Sample records for VAPOR GEOTERMICO (geothermal steam)
from WorldWideScience.org

Sample records 1 - 3 shown.



1

Travertinos y jasperoides de Manantial Espejo, un ambiente Hot Spring Jurásico: Macizo del Deseado, Provincia de Santa Cruz, Argentina/ Travertines and jasperoids of the Manantial Espejo, a Jurassic hot spring environment: Macizo del Deseado, Santa Cruz Province, Argentina

Echeveste, Horacio
2005-07-01

Resumen en español En este trabajo se analiza el origen y las relaciones entre travertinos y jasperoides intercalados en rocas volcaniclásticas jurásicas en el distrito argento-aurífero Manantial Espejo, ubicado en el borde sur-occidental del Macizo del Deseado, provincia de Santa Cruz, Argentina. Los cuerpos de travertino constituyen estratos delgados de hasta 60 cm de espesor de calcita micrítica finamente laminada, en ocasiones con estratificación rítmica de calcita y ópalo, asoci (mas) ados a depósitos de tobas de caída y tufitas de ambiente lacustre. En algunos afloramientos, los morfotipos reconocidos revelan que la precipitación del carbonato correspondía a sectores proximales relacionados a geisers y conductos de vapor, los cuales se orientaban a los largo de las fracturas que constituyeron los canales de circulación de fluidos. La posterior silicificación de los niveles carbonáticos produjeron jasperoides que se presentan como cuerpos tabulares subverticales y subhorizontales, estos últimos con características texturales similares a aquellas de sinters. La silicificación se originó tardíamente, posiblemente durante la etapa principal del régimen hidrotermal que generó las vetas portadoras de plata y oro. Los travertinos se formaron en un ambiente de hot spring, relacionado con fracturas de un sistema de cizalla conjugado orientadas entre N 20° a 45° E y N 20° a 40° O y constituyen las evidencias más tempranas de la presencia de un régimen epitermal asociado al proceso volcánico jurásico, en un régimen tectónico distensivo, en Manantial Espejo. Resumen en inglés In the last few years, an intense mining prospecting activity for gold and silver epithermal deposits has been carried out in the Deseado Massif, Argentina. As a result, many hot spring related deposits, of possible Jurassic age, have been detected. This paper describes the mineralogical and textural characteristics as well as the facies of a group of travertine and jasperoid outcrops occurring near the silver-gold carrying lodes in the Manantial Espejo prospect (Schalamu (mas) k et al., 1998). A genetic interpretation of the deposits is done on the basis of their structural, textural, and emplacement characteristics. Their possible relationship with the epithermal mineralization is also considered. The Manantial Espejo district is located on the southwestern area of the Deseado Massif, in the middle of the province of Santa Cruz (Fig.1). The area is almost entirely covered by andesitic and rhyolithic rocks of the Bajo Pobre and Chon Aike Formations, the product of a strong, bimodal volcanic activity of Jurassic age. This volcanic event developed in a back-arc tectonic environment linked to the opening of the Atlantic Ocean (Uliana et al., 1985; Riley et al., 2001). Acidic rocks prevail in the area, consisting on high-grade ignimbrites with ash fall tuffs, tuffites, and hydroclastic breccias (Fig. 2). Among them, the chemical and biogenic carbonate and silica deposits, are present (Fig.3). The travertine mantles can be up to 0.5 m thick and, in most of cases, they overlie tuffite layers. Typically, the rock is laminated in millimetrical to submillimetrical laminae of dense, hard, non porous micritic carbonate, displaying three types of lamination: parallel sub-horizontal; stromatolithic; and, «en echelon» (possibly, a terrace facies, Fig. 4). Sometimes, the laminated structure consists of a rhythmic deposit of calcium carbonate and opal (Figs. 5 a, b), unusual association in hot spring deposits, both recent and fossil (Jones et al., 2000a; Campbell et al., 2002; Canet et al., 2005). A variety of porous travertine, dominated by small, sub-spherical and columnar growths, of the microstromatolithic or the oncoid types. The travertine layers grade laterally to siliceous laminated jasperoids (sensu Spur, 1898 and Lovering, 1972), which make sub-horizontal mantles, 0.5 to 2.0 m thick, with identical sedimentary structures as those of travertines, although they are entirely formed of chalcedony, which is interpreted as the product of replacement of calcite into silica (Fig. 6a, b). Silicification occurred at a later stage, during the intense hydrothermal alteration accompanying the formation of the quartz veins carrying gold and silver. Some jasperoid outcrops show grossly stratified, rounded surfaces with domical structures, forming banks 0.2 to 0.4 m thick, and showing a more or less concentric layout which could correspond to the silicification of bio-built algal structures (Fig. 6b). The occurrence of small vents (Fig. 6e) show the water and steam outlets. Vertical, tabular, laminated bodies, filling fractures of NE-SW strike and slip up to 1,000 m, and 3 m thick (Fig. 6f, h). They are formed of chalcedony, displaying a vertical, banded and, at times, diffuse (Fig. 6g) or breccia like structure. The morphology of the travertines and associated jasperoids in the Manantial Espejo district are compared with travertines or hot spring deposits in general, of Quaternary or Recent (Guo and Riding, 1999; Chafetz and Guidry, 2003; Hancock et al., 1999). The analogies founded allowed to reconstruct, at least in part, the depositional environment of the studied rocks (Fig. 8). The sub-vertical, tabular bodies of banded silica, would correspond to subsurface levels of fissure ridges, where erosion has generally eliminated the surface deposits with sub-horizontal stratification overlying the faults. The northernmost end of the Ayelen Oeste «vein» (Fig. 6h) would correspond to the proximal zone of the discharge channel, very close to the fissure, since part of the sub-horizontal stratification next to the fracture (zone B in Fig. 8). This area represents the most active depositional environment, where the carbonate precipitation rate is higher. Figure 6e shows a fluid outlet vent in a spring zone (zone C, in Fig. 8). The «en echelon» stratification shows very similar characteristics to those of terraces and micro-terraces occurring in modern hot springs. Micro-terraces shown in Figure 5e, found near one of the fissure crests, could correspond to those formed laterally to the outlet channels (D, in Fig. 8). As to that shown in Figure 5f, associated to travertine with sub-horizontal, parallel lamination, could correspond to that formed in the edges of pools. With regard to the parallel lamination of micritic carbonate, occurring in most of the outcrops, it may correspond to the lacustrine rims (sensu Pentecost, 1995). This type of thin lamination, forming laterally extended banks, several tens of decimeters thick, would have formed on depressed surfaces, with a distal position relative to the spring zones. The rhythmic intercalation of thin opal laminae between the calcite layers occurring in some outcrops, reveals temporary changes in the physical-chemical conditions of the mineral precipitation, possibly seasonal temperature fluctuations. Finally, the observed stromatolites and microstromatolites (Fig. 5c, g, h) indicate the presence of microorganisms in the geothermal environment. Although there is no agreement among researchers about the organic or inorganic origin of these morphotypes in geothermal environments, it is admitted that algae and bacteria induce the precipitation of calcium carbonate. The stratigraphic position of the calcareous levels identified in Manantial Espejo show that the hot spring environment began to develop early in the district, associated to an extensional tectonic regime coincident with the La Frisia or Zanjón del Pescado System (Reimer et al., 1996) which caused fracturing (direct faults) N 20° to 45º E, and N 20º to 40° W, as a consequence of aó1 located around 0°. The produced faults, made the main hydrothermal fluid circulation channels (barren) which, after reaching the surface and losing the dissolved CO2, precipitated the calcium carbonate. The migration of the maximum stress (anti clockwise, at 315°) produced a new stress field, the Bajo Grande System (Panza, 1982, 1984) generating direct faulting combined with dextral movement, at a 110° azimuth, cutting and displacing the subvertical travertine bodies. These new fluid circulation channels end up lodging the quartz veins carrying silver and gold.

Scientific Electronic Library Online (Spanish)

2

Online Monitoring of Corrosion in a Liquid-Steam Line Pipe of the Miravalles Geothermal Field/ Monitoreo en Línea de la Corrosión en Tuberías de Flujo Bifásico en el Campo Geotérmico Miravalles

Tres, G.; Saborío, E.A.; Ajún, L.R.; Arias, A.; Rodríguez, A.; Bravo, O.; Malo, J.M.
2008-01-01

Resumen en inglés The goal of this study was to evaluate the internal corrosion in a liquid-steam pipeline (type A515 low carbon steel) of the Geothermal Field of Miravalles (CGM) in Costa Rica, and to determine the corrosion thickness for future geothermal fields. The monitoring was carried out using the following techniques: linear polarization resistance (LPR), electrical resistance (ER), and weight loss. The results show for neutral or alkaline pH conditions and slightly free of oxygen (mas) , that the corrosion thickness should be 1.8 mm, in order to guarantee the integrity of the pipe over the field lifetime.

Scientific Electronic Library Online (Spanish)

3

Los depósitos de oro y plata vinculados al magmatismo jurásico de la Patagonia: revisión y perspectivas para la exploración/ Gold and silver deposits related to Jurassic Patagonian volcanism: review and perspectives for exploration

Fernández, Raúl R.; Blesa, Adriana; Moreira, Pilar; Echeveste, Horacio; Mykietiuk, Karina; Andrada de Palomera, Pablo; Tessone, Mario
2008-12-01

Resumen en español La importancia del magmatismo jurásico de la Patagonia con relación a mineralizaciones de Au-Ag, ha sido reconocida desde hace menos de 20 años y al presente se definieron recursos por más de 700 t de Au equivalente contenido, en tres depósitos de clase mundial (>100 t AuEq contenido), algunos depósitos menores y numerosos prospectos en exploración. Se alojan en rocas volcánicas y volcano-sedimentarias jurásicas (o más antiguas), silíceas y mesosilíceas genera (mas) das en ambientes de arco y retro-arco de las regiones andina y extra-andina. Por sus características mineralógicas, texturales y geoquímicas corresponden a depósitos epitermales asociados principalmente a la paragénesis cuarzo ± calcita ± adularia ± illita que acompañan a los depósitos de sulfuración baja e intermedia. Por su contenido metálico se dividieron en: a) Au-Ag y Ag>Au, b) polimetálicos con Ag-Au o sólo Ag, y c) polimetálicos complejos con Ag-Au. Son depósitos vetiformes, en general con control estructural, con una excepción de fuerte control litológico. Dataciones de minerales hidrotermales y roca de caja indican que la actividad hidrotermal fue posterior al magmatismo principal. Relacionadas a ellos se hallan manifestaciones hidrotermales poco profundas (sinter y silicificaciones en el paleonivel freático) que pueden indicar que sistemas epitermales se hallan intactos en profundidad. Los fluidos formadores de mineralización fueron soluciones diluidas o de baja salinidad, con temperaturas entre 160 y 330ºC. Los controles más importantes en la formación de estos depósitos se consideran el fracturamiento extensional que afecta a las volcanitas jurásicas y la incorporación de aguas freáticas a los sistemas geotermales. Resumen en inglés Potential for gold-silver mineralization related to Jurassic magmatism in Patagonia was only recognized 20 years ago. At the present the Au+Ag resources exceed 700 t in three world class deposits (> 100 t Au Eq), several smaller ore deposits and many prospects in exploration stage. The deposits are hosted in silicic and mesosilicic volcanic and volcanic-sedimentary Jurassic rocks (occasionally older) related to arc or back-arc settings in Andean or extra-Andean environmen (mas) ts. The ore geology, textures, mineralogy and geochemistry of these mineralizations indicate that they are epithermal deposits, and are mainly associated to the quartz ± calcite ± adularia ± illite assemblage of the low and intermediate sulfidation types. Based on their metallic association, the deposits were divided into: a) Au-Ag and Ag>Au, b) polymetallic with Ag-Au or only Ag and, c) complex polymetallic mineralizations with Ag-Au. The deposits form tectonically controlled veins with only one example where strong lithological control dominates. The few hydrothermal minerals and hostrocks dates, suggest that the hydrothermal activity is several millions years younger than the peak magmatism. The sinter, carbonate-lacustrine deposits and silicic lithocaps related to steam-heated waters in the water table suggest regions or tectonic blocks with potential for epithermal systems at depth. The mineralizing fluids are dilute to low-intermediate salinity waters with temperatures between 160 to 330ºC. Extensional fracturing developed in the Jurassic volcanics and the influx of meteoric waters in the geothermal systems are considered the main controls in the ore genesis.

Scientific Electronic Library Online (Spanish)