid Chain Lengths of Medium- Chain Lipids on Lipid/Surfactant/Water Phase Diagrams and Drug Solubility

    OpenAIRE

    Hetal N. Prajapati; Darshil P. Patel; Nrupa G. Patel; Damon M. Dalrymple; Abu T.M. Serajuddin

    2011-01-01

    Lipids consisting of medium chain fatty acids are commonly used in the development of lipid-based self-emulsifying and self-microemulsifying drug delivery systems. However, no systematic approach to selecting one lipid over another has been reported in the literature. In this study, propylene glycol (PG) monoester (PG monocaprylate, Capmul PG-8®) and PG diester (PG dicaprylocaprate, Captex 200P®) of C8-fatty acids were compared with PG monoester (PG monolaurate, Capmul PG-12®) and PG diester ...

  14. Black-Dye-Based Dye-Sensitized Solar Cells using the Electrolyte Solutions Containing a Quaternary Phosphonium Iodide with a Various Alkyl Chain Length

    International Nuclear Information System (INIS)

    Ozawa, Hironobu; Urayama, Ayako; Arakawa, Hironori

    2016-01-01

    Solar cell performances of the cosensitized dye-sensitized solar cells (DSCs) with Black dye and D131 using the electrolyte solution containing a quaternary phosphonium iodide with a various alkyl chain length have been evaluated by the photoelectrochemical and the electrochemical impedance spectroscopic measurements. Effects of the difference of the central atom between the quaternary phosphonium iodide and the quaternary ammonium iodide on the solar cell performances have been clarified. The DSC using the electrolyte solution containing tetrabutylphosphonium iodide showed higher Jsc. value and lower Voc and FF values compared to those of the DSC using the electrolyte solution containing tetrabutylammonium iodide. In addition, effects of the alkyl chain length of the quaternary phosphonium iodide on the solar cell performances have been also investigated. The blocking effect of the quaternary phosphonium cation for the access of I 3 − to the TiO 2 surface was found to be improved with increasing the alkyl chain length. The highest conversion efficiency (11.3%) could be obtained in the cosensitized DSC with Black dye and D131 using the electrolyte solution containing a moderate concentration of tetraoctylphosphonium iodide under AM 1.5 (100 mW/cm 2 ) irradiation. This study demonstrated that the quaternary phosphonium iodide with a longer alkyl chain is also effective for the improvement of the conversion efficiency of the DSCs due to both the improvement of the electron lifetime in the TiO 2 photoelectrode and the slight increment of the conduction band energy of the TiO 2 .

  15. Highly Grafted Polystyrene/polyvinylpyridine Polymer Gold Nanoparticles in a Good Solvent: Effects of Chain Length and Composition.

    Czech Academy of Sciences Publication Activity Database

    Posel, Zbyšek; Posocco, P.; Lísal, Martin; Fermeglia, M.; Pricl, S.

    2016-01-01

    Roč. 12, č. 15 (2016), s. 3600-3611 ISSN 1744-683X R&D Projects: GA ČR(CZ) GA13-02938S; GA MŠk LH12020 Institutional support: RVO:67985858 Keywords : block copolymers * chains * fiber optic sensors Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.889, year: 2016

  16. Revisit complexation between DNA and polyethylenimine — Effect of length of free polycationic chains on gene transfection

    DEFF Research Database (Denmark)

    Yue, Yanan; Jin, Fan; Deng, Rui

    2011-01-01

    Our revisit of the complexation between DNA and polyethylenimine (PEI) by using a combination of laser light scattering and gel electrophoresis confirms that nearly all the DNA chains are complexed with PEI to form polyplexes when the molar ratio of nitrogen from PEI to phosphate from DNA (N:P) r...

  17. Mass spectrometric method to determine the chain length of oligosaccharides attached to phenolic polymers by nonglycosidic linkages

    Science.gov (United States)

    James L. Minor; Roger C. Pettersen

    1987-01-01

    In many plants, a portion of the polysaccharides appears to have a very low degree of cross-linking with aromatic polymers such as lignin or flavolans. The proportion of cross-linked units may be enriched for study by enzymatically hydrolyzing the nonbonded carbohydrates. A convenient method is described for the simultaneous analysis of sugar content and apparent chain...

  18. Proton conducting graft copolymers with tunable length and density of phosphonated side chains for fuel cell membranes

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Takamuku, Shogo; Jankova Atanasova, Katja

    2014-01-01

    gravimetrical analyses. The proton conductivity of membrane prepared from the graft copolymer with the shortest phosphonated side chains was 134 mS cm(-1) at 100 degrees C under fully immersed conditions. The graft copolymer TEM image shows a nanophase separation of ion-rich segments within the polysulfone...

  19. Contribution of unburned lubricating oil and gasoline-derived n-alkanes to particulate emission from non-catalyst and catalyst-equipped two-stroke mopeds operated with synthetic lubricating oil.

    Science.gov (United States)

    Spezzano, Pasquale; Picini, Paolo; Cataldi, Dario

    2008-10-01

    This study investigated the contribution of unburned lubricating oil and gasoline-derived n-alkanes to particulate emission from non-catalyst and catalyst-equipped two-stroke (2-S) mopeds operated with ester-based, fully synthetic lubricating oil. Exhaust particulate matter (PM) from ten 2-S, 50 cm3 mopeds belonging to three different levels of emission legislation (EURO-0, EURO-1 and EURO-2) was collected during the sampling phase of the ECE 47 driving cycle through which each mopeds was driven on a dynamometer bench. Filters containing PM were extracted with an accelerated solvent extractor and analysed by gas-chromatography/mass spectrometry. The contribution of unburned lubricating oil to the PM was ascertained and quantified by exploiting characteristic ions in its mass spectrum. The experimental results show that unburned lubricating oil accounted for a significant fraction (4.7-38.7%) of the PM emitted from 2-S mopeds. Emission rates of particulate unburned lubricating oil and n-alkanes from non-catalyst EURO-0 mopeds were 15.4-56.2 mg km(-1) and 1-2 mg km(-1), respectively. These emission rates were reduced of 75% and 88%, respectively, for catalyst-equipped EURO-1 mopeds. The results of the tests carried out on two EURO-2 mopeds of different technology were contrasting. A EURO-2 moped with carburettor and secondary air injection exhibited a clear reduction of 95% and 88% for unburned lubricating oil and n-alkanes emission rates with respect to the average values observed for EURO-1 mopeds. On the other hand, the second EURO-2 moped, equipped with catalyst and direct injection, had unburned lubricating oil emission rates roughly in the range of EURO-0 mopeds while particulate n-alkanes were emitted at rates comparable with typical values observed for catalyst EURO-1 mopeds.

  20. Controlling the enthalpy-entropy competition in supramolecular fullerene liquid crystals by tuning the flexible chain length.

    Science.gov (United States)

    Zhu, Tiantian; Zhang, Xiaoyan; Li, Zhikai; Hsu, Chih-Hao; Chen, Wei; Miyoshi, Toshikazu; Li, Xiaohong; Yang, Xiaoming; Tu, Yingfeng; Li, Christopher Y

    2017-07-20

    We present here that in two-dimensional (2D) fullerene supramolecular liquid crystals (SLCs), the phase diagram and lamella thickness of SLCs and 2D crystals can be tuned by the flexible alkyl tail and spacer length, due to their different effects on enthalpy and entropy changes during SLC formation.

  1. Influence of alkyl chain length and anion species on ionic liquid structure at the graphite interface as a function of applied potential

    International Nuclear Information System (INIS)

    Li, Hua; Wood, Ross J; Atkin, Rob; Endres, Frank

    2014-01-01

    Atomic force microscopy (AFM) force measurements elucidate the effect of cation alkyl chain length and the anion species on ionic liquid (IL) interfacial structure at highly ordered pyrolytic graphite (HOPG) surfaces as a function of potential. Three ILs are examined: 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([HMIM] FAP), 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([EMIM] FAP), and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM] TFSA). The step-wise force-distance profiles indicate the ILs adopt a multilayered morphology near the surface. When the surface is biased positively or negatively versus Pt quasireference electrode, both the number of steps, and the force required to rupture each step increase, indicating stronger interfacial structure. At all potentials, push-through forces for [HMIM] FAP are the highest, because the long alkyl chain results in strong cohesive interactions between cations, leading to well-formed layers that resist the AFM tip. The most layers are observed for [EMIM] FAP, because the C 2 chains are relatively rigid and the dimensions of the cation and anion are similar, facilitating neat packing. [EMIM] TFSA has the smallest push-through forces and fewest layers, and thus the weakest interfacial structure. Surface-tip attractive forces are measured for all ILs. At the same potential, the attractions are the strongest for [EMIM] TFSA and the weakest for [HMIM] FAP because the interfacial layers are better formed for the longer alkyl chain cation. This means interfacial forces are stronger, which masks the weak attractive forces. (paper)

  2. Ecological response to climate change and human activities indicated by n-alkane proxy during the mid- to late Holocene: a case study from an alpine lake

    Science.gov (United States)

    Zhang, C.; Zhao, C.

    2017-12-01

    Paleolimonological records provide long-term dynamics information of past climate, environment, human activities and ecological variations and give evolutionary perspectives to understand responses process of ecological shift to internal or external trigger. In this study, a powerful biomarkers, n-alkanes, was used to reconstruct the past 5000 years organic matter sources and ecological evolution history of Beilianchi Lake in the southwestern of Loess Plateau after preliminary investigation of modern samples. Climate-environment change and human activities were also traced by total organic matter (TOC), magnetic susceptibility (MS) and relevant proxies. The results showed that the ecosystem related to organic matter composition in Beilianchi Lake might be mainly controlled by climate change before 1400 cal B.P., whereas after that, it was significantly influenced by soil erosion induced by increasing population and enhanced human activities. Lake ecosystem experienced periodical change from relatively stable stage with combination of allochthonous-autochthonous organic sources prior to 1400 cal B.P. to extremely instability and final return to steady state with allochthonous-dominant organic source since 300 cal B.P.. During the period of instability, organic matter composition during 1400-800 cal B.P. indicated a obvious bimodal distribution based on probability density distribution analysis, which reflected the lake ecosystem might stay at bistable state and switched repeatedly from more-macrophytes state (regime A with low ACL) towards less-macrophytes state (regime B with high ACL) controlled by disturbance of soil erosion. The flickering during this period could serve as the early warning signal of transition towards more-macrophytes state or less-macrophytes state in lake ecosystems.

  3. 1,4-hydroxycarbonyl products of the OH radical initiated reactions of C5-C8 n-alkanes in the presence of NO.

    Science.gov (United States)

    Reisen, Fabienne; Aschmann, Sara M; Atkinson, Roger; Arey, Janet

    2005-06-15

    Alkanes account for approximately 50% of nonmethane organic compounds present in urban atmospheres. Previous studies have shown that hydroxycarbonyls are important products ofthe OH radical initiated reactions of > or = C5 n-alkanes, but isomer-specific identifications and quantifications of these products have not been carried out. In this work, we have used solid-phase microextraction fibers precoated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine for on-fiber derivatization of carbonyl-containing compounds with subsequent analyses by combined gas chromatography-mass spectrometry (GC-MS) and GC with flame ionization detection (GC-FID). GC-MS analyses showed the presence of the oximes of 5-hydroxy-2-pentanone and 4-hydroxypentanal from the n-pentane reaction; 5-hydroxy-2-hexanone, 6-hydroxy-3-hexanone, and 4-hydroxyhexanal from the n-hexane reaction; 5-hydroxy-2-heptanone, 6-hydroxy-3-heptanone, 1-hydroxy-4-heptanone, and 4-hydroxyheptanal from the n-heptane reaction; and 5-hydroxy-2-octanone, 6-hydroxy-3-octanone, 7-hydroxy-4-octanone, and 4-hydroxyoctanal from the n-octane reaction. The formation yields of these 1,4-hydroxycarbonyls were determined from GC-FID analyses. By use of the yields of 1,4-hydroxycarbonyls formed from n-hexane, n-heptane, and n-octane at 50% relative humidity (and those from n-pentane at both 5 and 50% relative humidity), then formation of 1,4-hydroxycarbonyls accounts for 54% of the reaction products from n-pentane, 57% from n-hexane, 51% from n-heptane, and 53% from n-octane. Combined with previously measured yields of carbonyls, alkyl nitrates, and hydroxyalkyl nitrates, we can now accountfor approximately 74-118% of the products formed from the n-pentane through n-octane reactions.

  4. GC×GC measurements of C7-C11 aromatic and n-alkane hydrocarbons on Crete, in air from Eastern Europe during the MINOS campaign

    Directory of Open Access Journals (Sweden)

    X. Xu

    2003-01-01

    Full Text Available During the Mediterranean Intensive Oxidant Study (MINOS campaign in August 2001 gas-phase organic compounds were measured using comprehensive two-dimensional gas chromatography (GCxGC at the Finokalia ground station, Crete. In this paper, C7-C11 aromatic and n-alkane measurements are presented and interpreted. The mean mixing ratios of the hydrocarbons varied from 1±1 pptv (i-propylbenzene to 43±36 pptv (toluene. The observed mixing ratios showed strong day-to-day variations and generally higher levels during the first half of the campaign. Mean diel profiles showed maxima at local midnight and late morning, and minima in the early morning and evening. Results from analysis using a simplified box model suggest that both the chemical sink (i.e. reaction with OH and the variability of source strengths were the causes of the observed variations in hydrocarbon mixing ratios. The logarithms of hydrocarbon concentrations were negatively correlated with the OH concentrations integral over a day prior to the hydrocarbon measurements. Slopes of the regression lines derived from these correlations for different compounds are compared with literature rate constants for their reactions with OH. The slopes for most compounds agree reasonably well with the literature rate constants. A sequential reaction model has been applied to the interpretation of the relationship between ethylbenzene and two of its potential products, i.e. acetophenone and benzeneacetaldehyde. The model can explain the good correlation observed between [acetophenone]/[ethylbenzene] and [benzeneacetaldehyde]/[ethylbenzene]. The model results and field measurements suggest that the reactivity of benzeneacetaldehyde may lie between those of acetophenone and ethylbenzene and that the ratio between yields of acetophenone and benzeneacetaldehyde may be up to 28:1. Photochemical ages of trace gases sampled at Finokalia during the campaign are estimated using the sequential reaction model and

  5. Targeting of Mitochondria by 10-N-Alkyl Acridine Orange Analogues: Role of Alkyl Chain Length in Determining Cellular Uptake and Localization

    Science.gov (United States)

    Rodriguez, Myriam E.; Azizuddin, Kashif; Zhang, Ping; Chiu, Song-mao; Lam, Minh; Kenney, Malcolm E.; Burda, Clemens; Oleinick, Nancy L.

    2008-01-01

    10-N-nonyl acridine orange (NAO) is used as a mitochondrial probe because of its high affinity for cardiolipin (CL). Targeting of NAO may also depend on mitochondrial membrane potential. As the nonyl group has been considered essential for targeting, a systematic study of alkyl chain length was undertaken; three analogues (10-methyl-, 10-hexyl-, and 10-hexadecyl-acridine orange) were synthesized and their properties studied in phospholipid monolayers and breast cancer cells. The shortest and longest alkyl chains reduced targeting, whereas the hexyl group was superior to the nonyl group, allowing very clear and specific targeting to mitochondria at concentrations of 20–100 nM, where no evidence of toxicity was apparent. Additional studies in wild-type and cardiolipin-deficient yeast cells suggested that cellular binding was not absolutely dependent upon cardiolipin. PMID:18514589

  6. Theoretical investigation on the kinetics and mechanisms of hydroxyl radical-induced transformation of parabens and its consequences for toxicity: Influence of alkyl-chain length.

    Science.gov (United States)

    Gao, Yanpeng; Ji, Yuemeng; Li, Guiying; An, Taicheng

    2016-03-15

    As emerging organic contaminants (EOCs), the ubiquitous presence of preservative parabens in water causes a serious environmental concern. Hydroxyl radical ((•)OH) is a strong oxidant that can degrade EOCs through photochemistry in surface water environments as well as in advanced oxidation processes (AOPs). To better understand the degradation mechanisms, kinetics, and products toxicity of the preservative parabens in aquatic environments and AOPs, the (•)OH-initiated degradation reactions of the four parabens were investigated systematically using a computational approach. The four studied parabens with increase of alkyl-chain length were methylparaben (MPB), ethylparaben (EPB), propylparaben (PPB), and dibutylparaben (BPB). Results showed that the four parabens can be initially attacked by (•)OH through (•)OH-addition and H-abstraction routes. The (•)OH-addition route was more important for the degradation of shorter alkyl-chain parabens like MPB and EPB, while the H-abstraction route was predominant for the degradation of parabens with longer alkyl-chain for example PPB and BPB. In assessing the aquatic toxicity of parabens and their degradation products using the model calculations, the products of the (•)OH-addition route were found to be more toxic to green algae than original parabens. Although all degradation products were less toxic to daphnia and fish than corresponding parental parabens, they could be still harmful to these aquatic organisms. Furthermore, as alkyl-chain length increased, the ecotoxicity of parabens and their degradation products was found to be also increased. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Photo-Induced Phase Transitions to Liquid Crystal Phases: Influence of the Chain Length from C8E4 to C14E4

    Directory of Open Access Journals (Sweden)

    Simone Techert

    2009-09-01

    Full Text Available Photo-induced phase transitions are characterized by the transformation from phase A to phase B through the absorption of photons. We have investigated the mechanism of the photo-induced phase transitions of four different ternary systems CiE4/alkane (i with n = 8, 10, 12, 14; cyclohexane/H2O. We were interested in understanding the effect of chain length increase on the dynamics of transformation from the microemulsion phase to the liquid crystal phase. Applying light pump (pulse/x-ray probe (pulse techniques, we could demonstrate that entropy and diffusion control are the driving forces for the kind of phase transition investigated.

  8. Influence of trehalose 6,6'-diester (TDX) chain length on the physicochemical and immunopotentiating properties of DDA/TDX liposomes

    DEFF Research Database (Denmark)

    Kallerup, Rie Selchau; Madsen, Cecilie Maria; Schiøth, Mikkel Lohmann

    2015-01-01

    and immunopotentiating properties of the clinically tested liposomal adjuvant composed of dimethyldioctadecylammonium (DDA) bromide and analogues of trehalose-6,6'-dibehenate (TDB). TDB analogues with symmetrically shortened acyl chains [denoted X: arachidate (A), stearate (S), palmitate (P), myristate (Myr) and laurate...... incorporated, whereas both the initial size and the charge of the liposomes were unaffected. The long-term colloidal stability was only decreased when including TDL in DDA liposomes. The fatty acid length of TDX affected the phase transition of the liposomes, and for the DDA/TDP and DDA/TDS liposomes...

  9. Flow behaviour of inulin-milk beverages: Influence of inulin chain length and of milk fat content

    OpenAIRE

    Villegas, Beatriz; Costell, Elvira

    2003-01-01

    Inulin is used either as a macronutrient substitute or as a supplement added in foods mainly for its nutritional properties. Chemically, inulin consists of a long chain made up of fructose molecules and one glucose molecule at one end. The fructose molecules are connected by β-(2-1) bonds and the last fructose is linked with a glucose by an α-(1-2) bond as in sucrose [1, 2]. The average molecular weight and degree of polymerisation of inulin depend on the source of inulin, the time of harvest...

  10. Influence of chain length on the activity of tripeptidomimetic antagonists for CXC chemokine receptor 4 (CXCR4)

    DEFF Research Database (Denmark)

    Baumann, Markus; Hussain, Mohammad Musarraf; Henne, Nina

    2017-01-01

    in loss of activity, introduction of bromine in position 1 on the naphth-2-ylmethyl moiety (R3) resulted in an EC50 of 61 μM (mixture of diastereoisomers) against wild-type CXCR4; thus, the antagonistic activity of these tripeptidomimetics seems to be amenable to optimization of the aromatic moiety......Here we report a series of close analogues of our recently published scaffold-based tripeptidomimetic CXCR4 antagonists, containing positively charged guanidino groups in R1 and R2, and an aromatic group in R3. While contraction/elongation of the guanidine carrying side chains (R1 and R2) resulted...

  11. A vendor managed inventory model using continuous approximations for route length estimates and Markov chain modeling for cost estimates

    DEFF Research Database (Denmark)

    Larsen, Christian; Turkensteen, Marcel

    2014-01-01

    We consider a vendor that supplies a set of geographically dispersed retailers and that can monitor the inventory levels at the retailers. Such an arrangement is often called Vendor Managed Inventory (VMI). The dispatch of a vehicle is made to a fixed group of retailers. Normally, the inventory...... own approximation for one-dimensional ones. We choose to use a Markov chain approach to minimize transport and inventory model simultaneously. When the routes through the retailers are not fixed, such an approach would require a large number of states if we keep track of all the inventory positions...

  12. Lipid membrane partitioning of lysolipids and fatty acids: Effects of membrane phase structure and detergent chain length

    DEFF Research Database (Denmark)

    Høyrup, Lise Pernille Kristine; Davidsen, Jesper; Jørgensen, Kent

    2001-01-01

    ) of the detergents. The calorimetric results reveal that the membrane partitioning of lysolipids depends strongly on the phase structure of the lipid membrane. This is manifested as a lysolipid partition coefficient, K, that is much larger for fluid-phase lipid membranes as compared to gel-phase lipid membranes...... of magnitude higher when the saturated acyl chain of the detergents increases by two carbon atoms. The obtained partition coefficients are of importance in relation to a deeper understanding of the interplay between global aqueous and local membrane concentrations of the detergents and the functional influence...

  13. Effect of chain length and electrical charge on properties of ammonium-bearing bisphosphonate-coated superparamagnetic iron oxide nanoparticles: formulation and physicochemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, Ali [Inserm U646, Universite d' Angers (France); Denizot, Benoit, E-mail: BDenizot@chi-annemasse-bonneville.f [Centre Hospitalier Annemasse-Bonneville (France); Hindre, Francois [Inserm U646, Universite d' Angers (France); Filmon, Robert [Universite d' Angers, Service Commun d' Imagerie et d' Analyses Microscopiques (France); Greneche, Jean-Marc [Universite du Mans, Laboratoire de Physique de I' Etat Condense UMR 6087 (France); Laurent, Sophie [NMR and Molecular Imaging Laboratory, University of Mons-Hainaut, Department of General, Organic and Biochemical Chemistry (Belgium); Daou, T. Jean [UMR CNRS-ULP 7504, Institut de Physique et Chimie des Materiaux de Strasbourg (France); Begin-Colin, Sylvie [Universite de Haute Alsace, Laboratoire de Materiaux a Porosite Controlee, UMR CNRS 7016 (France); Jeune, Jean-Jacques Le [Inserm U646, Universite d' Angers (France)

    2010-05-15

    Bisphosphonates BP molecules have shown to be efficient for coating superparamagnetic iron oxide particles. In order to clarify the respective roles of electrical charge and the length of the molecules, bisphosphonates with one or two ammonium moieties with an intermediate aliphatic group of 3, 5 or 7 carbons were synthesized and iron oxide nanoparticles coated. The evaluation on their iron core properties was made by transmission electron microscopy (TEM), nuclear magnetic relaxation dispersion (NMRD) profiles and Moessbauer spectra. The core size is close to 5 nm, with a global superparamagnetic behaviour modified by a paramagnetic Fe-based layer, probably due to surface crystal alteration. The hydrodynamic sizes increase slightly with aliphatic chain length (from 9.8 to 18.6 nm). The presence of one or two ammonium group(s) lowers the negative electrophoretic mobility up to bear zero values but reduces their colloidal stability. These BP-coated iron oxide nanoparticles are promising Magnetic Resonance Imaging (MRI) contrast agents.

  14. Solute transport in a single fracture involving an arbitrary length decay chain with rock matrix comprising different geological layers.

    Science.gov (United States)

    Mahmoudzadeh, Batoul; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2014-08-01

    A model is developed to describe solute transport and retention in fractured rocks. It accounts for advection along the fracture, molecular diffusion from the fracture to the rock matrix composed of several geological layers, adsorption on the fracture surface, adsorption in the rock matrix layers and radioactive decay-chains. The analytical solution, obtained for the Laplace-transformed concentration at the outlet of the flowing channel, can conveniently be transformed back to the time domain by the use of the de Hoog algorithm. This allows one to readily include it into a fracture network model or a channel network model to predict nuclide transport through channels in heterogeneous fractured media consisting of an arbitrary number of rock units with piecewise constant properties. More importantly, the simulations made in this study recommend that it is necessary to account for decay-chains and also rock matrix comprising at least two different geological layers, if justified, in safety and performance assessment of the repositories for spent nuclear fuel. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Critical Length Criterion and the Arc Chain Model for Calculating the Arcing Time of the Secondary Arc Related to AC Transmission Lines

    International Nuclear Information System (INIS)

    Cong Haoxi; Li Qingmin; Xing Jinyuan; Li Jinsong; Chen Qiang

    2015-01-01

    The prompt extinction of the secondary arc is critical to the single-phase reclosing of AC transmission lines, including half-wavelength power transmission lines. In this paper, a low-voltage physical experimental platform was established and the motion process of the secondary arc was recorded by a high-speed camera. It was found that the arcing time of the secondary arc rendered a close relationship with its arc length. Through the input and output power energy analysis of the secondary arc, a new critical length criterion for the arcing time was proposed. The arc chain model was then adopted to calculate the arcing time with both the traditional and the proposed critical length criteria, and the simulation results were compared with the experimental data. The study showed that the arcing time calculated from the new critical length criterion gave more accurate results, which can provide a reliable criterion in term of arcing time for modeling and simulation of the secondary arc related with power transmission lines. (paper)

  16. Mechanical properties of milk sphingomyelin bilayer membranes in the gel phase: Effects of naturally complex heterogeneity, saturation and acyl chain length investigated on liposomes using AFM.

    Science.gov (United States)

    Et-Thakafy, Oumaima; Delorme, Nicolas; Guyomarc'h, Fanny; Lopez, Christelle

    2018-01-01

    Sphingomyelin (SM) molecules are major lipid components of plasma membranes that are involved in functional domains. Among natural SMs, that found in milk (milk-SM) exhibits important acyl chain heterogeneities in terms of length and saturation, which could affect the biophysical properties and biological functions of the milk fat globule membrane or of liposome carriers. In this study, the thermotropic and mechanical properties of milk-SM, synthetic C16:0-SM, C24:0-SM and the binary mixtures C16:0-SM/C24:0-SM (50:50% mol) and C24:0-SM/C24:1-SM (95:5% mol) bilayer membranes were investigated using differential scanning calorimetry and atomic force microscopy, respectively. Results showed that acyl chain length, heterogeneity and unsaturation affected i) the temperature of phase transition of SM bilayers, and ii) the mechanical properties of liposome (diametermembranes in the gel phase, e.g. the Young modulus E and the bending rigidity k C . This study increases our knowledge about the key role of naturally complex lipid compositions in tailoring the physical properties of biological membranes. It could be also used in liposomes development e.g. to select the suitable lipid composition according to usage. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of temperature and chain length on the viscosity and surface tension of binary systems of N,N-dimethylformamide with 1-octanol, 1-nonanol and 1-decanol

    International Nuclear Information System (INIS)

    Mohammad, Abubaker A.; Alkhaldi, Khaled H.A.E.; AlTuwaim, Mohammad S.; Al-Jimaz, Adel S.

    2014-01-01

    Highlights: • Effect of temperature and chain length on η and σ of DMF + 1-alkanol binary systems. • Viscosity and surface tension were obtained. • Δη, Δσ and G ∗E were calculated using the experimental data. • H σ and S σ were determined using the surface tension data. • Semi-empirical relations were used to estimate the viscosity of liquid mixtures. - Abstract: Viscosity and surface tension of binary systems of N,N-dimethylformamide DMF with higher 1-alkanols (C 8 –C 10 ) were measured at atmospheric pressure and four different temperatures over the entire range of mole fraction. The experimental measurements were used to calculate the deviations in viscosity and surface tension. Furthermore, the excess Gibbs free energy of activation, surface enthalpy and surface entropy of the (DMF + 1-alkanols) binary mixtures were determined. In addition, the deviation and excess properties were fitted to the method of Redlich–Kister (R–K) polynomial. Viscosity data of the binary systems were correlated with three different expressions (Grunberg and Nissan, the three-body, and four-body McAllister). The effects of the chain length of the higher 1-alkanols and temperature were investigated

  18. Individual Impact of Distinct Polysialic Acid Chain Lengths on the Cytotoxicity of Histone H1, H2A, H2B, H3 and H4

    Directory of Open Access Journals (Sweden)

    Kristina Zlatina

    2017-12-01

    Full Text Available Neutrophils are able to neutralize pathogens by phagocytosis, by the release of antimicrobial components, as well as by the formation of neutrophil extracellular traps (NETs. The latter possibility is a DNA-meshwork mainly consisting of highly concentrated extracellular histones, which are not only toxic for pathogens, but also for endogenous cells triggering several diseases. To reduce the negative outcomes initiated by extracellular histones, different approaches like antibodies against histones, proteases, and the polysaccharide polysialic acid (polySia were discussed. We examined whether each of the individual histones is a binding partner of polySia, and analyzed their respective cytotoxicity in the presence of this linear homopolymer. Interestingly, all of the histones (H1, H2A, H2B, H3, and H4 seem to interact with α2,8-linked sialic acids. However, we observed strong differences regarding the required chain length of polySia to bind histone H1, H2A, H2B, H3, and H4. Moreover, distinct degrees of polymerization were necessary to act as a cytoprotective agent in the presence of the individual histones. In sum, the outlined results described polySia-based strategies to bind and/or to reduce the cytotoxicity of individual histones using distinct polySia chain length settings.

  19. A Unique Primer with an Inosine Chain at the 5'-Terminus Improves the Reliability of SNP Analysis Using the PCR-Amplified Product Length Polymorphism Method.

    Directory of Open Access Journals (Sweden)

    Hideki Shojo

    Full Text Available Polymerase chain reaction-amplified product length polymorphism (PCR-APLP is one of the most convenient and reliable methods for single nucleotide polymorphism (SNP analysis. This method is based on PCR, but uses allele-specific primers containing SNP sites at the 3'-terminus of each primer. To use this method at least two allele-specific primers and one "counter-primer", which serves as a common forward or reverse primer of the allele-specific primers, are required. The allele-specific primers have SNP sites at the 3'-terminus, and another primer should have a few non-complementary flaps at the 5'-terminus to detect SNPs by determining the difference of amplicon length by PCR and subsequent electrophoresis. A major disadvantage of the addition of a non-complementary flap is the non-specific annealing of the primer with non-complementary flaps. However, a design principle for avoiding this undesired annealing has not been fully established, therefore, it is often difficult to design effective APLP primers. Here, we report allele-specific primers with an inosine chain at the 5'-terminus for PCR-APLP analysis. This unique design improves the competitiveness of allele-specific primers and the reliability of SNP analysis when using the PCR-APLP method.

  20. Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids.

    Science.gov (United States)

    Guzik, Maciej W; Narancic, Tanja; Ilic-Tomic, Tatjana; Vojnovic, Sandra; Kenny, Shane T; Casey, William T; Duane, Gearoid F; Casey, Eoin; Woods, Trevor; Babu, Ramesh Padamati; Nikodinovic-Runic, Jasmina; O'Connor, Kevin E

    2014-08-01

    Diverse and elaborate pathways for nutrient utilization, as well as mechanisms to combat unfavourable nutrient conditions make Pseudomonas putida KT2440 a versatile micro-organism able to occupy a range of ecological niches. The fatty acid degradation pathway of P. putida is complex and correlated with biopolymer medium chain length polyhydroxyalkanoate (mcl-PHA) biosynthesis. Little is known about the second step of fatty acid degradation (β-oxidation) in this strain. In silico analysis of its genome sequence revealed 21 putative acyl-CoA dehydrogenases (ACADs), four of which were functionally characterized through mutagenesis studies. Four mutants with insertionally inactivated ACADs (PP_1893, PP_2039, PP_2048 and PP_2437) grew and accumulated mcl-PHA on a range of fatty acids as the sole source of carbon and energy. Their ability to grow and accumulate biopolymer was differentially negatively affected on various fatty acids, in comparison to the wild-type strain. Inactive PP_2437 exhibited a pattern of reduced growth and PHA accumulation when fatty acids with lengths of 10 to 14 carbon chains were used as substrates. Recombinant expression and biochemical characterization of the purified protein allowed functional annotation in P. putida KT2440 as an ACAD showing clear preference for dodecanoyl-CoA ester as a substrate and optimum activity at 30 °C and pH 6.5-7. © 2014 The Authors.

  1. UV-visible Absorption Study of the Self-association of Non-ionic Chromonic Triphenylenes TP6EOnM (n = 2, 3, 4) in Dilute Aqueous Solutions: Impact of Chain Length on Aggregation.

    Science.gov (United States)

    Herbaut, Antoine; Baranoff, Etienne

    2015-01-01

    A series of triphenylenes with oligoethoxy chains of various length, TP6EOnM with n = 2, 3, 4, has been synthesised and purified by HPLC. The self-association of these disc-shaped molecules in dilute aqueous solutions (∼10(-7) to ∼4 × 10(-4) M) has been studied by UV-visible absorption spectroscopy. The free energy of association decreases as the length of the chains increases. As a result, for a given concentration, the average size of aggregate diminishes as the chain length increases. While the absorption properties of the monomer are identical for the three molecules, the extinction coefficients of solutions of the three triphenylenes at a given concentration are significantly different and are directly linked to the average size of the aggregates. The change of epsilon values upon aggregation could explain the trend generally observed with dyes for solar cells substituted with chains of increasing length showing increasing extinction coefficient values.

  2. Full-length coding sequences of three major histocompatibility complex class I-related chain A alleles, MICA*019, MICA*027 and MICA*045, identified by sequence-based typing in Chinese individuals.

    Science.gov (United States)

    Xu, Y P; Gao, S Q; Tao, H

    2015-10-01

    Full-length coding sequences of three major histocompatibility complex class I-related chain A alleles, MICA*019, MICA*027 and MICA*045. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Solute transport through fractured rock: Radial diffusion into the rock matrix with several geological layers for an arbitrary length decay chain

    Science.gov (United States)

    Mahmoudzadeh, Batoul; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2016-05-01

    The paper presents a model development to derive a semi-analytical solution to describe reactive solute transport through a single channel in a fracture with cylindrical geometry. The model accounts for advection through the channel, radial diffusion into the adjacent heterogeneous rock matrix comprising different geological layers, adsorption on both the channel surface, and the geological layers of the rock matrix and radioactive decay chain. Not only an arbitrary-length decay chain, but also as many number of the rock matrix layers with different properties as observed in the field can be handled. The solution, which is analytical in the Laplace domain, is transformed back to the time domain numerically e.g. by use of de Hoog algorithm. The solution is verified against experimental data and analytical solutions of limiting cases of solute transport through porous media. More importantly, the relative importance and contribution of different processes on solute transport retardation in fractured rocks are investigated by simulating several cases of varying complexity. The simulation results are compared with those obtained from rectangular model with linear matrix diffusion. It is found that the impact of channel geometry on breakthrough curves increases markedly as the transport distance along the flow channel and away into the rock matrix increase. The effect of geometry is more pronounced for transport of a decay chain when the rock matrix consists of a porous altered layer.

  4. Effect of Acylglycerol Composition and Fatty Acyl Chain Length on Lipid Digestion in pH-Stat Digestion Model and Simulated In Vitro Digestion Model.

    Science.gov (United States)

    Qi, Jin F; Jia, Cai H; Shin, Jung A; Woo, Jeong M; Wang, Xiang Y; Park, Jong T; Hong, Soon T; Lee, K-T

    2016-02-01

    In this study, a pH-stat digestion model and a simulated in vitro digestion model were employed to evaluate the digestion degree of lipids depending on different acylglycerols and acyl chain length (that is, diacylglycerol [DAG] compared with soybean oil representing long-chain triacylglycerol compared with medium-chain triacylglycerol [MCT]). In the pH-stat digestion model, differences were observed among the digestion degrees of 3 oils using digestion rate (k), digestion half-time (t1/2 ), and digestion extent (Φmax). The results showed the digestion rate order was MCT > soybean oil > DAG. Accordingly, the order of digestion half-times was MCT digestion model, digestion rates (k') and digestion half-times (t'1/2 ) were also obtained and the results showed a digestion rate order of MCT (k' = 0.068 min(-1) ) > soybean oil (k' = 0.037 min(-1) ) > DAG (k' = 0.024 min(-1) ). Consequently, the order of digestion half-times was MCT (t'1/2 = 10.20 min) digested faster than soybean oil, and that soybean oil was digested faster than DAG. © 2015 Institute of Food Technologists®

  5. Diacyltransferase Activity and Chain Length Specificity of Mycobacterium tuberculosis PapA5 in the Synthesis of Alkyl β-Diol Lipids

    Energy Technology Data Exchange (ETDEWEB)

    Touchette, Megan H.; Bommineni, Gopal R.; Delle Bovi, Richard J.; Gadbery, John; Nicora, Carrie D.; Shukla, Anil K.; Kyle, Jennifer E.; Metz, Thomas O.; Martin, Dwight W.; Sampson, Nicole S.; Miller, W. T.; Tonge, Peter J.; Seeliger, Jessica C.

    2015-09-08

    Although classified as Gram-positive bacteria, Corynebacterineae possess an asymmetric outer membrane that imparts structural and thereby physiological similarity to more distantly related Gram-negative bacteria. Like lipopolysaccharide in Gram-negative bacteria, lipids in the outer membrane of Corynebacterineae have been associated with the virulence of pathogenic species such as Mycobacterium tuberculosis (Mtb). For example, Mtb strains that lack long, branched-chain alkyl esters known as dimycocerosates (DIMs) are significantly attenuated in model infections. The resultant interest in the biosynthetic pathway of these unusual virulence factors has led to the elucidation of many of the steps leading to the final esterification of the alkyl beta-diol, phthiocerol, with branched-chain fatty acids know as mycocerosates. PapA5 is an acyltransferase implicated in these final reactions. We here show that PapA5 is indeed the terminal enzyme in DIM biosynthesis by demonstrating its dual esterification activity and chain-length preference using synthetic alkyl beta-diol substrate analogues. Applying these analogues to a series of PapA5 mutants, we also revise a model for the substrate binding within PapA5. Finally, we demonstrate that the Mtb Ser/Thr kinase PknB modifies PapA5 on three Thr residues, including two (T196, T198) located on an unresolved loop. These results clarify the DIM biosynthetic pathway and suggest possible mechanisms by which DIM biosynthesis may be regulated by the post-translational modification of PapA5.

  6. Uso de N-alcanos na estimativa da composição botânica em amostras com diferentes proporções de Brachiaria brizantha e Arachis pintoi Use of N-alkanes for estimations of botanical composition in samples with different proportions of Brachiaria brizantha and Arachis pintoi

    Directory of Open Access Journals (Sweden)

    Cristiano Côrtes

    2005-10-01

    method and identified and quantified by the gas chromatography analysis. Alkane C34 was used as internal marker. The proportions of A. pintoi in the diets were estimated by the minimization of z (sum of the squares of the deviations between the real proportion of the analyzed alkanes and the pre-established proportions (treatments, using Duncan et al. (1999 equation. The prevalence of odd carbonic chains was detected. The total concentration of n-alkanes decreased as the proportion of A. pintoi increased in the mixtures. Good estimates of the botanical composition of the mixtures of A. pintoi with B. brizantha were obtained from the alkanes C29, C31, C33 and C35. The alkane C35 was fundamental for the quality of the estimates. The results indicate the great potential of the technique for studies of grazing animal diet.

  7. A polymerase chain reaction (PCR) method for sex and species determination with novel controls for deoxyribonucleic acid (DNA) template length.

    Science.gov (United States)

    Gaensslen, R E; Berka, K M; Grosso, D A; Ruano, G; Pagliaro, E M; Messina, D; Lee, H C

    1992-01-01

    Human X and Y chromosome alpha-satellite sequences lying within higher order repeats were amplified by the polymerase chain reaction (PCR) in genomic deoxyribonucleic acid (DNA) isolated from blood, bone, and several other tissues and specimens of potential forensic science interest. X and Y sequences could be coamplified under some of the PCR conditions employed. Monomorphic sequences in the 3'-apolipoprotein B gene (designated "H") and in an alpha-satellite higher order repeat on Chromosome 17 (p17H8, D17Z1) were likewise amplified in the specimens. X and Y sequence amplification can provide information about the sex of origin. Amplification of the X, H, and D17Z1 sequences was found to be primate-specific among the common animals tested and can thus provide species of origin information about a specimen. The authors suggest that amplification of X and D17Z1 or H sequences might provide "relaxed" and "stringent" controls for appropriate PCR amplification tests on forensic science specimens. Testing was carried out using PCR protocols that employed Thermophilus aquaticus (Taq) and Thermus flavis (Replinase) thermostable DNA polymerases.

  8. Enterococcus faecalis Responds to Individual Exogenous Fatty Acids Independently of Their Degree of Saturation or Chain Length.

    Science.gov (United States)

    Saito, Holly E; Harp, John R; Fozo, Elizabeth M

    2018-01-01

    Enterococcus faecalis is a commensal of the human gastrointestinal tract that can persist in the external environment and is a leading cause of hospital-acquired infections. Given its diverse habitats, the organism has developed numerous strategies to survive a multitude of environmental conditions. Previous studies have demonstrated that E. faecalis will incorporate fatty acids from bile and serum into its membrane, resulting in an induced tolerance to membrane-damaging agents. To discern whether all fatty acids induce membrane stress protection, we examined how E. faecalis responded to individually supplied fatty acids. E. faecalis readily incorporated fatty acids 14 to 18 carbons in length into its membrane but poorly incorporated fatty acids shorter or longer than this length. Supplementation with saturated fatty acids tended to increase generation time and lead to altered cellular morphology in most cases. Further, exogenously supplied saturated fatty acids did not induce tolerance to the membrane-damaging antibiotic daptomycin. Supplementation with unsaturated fatty acids produced variable growth effects, with some impacting generation time and morphology. Exogenously supplied unsaturated fatty acids that are normally produced by E. faecalis and those that are found in bile or serum could restore growth in the presence of a fatty acid biosynthetic inhibitor. However, only the eukaryote-derived fatty acids oleic acid and linoleic acid provided protection from daptomycin. Thus, exogenous fatty acids do not lead to a common physiological effect on E. faecalis The organism responds uniquely to each, and only host-derived fatty acids induce membrane protection. IMPORTANCE Enterococcus faecalis is a commonly acquired hospital infectious agent with resistance to many antibiotics, including those that target its cellular membrane. We previously demonstrated that E. faecalis will incorporate fatty acids found in human fluids, like serum, into its cellular membrane

  9. Production of medium-chain-length polyhydroxyalkanoate by Pseudomonas oleovorans grown in sugary cassava extract supplemented with andiroba oil

    Directory of Open Access Journals (Sweden)

    Diego Aires da Silva

    2014-12-01

    Full Text Available Pseudomonas oleovorans were grown on sugary cassava extracts supplemented with andiroba oil for the synthesis of a mediumchain- length polyhydroxyalkanoate (PHA MCL. The concentration of total sugars in the extract was approximately: 40 g/L in culture 1, 15 g/L in cultures 2 and 3, and 10 g/L in culture 4. Supplementation with 1% andiroba oil and 0.2 g/L of (NH42HPO4 was performed 6.5 hours after growth in culture 3, and supplementation with the same amount of andiroba oil and 2.4 g/L of (NH42HPO4 was performed at the beginning of growth in culture 4. The synthesis resulted mainly in 3-hydroxy-decanoate and 3-hydroxy-dodecanoate units; 3-hydroxy-butyrate, 3-hydroxy-hexanoate; and 3-hydroxy-octanoate monomers were also produced but in smaller proportions. P. oleovorans significantly accumulated PHA MCL in the deceleration phase of growth with an oxygen limitation but with sufficient nitrogen concentration to maintain cell growth. The sugary cassava extract supplemented with andiroba oil proved to be a potential substrate for PHA MCL production.

  10. Inulin-Type Fructans Modulates Pancreatic-Gut Innate Immune Responses and Gut Barrier Integrity during Experimental Acute Pancreatitis in a Chain Length-Dependent Manner.

    Science.gov (United States)

    He, Yue; Wu, Chengfei; Li, Jiahong; Li, Hongli; Sun, Zhenghua; Zhang, Hao; de Vos, Paul; Pan, Li-Long; Sun, Jia

    2017-01-01

    -enhancer of activated B cells (NF-κB) p65 (p-NF-κB p65) nuclear translocation and activation in the pancreas. Our findings demonstrate a clear chain length-dependent effect of inulin on AP. The attenuating effects are caused by modulating effects of long-chain inulin on the pancreatic-gut immunity via the pancreatic IRAK-4/p-JNK/p-NF-κBp65 signaling pathway and on prevention of disruption of the gut barrier.

  11. Inulin-Type Fructans Modulates Pancreatic–Gut Innate Immune Responses and Gut Barrier Integrity during Experimental Acute Pancreatitis in a Chain Length-Dependent Manner

    Science.gov (United States)

    He, Yue; Wu, Chengfei; Li, Jiahong; Li, Hongli; Sun, Zhenghua; Zhang, Hao; de Vos, Paul; Pan, Li-Long; Sun, Jia

    2017-01-01

    -enhancer of activated B cells (NF-κB) p65 (p-NF-κB p65) nuclear translocation and activation in the pancreas. Our findings demonstrate a clear chain length-dependent effect of inulin on AP. The attenuating effects are caused by modulating effects of long-chain inulin on the pancreatic–gut immunity via the pancreatic IRAK-4/p-JNK/p-NF-κBp65 signaling pathway and on prevention of disruption of the gut barrier. PMID:29018453

  12. Development of a polymerase chain reaction/restriction fragment length polymorphism method for Saccharomyces cerevisiae and Saccharomyces bayanus identification in enology.

    Science.gov (United States)

    Masneuf, I; Aigle, M; Dubourdieu, D

    1996-05-01

    Several yeast strains of the species Saccharomyces cerevisiae, S. bayanus and S. paradoxus, first identified by hybridization experiments and measurements of DNA/DNA homology, were characterized using polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analysis of the MET2 gene. There was no exception to the agreement between this method and classical genetic analyses for any of the strains examined, so PCR/RFLP of the MET2 gene is a reliable and fast technique for delimiting S. cerevisiae and S. bayanus. Enological strains classified as S. bayanus, S. chevalieri, and S. capensis gave S. cerevisiae restriction patterns, whereas most S. uvarum strains belong to S. bayanus. Enologists should no longer use the name of S. bayanus for S. cerevisiae Gal strains, and should consider S. bayanus as a distinct species.

  13. Effect of SiO2 Particle Size and Length of Poly(Propylene Glycol Chain on Rheological Properties of Shear Thickening Fluids

    Directory of Open Access Journals (Sweden)

    Antosik A.

    2016-09-01

    Full Text Available The rheological properties of shear thickening fluids based on silica powder of particles size in range 0.10 – 2.80 μm and poly(propylene glycol of 425, 1000, 2000 g/mol molar mass were investigated. The effect of particle size and the length of the polymeric chain was considered. The objective of this study was to understand basic trends of physicochemical properties of used materials on the onset and the maximum of shear thickening and dilatant effect. Outcome of the research suggested that an increase in the particle size caused a decrease in dilatant effect and shift towards higher shear rate values. Application of carrier fluid of higher molar mass allowed to increase dilatant effect but it resulted in the increase of the initial viscosity of the fluid.

  14. Dependency of Anion and Chain Length of Imidazolium Based Ionic Liquid on Micellization of the Block Copolymer F127 in Aqueous Solution: An Experimental Deep Insight

    Directory of Open Access Journals (Sweden)

    Jignesh Lunagariya

    2017-07-01

    Full Text Available The non-ionic triblock copolymer, Pluronic® F127, has been selected to observe its interaction with ionic liquids (ILs in aqueous solutions by using DLS, surface tension, and viscosity measurements. The Critical Micelle Concentration (CMC of F127 increased with the addition of ILs, which appeared logical since it increases the solubility of PPO (and PEO moiety, making it behaves more like a hydrophilic block copolymer that is micellized at a higher copolymer concentration. The results from DLS data showed good agreement with those obtained from the surface tension measurements. Upon the addition of ILs, the tendency in micellar size reduction was demonstrated by viscosity results, and therefore, intrinsic viscosity decreased compared to pure F127 in aqueous solution. The results were discussed as a function of alkyl chain length and anions of imidazolium based ILs.

  15. Identification of planorbids from Venezuela by polymerase chain reaction amplification and restriction fragment length polymorphism of internal transcriber spacer of the RNA ribosomal gene

    Directory of Open Access Journals (Sweden)

    Caldeira Roberta L

    2000-01-01

    Full Text Available Snails of the genus Biomphalaria from Venezuela were subjected to morphological assessment as well as polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP analysis. Morphological identification was carried out by comparison of characters of the shell and the male and female reproductive apparatus. The PCR-RFLP involved amplification of the internal spacer region ITS1 and ITS2 of the RNA ribosomal gene and subsequent digestion of this fragment by the restriction enzymes DdeI, MnlI, HaeIII and MspI. The planorbids were compared with snails of the same species and others reported from Venezuela and present in Brazil, Cuba and Mexico. All the enzymes showed a specific profile for each species, that of DdeI being the clearest. The snails were identified as B. glabrata, B. prona and B. kuhniana.

  16. Interaction with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl diphosphate.

    Science.gov (United States)

    Burke, Charles; Croteau, Rodney

    2002-02-01

    Geranyl diphosphate synthase belongs to a subgroup of prenyltransferases, including farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase, that catalyzes the specific formation, from C(5) units, of the respective C(10), C(15), and C(20) precursors of monoterpenes, sesquiterpenes, and diterpenes. Unlike farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase, which are homodimers, geranyl diphosphate synthase from Mentha is a heterotetramer in which the large subunit shares functional motifs and a high level of amino acid sequence identity (56-75%) with geranylgeranyl diphosphate synthases of plant origin. The small subunit, however, shares little sequence identity with other isoprenyl diphosphate synthases; yet it is absolutely required for geranyl diphosphate synthase catalysis. Coexpression in Escherichia coli of the Mentha geranyl diphosphate synthase small subunit with the phylogenetically distant geranylgeranyl diphosphate synthases from Taxus canadensis and Abies grandis yielded a functional hybrid heterodimer that generated geranyl diphosphate as product in each case. These results indicate that the geranyl diphosphate synthase small subunit is capable of modifying the chain length specificity of geranylgeranyl diphosphate synthase (but not, apparently, farnesyl diphosphate synthase) to favor the production of C(10) chains. Comparison of the kinetic behavior of the parent prenyltransferases with that of the hybrid enzyme revealed that the hybrid possesses characteristics of both geranyl diphosphate synthase and geranylgeranyl diphosphate synthase.

  17. Density functional theory study of silodithiophene thiophenepyrrolopyrroledion-based small molecules: The effect of alkyl side chain length in electron donor materials

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong Kyun; Yeo, Hak; Kwak, Kyung Won [Dept. of Chemistry, Chung-Ang University, Seoul (Korea, Republic of); Yoon, Young Woon; Kim, Bong Soo [Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Lee, Kyung Koo [Dept. of Chemistry, Kunsan National University, Gunsan (Korea, Republic of)

    2015-02-15

    Push–pull small molecules are promising electron-donor materials for organic solar cells. Thus, precise prediction of their electronic structures is of paramount importance to control the optical and electrical properties of the solar cells. Various types of alkyl chains are usually introduced to increase solubility and modify the morphology of the resulting molecular films. Here, using density functional theory (DFT) and time-dependent DFT (TD-DFT), we report the precise effect of increasing the length of the alkyl chain on the electronic structure of an electron donor molecule 6,60-((4,4-dialkyl-4H-silolo[3,2-b:4,5-b′]-dithiophene-2,6-diyl) bis(thiophene-5,2-diyl))bis(2,5-alkyl-3-(thiophen-2-yl) -2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) (DTS1TDPP). Alkyl groups were attached to the bridging position (silicon atom) of the fused rings and nitrogen atom of the pyrrolopyrroledione groups. We demonstrate that the alkyl groups do not perturb the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels, π-delocalized backbone structure, and UV–Vis absorption spectrum when they are placed at the least steric effect positions.

  18. Overcoming the equivalent-chain-length rule with pH-zone-refining countercurrent chromatography for the preparative separation of fatty acids.

    Science.gov (United States)

    Englert, Michael; Vetter, Walter

    2015-07-01

    Purification of individual fatty acids from vegetable oils by preparative liquid chromatography techniques such as countercurrent chromatography (CCC) is a challenging task due to the equivalent-chain-length (ECL) rule. It implies that one double bond equals two carbon atoms in the alkyl chain of a fatty acid and therefore causes co-elutions of saturated and unsaturated fatty acids. Accordingly, existing methods for the purification of individual fatty acids are cumbersome and time-consuming as two or more steps with different conditions are required. To avoid additional purification steps, we report a method utilizing pH-zone-refining CCC which enabled the purification of all major fatty acids from sunflower oil (purities >95 %) in one step by circumventing co-elutions caused by the ECL rule. This method is based on the involvement of acid strength and hydrophobicity of fatty acids during the separation process. By exploiting the preparative character of the pH-zone-refining mode, a tenfold sample amount of free fatty acids from sunflower oil could be separated in comparison to regular CCC.

  19. Medium chain length polyhydroxyalkanoates biosynthesis in Pseudomonas putida mt-2 is enhanced by co-metabolism of glycerol/octanoate or fatty acids mixtures.

    Science.gov (United States)

    Fontaine, Paul; Mosrati, Ridha; Corroler, David

    2017-05-01

    The synthesis of medium chain length polyhydroxyalkanoates (mcl-PHAs) by Pseudomonas putida mt-2 was investigated under nitrogen-rich then deficient conditions with glycerol/octanoate or long-chain fatty acids (LCFAs) as carbon sources. When mixed, glycerol and octanoate were co-assimilated regardless of nitrogen availability but provided that glycerol uptake has been already triggered under non-limiting nutrient conditions. This concomitant consumption allowed to enhance mcl-PHAs accumulation (up to 57% of cell dry weight (CDW)) under both non-limiting and nitrogen deficient conditions. Octanoate then mostly drove anabolism of the polyester with 3-hydroxyoctanoate (3HO) synthesized as the main monomer (83%). If the preferred PHA precursor octanoate was supplied, glycerol was mainly involved in cell growth and/or maintenance but very little in PHA production even under nitrogen starvation. P. putida cells accumulated higher amounts of mcl-PHAs when grown on mixtures of LCFAs compared to LCFAs supplied as single substrate (25% and 9% of CDW, respectively). However, only a weak enrichment of the polyester was observed after transfer of cells in a fresh nitrogen-free medium containing the same combination of LCFAs. Some typical units within the polyester were related to the LCFAs ratio supplied in the medium indicating that tailor-made monomers could be synthesized. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Thermosensitive mPEG-b-PA-g-PNIPAM comb block copolymer micelles: effect of hydrophilic chain length and camptothecin release behavior.

    Science.gov (United States)

    Yang, Xiao-Li; Luo, Yan-Ling; Xu, Feng; Chen, Ya-Shao

    2014-02-01

    Block copolymer micelles are extensively used as drug controlled release carriers, showing promising application prospects. The comb or brush copolymers are especially of great interest, whose densely-grafted side chains may be important for tuning the physicochemical properties and conformation in selective solvents, even in vitro drug release. The purpose of this work was to synthesize novel block copolymer combs via atom transfer radical polymerization, to evaluate its physicochemical features in solution, to improve drug release behavior and to enhance the bioavailablity, and to decrease cytotoxicity. The physicochemical properties of the copolymer micelles were examined by modulating the composition and the molecular weights of the building blocks. A dialysis method was used to load hydrophobic camptothecin (CPT), and the CPT release and stability were detected by UV-vis spectroscopy and high-performance liquid chromatography, and the cytotoxicity was evaluated by MTT assays. The copolymers could self-assemble into well-defined spherical core-shell micelle aggregates in aqueous solution, and showed thermo-induced micellization behavior, and the critical micelle concentration was 2.96-27.64 mg L(-1). The micelles were narrow-size-distribution, with hydrodynamic diameters about 128-193 nm, depending on the chain length of methoxy polyethylene glycol (mPEG) blocks and poly(N-isopropylacrylamide) (PNIPAM) graft chains or/and compositional ratios of mPEG to PNIPAM. The copolymer micelles could stably and effectively load CPT but avoid toxicity and side-effects, and exhibited thermo-dependent controlled and targeted drug release behavior. The copolymer micelles were safe, stable and effective, and could potentially be employed as CPT controlled release carriers.

  1. Bimolecular encounters and re-encounters (cage effect) of a spin-labeled analogue of cholestane in a series of n-alkanes: effect of anisotropic exchange integral.

    Science.gov (United States)

    Vandenberg, Andrew D; Bales, Barney L; Salikhov, K M; Peric, Miroslav

    2012-12-27

    Electron paramagnetic resonance (EPR) spectra of the nitroxide spin probe 3β-doxyl-5α-cholestane (CSL) are studied as functions of the molar concentration, c, and the temperature, T, in a series of n-alkanes. The results are compared with a similar study of a much smaller spin probe, perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDT). The Heisenberg spin exchange (HSE) rate constants, K(ex), of CSL are similar in hexane, octane, and decane and are about one-half of those for pDT in the same solvents. They are also about one-half of the Stokes-Einstein-Perrin prediction. This reduction in HSE efficiency is attributed to an effective steric factor, f(eff), which was evaluated by comparing the results with the Stokes-Einstein-Perrin prediction or with pDT, and it is equal to 0.49 ± 0.03, independent of temperature. The unpaired spin density in CSL is localized near one end of the long molecule, so the exchange integral, J, leading to HSE, is expected to be large in some collisions and small in others; thus, J is modeled by an ideal distribution of values of J = J(0) with probability f and J = 0 with probability (1 - f). Because of rotational and translation diffusion during contact and between re-encounters of the probe, the effective steric factor is predicted to be f(eff) = f(1/2). Estimating the fraction of the surface of CSL with rich spin density yields a theoretical estimate of f(eff) = 0.59 ± 0.08, in satisfactory agreement with experiment. HSE is well described by simple hydrodynamic theory, with only a small dependence on solvent-probe relative sizes at the same value of T/η, where η is the viscosity of the solvent. This result is probably due to a fortuitous interplay between long- and short-range effects that describe diffusion processes over relatively large distances. In contrast, dipole-dipole interactions (DD) as measured by the line broadening, B(dip), and the mean time between re-encounters within the cage, τ(RE), vary significantly

  2. Thermodynamic properties of (an ester + an alkane). XVI. Experimental HmE and VmE values and a new correlation method for (an alkyl ethanoate + an n-alkane) at 318.15 K

    International Nuclear Information System (INIS)

    Ortega, J.; Espiau, F.; Toledo, F.J.

    2004-01-01

    This work presents the measurements of H m E and V m E , obtained at a temperature of T=318.15 K and atmospheric pressure for a set of 30 binary mixtures composed of five alkyl ethanoates (methyl to pentyl) with six odd n-alkanes (C 7 to C 17 ). The results show that the mixing processes are endothermic in all cases, with regular increases in H m E with the molecular weight of the saturated hydrocarbon and diminishing with the alkanolic part of the ester. The change in V m E is also regular and similar to that of H m E . For data correlation, a new form of polynomial equation is used. In this, the so-called active fraction is used as a variable which, in turn, depends on the concentration of the mixture, giving acceptable estimations of the Gibbs function obtained in the isobaric (liquid + vapor) equilibria for some of the mixtures studied. Finally, a molecular model which interprets the behavior of mixtures of alkyl ethanoates + n-alkanes and the results of residual quantities is proposed. To these binary systems some group contribution models are applied. A modified version of the UNIFAC model gives satisfactory results for enthalpies

  3. Alkylphenol xenoestrogens with varying carbon chain lengths differentially and potently activate signaling and functional responses in GH3/B6/F10 somatomammotropes.

    Science.gov (United States)

    Kochukov, Mikhail Y; Jeng, Yow-Jiun; Watson, Cheryl S

    2009-05-01

    Alkylphenols varying in their side-chain lengths [ethyl-, propyl-, octyl-, and nonylphenol (EP, PP, OP, and NP, respectively)] and bisphenol A (BPA) represent a large group of structurally related xenoestrogens that have endocrine-disruptive effects. Their rapid nongenomic effects that depend on structure for cell signaling and resulting functions are unknown. We compared nongenomic estrogenic activities of alkylphenols with BPA and 17beta-estradiol (E(2)) in membrane estrogen receptor-alpha-enriched GH3/B6/F10 pituitary tumor cells. These actions included calcium (Ca) signaling, prolactin (PRL) release, extracellular-regulated kinase (ERK) phosphorylation, and cell proliferation. We imaged Ca using fura-2, measured PRL release via radioimmunoassay, detected ERK phosphorylation by fixed cell immunoassay, and estimated cell number using the crystal violet assay. All compounds caused increases in Ca oscillation frequency and intracellular Ca volume at 100 fM to 1 nM concentrations, although long-chain alkylphenols were most effective. All estrogens caused rapid PRL release at concentrations as low as 1 fM to 10 pM; the potency of EP, PP, and NP exceeded that of E(2). All compounds at 1 nM produced similar increases in ERK phosphorylation, causing rapid peaks at 2.5-5 min, followed by inactivation and additional 60-min peaks (except for BPA). Dose-response patterns of ERK activation at 5 min were similar for E2, BPA, and PP, whereas EP caused larger effects. Only E2 and NP increased cell number. Some rapid estrogenic responses showed correlations with the hydrophobicity of estrogenic molecules; the more hydrophobic OP and NP were superior at Ca and cell proliferation responses, whereas the less hydrophobic EP and PP were better at ERK activations. Alkylphenols are potent estrogens in evoking these nongenomic responses contributing to complex functions; their hydrophobicity can largely predict these behaviors.

  4. Chain-Length Distribution and Hydrogen Isotopic Fraction of n-alkyl Lipids in Aquatic and Terrestrial Plants: Implications for Paleoclimate Reconstructions

    Science.gov (United States)

    Gao, L.; Littlejohn, S.; Hou, J.; Toney, J.; Huang, Y.

    2008-12-01

    Recent studies demonstrate that in lacustrine sediments, aquatic plant lipids (e.g., C22-fatty acid) record lake water D/H ratio variation, while long-chain fatty acids (C26-C32, major components of terrestrial plant leaf waxes), record D/H ratios of precipitation (especially in arid regions). However, there are insufficient literature data for the distribution and hydrogen isotopic fractionation of n-alkyl lipids in aquatic and terrestrial plants. In this study, we determined the chain-length distributions and D/H ratios of n-alkyl lipids from 17 aquatic plant species (9 emergent, 4 floating and 4 submerge species) and 13 terrestrial plant species (7 grasses and 6 trees) from Blood Pond, Massachusetts. Our results are consistent with previous studies and provide a solid basis for the paleoclimatic reconstruction using D/H ratios of aquatic and terrestrial plant biomarkers. In addition, systematic hydrogen isotopic analyses on leaf waxes, leaf, stem and soil waters from trees and grasses significantly advance our understanding of our previously observed large D/H ratio difference between tree and grass leaf waxes. Our data indicate that the observed difference is not due to differences in leaf water D/H ratios. In comparison with grasses, trees use greater proportion of D-enriched residual or stored carbohydrates (as opposed to current photosynthetic carbohydrates) for leaf wax biosynthesis, resulting in higher leaf wax D/H ratios. The residual carbohydrates are enriched in deuterium because of the preferential consumption of light-hydrogen substrates during plant metabolism.

  5. Molecular design of boronic acid-functionalized squarylium cyanine dyes for multiple discriminant analysis of sialic acid in biological samples: selectivity toward monosaccharides controlled by different alkyl side chain lengths.

    Science.gov (United States)

    Ouchi, Kazuki; Colyer, Christa L; Sebaiy, Mahmoud; Zhou, Jin; Maeda, Takeshi; Nakazumi, Hiroyuki; Shibukawa, Masami; Saito, Shingo

    2015-02-03

    We designed a new series of boronic acid-functionalized squarylium cyanine dyes (SQ-BA) with different lengths of alkyl chain residues, suitable for multiple discriminant analysis (MDA) of sialic acid (Neu5Ac) in biological samples. The SQ-BA dyes form aggregates based on hydrophobic interactions, which result in quenched fluorescence in aqueous solutions. When the boronic acid binds with saccharides, the fluorescence intensity increases as a result of dissociation to the emissive monomeric complex. We inferred that different dye aggregate structures (H-aggregates and J-aggregates) were induced depending on the alkyl chain length, so that monosaccharides would be recognized in different ways (especially, multipoint interaction with J-aggregates). A distinctive emission enhancement of SQ-BA dyes with shorter-alkyl-chains in the presence of Neu5Ac was observed (2.4-fold fluorescence enhancement; with formation constant 10(1.7) M(-1)), with no such enhancement for SQ-BA dyes with longer-alkyl-chain. In addition, various enhancement factors for other monosaccharides were observed depending on the alkyl chain length. Detailed thermodynamic and NMR studies of the SQ-BA complexes revealed the unique recognition mechanism: the dye aggregate with a shorter-alkyl-chain causes the slipped parallel structure and forms a stable 2:1 complex with Neu5Ac, as distinct from longer-alkyl-chain dyes, which form a 1:1 monomeric complex. MDA using the four SQ-BA dyes was performed for human urine samples, resulting in the successful discrimination between normal and abnormal Neu5Ac levels characteristic of disease. Thus, we successfully controlled various responses to similar monosaccharides with a novel approach that chemically modified not the boronic acid moiety itself but the length of the alkyl chain residue attached to the dye in order to generate specificity.

  6. Critical constants and acentric factors for long-chain alkanes suitable for corresponding states applications

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Dimitrios, Tassios

    1997-01-01

    Several methods for the estimation of the critical temperature T-c, the critical pressure P-c, and the acentric factor omega for long-chain n-alkanes are reviewed and evaluated for the prediction of vapor pressures using Corresponding States (CS) methods, like the Lee-Kesler equation and the cubic...... equations of state. Most reliable and recent literature methods proposed for the estimation of the acentric factor of heavy alkanes yield similar values and the emphasis is, thus, given to the determination of the best sets of T-c and P-c. Various extrapolation schemes proposed for this purpose and several....... Anselme, Correlation of the critical properties of alkanes and alkanols, Fluid Phase Equilibria, 56 (1990) 153-169; W. Hu, J. Lovland and P. Vonka. Generalized vapor pressure equations for n-alkanes, 1-alkenes, and 1-alkanols, Presented at the 11th Int. Congress of Chemical Engineering, Chemical Equipment...

  7. Potencial discriminatório dos N-alcanos em plantas forrageiras tropicais por análises multivariadas Discriminatory potential of the N-alkanes in tropical forages by multivariate analysis

    Directory of Open Access Journals (Sweden)

    Cristiano Côrtes

    2005-08-01

    Full Text Available O potencial dos n-alcanos em discriminar frações ou espécies de gramíneas (Brachiaria brizantha Stapf. cv. Marandu, Cynodon dactylon Pers. cv. Coast-cross 1 e Panicum maximum Jacq. cv. Tanzânia 1 e leguminosas tropicais (Arachis pintoi Koprov & Gregory. cv. Amarillo e Glycine wightii Verdc. Soja Perene foi avaliado neste estudo. As forrageiras foram amostradas na primavera, no verão e inverno, com quatro repetições por espécie. Utilizaram-se nas análises os n-alcanos C24 a C35, sendo o C32 e C34 padrões internos. As concentrações dos n-alcanos nas diferentes espécies e respectivas frações (lâminas foliares, haste porções superior e inferior e matéria morta, para gramíneas; folhas, caule porções superior e inferior e matéria morta para leguminosas foram avaliadas mediante análises multivariadas. O potencial discriminatório dos n-alcanos foi determinado pela análise de variáveis canônicas. As espécies e frações foram divididas em grupos por meio da análise de agrupamento. Os alcanos com menor potencial discriminatório foram: C26, C29, C25, C27 e C28 (primavera, C26, C28, C27, C30 e C29 (verão e C28, C26, C25, C29 e C27 (inverno. Nos períodos de primavera e inverno, a técnica de n-alcanos permitiu distinguir a lâmina foliar do coastcross das hastes superior e inferior, bem como das gramíneas e leguminosas. Em pastagens exclusivas de Brachiaria brizantha, no período de verão, seria possível discriminar as frações de importância nutricional, lâmina foliar e haste superior, pela determinação dos n-alcanos. As análises multivariadas, as variáveis canônicas e a análise de agrupamento representam boas alternativas de cálculo para melhorar a aplicabilidade da técnica dos n-alcanos na discriminação das dietas de herbívoros.The discriminatory potential of n-alkanes in tropical grasses (Brachiaria brizantha Stapf. cv. Marandu, Cynodon dactylon Pers. cv. Coast-cross 1 and Panicum maximum Jacq. cv. Tanz

  8. Medium-chain-length polyhydroxyalkanoates synthesis by Pseudomonas putida KT2440 relA/spoT mutant: bioprocess characterization and transcriptome analysis.

    Science.gov (United States)

    Mozejko-Ciesielska, Justyna; Dabrowska, Dorota; Szalewska-Palasz, Agnieszka; Ciesielski, Slawomir

    2017-12-01

    Pseudomonas putida KT2440 is a model bacteria used commonly for medium-chain-length polyhydroxyalkanoates (mcl-PHAs) production using various substrates. However, despite many studies conducted on P. putida KT2440 strain, the molecular mechanisms of leading to mcl-PHAs synthesis in reaction to environmental stimuli are still not clear. The rearrangement of the metabolism in response to environmental stress could be controlled by stringent response that modulates the transcription of many genes in order to promote survival under nutritional deprivation conditions. Therefore, in this work we investigated the relation between mcl-PHAs synthesis and stringent response. For this study, a relA/spoT mutant of P. putida KT2440, unable to induce the stringent response, was used. Additionally, the transcriptome of this mutant was analyzed using RNA-seq in order to examine rearrangements of the metabolism during cultivation. The results show that the relA/spoT mutant of P. putida KT2440 is able to accumulate mcl-PHAs in both optimal and nitrogen limiting conditions. Nitrogen starvation did not change the efficiency of mcl-PHAs synthesis in this mutant. The transition from exponential growth to stationary phase caused significant upregulation of genes involved in transport system and nitrogen metabolism. Transcriptional regulators, including rpoS, rpoN and rpoD, did not show changes in transcript abundance when entering the stationary phase, suggesting their limited role in mcl-PHAs accumulation during stationary phase.

  9. Production of Medium-Chain-Length Poly(3-Hydroxyalkanoates from Saponified Palm Kernel Oil by Pseudomonas putida: Kinetics of Batch and Fed-Batch Fermentations

    Directory of Open Access Journals (Sweden)

    Annuar, M. S. M.

    2006-01-01

    Full Text Available The kinetics of medium-chain-length poly(3-hydroxyalkanoates, PHAMCL production by Pseudomonas putida PGA1 in batch and fed-batch fermentations were studied. With saponified palm kernel oil (SPKO supplying the free fatty acids mixture as the sole carbon and energy source, PHAMCL accumulation is encouraged under ammonium-limited condition, which is a nitrogen stress environment. The amount of PHAMCL accumulated and its specific production rate, qPHA were influenced by the residual ammonium concentration level in the culture medium. It was observed that in both fermentation modes, when the residual ammonium was exhausted (< 0.05 gL-1, the PHAMCL accumulation (11.9% and qPHA (0.0062 h-1 were significantly reduced. However, this effect can be reversed by feeding low amount of ammonium to the culture, resulting in significantly improved PHAMCL yield (71.4% and specific productivity (0.6 h-1. It is concluded that the feeding of low ammonium concentration to the culture medium during the PHAMCL accumulation has a positive effect on sustaining the PHAMCL biosynthetic capability of the organism. It was also found that increasing SPKO concentration in the medium significantly reduced (up to 50% the volumetric oxygen transfer coefficient (KLa of the fermentation system.

  10. Quinoidal Oligo(9,10-anthryl)s with Chain-Length-Dependent Ground States: A Balance between Aromatic Stabilization and Steric Strain Release

    KAUST Repository

    Lim, Zhenglong

    2015-11-12

    Quinoidal π-conjugated polycyclic hydrocarbons have attracted intensive research interest due to their unique optical/electronic properties and possible magnetic activity, which arises from a thermally excited triplet state. However, there is still lack of fundamental understanding on the factors that determine the electronic ground states. Herein, by using quinoidal oligo(9,10-anthryl)s, it is demonstrated that both aromatic stabilisation and steric strain release play balanced roles in determining the ground states. Oligomers with up to four anthryl units were synthesised and their ground states were investigated by electronic absorption and electron spin resonance (ESR) spectroscopy, assisted by density functional theory (DFT) calculations. The quinoidal 9,10-anthryl dimer 1 has a closed-shell ground state, whereas the tri- (2) and tetramers (3) both have an open-shell diradical ground state with a small singlet-triplet gap. Such a difference results from competition between two driving forces: the large steric repulsion between the anthryl/phenyl units in the closed-shell quinoidal form that drives the molecule to a flexible open-shell diradical structure, and aromatic stabilisation due to the gain of more aromatic sextet rings in the closed-shell form, which drives the molecule towards a contorted quinoidal structure. The ground states of these oligomers thus depend on the overall balance between these two driving forces and show chain-length dependence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. In vivo and in vitro depolymerizations of intracellular medium-chain-length poly-3-hydroxyalkanoates produced by Pseudomonas putida Bet001.

    Science.gov (United States)

    Anis, Siti Nor Syairah; Mohamad Annuar, Mohamad Suffian; Simarani, Khanom

    2017-09-14

    In vivo and in vitro depolymerizations of intracellular medium-chain-length poly-3-hydroxyalkanoates (mcl-PHA) in Pseudomonas putida Bet001 grown on lauric acid was studied. Both processes were studied under optimum conditions for mcl-PHA depolymerization viz. 0.2 M Tris-HCl buffer, pH 9, ionic strength (I) = 0.2 M at 30°C. For in vitro depolymerization studies, cell-free system was obtained from lysing bacterial cells suspension by ultrasonication at optimum conditions (frequency 37 kHz, 30% of power output, <25°C for 120 min). The comparison between in vivo and in vitro depolymerizations of intracellular mcl-PHA was made. In vitro depolymerization showed lower depolymerization rate but higher yield compared to in vivo depolymerization. The monomer liberation rate reflected the mol% distribution of the initial polymer subunit composition, and the resulting direct individual products of depolymerization were identical for both in vivo and in vitro processes. It points to exo-type reaction for both processes, and potential biological route to chiral molecules.

  12. Use of PCR-RFLP (Polymerase Chain Reaction - Restricted Fragment Length Polymorphism in the gene of the enzyme Stearoyl-CoA-Desaturase in Bubalus bubalis

    Directory of Open Access Journals (Sweden)

    H. Tonhati

    2010-02-01

    Full Text Available The milk is an important food because it contents Conjugated Linoleic Acids (CLA. These fatty acids are synthesized in mammary gland under action of the enzyme Stearoyl CoA-Desaturase (SCD and have showed some positive effects in human disease prevention and treatments. A variation of CLA in milk fat exists and can be partially explained by the different levels of expression of SCD. The aim was to study part of the encoding regions of SCD´s gene using PCR-RFLP (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism. Genomic DNA was extracted from lactating Murrah females. After this, PCR reactions were made by using primers Z43D1 that encloses exon I, II and intron I. The fragments amplified are composed by 938 pb. Then, RFLP techniques were applied in the fragments using the restriction enzymes Pst I and Sma I. The enzyme Pst I has generated fragments of 788pb and 150bp and the Sma I has generated fragments of 693pb and 245pb. All the animals showed the same migration standard for both enzymes, characterizing a genetic monomorphism for this region of SCD gene. The analysis determined that there aren’t genetic differences between these animals in the studied regions by using Pst I and Sma I enzymes.

  13. Identification of blood meal sources of Lutzomyia longipalpis using polymerase chain reaction-restriction fragment length polymorphism analysis of the cytochrome B gene.

    Science.gov (United States)

    Soares, Vítor Yamashiro Rocha; Silva, Jailthon Carlos da; Silva, Kleverton Ribeiro da; Pires e Cruz, Maria do Socorro; Santos, Marcos Pérsio Dantas; Ribolla, Paulo Eduardo Martins; Alonso, Diego Peres; Coelho, Luiz Felipe Leomil; Costa, Dorcas Lamounier; Costa, Carlos Henrique Nery

    2014-06-01

    An analysis of the dietary content of haematophagous insects can provide important information about the transmission networks of certain zoonoses. The present study evaluated the potential of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the mitochondrial cytochrome B (cytb) gene to differentiate between vertebrate species that were identified as possible sources of sandfly meals. The complete cytb gene sequences of 11 vertebrate species available in the National Center for Biotechnology Information database were digested with Aci I, Alu I, Hae III and Rsa I restriction enzymes in silico using Restriction Mapper software. The cytb gene fragment (358 bp) was amplified from tissue samples of vertebrate species and the dietary contents of sandflies and digested with restriction enzymes. Vertebrate species presented a restriction fragment profile that differed from that of other species, with the exception of Canis familiaris and Cerdocyon thous. The 358 bp fragment was identified in 76 sandflies. Of these, 10 were evaluated using the restriction enzymes and the food sources were predicted for four: Homo sapiens (1), Bos taurus (1) and Equus caballus (2). Thus, the PCR-RFLP technique could be a potential method for identifying the food sources of arthropods. However, some points must be clarified regarding the applicability of the method, such as the extent of DNA degradation through intestinal digestion, the potential for multiple sources of blood meals and the need for greater knowledge regarding intraspecific variations in mtDNA.

  14. Co-synthesis of medium-chain-length polyhydroxyalkanoates and CdS quantum dots nanoparticles in Pseudomonas putida KT2440.

    Science.gov (United States)

    Oliva-Arancibia, Barbara; Órdenes-Aenishanslins, Nicolás; Bruna, Nicolas; Ibarra, Paula S; Zacconi, Flavia C; Pérez-Donoso, José M; Poblete-Castro, Ignacio

    2017-12-20

    Microbial polymers and nanomaterials production is a promising alternative for sustainable bioeconomics. To this end, we used Pseudomonas putida KT2440 as a cell factory in batch cultures to coproduce two important nanotechnology materials- medium-chain-length (MCL)-polyhydroxyalkanoates (PHAs) and CdS fluorescent nanoparticles (i.e. quantum dots [QDots]). Due to high cadmium resistance, biomass and PHA yields were almost unaffected by coproduction conditions. Fluorescent nanocrystal biosynthesis was possible only in presence of cysteine. Furthermore, this process took place exclusively in the cell, displaying the classical emission spectra of CdS QDots under UV-light exposure. Cell fluorescence, zeta potential values, and particles size of QDots depended on cadmium concentration and exposure time. Using standard PHA-extraction procedures, the biosynthesized QDots remained associated with the biomass, and the resulting PHAs presented no traces of CdS QDots. Transmission electron microscopy located the synthesized PHAs in the cell cytoplasm, whereas CdS nanocrystals were most likely located within the periplasmic space, exhibiting no apparent interaction. This is the first report presenting the microbial coproduction of MCL-PHAs and CdS QDots in P. putida KT2440, thus constituting a foundation for further bioprocess developments and strain engineering towards the efficient synthesis of these highly relevant bioproducts for nanotechnology. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. [Establishing a new genotyping method of hepatitis B virus by polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP) to analysis on S region and its application].

    Science.gov (United States)

    Peng, Liang; Ding, Jing-Juan; Zhang, Li-Sha

    2004-08-01

    To establish a new polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method of genotyping HBV using Mbo I, BsTN I, BsmA I, Hpa II and investigate the relationship between genotype and clinical spectrum of hepatitis B. 124 full-genomic HBV sequences and 13 S-genomic sequences were analyzed, genotype specific regions were identified by the restriction enzymes Mbo I, BsTN I, BsmA I, Hpa II. And 176 samples from different kinds of hepatitis B were genotyped by this method. Five samples had been randomly selected and directly sequenced their S gene, to assess the accuracy. In 176 serum samples of patients with hepatitis B from Guizhou area, genotype B and C were found in 56.8% and 43.2% respectively. The proportions of genotype B and C in ASC were 40.0% and 15.7% (chi-square = 12.16, P < 0.005); and they were 31.6% and 14.0% in CHB (chi-square = 7.88, P < 0.005). Genotyping HBV, based on S gene RFLP seems to be highly sensitive, differential and accurate and could be used in large-scale surveys. HBV genotype B and C are existed in Guizhou area.

  16. Identification of blood meal sources of Lutzomyia longipalpis using polymerase chain reaction-restriction fragment length polymorphism analysis of the cytochrome B gene

    Directory of Open Access Journals (Sweden)

    Vítor Yamashiro Rocha Soares

    2014-06-01

    Full Text Available An analysis of the dietary content of haematophagous insects can provide important information about the transmission networks of certain zoonoses. The present study evaluated the potential of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP analysis of the mitochondrial cytochrome B (cytb gene to differentiate between vertebrate species that were identified as possible sources of sandfly meals. The complete cytb gene sequences of 11 vertebrate species available in the National Center for Biotechnology Information database were digested with Aci I, Alu I, Hae III and Rsa I restriction enzymes in silico using Restriction Mapper software. The cytb gene fragment (358 bp was amplified from tissue samples of vertebrate species and the dietary contents of sandflies and digested with restriction enzymes. Vertebrate species presented a restriction fragment profile that differed from that of other species, with the exception of Canis familiaris and Cerdocyon thous. The 358 bp fragment was identified in 76 sandflies. Of these, 10 were evaluated using the restriction enzymes and the food sources were predicted for four: Homo sapiens (1, Bos taurus (1 and Equus caballus (2. Thus, the PCR-RFLP technique could be a potential method for identifying the food sources of arthropods. However, some points must be clarified regarding the applicability of the method, such as the extent of DNA degradation through intestinal digestion, the potential for multiple sources of blood meals and the need for greater knowledge regarding intraspecific variations in mtDNA.

  17. Effect of polyethyleneglycol (PEG) chain length on the bio-nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells

    Science.gov (United States)

    Pozzi, Daniela; Colapicchioni, Valentina; Caracciolo, Giulio; Piovesana, Susy; Capriotti, Anna Laura; Palchetti, Sara; de Grossi, Stefania; Riccioli, Anna; Amenitsch, Heinz; Laganà, Aldo

    2014-02-01

    When nanoparticles (NPs) enter a physiological environment, medium components compete for binding to the NP surface leading to formation of a rich protein shell known as the ``protein corona''. Unfortunately, opsonins are also adsorbed. These proteins are immediately recognized by the phagocyte system with rapid clearance of the NPs from the bloodstream. Polyethyleneglycol (PEG) coating of NPs (PEGylation) is the most efficient anti-opsonization strategy. Linear chains of PEG, grafted onto the NP surface, are able to create steric hindrance, resulting in a significant inhibition of protein adsorption and less recognition by macrophages. However, excessive PEGylation can lead to a strong inhibition of cellular uptake and less efficient binding with protein targets, reducing the potential of the delivery system. To reach a compromise in this regard we employed a multi-component (MC) lipid system with uncommon properties of cell uptake and endosomal escape and increasing length of PEG chains. Nano liquid chromatography coupled with tandem mass spectrometry (nanoLC-MS/MS) analysis allowed us to accurately determine the corona composition showing that apolipoproteins are the most abundant class in the corona and that increasing the PEG length reduced the protein adsorption and the liposomal surface affinity for apolipoproteins. Due to the abundance of apolipoproteins, we exploited the ``protein corona effect'' to deliver cationic liposome-human plasma complexes to human prostate cancer PC3 cells that express a high level of scavenger receptor class B type 1 in order to evaluate the cellular uptake efficiency of the systems used. Combining laser scanning confocal microscopy with flow cytometry analysis in PC3 cells we demonstrated that MC-PEG2k is the best compromise between an anti-opsonization strategy and active targeting and could be a promising candidate to treat prostate cancer in vivo.When nanoparticles (NPs) enter a physiological environment, medium components

  18. Molecular identification of similar species of the genus Biomphalaria (Mollusca: Planorbidae determined by a polymerase chain reaction-restriction fragment length polymorphism

    Directory of Open Access Journals (Sweden)

    Roberta Lima Caldeira

    1998-01-01

    Full Text Available The freshwater snails Biomphalaria straminea, B. intermedia, B. kuhniana and B. peregrina, are morphologically similar; based on this similarity the first three species were therefore grouped in the complex B. straminea. The morphological identification of these species is based on characters such as vaginal wrinkling, relation between prepuce: penial sheath:deferens vas and number of muscle layers in the penis wall. In this study the polymerase chain reaction restriction fragment length polymorphism technique was used for molecular identification of these molluscs. This technique is based on the amplification of the internal transcribed spacer regions ITS1 e ITS2 of the ribosomal RNA gene and subsequent digestion of these fragments by restriction enzymes. Six enzymes were tested: Dde I, Mnl I, Hae III, Rsa I, Hpa II e Alu I. The restriction patterns obtained with DdeI presented the best profile for separation of the four species of Biomphalaria. The profiles obtained with all the enzymes were used to estimate the genetic distances among the species through analysis of common banding patterns.

  19. Synthetic high-charge organomica: effect of the layer charge and alkyl chain length on the structure of the adsorbed surfactants.

    Science.gov (United States)

    Pazos, M Carolina; Castro, Miguel A; Orta, M Mar; Pavón, Esperanza; Valencia Rios, Jesús S; Alba, María D

    2012-05-15

    A family of organomicas was synthesized using synthetic swelling micas with high layer charge (Na(n)Si(8-n)Al(n)Mg(6)F(4)O(20)·XH(2)O, where n = 2, 3, and 4) exchanged with dodecylammonium and octadecylammonium cations. The molecular arrangement of the surfactant was elucidated on the basis on XRD patterns and DTA. The ordering conformation of the surfactant molecules into the interlayer space of micas was investigated by (13)C, (27)Al, and (29)Si MAS NMR. The arrangement of alkylammonium ions in these high-charge synthetic micas depends on the combined effects of the layer charge of the mica and the chain length of the cation. In the organomicas with dodecylammonium, a transition from a parallel layer to a bilayer-paraffin arrangement is observed when the layer charge of the mica increases. However, when octadecylammonium is the interlayer cation, the molecular arrangement of the surfactant was found to follow the bilayer-paraffin model for all values of layer charge. The amount of ordered conformation all-trans is directly proportional of layer charge.

  20. Diffusional behavior of n-paraffins with various chain lengths in urea adduct channels by pulsed field-gradient spin-echo NMR spectroscopy

    International Nuclear Information System (INIS)

    Kim, Sunmi; Kuroki, Shigeki; Ando, Isao

    2006-01-01

    The diffusion coefficients (D) of n-paraffin molecules (n-C n H 2n+2 ) with various chain-lengths (n = 8, 12, 21, 26, 28 and 32) in the long channels of a deuterated urea-d 4 adduct have been measured at 25 deg. C by means of pulsed field-gradient spin-echo 1 H NMR method. The aim is to clarify diffusional behavior of the n-paraffin molecules in the urea adduct channels. From the experimental results, it is found that n-paraffin molecules are diffusing in the long channels and have two kinds of diffusion components, namely a fast (D ∼ 10 -10 m 2 /s) and a slow diffusion component (D ∼ 10 -11 m 2 /s). The diffusing-time (Δ) dependence of the diffusion coefficients of the n-paraffins shows some likely evidence of restricted diffusion since the n-paraffin molecules are confined in the urea channel. The diffusion coefficients (D) decrease as the carbon number increases from 8 to 28, and very slowly decreases as the carbon number increases from 28 to 32

  1. Simultaneous and rapid differential diagnosis of Mycoplasma genitalium and Ureaplasma urealyticum based on a polymerase chain reaction-restriction fragment length polymorphism

    Directory of Open Access Journals (Sweden)

    R Mirnejad

    2011-01-01

    Full Text Available Objectives: The aim of this investigation was to simultaneously detect and differentiate Mycoplasma genitalium and Ureaplasma urealyticum in female patients suffering from genital complications by polymerase chain reaction (PCR-restriction fragment length polymorphism (RFLP. Materials and Methods : Genital swabs were taken from 210 patients. They were transported to the laboratory in phosphate-buffered saline. For PCR, samples were analysed with genus-specific MyUu-R and MyUu-F primers. This primer set, which was originally designed in our laboratory, amplified a 465 bp fragment (M. genitalium and a 559 bp fragment (U. urealyticum. Samples containing a band of the expected sizes for the Mycoplasma strains were subjected to digestion with a restriction endonuclease enzyme of TaqI and Cac8I. Results: Of the 210 samples, a total of 100 (47.6% samples were found to be positive for Mycoplasmas (seven M. genitalium isolates, 3.3%; and 89 U. urealyticum isolates, 42.4%, and coinfections with both species were detected in four samples (1.9%. The PCR-RFLP results showed that M. genitalium and U. urealyticum are different by enzyme patterns. Conclusion: PCR-RFLP offers a rapid and easily applicable protocol to simultaneous detection and differentiation of M. genitalium and U. urealyticum from clinical samples when specific primers and restriction enzymes are used.

  2. The prevalence of cryptosporidiosis in Turkish children, and geno typing of isolates by nested polymerase chain reaction-restriction fragment length polymorphism

    International Nuclear Information System (INIS)

    Tamer, Gulden S.; Turk, M.; Dagci, H.; Pektas, B.; Guruz, Adnan Y.; Uner, A.; Guy, E.C.

    2007-01-01

    Objective was to verify the incidence of cryptosporidiosis among Turkish elementary school students. The study was conducted in the Dept. of Parasitology, Faculty of Medicine, Ege University, Turkey during a 3-month period in 2006. We assessed the fecal samples of 707 children using modified acid-fast and phenol-auramine staining followed by modified Ritchie concentration method. All cryptosporidium species isolates were analysed by nested polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) to differentiate genotypes of the isolates. After the coprological examination, 4 samples were found to be positive for cryptosporidium species oocysts. In the present study, all 4 oocysts were of zoonotic origin and belonged to cryptoporodium parvum genotype 2 indicating that in Turkey the potential sources of human cryptosporidiosis is from animals. The application of genotyping to clinical isolates of cryptosporidium has significantly increased our knowledge and understanding of the distribution and epidemiology of this parasite. The PCR and RFLP techniques represent a more rapid and simple method of genotyping to support epidemiological and clinical investigations than conventional analytical DNA techniques. (author)

  3. The normal chain length distribution of the O antigen is required for the interaction of Shigella flexneri 2a with polarized Caco-2 cells

    Directory of Open Access Journals (Sweden)

    Anilei Hoare

    2012-01-01

    Full Text Available Shigella flexneri causes bacillary dysentery in humans. Essential to the establishment of the disease is the invasion of the colonic epithelial cells. Here we investigated the role of the lipopolysaccharide (LPS O antigen in the ability of S. flexneri to adhere to and invade polarized Caco-2 cells. The S. flexneri 2a O antigen has two preferred chain lengths: a short O antigen (S-OAg regulated by the WzzB protein and a very long O antigen (VL-OAg regulated by Wzz pHS2. Mutants with defined deletions of the genes required for O-antigen assembly and polymerization were constructed and assayed for their abilities to adhere to and enter cultured epithelial cells. The results show that both VL- and S-OAg are required for invasion through the basolateral cell membrane. In contrast, the absence of O antigen does not impair adhesion. Purified LPS does not act as a competitor for the invasion of Caco-2 cells by the wild-type strain, suggesting that LPS is not directly involved in the internalization process by epithelial cells.

  4. Novel polymerase chain reaction-restriction fragment length polymorphism assay to determine internal transcribed spacer-2 group in the Chagas disease vector, Triatoma dimidiata (Latreille, 1811

    Directory of Open Access Journals (Sweden)

    Bethany Richards

    2013-06-01

    Full Text Available Triatoma dimidiata is the most important Chagas disease insect vector in Central America as this species is primarily responsible for Trypanosoma cruzi transmission to humans, the protozoan parasite that causes Chagas disease. T. dimidiata sensu lato is a genetically diverse assemblage of taxa and effective vector control requires a clear understanding of the geographic distribution and epidemiological importance of its taxa. The nuclear ribosomal internal transcribed spacer 2 (ITS-2 is frequently used to infer the systematics of triatomines. However, oftentimes amplification and sequencing of ITS-2 fails, likely due to both the large polymerase chain reaction (PCR product and polymerase slippage near the 5' end. To overcome these challenges we have designed new primers that amplify only the 3'-most 200 base pairs of ITS-2. This region distinguishes the ITS-2 group for 100% of known T. dimidiata haplotypes. Furthermore, we have developed a PCR-restriction fragment length polymorphism (RFLP approach to determine the ITS-2 group, greatly reducing, but not eliminating, the number of amplified products that need to be sequenced. Although there are limitations with this new PCR-RFLP approach, its use will help with understanding the geographic distribution of T. dimidiata taxa and can facilitate other studies characterising the taxa, e.g. their ecology, evolution and epidemiological importance, thus improving vector control.

  5. Molecular identification of Candida species isolated from cases of neonatal candidemia using polymerase chain reaction-restriction fragment length polymorphism in a tertiary care hospital

    Directory of Open Access Journals (Sweden)

    Akeela Fatima

    2017-01-01

    Full Text Available Context: Candida spp. is an emerging cause of bloodstream infections worldwide. Delay in speciation of Candida isolates by conventional methods and resistance to antifungal drugs in various Candida species are responsible for the increase in morbidity and mortality due to candidemia. Hence, the rapid identification of Candida isolates is very important for the proper management of patients with candidemia. Aims: The aim was to re-evaluate the identification of various Candida spp. by polymerase chain reaction (PCR-restriction fragment length polymorphism (RFLP and to evaluate the accuracy, speed, and cost of phenotypic methodology versus PCR-RFLP. Settings and Design: Hospital-based cross-sectional study. Materials and Methods: Ninety consecutive clinical isolates of seven Candida species, isolated from blood of neonates and identified by routine phenotypic methods, were re-evaluated using universal primers internal transcribed spacer 1 (ITS1 and ITS4 for PCR amplification and Msp I restriction enzyme for RFLP. Statistical Analysis Used: Kappa test for agreement. Results: The results of PCR-RFLP were 100% in agreement with those obtained using conventional phenotypic methods. Identification could be achieved within 3 work days by both the methods. Our routine methods proved to be cost effective than PCR-RFLP. Conclusions: We can continue with our routine phenotypic methods and PCR-RFLP can be used for periodic quality control or when conventional methods fail to identify a species.

  6. Spectroscopic Study of the Interaction of Carboxyl-Modified Gold Nanoparticles with Liposomes of Different Chain Lengths and Controlled Drug Release by Layer-by-Layer Technology.

    Science.gov (United States)

    Kanwa, Nishu; De, Soumya Kanti; Adhikari, Chandan; Chakraborty, Anjan

    2017-12-21

    In this article, we investigate the interactions of carboxyl-modified gold nanoparticles (AuC) with zwitterionic phospholipid liposomes of different chain lengths using a well-known membrane probe PRODAN by steady-state and time-resolved spectroscopy. We use three zwitterionic lipids, namely, dipalmitoylphosphatidylcholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), which are widely different in their phase transition temperatures to form liposome-AuC assemblies. The steady-state and time-resolved studies indicate that the AuC brings in stability toward liposomes by local gelation. We observe that the bound AuC detach from the surface of the liposomes under pH ≈ 5 due to protonation of the carboxyl group, thus eliminating the electrostatic interaction between nanoparticles and head groups of liposomes. The detachment rate of AuC from the liposome-AuC assemblies is different for the aforementioned liposomes due to differences in their fluidity. We exploited the phenomena for the controlled release of a prominent anticancer drug Doxorubicin (DOX) under acidic conditions for different zwitterionic liposomes. The drug release rate was further optimized by coating of liposome-AuC assemblies with oppositely charged polymer (P), polydiallyldimethylammonium chloride, followed by a mixture of lipids L (DMPC:DMPG) and again with a polymer in a layer-by-layer fashion to obtain capsule-like structures. This system is highly stable for weeks, as confirmed by field-emission scanning electron microscopy (FE-SEM) and confocal laser scanning microscopy (CLSM) imaging, and inhibits premature release. The layer coating was confirmed by hydrodynamic size and zeta potential measurements of the systems. The capsules obtained are of immense importance as they can control release of the drug from the systems to a large extent.

  7. Identification of medically important Candida species by polymerase chain reaction-restriction fragment length polymorphism analysis of the rDNA ITS1 and ITS2 regions

    Directory of Open Access Journals (Sweden)

    Suphi Bayraktar

    2017-01-01

    Full Text Available Aim: We aimed to identify the distribution of species in candidal strains isolated from clinical samples and restriction fragment length polymorphism (RFLP method based on Msp I and Bln I restrictive enzyme cuts of polymerase chain reaction (PCR products after the amplification of ITS1 and ITS2 regions of rDNA genotypically. Materials and Methods: One hundred and fifty candidal strains isolated from various clinical samples were studies/ included. Phenotypic species assessment was performed using automated VITEK-2 system and kit used with the biochemical tests. Common genomic region amplification peculiar to candidal strains was carried out using ITS1 and ITS2 primer pairs. After the amplification, PCR products were cut with Msp I and Bln I restriction enzymes for species identification. Results: The majority of Candida isolates were isolated from urine (78.6% while other isolates were composed of strains isolated from swab, wound, blood and other samples by 11.3%, 3.3%, 2% and 4.7%, respectively. The result of RFLP analysis carried out with Msp I and Bln I restriction enzymes showed that candidal strains were Candida albicans by 45.3%, Candida glabrata by 19.3%, Candida tropicalis by 14.6%, Candida parapsilosis by 5.3%, Candida krusei by 5.3%, Candida lusitaniae by 0.6% and other candidal strains by 9.3%. Conclusion: When the ability to identify Candida to species level of phenotypic and PCR-RFLP methods was assessed, a great difference was found between these two methods. It may be argued that Msp I and Bln I restriction enzyme fragments can be used in the identification of medically important Candida species. Further studies are needed to develop this kind of restriction profile to be used in the identification of candidal strains.

  8. Associations of Plasma Phospholipid SFAs with Total and Cause-Specific Mortality in Older Adults Differ According to SFA Chain Length.

    Science.gov (United States)

    Fretts, Amanda M; Mozaffarian, Dariush; Siscovick, David S; King, Irena B; McKnight, Barbara; Psaty, Bruce M; Rimm, Eric B; Sitlani, Colleen; Sacks, Frank M; Song, Xiaoling; Sotoodehnia, Nona; Spiegelman, Donna; Lemaitre, Rozenn N

    2016-02-01

    Not much is known about the relations of circulating saturated fatty acids (SFAs), which are influenced by both metabolic and dietary determinants, with total and cause-specific mortality. We examined the associations of plasma phospholipid SFAs with total and cause-specific mortality among 3941 older adults from the Cardiovascular Health Study, a population-based prospective study of adults aged ≥65 y who were followed from 1992 through 2011. The relations of total and cause-specific mortality with plasma phospholipid palmitic acid (16:0), stearic acid (18:0), arachidic acid (20:0), behenic acid (22:0), and lignoceric acid (24:0) were assessed using Cox proportional hazards models. During 45,450 person-years of follow-up, 3134 deaths occurred. Higher concentrations of the plasma phospholipid SFAs 18:0, 22:0, and 24:0 were associated with a lower risk of total mortality [multivariable-adjusted HRs (95% CIs)] for the top compared with the bottom quintile: 0.85 (0.75, 0.95) for 18:0; 0.85 (0.75, 0.95) for 22:0; and 0.80 (0.71, 0.90) for 24:0. In contrast, plasma 16:0 concentrations in the highest quintile were associated with a higher risk of total mortality compared with concentrations in the lowest quintile [1.25 (1.11, 1.41)]. We also found no association of plasma phospholipid 20:0 with total mortality. These findings suggest that the associations of plasma phospholipid SFAs with the risk of death differ according to SFA chain length and support future studies to better characterize the determinants of circulating SFAs and to explore the mechanisms underlying these relations. © 2016 American Society for Nutrition.

  9. Soil pretreatment and fast cell lysis for direct polymerase chain reaction from forest soils for terminal restriction fragment length polymorphism analysis of fungal communities

    Directory of Open Access Journals (Sweden)

    Fei Cheng

    Full Text Available Abstract Humic substances in soil DNA samples can influence the assessment of microbial diversity and community composition. Using multiple steps during or after cell lysis adds expenses, is time-consuming, and causes DNA loss. A pretreatment of soil samples and a single step DNA extraction may improve experimental results. In order to optimize a protocol for obtaining high purity DNA from soil microbiota, five prewashing agents were compared in terms of their efficiency and effectiveness in removing soil contaminants. Residual contaminants were precipitated by adding 0.6 mL of 0.5 M CaCl2. Four cell lysis methods were applied to test their compatibility with the pretreatment (prewashing + Ca2+ flocculation and to ultimately identify the optimal cell lysis method for analyzing fungal communities in forest soils. The results showed that pretreatment with TNP + Triton X-100 + skim milk (100 mM Tris, 100 mM Na4P2O7, 1% polyvinylpyrrolidone, 100 mM NaCl, 0.05% Triton X-100, 4% skim milk, pH 10.0 removed most soil humic contaminants. When the pretreatment was combined with Ca2+ flocculation, the purity of all soil DNA samples was further improved. DNA samples obtained by the fast glass bead-beating method (MethodFGB had the highest purity. The resulting DNA was successfully used, without further purification steps, as a template for polymerase chain reaction targeting fungal internal transcribed spacer regions. The results obtained by terminal restriction fragment length polymorphism analysis indicated that the MethodFGB revealed greater fungal diversity and more distinctive community structure compared with the other methods tested. Our study provides a protocol for fungal cell lysis in soil, which is fast, convenient, and effective for analyzing fungal communities in forest soils.

  10. Transcriptome analysis of Pseudomonas mediterranea and P. corrugata plant pathogens during accumulation of medium-chain-length PHAs by glycerol bioconversion.

    Science.gov (United States)

    Licciardello, Grazia; Ferraro, Rosario; Russo, Marcella; Strozzi, Francesco; Catara, Antonino F; Bella, Patrizia; Catara, Vittoria

    2017-07-25

    Pseudomonas corrugata and P. mediterranea are soil inhabitant bacteria, generally living as endophytes on symptomless plants and bare soil, but also capable of causing plant diseases. They share a similar genome size and a high proteome similarity. P. corrugata produces many biomolecules which play an important role in bacterial cell survival and fitness. Both species produce different medium-chain-length PHAs (mcl-PHAs) from the bioconversion of glycerol to a transparent film in P. mediterranea and a sticky elastomer in P. corrugata. In this work, using RNA-seq we investigated the transcriptional profiles of both bacteria at the early stationary growth phase with glycerol as the carbon source. Quantitative analysis of P. mediterranea transcripts versus P. corrugata revealed that 1756 genes were differentially expressed. A total of 175 genes were significantly upregulated in P. mediterranea, while 217 were downregulated. The largest group of upregulated genes was related to transport systems and stress response, energy and central metabolism, and carbon metabolism. Expression levels of most genes coding for enzymes related to PHA biosynthesis and central metabolic pathways showed no differences or only slight variations in pyruvate metabolism. The most relevant result was the significantly increased expression in P. mediterranea of genes involved in alginate production, an important exopolysaccharide, which in other Pseudomonas spp. plays a key role as a virulence factor or in stress tolerance and shows many industrial applications. In conclusion, the results provide useful information on the co-production of mcl-PHAs and alginate from glycerol as carbon source by P. mediterranea in the design of new strategies of genetic regulation to improve the yield of bioproducts or bacterial fitness. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440

    Directory of Open Access Journals (Sweden)

    Le Meur Sylvaine

    2012-08-01

    Full Text Available Abstract Background Pseudomonas putida KT2440 is able to synthesize large amounts of medium-chain-length polyhydroxyalkanoates (mcl-PHAs. To reduce the substrate cost, which represents nearly 50% of the total PHA production cost, xylose, a hemicellulose derivate, was tested as the growth carbon source in an engineered P. putida KT2440 strain. Results The genes encoding xylose isomerase (XylA and xylulokinase (XylB from Escherichia coli W3110 were introduced into P. putida KT2440. The recombinant KT2440 exhibited a XylA activity of 1.47 U and a XylB activity of 0.97 U when grown on a defined medium supplemented with xylose. The cells reached a maximum specific growth rate of 0.24 h-1 and a final cell dry weight (CDW of 2.5 g L-1 with a maximal yield of 0.5 g CDW g-1 xylose. Since no mcl-PHA was accumulated from xylose, mcl-PHA production can be controlled by the addition of fatty acids leading to tailor-made PHA compositions. Sequential feeding strategy was applied using xylose as the growth substrate and octanoic acid as the precursor for mcl-PHA production. In this way, up to 20% w w-1 of mcl-PHA was obtained. A yield of 0.37 g mcl-PHA per g octanoic acid was achieved under the employed conditions. Conclusions Sequential feeding of relatively cheap carbohydrates and expensive fatty acids is a practical way to achieve more cost-effective mcl-PHA production. This study is the first reported attempt to produce mcl-PHA by using xylose as the growth substrate. Further process optimizations to achieve higher cell density and higher productivity of mcl-PHA should be investigated. These scientific exercises will undoubtedly contribute to the economic feasibility of mcl-PHA production from renewable feedstock.

  12. Effect of molecular chain length on the mechanical and thermal properties of amine-functionalized graphene oxide/polyimide composite films prepared by in situ polymerization.

    Science.gov (United States)

    Liao, Wei-Hao; Yang, Shin-Yi; Wang, Jen-Yu; Tien, Hsi-Wen; Hsiao, Sheng-Tsung; Wang, Yu-Sheng; Li, Shin-Ming; Ma, Chen-Chi M; Wu, Yi-Fang

    2013-02-01

    This study fabricates amine (NH(2))-functionalized graphene oxide (GO)/polyimide(PI) composite films with high performance using in situ polymerization. Linear poly(oxyalkylene)amines with two different molecular weights 400 and 2000 (D400 and D2000) have been grafted onto the GO surfaces, forming two types of NH(2)-functionalized GO (D400-GO/D2000-GO). NH(2)-functionalized GO, especially D400-GO, demonstrated better reinforcing efficiency in mechanical and thermal properties. The observed property enhancement are due to large aspect ratio of GO sheets, the uniform dispersion of the GO within the PI matrix, and strong interfacial adhesion due to the chemical bonding between GO and the polymeric matrix. The Young's modulus of the composite films with 0.3 wt % D400-GO loading is 7.4 times greater than that of neat PI, and tensile strength is 240% higher than that of neat PI. Compared to neat PI, 0.3 wt % D400-GO/PI film exhibits approximately 23.96 °C increase in glass transition temperature (T(g)). The coefficient of thermal expansion below T(g) is significantly decreased from 102.6 μm/°C (neat PI) to 53.81 μm/°C (decreasing 48%) for the D400-GO/PI composites with low D400-GO content (0.1 wt %). This work not only provides a method to develop the GO-based polyimide composites with superior performances but also conceptually provides a chance to modulate the interfacial interaction between GO and the polymer through designing the chain length of grafting molecules on NH(2)-functionalized GO.

  13. Molecular typing of Iranian mycobacteria isolates by polymerase chain reaction-restriction fragment length polymorphism analysis of 360-bp rpoB gene.

    Science.gov (United States)

    Hadifar, Shima; Moghim, Sharareh; Fazeli, Hossein; GhasemianSafaei, Hajieh; Havaei, Seyed Asghar; Farid, Fariba; Esfahani, Bahram Nasr

    2015-01-01

    Diagnosis and typing of Mycobacterium genus provides basic tools for investigating the epidemiology and pathogenesis of this group of bacteria. Polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis (PRA) is an accurate method providing diagnosis and typing of species of mycobacteria. The present study is conducted by the purpose of determining restriction fragment profiles of common types of mycobacteria by PRA method of rpoB gene in this geographical region. Totally 60 clinical and environmental isolates from February to October, 2013 were collected and subcultured and identified by phenotypic methods. A 360 bp fragment of the rpoB gene amplified by PCR and products were digested by MspI and HaeIII enzymes. In the present study, of all mycobacteria isolates identified by PRA method, 13 isolates (21.66%) were Mycobacterium tuberculosis, 34 isolates (56.66%) were rapidly growing Nontuberculosis Mycobacteria (NTM) that including 26 clinical isolates (43.33%) and 8 environmental isolates (13.33%), 11 isolates (18.33%) were clinical slowly growing NTM. among the clinical NTM isolates, Mycobacterium fortuitum Type I with the frequency of 57.77% was the most prevalent type isolates. Furthermore, an unrecorded of the PRA pattern of Mycobacterium conceptionense (HeaIII: 120/90/80, MspI: 120/105/80) was found. This study demonstrated that the PRA method was high discriminatory power for identification and typing of mycobacteria species and was able to identify 96.6% of all isolates. Based on the result of this study, rpoB gene could be a potentially useful tool for identification and investigation of molecular epidemiology of mycobacterial species.

  14. Molecular identification of Mycobacterium tuberculosis complex by region of differentiation-typing and polymerase chain reaction-restriction fragment length polymorphism method.

    Science.gov (United States)

    Mirzaki, Seydeh Zeinab; Mosavari, Nader; Nazari, Razieh; Akbarian, Morteza

    2016-12-01

    Tuberculosis (TB) is one of the most common zoonotic infectious diseases in the world. Identification of Mycobacterium isolates is essential for proper treatment of TB. The aim of this study was to identify Mycobacterium isolates collected from TB patients in Alborz Province, Iran, by region of differentiation (RD)-typing. Fifty samples from tuberculosis patients were cultured in pyruvate and glycerinated Lowenstein-Jensen medium. DNA was extracted from the isolates by the van Solingen method and subjected to polymerase chain reaction (PCR)-16SrRNA, PCR-IS6110, and RD-typing with primers RD1, RD4, RD9, and RD12, respectively. Out of 50 isolates, only one isolate appeared negative in IS6110-PCR and was considered nontuberculosis complex. The remaining isolates gave PCR products of approximately 543bp, 245bp, 146bp, 172bp, 235bp, and 369bp with 16s-rRNA, IS6110-PCR, RD-1, RD-4, RD-9, and RD-12 PCR, respectively. PCR-restriction fragment length polymorphism of oxyR pseudogene confirmed the results. All isolates except one from Alborz Province appeared positive for Mycobacterium tuberculosis. Based on the obtained results, all isolates except one were identified as M. tuberculosis. The only negative isolate appeared 93% and 97% similar to Nocardia or Mycobacterium sp. (Mycobacterium neoaurum), respectively, based on sequencing and alignment of 16s-rRNA and hsp65. Accurate identification of Mycobacterium isolates is of utmost importance for proper and immediate treatment of TB patients. In this study, RD-typing appeared to be a suitable method for correct identification of M. tuberculosis isolates. Copyright © 2016.

  15. Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene glycol) networks: towards high-performance antifouling coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yapei; Pitet, Louis M.; Finlay, John A.; Brewer, Lenora H.; Cone, Gemma; Betts, Douglas E.; Callow, Maureen E.; Callow, James A.; Wendt, Dean E.; Hillmyer, Marc A.; DeSimone, Joseph M. (Birmingham UK); (NCSU); (UNC); (Cal. Polytech.); (UMM)

    2013-03-07

    The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M{sub w} = 1500 g mol{sup -1}) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M{sub w} = 300, 475, 1100 g mol{sup -1}), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.

  16. Comparison of poly(ε-caprolactone) chain lengths of poly(ε-caprolactone)-co-d-α-tocopheryl-poly(ethylene glycol) 1000 succinate nanoparticles for enhancement of quercetin delivery to SKBR3 breast cancer cells.

    Science.gov (United States)

    Suksiriworapong, Jiraphong; Phoca, Kittisak; Ngamsom, Supakanda; Sripha, Kittisak; Moongkarndi, Primchanien; Junyaprasert, Varaporn Buraphacheep

    2016-04-01

    This study aimed to investigate the effect of the different hydrophobic chain lengths of poly(ε-caprolactone)-co-d-α-tocopheryl polyethylene glycol 1000 succinate (P(CL)-TPGS) copolymers on the nanoparticle properties and delivery efficiency of quercetin to SKBR3 breast cancer cells. The 5:1, 10:1 and 20:1 P(CL)-TPGS copolymers were fabricated and found to be composed of 25.0%, 45.2% and 66.8% of hydrophobic P(CL) chains with respect to the polymer chain, respectively. The DSC measurement indicated the microphase separation of P(CL) and TPGS segments. The crystallization of P(CL) segment occurred when the P(CL) chain was higher than 25% due to the restricted mobility of P(CL) by TPGS. The longer P(CL) chain had the higher crystallinity while decreasing the crystallinity of TPGS segment. The increasing P(CL) chain length increased the particle size of P(CL)-TPGS nanoparticles from 20 to 205 nm and enhanced the loading capacity of quercetin due to the more hydrophobicity of the nanoparticle core. The release of quercetin was retarded by an increase in P(CL) chain length associated with the increasing hydrophobicity and crystallinity of P(CL)-TPGS copolymers. The P(CL)-TPGS nanoparticles potentiated the toxicity of quercetin to SKBR3 cells by at least 2.9 times compared to the quercetin solution. The cellular uptake of P(CL)-TPGS nanoparticles by SKBR3 cells occurred through cholesterol-dependent endocytosis. The 10:1 P(CL)-TPGS nanoparticles showed the highest toxicity and uptake efficiency and could be potentially used for the delivery of quercetin to breast cancer cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Changes in thyroid parameters of hatchling American kestrels (Falco sparverius) following embryonic exposure to technical short chain chlorinated paraffins (SCCPs; C10-13, 55.5% CL)

    Science.gov (United States)

    Fernie, Kimberly J; Henry, Paula F.; Letcher, Robert J; Palace, Vince; Peters, Lisa; Rattner, Barnett A.; Sverko, Edward; Karouna-Renier, Natalie K.

    2015-01-01

    Chlorinated paraffins (CPs) are complex mixtures of polychlorinated n-alkanes categorized according to their carbon chain length: short chain (SCCPs, C10 – C13), medium (C14 - C17), and long chain (C>17), chlorinated paraffins. SCCPs are primarily used in metalworking applications, as flame retardants, and in paints, adhesives, sealants, textiles, plastics and rubber (UNEP 2012). In 2012, the United Nations Environment Program (UNEP 2012) reported in the Revised Draft Risk Profile for SCCPs, that CPs were produced in the United States, the European Union (EU), Slovakia, Brazil, India, Japan and China. While annual global consumption of SCCPs is large (>25 tonnes/year), it has sharply declined over the past 20 years. SCCPs are released through wastewater, landfills, and air emissions (UNEP 2012). Concentrations of SCCPs have been reported in fish and marine mammals in North and South America, Europe, Japan, Greenland and the Arctic (UNEP 2012 and references therein). Characterization of SCCP concentrations and exposure in terrestrial wildlife is limited. In 2010, SCCP concentrations were reported in the eggs of yellow-legged gulls (Larus michahellis) (4536 ± 40 pg/g wet weight (ww)) and Audouin’s gulls (Larus audouinii) (6364 ± 20 pg/g ww) in Spain (Morales et al. 2012), and little auks (Alle alle) (5 - 88 ng/g ww) and kittiwakes (Rissa tridactyla) (5 - 44 ng/g ww) in the European Arctic (Reth et al. 2006). In Sweden, muscle of ospreys contained CPs of unspecified chain length (Jansson et al. 1993). Although the toxicity of SCCPs has been demonstrated in aquatic invertebrates, fish, frogs, and laboratory rats, there are limited avian studies and these reported no effects of SCCPs on egg parameters of domestic hens (Gallus gallus domesticus) and ducks (Anas platyrhynchos) (UNEP 2012). Despite reported accumulation of SCCPs in wild birds, to our knowledge, exposure-related toxicities and effects with respect to avian wildlife remain unknown.

  18. Novel phytoceramides containing fatty acids of diverse chain lengths are better than a single C18-ceramide N-stearoyl phytosphingosine to improve the physiological properties of human stratum corneum.

    Science.gov (United States)

    Oh, Myoung Jin; Cho, Young Hoon; Cha, So Yoon; Lee, Eun Ok; Kim, Jin Wook; Kim, Sun Ki; Park, Chang Seo

    2017-01-01

    Ceramides in the human stratum corneum (SC) are a mixture of diverse N -acylated fatty acids (FAs) with different chain lengths. C24 is the major class of FAs of ceramides. However, there are also other classes of ceramides with diverse chain lengths of FAs, and these lengths generally range from C16 to C26. This study aimed to prepare several types of phytoceramide containing diverse chain lengths of N -acylated FAs and compare them with C18-ceramide N -stearoyl phytosphingosine (NP) in terms of their effects on the physiological properties of the SC. We chose natural oils, such as horse fat oil, shea butter, sunflower oil, and a mixture of macadamia nut, shea butter, moringa, and meadowfoam seed oil, as sources of FAs and phytosphingosine as a sphingoid backbone to synthesize diverse phytoceramides. Each phytoceramide exhibited a distinctive formation of the lamellar structure, and their FA profiles were similar to those of their respective natural oil. The skin barrier properties, as analyzed in human skin, clearly demonstrated that all the phytoceramides improved the recovery rate of the damaged SC and enhanced hydration better than C18-ceramide NP did. In conclusion, natural oil-derived phytoceramides could represent a novel class of ceramides for cosmetic applications in the development of an ideal skin barrier moisturizer.

  19. Novel phytoceramides containing fatty acids of diverse chain lengths are better than a single C18-ceramide N-stearoyl phytosphingosine to improve the physiological properties of human stratum corneum

    Directory of Open Access Journals (Sweden)

    Oh MJ

    2017-09-01

    Full Text Available Myoung Jin Oh,1 Young Hoon Cho,1 So Yoon Cha,1 Eun Ok Lee,2 Jin Wook Kim,2 Sun Ki Kim,2 Chang Seo Park1 1Department of Chemical and Biochemical Engineering, Dongguk University, Chung-gu, Seoul, 2LCS Biotech, Gwonseon-gu, Suwon-si, Gyeonggi-do, Republic of Korea Abstract: Ceramides in the human stratum corneum (SC are a mixture of diverse N-acylated fatty acids (FAs with different chain lengths. C24 is the major class of FAs of ceramides. However, there are also other classes of ceramides with diverse chain lengths of FAs, and these lengths generally range from C16 to C26. This study aimed to prepare several types of phytoceramide containing diverse chain lengths of N-acylated FAs and compare them with C18-ceramide N-stearoyl phytosphingosine (NP in terms of their effects on the physiological properties of the SC. We chose natural oils, such as horse fat oil, shea butter, sunflower oil, and a mixture of macadamia nut, shea butter, moringa, and meadowfoam seed oil, as sources of FAs and phytosphingosine as a sphingoid backbone to synthesize diverse phytoceramides. Each phytoceramide exhibited a distinctive formation of the lamellar structure, and their FA profiles were similar to those of their respective natural oil. The skin barrier properties, as analyzed in human skin, clearly demonstrated that all the phytoceramides improved the recovery rate of the damaged SC and enhanced hydration better than C18-ceramide NP did. In conclusion, natural oil-derived phytoceramides could represent a novel class of ceramides for cosmetic applications in the development of an ideal skin barrier moisturizer. Keywords: fatty acid, chain length, phytoceramide, skin barrier, natural oil

  20. A reduction in growth rate of Pseudomonas putida KT2442 counteracts productivity advances in medium-chain-length polyhydroxyalkanoate production from gluconate

    Directory of Open Access Journals (Sweden)

    Zinn Manfred

    2011-04-01

    Full Text Available Abstract Background The substitution of plastics based on fossil raw material by biodegradable plastics produced from renewable resources is of crucial importance in a context of oil scarcity and overflowing plastic landfills. One of the most promising organisms for the manufacturing of medium-chain-length polyhydroxyalkanoates (mcl-PHA is Pseudomonas putida KT2440 which can accumulate large amounts of polymer from cheap substrates such as glucose. Current research focuses on enhancing the strain production capacity and synthesizing polymers with novel material properties. Many of the corresponding protocols for strain engineering rely on the rifampicin-resistant variant, P. putida KT2442. However, it remains unclear whether these two strains can be treated as equivalent in terms of mcl-PHA production, as the underlying antibiotic resistance mechanism involves a modification in the RNA polymerase and thus has ample potential for interfering with global transcription. Results To assess PHA production in P. putida KT2440 and KT2442, we characterized the growth and PHA accumulation on three categories of substrate: PHA-related (octanoate, PHA-unrelated (gluconate and poor PHA substrate (citrate. The strains showed clear differences of growth rate on gluconate and citrate (reduction for KT2442 > 3-fold and > 1.5-fold, respectively but not on octanoate. In addition, P. putida KT2442 PHA-free biomass significantly decreased after nitrogen depletion on gluconate. In an attempt to narrow down the range of possible reasons for this different behavior, the uptake of gluconate and extracellular release of the oxidized product 2-ketogluconate were measured. The results suggested that the reason has to be an inefficient transport or metabolization of 2-ketogluconate while an alteration of gluconate uptake and conversion to 2-ketogluconate could be excluded. Conclusions The study illustrates that the recruitment of a pleiotropic mutation, whose effects might

  1. Use of mgc2-polymerase chain reaction-restriction fragment length polymorphism for rapid differentiation between field isolates and vaccine strains of Mycoplasma gallisepticum in Israel.

    Science.gov (United States)

    Lysnyansky, Inna; Garcia, Maricarmen; Levisohn, Sharon

    2005-06-01

    Increasing use of Mycoplasma gallisepticum (MG) live vaccines has led to a need for a rapid test for differentiation of MG field strains from the live vaccine strains ts-11 and 6/85. We examined the differentiating potential of diagnostic polymerase chain reaction (PCR) primers targeted to the gene mgc2, encoding a cytadherence-related surface protein uniquely present in MG. The mgc2-PCR diagnostic primers are specific for MG in tests of all avian mycoplasmas or bacteria present in the chicken trachea and are sensitive enough to readily detect MG in tracheal swabs from field outbreaks. Differentiation of vaccine strain ts-11 was based on identification of restriction enzyme sites in the 300-base-pair (bp) mgc2-PCR amplicon present in ts-11 and missing in MG isolates from field outbreaks in Israel. Restriction sites for the enzymes HaeII and SfaN1 were identified in the amplified region in strain ts-11 and were not found in 28 field isolates of MG, comprising a representative cross section of all the MG isolates from the period 1997-2003. In practice, differential diagnosis of MG is achieved within 1 day of submission of tracheal swab samples by mgc2-PCR amplification and restriction of the amplicon with HaeII, giving a 270-bp fragment for ts-11 or no restriction for other MG strains tested. Application of the mgc2-PCR-restriction fragment length polymorphism (mgc2-PCR-RFLP) assay enabled differential diagnosis of both components of a mixture of ts-11 and non-ts-11 DNA, detecting the field strain in the presence of a large excess of ts-11. The test was successfully applied in vivo for monitoring vaccinates in a ts-11 vaccine trial. In principle, the test may also be used to identify the 6/85 vaccine strain, which yields a 237-bp product, readily differentiated from the approximately 300-bp PCR product of all other strains tested. Further testing of field isolates will be necessary to determine the applicability of this test in the United States and other countries.

  2. Comparative analysis of human cytomegalovirus a-sequence in multiple clinical isolates by using polymerase chain reaction and restriction fragment length polymorphism assays.

    Science.gov (United States)

    Zaia, J A; Gallez-Hawkins, G; Churchill, M A; Morton-Blackshere, A; Pande, H; Adler, S P; Schmidt, G M; Forman, S J

    1990-01-01

    The human cytomegalovirus (HCMV) a-sequence (a-seq) is located in the joining region between the long (L) and short (S) unique sequences of the virus (L-S junction), and this hypervariable junction has been used to differentiate HCMV strains. The purpose of this study was to investigate whether there are differences among strains of human cytomegalovirus which could be characterized by polymerase chain reaction (PCR) amplification of the a-seq of HCMV DNA and to compare a PCR method of strain differentiation with conventional restriction fragment length polymorphism (RFLP) methodology by using HCMV junction probes. Laboratory strains of HCMV and viral isolates from individuals with HCMV infection were characterized by using both RFLPs and PCR. The PCR assay amplified regions in the major immediate-early gene (IE-1), the 64/65-kDa matrix phosphoprotein (pp65), and the a-seq of the L-S junction region. HCMV laboratory strains Towne, AD169, and Davis were distinguishable, in terms of size of the amplified product, when analyzed by PCR with primers specific for the a-seq but were indistinguishable by using PCR targeted to IE-1 and pp65 sequences. When this technique was applied to a characterization of isolates from individuals with HCMV infection, selected isolates could be readily distinguished. In addition, when the a-seq PCR product was analyzed with restriction enzyme digestion for the presence of specific sequences, these DNA differences were confirmed. PCR analysis across the variable a-seq of HCMV demonstrated differences among strains which were confirmed by RFLP in 38 of 40 isolates analyzed. The most informative restriction enzyme sites in the a-seq for distinguishing HCMV isolates were those of MnlI and BssHII. This indicates that the a-seq of HCMV is heterogeneous among wild strains, and PCR of the a-seq of HCMV is a practical way to characterize differences in strains of HCMV. Images PMID:1980680

  3. Quantitative 'Omics Analyses of Medium Chain Length Polyhydroxyalkanaote Metabolism in Pseudomonas putida LS46 Cultured with Waste Glycerol and Waste Fatty Acids.

    Science.gov (United States)

    Fu, Jilagamazhi; Sharma, Parveen; Spicer, Vic; Krokhin, Oleg V; Zhang, Xiangli; Fristensky, Brian; Cicek, Nazim; Sparling, Richard; Levin, David B

    2015-01-01

    Transcriptomes and proteomes of Pseudomonas putida LS46 cultured with biodiesel-derived waste glycerol or waste free fatty acids, as sole carbon sources, were compared under conditions that were either permissive or non-permissive for synthesis of medium chain length polyhydroxyalkanoates (mcl-PHA). The objectives of this study were to elucidate mechanisms that influence activation of biopolymer synthesis, intra-cellular accumulation, and monomer composition, and determine if these were physiologically specific to the carbon sources used for growth of P. putida LS46. Active mcl-PHA synthesis by P. putida LS46 was associated with high expression levels of key mcl-PHA biosynthesis genes and/or gene products including monomer-supplying proteins, PHA synthases, and granule-associated proteins. 'Omics data suggested that expression of these genes were regulated by different genetic mechanisms in P. putida LS46 cells in different physiological states, when cultured on the two waste carbon sources. Optimal polymer production by P. putida LS46 was primarily limited by less efficient glycerol metabolism during mcl-PHA synthesis on waste glycerol. Mapping the 'Omics data to the mcl-PHA biosynthetic pathway revealed significant variations in gene expression, primarily involved in: 1) glycerol transportation; 2) enzymatic reactions that recycle reducing equivalents and produce key mcl-PHA biosynthesis pathway intermediates (e.g. NADH/NADPH, acetyl-CoA). Active synthesis of mcl-PHAs was observed during exponential phase in cultures with waste free fatty acids, and was associated with the fatty acid beta-oxidation pathway. A putative Thioesterase in the beta-oxidation pathway that may regulate the level of fatty acid beta-oxidation intermediates, and thus carbon flux to mcl-PHA biosynthesis, was highly up-regulated. Finally, the data suggested that differences in expression of selected fatty acid metabolism and mcl-PHA monomer-supplying enzymes may play a role in determining the

  4. Quantitative ‘Omics Analyses of Medium Chain Length Polyhydroxyalkanaote Metabolism in Pseudomonas putida LS46 Cultured with Waste Glycerol and Waste Fatty Acids

    Science.gov (United States)

    Fu, Jilagamazhi; Sharma, Parveen; Spicer, Vic; Krokhin, Oleg V.; Zhang, Xiangli; Fristensky, Brian; Cicek, Nazim; Sparling, Richard; Levin, David. B.

    2015-01-01

    Transcriptomes and proteomes of Pseudomonas putida LS46 cultured with biodiesel-derived waste glycerol or waste free fatty acids, as sole carbon sources, were compared under conditions that were either permissive or non-permissive for synthesis of medium chain length polyhydroxyalkanoates (mcl-PHA). The objectives of this study were to elucidate mechanisms that influence activation of biopolymer synthesis, intra-cellular accumulation, and monomer composition, and determine if these were physiologically specific to the carbon sources used for growth of P. putida LS46. Active mcl-PHA synthesis by P. putida LS46 was associated with high expression levels of key mcl-PHA biosynthesis genes and/or gene products including monomer-supplying proteins, PHA synthases, and granule-associated proteins. ‘Omics data suggested that expression of these genes were regulated by different genetic mechanisms in P. putida LS46 cells in different physiological states, when cultured on the two waste carbon sources. Optimal polymer production by P. putida LS46 was primarily limited by less efficient glycerol metabolism during mcl-PHA synthesis on waste glycerol. Mapping the ‘Omics data to the mcl-PHA biosynthetic pathway revealed significant variations in gene expression, primarily involved in: 1) glycerol transportation; 2) enzymatic reactions that recycle reducing equivalents and produce key mcl-PHA biosynthesis pathway intermediates (e.g. NADH/NADPH, acetyl-CoA). Active synthesis of mcl-PHAs was observed during exponential phase in cultures with waste free fatty acids, and was associated with the fatty acid beta-oxidation pathway. A putative Thioesterase in the beta-oxidation pathway that may regulate the level of fatty acid beta-oxidation intermediates, and thus carbon flux to mcl-PHA biosynthesis, was highly up-regulated. Finally, the data suggested that differences in expression of selected fatty acid metabolism and mcl-PHA monomer-supplying enzymes may play a role in determining

  5. Quantitative 'Omics Analyses of Medium Chain Length Polyhydroxyalkanaote Metabolism in Pseudomonas putida LS46 Cultured with Waste Glycerol and Waste Fatty Acids.

    Directory of Open Access Journals (Sweden)

    Jilagamazhi Fu

    Full Text Available Transcriptomes and proteomes of Pseudomonas putida LS46 cultured with biodiesel-derived waste glycerol or waste free fatty acids, as sole carbon sources, were compared under conditions that were either permissive or non-permissive for synthesis of medium chain length polyhydroxyalkanoates (mcl-PHA. The objectives of this study were to elucidate mechanisms that influence activation of biopolymer synthesis, intra-cellular accumulation, and monomer composition, and determine if these were physiologically specific to the carbon sources used for growth of P. putida LS46. Active mcl-PHA synthesis by P. putida LS46 was associated with high expression levels of key mcl-PHA biosynthesis genes and/or gene products including monomer-supplying proteins, PHA synthases, and granule-associated proteins. 'Omics data suggested that expression of these genes were regulated by different genetic mechanisms in P. putida LS46 cells in different physiological states, when cultured on the two waste carbon sources. Optimal polymer production by P. putida LS46 was primarily limited by less efficient glycerol metabolism during mcl-PHA synthesis on waste glycerol. Mapping the 'Omics data to the mcl-PHA biosynthetic pathway revealed significant variations in gene expression, primarily involved in: 1 glycerol transportation; 2 enzymatic reactions that recycle reducing equivalents and produce key mcl-PHA biosynthesis pathway intermediates (e.g. NADH/NADPH, acetyl-CoA. Active synthesis of mcl-PHAs was observed during exponential phase in cultures with waste free fatty acids, and was associated with the fatty acid beta-oxidation pathway. A putative Thioesterase in the beta-oxidation pathway that may regulate the level of fatty acid beta-oxidation intermediates, and thus carbon flux to mcl-PHA biosynthesis, was highly up-regulated. Finally, the data suggested that differences in expression of selected fatty acid metabolism and mcl-PHA monomer-supplying enzymes may play a role in

  6. A reduction in growth rate of Pseudomonas putida KT2442 counteracts productivity advances in medium-chain-length polyhydroxyalkanoate production from gluconate

    Science.gov (United States)

    2011-01-01

    Background The substitution of plastics based on fossil raw material by biodegradable plastics produced from renewable resources is of crucial importance in a context of oil scarcity and overflowing plastic landfills. One of the most promising organisms for the manufacturing of medium-chain-length polyhydroxyalkanoates (mcl-PHA) is Pseudomonas putida KT2440 which can accumulate large amounts of polymer from cheap substrates such as glucose. Current research focuses on enhancing the strain production capacity and synthesizing polymers with novel material properties. Many of the corresponding protocols for strain engineering rely on the rifampicin-resistant variant, P. putida KT2442. However, it remains unclear whether these two strains can be treated as equivalent in terms of mcl-PHA production, as the underlying antibiotic resistance mechanism involves a modification in the RNA polymerase and thus has ample potential for interfering with global transcription. Results To assess PHA production in P. putida KT2440 and KT2442, we characterized the growth and PHA accumulation on three categories of substrate: PHA-related (octanoate), PHA-unrelated (gluconate) and poor PHA substrate (citrate). The strains showed clear differences of growth rate on gluconate and citrate (reduction for KT2442 > 3-fold and > 1.5-fold, respectively) but not on octanoate. In addition, P. putida KT2442 PHA-free biomass significantly decreased after nitrogen depletion on gluconate. In an attempt to narrow down the range of possible reasons for this different behavior, the uptake of gluconate and extracellular release of the oxidized product 2-ketogluconate were measured. The results suggested that the reason has to be an inefficient transport or metabolization of 2-ketogluconate while an alteration of gluconate uptake and conversion to 2-ketogluconate could be excluded. Conclusions The study illustrates that the recruitment of a pleiotropic mutation, whose effects might reach deep into

  7. The effects of chain length, embedded polar groups, pressure, and pore shape on structure and retention in reversed-phase liquid chromatography: molecular-level insights from Monte Carlo simulations.

    Science.gov (United States)

    Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R

    2009-03-20

    Particle-based simulations using the configurational-bias and Gibbs ensemble Monte Carlo techniques are carried out to probe the effects of various chromatographic parameters on bonded-phase chain conformation, solvent penetration, and retention in reversed-phase liquid chromatography (RPLC). Specifically, we investigate the effects due to the length of the bonded-phase chains (C(18), C(8), and C(1)), the inclusion of embedded polar groups (amide and ether) near the base of the bonded-phase chains, the column pressure (1, 400, and 1000 atm), and the pore shape (planar slit pore versus cylindrical pore with a 60A diameter). These simulations utilize a bonded-phase coverage of 2.9 micromol/m(2)and a mobile phase containing methanol at a molfraction of 33% (about 50% by volume). The simulations show that chain length, embedded polar groups, and pore shape significantly alter structural and retentive properties of the model RPLC system, whereas the column pressure has a relatively small effect. The simulation results are extensively compared to retention measurements. A molecular view of the RPLC retention mechanism emerges that is more complex than can be inferred from thermodynamic measurements.

  8. 'Length'at Length

    Indian Academy of Sciences (India)

    Admin

    He was interested to know how `large' is the set of numbers x for which the series is convergent. Here large refers to its length. But his set is not in the class ♢. Here is another problem discussed by Borel. Consider .... have an infinite collection of pairs of new shoes and want to choose one shoe from each pair. We have an ...

  9. PMMA-g-OEtOx Graft Copolymers: Influence of Grafting Degree and Side Chain Length on the Conformation in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Irina Muljajew

    2018-03-01

    Full Text Available Depending on the degree of grafting (DG and the side chain degree of polymerization (DP, graft copolymers may feature properties similar to statistical copolymers or to block copolymers. This issue is approached by studying aqueous solutions of PMMA-g-OEtOx graft copolymers comprising a hydrophobic poly(methyl methacrylate (PMMA backbone and hydrophilic oligo(2-ethyl-2-oxazoline (OEtOx side chains. The graft copolymers were synthesized via reversible addition-fragmentation chain transfer (RAFT copolymerization of methyl methacrylate (MMA and OEtOx-methacrylate macromonomers of varying DP. All aqueous solutions of PMMA-g-OEtOx (9% ≤ DG ≤ 34%; 5 ≤ side chain DP ≤ 24 revealed lower critical solution temperature behavior. The graft copolymer architecture significantly influenced the aggregation behavior, the conformation in aqueous solution and the coil to globule transition, as verified by means of turbidimetry, dynamic light scattering, nuclear magnetic resonance spectroscopy, and analytical ultracentrifugation. The aggregation behavior of graft copolymers with a side chain DP of 5 was significantly affected by small variations of the DG, occasionally forming mesoglobules above the cloud point temperature (Tcp, which was around human body temperature. On the other hand, PMMA-g-OEtOx with elongated side chains assembled into well-defined structures below the Tcp (apparent aggregation number (Nagg = 10 that were able to solubilize Disperse Orange 3. The thermoresponsive behavior of aqueous solutions thus resembled that of micelles comprising a poly(2-ethyl-2-oxazoline (PEtOx shell (Tcp > 60 °C.

  10. Effective rate constants and uptake coefficients for the reactions of organic molecular markers (n-alkanes, hopanes, and steranes) in motor oil and diesel primary organic aerosols with hydroxyl radicals.

    Science.gov (United States)

    Lambe, Andrew T; Miracolo, Marissa A; Hennigan, Christopher J; Robinson, Allen L; Donahue, Neil M

    2009-12-01

    Hydroxyl radical (OH) uptake by organic aerosols, followed by heterogeneous oxidation, happens nearly at the collision frequency. Oxidation complicates the use of organic molecular markers such as hopanes for source apportionment, since receptor models assume markers are stable during transport. We report the oxidation kinetics of organic molecular markers (C(25)-C(32) n-alkanes, hopanes and steranes) in motor oil and primary organic aerosol emitted from a diesel engine at atmospherically relevant conditions inside a smog chamber. A thermal desorption aerosol gas chromatograph/mass spectrometer (TAG) and Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) were used to measure the changes in molecular comosition and bulk primary organic aerosol. From the measured changes in molecular composition, we calculated effective OH rate constants, effective relative rate constants, and effective uptake coefficients for molecular markers. Oxidation rates varied with marker volatility, with more volatile markers being oxidized at rates much faster than could be explained from heterogeneous oxidation. This rapid oxidation can be explained by significant gas-phase OH oxidation that dominates heterogeneous oxidation, resulting in overall oxidation lifetimes of 1 day or less. Based on our results, neglecting oxidation of molecular markers used for source apportionment could introduce significant error, since many common markers such as norhopane appear to be semivolatile under atmospheric conditions.

  11. Excess molar volumes and dynamic viscosities for binary mixtures of toluene + n-alkanes (C5-C10) at T = 298.15 K - Comparison with Prigogine-Flory-Patterson theory

    International Nuclear Information System (INIS)

    Iloukhani, Hossein; Rezaei-Sameti, Mahdi; Basiri-Parsa, Jalal

    2006-01-01

    Densities ρ, dynamic viscosities η, for binary mixtures of toluene with some n-alkanes, namely, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane have been measured over the complete composition range. Excess molar volumes V E , viscosity deviations Δη, and excess Gibbs free energy of activation ΔG * E , were calculated there from and were correlated by Redlich-Kister type function in terms of mole fractions. For mixtures of toluene with n-pentane and n-hexane the V E is negative and for the remaining systems is positive. The Δη values are negative for all the studied mixtures. The ΔG * E values shows the positive values for the binary mixtures with n-decane, whereas the negative values have been observed for all the remaining binary mixtures. From the results, the excess thermal expansivities at constant pressure α E , is also estimated. The Prigogine-Flory-Patterson (PFP) theory and its applicability in predicting V E is tested. The results obtained for viscosity of binary mixtures were used to test the semi-empirical relations of Grunberg and Nissan, Tamura and Kurata, Hind et al., Katti and Chaudhri, McAllister, Heric, Kendall, and Monroe. The experimental on the constituted binaries are analyzed to discus the nature and strength of intermolecular interactions in these mixtures

  12. Probing the effects of the ester functional group, alkyl side chain length and anions on the bulk nanostructure of ionic liquids: a computational study.

    Science.gov (United States)

    Fakhraee, Mostafa; Gholami, Mohammad Reza

    2016-04-14

    The effects of ester addition on nanostructural properties of biodegradable ILs composed of 1-alkoxycarbonyl-3-alkyl-imidazolium cations ([C1COOCnC1im](+), n = 1, 2, 4) combined with [Br](-), [NO3](-), [BF4](-), [PF6](-), [TfO](-), and [Tf2N](-) were explored by using the molecular dynamics (MD) simulations and quantum theory of atoms in molecules (QTAIM) analysis at 400 K. Various thermodynamic properties of these ILs were extensively computed in our earlier work (Ind. Eng. Chem. Res., 2015, 54, 11678-11700). Nano-scale segregation analysis demonstrates the formation of a small spherical island-like hydrocarbon within the continuous ionic domain for ILs with short alkyl side chain ([C1COOC1C1im]), and a sponge-like nanostructure for the compound with long alkyl side chain ([C1COOC4C1im]). Ester-functionalized ILs with ethyl side chain ([C1COOC2C1im]) are the turning point between two different morphologies. Non-polar channels were observed for [C1COOC4C1im] ILs composed of smaller anions such as [Br] and [NO3], whereas clustering organization was found for the other anions. Formation of the spherical micelle-like nanostructure was seen for lengthened cations. Finally, the incorporation of an ester group into the alkyl side chain of the cation leads to stronger segregation between charged and uncharged networks, which consequently increased the possibility of self-assembly and micelle formation.

  13. Side-chain liquid-crystalline poly(ketone)s : effect of spacer length, mesogen type and mesogen density on mesomorphic behavior

    NARCIS (Netherlands)

    Nieuwhof, R.P.; Marcelis, A.T.M.; Sudhölter, E.J.R.; Wursche, R.; Rieger, B.

    2000-01-01

    Novel side-chain liquid-crystalline copolymers (SCLCPs) were synthesized via the Pd(II) catalyzed alternating copolymerization of mesogenic 1-alkenes and carbon monoxide. For methoxybiphenyl mesogens, these copolymers exhibited highly ordered smectic E mesophases and high glass transition

  14. Genomic DNA fingerprinting of clinical Haemophilus influenzae isolates by polymerase chain reaction amplification: comparison with major outer-membrane protein and restriction fragment length polymorphism analysis

    NARCIS (Netherlands)

    van Belkum, A.; Duim, B.; Regelink, A.; Möller, L.; Quint, W.; van Alphen, L.

    1994-01-01

    Non-capsulate strains of Haemophilus influenzae were genotyped by analysis of variable DNA segments obtained by amplification of genomic DNA with the polymerase chain reaction (PCR fingerprinting). Discrete fragments of 100-2000 bp were obtained. The reproducibility of the procedure was assessed by

  15. Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C{sub 4} grass waxes

    Energy Technology Data Exchange (ETDEWEB)

    Rommerskirchen, F.; Plader, A. [Carl von Ossietzky University, Oldenburg (Germany). Institute of Chemistry and Biology of the Marine Environment; Eglinton, G. [Hanse Institute for Advanced Study, Delmenhorst (Germany); Chikaraishii, Yoshito [Japan Agency for Marine-Earth Science and Technology, Yokosuka (Japan). Institute for Research on Earth Evolution

    2006-10-15

    Grasses (Poaceae) are distributed across the world in broad latitudinal belts and are an important source of C4 biomass in the geological record of soils as well as lake and marine sediments. We examined long-chain leaf wax components of thirty-five C{sub 4} grasses of the subfamilies Aristidoideae, Chloridoideae and Panicoideae from the southern African grasslands and savannas and three C{sub 3} grasses of the subfamily Pooideae from Peru and Australia and review the relevant botanical, phytogeographic and leaf wax compositional background information. Contents, distribution patterns and molecular stable carbon isotopic compositions of long-chain n-alkanes (n-C{sub 27} to n-C{sub 35}) and n-alkan-1-ols (n-C{sub 22} to n-C{sub 32}) were used to estimate the chemotaxonomic relevance of wax signatures of whole plants, separately for different subfamilies and for members of the three C{sub 4} subtypes (NADP-ME, NAD-ME and PCK). Two grass species were separated into flower heads, leaves and stems and the parts analysed separately. Grass flowers contain remarkable amounts of short-chain n-alkanes, which may have a significant influence on the chemical signature of the whole plant, whereas n-alkanol distribution patterns exhibit no systematics. The stable carbon isotopic composition of both biomarker types in different plant parts is remarkably uniform. Chemotaxonomic differentiation was not possible on a species level based on whole plant samples, but was more successful for averages of subfamily and photosynthetic subtype data. Wax signatures of C{sub 4} grasses are generally distinguishable from those of C{sub 3} species by heavier isotopic values, higher contents of n-C{sub 31} and n-C{sub 33} alkanes and the abundance of the n-C{sub 32} n-alkanol, which is largely absent in C{sub 3} grass waxes. Especially the waxes of the NAD-ME and PCK C{sub 4}-subtype grasses, which thrive in extremely arid tropical and subtropical areas, contain high relative amounts of longer-chain

  16. The N-terminus and the Chain-length Determination (CLD) Domain Play a Role in the Length of the Isoprenoid Product of the Bifunctional Toxoplasma gondii Farnesyl-diphosphate Synthase

    Science.gov (United States)

    Li, Zhu-Hong; Cintrón, Roxana; Koon, Noah A.; Moreno, Silvia N.J.

    2015-01-01

    Toxoplasma gondii possesses a bifunctional farnesyl diphosphate (FPP)/geranylgeranyl diphosphate (GGPP) synthase (TgFPPS) that synthesizes C15 and C20 isoprenoid diphosphates from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). This enzyme has a unique arrangement of the 4th and 5th amino acid upstream to the First Aspartic Rich Domain (FARM) where the 4th amino acid is aromatic and the 5th is a cysteine. We mutated these amino acids converting the enzyme to an absolute FPPS by changing the cysteine to a tyrosine. The enzyme could be converted to an absolute GGPPS by changing both the 4th and 5th amino acids to alanines. We also constructed four mutated TgFPPSs whose regions around the first aspartate-rich motif were replaced with the corresponding regions of FPP synthases from Arabidopsis thaliana or Saccharomyces cerevisiae or with the corresponding regions of GGPP synthases from Homo sapiens or S. cerevisiae. We determined that the presence of a cysteine at the 4th position is essential for the TgFPPS bifunctionality. We also found that the length of the N-terminal domain has a role in determining the specificity and the length of the isoprenoid product. Phylogenetic analysis supports the grouping of this enzyme with other Type I FPPSs but the biochemical data indicates that TgFPPS has unique characteristics that differentiate it from mammalian FPPSs and GGPPSs and is therefore an important drug target. PMID:22931372

  17. Induction of apoptosis by the medium-chain length fatty acid lauric acid in colon cancer cells due to induction of oxidative stress.

    Science.gov (United States)

    Fauser, J K; Matthews, G M; Cummins, A G; Howarth, G S

    2013-01-01

    Fatty acids are classified as short-chain (SCFA), medium-chain (MCFA) or long-chain and hold promise as adjunctive chemotherapeutic agents for the treatment of colorectal cancer. The antineoplastic potential of MCFA remains underexplored; accordingly, we compared the MCFA lauric acid (C12:0) to the SCFA butyrate (C4:0) in terms of their capacity to induce apoptosis, modify glutathione (GSH) levels, generate reactive oxygen species (ROS), and modify phases of the cell cycle in Caco-2 and IEC-6 intestinal cell lines. Caco-2 and IEC-6 cells were treated with lauric acid, butyrate, or vehicle controls. Apoptosis, ROS, and cell cycle analysis were determined by flow cytometry. GSH availability was assessed by enzymology. Lauric acid induced apoptosis in Caco-2 (p lauric acid reduced GSH availability and generated ROS compared to butyrate (p Lauric acid reduced Caco-2 and IEC-6 cells in G0/G1and arrested cells in the S and G2/M phases. Lauric acid induced apoptosis in IEC-6 cells compared to butyrate (p lauric acid induced high levels of ROS compared to butyrate. Compared to butyrate, lauric acid displayed preferential antineoplastic properties, including induction of apoptosis in a CRC cell line.

  18. Effect of organic chain length on structure, electronic composition, lattice potential energy, and optical properties of 2D hybrid perovskites [(NH3)(CH2) n (NH3)]CuCl4, n = 2-9

    Science.gov (United States)

    Abdel-Aal, Seham K.; Kocher-Oberlehner, Gudrun; Ionov, Andrei; Mozhchil, R. N.

    2017-08-01

    Diammonium series of Cu hybrid perovskites of the formula [(NH3)(CH2) n (NH3)]CuCl4, n = 6-9 are prepared from an ethanolic solution in stoichiometric ratio 1:1 (organic/inorganic). Formation of the desired material was confirmed and characterizes by microchemical analysis, FTIR, XRD and XPS spectra. The structure consists of corner-shared octahedron [CuCl4]2- anion alternative by organic [(NH3)(CH2) n (NH3)]2+ cations. The organic and inorganic layers form infinite 2D sheet that are connected via NH···Cl hydrogen bond. The calculated lattice potential energy U pot (kJ/mol) and lattice enthalpy Δ H L (kJ/mol) are inversely proportional to the molecular volume V m (nm3) and organic chain length. Optical properties show strong absorption peak at UV-visible range. The band gap energy calculated using Kubelka-Munk equation shows the decrease of the energy gap as organic chain length increases. The introduction of bromide ion to [(NH3)(CH2) n (NH3)]CuCl2Br2 denoted 2C7CuCB hybrid has shifted the energy gap to lower values from 2.6 to 2.18 eV for 2C7CuCl (yellow) and 2C7CuCB (brown), respectively, at the same organic chain length. All elements of [(NH3)(CH2)9(NH3)]CuCl4 and [(NH3)(CH2)7(NH3)]CuCl2Br2 were found in XPS spectra, as well as valence band spectra.

  19. Influence of chain length of pyrene fatty acids on their uptake and metabolism by Epstein-Barr-virus-transformed lymphoid cell lines from a patient with multisystemic lipid storage myopathy and from control subjects.

    OpenAIRE

    Radom, J; Salvayre, R; Levade, T; Douste-Blazy, L

    1990-01-01

    The uptake and intracellular metabolism of 4-(1-pyrene)butanoic acid (P4), 10-(1-pyrene)decanoic acid (P10) and 12-(1-pyrene)dodecanoic acid (P12) were investigated in cultured lymphoid cell lines from normal individuals and from a patient with multisystemic lipid storage myopathy (MLSM). The cellular uptake was shown to be dependent on the fatty-acid chain length, but no significant difference in the uptake of pyrene fatty acids was observed between MLSM and control lymphoid cells. After inc...

  20. Integrated Use of n-Alkanes and PAH to Evaluate the Anthropogenic Hydrocarbon Sources and the Toxicity Assessment of Surface Sediments from the Southwestern Coasts of the Caspian Sea

    Directory of Open Access Journals (Sweden)

    Golshan Shirneshan

    2017-07-01

    Full Text Available Polycyclic aromatic hydrocarbon (PAH compounds and normal alkanes form a large group of undegradable environmental contaminats. This study aims to determine the sources and distribution of oil pollution (PAH compounds and normal alkanes in the sediments of the southwestern coastal areas of the Caspian Sea and to compare their levels with the relevant standards. For this purpose, 18 surface sediment samples were collected from depths of 10, 20, and 50 meters along two transects in the vertical direction located in the coastal areas of Sangachin and Hashtpar (Gilan Province. The samples were then examined using mass-spectrometric gas chromatography. The origins of n-alkanes were identified using CPI index (0.76-0.95, U/R (3.30‒6.57, and Pristane/Phytane (0.21‒0.42. The sources of PAHs were determined using the index ratios of LMW/HMW (1.93‒13.37, Phenanthrene/Anthracene (11.44‒ 16.7, Chrysene/Benzo (a anthracene (4.69‒10/33, Fluoranthene/Pyrene (0.53‒0.69, and MP/P (0.05‒0.08. Results confirmed the dominant petrogenic source of the hydrocarbons found in the region. The total concentrations of 30 aliphatic hydrocarbons and PAHs in the sediments ranged from 823.8 to 3899.5 µg/g and from 626.95 to 3842.5362 ng/g, respectively. Comparison of the measured PAH concentrations with US sediment quality guidelines revealed that the levels of naphthalene, fluorine, Acenaphthylene, and Acenaphthene exceeded the ERLs at stations with depths of 50m in Sangachin and Hashtpar while comparisons with Canadian standards indicated that they were higher than PELs at all the stations sampled. A major point of great concern is the high concentration of naphthalene as the most toxic PAH compound, which naturally warrants due attention to adopt appropriate management programs.

  1. New organic reference materials for hydrogen, carbon, and nitrogen stable isotope-ratio measurements: caffeines, n-alkanes, fatty acid methyl esters, glycines, L-valines, polyethylenes, and oils

    Science.gov (United States)

    Schimmelmann, Arndt; Qi, Haiping; Coplen, Tyler B.; Brand, Willi A.; Fong, Jon; Meier-Augenstein, Wolfram; Kemp, Helen F.; Toman, Blaza; Ackermann, Annika; Assonov, Sergey; Aerts-Bijma, Anita; Brejcha, Ramona; Chikaraishi, Yoshito; Darwish, Tamim; Elsner, Martin; Gehre, Matthias; Geilmann, Heike; Gröning, Manfred; Hélie, Jean-François; Herrero-Martín, Sara; Meijer, Harro A.J.; Sauer, Peter E.; Sessions, Alex L.; Werner, Roland A.

    2016-01-01

    An international project developed, quality-tested, and determined isotope−δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (caffeine). These new RMs enable users to normalize measurements of samples to isotope−δ scales. The RMs span a range of δ2HVSMOW-SLAP values from −210.8 to +397.0 mUr or ‰, for δ13CVPDB-LSVEC from −40.81 to +0.49 mUr and for δ15NAir from −5.21 to +61.53 mUr. Many of the new RMs are amenable to gas and liquid chromatography. The RMs include triads of isotopically contrasting caffeines, C16 n-alkanes, n-C20-fatty acid methyl esters (FAMEs), glycines, and l-valines, together with polyethylene powder and string, one n-C17-FAME, a vacuum oil (NBS 22a) to replace NBS 22 oil, and a 2H-enriched vacuum oil. A total of 11 laboratories from 7 countries used multiple analytical approaches and instrumentation for 2-point isotopic normalization against international primary measurement standards. The use of reference waters in silver tubes allowed direct normalization of δ2H values of organic materials against isotopic reference waters following the principle of identical treatment. Bayesian statistical analysis yielded the mean values reported here. New RMs are numbered from USGS61 through USGS78, in addition to NBS 22a. Because of exchangeable hydrogen, amino acid RMs currently are recommended only for carbon- and nitrogen-isotope measurements. Some amino acids contain 13C and carbon-bound organic 2H-enrichments at different molecular sites to provide RMs for potential site-specific isotopic analysis in future studies.

  2. Gamma-irradiation of homodeoxyoligonucleotides 32P-labelled at one end: computer simulation of the chain length distribution of the radioactive fragments

    International Nuclear Information System (INIS)

    Teoule, R.; Duplaa, A.M.

    1987-01-01

    Electrophoresis on polyacrylamide gels of the fragments resulting from γ-irradiation of single-stranded oligodeoxyribonucleotides labelled at their 5'- or 3'-end proved a potent tool for analysis of the radiation-induced chain breakage of DNA. Owing to the fact that the oligonucleotide may be ruptured at more than one site, counting of the electrophoresis bands must be corrected and it is necessary to assess the influence of the cleavage position on the band intensities. A complicating factor is the inhomogeneity of the system due to the presence of the four bases A, T, C and G. To circumvent this problem, the homooligodeoxyribonucleotides (dA) 15 , (dC) 15 , (dT) 15 were used as experimental probes. They were γ-irradiated in solution, heated in alkali and resulting fragments separated by gel electrophoresis. A computer simulation of band intensities was compiled based on the general assumption that the chain breakage is homogeneous. Experimental results obtained from the homooligodeoxyribonucleotides labelled at either the 5' or the 3'-end are in excellent agreement with theoretical calculations. Abacus giving the gel band intensities (percentage) against the nucleotide positions and the remaining intensity of the original oligonucleotide have been obtained. (author)

  3. Sublethal Toxic Effects and Induction of gGutathione S-transferase by Short-Chain Chlorinated Paraffins (SCCPs and C-12 alkane (dodecane in Xenopus laevis Frog Embryos

    Directory of Open Access Journals (Sweden)

    B. Burýšková

    2006-01-01

    Full Text Available Short chain chlorinated paraffins (SCCPs are important industrial chemicals with high persistence in the environment but poorly characterized ecotoxicological effects. We studied embryotoxic effects of commercial mixture of SCCP (carbon length C-12, 56% of chlorine; CP56-12 and non-chlorinated n-alkane (dodecane, C-12 in the 96h Frog Embryo Teratogenesis Assay - Xenopus (FETAX. Only weak lethal effects were observed for both substances (the highest tested concentration 500 mg/L of both chemicals caused up to 11% mortality. On the other hand, we observed developmental malformations and reduced embryo growth at 5 mg/l and higher concentrations. However, the effects were not related to chlorination pattern as both SCCPs and dodecane induced qualitatively similar effects. SCCPs also significantly induced phase II detoxification enzyme glutathione S-transferase (GST in Xenopus laevis embryos even at 0.5 mg/L, and this biomarker might be used as another early warning of chronic toxic effects. Our results newly indicate significant developmental toxicity of both SCCPs and n-dodecane to aquatic organisms along with inductions of specific biochemical toxicity mechanisms.

  4. Influence of chain length of pyrene fatty acids on their uptake and metabolism by Epstein-Barr-virus-transformed lymphoid cell lines from a patient with multisystemic lipid storage myopathy and from control subjects.

    Science.gov (United States)

    Radom, J; Salvayre, R; Levade, T; Douste-Blazy, L

    1990-01-01

    The uptake and intracellular metabolism of 4-(1-pyrene)butanoic acid (P4), 10-(1-pyrene)decanoic acid (P10) and 12-(1-pyrene)dodecanoic acid (P12) were investigated in cultured lymphoid cell lines from normal individuals and from a patient with multisystemic lipid storage myopathy (MLSM). The cellular uptake was shown to be dependent on the fatty-acid chain length, but no significant difference in the uptake of pyrene fatty acids was observed between MLSM and control lymphoid cells. After incubation for 1 h the distribution of fluorescent fatty acids taken up by the lymphoid cell lines also differed with the chain length, most of the fluorescence being associated with phospholipid and triacylglycerols. In contrast with P10 and P12, P4 was not incorporated into neutral lipids. When the cells were incubated for 24 h with the pyrene fatty acids, the amount of fluorescent lipids synthesized by the cells was proportional to the fatty acid concentration in the culture medium. After a 24 h incubation in the presence of P10 or P12, at any concentration, the fluorescent triacylglycerol content of MLSM cells was 2-5-fold higher than that of control cells. Concentrations of pyrene fatty acids higher than 40 microM seemed to be more toxic for mutant cells than for control cells. This cytotoxicity was dependent on the fluorescent-fatty-acid chain length (P12 greater than P10 greater than P4). Pulse-chase experiments permitted one to demonstrate the defect in the degradation of endogenously biosynthesized triacylglycerols in MLSM cells (residual activity was around 10-25% of controls on the basis of half-lives and initial rates of P10- or P12-labelled-triacylglycerol catabolism); MLSM lymphoid cells exhibited a mild phenotypic expression of the lipid storage (less severe than that observed in fibroblasts). P4 was not utilized in the synthesis of triacylglycerols, and thus did not accumulate in MLSM cells: this suggests that natural short-chain fatty acids might induce a lesser

  5. Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: increased thermostability and altered acyl chain length specificity.

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Yu

    Full Text Available The key to enzyme function is the maintenance of an appropriate balance between molecular stability and structural flexibility. The lid domain which is very important for "interfacial activation" is the most flexible part in the lipase structure. In this work, rational design was applied to explore the relationship between lid rigidity and lipase activity by introducing a disulfide bond in the hinge region of the lid, in the hope of improving the thermostability of R. chinensis lipase through stabilization of the lid domain without interfering with its catalytic performance. A disulfide bridge between F95C and F214C was introduced into the lipase from R. chinensis in the hinge region of the lid according to the prediction of the "Disulfide by Design" algorithm. The disulfide variant showed substantially improved thermostability with an eleven-fold increase in the t(1/2 value at 60°C and a 7°C increase of T(m compared with the parent enzyme, probably contributed by the stabilization of the geometric structure of the lid region. The additional disulfide bond did not interfere with the catalytic rate (k(cat and the catalytic efficiency towards the short-chain fatty acid substrate, however, the catalytic efficiency of the disulfide variant towards pNPP decreased by 1.5-fold probably due to the block of the hydrophobic substrate channel by the disulfide bond. Furthermore, in the synthesis of fatty acid methyl esters, the maximum conversion rate by RCLCYS reached 95% which was 9% higher than that by RCL. This is the first report on improving the thermostability of the lipase from R. chinensis by introduction of a disulfide bond in the lid hinge region without compromising the catalytic rate.

  6. Plant and soil intake by organic broilers reared in tree- or grass-covered plots as determined by means of n-alkanes and of acid-insoluble ash.

    Science.gov (United States)

    Jurjanz, S; Germain, K; Juin, H; Jondreville, C

    2015-05-01

    Free-range birds such as organic broilers may ingest soil and plants during exploration. The estimation of such intakes is of great interest to quantify possible nutritional supplies and also to evaluate the risk of exposure to parasites or to environmental contaminants. Marker-based techniques are now available and would allow to quantify plant and, especially, soil intake in free-range birds, and this quantification was the aim of this study. Methodologically, the proportion of plants in diet intake was determined first using a method based on n-alkanes. Subsequently, the fraction of soil in the total intake was estimated with a second marker, acid-insoluble ash. This approach was carried out to estimate ingested amounts of plants and soil for five successive flocks of organic broilers, exploring grass-covered yards or those under trees, at two time points for each yard: 51 and 64 days of age. Each factor combination (yard type×period=flock number×age) was repeated on two different yards of 750 broilers each. The birds' plant intake varied widely, especially on grass-covered yards. The proportion of plant intake was significantly higher on grass-covered plots than under trees and was also affected, but to a lesser extent, by age or flock number. The ingestion of plants would generally not exceed 11 g of DM daily, except two extreme outliers of nearly 30 g. The daily plant intake under trees tended to be lower and never exceeded 7 g of DM. The amount of ingested plants increased significantly for spring flocks. It increased slightly but significantly with age. The proportion of ingested soil was significantly higher under trees than on grass-covered yards. Dry soil intake was generally low with not more than 3 g per day. Only in adverse conditions - that is, older birds exploring yards under trees in winter - soil intake reached the extreme value of nearly 5 g. Broilers on yards under trees ingested significantly more soil than on grass-covered yards with least

  7. Dynamics of cyanophenyl alkylbenzoate molecules in the bulk and in a surface layer adsorbed onto aerosil. Variation of the lengths of the alkyl chain

    Energy Technology Data Exchange (ETDEWEB)

    Frunza, Stefan [National Institute of Materials Physics, R-077125 Magurele (Romania); Schoenhals, Andreas [BAM Federal Institute of Materials Research and Testing, D-12205 Berlin (Germany); Frunza, Ligia, E-mail: lfrunza@infim.ro [National Institute of Materials Physics, R-077125 Magurele (Romania); Beica, Traian; Zgura, Irina; Ganea, Paul [National Institute of Materials Physics, R-077125 Magurele (Romania); Stoenescu, Daniel [Telecom-Bretagne, Departement d' Optique, Technopole Brest-Iroise 29238 Cedex (France)

    2010-06-16

    Graphical abstract: The temperature dependence of the molecular mobility in composites shows an Arrhenius-type regime at low temperature and a glassy-type one at higher temperature separated by a crossover phenomenon. - Abstract: The molecular mobility of 4-butyl- and 4-pentyl-4'-cyanophenyl benzoate (CP4B, CP5B) and their composites prepared from aerosil A380 was investigated by broadband dielectric spectroscopy in a large temperature range. Thermogravimetric and infrared investigations were additionally performed. High silica density (larger than 7 g aerosil/1 g of liquid crystal) was selected to observe a thin layer adsorbed on the surface of the silica particles. The data were compared with those of the member of the series with six carbon atoms in the alkyl tail. Bulk CP4B and CP5B show the dielectric behaviour expected for liquid crystals. For the composites one relaxation process is observed at frequencies much lower than those for the corresponding bulk, which was assigned to the dynamics of the molecules in a surface layer. The temperature dependence of the relaxation rates (and of the dielectric strength) shows a crossover behaviour with two distinguished regimes. At higher temperatures the data obey the Vogel-Fulcher-Tammann law, whereas an Arrhenius law is observed at lower temperature, in a close similarity to the behaviour of a constrained dynamic glass transition. The estimated Vogel and crossover temperature is independent on the tail length, while the activation energy for the low temperature branch increases weakly with increasing the alkyl tail.

  8. Genetic polymorphism of toll-like receptors 4 gene by polymerase chain reaction-restriction fragment length polymorphisms, polymerase chain reaction-single-strand conformational polymorphism to correlate with mastitic cows

    Directory of Open Access Journals (Sweden)

    Pooja H. Gupta

    2015-05-01

    Full Text Available Aim: An attempt has been made to study the toll-like receptors 4 (TLR4 gene polymorphism from cattle DNA to correlate with mastitis cows. Materials and Methods: In present investigation, two fragments of TLR4 gene named T4CRBR1 and T4CRBR2 of a 316 bp and 382 bp were amplified by polymerase chain reaction (PCR, respectively from Kankrej (22 and Triple cross (24 cattle. The genetic polymorphisms in the two populations were detected by a single-strand conformational polymorphism in the first locus and by digesting the fragments with restriction endonuclease Alu I in the second one. Results: Results showed that both alleles (A and B of two loci were found in all the two populations and the value of polymorphism information content indicated that these were highly polymorphic. Statistical results of χ2 test indicated that two polymorphism sites in the two populations fit with Hardy–Weinberg equilibrium (p˂0.05. Meanwhile, the effect of polymorphism of TLR4 gene on the somatic cell score (SCS indicated the cattle with allele a in T4CRBR1 showed lower SCS than that of allele B (p<0.05. Thus, the allele A might play an important role in mastitis resistance in cows. Conclusion: The relationship between the bovine mastitis trait and the polymorphism of TLR4 gene indicated that the bovine TLR4 gene may play an important role in mastitis resistance.

  9. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  10. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  11. Analytical calculation of chain length in ferrofluids

    Indian Academy of Sciences (India)

    the density of the dispersed particles with surfactant coating. In a FF, the dispersed nanoparticles experience both translational and rotational motion. The particles, under an external field, endure magnetic force-driven diffusion process. The overall change of the particle concentration is more important than the individual ...

  12. A Study on Campylobacter jejuni and Campylobacter coli through Commercial Broiler Production Chains in Thailand: Antimicrobial Resistance, the Characterization of DNA Gyrase Subunit A Mutation, and Genetic Diversity by Flagellin A Gene Restriction Fragment Length Polymorphism.

    Science.gov (United States)

    Thomrongsuwannakij, Thotsapol; Blackall, Patrick J; Chansiripornchai, Niwat

    2017-06-01

    chain reaction-restriction fragment length polymorphism of the flagellin A gene (flaA-RFLP) to determine their genetic relationships. Ten distinct clusters were recognized by flaA-RFLP typing. The results showed that horizontal transmission was the major route of Campylobacter transmission in this study. In conclusion, the emergence of MDR and high resistance rates to several antimicrobials are major concerns identified in this study. The prudent use of these agents and active surveillance of resistance at the farm level are essential steps to reduce the public health risks identified in this work.

  13. Analysis of mitochondrial DNA for authentication of meats from chamois (Rupicapra rupicapra), pyrenean ibex (Capra pyrenaica), and mouflon (Ovis ammon) by polymerase chain reaction-restriction fragment length polymorphism.

    Science.gov (United States)

    Fajardo, Violeta; González, Isabel; López-Calleja, Inés; Martin, Irene; Rojas, Maria; Pavón, Miguel Angel; Hernández, Pablo E; García, Teresa; Martín, Rosario

    2007-01-01

    The prevention of fraudulent labeling of game meat constitutes an important part of food regulatory control and quality assurance systems. A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis based on mitochondrial deoxyribonucleic acid (DNA) was developed for authentication of meats from chamois (Rupicapra rupicapra), pyrenean ibex (Capra pyrenaica), and mouflon (Ovis ammon). Amplification and restriction site analysis of a DNA fragment about 720 base pairs (bp) from the mitochondrial 12S rRNA gene of all analyzed species permitted the selection of Msel and Apol endonucleases for meat speciation. The 12S rRNA restriction profiles obtained allowed the unequivocal identification of chamois, pyrenean ibex, and mouflon/sheep and their differentiation from meats of domestic species such as cattle, goat, and swine. The highly variable mitochondrial D-loop gene was also targeted to attempt discrimination between mouflon and sheep meats. A D-loop region (700-1000 bp) was amplified and sequenced in all game and domestic species analyzed, and a primer set was designed for the selective amplification of a 370 bp DNA fragment from mouflon and sheep. PCR-RFLP analysis with the selected Maell enzyme generated a single electrophoretic profile characteristic for sheep, whereas 3 different fragment patterns were obtained for mouflon meats. Consequently, the PCR-RFLP technique developed can be routinely applied in inspection programs in order to verify the correct labeling of game species.

  14. Differentiation of canine distemper virus isolates in fur animals from various vaccine strains by reverse transcription-polymerase chain reaction-restriction fragment length polymorphism according to phylogenetic relations in china

    Directory of Open Access Journals (Sweden)

    Zhao Jianjun

    2011-02-01

    Full Text Available Abstract In order to effectively identify the vaccine and field strains of Canine distemper virus (CDV, a new differential diagnostic test has been developed based on reverse transcription-polymerase chain reaction (RT-PCR and restriction fragment length polymorphism (RFLP. We selected an 829 bp fragment of the nucleoprotein (N gene of CDV. By RFLP analysis using BamHI, field isolates were distinguishable from the vaccine strains. Two fragments were obtained from the vaccine strains by RT-PCR-RFLP analysis while three were observed in the field strains. An 829 nucleotide region of the CDV N gene was analyzed in 19 CDV field strains isolated from minks, raccoon dogs and foxes in China between 2005 and 2007. The results suggest this method is precise, accurate and efficient. It was also determined that three different genotypes exist in CDV field strains in fur animal herds of the north of China, most of which belong to Asian type. Mutated field strains, JSY06-R1, JSY06-R2 and JDH07-F1 also exist in Northern China, but are most closely related to the standard virulent strain A75/17, designated in Arctic and America-2 genetype in the present study, respectively.

  15. Effect of alkyl chain length and temperature on the thermodynamic properties of ionic liquids 1-alkyl-3-methylimidazolium bromide in aqueous and non-aqueous solutions at different temperatures

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Shekaari, Hemayat; Hosseini, Rahim

    2009-01-01

    The alkyl chain length of 1-alkyl-3-methylimidazolium bromide ([Rmim][Br], R = propyl (C 3 ), hexyl (C 6 ), heptyl (C 7 ), and octyl (C 8 )) was varied to prepare a series of room-temperature ionic liquids (RTILs), and experimental measurements of density and speed of sound at different temperatures ranging from (288.15 to 308.15) K for their aqueous and methanolic solutions in the dilute concentration region (0.01 to 0.30) mol . kg -1 were taken. The values of the compressibilities, expansivity and apparent molar properties for [C n mim][Br] in aqueous and methanolic solutions were determined at the investigated temperatures. The obtained apparent molar volumes and apparent molar isentropic compressibilities were fitted to the Redlich-Mayer and the Pitzer's equations from which the corresponding infinite dilution molar properties were obtained. The values of the infinite dilution molar properties were used to obtain some information about solute-solvent and solute-solute interactions. The thermodynamic properties of investigated ionic liquids in aqueous solutions have been compared with those in methanolic solutions. Also, the comparison between thermodynamic properties of investigated solutions and those of electrolyte solutions, polymer solutions, cationic surfactant solutions and tetraalkylammonium salt solutions have been made

  16. Fundamental length

    International Nuclear Information System (INIS)

    Pradhan, T.

    1975-01-01

    The concept of fundamental length was first put forward by Heisenberg from purely dimensional reasons. From a study of the observed masses of the elementary particles known at that time, it is sumrised that this length should be of the order of magnitude 1 approximately 10 -13 cm. It was Heisenberg's belief that introduction of such a fundamental length would eliminate the divergence difficulties from relativistic quantum field theory by cutting off the high energy regions of the 'proper fields'. Since the divergence difficulties arise primarily due to infinite number of degrees of freedom, one simple remedy would be the introduction of a principle that limits these degrees of freedom by removing the effectiveness of the waves with a frequency exceeding a certain limit without destroying the relativistic invariance of the theory. The principle can be stated as follows: It is in principle impossible to invent an experiment of any kind that will permit a distintion between the positions of two particles at rest, the distance between which is below a certain limit. A more elegant way of introducing fundamental length into quantum theory is through commutation relations between two position operators. In quantum field theory such as quantum electrodynamics, it can be introduced through the commutation relation between two interpolating photon fields (vector potentials). (K.B.)

  17. Chemotaxonomy in some Mediterranean plants and implications for fossil biomarker records

    Science.gov (United States)

    Norström, Elin; Katrantsiotis, Christos; Smittenberg, Rienk H.; Kouli, Katerina

    2017-12-01

    The increasing utilization of n-alkanes as plant-derived paleo-environmental proxies calls for improved chemotaxonomic control of the modern flora in order to calibrate fossil sediment records to modern analogues. Several recent studies have investigated long-chain n-alkane concentrations and chain-length distributions in species from various vegetation biomes, but up to date, the Mediterranean flora is relatively unexplored in this respect. Here, we analyse the n-alkane concentrations and chain-length distributions in some of the most common species of the modern macchia and phrygana vegetation in south western Peloponnese, Greece. We show that the drought adapted phrygana herbs and shrubs, as well as some of the sclerophyll and gymnosperm macchia components, produce high concentrations of n-alkanes, on average more than double n-alkane production in local wetland reed vegetation. Furthermore, the chain-length distribution in the analysed plants is related to plant functionality, with longer chain lengths associated with higher drought adaptive capacities, probably as a response to long-term evolutionary processes in a moisture limited environment. Furthermore, species with relatively higher average chain lengths (ACL) showed more enriched carbon isotope composition in their tissues (δ13Cplant), suggesting a dual imprint from both physiological and biochemical drought adaptation. The findings have bearings on interpretation of fossil sedimentary biomarker records in the Mediterranean region, which is discussed in relation to a case study from Agios Floros fen, Messenian plain, Peloponnese. The 6000 year long n-alkane record from Agios Floros (ACL, δ13Cwax) is linked to the modern analogue and then evaluated through a comparison with other regional-wide as well as local climate and vegetation proxy-data. The high concentration of long chain n-alkanes in phrygana vegetation suggests a dominating imprint from this vegetation type in sedimentary archives from this

  18. N-alkanes to estimate voluntary forage intake of cattle using controlled-release capsules N-alcanos para estimar o consumo voluntário de forragem em bovinos usando cápsulas de liberação controlada

    Directory of Open Access Journals (Sweden)

    Dimas Estrasulas de Oliveira

    2008-01-01

    Full Text Available N-alkanes have been used as internal markers in digestibility trials with ruminants and non-ruminants for more than 20 years. In this study, two trials were conducted under different feeding regimes to (i evaluate the release rate of n-alkanes of controlled-release capsules in the rumen of rumen-cannulated steers either grazing or restrained in metabolic stalls and (ii estimate voluntary forage intake of the same steers in metabolic stalls. Six rumen-cannulated Nelore steers were allocated to individual metabolic stalls and were fed diets with varying forage to concentrate ratios (80:20, 60:40, and 40:60; respectively. Corn silage was the only forage source. In the grazing trial, the same steers were evaluated under three feeding managements (Brachiaria brizantha cv. Marandu unsupplemented or supplemented with either 0.3% or 0.6% of live weight of a concentrate. The release rate of the n-alkanes (mg d-1 was measured by multiplying the distance (mm d-1 the capsule plunger travelled after 3, 7, 10, 13, and 17 d of rumen infusion to the n-alkanes concentration of capsule tablets (mg mm-1. There was an effect of day of measurement (P 0.05 of feeding management or feeding management x day of measurement interaction was observed. Values averaged 6.9 and 14.8%, lower than proposed by the manufacturer for the C32, when animals were restrained in metabolic stalls and at grazing, respectively. Similarly, the values of C36 were 15.9 and 23.1% lower for those animals in metabolic stalls and grazing, respectively. The average release rate of C32 into the rumen was 372 and 341 mg d-1 for animals restrained in metabolic stalls and grazing, respectively. There was no difference in the release rate between feeding regimes (P > 0.05. The regression of the pooled data indicated an average release rate of 345 mg d-1. Estimated values of voluntary forage intake using the pair of C33:C32 n-alkanes using the animals restrained in metabolic stalls was not different

  19. Production of n-alkyl lipids in living plants and implications for the geologic past

    Science.gov (United States)

    Diefendorf, Aaron F.; Freeman, Katherine H.; Wing, Scott L.; Graham, Heather V.

    2011-12-01

    Leaf waxes (i.e., n-alkyl lipids or n-alkanes) are land-plant biomarkers widely used to reconstruct changes in climate and the carbon isotopic composition of the atmosphere. There is little information available, however, on how the production of leaf waxes by different kinds of plants might influence the abundance and isotopic composition of n-alkanes in sedimentary archives. This lack of information increases uncertainty in interpreting n-alkyl lipid abundance and δ 13C signals in ancient settings. We provide here n-alkyl abundance distributions and carbon isotope fractionation data for deciduous and evergreen angiosperm and gymnosperm leaves from 46 tree species, representing 24 families. n-Alkane abundances are significantly higher in angiosperms than gymnosperms; many of the gymnosperm species investigated did not produce any n-alkanes. On average, deciduous angiosperms produce 200 times more n-alkanes than deciduous gymnosperms. Although differences between angiosperms and gymnosperms dominate the variance in n-alkane abundance, leaf life-span is also important, with higher n-alkane abundances in longer-lived leaves. n-Alkanol abundances covary with n-alkanes, but n-alkanoic acids have similar abundances across all plant groups. Isotopic fractionation between leaf tissue and individual alkanes ( ɛlipid) varies by as much as 10‰ among different chain lengths. Overall, ɛlipid values are slightly lower (-4.5‰) for angiosperm than for gymnosperm (-2.5‰) n-alkanes. Angiosperms commonly express slightly higher Δleaf (photosynthetic discrimination) relative to gymnosperms under similar growth conditions. As a result, angiosperm n-alkanes are expected to be generally 3-5‰ more depleted in 13C relative to gymnosperm alkanes for the same locality. Differences in n-alkane production indicate the biomarker record will largely (but not exclusively) reflect angiosperms if both groups were present, and also that evergreen plants will likely be overrepresented

  20. Assessment of nucleic acid modification induced by amotosalen and ultraviolet A light treatment of platelets and plasma using real-time polymerase chain reaction amplification of variable length fragments of mitochondrial DNA.

    Science.gov (United States)

    Bakkour, Sonia; Chafets, Daniel M; Wen, Li; Dupuis, Kent; Castro, Grace; Green, Jennifer M; Stassinopoulos, Adonis; Busch, Michael P; Lee, Tzong-Hae

    2016-02-01

    Pathogen inactivation methods are increasingly used to reduce the risk of infections after transfusion of blood products. Photochemical treatment (PCT) of platelets (PLTs) and plasma with amotosalen and ultraviolet A (UVA) light inactivates pathogens and white blood cells through formation of adducts between amotosalen and nucleic acid that block replication, transcription, and translation. The same adducts block the amplification of nucleic acids using polymerase chain reaction (PCR) in a manner that correlates with the number of adducts formed, providing a direct quality control (QC). Current QC measures for PCT rely on indirect methods that measure the delivered UVA dose or percent residual amotosalen after illumination, rather than directly measuring nucleic acid modification. Endogenous mitochondrial DNA (mtDNA), which is detectable in PLT and plasma units, was chosen as a target for the quantification of photochemically induced modifications. DNA was extracted from untreated or amotosalen and UVA-treated PLTs or plasma, and mtDNA fragments of variable lengths were quantified using a real-time PCR inhibition assay. PCT induced increasing real-time PCR inhibition of mtDNA amplification for larger amplicon sizes. Amplification was unaffected by treatment with amotosalen or UVA alone, whereas up to 3 log inhibition was observed after PCT. Blinded PCR testing of a panel of 110 samples each, from PLT or plasma components prepared for routine use within a blood center, allowed 100% discrimination between untreated and treated units. Our initial findings indicate that an adequately sensitive, quantitative real-time PCR inhibition assay targeting mtDNA could provide a valuable tool to confirm and monitor PCT. © 2015 The Authors. Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  1. Kondo length in bosonic lattices

    Science.gov (United States)

    Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea

    2017-09-01

    Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.

  2. SAXS study of transient pre-melting in chain-folded alkanes

    International Nuclear Information System (INIS)

    Ungar, G.; Wills, H.H.

    1990-01-01

    A pronounced pre-melting effect is observed in chain-folded crystals of pure monodisperse n-alkane C 246 H 494 . The effect is reversible on a short time scale, but at longer times the once-folded chain crystals are irreversibly lost as slow chain extension proceeds by solid diffusion well below the melting point. The melting process is thus monitored by rapid time-resolved small-angle X-ray (SAXS) measurements, using synchrotron radiation. The results show that the observed pronounced broadening of the DSC melting endotherm for chain-folded crystals is entirely due to genuine pre-melting of lamellar surfaces. Although a significant portion of material is already molten below the final melting point of chain-folded crystals T F , no recrystallization in the chain-extended form can occur until the cores of the crystalline lamellae melt at T F . Pre-melting of extended chain crystals is significantly less pronounced than that of folded chain crystals

  3. Application of novel catalytic-ceramic-filler in a coupled system for long-chain dicarboxylic acids manufacturing wastewater treatment.

    Science.gov (United States)

    Wu, Suqing; Qi, Yuanfeng; Fan, Chunzhen; He, Shengbing; Dai, Bibo; Huang, Jungchen; Zhou, Weili; Gao, Lei

    2016-02-01

    To gain systematic technology for long-chain dicarboxylic acids (LDCA) manufacturing wastewater treatment, catalytic micro-electrolysis (CME) coupling with adsorption-biodegradation sludge (AB) process was studied. Firstly, novel catalytic-ceramic-filler was prepared from scrap iron, clay and copper sulfate solution and packed in the CME reactor. To remove residual n-alkane and LDCA, the CME reactor was utilized for LDCA wastewater pretreatment. The results revealed that about 94% of n-alkane, 98% of LDCA and 84% of chemical oxygen demand (COD) were removed by the aerated CME reactor at the optimum hydraulic retention time (HRT) of 3.0 h. In this process, catalysis from Cu and montmorillonites played an important role in improving the contaminants removal. Secondly, to remove residual COD in the wastewater, AB process was designed for the secondary biological treatment, about 90% of the influent COD could be removed by biosorption, bio-flocculation and biodegradation effects. Finally, the effluent COD (about 150 mg L(-1)) discharged from the coupled CME-AB system met the requirement of the national discharged standard (COD ≤ 300 mg L(-1)). All of these results suggest that the coupled CME-AB system is a promising technology due to its high-efficient performance, and has the potential to be applied for the real LDCA wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Comparative effects of three 1,4-dihydropyridine derivatives [OSI-1210, OSI-1211 (etaftoron), and OSI-3802] on rat liver mitochondrial bioenergetics and on the physical properties of membrane lipid bilayers: relevance to the length of the alkoxyl chain in positions 3 and 5 of the DHP ring.

    Science.gov (United States)

    Fernandes, Maria A S; Pereira, Susana P S; Jurado, Amália S; Custódio, José B A; Santos, Maria S; Moreno, António J M; Duburs, Gunars; Vicente, Joaquim A F

    2008-06-17

    The 1,4-dihydropyridines OSI-1210, OSI-1211 (etaftoron), and OSI-3802 are compounds with similar chemical structure. They differ by the length of the alkoxyl chain in positions 3 and 5 of the dihydropyridine (DHP) ring and by their pharmacological action characteristics. However, as far as we know, a clear relationship between the effects of these compounds and the length of the alkoxyl chain in positions 3 and 5 of the DHP has not been established. The goal of this study was to compare the influence of OSI-1210, OSI-1211 (etaftoron), and OSI-3802 on rat liver mitochondrial bioenergetics and on the physical properties of membrane lipid bilayers, correlating their actions with the length of the alkoxyl chain in positions 3 and 5 of the DHP ring. Using either glutamate/malate or succinate as respiratory substrates, all the compounds, in concentrations of up to 500 microM, depressed state 3 and uncoupled respiration, respiratory control (RCR) and ADP/O ratios, and phosphorylation rate, whereas state 4 respiration was stimulated. However, the stimulatory effect on state 4 induced by OSI-3802, the compound with the longest chain in positions 3 and 5 of the DHP ring, as well as its inhibitory effects on RCR and ADP/O ratios and phosphorylation rate were more pronounced than that induced by OSI-1210 and OSI-1211 (etaftoron), the compounds with the shortest and intermediate chains, respectively. Moreover, OSI-3802 maximized state 4 stimulation and minimized RCR and ADP/O ratios, and phosphorylation rate at a concentration of 100 microM, whereas low graduate effects were detected with OSI-1210 and OSI-1211 (etaftoron) for concentrations of up to 500 microM. At low concentrations (OSI-3802, like its analogue OSI-1212 (cerebrocrast), reduced the phase transition temperature, the cooperative unit size, and the enthalpy associated with the phase transition temperature of dimyristoylphosphatidylcholine (DMPC) membrane bilayers. A good correlation was established between the

  5. Chain Posets

    OpenAIRE

    Johnson, Ian T.

    2018-01-01

    A chain poset, by definition, consists of chains of ordered elements in a poset. We study the chain posets associated to two posets: the Boolean algebra and the poset of isotropic flags. We prove that, in both cases, the chain posets satisfy the strong Sperner property and are rank-log concave.

  6. GENOMIC DNA-FINGERPRINTING OF CLINICAL HAEMOPHILUS-INFLUENZAE ISOLATES BY POLYMERASE CHAIN-REACTION AMPLIFICATION - COMPARISON WITH MAJOR OUTER-MEMBRANE PROTEIN AND RESTRICTION-FRAGMENT-LENGTH-POLYMORPHISM ANALYSIS

    NARCIS (Netherlands)

    VANBELKUM, A; DUIM, B; REGELINK, A; MOLLER, L; QUINT, W; VANALPHEN, L

    Non-capsulate strains of Haemophilus influenzae were genotyped by analysis of variable DNA segments obtained by amplification of genomic DNA with the polymerase chain reaction (PCR fingerprinting). Discrete fragments of 100-2000 bp were obtained. The reproducibility of the procedure was assessed by

  7. Uso de n-alcanos na estimativa da composição botânica da dieta em ovinos alimentados com diferentes proporções de Brachiaria decumbens Stapf e Arachis pintoi Koprov e Gregory Use of n-alkanes to estimate the dietary botanical composition in sheep fed different proportions of Brachiaria decumbens Stapf and Arachis pintoi Koprov and Gregory

    Directory of Open Access Journals (Sweden)

    Nelson Massaru Fukumoto

    2007-08-01

    Full Text Available Neste experimento objetivou-se avaliar o poder discriminatório dos n-alcanos para estimar com acurácia e precisão a composição botânica da dieta em ovinos alimentados com diferentes proporções de Arachis pintoi Koprov & Gregory cv. Amarillo (0, 15, 30, 45 e 60% e Brachiaria decumbens Stapf. Foram utilizados 20 ovinos em delineamento inteiramente casualizado, com período experimental de dez dias de adaptação à dieta e cinco dias de coleta de fezes. Nas amostras (compostas de fezes do período e nos fenos, foi analisada a concentração de n-alcanos. Para o cálculo da composição botânica, utilizou-se minimização da soma dos quadrados dos desvios, considerando as concentrações dos alcanos nos componentes da dieta e nas fezes. Para a escolha dos alcanos mais discriminatórios, foram utilizadas as análises multivariadas e as variáveis canônicas. As estimativas calculadas foram submetidas à análise de variância. As médias foram comparadas pelo teste t e as correções dos valores estimados em relação aos valores reais foram ajustadas em regressão linear. As variáveis canônicas indicaram que os alcanos C35, C33, C30, C31, C27, C29 e C36 são os de maior potencial discriminatório. O uso desses alcanos nos cálculos foi mais acurado e preciso para estimar a proporção de A. pintoi na dieta que o uso de apenas dois ou três alcanos com poder discriminatório. O melhor ajuste da regressão também foi encontrado para esses alcanos. O teste t para o intercepto da equação (a e o coeficiente de regressão (b indicaram que a = 0 e b = 1, comprovando que os valores estimados são equivalentes aos valores reais. As análises multivariadas mostraram-se ferramentas de grande importância na escolha dos n-alcanos nos cálculos nas estimativas.The objective of this experiment was to use n-alkane to estimate accurately and precisely the botanical composition of dietary forage in sheep fed different proportions of Arachis pintoi

  8. Utilização dos componentes da cera das plantas, em especial os n-alcanos, em estudos de nutrição de ruminantes The utilization of plant wax components, especially n-alkanes, in ruminants nutrition studies

    Directory of Open Access Journals (Sweden)

    Dimas Estrásulas de Oliveira

    2000-06-01

    Full Text Available A utilização de métodos indiretos para estimar o consumo e a digestibilidade dos alimentos por ruminantes é bastante importante, porque pode representar uma economia de tempo, dinheiro e trabalho em relação aos experimentos convencionais e, também, por permitir tais estimativas sob condições extensivas de pastejo. Dentre esses métodos, sobressai-se o dos indicadores fecais. Várias substâncias têm sido utilizadas para esse fim. Este artigo é uma revisão de alguns aspectos sobre o uso de n-alcanos como indicadores em estudos de nutrição de ruminantes.The indirect methods used to estimate the intake and digestibility of feedstuffs by ruminants are very important because these methods represent an economy of time, money and work, in relation to conventional trials. Also, they permit estimates in grazing conditions. Among these methods, the faecal markers stand out and lots of substances have been used. This paper is a review about the use of n-alkanes as markers in ruminant nutrition studies.

  9. Unit and internal chain profiles of maca amylopectin.

    Science.gov (United States)

    Zhang, Ling; Li, Guantian; Yao, Weirong; Zhu, Fan

    2018-03-01

    Unit chain length distributions of amylopectin and its φ, β-limit dextrins, which reflect amylopectin internal structure from three maca starches, were determined by high-performance anion-exchange chromatography with pulsed amperometric detection after debranching, and the samples were compared with maize starch. The amylopectins exhibited average chain lengths ranging from 16.72 to 17.16, with ranges of total internal chain length, external chain length, and internal chain length of the maca amylopectins at 12.49 to 13.68, 11.24 to 11.89, and 4.27 to 4.48. The average chain length, external chain length, internal chain length, and total internal chain length were comparable in three maca amylopectins. Amylopectins of the three maca genotypes studied here presented no significant differences in their unit chain length profiles, but did show significant differences in their internal chain profiles. Additional genetic variations between different maca genotypes need to be studied to provide unit- and internal chain profiles of maca amylopectin. Copyright © 2017. Published by Elsevier Ltd.

  10. METRODOS: Meteorological preprocessor chain

    DEFF Research Database (Denmark)

    Astrup, P.; Mikkelsen, T.; Deme, S.

    2001-01-01

    The METRODOS meteorological preprocessor chain combines measured tower data and coarse grid numerical weather prediction (NWP) data with local scale flow models and similarity scaling to give high resolution approximations of the meteorological situation. Based on available wind velocity...... - heat flux related measurement, e.g. a temperature gradient, are used to give local values of friction velocity and Monin-Obukhov length plus an estimate of the mixing height. The METRODOS meteorological preprocessor chain is an integral part of the RODOS - Real Time On Line Decision Support - program...

  11. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments.

    Directory of Open Access Journals (Sweden)

    Arpita eBose

    2013-12-01

    Full Text Available Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2-C5 and longer alkanes. C2-C4 alkanes such as ethane, propane and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To better understand the anaerobic oxidation of short-chain n-alkanes coupled with sulfate-reduction, hydrocarbon-rich sediments from the Gulf of Mexico were amended with artificial, sulfate-replete seawater and one of four n-alkanes (C1-C4 then incubated under strict anaerobic conditions. Measured rates of alkane oxidation and sulfate reduction closely follow stoichiometric predictions that assume the complete oxidation of alkanes to CO2 (though other sinks for alkane carbon likely exist. Changes in the δ13C of all the alkanes in the reactors show enrichment over the course of the incubation, with the C3 and C4 incubations showing the greatest enrichment (4.4‰ and 4.5‰ respectively. The concurrent depletion in the δ13C of dissolved inorganic carbon (DIC implies a transfer of carbon from the alkane to the DIC pool (-3.5 and -6.7‰ for C3 and C4 incubations, respectively. Microbial community analyses reveal that certain members of the class Deltaproteobacteria are selectively enriched as the incubations degrade C1-C4 alkanes. Phylogenetic analyses indicate that distinct phylotypes are enriched in the ethane reactors, while phylotypes in the propane and butane reactors align with previously identified C3-C4 alkane-oxidizing sulfate-reducers. These data further constrain the potential influence of alkane oxidation on sulfate reduction rates in cold hydrocarbon-rich sediments, provide insight into their contribution to local carbon cycling, and illustrate the extent to which short-chain alkanes can serve as electron donors and govern microbial community

  12. n-Alkanes in surficial sediments of Visakhapatnam harbour, east ...

    Indian Academy of Sciences (India)

    from Cienfuegos bay, Cuba; Mar. Pollut. Bull. 58. 1624–1634. UNEP 1995 Determination of petroleum hydrocarbons in selected marine organisms; Reference method for Marine pollution studies No. 72; UNEP/IOC/IAEA/FAO. Volkman J K 1986 A review of sterol markers for marine and terrigenous OM; Org. Geochem.

  13. Thermodynamic parameters for the adsorption of volatile n-alkane ...

    African Journals Online (AJOL)

    user

    chromatography, before and after treatment of the root biomass with mineral acid and organic solvent. The free energy ... Mineral acid and organic solvent treatment leads to greater adsorption bond strength, with ∆Ga and ∆Ha values of -36.08 ..... polysaccharides, lignins, printing ink pigments, and ink fillers by inverse gas ...

  14. Thermodynamic parameters for the adsorption of volatile n-alkane ...

    African Journals Online (AJOL)

    alkanes hexane to nonane on ground dried water hyacinth (E. crassipes) root biomass were studied between 40 and 70°C column temperature using inverse gas chromatography, before and after treatment of the root biomass with mineral acid ...

  15. Heavy Chain Diseases

    Science.gov (United States)

    ... heavy chain produced: Alpha Gamma Mu Alpha Heavy Chain Disease Alpha heavy chain disease (IgA heavy chain ... disease or lead to a remission. Gamma Heavy Chain Disease Gamma heavy chain disease (IgG heavy chain ...

  16. Tunnel current across linear homocatenated germanium chains

    International Nuclear Information System (INIS)

    Matsuura, Yukihito

    2014-01-01

    The electronic transport properties of germanium oligomers catenating into linear chains (linear Ge chains) have been theoretically studied using first principle methods. The conduction mechanism of a Ge chain sandwiched between gold electrodes was analyzed based on the density of states and the eigenstates of the molecule in a two-probe environment. Like that of silicon chains (Si chains), the highest occupied molecular orbital of Ge chains contains the extended σ-conjugation of Ge 4p orbitals at energy levels close to the Fermi level; this is in contrast to the electronic properties of linear carbon chains. Furthermore, the conductance of a Ge chain is expected to decrease exponentially with molecular length L. The decay constant β, which is defined as e −βL , of a Ge chain is similar to that of a Si chain, whereas the conductance of the Ge chains is higher than that of Si chains even though the Ge–Ge bond length is longer than the Si–Si bond length

  17. Chain Assembly and Disassembly Processes Differently Affect the Conformational Space of Ubiquitin Chains.

    Science.gov (United States)

    Kniss, Andreas; Schuetz, Denise; Kazemi, Sina; Pluska, Lukas; Spindler, Philipp E; Rogov, Vladimir V; Husnjak, Koraljka; Dikic, Ivan; Güntert, Peter; Sommer, Thomas; Prisner, Thomas F; Dötsch, Volker

    2018-02-06

    Ubiquitination is the most versatile posttranslational modification. The information is encoded by linkage type as well as chain length, which are translated by ubiquitin binding domains into specific signaling events. Chain topology determines the conformational space of a ubiquitin chain and adds an additional regulatory layer to this ubiquitin code. In particular, processes that modify chain length will be affected by chain conformations as they require access to the elongation or cleavage sites. We investigated conformational distributions in the context of chain elongation and disassembly using pulsed electron-electron double resonance spectroscopy in combination with molecular modeling. Analysis of the conformational space of diubiquitin revealed conformational selection or remodeling as mechanisms for chain recognition during elongation or hydrolysis, respectively. Chain elongation to tetraubiquitin increases the sampled conformational space, suggesting that a high intrinsic flexibility of K48-linked chains may contribute to efficient proteasomal degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Markov chains

    CERN Document Server

    Revuz, D

    1984-01-01

    This is the revised and augmented edition of a now classic book which is an introduction to sub-Markovian kernels on general measurable spaces and their associated homogeneous Markov chains. The first part, an expository text on the foundations of the subject, is intended for post-graduate students. A study of potential theory, the basic classification of chains according to their asymptotic behaviour and the celebrated Chacon-Ornstein theorem are examined in detail. The second part of the book is at a more advanced level and includes a treatment of random walks on general locally compact abelian groups. Further chapters develop renewal theory, an introduction to Martin boundary and the study of chains recurrent in the Harris sense. Finally, the last chapter deals with the construction of chains starting from a kernel satisfying some kind of maximum principle.

  19. Kinematics and Dynamics of Roller Chain Drives

    DEFF Research Database (Denmark)

    Fuglede, Niels

    There are two main subjects of this work: Kinematic and dynamic modeling and analysis of roller chain drives. In the kinematic analysis we contribute first with a complete treatment of the roller chain drive modeled as a four-bar mechanism. This includes a general, exact and approximate analysis...... which is useful for predicting the characteristic loading of the roller chain drive. As a completely novel contribution, a kinematic model and analysis is presented which includes both spans and sprockets in a simple chain drive system. A general procedure for determination of the total wrapping length...... is presented, which also allows for exact sprocket center positions for a chain with a given number of links. Results show that the total chain wrapping length varies periodically with the tooth frequency. These results are of practical importance to both the design, installation and operation of roller chain...

  20. CHAIN 2

    International Nuclear Information System (INIS)

    Bailey, D.

    1998-04-01

    The Second Processing Chain (CHAIN2) consists of a suite of ten programs which together provide a full local analysis of the bulk plasma physics within the JET Tokamak. In discussing these ten computational models this report is intended to fulfil two broad purposes. Firstly it is meant to be used as a reference source for any user of CHAIN2 data, and secondly it provides a basic User Manual sufficient to instruct anyone in running the CHAIN2 suite of codes. In the main report text each module is described in terms of its underlying physics and any associated assumptions or limitations, whilst deliberate emphasis is put on highlighting the physics and mathematics of the calculations required in deriving each individual datatype in the standard module PPF output. In fact each datatype of the CHAIN2 PPF output listed in Appendix D is cross referenced to the point in the main text where its evaluation is discussed. An effort is made not only to give the equation used to derive a particular data profile but also to explicitly define which external data sources are involved in the computational calculation

  1. METRODOS: Meteorological preprocessor chain

    DEFF Research Database (Denmark)

    Astrup, P.; Mikkelsen, T.; Deme, S.

    2001-01-01

    The METRODOS meteorological preprocessor chain combines measured tower data and coarse grid numerical weather prediction (NWP) data with local scale flow models and similarity scaling to give high resolution approximations of the meteorological situation. Based on available wind velocity...... - heat flux related measurement, e.g. a temperature gradient, are used to give local values of friction velocity and Monin-Obukhov length plus an estimate of the mixing height. The METRODOS meteorological preprocessor chain is an integral part of the RODOS - Real Time On Line Decision Support - program...... and direction measurements/NWP predictions, the LINCOM or the MCF flow model determines the wind field on a 1/2 to 1 km grid over the area of interest, taking the influence of orography and mixed roughness into consideration. For each grid point the obtained wind and the most appropriate - normally the nearest...

  2. Carbon chain length and the stimulus problem in oldfaction

    NARCIS (Netherlands)

    Boesveldt, S.; Olsson, M.; Lundstrom, J.N.

    2010-01-01

    Understanding how odour quality perception is encoded in its molecular properties arguably poses one of the most significant problems in olfaction. Determining the odour structure–quality relationships of structurally similar odorants could provide a key tool to this problem. We tentatively explored

  3. Chain-modified radioiodinated fatty acids

    International Nuclear Information System (INIS)

    Otto, C.A.

    1987-01-01

    Several carbon chain manipulations have been studied in terms of their effects on myocardial activity levels and residence time. The manipulations examined included: chain length, chain branching, chain unsaturation, and carbon-iodine bond stabilization. It was found that chain length affects myocardial activity levels for both straight-chain alkyl acids and branched chain alkyl and aryl acids. Similar results have been reported for the straight-chain aryl acids. Generally, the longer chain lengths correlated with higher myocardial activity levels and longer residence times. This behavior is attributed to storage as triglycerides. Branched chain acids are designed to be anti-metabolites but only the aryl β-methyl acids possessed the expected time course of constant or very slowly decreasing activity levels. The alkyl β-methyl acids underwent rapid deiodination - a process apparently independent of β-oxidation. Inhibition of β-oxidation by incorporation of carbon-carbon double and triple bonds was studied. Deiodination of ω-iodo alkyl fatty acids prevented an assessment of suicide inhibition using an unsaturated alkynoic acid. Stabilization of the carbon-iodine bond by attachment of iodine to a vinylic or aryl carbon was studied. The low myocardial values and high blood values observed for an eleven carbon ω-iodo vinylic fatty acid were not encouraging but ω-iodo aryl fatty acids appear to avoid the problems of rapid deiodination. (Auth.)

  4. Ub-ProT reveals global length and composition of protein ubiquitylation in cells.

    Science.gov (United States)

    Tsuchiya, Hikaru; Burana, Daocharad; Ohtake, Fumiaki; Arai, Naoko; Kaiho, Ai; Komada, Masayuki; Tanaka, Keiji; Saeki, Yasushi

    2018-02-06

    Protein ubiquitylation regulates diverse cellular processes via distinct ubiquitin chains that differ by linkage type and length. However, a comprehensive method for measuring these properties has not been developed. Here we describe a method for assessing the length of substrate-attached polyubiquitin chains, "ubiquitin chain protection from trypsinization (Ub-ProT)." Using Ub-ProT, we found that most ubiquitylated substrates in yeast-soluble lysate are attached to chains of up to seven ubiquitin molecules. Inactivation of the ubiquitin-selective chaperone Cdc48 caused a dramatic increase in chain lengths on substrate proteins, suggesting that Cdc48 complex terminates chain elongation by substrate extraction. In mammalian cells, we found that ligand-activated epidermal growth factor receptor (EGFR) is rapidly modified with K63-linked tetra- to hexa-ubiquitin chains following EGF treatment in human cells. Thus, the Ub-ProT method can contribute to our understanding of mechanisms regulating physiological ubiquitin chain lengths and composition.

  5. Telomere length analysis.

    Science.gov (United States)

    Canela, Andrés; Klatt, Peter; Blasco, María A

    2007-01-01

    Most somatic cells of long-lived species undergo telomere shortening throughout life. Critically short telomeres trigger loss of cell viability in tissues, which has been related to alteration of tissue function and loss of regenerative capabilities in aging and aging-related diseases. Hence, telomere length is an important biomarker for aging and can be used in the prognosis of aging diseases. These facts highlight the importance of developing methods for telomere length determination that can be employed to evaluate telomere length during the human aging process. Telomere length quantification methods have improved greatly in accuracy and sensitivity since the development of the conventional telomeric Southern blot. Here, we describe the different methodologies recently developed for telomere length quantification, as well as their potential applications for human aging studies.

  6. Formation and properties of metal-oxygen atomic chains

    DEFF Research Database (Denmark)

    Thijssen, W.H.A.; Strange, Mikkel; de Brugh, J.M.J.A.

    2008-01-01

    of longer atomic chains. The mechanical and electrical properties of these diatomic chains have been investigated by determining local vibration modes of the chain and by measuring the dependence of the average chain-conductance on the length of the chain. Additionally, we have performed calculations......Suspended chains consisting of single noble metal and oxygen atoms have been formed. We provide evidence that oxygen can react with and be incorporated into metallic one-dimensional atomic chains. Oxygen incorporation reinforces the linear bonds in the chain, which facilitates the creation...

  7. Rapid atmospheric transport and large-scale deposition of recently synthesized plant waxes

    Science.gov (United States)

    Nelson, Daniel B.; Ladd, S. Nemiah; Schubert, Carsten J.; Kahmen, Ansgar

    2018-02-01

    Sedimentary plant wax 2H/1H ratios are important tools for understanding hydroclimate and environmental changes, but large spatial and temporal uncertainties exist about transport mechanisms from ecosystem to sediments. To assess atmospheric pathways, we collected aerosol samples for two years at four locations within a ∼60 km radius in northern Switzerland. We measured n-alkane distributions and 2H/1H ratios in these samples, and from local plants, leaf litter, and soil, as well as surface sediment from six nearby lakes. Increased concentrations and 2H depletion of long odd chain n-alkanes in early summer aerosols indicate that most wax aerosol production occurred shortly after leaf unfolding, when plants synthesize waxes in large quantities. During autumn and winter, aerosols were characterized by degraded n-alkanes lacking chain length preferences diagnostic of recent biosynthesis, and 2H/1H values that were in some cases more than 100‰ higher than growing season values. Despite these seasonal shifts, modeled deposition-weighted average 2H/1H values of long odd chain n-alkanes primarily reflected summer values. This was corroborated by n-alkane 2H/1H values in lake sediments, which were similar to deposition-weighted aerosol values at five of six sites. Atmospheric deposition rates for plant n-alkanes on land were ∼20% of accumulation rates in lakes, suggesting a role for direct deposition to lakes or coastal oceans near similar production sources, and likely a larger role for deposition on land and transport in river systems. This mechanism allows mobilization and transport of large quantities of recently produced waxes as fine-grained material to low energy sedimentation sites over short timescales, even in areas with limited topography. Widespread atmospheric transfer well before leaf senescence also highlights the importance of the isotopic composition of early season source water used to synthesize waxes for the geologic record.

  8. Telomere length and depression

    DEFF Research Database (Denmark)

    Wium-Andersen, Marie Kim; Ørsted, David Dynnes; Rode, Line

    2017-01-01

    BACKGROUND: Depression has been cross-sectionally associated with short telomeres as a measure of biological age. However, the direction and nature of the association is currently unclear. AIMS: We examined whether short telomere length is associated with depression cross-sectionally as well...... as prospectively and genetically. METHOD: Telomere length and three polymorphisms, TERT, TERC and OBFC1, were measured in 67 306 individuals aged 20-100 years from the Danish general population and associated with register-based attendance at hospital for depression and purchase of antidepressant medication....... RESULTS: Attendance at hospital for depression was associated with short telomere length cross-sectionally, but not prospectively. Further, purchase of antidepressant medication was not associated with short telomere length cross-sectionally or prospectively. Mean follow-up was 7.6 years (range 0...

  9. Myofilament length dependent activation

    Energy Technology Data Exchange (ETDEWEB)

    de Tombe, Pieter P.; Mateja, Ryan D.; Tachampa, Kittipong; Mou, Younss Ait; Farman, Gerrie P.; Irving, Thomas C. (IIT); (Loyola)

    2010-05-25

    The Frank-Starling law of the heart describes the interrelationship between end-diastolic volume and cardiac ejection volume, a regulatory system that operates on a beat-to-beat basis. The main cellular mechanism that underlies this phenomenon is an increase in the responsiveness of cardiac myofilaments to activating Ca{sup 2+} ions at a longer sarcomere length, commonly referred to as myofilament length-dependent activation. This review focuses on what molecular mechanisms may underlie myofilament length dependency. Specifically, the roles of inter-filament spacing, thick and thin filament based regulation, as well as sarcomeric regulatory proteins are discussed. Although the 'Frank-Starling law of the heart' constitutes a fundamental cardiac property that has been appreciated for well over a century, it is still not known in muscle how the contractile apparatus transduces the information concerning sarcomere length to modulate ventricular pressure development.

  10. Upper Extremity Length Equalization

    OpenAIRE

    DeCoster, Thomas A.; Ritterbusch, John; Crawford, Mark

    1992-01-01

    Significant upper extremity length inequality is uncommon but can cause major functional problems. The ability to position and use the hand may be impaired by shortness of any of the long bones of the upper extremity. In many respects upper and lower extremity length problems are similar. They most commonly occur after injury to a growing bone and the treatment modalities utilized in the lower extremity may be applied to the upper extremity. These treatment options include epiphysiodesis, sho...

  11. Phase behaviour of polyethylene knotted ring chains

    International Nuclear Information System (INIS)

    Wen Xiao-Hui; Xia A-Gen; Chen Hong-Ping; Zhang Lin-Xi

    2011-01-01

    The phase behaviour of polyethylene knotted ring chains is investigated by using molecular dynamics simulations. In this paper, we focus on the collapse of the polyethylene knotted ring chain, and also present the results of linear and ring chains for comparison. At high temperatures, a fully extensive knot structure is observed. The mean-square radius of gyration per bond (S 2 )/(Nb 2 ) and the shape factor (δ*) depend on not only the chain length but also the knot type. With temperature decreasing, chain collapse is observed, and the collapse temperature decreases with the chain length increasing. The actual collapse transition can be determined by the specific heat capacity C v , and the knotted ring chain undergoes gas—liquid—solid-like transition directly. The phase transition of a knotted ring chain is only one-stage collapse, which is different from the polyethylene linear and ring chains. This investigation can provide some insights into the statistical properties of knotted polymer chains. (condensed matter: structural, mechanical, and thermal properties)

  12. Relativistic Length Agony Continued

    Science.gov (United States)

    Redzic, D. V.

    2014-06-01

    We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the 'pole in a barn' paradox.

  13. Telomere Length and Mortality

    DEFF Research Database (Denmark)

    Kimura, Masayuki; Hjelmborg, Jacob V B; Gardner, Jeffrey P

    2008-01-01

    Leukocyte telomere length, representing the mean length of all telomeres in leukocytes, is ostensibly a bioindicator of human aging. The authors hypothesized that shorter telomeres might forecast imminent mortality in elderly people better than leukocyte telomere length. They performed mortality...... telomeres predicted the death of the first co-twin better than the mTRFL did (mTRFL: 0.56, 95% confidence interval (CI): 0.49, 0.63; mTRFL(50): 0.59, 95% CI: 0.52, 0.66; mTRFL(25): 0.59, 95% CI: 0.52, 0.66; MTRFL: 0.60, 95% CI: 0.53, 0.67). The telomere-mortality association was stronger in years 3-4 than...

  14. Humanitarian relief supply chain

    Indian Academy of Sciences (India)

    This paper models a humanitarian relief chain that includes a relief goods supply chain and an evacuation chain in case of a natural disaster. Optimum network flow is studied for both the chains by considering three conflicting objectives, namely demand satisfaction in relief chain, demand satisfaction in evacuation chain ...

  15. Global Carbon Cycle Perturbations and Implications for Arctic Hydrology during the Paleocene-Eocene Thermal Maximum

    Science.gov (United States)

    Cui, Y.; Kump, L.; Diefendorf, A. F.; Freeman, K. H.

    2011-12-01

    The Paleocene-Eocene Thermal Maximum (PETM; ca. 55.9 Ma) was an interval of geologically abrupt global warming lasting ~200 ka. It has been proposed as an ancient analogue for future climate response to CO2 emission from fossil fuel burning. The onset of this event is fueled by a large release of 13C-depleted carbon into the ocean-atmosphere system. However, there is a large discrepancy in the magnitude of the carbon isotope excursion (CIE) between marine and terrestrial records. Here we present new organic geochemical data and stable carbon isotope records from n-alkanes and pristane extracted from core materials representing the most expanded PETM section yet recovered from a nearshore marine early Cenozoic succession from Spitsbergen. The low hydrogen index and oxygen index indicate that organic matter has been thermally altered, consistent with n-alkanes that do not show a clear odd-over-even predominance as reflected by the low and constant carbon preference index. The δ13C records of long chain n-alkanes from core BH9-05 track the δ13C recorded in total organic carbon, but are ~3% more negative prior to the CIE, ~4.5% more negative during the CIE, and ~4% more negative after the CIE. An orbital age model derived from the same core suggests the CIE from n-alkanes appears more abruptly onset than the bulk organic carbon, indicating possibly climate-induced modification to the observed feature in n-alkanes. In addition, the carbon isotope values of individual long-chain (n-C27 to n-C31) n-alkanes tend to become less negative with increasing chain length resulting in the smallest magnitude CIEs in longer chain lengths (i.e. n-C31) and the largest magnitude CIEs in shorter chain lengths (i.e. n-C27). We are currently considering the effect of plant community and paleoclimate on the observed pattern of CIE in n-alkanes to evaluate carbon cycle perturbations and Arctic hydrology changes during the PETM. One interpretation of these patterns is that there was an

  16. Full Length Research Article

    African Journals Online (AJOL)

    Administrator

    Out of the 320 male sheep examined, 87(27.2%) were infected, while 9(19.1%) of the 47 females examined were infected (Table 2). Infection varied from one abattoir to another. Age related distribution of P. cervi is shown in Table 3. Out of 356 adult sheep (>2yrs) examined, 35. Full Length Research Article. 12 ...

  17. Chain reaction

    International Nuclear Information System (INIS)

    Balogh, Brian.

    1991-01-01

    Chain Reaction is a work of recent American political history. It seeks to explain how and why America came to depend so heavily on its experts after World War II, how those experts translated that authority into political clout, and why that authority and political discretion declined in the 1970s. The author's research into the internal memoranda of the Atomic Energy Commission substantiates his argument in historical detail. It was not the ravages of American anti-intellectualism, as so many scholars have argued, that brought the experts back down to earth. Rather, their decline can be traced to the very roots of their success after World War II. The need to over-state anticipated results in order to garner public support, incessant professional and bureaucratic specialization, and the sheer proliferation of expertise pushed arcane and insulated debates between experts into public forums at the same time that a broad cross section of political participants found it easier to gain access to their own expertise. These tendencies ultimately undermined the political influence of all experts. (author)

  18. Gap length distributions by PEPR

    International Nuclear Information System (INIS)

    Warszawer, T.N.

    1980-01-01

    Conditions guaranteeing exponential gap length distributions are formulated and discussed. Exponential gap length distributions of bubble chamber tracks first obtained on a CRT device are presented. Distributions of resulting average gap lengths and their velocity dependence are discussed. (orig.)

  19. Length of excitable knots

    Science.gov (United States)

    Maucher, Fabian; Sutcliffe, Paul

    2017-07-01

    In this paper, we present extensive numerical simulations of an excitable medium to study the long-term dynamics of knotted vortex strings for all torus knots up to crossing number 11. We demonstrate that FitzHugh-Nagumo evolution preserves the knot topology for all the examples presented, thereby providing a field theory approach to the study of knots. Furthermore, the evolution yields a well-defined minimal length for each knot that is comparable to the ropelength of ideal knots. We highlight the role of the medium boundary in stabilizing the length of the knot and discuss the implications beyond torus knots. We also show that there is not a unique attractor within a given knot topology.

  20. Pion nucleus scattering lengths

    International Nuclear Information System (INIS)

    Huang, W.T.; Levinson, C.A.; Banerjee, M.K.

    1971-09-01

    Soft pion theory and the Fubini-Furlan mass dispersion relations have been used to analyze the pion nucleon scattering lengths and obtain a value for the sigma commutator term. With this value and using the same principles, scattering lengths have been predicted for nuclei with mass number ranging from 6 to 23. Agreement with experiment is very good. For those who believe in the Gell-Mann-Levy sigma model, the evaluation of the commutator yields the value 0.26(m/sub σ//m/sub π/) 2 for the sigma nucleon coupling constant. The large dispersive corrections for the isosymmetric case implies that the basic idea behind many of the soft pion calculations, namely, slow variation of matrix elements from the soft pion limit to the physical pion mass, is not correct. 11 refs., 1 fig., 3 tabs