Sample records for s waves seismic
from WorldWideScience.org

Sample records 1 - 20 shown. Select sample records:



1

Resultados de mediciones sísmicas e implicaciones de dinámica de suelo en torno al hospital Dr. Antonio Patricio de Alcalá, Cumaná, estado Sucre, Venezuela/ Results from seismic data and implications for soil dynamics near hospital Dr. Antonio Patricio de Alcalá, Cumaná, Sucre state, Venezuela

Schmitz, Michael; Romero, Marcos; Bonvive, Francisco; Audemard, Franck; González, Jorge
2006-03-01

Resumen en español La traza de la falla de El Pilar cruza la ciudad de Cumaná, y en particular se ubica entre los cerros de Caigüire y el edificio principal del Hospital Dr. Antonio Patricio de Alcalá de Cumaná; éste último está ubicado a escasos 100 m de dichos cerros. Las interpretaciones geológicas existentes son contradictorias respecto a la ubicación exacta de la falla de El Pilar, por lo que se podría generar deformaciones permanentes en la estructura del hospital en caso de (mas) una ruptura cosísmica ubicada debajo de la misma. Con el objetivo de aportar información sobre la amenaza sísmica del hospital, construcción de 11 pisos que data de los años 60, se realizaron mediciones sísmicas en los alrededores del hospital, cuyos resultados hacen inferir que la traza de la falla de El Pilar se ubica a más de 100 m al sur del edificio principal del hospital, al pie de los cerros de Caigüire. Mediante el análisis de las ondas de corte se identificó además la presencia de estratos blandos, interpretados como sedimentos cuarternarios de la llanura aluvial costera o del cordón litoral, con velocidades sísmicas entre 150 y 280 m/s hasta una profundidad de 10 a 20 m. Debajo, un estrato con velocidades entre 325 y 520 m/s alcanza una profundidad de 25-65 m, seguido por una capa con velocidades de onda de corte entre 460 y 700 m/s,  interpretada como sedimentos plio-pleistocenos más consolidados. El análisis de los modelos estudiados indica que los espectros de respuesta para sismos muy cercanos, cercanos y lejanos muestran aceleraciones máximas en la superficie del perfil geotécnico estudiado que duplican en el caso más desfavorable (para sismos muy cercanos) los 0,40g, establecidos en el mapa de zonificación sísmica de la Norma Edificaciones Sismorresistentes como aceleración máxima en roca para la región. Con base en los resultados, se recomiendan estudios geológicos y geofísicos adicionales para la ubicación con certeza de la traza de la falla de El Pilar y una evaluación sismorresistente de la estructura del hospital. Resumen en inglés The trace of the El Pilar fault crosses the city of Cumaná, and is located between the Caigüire hills and the main building of the Hospital Dr. Antonio Patricio de Alcalá, located only 100 m north of the hill foot. The existing geological interpretations are contradictory with respect to the exact location of the fault trace. Permanent deformations to the hospital structure might result in the case that a coseismic rupture would be located beneath the hospital. In orde (mas) r to better constrain the seismic hazard of the hospital, a 11-story building dating from the 1960's, seismic refraction measurements have been done around the hospital. The results indicate that the trace of the El Pilar fault should be located more than a 100 m south of the principal building, at the foot of the Caigüire hills. Through the analysis of the S-waves, the existence of soft soils, interpreted as Quaternary sediments from the coastal alluvial plain or sand barriers, was identified with seismic velocities of 150 and 280 m/s down to a depth of 10-20 m. Below, a layer with velocities between 325 and 520 m/s reaches down to 25-65 m in depth, followed by a layer with S-wave velocities of 460-700 m/s, interpreted as more consolidated Plio-Pleistocene sediments. The analysis of the models indicates, that the response spectra for very close, close and distant earthquakes generate maximum accelerations at the surface of the geotechnical soil profile that may double (in the most unfavorable case of very close earthquakes) the value of 0.40 g, established as the maximum acceleration (at rock surface) for the region in the seismic zoning map of the current seismic building code. Based on these results, additional geological and geophysical studies are recommended, aiming to better constrain the location of the active fault trace as well as the seismo-resistant behaviour of the hospital structure.

Scientific Electronic Library Online (Spanish)

2

Caracterización de suelos con métodos geofísicos en La Guaira, Macuto, Caraballeda y Tanaguarena, estado Vargas, Venezuela/ Characterization of soils with geophysical methods in La Guaira, Macuto, Caraballeda and Tanaguarena, Vargas state, Venezuela

Romero, M; Cragno, A; Schmitz, M; Ambrosio, R
2006-03-01

Resumen en español El estado Vargas es considerada una zona con elevada amenaza sísmica, la cual quedó evidenciada por los daños ocurridos en 1967 a raíz del sismo de Caracas. Adicionalmente, en diciembre de 1999, tras prolongadas lluvias caídas durante todo el mes, se generaron numerosos derrumbes, deslizamientos y flujos torrenciales. Para conocer las características del subsuelo, como espesores de sedimentos y la estructura interna, se aplicaron los métodos geofísicos de sísmica (mas) de refracción, gravimetría y  mediciones de ruido ambiental en los conos aluviales entre La Guaira y Tanaguarena. Del estudio de las ondas de corte se determinó que los sedimentos en los conos están distribuidos básicamente en tres capas, la primera con velocidades entre 200 y 400  m/s hasta un máximo de 50 m de profundidad, la segunda entre 400 y 600 m/s hasta  90 de de profundidad y la tercera entre 600 y 750 m/s, sin alcanzar el basamento. De las ondas P se obtuvo que el nivel freático se encuentro entre los 5 y 10 m de profundidad. La profundidad máxima del basamento rocoso, reportada por estudios previos, se ubica en la costa de Caraballeda a 450 m de profundidad. En Macuto, las profundidades máximas son cercanas a los 290 m en el cono El Cojo, y cercanas a los 180 m en Punta de Mulatos en la Guaira. El buzamiento del basamento rocoso, estimado con base en los modelos gravimétricos, esta en el orden de los 17° a 21° hacia el norte en toda el área de estudio. Los valores del período fundamental de vibración del suelo, basados en mediciones de ruido ambiental, se ubican entre 0,9-1,8 segundos para las zonas de los conos aluviales. Resumen en inglés The Vargas state is considered a region with an elevated seismic hazard, which was evidenced by the damage caused by the 1967 Caracas earthquake. Additionally, in December 1999, many landslides and mudflows occurred due to intensive and persisting rainfall. In order to investigate the subsoil characteristics and the internal structure of the sediments, geophysical methods as seismic refraction studies, gravimetric measurements and ambient noise measurements were applied i (mas) n the alluvial fans between La Guaira and Tanaguarena. From the analysis of S-waves, we determined three layers in the fans, the first one with velocities between 200 and 400 m/s down to a maximum depth of 50 m, the second one between 400 and 600 m/s down to 90 m in depth and the third one between 600 and 750 m/s, without reaching the basement. From the P-waves we derived a shallow water level at 5-10 m in depth. The maximum bedrock depth, derived from earlier studies, is about 450 m at Caraballeda. In Macuto the bedrock depth is about 290 m in the El Cojo fan and around 180 m in depth in the Punta Mulatos in La Guaira fan. Based on the gravimetric models, the bedrock is inclined between 17° to 21° towards the north in the whole study area. The predominant periods of soil vibration, derived from ambient noise measurements, range generally between 0.9 and 1.8 s for the alluvial fans.

Scientific Electronic Library Online (Spanish)

3

Underwater acoustic propagation model to simulate seismic oceanography experiments

Kormann, Jean; Cobo, Pedro; Ranz Guerra, Carlos

Communication presented at the 14th International Congress on Sound Vibration, Cairns, Australia, 9-12 July 2007. | Seismic reflection is a technique used for decades to profile the earth layering beneath the ocean with a high lateral and vertical resolution. In the other hand, oceanographers use pr...

DRIVER (Spanish)

5

The sea-floor morphology of a Mediterranean shelf fed by small rivers, northern Alboran Sea margin

Lobo, F. J.; Fernández-Salas, L. M.; Moreno, I.; Sanz, J. L.; Maldonado, Andrés
2006-10-09

Digital.CSIC (Spain)

6

The contourite depositional system of the Gulf of Cádiz: A sedimentary model related to the bottom current activity of the Mediterranean outflow water and its interaction with the continental margin

Hernández-Molina, F. Javier; Llave, E; Stow, D. A. V.; García, M. C.; Somoza, Luis; Vázquez, Juan Tomas; Lobo, F. J.; Maestro, A.; Díaz del Río, V.; Leon, R.,; Medialdea, T.; Gardner, J
2006-01-01

Digital.CSIC (Spain)

7
9

Study of the Damaging Earthquakes in the mula (Murcia, SE Spain) Region.

Buforn, E.; Benito, B.; Sanz de Galdeano, Carlos; Fresno, C. del; Muñoz, D.; Rodriguez, I.
2005-04-01

Digital.CSIC (Spain)

12

Seismicity analysis at the Prestige oil-tanker wreck area (Galicia Margin, NW of Iberia)

Díaz Cusí, Jordi; Gallart Muset, Josep; Gaspà Rebull, Oriol; Córdoba, Diego
2008-03-01

Digital.CSIC (Spain)

14

Seismic imaging and modelling of the lithosphere of SW-Iberia

Flecha, I.; Palomeras, Imma; Carbonell, Ramón; Simancas, José Fernando; Ayarza, P.; Matas, J.; González-Lodeiro, Francisco; Pérez-Estaún, Andrés
2008-06-01

Digital.CSIC (Spain)

15

Seismic attenuation of coda waves in the eastern region of Cuba

Biescas, Berta; Rivera, Zulima; Zapata, Jose Alejandro
2007-01-01

Digital.CSIC (Spain)

16

Sedimentary processes in the Wilkes Land margin: a record of the Cenozoic East Antarctic Ice Sheet evolution

Donda, F.; Brancolini, G.; O'Brien, P.E.; De Santis, L.; Escutia, Carlota
2007-01-01

Digital.CSIC (Spain)

17

Projects of the Royal Observatory of Belgium (ROB) at the Lanzarote Geodynamical Laboratory (LGL)

Ruymbeke, M. van; Somerhausen, André; Ducarme, B.; Vieira, Ricardo; Arnoso, José; Vélez, Emilio
2001-01-01

Digital.CSIC (Spain)

18
20

Morphometric analysis and genetic implications of pro-deltaic sea-floor undulations in the northern Alboran Sea margin, western Mediterranean Basin

Fernández-Salas, L. M.; Lobo, F. J.; Sanz, J. L.; Díaz del Río, V.; García, M. C.; Moreno, I.
2007-09-06

Digital.CSIC (Spain)

21

Moho, crustal architecture and deep deformation under the North Marmara Trough, from the SEISMARMARA Leg 1 offshore–onshore reflection–refraction survey

Bécel, Anne; Laigle, Mireille; Voogd, Béatrice de; Hirn, Alfred; Taymaz, Tuncay; Galvé, Audrey; Shimamura, Hideki; Murai, Yoshio; Lépine, Jean-Claude; Sapin, Martine; Özalaybey, Serdar
2009-03-01

Digital.CSIC (Spain)

22

Modelado geofísico del basamento del área metropolitana de la ciudad de Mérida, Venezuela/ Geophysical modelling of basement: The Mérida metropolitan area, Venezuela

REINOZA, CARLOS; SÁNCHEZ, JAVIER; SCHMITZ, MICHAEL; KLARICA, STÉPHANIE
2006-12-01

Resumen en español El espesor de los sedimentos del área metropolitana de la ciudad de Mérida se cuantificó con base en el procesamiento e interpretación de datos geofísicos. A partir de datos gravimétricos se elaboró el mapa de anomalías de Bouguer para ρB=2,67g/cc y un nivel de referencia de 1500 metros sobre el nivel del mar, con un rango de variación de las anomalías entre -381,58 y -360,57 mGal. Se generó un modelo de densidad del subsuelo 3D coherente con la geología (mas) del área y datos geofísicos existentes, lo que permitió estimar un espesor máximo de 120 metros en la terraza de Mérida. Se realizaron modelos 1D y 2D de cinco perfiles sísmicos en la ciudad de Ejido, calculándose velocidades aparentes de ondas P y ondas S de 750-1115 m/s y 320-620 m/s, respectivamente para una primera capa con espesor máximo de 15 m. Para una segunda capa las velocidades varían entre 2080-2600 m/s para las ondas P y 550-830 m/s para las ondas S. El resultado final del estudio presenta la información compilada y generada mediante un Sistema de Información Geográfico. Resumen en inglés The thickness of soft sediments in metropolitan Merida city area was obtained from 3D gravimetric, 1D and 2D seismic refraction modelling. A Bouguer anomaly map was obtained with a Bouguer density of ρB=2.67 g/cc and a datum reference level of 1500 meters above sea level. Anomalies vary between -381.58 and -360.57 mGal. A tridimensional density model was generated based on geological and geophysical data. 1D and 2D models from five near surface seismic refraction pro (mas) files obtained in Ejido city showed the following results: apparent P and S waves velocities of 750-1115 m/s and 320-620 m/s to a first layer with a maximum thickness of 15 m. In a second layer the velocities are between 2080-2600 m/s to P waves and 550-830 m/s to S waves. The results were integrated in a geographic information system (GIS).

Scientific Electronic Library Online (Spanish)

24

Laboratory measurements of P-wave and S-wave velocities across a surface analog of the continental crust–mantle boundary: Cabo Ortegal, Spain

Brown, Dennis; Llana-Funez, S.; Carbonell, Ramón; Alvarez-Marrón, Joaquina; Martí, David; Salisbury, M.
2009-06-18

Digital.CSIC (Spain)

25

Intraplate seismicity in SE Brazil: stress concentration in lithospheric thin spots

Assumpçao, M.; Escalante, C; Schimmel, Martin; Barbosa, J.M.; Rocha, M; Barros, L.V.
2004-04-01

Digital.CSIC (Spain)

26

High-resolution architecture of late Holocene highstand prodeltaic deposits from southern Spain: the imprint of high-frequency climatic and relative sea-level changes.

Fernández-Salas, L. M.; Lobo, F. J.; Hernández-Molina, F. Javier; Somoza, Luis; Rodero, J.; Rio, V. D. D.; Maldonado, Andrés
2003-01-01

Digital.CSIC (Spain)

27

Global climate imprint on seismic noise

Stutzmann, E.; Schimmel, Martin; Patau, G.; Maggi, A.
2009-11-01

Digital.CSIC (Spain)

28

Estructuras de deformación (¿sismitas?) en la Formación Río Negro, provincia de Río Negro, Argentina

Schillizzi, Roberto; Luna, Liliana; Falco, Juan Ignacio
2010-07-01

Resumen en español A Las estructuras de deformación (ED) en sedimentos blandos comprenden las alteraciones que se producen casi simultáneamente con la sedimentación. Estos procesos se hallan en relación directa con las características internas de los materiales sedimentarios y de los factores externos que actúan sobre ellos. Sus resultados incluyen deformaciones como inyecciones, fracturas, volcanes y laminaciones convolutas que afectan total o parcialmente la estratificación. Los se (mas) dimentos blandos deformados por sismos se incluyen bajo la denominación general de sismitas (seismites). Como objetivo de esta investigación se plantea reconocer, por primera vez, estructuras de deformación ubicadas en la Formación Río Negro presentes en el sector norte del Golfo San Matías, en inmediaciones del Faro Río Negro. La metodología empleada consistió en el reconocimiento y descripción de las estructuras, para lo cual se extrajeron muestras para determinar granulometría, mineralogía y contenido de materia orgánica. Se fotografiaron los distintos sectores con deformaciones con el fin de establecer modelos comparativos. El sector estudiado, de 4 km de extensión, se ubica entre el faro de Río Negro y el inicio del Banco Verde y morfológicamente corresponde a un frente acantilado con orientación ENE-OSO. En él se determinaron las siguientes ED: a- de carga simple, pseudonódulos contiguos y aislados, y estructuras complejas; b- de escape de fluidos y c- estructuras de deslizamiento basal y por presión dirigida. El origen de las deformaciones se debe a las características de las sedimentitas y a los procesos que las afectan tales como los efectos por carga, escapes de fluidos y las presiones dirigidas. Como origen de estos procesos se señalan: la presión de la columna litológica, las olas de tormentas y los terremotos. Por los rasgos hallados las deformaciones del litoral rionegrino tendrían un origen sísmico, proceso ocurrido en un único evento durante el ciclo Andino cuyos inicios se fijan hace aproximadamente 45 Ma. Por otra parte sus techos y bases no se hallan asociados a otros procesos de deformación y sus espesores no exceden el metro de potencia. Además se hallan acotadas a la zona de transición entre los miembros medio y superior de la Formación Río Negro descansando en algunos casos sobre arcilitas y en otros sobre limolitas, originadas en un paleorelieve de interdunas. Resumen en inglés Soft-sediment deformation structures (SSD) are alterations produced almost simultaneously with sedimentation. They are directly related to internal characteristics of sedimentary materials as well as to external factors acting on them. Results derived from such alterations are evidenced as injections, fractures, volcanoes and convolute laminations, among other forms, affecting stratification either totally or partially. Soft-sediment deformation structures resulting from (mas) seisms are known as seismites. The present study aims at determining for the first time the presence of SSD structures in the Río Negro Formation, located in the northern area of San Matías Gulf, near Río Negro Lighthouse, Argentina (Fig. 1). To this end, structures were firstly identified and further described. Samples were subsequently collected for the determination of grain-size, mineralogy and organic matter content. Photographs of the different sectors evidencing deformations were taken in order to determine further comparative models. Morphology in the study area is associated to cliffs with vertical, fractured fronts and with an average height of 70 m in whose base torn-down blocks are accumulated. The geological structure of the study area is related to the Cuenca del Colorado and the Comarca Nordpatagónica, whose basement is mainly composed of Paleozoic and Mesozoic crystalline rocks. The sedimentary tertiary cover from the Miocene-Pliocene is represented by light-blue sandstones of the Río Negro Formation (Andreis, 1965). This unit was formed in an aeolian environment with intercalations of clay-silt shallow lagoons and a marine episode located in the mid area of the Río Negro Formation. At the top of the Río Negro Formation there are Pleistocene-Holocene sedimentites having a thickness of up to 5 m. Within the local structural framework of our study area there are fractures with a NE-SW and a NW-SE direction, which are related with fractures N55º, N90º and N350º azimuth located in the abrasion platform. According to Dzulinsky and Walton (1965), Lowe (1975), Brencley and Newall (1977), Clauss (1993), van Loon (2002), Owen (2003), Neuwerth et al. (2006), Alfaro et al. (2006), Montenat et al. (2007), among others (Table 1), and, taking into account the geometry of deformations, laboratory reconstructions and field observations from our study area, it can be concluded that the classifications of SSD structures tend to establish morphologic and genetic systematizations. The following characteristics were identified in our study area: limited deformations among stratigraphic horizons; a lateral continuity of SSD structures at considerable distances; and a confinement between non-deformed strata and its lithological association with psamitic-pelitic sediments. The study area, which is 4 km long and is located between Río Negro Lighthouse and the beginning of Banco Verde, is from the morphological point of view, a cliffed front with an ENE-WSW orientation. Different types of SSD structures were identified in this area. For example, from the morphological point of view and according to the loading mechanisms observed, simple-load structures (Fig. 2), attached and detached pseudonodules (Figs. 3, 4 and 5) and complex structures (Fig. 6) were identified. Furthermore, from the genetic point of view and according to the intrusion processes observed in soft sediments, water-scape structures (Fig. 7) and plate- or fountain-like deformations (Fig. 8) were found. From the genetic point of view, and based on the collapse and pressure mechanisms observed, basal slumping (Fig. 9) and directed-pressure structures (Fig. 11) were also found. The above-mentioned SSD structures were analyzed and interpreted following Strachan´s model (2002) (Fig. 10) and Laird´s model (1968) (Fig. 12). The origin of SSD structures depends on the characteristics of sedimentites and on the mechanisms that produce them. In the study area, the materials susceptible to deformation come from an interdune environment that is characterized by granulometric variations derived from the fluctuating and restrictive climatic conditions (Cojan and Thiry, 1992) that typify the Río Negro Formation. Fine-grained materials having low cohesion and poor sorting such as the sediments of deformed strata (Fig. 13) produced SSD structures as a result of high pore pressure and liquefaction effects (Tsuchida and Hayashi, 1971; Obermeier, 1996). Grain packing with a porous value as that allows intercommunication among grains and saturated material, is also crucial to the formation of SSD structures. The mineralogic content of deformed levels is composed of i) quartz, chalcedony, orthose, plagioclase, pyroxenes and biotite, opaques (magnetite and ilmenite, autigenic pyrite) in crystalline aggregates; ii) undetermined Fe oxides; and iii) colorless and light-brown unaltered volcanic glass shards, clays identified as smectite-illite interstratified and scarce kaolinite. Grains are mainly subangular and, to a lesser extent, sub-round and round. The surface of the majority of grains in the study area was found clean and with some marks. The percentage of CaCO3 was found to vary from 0.5 to 3% and that of total organic carbon (TOC) was found to reach 1.5%. Deformations may be produced as a result of load deformation mechanisms, fluid escape, basal slumping or pressure-directed displacements. Due to load deformation mechanisms, structures are linked to gravity-related movements occurring during the initial stages of deposition. For these deformations to occur, grain-size at the overlaying levels should be thicker than at the underlying levels, for example, sandstones rather than silstones or claystones. These deformations are related to water saturation at the deformed level (fluidization-liquefaction). Therefore, deformation mechanisms, which involve both expulsion and rotation of fragments as well as fluid escape, are characterized by the action of lithostatic pressure which produces movement (deformation) and by the action of the underlying sedimentary levels. Deformations may also result from a fluid escape mechanism, i.e., from a mechanism associated to i) the spatial arrangement of grains (packing), ii) their shape, iii) their tendency to inequigranularity, and iv) the communication among macro- and micro- pores as well as the high or low sinuosity connection among themselves (Net and Limarino, 2000). Further requirements for deformations to occur include particular thixotrophic conditions, especially the presence of colloids among grains. The rupture of unions of particles either by hitting or by shearing is, among others, a cause which produces an unbalance between hydrostatic pressure and lithostatic pressure. If the latter is altered, the energetic unbalance makes fine sediments flow among the weakly lithified sandstones whose extrusion will occur via both vertical and horizontal pore ducts (Lopez Gamundi, 1986; Clauss, 1993). Basal slumping produces deformations that are associated not only to soft sediments deposited in natural slopes but also to interbedded sand- and mud-levels. Layers tend to have a prismatic-shaped geometry whose materials are under ductile-to-fragile conditions, in which antique layers support younger ones. Once horizontality is affected, movement, which is marked by a rupture of the original slope, begins. The lower levels are expected to transport the upper ones without affecting the original succession of layers. At the delay of movement derived from the compressive effect of the displacement front, fluids extrude forming cones or cut dikes (Fig. 10). Several deformations of this type initiate movement as result of differences in the hydrostatic gradient (Strachan, 2002). Deformations may be also produced as a result of pressure-directed displacements which are conditioned by the compaction level, thickness and ability of materials to deform. Thus, deformations occur because the original level is saturated in water as a result of the ductile behavior of materials (Bracco et al., 2005). Laird (1968) claims that SSD structures should meet some of the following requirements to be considered of seismic origin: slightly curved strata walls and floors to follow the original stratification and interruption of continuity of the stratum that is marked by a scar in which the sedimentary fillings keep their characteristics both above and below stratification. There could be rotated sediment clasts below the discontinuity as a result of a thrust-induced drag of the upper sedimentary packing. These processes could be, in turn, triggered either by the charge or pressure of the lithologic column, storm waves and seismicity. Storm-wave impact may also produce deformation in soft sediments. Nonetheless, no high energy structures such as cross-beddings or tsunami-type chaotic sedimentation were observed in our study area. Noteworthingly, for stormwave-derived liquefaction to occur, waves should reach magnitudes higher than 6 m (Alfaro et al., 2002), this being a phenomenon that was not recorded in our study area. Taken together, findings from the present study indicate that SSD structures in our study area are seismic alterations that occurred in an event during the Andean cycle whose beginnings are traced approximately 45 My ago. The fact that i) both the roofs and bottoms of these structures are not associated to other processes of deformation, ii) their thickness does not exceed one meter, and iii) they are confined to a transitional area between the middle and top members of the Río Negro Formation, lying in some cases on claystones and in some other cases, on siltstones, originated in an interdune paleorelief, confirms their seismic origin.

Scientific Electronic Library Online (Spanish)

30

Contrasting styles of the Holocene highstand sedimentation and sediment dispersal systems in the northern shelf of the Gulf of Cadiz

Lobo, F. J.; Sánchez, R.; González-Álvarez, R.; Dias, J. M. A.; Hernández-Molina, F. Javier; Fernández-Salas, L. M.; Díaz del Río, V.
2004-03-01

Digital.CSIC (Spain)

31

Cartografiando la dinámica sedimentaria de la región del Banco de Galicia

Ercilla, Gemma; Casas, David; Somoza, Luis; Vázquez, Juan T.; Iglesias, Jorge; García-Gil, Soledad; Medialdea, Teresa; León, Ricardo; Estrada, Ferrán; ERGAP, Project; Cruise, Teams
2010-01-01

Digital.CSIC (Spain)