WorldWideScience

Sample records for n-acetylcysteine amide decreases

  1. N-acetylcysteine amide (AD4) reduces cocaine-induced reinstatement.

    Science.gov (United States)

    Jastrzębska, Joanna; Frankowska, Malgorzata; Filip, Malgorzata; Atlas, Daphne

    2016-09-01

    Chronic exposure to drugs of abuse changes glutamatergic transmission in human addicts and animal models. N-acetylcysteine (NAC) is a cysteine prodrug that indirectly activates cysteine-glutamate antiporters. In the extrasynaptic space, NAC restores basal glutamate levels during drug abstinence and normalizes increased glutamatergic tone in rats during reinstatement to drugs of abuse. In initial clinical trials, repeated NAC administration seems to be promising for reduced craving in cocaine addicts. In this study, NAC-amide, called AD4 or NACA, was examined in intravenous cocaine self-administration and extinction/reinstatement procedures in rats. We investigated the behavioral effects of AD4 in the olfactory bulbectomized (OBX) rats, considered an animal model of depression. Finally, we tested rats injected with AD4 or NAC during 10-daily extinction training sessions to examine subsequent cocaine seeking. AD4 (25-75 mg kg(-1)) given acutely did not alter the rewarding effects of cocaine in OBX rats and sham-operated controls. However, at 6.25-50 mg kg(-1), AD4 decreased dose-dependently cocaine seeking and relapse triggered by cocaine priming or drug-associated conditioned cues in both phenotypes. Furthermore, repeated treatment with AD4 (25 mg kg(-1)) or NAC (100 mg kg(-1)) during daily extinction trials reduced reinstatement of drug-seeking behavior in sham-operated controls. In the OBX rats only, AD4 effectively blocked cocaine-seeking behavior. Our results demonstrate that AD4 is effective at blocking cocaine-seeking behavior, highlighting its potential clinical use toward cocaine use disorder.

  2. N-Acetylcysteine Amide Protects Against Oxidative Stress–Induced Microparticle Release From Human Retinal Pigment Epithelial Cells

    Science.gov (United States)

    Carver, Kyle A.; Yang, Dongli

    2016-01-01

    Purpose Oxidative stress is a major factor involved in retinal pigment epithelium (RPE) apoptosis that underlies AMD. Drusen, extracellular lipid- and protein-containing deposits, are strongly associated with the development of AMD. Cell-derived microparticles (MPs) are small membrane-bound vesicles shed from cells. The purpose of this study was to determine if oxidative stress drives MP release from RPE cells, to assess whether these MPs carry membrane complement regulatory proteins (mCRPs: CD46, CD55, and CD59), and to evaluate the effects of a thiol antioxidant on oxidative stress–induced MP release. Methods Retinal pigment epithelium cells isolated from human donor eyes were cultured and treated with hydrogen peroxide (H2O2) to induce oxidative stress. Isolated MPs were fixed for transmission electron microscopy or processed for component analysis by flow cytometry, Western blot analysis, and confocal microscopy. Results Transmission electron microscopy showed that MPs ranged in diameter from 100 to 1000 nm. H2O2 treatment led to time- and dose-dependent elevations in MPs with externalized phosphatidylserine and phosphatidylethanolamine, known markers of MPs. These increases were strongly correlated to RPE apoptosis. Oxidative stress significantly increased the release of mCRP-positive MPs, which were prevented by a thiol antioxidant, N-acetylcysteine amide (NACA). Conclusions This is the first evidence that oxidative stress induces cultured human RPE cells to release MPs that carry mCRPs on their surface. The levels of released MPs are strongly correlated with RPE apoptosis. N-acetylcysteine amide prevents oxidative stress–induced effects. Our findings indicate that oxidative stress reduces mCRPs on the RPE surface through releasing MPs. PMID:26842754

  3. N-acetylcysteine for treatment of autism, a case report

    Directory of Open Access Journals (Sweden)

    Ahmad Ghanizadeh

    2012-01-01

    Full Text Available There are a limited number of Food and Drug Administration (FDA-approved medications for the treatment of autism. Meanwhile, oxidative stress and neuroinflammation are supposed to play a causative role in autism. N-acetylcysteine may provide cystine, a precursor for glutathione (GSH, which is an important antioxidant factor in the brain. We here report a child with autism, whose symptoms were markedly decreased after taking oral N-acetylcysteine 800 mg/day, in three divided doses. His social interaction was significantly increased. The score of social impairment on a visual analog scale decreased from 10 to 6 in the two-month trial. The aggressive behaviors decreased from 10 to 3. This case suggests that N-acetylcysteine may decrease some symptoms of autism.

  4. Effect of intravenous N-acetylcysteine infusion on haemostatic parameters in healthy subjects

    DEFF Research Database (Denmark)

    Knudsen, TT; Thorsen, S; Jensen, SA

    2005-01-01

    BACKGROUND AND AIMS: N-acetylcysteine is used to treat paracetamol overdose but depresses the activity of plasma coagulation factors II, VII, and X, which are often used to assess liver injury. The aim of this study was to investigate the effect of N-acetylcysteine on haemostasis in normal...... volunteers. METHODS: Haemostatic parameters in 10 healthy subjects were analysed before and following intravenous infusion of therapeutic doses of N-acetylcysteine, as well as in vitro. RESULTS: N-acetylcysteine induced significant decreases in plasma levels of vitamin K dependent haemostatic proteins...... activity, and free protein S reactivity, respectively. These data suggest that N-acetylcysteine induces protein modifications affecting activity. Five subjects developed an adverse reaction to infusion of N-acetylcysteine and these were associated with a rapid increase in levels of factor VIII and its...

  5. Potentiation of lead-induced cell death in PC12 cells by glutamate: Protection by N-acetylcysteine amide (NACA), a novel thiol antioxidant

    International Nuclear Information System (INIS)

    Penugonda, Suman; Mare, Suneetha; Lutz, P.; Banks, William A.; Ercal, Nuran

    2006-01-01

    Oxidative stress has been implicated as an important factor in many neurological diseases. Oxidative toxicity in a number of these conditions is induced by excessive glutamate release and subsequent glutamatergic neuronal stimulation. This, in turn, causes increased generation of reactive oxygen species (ROS), oxidative stress, excitotoxicity, and neuronal damage. Recent studies indicate that the glutamatergic neurotransmitter system is involved in lead-induced neurotoxicity. Therefore, this study aimed to (1) investigate the potential effects of glutamate on lead-induced PC12 cell death and (2) elucidate whether the novel thiol antioxidant N-acetylcysteine amide (NACA) had any protective abilities against such cytotoxicity. Our results suggest that glutamate (1 mM) potentiates lead-induced cytotoxicity by increased generation of ROS, decreased proliferation (MTS), decreased glutathione (GSH) levels, and depletion of cellular adenosine-triphosphate (ATP). Consistent with its ability to decrease ATP levels and induce cell death, lead also increased caspase-3 activity, an effect potentiated by glutamate. Exposure to glutamate and lead elevated the cellular malondialdehyde (MDA) levels and phospholipase-A 2 (PLA 2 ) activity and diminished the glutamine synthetase (GS) activity. NACA protected PC12 cells from the cytotoxic effects of glutamate plus lead, as evaluated by MTS assay. NACA reduced the decrease in the cellular ATP levels and restored the intracellular GSH levels. The increased levels of ROS and MDA in glutamate-lead treated cells were significantly decreased by NACA. In conclusion, our data showed that glutamate potentiated the effects of lead-induced PC12 cell death by a mechanism involving mitochondrial dysfunction (ATP depletion) and oxidative stress. NACA had a protective role against the combined toxic effects of glutamate and lead by inhibiting lipid peroxidation and scavenging ROS, thus preserving intracellular GSH

  6. The effect of N-acetylcysteine or bupropion on methamphetamine self-administration and methamphetamine-triggered reinstatement of female rats.

    Science.gov (United States)

    Charntikov, Sergios; Pittenger, Steven T; Pudiak, Cindy M; Bevins, Rick A

    2018-03-28

    N-acetylcysteine and bupropion are two promising candidate medications for treatment of substance use disorder. The effects of N-acetylcysteine or bupropion on methamphetamine self-administration of female rats are not well understood. To fill this gap, this study assessed the effects of N-acetylcysteine (0, 30, 60, or 120 mg/kg) and bupropion (0, 10, 30, and 60 mg/kg) on methamphetamine self-administration of female rats across the natural estrous cycle. Following a completed dose-response curve, responding for methamphetamine self-administration was extinguished and the effects of N-acetylcysteine or bupropion on methamphetamine-triggered reinstatement was evaluated in separate experiments. N-acetylcysteine did not decrease responding maintained by methamphetamine or methamphetamine-triggered reinstatement. Bupropion significantly decreased methamphetamine self-administration and methamphetamine-triggered reinstatement in female rats with highest dose (60 mg/kg) also significantly decreasing general chamber activity. In a companion experiment, testing the effect of bupropion on responding maintained by sucrose, we confirmed non-specificity of bupropion's effects as bupropion also decreased responding for sucrose. Considered together, our findings suggest that while N-acetylcysteine has considerable promise for treatment of cocaine dependence it may not generalize to other stimulants like methamphetamine. Furthermore, although bupropion has been shown to effectively decrease methamphetamine self-administration, and presently methamphetamine-triggered reinstatement, its locomotor and reward suppressing effects warrant further investigation including both sexes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Possible involvement of the JAK/STAT signaling pathway in N-acetylcysteine-mediated antidepressant-like effects.

    Science.gov (United States)

    Al-Samhari, Marwa M; Al-Rasheed, Nouf M; Al-Rejaie, Salim; Al-Rasheed, Nawal M; Hasan, Iman H; Mahmoud, Ayman M; Dzimiri, Nduna

    2016-03-01

    Advances in depression research have targeted inflammation and oxidative stress to develop novel types of treatment. The JAK/STAT signaling pathway plays pivotal roles in immune and inflammatory responses. The present study was designed to investigate the effects of N-acetylcysteine, a putative precursor of the antioxidant glutathione, in an animal model of depression, with an emphasis on the JAK/STAT signaling pathway. Fluoxetine, a classical antidepressant drug was also under investigation. Male Wistar rats were subjected to forced swimming test and given N-acetylcysteine and fluoxetine immediately after the pre-test session, 5 h later and 1 h before the test session of the forced swimming test. N-acetylcysteine decreased immobility time (P acetylcysteine produced significant (P acetylcysteine significantly (P acetylcysteine. Therefore, depression research may target the JAK/STAT signaling pathway to provide a novel effective therapy. © 2015 by the Society for Experimental Biology and Medicine.

  8. Evaluation of N-acetylcysteine for the prevention of contrast-induced nephropathy

    Directory of Open Access Journals (Sweden)

    Sara K. Richter

    2015-06-01

    Full Text Available Background: Contrast-induced nephropathy (CIN remains a leading cause of acute renal failure in hospitalized patients. N-Acetylcysteine has been studied previously for the prevention of CIN, resulting in mixed findings. Objective: The objective of this study was to determine the impact of N-acetylcysteine on the development of CIN in order to guide its use at community, teaching hospitals. Methods: Patients admitted between January 1 and December 31, 2011, receiving intravenous radiocontrast dye were included if they were compliant with two or more of the following conditions: baseline serum creatinine >1.2 mg/dL or estimated creatinine clearance <50 mL/min, age ≥75 years, diabetes mellitus, heart failure, or hypertension. The primary outcome was the difference in the proportion of patients in each group (N-acetylcysteine or no N-acetylcysteine who developed CIN, which was defined as a ≥0.5 mg/dL increase in serum creatinine or a ≥25% increase in serum creatinine within 12–96 hours post-exposure to contrast. Results: A total of 302 patients were included, 151 who received N-acetylcysteine and 151 who did not receive N-acetylcysteine. Patients who received N-acetylcysteine had significantly worse renal function at baseline than those who did not receive N-acetylcysteine (mean pre-contrast serum creatinine, 1.41 vs. 0.95 mg/dL, p<0.0001. A lower proportion of patients developing CIN was observed between those who received N-acetylcysteine and those who did not receive N-acetylcysteine (10.2% vs. 21.8%, p=0.0428. Conclusions: The use of N-acetylcysteine was likely associated with a reduced incidence of CIN in patients at risk for CIN development. Based on these results, hospitals may benefit from the development of a protocol to guide the appropriate use of N-acetylcysteine.

  9. Systematic Review of Human and Animal Studies Examining the Efficacy and Safety of N-Acetylcysteine (NAC) and N-Acetylcysteine Amide (NACA) in Traumatic Brain Injury: Impact on Neurofunctional Outcome and Biomarkers of Oxidative Stress and Inflammation.

    Science.gov (United States)

    Bhatti, Junaid; Nascimento, Barto; Akhtar, Umbreen; Rhind, Shawn G; Tien, Homer; Nathens, Avery; da Luz, Luis Teodoro

    2017-01-01

    No new therapies for traumatic brain injury (TBI) have been officially translated into current practice. At the tissue and cellular level, both inflammatory and oxidative processes may be exacerbated post-injury and contribute to further brain damage. N- acetylcysteine (NAC) has the potential to downregulate both processes. This review focuses on the potential neuroprotective utility of NAC and N -acetylcysteine amide (NACA) post-TBI. Medline, Embase, Cochrane Library, and ClinicalTrials.gov were searched up to July 2017. Studies that examined clinical and laboratory effects of NAC and NACA post-TBI in human and animal studies were included. Risk of bias was assessed in human and animal studies according to the design of each study (randomized or not). The primary outcome assessed was the effect of NAC/NACA treatment on functional outcome, while secondary outcomes included the impact on biomarkers of inflammation and oxidation. Due to the clinical and methodological heterogeneity observed across studies, no meta-analyses were conducted. Our analyses revealed only three human trials, including two randomized controlled trials (RCTs) and 20 animal studies conducted using standardized animal models of brain injury. The two RCTs reported improvement in the functional outcome post-NAC/NACA administration. Overall, the evidence from animal studies is more robust and demonstrated substantial improvement of cognition and psychomotor performance following NAC/NACA use. Animal studies also reported significantly more cortical sparing, reduced apoptosis, and lower levels of biomarkers of inflammation and oxidative stress. No safety concerns were reported in any of the studies included in this analysis. Evidence from the animal literature demonstrates a robust association for the prophylactic application of NAC and NACA post-TBI with improved neurofunctional outcomes and downregulation of inflammatory and oxidative stress markers at the tissue level. While a growing body of

  10. Systematic Review of Human and Animal Studies Examining the Efficacy and Safety of N-Acetylcysteine (NAC and N-Acetylcysteine Amide (NACA in Traumatic Brain Injury: Impact on Neurofunctional Outcome and Biomarkers of Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Junaid Bhatti

    2018-01-01

    Full Text Available BackgroundNo new therapies for traumatic brain injury (TBI have been officially translated into current practice. At the tissue and cellular level, both inflammatory and oxidative processes may be exacerbated post-injury and contribute to further brain damage. N-acetylcysteine (NAC has the potential to downregulate both processes. This review focuses on the potential neuroprotective utility of NAC and N-acetylcysteine amide (NACA post-TBI.MethodsMedline, Embase, Cochrane Library, and ClinicalTrials.gov were searched up to July 2017. Studies that examined clinical and laboratory effects of NAC and NACA post-TBI in human and animal studies were included. Risk of bias was assessed in human and animal studies according to the design of each study (randomized or not. The primary outcome assessed was the effect of NAC/NACA treatment on functional outcome, while secondary outcomes included the impact on biomarkers of inflammation and oxidation. Due to the clinical and methodological heterogeneity observed across studies, no meta-analyses were conducted.ResultsOur analyses revealed only three human trials, including two randomized controlled trials (RCTs and 20 animal studies conducted using standardized animal models of brain injury. The two RCTs reported improvement in the functional outcome post-NAC/NACA administration. Overall, the evidence from animal studies is more robust and demonstrated substantial improvement of cognition and psychomotor performance following NAC/NACA use. Animal studies also reported significantly more cortical sparing, reduced apoptosis, and lower levels of biomarkers of inflammation and oxidative stress. No safety concerns were reported in any of the studies included in this analysis.ConclusionEvidence from the animal literature demonstrates a robust association for the prophylactic application of NAC and NACA post-TBI with improved neurofunctional outcomes and downregulation of inflammatory and oxidative stress markers at

  11. Status epilepticus following intravenous N-acetylcysteine therapy.

    Science.gov (United States)

    Hershkovitz, E; Shorer, Z; Levitas, A; Tal, A

    1996-11-01

    A previously healthy 2 1/2-year-old girl developed status epilepticus followed by cortical blindness during intravenous N-acetylcysteine therapy for paracetamol ingestion. The child's vision was almost completely recovered during the 18 months follow-up period. We assume that the cortical blindness was a postictal sequela after prolonged seizure episode, most probably due to respiratory depression induced by N-acetylcysteine.

  12. N-Acetylcysteine Reverses Cocaine Induced Metaplasticity

    Science.gov (United States)

    Moussawi, Khaled; Pacchioni, Alejandra; Moran, Megan; Olive, M. Foster; Gass, Justin T.; Lavin, Antonieta; Kalivas, Peter W

    2009-01-01

    Cocaine addiction is characterized by an impaired ability to develop adaptive behaviors that can compete with cocaine seeking, implying a deficit in the ability to induce plasticity in cortico-accumbens circuitry critical for regulating motivated behavior. RWe found that rats withdrawn from cocaine self-administration had a marked in vivo deficit in the ability to develop long-term potentation (LTP) and depression (LTD) in the nucleus accumbens core subregion following stimulation of prefrontal cortex. N-acetylcysteine treatment prevents relapse in animal models and craving in humans by activating cystine-glutamate exchange and thereby stimulating extrasynaptic metabotropic glutamate receptors (mGluR). N-acetylcysteine treatment restored the ability to induce LTP and LTD by indirectly stimulating mGluR2/3 and mGluR5, respectively. Cocaine self-administration induces metaplasticity that inhibits the further induction of synaptic plasticity, and this impairment can be reversed by N-acetylcysteine, a drug that also prevents relapse. PMID:19136971

  13. Nephroprotective Effects of N-Acetylcysteine Amide against Contrast-Induced Nephropathy through Upregulating Thioredoxin-1, Inhibiting ASK1/p38MAPK Pathway, and Suppressing Oxidative Stress and Apoptosis in Rats

    Directory of Open Access Journals (Sweden)

    Xuezhong Gong

    2016-01-01

    Full Text Available Contrast-induced nephropathy (CIN is a leading cause of hospital-acquired acute kidney injury (AKI due to apoptosis induced in renal tubular cells. Our previous study demonstrated the novel N-acetylcysteine amide (NACA; the amide form of N-acetyl cysteine (NAC prevented renal tubular cells from contrast-induced apoptosis through inhibiting p38 MAPK pathway in vitro. In the present study, we aimed to compare the efficacies of NACA and NAC in preventing CIN in a well-established rat model and investigate whether thioredoxin-1 (Trx1 and apoptosis signal-regulating kinase 1 (ASK1 act as the potential activator for p38 MAPK. NACA significantly attenuated elevations of serum creatinine, blood urea nitrogen, and biomarkers of AKI. At equimolar concentration, NACA was more effective than NAC in reducing histological changes of renal tubular injuries. NACA attenuated activation of p38 MAPK signal, reduced oxidative stress, and diminished apoptosis. Furthermore, we demonstrated that contrast exposure resulted in Trx1 downregulation and increased ASK1/p38 MAPK phosphorylation, which could be reversed by NACA and NAC. To our knowledge, this is the first report that Trx1 and ASK1 are involved in CIN. Our study highlights a renal protective role of NACA against CIN through modulating Trx1 and ASK1/p38 MAPK pathway to result in the inhibition of apoptosis among renal cells.

  14. The protective effect of N-acetylcysteine on oxidative stress in the brain caused by the long-term intake of aspartame by rats.

    Science.gov (United States)

    Finamor, Isabela A; Ourique, Giovana M; Pês, Tanise S; Saccol, Etiane M H; Bressan, Caroline A; Scheid, Taína; Baldisserotto, Bernardo; Llesuy, Susana F; Partata, Wânia A; Pavanato, Maria A

    2014-09-01

    Long-term intake of aspartame at the acceptable daily dose causes oxidative stress in rodent brain mainly due to the dysregulation of glutathione (GSH) homeostasis. N-Acetylcysteine provides the cysteine that is required for the production of GSH, being effective in treating disorders associated with oxidative stress. We investigated the effects of N-acetylcysteine treatment (150 mg kg(-1), i.p.) on oxidative stress biomarkers in rat brain after chronic aspartame administration by gavage (40 mg kg(-1)). N-Acetylcysteine led to a reduction in the thiobarbituric acid reactive substances, lipid hydroperoxides, and carbonyl protein levels, which were increased due to aspartame administration. N-Acetylcysteine also resulted in an elevation of superoxide dismutase, glutathione peroxidase, glutathione reductase activities, as well as non-protein thiols, and total reactive antioxidant potential levels, which were decreased after aspartame exposure. However, N-acetylcysteine was unable to reduce serum glucose levels, which were increased as a result of aspartame administration. Furthermore, catalase and glutathione S-transferase, whose activities were reduced due to aspartame treatment, remained decreased even after N-acetylcysteine exposure. In conclusion, N-acetylcysteine treatment may exert a protective effect against the oxidative damage in the brain, which was caused by the long-term consumption of the acceptable daily dose of aspartame by rats.

  15. N-acetylcysteine for sepsis and systemic inflammatory response in adults.

    Science.gov (United States)

    Szakmany, Tamas; Hauser, Balázs; Radermacher, Peter

    2012-09-12

    Death is common in systemic inflammatory response syndrome (SIRS) or sepsis-induced multisystem organ failure and it has been thought that antioxidants such as N-acetylcysteine could be beneficial. We assessed the clinical effectiveness of intravenous N-acetylcysteine for the treatment of patients with SIRS or sepsis. We searched the following databases: Cochrane Central Register of Clinical Trials (CENTRAL) (The Cochrane Library 2011, Issue 12); MEDLINE (January 1950 to January 2012); EMBASE (January 1980 to January 2012); CINAHL (1982 to January 2012); the NHS Trusts Clinical Trials Register and Current Controlled Trials (www.controlled-trials.com); LILACS; KoreaMED; MEDCARIB; INDMED; PANTELEIMON; Ingenta; ISI Web of Knowledge and the National Trials Register to identify all relevant randomized controlled trials available for review. We included only randomized controlled trials (RCTs) in the meta-analysis. We independently performed study selection, quality assessment and data extraction. We estimated risk ratios (RR) for dichotomous outcomes. We measured statistical heterogeneity using the I(2) statistic. We included 41 fully published studies (2768 patients). Mortality was similar in the N-acetylcysteine group and the placebo group (RR 1.06, 95% CI 0.79 to 1.42; I(2) = 0%). Neither did N-acetylcysteine show any significant effect on length of stay, duration of mechanical ventilation or incidence of new organ failure. Early application of N-acetylcysteine to prevent the development of an oxidato-inflammatory response did not affect the outcome, nor did late application that is after 24 hours of developing symptoms. Late application was associated with cardiovascular instability. Overall, this meta-analysis puts doubt on the safety and utility of intravenous N-acetylcysteine as an adjuvant therapy in SIRS and sepsis. At best, N-acetylcysteine is ineffective in reducing mortality and complications in this patient population. At worst, it can be harmful

  16. A gargantuan acetaminophen level in an acidemic patient treated solely with intravenous N-acetylcysteine.

    Science.gov (United States)

    Zell-Kanter, Michele; Coleman, Patrick; Whiteley, Patrick M; Leikin, Jerrold B

    2013-01-01

    The objective of this report is to describe an acidemic patient with one of the largest recorded acetaminophen ingestions in a patient with acidemia who was treated with supportive care and intravenous (IV) N-acetylcysteine. A 59-year-old female with a history of depression was found comatose. In the Emergency Department, she was obtunded with agonal respirations and immediately intubated. Activated charcoal was given through a nasogastric tube. An initial acetaminophen serum level was 1141 mg/L. The patient was started on IV N-acetylcysteine. The acetaminophen level peaked 2 hours later at 1193 mg/L. She was continued on the IV N-acetylcysteine protocol. The next day her aspartate aminotransferase was 3150 U/L, alanine aminotransferase was 2780 U/L, and creatinine phosphokinase was 16,197 U/L. There was no elevation in bilirubin or international normalized ratio (INR). Transaminase levels decreased on day 3 and normalized by day 4 when she was transferred to a psychiatric unit. Few cases have been reported of strikingly elevated acetaminophen levels in poisoned patients who did not receive hemodialysis. These patients did have increased lactate levels, and some had normal liver function tests. All of these patients received N-acetylcysteine and survived the poisoning without sequelae. This patient in this report was unique in that she had the highest reported serum acetaminophen level with acidosis and was treated successfully with only IV N-acetylcysteine and supportive care.

  17. N-Methylamino Pyrimidyl Amides (MAPA): Highly Reactive, Electronically-Activated Amides in Catalytic N-C(O) Cleavage.

    Science.gov (United States)

    Meng, Guangrong; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2017-09-01

    Despite recent progress in catalytic cross-coupling technologies, the direct activation of N-alkyl-N-aryl amides has been a challenging transformation. Here, we report the first Suzuki cross-coupling of N-methylamino pyrimidyl amides (MAPA) enabled by the controlled n N → π Ar conjugation and the resulting remodeling of the partial double bond character of the amide bond. The new mode of amide activation is suitable for generating acyl-metal intermediates from unactivated primary and secondary amides.

  18. N-Acetylcysteine in the prevention of ototoxicity

    DEFF Research Database (Denmark)

    Tepel, Martin

    2007-01-01

    Prevention of ototoxicity after the administration of aminoglycoside antibiotics has been notably difficult, in particular in patients with chronic kidney disease. Feldman et al. report that oral administration of 600 mg N-acetylcysteine twice daily significantly ameliorates gentamicin-induced ot......-induced ototoxicity in hemodialysis patients. That approach may help to prevent aminoglycoside-induced hearing loss in these high-risk patients in daily practice.......Prevention of ototoxicity after the administration of aminoglycoside antibiotics has been notably difficult, in particular in patients with chronic kidney disease. Feldman et al. report that oral administration of 600 mg N-acetylcysteine twice daily significantly ameliorates gentamicin...

  19. N-acetylcysteine increased rice yield

    OpenAIRE

    NOZULAIDI, MOHD; JAHAN, MD SARWAR; KHAIRI, MOHD; KHANDAKER, MOHAMMAD MONERUZZAMAN; NASHRIYAH, MAT; KHANIF, YUSOP MOHD

    2015-01-01

    N-acetylcysteine (NAC) biosynthesized reduced glutathione (GSH), which maintains redox homeostasis in plants under normal and stressful conditions. To justify the effects of NAC on rice production, we measured yield parameters, chlorophyll (Chl) content, minimum Chl fluorescence (Fo), maximum Chl fluorescence (Fm), quantum yield (Fv/Fm), net photosynthesis rate (Pn), photosynthetically active radiation (PAR), and relative water content (RWC). Four treatments, N1G0 (nitrogen (N) with no NAC), ...

  20. Structural Characterization of N-Alkylated Twisted Amides: Consequences for Amide Bond Resonance and N-C Cleavage.

    Science.gov (United States)

    Hu, Feng; Lalancette, Roger; Szostak, Michal

    2016-04-11

    Herein, we describe the first structural characterization of N-alkylated twisted amides prepared directly by N-alkylation of the corresponding non-planar lactams. This study provides the first experimental evidence that N-alkylation results in a dramatic increase of non-planarity around the amide N-C(O) bond. Moreover, we report a rare example of a molecular wire supported by the same amide C=O-Ag bonds. Reactivity studies demonstrate rapid nucleophilic addition to the N-C(O) moiety of N-alkylated amides, indicating the lack of n(N) to π*(C=O) conjugation. Most crucially, we demonstrate that N-alkylation activates the otherwise unreactive amide bond towards σ N-C cleavage by switchable coordination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Amide-N-oxide heterosynthon and amide dimer homosynthon in cocrystals of carboxamide drugs and pyridine N-oxides.

    Science.gov (United States)

    Babu, N Jagadeesh; Reddy, L Sreenivas; Nangia, Ashwini

    2007-01-01

    The carboxamide-pyridine N-oxide heterosynthon is sustained by syn(amide)N-H...O-(oxide) hydrogen bond and auxiliary (N-oxide)C-H...O(amide) interaction (Reddy, L. S.; Babu, N. J.; Nangia, A. Chem. Commun. 2006, 1369). We evaluate the scope and utility of this heterosynthon in amide-containing molecules and drugs (active pharmaceutical ingredients, APIs) with pyridine N-oxide cocrystal former molecules (CCFs). Out of 10 cocrystals in this study and 7 complexes from previous work, amide-N-oxide heterosynthon is present in 12 structures and amide dimer homosynthon occurs in 5 structures. The amide dimer is favored over amide-N-oxide synthon in cocrystals when there is competition from another H-bonding functional group, e.g., 4-hydroxybenzamide, or because of steric factors, as in carbamazepine API. The molecular organization in carbamazepine.quinoxaline N,N'-dioxide 1:1 cocrystal structure is directed by amide homodimer and anti(amide)N-H...O-(oxide) hydrogen bond. Its X-ray crystal structure matches with the third lowest energy frame calculated in Polymorph Predictor (Cerius(2), COMPASS force field). Apart from generating new and diverse supramolecular structures, hydration is controlled in one substance. 4-Picoline N-oxide deliquesces within a day, but its cocrystal with barbital does not absorb moisture at 50% RH and 30 degrees C up to four weeks. Amide-N-oxide heterosynthon has potential utility in both amide and N-oxide type drug molecules with complementary CCFs. Its occurrence probability in the Cambridge Structural Database is 87% among 27 structures without competing acceptors and 78% in 41 structures containing OH, NH, H(2)O functional groups.

  2. Effect of N-acetylcysteine on the human nasal ciliary activity in vitro

    DEFF Research Database (Denmark)

    Stafanger, G; Bisgaard, H; Pedersen, M

    1987-01-01

    N-acetylcysteine (NAC) is widely used as a mucolytic agent, but the clinical and pharmacological effects of NAC are still unclear. It has recently been claimed in animal studies that NAC will stimulate ciliary beating frequency at low concentrations, while inhibiting beating at higher concentrati......N-acetylcysteine (NAC) is widely used as a mucolytic agent, but the clinical and pharmacological effects of NAC are still unclear. It has recently been claimed in animal studies that NAC will stimulate ciliary beating frequency at low concentrations, while inhibiting beating at higher...... concentrations. Using a microphoto-oscillographic method combined with microperfusion technique, we studied the direct effect of NAC on human nasal cilia. NAC caused a direct dose- and time-related decrease in ciliary beating frequency, which was detectable at 2 mg/ml and reached statistically significant levels...

  3. N-acetylcysteine enhances nitroglycerin-induced headache and cranial arterial responses

    DEFF Research Database (Denmark)

    Iversen, Helle Klingenberg

    1992-01-01

    The effects of N-acetylcysteine, a sulfhydryl group donor, on nitroglycerin-induced headache and dilation of temporal and radial arteries were investigated in 11 healthy volunteers. Nitroglycerin, 0.06 microgram/kg/min, was infused for 20 minutes immediately after and 120 minutes after pretreatment...... response (median headache score, 3 versus 1), and the headache retained its vascular characteristics. Temporal artery dilation was also potentiated by N-acetylcysteine, 139% +/- 3% versus 127% +/- 3% of baseline, whereas the radial artery was unaffected. The potentiation was most pronounced after the first...... nitroglycerin infusion (12% versus 4.5% compared with placebo). A prolonged dilation of the temporal artery was observed only after the first nitroglycerin infusion, when high levels of N-acetylcysteine were present....

  4. Recommendations for the paracetamol treatment nomogram and side effects of N-acetylcysteine

    NARCIS (Netherlands)

    Koppen, A.; van Riel, A.; de Vries, I.; Meulenbelt, J.

    2014-01-01

    Treatment of paracetamol intoxication consists of administration of N-acetylcysteine, preferably shortly after paracetamol ingestion. In most countries, the decision to treat patients with N-acetylcysteine depends on the paracetamol plasma concentration. In the literature, different arguments are

  5. N-acetylcysteine prevents ketamine-induced adverse effects on development, heart rate and monoaminergic neurons in zebrafish.

    Science.gov (United States)

    Robinson, Bonnie; Dumas, Melanie; Gu, Qiang; Kanungo, Jyotshna

    2018-06-08

    N-acetylcysteine, a precursor molecule of glutathione, is an antioxidant. Ketamine, a pediatric anesthetic, has been implicated in cardiotoxicity and neurotoxicity including modulation of monoaminergic systems in mammals and zebrafish. Here, we show that N-acetylcysteine prevents ketamine's adverse effects on development and monoaminergic neurons in zebrafish embryos. The effects of ketamine and N-acetylcysteine alone or in combination were measured on the heart rate, body length, brain serotonergic neurons and tyrosine hydroxylase-immunoreactive (TH-IR) neurons. In the absence of N-acetylcysteine, a concentration of ketamine that produces an internal embryo exposure level comparable to human anesthetic plasma concentrations significantly reduced heart rate and body length and those effects were prevented by N-acetylcysteine co-treatment. Ketamine also reduced the areas occupied by serotonergic neurons in the brain, whereas N-acetylcysteine co-exposure counteracted this effect. TH-IR neurons in the embryo brain and TH-IR cells in the trunk were significantly reduced with ketamine treatment, but not in the presence of N-acetylcysteine. In our continued search for compounds that can prevent ketamine toxicity, this study using specific endpoints of developmental toxicity, cardiotoxicity and neurotoxicity, demonstrates protective effects of N-acetylcysteine against ketamine's adverse effects. This is the first study that shows the protective effects of N-acetylcysteine on ketamine-induced developmental defects of monoaminergic neurons as observed in a whole organism. Published by Elsevier B.V.

  6. Structures of Highly Twisted Amides Relevant to Amide N-C Cross-Coupling: Evidence for Ground-State Amide Destabilization.

    Science.gov (United States)

    Pace, Vittorio; Holzer, Wolfgang; Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2016-10-04

    Herein, we show that acyclic amides that have recently enabled a series of elusive transition-metal-catalyzed N-C activation/cross-coupling reactions are highly twisted around the N-C(O) axis by a new destabilization mechanism of the amide bond. A unique effect of the N-glutarimide substituent, leading to uniformly high twist (ca. 90°) irrespective of the steric effect at the carbon side of the amide bond has been found. This represents the first example of a twisted amide that does not bear significant steric hindrance at the α-carbon atom. The (15) N NMR data show linear correlations between electron density at nitrogen and amide bond twist. This study strongly supports the concept of amide bond ground-state twist as a blueprint for activation of amides toward N-C bond cleavage. The new mechanism offers considerable opportunities for organic synthesis and biological processes involving non-planar amide bonds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. N-Acetylcysteine in depressive symptoms and functionality: a systematic review and meta-analysis.

    Science.gov (United States)

    Fernandes, Brisa S; Dean, Olivia M; Dodd, Seetal; Malhi, Gin S; Berk, Michael

    2016-04-01

    To assess the utility of N-acetylcysteine administration for depressive symptoms in subjects with psychiatric conditions using a systematic review and meta-analysis. A computerized literature search was conducted in MEDLINE, Embase, the Cochrane Library, SciELO, PsycINFO, Scopus, and Web of Knowledge. No year or country restrictions were used. The Boolean terms used for the electronic database search were (NAC OR N-acetylcysteine OR acetylcysteine) AND (depression OR depressive OR depressed) AND (trial). The last search was performed in November 2014. The literature was searched for double-blind, randomized, placebo-controlled trials using N-acetylcysteine for depressive symptoms regardless of the main psychiatric condition. Using keywords and cross-referenced bibliographies, 38 studies were identified and examined in depth. Of those, 33 articles were rejected because inclusion criteria were not met. Finally, 5 studies were included. Data were extracted independently by 2 investigators. The primary outcome measure was change in depressive symptoms. Functionality, quality of life, and manic and anxiety symptoms were also examined. A full review and meta-analysis were performed. Standardized mean differences (SMDs) and odds ratios (ORs) with 95% CIs were calculated. Five studies fulfilled our inclusion criteria for the meta-analysis, providing data on 574 participants, of whom 291 were randomized to receive N-acetylcysteine and 283 to placebo. The follow-up varied from 12 to 24 weeks. Two studies included subjects with bipolar disorder and current depressive symptoms, 1 included subjects with MDD in a current depressive episode, and 2 included subjects with depressive symptoms in the context of other psychiatric conditions (1 trichotillomania and 1 heavy smoking). Treatment with N-acetylcysteine improved depressive symptoms as assessed by Montgomery-Asberg Depression Rating Scale and Hamilton Depression Rating Scale when compared to placebo (SMD = 0.37; 95% CI = 0

  8. Synthesis of 3H-3-azido-salicyl-N-(n-decyl) amide

    International Nuclear Information System (INIS)

    Lu Bin; Xu Jianxing; Chen Shizhi

    2000-01-01

    A novel method for the synthesis of molecular probe of ubiquinone-binding protein is described. With 3-nitrosalicylic acid and decylamine as initial compounds and under the existence of DCC, the 3-nitro-salicyl-N-(n-decyl)amide is synthesized at room temperature. Then, 3-nitro-salicyl-N-(n-decyl)amide is reduced by hydrogen with 5 % Pd/C as catalyst to form 3-amino-salicyl-N-(n-decyl)amide which is exchanged with tritium to be 3 H-3-amino-salicyl-N-(n-decyl)amide. At the temperature below 5 degree C, 3 H-3-amino-salicyl-N-(n-decyl)amide reacts with NaNO 2 and HCl, and the 3-diazo-salicyl-N-(n-decyl)amide is formed in an ice salt bath. As soon as the reaction is completed, NaN 3 is added to the mixture and stirred for 3 h at the temperature between 0 - 5 degree C and in the dark, the molecular probe of studying ubiquinone-binding protein, i. e., 3 H-3-azido-salicyl-N-(n-decyl)amide is produced

  9. Effect of N-Acetylcysteine in Protecting from Simultaneous Noise and Carbon Monoxide Induced Hair Cell Loss

    Directory of Open Access Journals (Sweden)

    Akram Pourbakht

    2011-06-01

    Full Text Available Background and Aim: N-acetylcysteine, a glutathione precursor and reactive oxygen species scavenger, is reported to be effective in reducing noise-induced hearing loss. Many workers in industry are exposed simultaneously to noise and chemical pollutants such as carbon monoxide. We investigated effectiveness of N-acetylcysteine in protecting the cochlea from simultaneous noise and carbon monoxide damages.Methods: Twelve rabbits were exposed simeltaneously to 100 dB sound pressure level of broad band noise and carbon monoxide 8 hours a day for 5 days. One hour before exposure, experimental group received 325 mg/kg of N-acetylcysteine while normal saline was administered for the control group. The protective effect of N-acetylcysteine was evaluated 3 weeks after exposure by histological assessment of the hair cells.Results: Simultaneous exposure to noise and carbon monoxide resulted in a considerable damage to the outer hair cells; however, the inner hair cells and the pillar cells remained intact. Use of N-acetylcysteine in the experimental group significantly reduced the extent of outer hair cell loss.Conclusion: N-acetylcysteine attenuates simultaneous noise and carbon monoxide induced hair cell damage in rabbits.

  10. Ground-State Distortion in N-Acyl-tert-butyl-carbamates (Boc) and N-Acyl-tosylamides (Ts): Twisted Amides of Relevance to Amide N-C Cross-Coupling.

    Science.gov (United States)

    Szostak, Roman; Shi, Shicheng; Meng, Guangrong; Lalancette, Roger; Szostak, Michal

    2016-09-02

    Amide N-C(O) bonds are generally unreactive in cross-coupling reactions employing low-valent transition metals due to nN → π*C═O resonance. Herein we demonstrate that N-acyl-tert-butyl-carbamates (Boc) and N-acyl-tosylamides (Ts), two classes of acyclic amides that have recently enabled the development of elusive amide bond N-C cross-coupling reactions with organometallic reagents, are intrinsically twisted around the N-C(O) axis. The data have important implications for the design of new amide cross-coupling reactions with the N-C(O) amide bond cleavage as a key step.

  11. Attenuation of phosphamidon-induced oxidative stress and immune dysfunction in rats treated with N-acetylcysteine

    Directory of Open Access Journals (Sweden)

    S.G. Suke

    2008-09-01

    Full Text Available The effect of N-acetylcysteine, a thiolic antioxidant, on attenuation of phosphamidon-induced oxidative stress and immune dysfunction was evaluated in adult male Wistar rats weighing 200-250 g. Rats were divided into four groups, 8 animals/group, and treated with phosphamidon, N-acetylcysteine or the combination of both for 28 days. Oral administration of phosphamidon (1.74 mg/kg, an organophosphate insecticide, increased serum malondialdehyde (3.83 ± 0.18 vs 2.91 ± 0.24 nmol/mL; P < 0.05 and decreased erythrocyte superoxide dismutase (567.8 ± 24.36 vs 749.16 ± 102.61 U/gHb; P < 0.05, catalase activity (1.86 ± 0.18 vs 2.43 ± 0.08 U/gHb; P < 0.05 and whole blood glutathione levels (1.25 ± 0.21 vs 2.28 ± 0.08 mg/gHb; P < 0.05 showing phosphamidon-induced oxidative stress. Phosphamidon exposure markedly suppressed humoral immune response as assessed by antibody titer to ovalbumin (4.71 ± 0.51 vs 8.00 ± 0.12 -log2; P < 0.05, and cell-mediated immune response as assessed by leukocyte migration inhibition (25.24 ± 1.04 vs 70.8 ± 1.09%; P < 0.05 and macrophage migration inhibition (20.38 ± 0.99 vs 67.16 ± 5.30%; P < 0.05 response. Phosphamidon exposure decreased IFN-у levels (40.7 ± 3.21 vs 55.84 ± 3.02 pg/mL; P < 0.05 suggesting a profound effect of phosphamidon on cell-mediated immune response. A phosphamidon-induced increase in TNF-α level (64.19 ± 6.0 vs 23.16 ± 4.0 pg/mL; P < 0.05 suggests a contributory role of immunocytes in oxidative stress. Co-administration of N-acetylcysteine (3.5 mmol/kg, orally with phosphamidon attenuated the adverse effects of phosphamidon. These findings suggest that oral N-acetylcysteine treatment exerts protective effect and attenuates free radical injury and immune dysfunction caused by subchronic phosphamidon exposure.

  12. N-Acetylcysteine reduces cocaine-cue attentional bias and differentially alters cocaine self-administration based on dosing order.

    Science.gov (United States)

    Levi Bolin, B; Alcorn, Joseph L; Lile, Joshua A; Rush, Craig R; Rayapati, Abner O; Hays, Lon R; Stoops, William W

    2017-09-01

    Disrupted glutamate homeostasis is thought to contribute to cocaine-use disorder, in particular, by enhancing the incentive salience of cocaine stimuli. n-Acetylcysteine might be useful in cocaine-use disorder by normalizing glutamate function. In prior studies, n-acetylcysteine blocked the reinstatement of cocaine seeking in laboratory animals and reduced the salience of cocaine stimuli and delayed relapse in humans. The present study determined the ability of maintenance on n-acetylcysteine (0 or 2400mg/day, counterbalanced) to reduce the incentive salience of cocaine stimuli, as measured by an attentional bias task, and attenuate intranasal cocaine self-administration (0, 30, and 60mg). Fourteen individuals (N=14) who met criteria for cocaine abuse or dependence completed this within-subjects, double-blind, crossover-design study. Cocaine-cue attentional bias was greatest following administration of 0mg cocaine during placebo maintenance, and was attenuated by n-acetylcysteine. Cocaine maintained responding during placebo and n-acetylcysteine maintenance, but the reinforcing effects of cocaine were significantly attenuated across both maintenance conditions in participants maintained on n-acetylcysteine first compared to participants maintained on placebo first. These results collectively suggest that a reduction in the incentive salience of cocaine-related stimuli during n-acetylcysteine maintenance may be accompanied by reductions in cocaine self-administration. These results are in agreement with, and link, prior preclinical and clinical trial results suggesting that n-acetylcysteine might be useful for preventing cocaine relapse by attenuating the incentive salience of cocaine cues. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. N-acetylcysteine, a glutamate modulator, in the treatment of trichotillomania: a double-blind, placebo-controlled study.

    Science.gov (United States)

    Grant, Jon E; Odlaug, Brian L; Kim, Suck Won

    2009-07-01

    Trichotillomania is characterized by repetitive hair pulling that causes noticeable hair loss. Data on the pharmacologic treatment of trichotillomania are limited to conflicting studies of serotonergic medications. N-acetylcysteine, an amino acid, seems to restore the extracellular glutamate concentration in the nucleus accumbens and, therefore, offers promise in the reduction of compulsive behavior. To determine the efficacy and tolerability of N-acetylcysteine in adults with trichotillomania. Twelve-week, double-blind, placebo-controlled trial. Ambulatory care center. Fifty individuals with trichotillomania (45 women and 5 men; mean [SD] age, 34.3 [12.1] years). N-acetylcysteine (dosing range, 1200-2400 mg/d) or placebo was administered for 12 weeks. Patients were assessed using the Massachusetts General Hospital Hair Pulling Scale, the Clinical Global Impression scale, the Psychiatric Institute Trichotillomania Scale, and measures of depression, anxiety, and psychosocial functioning. Outcomes were examined using analysis of variance modeling analyses and linear regression in an intention-to-treat population. Patients assigned to receive N-acetylcysteine had significantly greater reductions in hair-pulling symptoms as measured using the Massachusetts General Hospital Hair Pulling Scale (P acetylcysteine use compared with 16% taking placebo (P = .003). Significant improvement was initially noted after 9 weeks of treatment. This study, the first to our knowledge that examines the efficacy of a glutamatergic agent in the treatment of trichotillomania, found that N-acetylcysteine demonstrated statistically significant reductions in trichotillomania symptoms. No adverse events occurred in the N-acetylcysteine group, and N-acetylcysteine was well tolerated. Pharmacologic modulation of the glutamate system may prove to be useful in the control of a range of compulsive behaviors. clinicaltrials.gov Identifier: NCT00354770.

  14. The Effect of N-acetylcysteine on postoperative pain after laparoscopic cholecystectomy: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Shahram Seyfi

    2017-05-01

    Full Text Available Background: Postoperative pain is one of the most common complications following laparoscopic cholecystectomy. Because the majority of the analgesic drugs including opioids and nonsteroidal anti-inflammatory drugs have many side effects, using drugs with lesser side effects is beneficial. The aim of this study was to evaluate the effect of N-acetylcysteine on the pain after laparoscopic cholecystectomy. Methods: In a randomized clinical trial, in two university-affiliated teaching hospitals in Babol City (Shahid Beheshti and Shahid Yahyanezhad Hospitals, Iran, from August 2015 to March 2015, a total number of 38 patients with age of 20-50 years, who were candidates for laparoscopic cholecystectomy with American Society of Anesthesiologists Class-I were chosen and randomly assigned into two groups. The night before operation, 1200 mg oral N-acetylcysteine is given to intervention group. Also, they received 600 mg IV N-acetylcysteine in the morning before operation. In the control group, two vitamin C effervescent tablets as placebo were given at night before operation and 3 ml sterile water as placebo was injected in the morning of operation. Amount of pethidine consumption and the changes in hemodynamic in two groups was recorded and analyzed at 24 hours after operation. Results: The average of patients age was not significant different between two groups (P=0.23. Average of pain score in placebo group was 3.5 and in N-acetylcysteine group was 2.7 that it was not significant difference between two groups (P=0.06. Average of pethidine consumption in placebo group was 52 mg and in N-acetylcysteine group was 29 mg in 24 hours, that the difference was statistically significant between two groups (P=0.01 Conclusion: As the results of the study, it can be concluded that the anti-inflammatory effects N- acetylcysteine can inhibit the function of lipoproteins and prostaglandins, reduced glutathione peroxidase and dismutase has been restored and can be

  15. Determination of N-acetylcysteine via its effect on the aggregation of gold nanoparticles

    International Nuclear Information System (INIS)

    Sierra-Rodero, M.; Fernandez-Romero, J.M.; Gomez-Hens, A.

    2011-01-01

    The effect of thiol compounds on the kinetics of the aggregation of gold nanoparticles in the presence of the cationic surfactant cetyltrimethyl ammonium bromide has been studied. It was applied to the determination of N-acetylcysteine using the stopped-flow mixing technique along with light scattering detection. The signal obtained was measured after about 5 s, and gave the analytical information for a calibration graph in the concentration range from 2.9 to 60 μmol L -1 of N-acetylcysteine, and a detection limit of 0.87 μmol L- 1. The effect of other thiols on the system is also described. The relative standard deviation ranges between 0.6% and 3.5%. The method was applied to the determination of N-acetylcysteine in several pharmaceutical samples with recoveries that range from 97.7% to 101.1% (author)

  16. Systematic review of N-acetylcysteine in cystic fibrosis

    NARCIS (Netherlands)

    Duijvestijn, YCM; Brand, PLP

    A systematic review was carried out to evaluate whether the use of N-acetylcysteine to improve lung function in patients with cystic fibrosis is supported by published evidence. Medline and the Cochrane Library were searched and the reference lists of all retrieved papers and of relevant chapters of

  17. An Efficient Amide-Aldehyde-Alkene Condensation: Synthesis for the N-Allyl Amides.

    Science.gov (United States)

    Quan, Zheng-Jun; Wang, Xi-Cun

    2016-02-01

    The allylamine skeleton represents a significant class of biologically active nitrogen compounds that are found in various natural products and drugs with well-recognized pharmacological properties. In this personal account, we will briefly discuss the synthesis of allylamine skeletons. We will focus on showing a general protocol for Lewis acid-catalyzed N-allylation of electron-poor N-heterocyclic amides and sulfonamide via an amide-aldehyde-alkene condensation reaction. The substrate scope with respect to N-heterocyclic amides, aldehydes, and alkenes will be discussed. This method is also capable of preparing the Naftifine motif from N-methyl-1-naphthamide or methyl (naphthalene-1-ylmethyl)carbamate, with paraformaldehyde and styrene in a one-pot manner. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A Double-Blind, Randomized, Controlled Pilot Trial of N-Acetylcysteine in Veterans With Posttraumatic Stress Disorder and Substance Use Disorders.

    Science.gov (United States)

    Back, Sudie E; McCauley, Jenna L; Korte, Kristina J; Gros, Daniel F; Leavitt, Virginia; Gray, Kevin M; Hamner, Mark B; DeSantis, Stacia M; Malcolm, Robert; Brady, Kathleen T; Kalivas, Peter W

    2016-11-01

    The antioxidant N-acetylcysteine is being increasingly investigated as a therapeutic agent in the treatment of substance use disorders (SUDs). This study explored the efficacy of N-acetylcysteine in the treatment of posttraumatic stress disorder (PTSD), which frequently co-occurs with SUD and shares impaired prefrontal cortex regulation of basal ganglia circuitry, in particular at glutamate synapses in the nucleus accumbens. Veterans with PTSD and SUD per DSM-IV criteria (N = 35) were randomly assigned to receive a double-blind, 8-week course of N-acetylcysteine (2,400 mg/d) or placebo plus cognitive-behavioral therapy for SUD (between March 2013 and April 2014). Primary outcome measures included PTSD symptoms (Clinician-Administered PTSD Scale, PTSD Checklist-Military) and craving (Visual Analog Scale). Substance use and depression were also assessed. Participants treated with N-acetylcysteine compared to placebo evidenced significant improvements in PTSD symptoms, craving, and depression (β values acetylcysteine was well tolerated, and retention was high. This is the first randomized controlled trial to investigate N-acetylcysteine as a pharmacologic treatment for PTSD and SUD. Although preliminary, the findings provide initial support for the use of N-acetylcysteine in combination with psychotherapy among individuals with co-occurring PTSD and SUD. ClinicalTrials.gov identifier: NCT02499029. © Copyright 2016 Physicians Postgraduate Press, Inc.

  19. Conversion of Amides to Esters by the Nickel-Catalyzed Activation of Amide C–N Bonds

    Science.gov (United States)

    Hie, Liana; Fine Nathel, Noah F.; Shah, Tejas K.; Baker, Emma L.; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K. N.; Garg, Neil K.

    2015-01-01

    Amides are common functional groups that have been well studied for more than a century.1 They serve as the key building blocks of proteins and are present in an broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to resonance stability of the amide bond.1,2 Whereas Nature can easily cleave amides through the action of enzymes, such as proteases,3 the ability to selectively break the C–N bond of an amide using synthetic chemistry is quite difficult. In this manuscript, we demonstrate that amide C–N bonds can be activated and cleaved using nickel catalysts. We have used this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory (DFT) calculations provide insight into the thermodynamics and catalytic cycle of this unusual transformation. Our results provide a new strategy to harness amide functional groups as synthons and are expected fuel the further use of amides for the construction of carbon–heteroatom or carbon–carbon bonds using non-precious metal catalysis. PMID:26200342

  20. Chemoselective reductive nucleophilic addition to tertiary amides, secondary amides, and N-methoxyamides.

    Science.gov (United States)

    Nakajima, Minami; Oda, Yukiko; Wada, Takamasa; Minamikawa, Ryo; Shirokane, Kenji; Sato, Takaaki; Chida, Noritaka

    2014-12-22

    As the complexity of targeted molecules increases in modern organic synthesis, chemoselectivity is recognized as an important factor in the development of new methodologies. Chemoselective nucleophilic addition to amide carbonyl centers is a challenge because classical methods require harsh reaction conditions to overcome the poor electrophilicity of the amide carbonyl group. We have successfully developed a reductive nucleophilic addition of mild nucleophiles to tertiary amides, secondary amides, and N-methoxyamides that uses the Schwartz reagent [Cp2 ZrHCl]. The reaction took place in a highly chemoselective fashion in the presence of a variety of sensitive functional groups, such as methyl esters, which conventionally require protection prior to nucleophilic addition. The reaction will be applicable to the concise synthesis of complex natural alkaloids from readily available amide groups. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The effect of N-acetylcysteine on cardiac contractility to dobutamine in rats with streptozotocin-induced diabetes.

    Science.gov (United States)

    Cheng, Xing; Xia, Zhengyuan; Leo, Joyce M; Pang, Catherine C Y

    2005-09-05

    We examined if myocardial depression at the acute phase of diabetes (3 weeks after injection of streptozotocin, 60 mg/kg i.v.) is due to activation of inducible nitric oxide synthase and production of peroxynitrite, and if treatment with N-acetylcysteine (1.2 g/day/kg for 3 weeks, antioxidant) improves cardiac function. Four groups of rats were used: control, N-acetylcysteine-treated control, diabetic and N-acetylcysteine-treated diabetic. Pentobarbital-anaesthetized diabetic rats, relative to the controls, had reduced left ventricular contractility to dobutamine (1-57 microg/min/kg). The diabetic rats also had increased myocardial levels of thiobarbituric acid reactive substances, immunostaining of inducible nitric oxide synthase and nitrotyrosine, and similar baseline 15-F2t-isoprostane. N-acetylcysteine did not affect responses in the control rats; but increased cardiac contractility to dobutamine, reduced myocardial immunostaining of inducible nitric oxide synthase and nitrotyrosine and level of 15-F2t-isoprostane, and increased cardiac contractility to dobutamine in the diabetic rats. Antioxidant supplementation in diabetes reduces oxidative stress and improves cardiac function.

  2. Antioxidant treatment with N-acetylcysteine during adult respiratory distress syndrome

    DEFF Research Database (Denmark)

    Jepsen, S; Herlevsen, P; Knudsen, P

    1992-01-01

    OBJECTIVE: To examine whether the antioxidant N-acetylcysteine could ameliorate the course of the adult respiratory distress syndrome (ARDS) in man. DESIGN: Randomized, double-blind, placebo-controlled study. SETTING: Medical and surgical ICU in a regional hospital. PATIENTS: Sixty-six ICU patients...

  3. Twisted Amides: From Obscurity to Broadly Useful Transition-Metal-Catalyzed Reactions by N-C Amide Bond Activation.

    Science.gov (United States)

    Liu, Chengwei; Szostak, Michal

    2017-05-29

    The concept of using amide bond distortion to modulate amidic resonance has been known for more than 75 years. Two classic twisted amides (bridged lactams) ingeniously designed and synthesized by Kirby and Stoltz to feature fully perpendicular amide bonds, and as a consequence emanate amino-ketone-like reactivity, are now routinely recognized in all organic chemistry textbooks. However, only recently the use of amide bond twist (distortion) has advanced to the general organic chemistry mainstream enabling a host of highly attractive N-C amide bond cross-coupling reactions of broad synthetic relevance. In this Minireview, we discuss recent progress in this area and present a detailed overview of the prominent role of amide bond destabilization as a driving force in the development of transition-metal-catalyzed cross-coupling reactions by N-C bond activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Study on selective separation of uranium(VI) by new N,N-dialkyl carboxy-amides

    International Nuclear Information System (INIS)

    Suzuki, Shinichi; Sugo, Yumi; Kimura, Takaumi; Yaita, Tsuyoshi

    2007-01-01

    The Feasibility study (FS) on commercialized FR cycle systems has been carried out in Japan. In this Feasibility study, 'Advanced Aqueous' reprocessing was designed as a new reprocessing concept to enhance nuclear non-proliferation by recycling U, Pu and minor actinides (MA) with some fission products (FP). The crystallization and U(VI)/TRU(transuranics) co-extraction technique have been selected as candidate technique in the 'Advanced Aqueous' reprocessing. In JAEA, the result of Feasibility study was received and Fast Reactor Cycle Technology Development Project (FaCT) was started. In the nuclear spent fuel reprocessing, FBR spent fuels will coexist with LWR spent fuels for several decades until FBR cycle begins to operate. For the treatment of LWR spent fuels, high decontamination factor for FP was required for U(VI) storage, and solvent extraction technique was selected in the nuclear fuel treatment. In our laboratory, N,N-di-alkyl carboxy-amides have been developed as extractant based on solvent extraction technique for one of a back-up technology of 'Advanced Aqueous' reprocessing in FBR spent fuel treatments. N,N-di-alkyl carboxy-amides were noted as one of the alternative extractant of tri-butylphosphate (TBP) in the field of nuclear fuel reprocessing. Extraction behavior of U(VI) and Pu(IV) with N,N-di-alkyl carboxy-amides was almost similar to those with TBP. N,N-di-alkyl carboxy-amides have some advantages, namely, their complete incinerability (CHON principle) and high stability for hydrolysis and radiolysis. Their main degradation products are carboxylic acids and secondary amines which hardly affect the separation of U(VI) and Pu(IV) from fission products. Further, the synthesis of N,N-di-alkyl carboxy-amides was relatively easy with reaction of carboxylic chloride and secondary amine. The main purpose of this solvent extraction technique using N,N-di-alkyl carboxy-amides is selective separation of Uranium(VI) with branched N,N-di-alkyl carboxy-amides

  5. 40 CFR 721.10191 - Amides, coco, N-[3-(dibutylamino)propyl].

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, coco, N-[3-(dibutylamino... Specific Chemical Substances § 721.10191 Amides, coco, N-[3-(dibutylamino)propyl]. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, coco...

  6. Effects of N-Acetylcysteine Addition to University of Wisconsin Solution on the Rate of Ischemia-Reperfusion Injury in Adult Orthotopic Liver Transplant.

    Science.gov (United States)

    Aliakbarian, Mohsen; Nikeghbalian, Saman; Ghaffaripour, Sina; Bahreini, Amin; Shafiee, Mohammad; Rashidi, Mohammad; Rajabnejad, Yaser

    2017-08-01

    One of the main concerns in liver transplant is the prolonged ischemia time, which may lead to primary graft nonfunction or delayed function. N-acetylcysteine is known as a hepato-protective agent in different studies, which may improve human hepatocyte viability in steatotic donor livers. This study investigated whether N-acetylcysteine can decrease the rate of ischemia-reperfusion syndrome and improve short-term outcome in liver transplant recipients. This was a double-blind, randomized, control clinical trial of 115 patients. Between April 2012 and January 2013, patients with orthotopic liver transplant were randomly divided into 2 groups; in 49 cases N-acetylcysteine was added to University of Wisconsin solution as the preservative liquid (experimental group), and in 66 cases standard University of Wisconsin solution was used (control group). We compared postreperfusion hypotension, inotrope requirement before and after portal reperfusion, intermittent arterial blood gas analysis and potassium measurement, pathological review of transplanted liver, in-hospital complications, morbidity, and mortality. There was no significant difference between the groups regarding time to hepatic artery reperfusion, hospital stay, vascular complications, inotrope requirement before and after portal declamping, and blood gas analysis. Hypotension after portal reperfusion was significantly more common in experimental group compared with control group (P = .005). Retransplant and in-hospital mortality were comparable between the groups. Preservation of the liver inside Univer-sity of Wisconsin solution plus N-acetylcysteine did not change the rate of ischemia reperfusion injury and short-term outcome in liver transplant recipients.

  7. A Convenient Approach to Synthesizing Peptide C-Terminal N-Alkyl Amides

    Science.gov (United States)

    Fang, Wei-Jie; Yakovleva, Tatyana; Aldrich, Jane V.

    2014-01-01

    Peptide C-terminal N-alkyl amides have gained more attention over the past decade due to their biological properties, including improved pharmacokinetic and pharmacodynamic profiles. However, the synthesis of this type of peptide on solid phase by current available methods can be challenging. Here we report a convenient method to synthesize peptide C-terminal N-alkyl amides using the well-known Fukuyama N-alkylation reaction on a standard resin commonly used for the synthesis of peptide C-terminal primary amides, the PAL-PEG-PS (Peptide Amide Linker-polyethylene glycol-polystyrene) resin. The alkylation and oNBS deprotection were conducted under basic conditions and were therefore compatible with this acid labile resin. The alkylation reaction was very efficient on this resin with a number of different alkyl iodides or bromides, and the synthesis of model enkephalin N-alkyl amide analogs using this method gave consistently high yields and purities, demonstrating the applicability of this methodology. The synthesis of N-alkyl amides was more difficult on a Rink amide resin, especially the coupling of the first amino acid to the N-alkyl amine, resulting in lower yields for loading the first amino acid onto the resin. This method can be widely applied in the synthesis of peptide N-alkyl amides. PMID:22252422

  8. In vitro evaluation of N-methyl amide tripeptidomimetics as substrates for the human intestinal di-/tri-peptide transporter hPEPT1

    DEFF Research Database (Denmark)

    Andersen, Rikke; Nielsen, Carsten Uhd; Begtrup, Mikael

    2006-01-01

    application of N-methyl amide bioisosteres as peptide bond replacements in tripeptides in order to decrease degradation by peptidases and yet retain affinity for and transport via hPEPT1. Seven structurally diverse N-methyl amide tripeptidomimetics were selected based on a principal component analysis...... of structural properties of 6859 N-methyl amide tripeptidomimetics. In vitro extracellular degradation of the selected tripeptidomimetics as well as affinity for and transepithelial transport via hPEPT1 were investigated in Caco-2 cells. Decreased apparent degradation was observed for all tripeptidomimetics...... to be substrates for hPEPT1 than tripeptidomimetics with charged side chains. The results of the present study indicate that the N-methyl amide peptide bond replacement approach for increasing bioavailability of tripeptidomimetic drug candidates is not generally applicable to all tripeptides. Nevertheless...

  9. Discovery of novel N-(5-(arylcarbonyl)thiazol-2-yl)amides and N-(5-(arylcarbonyl)thiophen-2-yl)amides as potent RORγt inhibitors.

    Science.gov (United States)

    Wang, Yonghui; Cai, Wei; Zhang, Guifeng; Yang, Ting; Liu, Qian; Cheng, Yaobang; Zhou, Ling; Ma, Yingli; Cheng, Ziqiang; Lu, Sijie; Zhao, Yong-Gang; Zhang, Wei; Xiang, Zhijun; Wang, Shuai; Yang, Liuqing; Wu, Qianqian; Orband-Miller, Lisa A; Xu, Yan; Zhang, Jing; Gao, Ruina; Huxdorf, Melanie; Xiang, Jia-Ning; Zhong, Zhong; Elliott, John D; Leung, Stewart; Lin, Xichen

    2014-01-15

    Novel series of N-(5-(arylcarbonyl)thiazol-2-yl)amides and N-(5-(arylcarbonyl)thiophen-2-yl)amides were discovered as potent retinoic acid receptor-related orphan receptor-gamma-t (RORγt) inhibitors. SAR studies of the RORγt HTS hit 6a led to identification of thiazole ketone amide 8h and thiophene ketone amide 9g with high binding affinity and inhibitory activity of Th17 cell differentiation. Compound 8h showed in vivo efficacy in both mouse experimental autoimmune encephalomyelitis (EAE) and collagen induced arthritis (CIA) models via oral administration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. N-Acetylcysteine's Role in Sepsis and Potential Benefit in Patients With Microcirculatory Derangements.

    Science.gov (United States)

    Chertoff, Jason

    2018-02-01

    To review the data surrounding the utility of N-acetylcysteine (NAC) in sepsis and identify areas needed for additional research. A review of articles describing the mechanisms of action and clinical use of NAC in sepsis. Despite many advances in critical care medicine, still as many as 50% of patients with septic shock die. Treatments thus far have focused on resuscitation and restoration of macrocirculatory targets in the early phases of sepsis, with less focus on microcirculatory dysfunction. N-acetylcysteine, due to its anti-inflammatory and antioxidative properties, has been readily investigated in sepsis and has yielded largely incongruous and disappointing results. In addition to its known anti-inflammatory and antioxidative roles, one underappreciated property of NAC is its ability to vasodilate the microcirculation and improve locoregional blood flow. Some investigators have sought to capitalize on this mechanism with promising results, as evidenced by microcirculatory vasodilation, improvements in regional blood flow and oxygen delivery, and reductions in lactic acidosis, organ failure, and mortality. In addition to its antioxidant and anti-inflammatory properties, N-acetylcysteine possesses vasodilatory properties that could benefit the microcirculation in sepsis. It is imperative that we investigate these properties to uncover NAC's full potential for benefit in sepsis.

  11. External anal sphincter fatigue is not improved by N-acetylcysteine in an animal model.

    Science.gov (United States)

    Healy, C F; McMorrow, C; O'Herlihy, C; O'Connell, P R; Jones, J F X

    2008-06-01

    Oxidative stress is associated with skeletal muscle fatigue. This study tests the hypotheses that N-acetylcysteine (NAC) reduces fatigue and accelerates recovery of the rat external anal sphincter (EAS). Fifteen female Wistar rats were killed humanely. The EAS was mounted as a ring preparation and electrically stimulated with 50 Hz trains of 200 ms in duration every 4 s for three and a half minutes. Three groups were analysed: a control group (n = 5), a group pretreated with NAC (10(-4) mol L(-1); n = 5) and a group pretreated with NAC (10(-3) mol L(-1); n = 5). A novel fatigue index was formulated and was compared to a conventional method of expressing fatigue. There was no significant difference at concentrations of NAC (10(-4) mol L(-1); P > 0.05). At high concentrations of NAC (10(-3) mol L(-1)) there was a significant depression in peak twitch amplitude before fatigue (P = 0.04). N-acetylcysteine in both concentrations used, did not alter fatigue or recovery of the rat EAS. There was a significant positive correlation between the two methods of expressing fatigue but the conventional method produced a higher fatigue index (22.4% on average). N-acetylcysteine does not ameliorate fatigue or accelerate recovery of the EAS and may not be a useful medical therapy for faecal incontinence.

  12. A Convenient One-Pot Method for the Synthesis of N-Methoxy-N-methyl Amides from Carboxylic Acids

    International Nuclear Information System (INIS)

    Kim, Joong Gon; Jang, Doo Ok

    2010-01-01

    We have developed a mild and convenient method for one-pot synthesis of Weinreb amides from carboxylic acids. The process is general for the preparation of Weinreb amides from a variety of carboxylic acids. The reaction was also applicable to the preparation of α-amino Weinreb amides and proceeded without deprotection of the N-Fmoc protecting group or racemization of the stereogenic centers. N-Methoxy-N-methyl amides, or Weinreb amides, have been widely used as versatile synthetic intermediates in organic syntheses. These amides serve as excellent acylating agents for organolithium or organomagnesium reagents and as robust aldehyde group equivalents. The utility of Weinreb amides has been extended to the preparation of N-protected amino aldehydes, useful intermediates for many chemoselective transformations in peptide chemistry

  13. 40 CFR 721.10176 - Amides, peanut-oil, N-[3-(dimethylamino)propyl].

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, peanut-oil, N-[3... Specific Chemical Substances § 721.10176 Amides, peanut-oil, N-[3-(dimethylamino)propyl]. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides...

  14. 40 CFR 721.10192 - Amides, coco, N-[3-(dibutylamino)propyl], acrylates.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, coco, N-[3-(dibutylamino... Specific Chemical Substances § 721.10192 Amides, coco, N-[3-(dibutylamino)propyl], acrylates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides...

  15. Mechanistic Studies on the Copper-Catalyzed N-Arylation of Amides

    Science.gov (United States)

    Strieter, Eric R.; Bhayana, Brijesh; Buchwald, Stephen L.

    2009-01-01

    The copper-catalyzed N-arylation of amides, i.e., the Goldberg reaction, is an efficient method for the construction of products relevant to both industry and academic settings. Herein, we present mechanistic details concerning the catalytic and stoichiometric N-arylation of amides. In the context of the catalytic reaction, our findings reveal the importance of chelating diamine ligands in controlling the concentration of the active catalytic species. The consistency between the catalytic and stoichiometric results suggest that the activation of aryl halides occurs through a 1,2-diamine-ligated copper(I) amidate complex. Kinetic studies on the stoichiometric N-arylation of aryl iodides using 1,2-diamine ligated Cu(I) amidates also provide insights into the mechanism of aryl halide activation. PMID:19072233

  16. Palladium-catalyzed Suzuki-Miyaura coupling of amides by carbon-nitrogen cleavage: general strategy for amide N-C bond activation.

    Science.gov (United States)

    Meng, Guangrong; Szostak, Michal

    2016-06-15

    The first palladium-catalyzed Suzuki-Miyaura cross-coupling of amides with boronic acids for the synthesis of ketones by sterically-controlled N-C bond activation is reported. The transformation is characterized by operational simplicity using bench-stable, commercial reagents and catalysts, and a broad substrate scope, including substrates with electron-donating and withdrawing groups on both coupling partners, steric-hindrance, heterocycles, halides, esters and ketones. The scope and limitations are presented in the synthesis of >60 functionalized ketones. Mechanistic studies provide insight into the catalytic cycle of the cross-coupling, including the first experimental evidence for Pd insertion into the amide N-C bond. The synthetic utility is showcased by a gram-scale cross-coupling and cross-coupling at room temperature. Most importantly, this process provides a blueprint for the development of a plethora of metal catalyzed reactions of typically inert amide bonds via acyl-metal intermediates. A unified strategy for amide bond activation to enable metal insertion into N-C amide bond is outlined ().

  17. Nine of 16 stereoisomeric polyhydroxylated proline amides are potent β-N-acetylhexosaminidase inhibitors.

    Science.gov (United States)

    Ayers, Benjamin J; Glawar, Andreas F G; Martínez, R Fernando; Ngo, Nigel; Liu, Zilei; Fleet, George W J; Butters, Terry D; Nash, Robert J; Yu, Chu-Yi; Wormald, Mark R; Nakagawa, Shinpei; Adachi, Isao; Kato, Atsushi; Jenkinson, Sarah F

    2014-04-18

    All 16 stereoisomeric N-methyl 5-(hydroxymethyl)-3,4-dihydroxyproline amides have been synthesized from lactones accessible from the enantiomers of glucuronolactone. Nine stereoisomers, including all eight with a (3R)-hydroxyl configuration, are low to submicromolar inhibitors of β-N-acetylhexosaminidases. A structural correlation between the proline amides is found with the ADMDP-acetamide analogues bearing an acetamidomethylpyrrolidine motif. The proline amides are generally more potent than their ADMDP-acetamide equivalents. β-N-Acetylhexosaminidase inhibition by an azetidine ADMDP-acetamide analogue is compared to an azetidine carboxylic acid amide. None of the amides are good α-N-acetylgalactosaminidase inhibitors.

  18. Acute Chloroform Ingestion Successfully Treated with Intravenously Administered N-acetylcysteine

    OpenAIRE

    Dell’Aglio, Damon M.; Sutter, Mark E.; Schwartz, Michael D.; Koch, David D.; Algren, D. A.; Morgan, Brent W.

    2010-01-01

    Chloroform, a halogenated hydrocarbon, causes central nervous system depression, cardiac arrhythmias, and hepatotoxicity. We describe a case of chloroform ingestion with a confirmatory serum level and resultant hepatotoxicity successfully treated with intravenously administered N-acetylcysteine (NAC). A 19-year-old man attempting suicide ingested approximately 75 mL of chloroform. He was unresponsive and intubated upon arrival. Intravenously administered NAC was started after initial stabiliz...

  19. N-Acetylcysteine as adjunctive treatment in severe malaria: A randomized double blinded placebo controlled clinical trial

    Science.gov (United States)

    Charunwatthana, Prakaykaew; Faiz, M. Abul; Ruangveerayut, Ronnatrai; Maude, Richard; Rahman, M. Ridwanur; Roberts, L. Jackson; Moore, Kevin; Yunus, Emran Bin; Hoque, M. Gofranul; Hasan, Mahatab Uddin; Lee, Sue J.; Pukrittayakamee, Sasithon; Newton, Paul N.; White, Nicholas J.; Day, Nicholas P.J.; Dondorp, Arjen M.

    2009-01-01

    Objective Markers of oxidative stress are reported to be increased in severe malaria. It has been suggested that the antioxidant N-acetylcysteine (NAC) may be beneficial in treatment. We studied the efficacy and safety of parenteral N-acetylcysteine as an adjunct to artesunate treatment of severe falciparum malaria. Design A randomized double-blind placebo controlled trial on the use of high dose intravenous NAC as adjunctive treatment to artesunate. Setting A provincial hospital in Western Thailand and a tertiary referral hospital in Chittagong, Bangladesh. Patients One hundred and eight adult patients with severe falciparum malaria. Interventions Patients were randomized to receive N-acetylcysteine or placebo as adjunctive treatment to intravenous artesunate. Measurements and main results A total of 56 patients were treated with NAC and 52 received placebo. NAC had no significant effect on mortality, lactate clearance times (p=0.74) or coma recovery times (p=0.46). Parasite clearance time was increased from 30h (range 6h to 144h) to 36h (range 6h to 120h) (p=0.03), but this could be explained by differences in admission parasitemia. Urinary F2-isoprostane metabolites, measured as a marker of oxidative stress, were increased in severe malaria compared to patients with uncomplicated malaria and healthy volunteers. Admission red cell rigidity correlated with mortality, but did not improve with NAC. Conclusion Systemic oxidative stress is increased in severe malaria. Treatment with N-acetylcysteine had no effect on outcome in patients with severe falciparum malaria in this setting. PMID:19114891

  20. Application of N,N-dialkyl aliphatic amides in the separation of some actinides

    International Nuclear Information System (INIS)

    Gasparini, G.M.; Grossi, G.

    1980-01-01

    N,N-dialkyl substituted alkyl amides are known to be good extractants of some actinides such as U, Pu, and Th. Their stability is comparable to that of TBP, and their degradation products do not interfere as do the degradation products of TBP. On the other hand, the principal disadvantage of the amides is their tendency to form poorly soluble U adducts in organic diluents. A systematic investigation has been carried out on the extractive behavior of two typical alkyl amides of different structures with respect to the actinide ions UO/sub 2/ /sup 2+/, Th /sup 4+/, Np /sup +4/, Pu /sup +4/, NpO /sub 2/ /sup 2+/, PuO /sub 2/ / sup 2+/, Pu /sup 3+/, and Am /sup 3+/, as well as with respect to the most significant fission products. The results obtained have been compared with those obtained using TBP in the same experimental conditions, verifying the applicability of amides in the separation of U from Th

  1. Double contrast barium meal and acetylcysteine

    International Nuclear Information System (INIS)

    Kinnunen, J.; Pietilae, J.; Ahovuo, J.; Mankinen, P.; Tervahartiala, P.

    1989-01-01

    In a prospective double blind study, acetylcysteine, a local and systemic respiratory tract mucolytic agent, or a placebo, were given to 100 patients prior to a double contrast barium meal to decrease the gastric mucus viscosity and to make the mucus layer thinner, in order to permit barium to outline the furrows surrounding the areae gastricae instead of the overlying thick mucus. However, acetylcysteine failed to improve either visualization of the areae gastricae or the general quality of the double contrast barium meal. (orig.)

  2. 7-N-Acetylcysteine-pyrrole conjugate-A potent DNA reactive metabolite of pyrrolizidine alkaloids.

    Science.gov (United States)

    He, Xiaobo; Ma, Liang; Xia, Qingsu; Fu, Peter P

    2016-10-01

    Plants containing pyrrolizidine alkaloids (PAs) are widespread throughout the world and are the most common poisonous plants affecting livestock, wildlife, and humans. PAs require metabolic activation to form reactive dehydropyrrolizidine alkaloids (dehydro-PAs) that are capable of alkylating cellular DNA and proteins, form (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-DNA and DHP-protein adducts, and lead to cytotoxicity, genotoxicity, and tumorigenicity. In this study, we determined that the metabolism of riddelliine and monocrotaline by human and rat liver microsomes in the presence of N-acetylcysteine both produced 7-N-acetylcysteine-DHP (7-NAC-DHP) and DHP. Reactions of 7-NAC-DHP with 2'-deoxyguanosine (dG), 2'-deoxyadenosine (dA), and calf thymus DNA in aqueous solution followed by enzymatic hydrolysis yielded DHP-dG and/or DHP-dA adducts. These results indicate that 7-NAC-DHP is a reactive metabolite that can lead to DNA adduct formation. Copyright © 2016. Published by Elsevier B.V.

  3. 7-N-Acetylcysteine-pyrrole conjugate—A potent DNA reactive metabolite of pyrrolizidine alkaloids

    Directory of Open Access Journals (Sweden)

    Xiaobo He

    2016-10-01

    Full Text Available Plants containing pyrrolizidine alkaloids (PAs are widespread throughout the world and are the most common poisonous plants affecting livestock, wildlife, and humans. PAs require metabolic activation to form reactive dehydropyrrolizidine alkaloids (dehydro-PAs that are capable of alkylating cellular DNA and proteins, form (±-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP-DNA and DHP-protein adducts, and lead to cytotoxicity, genotoxicity, and tumorigenicity. In this study, we determined that the metabolism of riddelliine and monocrotaline by human and rat liver microsomes in the presence of N-acetylcysteine both produced 7-N-acetylcysteine-DHP (7-NAC-DHP and DHP. Reactions of 7-NAC-DHP with 2′-deoxyguanosine (dG, 2′-deoxyadenosine (dA, and calf thymus DNA in aqueous solution followed by enzymatic hydrolysis yielded DHP-dG and/or DHP-dA adducts. These results indicate that 7-NAC-DHP is a reactive metabolite that can lead to DNA adduct formation.

  4. Synthesis, anticancer and antibacterial activity of salinomycin N-benzyl amides.

    Science.gov (United States)

    Antoszczak, Michał; Maj, Ewa; Napiórkowska, Agnieszka; Stefańska, Joanna; Augustynowicz-Kopeć, Ewa; Wietrzyk, Joanna; Janczak, Jan; Brzezinski, Bogumil; Huczyński, Adam

    2014-11-25

    A series of 12 novel monosubstituted N-benzyl amides of salinomycin (SAL) was synthesized for the first time and characterized by NMR and FT-IR spectroscopic methods. Molecular structures of three salinomycin derivatives in the solid state were determined using single crystal X-ray method. All compounds obtained were screened for their antiproliferative activity against various human cancer cell lines as well as against the most problematic bacteria strains such as methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE), and Mycobacterium tuberculosis. Novel salinomycin derivatives exhibited potent anticancer activity against drug-resistant cell lines. Additionally, two N-benzyl amides of salinomycin revealed interesting antibacterial activity. The most active were N-benzyl amides of SAL substituted at -ortho position and the least anticancer active derivatives were those substituted at the -para position.

  5. The influence of single application of paracetamol and/or N-acetylcysteine on rats in subchronic exposition to trichloroethylene vapours. II. Effect on hepatic glutathione level

    Directory of Open Access Journals (Sweden)

    Danuta Plewka

    2012-09-01

    Full Text Available Background: Feature of modern existing hazards both environmental and occupational is cumulative exposure often leading to unexpected response of the organism resulting, among other things, in interactions with cytochrome P450 system involved in biotransformation of trichloroethylene and paracetamol. Hepatotoxity of paracetamol is closely connected with hepatic glutathione level. „In therapy of acute paracetamol poisoning application of N-acetylcysteine as a factor, which protects GSH level in cells, is recommended.” Materials and method: Tests were performed on rats which were treated with trichloroethylene, paracetamol and/or N-acetylcysteine. In rat liver total level of glutathione was determined i.e. reduced and oxidized form. Results: Paracetamol just after completion of the exposure affected the glutathione level. Trichloroethylene throughout the period of observation stimulated growth of glutathione level in liver. N-acetylcysteine didn’t have any influence on the level of investigated tripeptyde. Conclusions: N-acetylcysteine removes negative effect of paracetamol especially when it’s applied with 2-hour delay. After exposure for trichloethylene immediate application of N-acetylcysteine caused noticeable lowering of glutathione level. Cumulative exposure for three xenobiotics had positive influence for glutathione level in rat liver.

  6. Efficacy of N-Acetylcysteine Augmentation on Obsessive Compulsive Disorder: A Multicenter Randomized Double Blind Placebo Controlled Clinical Trial

    Directory of Open Access Journals (Sweden)

    Ahmad Ghanizadeh

    2017-04-01

    Full Text Available Objective: Glutamate is considered a target for treating obsessive-compulsive disorder (OCD. The efficacy and safety of the nutritional supplement of N-Acetylcysteine (NAC as an adjuvant to serotonin reuptake inhibitor (SSRI for treating children and adolescents with OCD has never been examined.Methods: This was a 10-week randomized double-blind placebo-controlled clinical trial with 34 OCD outpatients. The patients received citalopram plus NAC or placebo. Yale-Brown Obsessive-Compulsive Scale (YBOCS and Pediatric Quality of Life Inventory (PedsQL™ were used. Adverse effects were monitored.Results: YBOCS score was not different between the two groups at baseline, but the score was different between the two groups at the end of this trial (P<0.02. The YBOCS score of NAC group significantly decreased from 21.0(8.2 to 11.3(5.7 during this study. However, no statistically significant decrease of YBOCS was found in the placebo group. The Cohen’s d effect size was 0.83.The mean change of score of resistance/control to obsessions in the NAC and placebo groups was 1.8(2.3 and 0.8(2.1, respectively (P = 0.2. However, the mean score of change for resistance/control to compulsion in the NAC and placebo groups was 2.3(1.8 and 0.9(2.3, respectively. Cohen’s d effect size was 0.42.The score of three domains of quality of life significantly decreased in N-Acetylcysteine group during this trial. However, no statistically significant decrease was detected in the placebo group. No serious adverse effect was found in the two groups.Conclusion: This trial suggests that NAC adds to the effect of citalopram in improving resistance/control to compulsions in OCD children and adolescents. In addition, it is well tolerated.

  7. N-Acetylcysteine reverses cocaine-induced metaplasticity.

    Science.gov (United States)

    Moussawi, Khaled; Pacchioni, Alejandra; Moran, Megan; Olive, M Foster; Gass, Justin T; Lavin, Antonieta; Kalivas, Peter W

    2009-02-01

    Cocaine addiction is characterized by an impaired ability to develop adaptive behaviors that can compete with cocaine seeking, implying a deficit in the ability to induce plasticity in cortico-accumbens circuitry crucial for regulating motivated behavior. We found that rats withdrawn from cocaine self-administration had a marked in vivo deficit in the ability to develop long-term potentiation (LTP) and long-term depression (LTD) in the nucleus accumbens core subregion after stimulation of the prefrontal cortex. N-acetylcysteine (NAC) treatment prevents relapse in animal models and craving in humans by activating cystine-glutamate exchange and thereby stimulating extrasynaptic metabotropic glutamate receptors (mGluR). NAC treatment of rats restored the ability to induce LTP and LTD by indirectly stimulating mGluR2/3 and mGluR5, respectively. Our findings show that cocaine self-administration induces metaplasticity that inhibits further induction of synaptic plasticity, and this impairment can be reversed by NAC, a drug that also prevents relapse.

  8. Microorganisms hydrolyse amide bonds; knowledge enabling read-across of biodegradability of fatty acid amides.

    Science.gov (United States)

    Geerts, Roy; Kuijer, Patrick; van Ginkel, Cornelis G; Plugge, Caroline M

    2014-07-01

    To get insight in the biodegradation and potential read-across of fatty acid amides, N-[3-(dimethylamino)propyl] cocoamide and N-(1-ethylpiperazine) tall oil amide were used as model compounds. Two bacteria, Pseudomonas aeruginosa PK1 and Pseudomonas putida PK2 were isolated with N-[3-(dimethylamino)propyl] cocoamide and its hydrolysis product N,N-dimethyl-1,3-propanediamine, respectively. In mixed culture, both strains accomplished complete mineralization of N-[3-(dimethylamino)propyl] cocoamide. Aeromonas hydrophila PK3 was enriched with N-(1-ethylpiperazine) tall oil amide and subsequently isolated using agar plates containing dodecanoate. N-(2-Aminoethyl)piperazine, the hydrolysis product of N-(1-ethylpiperazine) tall oil amide, was not degraded. The aerobic biodegradation pathway for primary and secondary fatty acid amides of P. aeruginosa and A. hydrophila involved initial hydrolysis of the amide bond producing ammonium, or amines, where the fatty acids formed were immediately metabolized. Complete mineralization of secondary fatty acid amides depended on the biodegradability of the released amine. Tertiary fatty acid amides were not transformed by P. aeruginosa or A. hydrophila. These strains were able to utilize all tested primary and secondary fatty acid amides independent of the amine structure and fatty acid. Read-across of previous reported ready biodegradability results of primary and secondary fatty acid amides is justified based on the broad substrate specificity and the initial hydrolytic attack of the two isolates PK1 and PK3.

  9. N-Hydroxyimide Ugi Reaction toward α-Hydrazino Amides

    NARCIS (Netherlands)

    Chandgude, Ajay L; Dömling, Alexander

    2017-01-01

    The Ugi four-component reaction (U-4CR) with N-hydroxyimides as a novel carboxylic acid isostere has been reported. This reaction provides straightforward access to α-hydrazino amides. A broad range of aldehydes, amines, isocyanides and N-hydroxyimides were employed to give products in moderate to

  10. N-acetylcysteine prevents nitrosative stress-associated depression of blood pressure and heart rate in streptozotocin diabetic rats.

    Science.gov (United States)

    Nagareddy, Prabhakara Reddy; Xia, Zhengyuan; MacLeod, Kathleen M; McNeill, John H

    2006-04-01

    Previous studies have indicated that cardiovascular abnormalities such as depressed blood pressure and heart rate occur in streptozotocin (STZ) diabetic rats. Chronic diabetes, which is associated with increased expression of inducible nitric oxide synthase (iNOS) and oxidative stress, may produce peroxynitrite/nitrotyrosine and cause nitrosative stress. We hypothesized that nitrosative stress causes cardiovascular depression in STZ diabetic rats and therefore can be corrected by reducing its formation. Control and STZ diabetic rats were treated orally for 9 weeks with N-acetylcysteine (NAC), an antioxidant and inhibitor of iNOS. At termination, the mean arterial blood pressure (MABP) and heart rate (HR) were measured in conscious rats. Nitrotyrosine and endothelial nitric oxide synthase (eNOS) and iNOS expression were assessed in the heart and mesenteric arteries by immunohistochemistry and Western blot experiments. Untreated diabetic rats showed depressed MABP and HR that was prevented by treatment with NAC. In untreated diabetic rats, levels of 15-F(2t)-isoprostane, an indicator of lipid peroxidation increased, whereas plasma nitric oxide and antioxidant concentrations decreased. Furthermore, decreased eNOS and increased iNOS expression were associated with elevated nitrosative stress in blood vessel and heart tissue of untreated diabetic rats. N-acetylcysteine treatment of diabetic rats not only restored the antioxidant capacity but also reduced the expression of iNOS and nitrotyrosine and normalized the expression of eNOS to that of control rats in heart and superior mesenteric arteries. The results suggest that nitrosative stress depress MABP and HR following diabetes. Further studies are required to elucidate the mechanisms involved in nitrosative stress mediated depression of blood pressure and heart rate.

  11. Effect of acetylcysteine on prothrombin index in paracetamol poisoning without hepatocellular injury

    DEFF Research Database (Denmark)

    Schmidt, Lars E; Knudsen, Tore Tveit; Dalhoff, Kim

    2002-01-01

    Acetylcysteine treatment reduces liver damage after paracetamol overdose, but can affect the prothrombin index, which is used to assess the progress of overdose patients. We aimed to assess retrospectively the effect of intravenous acetylcysteine on the prothrombin index in patients with paraceta......Acetylcysteine treatment reduces liver damage after paracetamol overdose, but can affect the prothrombin index, which is used to assess the progress of overdose patients. We aimed to assess retrospectively the effect of intravenous acetylcysteine on the prothrombin index in patients...... with paracetamol poisoning without signs of hepatocellular injury. Prothrombin index had been recorded before, and serially during, acetylcysteine treatment in 87 patients. After initiation of treatment, prothrombin index decreased (mean 0.33, 95% CI 0.29-0.38) in all patients, and was strongly associated...... with the start of acetylcysteine infusion. In patients with uncomplicated paracetamol poisoning, a fall in this index might be misinterpreted as a sign of liver failure, leading to prolonged treatment time....

  12. Acute ethanol administration reduces the antidote effect of N-acetylcysteine after acetaminophen overdose in mice

    DEFF Research Database (Denmark)

    Dalhoff, K; Hansen, P B; Ott, P

    1991-01-01

    given ethanol or saline alone only 7% and 3%, respectively, survived 96 h. 4. The data suggest that the protective effect of N-acetylcysteine on acetaminophen-induced toxicity in fed mice is reduced by concomitant administration of ethanol. This may explain the clinical observation that ingestion...

  13. Uranium and plutonium extraction by N,N-dialkyl-amides using multistage mixer-settler extractors

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Y.; Hotoku, S.; Tsutsui, N.; Suzuki, A.; Tsubata, Y.; Matsumura, T.

    2016-07-01

    N,N-Dialkyl-amides (mono-amides) are known as extractants for U and Pu, and many studies have been carried out mainly by single-stage batch method. We have focused on two mono amides: N,N-di(2-ethylhexyl)-2,2-dimethylpropanamide (DEHDMPA) and N,N-di(2-ethylhexyl)butanamide (DEHBA), and proposed a multistage extraction process for recovering U and Pu by these mono-amides. A continuous counter-current experiment was carried out to demonstrate the validity of this process. This process consisted of two cycles, and the first cycle and the second cycle employed DEHDMPA and DEHBA as extractants, respectively. The feed solution for the first cycle was 5.1 mol/dm{sup 3} (M) nitric acid containing 0.92 M U, 1.6 mM Pu, and 0.6 mM Np. The raffinate collected in the first cycle was used as the feed for the second cycle. The ratios of U recovered in the U fraction and U-Pu fraction were 99.1% and 0.8%, respectively, and the ratios of U in the used solvents were <0.04%. The ratio of Pu recovered in the U-Pu fraction was 99.7%, and the ratio of Pu in the used solvents was in the order of 10{sup -3} - 10{sup -4}%. The concentration ratio of U with respect to Pu in the U-Pu fraction was 9, and this indicated that Pu was not isolated. The decontamination factor of U with respect to Pu in the U fraction was obtained as 4.5*10{sup 5}. These results supported the validity of the proposed process. (authors)

  14. The effect of N-acetylcysteine and melatonin in adult SHR with established hypertension

    Czech Academy of Sciences Publication Activity Database

    Pecháňová, O.; Zicha, Josef; Paulis, L.; Kojšová, S.; Jendeková, L.; Dobešová, Zdenka; Sládková, M.; Šimko, F.; Kuneš, Jaroslav

    2006-01-01

    Roč. 48, č. 4 (2006), s. 776-777 ISSN 0194-911X. [Annual Meeting of the European Council for Cardiovascular Research (ECCR) /11./. 29.09.2006-01.10.2006, La Colle sur Loup] Grant - others:VEGA(SK) 2/6148/26; VEGA(SK) 1/3429/06; VEGA(SK) 1/3442/06 Keywords : N-acetylcysteine * melatonin * SHR * hypertension Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  15. The promise of N-acetylcysteine in neuropsychiatry.

    Science.gov (United States)

    Berk, Michael; Malhi, Gin S; Gray, Laura J; Dean, Olivia M

    2013-03-01

    N-Acetylcysteine (NAC) targets a diverse array of factors germane to the pathophysiology of multiple neuropsychiatric disorders including glutamatergic transmission, the antioxidant glutathione, neurotrophins, apoptosis, mitochondrial function, and inflammatory pathways. This review summarises the areas where the mechanisms of action of NAC overlap with known pathophysiological elements, and offers a précis of current literature regarding the use of NAC in disorders including cocaine, cannabis, and smoking addictions, Alzheimer's and Parkinson's diseases, autism, compulsive and grooming disorders, schizophrenia, depression, and bipolar disorder. There are positive trials of NAC in all these disorders, and although many of these require replication and are methodologically preliminary, this makes it one of the most promising drug candidates in neuropsychiatric disorders. The efficacy pattern of NAC interestingly shows little respect for the current diagnostic systems. Its benign tolerability profile, its action on multiple operative pathways, and the emergence of positive trial data make it an important target to investigate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Conversion of amides to esters by the nickel-catalysed activation of amide C-N bonds.

    Science.gov (United States)

    Hie, Liana; Fine Nathel, Noah F; Shah, Tejas K; Baker, Emma L; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K N; Garg, Neil K

    2015-08-06

    Amides are common functional groups that have been studied for more than a century. They are the key building blocks of proteins and are present in a broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to the resonance stability of the amide bond. Although amides can readily be cleaved by enzymes such as proteases, it is difficult to selectively break the carbon-nitrogen bond of an amide using synthetic chemistry. Here we demonstrate that amide carbon-nitrogen bonds can be activated and cleaved using nickel catalysts. We use this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory calculations provide insight into the thermodynamics and catalytic cycle of the amide-to-ester transformation. Our results provide a way to harness amide functional groups as synthetic building blocks and are expected to lead to the further use of amides in the construction of carbon-heteroatom or carbon-carbon bonds using non-precious-metal catalysis.

  17. N-Acetylcysteine Normalizes Glutamate Levels in Cocaine-Dependent Patients: A Randomized Crossover Magnetic Resonance Spectroscopy Study

    NARCIS (Netherlands)

    Schmaal, Lianne; Veltman, Dick J.; Nederveen, Aart; van den Brink, Wim; Goudriaan, Anna E.

    2012-01-01

    Treatment with N-acetylcysteine (NAC) normalizes glutamate (Glu) homeostasis and prevents relapse in drug-dependent animals. However, the effect of NAC on brain Glu levels in substance-dependent humans has not yet been investigated. Proton magnetic resonance spectroscopy (H-1 MRS) was used to

  18. N-Acetylcysteine Normalizes Glutamate Levels in Cocaine-Dependent Patients: A Randomized Crossover Magnetic Resonance Spectroscopy Study

    NARCIS (Netherlands)

    Schmaal, L.; Veltman, D.J.; Nederveen, A.; van den Brink, W.; Goudriaan, A.E.

    2012-01-01

    Treatment with N-acetylcysteine (NAC) normalizes glutamate (Glu) homeostasis and prevents relapse in drug-dependent animals. However, the effect of NAC on brain Glu levels in substance-dependent humans has not yet been investigated. Proton magnetic resonance spectroscopy (1 H MRS) was used to

  19. P2X(7 receptor in the kidneys of diabetic rats submitted to aerobic training or to N-acetylcysteine supplementation [corrected].

    Directory of Open Access Journals (Sweden)

    Adelson M Rodrigues

    Full Text Available Previous studies in our laboratory showed that N-acetylcysteine supplementation or aerobic training reduced oxidative stress and the progression of diabetic nephropathy in rats. The P2X(7 receptor is up-regulated in pathological conditions, such as diabetes mellitus. This up-regulation is related to oxidative stress and induces tissue apoptosis or necrosis. The aim of the present study is to assess the role of P2X(7 receptor in the kidneys of diabetic rats submitted to aerobic training or N-acetylcysteine supplementation. Diabetes was induced in male Wistar rats by streptozotocin (60 mg/kg, i.v. and the training was done on a treadmill; N-acetylcysteine was given in the drinking water (600 mg/L. By confocal microscopy, as compared to control, the kidneys of diabetic rats showed increased P2 × 7 receptor expression and a higher activation in response to 2'(3'-O-(4-benzoylbenzoyl adenosine5'-triphosphate (specific agonist and adenosine triphosphate (nonspecific agonist (all p<0.05. All these alterations were reduced in diabetic rats treated with N-acetylcysteine, exercise or both. We also observed measured proteinuria and albuminuria (early marker of diabetic nephropathy in DM groups. Lipoperoxidation was strongly correlated with P2X(7 receptor expression, which was also correlated to NO•, thus associating this receptor to oxidative stress and kidney lesion. We suggest that P2X(7 receptor inhibition associated with the maintenance of redox homeostasis could be useful as coadjuvant treatment to delay the progression of diabetic nephropathy.

  20. P2X(7) receptor in the kidneys of diabetic rats submitted to aerobic training or to N-acetylcysteine supplementation [corrected].

    Science.gov (United States)

    Rodrigues, Adelson M; Bergamaschi, Cassia T; Fernandes, Maria Jose S; Paredes-Gamero, Edgar J; Buri, Marcus V; Curi, Marcus V; Ferreira, Alice T; Araujo, Sergio R R; Punaro, Giovana R; Maciel, Fabiane R; Nogueira, Guilherme B; Higa, Elisa M S

    2014-01-01

    Previous studies in our laboratory showed that N-acetylcysteine supplementation or aerobic training reduced oxidative stress and the progression of diabetic nephropathy in rats. The P2X(7 receptor is up-regulated in pathological conditions, such as diabetes mellitus. This up-regulation is related to oxidative stress and induces tissue apoptosis or necrosis. The aim of the present study is to assess the role of P2X(7) receptor in the kidneys of diabetic rats submitted to aerobic training or N-acetylcysteine supplementation. Diabetes was induced in male Wistar rats by streptozotocin (60 mg/kg, i.v.) and the training was done on a treadmill; N-acetylcysteine was given in the drinking water (600 mg/L). By confocal microscopy, as compared to control, the kidneys of diabetic rats showed increased P2 × 7 receptor expression and a higher activation in response to 2'(3')-O-(4-benzoylbenzoyl) adenosine5'-triphosphate (specific agonist) and adenosine triphosphate (nonspecific agonist) (all p<0.05). All these alterations were reduced in diabetic rats treated with N-acetylcysteine, exercise or both. We also observed measured proteinuria and albuminuria (early marker of diabetic nephropathy) in DM groups. Lipoperoxidation was strongly correlated with P2X(7) receptor expression, which was also correlated to NO•, thus associating this receptor to oxidative stress and kidney lesion. We suggest that P2X(7) receptor inhibition associated with the maintenance of redox homeostasis could be useful as coadjuvant treatment to delay the progression of diabetic nephropathy.

  1. Amide-induced phase separation of hexafluoroisopropanol-water mixtures depending on the hydrophobicity of amides.

    Science.gov (United States)

    Takamuku, Toshiyuki; Wada, Hiroshi; Kawatoko, Chiemi; Shimomura, Takuya; Kanzaki, Ryo; Takeuchi, Munetaka

    2012-06-21

    Amide-induced phase separation of hexafluoro-2-propanol (HFIP)-water mixtures has been investigated to elucidate solvation properties of the mixtures by means of small-angle neutron scattering (SANS), (1)H and (13)C NMR, and molecular dynamics (MD) simulation. The amides included N-methylformamide (NMF), N-methylacetamide (NMA), and N-methylpropionamide (NMP). The phase diagrams of amide-HFIP-water ternary systems at 298 K showed that phase separation occurs in a closed-loop area of compositions as well as an N,N-dimethylformamide (DMF) system previously reported. The phase separation area becomes wider as the hydrophobicity of amides increases in the order of NMF amides due to the hydrophobic interaction gives rise to phase separation of the mixtures. In contrast, the disruption of HFIP clusters causes the recovery of the homogeneity of the ternary systems. The present results showed that HFIP clusters are evolved with increasing amide content to the lower phase separation concentration in the same mechanism among the four amide systems. However, the disruption of HFIP clusters in the NMP and DMF systems with further increasing amide content to the upper phase separation concentration occurs in a different way from those in the NMF and NMA systems.

  2. [A girl with self-harm treated with N-acetylcysteine (NAC)].

    Science.gov (United States)

    Rus, C P

    Deliberate and recurrent self-harm could be regarded as addictive behaviour that can be treated with medication. In addiction, the dopaminergic mesolimbic reward system is activated. Pain caused by cutting stimulates the reward system through the opioid system. Glutamatergic neurotransmission follows the same pathway and plays a role in addiction as well. In this case-study a 17-year-old girl was successfully treated with N-acetylcysteine (nac) in order to reduce the frequency of self-cutting. In addition, in this case nac reduced the symptoms of attention deficit/hyperactivity disorder and depression. nac modulates the glutamatergic neurotransmission. This article provides possible explanations for the effect of nac in this case.

  3. Current evidence for the use of N-acetylcysteine following liver resection.

    Science.gov (United States)

    Kemp, Richard; Mole, Jonathan; Gomez, Dhanny

    2017-11-13

    N-acetylcysteine (NAC) has many uses in medicine; notable in the management of paracetamol toxicity, acute liver failure and liver surgery. The aim of this review was to critically appraise the published literature for the routine use of NAC in liver resection surgery. An electronic search was performed of EBSCOhost (Medline and CINAHL database), PubMed and the Cochrane Library for the period 1990-2016. MeSH headings: 'acetyl-cysteine', 'liver resection' and 'hepatectomy' were used to identify all relevant articles published in English. Following the search criteria used, three articles were included. Two of these studies were randomized controlled trials. All the studies collated data on morbidity and mortality. All three studies did not show a significant difference in overall complications rates in patients that underwent hepatic resection that had NAC infusion compared with patients that did not. In one study, NAC administration was associated with a higher frequency of grade A post-hepatectomy liver failure. In another study, a significantly higher incidence of delirium was observed in the NAC group, which led to the trial to be terminated early. The current published data do not support the routine use of NAC following liver resection. © 2017 Royal Australasian College of Surgeons.

  4. Fatty acid amide supplementation decreases impulsivity in young adult heavy drinkers

    Science.gov (United States)

    van Kooten, Maria J.; Veldhuizen, Maria G.; de Araujo, Ivan E.; O’Malley, Stephanie; Small, Dana M.

    2016-01-01

    Compromised dopamine signaling in the striatum has been associated with the expression of impulsive behaviors in addiction, obesity and alcoholism. In rodents, Intragastric infusion of the fatty acid amide oleoylethanolamide increases striatal extracellular dopamine levels via vagal afferent signaling. Here we tested whether supplementation with PhosphoLean™, a dietary supplement that contains the precursor of the fatty acid amide oleoylethanolamide (N-oleyl-phosphatidylethanolamine), would reduce impulsive responding and alcohol use in heavy drinking young adults. Twenty-two individuals were assigned to a three-week supplementation regimen with PhosphoLean™ or placebo. Impulsivity was assessed with self-report questionnaires and behavioral tasks pre- and post-supplementation. Although self-report measures of impulsivity did not change, supplementation with PhosphoLean™, but not placebo, significantly reduced false alarm rate on a Go/No-Go task. In addition, an association was found between improved sensitivity on the Go/No-Go task and reduced alcohol intake. These findings provide preliminary evidence that promoting fatty acid derived gut-brain dopamine communication may have therapeutic potential for reducing impulsivity in heavy drinkers. PMID:26656766

  5. Prospects of N-Acetylcysteine and Melatonin as Treatments for Tramadol-Induced Renal Toxicity in Albino Rats

    Directory of Open Access Journals (Sweden)

    Elias Adikwu, Bonsome Bokolo

    2017-09-01

    Full Text Available Background: Tramadol (TD has played an important role in the treatment of pain. However, renal toxicity due to TD abuse is a serious clinical challenge. This study assessed the effects of n-acetylcysteine (NAC and melatonin (MT on TD-induced renal toxicity in albino rats. Methods: Rats were randomized into groups and treated with MT (10mg/kg/day, NAC (10mg/kg/day and TD (15, 30, and 45mg/kg/day respectively. Rats were pretreated with MT (10mg/kg/day and NAC (10mg/kg/day prior to treatment with TD (15, 30, and 45mg/kg/day intraperitonialy for 7days respectively. Rats were sacrificed, serum extracted and evaluated for creatinine, urea and uric acid. The kidneys were evaluated for malondialdehyde (MDA, superoxide dismutase (SOD, catalase, (CAT, and glutathione (GSH levels. Results: Treatment with MT and NAC did not produce significant (P>0.05 effects on serum creatinine, urea, uric acid and kidney MDA, SOD, CAT, and GSH levels when compare to saline control. In contrast, serum creatinine, urea, uric acid and kidney MDA levels were increased while kidney SOD, CAT, and GSH levels were decreased significantly (P<0.05 and in a dose-dependent manner in TD-treated rats. Kidneys of TD-treated rats showed varying degrees of damage which were dose-dependent. However, in all evaluated parameters, TD-induced alterations were abrogated in NAC and MT pretreated rats. Abrogations were most evident in rats pretreated with combined doses of NAC and MT. Conclusion: The present study showed prospects of n-acetylcysteine and melatonin as remedies for tramadol associated renal toxicity.

  6. Energetically Unfavorable Amide Conformations for N6-Acetyllysine Side Chains in Refined Protein Structures

    Science.gov (United States)

    Genshaft, Alexander; Moser, Joe-Ann S.; D'Antonio, Edward L.; Bowman, Christine M.; Christianson, David W.

    2013-01-01

    The reversible acetylation of lysine to form N6-acetyllysine in the regulation of protein function is a hallmark of epigenetics. Acetylation of the positively charged amino group of the lysine side chain generates a neutral N-alkylacetamide moiety that serves as a molecular “switch” for the modulation of protein function and protein-protein interactions. We now report the analysis of 381 N6-acetyllysine side chain amide conformations as found in 79 protein crystal structures and 11 protein NMR structures deposited in the Protein Data Bank (PDB) of the Research Collaboratory for Structural Bioinformatics. We find that only 74.3% of N6-acetyllysine residues in protein crystal structures and 46.5% in protein NMR structures contain amide groups with energetically preferred trans or generously trans conformations. Surprisingly, 17.6% of N6-acetyllysine residues in protein crystal structures and 5.3% in protein NMR structures contain amide groups with energetically unfavorable cis or generously cis conformations. Even more surprisingly, 8.1% of N6-acetyllysine residues in protein crystal structures and 48.2% in NMR structures contain amide groups with energetically prohibitive twisted conformations that approach the transition state structure for cis-trans isomerization. In contrast, 109 unique N-alkylacetamide groups contained in 84 highly-accurate small molecule crystal structures retrieved from the Cambridge Structural Database exclusively adopt energetically preferred trans conformations. Therefore, we conclude that cis and twisted N6-acetyllysine amides in protein structures deposited in the PDB are erroneously modeled due to their energetically unfavorable or prohibitive conformations. PMID:23401043

  7. Amide-based inhibitors of p38alpha MAP kinase. Part 2: design, synthesis and SAR of potent N-pyrimidyl amides.

    Science.gov (United States)

    Tester, Richland; Tan, Xuefei; Luedtke, Gregory R; Nashashibi, Imad; Schinzel, Kurt; Liang, Weiling; Jung, Joon; Dugar, Sundeep; Liclican, Albert; Tabora, Jocelyn; Levy, Daniel E; Do, Steven

    2010-04-15

    Optimization of a tri-substituted N-pyridyl amide led to the discovery of a new class of potent N-pyrimidyl amide based p38alpha MAP kinase inhibitors. Initial SAR studies led to the identification of 5-dihydrofuran as an optimal hydrophobic group. Additional side chain modifications resulted in the introduction of hydrogen bond interactions. Through extensive SAR studies, analogs bearing free amino groups and alternatives to the parent (S)-alpha-methyl benzyl moiety were identified. These compounds exhibited improved cellular activities and maintained balance between p38alpha and CYP3A4 inhibition. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Efficacy of N-acetylcysteine in the treatment of nicotine dependence: a double-blind placebo-controlled pilot study

    NARCIS (Netherlands)

    Schmaal, L.; Berk, L.; Hulstijn, K.P.; Cousijn, J.; Wiers, R.W.; van den Brink, W.

    2011-01-01

    Relapse is the rule rather than the exception in smokers aiming to quit smoking. Recently, evidence has emerged that glutamate transmission plays an important role in relapse. N-acetylcysteine (NAC), a cysteine prodrug, restores glutamate homeostasis and appears to be a potential new treatment for

  9. Determination of Structures and Energetics of Small- and Medium-Sized One-Carbon-Bridged Twisted Amides using ab Initio Molecular Orbital Methods: Implications for Amidic Resonance along the C-N Rotational Pathway.

    Science.gov (United States)

    Szostak, Roman; Aubé, Jeffrey; Szostak, Michal

    2015-08-21

    Twisted amides containing nitrogen at the bridgehead position are attractive practical prototypes for the investigation of the electronic and structural properties of nonplanar amide linkages. Changes that occur during rotation around the N-C(O) axis in one-carbon-bridged twisted amides have been studied using ab initio molecular orbital methods. Calculations at the MP2/6-311++G(d,p) level performed on a set of one-carbon-bridged lactams, including 20 distinct scaffolds ranging from [2.2.1] to [6.3.1] ring systems, with the C═O bond on the shortest bridge indicate significant variations in structures, resonance energies, proton affinities, core ionization energies, frontier molecular orbitals, atomic charges, and infrared frequencies that reflect structural changes corresponding to the extent of resonance stabilization during rotation along the N-C(O) axis. The results are discussed in the context of resonance theory and activation of amides toward N-protonation (N-activation) by distortion. This study demonstrates that one-carbon-bridged lactams-a class of readily available, hydrolytically robust twisted amides-are ideally suited to span the whole spectrum of the amide bond distortion energy surface. Notably, this study provides a blueprint for the rational design and application of nonplanar amides in organic synthesis. The presented findings strongly support the classical amide bond resonance model in predicting the properties of nonplanar amides.

  10. Green and selective synthesis of N-substituted amides using water soluble porphyrazinato copper(II) catalyst

    International Nuclear Information System (INIS)

    Ghodsinia, Sara S.E.; Akhlaghinia, Batool; Eshghi, Hossein; Safaei, Elham

    2013-01-01

    N, N',N , N ' -Tetramethyl tetra-2,3-pyridinoporphyrazinato copper(II) methyl sulfate ([Cu(2,3-tmtppa)](MeSO 4 ) 4 ) efficiently catalyzed the direct conversion of nitriles to N-substituted amides. The one pot selective synthesis of the N-substituted amides from nitriles and primary amines was performed in refluxing H 2 O. The catalyst was recovered and reused at least four times, maintaining its efficiency. (author)

  11. Reversible Twisting of Primary Amides via Ground State N-C(O) Destabilization: Highly Twisted Rotationally Inverted Acyclic Amides.

    Science.gov (United States)

    Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2018-01-17

    Since the seminal studies by Pauling in 1930s, planarity has become the defining characteristic of the amide bond. Planarity of amides has central implications for the reactivity and chemical properties of amides of relevance to a range of chemical disciplines. While the vast majority of amides are planar, nonplanarity has a profound effect on the properties of the amide bond, with the most common method to restrict the amide bond relying on the incorporation of the amide function into a rigid cyclic ring system. In a major departure from this concept, here, we report the first class of acyclic twisted amides that can be prepared, reversibly, from common primary amides in a single, operationally trivial step. Di-tert-butoxycarbonylation of the amide nitrogen atom yields twisted amides in which the amide bond exhibits nearly perpendicular twist. Full structural characterization of a range of electronically diverse compounds from this new class of twisted amides is reported. Through reactivity studies we demonstrate unusual properties of the amide bond, wherein selective cleavage of the amide bond can be achieved by a judicious choice of the reaction conditions. Through computational studies we evaluate structural and energetic details pertaining to the amide bond deformation. The ability to selectively twist common primary amides, in a reversible manner, has important implications for the design and application of the amide bond nonplanarity in structural chemistry, biochemistry and organic synthesis.

  12. Green and selective synthesis of N-substituted amides using water soluble porphyrazinato copper(II) catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Ghodsinia, Sara S.E.; Akhlaghinia, Batool; Eshghi, Hossein, E-mail: akhlaghinia@um.ac.ir [Ferdowsi University of Mashhad (Iran, Islamic Republic of). Faculty of Sciences. Department of Chemistry; Safaei, Elham [Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan (Iran, Islamic Republic of). Department of Chemistry

    2013-06-15

    N, N',N{sup ,} N{sup '}-Tetramethyl tetra-2,3-pyridinoporphyrazinato copper(II) methyl sulfate ([Cu(2,3-tmtppa)](MeSO{sub 4}){sub 4}) efficiently catalyzed the direct conversion of nitriles to N-substituted amides. The one pot selective synthesis of the N-substituted amides from nitriles and primary amines was performed in refluxing H{sub 2}O. The catalyst was recovered and reused at least four times, maintaining its efficiency. (author)

  13. Antihypertensive mechanisms of chronic captopril (CPT) or N-Acetylcysteine (NAC) treatment in L-NAME hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Dobešová, Zdenka; Zicha, Josef; Pecháňová, Olga; Kuneš, Jaroslav

    2005-01-01

    Roč. 46, č. 4 (2005), s. 912-913 ISSN 0194-911X. [Annual Meeting of the European Council for Cardiovascular Research (ECCR) /10./. 14.10.2005-16.10.2005, La Colle sur Loup] R&D Projects: GA MZd(CZ) NR7786 Keywords : antihypertensive mechanism * captopril * N-Acetylcysteine * L-NAME hypertension Subject RIV: ED - Physiology

  14. The influence of single application of paracetamol and/or N-acetylcysteine on rats subchronic exposed to trichloroethylene vapours. I. Effect on hepatic moonooxygenase system dependent of cytochrome P450

    Directory of Open Access Journals (Sweden)

    Andrzej Plewka

    2012-06-01

    Full Text Available Background: There is a number of factors which potentially affect occurrence of toxic change in liver after overdosing of paracetamol. Hepatic metabolism of trichloroethylene has primary impact on hepatotoxic effect of this solvent. This means that the combined exposure to these xenobiotics can be particularly harmful for human. The influence of N-acetylcysteine (NAC as a protective factor after paracetamol intoxication was studies. Materials and method: Tests were carried out on rats which were treated with trichloroethylene, paracetamol and/or N-acetylcysteine. In the hepatic microsomal fraction activity of the components of cytochrome P450- dependent monooxygenases was determined Results: Paracetamol slightly stimulated cytochrome P450 having no effect on reductase activity cooperating with it. Cytochrome b5 and its reductase were inhibited by this compound. Trichloroethylene was the inhibitor of compounds of II microsomal electron transport chain. N-acetylcysteine inhibited activity of reductase of NADH-cytochrome b5. Conclusions: Tested doses of the xenobiotics influenced on II microsomal electron transport chain. Protective influence of N-acetylcysteine was better if this compound was applied 2 hours after exposure on xenobiotics

  15. Adverse reactions associated with acetylcysteine.

    Science.gov (United States)

    Sandilands, E A; Bateman, D N

    2009-02-01

    Paracetamol (acetaminophen) is one of the most common agents deliberately ingested in self-poisoning episodes and a leading cause of acute liver failure in the western world. Acetylcysteine is widely acknowledged as the antidote of choice for paracetamol poisoning, but its use is not without risk. Adverse reactions, often leading to treatment delay, are frequently associated with both intravenous and oral acetylcysteine and are a common source of concern among treating physicians. A systematic literature review investigating the incidence, clinical features, and mechanisms of adverse effects associated with acetylcysteine. A variety of adverse reactions to acetylcysteine have been described ranging from nausea to death, most of the latter due to incorrect dosing. The pattern of reactions differs with oral and intravenous dosing, but reported frequency is at least as high with oral as intravenous. The reactions to the intravenous preparation result in similar clinical features to true anaphylaxis, including rash, pruritus, angioedema, bronchospasm, and rarely hypotension, but are caused by nonimmunological mechanisms. The precise nature of this reaction remains unclear. Histamine now seems to be an important mediator of the response, and there is evidence of variability in patient susceptibility, with females, and those with a history of asthma or atopy are particularly susceptible. Quantity of paracetamol ingestion, measured through serum paracetamol concentration, is also important as higher paracetamol concentrations protect patients against anaphylactoid effects. Most anaphylactoid reactions occur at the start of acetylcysteine treatment when concentrations are highest. Acetylcysteine also affects clotting factor activity, and this affects the interpretation of minor disturbances in the International Normalized Ratio in the context of paracetamol overdose. This review discusses the incidence, clinical features, underlying pathophysiological mechanisms, and

  16. Solvent extraction of uranium(VI) and thorium(IV) from nitrate media by carboxylic acid amides

    International Nuclear Information System (INIS)

    Preston, J.S.; Preez, A.C. du

    1995-01-01

    A series of nineteen N-alkyl carboxylic acid amides (R.CO.NHR') has been prepared, in which the alkyl groups R and R' have been varied in order to introduce different degrees of steric complexity into the compounds. A smaller number of N,N-dialkyl amides (R.CO.NR 2 ') and non-substituted amides (R.CO.NH 2 ) has also been prepared for comparison purposes. These amides were characterized by measurement of their boiling points, melting points, refractive indices and densities. The solvent extraction of uranium(VI) and thorium(IV) from sodium nitrate media by solutions of the amides in toluene was studied. Increasing steric bulk of the alkyl groups R and R' was found to cause a marked decrease in the extraction of thorium, with a much smaller effect on the extraction of uranium, thus considerably enhancing the separation between these metals. Vapour pressure osmometry studies indicate that the N-alkyl amides are self-associated in toluene solution, with aggregation numbers up to about 2.5 for 0.6 M solutions at 35 degree C. In contrast, the N,N-dialkyl amides behave as monomers under these conditions. The distribution ratios for the extraction of uranium and thorium show second- and third-order dependences, respectively, on the extractant concentration for both the N-alkyl and N,N-dialkyl amides. 15 refs., 8 figs., 8 tabs

  17. 40 CFR 721.9672 - Amides, tall-oil fatty, N-[2-[2-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, tall-oil fatty, N-[2-[2... Significant New Uses for Specific Chemical Substances § 721.9672 Amides, tall-oil fatty, N-[2-[2-hydroxyethyl... identified as amides, tall-oil fatty, N-[2-[2-hydroxyethyl)amino]ethyl], reaction products with sulfur...

  18. An Efficient Computational Model to Predict Protonation at the Amide Nitrogen and Reactivity along the C–N Rotational Pathway

    Science.gov (United States)

    Szostak, Roman; Aubé, Jeffrey

    2015-01-01

    N-protonation of amides is critical in numerous biological processes, including amide bonds proteolysis and protein folding, as well as in organic synthesis as a method to activate amide bonds towards unconventional reactivity. A computational model enabling prediction of protonation at the amide bond nitrogen atom along the C–N rotational pathway is reported. Notably, this study provides a blueprint for the rational design and application of amides with a controlled degree of rotation in synthetic chemistry and biology. PMID:25766378

  19. Structural study of salt forms of amides; paracetamol, benzamide and piperine

    Science.gov (United States)

    Kennedy, Alan R.; King, Nathan L. C.; Oswald, Iain D. H.; Rollo, David G.; Spiteri, Rebecca; Walls, Aiden

    2018-02-01

    Single crystal x-ray diffraction has been used to investigate the structures of six complexes containing O-atom protonated cations derived from the pharmaceutically relevant amides benzamide (BEN), paracetamol (PAR) and piperine (PIP). The structures of the salt forms [PAR(H)][SO3C6H4Cl], [BEN(H)][O3SC6H4Cl] and [BEN(H)][Br]·H2O are reported along with those of the hemi-halide salt forms [PAR(H)][I3]. PAR, [PIP(H)][I3]·PIP and [PIP(H)][I3]0·5[I]0.5. PIP. The structure of the cocrystal BEN. HOOCCH2Cl is also presented for comparison. The geometry of the amide group is found to systematically change upon protonation, with the Cdbnd O distance increasing and the Csbnd N distance decreasing. The hemi-halide species all feature strongly hydrogen bonded amide(H)/amide pairs. The amide group Cdbnd O and Csbnd N distances for both elements of each such pair are intermediate between those found for simple neutral amide and protonated amide forms. It was found that crystallising paracetamol from aqueous solutions containing Ba2+ ions gave orthorhombic paracetamol.

  20. Synthesis and evaluation of fatty acid amides on the N-oleoylethanolamide-like activation of peroxisome proliferator activated receptor α.

    Science.gov (United States)

    Takao, Koichi; Noguchi, Kaori; Hashimoto, Yosuke; Shirahata, Akira; Sugita, Yoshiaki

    2015-01-01

    A series of fatty acid amides were synthesized and their peroxisome proliferator-activated receptor α (PPAR-α) agonistic activities were evaluated in a normal rat liver cell line, clone 9. The mRNAs of the PPAR-α downstream genes, carnitine-palmitoyltransferase-1 and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase, were determined by real-time reverse transcription-polymerase chain reaction (RT-PCR) as PPAR-α agonistic activities. We prepared nine oleic acid amides. Their PPAR-α agonistic activities were, in decreasing order, N-oleoylhistamine (OLHA), N-oleoylglycine, Oleamide, N-oleoyltyramine, N-oleoylsertonin, and Olvanil. The highest activity was found with OLHA. We prepared and evaluated nine N-acylhistamines (N-acyl-HAs). Of these, OLHA, C16:0-HA, and C18:1Δ(9)-trans-HA showed similar activity. Activity due to the different chain length of the saturated fatty acid peaked at C16:0-HA. The PPAR-α antagonist, GW6471, inhibited the induction of the PPAR-α downstream genes by OLHA and N-oleoylethanolamide (OEA). These data suggest that N-acyl-HAs could be considered new PPAR-α agonists.

  1. Copper-Catalyzed N-Arylation of Amides Using (S-N-Methylpyrrolidine-2-carboxylate as the Ligand

    Directory of Open Access Journals (Sweden)

    Dong-Sheng Ma

    2010-03-01

    Full Text Available (S-N-methylpyrrolidine-2-carboxylate, a derivative of natural L-proline, was found to be an efficient ligand for the copper-catalyzed Goldberg-type N-arylation of amides with aryl halides under mild conditions. A variety of N-arylamides were synthesized in good to high yields.

  2. (Z)-N,N-Dimethyl-2-[phen­yl(pyridin-2-yl)methyl­idene]hydrazinecarbothio­amide

    Science.gov (United States)

    Jayakumar, K.; Sithambaresan, M.; Prathapachandra Kurup, M. R.

    2011-01-01

    The title compound, C15H16N4S, exists in the Z conformation with the thionyl S atom lying cis to the azomethine N atom. The shortening of the N—N distance [1.3697 (17) Å] is due to extensive delocalization with the pyridine ring. The hydrazine–carbothio­amide unit is almost planar, with a maximum deviation of 0.013 (2) Å for the amide N atom. The stability of this conformation is favoured by the formation of an intra­molecular N—H⋯N hydrogen bond. The packing of the mol­ecules involves no classical inter­molecular hydrogen-bonding inter­actions; however, a C—H⋯π inter­action occurs. PMID:22199715

  3. N-Acetylcysteine in the Treatment of Pediatric Trichotillomania: A Randomized, Double-Blind, Placebo-Controlled Add-On Trial

    Science.gov (United States)

    Bloch, Michael H.; Panza, Kaitlyn E.; Grant, Jon E.; Pittenger, Christopher; Leckman, James F.

    2013-01-01

    Objective: To examine the efficacy of N-acetylcysteine (NAC) for the treatment of pediatric trichotillomania (TTM) in a double-blind, placebo-controlled, add-on study. Method: A total of 39 children and adolescents aged 8 to 17 years with pediatric trichotillomania were randomly assigned to receive NAC or matching placebo for 12 weeks. Our primary…

  4. N-acetylcysteine modifies the acute effects of isosorbide-5-mononitrate in angina pectoris patients evaluated by exercise testing

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup; Klarlund, K; Aldershvile, J

    1989-01-01

    Nitrates are well established in the treatment of angina pectoris and the presence of sulfhydryl groups seems to be fundamental to nitrate-induced vasodilatation. The present study was performed to elucidate if large oral doses of N-acetylcysteine (NAC, 2,400 mg X 2), a donor of sulfhydryl groups...

  5. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation

    Science.gov (United States)

    Raboune, Siham; Stuart, Jordyn M.; Leishman, Emma; Takacs, Sara M.; Rhodes, Brandon; Basnet, Arjun; Jameyfield, Evan; McHugh, Douglas; Widlanski, Theodore; Bradshaw, Heather B.

    2014-01-01

    A family of endogenous lipids, structurally analogous to the endogenous cannabinoid, N-arachidonoyl ethanolamine (Anandamide), and called N-acyl amides have emerged as a family of biologically active compounds at TRP receptors. N-acyl amides are constructed from an acyl group and an amine via an amide bond. This same structure can be modified by changing either the fatty acid or the amide to form potentially hundreds of lipids. More than 70 N-acyl amides have been identified in nature. We have ongoing studies aimed at isolating and characterizing additional members of the family of N-acyl amides in both central and peripheral tissues in mammalian systems. Here, using a unique in-house library of over 70 N-acyl amides we tested the following three hypotheses: (1) Additional N-acyl amides will have activity at TRPV1-4, (2) Acute peripheral injury will drive changes in CNS levels of N-acyl amides, and (3) N-acyl amides will regulate calcium in CNS-derived microglia. Through these studies, we have identified 20 novel N-acyl amides that collectively activate (stimulating or inhibiting) TRPV1-4. Using lipid extraction and HPLC coupled to tandem mass spectrometry we showed that levels of at least 10 of these N-acyl amides that activate TRPVs are regulated in brain after intraplantar carrageenan injection. We then screened the BV2 microglial cell line for activity with this N-acyl amide library and found overlap with TRPV receptor activity as well as additional activators of calcium mobilization from these lipids. Together these data provide new insight into the family of N-acyl amides and their roles as signaling molecules at ion channels, in microglia, and in the brain in the context of inflammation. PMID:25136293

  6. Possible involvement of the JAK/STAT signaling pathway in N-acetylcysteine-mediated antidepressant-like effects

    OpenAIRE

    Al-Samhari, Marwa M; Al-Rasheed, Nouf M; Al-Rejaie, Salim; Al-Rasheed, Nawal M; Hasan, Iman H; Mahmoud, Ayman M; Dzimiri, Nduna

    2015-01-01

    Advances in depression research have targeted inflammation and oxidative stress to develop novel types of treatment. The JAK/STAT signaling pathway plays pivotal roles in immune and inflammatory responses. The present study was designed to investigate the effects of N-acetylcysteine, a putative precursor of the antioxidant glutathione, in an animal model of depression, with an emphasis on the JAK/STAT signaling pathway. Fluoxetine, a classical antidepressant drug was also under investigation....

  7. Microorganisms hydrolyse amide bonds; knowledge enabling read-across of biodegradability of fatty acid amides

    NARCIS (Netherlands)

    Geerts, R.; Kuijer, P.; Ginkel, van C.G.; Plugge, C.M.

    2014-01-01

    To get insight in the biodegradation and potential read-across of fatty acid amides, N-[3-(dimethylamino)propyl] cocoamide and N-(1-ethylpiperazine) tall oil amide were used as model compounds. Two bacteria, Pseudomonas aeruginosa PK1 and Pseudomonas putida PK2 were isolated with

  8. Amide-transforming activity of Streptomyces: possible application to the formation of hydroxy amides and aminoalcohols.

    Science.gov (United States)

    Yamada, Shinya; Miyagawa, Taka-Aki; Yamada, Ren; Shiratori-Takano, Hatsumi; Sayo, Noboru; Saito, Takao; Takano, Hideaki; Beppu, Teruhiko; Ueda, Kenji

    2013-07-01

    To develop an efficient bioconversion process for amides, we screened our collection of Streptomyces strains, mostly obtained from soil, for effective transformers. Five strains, including the SY007 (NBRC 109343) and SY435 (NBRC 109344) of Streptomyces sp., exhibited marked conversion activities from the approximately 700 strains analyzed. These strains transformed diverse amide compounds such as N-acetyltetrahydroquinoline, N-benzoylpyrrolidine, and N-benzoylpiperidine into alcohols or N,O-acetals with high activity and regioselectivity. N,O-acetal was transformed into alcohol by serial tautomerization and reduction reactions. As such, Streptomyces spp. can potentially be used for the efficient preparation of hydroxy amides and aminoalcohols.

  9. Effect of acetylcysteine on adaptation of intestinal smooth muscle after small bowel bypass

    International Nuclear Information System (INIS)

    Weisbrodt, N.W.; Belloso, R.M.; Biskin, L.C.; Dudrick, P.S.; Dudrick, S.J.

    1986-01-01

    The authors have postulated that the adaptive changes in function and structure of bypassed segments of small bowel are due in part to the change in intestinal contents following operation. The purpose of these experiments was to determine if a mucolytic agent could alter the adaptation. Rats were anesthetized and a 70% jejunoileal bypass was performed. The bypassed segments then were perfused with either saline or acetylcysteine for 3-12 days. Then, either intestinal transit was determined using Cr-51, or segments were taken for morphometric analysis. Transit, as assessed by the geometric center, was increased 32% by acetylcysteine treatment. Treatment also caused a decrease in hypertrophy of the muscularis. Muscle wet weight, muscle cross-sectional area, and muscle layer thickness all were significantly less in those animals infused with acetyl-cysteine. No decreases in hypertrophy were seen in the in-continuity segments. These data indicate that alterations in intestinal content can affect the course of adaptation of intestinal muscle in response to small bowel bypass

  10. N-acetylcysteine for major depressive episodes in bipolar disorder.

    Science.gov (United States)

    Magalhães, Pedro V; Dean, Olívia M; Bush, Ashley I; Copolov, David L; Malhi, Gin S; Kohlmann, Kristy; Jeavons, Susan; Schapkaitz, Ian; Anderson-Hunt, Murray; Berk, Michael

    2011-12-01

    In this report, we aimed to evaluate the effect of add-on N-acetylcysteine (NAC) on depressive symptoms and functional outcomes in bipolar disorder. To that end, we conducted a secondary analysis of all patients meeting full criteria for a depressive episode in a placebo controlled trial of adjunctive NAC for bipolar disorder. Twenty-four week randomised clinical trial comparing adjunctive NAC and placebo in individuals with bipolar disorder experiencing major depressive episodes. Symptomatic and functional outcome data were collected over the study period. Seventeen participants were available for this report. Very large effect sizes in favor of NAC were found for depressive symptoms and functional outcomes at endpoint. Eight of the ten participants on NAC had a treatment response at endpoint; the same was true for only one of the seven participants allocated to placebo. These results indicate that adjunctive NAC may be useful for major depressive episodes in bipolar disorder. Further studies designed to confirm this hypothesis are necessary.

  11. Photochemical reduction of uranyl ion with amides

    International Nuclear Information System (INIS)

    Brar, A.S.; Chander, R.; Sandhu, S.S.

    1981-01-01

    The photochemical reduction of uranyl ion by formamide, acetamide, propionamide, butyramide, iso butyramids, n-methylformamide, N, N-dimethylformamide and N, N-diethylformamide in aqueous medium using radiation >= 380 nm from a medium pressure mercury vapour lamp has been investigated. The reduction with the said amides has been found to obey pseudo first order kinetics. The magnitude of the rate of reduction for the simple amides has been found to follow the following order formamide > isobutyramide approx. butyramide > propionamide > acetamide while the rate order for N-alkylformamides compared with that of the formamide has been found to be formamide > N-methylformamide > N,N-diethylformamide approx. N,N-dimethylformamide. The pseudo first order rate constants and quenching constants have been found from the kinetic data. It has been found that physical and chemical quenching compete with each other. Plots of reciprocal of quantum yields versus reciprocal [amide] have been found to be linear with intercepts on the ordinate axis. Absorption spectra of uranyl ion in doubly distilled water, in the presence of acid and in the presence of acid and amide reveal that there is no ground state interaction between uranyl ion and the amide. A mechanism of photoreduction of uranyl ion with amides has been proposed. (author)

  12. A catalyst-free addition reaction of zinc amide enolates to N-sulfonyle imines

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Seong Ryu; Im, Pyeong Won; Kim, Jong Sung; Kim, Seung Hoi [Dept. of Chemistry, Dankook University, Cheonan (Korea, Republic of); Park Soo Youl [Interface Chemistry and Engineering Research Team, Korea Research Institute of Chemical Technology, Daejon (Korea, Republic of)

    2016-12-15

    Despite the remarkable expansion of the imino-Reformatsky reaction, one interesting aspect is that, to the best of our knowledge, zinc enolates derived solely from α-halo esters have been mainly used in the recent progress. In contrast, a few limited examples have been reported concerning the application of zinc enolates derived from α-halo amide to the imino-Reformatsky reaction. In recent years, Rodriguez-Solla and co-workers reported the addition reaction of samarium enolates derived from both α-halo esters and amides to imines, resulting in the synthe- sis of β-amino esters or amides. In conclusion, we established a potential synthetic proto- col for the preparation of β-amino amides. This work was accomplished by the direct addition of zinc amide enolates to N-sulfonyl imines in the absence of any metal-catalyst under mild conditions. Due to the operational simplicity of the proposed method, it can be further utilized in synthetic organic chemistry. Further studies to elucidate the scope of this approach are currently underway in our laboratory.

  13. A catalyst-free addition reaction of zinc amide enolates to N-sulfonyle imines

    International Nuclear Information System (INIS)

    Joo, Seong Ryu; Im, Pyeong Won; Kim, Jong Sung; Kim, Seung Hoi; Park Soo Youl

    2016-01-01

    Despite the remarkable expansion of the imino-Reformatsky reaction, one interesting aspect is that, to the best of our knowledge, zinc enolates derived solely from α-halo esters have been mainly used in the recent progress. In contrast, a few limited examples have been reported concerning the application of zinc enolates derived from α-halo amide to the imino-Reformatsky reaction. In recent years, Rodriguez-Solla and co-workers reported the addition reaction of samarium enolates derived from both α-halo esters and amides to imines, resulting in the synthe- sis of β-amino esters or amides. In conclusion, we established a potential synthetic proto- col for the preparation of β-amino amides. This work was accomplished by the direct addition of zinc amide enolates to N-sulfonyl imines in the absence of any metal-catalyst under mild conditions. Due to the operational simplicity of the proposed method, it can be further utilized in synthetic organic chemistry. Further studies to elucidate the scope of this approach are currently underway in our laboratory

  14. N-acetylcysteine for neuropsychiatric symptoms in a woman with Williams syndrome.

    Science.gov (United States)

    Pineiro, Mildred Lopez; Roberts, Antoinette M; Waxler, Jessica L; Mullett, Jennifer E; Pober, Barbara R; McDougle, Christopher J

    2014-11-01

    Williams syndrome is a relatively rare genetic disorder caused by the hemizygous microdeletion of a region in chromosome 7q11.23. Individuals with Williams syndrome typically present with a highly social, overfriendly, and empathic personality. Comorbid medical and neuropsychiatric disorders are common. Reports of effective pharmacological treatment of associated neuropsychiatric disorders are limited. The authors describe the successful treatment of interfering anger, aggression, and hair-pulling with N-acetylcysteine in a 19-year-old woman with Williams syndrome. The neuropsychiatric symptoms emerged 1 week following an upper gastrointestinal endoscopy, for which fentanyl, midazolam, and propofol were used as anesthetics. The patient's treatment course and hypothesized mechanisms underlying the clinical presentation and symptom resolution are described. © The Author(s) 2014.

  15. In search of better spermatogonial preservation by supplementation of cryopreserved human immature testicular tissue xenografts with N-acetylcysteine and testosterone

    Directory of Open Access Journals (Sweden)

    Jonathan ePoels

    2014-12-01

    Full Text Available Controlled slow-freezing is the procedure currently applied for immature testicular tissue cryobanking in clinical practice. Vitrification has been proposed as a promising alternative, with a view to better preserving spermatogonial stem cells for future fertility restoration by autografting in young boys suffering from cancer. It appears that besides the potential influence of the cryopreservation technique used, the transplantation procedure itself has a significant impact on spermatogonial loss observed in ITT xenografts. Eighteen immature testicular tissue pieces issuing from 6 patients aged 2-15 years were used. Fragments of fresh tissue (serving as ungrafted controls, frozen-thawed tissue, frozen-thawed tissue supplemented with N-acetylcysteine and frozen-thawed tissue supplemented with testosterone xenografted to nude mice for 5 days were compared. Upon graft removal, histological and immunohistochemical analyses were performed to evaluate spermatogonia, intratubular proliferation and intrinsic and extrinsic apoptosis. A significant decrease in the integrity of intact seminiferous tubules was found in all three grafted groups. Spermatogonia were observed by immunohistochemistry in all grafted groups, with recovery rates of 67%, 63% and 53% respectively for slow-frozen tissue, slow-frozen tissue supplemented with N-acetylcysteine and slow-frozen tissue supplemented with testosterone. Apoptosis evidenced by active caspase-3 and TUNEL was similar in all grafts. The study is limited by the low availability of immature testicular tissue samples of human origin, and no clear impact of graft supplementation was found. The mouse xenotransplantation model needs to be refined to investigate human spermatogenesis in human immature testicular tissue grafts.

  16. Pd-Catalyzed N-Arylation of Secondary Acyclic Amides: Catalyst Development, Scope, and Computational Study

    Science.gov (United States)

    Hicks, Jacqueline D.; Hyde, Alan M.; Cuezva, Alberto Martinez; Buchwald, Stephen L.

    2009-01-01

    We report the efficient N-arylation of acyclic secondary amides and related nucleophiles with aryl nonaflates, triflates, and chlorides. This method allows for easy variation of the aromatic component in tertiary aryl amides. A new biaryl phosphine with P-bound 3,5-(bis)trifluoromethylphenyl groups was found to be uniquely effective for this amidation. The critical aspects of the ligand were explored through synthetic, mechanistic, and computational studies. Systematic variation of the ligand revealed the importance of (1) a methoxy group on the aromatic carbon of the “top ring” ortho to the phosphorus and (2) two highly electron-withdrawing P-bound 3,5-(bis)trifluoromethylphenyl groups. Computational studies suggest the electron-deficient nature of the ligand is important in facilitating amide binding to the LPd(II)(Ph)(X) intermediate. PMID:19886610

  17. Storing red blood cells with vitamin C and N-acetylcysteine prevents oxidative stress-related lesions: a metabolomics overview.

    Science.gov (United States)

    Pallotta, Valeria; Gevi, Federica; D'alessandro, Angelo; Zolla, Lello

    2014-07-01

    Recent advances in red blood cell metabolomics have paved the way for further improvements of storage solutions. In the present study, we exploited a validated high performance liquid chromatography-mass spectrometry analytical workflow to determine the effects of vitamin C and N-acetylcysteine supplementation (anti-oxidants) on the metabolome of erythrocytes stored in citrate-phosphate-dextrose saline-adenine-glucose-mannitol medium under blood bank conditions. We observed decreased energy metabolism fluxes (glycolysis and pentose phosphate pathway). A tentative explanation of this phenomenon could be related to the observed depression of the uptake of glucose, since glucose and ascorbate are known to compete for the same transporter. Anti-oxidant supplementation was effective in modulating the redox poise, through the promotion of glutathione homeostasis, which resulted in decreased haemolysis and less accumulation of malondialdehyde and oxidation by-products (including oxidized glutathione and prostaglandins). Anti-oxidants improved storage quality by coping with oxidative stress at the expense of glycolytic metabolism, although reservoirs of high energy phosphate compounds were preserved by reduced cyclic AMP-mediated release of ATP.

  18. N-acetylcysteine protects rats with chronic renal failure from gadolinium-chelate nephrotoxicity.

    Directory of Open Access Journals (Sweden)

    Leonardo Victor Barbosa Pereira

    Full Text Available The aim of this study was to evaluate the effect of Gd-chelate on renal function, iron parameters and oxidative stress in rats with CRF and a possible protective effect of the antioxidant N-Acetylcysteine (NAC. Male Wistar rats were submitted to 5/6 nephrectomy (Nx to induced CRF. An ionic-cyclic Gd (Gadoterate Meglumine was administrated (1.5 mM/KgBW, intravenously 21 days after Nx. Clearance studies were performed in 4 groups of anesthetized animals 48 hours following Gd- chelate administration: 1--Nx (n = 7; 2--Nx+NAC (n = 6; 3--Nx+Gd (n = 7; 4--Nx+NAC+Gd (4.8 g/L in drinking water, initiated 2 days before Gd-chelate administration and maintained during 4 days (n = 6. This group was compared with a control. We measured glomerular filtration rate, GFR (inulin clearance, ml/min/kg BW, proteinuria (mg/24 hs, serum iron (µg/dL; serum ferritin (ng/mL; transferrin saturation (%, TIBC (µg/dL and TBARS (nmles/ml. Normal rats treated with the same dose of Gd-chelate presented similar GFR and proteinuria when compared with normal controls, indicating that at this dose Gd-chelate is not nephrotoxic to normal rats. Gd-chelate administration to Nx-rats results in a decrease of GFR and increased proteinuria associated with a decrease in TIBC, elevation of ferritin serum levels, transferrin oversaturation and plasmatic TBARS compared with Nx-rats. The prophylactic treatment with NAC reversed the decrease in GFR and the increase in proteinuria and all alterations in iron parameters and TBARS induced by Gd-chelate. NAC administration to Nx rat did not modify the inulin clearance and iron kinetics, indicating that the ameliorating effect of NAC was specific to Gd-chelate. These results suggest that NAC can prevent Gd-chelate nephrotoxicity in patients with chronic renal failure.

  19. Interactive effects of N-acetylcysteine and antidepressants.

    Science.gov (United States)

    Costa-Campos, Luciane; Herrmann, Ana P; Pilz, Luísa K; Michels, Marcus; Noetzold, Guilherme; Elisabetsky, Elaine

    2013-07-01

    N-acetylcysteine (NAC), a glutathione precursor and glutamate modulator, has been shown to possess various clinically relevant psychopharmacological properties. Considering the role of glutamate and oxidative stress in depressive states, the poor effectiveness of antidepressant drugs (ADs) and the benefits of drug combination for treating depression, the aim of this study was to explore the possible benefit of NAC as an add on drug to treat major depression. For that matter we investigated the combination of subeffective and effective doses of NAC with subeffective and effective doses of several ADs in the mice tail suspension test. The key finding of this study is that a subeffective dose of NAC reduced the minimum effective doses of imipramine and escitalopram, but not those of desipramine and bupropion. Moreover, the same subeffective dose of NAC increased the minimum effective dose of fluoxetine in the same model. In view of the advantages associated with using the lowest effective dose of antidepressant, the results of this study suggest the potential of a clinically useful interaction of NAC with imipramine and escitalopram. Further studies are necessary to better characterize the molecular basis of such interactions, as well as to typify the particular drug combinations that would optimize NAC as an alternative for treating depression. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Effect Of N-Acetylcysteine On Biochemical And Gene Expression Changes In Guinea Pig Exposed To GAMMA Radiation And Cigarette Smoke

    International Nuclear Information System (INIS)

    ELMAGHRABY, T.

    2010-01-01

    The environmental or silent smoke of tobacco contains a large number of components, and many of them are toxic to the epithelial cells. The environmental smoke contains reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are responsible for 50% of the global mortality, and also 56% of the disease burdens are attributed to tobacco in developing countries. The aim of the present study is to evaluate the effects of ROS and RNS on antioxidant enzymes and expression of eNOS and iNOS genes that synthesis NO in addition to the gene expression of MUC5AC that synthesis mucin. Moreover, the present study aimed also to evaluate the role of N-acetylcysteine (NAC) as antioxidant. Male guinea pigs exposed to cigarette smoke and/or gamma radiation were treated with N-acetylcysteine (NAC). The study included determination of the activities of Cu-Zn superoxide dismutase, Mn-superoxide dismutase, glutathione peroxidase in lung and heart and expressions of eNOS, iNOS and MUC5AC genes in lung tissue. The results revealed significant increase in Mn-superoxide dismutase, iNOS gene expression and MUC5AC gene expression, and significant decrease in eNOS gene expression in lung of guinea pig exposed to cigarette smoke and/or gamma radiation. The results also revealed that NAC can reduce the effects of cigarette smoke and radiation on antioxidant enzymes and the expression of genes that synthesis NO and MUC5AC that synthesis mucin. It could be concluded that NAC can ameliorate the action of the bad effects of cigarette smoke and gamma radiation.

  1. Maternal melatonin or N-acetylcysteine therapy regulates hydrogen sulfide-generating pathway and renal transcriptome to prevent prenatal NG-Nitro-L-arginine-methyl ester (L-NAME)-induced fetal programming of hypertension in adult male offspring.

    Science.gov (United States)

    Tain, You-Lin; Lee, Chien-Te; Chan, Julie Y H; Hsu, Chien-Ning

    2016-11-01

    Pregnancy is a critical time for fetal programming of hypertension. Nitric oxide deficiency during pregnancy causes hypertension in adult offspring. We examined whether maternal melatonin or N-acetylcysteine therapy can prevent N G -nitro-L-arginine-methyl ester-induced fetal programming of hypertension in adult offspring. Next, we aimed to identify potential gatekeeper pathways that contribute to N G -nitro-L-arginine-methyl ester -induced programmed hypertension using the next generation RNA sequencing technology. Pregnant Sprague-Dawley rats were assigned to 4 groups: control, N G -nitro-L-arginine-methyl ester, N G -nitro-L-arginine-methyl ester +melatonin, and N G -nitro-L-arginine-methyl ester+N-acetylcysteine. Pregnant rats received N G -nitro-L-arginine-methyl ester administration at 60 mg/kg/d subcutaneously during pregnancy alone, with additional 0.01% melatonin in drinking water, or with additional 1% N-acetylcysteine in drinking water during the entire pregnancy and lactation. Male offspring (n=8/group) were killed at 12 weeks of age. N G -nitro-L-arginine-methyl ester exposure during pregnancy induced programmed hypertension in adult male offspring, which was prevented by maternal melatonin or N-acetylcysteine therapy. Protective effects of melatonin and N-acetylcysteine against N G -nitro-L-arginine-methyl ester-induced programmed hypertension were associated with an increase in hydrogen sulfide-generating enzymes and hydrogen sulfide synthesis in the kidneys. Nitric oxide inhibition by N G -nitro-L-arginine-methyl ester in pregnancy caused >2000 renal transcripts to be modified during nephrogenesis stage in 1-day-old offspring kidney. Among them, genes belong to the renin-angiotensin system, and arachidonic acid metabolism pathways were potentially involved in the N G -nitro-L-arginine-methyl ester-induced programmed hypertension. However, melatonin and N-acetylcysteine reprogrammed the renin-angiotensin system and arachidonic acid pathway

  2. N-acetylcysteine improves arterial vascular reactivity in patients with chronic kidney disease

    DEFF Research Database (Denmark)

    Wittstock, Antje; Burkert, Magdalena; Zidek, Walter

    2009-01-01

    Patients with stage 5 chronic kidney disease show increased cardiovascular morbidity and mortality that are partly related to impaired arterial vascular reactivity. We investigated whether intravenous administration of the antioxidant acetylcysteine improves arterial vascular reactivity in these ...

  3. Compatibility and osmolality of inhaled N-acetylcysteine nebulizing solution with fenoterol and ipratropium.

    Science.gov (United States)

    Lee, Tzung-Yi; Chen, Chi-Ming; Lee, Chun-Nin; Chiang, Yi-Chun; Chen, Hsiang-Yin

    2005-04-15

    The compatibility, pH, and osmolality of N-acetylcysteine (NAC) nebulizing solution in the presence of ipratropium bromide or fenoterol hydrobromide were studied. Portions (400 microL) of each mixture were sampled immediately upon mixing and one, two, three, four, five, six, and seven hours after mixing and assayed by high-performance liquid chromatography. Osmolality was measured by sampling 100 microL from the filling cup at a five-minute interval during nebulization and by the freezing-point-depression method. Adding NAC solution to fenoterol solution raised the pH from 3.20 to 7.90 and the osmolality to a mean +/- S.D. of 1400.67 +/- 4.51 mOsm/kg. Fenoterol concentrations decreased to 93.71% and NAC concentrations to 92.54% of initial concentrations after seven hours. Mixing ipratropium with NAC solution raised the pH from 3.74 to 7.95 and the osmolality to a mean +/- S.D. of 1413 +/- 11.79 mOsm/kg. The initial ipratropium concentration declined 7.39% and 10.91% one and two hours after mixing with NAC solution, respectively. NAC and ipratropium were stable in nebulizing solution within one hour of mixing. NAC and fenoterol were compatible for at least seven hours.

  4. Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis.

    Science.gov (United States)

    Pisithkul, Tippapha; Jacobson, Tyler B; O'Brien, Thomas J; Stevenson, David M; Amador-Noguez, Daniel

    2015-09-01

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using (13)C-labeled sugars and [(15)N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. Copyright © 2015, Pisithkul et al.

  5. Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis

    Science.gov (United States)

    Pisithkul, Tippapha; Jacobson, Tyler B.; O'Brien, Thomas J.; Stevenson, David M.

    2015-01-01

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using 13C-labeled sugars and [15N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. PMID:26070680

  6. Effect of N-acetylcysteine administration on the expression and activities of antioxidant enzymes and the malondialdehyde level in the blood of lead-exposed workers.

    Science.gov (United States)

    Kasperczyk, Sławomir; Dobrakowski, Michał; Kasperczyk, Aleksandra; Machnik, Grzegorz; Birkner, Ewa

    2014-03-01

    We investigated whether treatment with N-acetylcysteine (NAC) reduces oxidative stress intensity and restores the expression and activities of superoxide dismutase (Sod1, SOD), catalase (Cat, CAT) and glutathione peroxidase (Gpx1, GPx) in lead-exposed workers. The exposed population was divided randomly into two groups. Workers in the first group (reference group, n=49) were not administered any drugs, while workers in the second group (n=122) were treated with NAC at three doses for 12 weeks (200 mg, 400 mg, 800 mg/day). NAC administered orally to lead-exposed workers normalized antioxidant enzyme activities in blood cells. Oxidative stress intensity measured as malondialdehyde (MDA) levels in serum, leukocytes and erythrocytes significantly decreased after NAC administration. NAC may be an alternative therapy for chronic lead intoxication. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Comparative synergistic (technetium-actinide) extraction chemistry by tributylphosphate and some amide extractants

    International Nuclear Information System (INIS)

    Condamines, N.; Musikas, C.

    1993-01-01

    In nuclear fuel reprocessing, technetium (TcO 4 - ) leads to bad interferences in the extractions, being synergistically co-extracted with different actinide cations as Uranium (VI), Plutonium (IV) and Zirconium (IV). It destroys the hydrazine in the reductive partition of U and Pu, it decreases the decontamination of U and Pu from fission products. Thus, its extraction behaviour with new extractants as N,N-diakylamides is useful to be known. TcO 4 - extraction in nitric acid media is compared for TBP and different amides. The influence of nitric acidity is related to the amides formula

  8. Amide Synthesis from Alcohols and Amines Catalyzed by Ruthenium N-Heterocyclic Carbene Complexes

    DEFF Research Database (Denmark)

    Dam, Johan Hygum; Osztrovszky, Gyorgyi; Nordstrøm, Lars Ulrik Rubæk

    2010-01-01

    The direct synthesis of amides from alcohols and amines is described with the simultaneous liberation of dihydrogen. The reaction does not require any stoichiometric additives or hydrogen acceptors and is catalyzed by ruthenium N-heterocyclic carbene complexes. Three different catalyst systems...... are presented that all employ 1,3-diisopropylimidazol-2-ylidene (IiPr) as the carbene ligand. In addition, potassium tert-butoxide and a tricycloalkylphosphine are required for the amidation to proceed. In the first system, the active catalyst is generated in situ from [RuCl2(cod)] (cod = 1,5-cyclooctadiene), 1...... chloride and base. A range of different primary alcohols and amines have been coupled in the presence of the three catalyst systems to afford the corresponding amides in moderate to excellent yields. The best results are obtained with sterically unhindered alcohols and amines. The three catalyst systems do...

  9. [EFFECT OF ACETYLCYSTEINE, CORVITIN AND THEIR COMBINATION ON THE FUNCTIONAL STATE OF LIVER IN RATS WITH PARACETAMOL INDUCED TOXIC HEPATITIS].

    Science.gov (United States)

    Ghonghadze, M; Antelava, N; Liluashvili, K; Okujava, M; Pachkoria, K

    2017-02-01

    Nowadays drug-induced hepatotoxicity is urgent problem worldwide. Currently more than 1000 drugs are hepatotoxic and most often are the reason of acute fulminant hepatitis and hepatocellular failure, the states requiring liver transplantation. The paracetamol induced liver toxicity is related with accumulation of its toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI), which is the free radical and enhances peroxidation of lipids, disturbs the energy status and causes death of hepatocytes. During our research we investigated and assessed the efficacy of acetylcysteine, corvitin and their combination in rat model of paracetamol induced acute toxic hepatitis. The study was performed on mature white male Wistar rates with body mass 150-180 g. 50 rats were randomly divided into 5 groups (10 rats in each group). To get the model of acute toxic hepatitis single intraperitoneal injection of paracetamol solution was used (750 mg/kg). Toxic hepatitis was treated with intrapertoneal administration of 40mg/kg acetylcysteine or 100mg/kg corvitin, as well as with combination of these drugs. Monotherapy with acetylcysteine and corvitin of paracetamol induced toxic hepatitis improved the liver function, decreased relative mass of the liver and animal mortality. The treatment of toxic hepatitis was most effective in the case of simultaneous administration of acetylcysteine and corvitin. The normal value of laboratory tests (ALT, ACT, alkaline phosphatase, total and unconjugated bilirubin) was reached and mortality was not more observed. On the bases of obtained data was concluded that acetylcysteine and corvitin have almost equal hepatoprotective activity. The combination of two drugs actually improves the liver function. The most pronounced hepatoprotective effect may be due to synergic action of acetylcysteine and corvitin and such regime can be recommended for correction of liver function.

  10. Effects of N-acetylcysteine (NAC) supplementation in resuscitation fluids on renal microcirculatory oxygenation, inflammation, and function in a rat model of endotoxemia

    NARCIS (Netherlands)

    Ergin, Bulent; Guerci, Philippe; Zafrani, Lara; Nocken, Frank; Kandil, Asli; Gurel-Gurevin, Ebru; Demirci-Tansel, Cihan; Ince, Can

    2016-01-01

    Modulation of inflammation and oxidative stress appears to limit sepsis-induced damage in experimental models. The kidney is one of the most sensitive organs to injury during septic shock. In this study, we evaluated the effect of N-acetylcysteine (NAC) administration in conjunction with fluid

  11. Hepatoprotective amide constituents from the fruit of Piper chaba: Structural requirements, mode of action, and new amides.

    Science.gov (United States)

    Matsuda, Hisashi; Ninomiya, Kiyofumi; Morikawa, Toshio; Yasuda, Daisuke; Yamaguchi, Itadaki; Yoshikawa, Masayuki

    2009-10-15

    The 80% aqueous acetone extract from the fruit of Piper chaba (Piperaceae) was found to have hepatoprotective effects on D-galactosamine (D-GalN)/lipopolysaccharide-induced liver injury in mice. From the ethyl acetate-soluble fraction, three new amides, piperchabamides E, G, and H, 33 amides, and four aromatic constituents were isolated. Among the isolates, several amide constituents inhibited D-GalN/tumor necrosis factor-alpha (TNF-alpha)-induced death of hepatocytes, and the following structural requirements were suggested: (i) the amide moiety is essential for potent activity; and (ii) the 1,9-decadiene structure between the benzene ring and the amide moiety tended to enhance the activity. Moreover, a principal constituent, piperine, exhibited strong in vivo hepatoprotective effects at doses of 5 and 10 mg/kg, po and its mode of action was suggested to depend on the reduced sensitivity of hepatocytes to TNF-alpha.

  12. N-Acetylcysteine for Nonsuicidal Self-Injurious Behavior in Adolescents: An Open-Label Pilot Study.

    Science.gov (United States)

    Cullen, Kathryn R; Klimes-Dougan, Bonnie; Westlund Schreiner, Melinda; Carstedt, Patricia; Marka, Nicholas; Nelson, Katharine; Miller, Michael J; Reigstad, Kristina; Westervelt, Ana; Gunlicks-Stoessel, Meredith; Eberly, Lynn E

    2018-03-01

    Nonsuicidal self-injury (NSSI) is common in adolescents and young adults, and few evidence-based treatments are available for this significant problem. N-acetylcysteine (NAC) is a widely available nutritional supplement that has been studied in some psychiatric disorders relevant to NSSI including mood and addictive disorders. This pilot study tested the use of NAC as a potential treatment for NSSI in youth. Thirty-five female adolescents and young adults with NSSI aged 13-21 years were enrolled in this study that had an open-label, single-arm study design. All participants were given oral NAC as follows: 600 mg twice daily (weeks 1-2), 1200 mg twice daily (weeks 3-4), and 1800 mg twice daily (weeks 5-8). Patients were seen every 2 weeks throughout the trial, at which time youth reported the frequency of NSSI episodes. Levels of depression, impulsivity, and global psychopathology were measured at baseline and at the end of the trial using the Beck Depression Inventory-II (BDI-II), Barratt Impulsivity Scale, and Symptoms Checklist-90 (SCL-90). About two-thirds of the enrolled female youth completed the trial (24/35). NAC was generally well tolerated in this sample. NAC treatment was associated with a significant decrease in NSSI frequency at visit 6 and visit 8 compared to baseline. We also found that depression scores and global psychopathology scores (but not impulsivity scores) decreased after NAC treatment. Decrease in NSSI was not correlated with decrease in BDI-II or SCL-90 scores, suggesting these might be independent effects. We provide preliminary evidence that NAC may have promise as a potential treatment option for adolescents with NSSI. The current results require follow-up with a randomized, placebo-controlled trial to confirm efficacy.

  13. Targeted Lipidomics in Drosophila melanogaster Identifies Novel 2-Monoacylglycerols and N-acyl Amides

    Science.gov (United States)

    Takacs, Sara M.; Stuart, Jordyn M.; Basnet, Arjun; Raboune, Siham; Widlanski, Theodore S.; Doherty, Patrick; Bradshaw, Heather B.

    2013-01-01

    Lipid metabolism is critical to coordinate organ development and physiology in response to tissue-autonomous signals and environmental cues. Changes to the availability and signaling of lipid mediators can limit competitiveness, adaptation to environmental stressors, and augment pathological processes. Two classes of lipids, the N-acyl amides and the 2-acyl glycerols, have emerged as important signaling molecules in a wide range of species with important signaling properties, though most of what is known about their cellular functions is from mammalian models. Therefore, expanding available knowledge on the repertoire of these lipids in invertebrates will provide additional avenues of research aimed at elucidating biosynthetic, metabolic, and signaling properties of these molecules. Drosophila melanogaster is a commonly used organism to study intercellular communication, including the functions of bioactive lipids. However, limited information is available on the molecular identity of lipids with putative biological activities in Drosophila. Here, we used a targeted lipidomics approach to identify putative signaling lipids in third instar Drosophila larvae, possessing particularly large lipid mass in their fat body. We identified 2-linoleoyl glycerol, 2-oleoyl glycerol, and 45 N-acyl amides in larval tissues, and validated our findings by the comparative analysis of Oregon-RS, Canton-S and w1118 strains. Data here suggest that Drosophila represent another model system to use for the study of 2-acyl glycerol and N-acyl amide signaling. PMID:23874457

  14. SYNTHESIS AND STRUCTURAL FEATURES OF NOVEL VANADIUM(II) AMIDES - X-RAY STRUCTURES OF OCTAHEDRAL [(2-C5H4N)(CH3)N]2V(TMEDA) (TMEDA=N,N,N',N'-TETRAMETHYLETHYLENEDIAMINE) AND SQUARE-PYRAMIDAL [2,5-(CH3)2C4H2N]2V(PY)3 (PY=PYRIDINE)

    NARCIS (Netherlands)

    EDEMA, JJH; GAMBAROTTA, S; MEETSMA, A; SPEK, AL; VELDMAN, N

    1991-01-01

    The reaction of trans-(TMEDA)2VCl2 (TMEDA = N,N,N',N'-tetramethylethylenediamine) with both mono- and bidentate alkali-metal amides has been investigated. Utilization of 2 equiv of bidentate amide (N segment N)-M [M = Li, Na; N segment N = 2-?? (MeN)C5H4N (1), PhNNNPh (2), 7-azaindolyl (3),

  15. Polyvinylpolypyrrolidone-Supported Boron Trifluoride; Highly Efficient Catalyst for the Synthesis of N-tert-Butyl Amides

    Directory of Open Access Journals (Sweden)

    Masoud Mokhtary

    2012-01-01

    Full Text Available Highly efficient method for the preparation of N-tert-butyl amides by reaction of nitriles with tert-butyl acetate is described using polyvinylpolypyrrolidone-supported boron trifluoride (PVPP-BF3 at 70°C in good to excellent yields. Selective amidation of benzonitrile in the presence of acetonitrile was also achieved. polyvinylpolypyrrolidone-boron trifluoride complex shows non-corrosive and stable solid catalyst elevated Lewis acid property.

  16. The effect of short-term, high-dose oral N-acetylcysteine treatment on oxidative stress markers in cystic fibrosis patients with chronic P. aeruginosa infection -- a pilot study.

    Science.gov (United States)

    Skov, Marianne; Pressler, Tacjana; Lykkesfeldt, Jens; Poulsen, Henrik Enghusen; Jensen, Peter Østrup; Johansen, Helle Krogh; Qvist, Tavs; Kræmer, Dorthe; Høiby, Niels; Ciofu, Oana

    2015-03-01

    Patients with cystic fibrosis (CF) and chronic Pseudomonas aeruginosa lung infection have increased oxidative stress as a result of an imbalance between the production of reactive oxygen species caused by inflammation and their inactivation by the impaired antioxidant systems. Supplementation with anti-oxidants is potentially beneficial for CF patients. The effect of 4 weeks of oral N-acetylcysteine (NAC) treatment (2400 mg/day divided into two doses) on biochemical parameters of oxidative stress was investigated in an open-label, controlled, randomized trial on 21 patients; 11 patients in the NAC group and 10 in the control group. Biochemical parameters of oxidative burden and plasma levels of antioxidants were assessed at the end of the study and compared to the baseline values in the two groups. A significant increase in the plasma levels of the antioxidant ascorbic acid (p=0.037) and a significant decrease in the levels of the oxidized form of ascorbic acid (dehydroascorbate) (p=0.004) compared to baseline were achieved after NAC treatment. No significant differences were observed in the control group. The parameters of oxidative burden did not change significantly compared to baseline in either of the groups. A better lung function was observed in the NAC treated group with a mean (SD) change compared to baseline of FEV1% predicted of 2.11 (4.6), while a decrease was observed in the control group (change -1.4 (4.6)), though not statistically significant. Treatment with N-acetylcysteine 1200 mg×2/day for 30 days significantly decreased the level of oxidized vitamin C and increased the level of vitamin C (primary end-points) and a not statistically significant improvement of lung function was observed in this group of patients. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  17. Ammonium absorption mechanism of rice seedling roots and 15N-labelling pattern of their glutamine-amide group, 2

    International Nuclear Information System (INIS)

    Arima, Yasuhiro; Kumazawa, Kikuo

    1975-01-01

    The processes of producing glutamine and asparagine at the initial stage of the absorption and assimilation of ammonia in rice seedling roots were examined in relation to glutamic acid, aspartic acid and ammonia by 15 N-labelling method. When ( 15 NH 4 ) 2 SO 4 was absorbed into the roots, 15 N concentration appeared very high in glutamine-amide radical and ammonia. It was also higher in amide radical than in amino radical in both glutamine and asparagine, while 15 N concentration in the amino radical of glutamine and asparagine were far lower than that of corresponding glutamine acid and aspartic acid. From these facts, glutamine-amide radical seems to be produced directly from the ammonia in culture media at the contact point of root cells and the culture media, while there is some possibility that asparagine-amide radical is formed from other amino compounds than ammonia. Also the amino radical of aspartic acid seems to be produced not only by the transamination from glutamic acid but also by the reductive amination of oxalautic acid by ammonium. (Kobatake, H.)

  18. The efficacy of adjunctive N-acetylcysteine in major depressive disorder: a double-blind, randomized, placebo-controlled trial.

    Science.gov (United States)

    Berk, Michael; Dean, Olivia M; Cotton, Sue M; Jeavons, Susan; Tanious, Michelle; Kohlmann, Kristy; Hewitt, Karen; Moss, Kirsteen; Allwang, Christine; Schapkaitz, Ian; Robbins, Jenny; Cobb, Heidi; Ng, Felicity; Dodd, Seetal; Bush, Ashley I; Malhi, Gin S

    2014-06-01

    Major depressive disorder (MDD) is one of the most common psychiatric disorders, conferring considerable individual, family, and community burden. To date, treatments for MDD have been derived from the monoamine hypothesis, and there is a paucity of emerging antidepressants, especially with novel mechanisms of action and treatment targets. N-acetylcysteine (NAC) is a redox-active glutathione precursor that decreases inflammatory cytokines, modulates glutamate, promotes neurogenesis, and decreases apoptosis, all of which contribute to the neurobiology of depression. Participants with a current episode of MDD diagnosed according to DSM-IV-TR criteria (N = 252) were treated with NAC or placebo in addition to treatment as usual for 12 weeks and were followed to 16 weeks. Data were collected between 2007 and 2011. The omnibus interaction between group and visit for the Montgomery-Asberg Depression Rating Scale (MADRS), the primary outcome measure, was not significant (F₁,₅₂₀.₉ = 1.98, P = .067), and the groups did not separate at week 12 (t₃₆₀.₃ = -1.12, P = .265). However, at week 12, the scores on the Longitudinal Interval Follow-Up Evaluation-Range of Impaired Functioning Tool (LIFE-RIFT) differed from placebo (P = .03). Among participants with a MADRS score ≥ 25, NAC separated from placebo at weeks 6, 8, 12, and 16 (P depression pathogenesis, principally oxidative and inflammatory stress and glutamate, although definitive confirmation remains necessary. www.anzctr.org.au Identifier: ACTRN12607000134426. © Copyright 2014 Physicians Postgraduate Press, Inc.

  19. Synthesis, Antifungal Evaluation and In Silico Study of N-(4-Halobenzyl)amides.

    Science.gov (United States)

    Montes, Ricardo Carneiro; Perez, Ana Luiza A L; Medeiros, Cássio Ilan S; Araújo, Marianna Oliveira de; Lima, Edeltrudes de Oliveira; Scotti, Marcus Tullius; Sousa, Damião Pergentino de

    2016-12-13

    A collection of 32 structurally related N -(4-halobenzyl)amides were synthesized from cinnamic and benzoic acids through coupling reactions with 4-halobenzylamines, using (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) as a coupling agent. The compounds were identified by spectroscopic methods such as infrared, ¹H- and 13 C- Nuclear Magnetic Resonance (NMR) and high-resolution mass spectrometry. The compounds were then submitted to antimicrobial tests by the minimum inhibitory concentration method (MIC) and nystatin was used as a control in the antifungal assays. The purpose of the tests was to evaluate the influence of structural changes in the cinnamic and benzoic acid substructures on the inhibitory activity against strains of Candida albicans , Candida tropicalis , and Candida krusei . A quantitative structure-activity relationship (QSAR) study with KNIME v. 3.1.0 and Volsurf v. 1.0.7 softwares were realized, showing that descriptors DRDRDR, DRDRAC, L4LgS, IW4 and DD2 influence the antifungal activity of the haloamides. In general, 10 benzamides revealed fungal sensitivity, especially a vanillic amide which enjoyed the lowest MIC. The results demonstrate that a hydroxyl group in the para position, and a methoxyl at the meta position enhance antifungal activity for the amide skeletal structure. In addition, the double bond as a spacer group appears to be important for the activity of amide structures.

  20. The Levels Of Cytokines And S 100β Which Associated With The Pathogenesis Of Hepatic Encephalopathy In Rats: Role Of Lactulose And N-Acetylcysteine In Its Treatment

    International Nuclear Information System (INIS)

    Heibashy, M.I.A.; Mazen, G.M.A.; Ibrahim, M.A.

    2012-01-01

    Hepatic encephalopathy (HE) is a reversible syndrome of impaired brain function occurring in patients with advanced liver failure. Recently, it has been reported that pro inflammatory cytokines are involved in the pathogenesis of brain oedema during HE. This study was conducted to elucidate the changes of plasma and brain pro inflammatory cytokines in encephalopathy rats and to evaluate the hepato-protective activity of lactulose or N-acetylcysteine against thioacetamide (TAA) induced hepatopathy in rats. Acute hepatic encephalopathy (HE) in rats was induced by intraperitoneal injection of thioacetamide in 24 hours intervals for two consecutive days. The obtained results revealed significant increase (P<0.05) in liver function tests (ALT, AST, ALP, bilirubin), ammonia, nitric oxide and total oxidant capacity (TOC) in TAA rats than those in control ones. Brain water content was significantly elevated in TAA rats as compared with the control. In addition, the levels of pro inflammatory cytokines (IL-1Β, IL-6, TNF-α) in both serum and brain were significantly increased associated with a remarkable elevation in the level of serum S 100β in TAA rats. On the other hand, induction of hepatic encephalopathy caused significant decrease (P<0.05) in total antioxidant capacity (TAC) levels. When HE rats group was treated with lactulose or N-acetylcysteine, considerable amelioration effects in all previous studied parameters were pronounced dependent on certain mechanisms

  1. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why.

    Science.gov (United States)

    Aldini, Giancarlo; Altomare, Alessandra; Baron, Giovanna; Vistoli, Giulio; Carini, Marina; Borsani, Luisa; Sergio, Francesco

    2018-05-09

    The main molecular mechanisms explaining the well-established antioxidant and reducing activity of N-acetylcysteine (NAC), the N-acetyl derivative of the natural amino acid l-cysteine, are summarised and critically reviewed. The antioxidant effect is due to the ability of NAC to act as a reduced glutathione (GSH) precursor; GSH is a well-known direct antioxidant and a substrate of several antioxidant enzymes. Moreover, in some conditions where a significant depletion of endogenous Cys and GSH occurs, NAC can act as a direct antioxidant for some oxidant species such as NO 2 and HOX. The antioxidant activity of NAC could also be due to its effect in breaking thiolated proteins, thus releasing free thiols as well as reduced proteins, which in some cases, such as for mercaptoalbumin, have important direct antioxidant activity. As well as being involved in the antioxidant mechanism, the disulphide breaking activity of NAC also explains its mucolytic activity which is due to its effect in reducing heavily cross-linked mucus glycoproteins. Chemical features explaining the efficient disulphide breaking activity of NAC are also explained.

  2. Metal extraction by amides of carboxylic acids

    International Nuclear Information System (INIS)

    Skorovarov, D.I.; Chumakova, G.M.; Rusin, L.I.; Ul'anov, V.S.; Sviridova, R.A.; Sviridov, A.L.

    1988-01-01

    Extraction ability of various amides was studied. Data on extraction of rare earths, vanadium, molybdenum, rhenium, uranium, niobium, tantalum by N,N-dibutyl-amides of acetic, nonanic acids and fatly synthetic acids of C 7 -C 9 fractions are presented. Effect of salting-out agents, inorganic acid concentrations on extraction process was studied. Potential ability of using amides of carboxylic acids for extractional concentration of rare earths as well as for recovery and separation of iron, rhenium, vanadium, molybdenum, uranium, niobium, and tantalum was shown

  3. New Umami Amides: Structure-Taste Relationship Studies of Cinnamic Acid Derived Amides and the Natural Occurrence of an Intense Umami Amide in Zanthoxylum piperitum.

    Science.gov (United States)

    Frerot, Eric; Neirynck, Nathalie; Cayeux, Isabelle; Yuan, Yoyo Hui-Juan; Yuan, Yong-Ming

    2015-08-19

    A series of aromatic amides were synthesized from various acids and amines selected from naturally occurring structural frameworks. These synthetic amides were evaluated for umami taste in comparison with monosodium glutamate. The effect of the substitution pattern of both the acid and the amine parts on umami taste was investigated. The only intensely umami-tasting amides were those made from 3,4-dimethoxycinnamic acid. The amine part was more tolerant to structural changes. Amides bearing an alkyl- or alkoxy-substituted phenylethylamine residue displayed a clean umami taste as 20 ppm solutions in water. Ultraperformance liquid chromatography coupled with a high quadrupole-Orbitrap mass spectrometer (UPLC/MS) was subsequently used to show the natural occurrence of these amides. (E)-3-(3,4-Dimethoxyphenyl)-N-(4-methoxyphenethyl)acrylamide was shown to occur in the roots and stems of Zanthoxylum piperitum, a plant of the family Rutaceae growing in Korea, Japan, and China.

  4. Application of mid-infrared free-electron laser tuned to amide bands for dissociation of aggregate structure of protein.

    Science.gov (United States)

    Kawasaki, Takayasu; Yaji, Toyonari; Ohta, Toshiaki; Tsukiyama, Koichi

    2016-01-01

    A mid-infrared free-electron laser (FEL) is a linearly polarized, high-peak powered pulse laser with tunable wavelength within the mid-infrared absorption region. It was recently found that pathogenic amyloid fibrils could be partially dissociated to the monomer form by the irradiation of the FEL targeting the amide I band (C=O stretching vibration), amide II band (N-H bending vibration) and amide III band (C-N stretching vibration). In this study, the irradiation effect of the FEL on keratin aggregate was tested as another model to demonstrate an applicability of the FEL for dissociation of protein aggregates. Synchrotron radiation infrared microscopy analysis showed that the α-helix content in the aggregate structure decreased to almost the same level as that in the monomer state after FEL irradiation tuned to 6.06 µm (amide I band). Both irradiations at 6.51 µm (amide II band) and 8.06 µm (amide III band) also decreased the content of the aggregate but to a lesser extent than for the irradiation at the amide I band. On the contrary, the irradiation tuned to 5.6 µm (non-absorbance region) changed little the secondary structure of the aggregate. Scanning-electron microscopy observation at the submicrometer order showed that the angular solid of the aggregate was converted to non-ordered fragments by the irradiation at each amide band, while the aggregate was hardly deformed by the irradiation at 5.6 µm. These results demonstrate that the amide-specific irradiation by the FEL was effective for dissociation of the protein aggregate to the monomer form.

  5. Apoptosis-inducing Factor (AIF) and Its Family Member Protein, AMID, Are Rotenone-sensitive NADH:Ubiquinone Oxidoreductases (NDH-2)*

    Science.gov (United States)

    Elguindy, Mahmoud M.; Nakamaru-Ogiso, Eiko

    2015-01-01

    Apoptosis-inducing factor (AIF) and AMID (AIF-homologous mitochondrion-associated inducer of death) are flavoproteins. Although AIF was originally discovered as a caspase-independent cell death effector, bioenergetic roles of AIF, particularly relating to complex I functions, have since emerged. However, the role of AIF in mitochondrial respiration and redox metabolism has remained unknown. Here, we investigated the redox properties of human AIF and AMID by comparing them with yeast Ndi1, a type 2 NADH:ubiquinone oxidoreductase (NDH-2) regarded as alternative complex I. Isolated AIF and AMID containing naturally incorporated FAD displayed no NADH oxidase activities. However, after reconstituting isolated AIF or AMID into bacterial or mitochondrial membranes, N-terminally tagged AIF and AMID displayed substantial NADH:O2 activities and supported NADH-linked proton pumping activities in the host membranes almost as efficiently as Ndi1. NADH:ubiquinone-1 activities in the reconstituted membranes were highly sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide (IC50 = ∼1 μm), a quinone-binding inhibitor. Overexpressing N-terminally tagged AIF and AMID enhanced the growth of a double knock-out Escherichia coli strain lacking complex I and NDH-2. In contrast, C-terminally tagged AIF and NADH-binding site mutants of N-terminally tagged AIF and AMID failed to show both NADH:O2 activity and the growth-enhancing effect. The disease mutant AIFΔR201 showed decreased NADH:O2 activity and growth-enhancing effect. Furthermore, we surprisingly found that the redox activities of N-terminally tagged AIF and AMID were sensitive to rotenone, a well known complex I inhibitor. We propose that AIF and AMID are previously unidentified mammalian NDH-2 enzymes, whose bioenergetic function could be supplemental NADH oxidation in cells. PMID:26063804

  6. Apoptosis-inducing Factor (AIF) and Its Family Member Protein, AMID, Are Rotenone-sensitive NADH:Ubiquinone Oxidoreductases (NDH-2).

    Science.gov (United States)

    Elguindy, Mahmoud M; Nakamaru-Ogiso, Eiko

    2015-08-21

    Apoptosis-inducing factor (AIF) and AMID (AIF-homologous mitochondrion-associated inducer of death) are flavoproteins. Although AIF was originally discovered as a caspase-independent cell death effector, bioenergetic roles of AIF, particularly relating to complex I functions, have since emerged. However, the role of AIF in mitochondrial respiration and redox metabolism has remained unknown. Here, we investigated the redox properties of human AIF and AMID by comparing them with yeast Ndi1, a type 2 NADH:ubiquinone oxidoreductase (NDH-2) regarded as alternative complex I. Isolated AIF and AMID containing naturally incorporated FAD displayed no NADH oxidase activities. However, after reconstituting isolated AIF or AMID into bacterial or mitochondrial membranes, N-terminally tagged AIF and AMID displayed substantial NADH:O₂ activities and supported NADH-linked proton pumping activities in the host membranes almost as efficiently as Ndi1. NADH:ubiquinone-1 activities in the reconstituted membranes were highly sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide (IC₅₀ = ∼1 μm), a quinone-binding inhibitor. Overexpressing N-terminally tagged AIF and AMID enhanced the growth of a double knock-out Escherichia coli strain lacking complex I and NDH-2. In contrast, C-terminally tagged AIF and NADH-binding site mutants of N-terminally tagged AIF and AMID failed to show both NADH:O₂ activity and the growth-enhancing effect. The disease mutant AIFΔR201 showed decreased NADH:O₂ activity and growth-enhancing effect. Furthermore, we surprisingly found that the redox activities of N-terminally tagged AIF and AMID were sensitive to rotenone, a well known complex I inhibitor. We propose that AIF and AMID are previously unidentified mammalian NDH-2 enzymes, whose bioenergetic function could be supplemental NADH oxidation in cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. N-Acetylcysteine treatment of dystrophic mdx mice results in protein thiol modifications and inhibition of exercise induced myofibre necrosis.

    Science.gov (United States)

    Terrill, Jessica R; Radley-Crabb, Hannah G; Grounds, Miranda D; Arthur, Peter G

    2012-05-01

    Oxidative stress is implicated as a factor that increases necrosis of skeletal muscles in Duchenne Muscular Dystrophy (DMD) and the dystrophic mdx mouse. Consequently, drugs that minimize oxidative stress are potential treatments for muscular dystrophy. This study examined the in vivo benefits to mdx mice of an antioxidant treatment with the cysteine precursor N-acetylcysteine (NAC), administered in drinking water. NAC was completely effective in preventing treadmill exercise-induced myofibre necrosis (assessed histologically) and the increased blood creatine kinase levels (a measure of sarcolemma leakiness) following exercise were significantly lower in the NAC treated mice. While NAC had no effect on malondialdehyde level or protein carbonylation (two indicators of irreversible oxidative damage), treatment with NAC for one week significantly decreased the oxidation of glutathione and protein thiols, and enhanced muscle protein thiol content. These data provide in vivo evidence for protective benefits of NAC treatment on dystropathology, potentially via protein thiol modifications. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol

    Directory of Open Access Journals (Sweden)

    Hailiang Zhao

    2016-12-01

    Full Text Available Amides are important atmospheric organic–nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH with amides (formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide and N,N-dimethylacetamide have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH–amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O–H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components.

  9. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol.

    Science.gov (United States)

    Zhao, Hailiang; Tang, Shanshan; Xu, Xiang; Du, Lin

    2016-12-30

    Amides are important atmospheric organic-nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH) with amides (formamide, N -methylformamide, N , N -dimethylformamide, acetamide, N -methylacetamide and N , N -dimethylacetamide) have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH-amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O-H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components.

  10. Nefropatia induzida por contraste: avaliação da proteção pela n-acetilcisteína e alopurinol em ratos uninefrectomizados Contrast-induced nephropathy: evaluation of n-acetylcysteine and allopunirol protective effect in uninephrectomized rats

    Directory of Open Access Journals (Sweden)

    José Carlos Carraro Eduardo

    2008-06-01

    Full Text Available OBJETIVO: A nefropatia por contraste é a terceira causa de insuficiência renal aguda em pacientes hospitalizados. O objetivo deste estudo foi avaliar a ação da n-acetilcisteína e do alopurinol na proteção renal em ratos de ambos os sexos que receberam diatrizoato. MATERIAIS E MÉTODOS: Ratos Wistar adultos jovens, uninefrectomizados e submetidos a restrição hídrica, receberam solução salina (grupo 1: machos; grupo 2: fêmeas, diatrizoato (grupo 3: machos; grupo 4: fêmeas, diatrizoato e n-acetilcisteína (grupo 5: machos, diatrizoato e alopurinol (grupo 6: machos e diatrizoato e n-acetilcisteína + alopurinol (grupo 7: machos. A filtração glomerular foi avaliada pela creatinina. O teste t de Student e o teste do sinal foram utilizados para análises estatísticas. RESULTADOS: Ratos que receberam diatrizoato apresentaram elevação estatisticamente significante da creatinina sérica, quando comparados aos controles, porém não houve diferença entre os sexos. Os animais que receberam alopurinol não mostraram aumento significante da creatinina, enquanto a administração de n-acetilcisteína não impediu a elevação da creatinina. CONCLUSÃO: O alopurinol mostrou-se mais efetivo que a n-acetilcisteína na proteção funcional renal ao dano induzido pelo diatrizoato de sódio. Não houve diferença entre os sexos na intensidade do dano renal pelo diatrizoato de sódio.OBJECTIVE: Contrast medium-induced nephropathy is the third most frequent cause of iatrogenic acute renal failure involving inpatients. The present study was aimed at evaluating the protective effect of n-acetylcysteine and allopurinol in both male and female rats receiving diatrizoate. MATERIALS AND METHODS: Thirty-five young adult Wistar rats submitted to hydric restriction were divided into groups as follows: groups 1 and 2 (respectively male and female rats receiving saline solution; groups 3 and 4 (respectively male and female rats receiving diatrizoate; group 5

  11. Synthesis and characterization of thermally stable poly(amide-imide-montmorillonite nanocomposites based on bis(4-carboxyphenyl-N,N'-pyromellitimide acid

    Directory of Open Access Journals (Sweden)

    M. Hajibeygi

    2013-04-01

    Full Text Available Two new poly(amide-imide-montmorillonite reinforced nanocomposites containing bis(4-carboxyphenyl-N,N'-pyromellitimide acid moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide (PAI as a source of polymer matrix was synthesized by the direct polycondensation reaction of bis(4-carboxyphenyl-N,N'-pyromellitimide acid with 4,4'-diamino diphenyl sulfone in the presence of triphenyl phosphite (TPP, CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP. Morphology and structure of the resulting PAI-nanocomposite films with 10 and 20% silicate particles were characterized by FT-IR spectroscopy, X-ray diffraction (XRD and scanning electron microscopy (SEM. The effect of clay dispersion and the interaction between clay and polymeric chains on the properties of nanocomposites films were investigated by using UV-Vis spectroscopy, thermal gravimetry analysis (TGA and water uptake measurements.DOI: http://dx.doi.org/10.4314/bcse.v27i1.10

  12. Synthesis of ketene N,N-acetals by copper-catalyzed double-amidation of 1,1-dibromo-1-alkenes.

    Science.gov (United States)

    Coste, Alexis; Couty, François; Evano, Gwilherm

    2009-10-01

    An efficient procedure for the preparation of ketene N,N-acetals by copper-catalyzed double amidation of 1,1-dibromo-1-alkenes is reported. The reaction was found to be general, and ketene aminals could be obtained in good yields when potassium phosphate in toluene was used at 80 degrees C. The reaction was found to proceed through a regioselective monocoupling reaction followed by dehydrobromination and hydroamidation.

  13. Synthesis, characterization and photo behavior of new poly(amide-imide/montmorillonite nanocomposite containing N,N'-pyrromellitoyl-bis-L-alanine

    Directory of Open Access Journals (Sweden)

    M. Hajibeygi

    2013-09-01

    Full Text Available Two new samples of poly(amide-imide-nanocomposites were synthesized by insertion nano silicate particles in poly(amide-imide (PAI chains using a convenient solution intercalation technique. PAI as a source of polymer matrix was synthesized by the direct polycondensation reaction of N,N'-pyrromelitoyl-bis-L-alanine with 4,4'-diamino diphenyl ether in the presence of triphenyl phosphite (TPP, CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP. Morphology and structure of the resulting PAI-nanocomposite films with 5 and 10% silicate particles were characterized by FTIR spectroscopy, X-ray diffraction (XRD and scanning electron microscopy (SEM. The effect of clay dispersion and the interaction between clay and polymeric chains on the properties of nanocomposites films were investigated by using UV-Vis spectroscopy, thermogravimetric analysis (TGA and water uptake measurements.DOI: http://dx.doi.org/10.4314/bcse.v27i3.15

  14. Salt forms of the pharmaceutical amide dihydrocarbamazepine.

    Science.gov (United States)

    Buist, Amanda R; Kennedy, Alan R

    2016-02-01

    Carbamazepine (CBZ) is well known as a model active pharmaceutical ingredient used in the study of polymorphism and the generation and comparison of cocrystal forms. The pharmaceutical amide dihydrocarbamazepine (DCBZ) is a less well known material and is largely of interest here as a structural congener of CBZ. Reaction of DCBZ with strong acids results in protonation of the amide functionality at the O atom and gives the salt forms dihydrocarbamazepine hydrochloride {systematic name: [(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)(hydroxy)methylidene]azanium chloride, C15H15N2O(+)·Cl(-)}, dihydrocarbamazepine hydrochloride monohydrate {systematic name: [(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)(hydroxy)methylidene]azanium chloride monohydrate, C15H15N2O(+)·Cl(-)·H2O} and dihydrocarbamazepine hydrobromide monohydrate {systematic name: [(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)(hydroxy)methylidene]azanium bromide monohydrate, C15H15N2O(+)·Br(-)·H2O}. The anhydrous hydrochloride has a structure with two crystallographically independent ion pairs (Z' = 2), wherein both cations adopt syn conformations, whilst the two hydrated species are mutually isostructural and have cations with anti conformations. Compared to neutral dihydrocarbamazepine structures, protonation of the amide group is shown to cause changes to both the molecular (C=O bond lengthening and C-N bond shortening) and the supramolecular structures. The amide-to-amide and dimeric hydrogen-bonding motifs seen for neutral polymorphs and cocrystalline species are replaced here by one-dimensional polymeric constructs with no direct amide-to-amide bonds. The structures are also compared with, and shown to be closely related to, those of the salt forms of the structurally similar pharmaceutical carbamazepine.

  15. Complexation of di-amides of dipicolinic acid with neodymium

    Energy Technology Data Exchange (ETDEWEB)

    Lapka, J.L.; Paulenova, A. [Department of Chemistry, Oregon State University: 100 Radiation Center, Corvallis, OR 97331 (United States)

    2013-07-01

    Di-amides have undergone significant studies as possible ligands for use in the partitioning of trivalent minor actinides and lanthanides. The binding affinities of three isomeric ligands with neodymium in acetonitrile solution have been investigated. The stability constants of the metal-ligand complexes formed between different isomers of N,N'-diethyl-N,N'- ditolyl-di-picolinamide (EtTDPA) and trivalent neodymium in acetonitrile have been determined by spectrophotometric and calorimetric methods. Each isomer of EtTDPA has been found to be capable of forming three complexes with trivalent neodymium, Nd(EtTDPA), Nd(EtTDPA){sub 2}, and Nd(EtTDPA){sub 3}. Values from spectrophotometric and calorimetric titrations are within reasonable agreement with each other. The order of stability constants for each metal:ligand complex decreases in the order Et(m)TDPA > Et(p)TDPA > Et(o)TDPA. The obtained values are comparable to other di-amidic ligands obtained under similar system conditions and mirror previously obtained solvent extraction data for EtTDPA at low ionic strengths. (authors.

  16. Polyimides Containing Amide And Perfluoroisopropyl Links

    Science.gov (United States)

    Dezem, James F.

    1993-01-01

    New polyimides synthesized from reactions of aromatic hexafluoroisopropyl dianhydrides with asymmetric amide diamines. Soluble to extent of at least 10 percent by weight at temperature of about 25 degrees C in common amide solvents such as N-methylpyrrolidone, N,N-dimethylacetamide, and N,N-dimethylformamide. Polyimides form tough, flexible films, coatings, and moldings. Glass-transition temperatures ranged from 300 to 365 degrees C, and crystalline melting temperatures observed between 543 and 603 degrees C. Display excellent physical, chemical, and electrical properties. Useful as adhesives, laminating resins, fibers, coatings for electrical and decorative purposes, films, wire enamels, and molding compounds.

  17. How amide hydrogens exchange in native proteins.

    Science.gov (United States)

    Persson, Filip; Halle, Bertil

    2015-08-18

    Amide hydrogen exchange (HX) is widely used in protein biophysics even though our ignorance about the HX mechanism makes data interpretation imprecise. Notably, the open exchange-competent conformational state has not been identified. Based on analysis of an ultralong molecular dynamics trajectory of the protein BPTI, we propose that the open (O) states for amides that exchange by subglobal fluctuations are locally distorted conformations with two water molecules directly coordinated to the N-H group. The HX protection factors computed from the relative O-state populations agree well with experiment. The O states of different amides show little or no temporal correlation, even if adjacent residues unfold cooperatively. The mean residence time of the O state is ∼100 ps for all examined amides, so the large variation in measured HX rate must be attributed to the opening frequency. A few amides gain solvent access via tunnels or pores penetrated by water chains including native internal water molecules, but most amides access solvent by more local structural distortions. In either case, we argue that an overcoordinated N-H group is necessary for efficient proton transfer by Grotthuss-type structural diffusion.

  18. Electrochemical reduction of nitrate in the presence of an amide

    Science.gov (United States)

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2002-01-01

    The electrochemical reduction of nitrates in aqueous solutions thereof in the presence of amides to gaseous nitrogen (N.sub.2) is described. Generally, electrochemical reduction of NO.sub.3 proceeds stepwise, from NO.sub.3 to N.sub.2, and subsequently in several consecutive steps to ammonia (NH.sub.3) as a final product. Addition of at least one amide to the solution being electrolyzed suppresses ammonia generation, since suitable amides react with NO.sub.2 to generate N.sub.2. This permits nitrate reduction to gaseous nitrogen to proceed by electrolysis. Suitable amides include urea, sulfamic acid, formamide, and acetamide.

  19. VCD Robustness of the Amide-I and Amide-II Vibrational Modes of Small Peptide Models.

    Science.gov (United States)

    Góbi, Sándor; Magyarfalvi, Gábor; Tarczay, György

    2015-09-01

    The rotational strengths and the robustness values of amide-I and amide-II vibrational modes of For(AA)n NHMe (where AA is Val, Asn, Asp, or Cys, n = 1-5 for Val and Asn; n = 1 for Asp and Cys) model peptides with α-helix and β-sheet backbone conformations were computed by density functional methods. The robustness results verify empirical rules drawn from experiments and from computed rotational strengths linking amide-I and amide-II patterns in the vibrational circular dichroism (VCD) spectra of peptides with their backbone structures. For peptides with at least three residues (n ≥ 3) these characteristic patterns from coupled amide vibrational modes have robust signatures. For shorter peptide models many vibrational modes are nonrobust, and the robust modes can be dependent on the residues or on their side chain conformations in addition to backbone conformations. These robust VCD bands, however, provide information for the detailed structural analysis of these smaller systems. © 2015 Wiley Periodicals, Inc.

  20. Systematic review of N-acetylcysteine in the treatment of addictions

    Directory of Open Access Journals (Sweden)

    Elson Asevedo

    2014-05-01

    Full Text Available Objective: To conduct the first systematic literature review of clinical trials of N-acetylcysteine (NAC for the treatment of substance abuse disorders and addictive behaviors. Methods: A search of the MEDLINE, Embase and PsycINFO databases was conducted. The inclusion criteria for the review were clinical trials that used NAC in the treatment of a disorder related to substance use and/or addictive behaviors, limited to texts in English, Spanish, or French. The selected studies were evaluated with respect to type of trial, sample size, diagnostic input, intervention, length of follow-up, outcome variables, and results. Results: Nine studies analyzing a total of 165 patients met the eligibility criteria and were included in qualitative analysis. These studies evaluated the role of NAC in cocaine dependence (three studies, cannabis dependence (two studies, nicotine dependence (two studies, methamphetamine addiction (one study, and pathological gambling (one study. Five of these trials were double-blind, randomized, and placebo-controlled. Conclusions: The studies analyzed suggest a potential role for NAC in the treatment of addiction, especially of cocaine and cannabis dependence. These results are concordant with the hypothesis of the involvement of glutamatergic pathways in the pathophysiology of addiction.

  1. Effects of acetylcysteine and probucol on contrast medium-induced depression of intrinsic renal glutathione peroxidase activity in diabetic rats.

    Science.gov (United States)

    Yen, Hsueh-Wei; Lee, Hsiang-Chun; Lai, Wen-Te; Sheu, Sheng-Hsiung

    2007-04-01

    Antioxidants such as N-acetylcysteine and probucol have been used to protect patients from contrast media-induced nephrotoxicity. The mechanisms underlying these protective effects are not well understood. We hypothesized that acetylcysteine and probucol alter the activity of endogenous antioxidant enzyme activity. Four weeks after induction of diabetes with streptozotocin, diabetic and nondiabetic rats were divided into three groups. Group 1 rats did not receive any antioxidant agents. Group 2 rats were treated with acetylcysteine and group 3 rats with probucol for 1 week before injection of the contrast medium diatrizoate (DTZ). We found that diabetic rats had higher renal glutathione peroxidase (GPx) activity than normal rats. DTZ suppressed renal GPx activity significantly in both group 1 diabetic and normal rats. Interestingly, renal GPx activity in both diabetic and normal rats pretreated with acetylcysteine or probucol was not inhibited by DTZ. Renal superoxide dismutase (SOD) increased significantly in normal rats after DTZ injection, but not in diabetic rats. Finally, acetylcysteine or probucol did not significantly influence renal SOD. These findings suggest that the renal protective effects of acetylcysteine and probucol against contrast-induced oxidative stress and nephrotoxicity may be mediated by altering endogenous GPx activity.

  2. Effect of chitosan-N-acetylcysteine conjugate in a mouse model of botulinum toxin B-induced dry eye.

    Science.gov (United States)

    Hongyok, Teeravee; Chae, Jemin J; Shin, Young Joo; Na, Daero; Li, Li; Chuck, Roy S

    2009-04-01

    To evaluate the effect of a thiolated polymer lubricant, chitosan-N-acetylcysteine conjugate (C-NAC), in a mouse model of dry eye. Eye drops containing 0.5% C-NAC, 0.3% C-NAC, a vehicle (control group), artificial tears, or fluorometholone were applied in a masked fashion in a mouse model of induced dry eye from 3 days to 4 weeks after botulinum toxin B injection. Corneal fluorescein staining was periodically recorded. Real-time reverse transcriptase-polymerase chain reaction and immunofluorescence staining were performed at the end of the study to evaluate inflammatory cytokine expressions. Mice treated with C-NAC, 0.5%, and fluorometholone showed a downward trend that was not statistically significant in corneal staining compared with the other groups. Chitosan-NAC formulations, fluorometholone, and artificial tears significantly decreased IL-1beta (interleukin 1beta), IL-10, IL-12alpha, and tumor necrosis factor alpha expression in ocular surface tissues. The botulinum toxin B-induced dry eye mouse model is potentially useful in evaluating new dry eye treatment. Evaluation of important molecular biomarkers suggests that C-NAC may impart some protective ocular surface properties. However, clinical data did not indicate statistically significant improvement of tear production and corneal staining in any of the groups tested. Topically applied C-NAC might protect the ocular surface in dry eye syndrome, as evidenced by decreased inflammatory cytokine expression.

  3. Kinetics of Free Radical Polymerization of N-Substituted Amides and Their Structural Implications

    Directory of Open Access Journals (Sweden)

    Anca Aldea

    2016-01-01

    Full Text Available Two N-substituted amides (N-acryloyl morpholine and N-methyl-N-vinylacetamide were polymerized in different solvents using radical initiator. The tacticity of obtained polymers was determined by 400 MHz 1H-NMR and 13C-NMR. At a given temperature, the syndiotacticity increased with increasing the solvent polarity. This solvent effect may be related to the hydrogen bonding interaction among solvent, monomer, and/or growing species. A peculiar aspect regards the steric hindrance at the nitrogen atom.

  4. [The effect of prophylactically administered n-acetylcysteine on clinical indicators for tissue oxygenation during hyperoxic ventilation in cardiac risk patients].

    Science.gov (United States)

    Spies, C; Giese, C; Meier-Hellmann, A; Specht, M; Hannemann, L; Schaffartzik, W; Reinhart, K

    1996-04-01

    Hyperoxic ventilation, used to prevent hypoxia during potential periods of hypoventilation, has been reported to paradoxically decrease whole-body oxygen consumption (VO2). Reduction in nutritive blood flow due to oxygen radical production is one possible mechanism. We investigated whether pretreatment with the sulfhydryl group donor and O2 radical scavenger N-acetylcysteine (NAC) would preserve VO2 and other clinical indicators of tissue oxygenation in cardiac risk patients. Thirty patients, requiring hemodynamic monitoring (radial and pulmonary artery catheters) because of cardiac risk factors, were included in this randomized investigation. All patients exhibited stable clinical conditions (hemodynamics, body temperature, hemoglobin, F1O2 depression ( > 0.2 mV) was significantly less marked in the NAC group (NAC: -0.02 +/- 0.17 vs placebo: -0.23 +/- 0.15; P depression if patients were prophylactically treated with NAC. This suggests that pretreatment with NAC could be considered to attenuate impaired tissue oxygenation and to preserve myocardial performance better in cardiac risk patients during hyperoxia.

  5. Tuning the bimetallic amide-imide precursor system to make paramagnetic GaMnN nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Drygas, Mariusz [AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, 30-059 Krakow (Poland); Janik, Jerzy F., E-mail: janikj@agh.edu.pl [AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, 30-059 Krakow (Poland); Musial, Michal [AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, 30-059 Krakow (Poland); Gosk, Jacek [Warsaw University of Technology, Faculty of Physics, Koszykowa 75, 00-662 Warszawa (Poland); Twardowski, Andrzej, E-mail: andrzej.twardowski@fuw.edu.pl [University of Warsaw, Faculty of Physics, Pasteura 5, 02-093 Warszawa (Poland)

    2016-09-01

    A bimetallic molecular system made of gallium (III) tris(dimethyl)amide Ga(NMe{sub 2}){sub 3} and manganese (II) bis(trimethylsilyl)amide Mn[N(SiMe{sub 3}){sub 2}]{sub 2} (Me = CH{sub 3}, fixed initial Mn-content 10 at.%) was subjected to ammonolysis in refluxing/liquid ammonia. Upon isolation at room temperature, the amide-imide mixed metal precursor was pyrolyzed at elevated temperatures under an ammonia flow by two different routes. Route 1 consisted of a direct nitridation at high temperatures of 500, 700 or 900 °C. In route 2, a low temperature pyrolysis at 150 °C was applied prior to nitridation at the same final temperatures as in route 1. All nanopowders were characterized by XRD diffraction, FT-IR spectroscopy, and SEM/EDX microscopy and analysis. Thorough magnetization measurements in function of magnetic field and temperature were carried out with a SQUID magnetometer. In all samples, the paramagnetic phase of GaMnN was accompanied by an antiferromagnetic by-product linked to a Mn-containing species from decomposition and oxidation of Mn-precursor excess. The Mn-contents in the crystalline GaMnN, i.e., Mn-incorporated in GaN crystal lattice, were of the order of 2–3 at.% mostly independent on the nitridation route whereas the latter had a pronounced effect on amounts of the antiferromagnetic by-product. - Highlights: • New bimetallic precursor system for conversion to GaN/Mn nanopowders was designed. • Two conversion routes were applied with precursor nitridation at 500, 700 or 900 °C. • Prepared nanopowders were thoroughly characterized including magnetic measurements. • The major product was the gallium nitride Mn-doped phase GaMnN with 2–3 at.% of Mn.

  6. Nickel-catalysed retro-hydroamidocarbonylation of aliphatic amides to olefins

    Science.gov (United States)

    Hu, Jiefeng; Wang, Minyan; Pu, Xinghui; Shi, Zhuangzhi

    2017-05-01

    Amide and olefins are important synthetic intermediates with complementary reactivity which play a key role in the construction of natural products, pharmaceuticals and manmade materials. Converting the normally highly stable aliphatic amides into olefins directly is a challenging task. Here we show that a Ni/NHC-catalytic system has been established for decarbonylative elimination of aliphatic amides to generate various olefins via C-N and C-C bond cleavage. This study not only overcomes the acyl C-N bond activation in aliphatic amides, but also encompasses distinct chemical advances on a new type of elimination reaction called retro-hydroamidocarbonylation. This transformation shows good functional group compatibility and can serve as a powerful synthetic tool for late-stage olefination of amide groups in complex compounds.

  7. Synthesis of Secondary Aromatic Amides via Pd-Catalyzed Aminocarbonylation of Aryl Halides Using Carbamoylsilane as an Amide Source.

    Science.gov (United States)

    Tong, Wenting; Cao, Pei; Liu, Yanhong; Chen, Jianxin

    2017-11-03

    Using N-methoxymethyl-N-organylcarbamoyl(trimethyl)silanes as secondary amides source, the direct transformation of aryl halides into the corresponding secondary aromatic amides via palladium-catalyzed aminocarbonylation is described. The reactions tolerated a broad range of functional groups on the aryl ring except big steric hindrance of substituent. The types and the relative position of substituents on the aryl ring impact the coupling efficiency.

  8. The Synthesis of Backbone Thermo and pH Responsive Hyperbranched Poly(Bis(N,N-Propyl Acryl Amides by RAFT

    Directory of Open Access Journals (Sweden)

    Shijiao Zhou

    2016-04-01

    Full Text Available Hyperbranched poly(methylene-bis-acrylamide, poly(bis(N,N-propyl acryl amide (HPNPAM and poly(bis(N,N-butyl acryl amide were synthesized by reversible addition-fragmentation chain transfer polymerization. HPNPAMs showed lower critical solution temperature (LCST due to an appropriate ratio between hydrophilic and hydrophobic groups. The effects of reaction conditions on polymerization were investigated in detail. The structure of HPNPAM was characterized by 1H NMR, FT-IR, Muti detector-size exclusion chromatography (MDSEC and Ultravioletvisble (UV-Vis. The α value reached 0.20 and DB was 90%, indicating HPNPAMs with compact topology structure were successfully prepared. LCSTs were tuned by Mw and the pH value of the solution. The change of molecular size was assayed by dynamic light scattering and scanning electron microscope. These results indicated that the stable uniform nanomicelles were destroyed and macromolecules aggregated together, forming large particles as temperature exceeded LCST. In addition, after the cells were incubated for 24 h, the cell viability reached 80%, which confirmed this new dual responsive HPNPAM had low cytotoxicity.

  9. Metal-Free N-Arylation of Secondary Amides at Room Temperature

    OpenAIRE

    Tinnis, Fredrik; Stridfeldt, Elin; Lundberg, Helena; Adolfsson, Hans; Olofsson, Berit

    2015-01-01

    The arylation of secondary acyclic amides has been achieved with diaryliodonium salts under mild and metal-free conditions. The methodology has a wide scope, allows synthesis of tertiary amides with highly congested aryl moieties, and avoids the regioselectivity problems observed in reactions with (diacetoxyiodo)benzene.

  10. Synthesis and uses of the amides extractants

    International Nuclear Information System (INIS)

    Musikas, C.

    1989-01-01

    Carboxylic acids amides (RR'NCOCR''), malonic acid amides (RR'NCOCH 2 CONRR') and substituted malonic acid amides (RR'NCOCHR'' CONRR') are extractants of the actinides ions. They show good prospects for use in the nuclear industry because of their complete incinerability. In addition, their degradation products interfer much more less in the separation processes when compared with organophosphorus extractants. The synthesis and the purification of two typical extractants: N-N-di (2-ethylhexyl) butyramide (C 4 H 9 CHC 2 H 5 CH 2 ) 2 NCOC 3 H 7 and N,N'-dimethyl N,N'-dibutyl 1.3 diamide 2(3-oxa)nonyl propane (C 4 H 9 CH 3 NCO) 2 CHC 2 H 4 OC 6 H 13 are described. The purities, checked by NMR, elemental analysis and potentiometry, were in the range 98 to 99.5%. The yields for monoamides were in the range 70 to 90% and for the diamides 20 to 40%. 3 figs, 3 tabs, 10 refs

  11. Effects of N-acetylcysteine and terbutaline treatment on hemodynamics and regional albumin extravasation in porcine septic shock

    International Nuclear Information System (INIS)

    Groeneveld, A.B.; den Hollander, W.; Straub, J.; Nauta, J.J.; Thijs, L.G.

    1990-01-01

    We studied the therapeutic effects of continuously infused N-acetylcysteine, an O2 radical scavenger (N, n = 6), and terbutaline, a beta 2-agonist (T, n = 6), versus dextrose (controls C, N = 6) on hemodynamics and regional albumin extravasation in porcine septic shock. After instrumentation, injection of 99mTc-labeled red blood cells, and baseline measurements, pigs received a 90 min infusion of 11 +/- 9 X 10(8).kg-1 live Escherichia coli bacteria. Thereafter, therapy was started, and 131I human serum albumin was injected. Images were obtained hourly using a gamma camera and a computer until 5 hours after baseline. Regions of interest were drawn in the 99mTc images, yielding regional 131I/99mTc radioactivity ratios, with blood samples as reference. From these ratios, an albumin leak index, a rate constant of transvascular albumin transport, was calculated. Control pigs developed pulmonary hypertension, arterial hypotension, hemoconcentration, and lactic acidemia. In spite of tachycardia and unchanged filling pressures, cardiac output fell. In arterial blood, white cell count, PO2, albumin level, and colloid osmotic pressure fell. The albumin leak index (X10(-3).min-1) measured 1.56 +/- 0.59 over the lungs and 2.87 +/- 1.19 over the abdomen in C, confirming previously found increased albumin flux in both lung and abdomen, the latter exceeding the former. Neither N nor T significantly affected hemodynamic and biochemical changes. The drugs neither decreased the regional albumin leak index nor attenuated the formation of albumin-rich ascites found at autopsy. However, the lung albumin index obtained at autopsy was significantly reduced with N (P less than .01 vs. C), at similar gravimetrically determined extravascular lung water (EVLW). EVLW positively correlated with pulmonary albumin extravasation in C and T but not in N

  12. Mechanistic Investigation of the Ruthenium–N-Heterocyclic-Carbene-Catalyzed Amidation of Alcohols and Amines

    DEFF Research Database (Denmark)

    Makarov, Ilya; Fristrup, Peter; Madsen, Robert

    2012-01-01

    The mechanism of the ruthenium–N-heterocyclic-carbene-catalyzed formation of amides from alcohols and amines was investigated by experimental techniques (Hammett studies, kinetic isotope effects) and by a computational study by using dispersion-corrected density functional theory (DFT/ M06...

  13. Reduced-Amide Inhibitor of Pin1 Binds in a Conformation Resembling a Twisted-Amide Transition State†

    Science.gov (United States)

    Xu, Guoyan G.; Zhang, Yan; Mercedes-Camacho, Ana Y.; Etzkorn, Felicia A.

    2011-01-01

    The mechanism of the cell cycle regulatory peptidyl prolyl isomerase (PPIase), Pin1, was investigated using reduced-amide inhibitors designed to mimic the twisted-amide transition state. Inhibitors, R–pSer–Ψ[CH2N]–Pro–2-(indol-3-yl)-ethylamine, 1 (R = fluorenylmethoxycarbonyl, Fmoc), and 2 (R = Ac), of Pin1 were synthesized and bioassayed. Inhibitor 1 had an IC50 value of 6.3 μM, which is 4.5-fold better inhibition for Pin1 than our comparable ground state analogue, a cis-amide alkene isostere containing inhibitor. The change of Fmoc to Ac in 2 improved aqueous solubility for structural determination, and resulted in an IC50 value of 12 μM. The X-ray structure of the complex of 2 bound to Pin1 was determined to 1.76 Å resolution. The structure revealed that the reduced amide adopted a conformation similar to the proposed twisted-amide transition state of Pin1, with a trans-pyrrolidine conformation of the prolyl ring. A similar conformation of substrate would be destabilized relative to the planar amide conformation. Three additional reduced amides, with Thr replacing Ser, and l- or d-pipecolate (Pip) replacing Pro, were slightly weaker inhibitors of Pin1. PMID:21980916

  14. Effect of inhaled N-acetylcysteine monotherapy on lung function and redox balance in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Muramatsu, Yoko; Sugino, Keishi; Ishida, Fumiaki; Tatebe, Junko; Morita, Toshisuke; Homma, Sakae

    2016-05-01

    An oxidant-antioxidant imbalance is considered to be involved in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Therefore, administration of antioxidants, such as N-acetylcysteine (NAC), may represent a potential treatment option for IPF patients. The aim of this study was to evaluate the effect of inhaled NAC monotherapy on lung function and redox balance in patients with IPF. A retrospective observational study was done, involving 22 patients with untreated early IPF (19 men; mean [±S.D.] age, 71.8 [±6.3]y). At baseline and at 6 and 12 months after initiating inhaled NAC monotherapy, we assessed forced vital capacity (FVC) and measured the levels of total glutathione, oxidized glutathione (GSSG), and the ratio of reduced to oxidized glutathione in whole blood (hereafter referred to as the ratio), and of 8-hydroxy-2'-deoxyguanosine in urine. To evaluate response to treatment, we defined disease progression as a decrease in FVC of ≥5% from baseline and stable disease as a decrease in FVC of <5%, over a period of 6 months. Change in FVC in the stable group at 6 and 12 months were 95±170mL and -70±120mL, while those in the progressive group at 6 and 12 months were -210±80mL, -320±350mL, respectively. The serial mean change in GSSG from baseline decreased as the ratio of reduced to oxidized glutathione increased in patients with stable disease, while it increased as this ratio decreased in patients with progressive disease. Receiver operating characteristic curve analysis revealed that a baseline GSSG level of ≥1.579μM was optimal for identifying treatment responders. Inhaled NAC monotherapy was associated with improved redox imbalance in patients with early IPF. Copyright © 2015 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  15. N-acetylcysteine prevents stress-induced anxiety behavior in zebrafish.

    Science.gov (United States)

    Mocelin, Ricieri; Herrmann, Ana P; Marcon, Matheus; Rambo, Cassiano L; Rohden, Aline; Bevilaqua, Fernanda; de Abreu, Murilo Sander; Zanatta, Leila; Elisabetsky, Elaine; Barcellos, Leonardo J G; Lara, Diogo R; Piato, Angelo L

    2015-12-01

    Despite the recent advances in understanding the pathophysiology of anxiety disorders, the pharmacological treatments currently available are limited in efficacy and induce serious side effects. A possible strategy to achieve clinical benefits is drug repurposing, i.e., discovery of novel applications for old drugs, bringing new treatment options to the market and to the patients who need them. N-acetylcysteine (NAC), a commonly used mucolytic and paracetamol antidote, has emerged as a promising molecule for the treatment of several neuropsychiatric disorders. The mechanism of action of this drug is complex, and involves modulation of antioxidant, inflammatory, neurotrophic and glutamate pathways. Here we evaluated the effects of NAC on behavioral parameters relevant to anxiety in zebrafish. NAC did not alter behavioral parameters in the novel tank test, prevented the anxiety-like behaviors induced by an acute stressor (net chasing), and increased the time zebrafish spent in the lit side in the light/dark test. These data may indicate that NAC presents an anti-stress effect, with the potential to prevent stress-induced psychiatric disorders such as anxiety and depression. The considerable homology between mammalian and zebrafish genomes invests the current data with translational validity for the further clinical trials needed to substantiate the use of NAC in anxiety disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Effect of amides on lithium tetraborate solubility

    Energy Technology Data Exchange (ETDEWEB)

    Tsekhanskij, R S; Skvortsov, V C; Molodkin, A K; Sadetdi-pov, Sh V [Chuvashskij Gosudarstvennyj Pedagogicheskij Inst., Cheboksary (USSR); Universitet Druzhby Narodov, Moscow (USSR))

    1983-03-01

    Using the methods of solubility, densi- and refractometry at 25 deg C, it has been established that the systems lithium tetraborate-formamide (acetamide, dimethyl-formamide)-water are of a simple eutonic type. Amides decrease the salt solubility. Lyotropic effect, as calculated for molar concentrations (-Lsub(M)) relative to the absolute value, increases from formamide to dimethyl-formamide. The sequence is determined by the fact that, when there is one or two hydrophilic methyl groups in amide molecules which are in contact with tetraborate, they decrease the hydration energy of lithium cations.

  17. Effect of amides on lithium tetraborate solubility

    International Nuclear Information System (INIS)

    Tsekhanskij, R.S.; Skvortsov, V.C.; Molodkin, A.K.; Sadetdi- pov, Sh.V.

    1983-01-01

    Using the methods of solubility, densi- and refractometry at 25 deg C, it has been established that the systemS lithium tetraborate-formamide (acetamide, dimethyl-formamide)-water are of a simple eutonic type. Amides decrease the salt solubility. Lyotropic effect, as calculated for molar concentrations (-Lsub(M)) relative to the absolute value, increases from formamide to dimethylformamide. The sequence is determined by the fact that, when there is one or two hydrophilic methyl groups in amide molecules which are in contact with tetraborate, they decrease the hydration energy of lithium cations

  18. The effect of N-acetylcysteine and working memory training on cocaine use, craving and inhibition in regular cocaine users: correspondence of lab assessments and Ecological Momentary Assessment

    NARCIS (Netherlands)

    Schulte, Mieke H. J.; Wiers, Reinout W.; Boendermaker, Wouter J.; Goudriaan, Anna E.; van den Brink, Wim; van Deursen, Denise S.; Friese, Malte; Brede, Emily; Waters, Andrew J.

    2017-01-01

    Effective treatment for cocaine use disorder should dampen hypersensitive cue-induced motivational processes and/or strengthen executive control. Using a randomized, double-blind, placebo-controlled intervention, the primary aim of this study was to investigate the effect of N-Acetylcysteine (NAC)

  19. A reduced-amide inhibitor of Pin1 binds in a conformation resembling a twisted-amide transition state.

    Science.gov (United States)

    Xu, Guoyan G; Zhang, Yan; Mercedes-Camacho, Ana Y; Etzkorn, Felicia A

    2011-11-08

    The mechanism of the cell cycle regulatory peptidyl prolyl isomerase (PPIase), Pin1, was investigated using reduced-amide inhibitors designed to mimic the twisted-amide transition state. Inhibitors, R-pSer-Ψ[CH(2)N]-Pro-2-(indol-3-yl)ethylamine, 1 [R = fluorenylmethoxycarbonyl (Fmoc)] and 2 (R = Ac), of Pin1 were synthesized and bioassayed. Inhibitor 1 had an IC(50) value of 6.3 μM, which is 4.5-fold better for Pin1 than our comparable ground-state analogue, a cis-amide alkene isostere-containing inhibitor. The change of Fmoc to Ac in 2 improved aqueous solubility for structural determination and resulted in an IC(50) value of 12 μM. The X-ray structure of the complex of 2 bound to Pin1 was determined to 1.76 Å resolution. The structure revealed that the reduced amide adopted a conformation similar to the proposed twisted-amide transition state of Pin1, with a trans-pyrrolidine conformation of the prolyl ring. A similar conformation of substrate would be destabilized relative to the planar amide conformation. Three additional reduced amides, with Thr replacing Ser and l- or d-pipecolate (Pip) replacing Pro, were slightly weaker inhibitors of Pin1.

  20. Primary fatty acid amide metabolism: conversion of fatty acids and an ethanolamine in N18TG2 and SCP cells1[S

    Science.gov (United States)

    Farrell, Emma K.; Chen, Yuden; Barazanji, Muna; Jeffries, Kristen A.; Cameroamortegui, Felipe; Merkler, David J.

    2012-01-01

    Primary fatty acid amides (PFAM) are important signaling molecules in the mammalian nervous system, binding to many drug receptors and demonstrating control over sleep, locomotion, angiogenesis, and many other processes. Oleamide is the best-studied of the primary fatty acid amides, whereas the other known PFAMs are significantly less studied. Herein, quantitative assays were used to examine the endogenous amounts of a panel of PFAMs, as well as the amounts produced after incubation of mouse neuroblastoma N18TG2 and sheep choroid plexus (SCP) cells with the corresponding fatty acids or N-tridecanoylethanolamine. Although five endogenous primary amides were discovered in the N18TG2 and SCP cells, a different pattern of relative amounts were found between the two cell lines. Higher amounts of primary amides were found in SCP cells, and the conversion of N-tridecanoylethanolamine to tridecanamide was observed in the two cell lines. The data reported here show that the N18TG2 and SCP cells are excellent model systems for the study of PFAM metabolism. Furthermore, the data support a role for the N-acylethanolamines as precursors for the PFAMs and provide valuable new kinetic results useful in modeling the metabolic flux through the pathways for PFAM biosynthesis and degradation. PMID:22095832

  1. Isentropic compressibilities of (amide + water) mixtures: A comparative study

    International Nuclear Information System (INIS)

    Papamatthaiakis, Dimitris; Aroni, Fryni; Havredaki, Vasiliki

    2008-01-01

    The density and ultrasonic velocity of aqueous solutions of formamide (FA), N-methylformamide (NMF), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), pyrrolidin-2-one (PYR), N-methyl-2-pyrrolidinone (NMP), and their pure phases have been measured at 298.15 K and atmospheric pressure. Densities and ultrasonic velocities in pure amides have been also measured at the temperature range 288.15 K to 308.15 K for the computation of their thermal expansivities. Isentropic compressibility, intermolecular free length, relative association, apparent molar compressibility, as well as the excess quantities, ultrasonic velocity, isentropic compressibility, intermolecular free length, have been evaluated and fitted to the Redlich-Kister type equation. The deviation from ideal mixing law in ultrasonic velocity is positive while the deviations in isentropic compressibility and intermolecular free length are negative for all (amide + water) mixtures. This behavior reveals the nature and the magnitude of intermolecular interactions between the amide-water molecules. The sequence of superimposed curves of various ultrasonic parameters vs. the amide mole fraction is related to the strength of interactions between the unlike molecules and the role of -CH 3 substitution in amides. The comparison of ultrasonic to volumetric properties reveals differences on the position of the extrema and their relation with the degree of substitution while the interpretation of these differences is discussed. Two different approaches on the computation of excess functions, applied in this work, brought out a difference in the magnitude of deviations and a partial reversion to the sequence of amides curves suggesting a different estimation in terms of deviations from ideal mixing law and therefore of the relative molecular interactions

  2. The role of depressive symptoms in treatment of adolescent cannabis use disorder with N-Acetylcysteine.

    Science.gov (United States)

    Tomko, Rachel L; Gilmore, Amanda K; Gray, Kevin M

    2018-05-21

    Relative to adults, adolescents are at greater risk of developing a cannabis use disorder (CUD) and risk may be exacerbated by co-occurring depressive symptoms. N-Acetylcysteine (NAC), an over-the-counter antioxidant, is thought to normalize glutamate transmission. Oxidative stress and glutamate transmission are disrupted in both depression and CUD. Thus, NAC may be particularly effective at promoting cannabis abstinence among adolescents with elevated depressive symptoms. Secondary analyses were conducted using a sub-sample of adolescents with CUD (N = 74) who participated in an 8-week randomized placebo-controlled clinical trial examining the efficacy of NAC for cannabis cessation. It was hypothesized that NAC would reduce severity of depressive symptoms, and that decreases depressive symptom severity would mediate decreases in positive weekly urine cannabinoid tests (11-nor-9-carboxy-Δ9-tetrahydrocannabinol). Additionally, it was expected that adolescents with greater severity of baseline depressive symptoms would be more likely to become abstinent when assigned NAC relative to placebo. Results from linear mixed models and generalized estimating equations did not suggest that NAC reduced severity of depressive symptoms, and the hypothesis that NAC's effect on cannabis cessation would be mediated by reduced depressive symptoms was not supported. However, an interaction between treatment condition and baseline severity of depressive symptoms as a predictor of weekly urine cannabinoid tests was significant, suggesting that NAC was more effective at promoting abstinence among adolescents with heightened baseline depressive symptoms. These secondary findings, though preliminary, suggest a need for further examination of the role of depressive symptoms in treatment of adolescent CUD with NAC. Copyright © 2018. Published by Elsevier Ltd.

  3. Rhodium(III)-catalyzed regioselective C2-amidation of indoles with N-(2,4,6-trichlorobenzoyloxy)amides and its synthetic application to the development of a novel potential PPARγ modulator.

    Science.gov (United States)

    Shi, Jingjing; Zhao, Guanguan; Wang, Xiaowei; Xu, H Eric; Yi, Wei

    2014-09-21

    A new and efficient method for the direct regioselective C2-amidation of various functionalized indoles with several N-(2,4,6-trichlorobenzoyloxy)amides via Rh(iii)-catalyzed C-H activation/N-O cleavage/C-N formation using the pyrimidyl group as a readily installable and removable directing group has been developed. With this method, a variety of valuable 2-amido indoles can be easily prepared under mild conditions with broad functional group tolerance and excellent region-/site-specificities. Application of this strategy to the synthesis of target compound as a novel PPARγ modulator was also demonstrated. The results from biological evaluation showed that compound had a partial PPARγ agonistic activity and a strong PPARγ binding affinity with an IC50 value of 120.0 nM, along with a less pronounced adipocyte differentiation ability compared to the currently marketed anti-diabetic drug rosiglitazone, suggesting that further development of such a compound might be of great interest.

  4. Hydrogen abstraction reactions by amide electron adducts

    International Nuclear Information System (INIS)

    Sevilla, M.D.; Sevilla, C.L.; Swarts, S.

    1982-01-01

    Electron reactions with a number of peptide model compounds (amides and N-acetylamino acids) in aqueous glasses at low temperature have been investigated using ESR spectroscopy. The radicals produced by electron attachment to amides, RC(OD)NDR', are found to act as hydrogen abstracting agents. For example, the propionamide electron adduct is found to abstract from its parent propionamide. Electron adducts of other amides investigated show similar behavior except for acetamide electron adduct which does not abstract from its parent compound, but does abstract from other amides. The tendency toward abstraction for amide electron adducts are compared to electron adducts of several carboxylic acids, ketones, aldehydes and esters. The comparison suggests the hydrogen abstraction tendency of the various deuterated electron adducts (DEAs) to be in the following order: aldehyde DEA > acid DEA = approximately ester DEA > ketone DEA > amide DEA. In basic glasses the hydrogen abstraction ability of the amide electron adducts is maintained until the concentration of base is increased sufficiently to convert the DEA to its anionic form, RC(O - )ND 2 . In this form the hydrogen abstracting ability of the radical is greatly diminished. Similar results were found for the ester and carboxylic acid DEA's tested. (author)

  5. Contribution of neuronal NO synthase to N-acetylcysteine-induced increase of NO synthase activity in the brain of normotensive and hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Pecháňová, Olga; Kuneš, Jaroslav; Dobešová, Zdenka; Vranková, S.; Zicha, Josef

    2009-01-01

    Roč. 60, č. 4 (2009), s. 21-25 ISSN 0867-5910 R&D Projects: GA MŠk(CZ) 1M0510; GA ČR(CZ) GA305/08/0139 Grant - others:VEGA(SK) 2/0178/09; APVV(SK) 0538-07 Institutional research plan: CEZ:AV0Z50110509 Keywords : N-acetylcysteine * S-methyl-L-thiocitrulline * spontaneous hypertension Subject RIV: ED - Physiology Impact factor: 1.489, year: 2009

  6. Concurrent Increases and Decreases in Local Stability and Conformational Heterogeneity in Cu, Zn Superoxide Dismutase Variants Revealed by Temperature-Dependence of Amide Chemical Shifts.

    Science.gov (United States)

    Doyle, Colleen M; Rumfeldt, Jessica A; Broom, Helen R; Sekhar, Ashok; Kay, Lewis E; Meiering, Elizabeth M

    2016-03-08

    The chemical shifts of backbone amide protons in proteins are sensitive reporters of local structural stability and conformational heterogeneity, which can be determined from their readily measured linear and nonlinear temperature-dependences, respectively. Here we report analyses of amide proton temperature-dependences for native dimeric Cu, Zn superoxide dismutase (holo pWT SOD1) and structurally diverse mutant SOD1s associated with amyotrophic lateral sclerosis (ALS). Holo pWT SOD1 loses structure with temperature first at its periphery and, while having extremely high global stability, nevertheless exhibits extensive conformational heterogeneity, with ∼1 in 5 residues showing evidence for population of low energy alternative states. The holo G93A and E100G ALS mutants have moderately decreased global stability, whereas V148I is slightly stabilized. Comparison of the holo mutants as well as the marginally stable immature monomeric unmetalated and disulfide-reduced (apo(2SH)) pWT with holo pWT shows that changes in the local structural stability of individual amides vary greatly, with average changes corresponding to differences in global protein stability measured by differential scanning calorimetry. Mutants also exhibit altered conformational heterogeneity compared to pWT. Strikingly, substantial increases as well as decreases in local stability and conformational heterogeneity occur, in particular upon maturation and for G93A. Thus, the temperature-dependence of amide shifts for SOD1 variants is a rich source of information on the location and extent of perturbation of structure upon covalent changes and ligand binding. The implications for potential mechanisms of toxic misfolding of SOD1 in disease and for general aspects of protein energetics, including entropy-enthalpy compensation, are discussed.

  7. Effect of N-acetylcysteine treatment on oxidative stress and inflammation after severe burn.

    Science.gov (United States)

    Csontos, C; Rezman, B; Foldi, V; Bogar, L; Drenkovics, L; Röth, E; Weber, G; Lantos, J

    2012-05-01

    Oxidative stress and inflammation generate edema in burns. The aim of our study was to assess effect of N-acetylcysteine (NAC) on oxidative stress, inflammation, fluid requirement, multiple organ dysfunction (MOD) score and vasoactive drug requirement. In this study 15 patients were on standard therapy, whereas for other 15 patients NAC was supplemented. Blood samples were taken on admission and on the next five consecutive mornings. Levels of malondialdehyde, protein sulfhydril (PSH) groups, reduced gluthation (GSH), activity of myeloperoxidase, catalase and superoxide dismutase enzymes and induced free radical generating capacity were measured as well as concentrations of TNF-α, IL-6, IL-8, and IL-10. MOD score, use of vasopressor agents and fluid utilisation were recorded daily. NAC treatment increased GSH level on days 4-5 (ptreatment is associated with a diminished oxidative stress reflected in preserved antioxidant levels, lower inflammation mirrored in lower interleukin levels and less vasopressor requirement. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  8. Clinical trials of N-acetylcysteine in psychiatry and neurology: A systematic review.

    Science.gov (United States)

    Deepmala; Slattery, John; Kumar, Nihit; Delhey, Leanna; Berk, Michael; Dean, Olivia; Spielholz, Charles; Frye, Richard

    2015-08-01

    N-acetylcysteine (NAC) is recognized for its role in acetaminophen overdose and as a mucolytic. Over the past decade, there has been growing evidence for the use of NAC in treating psychiatric and neurological disorders, considering its role in attenuating pathophysiological processes associated with these disorders, including oxidative stress, apoptosis, mitochondrial dysfunction, neuroinflammation and glutamate and dopamine dysregulation. In this systematic review we find favorable evidence for the use of NAC in several psychiatric and neurological disorders, particularly autism, Alzheimer's disease, cocaine and cannabis addiction, bipolar disorder, depression, trichotillomania, nail biting, skin picking, obsessive-compulsive disorder, schizophrenia, drug-induced neuropathy and progressive myoclonic epilepsy. Disorders such as anxiety, attention deficit hyperactivity disorder and mild traumatic brain injury have preliminary evidence and require larger confirmatory studies while current evidence does not support the use of NAC in gambling, methamphetamine and nicotine addictions and amyotrophic lateral sclerosis. Overall, NAC treatment appears to be safe and tolerable. Further well designed, larger controlled trials are needed for specific psychiatric and neurological disorders where the evidence is favorable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Insecticidal, repellent and fungicidal properties of novel trifluoromethylphenyl amides.

    Science.gov (United States)

    Tsikolia, Maia; Bernier, Ulrich R; Coy, Monique R; Chalaire, Katelyn C; Becnel, James J; Agramonte, Natasha M; Tabanca, Nurhayat; Wedge, David E; Clark, Gary G; Linthicum, Kenneth J; Swale, Daniel R; Bloomquist, Jeffrey R

    2013-09-01

    Twenty trifluoromethylphenyl amides were synthesized and evaluated as fungicides and as mosquito toxicants and repellents. Against Aedes aegypti larvae, N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-3,5-dinitrobenzamide (1e) was the most toxic compound (24 h LC50 1940 nM), while against adults N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-2,2,2-trifluoroacetamide (1c) was most active (24 h LD50 19.182 nM, 0.5 μL/insect). However, the 24 h LC50 and LD50 values of fipronil against Ae. aegypti larvae and adults were significantly lower: 13.55 nM and 0.787 × 10(-4) nM, respectively. Compound 1c was also active against Drosophila melanogaster adults with 24 h LC50 values of 5.6 and 4.9 μg/cm(2) for the Oregon-R and 1675 strains, respectively. Fipronil had LC50 values of 0.004 and 0.017 μg/cm(2) against the two strains of D. melanogaster, respectively. In repellency bioassays against female Ae. aegypti, 2,2,2-trifluoro-N-(2-(trifluoromethyl)phenyl)acetamide (4c) had the highest repellent potency with a minimum effective dosage (MED) of 0.039 μmol/cm(2) compared to DEET (MED of 0.091 μmol/cm(2)). Compound N-(2-(trifluoromethyl)phenyl)hexanamide (4a) had an MED of 0.091 μmol/cm(2) which was comparable to DEET. Compound 4c was the most potent fungicide against Phomopsis obscurans. Several trends were discerned between the structural configuration of these molecules and the effect of structural changes on toxicity and repellency. Para- or meta- trifluoromethylphenyl amides with an aromatic ring attached to the carbonyl carbon showed higher toxicity against Ae. aegypti larvae, than ortho- trifluoromethylphenyl amides. Ortho- trifluoromethylphenyl amides with trifluoromethyl or alkyl group attached to the carbonyl carbon produced higher repellent activity against female Ae. aegypti and Anopheles albimanus than meta- or para- trifluoromethylphenyl amides. The presence of 2,6-dichloro- substitution on the phenyl ring of the amide had an influence on larvicidal and repellent

  10. Synthesis and biological activity of a new class of insecticides: the N-(5-aryl-1,3,4-thiadiazol-2-yl)amides.

    Science.gov (United States)

    Eckelbarger, Joseph D; Parker, Marshall H; Yap, Maurice Ch; Buysse, Ann M; Babcock, Jonathan M; Hunter, Ricky; Adelfinskaya, Yelena; Samaritoni, Jack G; Garizi, Negar; Trullinger, Tony K

    2017-04-01

    Optimization studies on a high-throughput screening (HTS) hit led to the discovery of a series of N-(6-arylpyridazin-3-yl)amides with insecticidal activity. It was hypothesized that the isosteric replacement of the pyridazine ring with a 1,3,4-thiadiazole ring could lead to more potent biological activity and/or a broader sap-feeding pest spectrum. The resulting N-(5-aryl-1,3,4-thiadiazol-2-yl)amides were explored as a new class of insecticides. Several methods for 2-amino-1,3,4-thiadiazole synthesis were used for the preparation of key synthetic intermediates. Subsequent coupling to variously substituted carboxylic acid building blocks furnished the final targets, which were tested for insecticidal activity against susceptible strains of Aphis gossypii (Glover) (cotton aphid), Myzus persicae (Sulzer) (green peach aphid) and Bemisia tabaci (Gennadius) (sweetpotato whitefly). Structure-activity relationship (SAR) studies on both the amide tail and the aryl A-ring of novel N-(5-aryl-1,3,4-thiadiazol-2-yl)amides led to a new class of insecticidal molecules active against sap-feeding insect pests. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Arterial morphology responds differently to Captopril then N-acetylcysteine in a monocrotaline rat model of pulmonary hypertension

    Science.gov (United States)

    Molthen, Robert; Wu, Qingping; Baumgardt, Shelley; Kohlhepp, Laura; Shingrani, Rahul; Krenz, Gary

    2010-03-01

    Pulmonary hypertension (PH) is an incurable condition inevitably resulting in death because of increased right heart workload and eventual failure. PH causes pulmonary vascular remodeling, including muscularization of the arteries, and a reduction in the typically large vascular compliance of the pulmonary circulation. We used a rat model of monocrotaline (MCT) induced PH to evaluated and compared Captopril (an angiotensin converting enzyme inhibitor with antioxidant capacity) and N-acetylcysteine (NAC, a mucolytic with a large antioxidant capacity) as possible treatments. Twenty-eight days after MCT injection, the rats were sacrificed and heart, blood, and lungs were studied to measure indices such as right ventricular hypertrophy (RVH), hematocrit, pulmonary vascular resistance (PVR), vessel morphology and biomechanics. We implemented microfocal X-ray computed tomography to image the pulmonary arterial tree at intravascular pressures of 30, 21, 12, and 6 mmHg and then used automated vessel detection and measurement algorithms to perform morphological analysis and estimate the distensibility of the arterial tree. The vessel detection and measurement algorithms quickly and effectively mapped and measured the vascular trees at each intravascular pressure. Monocrotaline treatment, and the ensuing PH, resulted in a significantly decreased arterial distensibility, increased PVR, and tended to decrease the length of the main pulmonary trunk. In rats with PH induced by monocrotaline, Captopril treatment significantly increased arterial distensibility and decrease PVR. NAC treatment did not result in an improvement, it did not significantly increase distensibility and resulted in further increase in PVR. Interestingly, NAC tended to increase peripheral vascular density. The results suggest that arterial distensibility may be more important than distal collateral pathways in maintaining PVR at normally low values.

  12. Preparation and Evaluation at the Delta Opioid Receptor of a Series of Linear Leu-Enkephalin Analogues Obtained by Systematic Replacement of the Amides

    Science.gov (United States)

    2013-01-01

    Leu-enkephalin analogues, in which the amide bonds were sequentially and systematically replaced either by ester or N-methyl amide bonds, were prepared using classical organic chemistry as well as solid phase peptide synthesis (SPPS). The peptidomimetics were characterized using competition binding, ERK1/2 phosphorylation, receptor internalization, and contractility assays to evaluate their pharmacological profile over the delta opioid receptor (DOPr). The lipophilicity (LogD7.4) and plasma stability of the active analogues were also measured. Our results revealed that the last amide bond can be successfully replaced by either an ester or an N-methyl amide bond without significantly decreasing the biological activity of the corresponding analogues when compared to Leu-enkephalin. The peptidomimetics with an N-methyl amide function between residues Phe and Leu were found to be more lipophilic and more stable than Leu-enkephalin. Findings from the present study further revealed that the hydrogen-bond donor properties of the fourth amide of Leu-enkephalin are not important for its biological activity on DOPr. Our results show that the systematic replacement of amide bonds by isosteric functions represents an efficient way to design and synthesize novel peptide analogues with enhanced stability. Our findings further suggest that such a strategy can also be useful to study the biological roles of amide bonds. PMID:23650868

  13. Amide Bond Formation Assisted by Vicinal Alkylthio Migration in Enaminones: Metal- and CO-Free Synthesis of α,β-Unsaturated Amides.

    Science.gov (United States)

    Liu, Zhuqing; Huang, Fei; Wu, Ping; Wang, Quannan; Yu, Zhengkun

    2018-05-18

    Amide bond formation is one of the most important transformations in organic synthesis, drug development, and materials science. Efficient construction of amides has been among the most challenging tasks for organic chemists. Herein, we report a concise methodology for amide bond (-CONH-) formation assisted by vicinal group migration in alkylthio-functionalized enaminones (α-oxo ketene N, S-acetals) under mild conditions. Simple treatment of such enaminones with PhI(OAc) 2 at ambient temperature in air afforded diverse multiply functionalized α,β-unsaturated amides including β-cyclopropylated acrylamides, in which a wide array of functional groups such as aryl, (hetero)aryl, alkenyl, and alkyl can be conveniently introduced to a ketene moiety. The reaction mechanism was investigated by exploring the origins of the amide oxygen and carbon atoms as well as isolation and structural characterization of the reaction intermediates. The amide bond formation reactions could also be efficiently performed under solventless mechanical milling conditions.

  14. Chronic N-acetylcysteine administration prevents development of hypertension in Nomega-nitro-L-arginine methyl ester-treated rats: the role of reactive oxygen species

    Czech Academy of Sciences Publication Activity Database

    Rauchová, Hana; Pecháňová, O.; Kuneš, Jaroslav; Vokurková, Martina; Dobešová, Zdenka; Zicha, Josef

    2005-01-01

    Roč. 28, č. 5 (2005), s. 475-482 ISSN 0916-9636 R&D Projects: GA ČR(CZ) GA305/03/0769; GA MZd(CZ) NR7786 Grant - others:VEGA(SK) 02/3185/24; SAV(SK) APVT-51-017902 Institutional research plan: CEZ:AV0Z5011922 Keywords : N-acetylcysteine * nitric oxide synthase * superoxide anions Subject RIV: ED - Physiology Impact factor: 2.786, year: 2005

  15. The Influence of N-acetylcysteine and Gender-Related Differences on the Radiosensitivity of Mouse Lymphocytes

    International Nuclear Information System (INIS)

    El-Shamy, E.; El-Kabany, H.

    2012-01-01

    The objective of the present study is to evaluate the possible efficiency of 200 mg/kg body weight N-acetylcysteine (NAC) on the radiosensitivity of mouse lymphocytes considering gender factor. The half of blood sample from mice was exposed to gamma-radiation (2 Gy). The time course of lymphocyte apotosis of irradiated samples was examined in vitro by flow cytometry and compared with lymphocytes from non-irradiated remaining half of samples. Kinetics of radiation-induced apoptosis was similar among groups, which peaked at 8 h. NAC protected irradiated lymphocytes in male mice. Lymphocytes from female mice were highly radiation resistant compared to males and the NAC provided no additional benefit at the doses used in this study. These results highlight that radiation-induced apoptosis is complex and is modified by the radio protector and gender.

  16. Prolonged treatment with N-acetylcysteine and L-arginine restores gonadal function in patients with polycystic ovary syndrome.

    Science.gov (United States)

    Masha, A; Manieri, C; Dinatale, S; Bruno, G A; Ghigo, E; Martina, V

    2009-12-01

    Nitric oxide (NO) plays a wide spectrum of biological actions including a positive role in oocyte maturation and ovulation. Free radicals levels have been shown elevated in polycystic ovary syndrome (PCOS) and therefore would be responsible for quenching NO that, in turn, would play a role in determining oligo- or amenorrhea connoting PCOS. Eight patients with PCOS displaying oligo-amenorrhea from at least 1 yr underwent a combined treatment with N-acetylcysteine (NAC) (1200 mg/die) plus L-arginine (ARG) (1600 mg/die) for 6 months. Menstrual function, glucose and insulin levels, and, in turn, homeostasis model assessment (HOMA) index were monitored. Menstrual function was at some extent restored as indicated by the number of uterine bleedings under treatment (3.00, 0.18-5.83 vs 0.00, 0.00-0.83; p<0.02). Also, a well-defined biphasic pattern in the basal body temperature suggested ovulatory cycles. The HOMA index decreased under treatment (2.12, 1.46-4.42 vs 3.48, 1.62-5.95; p<0.05). In conclusion, this preliminary, open study suggests that prolonged treatment with NAC+ARG might restore gonadal function in PCOS. This effect seems associated to an improvement in insulin sensitivity.

  17. Nonplanar tertiary amides in rigid chiral tricyclic dilactams. Peptide group distortions and vibrational optical activity.

    Science.gov (United States)

    Pazderková, Markéta; Profant, Václav; Hodačová, Jana; Sebestík, Jaroslav; Pazderka, Tomáš; Novotná, Pavlína; Urbanová, Marie; Safařík, Martin; Buděšínský, Miloš; Tichý, Miloš; Bednárová, Lucie; Baumruk, Vladimír; Maloň, Petr

    2013-08-22

    We investigate amide nonplanarity in vibrational optical activity (VOA) spectra of tricyclic spirodilactams 5,8-diazatricyclo[6,3,0,0(1,5)]undecan-4,9-dione (I) and its 6,6',7,7'-tetradeuterio derivative (II). These rigid molecules constrain amide groups to nonplanar geometries with twisted pyramidal arrangements of bonds to amide nitrogen atoms. We have collected a full range vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra including signals of C-H and C-D stretching vibrations. We report normal-mode analysis and a comparison of calculated to experimental VCD and ROA. The data provide band-to-band assignment and offer a possibility to evaluate roles of constrained nonplanar tertiary amide groups and rigid chiral skeletons. Nonplanarity shows as single-signed VCD and ROA amide I signals, prevailing the couplets expected to arise from the amide-amide interaction. Amide-amide coupling dominates amide II (mainly C'-N stretching, modified in tertiary amides by the absence of a N-H bond) transitions (strong couplet in VCD, no significant ROA) probably due to the close proximity of amide nitrogen atoms. At lower wavenumbers, ROA spectra exhibit another likely manifestation of amide nonplanarity, showing signals of amide V (δ(oop)(N-C) at ~570 cm(-1)) and amide VI (δ(oop)(C'═O) at ~700 cm(-1) and ~650 cm(-1)) vibrations.

  18. The radiation chemistry of organic amides: Pt. 1

    International Nuclear Information System (INIS)

    Langan, J.R.; Liu, K.J.; Salmon, G.A.; Edwards, P.P.; Ellaboudy, A.; Holton, D.M.

    1989-01-01

    Pulse radiolysis of four cyclic amides including N-methylpyrrolidinone (NMP), and the non-cyclic amide tetramethylurea (TMU) yielded absorption spectra in the near infrared that are attributed to solvated electrons. Addition of a variety of alkali-metal salts caused no detectable change in the absorption spectrum of e s - and no new absorptions attributable to alkali-metal anions were detected. The effect of dose on the decay of e s - in NMP was studied in detail. The yields of e s - in these amides were estimated by using trans-stilbene as an electron scavenger. Absorption spectra, which are not removed by saturation with N 2 O and CO 2 , are observed in the wavelength range 300-500 nm. (author)

  19. N-acetyl lysyltyrosylcysteine amide inhibits myeloperoxidase, a novel tripeptide inhibitor1[S

    OpenAIRE

    Zhang, Hao; Jing, Xigang; Shi, Yang; Xu, Hao; Du, Jianhai; Guan, Tongju; Weihrauch, Dorothee; Jones, Deron W.; Wang, Weiling; Gourlay, David; Oldham, Keith T.; Hillery, Cheryl A.; Pritchard, Kirkwood A.

    2013-01-01

    Myeloperoxidase (MPO) plays important roles in disease by increasing oxidative and nitrosative stress and oxidizing lipoproteins. Here we report N-acetyl lysyltyrosylcysteine amide (KYC) is an effective inhibitor of MPO activity. We show KYC inhibits MPO-mediated hypochlorous acid (HOCl) formation and nitration/oxidation of LDL. Disulfide is the major product of MPO-mediated KYC oxidation. KYC (⩽4,000 μM) does not induce cytotoxicity in bovine aortic endothelial cells (BAECs). KYC inhibits HO...

  20. Catalytic synthesis of amides via aldoximes rearrangement.

    Science.gov (United States)

    Crochet, Pascale; Cadierno, Victorio

    2015-02-14

    Amide bond formation reactions are among the most important transformations in organic chemistry because of the widespread occurrence of amides in pharmaceuticals, natural products and biologically active compounds. The Beckmann rearrangement is a well-known method to generate secondary amides from ketoximes. However, under the acidic conditions commonly employed, aldoximes RHC=NOH rarely rearrange into the corresponding primary amides RC(=O)NH2. In recent years, it was demonstrated that this atom-economical transformation can be carried out efficiently and selectively with the help of metal catalysts. Several homogeneous and heterogenous systems have been described. In addition, protocols offering the option to generate the aldoximes in situ from the corresponding aldehydes and hydroxylamine, or even from alcohols, have also been developed, as well as a series of tandem processes allowing the access to N-substituted amide products. In this Feature article a comprehensive overview of the advances achieved in this particular research area is presented.

  1. Impact of N-acetylcysteine on antitumor activity of doxorubicin and landomycin A in NK/Ly lymphoma-bearing mice

    Directory of Open Access Journals (Sweden)

    Yu. S. Kozak

    2018-04-01

    Full Text Available N-acetylcysteine (NAC is a dietary supplement demonstrating antioxidant and liver protecting effects that is widely used in clinics. NAC is considered to possess potential therapeutic activity for health disorders characterized by generation of free oxygen radicals, as well as potential for decreasing negative side effects of various drugs. However, the mechanisms of such tissue-protective actions of NAC remain poorly understood. The main aim of this work was to study therapeutic effects of NAC applied together with the “gold standard” of chemotherapy doxorubicin (Dx or the novel experimental drug landomycin A (LA to mice bearing NK/Ly lymphoma. It was revealed that NAC significantly decreased the nephrotoxicity of Dx (measured as creatinine level, possessed moderate immunomodulating activity (as revealed by an increase in number of cytotoxic T-lymphocytes, and partially increased survival of NK/Ly lymphoma-bearing animals treated with Dx. On the contrary, there was little tissue-protective effect of NAC towards LA due to the weak side effects of this anticancer drug, however, the combined use of NAC and LA significantly increased survival (60+ days of LA-treated animals with NK/Ly lymphoma. Summarizing, NAC possesses a moderate tissue-protective activity towards Dx action but lacks a major therapeutic effect. However, in the case of LA action, NAC significantly increases its anticancer activity with no impact on its negative side effects. Further studies of the molecular mechanisms underlying that activity of NAC towards the action of LA are in progress.

  2. Amide temperature coefficients in the protein G B1 domain

    International Nuclear Information System (INIS)

    Tomlinson, Jennifer H.; Williamson, Mike P.

    2012-01-01

    Temperature coefficients have been measured for backbone amide 1 H and 15 N nuclei in the B1 domain of protein G (GB1), using temperatures in the range 283–313 K, and pH values from 2.0 to 9.0. Many nuclei display pH-dependent coefficients, which were fitted to one or two pK a values. 1 H coefficients showed the expected behaviour, in that hydrogen-bonded amides have less negative values, but for those amides involved in strong hydrogen bonds in regular secondary structure there is a negative correlation between strength of hydrogen bond and size of temperature coefficient. The best correlation to temperature coefficient is with secondary shift, indicative of a very approximately uniform thermal expansion. The largest pH-dependent changes in coefficient are for amides in loops adjacent to sidechain hydrogen bonds rather than the amides involved directly in hydrogen bonds, indicating that the biggest determinant of the temperature coefficient is temperature-dependent loss of structure, not hydrogen bonding. Amide 15 N coefficients have no clear relationship with structure.

  3. Pressure effect on the amide I frequency of the solvated α-helical structure in water

    International Nuclear Information System (INIS)

    Takekiyo, T; Yoshimura, Y; Shimizu, A; Koizumi, T; Kato, M; Taniguchi, Y

    2007-01-01

    As a model system of the pressure dependence of the amide I mode of the solvated α-helical structure in a helical peptide, we have calculated the frequency shifts of the amide I modes as a function of the distance between trans-N-methylacetamide (t-NMA) dimer and a water molecule (d C=O···H-O ) by the density-functional theory (DFT) method at the B3LYP/6-31G++(d,p) level. Two amide I frequencies at 1652 and 1700 cm -1 were observed under this calculation. The former is ascribed to the amide I mode forming the intermolecular hydrogen bond (H-bond) between t-NMA and H 2 O in addition to the intermolecular H-bond in the t-NMA dimer. The latter is due to the amide I mode forming only the intermolecular H-bond in the t-NMA dimer. We have found that the amide I frequency at 1652 cm -1 shifts to a lower frequency with decreasing d C=O···H-O ) (i.e., increasing pressure), whereas that at 1700 cm -1 shifts to a higher frequency. The amide I frequency shift of 1652 cm -1 is larger than that of 1700 cm -1 by the intermolecular H-bond. Thus, our results clearly indicate that the pressure-induced amide I frequency shift of the solvated α-helical structure correlates with the change in d C=O···H-O )

  4. Tripodal diglycol-amides as highly efficient extractants for f-elements

    Energy Technology Data Exchange (ETDEWEB)

    Janczewski, D.; Reinhoudt, D. N.; Verboom, W. [Univ Twente, Mesa Res Inst Nanotechnol, Lab Supramol Chem and Technol, NL-7500 AE Enschede, (Netherlands); Janczewski, D. [Inst Mat Res and Engn, Singapore 117602, (Singapore); Verboom, W. [Univ Twente, Mesa Res Inst Nanotechnol, Lab Mol Nanofabricat, NL-7500 AE Enschede, (Netherlands); Hill, C.; Allignol, C.; Duchesne, M. T. [CEA Valrho, DRCP/SCPS/LCSE, F-30207 Bagnols Sur Ceze, (France)

    2008-07-01

    A series of new ligands bearing three diglycol-amide functions pre-organized at the C-pivot and tri-alkyl-phenyl platforms was synthesized. They are very efficient extractants for Am{sup 3+} and Eu{sup 3+} with an up to five times relative extraction ability for Eu{sup 3+}. The distribution coefficients are up to 1000 times increased upon alkylation or arylation of the N-position of the diglycol-amide moieties. The tripodal diglycol-amides show a 1: 1 metal to ligand stoichiometry as proven with three independent methods for the complexation of the 3-pentyl N-substituted diglycol-amide ligand with Eu{sup 3+} (K = 2.5 x 10{sup 5} M{sup -1} in acetonitrile-water). A cage-like cryptand, containing three diglycol-amide units, was prepared using a Eu{sup 3+} templated synthesis. However, it does not exhibit improved extraction properties. (authors)

  5. Alkylsilyl Peroxides as Alkylating Agents in the Copper-Catalyzed Selective Mono-N-Alkylation of Primary Amides and Arylamines.

    Science.gov (United States)

    Sakamoto, Ryu; Sakurai, Shunya; Maruoka, Keiji

    2017-07-06

    The copper-catalyzed selective mono-N-alkylation of primary amides or arylamines using alkylsilyl peroxides as alkylating agents is reported. The reaction proceeds under mild reaction conditions and exhibits a broad substrate scope with respect to the alkylsilyl peroxides, as well as to the primary amides and arylamines. Mechanistic studies suggest that the present reaction should proceed through a free-radical process that includes alkyl radicals generated from the alkylsilyl peroxides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. New Poly(amide-imide)/Nanocomposites Reinforced Silicate Nanoparticles Based on N-pyromellitimido-L-phenyl Alanine Containing Ether Moieties

    Science.gov (United States)

    Faghihi, Khalil; Shabanian, Meisam; Dadfar, Ehsan

    2012-02-01

    A series of Poly(amide-imide)/montmorillonite nanocomposites containing N-pyromellitimido-L-phenyl alanine moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide) (PAI) 5 as a source of polymer matrix was synthesized by the direct polycondensation reaction of N-pyromellitimido-L-phenyl alanine 3 with 4,4'-diamino diphenyl ether 4 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). The resulting nanocomposite films were characterized by Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The results showed that organo-modified clay was dispersed homogeneously in PAI matrix. TGA indicated an enhancement of thermal stability of new nanocomposites compared with the pure polymer.

  7. Actinides complexes in solvent extraction. The amide type of extractants

    International Nuclear Information System (INIS)

    Musikas, C.; Condamines, N.; Charbonnel, M.C.; Hubert, H.

    1989-01-01

    The N,N-dialkylamides and the N,N'-tetraalkyl. 2-alkyl 1,3-diamide propane are two promising classes of extractants which could replace advantageously the organophosphorus molecules for the separations of the actinide. The main advantages of the amides lie in their complete incinerability and the small interference of their radiolytic and hydrolytic degradation products for the processes. The actinide extraction chemistry with various amides is reviewed in this paper

  8. Prevention of Contrast-Induced Nephropathy With N-Acetylcysteine or Sodium Bicarbonate in Patients With ST-Segment-Myocardial Infarction

    DEFF Research Database (Denmark)

    Thayssen, Per; Lassen, Jens Flensted; Jensen, Svend Eggert

    2014-01-01

    (CINSTEMI) trial. Patients were randomly assigned in a 1:1:1:1 ratio to receive hydration with sodium chloride together with 1 of 4 prophylactic regimes (1) N-acetylcysteine (NAC), (2) sodium bicarbonate (NaHCO3) infusion, (3) NAC in combination with NaHCO3, or (4) hydration with sodium chloride infusion...... not reduce the rate of CIN significantly compared with hydration with intravenous sodium chloride infusion alone (20.1% versus 20.1% versus 20.8% versus 26.5%; P=NS). However, an increase in serum creatinine >25% from the baseline value to 30 day was significantly lower in patients treated with combined NAC...

  9. Reaction mechanism of the acidic hydrolysis of highly twisted amides: Rate acceleration caused by the twist of the amide bond.

    Science.gov (United States)

    Mujika, Jon I; Formoso, Elena; Mercero, Jose M; Lopez, Xabier

    2006-08-03

    We present an ab initio study of the acid hydrolysis of a highly twisted amide and a planar amide analogue. The aim of these studies is to investigate the effect that the twist of the amide bond has on the reaction barriers and mechanism of acid hydrolysis. Concerted and stepwise mechanisms were investigated using density functional theory and polarizable continuum model calculations. Remarkable differences were observed between the mechanism of twisted and planar amide, due mainly to the preference for N-protonation of the former and O-protonation of the latter. In addition, we were also able to determine that the hydrolytic mechanism of the twisted amide will be pH dependent. Thus, there is a preference for a stepwise mechanism with formation of an intermediate in the acid hydrolysis, whereas the neutral hydrolysis undergoes a concerted-type mechanism. There is a nice agreement between the characterized intermediate and available X-ray data and a good agreement with the kinetically estimated rate acceleration of hydrolysis with respect to analogous undistorted amide compounds. This work, along with previous ab initio calculations, describes a complex and rich chemistry for the hydrolysis of highly twisted amides as a function of pH. The theoretical data provided will allow for a better understanding of the available kinetic data of the rate acceleration of amides upon twisting and the relation of the observed rate acceleration with intrinsic differential reactivity upon loss of amide bond resonance.

  10. Friedel-Crafts Acylation with Amides

    Science.gov (United States)

    Raja, Erum K.; DeSchepper, Daniel J.; Nilsson Lill, Sten O.; Klumpp, Douglas A.

    2012-01-01

    Friedel-Crafts acylation has been known since the 1870s and it is an important organic synthetic reaction leading to aromatic ketone products. Friedel-Crafts acylation is usually done with carboxylic acid chlorides or anhydrides while amides are generally not useful substrates in these reactions. Despite being the least reactive carboxylic acid derivative, we have found a series of amides capable of providing aromatic ketones in good yields (55–96%, 17 examples). We propose a mechanism involving diminished C-N resonance through superelectrophilic activation and subsequent cleavage to acyl cations. PMID:22690740

  11. N-acetylcysteine ameliorates contrast‑induced kidney injury in rats with unilateral hydronephrosis.

    Science.gov (United States)

    Xia, Qiang; Liu, Chunxiao; Zheng, Xia

    2018-02-01

    The aim of the present study was to investigate the protective effects of N‑acetylcysteine (NAC) on contrast‑induced acute kidney injury in rats with unilateral hyronephrosis. Eighty‑two male Sprague Dawley rats were randomized to undergo sham operation (n=14) or unilateral ureteral obstruction (UUO) (n=68). After 3 weeks, the UUO animals were randomized to three groups: NAC gastric perfusion, UUO+iohexol+NAC (n=24); normal saline perfusion, UUO+iohexol (n=24); and controls, UUO (n=20). After 3 days, UUO+iohexol+NAC and UUO+iohexol rats were injected with iohexol. One day after contrast, half of the rats were sacrificed to assess the pathological changes to the kidneys, serum creatinine, serum neutrophil gelatinase‑associated lipocalin (NGAL), renal cell apoptosis rate and expression of apoptosis regulators Bcl‑2/Bax. The remaining rats underwent obstruction relief and were analyzed 3 weeks later. Compared with the controls, serum NGAL levels were high in UUO+iohexol rats 1 day following injection and 3 weeks after obstruction relief, but UUO+iohexol+NAC rats exhibited lower serum NGAL levels compared with UUO+iohexol rats (all Pmodeling, UUO+iohexol rats exhibited a significantly higher apoptosis rate of renal tubular cells, higher expression of Bax mRNA, and lower ratio of Bcl‑2/Bax (all Prelief, UUO+iohexol+NAC rats exhibited a lower apoptosis rate, lower Bax mRNA expression, higher expression of Bcl‑2 mRNA and higher ratio of Bcl‑2/Bax (all P<0.05) compared with day 1 following drug administration. The prophylactic use of NAC reduced the apoptotic rate of renal tubular cells following contrast exposition, which was accompanied by changes in the expression of Bcl‑2/Bax mRNA.

  12. Synergist effects of n-acetylcysteine and deferoxamine treatment on behavioral and oxidative parameters induced by chronic mild stress in rats.

    Science.gov (United States)

    Arent, Camila O; Réus, Gislaine Z; Abelaira, Helena M; Ribeiro, Karine F; Steckert, Amanda V; Mina, Francielle; Dal-Pizzol, Felipe; Quevedo, João

    2012-12-01

    A growing body of evidence has pointed to a relationship between oxidative stress and depression. Thus, the present study was aimed at evaluating the effects of the antioxidants n-acetylcysteine (NAC), deferoxamine (DFX) or their combination on sweet food consumption and oxidative stress parameters in rats submitted to 40days of exposure to chronic mild stress (CMS). Our results showed that in stressed rats treated with saline, there was a decrease in sweet food intake and treatment with NAC or NAC in combination with DFX reversed this effect. Treatment with NAC and DFX decreased the oxidative damage, which include superoxide and TBARS production in submitochondrial particles, and also thiobarbituric acid reactive substances (TBARS) levels and carbonyl proteins in the prefrontal cortex, amygdala and hippocampus. Treatment with NAC and DFX also increased the activity of the antioxidant enzymes, superoxide dismutase and catalase in the same brain areas. Even so, a combined treatment with NAC and DFX produced a stronger increase of antioxidant activities in the prefrontal cortex, amygdala and hippocampus. The results described here indicate that co-administration may induce a more pronounced antidepressant activity than each treatment alone. In conclusion, these results suggests that treatment with NAC or DFX alone or in combination on oxidative stress parameters could have positive effects against neuronal damage caused by oxidative stress in major depressive disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Potencialização do efeito metemoglobinizante da dapsona em ratos pela N-acetilcisteína Potentiation of dapsone induced methemoglobinemia by N-acetylcysteine in rats

    Directory of Open Access Journals (Sweden)

    Natália Valadares de Moraes

    2008-03-01

    Full Text Available Dapsona (DDS (4,4'diaminodifenilsulfona, fármaco de escolha para o tratamento da hanseníase, freqüentemente induz anemia hemolítica e metemoglobinemia. A N-hidroxilação, uma de suas principais vias de biotransformação, é constantemente relacionada com a metemoglobinemia observada com o uso do fármaco. Com o objetivo de prevenir a hemotoxicidade induzida pela DDS, N-acetilcisteína, fármaco precursor de glutationa, foi administrada em associação com DDS em ratos machos Wistar pesando 220-240 g. Os animais foram anestesiados e o sangue coletado da aorta para determinação da concentração plasmática de DDS por CLAE, determinação dos níveis de metemoglobina e de glutationa eritrocitária por espectrofotometria, e avaliação de parâmetros bioquímicos e hematológicos. Os resultados obtidos mostraram que a N-acetilcisteína potenciou o efeito metemoglobinizante da dapsona devido ao aumento de sua concentração plasmática e conseqüente aumento da formação da N-hidroxilamina. Concluímos que as interações medicamentosas com a dapsona exigem estudos individualizados a fim de evitar os efeitos adversos do fármaco.Dapsone (DDS (4,4'diaminodiphenylsulfone, the drug of choice for the treatment of leprosy, frequently induces hemolytic anemia and methemoglobinemia. N-hydroxylation, one of the major pathways of biotransformation, has been constantly related to the methemoglobinemia after the use of the drug. In order to prevent the dapsone-induced hemotoxicity, N-acetylcysteine, a drug precursor of glutathione, was administered in combination with DDS to male Wistar rats, weighting 220-240 g. The animals were then anaesthetized and blood was collected from the aorta for determination of plasma DDS concentration by HPLC, determination of methemoglobinemia and glutathione by spectrophotometry, and for biochemical and hematological parameters. Our results showed that N-acetylcysteine enhanced dapsone-induced methemoglobinemia due to

  14. Add-on treatment with N-acetylcysteine for bipolar depression:a 24-week randomized double-blind parallel group placebo-controlled multicentre trial (NACOS-study protocol)

    OpenAIRE

    Ellegaard, Pernille Kempel; Licht, Rasmus Wentzer; Poulsen, Henrik Enghusen; Nielsen, René Ernst; Berk, Michael; Dean, Olivia May; Mohebbi, Mohammadreza; Nielsen, Connie Thuroee

    2018-01-01

    BACKGROUND: Oxidative stress and inflammation may be involved in the development and progression of mood disorders, including bipolar disorder. Currently, there is a scarcity of useful treatment options for bipolar depressive episodes, especially compared with the efficacy of treatment for acute mania. N-Acetylcysteine (NAC) has been explored for psychiatric disorders for some time given its antioxidant and anti-inflammatory properties. The current trial aims at testing the clinical effects o...

  15. Outcomes after Angiography with Sodium Bicarbonate and Acetylcysteine.

    Science.gov (United States)

    Weisbord, Steven D; Gallagher, Martin; Jneid, Hani; Garcia, Santiago; Cass, Alan; Thwin, Soe-Soe; Conner, Todd A; Chertow, Glenn M; Bhatt, Deepak L; Shunk, Kendrick; Parikh, Chirag R; McFalls, Edward O; Brophy, Mary; Ferguson, Ryan; Wu, Hongsheng; Androsenko, Maria; Myles, John; Kaufman, James; Palevsky, Paul M

    2018-02-15

    Intravenous sodium bicarbonate and oral acetylcysteine are widely used to prevent acute kidney injury and associated adverse outcomes after angiography without definitive evidence of their efficacy. Using a 2-by-2 factorial design, we randomly assigned 5177 patients at high risk for renal complications who were scheduled for angiography to receive intravenous 1.26% sodium bicarbonate or intravenous 0.9% sodium chloride and 5 days of oral acetylcysteine or oral placebo; of these patients, 4993 were included in the modified intention-to-treat analysis. The primary end point was a composite of death, the need for dialysis, or a persistent increase of at least 50% from baseline in the serum creatinine level at 90 days. Contrast-associated acute kidney injury was a secondary end point. The sponsor stopped the trial after a prespecified interim analysis. There was no interaction between sodium bicarbonate and acetylcysteine with respect to the primary end point (P=0.33). The primary end point occurred in 110 of 2511 patients (4.4%) in the sodium bicarbonate group as compared with 116 of 2482 (4.7%) in the sodium chloride group (odds ratio, 0.93; 95% confidence interval [CI], 0.72 to 1.22; P=0.62) and in 114 of 2495 patients (4.6%) in the acetylcysteine group as compared with 112 of 2498 (4.5%) in the placebo group (odds ratio, 1.02; 95% CI, 0.78 to 1.33; P=0.88). There were no significant between-group differences in the rates of contrast-associated acute kidney injury. Among patients at high risk for renal complications who were undergoing angiography, there was no benefit of intravenous sodium bicarbonate over intravenous sodium chloride or of oral acetylcysteine over placebo for the prevention of death, need for dialysis, or persistent decline in kidney function at 90 days or for the prevention of contrast-associated acute kidney injury. (Funded by the U.S. Department of Veterans Affairs Office of Research and Development and the National Health and Medical Research

  16. Metal complexation by tripodal N-Acyl(thio)urea and picolin(thio)amide compounds: synthesis/extraction and potentiometric studies

    NARCIS (Netherlands)

    Reinoso garcia, M.M.; Dijkman, Arjan; Verboom, Willem; Reinhoudt, David; Malinowska, Elzbieta; Wojciechowska, Dorota; Pietrzak, Mariusz; Selucky, Pavel

    2005-01-01

    The synthesis and binding properties towards different cations of a series of tripodal ligands functionalized with N-acyl(thio)urea and picolin(thio)amide moieties are described. For the extraction of Am3+ and Eu3+ the compounds are not efficient. However, N-acylurea derivative 10 exhibit a

  17. N-acetylcysteine normalizes the urea cycle and DNA repair in cells from patients with Batten disease.

    Science.gov (United States)

    Kim, June-Bum; Lim, Nary; Kim, Sung-Jo; Heo, Tae-Hwe

    2012-12-01

    Batten disease is an inherited disorder characterized by early onset neurodegeneration due to the mutation of the CLN3 gene. The function of the CLN3 protein is not clear, but an association with oxidative stress has been proposed. Oxidative stress and DNA damage play critical roles in the pathogenesis of neurodegenerative diseases. Antioxidants are of interest because of their therapeutic potential for treating neurodegenerative diseases. We tested whether N-acetylcysteine (NAC), a well-known antioxidant, improves the pathology of cells from patients with Batten disease. At first, the expression levels of urea cycle components and DNA repair enzymes were compared between Batten disease cells and normal cells. We used both mRNA expression levels and Western blot analysis. We found that carbamoyl phosphate synthetase 1, an enzyme involved in the urea cycle, 8-oxoguanine DNA glycosylase 1 and DNA polymerase beta, enzymes involved in DNA repair, were expressed at higher levels in Batten disease cells than in normal cells. The treatment of Batten disease cells with NAC for 48 h attenuated activities of the urea cycle and of DNA repair, as indicated by the substantially decreased expression levels of carbamoyl phosphate synthetase 1, 8-oxoguanine DNA glycosylase 1 and DNA polymerase beta proteins compared with untreated Batten cells. NAC may serve in alleviating the burden of urea cycle and DNA repair processes in Batten disease cells. We propose that NAC may have beneficial effects in patients with Batten disease. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Alpha-amidated peptides derived from pro-opiomelanocortin in normal human pituitary

    DEFF Research Database (Denmark)

    Fenger, M; Johnsen, A H

    1988-01-01

    Normal human pituitaries were extracted in boiling water and acetic acid, and the alpha-amidated peptide products of pro-opiomelanocortin (POMC), alpha-melanocyte-stimulating hormone (alpha MSH), gamma-melanocyte-stimulating hormone (gamma 1MSH), and amidated hinge peptide (HP-N), as well...... (ACTH)-(1-39), ACTH-(1-14) and alpha MSH immunoreactivity]. alpha MSH and ACTH-(1-14) were only present in non- or mono-acetylated forms. Only large forms of gamma 1MSH and gamma 2MSH were present in partly glycosylated states. The hinge peptides were amidated to an extent two to three orders...... amidated POMC-related peptides are present in normal human pituitary. It also shows that cleavage in vivo at all dibasic amino acids but one, takes place at the N-terminal POMC region; the exception is at the POMC-(49-50) N-terminal of the gamma MSH sequence. The pattern of peptides produced suggests...

  19. N-acetylcysteine-pretreated human embryonic mesenchymal stem cell administration protects against bleomycin-induced lung injury.

    Science.gov (United States)

    Wang, Qiao; Zhu, Hong; Zhou, Wu-Gang; Guo, Xiao-Can; Wu, Min-Juan; Xu, Zhen-Yu; Jiang, Jun-feng; Shen, Ce; Liu, Hou-Qi

    2013-08-01

    The transplantation of mesenchymal stem cells (MSCs) has been reported to be a promising approach in the treatment of acute lung injury. However, the poor efficacy of transplanted MSCs is one of the serious handicaps in the progress of MSC-based therapy. Therefore, the purpose of this study was to investigate whether the pretreatment of human embryonic MSCs (hMSCs) with an antioxidant, namely N-acetylcysteine (NAC), can improve the efficacy of hMSC transplantation in lung injury. In vitro, the antioxidant capacity of NAC-pretreated hMSCs was assessed using intracellular reactive oxygen species (ROS) and glutathione assays and cell adhesion and spreading assays. In vivo, the therapeutic potential of NAC-pretreated hMSCs was assessed in a bleomycin-induced model of lung injury in nude mice. The pretreatment of hMSCs with NAC improved antioxidant capacity to defend against redox imbalances through the elimination of cellular ROS, increasing cellular glutathione levels, and the enhancement of cell adhesion and spreading when exposed to oxidative stresses in vitro. In addition, the administration of NAC-pretreated hMSCs to nude mice with bleomycin-induced lung injury decreased the pathological grade of lung inflammation and fibrosis, hydroxyproline content and numbers of neutrophils and inflammatory cytokines in bronchoalveolar lavage fluid and apoptotic cells, while enhancing the retention and proliferation of hMSCs in injured lung tissue and improving the survival rate of mice compared with results from untreated hMSCs. The pretreatment of hMSCs with NAC could be a promising therapeutic approach to improving cell transplantation and, therefore, the treatment of lung injury.

  20. Pre-clinical evaluation of N-acetylcysteine reveals side effects in the mdx mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Pinniger, Gavin J; Terrill, Jessica R; Assan, Evanna B; Grounds, Miranda D; Arthur, Peter G

    2017-12-01

    Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease associated with increased inflammation and oxidative stress. The antioxidant N-acetylcysteine (NAC) has been proposed as a therapeutic intervention for DMD boys, but potential adverse effects of NAC have not been widely investigated. We used young (6 weeks old) growing mdx mice to investigate the capacity of NAC supplementation (2% in drinking water for 6 weeks) to improve dystrophic muscle function and to explore broader systemic effects of NAC treatment. NAC treatment improved normalised measures of muscle function, and decreased inflammation and oxidative stress, but significantly reduced body weight gain, muscle weight and liver weight. Unexpected significant adverse effects of NAC on body and muscle weights indicate that interpretation of muscle function based on normalised force measures should be made with caution and careful consideration is needed when proposing the use of NAC as a therapeutic treatment for young DMD boys. Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle wasting disease characterised by severe muscle weakness, necrosis, inflammation and oxidative stress. The antioxidant N-acetylcysteine (NAC) has been proposed as a potential therapeutic intervention for DMD boys. We investigated the capacity of NAC to improve dystrophic muscle function in the mdx mouse model of DMD. Young (6 weeks old) mdx and non-dystrophic C57 mice receiving 2% NAC in drinking water for 6 weeks were compared with untreated mice. Grip strength and body weight were measured weekly, before the 12 week old mice were anaesthetised and extensor digitorum longus (EDL) muscles were excised for functional analysis and tissues were sampled for biochemical analyses. Compared to untreated mice, the mean (SD) normalised grip strength was significantly greater in NAC-treated mdx [3.13 (0.58) vs 4.87 (0.78) g body weight (bw) -1 ; P muscles [9.80 (2.27) vs 13.07 (3.37) N cm -2 ; P = 0

  1. Thiol Redox Transitions in Cell Signaling: a Lesson from N-Acetylcysteine

    Directory of Open Access Journals (Sweden)

    Tiziana Parasassi

    2010-01-01

    Full Text Available The functional status of cells is under the control of external stimuli affecting the function of critical proteins and eventually gene expression. Signal sensing and transduction by messengers to specific effectors operate by post-translational modification of proteins, among which thiol redox switches play a fundamental role that is just beginning to be understood. The maintenance of the redox status is, indeed, crucial for cellular homeostasis and its dysregulation towards a more oxidized intracellular environment is associated with aberrant proliferation, ultimately related to diseases such as cancer, cardiovascular disease, and diabetes. Redox transitions occur in sensitive cysteine residues of regulatory proteins relevant to signaling, their evolution to metastable disulfides accounting for the functional redox switch. N-acetylcysteine (NAC is a thiol-containing compound that is able to interfere with redox transitions of thiols and, thus, in principle, able to modulate redox signaling. We here review the redox chemistry of NAC, then screen possible mechanisms to explain the effects observed in NAC-treated normal and cancer cells; such effects involve a modification of global gene expression, thus of functions and morphology, with a leitmotif of a switch from proliferation to terminal differentiation. The regulation of thiol redox transitions in cell signaling is, therefore, proposed as a new tool, holding promise not only for a deeper explanation of mechanisms, but indeed for innovative pharmacological interventions.

  2. The temperature dependent amide I band of crystalline acetanilide

    Energy Technology Data Exchange (ETDEWEB)

    Cruzeiro, Leonor [CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Physics Department, FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Freedman, Holly [CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2013-10-01

    The temperature dependent anomalous peak in the amide I band of crystalline acetanilide is thought to be due to self-trapped states. On the contrary, according to the present model, the anomalous peak comes from the fraction of ACN molecules strongly hydrogen-bonded to a neighboring ACN molecule, and its intensity decreases because, on average, this fraction decreases as temperature increases. This model provides, for the first time, an integrated and theoretically consistent view of the temperature dependence of the full amide I band and a qualitative explanation of some of the features of nonlinear pump–probe experiments.

  3. The temperature dependent amide I band of crystalline acetanilide

    Science.gov (United States)

    Cruzeiro, Leonor; Freedman, Holly

    2013-10-01

    The temperature dependent anomalous peak in the amide I band of crystalline acetanilide is thought to be due to self-trapped states. On the contrary, according to the present model, the anomalous peak comes from the fraction of ACN molecules strongly hydrogen-bonded to a neighboring ACN molecule, and its intensity decreases because, on average, this fraction decreases as temperature increases. This model provides, for the first time, an integrated and theoretically consistent view of the temperature dependence of the full amide I band and a qualitative explanation of some of the features of nonlinear pump-probe experiments.

  4. The temperature dependent amide I band of crystalline acetanilide

    International Nuclear Information System (INIS)

    Cruzeiro, Leonor; Freedman, Holly

    2013-01-01

    The temperature dependent anomalous peak in the amide I band of crystalline acetanilide is thought to be due to self-trapped states. On the contrary, according to the present model, the anomalous peak comes from the fraction of ACN molecules strongly hydrogen-bonded to a neighboring ACN molecule, and its intensity decreases because, on average, this fraction decreases as temperature increases. This model provides, for the first time, an integrated and theoretically consistent view of the temperature dependence of the full amide I band and a qualitative explanation of some of the features of nonlinear pump–probe experiments.

  5. Sequential backbone assignment based on dipolar amide-to-amide correlation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, ShengQi; Grohe, Kristof; Rovó, Petra; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus, E-mail: rali@nmr.mpibpc.mpg.de [Max Planck Institute for Biophysical Chemistry, Department for NMR-Based Structural Biology (Germany)

    2015-07-15

    Proton detection in solid-state NMR has seen a tremendous increase in popularity in the last years. New experimental techniques allow to exploit protons as an additional source of information on structure, dynamics, and protein interactions with their surroundings. In addition, sensitivity is mostly improved and ambiguity in assignment experiments reduced. We show here that, in the solid state, sequential amide-to-amide correlations turn out to be an excellent, complementary way to exploit amide shifts for unambiguous backbone assignment. For a general assessment, we compare amide-to-amide experiments with the more common {sup 13}C-shift-based methods. Exploiting efficient CP magnetization transfers rather than less efficient INEPT periods, our results suggest that the approach is very feasible for solid-state NMR.

  6. Sequential backbone assignment based on dipolar amide-to-amide correlation experiments

    International Nuclear Information System (INIS)

    Xiang, ShengQi; Grohe, Kristof; Rovó, Petra; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus

    2015-01-01

    Proton detection in solid-state NMR has seen a tremendous increase in popularity in the last years. New experimental techniques allow to exploit protons as an additional source of information on structure, dynamics, and protein interactions with their surroundings. In addition, sensitivity is mostly improved and ambiguity in assignment experiments reduced. We show here that, in the solid state, sequential amide-to-amide correlations turn out to be an excellent, complementary way to exploit amide shifts for unambiguous backbone assignment. For a general assessment, we compare amide-to-amide experiments with the more common 13 C-shift-based methods. Exploiting efficient CP magnetization transfers rather than less efficient INEPT periods, our results suggest that the approach is very feasible for solid-state NMR

  7. Chemical Changes in Nonthermal Plasma-Treated N-Acetylcysteine (NAC) Solution and Their Contribution to Bacterial Inactivation.

    Science.gov (United States)

    Ercan, Utku K; Smith, Josh; Ji, Hai-Feng; Brooks, Ari D; Joshi, Suresh G

    2016-02-02

    In continuation of our previous reports on the broad-spectrum antimicrobial activity of atmospheric non-thermal dielectric barrier discharge (DBD) plasma treated N-Acetylcysteine (NAC) solution against planktonic and biofilm forms of different multidrug resistant microorganisms, we present here the chemical changes that mediate inactivation of Escherichia coli. In this study, the mechanism and products of the chemical reactions in plasma-treated NAC solution are shown. UV-visible spectrometry, FT-IR, NMR, and colorimetric assays were utilized for chemical characterization of plasma treated NAC solution. The characterization results were correlated with the antimicrobial assays using determined chemical species in solution in order to confirm the major species that are responsible for antimicrobial inactivation. Our results have revealed that plasma treatment of NAC solution creates predominantly reactive nitrogen species versus reactive oxygen species, and the generated peroxynitrite is responsible for significant bacterial inactivation.

  8. Phase space investigation of the lithium amide halides

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Rosalind A. [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Hydrogen and Fuel Cell Group, School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Hewett, David R.; Korkiakoski, Emma [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Thompson, Stephen P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Anderson, Paul A., E-mail: p.a.anderson@bham.ac.uk [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2015-10-05

    Highlights: • The lower limits of halide incorporation in lithium amide have been investigated. • The only amide iodide stoichiometry observed was Li{sub 3}(NH{sub 2}){sub 2}I. • Solid solutions were observed in both the amide chloride and amide bromide systems. • A 46% reduction in chloride content resulted in a new phase: Li{sub 7}(NH{sub 2}){sub 6}Cl. • New low-chloride phase maintained improved H{sub 2} desorption properties of Li{sub 4}(NH{sub 2}){sub 3}Cl. - Abstract: An investigation has been carried out into the lower limits of halide incorporation in lithium amide (LiNH{sub 2}). It was found that the lithium amide iodide Li{sub 3}(NH{sub 2}){sub 2}I was unable to accommodate any variation in stoichiometry. In contrast, some variation in stoichiometry was accommodated in Li{sub 7}(NH{sub 2}){sub 6}Br, as shown by a decrease in unit cell volume when the bromide content was reduced. The amide chloride Li{sub 4}(NH{sub 2}){sub 3}Cl was found to adopt either a rhombohedral or a cubic structure depending on the reaction conditions. Reduction in chloride content generally resulted in a mixture of phases, but a new rhombohedral phase with the stoichiometry Li{sub 7}(NH{sub 2}){sub 6}Cl was observed. In comparison to LiNH{sub 2}, this new low-chloride phase exhibited similar improved hydrogen desorption properties as Li{sub 4}(NH{sub 2}){sub 3}Cl but with a much reduced weight penalty through addition of chloride. Attempts to dope lithium amide with fluoride ions have so far proved unsuccessful.

  9. Inhibitory Effect on Cerebral Inflammatory Response following Traumatic Brain Injury in Rats: A Potential Neuroprotective Mechanism of N-Acetylcysteine

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2008-01-01

    Full Text Available Although N-acetylcysteine (NAC has been shown to be neuroprotective for traumatic brain injury (TBI, the mechanisms for this beneficial effect are still poorly understood. Cerebral inflammation plays an important role in the pathogenesis of secondary brain injury after TBI. However, it has not been investigated whether NAC modulates TBI-induced cerebral inflammatory response. In this work, we investigated the effect of NAC administration on cortical expressions of nuclear factor kappa B (NF-κB and inflammatory proteins such as interleukin-1β (IL-1β, tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, and intercellular adhesion molecule-1 (ICAM-1 after TBI. As a result, we found that NF-κB, proinflammatory cytokines, and ICAM-1 were increased in all injured animals. In animals given NAC post-TBI, NF-κB, IL-1β, TNF-α, and ICAM-1 were decreased in comparison to vehicle-treated animals. Measures of IL-6 showed no change after NAC treatment. NAC administration reduced brain edema, BBB permeability, and apoptotic index in the injured brain. The results suggest that post-TBI NAC administration may attenuate inflammatory response in the injured rat brain, and this may be one mechanism by which NAC ameliorates secondary brain damage following TBI.

  10. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian; Ansari, G.A.S.; Khan, M. Firoze, E-mail: mfkhan@utmb.edu

    2013-11-15

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure resulted in

  11. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    International Nuclear Information System (INIS)

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian; Ansari, G.A.S.; Khan, M. Firoze

    2013-01-01

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure resulted in

  12. Síntesis de la N,N-diisopropiletanoamida y N,N-dibutiletanoamida mediante métodos de activación no convencionales: microondas y ultrasonido

    Directory of Open Access Journals (Sweden)

    Joel O. Ovalle Rodríguez

    2010-12-01

    Full Text Available In the present investigation two amides were synthesized: N, N-diisopropiletanoamida and N, N-dibutyletano-amide, using two different non-conventional sources of activation: microwave and ultrasound. It was shown that the use of microwaves in this type of synthesis greatly increases yields and decreases reaction times. In the synthesis of N, N-diisopropyletanoamide yields were about 75% for the synthesis assisted by microwaves (SAM and 35% in the ultrasound-assisted synthesis (SAUS. The yields for the N, N-dibutiletanoamida were 73% (SAM and 45% (SAUS. The reaction times employed were 15 min. (SAM and 7 hours (SAUS. It is noteworthy that all reactions were carried out in a single step and in the absence of solvent.

  13. N-acetylcysteine for major mental disorders: a systematic review and meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Zheng, W; Zhang, Q-E; Cai, D-B; Yang, X-H; Qiu, Y; Ungvari, G S; Ng, C H; Berk, M; Ning, Y-P; Xiang, Y-T

    2018-05-01

    This systematic review and meta-analysis of randomized controlled trials (RCTs) examined the efficacy and safety of adjunctive N-acetylcysteine (NAC), an antioxidant drug, in treating major depressive disorder (MDD), bipolar disorder, and schizophrenia. The PubMed, Cochrane Library, PsycINFO, CNKI, CBM, and WanFang databases were independently searched and screened by two researchers. Standardized mean differences (SMDs), risk ratios, and their 95% confidence intervals (CIs) were computed. Six RCTs (n = 701) of NAC for schizophrenia (three RCTs, n = 307), bipolar disorder (two RCTs, n = 125), and MDD (one RCT, n = 269) were identified and analyzed as separate groups. Adjunctive NAC significantly improved total psychopathology (SMD = -0.74, 95% CI: -1.43, -0.06; I 2 = 84%, P = 0.03) in schizophrenia, but it had no significant effect on depressive and manic symptoms as assessed by the Young Mania Rating Scale in bipolar disorder and only a small effect on major depressive symptoms. Adverse drug reactions to NAC and discontinuation rates between the NAC and control groups were similar across the three disorders. Adjunctive NAC appears to be a safe treatment that has efficacy for schizophrenia, but not for bipolar disorder or MDD. Further higher quality RCTs are warranted to determine the role of adjunctive NAC in the treatment of major psychiatric disorders. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. N-acetylcysteine induced quenching of red fluorescent oligonucleotide-stabilized silver nanoclusters and the application in pharmaceutical detection

    International Nuclear Information System (INIS)

    Wang, Xinyi; Lin, Ruoyun; Xu, Zhihan; Huang, Hongduan; Li, Limei; Liu, Feng; Li, Na; Yang, Xiaoda

    2013-01-01

    Graphical abstract: -- Highlights: •A new method for nanomolar NAC determination with LOD of 50 nM was reported. •The combined mechanism for NAC quenching with static dominating was suggested. •DNA-Ag NC structure changed with addition of NAC, proved by spectroscopic studies. -- Abstract: In this work, we reported a new, simple and sensitive method for determination of N-acetylcysteine (NAC) based on quenching of the red fluorescence of oligonuleotide-protected silver nanoculsters (Ag NCs) with the quantum yield of 68.3 ± 0.3%. This method was successfully used for the assay of NAC granules presenting a linear range from 100 nM to 1200 nM (LOD of 50 nM) with minimal interferences from potential coexisting substances. It is for the first time that quenching performance of the thiol-containing compound was found to follow a non-linear Stern–Volmer profile, indicative of a complicated quenching mechanism with static quenching dominating, in which DNA-template of Ag NCs was partly replaced by NAC, as elucidated by spectral investigations. This study extended the analytical application of silver nanoclusters as well as provided a more insightful understanding of the quenching mechanism of thiol-compounds on the fluorescence of Ag NCs

  15. N-acetylcysteine in the treatment of psychiatric disorders: current status and future prospects.

    Science.gov (United States)

    Minarini, Alessandro; Ferrari, Silvia; Galletti, Martina; Giambalvo, Nina; Perrone, Daniela; Rioli, Giulia; Galeazzi, Gian Maria

    2017-03-01

    N-acetylcysteine (NAC) is widely known for its role as a mucolytic and as an antidote to paracetamol overdose. There is increasing interest in the use of NAC in the treatment of several psychiatric disorders. The rationale for the administration of NAC in psychiatric conditions is based on its role as a precursor to the antioxidant glutathione, and its action as a modulating agent of glutamatergic, dopaminergic, neurotropic and inflammatory pathways. Areas covered: This study reviews the available data regarding the use of NAC in different psychiatric disorders including substance use disorders, autism, obsessive-compulsive spectrum disorders, schizophrenia, depression, bipolar disorder. Promising results were found in trials testing the use of NAC, mainly as an add-on treatment, in cannabis use disorder in young people, depression in bipolar disorder, negative symptoms in schizophrenia, and excoriation (skin-picking) disorder. Despite initial optimism, recent findings regarding NAC efficacy in autism have been disappointing. Expert opinion: These preliminary positive results require further confirmation in larger samples and with longer follow-ups. Given its high tolerability and wide availability, NAC represents an important target to investigate in the field of new adjunctive treatments for psychiatric conditions.

  16. A Promise in the Treatment of Endometriosis: An Observational Cohort Study on Ovarian Endometrioma Reduction by N-Acetylcysteine

    Directory of Open Access Journals (Sweden)

    Maria Grazia Porpora

    2013-01-01

    Full Text Available Urged by the unmet medical needs in endometriosis treatment, often with undesirable side effects, and encouraged by N-acetylcysteine (NAC efficacy in an animal model of endometriosis and by the virtual absence of toxicity of this natural compound, we performed an observational cohort study on ovarian endometriosis. NAC treatment or no treatment was offered to 92 consecutive Italian women referred to our university hospital with ultrasound confirmed diagnosis of ovarian endometriosis and scheduled to undergo laparoscopy 3 months later. According to patients acceptance or refusal, NAC-treated and untreated groups finally comprised 73 and 72 endometriomas, respectively. After 3 months, within NAC-treated patients cyst mean diameter was slightly reduced (-1.5 mm versus a significant increase (+6.6 mm in untreated patients (P=0.001. Particularly, during NAC treatment, more cysts reduced and fewer cysts increased their size. Our results are better than those reported after hormonal treatments. Twenty-four NAC-treated patients—versus 1 within controls—cancelled scheduled laparoscopy due to cysts decrease/disappearance and/or relevant pain reduction (21 cases or pregnancy (1 case. Eight pregnancies occurred in NAC-treated patients and 6 in untreated patients. We can conclude that NAC actually represents a simple effective treatment for endometriosis, without side effects, and a suitable approach for women desiring a pregnancy.

  17. Preparation of new series of poly(amide-imide) reinforced layer silicate nano composite containing N-trimellitimide-L-alanine

    International Nuclear Information System (INIS)

    Faghihi, K.; Soleimani, M.; Shabanian, M.

    2011-01-01

    A new poly(amide-imide)-montmorillonite series were generated through solution intercalation technique. Cloisite 20A was used as a modified montmorillonite for ample compatibility with the poly(amide-imide) (PAI) matrix. The PAI 5 chains were synthesized by the direct polycondensation reaction of N-trimellitylimido-L-alanine (3) with 4,4'-diamino diphenyl ether (4) in the presence of tryphenyl phosphites (TPP), CaCl 2 , pyridine and N-methyl-2-pyrrolidone (NMP). Morphology and structure of the resulting PAI-nano composite films 5a-5d with (5-20 Wt%) silicate particles were characterized by Ftir spectroscopy, X-ray diffraction and scanning electron microscopy. The effect of clay dispersion and the interaction between clay and polymeric chains on the properties of nano composites films were investigated by using UV-Vis spectroscopy, thermogravimetric analysis and water uptake measurements. (Author)

  18. Preparation of new series of poly(amide-imide) reinforced layer silicate nano composite containing N-trimellitimide-L-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, K.; Soleimani, M. [Polymer Research Laboratory, Department of Chemistry, Faculty of Science, Islamic Azad University, Arak Branch, Arak (Iran, Islamic Republic of); Shabanian, M., E-mail: k-faghihi@araku.ac.ir [Young Researches Club, Islamic Azad University, Arak Branch, Arak (Iran, Islamic Republic of)

    2011-07-01

    A new poly(amide-imide)-montmorillonite series were generated through solution intercalation technique. Cloisite 20A was used as a modified montmorillonite for ample compatibility with the poly(amide-imide) (PAI) matrix. The PAI 5 chains were synthesized by the direct polycondensation reaction of N-trimellitylimido-L-alanine (3) with 4,4'-diamino diphenyl ether (4) in the presence of tryphenyl phosphites (TPP), CaCl{sub 2}, pyridine and N-methyl-2-pyrrolidone (NMP). Morphology and structure of the resulting PAI-nano composite films 5a-5d with (5-20 Wt%) silicate particles were characterized by Ftir spectroscopy, X-ray diffraction and scanning electron microscopy. The effect of clay dispersion and the interaction between clay and polymeric chains on the properties of nano composites films were investigated by using UV-Vis spectroscopy, thermogravimetric analysis and water uptake measurements. (Author)

  19. Composition of amino acid using carbon monoxide. Amide carbonylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Izawa, Kunisuke (Ajinomoto Co., Inc., Tokyo (Japan))

    1989-02-01

    Amide carbonylation reaction is a method to compose N-acyl-{alpha}-amino acid from aldehyde, carboxylic acid amide, and carbon monoxide in a phase and with high yield. Unlike the conventional Strecker reaction, this method does not use HCN which is in question on public pollution and does not require hydrolysis. This amide carbonylation reaction was discovered by Wakamatsu and others of Ajinomoto Co.,Ltd. Present application examples of this method are the composition of N-acetyl amino acid from the aldehyde class, the composition of N-Acyl amino acid from olefin, the composition of N-acyl or acetyl amino acid from the raw material of alcohol and the halide class, the composition of N-acyl or acetyl amino acid via the isomerization of epoxide and allyl alcohol, the composition of amino dicarboxylic acid, applying deoxidation of ring acid anhydride, the composition of N-acyl amino acid from the raw material of the amine class, the stereoselective composition of -substitution ring-{alpha}-amino acid, and the composition of amino aldehyde. 24 refs., 2 figs., 2 tabs.

  20. Supercritical fluid extraction of uranium and thorium employing dialkyl amides

    International Nuclear Information System (INIS)

    Rao, Ankita; Kumar, Pradeep

    2014-01-01

    Extraction and purification of actinides from different matrices is of utmost importance to the nuclear industry. In recent decades, supercritical fluid extraction (SFE) has emerged as a promising alternative to solvent extraction owing to its inherent potential of minimization of liquid waste generation. N,N-dialkyl aliphatic amides have been proposed to be an alternative to TBP in the reprocessing of spent nuclear fuel due to several attractive features like innocuous nature of degradation products (mainly carboxylic acids/ amines), possibility of complete incineration of the used extractant leading to reduction in volume of secondary waste. Also, physico-chemical properties of this class of extractants can be tuned by the judicious choice of alkyl groups. In the present work, N,N-dialkyl aliphatic amides with varying alkyl groups viz. N,N-dibutyl-2-ethylhexanamide (DBEHA), N,N-dibutyl-3,3-dimethylbutanamide (DBDMBA), N,N-dihexyloctanamide (DHOA), N,N-disecbutylpentamide (DBPA), N,N-dibutyloctanamide (DBOA), have been evaluated for supercritical fluid extraction (SFE) of uranium and thorium from nitric acid medium as well as tissue paper matrix. Amides were obtained from Department of Chemistry, Delhi University and were used as such. This fact could be exploited for separation of thorium and uranium

  1. Bis(trialkylsilyl) peroxides as alkylating agents in the copper-catalyzed selective mono-N-alkylation of primary amides.

    Science.gov (United States)

    Sakamoto, Ryu; Sakurai, Shunya; Maruoka, Keiji

    2017-06-13

    The copper-catalyzed selective mono-N-alkylation of primary amides with bis(trialkylsilyl) peroxides as alkylating agents was reported. The results of a mechanistic study suggest that this reaction should proceed via a free radical process that includes the generation of alkyl radicals from bis(trialkylsilyl) peroxides.

  2. Nickel-Catalyzed Phosphine Free Direct N-Alkylation of Amides with Alcohols.

    Science.gov (United States)

    Das, Jagadish; Banerjee, Debasis

    2018-03-16

    Herein, we developed an operational simple, practical, and selective Ni-catalyzed synthesis of secondary amides. Application of renewable alcohols, earth-abundant and nonprecious nickel catalyst facilitates the transformations, releasing water as byproduct. The catalytic system is tolerant to a variety of functional groups including nitrile, allylic ether, and alkene and could be extended to the synthesis of bis-amide, antiemetic drug Tigan, and dopamine D2 receptor antagonist Itopride. Preliminary mechanistic studies revealed the participation of a benzylic C-H bond in the rate-determining step.

  3. N-acetylcysteine Ameliorates Prostatitis via miR-141 Regulating Keap1/Nrf2 Signaling.

    Science.gov (United States)

    Wang, Liang-Liang; Huang, Yu-Hua; Yan, Chun-Yin; Wei, Xue-Dong; Hou, Jian-Quan; Pu, Jin-Xian; Lv, Jin-Xing

    2016-04-01

    Chronic prostatitis was the most common type of prostatitis and oxidative stress was reported to be highly elevated in prostatitis patients. In this study, we determined the effect of N-acetylcysteine (NAC) on prostatitis and the molecular mechanism involved in it. Male Sprague-Dawley rats were divided into three groups: control group (group A, n = 20), carrageenan-induced chronic nonbacterial prostatitis (CNP) model group (group B, n = 20), and carrageenan-induced CNP model group with NAC injection (group C, n = 20). Eye score, locomotion score, inflammatory cell count, cyclooxygenase 2 (COX2) expression, and Evans blue were compared in these three groups. The expression of miR-141 was determined by quantitative real-time PCR (qRT-PCR). Moreover, protein expressions of Kelch-like ECH-associated protein-1 (Keap1) and nuclear factor erythroid-2 related factor 2 (Nrf2) and its target genes were examined by Western blot. Luciferase reporter assay was performed in RWPE-1 cells transfected miR-141 mimic or inhibitor and the plasmid carrying 3'-UTR of Keap1. The value of eye score, locomotion score, inflammatory cell count, and Evans blue were significantly decreased in group C, as well as the expression of COX2, when comparing to that of group B. These results indicated that NAC relieved the carrageenan-induced CNP. Further, we found that NAC increased the expression of miR-141 and activated the Keap1/Nrf2 signaling. Luciferase reporter assay revealed that miR-141 mimic could suppress the activity of Keap1 and stimulate the downstream target genes of Nrf2. In addition, miR-141 inhibitor could reduce the effect of NAC on prostatitis. NAC ameliorates the carrageenan-induced prostatitis and prostate inflammation pain through miR-141 regulating Keap1/Nrf2 signaling.

  4. Risk factors in the development of adverse reactions to N-acetylcysteine in patients with paracetamol poisoning

    DEFF Research Database (Denmark)

    Schmidt, L E; Dalhoff, K

    2001-01-01

    AIMS: To identify risk factors in the development of side-effects to N-acetylcysteine (NAC) in patients with paracetamol poisoning. METHODS: A retrospective study was carried out based upon the hospital charts of 529 consecutive patients admitted with paracetamol poisoning, all treated with NAC...... 2.9 times (95% CI 2.1, 4.7) more likely to develop side-effects (Chi-square: P = 0.004). Side-effects were of similar severity in asthmatics and nonasthmatics. A history of medical allergy was not a risk factor. Serum paracetamol was lower in patients with side-effects than in those without (Mann......-Whitney: P = 0.00006). CONCLUSIONS: Asthma must be considered a risk factor in the development of side-effects to NAC. However, the side-effects are easily managed and there is no reason to withhold NAC from any patient with paracetamol poisoning. Paracetamol itself seems to offer some protection against...

  5. Expedient pyrrolizidine synthesis by propargylsilane addition to N-acyliminium ions followed by gold-catalyzed α-allenyl amide cyclization

    NARCIS (Netherlands)

    Breman, A.C.; Dijkink, J.; van Maarseveen, J.H.; Kinderman, S.S.; Hiemstra, H.

    2009-01-01

    A reaction sequence, involving the addition of (substituted) propargylsilanes to lactate-derived N-acyliminium ions followed by gold-catalyzed cyclization of the resulting alpha-allenyl amide, is applied in expedient syntheses of pyrrolizidine alkaloids heliotridine and ent-retronecine in five steps

  6. Copper(II)-catalyzed amidations of alkynyl bromides as a general synthesis of ynamides and Z-enamides. An intramolecular amidation for the synthesis of macrocyclic ynamides.

    Science.gov (United States)

    Zhang, Xuejun; Zhang, Yanshi; Huang, Jian; Hsung, Richard P; Kurtz, Kimberly C M; Oppenheimer, Jossian; Petersen, Matthew E; Sagamanova, Irina K; Shen, Lichun; Tracey, Michael R

    2006-05-26

    A general and efficient method for the coupling of a wide range of amides with alkynyl bromides is described here. This novel amidation reaction involves a catalytic protocol using copper(II) sulfate-pentahydrate and 1,10-phenanthroline to direct the sp-C-N bond formation, leading to a structurally diverse array of ynamides including macrocyclic ynamides via an intramolecular amidation. Given the surging interest in ynamide chemistry, this atom economical synthesis of ynamides should invoke further attention from the synthetic organic community.

  7. Gold recovery from acidic leach solutions using as extractants trialkylamines of N,N'-di-alkyl-aliphatic amides

    Energy Technology Data Exchange (ETDEWEB)

    Baroncelli, F.; Carlini, D.; Gasparini, G.M.; Simonetti, E.

    1988-07-01

    TriOctylAmine (TOA) and a di-substituted aliphatic amide, N,N-Di-N-ButylOctanamide (DBOA), were examined in batch and in mini mixer-settler experiments using leachates of Peruvian and Bolivian concentrates. With these minerals, very rich in sulfur (pyrites, stybine), 90-95% gold recovery in 12-24 hours was reached by leaching with 4M aqua regia (HCl 3M nitric acid 1M) at room temperature and with 1/3 solid/liquid ratio. With these leachate solutions (2-3M total acidity, 10-60 ppm ao Au), the two processes with TOA (GAMEX PROCESS) and with DBOA (AUMIDEX PROCESS) were tested and compared. Experimental results strongly support the possibility of using TOA and DBOA on an industrial scale.

  8. N-acetylcysteine for therapy-resistant tobacco use disorder: a pilot study.

    Science.gov (United States)

    Prado, Eduardo; Maes, Michael; Piccoli, Luiz Gustavo; Baracat, Marcela; Barbosa, Décio Sabattini; Franco, Olavo; Dodd, Seetal; Berk, Michael; Vargas Nunes, Sandra Odebrecht

    2015-09-01

    N-Acetylcysteine (NAC) may have efficacy in treating tobacco use disorder (TUD) by reducing craving and smoking reward. This study examines whether treatment with NAC may have a clinical efficacy in the treatment of TUD. A 12-week double blind randomized controlled trial was conducted to compare the clinical efficacy of NAC 3 g/day versus placebo. We recruited 34 outpatients with therapy resistant TUD concurrently treated with smoking-focused group behavioral therapy. Participants had assessments of daily cigarette use (primary outcome), exhaled carbon monoxide (CO(EXH)) (secondary outcome), and quit rates as defined by CO(EXH) Depression was measured with the Hamilton Depression Rating Scale (HDRS). Data were analyzed using conventional and modified intention-to-treat endpoint analyses. NAC treatment significantly reduced the daily number of cigarettes used (Δ mean ± SD = -10.9 ± 7.9 in the NAC-treated versus -3.2 ± 6.1 in the placebo group) and CO(EXH) (Δ mean ± SD = -10.4 ± 8.6 ppm in the NAC-treated versus -1.5 ± 4.5 ppm in the placebo group); 47.1% of those treated with NAC versus 21.4% of placebo-treated patients were able to quit smoking as defined by CO(EXH) < 6 ppm. NAC treatment significantly reduced the HDRS score in patients with tobacco use disorder. These data show that treatment with NAC may have a clinical efficacy in TUD. NAC combined with appropriate psychotherapy appears to be an efficient treatment option for TUD.

  9. A General and Selective Rhodium-Catalyzed Reduction of Amides, N-Acyl Amino Esters, and Dipeptides Using Phenylsilane.

    Science.gov (United States)

    Das, Shoubhik; Li, Yuehui; Lu, Liang-Qiu; Junge, Kathrin; Beller, Matthias

    2016-05-17

    This article describes a selective reduction of functionalized amides, including N-acyl amino esters and dipeptides, to the corresponding amines using simple [Rh(acac)(cod)]. The catalyst shows excellent chemoselectivity in the presence of different sensitive functional moieties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Evaluation of Oxidative Stress in Combination Therapy with D-penicillamine and N-Acetylcysteine (NAC in Lead Poisoning in Opium Addicts

    Directory of Open Access Journals (Sweden)

    Saeedeh Shojaeepour

    2017-12-01

    Full Text Available Background: N-acetylcysteine (NAC is a putative antioxidant and has gained attention as a promising agent for chelating heavy metals including lead. Considering the animal studies results, we hypothesized that adding NAC to the treatment regimen may improve the success of treatment with lead chelators. Methods: A total of 46 patients who were lead-poisoned opioid addicts were divided into two groups randomly and treated with d-penicillamine (DP, 1g/day in four equal divided doses and NAC+DP (1 g/day + 150 mg/kg/day. The efficacy of treatment was evaluated by hospitalization period. Meanwhile, the oxidative stress parameters including lipid peroxidation, protein carbonyl, total antioxidant capacity (TAC, glutathione concentration and super oxide dismutase (SOD activity were determined on admission and discharge and compared with healthy normal controls. Results: Hospitalization period was not different between the two groups. Treatment with DP and DP+NAC significantly decreased oxidative stress in patients. On the discharge day, the SOD activity and TAC were significantly higher in DP+NAC group in comparison with the DP group. Conclusion: Although NAC recovers antioxidant capacity, the advantages of NAC in improvement of DP efficacy in lead poisoning is questionable. Further studies with larger sample size and combination with other chelators are recommended.

  11. Earth's magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups.

    Science.gov (United States)

    Chiavazza, Enrico; Kubala, Eugen; Gringeri, Concetta V; Düwel, Stephan; Durst, Markus; Schulte, Rolf F; Menzel, Marion I

    2013-02-01

    Scalar coupling relaxation, which is usually only associated with closely resonant nuclei (e.g., (79)Br-(13)C), can be a very effective relaxation mechanism. While working on hyperpolarized [5-(13)C]glutamine, fast liquid-state polarization decay during transfer to the MRI scanner was observed. This behavior could hypothetically be explained by substantial T(1) shortening due to a scalar coupling contribution (type II) to the relaxation caused by the fast-relaxing quadrupolar (14)N adjacent to the (13)C nucleus in the amide group. This contribution is only effective in low magnetic fields (i.e., less than 800 μT) and prevents the use of molecules bearing the (13)C-amide group as hyperpolarized MRS/MRI probes. In the present work, this hypothesis is explored both theoretically and experimentally. The results show that high hyperpolarization levels can be retained using either a (15)N-labeled amide or by applying a magnetic field during transfer of the sample from the polarizer to the MRI scanner. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. N-Acetylcysteine, a glutathione precursor, reverts vascular dysfunction and endothelial epigenetic programming in intrauterine growth restricted guinea pigs.

    Science.gov (United States)

    Herrera, Emilio A; Cifuentes-Zúñiga, Francisca; Figueroa, Esteban; Villanueva, Cristian; Hernández, Cherie; Alegría, René; Arroyo-Jousse, Viviana; Peñaloza, Estefania; Farías, Marcelo; Uauy, Ricardo; Casanello, Paola; Krause, Bernardo J

    2017-02-15

    Intrauterine growth restriction (IUGR) is associated with vascular dysfunction, oxidative stress and signs of endothelial epigenetic programming of the umbilical vessels. There is no evidence that this epigenetic programming is occurring on systemic fetal arteries. In IUGR guinea pigs we studied the functional and epigenetic programming of endothelial nitric oxide synthase (eNOS) (Nos3 gene) in umbilical and systemic fetal arteries, addressing the role of oxidative stress in this process by maternal treatment with N-acetylcysteine (NAC) during the second half of gestation. The present study suggests that IUGR endothelial cells have common molecular markers of programming in umbilical and systemic arteries. Notably, maternal treatment with NAC restores fetal growth by increasing placental efficiency and reverting the functional and epigenetic programming of eNOS in arterial endothelium in IUGR guinea pigs. In humans, intrauterine growth restriction (IUGR) is associated with vascular dysfunction, oxidative stress and signs of endothelial programming in umbilical vessels. We aimed to determine the effects of maternal antioxidant treatment with N-acetylcysteine (NAC) on fetal endothelial function and endothelial nitric oxide synthase (eNOS) programming in IUGR guinea pigs. IUGR was induced by implanting ameroid constrictors on uterine arteries of pregnant guinea pigs at mid gestation, half of the sows receiving NAC in the drinking water (from day 34 until term). Fetal biometry and placental vascular resistance were followed by ultrasound throughout gestation. At term, umbilical arteries and fetal aortae were isolated to assess endothelial function by wire-myography. Primary cultures of endothelial cells (ECs) from fetal aorta, femoral and umbilical arteries were used to determine eNOS mRNA levels by quantitative PCR and analyse DNA methylation in the Nos3 promoter by pyrosequencing. Doppler ultrasound measurements showed that NAC reduced placental vascular resistance

  13. Dissecting Hofmeister Effects: Direct Anion-Amide Interactions Are Weaker than Cation-Amide Binding.

    Science.gov (United States)

    Balos, Vasileios; Kim, Heejae; Bonn, Mischa; Hunger, Johannes

    2016-07-04

    Whereas there is increasing evidence for ion-induced protein destabilization through direct ion-protein interactions, the strength of the binding of anions to proteins relative to cation-protein binding has remained elusive. In this work, the rotational mobility of a model amide in aqueous solution was used as a reporter for the interactions of different anions with the amide group. Protein-stabilizing salts such as KCl and KNO3 do not affect the rotational mobility of the amide. Conversely, protein denaturants such as KSCN and KI markedly reduce the orientational freedom of the amide group. Thus these results provide evidence for a direct denaturation mechanism through ion-protein interactions. Comparing the present findings with results for cations shows that in contrast to common belief, anion-amide binding is weaker than cation-amide binding. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Enantioselective synthesis of α-oxy amides via Umpolung amide synthesis.

    Science.gov (United States)

    Leighty, Matthew W; Shen, Bo; Johnston, Jeffrey N

    2012-09-19

    α-Oxy amides are prepared through enantioselective synthesis using a sequence beginning with a Henry addition of bromonitromethane to aldehydes and finishing with Umpolung Amide Synthesis (UmAS). Key to high enantioselection is the finding that ortho-iodo benzoic acid salts of the chiral copper(II) bis(oxazoline) catalyst deliver both diastereomers of the Henry adduct with high enantiomeric excess, homochiral at the oxygen-bearing carbon. Overall, this approach to α-oxy amides provides an innovative complement to alternatives that focus almost entirely on the enantioselective synthesis of α-oxy carboxylic acids.

  15. Synthesis of amide-functionalized cellulose esters by olefin cross-metathesis.

    Science.gov (United States)

    Meng, Xiangtao; Edgar, Kevin J

    2015-11-05

    Cellulose esters with amide functionalities were synthesized by cross-metathesis (CM) reaction of terminally olefinic esters with different acrylamides, catalyzed by Hoveyda-Grubbs 2nd generation catalyst. Chelation by amides of the catalyst ruthenium center caused low conversions using conventional solvents. The effects of both solvent and structure of acrylamide on reaction conversion were investigated. While the inherent tendency of acrylamides to chelate Ru is governed by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides, from 50% to up to 99%. Homogeneous hydrogenation using p-toluenesulfonyl hydrazide successfully eliminated the α,β-unsaturation of the CM products to give stable amide-functionalized cellulose esters. The amide-functionalized product showed higher Tg than its starting terminally olefinic counterpart, which may have resulted from strong hydrogen bonding interactions of the amide functional groups. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Biosynthesis, degradation, and pharmacological importance of the fatty acid amides

    Science.gov (United States)

    Farrell, Emma K.; Merkler, David J.

    2008-01-01

    The identification of two biologically active fatty acid amides, N-arachidonoylethanolamine (anandamide) and oleamide, has generated a great deal of excitement and stimulated considerable research. However, anandamide and oleamide are merely the best-known and best-understood members of a much larger family of biologically-occurring fatty acid amides. In this review, we will outline which fatty acid amides have been isolated from mammalian sources, detail what is known about how these molecules are made and degraded in vivo, and highlight their potential for the development of novel therapeutics. PMID:18598910

  17. Studies on supercritical fluid extraction behaviour of uranium and thorium nitrates using amides

    International Nuclear Information System (INIS)

    Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2007-01-01

    Supercritical fluid extraction studies of uranyl nitrate and thorium nitrate in mixture were carried out using various amides such as N,N-di(2-ethylhexyl) isobutyramide (D2EHIBA),N,N-dihexyl octanamide (DHOA) and Diisooctyl Butanamide (DiOBA). These studies established a preferential extraction of uranium over thorium. Among the various amides studied, D2EHIBA offered the best rate of preferential extraction of uranium over thorium. (author)

  18. The effect of adjuvant N-acetylcysteine effervescent tablets therapy on cardiopulmonary function and airway remodeling in patients with stable COPD

    Directory of Open Access Journals (Sweden)

    Gui-Fang Hu1

    2017-05-01

    Full Text Available Objective: To study the effect of adjuvant N-acetylcysteine (NAC effervescent tablets therapy on cardiopulmonary function and airway remodeling in patients with stable chronic obstructive pulmonary disease (COPD. Methods: Patients with stable COPD treated in Zigong Third People’s Hospital and West China Hospital, Sichuan University between May 2014 and October 2016 were selected and randomly divided into two groups, NAC group received N-acetylcysteine effervescent tablets combined with routine treatment, and control group received routine treatment. Before treatment as well as 2 weeks and 4 weeks after treatment, oxidative stress indexes and airway remodeling indexes in serum as well as inflammatory response indexes in peripheral blood were determined. Results: MDA, PC, 8-OHdG, MMP2, MMP3 and MMP9 contents in serum as well as NLRP3, ASC, p38MAPK and TREM-1 mRNA expression levels in peripheral blood mononuclear cells of both groups of patients after treatment were significantly lower than those before treatment while TAC levels as well as TIMP1 and TIMP2 contents in serum were significantly higher than those before treatment, and MDA, PC, 8-OHdG, MMP2, MMP3 and MMP9 contents in serum a well as NLRP3, ASC, p38MAPK and TREM-1 mRNA expression levels in peripheral blood mononuclear cells of NAC group after treatment were significantly lower than those of control group while TAC levels as well as TIMP1 and TIMP2 contents in serum were significantly higher than those of control group. Conclusion: Adjuvant NAC effervescent tablets treatment of stable COPD can improve the effect of oxidative stress and inflammatory response on cardiopulmonary function, and inhibit the airway remodeling caused by protease activation.

  19. N-acetylcysteine prevents the development of gastritis induced by Helicobacter pylori infection.

    Science.gov (United States)

    Jang, Sungil; Bak, Eun-Jung; Cha, Jeong-Heon

    2017-05-01

    Helicobacter pylori (H. pylori) is a human gastric pathogen, causing various gastric diseases ranging from gastritis to gastric adenocarcinoma. It has been reported that combining N-acetylcysteine (NAC) with conventional antibiotic therapy increases the success rate of H. pylori eradication. We evaluated the effect of NAC itself on the growth and colonization of H. pylori, and development of gastritis, using in vitro liquid culture system and in vivo animal models. H. pylori growth was evaluated in broth culture containing NAC. The H. pylori load and histopathological scores of stomachs were measured in Mongolian gerbils infected with H. pylori strain 7.13, and fed with NAC-containing diet. In liquid culture, NAC inhibited H. pylori growth in a concentration-dependent manner. In the animal model, 3-day administration of NAC after 1 week from infection reduced the H. pylori load; 6-week administration of NAC after 1 week from infection prevented the development of gastritis and reduced H. pylori colonization. However, no reduction in the bacterial load or degree of gastritis was observed with a 6-week administration of NAC following 6-week infection period. Our results indicate that NAC may exert a beneficial effect on reduction of bacterial colonization, and prevents the development of severe inflammation, in people with initial asymptomatic or mild H. pylori infection.

  20. NMR Analysis of Amide Hydrogen Exchange Rates in a Pentapeptide-Repeat Protein from A. thaliana.

    Science.gov (United States)

    Xu, Shenyuan; Ni, Shuisong; Kennedy, Michael A

    2017-05-23

    At2g44920 from Arabidopsis thaliana is a pentapeptide-repeat protein (PRP) composed of 25 repeats capped by N- and C-terminal α-helices. PRP structures are dominated by four-sided right-handed β-helices typically consisting of mixtures of type II and type IV β-turns. PRPs adopt repeated five-residue (Rfr) folds with an Rfr consensus sequence (STAV)(D/N)(L/F)(S/T/R)(X). Unlike other PRPs, At2g44920 consists exclusively of type II β-turns. At2g44920 is predicted to be located in the thylakoid lumen although its biochemical function remains unknown. Given its unusual structure, we investigated the biophysical properties of At2g44920 as a representative of the β-helix family to determine if it had exceptional global stability, backbone dynamics, or amide hydrogen exchange rates. Circular dichroism measurements yielded a melting point of 62.8°C, indicating unexceptional global thermal stability. Nuclear spin relaxation measurements indicated that the Rfr-fold core was rigid with order parameters ranging from 0.7 to 0.9. At2g44920 exhibited a striking range of amide hydrogen exchange rates spanning 10 orders of magnitude, with lifetimes ranging from minutes to several months. A weak correlation was found among hydrogen exchange rates, hydrogen bonding energies, and amino acid solvent-accessible areas. Analysis of contributions from fast (approximately picosecond to nanosecond) backbone dynamics to amide hydrogen exchange rates revealed that the average order parameter of amides undergoing fast exchange was significantly smaller compared to those undergoing slow exchange. Importantly, the activation energies for amide hydrogen exchange were found to be generally higher for the slowest exchanging amides in the central Rfr coil and decreased toward the terminal coils. This could be explained by assuming that the concerted motions of two preceding or following coils required for hydrogen bond disruption and amide hydrogen exchange have a higher activation energy

  1. N-Acetylcysteine enhances the action of anti-inflammatory drugs as suppressors of prostaglandin production in monocytes

    Directory of Open Access Journals (Sweden)

    Erica Hoffer

    2002-01-01

    Full Text Available The anti-inflammatory effect of non-steroidal anti-inflammatory drugs (NSAIDs is associated with inhibition of cyclooxygenase (COX, the rate-limiting enzyme responsible for the synthesis of prostaglandins. Since oxygen free radicals can act as second cellular messengers, especially to modulate the metabolism of arachidonic acid and the prostaglandin tract, it seems plausible that antioxidants might affect the production of prostaglandin by activated cells. This research is focused on the effect of the antioxidant N-acetylcysteine (NAC on the inhibition of prostaglandin E2 formation in activated monocytes by specific and non-specific COX inhibitors. We found that lipopolysaccharide-induced prostaglandin E2 formation was significantly reduced by rofecoxib and by diclofenac, two NSAIDs. Addition of NAC to each of these drugs enhanced the effect of the NSAIDs. These results suggest that one might expect either a potentiation of the anti-inflammatory effect of COX inhibitors by their simultaneous administration with NAC, or obtaining the same anti-inflammatory at lower drug levels.

  2. N-Acetylcysteine-induced vasodilatation is modulated by KATP channels, Na+/K+-ATPase activity and intracellular calcium concentration: An in vitro study.

    Science.gov (United States)

    Vezir, Özden; Çömelekoğlu, Ülkü; Sucu, Nehir; Yalın, Ali Erdinç; Yılmaz, Şakir Necat; Yalın, Serap; Söğüt, Fatma; Yaman, Selma; Kibar, Kezban; Akkapulu, Merih; Koç, Meryem İlkay; Seçer, Didem

    2017-08-01

    In this study, we aimed to investigate the role of ATP-sensitive potassium (K ATP ) channel, Na + /K + -ATPase activity, and intracellular calcium levels on the vasodilatory effect of N-acetylcysteine (NAC) in thoracic aorta by using electrophysiological and molecular techniques. Rat thoracic aorta ring preparations and cultured thoracic aorta cells were divided into four groups as control, 2mM NAC, 5mM NAC, and 10mM NAC. Thoracic aorta rings were isolated from rats for measurements of relaxation responses and Na + /K + -ATPase activity. In the cultured thoracic aorta cells, we measured the currents of K ATP channel, the concentration of intracellular calcium and mRNA expression level of K ATP channel subunits (KCNJ8, KCNJ11, ABCC8 and ABCC9). The relaxation rate significantly increased in all NAC groups compared to control. Similarly, Na + /K + - ATPase activity also significantly decreased in NAC groups. Outward K ATP channel current significantly increased in all NAC groups compared to the control group. Intracellular calcium concentration decreased significantly in all groups with compared control. mRNA expression level of ABCC8 subunit significantly increased in all NAC groups compared to the control group. Pearson correlation analysis showed that relaxation rate was significantly associated with K ATP current, intracellular calcium concentration, Na + /K + -ATPase activity and mRNA expression level of ABCC8 subunit. Our findings suggest that NAC relaxes vascular smooth muscle cells through a direct effect on K ATP channels, by increasing outward K+ flux, partly by increasing mRNA expression of K ATP subunit ABCC8, by decreasing in intracellular calcium and by decreasing in Na + /K + -ATPase activity. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  3. Influence of aliphatic amides on the temperature of maximum density of water

    International Nuclear Information System (INIS)

    Torres, Andrés Felipe; Romero, Carmen M.

    2017-01-01

    Highlights: • The addition of amides decreases the temperature of maximum density of water suggesting a disruptive effect on water structure. • The amides in aqueous solution do not follow the Despretz equation in the concentration range considered. • The temperature shift Δθ as a function of molality is represented by a second order equation. • The Despretz constants were determined considering the dilute concentration region for each amide solution. • Solute disrupting effect of amides becomes smaller as its hydrophobic character increases. - Abstract: The influence of dissolved substances on the temperature of the maximum density of water has been studied in relation to their effect on water structure as they can change the equilibrium between structured and unstructured species of water. However, most work has been performed using salts and the studies with small organic solutes such as amides are scarce. In this work, the effect of acetamide, propionamide and butyramide on the temperature of maximum density of water was determined from density measurements using a magnetic float densimeter. Densities of aqueous solutions were measured within the temperature range from T = (275.65–278.65) K at intervals of 0.50 K in the concentration range between (0.10000 and 0.80000) mol·kg −1 . The temperature of maximum density was determined from the experimental results. The effect of the three amides is to decrease the temperature of maximum density of water and the change does not follow the Despretz equation. The results are discussed in terms of solute-water interactions and the disrupting effect of amides on water structure.

  4. N-acetylcysteine reduces the renal oxidative stress and apoptosis induced by hemorrhagic shock.

    Science.gov (United States)

    Moreira, Miriam Aparecida; Irigoyen, Maria Claudia; Saad, Karen Ruggeri; Saad, Paulo Fernandes; Koike, Marcia Kiyomi; Montero, Edna Frasson de Souza; Martins, José Luiz

    2016-06-01

    Renal ischemia/reperfusion injury induced by hemorrhagic shock (HS) and subsequent fluid resuscitation is a common cause of acute renal failure. The objective of this study was to evaluate the effect of combining N-acetylcysteine (NAC) with fluid resuscitation on renal injury in rats that underwent HS. Two groups of male Wistar rats were induced to controlled HS at 35 mm Hg mean arterial pressure for 60 min. After this period, the HS and fluid resuscitation (HS/R) group was resuscitated with lactate containing 50% of the blood that was withdrawn. The HS/R + NAC group was resuscitated with Ringer's lactate combined with 150 mg/kg of NAC and blood. The sham group animals were catheterized but were not subjected to shock. All animals were kept under anesthesia and euthanized after 120 min of fluid resuscitation or observation. Animals treated with NAC presented attenuation of histologic lesions, reduced oxidative stress, and apoptosis markers when compared with animals from the HS/R group. The serum creatinine was similar in all the groups. NAC is a promising drug for combining with fluid resuscitation to attenuate the kidney injury associated with HS. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Cross-Coupling of Amides with Alkylboranes via Nickel-Catalyzed C–N Bond Cleavage

    KAUST Repository

    Liu, Xiangqian; Hsiao, Chien-Chi; Guo, Lin; Rueping, Magnus

    2018-01-01

    A protocol for the nickel-catalyzed alkylation of amides was established. The use of alkylboranes as nucleophilic partners allowed the use of mild reaction conditions and compatibility of various functional groups with respect to both coupling partners. The catalytic alkylation proceeded selectively at the amides in the presence of other functional groups as well as other carboxylic acid derived moieties.

  6. Cross-Coupling of Amides with Alkylboranes via Nickel-Catalyzed C–N Bond Cleavage

    KAUST Repository

    Liu, Xiangqian

    2018-05-09

    A protocol for the nickel-catalyzed alkylation of amides was established. The use of alkylboranes as nucleophilic partners allowed the use of mild reaction conditions and compatibility of various functional groups with respect to both coupling partners. The catalytic alkylation proceeded selectively at the amides in the presence of other functional groups as well as other carboxylic acid derived moieties.

  7. Peptide block copolymers by N-carboxyanhydride ring-opening polymerization and atom transfer radical polymerization: The effect of amide macroinitiators

    NARCIS (Netherlands)

    Habraken, G.J.M.; Koning, C.E.; Heise, A.

    2009-01-01

    The synthesis of polypeptide-containing block copolymers combining N-carboxyanhydride (NCA) ring-opening polymerization and atom transfer radical polymerization (ATRP) was investigated. An amide initiator comprising an amine function for the NCA polymerization and an activated bromide for ATRP was

  8. Design, Synthesis, and Biological Evaluation of Peptidomimetic N-Substituted Cbz-4-Hyp-Hpa-Amides as Novel Inhibitors of Plasmodium falciparum.

    Science.gov (United States)

    Bacherikov, Valeriy A; Chittiboyina, Amar G; Avery, Mitchell A

    2017-08-01

    A new series of peptidomimetic N-substituted Cbz-4-Hyp-Hpa-amides were designed, synthesized, and evaluated for inhibition of the Plasmodium falciparum. Substituents on the N-atom of the amide group were selected alkyl-, allyl-, aryl-, 2-hydroxyethyl-, 2-cyanoethyl-, cyanomethyl-, 2-hydroxyethyl-, 2,2-diethoxyethyl-, or 2-ethoxy-2-oxoethylamino groups, and about of 40 new compounds were synthesized and evaluated for antiplasmodial activity in vitro. Antimalarial activity has been investigated as for the final peptide mimetics, and their immediate predecessors, carrying TBDMS or TBDPS protecting groups on 4-hydroxyproline residue and 18 derivatives exhibited toxicity against P. falciparum. Of these agents, compound 23e was shown to have potent antimalarial activity with IC 50 528 ng/ml. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  9. Reduction of adverse effects from intravenous acetylcysteine treatment for paracetamol poisoning: a randomised controlled trial.

    Science.gov (United States)

    Bateman, D Nicholas; Dear, James W; Thanacoody, H K Ruben; Thomas, Simon H L; Eddleston, Michael; Sandilands, Euan A; Coyle, Judy; Cooper, Jamie G; Rodriguez, Aryelly; Butcher, Isabella; Lewis, Steff C; Vliegenthart, A D Bastiaan; Veiraiah, Aravindan; Webb, David J; Gray, Alasdair

    2014-02-22

    Paracetamol poisoning is common worldwide. It is treated with intravenous acetylcysteine, but the standard regimen is complex and associated with frequent adverse effects related to concentration, which can cause treatment interruption. We aimed to ascertain whether adverse effects could be reduced with either a shorter modified acetylcysteine schedule, antiemetic pretreatment, or both. We undertook a double-blind, randomised factorial study at three UK hospitals, between Sept 6, 2010, and Dec 31, 2012. We randomly allocated patients with acute paracetamol overdose to either the standard intravenous acetylcysteine regimen (duration 20·25 h) or a shorter (12 h) modified protocol, with or without intravenous ondansetron pretreatment (4 mg). Masking was achieved by infusion of 5% dextrose (during acetylcysteine delivery) or saline (for antiemetic pretreatment). Randomisation was done via the internet and included a minimisation procedure by prognostic factors. The primary outcome was absence of vomiting, retching, or need for rescue antiemetic treatment at 2 h. Prespecified secondary outcomes included a greater than 50% increase in alanine aminotransferase activity over the admission value. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov (identifier NCT01050270). Of 222 patients who underwent randomisation, 217 were assessable 2 h after the start of acetylcysteine treatment. Vomiting, retching, or need for rescue antiemetic treatment at 2 h was reported in 39 of 108 patients assigned to the shorter modified protocol compared with 71 of 109 allocated to the standard acetylcysteine regimen (adjusted odds ratio 0·26, 97·5% CI 0·13-0·52; ppoisoning, a 12 h modified acetylcysteine regimen resulted in less vomiting, fewer anaphylactoid reactions, and reduced need for treatment interruption. This study was not powered to detect non-inferiority of the shorter protocol versus the standard approach; therefore, further research is needed

  10. Orientation and Order of the Amide Group of Sphingomyelin in Bilayers Determined by Solid-State NMR

    Science.gov (United States)

    Matsumori, Nobuaki; Yamaguchi, Toshiyuki; Maeta, Yoshiko; Murata, Michio

    2015-01-01

    Sphingomyelin (SM) and cholesterol (Chol) are considered essential for the formation of lipid rafts; however, the types of molecular interactions involved in this process, such as intermolecular hydrogen bonding, are not well understood. Since, unlike other phospholipids, SM is characterized by the presence of an amide group, it is essential to determine the orientation of the amide and its order in the lipid bilayers to understand the nature of the hydrogen bonds in lipid rafts. For this study, 1′-13C-2-15N-labeled and 2′-13C-2-15N-labeled SMs were prepared, and the rotational-axis direction and order parameters of the SM amide in bilayers were determined based on 13C and 15N chemical-shift anisotropies and intramolecular 13C-15N dipole coupling constants. Results revealed that the amide orientation was minimally affected by Chol, whereas the order was enhanced significantly in its presence. Thus, Chol likely promotes the formation of an intermolecular hydrogen-bond network involving the SM amide without significantly changing its orientation, providing a higher order to the SM amide. To our knowledge, this study offers new insight into the significance of the SM amide orientation with regard to molecular recognition in lipid rafts, and therefore provides a deeper understanding of the mechanism of their formation. PMID:26083921

  11. Targeting Glia with N-Acetylcysteine Modulates Brain Glutamate and Behaviors Relevant to Neurodevelopmental Disorders in C57BL/6J Mice

    Science.gov (United States)

    Durieux, Alice M. S.; Fernandes, Cathy; Murphy, Declan; Labouesse, Marie Anais; Giovanoli, Sandra; Meyer, Urs; Li, Qi; So, Po-Wah; McAlonan, Grainne

    2015-01-01

    An imbalance between excitatory (E) glutamate and inhibitory (I) GABA transmission may underlie neurodevelopmental conditions such as autism spectrum disorder (ASD) and schizophrenia. This may be direct, through alterations in synaptic genes, but there is increasing evidence for the importance of indirect modulation of E/I balance through glial mechanisms. Here, we used C57BL/6J mice to test the hypothesis that striatal glutamate levels can be shifted by N-acetylcysteine (NAC), which acts at the cystine-glutamate antiporter of glial cells. Striatal glutamate was quantified in vivo using proton magnetic resonance spectroscopy. The effect of NAC on behaviors relevant to ASD was examined in a separate cohort. NAC induced a time-dependent decrease in striatal glutamate, which recapitulated findings of lower striatal glutamate reported in ASD. NAC-treated animals were significantly less active and more anxious in the open field test; and NAC-treated females had significantly impaired prepulse inhibition of startle response. This at least partly mimics greater anxiety and impaired sensorimotor gating reported in neurodevelopmental disorders. Thus glial mechanisms regulate glutamate acutely and have functional consequences even in adulthood. Glial cells may be a potential drug target for the development of new therapies for neurodevelopmental disorders across the life-span. PMID:26696857

  12. Targeting glia with N-Acetylcysteine modulates brain glutamate and behaviours relevant to neurodevelopmental disorders in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Alice Marie Sybille Durieux

    2015-12-01

    Full Text Available An imbalance between excitatory (E glutamate and inhibitory (I GABA transmission may underlie neurodevelopmental conditions such as Autism Spectrum Disorder (ASD and schizophrenia. This may be direct, through alterations in synaptic genes, but there is increasing evidence for the importance of indirect modulation of E/I balance through glial mechanisms. Here we used C57BL/6J mice to test the hypothesis that striatal glutamate levels can be shifted by N-acetylcysteine (NAC, which acts at the cystine-glutamate antiporter of glial cells. Striatal glutamate was quantified in-vivo using proton magnetic resonance spectroscopy. The effect of NAC on behaviours relevant to ASD was examined in a separate cohort. NAC induced a time-dependent decrease in striatal glutamate, which recapitulated findings of lower striatal glutamate reported in ASD. NAC-treated animals were significantly less active and more anxious in the open field test; and NAC-treated females had significantly impaired prepulse inhibition of startle response. This at least partly mimics greater anxiety and impaired sensorimotor gating reported in neurodevelopmental disorders. Thus glial mechanisms regulate glutamate acutely and have functional consequences even in adulthood. Glial cells may be a potential drug target for the development of new therapies for neurodevelopmental disorders across the life-span.

  13. Effects of N-acetylcysteine on semen parameters and oxidative/antioxidant status.

    Science.gov (United States)

    Ciftci, Halil; Verit, Ayhan; Savas, Murat; Yeni, Ercan; Erel, Ozcan

    2009-07-01

    To examine whether a beneficial effect of N-acetylcysteine (NAC) on semen parameters and oxidative/antioxidant status in idiopathic male infertility exists. The production of reactive oxygen species is a normal physiologic event in various organs. However, overproduction of reactive oxygen species can be detrimental to sperm and has been associated with male infertility. Our study included 120 patients who had attended our clinic and were diagnosed with idiopathic infertility according to medical history and physical and seminal examination findings, as initial evaluations. The patients were divided randomly into 2 groups. Those in the study group (60 men) were given NAC (600 mg/d orally) for 3 months; the control group (60 men) received a placebo. The oxidative status was determined by measuring the total antioxidant capacity, total peroxide and oxidative stress index in plasma samples. The sperm parameters were evaluated after NAC treatment and were compared with those in the control group. NAC had significant improving effects on the volume, motility, and viscosity of semen. After NAC treatment, the serum total antioxidant capacity was greater and the total peroxide and oxidative stress index were lower in the NAC-treated group compared with the control group. These beneficial effects resulted from reduced reactive oxygen species in the serum and reduced viscosity of the semen. No significant differences were found in the number or morphology of the sperm between the 2 groups. We believe that NAC could improve some semen parameters and the oxidative/antioxidant status in patients with male infertility.

  14. Amides in Nature and Biocatalysis.

    Science.gov (United States)

    Pitzer, Julia; Steiner, Kerstin

    2016-10-10

    Amides are widespread in biologically active compounds with a broad range of applications in biotechnology, agriculture and medicine. Therefore, as alternative to chemical synthesis the biocatalytic amide synthesis is a very interesting field of research. As usual, Nature can serve as guide in the quest for novel biocatalysts. Several mechanisms for carboxylate activation involving mainly acyl-adenylate, acyl-phosphate or acyl-enzyme intermediates have been discovered, but also completely different pathways to amides are found. In addition to ribosomes, selected enzymes of almost all main enzyme classes are able to synthesize amides. In this review we give an overview about amide synthesis in Nature, as well as biotechnological applications of these enzymes. Moreover, several examples of biocatalytic amide synthesis are given. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Colonic and Hepatic Modulation by Lipoic Acid and/or N-Acetylcysteine Supplementation in Mild Ulcerative Colitis Induced by Dextran Sodium Sulfate in Rats

    Science.gov (United States)

    Moura, Fabiana Andréa; de Andrade, Kívia Queiroz; de Araújo, Orlando Roberto Pimentel; Santos, Juliana Célia de Farias

    2016-01-01

    Lipoic acid (LA) and N-acetylcysteine (NAC) are antioxidant and anti-inflammatory agents that have not yet been tested on mild ulcerative colitis (UC). This study aims to evaluate the action of LA and/or NAC, on oxidative stress and inflammation markers in colonic and hepatic rat tissues with mild UC, induced by dextran sodium sulfate (DSS) (2% w/v). LA and/or NAC (100 mg·kg·day−1, each) were given, once a day, in the diet, in a pretreatment phase (7 days) and during UC induction (5 days). Colitis induction was confirmed by histological and biochemical analyses (high performance liquid chromatography, spectrophotometry, and Multiplex®). A redox imbalance occurred before an immunological disruption in the colon. NAC led to a decrease in hydrogen peroxide (H2O2), malondialdehyde (MDA) levels, and myeloperoxidase activity. In the liver, DSS did not cause damage but treatments with both antioxidants were potentially harmful, with LA increasing MDA and LA + NAC increasing H2O2, tumor necrosis factor alpha, interferon gamma, and transaminases. In summary, NAC exhibited the highest colonic antioxidant and anti-inflammatory activity, while LA + NAC caused hepatic damage. PMID:27957238

  16. Acute chloroform ingestion successfully treated with intravenously administered N-acetylcysteine.

    Science.gov (United States)

    Dell'Aglio, Damon M; Sutter, Mark E; Schwartz, Michael D; Koch, David D; Algren, D A; Morgan, Brent W

    2010-06-01

    Chloroform, a halogenated hydrocarbon, causes central nervous system depression, cardiac arrhythmias, and hepatotoxicity. We describe a case of chloroform ingestion with a confirmatory serum level and resultant hepatotoxicity successfully treated with intravenously administered N-acetylcysteine (NAC). A 19-year-old man attempting suicide ingested approximately 75 mL of chloroform. He was unresponsive and intubated upon arrival. Intravenously administered NAC was started after initial stabilization was complete. His vital signs were normal. Admission laboratory values revealed normal serum electrolytes, AST, ALT, PT, BUN, creatinine, and bilirubin. Serum ethanol level was 15 mg/dL, and aspirin and acetaminophen were undetectable. The patient was extubated but developed liver function abnormalities with a peak AST of 224 IU/L, ALT of 583 IU/L, and bilirubin level reaching 16.3 mg/dL. NAC was continued through hospital day 6. Serum chloroform level obtained on admission was 91 μg/mL. The patient was discharged to psychiatry without known sequelae and normal liver function tests. The average serum chloroform level in fatal cases of inhalational chloroform poisoning was 64 μg/mL, significantly lower than our patient. The toxicity is believed to be similar in both inhalation and ingestion routes of exposure, with mortality predominantly resulting from anoxia secondary to central nervous system depression. Hepatocellular toxicity is thought to result from free radical-induced oxidative damage. Previous reports describe survival after treatment with orally administered NAC, we report the first use of intravenously administered NAC for chloroform ingestion. Acute oral ingestion of chloroform is extremely rare. Our case illustrates that with appropriate supportive care, patients can recover from chloroform ingestion, and intravenously administered NAC may be of benefit in such cases.

  17. Fabrication of a PVC membrane samarium(III) sensor based on N,N Prime ,N Double-Prime -tris(4-pyridyl)trimesic amide as a selectophore

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Hassan Ali, E-mail: haszamani@yahoo.com [Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Naghavi-Reyabbi, Fatemeh [Resident of General Surgery, Endoscopic and Minimaly Invasive Surgery Research Center, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Faridbod, Farnoush [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Mohammadhosseini, Majid [Department of Chemistry, Faculty of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood (Iran, Islamic Republic of); Ganjali, Mohammad Reza [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Tadjarodi, Azadeh; Rad, Maryam [Department of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2013-03-01

    A new ion-selective electrode for Sm{sup 3+} ion is described based on the incorporation of N,N Prime ,N Double-Prime -tris(4-pyridyl)trimesic amide (TPTA) in a poly(vinylchloride) (PVC) matrix. The membrane sensor comprises nitrobenzene (NB) as a plasticizer, and oleic acid (OA) as an anionic additive. The sensor with the optimized composition shows a Nernstian potential response of 19.8 {+-} 0.5 mV decade{sup -1} over a wide concentration range of 1.0 Multiplication-Sign 10{sup -2} and 1 Multiplication-Sign 10{sup -6} mol L{sup -1}, with a lower detection limit of 4.7 Multiplication-Sign 10{sup -7} mol L{sup -1} and satisfactor applicable pH range of 3.6-9.2. Having a short response time of less than 10 s and a very good selectivity towards the Sm{sup 3+} over a wide variety of interfering cations (e.g. alkali, alkaline earth, transition and heavy metal ions) the sensor seemed to be a promising analytical tool for determination of the Sm{sup 3+}. Hence, it was used as an indicator electrode in the potentiometric titration of samarium ion with EDTA. It was also applied to the direct samarium recovery in binary mixtures. - Highlights: Black-Right-Pointing-Pointer A new Sm{sup 3+}-PVC membrane sensor is introduced for determination of Sm{sup 3+} ions in the solutions. Black-Right-Pointing-Pointer N,N Prime ,N Double-Prime -tris(4-pyridyl)trimesic amide was used as a suitable selectophore for samarium sensor. Black-Right-Pointing-Pointer Detection limit of the sensor is 4.7 Multiplication-Sign 10{sup -7} mol L{sup -1} with a short response time of less than 10 s.

  18. Comparative Effects of Phosphoenolpyruvate, a Glycolytic Intermediate, as an Organ Preservation Agent with Glucose and N-Acetylcysteine against Organ Damage during Cold Storage of Mouse Liver and Kidney

    OpenAIRE

    Ishitsuka, Yoichi; Fukumoto, Yusuke; Kondo, Yuki; Irikura, Mitsuru; Kadowaki, Daisuke; Narita, Yuki; Hirata, Sumio; Moriuchi, Hiroshi; Maruyama, Toru; Hamasaki, Naotaka; Irie, Tetsumi

    2013-01-01

    We evaluated the usefulness of phosphoenolpyruvate (PEP), a glycolytic intermediate with antioxidative and energy supplementation potentials, as an organ preservation agent. Using ex vivo mouse liver and kidney of a static cold storage model, we compared the effects of PEP against organ damage and oxidative stress during cold preservation with those of glucose or N-acetylcysteine (NAC). Lactate dehydrogenase (LDH) leakage, histological changes, and oxidative stress parameters (measured as thi...

  19. Equilibrium amide hydrogen exchange and protein folding kinetics

    International Nuclear Information System (INIS)

    Bai Yawen

    1999-01-01

    The classical Linderstrom-Lang hydrogen exchange (HX) model is extended to describe the relationship between the HX behaviors (EX1 and EX2) and protein folding kinetics for the amide protons that can only exchange by global unfolding in a three-state system including native (N), intermediate (I), and unfolded (U) states. For these slowly exchanging amide protons, it is shown that the existence of an intermediate (I) has no effect on the HX behavior in an off-pathway three-state system (I↔U↔N). On the other hand, in an on-pathway three-state system (U↔I↔N), the existence of a stable folding intermediate has profound effect on the HX behavior. It is shown that fast refolding from the unfolded state to the stable intermediate state alone does not guarantee EX2 behavior. The rate of refolding from the intermediate state to the native state also plays a crucial role in determining whether EX1 or EX2 behavior should occur. This is mainly due to the fact that only amide protons in the native state are observed in the hydrogen exchange experiment. These new concepts suggest that caution needs to be taken if one tries to derive the kinetic events of protein folding from equilibrium hydrogen exchange experiments

  20. High-dose acetylcysteine in idiopathic pulmonary fibrosis

    NARCIS (Netherlands)

    Demedts, Maurits; Behr, Juergen; Buhl, Roland; Costabel, Ulrich; Dekhuijzen, Richard; Jansen, Henk M.; MacNee, William; Thomeer, Michiel; Wallaert, Benoit; Laurent, François; Nicholson, Andrew G.; Verbeken, Eric K.; Verschakelen, Johny; Flower, Christopher D. R.; Capron, Frédérique; Petruzzelli, Stefano; de Vuyst, Paul; van den Bosch, Jules M. M.; Rodriguez-Becerra, Eulogio; Corvasce, Giuseppina; Lankhorst, Ida; Sardina, Marco; Montanari, Mauro

    2005-01-01

    BACKGROUND Idiopathic pulmonary fibrosis is a chronic progressive disorder with a poor prognosis. METHODS We conducted a double-blind, randomized, placebo-controlled multicenter study that assessed the effectiveness over one year of a high oral dose of acetylcysteine (600 mg three times daily) added

  1. Amide Synthesis from Alcohols and Amines by the Extrusion of Dihydrogen

    DEFF Research Database (Denmark)

    Nordstrøm, Lars Ulrik Rubæk; Vogt, Henning; Madsen, R.

    2008-01-01

    An environmentally friendly method for synthesis of amides is presented where a simple ruthenium catalyst mediates the direct coupling between an alcohol and an amine with the liberation of two molecules of dihydrogen. The active catalyst is generated in situ from an easily available ruthenium...... complex, an N-heterocyclic carbene and a phosphine. The reaction allows primary alcohols to be coupled with primary alkyamines to afford the corresponding secondary amides in good yields. The amide formation presumably proceeds through a catalytic cycle where the intermediate aldehyde and hemiaminal...

  2. Synthesis and characterization of new optically active poly(amide ...

    African Journals Online (AJOL)

    Synthesis and characterization of new optically active poly(amide-imide)s based on N -trimellitimido- ... Bulletin of the Chemical Society of Ethiopia ... (DMAc), dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidone (NMP) at room temperature.

  3. ‘Umpolung’ Reactivity in Semiaqueous Amide and Peptide Synthesis

    Science.gov (United States)

    Shen, Bo; Makley, Dawn M.; Johnston, Jeffrey N.

    2010-01-01

    The amide functional group is one of Nature’s key functional and structural elements, most notably within peptides. Amides are also key intermediates in the preparation of a diverse range of therapeutic small molecules. Its construction using available methods focuses principally upon dehydrative approaches, although oxidative and radical-based methods are representative alternatives. During the carbon-nitrogen bond forming step in most every example, the carbon and nitrogen bear electrophilic and nucleophilic character, respectively. Here we show that activation of amines and nitroalkanes with an electrophilic iodine source in wet THF can lead directly to amide products. Preliminary observations support a mechanistic construct in which reactant polarity is reversed (umpolung) during C-N bond formation relative to traditional approaches. The use of nitroalkanes as acyl anion equivalents provides a conceptually innovative approach to amide and peptide synthesis, and one that might ultimately provide for efficient peptide synthesis that is fully reliant on enantioselective methods. PMID:20577205

  4. N-Acetylcysteine Prevents Hypertension via Regulation of the ADMA-DDAH Pathway in Young Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Nai-Chia Fan

    2013-01-01

    Full Text Available Asymmetric dimethylarginine (ADMA reduces nitric oxide (NO, thus causing hypertension. ADMA is metabolized by dimethylarginine dimethylaminohydrolase (DDAH, which can be inhibited by oxidative stress. N-Acetylcysteine (NAC, an antioxidant, can facilitate glutathione (GSH synthesis. We aimed to determine whether NAC can prevent hypertension by regulating the ADMA-DDAH pathway in spontaneously hypertensive rats (SHR. Rats aged 4 weeks were assigned into 3 groups (n=8/group: control Wistar Kyoto rats (WKY, SHR, and SHR receiving 2% NAC in drinking water. All rats were sacrificed at 12 weeks of age. SHR had higher blood pressure than WKY, whereas NAC-treated animals did not. SHR had elevated plasma ADMA levels, which was prevented by NAC therapy. SHR had lower renal DDAH activity than WKY, whereas NAC-treated animals did not. Renal superoxide production was higher in SHR than in WKY, whereas NAC therapy prevented it. NAC therapy was also associated with higher GSH-to-oxidized GSH ratio in SHR kidneys. Moreover, NAC reduced oxidative stress damage in SHR. The observed antihypertensive effects of NAC in young SHR might be due to restoration of DDAH activity to reduce ADMA, leading to attenuation of oxidative stress. Our findings highlight the impact of NAC on the development of hypertension by regulating ADMA-DDAH pathway.

  5. Synthesis of a-amino amides via a-amino imidoylbenzotriazoles

    Directory of Open Access Journals (Sweden)

    ALAN R. KATRITZKY

    2005-03-01

    Full Text Available Reactions of isonitriles 11a-c with N-(a-aminoalkylbenzotriazoles 10a-k afford N-(a-aminoimidoylbenzotriazoles 12a-q which on hydrolysis by dilute hydrochloric acid gave a-amino amides 14a-j.

  6. TROSY of side-chain amides in large proteins

    Science.gov (United States)

    Liu, Aizhuo; Yao, Lishan; Li, Yue; Yan, Honggao

    2012-01-01

    By using the mixed solvent of 50% H2O/50% D2O and employing deuterium decoupling, TROSY experiments exclusively detect NMR signals from semideuterated isotopomers of carboxamide groups with high sensitivities for proteins with molecular weights up to 80 kDa. This isotopomer-selective strategy extends TROSY experiments from exclusively detecting backbone to both backbone and side-chain amides, particularly in large proteins. Because of differences in both TROSY effect and dynamics between 15N–HE{DZ} and 15N–HZ{DE} isotopomers of the same carboxamide, the 15N transverse magnetization of the latter relaxes significantly faster than that of the former, which provides a direct and reliable stereospecific distinction between the two configurations. The TROSY effects on the 15N–HE{DZ} isotopomers of side-chain amides are as significant as on backbone amides. PMID:17347000

  7. Inhibition of rotavirus ECwt infection in ICR suckling mice by N-acetylcysteine, peroxisome proliferator-activated receptor gamma agonists and cyclooxygenase-2 inhibitors

    Directory of Open Access Journals (Sweden)

    Carlos Arturo Guerrero

    2013-09-01

    Full Text Available Live attenuated vaccines have recently been introduced for preventing rotavirus disease in children. However, alternative strategies for prevention and treatment of rotavirus infection are needed mainly in developing countries where low vaccine coverage occurs. In the present work, N-acetylcysteine (NAC, ascorbic acid (AA, some nonsteroidal anti-inflammatory drugs (NSAIDs and peroxisome proliferator-activated receptor gamma (PPARγ agonists were tested for their ability to interfere with rotavirus ECwt infectivity as detected by the percentage of viral antigen-positive cells of small intestinal villi isolated from ECwt-infected ICR mice. Administration of 6 mg NAC/kg every 8 h for three days following the first diarrhoeal episode reduced viral infectivity by about 90%. Administration of AA, ibuprofen, diclofenac, pioglitazone or rosiglitazone decreased viral infectivity by about 55%, 90%, 35%, 32% and 25%, respectively. ECwt infection of mice increased expression of cyclooxygenase-2, ERp57, Hsc70, NF-κB, Hsp70, protein disulphide isomerase (PDI and PPARγ in intestinal villus cells. NAC treatment of ECwt-infected mice reduced Hsc70 and PDI expression to levels similar to those observed in villi from uninfected control mice. The present results suggest that the drugs tested in the present work could be assayed in preventing or treating rotaviral diarrhoea in children and young animals.

  8. Magnetic-superexchange interactions of uranium(IV) chloride-addition complexes with amides, 2

    International Nuclear Information System (INIS)

    Miyake, Chie; Hinatsu, Yukio; Imoto, Shosuke

    1983-01-01

    The magnetic susceptibilities of five cyclic amide (lactam)-addition complexes of uranium(IV) chloride were measured between room temperature and 2 K. Magnetic-exchange interaction was found only for N-methyl-substituted amide complexes, and a dimer structure was assumed for them on the basis of their chemical properties. Treating interdimer interaction with a molecular-field approximation, the magnetic susceptibilities were calculated to be in good agreement with the experimental results in the temperature region of the maxima in chi sub(A). The transmission of antiparallel spin coupling via the π orbitals of the bridging amide ligands is proposed to explain the strong intradimer superexchange interaction for the uranium(IV) chloride-amide complexes with the magnetic-susceptibility maximum. (author)

  9. 76 FR 69636 - Amides, C5

    Science.gov (United States)

    2011-11-09

    ... in guinea pigs showed that amides, C 5 - C 9 , N-[3-(dimethylamino) propyl] was not a skin sensitizer.... Potentially affected entities may include, but are not limited to: Crop production (NAICS code 111). Animal production (NAICS code 112). Food manufacturing (NAICS code 311). Pesticide manufacturing (NAICS code 32532...

  10. N-acetylcysteine modulates glutamatergic dysfunction and depressive behavior in Huntington's disease.

    Science.gov (United States)

    Wright, Dean J; Gray, Laura J; Finkelstein, David I; Crouch, Peter J; Pow, David; Pang, Terence Y; Li, Shanshan; Smith, Zoe M; Francis, Paul S; Renoir, Thibault; Hannan, Anthony J

    2016-07-15

    Glutamatergic dysfunction has been implicated in the pathogenesis of depressive disorders and Huntington's disease (HD), in which depression is the most common psychiatric symptom. Synaptic glutamate homeostasis is regulated by cystine-dependent glutamate transporters, including GLT-1 and system x c - In HD, the enzyme regulating cysteine (and subsequently cystine) production, cystathionine-γ-lygase, has recently been shown to be lowered. The aim of the present study was to establish whether cysteine supplementation, using N-acetylcysteine (NAC) could ameliorate glutamate pathology through the cystine-dependent transporters, system x c - and GLT-1. We demonstrate that the R6/1 transgenic mouse model of HD has lower basal levels of cystine, and showed depressive-like behaviors in the forced-swim test. Administration of NAC reversed these behaviors. This effect was blocked by co-administration of the system x c - and GLT-1 inhibitors CPG and DHK, showing that glutamate transporter activity was required for the antidepressant effects of NAC. NAC was also able to specifically increase glutamate in HD mice, in a glutamate transporter-dependent manner. These in vivo changes reflect changes in glutamate transporter protein in HD mice and human HD post-mortem tissue. Furthermore, NAC was able to rescue changes in key glutamate receptor proteins related to excitotoxicity in HD, including NMDAR2B. Thus, we have shown that baseline reductions in cysteine underlie glutamatergic dysfunction and depressive-like behavior in HD and these changes can be rescued by treatment with NAC. These findings have implications for the development of new therapeutic approaches for depressive disorders. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. N-acetylcysteine stimulates protein synthesis in enterocytes independently of glutathione synthesis.

    Science.gov (United States)

    Yi, Dan; Hou, Yongqing; Wang, Lei; Long, Minhui; Hu, Shengdi; Mei, Huimin; Yan, Liqiong; Hu, Chien-An Andy; Wu, Guoyao

    2016-02-01

    Dietary supplementation with N-acetylcysteine (NAC) has been reported to improve intestinal health and treat gastrointestinal diseases. However, the underlying mechanisms are not fully understood. According to previous reports, NAC was thought to exert its effect through glutathione synthesis. This study tested the hypothesis that NAC enhances enterocyte growth and protein synthesis independently of cellular glutathione synthesis. Intestinal porcine epithelial cells were cultured for 3 days in Dulbecco's modified Eagle medium containing 0 or 100 μM NAC. To determine a possible role for GSH (the reduced form of glutathione) in mediating the effect of NAC on cell growth and protein synthesis, additional experiments were conducted using culture medium containing 100 μM GSH, 100 μM GSH ethyl ester (GSHee), diethylmaleate (a GSH-depletion agent; 10 μM), or a GSH-synthesis inhibitor (buthionine sulfoximine, BSO; 20 μM). NAC increased cell proliferation, GSH concentration, and protein synthesis, while inhibiting proteolysis. GSHee enhanced cell proliferation and GSH concentration without affecting protein synthesis but inhibited proteolysis. Conversely, BSO or diethylmaleate reduced cell proliferation and GSH concentration without affecting protein synthesis, while promoting protein degradation. At the signaling level, NAC augmented the protein abundance of total mTOR, phosphorylated mTOR, and phosphorylated 70S6 kinase as well as mRNA levels for mTOR and p70S6 kinase in IPEC-1 cells. Collectively, these results indicate that NAC upregulates expression of mTOR signaling proteins to stimulate protein synthesis in enterocytes independently of GSH generation. Our findings provide a hitherto unrecognized biochemical mechanism for beneficial effects of NAC in intestinal cells.

  12. N-乙酰半胱氨酸治疗社区获得性肺炎的效果%Effect Observation of N-acetylcysteine in Treatment of Community Acquired Pneumonia

    Institute of Scientific and Technical Information of China (English)

    董晓娜; 李欣欣; 张静; 张振安; 张风林

    2016-01-01

    Objective To investigate the clinical effect of N-acetylcysteine in treatment of community acquired pneumonia.Methods Total of 156 patients with community acquired pneumonia were selected in Tangshan People′s Hospital from Nov.2012 to Nov.2014,and then divided into a conventional group (78 cases) and N-acetylcysteine group(78 cases) by random number method.The conventional group received conventional treatment.N-acetylcysteine group received N-acetylcysteine (100 mg every time,thrice a day) on the basis of conventional treatment.The pyretolysis time,antibiotics use time,hospitalization time,inflam-matory factors before and after treatment,levels of immune indexes,changes of serum calcitonin,partial pres-sure of oxygen(PaO2),partial pressure of carbon dioxide(PaCO2) of the two groups were compared.Results Pyretolysis time,antibiotics use time,hospitalization time of the N-acetylcysteine group was significantly less than the conventional group[(3.8 ±0.7) d vs (4.6 ±1.0) d,(12.5 ±2.4) d vs (16.1 ±3.6) d, (17.2 ±3.5) d vs (21.4 ±2.8) d,P <0.01],while the levels of high-sensitivity C-reactive protein (hs-CRP),interleukin-6 (IL-6),tumor necrosis factor-α(TNF-α),white blood cell count(WBC),neutro-phil,procalcitonin,PaCO2 were significantly lower than the conventional group[(7.8 ±1.1) mg/L vs (16.2 ± 3.0) mg/L,(71.3 ±15.2) ng/L vs (102.4 ±17.8) ng/L,(2.6 ±0.3) μg/L vs (3.1 ±0.4) μg/L, (6.1 ±0.7) ×109/L vs (7.6 ±0.9) ×109/L,(2.0 ±0.5) ×109/L vs (2.8 ±0.6) ×109/L,(1.2 ± 0.3) μg/L vs (2.0 ±0.4) μg/L,(40.2 ±4.1) mmHg vs (48.3 ±3.6) mmHg,P<0.01],while B cells, NK cells,PaO2 were significantly higher than the conventional group[(36.7 ±2.8)% vs (32.9 ±2.5) %, (58.3 ±7.6)% vs(48.9 ±5.1)%,(72.8 ±6.2) mmHg vs (66.5 ±7.1) mmHg,P<0.01].Conclusion N-acetylcysteine is an effective drug in treatment of community acquired pneumonia ,which can significantly improve immune function and levels of inflammatory cytokines ,which can also significantly

  13. Decreased Expression of Arginine-Phenylalanine-Amide-Related Peptide-3 Gene in Dorsomedial Hypothalamic Nucleus of Constant Light Exposure Model of Polycystic Ovarian Syndrome

    Science.gov (United States)

    Shaaban, Zahra; Jafarzadeh Shirazi, Mohammad Reza; Nooranizadeh, Mohammad Hossein; Tamadon, Amin; Rahmanifar, Farhad; Ahmadloo, Somayeh; Ramezani, Amin; Zamiri, Mohammad Javad; Razeghian Jahromi, Iman; Sabet Sarvestani, Fatemeh; Hosseinabadi, Omid Koohi

    2018-01-01

    Background An abnormality in pulse amplitude and frequency of gonadotropin releasing hormone (GnRH) secretion is the most characteristics of polycystic ovarian syndrome (PCOS). On the other hand, arginine-phenylalanine-amide (RFamide)-related peptide-3 (RFRP3) inhibits the secretion of GnRH in mammalian hypothalamus. The current study performed in order to investigate the expression of RFRP3 mRNA in the dorsomedial hypothalamic nucleus (DMH) after the induction of PCOS in a rat model of constant light exposure, and the possible role of parity on occurrence of PCOS. Materials and Methods In the experimental study, female nulliparous (n=12) and primiparous (n=12) rats were randomly subdivided into control and PCOS subgroups (n=6). PCOS were induced by 90 days exposure to constant light. After 90 days, blood, brain, and ovaries were sampled. Serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), and testosterone were evaluated. In addition, six adult female ovariectomized rats as a control of real-time polymerase chain reaction (PCR) tests were prepared and in the DMH of all rats, the relative mRNA expression of RFRP3 was assessed. Results Histological evaluation of ovaries represented the polycystic features. In addition, serum concentrations of testosterone in the PCOS subgroups were more than the controls (P<0.05). Furthermore, the relative expression of RFRP3 mRNA in PCOS subgroups was lower than the controls (P<0.05). Conclusion Constant light model of the PCOS-induced rats decreased the gene expression of RFRP3 in the DMH that suggests the decrease of RFRP3 may reduce its inhibitory effect on GnRH during the PCOS pathogenesis. This effect was stronger in the nulliparous rats than the primiparous. PMID:29334206

  14. Decreased Expression of Arginine-Phenylalanine-Amide-Related Peptide-3 Gene in Dorsomedial Hypothalamic Nucleus of Constant Light Exposure Model of Polycystic Ovarian Syndrome

    Directory of Open Access Journals (Sweden)

    Zahra Shaaban

    2018-01-01

    Full Text Available Background An abnormality in pulse amplitude and frequency of gonadotropin releasing hormone (GnRH secretion is the most characteristics of polycystic ovarian syndrome (PCOS. On the other hand, arginine-phenylalanine-amide (RFamide-related peptide-3 (RFRP3 inhibits the secretion of GnRH in mammalian hypothalamus. The current study performed in order to investigate the expression of RFRP3 mRNA in the dorsomedial hypothalamic nucleus (DMH after the induction of PCOS in a rat model of constant light exposure, and the possible role of parity on occurrence of PCOS. Materials and Methods In the experimental study, female nulliparous (n=12 and primiparous (n=12 rats were randomly subdivided into control and PCOS subgroups (n=6. PCOS were induced by 90 days exposure to constant light. After 90 days, blood, brain, and ovaries were sampled. Serum levels of follicle stimulating hormone (FSH, luteinizing hormone (LH, and testosterone were evaluated. In addition, six adult female ovariectomized rats as a control of real-time polymerase chain reaction (PCR tests were prepared and in the DMH of all rats, the relative mRNA expression of RFRP3 was assessed. Results Histological evaluation of ovaries represented the polycystic features. In addition, serum concentrations of testosterone in the PCOS subgroups were more than the controls (P<0.05. Furthermore, the relative expression of RFRP3 mRNA in PCOS subgroups was lower than the controls (P<0.05. Conclusion Constant light model of the PCOS-induced rats decreased the gene expression of RFRP3 in the DMH that suggests the decrease of RFRP3 may reduce its inhibitory effect on GnRH during the PCOS pathogenesis. This effect was stronger in the nulliparous rats than the primiparous.

  15. Evaluation of N-acetylcysteine and methylprednisolone as therapies for oxygen and acrolein-induced lung damage

    Energy Technology Data Exchange (ETDEWEB)

    Critchley, J.A.J.H. (Univ. of Edinburgh (England)); Beeley, J.M.; Clark, R.J.; Buchanan, J.D. (Royal Naval Hospital Hoslar, Gosport (England)); Summerfield, M.; Bell, S. (Admiralty Research Establishment, Alverstoke (England)); Spurlock, M.S.; Edginton, J.A.G. (Chemical Defence Establishment, Porton Down (England))

    1990-04-01

    Reactive oxidizing species are implicated in the etiology of a range of inhalational pulmonary injuries. Consequently, various free radical scavengers have been tested as potential prophylactic agents. The sulfydryl compound, N-acetylcysteine (NAC) is the only such compound clinically available for use in realistic dosages, and it is well established as an effective antidote for the hepatic and renal toxicity of paracetamol. Another approach in pulmonary injury prophylaxis is methylprednisolone therapy. The authors evaluated NAC and methylprednisolone in two rats models of inhalation injury: 40-hr exposure to >97% oxygen at 1.1 bar and 15-min exposure to acrolein vapor (210 ppm). The increases in lung wet/dry weight ratios, seen with both oxygen and acrolein toxicity were reduced with both treatments. However, with oxygen, NAC therapy was associated with considerably increased mortality and histological changes. Furthermore, IP NAC administration resulted in large volumes of ascitic fluid. With acrolein, IV, NAC had no significant effect on mortality or pulmonary histological damage. Methylprednisolone had no beneficial effects on either the mortality or histological damage observed in either toxicity model. They caution against the ad hoc use of NAC in the management of inhalational pulmonary injury.

  16. Poly(ether amide) segmented block copolymers with adipicacid based tetra amide segments

    NARCIS (Netherlands)

    Biemond, G.J.E.; Feijen, Jan; Gaymans, R.J.

    2007-01-01

    Poly(tetramethylene oxide)-based poly(ether ester amide)s with monodisperse tetraamide segments were synthesized. The tetraamide segment was based on adipic acid, terephthalic acid, and hexamethylenediamine. The synthesis method of the copolymers and the influence of the tetraamide concentration,

  17. N-acetylcysteine attenuates hexavalent chromium-induced hypersensitivity through inhibition of cell death, ROS-related signaling and cytokine expression.

    Directory of Open Access Journals (Sweden)

    Yu-Hsuan Lee

    Full Text Available Chromium hypersensitivity (chromium-induced allergic contact dermatitis is an important issue in occupational skin disease. Hexavalent chromium (Cr (VI can activate the Akt, Nuclear factor κB (NF-κB, and Mitogen-activated protein kinase (MAPK pathways and induce cell death, via the effects of reactive oxygen species (ROS. Recently, cell death stimuli have been proposed to regulate the release of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α and interleukin-1 (IL-1. However, the exact effects of ROS on the signaling molecules and cytotoxicity involved in Cr(VI-induced hypersensitivity have not yet been fully demonstrated. N-acetylcysteine (NAC could increase glutathione levels in the skin and act as an antioxidant. In this study, we investigated the effects of NAC on attenuating the Cr(VI-triggered ROS signaling in both normal keratinocyte cells (HaCaT cells and a guinea pig (GP model. The results showed the induction of apoptosis, autophagy and ROS were observed after different concentrations of Cr(VI treatment. HaCaT cells pretreated with NAC exhibited a decrease in apoptosis and autophagy, which could affect cell viability. In addition, Cr (VI activated the Akt, NF-κB and MAPK pathways thereby increasing IL-1α and TNF-α production. However, all of these stimulation phenomena could be inhibited by NAC in both of in vitro and in vivo studies. These novel findings indicate that NAC may prevent the development of chromium hypersensitivity by inhibiting of ROS-induced cell death and cytokine expression.

  18. Direct Amination of alpha-Hydroxy Amides

    NARCIS (Netherlands)

    Chandgude, Ajay L.; Dömling, Alexander

    A TiCl4-mediated reaction for the direct amination of alpha-hydroxy amides has been developed. This simple, general, additive/base/ligand-free reaction is mediated by economical TiCl4. The reaction runs under mild conditions. This highly efficient C-N bond formation protocol is valid for diverse

  19. Chemometric characterization of the hydrogen bonding complexes of secondary amides and aromatic hydrocarbons

    OpenAIRE

    Jović, Branislav; Nikolić, Aleksandar; Petrović, Slobodan

    2012-01-01

    The paper reports the results of the study of hydrogen bonding complexes between secondary amides and various aromatic hydrocarbons. The possibility of using chemometric methods was investigated in order to characterize N-H•••π hydrogen bonded complexes. Hierarchical clustering and Principal Component Analysis (PCA) have been applied on infrared spectroscopic and Taft parameters of 43 N-substituted amide complexes with different aromatic hydrocarbons. Results obtained in this report are...

  20. N-acetylcysteine possesses antidepressant-like activity through reduction of oxidative stress: behavioral and biochemical analyses in rats.

    Science.gov (United States)

    Smaga, Irena; Pomierny, Bartosz; Krzyżanowska, Weronika; Pomierny-Chamioło, Lucyna; Miszkiel, Joanna; Niedzielska, Ewa; Ogórka, Agata; Filip, Małgorzata

    2012-12-03

    The growing body of evidence implicates the significance of oxidative stress in the pathophysiology of depression. The aim of this paper was to examine N-acetylcysteine (NAC) - a putative precursor of the most important tissue antioxidant glutathione - in an animal model of depression and in ex vivo assays to detect oxidative stress parameters. Imipramine (IMI), a classical and clinically-approved antidepressant drug was also under investigation. Male Wistar rats which underwent either bulbectomy (BULB; removal of the olfactory bulbs) or sham surgery (SHAM; olfactory bulbs were left undestroyed) were treated acutely or repeatedly with NAC (50-100mg/kg, ip) or IMI (10mg/kg, ip). Following 10-daily injections with NAC or IMI or their solvents, or 9-daily injections with a corresponding solvent plus acute NAC or acute IMI forced swimming test on day 10, and locomotor activity were performed; immediately after behavioral tests animals were decapitated. Biochemical tests (the total antioxidant capacity - TAC and the superoxide dismutase activity - SOD) were performed on homogenates in several brain structures. In behavioral studies, chronic (but not acute) administration of NAC resulted in a dose-dependent reduction in the immobility time seen only in BULB rats while chronic IMI produced a significant decrease in this parameter in both SHAM and BULB animals. On the other hand, chronic administration of NAC and IMI resulted in a significant increase in cellular antioxidant mechanisms (SOD activity) that reversed the effects of BULB in the frontal cortex, hippocampus and striatum. Our study further supports the antidepressant-like activity of NAC and links its effect as well as IMI actions with the enhancement of brain SOD activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Effects of N-acetylcysteine and imipramine in a model of acute rhythm disruption in BALB/c mice.

    Science.gov (United States)

    Pilz, Luísa K; Trojan, Yasmine; Quiles, Caroline L; Benvenutti, Radharani; Melo, Gabriela; Levandovski, Rosa; Hidalgo, Maria Paz L; Elisabetsky, Elaine

    2015-03-01

    Circadian rhythm disturbances are among the risk factors for depression, but specific animal models are lacking. This study aimed to characterize the effects of acute rhythm disruption in mice and investigate the effects of imipramine and N-acetylcysteine (NAC) on rhythm disruption-induced changes. Mice were exposed to 12:12-hour followed by 10:10-hour light:dark cycles (LD); under the latter, mice were treated with saline, imipramine or NAC. Rhythms of rest/activity and temperature were assessed with actigraphs and iButtons, respectively. Hole-board and social preference tests were performed at the beginning of the experiment and again at the 8th 10:10 LD, when plasma corticosterone and IL-6 levels were also assessed. Actograms showed that the 10:10 LD schedule prevents the entrainment of temperature and activity rhythms for at least 13 cycles. Subsequent light regimen change activity and temperature amplitudes showed similar patterns of decline followed by recovery attempts. During the 10:10 LD schedule, activity and temperature amplitudes were significantly decreased (paired t test), an effect exacerbated by imipramine (ANOVA/SNK). The 10:10 LD schedule increased anxiety (paired t test), an effect prevented by NAC (30 mg/kg). This study identified mild but significant behavioral changes at specific time points after light regimen change. We suggest that if repeated overtime, these subtle changes may contribute to lasting behavioral disturbancess relevant to anxiety and mood disorders. Data suggest that imipramine may contribute to sustained rhythm disturbances, while NAC appears to prevent rhythm disruption-induced anxiety. Associations between sleep/circadian disturbances and the recurrence of depressive episodes underscore the relevance of potential drug-induced maintenance of disturbed rhythms.

  2. The add-on N-acetylcysteine is more effective than dimethicone alone to eliminate mucus during narrow-band imaging endoscopy: a double-blind, randomized controlled trial.

    Science.gov (United States)

    Chen, Ming-Jen; Wang, Horng-Yuan; Chang, Chen-Wang; Hu, Kuang-Chun; Hung, Chien-Yuan; Chen, Chih-Jen; Shih, Shou-Chuan

    2013-02-01

    Recent studies have shown that pronase can improve mucosal visibility, but this agent is not uniformly available for human use worldwide. This study aimed to assess the efficacy of N-acetylcysteine (NAC), a mucolytic agent, in improving mucus elimination as measured by decreased endoscopic water flushes during narrow-band imaging (NBI) endoscopy. A consecutive series of patients scheduled for upper gastrointestinal endoscopy at outpatient clinics were enrolled in this double-blind, randomized controlled trial. The control group drank a preparation of 100 mg dimethicone (5 ml at 20 mg/ml) plus water up to 100 ml, and the NAC group drank 300 mg NAC plus 100 mg dimethicone and water up to 100 ml. During the endoscopy, the endoscopist used as many flushes of water as deemed necessary to produce a satisfactory NBI view of the entire gastric mucosa. In all, 177 patients with a mean age of 51 years were evaluated in this study. Significantly lesser water was used for flushing during NBI endoscopy for the NAC group than the control group; 40 ml (30-70, 0-120) versus 50 ml (30-100, 0-150) (median (interquartile range, range), p = 0.0095). Considering the safety profile of NAC, decreasing the number of water flushes for optimal vision and unavailability of pronase in some areas, the authors suggest the use of add-on NAC to eliminate mucus during NBI endoscopy.

  3. N-Acetylcysteine Supplementation Controls Total Antioxidant Capacity, Creatine Kinase, Lactate, and Tumor Necrotic Factor-Alpha against Oxidative Stress Induced by Graded Exercise in Sedentary Men

    Directory of Open Access Journals (Sweden)

    Donrawee Leelarungrayub

    2011-01-01

    Full Text Available Aim of this study was to evaluate the effects of short-term (7 days N-acetylcysteine (NAC at 1,200 mg daily supplementation on muscle fatigue, maximal oxygen uptake (VO2max, total antioxidant capacity (TAC, lactate, creatine kinase (CK, and tumor necrotic factor-alpha (TNF-α. Twenty-nine sedentary men (13 controls; 16 in the supplement group from a randomized control were included. At before and after supplementation, fatigue index (FI was evaluated in the quadriceps muscle, and performed a graded exercise treadmill test to induce oxidative stress, and as a measure of VO2max. Blood samples were taken before exercise and 20 minutes after it at before and after supplementation, to determine TAC, CK, lactate, and TNF-α levels. Results showed that FI and VO2max increased significantly in the supplement group. After exercise decreased the levels of TAC and increased lactate, CK, and TNF-α of both groups at before supplementation. After supplementation, lactate, CK, and TNF-α levels significantly increased and TAC decreased after exercise in the control group. Whereas the TAC and lactate levels did not change significantly, but CK and TNF-α increased significantly in the supplement group. Therefore, this results showed that NAC improved the muscle fatigue, VO2max, maintained TAC, controlled lactate production, but had no influence on CK and TNF-α.

  4. Topical N-acetylcysteine reduces interleukin-1-alpha in tear fluid after laser subepithelial keratectomy.

    Science.gov (United States)

    Urgancioglu, Berrak; Bilgihan, Kamil; Engin, Doruk; Cirak, Meltem Yalinay; Hondur, Ahmet; Hasanreisoglu, Berati

    2009-01-01

    To evaluate the effect of topical N-acetylcysteine (NAC) on interleukin 1-alpha (IL-1alpha) levels in tear fluid after myopic laser subepithelial keratectomy (LASEK) and its possible role in modulating corneal wound healing. Twenty-six eyes of 13 patients who underwent myopic LASEK were divided into 2 groups. Group 1 (n=10 eyes) was used as a control group. All patients received topical lomefloxacin and dexamethasone postoperatively. Additionally, patients in Group 2 received topical NAC for 1 month postoperatively. Tear fluid samples were collected with microcapillary tubes preoperatively, on the first and on the fifth postoperative day, and the release of IL-1alpha in tear fluid was calculated. Haze grading and confocal microscopic examination were performed at 1 and 3 months postoperatively. The mean IL-1-alpha release values were 0.285-/+0.159 pg/min in Group 1 and 0.235-/+0.142 pg/min in Group 2 preoperatively. In Group 1, the values were 0.243-/+0.155 pg/min on day 1 and 0.164-/+0.125 pg/min on day 5. In Group 2, the mean IL-1alpha release values were 0.220-/+0.200 pg/min on day 1 and 0.080-/+0.079 pg/min on day 5. The difference between the groups was significant only for day 5 (p0.05). NAC seems to have an additive effect to steroids in suppressing IL-1alpha levels in tear fluid and may be clinically advantageous in modulating corneal wound healing during the early postoperative period after LASEK.

  5. Amides are novel protein modifications formed by physiological sugars.

    Science.gov (United States)

    Glomb, M A; Pfahler, C

    2001-11-09

    The Maillard reaction, or nonenzymatic browning, proceeds in vivo, and the resulting protein modifications (advanced glycation end products) have been associated with various pathologies. Despite intensive research only very few structures have been established in vivo. We report here for the first time N(6)-[2-[(5-amino-5-carboxypentyl)amino]-2-oxoethyl]lysine (GOLA) and N(6)-glycoloyllysine (GALA) as prototypes for novel amide protein modifications produced by reducing sugars. Their identity was confirmed by independent synthesis and coupled liquid chromatography/mass spectrometry. Model reactions with N(alpha)-t-butoxycarbonyl-lysine showed that glyoxal and glycolaldehyde are immediate precursors, and reaction pathways are directly linked to N(epsilon)-carboxymethyllysine via glyoxal-imine structures. GOLA, the amide cross-link, and 1,3-bis(5-amino-5-carboxypentyl)imidazolium salt (GOLD), the imidazolium cross-link, share a common intermediate. The ratio of GOLA to GOLD is greater when glyoxal levels are low at constant lysine concentrations. GOLA and GALA formation from the Amadori product of glucose and lysine depends directly upon oxidation. With the advanced glycation end product inhibitors aminoguanidine and pyridoxamine we were able to dissect oxidative fragmentation of the Amadori product as a second mechanism of GOLA formation exactly coinciding with N(epsilon)-carboxymethyllysine synthesis. In contrast, the formation of GALA appears to depend solely upon glyoxal-imines. After enzymatic hydrolysis GOLA was found at 66 pmol/mg of brunescent lens protein. This suggests amide protein modifications as important markers of pathophysiological processes.

  6. Antioxidant N-acetylcysteine restores systemic nitric oxide availability and corrects depressions in arterial blood pressure and heart rate in diabetic rats.

    Science.gov (United States)

    Xia, Zhengyuan; Nagareddy, Prabhakara R; Guo, Zhixin; Zhang, Wei; McNeill, John H

    2006-02-01

    Increased oxidative stress and reduced nitric oxide (NO) bioactivity are key features of diabetes mellitus that eventually result in cardiovascular abnormalities. We assessed whether N-acetylcysteine (NAC), an antioxidant and glutathione precursor, could prevent the hyperglycaemia induced increase in oxidative stress, restore NO availability and prevent depression of arterial blood pressure and heart rate in vivo in experimental diabetes. Control (C) and streptozotocin-induced diabetic (D) rats were treated or not treated with NAC in drinking water for 8 weeks, initiated 1 week after induction of diabetes. At termination, plasma levels of free 15-F2t-isoprostane, a specific marker of oxygen free radical induced lipid peroxidation, was increased while the plasma total antioxidant concentration was decreased in untreated diabetic rats as compared to control rats (P<0.05). This was accompanied by a significant reduction of plasma levels of nitrate and nitrite, stable metabolites of NO, (P<0.05, D vs. C) and a reduced endothelial NO synthase protein expression in the heart and in aortic and mesenteric artery tissues. Systolic, diastolic and mean arterial blood pressures (SBP, DBP and MAP) and heart rate (HR) were reduced in diabetic rats (P<0.05 vs. C) and NAC normalised the changes that occurred in the diabetic rats. The protective effects may be attributable to restoration of NO bioavailability in the circulation.

  7. Beneficial Effects of N-acetylcysteine and N-mercaptopropionylglycine on Ischemia Reperfusion Injury in the Heart.

    Science.gov (United States)

    Bartekova, Monika; Barancik, Miroslav; Ferenczyova, Kristina; Dhalla, Naranjan S

    2018-01-30

    Ischemia-reperfusion (I/R) injury of the heart as a consequence of myocardial infarction or cardiac surgery represents a serious clinical problem. One of the most prominent mechanisms of I/R injury is the development of oxidative stress in the heart. In this regard, I/R has been shown to enhance the production of reactive oxygen/nitrogen species in the heart which lead to the imbalance between the pro-oxidants and antioxidant capacities of the endogenous radical-scavenging systems. Increasing the antioxidant capacity of the heart by the administration of exogenous antioxidants is considered beneficial for the heart exposed to I/R. N-acetylcysteine (NAC) and Nmercaptopropionylglycine (MPG) are two sulphur containing amino acid substances, which belong to the broad category of exogenous antioxidants that have been tested for their protective potential in cardiac I/R injury. Pretreatment of hearts with both NAC and MPG has demonstrated that these agents attenuate the I/R-induced alterations in sarcolemma, sarcoplasmic reticulum, mitochondria and myofibrils in addition to improving cardiac function. While experimental studies have revealed promising data suggesting beneficial effects of NAC and MPG in cardiac I/R injury, the results of clinical trials are not conclusive because both positive and no effects of these substances have been reported on the post-ischemic recovery of heart following cardiac surgery or myocardial infarction. It is concluded that both NAC and MPG exert beneficial effects in preventing the I/Rinduced injury; however, further studies are needed to establish their effectiveness in reversing the I/R-induced abnormalities in the heart. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Mass Spectra Analyses of Amides and Amide Dimers of Steviol, Isosteviol, and Steviolbioside

    Directory of Open Access Journals (Sweden)

    Lin-Wen Lee

    2012-01-01

    Full Text Available The mass spectra of a series of stevioside analogues including the amide and dimer compounds of steviol, isosteviol, and steviolbioside were examined. Positive ion mass spectral fragmentation of new steviol, isosteviol, and steviolbioside amides and the amide dimers are reported and discussed. The techniques included their synthesis procedures, fast-atom bombardment (FAB, and LC/MS/MS mass spectra. Intense [M+H]+ and [M+Na]+ ion peaks were observed on the FAB and ESI spectra. LC/MS/MS also yielded ES+ and ES− ion peaks that fairly agreed with the results of the FAB and ESI studies. Mass spectral analysis of compounds 4p-q, 5a-g, 6, and 7 revealed the different cleavage pathway patterns that can help in identifying the structures of steviolbioside and its amide derivatives.

  9. Rhodium(III)-Catalyzed Amidation of Unactivated C(sp(3) )-H Bonds.

    Science.gov (United States)

    Wang, He; Tang, Guodong; Li, Xingwei

    2015-10-26

    Nitrogenation by direct functionalization of C-H bonds represents an important strategy for constructing C-N bonds. Rhodium(III)-catalyzed direct amidation of unactivated C(sp(3) )-H bonds is rare, especially under mild reaction conditions. Herein, a broad scope of C(sp(3) )-H bonds are amidated under rhodium catalysis in high efficiency using 3-substituted 1,4,2-dioxazol-5-ones as the amide source. The protocol broadens the scope of rhodium(III)-catalyzed C(sp(3) )-H activation chemistry, and is applicable to the late-stage functionalization of natural products. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Evaluation of topical n-acetylcysteine in diversion colitis

    Directory of Open Access Journals (Sweden)

    Marcos Gonçalves de Almeida

    2012-09-01

    Full Text Available INTRODUCTION: Diversion colitis (DC is a benign condition characterized by the appearance of inflammation in the mucosa of the colon or rectum devoid of fecal stream. Oxidative stress has been associated with the etiopathogenesis of the disease. N-acetylcysteine (NAC is a substance with antioxidant properties, used in different treatments of inflammatory diseases. The purpose of this study was to evaluate the effects of topical applications of NAC in an experimental model of DC. METHODS: Thirty-six Wistar rats were submitted to deviation of fecal stream by proximal colostomy and a distal mucosal fistula. They were distributed into 3 experimental groups of 12 animals according to the daily application of enemas containing 0.9% saline or 2 doses of NAC, 25 mg/kg and 100 mg/kg, respectively. In each group, half of the animals were sacrificed after two weeks of irrigation and half after four weeks of irrigation. The diagnosis of colitis was assessed by histopathological analysis and the grade of inflammation by inflammatory grading scale. The results were evaluated with the Mann-Whitney test, adopting significance level of 5% (pINTRODUÇÃO: Colite de exclusão (CE é uma condição benigna caracterizada pelo desenvolvimento de inflamação na mucosa do cólon desprovida de trânsito fecal. O estresse oxidativo tem sido implicado na patogênese da doença. A n-acetilcisteína (NAC é uma substância com efeitos antioxidantes, sendo utilizada no tratamento de várias doenças inflamatórias. OBJETIVO: Avaliar os efeitos da aplicação tópica de NAC em modelo de CE. MÉTODO: Trinta e seis ratos Wistar foram submetidos ao desvio do trânsito por meio de colostomia proximal e fístula mucosa distal. Os animais foram distribuídos em três grupos experimentais de igual tamanho segundo a aplicação de enemas diários contendo soro fisiológico 0,9% ou NAC nas concentrações de 25 mg/kg ou 100 mg/kg. Em cada grupo, metade dos animais foi sacrificada ap

  11. A new phenylethyl alkyl amide from the Ambrostoma quadriimpressum Motschulsky

    Directory of Open Access Journals (Sweden)

    Guolei Zhao

    2011-09-01

    Full Text Available A new phenylethyl alkyl amide, (10R-10-hydroxy-N-phenethyloctadecanamide (1, was isolated from the beetle Ambrostoma quadriimpressum Motschulsky. The structure of the amide was determined by NMR and MS. The absolute configuration of compound 1 was confirmed by an asymmetric total synthesis, which was started from L-glutamic acid. The construction of the aliphatic chain was accomplished by the selective protection of the hydroxy groups and two-time implementation of the Wittig olefination reaction.

  12. Equilibrium and NMR studies on GdIII, YIII, CuII and ZnII complexes of various DTPA-N,N''-bis(amide) ligands. Kinetic stabilities of the gadolinium(III) complexes.

    Science.gov (United States)

    Jászberényi, Zoltán; Bányai, István; Brücher, Ernö; Király, Róbert; Hideg, Kálmán; Kálai, Tamás

    2006-02-28

    Three DTPA-derivative ligands, the non-substituted DTPA-bis(amide) (L(0)), the mono-substituted DTPA-bis(n-butylamide) (L(1)) and the di-substituted DTPA-bis[bis(n-butylamide)] (L(2)) were synthesized. The stability constants of their Gd3+ complexes (GdL) have been determined by pH-potentiometry with the use of EDTA or DTPA as competing ligands. The endogenous Cu2+ and Zn2+ ions form ML, MHL and M(2)L species. For the complexes CuL(0) and CuL(1) the dissociation of the amide hydrogens (CuLH(-1)) has also been detected. The stability constants of complexes formed with Gd3+, Cu2+ and Zn2+ increase with an increase in the number of butyl substituents in the order ML(0) DTPA)2-, while the complex GdL2 possesses a much higher kinetic stability.

  13. Unconventional Passerini Reaction toward α-Aminoxy-amides

    NARCIS (Netherlands)

    Chandgude, Ajay L; Dömling, Alexander

    2016-01-01

    The Passerini multicomponent reaction (P-3CR) toward the one-step synthesis of α-aminoxy-amide, by employing for the first time a N-hydroxamic acid component, has been reported. The sonication-accelerated, catalyst-free, simple, fast, and highly efficient Passerini reaction is used for the synthesis

  14. N-Acetylcysteine and Desferoxamine Reduce Pulmonary Oxidative Stress Caused by Hemorrhagic Shock in a Porcine Model.

    Science.gov (United States)

    Mani, Alexandra; Staikou, Chryssoula; Karmaniolou, Iosifina; Orfanos, Nikolaos; Mylonas, Anastassios; Nomikos, Tzortzis; Pafiti, Agathi; Papalois, Apostolos; Arkadopoulos, Nikolaos; Smyrniotis, Vassilios; Theodoraki, Kassiani

    2017-02-01

    To investigate the pulmonary oxidative stress and possible protective effect of N-Acetylcysteine (NAC) and Desferoxamine (DFX)in a porcine model subjected to hemorrhagic shock. Twenty-one pigs were randomly allocated to Group-A (sham, n = 5), Group-B (fluid resuscitation, n = 8) and Group-C (fluid, NAC and DFX resuscitation, n = 8). Groups B and C were subjected to a 40-min shock period induced by liver trauma, followed by a 60-min resuscitation period. During shock, the mean arterial pressure (MAP) was maintained at 30-40 mmHg. Resuscitation consisted of crystalloids (35 mL/kg) and colloids (18 mL/kg) targeting to MAP normalization (baseline values ± 10%). In addition, Group-C received pretreatment with NAC 200 mg/kg plus DFX 2 g as intravenous infusions. Thiobarbituric Acid Reactive Substances (TBARS), protein carbonyls and glutathione peroxidase (GPx) activity were determined in lung tissue homogenates. Also, histological examination of pulmonary tissue specimens was performed. TBARS were higher in Group-B than in Group-A or Group-C: 2.90 ± 0.47, 0.57 ± 0.10, 1.78 ± 0.47 pmol/μg protein, respectively (p 0.05). GPx activity did not differ significantly between the three groups (p > 0.05). Lung histology was improved in Group-C versus Group-B, with less alveolar collapse, interstitial edema and inflammation. NAC plus DFX prevented the increase of pulmonary oxidative stress markers and protein damage after resuscitated hemorrhagic shock and had beneficial effect on lung histology. NAC/DFX combination may be used in the multimodal treatment of hemorrhagic shock, since it may significantly prevent free radical injury in the lung.

  15. A new prearranged tripodant ligand ¤N,N',N''¤-trimethyl-¤N,N',N''¤tris(3-pyridyl)-1,3,5-benzene tricarboxamide is easily obtained via the ¤N¤-methyl amide effect

    DEFF Research Database (Denmark)

    Jørgensen, M.; Krebs, Frederik C

    2001-01-01

    The N-methyl amide cis generating effect has been utilised to create a new prearranged tripodant ligand in two synthetic steps from benzene-1,3,5-tricarbuxylic acid. Crystals of rhc ligand itself and of complexes with metal sails such as silver(I) triflate, copper(I) and copper(II) chloride...

  16. N-acetylcysteine selectively antagonizes the activity of imipenem in Pseudomonas aeruginosa by an OprD-mediated mechanism.

    Science.gov (United States)

    Rodríguez-Beltrán, Jerónimo; Cabot, Gabriel; Valencia, Estela Ynés; Costas, Coloma; Bou, German; Oliver, Antonio; Blázquez, Jesús

    2015-01-01

    The modulating effect of N-acetylcysteine (NAC) on the activity of different antibiotics has been studied in Pseudomonas aeruginosa. Our results demonstrate that, in contrast to previous reports, only the activity of imipenem is clearly affected by NAC. MIC and checkerboard determinations indicate that the NAC-based modulation of imipenem activity is dependent mainly on OprD. SDS-PAGE of outer membrane proteins (OMPs) after NAC treatments demonstrates that NAC does not modify the expression of OprD, suggesting that NAC competitively inhibits the uptake of imipenem through OprD. Similar effects on imipenem activity were obtained with P. aeruginosa clinical isolates. Our results indicate that imipenem-susceptible P. aeruginosa strains become resistant upon simultaneous treatment with NAC and imipenem. Moreover, the generality of the observed effects of NAC on antibiotic activity was assessed with two additional bacterial species, Escherichia coli and Acinetobacter baumannii. Caution should be taken during treatments, as the activity of imipenem may be modified by physiologically attainable concentrations of NAC, particularly during intravenous and nebulized regimes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Backbone amide linker strategy

    DEFF Research Database (Denmark)

    Shelton, Anne Pernille Tofteng; Jensen, Knud Jørgen

    2013-01-01

    In the backbone amide linker (BAL) strategy, the peptide is anchored not at the C-terminus but through a backbone amide, which leaves the C-terminal available for various modifications. This is thus a very general strategy for the introduction of C-terminal modifications. The BAL strategy...

  18. N-acetylcysteine improves redox status, mitochondrial dysfunction, mucin-depleted crypts and epithelial hyperplasia in dextran sulfate sodium-induced oxidative colitis in mice.

    Science.gov (United States)

    Amrouche-Mekkioui, Ilhem; Djerdjouri, Bahia

    2012-09-15

    The effect of N-acetylcysteine (NAC), a pharmacological antioxidant was investigated in a murine model of chronic colitis. Male NMRI mice were given 5% dextran sulfate sodium (DSS) in drinking water for 5 days followed by 10 days of water, three times. Compared to control mice given water, DSS-treated mice displayed severe imbalanced redox status with decreased glutathione and catalase, but increased malondialdehyde, protein carbonyls, nitric oxide and myeloperoxidase levels, at days 35th (active colitis) and 45th (recovery period). It also resulted in mitochondrial dysfunction, mucosal ulcers, mucin-depleted crypts and epithelial cell apoptosis. Crypt abscesses and glandular hyperplasia occurred selectively in distal colon. NAC (150 mg/kg) given in drinking water for 45 days along with 3 DSS cycles improved the hallmarks of DSS-colitis. Interestingly, the moderate impact of NAC on lipids and proteins oxidation correlated with myeloperoxidase and nitric oxide levels.NAC as a mucoregulator and a thiol restoring agent is protective on oxidative crypt alterations, mucin depletion, epithelial cell hyperplasia and apoptosis. Taken together, our results highlight the role of NAC as a scavenger of phagocytes-derived reactive oxygen species in mice DDS-colitis, suggesting that a long term NAC diet might be beneficial in inflammatory bowel diseases and colorectal cancer. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Optimization of Aryl Amides that Extend Survival in Prion-Infected Mice.

    Science.gov (United States)

    Giles, Kurt; Berry, David B; Condello, Carlo; Dugger, Brittany N; Li, Zhe; Oehler, Abby; Bhardwaj, Sumita; Elepano, Manuel; Guan, Shenheng; Silber, B Michael; Olson, Steven H; Prusiner, Stanley B

    2016-09-01

    Developing therapeutics for neurodegenerative diseases (NDs) prevalent in the aging population remains a daunting challenge. With the growing understanding that many NDs progress by conformational self-templating of specific proteins, the prototypical prion diseases offer a platform for ND drug discovery. We evaluated high-throughput screening hits with the aryl amide scaffold and explored the structure-activity relationships around three series differing in their N-aryl core: benzoxazole, benzothiazole, and cyano. Potent anti-prion compounds were advanced to pharmacokinetic studies, and the resulting brain-penetrant leads from each series, together with a related N-aryl piperazine lead, were escalated to long-term dosing and efficacy studies. Compounds from each of the four series doubled the survival of mice infected with a mouse-passaged prion strain. Treatment with aryl amides altered prion strain properties, as evidenced by the distinct patterns of neuropathological deposition of prion protein and associated astrocytic gliosis in the brain; however, none of the aryl amide compounds resulted in drug-resistant prion strains, in contrast to previous studies on compounds with the 2-aminothiazole (2-AMT) scaffold. As seen with 2-AMTs and other effective anti-prion compounds reported to date, the novel aryl amides reported here were ineffective in prolonging the survival of transgenic mice infected with human prions. Most encouraging is our discovery that aryl amides show that the development of drug resistance is not an inevitable consequence of efficacious anti-prion therapeutics. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Bisamidate and Mixed Amine/Amidate NiN2S2 Complexes as Models for Nickel-Containing Acetyl Coenzyme A Synthase and Superoxide Dismutase: An Experimental and Computational Study

    International Nuclear Information System (INIS)

    Mathrubootham, V.; Thomas, J.; Staples, R.; McCraken, J.; Shearer, J.; Hegg, E.

    2010-01-01

    The distal nickel site of acetyl-CoA synthase (Ni d -ACS) and reduced nickel superoxide dismutase (Ni-SOD) display similar square-planar Ni II N 2 S 2 coordination environments. One difference between these two sites, however, is that the nickel ion in Ni-SOD contains a mixed amine/amidate coordination motif while the Ni d site in Ni-ACS contains a bisamidate coordination motif. To provide insight into the consequences of the different coordination environments on the properties of the Ni ions, we systematically examined two square-planar Ni II N 2 S 2 complexes, one with bisthiolate-bisamidate ligation (Et 4 N) 2 (Ni(L1))·2H 2 O (2) (H 4 L1 = N-(2-mercaptoacetyl)-N(prime)-(2-mercaptoethyl)glycinamide) and another with bisthiolate-amine/amidate ligation K(Ni(HL2)) (3) (H 4 L2 = N-(2(double p rime)-mercaptoethyl)-2- ((2(prime)-mercaptoethyl)amino)acetamide). Although these two complexes differ only by a single amine versus amidate ligand, their chemical properties are quite different. The stronger in-plane ligand field in the bisamidate complex (Ni II (L1)) 2- (2) results in an increase in the energies of the d → d transitions and a considerably more negative oxidation potential. Furthermore, while the bisamidate complex (Ni II (L1)) 2- (2) readily forms a trinuclear species (Et 4 N) 2 ({Ni(L1)} 2 Ni)·H 2 O (1) and reacts rapidly with O 2 , presumably via sulfoxidation, the mixed amine/amidate complex (Ni II (HL2)) - (3) remains monomeric and is stable for days in air. Interestingly, the Ni III species of the bisamidate complex formed by chemical oxidation with I 2 can be detected by electron paramagnetic resonance (EPR) spectroscopy while the mixed amine/amidate complex immediately decomposes upon oxidation. To explain these experimentally observed properties, we performed S K-edge X-ray absorption spectroscopy and low-temperature (77 K) electronic absorption measurements as well as both hybrid density functional theory (hybrid-DFT) and spectroscopy oriented

  1. 40 CFR 721.3720 - Fatty amide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty amide. 721.3720 Section 721.3720... Fatty amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a fatty amide (PMN P-91-87) is subject to reporting under this section...

  2. 40 CFR 721.2120 - Cyclic amide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Cyclic amide. 721.2120 Section 721... Cyclic amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a cyclic amide (PMN P-92-131) is subject to reporting under this section for the...

  3. Cinnamic acid amides from Tribulus terrestris displaying uncompetitive α-glucosidase inhibition.

    Science.gov (United States)

    Song, Yeong Hun; Kim, Dae Wook; Curtis-Long, Marcus J; Park, Chanin; Son, Minky; Kim, Jeong Yoon; Yuk, Heung Joo; Lee, Keun Woo; Park, Ki Hun

    2016-05-23

    The α-glucosidase inhibitory potential of Tribulus terrestris extracts has been reported but as yet the active ingredients are unknown. This study attempted to isolate the responsible metabolites and elucidate their inhibition mechanism of α-glucosidase. By fractionating T. terristris extracts, three cinnamic acid amide derivatives (1-3) were ascertained to be active components against α-glucosidase. The lead structure, N-trans-coumaroyltyramine 1, showed significant inhibition of α-glucosidase (IC50 = 0.42 μM). Moreover, all active compounds displayed uncompetitive inhibition mechanisms that have rarely been reported for α-glucosidase inhibitors. This kinetic behavior was fully demonstrated by showing a decrease of both Km and Vmax, and Kik/Kiv ratio ranging between 1.029 and 1.053. We progressed to study how chemical modifications to the lead structure 1 may impact inhibition. An α, β-unsaturation carbonyl group and hydroxyl group in A-ring of cinnamic acid amide emerged to be critical functionalities for α-glucosidase inhibition. The molecular modeling study revealed that the inhibitory activities are tightly related to π-π interaction as well as hydrogen bond interaction between enzyme and inhibitors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. New optically active and thermally stable poly(amide-imide)s containing N,N'-(Bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic)-bis-L-alanine and aromatic diamines: synthesis and characterization

    International Nuclear Information System (INIS)

    Faghihi, Khalil; Absalar, Morteza; Hajibeygi, Mohsen

    2009-01-01

    Five new optically active poly(amide-imide)s (PAIs) 6a-e were prepared by direct polycondensation reaction of the newly synthesized N,N'-(bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetra carboxylic)-bis-L-alanine 4 with various aromatic diamines 5a-e using polar aprotic solvents such as N-methyl-2-pyrrolidone (NMP). In this technique triphenyl phosphite (TPP) and pyridine were used as condensing agents to form poly(amide-imide)s through the N-phosphonium salts of pyridine. All of the polymers were obtained in quantitative yields with inherent viscosities between 0.29-0.46 dL g -1 and were highly soluble in polar aprotic solvents such as N,N-dimethyl acetamide (DMAc), N,N-dimethyl formamide (DMF), dimethyl sulfoxide (DMSO), N-methyl- 2-pyrrolidone (NMP) and solvents such as sulfuric acid. They were fully characterized by means of 1 H NMR, FTIR spectroscopy, elemental analyses, inherent viscosity, solubility test, specific rotation and thermal properties of these polymers were investigated using thermogravimetric analysis techniques (TGA and DTG). (author)

  5. Discovery of competing anaerobic and aerobic pathways in umpolung amide synthesis allows for site-selective amide 18O-labeling

    Science.gov (United States)

    Shackleford, Jessica P.; Shen, Bo; Johnston, Jeffrey N.

    2012-01-01

    The mechanism of umpolung amide synthesis was probed by interrogating potential sources for the oxygen of the product amide carbonyl that emanates from the α-bromo nitroalkane substrate. Using a series of 18O-labeled substrates and reagents, evidence is gathered to advance two pathways from the putative tetrahedral intermediate. Under anaerobic conditions, a nitro-nitrite isomerization delivers the amide oxygen from nitro oxygen. The same homolytic nitro-carbon fragmentation can be diverted by capture of the carbon radical intermediate with oxygen gas (O2) to deliver the amide oxygen from O2. This understanding was used to develop a straightforward protocol for the preparation of 18O-labeled amides in peptides by simply performing the umpolung amide synthesis reaction under an atmosphere of . PMID:22184227

  6. Straightforward uranium-catalyzed dehydration of primary amides to nitriles

    International Nuclear Information System (INIS)

    Enthaler, Stephan

    2011-01-01

    The efficient uranium-catalyzed dehydration of a variety of primary amides, using N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) as a dehydration reagent, to the corresponding nitriles has been investigated. With this catalyst system, extraordinary catalyst activities and selectivities were feasible. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Chemometric characterization of the hydrogen bonding complexes of secondary amides and aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    Jović Branislav

    2012-01-01

    Full Text Available The paper reports the results of the study of hydrogen bonding complexes between secondary amides and various aromatic hydrocarbons. The possibility of using chemometric methods was investigated in order to characterize N-H•••π hydrogen bonded complexes. Hierarchical clustering and Principal Component Analysis (PCA have been applied on infrared spectroscopic and Taft parameters of 43 N-substituted amide complexes with different aromatic hydrocarbons. Results obtained in this report are in good agreement with conclusions of other spectroscopic and thermodynamic analysis.

  8. Hydrogen exchange kinetics in a membrane protein determined by 15N NMR spectroscopy: Use of the INEPT [insensitive nucleus enhancement by polarization transfer] experiment to follow individual amides in detergent-solubilized M13 coat protein

    International Nuclear Information System (INIS)

    Henry, G.D.; Sykes, B.D.

    1990-01-01

    The coat protein of the filamentous coliphage M13 is a 50-residue polypeptide which spans the inner membrane of the Escherichia coli host upon infection. Amide hydrogen exchange kinetics have been used to probe the structure and dynamics of M13 coat protein which has been solubilized in sodium dodecyl sulfate (SDS) micelles. In a previous 1 H nuclear magnetic resonance (NMR) study, multiple exponential analysis of the unresolved amide proton envelope revealed the existence of two slow kinetic sets containing a total of about 30 protons. The slower set (15-20 amides) originates from the hydrophobic membrane-spanning region and exchanges at least 10 5 -fold slower than the unstructured, non-H-bonded model polypeptide poly(DL-alanine). Herein the authors use 15 N NMR spectroscopy of biosynthetically labeled coat protein to follow individual, assigned, slowly exchanging amides in or near the hydrophobic segment. The INEPT (insensitive nucleus enhancement by polarization transfer) experiments can be used to transfer magnetization to the 15 N nucleus from a coupled proton; when 15 N-labeled protonated protein is dissolved in 2 H 2 O, the INEPT signal disappears with time as the amide protons are replaced by solvent deuterons. Amide hydrogen exchange is catalyzed by both H + and OH - ions. The time-dependent exchange-out experiment is suitable for slow exchange rates (k ex ). The INEPT experiment was also adapted to measure some of the more rapidly exchanging amides in the coat protein using either saturation transfer from water or exchange effects on the polarization transfer step itself. The results of all of these experiments are consistent with previous models of the coat protein in which a stable segment extends from the hydrophobic membrane-spanning region through to the C-terminus, whereas the N-terminal region is undergoing more extensive dynamic fluctuations

  9. Phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles: Specific characteristics of the condensed phases.

    Science.gov (United States)

    Vollhardt, D

    2015-08-01

    For understanding the role of amide containing amphiphiles in inherently complex biological processes, monolayers at the air-water interface are used as simple biomimetic model systems. The specific characteristics of the condensed phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles are surveyed to highlight the effect of the chemical structure of the amide amphiphiles on the interfacial interactions in model monolayers. The mesoscopic topography and/or two-dimensional lattice structures of selected amino acid amphiphiles, amphiphilic N-alkylaldonamide, amide amphiphiles with specific tailored headgroups, such as amide amphiphiles based on derivatized ethanolamine, e.g. acylethanolamines (NAEs) and N-,O-diacylethanolamines (DAEs) are presented. Special attention is devoted the dominance of N,O-diacylated ethanolamine in mixed amphiphilic acid amide monolayers. The evidence that a first order phase transition can occur in adsorption layers and that condensed phase domains of mesoscopic scale can be formed in adsorption layers was first obtained on the basis of the experimental characteristics of a tailored amide amphiphile. New thermodynamic and kinetic concepts for the theoretical description of the characteristics of amide amphiphile's monolayers were developed. In particular, the equation of state for Langmuir monolayers generalized for the case that one, two or more phase transitions occur, and the new theory for phase transition in adsorbed monolayers are experimentally confirmed at first by amide amphiphile monolayers. Despite the significant progress made towards the understanding the model systems, these model studies are still limited to transfer the gained knowledge to biological systems where the fundamental physical principles are operative in the same way. The study of biomimetic systems, as described in this review, is only a first step in this direction. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Amides and Hydrazides from Amine and Hydrazine Hydrochlorides.

    Science.gov (United States)

    Shama, Sami A.; Tran, Thuan L.

    1978-01-01

    This safe and efficient procedure for the synthesis of N-substituted amides and hydrazides is a modification of the Schotten-Bausmann procedure in which the amine or hydrazide is replaced by the corresponding hydrochloride salt, and the use of alkali is eliminated. (Author/BB)

  11. l-N-acetylcysteine protects outer hair cells against TNFα initiated ototoxicity in vitro.

    Science.gov (United States)

    Tillinger, Joshua A; Gupta, Chhavi; Ila, Kadri; Ahmed, Jamal; Mittal, Jeenu; Van De Water, Thomas R; Eshraghi, Adrien A

    2018-03-07

    The present study is aimed at determining the efficacy and exploring the mechanisms by which l-N-acetylcysteine (l-NAC) provides protection against tumor necrosis factor-alpha (TNFα)-induced oxidative stress damage and hair cell loss in 3-day-old rat organ of Corti (OC) explants. Previous work has demonstrated a high level of oxidative stress in TNFα-challenged OC explants. TNFα can potentially play a significant role in hair cell loss following an insult to the inner ear. l-NAC has shown to provide effective protection against noise-induced hearing loss in laboratory animals but mechanisms of this otoprotective effect are not well-defined. Rat OC explants were exposed to either: (1) saline control (N = 12); (2) TNFα (2 μg/ml, N = 12); (3) TNFα+l-NAC (5 mM, N = 12); (4) TNFα+l-NAC (10 mM, N = 12); or (5) l-NAC (10 mM, N = 12). Outer hair cell (OHC) density, levels of reactive oxygen species (ROS), lipid peroxidation of cell membranes, gluthathione activity, and mitochondrial viability were assayed. l-NAC (5 and 10 mM) provided protection for OHCs from ototoxic level of TNFα in OC explants. Groups treated with TNFα+l-NAC (5 mM) showed a highly significant reduction of both ROS (p l-NAC (5 mM) treated explants (p l-NAC is a promising treatment for protecting auditory HCs from TNFα-induced oxidative stress and subsequent loss via programmed cell death.

  12. 1H NMR spectra. Part 30(+): 1H chemical shifts in amides and the magnetic anisotropy, electric field and steric effects of the amide group.

    Science.gov (United States)

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel

    2013-03-01

    The (1)H spectra of 37 amides in CDCl(3) solvent were analysed and the chemical shifts obtained. The molecular geometries and conformational analysis of these amides were considered in detail. The NMR spectral assignments are of interest, e.g. the assignments of the formamide NH(2) protons reverse in going from CDCl(3) to more polar solvents. The substituent chemical shifts of the amide group in both aliphatic and aromatic amides were analysed using an approach based on neural network data for near (≤3 bonds removed) protons and the electric field, magnetic anisotropy, steric and for aromatic systems π effects of the amide group for more distant protons. The electric field is calculated from the partial atomic charges on the N.C═O atoms of the amide group. The magnetic anisotropy of the carbonyl group was reproduced with the asymmetric magnetic anisotropy acting at the midpoint of the carbonyl bond. The values of the anisotropies Δχ(parl) and Δχ(perp) were for the aliphatic amides 10.53 and -23.67 (×10(-6) Å(3)/molecule) and for the aromatic amides 2.12 and -10.43 (×10(-6) Å(3)/molecule). The nitrogen anisotropy was 7.62 (×10(-6) Å(3)/molecule). These values are compared with previous literature values. The (1)H chemical shifts were calculated from the semi-empirical approach and also by gauge-independent atomic orbital calculations with the density functional theory method and B3LYP/6-31G(++) (d,p) basis set. The semi-empirical approach gave good agreement with root mean square error of 0.081 ppm for the data set of 280 entries. The gauge-independent atomic orbital approach was generally acceptable, but significant errors (ca. 1 ppm) were found for the NH and CHO protons and also for some other protons. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Amides and an alkaloid from Portulaca oleracea.

    Science.gov (United States)

    Kokubun, Tetsuo; Kite, Geoffrey C; Veitch, Nigel C; Simmonds, Monique S J

    2012-08-01

    A total of 16 phenolic compounds, including one new and five known N-cinnamoyl phenylethylamides, one new pyrrole alkaloid named portulacaldehyde, five phenylpropanoid acids and amides, and derivatives of benzaldehyde and benzoic acid, were isolated and identified from a polar fraction of an extract of Portulaca oleracea. Their structures were determined through spectroscopic analyses.

  14. New optically active and thermally stable poly(amide-imide)s containing N,N'-(Bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic)-bis-L-alanine and aromatic diamines: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, Khalil; Absalar, Morteza; Hajibeygi, Mohsen [Arak University (Iran, Islamic Republic of). Faculty of Science. Organic Polymer Chemistry Research Lab.

    2009-07-01

    Five new optically active poly(amide-imide)s (PAIs) 6a-e were prepared by direct polycondensation reaction of the newly synthesized N,N'-(bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetra carboxylic)-bis-L-alanine 4 with various aromatic diamines 5a-e using polar aprotic solvents such as N-methyl-2-pyrrolidone (NMP). In this technique triphenyl phosphite (TPP) and pyridine were used as condensing agents to form poly(amide-imide)s through the N-phosphonium salts of pyridine. All of the polymers were obtained in quantitative yields with inherent viscosities between 0.29-0.46 dL g{sup -1} and were highly soluble in polar aprotic solvents such as N,N-dimethyl acetamide (DMAc), N,N-dimethyl formamide (DMF), dimethyl sulfoxide (DMSO), N-methyl- 2-pyrrolidone (NMP) and solvents such as sulfuric acid. They were fully characterized by means of {sup 1}H NMR, FTIR spectroscopy, elemental analyses, inherent viscosity, solubility test, specific rotation and thermal properties of these polymers were investigated using thermogravimetric analysis techniques (TGA and DTG). (author)

  15. A molecular mechanics (MM3(96)) force field for metal-amide complexes

    International Nuclear Information System (INIS)

    Hay, B.P.; Clement, O.; Sandrone, G.; Dixon, D.A.

    1998-01-01

    A molecular mechanics (MM3(96)) force field is reported for modeling metal complexes of amides in which the amide is coordinated through oxygen. This model uses a points-on-a-sphere approach which involves the parameterization of the Msingle bondO stretch, the Msingle bondO double-bond C bend, and the Msingle bondO double-bond Csingle bondX (X = C, H, N) torsion interactions. Relationships between force field parameters and metal ion properties (charge, ionic radius, and electronegativity) are presented that allow the application of this model to a wide range of metal ions. The model satisfactorily reproduces the structures of over fifty amide complexes with the alkaline earths, transition metals, lanthanides, and actinides

  16. Adjunctive N-acetylcysteine in depression: exploration of interleukin-6, C-reactive protein and brain-derived neurotrophic factor.

    Science.gov (United States)

    Hasebe, Kyoko; Gray, Laura; Bortolasci, Chiara; Panizzutti, Bruna; Mohebbi, Mohammadreza; Kidnapillai, Srisaiyini; Spolding, Briana; Walder, Ken; Berk, Michael; Malhi, Gin; Dodd, Seetal; Dean, Olivia M

    2017-12-01

    This study aimed to explore effects of adjunctive N-acetylcysteine (NAC) treatment on inflammatory and neurogenesis markers in unipolar depression. We embarked on a 12-week clinical trial of NAC (2000 mg/day compared with placebo) as an adjunctive treatment for unipolar depression. A follow-up visit was conducted 4 weeks following the completion of treatment. We collected serum samples at baseline and the end of the treatment phase (week 12) to determine changes in interleukin-6 (IL6), C-reactive protein (CRP) and brain-derived neurotrophic factor (BDNF) following NAC treatment. NAC treatment significantly improved depressive symptoms on the Montgomery-Asberg Depression Rating Scale (MADRS) over 16 weeks of the trial. Serum levels of IL6 were associated with reductions of MADRS scores independent of treatment response. However, we found no significant changes in IL6, CRP and BDNF levels following NAC treatment. Overall, this suggests that our results failed to support the hypothesis that IL6, CRP and BDNF are directly involved in the therapeutic mechanism of NAC in depression. IL6 may be a useful marker for future exploration of treatment response.

  17. Amides in Nature and Biocatalysis

    NARCIS (Netherlands)

    Pitzer, J.; Steiner, K.

    2016-01-01

    Amides are widespread in biologically active compounds with a broad range of applications in biotechnology, agriculture and medicine. Therefore, as alternative to chemical synthesis the biocatalytic amide synthesis is a very interesting field of research. As usual, Nature can serve as guide in the

  18. (E)-α,β-unsaturated amides from tertiary amines, olefins and CO via Pd/Cu-catalyzed aerobic oxidative N-dealkylation.

    Science.gov (United States)

    Shi, Renyi; Zhang, Hua; Lu, Lijun; Gan, Pei; Sha, Yuchen; Zhang, Heng; Liu, Qiang; Beller, Matthias; Lei, Aiwen

    2015-02-21

    A novel Pd/Cu-catalyzed chemoselective aerobic oxidative N-dealkylation/carbonylation reaction has been developed. Tertiary amines are utilized as a "reservoir" of "active" secondary amines in this transformation, which inhibits the formation of undesired by-products and the deactivation of the catalysts. This protocol allows for an efficient and straightforward construction of synthetically useful and bioactive (E)-α,β-unsaturated amide derivatives from easily available tertiary amines, olefins and CO.

  19. Zinc(II) complexes with intramolecular amide oxygen coordination as models of metalloamidases.

    Science.gov (United States)

    Rivas, Juan C Mareque; Salvagni, Emiliano; Prabaharan, Ravi; de Rosales, Rafael Torres Martin; Parsons, Simon

    2004-01-07

    Polydentate ligands (6-R1-2-pyridylmethyl)-R2(R1= NHCOtBu, R2= bis(2-pyridylmethyl)amine L1, bis(2-(methylthio)ethyl)amine L2 and N(CH2CH2)2S L3) form mononuclear zinc(II) complexes with intramolecular amide oxygen coordination and a range of coordination environments. Thus, the reaction of Zn(ClO4)2.6H2O with L1-3 in acetonitrile affords [(L)Zn](ClO4)2(L=L1, 1; L2, 2) and [(L3)Zn(H2O)(NCCH3)](ClO4)2 3. The simultaneous amide/water binding in resembles the motif that has been proposed to be involved in the double substrate/nucleophile Lewis acidic activation and positioning mechanism of amide bond hydrolysis in metallopeptidases. X-ray diffraction, 1H and 13C NMR and IR data suggests that the strength of amide oxygen coordination follows the trend 1>2 >3. L1-3 and undergo cleavage of the tert-butylamide upon addition of Me4NOH.5H2O (1 equiv.) in methanol at 50(1)degrees C. The rate of amide cleavage follows the order 1> 2> 3, L1-3. The extent by which the amide cleavage reaction is accelerated in 1-3 relative to the free ligands, L1-3, is correlated with the strength of amide oxygen binding and Lewis acidity of the zinc(II) centre in deduced from the X-ray, NMR and IR studies.

  20. Role of reactive oxygen intermediates in the interferon-mediated depression of hepatic drug metabolism and protective effect of N-acetylcysteine in mice.

    Science.gov (United States)

    Ghezzi, P; Bianchi, M; Gianera, L; Landolfo, S; Salmona, M

    1985-08-01

    Interferon (IFN) and IFN inducers are known to depress hepatic microsomal cytochrome P-450 levels, and the liver toxicity of IFN was reported to be lethal in newborn mice. We have observed that administration to mice of IFN and IFN inducers caused a marked increase in liver xanthine oxidase activity. Because this enzyme is well known to produce reactive oxygen intermediates and cytochrome P-450 was reported to be sensitive to the oxidative damage, we have tested the hypothesis that a free radical mechanism could mediate the depression of cytochrome P-450 levels by IFN. Administration to mice of the IFN inducer polyinosinic-polycytidylic acid (2 mg/kg i.p.) caused a 29 to 52% decrease in liver cytochrome P-450. Concomitant p.o. administration of the free radical scavenger, N-acetylcysteine (as a 2.5% solution in drinking water), or the xanthine oxidase inhibitor, allopurinol (100 mg/kg), protected against the IFN-mediated depression of P-450 kg), protected against the IFN-mediated depression of P-450 levels. The results suggest that an increased endogenous generation of free radicals, possibly due to the induction of xanthine oxidase, is implicated in the IFN-mediated depression of liver drug metabolism. The relevance of these data also extends to cases in which this side effect is observed in pathological situations (e.g., viral diseases and administration of vaccines) associated with an induction of IFN.

  1. The influence of chirality in the amide side chain on the carbonyl orientation in rotational isomers of 3-carbamoylpyridinium halides

    NARCIS (Netherlands)

    Bastiaansen, L.A.M.; Vermeulen, T.J.M.; Buck, H.M.; Smeets, W.J.J.; Kanters, J.A.

    1988-01-01

    The direction of the carbonyl orientation in solid amide rotamers of 3-(N-methyl-N-a-methylbenzylcarbamoyl)-1,2,4-trimethylpyridinium iodide is governed by the (R)- or (S)-chirality in the amide side chain; X-ray structures and c.d. spectra are correlated.

  2. Direct Reaction of Amides with Nitric Oxide To Form Diazeniumdiolates

    Science.gov (United States)

    2015-01-01

    We report the apparently unprecedented direct reaction of nitric oxide (NO) with amides to generate ions of structure R(C=O)NH–N(O)=NO–, with examples including R = Me (1a) or 3-pyridyl (1b). The sodium salts of both released NO in pH 7.4 buffer, with 37 °C half-lives of 1–3 min. As NO-releasing drug candidates, diazeniumdiolated amides would have the advantage of generating only 1 equiv of base on hydrolyzing exhaustively to NO, in contrast to their amine counterparts, which generate 2 equiv of base. PMID:25210948

  3. Rhodium-catalyzed asymmetric hydroboration of γ,δ-unsaturated amide derivatives: δ-borylated amides.

    Science.gov (United States)

    Hoang, G L; Zhang, S; Takacs, J M

    2018-05-08

    γ,δ-Unsaturated amides in which the alkene moiety bears an aryl or heteroaryl substituent undergo regioselective rhodium-catalyzed δ-borylation by pinacolborane to afford chiral secondary benzylic boronic esters. The results contrast the γ-borylation of γ,δ-unsaturated amides in which the disubstituted alkene moiety bears only alkyl substituents; the reversal in regiochemistry is coupled with a reversal in the sense of π-facial selectivity.

  4. N-acetylcysteine protects against cadmium-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in testes.

    Science.gov (United States)

    Ji, Yan-Li; Wang, Hua; Zhang, Cheng; Zhang, Ying; Zhao, Mei; Chen, Yuan-Hua; Xu, De-Xiang

    2013-03-01

    Cadmium (Cd) is a reproductive toxicant that induces germ cell apoptosis in the testes. Previous studies have demonstrated that endoplasmic reticulum (ER) stress is involved in Cd-induced germ cell apoptosis. The aim of the present study was to investigate the effects of N-acetylcysteine (NAC), an antioxidant, on Cd-induced ER stress and germ cell apoptosis in the testes. Male CD-1 mice were intraperitoneally injected with CdCl2 (2.0 mg kg(-1)). As expected, acute Cd exposure induced germ cell apoptosis in the testes, as determined by terminal dUTP nick-end labelling (TUNEL). However, the administration of NAC alleviated Cd-induced germ cell apoptosis in the testes. Further analysis showed that NAC attenuated the Cd-induced upregulation of testicular glucose-regulated protein 78 (GRP78), an important ER molecular chaperone. Moreover, NAC inhibited the Cd-induced phosphorylation of testicular eukaryotic translation initiation factor 2α (eIF2α), a downstream target of the double-stranded RNA-activated kinase-like ER kinase (PERK) pathway. In addition, NAC blocked the Cd-induced activation of testicular X binding protein (XBP)-1, indicating that NAC attenuates the Cd-induced ER stress and the unfolded protein response (UPR). Interestingly, NAC almost completely prevented the Cd-induced elevation of C/EBP homologous protein (CHOP) and phosphorylation of c-Jun N-terminal kinase (JNK), two components of the ER stress-mediated apoptotic pathway. In conclusion, NAC protects against Cd-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in the testes.

  5. A study on the influence of fast amide exchange on the accuracy of (15)N relaxation rate constants.

    Science.gov (United States)

    Jurt, Simon; Zerbe, Oliver

    2012-12-01

    (15)N relaxation rates of amide moieties provide insight both into global as well as local backbone dynamics of peptides and proteins. As the differences in the relaxation rates in general are small, their accurate determination is of prime importance. One potential source of error is fast amide exchange. It is well known that in its presence the effects of saturation transfer and H/D exchange may result in erroneous apparent relaxation rates R (1) and R (2). Here, the extent of these errors is rigorously examined. Theoretical considerations reveal that even when saturation effects are absent, H/D exchange will easily result in significant deviations from the true values. In particular overestimations of up to 10 % in R (1) and up to 5 % in R (2) are observed. An alternative scheme for fitting the relaxation data to the corresponding exponentials is presented that in the best cases not only delivers more accurate relaxation rates but also allows extracting estimates for the exchange rates. The theoretical computations were tested and verified for the case of ubiquitin.

  6. A study on the influence of fast amide exchange on the accuracy of 15N relaxation rate constants

    International Nuclear Information System (INIS)

    Jurt, Simon; Zerbe, Oliver

    2012-01-01

    15 N relaxation rates of amide moieties provide insight both into global as well as local backbone dynamics of peptides and proteins. As the differences in the relaxation rates in general are small, their accurate determination is of prime importance. One potential source of error is fast amide exchange. It is well known that in its presence the effects of saturation transfer and H/D exchange may result in erroneous apparent relaxation rates R 1 and R 2 . Here, the extent of these errors is rigorously examined. Theoretical considerations reveal that even when saturation effects are absent, H/D exchange will easily result in significant deviations from the true values. In particular overestimations of up to 10 % in R 1 and up to 5 % in R 2 are observed. An alternative scheme for fitting the relaxation data to the corresponding exponentials is presented that in the best cases not only delivers more accurate relaxation rates but also allows extracting estimates for the exchange rates. The theoretical computations were tested and verified for the case of ubiquitin.

  7. Chelating capacity and the adverse effects of two treatments (N-acetylcysteine and D-penicillamine in patients with mercury poisoning in Segovia, a municipality at the northeastern part of Antioquia, Colombia

    Directory of Open Access Journals (Sweden)

    Fanny Cuesta González

    2008-02-01

    Full Text Available

    OBJECTIVE: to compare the chelating capacity and the adverse effects of treatments with either Nacetylcysteine or D-penicillamine in patients with mercury poisoning in Segovia, a municipality at the northeastern part of Antioquia, Colombia.

    METHODS: 50 patients with toxic levels of mercury were enrolled in a 10 days open label, randomized comparison of either D-penicillamine (750 mg/day or Nacetilcysteine (1.8 g/day. Patients were followed on a daily basis to assess the elimination of mercury in urine and the frequency of adverse effects of each treatment.

    RESULTS: 32 patients completed 10 days of drug treatment. Averages of mercury elimination in 24 hours urine, before and after treatment with D-penicillamine and N-acetylcysteine, were not different (211.96 mcg ± 190 and 262.15 mcg ± 305 and 232.85 mcg ± 248 and 218.65 mcg ± 240, respectively, P > 0.05 for all comparisons. Evaluation of the frequency of adverse effects showed a significant difference between the two groups: D-penicillamine (50% and N-acetylcysteine (11% p = 0.0079.

    CONCLUSION: this study

  8. The Structure-Property Relationship of Poly(amide-imide)/Organoclay Nanocomposites

    Science.gov (United States)

    Faghihi, Khalil; Soleimani, Masoumeh; Shabanian, Meisam; Abootalebi, Ashraf Sadateh

    2011-06-01

    Surface treated montmorillonite (MMT) was used to prepare nanocomposites with poly(amide-imide) (PAI) 5 by solution intercalation technique with various percent of organoclay (5-15 mass %). Surface modification of the MMT was performed with Cloisite 20A for ample compatibilization with the PAI matrix. The PAI 5 chains were produced through polycondensation of 4,4-diamino diphenyl sulfone 4 with N-trimellitylimido-L-alanine 3 in a medium consisting of triphenyl phosphite, N-methyl-2-pyrolidone (NMP), pyridine and calcium chloride. The PAI-Nanocomposites morphology and clay dispersion were investigated by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The effect of clay dispersion and the interaction between clay and PAI chains on the properties of PAI-Nanocomposites films were investigated by using UV-Vis spectroscopy, thermogravimetric analysis (TGA) and water uptake measurements. Thermal stability of nanocomposites increased relative to the neat polyamide with increasing organoclay content but water uptake of these materials decreased as compared to the neat polyamide indicating reduced permeability.

  9. Prediction of the vapor pressure and vaporization enthalpy of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids.

    Science.gov (United States)

    Diedenhofen, Michael; Klamt, Andreas; Marsh, Kenneth; Schäfer, Ansgar

    2007-09-07

    The vapor pressures and vaporization enthalpies of a series of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids have been predicted with two different approaches using the COSMO-RS method and quantum chemical gas phase calculations. While the calculated enthalpies are in good agreement with the experimental data, COSMO-RS seems to underestimate the vapor pressures by roughly 0.5-4 log units dependent on the IL and approach used.

  10. Recombinant production of peptide C-terminal α-amides using an engineered intein

    DEFF Research Database (Denmark)

    Albertsen, Louise; Shaw, Allan C; Norrild, Jens Chr.

    2013-01-01

    is that they contain a C-terminal that is α-amidated, and this amidation is crucial for biological function. A challenge is to generate such peptides by recombinant means and particularly in a production scale. Here, we have examined an intein-mediated approach to generate a PYY derivative in a larger scale. Initially......, we experienced challenges with hydrolysis of the intein fusion protein, which was reduced by a T3C mutation in the intein. Subsequently, we further engineered the intein to decrease the absolute size and improve the relative yield of the PYY derivative, which was achieved by substituting 54 residues...

  11. Formation and hydrolysis of amide bonds by lipase A from Candida antarctica; exceptional features.

    Science.gov (United States)

    Liljeblad, Arto; Kallio, Pauli; Vainio, Marita; Niemi, Jarmo; Kanerva, Liisa T

    2010-02-21

    Various commercial lyophilized and immobilized preparations of lipase A from Candida antarctica (CAL-A) were studied for their ability to catalyze the hydrolysis of amide bonds in N-acylated alpha-amino acids, 3-butanamidobutanoic acid (beta-amino acid) and its ethyl ester. The activity toward amide bonds is highly untypical of lipases, despite the close mechanistic analogy to amidases which normally catalyze the corresponding reactions. Most CAL-A preparations cleaved amide bonds of various substrates with high enantioselectivity, although high variations in substrate selectivity and catalytic rates were detected. The possible role of contaminant protein species on the hydrolytic activity toward these bonds was studied by fractionation and analysis of the commercial lyophilized preparation of CAL-A (Cat#ICR-112, Codexis). In addition to minor impurities, two equally abundant proteins were detected, migrating on SDS-PAGE a few kDa apart around the calculated size of CAL-A. Based on peptide fragment analysis and sequence comparison both bands shared substantial sequence coverage with CAL-A. However, peptides at the C-terminal end constituting a motile domain described as an active-site flap were not identified in the smaller fragment. Separated gel filtration fractions of the two forms of CAL-A both catalyzed the amide bond hydrolysis of ethyl 3-butanamidobutanoate as well as the N-acylation of methyl pipecolinate. Hydrolytic activity towards N-acetylmethionine was, however, solely confined to the fractions containing the truncated form of CAL-A. These fractions were also found to contain a trace enzyme impurity identified in sequence analysis as a serine carboxypeptidase. The possible role of catalytic impurities versus the function of CAL-A in amide bond hydrolysis is further discussed in the paper.

  12. Chemical constituents from red algae Bostrychia radicans (Rhodomelaceae): new amides and phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ana Ligia Leandrini de; Silva, Denise B. da; Lopes, Norberto P.; Debonsi, Hosana M. [Universidade de Sao Paulo (FCFRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Ciencias Farmaceuticas de Ribeirao Preto. Dept. de Quimica e Fisica; Yokoya, Nair S., E-mail: hosana@fcfrp.usp.br [Instituto de Botanica, Sao Paulo, SP (Brazil). Secao de Ficologia

    2012-07-01

    This study describes the isolation and structural determination of two amides, isolated for the first time: N,4-dihydroxy-N-(2'-hydroxyethyl)-benzamide (0.019%) and N,4-dihydroxy-N-(2'-hydroxyethyl)-benzeneacetamide (0.023%). These amides, produced by the red macroalgae Bostrychia radicans, had their structures assigned by NMR spectral data and MS analyses. In addition, this chemical study led to the isolation of cholesterol, heptadecane, squalene, trans-phytol, neophytadiene, tetradecanoic and hexadecanoic acids, methyl hexadecanoate and methyl 9-octadecenoate, 4-(methoxymethyl)-phenol, 4-hydroxybenzaldehyde, methyl 4-hydroxybenzeneacetate, methyl 2-hydroxy-3-(4-hydroxyphenyl)-propanoate, hydroquinone, methyl 4-hydroxymandelate, methyl 4-hydroxybenzoate, 4-hydroxybenzeneacetic acid and (4-hydroxyphenyl)-oxo-acetaldehyde. This is the first report concerning these compounds in B. radicans, contributing by illustrating the chemical diversity within the Rhodomelaceae family. (author)

  13. Chemical constituents from red algae Bostrychia radicans (Rhodomelaceae: new amides and phenolic compounds

    Directory of Open Access Journals (Sweden)

    Ana Lígia Leandrini de Oliveira

    2012-01-01

    Full Text Available This study describes the isolation and structural determination of two amides, isolated for the first time: N,4-dihydroxy-N-(2'-hydroxyethyl-benzamide (0.019% and N,4-dihydroxy-N-(2'-hydroxyethyl-benzeneacetamide (0.023%. These amides, produced by the red macroalgae Bostrychia radicans, had their structures assigned by NMR spectral data and MS analyses. In addition, this chemical study led to the isolation of cholesterol, heptadecane, squalene, trans-phytol, neophytadiene, tetradecanoic and hexadecanoic acids, methyl hexadecanoate and methyl 9-octadecenoate, 4-(methoxymethyl-phenol, 4-hydroxybenzaldehyde, methyl 4-hydroxybenzeneacetate, methyl 2-hydroxy-3-(4-hydroxyphenyl-propanoate, hydroquinone, methyl 4-hydroxymandelate, methyl 4-hydroxybenzoate, 4-hydroxybenzeneacetic acid and (4-hydroxyphenyl-oxo-acetaldehyde. This is the first report concerning these compounds in B. radicans, contributing by illustrating the chemical diversity within the Rhodomelaceae family.

  14. Luciferin Amides Enable in Vivo Bioluminescence Detection of Endogenous Fatty Acid Amide Hydrolase Activity.

    Science.gov (United States)

    Mofford, David M; Adams, Spencer T; Reddy, G S Kiran Kumar; Reddy, Gadarla Randheer; Miller, Stephen C

    2015-07-15

    Firefly luciferase is homologous to fatty acyl-CoA synthetases. We hypothesized that the firefly luciferase substrate d-luciferin and its analogs are fatty acid mimics that are ideally suited to probe the chemistry of enzymes that release fatty acid products. Here, we synthesized luciferin amides and found that these molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fatty acid amide hydrolase (FAAH). In the presence of luciferase, these molecules enable highly sensitive and selective bioluminescent detection of FAAH activity in vitro, in live cells, and in vivo. The potency and tissue distribution of FAAH inhibitors can be imaged in live mice, and luciferin amides serve as exemplary reagents for greatly improved bioluminescence imaging in FAAH-expressing tissues such as the brain.

  15. Dynamics of urokinase receptor interaction with Peptide antagonists studied by amide hydrogen exchange and mass spectrometry

    DEFF Research Database (Denmark)

    Jørgensen, Thomas J D; Gårdsvoll, Henrik; Danø, Keld

    2004-01-01

    Using amide hydrogen exchange combined with electrospray ionization mass spectrometry, we have in this study determined the number of amide hydrogens on several peptides that become solvent-inaccessible as a result of their high-affinity interaction with the urokinase-type plasminogen activator...... receptor (uPAR). These experiments reveal that at least six out of eight amide hydrogens in a synthetic nine-mer peptide antagonist (AE105) become sequestered upon engagement in uPAR binding. Various uPAR mutants with decreased affinity for this peptide antagonist gave similar results, thereby indicating...... that deletion of the favorable interactions involving the side chains of these residues in uPAR does not affect the number of hydrogen bonds established by the main chain of the peptide ligand. The isolated growth factor-like domain (GFD) of the cognate serine protease ligand for uPAR showed 11 protected amide...

  16. Benchmarking lithium amide versus amine bonding by charge density and energy decomposition analysis arguments.

    Science.gov (United States)

    Engelhardt, Felix; Maaß, Christian; Andrada, Diego M; Herbst-Irmer, Regine; Stalke, Dietmar

    2018-03-28

    Lithium amides are versatile C-H metallation reagents with vast industrial demand because of their high basicity combined with their weak nucleophilicity, and they are applied in kilotons worldwide annually. The nuclearity of lithium amides, however, modifies and steers reactivity, region- and stereo-selectivity and product diversification in organic syntheses. In this regard, it is vital to understand Li-N bonding as it causes the aggregation of lithium amides to form cubes or ladders from the polar Li-N covalent metal amide bond along the ring stacking and laddering principle. Deaggregation, however, is more governed by the Li←N donor bond to form amine adducts. The geometry of the solid state structures already suggests that there is σ- and π-contribution to the covalent bond. To quantify the mutual influence, we investigated [{(Me 2 NCH 2 ) 2 (C 4 H 2 N)}Li] 2 ( 1 ) by means of experimental charge density calculations based on the quantum theory of atoms in molecules (QTAIM) and DFT calculations using energy decomposition analysis (EDA). This new approach allows for the grading of electrostatic Li + N - , covalent Li-N and donating Li←N bonding, and provides a way to modify traditional widely-used heuristic concepts such as the -I and +I inductive effects. The electron density ρ ( r ) and its second derivative, the Laplacian ∇ 2 ρ ( r ), mirror the various types of bonding. Most remarkably, from the topological descriptors, there is no clear separation of the lithium amide bonds from the lithium amine donor bonds. The computed natural partial charges for lithium are only +0.58, indicating an optimal density supply from the four nitrogen atoms, while the Wiberg bond orders of about 0.14 au suggest very weak bonding. The interaction energy between the two pincer molecules, (C 4 H 2 N) 2 2- , with the Li 2 2+ moiety is very strong ( ca. -628 kcal mol -1 ), followed by the bond dissociation energy (-420.9 kcal mol -1 ). Partitioning the interaction energy

  17. Indoline Amide Glucosides from Portulaca oleracea: Isolation, Structure, and DPPH Radical Scavenging Activity.

    Science.gov (United States)

    Jiao, Ze-Zhao; Yue, Su; Sun, Hong-Xiang; Jin, Tian-Yun; Wang, Hai-Na; Zhu, Rong-Xiu; Xiang, Lan

    2015-11-25

    A polyamide column chromatography method using an aqueous ammonia mobile phase was developed for large-scale accumulation of water-soluble indoline amide glucosides from a medicinal plant, Portulaca oleracea. Ten new [oleraceins H, I, K, L, N, O, P, Q, R, S (1-10)] and four known [oleraceins A-D (11-14)] indoline amide glucosides were further purified and structurally characterized by various chromatographic and spectroscopic methods. The DPPH radical scavenging activities of oleraceins K (5) and L (6), with EC50 values of 15.30 and 16.13 μM, respectively, were twice that of a natural antioxidant, vitamin C; the EC50 values of the 12 other indoline amides, which ranged from 29.05 to 43.52 μM, were similar to that of vitamin C. Structure-activity relationships indicated that the DPPH radical scavenging activities of these indoline amides correlate with the numbers and positions of the phenolic hydroxy groups.

  18. Rational design and synthesis of an orally bioavailable peptide guided by NMR amide temperature coefficients

    Science.gov (United States)

    Wang, Conan K.; Northfield, Susan E.; Colless, Barbara; Chaousis, Stephanie; Hamernig, Ingrid; Lohman, Rink-Jan; Nielsen, Daniel S.; Schroeder, Christina I.; Liras, Spiros; Price, David A.; Fairlie, David P.; Craik, David J.

    2014-01-01

    Enhancing the oral bioavailability of peptide drug leads is a major challenge in drug design. As such, methods to address this challenge are highly sought after by the pharmaceutical industry. Here, we propose a strategy to identify appropriate amides for N-methylation using temperature coefficients measured by NMR to identify exposed amides in cyclic peptides. N-methylation effectively caps these amides, modifying the overall solvation properties of the peptides and making them more membrane permeable. The approach for identifying sites for N-methylation is a rapid alternative to the elucidation of 3D structures of peptide drug leads, which has been a commonly used structure-guided approach in the past. Five leucine-rich peptide scaffolds are reported with selectively designed N-methylated derivatives. In vitro membrane permeability was assessed by parallel artificial membrane permeability assay and Caco-2 assay. The most promising N-methylated peptide was then tested in vivo. Here we report a novel peptide (15), which displayed an oral bioavailability of 33% in a rat model, thus validating the design approach. We show that this approach can also be used to explain the notable increase in oral bioavailability of a somatostatin analog. PMID:25416591

  19. Accuracy of the paracetamol-aminotransferase product to predict hepatotoxicity in paracetamol overdose treated with a 2-bag acetylcysteine regimen.

    Science.gov (United States)

    Wong, Anselm; Sivilotti, Marco L A; Gunja, Naren; McNulty, Richard; Graudins, Andis

    2018-03-01

    Paracetamol concentration is a highly accurate risk predictor for hepatotoxicity following overdose with known time of ingestion. However, the paracetamol-aminotransferase multiplication product can be used as a risk predictor independent of timing or ingestion type. Validated in patients treated with the traditional, "three-bag" intravenous acetylcysteine regimen, we evaluated the accuracy of the multiplication product in paracetamol overdose treated with a two-bag acetylcysteine regimen. We examined consecutive patients treated with the two-bag regimen from five emergency departments over a two-year period. We assessed the predictive accuracy of initial multiplication product for the primary outcome of hepatotoxicity (peak alanine aminotransferase ≥1000IU/L), as well as for acute liver injury (ALI), defined peak alanine aminotransferase ≥2× baseline and above 50IU/L). Of 447 paracetamol overdoses treated with the two-bag acetylcysteine regimen, 32 (7%) developed hepatotoxicity and 73 (16%) ALI. The pre-specified cut-off points of 1500 mg/L × IU/L (sensitivity 100% [95% CI 82%, 100%], specificity 62% [56%, 67%]) and 10,000 mg/L × IU/L (sensitivity 70% [47%, 87%], specificity of 97% [95%, 99%]) were highly accurate for predicting hepatotoxicity. There were few cases of hepatotoxicity irrespective of the product when acetylcysteine was administered within eight hours of overdose, when the product was largely determined by a high paracetamol concentration but normal aminotransferase. The multiplication product accurately predicts hepatotoxicity when using a two-bag acetylcysteine regimen, especially in patients treated more than eight hours post-overdose. Further studies are needed to assess the product as a method to adjust for exposure severity when testing efficacy of modified acetylcysteine regimens.

  20. How amide hydrogens exchange in native proteins

    Science.gov (United States)

    Persson, Filip; Halle, Bertil

    2015-01-01

    Amide hydrogen exchange (HX) is widely used in protein biophysics even though our ignorance about the HX mechanism makes data interpretation imprecise. Notably, the open exchange-competent conformational state has not been identified. Based on analysis of an ultralong molecular dynamics trajectory of the protein BPTI, we propose that the open (O) states for amides that exchange by subglobal fluctuations are locally distorted conformations with two water molecules directly coordinated to the N–H group. The HX protection factors computed from the relative O-state populations agree well with experiment. The O states of different amides show little or no temporal correlation, even if adjacent residues unfold cooperatively. The mean residence time of the O state is ∼100 ps for all examined amides, so the large variation in measured HX rate must be attributed to the opening frequency. A few amides gain solvent access via tunnels or pores penetrated by water chains including native internal water molecules, but most amides access solvent by more local structural distortions. In either case, we argue that an overcoordinated N–H group is necessary for efficient proton transfer by Grotthuss-type structural diffusion. PMID:26195754

  1. Recyclable Polymer-Supported Terpyridine–Palladium Complex for the Tandem Aminocarbonylation of Aryl Iodides to Primary Amides in Water Using NaN3 as Ammonia Equivalent

    Directory of Open Access Journals (Sweden)

    Toshimasa Suzuka

    2017-04-01

    Full Text Available Primary aromatic amides are valuable compounds, which are generally prepared via Beckmann rearrangement of oximes and the hydration of nitriles in organic solvents. We investigated the environmentally friendly catalytic aminocarbonylation in water. Thus, a novel heterogeneous transition-metal catalyst, a polymer-supported terpyridine–palladium(II complex, was prepared and found to promote azidocarbonylation of aryl iodides with NaN3 and to reduce the generated benzoyl azides in water under CO gas to yield primary aryl amides with high to excellent yield in a one-pot reaction. The catalyst was recovered and reused several times with no loss of catalytic activity.

  2. Protective effect of N-Acetylcysteine against ethanol-induced gastric ulcer: a pharmacological assessment in mice

    Directory of Open Access Journals (Sweden)

    Ausama Ayoob Jaccob

    2015-06-01

    Aim: Since there is an increasing need for gastric ulcer therapies with optimum benefit-risk profile. This study was conducted to investigate gastro-protective effects of N-Acetylcysteine (NAC against ethanol-induced gastric ulcer models in mice. Materials and Methods: Forty-two mice were allocated into six groups consisting of 7 mice each. Groups 1 (normal control and 2 (ulcer control received distilled water at a dose of 10 ml/kg, groups 3, 4 and 5 were given NAC at doses 100, 300 and 500 mg/kg, respectively, and the 6th group received ranitidine (50 mg/kg. All drugs administered orally once daily for 7 days, on the 8th day absolute ethanol (7 ml/kg was administrated orally to all mice to induce the acute ulcer except normal control group. Then 3 h after, all animals were sacrificed then consequently the stomachs were excised for examination. Results: NAC administration at the tested doses showed a dose-related potent gastro-protective effect with significant increase in curative ratio, PH of gastric juice and mucus content viscosity seen with the highest dose of NAC and it is comparable with that observed in ranitidine group. Conclusion: The present findings demonstrate that, oral NAC shows significant gastro-protective effects comparable to ranitidine confirmed by antisecretory, cytoprotective, histological and biochemical data but the molecular mechanisms behind such protection are complex. [J Intercult Ethnopharmacol 2015; 4(2.000: 90-95

  3. Steric effects in release of amides from linkers in solid-phase synthesis. Molecular mechanics modeling of key step in peptide and combinatorial chemistry

    DEFF Research Database (Denmark)

    Norrby, Per-Ola; Jensen, Knud Jørgen

    2006-01-01

    Acidolytic release of an amide from a solid support by C-N bond cleavage is all ubiquitous and crucial step in many solid-phase syntheses. We have used molecular modeling of a pseudo-equilibrium to explore substituent and steric effects in the release of peptides. The high acid-lability of the ba......Acidolytic release of an amide from a solid support by C-N bond cleavage is all ubiquitous and crucial step in many solid-phase syntheses. We have used molecular modeling of a pseudo-equilibrium to explore substituent and steric effects in the release of peptides. The high acid......-lability of the backbone amide linkage (BAL), which releases sec. amides, compared to C-terminal amide anchoring, which releases primary amides, was rationalized by steric relief upon cleavage. Thus, the relative stability of the carbenium ion formed from the linker in the acidolytic release is an insufficient measure...

  4. Poly(ester-amide)s derived from PET containing uniform bisester amide segments

    OpenAIRE

    Ascanio Nuñez, Yanireth

    2013-01-01

    Poly(ethylene terephthalate) has experienced a growth in its demand as a bottle container and food packaging material. However, in order to expand its uses, its barrier properties to gases like carbon dioxide and oxygen, have to be improved. In this way, bisester amide units have been introduced as a third component in the main chain of PET, with the aim to reduce both CO2 and O2 permeability. In this project, poly(ester-amide)s based on PET (PETxMXy) have been synthesized, according to th...

  5. N-Acetylcysteine for Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials

    Directory of Open Access Journals (Sweden)

    Divyesh Thakker

    2015-01-01

    Full Text Available Objective. To review the benefits and harms of N-acetylcysteine (NAC in women with polycystic ovary syndrome (PCOS. Method. Literature search was conducted using the bibliographic databases, MEDLINE (Ovid, CINAHL, EMBASE, Scopus, PsyInfo, and PROQUEST (from inception to September 2013 for the studies on women with PCOS receiving NAC. Results. Eight studies with a total of 910 women with PCOS were randomized to NAC or other treatments/placebo. There were high risk of selection, performance, and attrition bias in two studies and high risk of reporting bias in four studies. Women with NAC had higher odds of having a live birth, getting pregnant, and ovulation as compared to placebo. However, women with NAC were less likely to have pregnancy or ovulation as compared to metformin. There was no significant difference in rates of the miscarriage, menstrual regulation, acne, hirsutism, and adverse events, or change in body mass index, testosterone, and insulin levels with NAC as compared to placebo. Conclusions. NAC showed significant improvement in pregnancy and ovulation rate as compared to placebo. The findings need further confirmation in well-designed randomized controlled trials to examine clinical outcomes such as live birth rate in longer follow-up periods. Systematic review registration number is CRD42012001902.

  6. The efficacy of N-acetylcysteine as an adjunctive treatment in bipolar depression: an open label trial.

    Science.gov (United States)

    Berk, Michael; Dean, Olivia; Cotton, Sue M; Gama, Clarissa S; Kapczinski, Flavio; Fernandes, Brisa S; Kohlmann, Kristy; Jeavons, Susan; Hewitt, Karen; Allwang, Christine; Cobb, Heidi; Bush, Ashley I; Schapkaitz, Ian; Dodd, Seetal; Malhi, Gin S

    2011-12-01

    Evidence is accumulating to support the presence of redox dysregulation in a number of psychiatric disorders, including bipolar disorder. This dysregulation may be amenable to therapeutic intervention. Glutathione is the predominant non-enzymatic intracellular free radical scavenger in the brain, and the most generic of all endogenous antioxidants in terms of action. N-acetylcysteine (NAC) is a glutathione precursor that effectively replenishes brain glutathione. Given the failure of almost all modern trials of antidepressants in bipolar disorder to demonstrate efficacy, and the limited efficacy of mood stabilisers in the depressive phase of the disorder, this is a major unmet need. This study reports data on the treatment of 149 individuals with moderate depression during the 2 month open label phase of a randomised placebo controlled clinical trial of the efficacy of 1g BID of NAC that examined the use of NAC as a maintenance treatment for bipolar disorder. In this trial, the estimated mean baseline Bipolar Depression Rating Scale (BDRS) score was 19.7 (SE=0.8), and the mean BDRS score at the end of the 8 week open label treatment phase was 11.1 (SE=0.8). This reduction was statistically significant (pdepression scores with NAC treatment. Large placebo controlled trials of acute bipolar depression are warranted. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Successful use of N-acetylcysteine to treat severe hepatic injury caused by a dietary fitness supplement.

    Science.gov (United States)

    El Rahi, Cynthia; Thompson-Moore, Nathaniel; Mejia, Patricia; De Hoyos, Patricio

    2015-06-01

    In the absence of adequate premarketing efficacy and safety evaluations, adverse events from over-the-counter supplements are emerging as a public health concern. Specifically, bodybuilding products are being identified as a frequent cause of drug-induced liver injury. We present a case of a 20-year-old Hispanic male who presented with acute nausea and vomiting accompanied by severe right upper quadrant abdominal pain, shivering, and shortness of breath. Laboratory data pointed to mixed cholestatic and hepatocellular damage, and after exclusion of known alternate etiologies, the patient was diagnosed with acute drug-induced liver injury secondary to the use of "Friction," a bodybuilding supplement. Treatment with N-acetylcysteine (NAC) 20% oral solution was initiated empirically at a dose of 4000 mg [DOSAGE ERROR CORRECTED] (70 mg/kg) every 4 hours and was continued once the diagnosis was made. Within 48 hours of admission to our hospital, the patient began to show clinical resolution of right abdominal pain and tolerance to oral diet associated with a significant decline toward normal in his liver function tests and coagulopathy. The WHO-UMC causality assessment system suggested a "certain causality" between exposure to the supplement and the acute liver injury. In the event of suspected drug-induced liver injury, treatment with NAC should be considered given its favorable risk-benefit profile. © 2015 Pharmacotherapy Publications, Inc.

  8. Shear and dielectric responses of propylene carbonate, tripropylene glycol, and a mixture of two secondary amides

    DEFF Research Database (Denmark)

    Gainaru, Catalin; Hecksher, Tina; Olsen, Niels Boye

    2012-01-01

    Propylene carbonate and a mixture of two secondary amides, N-ethylformamide and Nethylacetamide, are investigated by means of broadband dielectric and mechanical shear spectroscopy. The similarities between the rheological and the dielectric responses of these liquids and of the previously invest...... in the secondary amides. In addition, the predictions of the shoving model are confirmed for the investigated liquids...

  9. In situ Generated Ruthenium Catalyst Systems Bearing Diverse N-Heterocyclic Carbene Precursors for Atom-Economic Amide Synthesis from Alcohols and Amines.

    Science.gov (United States)

    Cheng, Hua; Xiong, Mao-Qian; Cheng, Chuan-Xiang; Wang, Hua-Jing; Lu, Qiang; Liu, Hong-Fu; Yao, Fu-Bin; Chen, Cheng; Verpoort, Francis

    2018-02-16

    The transition-metal-catalyzed direct synthesis of amides from alcohols and amines is herein demonstrated as a highly environmentally benign and atom-economic process. Among various catalyst systems, in situ generated N-heterocyclic carbene (NHC)-based ruthenium (Ru) halide catalyst systems have been proven to be active for this transformation. However, these existing catalyst systems usually require an additional ligand to achieve satisfactory results. In this work, through extensive screening of a diverse variety of NHC precursors, we discovered an active in situ catalyst system for efficient amide synthesis without any additional ligand. Notably, this catalyst system was found to be insensitive to the electronic effects of the substrates, and various electron-deficient substrates, which were not highly reactive with our previous catalyst systems, could be employed to afford the corresponding amides efficiently. Furthermore, mechanistic investigations were performed to provide a rationale for the high activity of the optimized catalyst system. NMR-scale reactions indicated that the rapid formation of a Ru hydride intermediate (signal at δ=-7.8 ppm in the 1 H NMR spectrum) after the addition of the alcohol substrate should be pivotal in establishing the high catalyst activity. Besides, HRMS analysis provided possible structures of the in situ generated catalyst system. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Enzymatically and reductively degradable α-amino acid-based poly(ester amide)s: synthesis, cell compatibility, and intracellular anticancer drug delivery.

    Science.gov (United States)

    Sun, Huanli; Cheng, Ru; Deng, Chao; Meng, Fenghua; Dias, Aylvin A; Hendriks, Marc; Feijen, Jan; Zhong, Zhiyuan

    2015-02-09

    A novel and versatile family of enzymatically and reductively degradable α-amino acid-based poly(ester amide)s (SS-PEAs) were developed from solution polycondensation of disulfide-containing di-p-toluenesulfonic acid salts of bis-l-phenylalanine diesters (SS-Phe-2TsOH) with di-p-nitrophenyl adipate (NA) in N,N-dimethylformamide (DMF). SS-PEAs with Mn ranging from 16.6 to 23.6 kg/mol were obtained, depending on NA/SS-Phe-2TsOH molar ratios. The chemical structures of SS-PEAs were confirmed by (1)H NMR and FTIR spectra. Thermal analyses showed that the obtained SS-PEAs were amorphous with a glass transition temperature (Tg) in the range of 35.2-39.5 °C. The in vitro degradation studies of SS-PEA films revealed that SS-PEAs underwent surface erosion in the presence of 0.1 mg/mL α-chymotrypsin and bulk degradation under a reductive environment containing 10 mM dithiothreitol (DTT). The preliminary cell culture studies displayed that SS-PEA films could well support adhesion and proliferation of L929 fibroblast cells, indicating that SS-PEAs have excellent cell compatibility. The nanoparticles prepared from SS-PEA with PVA as a surfactant had an average size of 167 nm in phosphate buffer (PB, 10 mM, pH 7.4). SS-PEA nanoparticles while stable under physiological environment undergo rapid disintegration under an enzymatic or reductive condition. The in vitro drug release studies showed that DOX release was accelerated in the presence of 0.1 mg/mL α-chymotrypsin or 10 mM DTT. Confocal microscopy observation displayed that SS-PEA nanoparticles effectively transported DOX into both drug-sensitive and -resistant MCF-7 cells. MTT assays revealed that DOX-loaded SS-PEA nanoparticles had a high antitumor activity approaching that of free DOX in drug-sensitive MCF-7 cells, while more than 10 times higher than free DOX in drug-resistant MCF-7/ADR cells. These enzymatically and reductively degradable α-amino acid-based poly(ester amide)s have provided an appealing platform for

  11. Nickel-Catalyzed Reductive Transamidation of Secondary Amides with Nitroarenes

    OpenAIRE

    Cheung, Chi Wai; Ploeger, Marten Leendert; Hu, Xile

    2017-01-01

    Transmidation is an attractive method for amide synthesis. However, transamidation of secondary amides is challenging. Here, we describe a reductive transamidation method that employs readily available nitro(hetero)arenes as the nitrogen sources, zinc or manganese as reductant, and simple nickel salt and ligand as a catalyst system. The scope of amides includes both alkyl and aryl secondary amides, with high functional group compatibility.

  12. Design, synthesis, and evaluation of caffeic acid amides as synergists to sensitize fluconazole-resistant Candida albicans to fluconazole.

    Science.gov (United States)

    Dai, Li; Zang, Chengxu; Tian, Shujuan; Liu, Wei; Tan, Shanlun; Cai, Zhan; Ni, Tingjunhong; An, Maomao; Li, Ran; Gao, Yue; Zhang, Dazhi; Jiang, Yuanying

    2015-01-01

    A series of caffeic acid amides were designed, synthesized, and their synergistic activity with fluconazole against fluconazole-resistant Candida albicans was evaluated in vitro. The title caffeic acid amides 3-30 except 26 exhibited potent activity, and the subsequent SAR study was conducted. Compound 3, 5, 21, and 34c, at a concentration of 1.0 μg/ml, decreased the MIC₈₀ of fluconazole from 128.0 μg/ml to 1.0-0.5 μg/ml against the fluconazole-resistant C. albicans. This result suggests that the caffeic acid amides, as synergists, can sensitize drug-resistant fungi to fluconazole. The SAR study indicated that the dihydroxyl groups and the amido groups linking to phenyl or heterocyclic rings are the important pharmacophores of the caffeic acid amides.

  13. N-caffeoyltryptomine, a potent anti-inflammatory phenolic amide, suppressed MCP-1 expression in LPS-stimulated THP-1 cells and rats fed with a high fat diet

    Science.gov (United States)

    Monocyte chemoattractant protein-1 (MCP-1) is a well-known chemokine critically involved in the pathophysiological progression of cardiovascular diseases such as arthrosclerosis. N-caffeoyltryptamine is a phenolic amide with strong anti-inflammatory effects. Therefore, in this paper, the potential e...

  14. N-acetylcysteine fails to modulate the in vitro function of sarcoplasmic reticulum of diaphragm in the final phase of fatigue.

    Science.gov (United States)

    Mishima, T; Yamada, T; Matsunaga, S; Wada, M

    2005-07-01

    In the present study, we tested the hypothesis whether N-acetylcysteine (NAC), a non-specific antioxidant, might influence fatigue by modulating Ca2+-handling capacity by the sarcoplasmic reticulum (SR). In the presence (10 mm) or absence of NAC, bundles of rat diaphragm were stimulated with tetanic trains (350 ms, 30-40 Hz) at 1 train every 2 s for 300 s. SR functions, as assessed by SR Ca2+-uptake and release rates and SR Ca2+-ATPase activity, were measured in vitro on muscle homogenates. Following the 300-s stimulation, the force developed by NAC-treated muscles is approximately 1.8-fold higher (P depression in SR function (P < 0.05). Despite the differing degrees of fatigue between NAC-treated and non-treated muscles, SR functions in these muscles were reduced to similar extents. These results suggest that modulation of SR function measured in vitro may not be a major contributor to inhibition of diaphragmic fatigue with antioxidant, at least, in the final phase of fatigue where force output is remarkably reduced.

  15. Mesoporous Niobium Oxide Spheres as an Effective Catalyst for the Transamidation of Primary Amides with Amines

    KAUST Repository

    Ghosh, Subhash Chandra; Li, Cheng Chao; Zeng, Hua Chun; Ngiam, Joyce S Y; Seayad, Abdul M.; Chen, Anqi

    2014-01-01

    Mesoporous niobium oxide spheres (MNOS), conveniently prepared by a novel antisolvent precipitation approach, have been shown to be an effective catalyst for the transamidation of primary amides with amines. This novel transamidation can be efficiently carried out under solvent-free conditions and is applicable to a wide range of primary amides and amines to provide N-alkyl amides in good to excellent yields. The catalyst is highly stable and reusable. The application of this transamidation reaction has been demonstrated in the synthesis of antidepressant drug moclobemide and other druglike compounds. © 2014 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  16. Stereoelectronic model to explain the resolution of enantiomeric ibuprofen amides on the Pirkle chiral stationary phase.

    Science.gov (United States)

    Nicoll-Griffith, D A

    1987-07-31

    A chiral recognition model is proposed which incorporates the electronic and steric interactions between amide derivatives of ibuprofen and the (R)-N-(3,5-dinitrobenzoyl)phenylglycine-derived Pirkle chiral stationary phase during high-performance liquid chromatography. Based on this rationale, amide derivatives of ibuprofen were prepared using 4-chloroaniline, 4-bromoaniline, aniline, 4-methoxyaniline and 1-aminonaphthylene to improve the enantiomer separation over previously reported results with this column. The amides prepared gave separation values of 1.16, 1.16, 1.19, 1.21 and 1.23, respectively. These high separation values are consistent with the proposed model.

  17. Mesoporous Niobium Oxide Spheres as an Effective Catalyst for the Transamidation of Primary Amides with Amines

    KAUST Repository

    Ghosh, Subhash Chandra

    2014-02-06

    Mesoporous niobium oxide spheres (MNOS), conveniently prepared by a novel antisolvent precipitation approach, have been shown to be an effective catalyst for the transamidation of primary amides with amines. This novel transamidation can be efficiently carried out under solvent-free conditions and is applicable to a wide range of primary amides and amines to provide N-alkyl amides in good to excellent yields. The catalyst is highly stable and reusable. The application of this transamidation reaction has been demonstrated in the synthesis of antidepressant drug moclobemide and other druglike compounds. © 2014 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  18. 2,4-dimethoxybenzyl: An amide protecting group for 2-acetamido glycosyl donors

    DEFF Research Database (Denmark)

    Kelly, N.M.; Jensen, Knud Jørgen

    2001-01-01

    2,4-Dimethoxybenzyl (Dmob) was used as an amide protecting group for 2-acetamido glycosyl donors. The N-Dmob group was introduced by imine formation between 2,4-dimethoxybenzaldehyde and d-glucosamine, followed by per-O-acylation, reduction to form the amine, and finally N-acetylation to give 1...

  19. Amide proton transfer imaging of high intensity focused ultrasound-treated tumor tissue

    NARCIS (Netherlands)

    Hectors, S.J.C.G.; Jacobs, I.; Strijkers, G.J.; Nicolay, K.

    2014-01-01

    Purpose: In this study, the suitability of amide proton transfer (APT) imaging as a biomarker for the characterization of high intensity focused ultrasound (HIFU)-treated tumor tissue was assessed. Methods: APT imaging was performed on tumor-bearing mice before (n=15), directly after (n=15) and at 3

  20. Amide Proton Transfer Imaging of High Intensity Focused Ultrasound-Treated Tumor Tissue

    NARCIS (Netherlands)

    Hectors, Stefanie J. C. G.; Jacobs, Igor; Strijkers, Gustav J.; Nicolay, Klaas

    2014-01-01

    PurposeIn this study, the suitability of amide proton transfer (APT) imaging as a biomarker for the characterization of high intensity focused ultrasound (HIFU)-treated tumor tissue was assessed. MethodsAPT imaging was performed on tumor-bearing mice before (n=15), directly after (n=15) and at 3

  1. Insight into the SEA amide thioester equilibrium. Application to the synthesis of thioesters at neutral pH.

    Science.gov (United States)

    Pira, S L; El Mahdi, O; Raibaut, L; Drobecq, H; Dheur, J; Boll, E; Melnyk, O

    2016-07-26

    The bis(2-sulfanylethyl)amide (SEA) N,S-acyl shift thioester surrogate has found a variety of useful applications in the field of protein total synthesis. Here we present novel insights into the SEA amide/thioester equilibrium in water which is an essential step in any reaction involving the thioester surrogate properties of the SEA group. We also show that the SEA amide thioester equilibrium can be efficiently displaced at neutral pH for accessing peptide alkylthioesters, i.e. the key components of the native chemical ligation (NCL) reaction.

  2. The Role of Prophylactic Ibuprofen and N-Acetylcysteine on the Level of Cytokines in Periapical Exudates and the Post-Treatment Pain

    Directory of Open Access Journals (Sweden)

    Seyyed Mohsen Aghajanpour Mir

    2012-09-01

    Full Text Available Background Periapical lesions are inflammatory diseases that result in periapical bone destruction because of host defensive-microbial disturbances. Objective:To evaluate the role of prophylactic ibuprofen and N-acetylcysteine (NAC on the levels of tumor necrosis factor alpha (TNF- alpha, interleukin- 6(IL-6 and IL-17 and post-treatment pain level in chronic periapical lesions. Materials and methods Eighty patients with chronic apical lesions less than 1 cm were randomly assigned to receive NAC tablets (400 mg, ibuprofen tablets (400 mg, NAC (400 mg/ibuprofen (200 mg combination and placebo 90 minutes prior to sampling. Periapical exudates were collected from root canals. TNF- alpha, IL-6 and IL-17 levels were determined by ELISA and posttreatment pain was assessed using a visual analog scale (VAS. Results:There was a significant difference in IL-6 level between ibuprofen group and placebo (p = 0.019. Significant difference in IL-17 level was observed between NAC/ibuprofen combination group and placebo (p = 0.043. Four hours after treatment, a significant difference was observed in VAS pain score between ibuprofen group and placebo (p = 0.017. Eight hours post-treatment, VAS pain score for NAC group was statistically lower than placebo group (p = 0.033. After 12 hours VAS pain score showed a significant decrease in NAC group compared to placebo (p = 0.049. Conclusion:The prophylactic ibuprofen and NAC failed to clearly reflect their effect on cytokines levels in exudates of chronic periapical lesions. On the other hand it seems that NAC can be a substitute for ibuprofen in the management of post endodontic pain

  3. The role of prophylactic ibuprofen and N-acetylcysteine on the level of cytokines in periapical exudates and the post-treatment pain

    Directory of Open Access Journals (Sweden)

    Ehsani Maryam

    2012-09-01

    Full Text Available Abstract Background Periapical lesions are inflammatory diseases that result in periapical bone destruction because of host defensive–microbial disturbances. Objective To evaluate the role of prophylactic ibuprofen and N-acetylcysteine (NAC on the levels of tumor necrosis factor alpha (TNF- α, interleukin- 6(IL-6 and IL-17 and post-treatment pain level in chronic periapical lesions. Materials and methods Eighty patients with chronic apical lesions less than 1 cm were randomly assigned to receive NAC tablets (400 mg, ibuprofen tablets (400 mg, NAC (400 mg/ibuprofen (200 mg combination and placebo 90 minutes prior to sampling. Periapical exudates were collected from root canals. TNF- α, IL-6 and IL-17 levels were determined by ELISA and post-treatment pain was assessed using a visual analog scale (VAS. Results There was a significant difference in IL-6 level between ibuprofen group and placebo (p = 0.019. Significant difference in IL-17 level was observed between NAC/ibuprofen combination group and placebo (p = 0.043. Four hours after treatment, a significant difference was observed in VAS pain score between ibuprofen group and placebo (p = 0.017. Eight hours post-treatment, VAS pain score for NAC group was statistically lower than placebo group (p = 0.033. After 12 hours VAS pain score showed a significant decrease in NAC group compared to placebo (p = 0.049. Conclusion The prophylactic ibuprofen and NAC failed to clearly reflect their effect on cytokines levels in exudates of chronic periapical lesions. On the other hand it seems that NAC can be a substitute for ibuprofen in the management of post endodontic pain.

  4. Extraction chemistry of actinide cations by N,N-dialkylamides

    International Nuclear Information System (INIS)

    Condamines, N.; Musikas, C.

    1990-01-01

    N,N-dialkylamides are alternate extractants to tributylphosphate, TBP, for the actinides separation in nuclear fuel reprocessing. Extraction mechanisms of UO 2 2+ and Pu 4+ from nitric acid media are investigated for the amides DOBA and DOiBA. For low acidities, amides are neutral extractants. The stoechiometries of UO 2 (NO 3 ) 2 (Amide) 2 (Amide = DOBA or DOiBA), Pu(NO 3 ) 4 (DOBA) 2 are established. A bond between the oxygen of the carbonyl group and the metallic cation is the driving force of the transfer

  5. Synergic effect of Pt-Co nanoparticles and a dopamine derivative in a nanostructured electrochemical sensor for simultaneous determination of N-acetylcysteine, paracetamole and folic acid

    International Nuclear Information System (INIS)

    Karimi-Maleh, Hassan; Hatami, Mehdi; Moradi, Reza; Khalilzadeh, Mohammad A.; Amiri, Sedighe; Sadeghifar, Hasan

    2016-01-01

    A carbon paste electrode (CPE) was modified with Pt-Co nanoparticles and 2-(3,4-dihydroxyphenethyl)isoindoline-1,3-dione (3,4-DHPID) and then used for determination of N-acetylcysteine (N-AC) in the presence of paracetamole (PC) and folic acid (FA). The Pt-Co nanoparticles were synthesized by the polyol method and characterized by X-ray diffraction, energy dispersive X-ray analysis and transmission electron microscopy. The modified CPE displays good electrocatalytic activity towards the electrooxidation of N-AC in solution of pH 7.0. It was applied to the determination of N-AC in the presence of PC and FA (with well separated signals peaking at 0.2, 0.55 and 0.86 V vs. Ag/AgCl) by using square wave voltammetry. The peak currents are linearly dependent on the concentrations of N-AC, PC and FA in the respective ranges from 0.07 to 500, 1.0 to 850, and 2.0 to 550 μmol·L −1 , with detection limits of 0.009, 0.6 and 0.8 μmol·L −1 . The modified CPE was applied to the determination of N-AC, PC and FA in (spiked) pharmaceutical and biological samples. (author)

  6. Pd-Catalyzed Cross-Coupling Reactions of Amides and Aryl Mesylates

    Science.gov (United States)

    Dooleweerdt, Karin; Fors, Brett P.; Buchwald, Stephen L.

    2010-01-01

    A catalyst, based on a biarylphosphine ligand, for the Pd-catalyzed cross-coupling reactions of amides and aryl mesylates is described. This system allows an array of aryl and heteroaryl mesylates to be transformed into the corresponding N-arylamides in moderate to excellent yields. PMID:20420379

  7. Cytotoxic Amides from Fruits of Kawakawa, Macropiper excelsum.

    Science.gov (United States)

    Lei, Jeremy; Burgess, Elaine J; Richardson, Alistair T B; Hawkins, Bill C; Baird, Sarah K; Smallfield, Bruce M; van Klink, John W; Perry, Nigel B

    2015-08-01

    Cytotoxic amides have been isolated from the fruits of the endemic New Zealand medicinal plant kawakawa, Macropiper excelsum (Piperaceae). The main amide was piperchabamide A and this is the first report of this rare compound outside the genus Piper. Eleven other amides were purified including two new compounds with the unusual 3,4-dihydro-1(2H)-pyridinyl group. The new compounds were fully characterized by 2D NMR spectroscopy, which showed a slow exchange between two rotamers about the amide bond, and they were chemically synthesized. In view of the antitumor activity of the related piperlongumine, all of these amides plus four synthetic analogs were tested for cytotoxicity. The most active was the piperine homolog piperdardine, with an IC50 of 14 µM against HT 29 colon cancer cells. Georg Thieme Verlag KG Stuttgart · New York.

  8. Protein proton-proton dynamics from amide proton spin flip rates

    International Nuclear Information System (INIS)

    Weaver, Daniel S.; Zuiderweg, Erik R. P.

    2009-01-01

    Residue-specific amide proton spin-flip rates K were measured for peptide-free and peptide-bound calmodulin. K approximates the sum of NOE build-up rates between the amide proton and all other protons. This work outlines the theory of multi-proton relaxation, cross relaxation and cross correlation, and how to approximate it with a simple model based on a variable number of equidistant protons. This model is used to extract the sums of K-rates from the experimental data. Error in K is estimated using bootstrap methodology. We define a parameter Q as the ratio of experimental K-rates to theoretical K-rates, where the theoretical K-rates are computed from atomic coordinates. Q is 1 in the case of no local motion, but decreases to values as low as 0.5 with increasing domination of sidechain protons of the same residue to the amide proton flips. This establishes Q as a monotonous measure of local dynamics of the proton network surrounding the amide protons. The method is applied to the study of proton dynamics in Ca 2+ -saturated calmodulin, both free in solution and bound to smMLCK peptide. The mean Q is 0.81 ± 0.02 for free calmodulin and 0.88 ± 0.02 for peptide-bound calmodulin. This novel methodology thus reveals the presence of significant interproton disorder in this protein, while the increase in Q indicates rigidification of the proton network upon peptide binding, confirming the known high entropic cost of this process

  9. Poly(ether ester amide)s for tissue engineering

    NARCIS (Netherlands)

    Deschamps, A.A.; van Apeldoorn, Aart A.; de Bruijn, Joost Dick; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    Poly(ether ester amide) (PEEA) copolymers based on poly(ethylene glycol) (PEG), 1,4-butanediol and dimethyl-7,12-diaza-6,13-dione-1,18-octadecanedioate were evaluated as scaffold materials for tissue engineering. A PEEA copolymer based on PEG with a molecular weight of 300 g/mol and 25 wt% of soft

  10. Amide to Alkyne Interconversion via a Nickel/Copper-Catalyzed Deamidative Cross-Coupling of Aryl and Alkenyl Amides.

    Science.gov (United States)

    Srimontree, Watchara; Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Rueping, Magnus

    2017-06-16

    A nickel-catalyzed deamidative cross-coupling reaction of amides with terminal alkynes as coupling partners was disclosed. This newly developed methodology allows the direct interconversion of amides to alkynes and enables a facile route for C(sp2)-C(sp) bond formation in a straightforward and mild fashion.

  11. Amide to Alkyne Interconversion via a Nickel/Copper-Catalyzed Deamidative Cross-Coupling of Aryl and Alkenyl Amides

    KAUST Repository

    Srimontree, Watchara; Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Rueping, Magnus

    2017-01-01

    A nickel-catalyzed deamidative cross-coupling reaction of amides with terminal alkynes as coupling partners was disclosed. This newly developed methodology allows the direct interconversion of amides to alkynes and enables a facile route for C(sp2)-C(sp) bond formation in a straightforward and mild fashion.

  12. Amide to Alkyne Interconversion via a Nickel/Copper-Catalyzed Deamidative Cross-Coupling of Aryl and Alkenyl Amides

    KAUST Repository

    Srimontree, Watchara

    2017-06-05

    A nickel-catalyzed deamidative cross-coupling reaction of amides with terminal alkynes as coupling partners was disclosed. This newly developed methodology allows the direct interconversion of amides to alkynes and enables a facile route for C(sp2)-C(sp) bond formation in a straightforward and mild fashion.

  13. Spray-dried mucoadhesives for intravesical drug delivery using N-acetylcysteine- and glutathione-glycol chitosan conjugates.

    Science.gov (United States)

    Denora, Nunzio; Lopedota, Angela; Perrone, Mara; Laquintana, Valentino; Iacobazzi, Rosa M; Milella, Antonella; Fanizza, Elisabetta; Depalo, Nicoletta; Cutrignelli, Annalisa; Lopalco, Antonio; Franco, Massimo

    2016-10-01

    This work describes N-acetylcysteine (NAC)- and glutathione (GSH)-glycol chitosan (GC) polymer conjugates engineered as potential platform useful to formulate micro-(MP) and nano-(NP) particles via spray-drying techniques. These conjugates are mucoadhesive over the range of urine pH, 5.0-7.0, which makes them advantageous for intravesical drug delivery and treatment of local bladder diseases. NAC- and GSH-GC conjugates were generated with a synthetic approach optimizing reaction times and purification in order to minimize the oxidation of thiol groups. In this way, the resulting amount of free thiol groups immobilized per gram of NAC- and GSH-GC conjugates was 6.3 and 3.6mmol, respectively. These polymers were completely characterized by molecular weight, surface sulfur content, solubility at different pH values, substitution and swelling degree. Mucoadhesion properties were evaluated in artificial urine by turbidimetric and zeta (ζ)-potential measurements demonstrating good mucoadhesion properties, in particular for NAC-GC at pH 5.0. Starting from the thiolated polymers, MP and NP were prepared using both the Büchi B-191 and Nano Büchi B-90 spray dryers, respectively. The resulting two formulations were evaluated for yield, size, oxidation of thiol groups and ex-vivo mucoadhesion. The new spray drying technique provided NP of suitable size (polymers, avoiding thiolic oxidation during the formulation. MP with acceptable size produced by spray-dryer Büchi B-191 were compared with NP made with the apparatus Nano Büchi B-90. Copyright © 2016 Acta Materialia Inc. All rights reserved.

  14. Novel amide derivatives as inhibitors of histone deacetylase: design, synthesis and SAR

    DEFF Research Database (Denmark)

    Andrianov, V.; Gailite, V.; Lola, D.

    2009-01-01

    Enzymatic inhibition of histone deacetylase (HDAC) activity is emerging as an innovative and effective approach for the treatment of cancer. A series of novel amide derivatives have been synthesized and evaluated for their ability to inhibit human HDACs. Multiple compounds were identified as potent...... HDAC inhibitors (HDACi), with IC(50) values in the low nanomolar (nM) range against enzyme activity in HeLa cell extracts and sub-microM for their in vitro anti-proliferative effect on cell lines. The introduction of an unsaturated linking group between the terminal aryl ring and the amide moiety...

  15. Randomized, Double-Blind, Placebo-Controlled Trial of N-Acetylcysteine Augmentation for Treatment-Resistant Obsessive-Compulsive Disorder.

    Science.gov (United States)

    Costa, Daniel L C; Diniz, Juliana B; Requena, Guaraci; Joaquim, Marinês A; Pittenger, Christopher; Bloch, Michael H; Miguel, Euripedes C; Shavitt, Roseli G

    2017-07-01

    To evaluate the efficacy of serotonin reuptake inhibitor (SRI) augmentation with N-acetylcysteine (NAC), a glutamate modulator and antioxidant medication, for treatment-resistant obsessive-compulsive disorder (OCD). We conducted a randomized, double-blind, placebo-controlled, 16-week trial of NAC (3,000 mg daily) in adults (aged 18-65 years) with treatment-resistant OCD, established according to DSM-IV criteria. Forty subjects were recruited at an OCD-specialized outpatient clinic at a tertiary hospital (May 2012-October 2014). The primary outcome measure was the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) scores. To evaluate the variables group, time, and interaction effects for Y-BOCS scores at all time points, we used nonparametric analysis of variance with repeated measures. Secondary outcomes were the severity scores for anxiety, depression, specific OCD symptom dimensions, and insight. Both groups showed a significant reduction of baseline Y-BOCS scores at week 16: the NAC group had a reduction of 4.3 points (25.6 to 21.3), compared with 3.0 points (24.8 to 21.8) for the placebo group. However, there were no significant differences between groups (P = .92). Adding NAC was superior to placebo in reducing anxiety symptoms (P = .02), but not depression severity or specific OCD symptom dimensions. In general, NAC was well tolerated, despite abdominal pain being more frequently reported in the NAC group (n [%]: NAC = 9 [60.0], placebo = 2 [13.3]; P < .01). Our trial did not demonstrate a significant benefit of NAC in reducing OCD severity in treatment-resistant OCD adults. Secondary analysis suggested that NAC might have some benefit in reducing anxiety symptoms in treatment-resistant OCD patients. ClinicalTrials.gov identifier: NCT01555970. © Copyright 2017 Physicians Postgraduate Press, Inc.

  16. N-acetyl lysyltyrosylcysteine amide inhibits myeloperoxidase, a novel tripeptide inhibitor.

    Science.gov (United States)

    Zhang, Hao; Jing, Xigang; Shi, Yang; Xu, Hao; Du, Jianhai; Guan, Tongju; Weihrauch, Dorothee; Jones, Deron W; Wang, Weiling; Gourlay, David; Oldham, Keith T; Hillery, Cheryl A; Pritchard, Kirkwood A

    2013-11-01

    Myeloperoxidase (MPO) plays important roles in disease by increasing oxidative and nitrosative stress and oxidizing lipoproteins. Here we report N-acetyl lysyltyrosylcysteine amide (KYC) is an effective inhibitor of MPO activity. We show KYC inhibits MPO-mediated hypochlorous acid (HOCl) formation and nitration/oxidation of LDL. Disulfide is the major product of MPO-mediated KYC oxidation. KYC (≤4,000 μM) does not induce cytotoxicity in bovine aortic endothelial cells (BAECs). KYC inhibits HOCl generation by phorbol myristate acetate (PMA)-stimulated neutrophils and human promyelocytic leukemia (HL-60) cells but not superoxide generation by PMA-stimulated HL-60 cells. KYC inhibits MPO-mediated HOCl formation in BAEC culture and protects BAECs from MPO-induced injury. KYC inhibits MPO-mediated lipid peroxidation of LDL whereas tyrosine (Tyr) and tryptophan (Trp) enhance oxidation. KYC is unique as its isomers do not inhibit MPO activity, or are much less effective. Ultraviolet-visible spectral studies indicate KYC binds to the active site of MPO and reacts with compounds I and II. Docking studies show the Tyr of KYC rests just above the heme of MPO. Interestingly, KYC increases MPO-dependent H₂O₂ consumption. These data indicate KYC is a novel and specific inhibitor of MPO activity that is nontoxic to endothelial cell cultures. Accordingly, KYC may be useful for treating MPO-mediated vascular disease.

  17. Synthesis, characterization and inhibitory activities of (4-N3[3,5-3H]Phe10)PKI(6-22)amide and its precursors: photoaffinity labeling peptides for the active site of cyclic AMP-dependent protein kinase.

    Science.gov (United States)

    Katz, B M; Lundquist, L J; Walsh, D A; Glass, D B

    1989-06-01

    PKI(6-22)amide is a 17 residue peptide corresponding to the active portion of the heat-stable inhibitor of cAMP-dependent protein kinase. The peptide is a potent (Ki = 1.6 nM), competitive inhibitor of the enzyme. The photoreactive peptide analog (4-azidophenylalanine10)PKI(6-22)amide was synthesized in both its non-radiolabeled and tritiated forms by chemical modification of precursor peptides that were prepared by stepwise solid-phase synthesis. (4-Amino[3,5-3H]phenylalanine10)PKI(6-22)amide, the precursor for the radiolabeled arylazide peptide, was obtained by catalytic reduction of the corresponding peptide containing the 3,5-diiodo-4-aminophenylalanine residue at position 10. The purified PKI peptides were analyzed by HPLC, amino acid analysis, and u.v. spectra. In the dark, (4-azidophenylalanine10)PKI(6-22)amide inhibited the catalytic subunit of cAMP-dependent protein kinase with a Ki value of 2.8 nM. The photoreactivity of the arylazide peptide was demonstrated by time-dependent u.v. spectral changes on exposure to light. Photolysis of the catalytic subunit (4-azido[3,5-3H]phenylalanine10)PKI(6-22)amide complex resulted in specific covalent labeling of the enzyme. The data indicate that this peptide is a useful photoaffinity labeling reagent for the active site of the protein kinase.

  18. Paracetamol (acetaminophen) attenuates in vitro mast cell and peripheral blood mononucleocyte cell histamine release induced by N-acetylcysteine.

    Science.gov (United States)

    Coulson, James; Thompson, John Paul

    2010-02-01

    The treatment of acute paracetamol (acetaminophen) poisoning with N-acetylcysteine (NAC) is frequently complicated by an anaphylactoid reaction to the antidote. The mechanism that underlies this reaction is unclear. We used the human mast cell line 1 (HMC-1) and human peripheral blood mononucleocytes (PBMCs) to investigate the effects of NAC and paracetamol on histamine secretion in vitro. HMC-1 and human PBMCs were incubated in the presence of increasing concentrations of NAC +/- paracetamol. Cell viability was determined by the Trypan Blue Assay, and histamine secretion was measured by ELISA. NAC was toxic to HMC-1 cells at 100 mg/mL and to PBMCs at 67 mg/mL. NAC increased HMC-1 and PBMC histamine secretion at concentrations of NAC from 20 to 50 mg/mL and 2.5 to 100 mg/mL, respectively. NAC-induced histamine secretion by both cell types was reduced by co-incubation with 2.5 mg/mL of paracetamol. Paracetamol (acetaminophen) is capable of modifying histamine secretion in vitro. This may explain the clinical observation of a lower incidence of adverse reactions to NAC in vivo when higher concentrations of paracetamol are present than when paracetamol concentrations are low. Paracetamol (acetaminophen) attenuates in vitro mast cell and PBMC cell histamine release induced by NAC.

  19. Amide proton temperature coefficients as hydrogen bond indicators in proteins

    International Nuclear Information System (INIS)

    Cierpicki, Tomasz; Otlewski, Jacek

    2001-01-01

    Correlations between amide proton temperature coefficients (Δσ HN /ΔT) and hydrogen bonds were investigated for a data set of 793 amides derived from 14 proteins. For amide protons showing temperature gradients more positive than -4.6 ppb/K there is a hydrogen bond predictivity value exceeding 85%. It increases to over 93% for amides within the range between -4 and -1 ppb/K. Detailed analysis shows an inverse proportionality between amide proton temperature coefficients and hydrogen bond lengths. Furthermore, for hydrogen bonds of similar bond lengths, values of temperature gradients in α-helices are on average 1 ppb/K more negative than in β-sheets. In consequence, a number of amide protons in α-helices involved in hydrogen bonds shorter than 2 A show Δσ HN /ΔT 10 helices and 98% in β-turns have temperature coefficients more positive than -4.6ppb/K. Ring current effect also significantly influences temperature coefficients of amide protons. In seven out of eight cases non-hydrogen bonded amides strongly deshielded by neighboring aromatic rings show temperature coefficients more positive than -2 ppb/K. In general, amide proton temperature gradients do not change with pH unless they correspond to conformational changes. Three examples of pH dependent equilibrium showing hydrogen bond formation at higher pH were found. In conclusion, amide proton temperature coefficients offer an attractive and simple way to confirm existence of hydrogen bonds in NMR determined structures

  20. Titanocene(III)-Catalyzed Three-Component Reaction of Secondary Amides, Aldehydes, and Electrophilic Alkenes.

    Science.gov (United States)

    Zheng, Xiao; He, Jiang; Li, Heng-Hui; Wang, Ao; Dai, Xi-Jie; Wang, Ai-E; Huang, Pei-Qiang

    2015-11-09

    An umpolung Mannich-type reaction of secondary amides, aliphatic aldehydes, and electrophilic alkenes has been disclosed. This reaction features the one-pot formation of C-N and C-C bonds by a titanocene-catalyzed radical coupling of the condensation products, from secondary amides and aldehydes, with electrophilic alkenes. N-substituted γ-amido-acid derivatives and γ-amido ketones can be efficiently prepared by the current method. Extension to the reaction between ketoamides and electrophilic alkenes allows rapid assembly of piperidine skeletons with α-amino quaternary carbon centers. Its synthetic utility has been demonstrated by a facile construction of the tricyclic core of marine alkaloids such as cylindricine C and polycitorol A. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Catecholic amides as potential selective phosphodiesterase 4D inhibitors: Design, synthesis, pharmacological evaluation and structure-activity relationships.

    Science.gov (United States)

    Zhou, Zhong-Zhen; Ge, Bing-Chen; Chen, Yu-Fang; Shi, Xiu-Dong; Yang, Xue-Mei; Xu, Jiang-Ping

    2015-11-15

    In this study, a series of catechol-based amides (8a-n) with different amide linkers linking the catecholic moiety to the terminal phenyl ring was designed and synthesized as potent phosphodiesterase (PDE) 4D inhibitors. The inhibitory activities of these compounds were evaluated against the core catalytic domains of human PDE4 (PDE4CAT), full-length PDE4B1 and PDE4D7 enzymes, and other PDE family members. The results indicated the majority of compounds 8a-n displayed moderate to good inhibitory activities against PDE4CAT. Among these compounds, compound 8 j with a short amide linker (-CONHCH2-) displayed comparable PDE4CAT inhibitory activity (IC50=410 nM) with rolipram. More interestingly, compound 8 g, a potent and selective PDE4D inhibitor (IC50=94 nM), exhibited a 10-fold selectivity over the PDE4B subtypes and an over 1000-fold selectivity against other PDE family members. Docking simulations suggested that 8 g forms three extra H-bonds with the N-H of residue Asn487 and two water molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The effects of N-acetylcysteine on cocaine reward and seeking behaviors in a rat model of depression.

    Science.gov (United States)

    Frankowska, Małgorzata; Jastrzębska, Joanna; Nowak, Ewa; Białko, Magdalena; Przegaliński, Edmund; Filip, Małgorzata

    2014-06-01

    Depression and substance-abuse (e.g., cocaine) disorders are common concurrent diagnoses. In the present study, we combined bilateral olfactory bulbectomy (OBX) with a variety of procedures of intravenous cocaine self-administration and extinction/reinstatement in rats. We also investigated the effects of N-acetylcysteine (NAC) on rewarding and seeking behaviors for cocaine in OBX rats and compared the drug's effects in sham-operated control animals (SHAM). The occurrence of depressive symptoms before introduction to cocaine self-administration enhanced subsequent cocaine-seeking behaviors but did not significantly influence cocaine's rewarding properties or extinction training. NAC (25-100mg/kg) given acutely or repeatedly did not alter the co-occurrence of cocaine reward and depression but effectively reduced the cocaine-seeking behavior observed in both phenotypes. Our results indicate that depression behavior is linked to more pronounced drug craving and a higher propensity to relapse in rats. We also show the lack of efficacy of repeated NAC treatment on SHAM or OBX animals in terms of cocaine self-administration, while the drug was an effective blocker of cocaine-seeking behavior in both studied phenotypes, with a more pronounced drug effect observed in OBX animals. The last finding demonstrates the potential clinical utility of NAC to reduce cocaine seeking enhanced by co-existing depression. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Solvent Exchange Rates of Side-chain Amide Protons in Proteins

    International Nuclear Information System (INIS)

    Rajagopal, Ponni; Jones, Bryan E.; Klevit, Rachel E.

    1998-01-01

    Solvent exchange rates and temperature coefficients for Asn/Gln side-chain amide protons have been measured in Escherichia coli HPr. The protons of the eight side-chain amide groups (two Asn and six Gln) exhibit varying exchange rates which are slower than some of the fast exchanging backbone amide protons. Differences in exchange rates of the E and Z protons of the same side-chain amide group are obtained by measuring exchange rates at pH values > 8. An NOE between a side-chain amide proton and a bound water molecule was also observed

  4. Radiolabeled biotin amides from triazenyl precursors: synthesis, binding, and in-vivo properties

    International Nuclear Information System (INIS)

    Kortylewicz, Z.P.; Baranowska-Kortylewicz, J.; Adelstein, S.J.; Carmel, A.D.; Kassis, A.I.

    1994-01-01

    The synthesis of N-(4-[ 127/125/123 I]iodobenzyl)biotin amides 4a - 4c performed by the direct decomposition of N-[4-(3',3'-dimethyltriazenyl)benzyl]biotin amide with sodium iodide in the presence of CF 3 COOH is described. Iodinated in this way biotin formed a stable complex with avidin (K d = 2.84 ± 0.45 x 10 -15 M, n = 3.9 ± 0.6) which dissociated in the presence of excess native biotin with a rate constant of 0.034 ± 0.006 hr -1 . Blood clearance studies and the lack of thyroid uptake indicated that this compound was not deiodinated in vivo and behaved in circulation much like native biotin. This aryltriazene precursor method is suitable for labeling with short-lived radiohalides. It can be used to produce no-carrier-added derivatives of biotin for use in biologic studies and assays involving avidin or streptavidin. (author)

  5. Synthesis and characterization of new copoly(amide-imides based on N,N’-(4,4’-diphenylsulfonebistrimellitimide with different diacids and diamines

    Directory of Open Access Journals (Sweden)

    Khalil Faghihi

    2010-08-01

    Full Text Available In this paper six new copoly(amide-imides (7a-f were synthesized through the direct polycondensation reaction of N,N'-(4,4'-diphenylsulfonebistrimellitimide (1 with 4,4'-diamino diphenylsulfone (2, 4,4'-diamino diphenylether (3, in the presence of adipic acid (4, fumaric acid (5 or terephthalic acid (6 as the second diacid in a medium consisting of N-methyl-2-pyrrolidone, triphenyl phosphite, calcium chloride and pyridine. The resulted polymers were fully characterized by means of FTIR spectroscopy, elemental analyses, inherent viscosity, solubility tests and UV-vis spectroscopy. Thermal stabilities of resulted polymers (7a-c containing three different second diacids were compared by using TGA and DTG thermograms.

  6. SPECTROPHOTOMETRIC DETERMINATION OF ACETYLCYSTEINE IN PHARMACEUTICAL FORMULATIONS USING 2,3-DICHLORO-1,4-NAPTHOQUINONE

    Directory of Open Access Journals (Sweden)

    A. O. Donchenko

    2015-04-01

    Full Text Available The aim of research was the development and validation ofspectrophotometric method foracetylcysteine assay in pharmaceutical formulations.Тhe proposed method is based on the reaction with 2,3-dichloro-1,4-naphthoquinone and the formation of colored products that exhibit absorption maxima at 425 nm. Introduction Many analytical methods have been published for acetylcysteine assay in pharmaceutical formulations as high-performance liquid chromatography (HPLC, fluorimetry and chemiluminescence. Some of these methods are time consuming or require expensive equipment. Other published methods suffer from lack of selectivity and sensitivity. Spectrophotometry is the most widely used technique in pharmaceutical analysis because it is simple, economic, and easily available to most quality control laboratories. In the present work, we propose a simple and accurate spectrophotometric method for acetylcysteine assay in pharmaceutical formulations. Materials and Methods Reagents: Reference standard acetylcysteinesubstance; 2,3-dichloro-1,4-naphthoquinone. All chemicals and solvents were of analytical grade. DMFA was used as a solvent. Pharmaceutical preparations:powder for oral solution «ACC 200» 200 mgseries number50026151 (Salutas Pharma CmbH, Germany; effervescent tablets «Fluimucil» 600 mg (Zambon S.P.A., Italy and «ACC LONG» 600 mg (Salutas Pharma CmbH, Germany series numbers 321284 and DH2740; solution for injections «Fluimucil» 100 mg/ml (Zambon S.P.A., Italyseries number28002492. Solutions: Acetylcysteine stock solution (0,16%; DMFAsolution of 2,3-dichloro-1,4-naphthoquinone (4%. Equipment Analytical balance (ABT-120-5DM; UV-VIS spectrophotometer (Specord 200; water bath (MemmertWNB 7-45;quartz cells. Results Acetylcysteine was determined using a spectrophotometric method based on the reaction with 2,3-dichloro-1,4-naphthoquinone to form yellow colored reaction products with absorption maxima at 425 nm. The effect of reaction time and

  7. Synthesis of Nitriles via Palladium-Catalyzed Water Shuffling from Amides to Acetonitrile

    OpenAIRE

    Zhang, Wandi; Haskins, Christopher W.; Yang, Yang; Dai, Mingji

    2014-01-01

    Palladium-catalyzed synthesis of nitriles from amides has been described. Two similar, but complementary reaction conditions have been identified to convert various amides including α,β,γ,δ-unsaturated amides, cinnamides, aromatic amides and alkyl amides to the corresponding nitriles in good to excellent yield.

  8. Synthesis of nitriles via palladium-catalyzed water shuffling from amides to acetonitrile.

    Science.gov (United States)

    Zhang, Wandi; Haskins, Christopher W; Yang, Yang; Dai, Mingji

    2014-12-07

    Palladium-catalyzed synthesis of nitriles from amides has been described. Two similar, but complementary reaction conditions have been identified to convert various amides including α,β,γ,δ-unsaturated amides, cinnamides, aromatic amides and alkyl amides to the corresponding nitriles in good to excellent yield.

  9. Lithium amide (LiNH2) under pressure.

    Science.gov (United States)

    Prasad, Dasari L V K; Ashcroft, N W; Hoffmann, Roald

    2012-10-11

    Static high pressure lithium amide (LiNH(2)) crystal structures are predicted using evolutionary structure search methodologies and intuitive approaches. In the process, we explore the relationship of the structure and properties of solid LiNH(2) to its molecular monomer and dimer, as well as its valence-isoelectronic crystalline phases of methane, water, and ammonia all under pressure. A NaNH(2) (Fddd) structure type is found to be competitive for the ground state of LiNH(2) above 6 GPa with the P = 1 atm I4[overline] phase. Three novel phases emerge at 11 (P4[overline]2(1)m), 13 (P4(2)/ncm), and 46 GPa (P2(1)2(1)2(1)), still containing molecular amide anions, which begin to form N-H···N hydrogen bonds. The P2(1)2(1)2(1) phase remains stable over a wide pressure range. This phase and another Pmc2(1) structure found at 280 GPa have infinite ···(H)N···H···N(H)···H polymeric zigzag chains comprising symmetric N···H···N hydrogen bonds with one NH bond kept out of the chain, an interesting general feature found in many of our high pressure (>280 GPa) LiNH(2) structures, with analogies in high pressure H(2)O-ices. All the predicted low enthalpy LiNH(2) phases are calculated to be enthalpically stable with respect to their elements but resist metallization with increasing pressure up to several TPa. The possibility of Li sublattice melting in the intermediate pressure range structures is raised.

  10. Photoinduced, copper-catalyzed alkylation of amides with unactivated secondary alkyl halides at room temperature.

    Science.gov (United States)

    Do, Hien-Quang; Bachman, Shoshana; Bissember, Alex C; Peters, Jonas C; Fu, Gregory C

    2014-02-05

    The development of a mild and general method for the alkylation of amides with relatively unreactive alkyl halides (i.e., poor substrates for SN2 reactions) is an ongoing challenge in organic synthesis. We describe herein a versatile transition-metal-catalyzed approach: in particular, a photoinduced, copper-catalyzed monoalkylation of primary amides. A broad array of alkyl and aryl amides (as well as a lactam and a 2-oxazolidinone) couple with unactivated secondary (and hindered primary) alkyl bromides and iodides using a single set of comparatively simple and mild conditions: inexpensive CuI as the catalyst, no separate added ligand, and C-N bond formation at room temperature. The method is compatible with a variety of functional groups, such as an olefin, a carbamate, a thiophene, and a pyridine, and it has been applied to the synthesis of an opioid receptor antagonist. A range of mechanistic observations, including reactivity and stereochemical studies, are consistent with a coupling pathway that includes photoexcitation of a copper-amidate complex, followed by electron transfer to form an alkyl radical.

  11. Use of N-Acetylcysteine in Children with Fulminant Hepatic Failure Caused by Acute Viral Hepatitis

    International Nuclear Information System (INIS)

    Saleem, A. F.; Abbas, Q.; Haque, A.

    2015-01-01

    Objective: To determine the efficacy of N-acetylcysteine (NAC) in children aged > 1 month to 16 years admitted with Fulminant Hepatic Failure (FHF) secondary to Acute Viral Hepatitis (AVH) in a tertiary care center of a developing country. Study Design: Analytical study. Place and Duration of Study: Department of Paediatrics, The Aga Khan University Hospital, Karachi, Pakistan, from January 2007 to December 2011. Methodology: Medical records of children (> 1 month - 16 years) with FHF admitted with AVH of known etiology who received NAC were reviewed retrospectively. Liver function tests (mean ± SD) at baseline, 24 hours after NAC and before or at the time of discharge/death were recorded and compared via using repeated measures ANOVA(r-ANOVA). Efficacy of NAC is defined in improvement in biochemical markers, liver function test and discharge disposition (survived or died). Mortality associated risk factors were identified by using logistic regression analysis. P-value and 95 percentage confidence interval were recorded. Results: Forty children (mean age was 80 ± 40 months) with FHF secondary to AVH received NAC. Majority were males (n=25; 63 percentage). Vomiting (75 percentage) and jaundice (65 percentage) were the main presenting symptoms, one-third had hypoglycemic, while 40 percentage had altered sensorium at the time of admission. There was significant statistical difference in liver enzymes and prothrombin time on admission comparing at discharge in children received NAC (p < 0.001). Fifteen (38 percentage) children died. Severe vomiting (Odds Ratio (OR) 0.22, 95 percentage Confidence Interval (CI) 0.05 - 0.8), jaundice (OR 9.3, CI 1.1 - 82.6), inotropic support (OR 20.6, CI 3.5 - 118.3) and mechanical ventilation (OR 4.3, CI 1.1 - 16.6) at the time of admission are associated with risk factors for mortality in children with FHF secondary to AVH. Conclusion: NAC used in children with FHF secondary to AVH is associated with markedly improved liver function

  12. Biaryl amide compounds reduce the inflammatory response in macrophages by regulating Dectin-1.

    Science.gov (United States)

    Hyung, Kyeong Eun; Lee, Mi Ji; Lee, Yun-Jung; Lee, Do Ik; Min, Hye Young; Park, So-Young; Min, Kyung Hoon; Hwang, Kwang Woo

    2016-03-01

    Macrophages are archetypal innate immune cells that play crucial roles in the recognition and phagocytosis of invading pathogens, which they identify using pattern recognition receptors (PRRs). Dectin-1 is essential for antifungal immune responses, recognizing the fungal cellular component β-glucan, and its role as a PRR has been of increasing interest. Previously, we discovered and characterized a novel biaryl amide compound, MPS 03, capable of inhibiting macrophage phagocytosis of zymosan. Therefore, in this study we aimed to identify other biaryl amide compounds with greater effectiveness than MPS 03, and elucidate their cellular mechanisms. Several MPS 03 derivatives were screened, four of which reduced zymosan phagocytosis in a similar manner to MPS 03. To establish whether such phagocytosis inhibition influenced the production of inflammatory mediators, pro-inflammatory cytokine and nitric oxide (NO) levels were measured. The production of TNF-α, IL-6, IL-12, and NO was significantly reduced in a dose-dependent manner. Moreover, the inflammation-associated MAPK signaling pathway was also affected by biaryl amide compounds. To investigate the underlying cellular mechanism, PRR expression was measured. MPS 03 and its derivatives were found to inhibit zymosan phagocytosis by decreasing Dectin-1 expression. Furthermore, when macrophages were stimulated by zymosan after pretreatment with biaryl amide compounds, downstream transcription factors such as NFAT, AP-1, and NF-κB were downregulated. In conclusion, biaryl amide compounds reduce zymosan-induced inflammatory responses by downregulating Dectin-1 expression. Therefore, such compounds could be used to inhibit Dectin-1 in immunological experiments and possibly regulate excessive inflammatory responses. Copyright © 2016. Published by Elsevier B.V.

  13. Quantitative structure-cytotoxicity relationship of phenylpropanoid amides.

    Science.gov (United States)

    Shimada, Chiyako; Uesawa, Yoshihiro; Ishihara, Mariko; Kagaya, Hajime; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Takao, Koichi; Saito, Takayuki; Sugita, Yoshiaki; Sakagami, Hiroshi

    2014-07-01

    A total of 12 phenylpropanoid amides were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to investigate on their biological activities. Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and three human oral normal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor selectivity was evaluated by the ratio of the mean CC50 (50% cytotoxic concentration) against normal oral cells to that against OSCC cell lines. Anti-HIV activity was evaluated by the ratio of CC50 to EC50 (50% cytoprotective concentration from HIV infection). Physicochemical, structural, and quantum-chemical parameters were calculated based on the conformations optimized by the LowModeMD method followed by density functional theory (DFT) method. Twelve phenylpropanoid amides showed moderate cytotoxicity against both normal and OSCC cell lines. N-Caffeoyl derivatives coupled with vanillylamine and tyramine exhibited relatively higher tumor selectivity. Cytotoxicity against normal cells was correlated with descriptors related to electrostatic interaction such as polar surface area and chemical hardness, whereas cytotoxicity against tumor cells correlated with free energy, surface area and ellipticity. The tumor-selective cytotoxicity correlated with molecular size (surface area) and electrostatic interaction (the maximum electrostatic potential). The molecular size, shape and ability for electrostatic interaction are useful parameters for estimating the tumor selectivity of phenylpropanoid amides. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. Amide Link Scission in the Polyamide Active Layers of Thin-Film Composite Membranes upon Exposure to Free Chlorine: Kinetics and Mechanisms.

    Science.gov (United States)

    Powell, Joshua; Luh, Jeanne; Coronell, Orlando

    2015-10-20

    The volume-averaged amide link scission in the aromatic polyamide active layer of a reverse osmosis membrane upon exposure to free chlorine was quantified at a variety of free chlorine exposure times, concentrations, and pH and rinsing conditions. The results showed that (i) hydroxyl ions are needed for scission to occur, (ii) hydroxide-induced amide link scission is a strong function of exposure to hypochlorous acid, (iii) the ratio between amide links broken and chlorine atoms taken up increased with the chlorination pH and reached a maximum of ∼25%, (iv) polyamide disintegration occurs when high free chlorine concentrations, alkaline conditions, and high exposure times are combined, (v) amide link scission promotes further chlorine uptake, and (vi) scission at the membrane surface is unrepresentative of volume-averaged scission in the active layer. Our observations are consistent with previously proposed mechanisms describing amide link scission as a result of the hydrolysis of the N-chlorinated amidic N-C bond due to nucleophilic attack by hydroxyl ions. This study increases the understanding of the physicochemical changes that could occur for membranes in treatment plants using chlorine as an upstream disinfectant and the extent and rate at which those changes would occur.

  15. CHROMIUM(II) AMIDES - SYNTHESIS AND STRUCTURES

    NARCIS (Netherlands)

    EDEMA, JJH; GAMBAROTTA, S; MEETSMA, A; SPEK, AL; SMEETS, WJJ; CHIANG, MY

    1993-01-01

    A novel class of mono- and di-meric chromium(II) amides has been prepared and characterized. Reaction of [CrCl2(thf)2] (thf = tetrahydrofuran) with 2 equivalents of M(NR2) (R = C6H11, Pr(i), Ph, or phenothiazinyl; M = Li or Na) allowed the formation of the homoleptic amides [{Cr(mu-NR2)(NR2)}2] (R =

  16. Ab initio molecular orbital and infrared spectroscopic study of the conformation of secondary amides: derivatives of formanilide, acetanilide and benzylamides

    Science.gov (United States)

    Ilieva, S.; Hadjieva, B.; Galabov, B.

    1999-09-01

    Ab initio molecular orbital calculations at HF/4-31G level and infrared spectroscopic data for the frequencies are applied to analyse the grouping in a series model aromatic secondary amides: formanilide; acetanilide; o-methylacetanilide; 2,6-dimethylformanilide, 2,6-dimethylacetanilide; N-benzylacetamide and N-benzylformamide. The theoretical and experimental data obtained show that the conformational state of the molecules studied is determined by the fine balance of several intramolecular factors: resonance effect between the amide group and the aromatic ring, steric interaction between various substituents around the -NH-CO- grouping in the aromatic ring, conjugation between the carbonyl bond and the nitrogen lone pair as well as direct field influences inside the amide group.

  17. The validity and internal structure of the Bipolar Depression Rating Scale: data from a clinical trial of N-acetylcysteine as adjunctive therapy in bipolar disorder.

    Science.gov (United States)

    Berk, Michael; Dodd, Seetal; Dean, Olivia M; Kohlmann, Kristy; Berk, Lesley; Malhi, Gin S

    2010-10-01

    Berk M, Dodd S, Dean OM, Kohlmann K, Berk L, Malhi GS. The validity and internal structure of the Bipolar Depression Rating Scale: data from a clinical trial of N-acetylcysteine as adjunctive therapy in bipolar disorder. The phenomenology of unipolar and bipolar disorders differ in a number of ways, such as the presence of mixed states and atypical features. Conventional depression rating instruments are designed to capture the characteristics of unipolar depression and have limitations in capturing the breadth of bipolar disorder. The Bipolar Depression Rating Scale (BDRS) was administered together with the Montgomery Asberg Rating Scale (MADRS) and Young Mania Rating Scale (YMRS) in a double-blind randomised placebo-controlled clinical trial of N-acetyl cysteine for bipolar disorder (N = 75). A factor analysis showed a two-factor solution: depression and mixed symptom clusters. The BDRS has strong internal consistency (Cronbach's alpha = 0.917), the depression cluster showed robust correlation with the MADRS (r = 0.865) and the mixed subscale correlated with the YMRS (r = 0.750). The BDRS has good internal validity and inter-rater reliability and is sensitive to change in the context of a clinical trial.

  18. Effect of Simvastatin, Coenzyme Q10, Resveratrol, Acetylcysteine and Acetylcarnitine on Mitochondrial Respiration.

    Science.gov (United States)

    Fišar, Z; Hroudová, J; Singh, N; Kopřivová, A; Macečková, D

    2016-01-01

    Some therapeutic and/or adverse effects of drugs may be related to their effects on mitochondrial function. The effects of simvastatin, resveratrol, coenzyme Q10, acetylcysteine, and acetylcarnitine on Complex I-, Complex II-, or Complex IV-linked respiratory rate were determined in isolated brain mitochondria. The protective effects of these biologically active compounds on the calcium-induced decrease of the respiratory rate were also studied. We observed a significant inhibitory effect of simvastatin on mitochondrial respiration (IC50 = 24.0 μM for Complex I-linked respiration, IC50 = 31.3 μM for Complex II-linked respiration, and IC50 = 42.9 μM for Complex IV-linked respiration); the inhibitory effect of resveratrol was found at very high concentrations (IC50 = 162 μM for Complex I-linked respiration, IC50 = 564 μM for Complex II-linked respiration, and IC50 = 1454 μM for Complex IV-linked respiration). Concentrations required for effective simvastatin- or resveratrol-induced inhibition of mitochondrial respiration were found much higher than concentrations achieved under standard dosing of these drugs. Acetylcysteine and acetylcarnitine did not affect the oxygen consumption rate of mitochondria. Coenzyme Q10 induced an increase of Complex I-linked respiration. The increase of free calcium ions induced partial inhibition of the Complex I+II-linked mitochondrial respiration, and all tested drugs counteracted this inhibition. None of the tested drugs showed mitochondrial toxicity (characterized by respiratory rate inhibition) at drug concentrations achieved at therapeutic drug intake. Resveratrol, simvastatin, and acetylcarnitine had the greatest neuroprotective potential (characterized by protective effects against calcium-induced reduction of the respiratory rate).

  19. Picolinamide-Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability.

    Science.gov (United States)

    Kanega, Ryoichi; Onishi, Naoya; Wang, Lin; Murata, Kazuhisa; Muckerman, James T; Fujita, Etsuko; Himeda, Yuichiro

    2018-03-01

    To develop highly efficient catalysts for dehydrogenation of formic acid in water, we investigated several Cp*Ir catalysts with various amide ligands. The catalyst with an N-phenylpicolinamide ligand exhibited a TOF of 118 000 h -1 at 60 °C. A constant rate (TOF>35 000 h -1 ) was maintained for six hours, and a TON of 1 000 000 was achieved at 50 °C. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nanoporous amide networks based on tetraphenyladamantane for selective CO2capture

    KAUST Repository

    Zulfiqar, Sonia; Mantione, Daniele; El Tall, Omar; Sarwar, Muhammad Ilyas; Ruipé rez, Fernando; Rothenberger, Alexander; Mecerreyes, David

    2016-01-01

    Reduction of anthropogenic CO2 emissions and CO2 separation from post-combustion flue gases are among the imperative issues in the spotlight at present. Hence, it is highly desirable to develop efficient adsorbents for mitigating climate change with possible energy savings. Here, we report the design of a facile one pot catalyst-free synthetic protocol for the generation of three different nitrogen rich nanoporous amide networks (NANs) based on tetraphenyladamantane. Besides the porous architecture, CO2 capturing potential and high thermal stability, these NANs possess notable CO2/N2 selectivity with reasonable retention while increasing the temperature from 273 K to 298 K. The quantum chemical calculations also suggest that CO2 interacts mainly in the region of polar amide groups (-CONH-) present in NANs and this interaction is much stronger than that with N2 thus leading to better selectivity and affirming them as promising contenders for efficient gas separation. © The Royal Society of Chemistry 2016.

  1. Nanoporous amide networks based on tetraphenyladamantane for selective CO2capture

    KAUST Repository

    Zulfiqar, Sonia

    2016-04-19

    Reduction of anthropogenic CO2 emissions and CO2 separation from post-combustion flue gases are among the imperative issues in the spotlight at present. Hence, it is highly desirable to develop efficient adsorbents for mitigating climate change with possible energy savings. Here, we report the design of a facile one pot catalyst-free synthetic protocol for the generation of three different nitrogen rich nanoporous amide networks (NANs) based on tetraphenyladamantane. Besides the porous architecture, CO2 capturing potential and high thermal stability, these NANs possess notable CO2/N2 selectivity with reasonable retention while increasing the temperature from 273 K to 298 K. The quantum chemical calculations also suggest that CO2 interacts mainly in the region of polar amide groups (-CONH-) present in NANs and this interaction is much stronger than that with N2 thus leading to better selectivity and affirming them as promising contenders for efficient gas separation. © The Royal Society of Chemistry 2016.

  2. Prospective study to compare antibiosis versus the association of N-acetylcysteine, D-mannose and Morinda citrifolia fruit extract in preventing urinary tract infections in patients submitted to urodynamic investigation

    Directory of Open Access Journals (Sweden)

    Giovanni Palleschi

    2017-03-01

    Full Text Available Background: The abuse of antimicrobical drugs has increased the resistance of microorganisms to treatments, thus to make urinary tract infections (UTIs more difficult to eradicate. Among natural substances used to prevent UTI, literature has provided preliminary data of the beneficial effects of D-mannose, N-acetylcysteine, and Morinda citrifolia fruit extract, due to their complementary mechanism of action which contributes respectively to limit bacteria adhesion to the urothelium, to destroy bacterial pathogenic biofilm, and to the anti-inflammatory and analgesic activity. The purpose of this study was to compare the administration of an association of D-mannose, N-acetylcysteine (NAC and Morinda citrifolia extract versus antibiotic therapy in the prophylaxis of UTIs potentially associated with urological mini-invasive diagnostics procedures, in clinical model of the urodynamic investigation. Methods: 80 patients eligible for urodynamic examination, 42 men and 38 women, have been prospectively enrolled in the study and randomised in two groups (A and B of 40 individuals. Patients of group A followed antibiotic therapy with Prulifloxacine, by mouth 400 mg/day for 5 days, while patients of the group B followed the association of mannose and NAC therapy, two vials/day for 7 days. Ten days after the urodynamic study, the patients were submitted to urine examination and urine culture. Results: The follow up assessment didn't show statistical significant difference between the two groups regarding the incidence of UTI. Conclusions: The association of mannose and NAC therapy resulted similar to the antibiotic therapy in preventing UTIs in patients submitted to urodynamic examination. This result leads to consider the possible use of these nutraceutical agents as a good alternative in the prophylaxis of the UTI afterwards urological procedures in urodynamics.

  3. Semi-catalytic reduction of secondary amides to imines and aldehydes.

    Science.gov (United States)

    Lee, Sun-Hwa; Nikonov, Georgii I

    2014-06-21

    Secondary amides can be reduced by silane HSiMe2Ph into imines and aldehydes by a two-stage process involving prior conversion of amides into iminoyl chlorides followed by catalytic reduction mediated by the ruthenium complex [Cp(i-Pr3P)Ru(NCCH3)2]PF6 (1). Alkyl and aryl amides bearing halogen, ketone, and ester groups were converted with moderate to good yields under mild reaction conditions to the corresponding imines and aldehydes. This procedure does not work for substrates bearing the nitro-group and fails for heteroaromatic amides. In the case of cyano substituted amides, the cyano group is reduced to imine.

  4. Photoinduced intramolecular substitution reaction of aryl halide with carbonyl oxygen of amide group

    CERN Document Server

    Park, Y T; Kim, M S; Kwon, J H

    2002-01-01

    Photoreaction of N-(o-halophenyl)acetamide in basic acetonitrile produces an intramolecular substituted product, 2-methylbenzoxazole in addition to reduced product, acetanilide, whereas photoreaction of N-(o-halobenzyl)acetamide affords a reduced product, N-benzylacetamide only. On the basis of preparative reaction, kinetics, and UV/vis absorption behavior, an electrophilic aromatic substitution of aryl halide with oxygen of its amide bond are proposed.

  5. Photoinduced intramolecular substitution reaction of aryl halide with carbonyl oxygen of amide group

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Tae; Song, Myong Geun; Kim, Moon Sub; Kwon, Jeong Hee [Kyungpook National Univ., Daegu (Korea, Republic of)

    2002-09-01

    Photoreaction of N-(o-halophenyl)acetamide in basic acetonitrile produces an intramolecular substituted product, 2-methylbenzoxazole in addition to reduced product, acetanilide, whereas photoreaction of N-(o-halobenzyl)acetamide affords a reduced product, N-benzylacetamide only. On the basis of preparative reaction, kinetics, and UV/vis absorption behavior, an electrophilic aromatic substitution of aryl halide with oxygen of its amide bond are proposed.

  6. Photoinduced intramolecular substitution reaction of aryl halide with carbonyl oxygen of amide group

    International Nuclear Information System (INIS)

    Park, Yong Tae; Song, Myong Geun; Kim, Moon Sub; Kwon, Jeong Hee

    2002-01-01

    Photoreaction of N-(o-halophenyl)acetamide in basic acetonitrile produces an intramolecular substituted product, 2-methylbenzoxazole in addition to reduced product, acetanilide, whereas photoreaction of N-(o-halobenzyl)acetamide affords a reduced product, N-benzylacetamide only. On the basis of preparative reaction, kinetics, and UV/vis absorption behavior, an electrophilic aromatic substitution of aryl halide with oxygen of its amide bond are proposed

  7. Discovery of N-(4-aryl-5-aryloxy-thiazol-2-yl)-amides as potent RORγt inverse agonists.

    Science.gov (United States)

    Wang, Yonghui; Yang, Ting; Liu, Qian; Ma, Yingli; Yang, Liuqing; Zhou, Ling; Xiang, Zhijun; Cheng, Ziqiang; Lu, Sijie; Orband-Miller, Lisa A; Zhang, Wei; Wu, Qianqian; Zhang, Kathleen; Li, Yi; Xiang, Jia-Ning; Elliott, John D; Leung, Stewart; Ren, Feng; Lin, Xichen

    2015-09-01

    A novel series of N-(4-aryl-5-aryloxy-thiazol-2-yl)-amides as RORγt inverse agonists was discovered. Binding mode analysis of a RORγt partial agonist (2c) revealed by co-crystal structure in RORγt LBD suggests that the inverse agonists do not directly interfere with the interaction between H12 and the RORγt LBD. Detailed SAR exploration led to identification of potent RORγt inverse agonists such as 3m with a pIC50 of 8.0. Selected compounds in the series showed reasonable activity in Th17 cell differentiation assay as well as low intrinsic clearance in mouse liver microsomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. New and Efficient Synthesis of Amides from Acid Chlorides Using Diisobutyl(amino)aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Kyo; Shin, Won Kyu; An, Duk Keun [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2013-05-15

    In conclusion, we have developed a facile, alternative method for the formation of secondary and tertiary amides including morpholine amides from acid chlorides by using diisobutyl(amino)aluminum under mild reaction conditions. The advantages of the present method include the high product yields, simple experimental procedure, short reaction time (10 min), and the fact that an excess amount of amine is not required. This result suggests that our new method can provide an alternative method for the synthesis of useful amides from acid chlorides. Amides are valuable functional groups in biological, agrochemical, and pharmaceutical molecules. Several amides such as Weinreb amides, morpholine amides, and pyrrolidine amides are useful intermediates for the synthesis of aldehydes or ketones. Among them, morpholine amides are a cheap and good substitute for Weinreb amides.

  9. New and Efficient Synthesis of Amides from Acid Chlorides Using Diisobutyl(amino)aluminum

    International Nuclear Information System (INIS)

    Park, Jae Kyo; Shin, Won Kyu; An, Duk Keun

    2013-01-01

    In conclusion, we have developed a facile, alternative method for the formation of secondary and tertiary amides including morpholine amides from acid chlorides by using diisobutyl(amino)aluminum under mild reaction conditions. The advantages of the present method include the high product yields, simple experimental procedure, short reaction time (10 min), and the fact that an excess amount of amine is not required. This result suggests that our new method can provide an alternative method for the synthesis of useful amides from acid chlorides. Amides are valuable functional groups in biological, agrochemical, and pharmaceutical molecules. Several amides such as Weinreb amides, morpholine amides, and pyrrolidine amides are useful intermediates for the synthesis of aldehydes or ketones. Among them, morpholine amides are a cheap and good substitute for Weinreb amides

  10. Determination of carbofuran on hydrophilic interaction liquid chromatography using TSK gel amide 80 as stationary phase

    International Nuclear Information System (INIS)

    A Kurnia; LW Lim; T Takeuchi

    2016-01-01

    The hydrophilic interaction liquid chromatography (HILIC) coupled to environmental friendly capillary liquid chromatography was employed to investigate retention behavior of carbofuran. Aim of this research is to investigate retention behavior of carbofuran using TSK gel amide 80 as stationary phase. Several condition was conducted to investigate retention behavior of carbofuran such as comparison study of TSK gel amide 80 with other polar column, comparison study retention behavior of carbofuran on various system wavelength, water content effect in HILIC mode, effect of buffer concentration on HILIC mode, and analytical performance. Results showed that TSK gel imidazole was superior compare to other polar stationary phase on determine carbofuran, wavelength 251 and 254 nm was resulting higher absorbance for carbofuran than others, increase of water content on mobile phase was decrease the retention time, also increase buffer salt concentration was decrease the retention time and according to analysis performance that is the accuracy was 101±10,1, the LOD 0.66 ppm while LOQ 2.22 ppm. As conclusions that TSK gel amide 80 was offering good determine on carbofuran even using capillary liquid chromatography with 10 cm length of column. (author)

  11. 40 CFR 721.10063 - Halo substituted hydroxy nitrophenyl amide (generic).

    Science.gov (United States)

    2010-07-01

    ... amide (generic). 721.10063 Section 721.10063 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10063 Halo substituted hydroxy nitrophenyl amide (generic). (a) Chemical... as halo substituted hydroxy nitrophenyl amide (PMN P-04-792) is subject to reporting under this...

  12. Effects of adjunctive N-acetylcysteine on depressive symptoms: Modulation by baseline high-sensitivity C-reactive protein.

    Science.gov (United States)

    Porcu, Mauro; Urbano, Mariana Ragassi; Verri, Waldiceu A; Barbosa, Decio Sabbatini; Baracat, Marcela; Vargas, Heber Odebrecht; Machado, Regina Célia Bueno Rezende; Pescim, Rodrigo Rossetto; Nunes, Sandra Odebrecht Vargas

    2018-05-01

    Outcomes in a RCTs of 12 weeks of theclinical efficacy of N-acetylcysteine (NAC) as an adjunctive treatment on depression and anxiety symptoms and its effects on high-sensitivity C-reactive protein (hs-CRP) levels. A wide array of measures were made. The 17-item version of the Hamilton Depression Rating Scale (HDRS17); the Hamilton Anxiety Rating Scale (HAM-A); Sheehan Disability Scale; Quality of Life; Clinical Global Impression (CGI); anthropometrics measures; and vital signs and biochemical laboratory. There were no significant differences among the groups regarding demographic, clinical features, use of medication, metabolic syndrome and comorbidities. From baseline to week 12, individuals receiving NAC, versus placebo, had a statistically significant reduction in depressive symptoms on HDRS 17 (p  3 mg/L at baseline. Individuals receiving NAC with baseline levels of hs-CRP > 3 mg/L, had more significant reduction in uric acid levels compared to individuals with baseline levels of hs-CRP ≤ 3 mg/L on week 12. Participants receiving placebogained significantly more weight during the 12 weeks for baseline levels of hs-CRP ≤ 3 mg/L and hs-CRP > 3 mg/L, and individuals receiving NAC in both groups did not have significant weight change during the 12 weeks. No individuals were withdrawn from the study because of adverse event. NAC group exhibited significantly greater reduction on hs-CRP levels than placebo group from baseline to week 12. clinicaltrials.gov Identifier; NCT02252341. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Flame retardant tris(1,3-dichloro-2-propylphosphate (TDCPP toxicity is attenuated by N-acetylcysteine in human kidney cells

    Directory of Open Access Journals (Sweden)

    David W. Killilea

    Full Text Available Prolonged exposure to the flame retardants found in many household products and building materials is associated with adverse developmental, reproductive, and carcinogenic consequences. While these compounds have been studied in numerous epidemiological and animal models, less is known about the effects of flame retardant exposure on cell function. This study evaluated the toxicity of the commonly used fire retardant tris(1,3-dichloro-2-propylphosphate (TDCPP in cell line derived from the kidney, a major tissue target of organohalogen toxicity. TDCPP inhibited cell growth at lower concentrations (IC50 27 μM, while cell viability and toxicity were affected at higher concentrations (IC50 171 μM and 168 μM, respectively. TDCPP inhibited protein synthesis and caused cell cycle arrest, but only at higher concentrations. Additionally, the antioxidant N-acetylcysteine (NAC reduced cell toxicity in cells treated with TDCPP, suggesting that exposure to TDCPP increased oxidative stress in the cells. In summary, these data show that low concentrations of TDCPP result in cytostasis in a kidney cell line, whereas higher concentrations induce cell toxicity. Furthermore, TDCPP toxicity can be attenuated by NAC, suggesting that antioxidants may be effective countermeasures to some organohalogen exposures. Keywords: flame retardant, cytostasis, cell toxicity, antioxidant, cell cycle

  14. Amides Do Not Always Work: Observation of Guest Binding in an Amide-Functionalized Porous Metal-Organic Framework.

    Science.gov (United States)

    Benson, Oguarabau; da Silva, Ivan; Argent, Stephen P; Cabot, Rafel; Savage, Mathew; Godfrey, Harry G W; Yan, Yong; Parker, Stewart F; Manuel, Pascal; Lennox, Matthew J; Mitra, Tamoghna; Easun, Timothy L; Lewis, William; Blake, Alexander J; Besley, Elena; Yang, Sihai; Schröder, Martin

    2016-11-16

    An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO 2 uptake of 12.6 mmol g -1 at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO 2 /CH 4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest-host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties.

  15. Dielectric relaxation studies of dilute solutions of amides

    Energy Technology Data Exchange (ETDEWEB)

    Malathi, M.; Sabesan, R.; Krishnan, S

    2003-11-15

    The dielectric constants and dielectric losses of formamide, acetamide, N-methyl acetamide, acetanilide and N,N-dimethyl acetamide in dilute solutions of 1,4-dioxan/benzene have been measured at 308 K using 9.37 GHz, dielectric relaxation set up. The relaxation time for the over all rotation {tau}{sub (1)} and that for the group rotation {tau}{sub (2)} of (the molecules were determined using Higasi's method. The activation energies for the processes of dielectric relaxation and viscous flow were determined by using Eyring's rate theory. From relaxation time behaviour of amides in non-polar solvent, solute-solvent and solute-solute type of molecular association is proposed.

  16. Biosynthesis and function of simple amides in Xenorhabdus doucetiae.

    Science.gov (United States)

    Bode, Edna; He, Yue; Vo, Tien Duy; Schultz, Roland; Kaiser, Marcel; Bode, Helge B

    2017-11-01

    Xenorhabdus doucetiae, the bacterial symbiont of the entomopathogenic nematode Steinernema diaprepesi produces several different fatty acid amides. Their biosynthesis has been studied using a combination of analysis of gene deletions and promoter exchanges in X. doucetiae and heterologous expression of candidate genes in E. coli. While a decarboxylase is required for the formation of all observed phenylethylamides and tryptamides, the acyltransferase XrdE encoded in the xenorhabdin biosynthesis gene cluster is responsible for the formation of short chain acyl amides. Additionally, new, long-chain and cytotoxic acyl amides were identified in X. doucetiae infected insects and when X. doucetiae was grown in Galleria Instant Broth (GIB). When the bioactivity of selected amides was tested, a quorum sensing modulating activity was observed for the short chain acyl amides against the two different quorum sensing systems from Chromobacterium and Janthinobacterium. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Normalization of fasting glycaemia by intravenous GLP-1 ([7-36 amide] or [7-37]) in type 2 diabetic patients

    DEFF Research Database (Denmark)

    Nauck, M A; Weber, I; Bach, I

    1998-01-01

    (glucose-oxidase), insulin and C-peptide (ELISA) was measured during infusion and for 4 h thereafter. Indirect calorimetry was performed. Fasting hyperglycaemia was 11.7+/-0.9 [7-36 amide] and 11.3+/-0.9 mmol l(-1) [7-37]. GLP-1 infusions stimulated insulin secretion approximately 3-fold (insulin peak 168......Intravenous GLP-1 [7-36 amide] can normalize fasting hyperglycaemia in Type 2 diabetic patients. Whether GLP-1 [7-37] has similar effects and how quickly plasma glucose concentrations revert to hyperglycaemia after stopping GLP-1 is not known. Therefore, 8 patients with Type 2 diabetes (5 female, 3...... male; 65+/-6 years; BMI 34.3+/-7.9 kg m(-2); HbA1c 9.6+/-1.2%; treatment with diet alone (n=2), sulphonylurea (n=5), metformin (n=1)) were examined twice in randomized order. GLP-1 [7-36 amide] or [7-37] (1 pmol kg(-1)min(-1) were infused intravenously over 4 h in fasted subjects. Plasma glucose...

  18. Transgenic tomato plants overexpressing tyramine N-hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and enhanced resistance to Pseudomonas syringae.

    Science.gov (United States)

    Campos, Laura; Lisón, Purificación; López-Gresa, María Pilar; Rodrigo, Ismael; Zacarés, Laura; Conejero, Vicente; Bellés, José María

    2014-10-01

    Hydroxycinnamic acid amides (HCAA) are secondary metabolites involved in plant development and defense that have been widely reported throughout the plant kingdom. These phenolics show antioxidant, antiviral, antibacterial, and antifungal activities. Hydroxycinnamoyl-CoA:tyramine N-hydroxycinnamoyl transferase (THT) is the key enzyme in HCAA synthesis and is induced in response to pathogen infection, wounding, or elicitor treatments, preceding HCAA accumulation. We have engineered transgenic tomato plants overexpressing tomato THT. These plants displayed an enhanced THT gene expression in leaves as compared with wild type (WT) plants. Consequently, leaves of THT-overexpressing plants showed a higher constitutive accumulation of the amide coumaroyltyramine (CT). Similar results were found in flowers and fruits. Moreover, feruloyltyramine (FT) also accumulated in these tissues, being present at higher levels in transgenic plants. Accumulation of CT, FT and octopamine, and noradrenaline HCAA in response to Pseudomonas syringae pv. tomato infection was higher in transgenic plants than in the WT plants. Transgenic plants showed an enhanced resistance to the bacterial infection. In addition, this HCAA accumulation was accompanied by an increase in salicylic acid levels and pathogenesis-related gene induction. Taken together, these results suggest that HCAA may play an important role in the defense of tomato plants against P. syringae infection.

  19. 40 CFR 721.720 - Alkoxylated fatty acid amide, alkylsulfate salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxylated fatty acid amide... Specific Chemical Substances § 721.720 Alkoxylated fatty acid amide, alkylsulfate salt. (a) Chemical... as an alkoxylated fatty acid amide, alkylsulfate salt (PMN P-97-136) is subject to reporting under...

  20. Electrostatic frequency maps for amide-I mode of β-peptide: Comparison of molecular mechanics force field and DFT calculations

    Science.gov (United States)

    Cai, Kaicong; Zheng, Xuan; Du, Fenfen

    2017-08-01

    The spectroscopy of amide-I vibrations has been widely utilized for the understanding of dynamical structure of polypeptides. For the modeling of amide-I spectra, two frequency maps were built for β-peptide analogue (N-ethylpropionamide, NEPA) in a number of solvents within different schemes (molecular mechanics force field based, GM map; DFT calculation based, GD map), respectively. The electrostatic potentials on the amide unit that originated from solvents and peptide backbone were correlated to the amide-I frequency shift from gas phase to solution phase during map parameterization. GM map is easier to construct with negligible computational cost since the frequency calculations for the samples are purely based on force field, while GD map utilizes sophisticated DFT calculations on the representative solute-solvent clusters and brings insight into the electronic structures of solvated NEPA and its chemical environments. The results show that the maps' predicted amide-I frequencies present solvation environmental sensitivities and exhibit their specific characters with respect to the map protocols, and the obtained vibrational parameters are in satisfactory agreement with experimental amide-I spectra of NEPA in solution phase. Although different theoretical schemes based maps have their advantages and disadvantages, the present maps show their potentials in interpreting the amide-I spectra for β-peptides, respectively.

  1. IMPACT OF SEVOFLURANE AND ACETYLCYSTEINE ON ISCHEMIA-REPERFUSION INJURY OF THE LIVER FROM BRAIN-DEAD DONOR

    Directory of Open Access Journals (Sweden)

    A. E. Shcherba

    2013-01-01

    Full Text Available Aim. The purpose of our work was to estimate the impact of preconditioning with acetylcysteine and sevoflurane on ischemia-reperfusion injury of cadaveric donor liver with marginal features. Methods and results. In this prospective randomized controlled trial we recruited 21 heart beating donors with brain death. We assigned 11 donors to the study group, and 10 donors to the control group. Morphological characteristics of ischemia- reperfusion injury in both groups were analyzed. Conclusion. Use of pharmacological preconditioning with acetylcysteine and sevoflurane resulted in necrosis and hepatocyte apoptosis reduction as compared to the control group, thereby had a protective effect against ischemia-reperfusion injury. 

  2. Selective Formation of Secondary Amides via the Copper-Catalyzed Cross-Coupling of Alkylboronic Acids with Primary Amides

    Science.gov (United States)

    Rossi, Steven A.; Shimkin, Kirk W.; Xu, Qun; Mori-Quiroz, Luis M.; Watson, Donald A.

    2014-01-01

    For the first time, a general catalytic procedure for the cross coupling of primary amides and alkylboronic acids is demonstrated. The key to the success of this reaction was the identification of a mild base (NaOSiMe3) and oxidant (di-tert-butyl peroxide) to promote the copper-catalyzed reaction in high yield. This transformation provides a facile, high-yielding method for the mono-alkylation of amides. PMID:23611591

  3. A Double-Blind Randomized Controlled Pilot Trial of N-Acetylcysteine in Veterans with PTSD and Substance Use Disorders

    Science.gov (United States)

    Back, Sudie E.; McCauley, Jenna L.; Korte, Kristina J.; Gros, Daniel F.; Leavitt, Virginia; Gray, Kevin M.; Hamner, Mark B.; DeSantis, Stacia M.; Malcolm, Robert; Brady, Kathleen T.; Kalivas, Peter W.

    2016-01-01

    Objective The antioxidant N-Acetylcysteine (NAC) is being increasingly investigated as a therapeutic agent in the treatment of substance use disorders. Preclinical and clinical findings suggest that NAC normalizes extracellular glutamate by restoring the activity of glutamate transporters and antiporters in the nucleus accumbens. This study explored the efficacy of NAC in the treatment of post-traumatic stress disorder (PTSD), which frequently co-occurs with substance use disorders (SUD) and shares impaired prefrontal cortex regulation of basal ganglia circuitry, in particular at glutamate synapses in the nucleus accumbens. Method Veterans with current PTSD and SUD (N=35) were randomly assigned to receive a double-blind, 8-week course of NAC (2400 mg/day) or placebo plus outpatient group cognitive-behavioral therapy for SUD. Primary outcome measures included PTSD symptoms (Clinician Administered PTSD Scale, PTSD Checklist-Military) and craving (Visual Analogue Scale). Depression (Beck Depression Inventory-II) and substance use (Timeline Follow Back, urine drug screens) were also assessed. Results Participants treated with NAC, as compared to placebo, evidenced significant improvements in PTSD symptoms, craving, and depression. Substance use at the start of treatment was low for both the NAC and placebo groups and no significant between-group differences were observed. NAC was well tolerated and retention was high. Conclusions This is the first randomized controlled trial to investigate NAC as a pharmacological treatment for PTSD. The findings show a significant treatment effect on symptoms of PTSD and drug craving, and provide initial support for the use of NAC in combination with cognitive-behavioral therapy among individuals with co-occurring PTSD and SUD. PMID:27736051

  4. Evaluation of the Effect of Nebulized N-Acetylcysteine on Respiratory Secretions in Mechanically Ventilated Patients: Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Seyed Masoom Masoompour

    2015-07-01

    Full Text Available Background: The purpose of our study was to evaluate an inexpensive and available method to reduce mucous impactions in mechanically ventilated patients. Methods: This randomized clinical trial was conducted on 40 mechanically ventilated patients aged 15-90 years. The patients were randomly allocated into two arms; 20 cases and 20 controls. The cases received N-acetylcysteine via their nebulizers, and the control group received normal saline three times a day for one day. We measured the density of respiratory secretion, plateau and peak airway pressures, and O2 saturation at baseline, 12 and 24 hours later. Results: Although the mean secretion density was significantly lower in the NAC group (F (1, 38=8.61, P=0.006, but a repeated measures ANOVA with a Greenhouse-Geisser correction determined that the effect of NAC on mean secretion density did not differ significantly between time points (F (1, 38=3.08, P=0.087. NAC increased O2 saturation significantly between time points (F (1.92, 73.1=4.6, P=0.014. The plateau airway pressures were relatively stable throughout the study in the normal saline and NAC groups (F (1.95, 37.1=0.67, P=0.513. The peak airway pressure did not change significantly during the study in the normal saline and NAC groups (F (1.52, 56.4=0.91, P=0.384. Conclusion: Considering the limitations of the study, nebulized NAC in mechanically ventilated patients was not effective more than normal saline nebulization in reducing the density of mucous plugs. The peak and plateau airway pressures were relatively stable throughout the study in both groups. Trial Registration Number: IRCT201104276312N1.

  5. Measurement of Lactate Content and Amide Proton Transfer Values in the Basal Ganglia of a Neonatal Piglet Hypoxic-Ischemic Brain Injury Model Using MRI.

    Science.gov (United States)

    Zheng, Y; Wang, X-M

    2017-04-01

    As amide proton transfer imaging is sensitive to protein content and intracellular pH, it has been widely used in the nervous system, including brain tumors and stroke. This work aimed to measure the lactate content and amide proton transfer values in the basal ganglia of a neonatal piglet hypoxic-ischemic brain injury model by using MR spectroscopy and amide proton transfer imaging. From 58 healthy neonatal piglets (3-5 days after birth; weight, 1-1.5 kg) selected initially, 9 piglets remained in the control group and 43 piglets, in the hypoxic-ischemic brain injury group. Single-section amide proton transfer imaging was performed at the coronal level of the basal ganglia. Amide proton transfer values of the bilateral basal ganglia were measured in all piglets. The ROI of MR spectroscopy imaging was the right basal ganglia, and the postprocessing was completed with LCModel software. After hypoxic-ischemic insult, the amide proton transfer values immediately decreased, and at 0-2 hours, they remained at their lowest level. Thereafter, they gradually increased and finally exceeded those of the control group at 48-72 hours. After hypoxic-ischemic insult, the lactate content increased immediately, was maximal at 2-6 hours, and then gradually decreased to the level of the control group. The amide proton transfer values were negatively correlated with lactate content ( r = -0.79, P < .05). This observation suggests that after hypoxic-ischemic insult, the recovery of pH was faster than that of lactate homeostasis. © 2017 by American Journal of Neuroradiology.

  6. Design and synthesis of N-(4-aminopyridin-2-yl)amides as B-Raf(V600E) inhibitors.

    Science.gov (United States)

    Li, Xiaokai; Shen, Jiayi; Tan, Li; Zhang, Zhang; Gao, Donglin; Luo, Jinfeng; Cheng, Huimin; Zhou, Xiaoping; Ma, Jie; Ding, Ke; Lu, Xiaoyun

    2016-06-15

    B-Raf(V600E) was an effective target for the treatment of human cancers. Based on a pan-Raf inhibitor TAK-632, a series of N-(4-aminopyridin-2-yl)amide derivatives were designed as novel B-Raf(V600E) inhibitors. Detailed structure-activity studies of the compounds revealed that most of the compounds displayed potent enzymatic activity against B-Raf(V600E), and good selectivity over B-Raf(WT). One of the most promising compound 4l exhibited potent inhibitory activity with an IC50 value of 38nM for B-raf(V600E), and displayed antiproliferative activities against colo205 and HT29 cells with IC50 values of 0.136 and 0.094μM, respectively. It also displayed good selectivity on both enzymatic and cellular assays over B-Raf(WT). These inhibitors may serve as lead compounds for further developing novel B-Raf(V600E) inhibitors as anticancer drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Experimental and theoretical understanding of the gas phase oxidation of atmospheric amides with OH radicals: kinetics, products, and mechanisms.

    Science.gov (United States)

    Borduas, Nadine; da Silva, Gabriel; Murphy, Jennifer G; Abbatt, Jonathan P D

    2015-05-14

    Atmospheric amides have primary and secondary sources and are present in ambient air at low pptv levels. To better assess the fate of amides in the atmosphere, the room temperature (298 ± 3 K) rate coefficients of five different amides with OH radicals were determined in a 1 m(3) smog chamber using online proton-transfer-reaction mass spectrometry (PTR-MS). Formamide, the simplest amide, has a rate coefficient of (4.44 ± 0.46) × 10(-12) cm(3) molec(-1) s(-1) against OH, translating to an atmospheric lifetime of ∼1 day. N-methylformamide, N-methylacetamide and propanamide, alkyl versions of formamide, have rate coefficients of (10.1 ± 0.6) × 10(-12), (5.42 ± 0.19) × 10(-12), and (1.78 ± 0.43) × 10(-12) cm(3) molec(-1) s(-1), respectively. Acetamide was also investigated, but due to its slow oxidation kinetics, we report a range of (0.4-1.1) × 10(-12) cm(3) molec(-1) s(-1) for its rate coefficient with OH radicals. Oxidation products were monitored and quantified and their time traces were fitted using a simple kinetic box model. To further probe the mechanism, ab initio calculations are used to identify the initial radical products of the amide reactions with OH. Our results indicate that N-H abstractions are negligible in all cases, in contrast to what is predicted by structure-activity relationships. Instead, the reactions proceed via C-H abstraction from alkyl groups and from formyl C(O)-H bonds when available. The latter process leads to radicals that can readily react with O2 to form isocyanates, explaining the detection of toxic compounds such as isocyanic acid (HNCO) and methyl isocyanate (CH3NCO). These contaminants of significant interest are primary oxidation products in the photochemical oxidation of formamide and N-methylformamide, respectively.

  8. Study of the UV Light Conversion of Feruloyl Amides from Portulaca oleracea and Their Inhibitory Effect on IL-6-Induced STAT3 Activation.

    Science.gov (United States)

    Hwang, Joo Tae; Kim, Yesol; Jang, Hyun-Jae; Oh, Hyun-Mee; Lim, Chi-Hwan; Lee, Seung Woong; Rho, Mun-Chual

    2016-06-30

    Two new feruloyl amides, N-cis-hibiscusamide (5) and (7'S)-N-cis-feruloylnormetanephrine (9), and eight known feruloyl amides were isolated from Portulaca oleracea L. and the geometric conversion of the ten isolated feruloyl amides by UV light was verified. The structures of the feruloyl amides were determined based on spectroscopic data and comparison with literature data. The NMR data revealed that the structures of the isolated compounds showed cis/trans-isomerization under normal laboratory light conditions. Therefore, cis and trans-isomers of feruloyl amides were evaluated for their convertibility and stability by UV light of a wavelength of 254 nm. After 96 h of UV light exposure, 23.2%-35.0% of the cis and trans-isomers were converted to trans-isomers. Long-term stability tests did not show any significant changes. Among all compounds and conversion mixtures collected, compound 6 exhibited the strongest inhibition of IL-6-induced STAT3 activation in Hep3B cells, with an IC50 value of 0.2 μM. This study is the first verification of the conversion rates and an equilibrium ratio of feruloyl amides. These results indicate that this natural material might provide useful information for the treatment of various diseases involving IL-6 and STAT3.

  9. Effect of N-acetylcysteine on the accuracy of the prothrombin time assay of plasma coagulation factor II+VII+X activity in subjects infused with the drug. Influence of time and temperature

    DEFF Research Database (Denmark)

    Thorsen, Sixtus; Teisner, Ane; Jensen, Søren Astrup

    2009-01-01

    OBJECTIVES: The prothrombin time (PT) assay of factor II+VII+X activity is an important predictor of liver damage in paracetamol poisoned patients. It complicates interpretation of results that the antidote, acetylcysteine (NAC) depresses this activity. The aim was to investigate if NAC influences...... to plasma in vitro decreased factor II+VII+X activity at 37 degrees C in a time-dependent manner. This effect was quenched at temperatures ... to a significant additional depression of factor II+VII+X activity in plasma from subjects infused with NAC during the first 3h of infusion indicating that it contained reactive NAC. The risk that this NAC interfered with the accuracy of the PT assay was considered minimal with samples stored below 24 degrees C...

  10. Photophysical studies on the interaction of amides with Bovine Serum Albumin (BSA) in aqueous solution: Fluorescence quenching and protein unfolding

    International Nuclear Information System (INIS)

    Kumaran, R.; Ramamurthy, P.

    2014-01-01

    Addition. of amides containing a H-CO(NH 2 ) or CH 3 -CO(NH 2 ) framework to BSA results in a fluorescence quenching. On the contrary, fluorescence enhancement with a shift in the emission maximum towards the blue region is observed on the addition of dimethylformamide (DMF) (H-CON(CH 3 ) 2 ). Fluorescence quenching accompanied initially with a shift towards the blue region and a subsequent red shift in the emission maximum of BSA is observed on the addition of formamide (H-CO(NH 2 )), whereas a shift in the emission maximum only towards the red region results on the addition of acetamide (CH 3 -CONH 2 ). Steady state emission spectral studies reveal that amides that possess a free NH 2 and N(CH 3 ) 2 moiety result in fluorescence quenching and enhancement of BSA respectively. The 3D contour spectral studies of BSA with formamide exhibit a shift in the emission towards the red region accompanied with fluorescence quenching, which indicates that the tryptophan residues of the BSA are exposed to a more polar environment. Circular Dichroism (CD) studies of BSA with amides resulted in a gradual decrease in the α-helical content of BSA at 208 nm, which confirms that there is a conformational change in the native structure of BSA. Time-resolved fluorescence studies illustrate that the extent of buried trytophan moieties exposed to the aqueous phase on the addition of amides follows the order DMF 2 hydrogen and the carbonyl oxygen of amide form a concerted hydrogen-bonding network with the carbonyl oxygen and the amino moieties of amino acids respectively is established from fluorescence methods. -- Highlights: • The manuscript deals with the absorption, emission and fluorescence lifetime studies of Bovine Serum Albumin with amides in aqueous medium. • Fluorescence is correlated to the presence of fluorescing amino acid, tryptophan located in a heterogeneous environment. • This article provides an insight about the fluorescence spectral characteristics of a protein

  11. Enzymatically and reductively degradable α-amino acid-based poly(ester amide)s: Synthesis, cell compatibility, and intracellular anticancer drug delivery

    NARCIS (Netherlands)

    Sun, H.; Cheng, Ru; Deng, Chao; Meng, Fenghua; Dias, Aylvin A.; Hendriks, Marc; Feijen, Jan; Zhong, Zhiyuan

    2015-01-01

    A novel and versatile family of enzymatically and reductively degradable α-amino acid-based poly(ester amide)s (SS-PEAs) were developed from solution polycondensation of disulfide-containing di-p-toluenesulfonic acid salts of bis-l-phenylalanine diesters (SS-Phe-2TsOH) with di-p-nitrophenyl adipate

  12. Synthesis of amide isosteres of schweinfurthin-based stilbenes.

    Science.gov (United States)

    Stockdale, David P; Beutler, John A; Wiemer, David F

    2017-10-15

    The schweinfurthins are plant-derived stilbenes with an intriguing profile of anti-cancer activity. To obtain analogues of the schweinfurthins that might preserve the biological activity but have greater water solubility, a formal replacement of the central olefin with an amide has been explored. Two pairs of amides have been prepared, each containing the same hexahydroxanthene "left half" joined through an amide linkage to two different "right halves." In each series, the amide has been inserted in both possible orientations, placing the carbonyl group on the tricyclic ABC ring system and the amine on the D-ring, or placing the amine on the hexahydroxanthene and the carbonyl group on the D-ring. The four new schweinfurthin analogues have been tested in the NCI 60 cell line screen, and in both cases the more active isomer carried the carbonyl group on the C-ring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Metabolism of amino acid amides in Pseudomonas putida ATCC 12633

    NARCIS (Netherlands)

    Hermes, H.F.M.; Croes, L.M.; Peeters, W.P.H.; Peters, P.J.H.; Dijkhuizen, L.

    1993-01-01

    The metabolism of the natural amino acid L-valine, the unnatural amino acids D-valine, and D-, L-phenylglycine (D-, L-PG), and the unnatural amino acid amides D-, L-phenylglycine amide (D, L-PG-NH2) and L-valine amide (L-Val-NH2) was studied in Pseudomonas putida ATCC 12633. The organism possessed

  14. Amide or Amine: Determining the Origin of the 3300 cm−1 NH Mode in Protein SFG Spectra Using 15N Isotope Labels

    Science.gov (United States)

    Weidner, Tobias; Breen, Nicholas F.; Drobny, Gary P.; Castner, David G.

    2009-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been employed in biomaterials research and protein adsorption studies with growing success in recent years. A number of studies focusing on understanding SFG spectra of proteins and peptides at different interfaces have laid the foundation for future, more complex studies. In many cases a strong NH mode near 3300 cm−1 is observed in the SFG spectra, but the relationship of this mode to the peptide structure is uncertain since it has been assigned to either a backbone amide mode or a side chain related amine resonance. A thorough understanding of the SFG spectra of these first model systems is an important first step for future experiments. To clarify the origin of the NH SFG mode we studied 15N isotopically labeled 14-amino acid amphiphilic model peptides composed of lysine (K) and leucine (L) in an α-helical secondary structure (LKα14) that were adsorbed onto charged surfaces in situ at the solid-liquid interface. 15N substitution at the terminal amine group of the lysine side chains resulted in a red-shift of the NH mode of 9 cm−1 on SiO2 and 13 cm−1 on CaF2. This clearly shows the 3300 cm−1 NH feature is associated with side chain NH stretches and not with backbone amide modes. PMID:19873996

  15. Amide or amine: determining the origin of the 3300 cm(-1) NH mode in protein SFG spectra using 15N isotope labels.

    Science.gov (United States)

    Weidner, Tobias; Breen, Nicholas F; Drobny, Gary P; Castner, David G

    2009-11-26

    Sum frequency generation (SFG) vibrational spectroscopy has been employed in biomaterials research and protein adsorption studies with growing success in recent years. A number of studies focusing on understanding SFG spectra of proteins and peptides at different interfaces have laid the foundation for future, more complex studies. In many cases, a strong NH mode near 3300 cm(-1) is observed in the SFG spectra, but the relationship of this mode to the peptide structure is uncertain, since it has been assigned to either a backbone amide mode or a side chain related amine resonance. A thorough understanding of the SFG spectra of these first model systems is an important first step for future experiments. To clarify the origin of the NH SFG mode, we studied (15)N isotopically labeled 14-amino acid amphiphilic model peptides composed of lysine (K) and leucine (L) in an alpha-helical secondary structure (LKalpha14) that were adsorbed onto charged surfaces in situ at the solid-liquid interface. (15)N substitution at the terminal amine group of the lysine side chains resulted in a red-shift of the NH mode of 9 cm(-1) on SiO(2) and 13 cm(-1) on CaF(2). This clearly shows the 3300 cm(-1) NH feature is associated with side chain NH stretches and not with backbone amide modes.

  16. Hypoxic resistance of KRAS mutant tumor cells to 3-Bromopyruvate is counteracted by Prima-1 and reversed by N-acetylcysteine.

    Science.gov (United States)

    Orue, Andrea; Chavez, Valery; Strasberg-Rieber, Mary; Rieber, Manuel

    2016-11-18

    The metabolic inhibitor 3-bromopyruvate (3-BrPA) is a promising anti-cancer alkylating agent, shown to inhibit growth of some colorectal carcinoma with KRAS mutation. Recently, we demonstrated increased resistance to 3-BrPA in wt p53 tumor cells compared to those with p53 silencing or mutation. Since hypoxic microenvironments select for tumor cells with diminished therapeutic response, we investigated whether hypoxia unequally increases resistance to 3-BrPA in wt p53 MelJuso melanoma harbouring (Q61L)-mutant NRAS and wt BRAF, C8161 melanoma with (G12D)-mutant KRAS (G464E)-mutant BRAF, and A549 lung carcinoma with a KRAS (G12S)-mutation. Since hypoxia increases the toxicity of the p53 activator, Prima-1 against breast cancer cells irrespective of their p53 status, we also investigated whether Prima-1 reversed hypoxic resistance to 3-BrPA. In contrast to the high susceptibility of hypoxic mutant NRAS MelJuso cells to 3-BrPA or Prima-1, KRAS mutant C8161 and A549 cells revealed hypoxic resistance to 3-BrPA counteracted by Prima-1. In A549 cells, Prima-1 increased p21CDKN1mRNA, and reciprocally inhibited mRNA expression of the SLC2A1-GLUT1 glucose transporter-1 and ALDH1A1, gene linked to detoxification and stem cell properties. 3-BrPA lowered CAIX and VEGF mRNA expression. Death from joint Prima-1 and 3-BrPA treatment in KRAS mutant A549 and C8161 cells seemed mediated by potentiating oxidative stress, since it was antagonized by the anti-oxidant and glutathione precursor N-acetylcysteine. This report is the first to show that Prima-1 kills hypoxic wt p53 KRAS-mutant cells resistant to 3-BrPA, partly by decreasing GLUT-1 expression and exacerbating pro-oxidant stress.

  17. Development and utilization of extracorporeal regional complexing hemodialysis as a means of mobilizing and enhancing the excretion of methylmercury in the dog. [N-acetylcysteine; N-acetylpenicillamine; 2,3-dimercaptosuccinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kostyniak, P.J.

    1975-01-01

    The present investigation was directed at developing and testing a new procedure for increasing methylmercury excretion in the dog. The procedure utilizes hemodialysis in conjunction with the extracorporeal reversal of protein binding of methylmercury in blood by the presence of low molecular weight sulfhydryl containing complexing agents (cysteine, N-acetylcysteine, penicillamine, N-acetylpenicillamine, 2,3-dimercaptosuccinic acid) having a high chemical affinity for methylmercury. Using such a procedure, the complexed methylmercury and the free complexing agent were found to be readily removed from blood by the dialyzer. Unlike chelation therapy, this procedure does not rely on the attainment of high systemic concentrations of complexing agent in order to attain enhanced excretion by normal routes. It rather introduces into the circulatory system a shunt designed specifically for methylmercury extraction from blood. In vitro testing of this procedure revealed that methylmercury removal from blood was dependent upon the concentration of complexing agent in blood and the dialyzer blood flow rate. In vivo testing of the procedure in the dog utilized a standard hemodialyzer with infusion of complexing agent into the arterial dialyzer blood line. The rate of methylmercury removal from the dog during the treatment procedures were as high as 400 times the excretion rate of mercury in untreated dogs.

  18. Electrical behavior of amide functionalized graphene oxide and graphene oxide films annealed at different temperatures

    International Nuclear Information System (INIS)

    Rani, Sumita; Kumar, Mukesh; Kumar, Dinesh; Sharma, Sumit

    2015-01-01

    Films of graphene oxide (GO) and amide functionalized graphene oxides (AGOs) were deposited on SiO 2 /Si(100) by spin coating and were thermally annealed at different temperatures. Sheet resistance of GO and AGOs films was measured using four probe resistivity method. GO an insulator at room temperature, exhibits decrease in sheet resistance with increase in annealing temperature. However, AGOs' low sheet resistance (250.43 Ω) at room temperature further decreases to 39.26 Ω after annealing at 800 °C. It was observed that the sheet resistance of GO was more than AGOs up to 700 °C, but effect was reversed after annealing at higher temperature. At higher annealing temperatures the oxygen functionality reduces in GO and sheet resistance decreases. Sheet resistance was found to be annealing time dependent. Longer duration of annealing at a particular temperature results in decrease of sheet resistance. - Highlights: • Amide functionalized graphene oxides (AGOs) were synthesized at room temperature (RT). • AGO films have low sheet resistance at RT as compared to graphene oxide (GO). • Fast decrease in the sheet resistance of GO with annealing as compared to AGOs • AGOs were found to be highly dispersible in polar solvents

  19. A New Amide from the Stem Bark of Illiciumdifengpi and Its Anti-inflammatory Activity

    Directory of Open Access Journals (Sweden)

    Chuntong Li

    2015-01-01

    Full Text Available A new amide, named ( 2E, 4E-5-phenyl-N-(2-phenylethyl-2,4-pentadienamide (1 , together with one known amide, N -2-phenylet hylcinnamide (2 and two known ceramides, 2-​hydroxy-​N-​[(1S,​2R,​3E​-​2-​hydroxy-​1-​(hydroxymethyl​-​3-​heptadecenyl]​-pentadecanamide (3, 1-O-(β-D-glucopyranosyl-(2S,3R,4E,8E-2-[(2R-2-hydroxypentadecanoylamino]-4,8-octadecadiene-1,3-diol (4 were isolated from the stem bark of Illicium difengpi. The structures of the isolated compounds were elucidated by analyses of their 1H and 13C NMR, COSY, H S QC, HMBC spectr a and HR-ESI/MS mass spectrometric data. Anti-inflammatory assays with compounds 1‒4 were carried out, compounds 1 and 2 showed significant inhibitory effect on TNF- α release in LPS stimulated RAW 264.7 macrophages .

  20. Amides of non-steroidal anti-inflammatory drugs with thiomorpholine can yield hypolipidemic agents with improved anti-inflammatory activity.

    Science.gov (United States)

    Theodosis-Nobelos, Panagiotis; Kourti, Malamati; Gavalas, Antonios; Rekka, Eleni A

    2016-02-01

    Novel amides of non steroidal anti-inflammatory drugs (NSAIDs), α-lipoic acid and indole-3-acetic acid with thiomorpholine were synthesised by a simple method and at high yields (60-92%). All the NSAID derivatives highly decreased lipidemic indices in the plasma of Triton treated hyperlipidemic rats. The most potent compound was the indomethacin derivative, which decreased total cholesterol, triglycerides and LDL cholesterol by 73%, 80% and 83%, respectively. They reduced acute inflammation equally or more than most parent acids. Hence, it could be concluded that amides of common NSAIDs with thiomorpholine acquire considerable hypolipidemic potency, while they preserve or augment their anti-inflammatory activity, thus addressing significant risk factors for atherogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Cyclisation versus 1,1-Carboboration: Reactions of B(C6F5)3 with Propargyl Amides.

    Science.gov (United States)

    Melen, Rebecca L; Hansmann, Max M; Lough, Alan J; Hashmi, A Stephen K; Stephan, Douglas W

    2013-09-02

    A series of propargyl amides were prepared and their reactions with the Lewis acidic compound B(C6F5)3 were investigated. These reactions were shown to afford novel heterocycles under mild conditions. The reaction of a variety of N-substituted propargyl amides with B(C6F5)3 led to an intramolecular oxo-boration cyclisation reaction, which afforded the 5-alkylidene-4,5-dihydrooxazolium borate species. Secondary propargyl amides gave oxazoles in B(C6F5)3 mediated (catalytic) cyclisation reactions. In the special case of disubstitution adjacent to the nitrogen atom, 1,1-carboboration is favoured as a result of the increased steric hindrance (1,3-allylic strain) in the 5-alkylidene-4,5-dihydrooxazolium borate species. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Investigation of Uranyl Nitrate Ion Pairs Complexed with Amide Ligands using Electrospray Ionization Ion Trap Mass Spectrometry and Density Functional Theory

    International Nuclear Information System (INIS)

    Groenewold, Gary S.; Dinescu, Adriana; Benson, Michael T.; Gresham, Garold L.; van Stipdonk, Michael J.

    2011-01-01

    Ion populations formed from electrospray of uranyl nitrate solutions containing different amides vary depending on ligand nucleophilicity and steric crowding at the metal center. The most abundant species were ion pair complexes having the general formula (UO2(NO3)(amide)n=2,3)+, and complexes containing the amide conjugate base, reduced uranyl UO2+, and a 2+ charge were also formed. The formamide experiment produced the greatest diversity of species that stems from weaker amide binding leading to dissociation and subsequent solvent coordination or metal reduction. Experiments using methyl formamide, dimethyl formamide, acetamide, and methyl acetamide produced ion pair and doubly charged complexes that were more abundant, and less abundant complexes containing solvent or reduced uranyl. This pattern is reversed in the dimethylacetamide experiment, which displayed reduced doubly charged complexes and augmented reduced uranyl complexes. DFT investigations of the tris-amide ion pair complexes showed that inter-ligand repulsion distorts the amide ligands out of the uranyl equatorial plane, and that complex stabilities do not increase with increasing amide nucleophilicity. Elimination of an amide ligand largely relieves the interligand repulsion, and the remaining amide ligands become closely aligned with the equatorial plane in the structures of the bis-amide ligands. The studies show that the phenomenological distribution of coordination complexes in a metal-ligand electrospray experiment is a function of both ligand nucleophilicity and interligand repulsion, and that the latter factor begins exerting influence even in the case of relatively small ligands like the substituted methyl-formamide and methyl-acetamide ligands.

  3. Development of dihydropyridone indazole amides as selective Rho-kinase inhibitors.

    Science.gov (United States)

    Goodman, Krista B; Cui, Haifeng; Dowdell, Sarah E; Gaitanopoulos, Dimitri E; Ivy, Robert L; Sehon, Clark A; Stavenger, Robert A; Wang, Gren Z; Viet, Andrew Q; Xu, Weiwei; Ye, Guosen; Semus, Simon F; Evans, Christopher; Fries, Harvey E; Jolivette, Larry J; Kirkpatrick, Robert B; Dul, Edward; Khandekar, Sanjay S; Yi, Tracey; Jung, David K; Wright, Lois L; Smith, Gary K; Behm, David J; Bentley, Ross; Doe, Christopher P; Hu, Erding; Lee, Dennis

    2007-01-11

    Rho kinase (ROCK1) mediates vascular smooth muscle contraction and is a potential target for the treatment of hypertension and related disorders. Indazole amide 3 was identified as a potent and selective ROCK1 inhibitor but possessed poor oral bioavailability. Optimization of this lead resulted in the discovery of a series of dihydropyridones, exemplified by 13, with improved pharmacokinetic parameters relative to the initial lead. Indazole substitution played a critical role in decreasing clearance and improving oral bioavailability.

  4. Efficacy of N-acetylcysteine to reduce the effects of aflatoxin B1 intoxication in broiler chickens.

    Science.gov (United States)

    Valdivia, A G; Martínez, A; Damián, F J; Quezada, T; Ortíz, R; Martínez, C; Llamas, J; Rodríguez, M L; Yamamoto, L; Jaramillo, F; Loarca-Piña, M G; Reyes, J L

    2001-06-01

    N-acetylcysteine (NAC) has been used safely in humans and in other mammals as an antidote against several toxic and carcinogenic agents, including aflatoxin B1 (AFB1). The aim of this study was to evaluate the capability of dietary supplementation with NAC to ameliorate the effects of subacute intoxication with AFB1 in broiler chickens. One hundred twenty male Hubbard 1-d-old chickens were allocated into one of four dietary treatments: 1) control group without treatment, 2) purified AFB1 added to diet (3 mg/kg of feed) for 21 d, 3) NAC (800 mg/kg BW, daily), or 4) AFB1 plus NAC at the same doses as Groups 2 and 3. Broilers treated with AFB1 plus NAC were shown to be partially protected against deleterious effects on BW (57.8%), daily weight gain (49.1%), feed conversion index (21.4%), plasma and hepatic total protein concentration (45.2, 66.7%), plasma alanine aminotransferase (67.4%), hepatic glutathione-S-transferase (18.8%), and reduced glutathione liver concentration (75.0%). In addition, they showed less intense liver fading, friable texture, and microvesicular steatosis. In the kidney, thickening of glomerular basement membrane was also less severe in NAC+AFB1-treated chickens than in AFB1-treated chickens. Our results suggest that NAC provided protection against negative effects on performance, liver and renal damage, and biochemical alterations induced by AFB1 in broiler chickens. Effects of NAC alone on chick performance were also evaluated. Addition of NAC to diet (800 mg/kg BW) did not negatively affect feed consumption, conversion index, or serum chemistry and did not induce structural changes in the liver or kidney.

  5. Effect of fraxetin on antioxidant defense and stress proteins in human neuroblastoma cell model of rotenone neurotoxicity. Comparative study with myricetin and N-acetylcysteine

    International Nuclear Information System (INIS)

    Molina-Jimenez, Maria Francisca; Sanchez-Reus, Maria Isabel; Cascales, Maria; Andres, David; Benedi, Juana

    2005-01-01

    Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Recently, it has been shown that fraxetin (coumarin) and myricetin (flavonoid) have significant neuroprotective effects against apoptosis induced by rotenone, increase the total glutathione levels in vitro, and inhibit lipid peroxidation. Thus, these considerations prompted us to investigate the way in which fraxetin and myricetin affect the endogenous antioxidant defense system, such as Mn and CuZn superoxide dismutase (MnSOD, CuZnSOD), catalase, glutathione reductase (GR), and glutathione peroxidase (GPx) on rotenone neurotoxicity in neuroblastoma cells. N-acetylcysteine (NAC), a potent antioxidant, was employed as a comparative agent. Also, the expression and protein levels of HSP70 by Northern and Western blot analysis were assayed in SH-SY5Y cells. After incubation for 16 h, rotenone significantly increased the expression and activity of MnSOD, GPx, and catalase. When cells were preincubated with fraxetin, there was a decrease in the protein levels and activity of both MnSOD and catalase, in comparison with the rotenone treatment. The myricetin effect was less pronounced. Activity and expression of GPx were increased by rotenone and pre-treatment with fraxetin did not modify significantly these levels. The significant enhancement in HSP70 expression at mRNA and protein levels induced by fraxetin was observed by pre-treatment of cells 0.5 h before rotenone insult. These data suggest that major features of rotenone-induced neurotoxicity are partially mediated by free radical formation and oxidative stress, and that fraxetin partially protects against rotenone toxicity affecting the main protection system of the cells against oxidative injury

  6. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Science.gov (United States)

    2010-07-01

    ... fluorinated alkylaryl amide. 721.9075 Section 721.9075 Protection of Environment ENVIRONMENTAL PROTECTION... amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688) is...

  7. Extraction mechanism of U(VI) ions by N,N-dialkylamides

    International Nuclear Information System (INIS)

    Descouls, N.; Musikas, C.

    1985-09-01

    N,N dialkylamides are good extractants of UO 2 2+ ions from the nitric solutions obtained on dissolution of nuclear irradiated fuels. The extraction mechanism of U(VI) ions proved to be rather complex. Two species were identified by spectrophotometry in the organic phase: UO 2 (NO 3 ) 2 L 2 (1) and UO 2 (NO 3 ) 3 HL (2), L standing for the amide molecule. The complex (1) is typical for neutral molecules extractants. However, when log D(U(VI)) is plotted against log C (amide), the slope of the straight line obtained is greater than 2, which suggests that amide (1) interactions take place in the 2sup(nd) coordination sphere of U(VI) ions. The crystal structure of (1) where L is the N,N-di-n-butyldodecanamide show that Van der Waals interactions occur between the dodecyl chains of two (1) molecules. The complex (2) is characteristic for anionic extractants. For the amide molecules studied, it takes place in very acidic media. In order to investigate the nature of the UO 2 (NO 3 ) 3 HL complex, the infra-red shift of νc=0 vibration were compared in the following compounds: free amide, HNO 3 - L, phenol L, UO 2 (NO 3 ) 3 HL. The results are discussed. 14 refs [fr

  8. Non-amidated and amidated members of the C-type allatostatin (AST-C) family are differentially distributed in the stomatogastric nervous system of the American lobster, Homarus americanus.

    Science.gov (United States)

    Christie, Andrew E; Miller, Alexandra; Fernandez, Rebecca; Dickinson, Evyn S; Jordan, Audrey; Kohn, Jessica; Youn, Mina C; Dickinson, Patsy S

    2018-01-13

    The crustacean stomatogastric nervous system (STNS) is a well-known model for investigating neuropeptidergic control of rhythmic behavior. Among the peptides known to modulate the STNS are the C-type allatostatins (AST-Cs). In the lobster, Homarus americanus, three AST-Cs are known. Two of these, pQIRYHQCYFNPISCF (AST-C I) and GNGDGRLYWRCYFNAVSCF (AST-C III), have non-amidated C-termini, while the third, SYWKQCAFNAVSCFamide (AST-C II), is C-terminally amidated. Here, antibodies were generated against one of the non-amidated peptides (AST-C I) and against the amidated isoform (AST-C II). Specificity tests show that the AST-C I antibody cross-reacts with both AST-C I and AST-C III, but not AST-C II; the AST-C II antibody does not cross-react with either non-amidated peptide. Wholemount immunohistochemistry shows that both subclasses (non-amidated and amidated) of AST-C are distributed throughout the lobster STNS. Specifically, the antibody that cross-reacts with the two non-amidated peptides labels neuropil in the CoGs and the stomatogastric ganglion (STG), axons in the superior esophageal (son) and stomatogastric (stn) nerves, and ~ 14 somata in each commissural ganglion (CoG). The AST-C II-specific antibody labels neuropil in the CoGs, STG and at the junction of the sons and stn, axons in the sons and stn, ~ 42 somata in each CoG, and two somata in the STG. Double immunolabeling shows that, except for one soma in each CoG, the non-amidated and amidated peptides are present in distinct sets of neuronal profiles. The differential distributions of the two AST-C subclasses suggest that the two peptide groups are likely to serve different modulatory roles in the lobster STNS.

  9. Characteristic conformation of Mosher's amide elucidated using the cambridge structural database.

    Science.gov (United States)

    Ichikawa, Akio; Ono, Hiroshi; Mikata, Yuji

    2015-07-16

    Conformations of the crystalline 3,3,3-trifluoro-2-methoxy-2-phenylpropanamide derivatives (MTPA amides) deposited in the Cambridge Structural Database (CSD) were examined statistically as Racid-enantiomers. The majority of dihedral angles (48/58, ca. 83%) of the amide carbonyl groups and the trifluoromethyl groups ranged from -30° to 0° with an average angle θ1 of -13°. The other conformational properties were also clarified: (1) one of the fluorine atoms was antiperiplanar (ap) to the amide carbonyl group, forming a staggered conformation; (2) the MTPA amides prepared from primary amines showed a Z form in amide moieties; (3) in the case of the MTPA amide prepared from a primary amine possessing secondary alkyl groups (i.e., Mosher-type MTPA amide), the dihedral angles between the methine groups and the carbonyl groups were syn and indicative of a moderate conformational flexibility; (4) the phenyl plane was inclined from the O-Cchiral bond of the methoxy moiety with an average dihedral angle θ2 of +21°; (5) the methyl group of the methoxy moiety was ap to the ipso-carbon atom of the phenyl group.

  10. Labelling, biodistribution and compartmental analysis of N-acetylcysteine labelled with Tc-99m. Comparative investigation with with 99m Tc-MIBI in an in vivo tumoral model

    International Nuclear Information System (INIS)

    Faintuch, Bluma Linkowski

    1997-01-01

    Labelling and biodistribution studies were done with two different ligands, respectively Methoxy isobutyl isonitrile (MIBI) and N-acetylcysteine (NAC), employing Tc-99m as a tracer. The main objective was to assess the pharmacokinetic properties of the second substance, aiming at its possible application in cancer diagnosis. To this purpose an in vivo investigation was done using healthy and tumor-bearing rats with experimental cancer. Images of tumor-bearing rats registered in a scintillation camera indicated that with 99m Tc-MIBI none of the two selected times was adequate for visualization of the cancer mass. In contrast, 99m Tc-NAC permitted clear identification of the humor, four hours after injection. The results have demonstrated that 99m Tc-NAC is a radiopharmaceutical with affinity for cancer tissue and promising for further investigation concerning imaging diagnosis of tumors. (author)

  11. Predicting protein amidation sites by orchestrating amino acid sequence features

    Science.gov (United States)

    Zhao, Shuqiu; Yu, Hua; Gong, Xiujun

    2017-08-01

    Amidation is the fourth major category of post-translational modifications, which plays an important role in physiological and pathological processes. Identifying amidation sites can help us understanding the amidation and recognizing the original reason of many kinds of diseases. But the traditional experimental methods for predicting amidation sites are often time-consuming and expensive. In this study, we propose a computational method for predicting amidation sites by orchestrating amino acid sequence features. Three kinds of feature extraction methods are used to build a feature vector enabling to capture not only the physicochemical properties but also position related information of the amino acids. An extremely randomized trees algorithm is applied to choose the optimal features to remove redundancy and dependence among components of the feature vector by a supervised fashion. Finally the support vector machine classifier is used to label the amidation sites. When tested on an independent data set, it shows that the proposed method performs better than all the previous ones with the prediction accuracy of 0.962 at the Matthew's correlation coefficient of 0.89 and area under curve of 0.964.

  12. Simple Lanthanide Amides [(Me3Si)2N]3Ln(μ-Cl)Li(THF)3 as Highly Efficient Catalysts for the Nitroaldol Reaction

    Institute of Scientific and Technical Information of China (English)

    LIU,Yu-yu; WANG,Shao-Wu; ZHANG,Li-Jun; WU,Yun-Jun; LI,Qing-Hai; YANG,Gao-Sheng; XIE,Mei-Hua

    2008-01-01

    This contribution is to report the application of simple lanthanide amides [(Me3Si)2N]3Ln(μ-Cl)Li(THF)3 exhib-iting a high activity toward catalyzing Henry reaction of aromatic aldehydes with nitroalkanes to give β-nitroalcohols or β-nitroolefins with a very good chemoselectivity by controlling the reaction temperatures and by selecting aromatic aldehydes. It was found that this catalytic system was compatible with a wide range of substrates of aldehydes.

  13. Decarbonylative Phosphorylation of Amides by Palladium and Nickel Catalysis: The Hirao Cross-Coupling of Amide Derivatives.

    Science.gov (United States)

    Liu, Chengwei; Szostak, Michal

    2017-10-02

    Considering the ubiquity of organophosphorus compounds in organic synthesis, pharmaceutical discovery agrochemical crop protection and materials chemistry, new methods for their construction hold particular significance. A conventional method for the synthesis of C-P bonds involves cross-coupling of aryl halides and dialkyl phosphites (the Hirao reaction). We report a catalytic deamidative phosphorylation of a wide range of amides using a palladium or nickel catalyst giving aryl phosphonates in good to excellent yields. The present method tolerates a wide range of functional groups. The reaction constitutes the first example of a transition-metal-catalyzed generation of C-P bonds from amides. This redox-neutral protocol can be combined with site-selective conventional cross-coupling for the regioselective synthesis of potential pharmacophores. Mechanistic studies suggest an oxidative addition/transmetallation pathway. In light of the importance of amides and phosphonates as synthetic intermediates, we envision that this Pd and Ni-catalyzed C-P bond forming method will find broad application. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Antifungal activity of natural and synthetic amides from Piper species

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Joaquim V.; Oliveira, Alberto de; Kato, Massuo J., E-mail: majokato@iq.usp.b [Universidade de Sao Paulo (IQ/USP), SP (Brazil). Inst. de Quimica; Raggi, Ludmila; Young, Maria C. [Instituto de Botanica, Sao Paulo, SP (Brazil). Secao de Fisiologia e Bioquimica de Plantas

    2010-07-01

    The antifungal leaves extract from Piper scutifolium was submitted to bioactivity-guided chromatographic separation against Cladosporium cladosporioides and C. sphaerospermum yielding piperine, piperlonguminine and corcovadine as the active principles which displayed a detection limit of 1 {mu}g. Structure-activity relationships were investigated with the preparation of twelve analogs having differences in the number of unsaturations, aromatic ring substituents and in the amide moiety. Analogs having a single double-bond and no substituent in the aromatic ring displayed higher activity, while N,N,-diethyl analogs displayed higher dose-dependent activity. (author)

  15. Nitrosation of amides involves a pseudopericyclic 1,3-sigmatropic rearrangement.

    Science.gov (United States)

    Birney, David M

    2004-03-04

    Two possible pathways for the nitrosation of formamide and N-methyl formamide by nitrosonium ion (NO(+)) have been investigated at the B3LYP/6-31G(d,p) level. The key steps are pseudopericyclic 1,3-sigmatropic rearrangements to give the observed N-nitrosamides. The transition structures (8a and 8b) are close to planar on the amide moiety and have remarkably low barriers of only 6.6 and 4.8 kcal/mol from the lowest energy conformations of 6a and 6b, respectively. [reaction: see text

  16. Multifaceted catalytic hydrogenation of amides via diverse activation of a sterically confined bipyridine-ruthenium framework.

    Science.gov (United States)

    Miura, Takashi; Naruto, Masayuki; Toda, Katsuaki; Shimomura, Taiki; Saito, Susumu

    2017-05-16

    Amides are ubiquitous and abundant in nature and our society, but are very stable and reluctant to salt-free, catalytic chemical transformations. Through the activation of a "sterically confined bipyridine-ruthenium (Ru) framework (molecularly well-designed site to confine adsorbed H 2 in)" of a precatalyst, catalytic hydrogenation of formamides through polyamide is achieved under a wide range of reaction conditions. Both C=O bond and C-N bond cleavage of a lactam became also possible using a single precatalyst. That is, catalyst diversity is induced by activation and stepwise multiple hydrogenation of a single precatalyst when the conditions are varied. The versatile catalysts have different structures and different resting states for multifaceted amide hydrogenation, but the common structure produced upon reaction with H 2 , which catalyzes hydrogenation, seems to be "H-Ru-N-H."

  17. Copper sulfate-pentahydrate-1,10-phenanthroline catalyzed amidations of alkynyl bromides. Synthesis of heteroaromatic amine substituted ynamides.

    Science.gov (United States)

    Zhang, Yanshi; Hsung, Richard P; Tracey, Michael R; Kurtz, Kimberly C M; Vera, Eymi L

    2004-04-01

    A practical cross-coupling of amides with alkynyl bromides using catalytic CuSO(4).5H(2)O and 1,10-phenanthroline is described here. This catalytic protocol is more environmentally friendly than the use of CuCN or copper halides and provides a general entry for syntheses of ynamides including various new sulfonyl and heteroaromatic amine substituted ynamides. Given the interest in ynamides, this N-alkynylation of amides should be significant for the future of ynamides in organic synthesis.

  18. Engineering Escherichia coli Nicotinic Acid Mononucleotide Adenylyltransferase for Fully Active Amidated NAD Biosynthesis.

    Science.gov (United States)

    Wang, Xueying; Zhou, Yongjin J; Wang, Lei; Liu, Wujun; Liu, Yuxue; Peng, Chang; Zhao, Zongbao K

    2017-07-01

    NAD and its reduced form NADH function as essential redox cofactors and have major roles in determining cellular metabolic features. NAD can be synthesized through the deamidated and amidated pathways, for which the key reaction involves adenylylation of nicotinic acid mononucleotide (NaMN) and nicotinamide mononucleotide (NMN), respectively. In Escherichia coli , NAD de novo biosynthesis depends on the protein NadD-catalyzed adenylylation of NaMN to nicotinic acid adenine dinucleotide (NaAD), followed by NAD synthase-catalyzed amidation. In this study, we engineered NadD to favor NMN for improved amidated pathway activity. We designed NadD mutant libraries, screened by a malic enzyme-coupled colorimetric assay, and identified two variants, 11B4 (Y84V/Y118D) and 16D8 (A86W/Y118N), with a high preference for NMN. Whereas in the presence of NMN both variants were capable of enabling the viability of cells of E. coli BW25113-derived NAD-auxotrophic strain YJE003, for which the last step of the deamidated pathway is blocked, the 16D8 expression strain could grow without exogenous NMN and accumulated a higher cellular NAD(H) level than BW25113 in the stationary phase. These mutants established fully active amidated NAD biosynthesis and offered a new opportunity to manipulate NAD metabolism for biocatalysis and metabolic engineering. IMPORTANCE Adenylylation of nicotinic acid mononucleotide (NaMN) and adenylylation of nicotinamide mononucleotide (NMN), respectively, are the key steps in the deamidated and amidated pathways for NAD biosynthesis. In most organisms, canonical NAD biosynthesis follows the deamidated pathway. Here we engineered Escherichia coli NaMN adenylyltransferase to favor NMN and expressed the mutant enzyme in an NAD-auxotrophic E. coli strain that has the last step of the deamidated pathway blocked. The engineered strain survived in M9 medium, which indicated the implementation of a functional amidated pathway for NAD biosynthesis. These results enrich

  19. N-acetylcysteine is able to reduce the oxidation status and the endothelial activation after a high-glucose content meal in patients with Type 2 diabetes mellitus.

    Science.gov (United States)

    Masha, A; Brocato, L; Dinatale, S; Mascia, C; Biasi, F; Martina, V

    2009-04-01

    Post-prandial hyperglycemia seems to play a pivotal role in the pathogenesis of the cardiovascular complications of diabetes mellitus, as it leads to an oxidative stress which in turn causes a reduced NO bioavailability. These conditions produce an endothelial activation. The aim of this study was to assure that the administration of N-acetylcysteine (NAC), thiolic antioxidant, is able to decrease the oxidation status and endothelial activation after a high-glucose content meal. Ten patients with Type 2 diabetes mellitus (DMT2) (Group 1) and 10 normal subjects (Group 2) were studied. They assumed a high-glucose content meal without (phase A) or after (phase B) the administration of NAC. Glycemia, insulinemia, intercellular adhesion molecule 1, vascular adhesion molecule 1 (VCAM-1), E-selectin, malonaldehyde (MDA), and 4-hydroxynonenal (HNE) were assessed at -30, 0, +30, +60, +90, +120, and +180 min with respect to the meal consumption. During the phase A in Group 1, only HNE and MDA levels increased after the meal assumption; all parameters remained unchanged in Group 2. During the phase B, in Group 1, HNE, MDA, VCAM-1, and E-selectin levels after the meal were lower than those in phase A, while no change for all variables were observed in Group 2. A high-glucose meal produces an increase in oxidation parameters in patients with DMT2. The administration of NAC reduces the oxidative stress and, by doing so, reduces the endothelial activation. In conclusion, NAC could be efficacious in the slackening of the progression of vascular damage in DMT2.

  20. A General and Simple Diastereoselective Reduction by L-Selectride: Efficient Synthesis of Protected (4S,5S)-Dihydroxy Amides

    OpenAIRE

    Yin; Ye; Yu; Liu

    2010-01-01

    A general approach to (4S,5S)-4-benzyloxy-5-hydroxy-N-(4-methoxybenzyl) amides 10 based on a diastereoselective reduction of (5S,6RS)-6-alkyl-5-benzyloxy-6-hydroxy-2-piperidinones 6 and their tautomeric ring-opened keto amides 7 is described. The reduction with L-Selectride at -20 °C to room temperature afforded the products 10 in excellent yields and moderate to high syn-diastereoselectivities.

  1. A general and simple diastereoselective reduction by L-Selectride: efficient synthesis of protected (4S,5S)-dihydroxy amides.

    Science.gov (United States)

    Yin, Bo; Ye, Dong-Nai; Yu, Kai-Hui; Liu, Liang-Xian

    2010-04-16

    A general approach to (4S,5S)-4-benzyloxy-5-hydroxy-N-(4-methoxybenzyl) amides 10 based on a diastereoselective reduction of (5S,6RS)-6-alkyl-5-benzyloxy-6-hydroxy-2-piperidinones 6 and their tautomeric ring-opened keto amides 7 is described. The reduction with L-Selectride at -20 degrees C to room temperature afforded the products 10 in excellent yields and moderate to high syn-diastereoselectivities.

  2. Thermal and Optical Properties of New Poly(amide-imide)/Nanocomposite Reinforced by Layer Silicate Containing Diphenyl Ether Moieties

    Science.gov (United States)

    Faghihi, Khalil; Faramarzi, Ellahe; Shabanian, Meisam

    2011-04-01

    New poly(amide-imide)-montmorillonite reinforced nanocomposites containing Bis(4-N-trimellitylimido) diphenyl ether moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide) (PAI) 4 was synthesized by the direct polycondensation reaction of Bis(4-N-trimellitylimido) diphenyl ether 3 with 4,4'-diamino diphenyl ether 2 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). Morphology and structure of the resulting PAI-nanocomposite films 4a and 4b with 10 and 20 mass% silicate particles respectively, were characterized by FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The properties of nanocomposites films were investigated by using Uv-vis spectroscopy, thermogravimetric analysis (TGA) and water uptake measurements.

  3. Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans

    DEFF Research Database (Denmark)

    Orskov, C; Rabenhøj, L; Wettergren, A

    1994-01-01

    Using specific radioimmunoassays, we studied the occurrence of amidated and glycine-extended glucagon-like peptide I (GLP-I) molecules in the human small intestine and pancreas and in the circulation system in response to a breakfast meal. Through gel permeation chromatography of extracts...... plasma were 7 +/- 1 and 6 +/- 1 pM, respectively (n = 6). In response to a breakfast meal, the concentration of amidated GLP-I rose significantly amounting to 41 +/- 5 pM 90 min after the meal ingestion, whereas the concentration of glycine-extended GLP-I only rose slightly to a maximum of 10 +/- 1 p...

  4. [Effects of nitriles and amides on the growth and the nitrile hydratase activity of the Rhodococcus sp. strain gt1].

    Science.gov (United States)

    Maksimov, A Iu; Kuznetsova, M V; Ovechkina, G V; Kozlov, S V; Maksimova, Iu G; Demakov, V A

    2003-01-01

    Effects of some nitriles and amides, as well as glucose and ammonium, on the growth and the nitrile hydratase (EC 4.2.1.84) activity of the Rhodococcus sp. strain gt1 isolated from soil were studied. The activity of nitrile hydratase mainly depended on carbon and nitrogen supply to cells. The activity of nitrile hydratase was high in the presence of glucose and ammonium at medium concentrations and decreased at concentrations of glucose more than 0.3%. Saturated unsubstituted aliphatic nitriles and amides were found to be a good source of nitrogen and carbon. However, the presence of nitriles and amides in the medium was not absolutely necessary for the expression of the activity of nitrile hydratase isolated from the Rhodococcus sp. strain gt1.

  5. Analytical applications of resins containing amide and polyamine functional groups

    International Nuclear Information System (INIS)

    Orf, G.M.

    1977-01-01

    Resins are prepared by chemically bonding N,N-dialkylamides and polyamine functional groups to Amberlite XAD-4. These resins are applied to the concentration of metal ions from dilute aqueous solution and the rapid separation of metal ions by high-speed liquid chromatography with continuous on-line detection of the eluent stream. A dibutyl amide resin is used for the separation of uranium(VI), thorium(IV), and zirconium(IV) from each other and several other metal ions. Uranium(VI) and thorium(IV) are determined in the presence of large excesses of foreign metal ions and anions. A practical application of the amide resin is studied by determining uranium in low grade uranium ores. The amide resin is also used for the selective concentration of gold(III) from seawater. A triethylenetetramine resin is used for the separation of copper(II) from equal molar amounts and large excesses of nickel(II), cobalt(II), zinc(II), cadmium(II), iron(III) and aluminum(III). Copper(II), nickel(II), zinc(II), cobalt(II) and cadmium(II) are determined in the presence of large excesses of calcium(II) and magnesium(II). The resin was found to be selective for silver(I) and mercury(II) at low pH values and a rapid separation of equal molar amounts of copper(II) and silver(I) was performed. The resin was also found to have an affinity for anionic metal complexes such as iron(III)-tartrate when the resin is in the hydrogen form. A study of the retention of the anions chromium(III)-tartrate and dichromate at various pH values was performed to better understand the anion exchange properties of the resin. Triethylenetetramine resins were also prepared from polystyrene gel to make a resin with higher capacities for copper

  6. New organic semiconductors with imide/amide-containing molecular systems.

    Science.gov (United States)

    Liu, Zitong; Zhang, Guanxin; Cai, Zhengxu; Chen, Xin; Luo, Hewei; Li, Yonghai; Wang, Jianguo; Zhang, Deqing

    2014-10-29

    Due to their high electron affinities, chemical and thermal stabilities, π-conjugated molecules with imide/amide frameworks have received considerable attentions as promising candidates for high-performance optoelectronic materials, particularly for organic semiconductors with high carrier mobilities. The purpose of this Research News is to give an overview of recent advances in development of high performance imide/amide based organic semiconductors for field-effect transistors. It covers naphthalene diimide-, perylene diimide- and amide-based conjugated molecules and polymers for organic semiconductors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Picosecond thermometer in the amide I band of myoglobin

    DEFF Research Database (Denmark)

    Austin, R.H.; Xie, A.; Meer, L. van der

    2005-01-01

    The amide I and II bands in myoglobin show a heterogeneous temperature dependence, with bands at 6.17 and 6.43 mu m which are more intense at low temperatures. The amide I band temperature dependence is on the long wavelength edge of the band, while the short wavelength side has almost...... can be used to determine the time it takes vibrational energy to flow into the hydration shell. We determine that vibrational energy flow to the hydration shell from the amide I takes approximately 20 ps to occur....

  8. Citral derived amides as potent bacterial NorA efflux pump inhibitors

    DEFF Research Database (Denmark)

    Thota, Niranjan; Koul, Surrinder; Reddy, Mallepally V

    2008-01-01

    Monoterpene citral and citronellal have been used as starting material for the preparation of 5,9-dimethyl-deca-2,4,8-trienoic acid amides and 9-formyl-5-methyl-deca-2,4,8-trienoic acid amides. The amides on bioevaluation as efflux pump inhibitors (EPIs) against Staphylococcus aureus 1199 and NorA...

  9. On the unconventional amide I band in acetanilide

    Science.gov (United States)

    Tenenbaum, Alexander; Campa, Alessandro; Giansanti, Andrea

    1987-04-01

    We developed a new model to study the molecular dynamics of the acetanilide (ACN) crystal by computer simulation. Low-frequency oscillations of the molecules as a whole were considered with high-frequency vibrations of the amidic degrees of freedom involved in hydrogen bonding. The low-temperature power spectrum has two peaks, shifted by 15 cm -1, in the region of the amide I band: one of them corresponds to the so-called anomalous amide I band in the IR and Raman spectra of ACN. We found that this peak is due to the coupling of the low-frequency motion in the chain of molecules with the motion of the hydrogen-bonded protons, at variance with current suggestions.

  10. Influence of intermolecular amide hydrogen bonding on the geometry, atomic charges, and spectral modes of acetanilide: An ab initio study

    Science.gov (United States)

    Binoy, J.; Prathima, N. B.; Murali Krishna, C.; Santhosh, C.; Hubert Joe, I.; Jayakumar, V. S.

    2006-08-01

    Acetanilide, a compound of pharmaceutical importance possessing pain-relieving properties due to its blocking the pulse dissipating along the nerve fiber, is subjected to vibrational spectral investigation using NIR FT Raman, FT-IR, and SERS. The geometry, Mulliken charges, and vibrational spectrum of acetanilide have been computed using the Hartree-Fock theory and density functional theory employing the 6-31G (d) basis set. To investigate the influence of intermolecular amide hydrogen bonding, the geometry, charge distribution, and vibrational spectrum of the acetanilide dimer have been computed at the HF/6-31G (d) level. The computed geometries reveal that the acetanilide molecule is planar, while twisting of the secondary amide group with respect to the phenyl ring is found upon hydrogen bonding. The trans isomerism and “amido” form of the secondary amide, hyperconjugation of the C=O group with the adjacent C-C bond, and donor-acceptor interaction have been investigated using computed geometry. The carbonyl stretching band position is found to be influenced by the tendency of the phenyl ring to withdraw nitrogen lone pair, intermolecular hydrogen bonding, conjugation, and hyperconjugation. A decrease in the NH and C=O bond orders and increase in the C-N bond orders due to donor-acceptor interaction can be observed in the vibrational spectra. The SERS spectral analysis reveals that the flat orientation of the molecule on the adsorption plane is preferred.

  11. Design and optimization of selective azaindole amide M1 positive allosteric modulators.

    Science.gov (United States)

    Davoren, Jennifer E; O'Neil, Steven V; Anderson, Dennis P; Brodney, Michael A; Chenard, Lois; Dlugolenski, Keith; Edgerton, Jeremy R; Green, Michael; Garnsey, Michelle; Grimwood, Sarah; Harris, Anthony R; Kauffman, Gregory W; LaChapelle, Erik; Lazzaro, John T; Lee, Che-Wah; Lotarski, Susan M; Nason, Deane M; Obach, R Scott; Reinhart, Veronica; Salomon-Ferrer, Romelia; Steyn, Stefanus J; Webb, Damien; Yan, Jiangli; Zhang, Lei

    2016-01-15

    Selective activation of the M1 receptor via a positive allosteric modulator (PAM) is a new approach for the treatment of the cognitive impairments associated with schizophrenia and Alzheimer's disease. A novel series of azaindole amides and their key pharmacophore elements are described. The nitrogen of the azaindole core is a key design element as it forms an intramolecular hydrogen bond with the amide N-H thus reinforcing the bioactive conformation predicted by published SAR and our homology model. Representative compound 25 is a potent and selective M1 PAM that has well aligned physicochemical properties, adequate brain penetration and pharmacokinetic (PK) properties, and is active in vivo. These favorable properties indicate that this series possesses suitable qualities for further development and studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. N-acetylcysteine prevents HIV gp 120-related damage of human cultured astrocytes: correlation with glutamine synthase dysfunction

    Directory of Open Access Journals (Sweden)

    Costa Nicola

    2007-12-01

    Full Text Available Abstract Background HIV envelope gp 120 glycoprotein is released during active HIV infection of brain macrophages thereby generating inflammation and oxidative stress which contribute to the development of the AIDS-Dementia Complex (ADC. Gp120 has also been found capable to generate excitotoxic effect on brain tissue via enhancement of glutamatergic neurotransmission, leading to neuronal and astroglial damage, though the mechanism is still to be better understood. Here we investigated on the effect of N-acetylcysteine (NAC, on gp120-induced damage in human cultured astroglial cells and the possible contribution of gp120-related reacting oxygen species (ROS in the imbalanced activity of glutamine synthase (GS, the enzyme that metabolizes glutamate into glutamine within astroglial cells playing a neuroprotective role in brain disorders. Results Incubation of Lipari human cultured astroglial cells with gp 120 (0.1–10 nM produced a significant reduction of astroglial cell viability and apoptosis as evaluated by TUNEL reaction and flow cytometric analysis (FACS. This effect was accompanied by lipid peroxidation as detected by means of malondialdehyde assay (MDA. In addition, gp 120 reduced both glutamine concentration in astroglial cell supernatants and GS expression as detected by immunocytochemistry and western blotting analysis. Pre-treatment of cells with NAC (0.5–5 mM, dose-dependently antagonised astroglial apoptotic cell death induced by gp 120, an effect accompanied by significant attenuation of MDA accumulation. Furthermore, both effects were closely associated with a significant recovery of glutamine levels in cell supernatants and by GS expression, thus suggesting that overproduction of free radicals might contribute in gp 120-related dysfunction of GS in astroglial cells. Conclusion In conclusion, the present experiments demonstrate that gp 120 is toxic to astroglial cells, an effect accompanied by lipid peroxidation and by altered

  13. Crystal structure of beryllium amide, Be(NH2)2

    International Nuclear Information System (INIS)

    Jacobs, H.

    1976-01-01

    The x-ray investigation of single crystals of beryllium amide led to the following results. The compound crystallizes tetragonally a = 10.170 +- 0.005 A, c = 16.137 +- 0.008 A, and c/a = 1.587. The space group is I4 1 /acd. The lattice contains 32 formula units. The positions of all atoms including hydrogen were determined. The structure of Be(NH 2 ) 2 can be described by a strongly deformed cubic closepacking of anions. The cations occupy tetrahedral interstices so that 4 Be 2+ ions form a regular tetrahedron with the shortest Be-Be distances. This causes units, which can be described by Be 4 (NH 2 ) 6 (NH 2 ) 4 / 2 whereas the outer 4 amide ions serve as bridging anions to give a threedimensional arrangement. The orientation of the amide ions is given and compared with earlier results on similar metal amides. (author)

  14. Solvent Effects on Oxygen-17 Chemical Shifts in Amides. Quantitative Linear Solvation Shift Relationships

    Science.gov (United States)

    Díez, Ernesto; Fabián, Jesús San; Gerothanassis, Ioannis P.; Esteban, Angel L.; Abboud, José-Luis M.; Contreras, Ruben H.; de Kowalewski, Dora G.

    1997-01-01

    A multiple-linear-regression analysis (MLRA) has been carried out using the Kamlet-Abboud-Taft (KAT) solvatochromic parameters in order to elucidate and quantify the solvent effects on the17O chemical shifts ofN-methylformamide (NMF),N,N-dimethylformamide (DMF),N-methylacetamide (NMA), andN,N-dimethylacetamide (DMA). The chemical shifts of the four molecules show the same dependence (in ppm) on the solvent polarity-polarizability, i.e., -22π*. The influence of the solvent hydrogen-bond-donor (HBD) acidities is slightly larger for the acetamides NMA and DMA, i.e., -48α, than for the formamides NMF and DMF, i.e., -42α. The influence of the solvent hydrogen-bond-acceptor (HBA) basicities is negligible for the nonprotic molecules DMF and DMA but significant for the protic molecules NMF and NMA, i.e., -9β. The effect of substituting the N-H hydrogen by a methyl group amounts to -5.9 ppm in NMF and 5.4 ppm in NMA. The effect of substituting the O=C-H hydrogen amounts to 5.5 ppm in NMF and 16.8 ppm in DMF. The model of specific hydration sites of amides by I. P. Gerothanassis and C. Vakka [J. Org. Chem.59,2341 (1994)] is settled in a more quantitative basis and the model by M. I. Burgar, T. E. St. Amour, and D. Fiat [J. Phys. Chem.85,502 (1981)] is critically evaluated.17O hydration shifts have been calculated for formamide (FOR) by the ab initio LORG method at the 6-31G* level. For a formamide surrounded by the four in-plane molecules of water in the first hydration shell, the calculated17O shift change due to the four hydrogen bonds, -83.2 ppm, is smaller than the empirical hydration shift, -100 ppm. The17O shift change from each out-of-plane water molecule hydrogen-bonded to the amide oxygen is -18.0 ppm. These LORG results support the conclusion that no more than four water molecules are hydrogen-bonded to the amide oxygen in formamide.

  15. A General and Simple Diastereoselective Reduction by L-Selectride: Efficient Synthesis of Protected (4S,5S-Dihydroxy Amides

    Directory of Open Access Journals (Sweden)

    Bo Yin

    2010-04-01

    Full Text Available A general approach to (4S,5S-4-benzyloxy-5-hydroxy-N-(4-methoxybenzyl amides 10 based on a diastereoselective reduction of (5S,6RS-6-alkyl-5-benzyloxy-6-hydroxy-2-piperidinones 6 and their tautomeric ring-opened keto amides 7 is described. The reduction with L-Selectride at -20 °C to room temperature afforded the products 10 in excellent yields and moderate to high syn-diastereoselectivities.

  16. Poly(ester amide)s based on (L)-lactic acid oligomers and α-amino acids: influence of the α-amino acid side chain in the poly(ester amide)s properties.

    Science.gov (United States)

    Fonseca, Ana C; Coelho, Jorge F J; Valente, Joana F A; Correia, Tiago R; Correia, Ilídio J; Gil, Maria H; Simões, Pedro N

    2013-01-01

    Novel biodegradable and low cytotoxic poly(ester amide)s (PEAs) based on α-amino acids and (L)-lactic acid (L-LA) oligomers were successfully synthesized by interfacial polymerization. The chemical structure of the new polymers was confirmed by spectroscopic analyses. Further characterization suggests that the α-amino acid plays a critical role on the final properties of the PEA. L-phenylalanine provides PEAs with higher glass transition temperature, whereas glycine enhances the crystallinity. The hydrolytic degradation in PBS (pH = 7.4) at 37 °C also depends on the α-amino acid, being faster for glycine-based PEAs. The cytotoxic profiles using fibroblast human cells indicate that the PEAs did not elicit an acute cytotoxic effect. The strategy presented in this work opens the possibility of synthesizing biodegradable PEAs with low citotoxicity by an easy and fast method. It is worth to mention also that the properties of these materials can be fine-tuned only by changing the α-amino acid.

  17. N-acetyl lysyltyrosylcysteine amide inhibits myeloperoxidase, a novel tripeptide inhibitor1[S

    Science.gov (United States)

    Zhang, Hao; Jing, Xigang; Shi, Yang; Xu, Hao; Du, Jianhai; Guan, Tongju; Weihrauch, Dorothee; Jones, Deron W.; Wang, Weiling; Gourlay, David; Oldham, Keith T.; Hillery, Cheryl A.; Pritchard, Kirkwood A.

    2013-01-01

    Myeloperoxidase (MPO) plays important roles in disease by increasing oxidative and nitrosative stress and oxidizing lipoproteins. Here we report N-acetyl lysyltyrosylcysteine amide (KYC) is an effective inhibitor of MPO activity. We show KYC inhibits MPO-mediated hypochlorous acid (HOCl) formation and nitration/oxidation of LDL. Disulfide is the major product of MPO-mediated KYC oxidation. KYC (⩽4,000 μM) does not induce cytotoxicity in bovine aortic endothelial cells (BAECs). KYC inhibits HOCl generation by phorbol myristate acetate (PMA)-stimulated neutrophils and human promyelocytic leukemia (HL-60) cells but not superoxide generation by PMA-stimulated HL-60 cells. KYC inhibits MPO-mediated HOCl formation in BAEC culture and protects BAECs from MPO-induced injury. KYC inhibits MPO-mediated lipid peroxidation of LDL whereas tyrosine (Tyr) and tryptophan (Trp) enhance oxidation. KYC is unique as its isomers do not inhibit MPO activity, or are much less effective. Ultraviolet-visible spectral studies indicate KYC binds to the active site of MPO and reacts with compounds I and II. Docking studies show the Tyr of KYC rests just above the heme of MPO. Interestingly, KYC increases MPO-dependent H2O2 consumption. These data indicate KYC is a novel and specific inhibitor of MPO activity that is nontoxic to endothelial cell cultures. Accordingly, KYC may be useful for treating MPO-mediated vascular disease. PMID:23883583

  18. Adsorption equilibrium of uranium from seawater on chelating resin containing amide oxime group

    International Nuclear Information System (INIS)

    Hori, Takahiro; Saito, Kyoichi; Furusaki, Shintaro; Sugo, Takanobu; Okamoto, Jiro.

    1987-01-01

    Chelating resins containing amide oxime group were synthesized by radiation-induced graft polymerization. The amount of the amide oxime groups was controlled below about 0.1 mol per kg of base polymer. The adsorption equilibrium of uranium from seawater on this resin was investigated. It was suggested that two neighboring amide oxime groups on the grafted chain captured one uranyl ion, and that single amide oxime ligand had little capacity for the adsorption of uranium. The adsorption equilibrium was correlated by a Langmuir-type equation. The content of neighboring amide oxime groups was 0.406 x 10 -3 mol per kg of base polymer, which corresponded to 0.39 % of the total amount of amide oxime groups. The apparent stoichiometric stability constant for the complex of uranyl ion with the neighboring amide oxime groups in seawater was calculated to be 10 -21.7 . (author)

  19. Vibrational lifetimes of protein amide modes

    International Nuclear Information System (INIS)

    Peterson, K.A.; Rella, C.A.

    1995-01-01

    Measurement of the lifetimes of vibrational modes in proteins has been achieved with a single frequency infrared pump-probe technique using the Stanford Picosecond Free-electron Laser, These are the first direct measurements of vibrational dynamics in the polyamide structure of proteins. In this study, modes associated with the protein backbone are investigated. Results for the amide I band, which consists mainly of the stretching motion of the carbonyl unit of the amide linkage, show that relaxation from the first vibrational excited level (v=1) to the vibrational ground state (v=0) occurs within 1.5 picoseconds with apparent first order kinetics. Comparison of lifetimes for myoglobin and azurin, which have differing secondary structures, show a small but significant difference. The lifetime for the amide I band of myoglobin is 300 femtoseconds shorter than for azurin. Further measurements are in progress on other backbone vibrational modes and on the temperature dependence of the lifetimes. Comparison of vibrational dynamics for proteins with differing secondary structure and for different vibrational modes within a protein will lead to a greater understanding of energy transfer and dissipation in biological systems. In addition, these results have relevance to tissue ablation studies which have been conducted with pulsed infrared lasers. Vibrational lifetimes are necessary for calculating the rate at which the energy from absorbed infrared photons is converted to equilibrium thermal energy within the irradiated volume. The very fast vibrational lifetimes measured here indicate that mechanisms which involve direct vibrational up-pumping of the amide modes with consecutive laser pulses, leading to bond breakage or weakening, are not valid

  20. AMIDE: A Free Software Tool for Multimodality Medical Image Analysis

    Directory of Open Access Journals (Sweden)

    Andreas Markus Loening

    2003-07-01

    Full Text Available Amide's a Medical Image Data Examiner (AMIDE has been developed as a user-friendly, open-source software tool for displaying and analyzing multimodality volumetric medical images. Central to the package's abilities to simultaneously display multiple data sets (e.g., PET, CT, MRI and regions of interest is the on-demand data reslicing implemented within the program. Data sets can be freely shifted, rotated, viewed, and analyzed with the program automatically handling interpolation as needed from the original data. Validation has been performed by comparing the output of AMIDE with that of several existing software packages. AMIDE runs on UNIX, Macintosh OS X, and Microsoft Windows platforms, and it is freely available with source code under the terms of the GNU General Public License.