from WorldWideScience.org

1

1998-06-01

Resumo em inglês This article introduces a simplified model for the theoretical study of the physical adsorption process of gaseous He on the planes (100) and (111) of the solid Xe matrix, whose crystalline structure is face centered cubic (fcc). The Ab initio calculations were carried out at the MP2 level of theory employing basis sets obtained through the Generator Coordinate Method, where the core electrons were represented by a pseudopotential. The calculated adsorption energies for t (mais) he (100) and (111) faces are 5,39 and 4,18 kJ/mol, respectively. This simplified model is expected to be suitable for treating complex systems of applied interest.

2

2001-08-01

Resumo em inglês The adsorption of H and S2- species on Pd (100) has been studied with ab initio, density-functional calculations and electrochemical methods. A cluster of five Pd atoms with a frozen geometry described the surface. The computational calculations were performed through the GAUSSIAN94 program, and the basis functions adapted to a pseudo-potential obtained by using the Generator Coordinate Method adapted to the this program. Using the cyclic voltammetry technique through a M (mais) odel 283 Potentiostat/Galvanostat E.G.&G-PAR obtained the electrochemical results. The calculated chemisorption geometry has a Pd-H distance of 1.55Å, and the potential energy surface was calculated using the Becke3P86//(GCM/DFT/SBK) methodology. The adsorption of S2- ions on Pd surface obtained both through comparison between the experimental and theoretical results, at MP2 level, suggest a S2- absorption into the metallic cluster. The produced Pd-(S2-) system was show to be very stable under the employed experimental conditions. The paper has shows the powerful aid of computational methods to interpret adsorption experimental data.

3

2006-04-01

Resumo em inglês The ONIOM method was used to calculate the proton affinities (PA) of n-alkylamines (CnH2n+1NH2, n = 3 to 6, 8, 10, 12, 14, 16 and 18). The calculations were carried out at several levels (HF, MP2, B3LYP, QCISD(T), ...) using Pople basis sets and at the QCISD(T) level using basis sets developed by the generator coordinate method (GCM) and adapted to effective core potentials. PAs were also obtained through the GCM and high level methods, like ONIOM[QCISD(T)/6-31+G(2df,p):M (mais) P2/6-31G+G(d,p))//ONIOM[MP2/6-31+G(d,p):HF/6-31G]. The average error using the GCM, with respect to experimental data, was 3.4 kJ mol-1.