WorldWideScience

Sample records for myxicola giant axon

  1. Modelling in vivo action potential propagation along a giant axon.

    Science.gov (United States)

    George, Stuart; Foster, Jamie M; Richardson, Giles

    2015-01-01

    A partial differential equation model for the three-dimensional current flow in an excitable, unmyelinated axon is considered. Where the axon radius is significantly below a critical value R(crit) (that depends upon intra- and extra-cellular conductivity and ion channel conductance) the resistance of the intracellular space is significantly higher than that of the extracellular space, such that the potential outside the axon is uniformly small whilst the intracellular potential is approximated by the transmembrane potential. In turn, since the current flow is predominantly axial, it can be shown that the transmembrane potential is approximated by a solution to the one-dimensional cable equation. It is noted that the radius of the squid giant axon, investigated by (Hodgkin and Huxley 1952e), lies close to R(crit). This motivates us to apply the three-dimensional model to the squid giant axon and compare the results thus found to those obtained using the cable equation. In the context of the in vitro experiments conducted in (Hodgkin and Huxley 1952e) we find only a small difference between the wave profiles determined using these two different approaches and little difference between the speeds of action potential propagation predicted. This suggests that the cable equation approximation is accurate in this scenario. However when applied to the it in vivo setting, in which the conductivity of the surrounding tissue is considerably lower than that of the axoplasm, there are marked differences in both wave profile and speed of action potential propagation calculated using the two approaches. In particular, the cable equation significantly over predicts the increase in the velocity of propagation as axon radius increases. The consequences of these results are discussed in terms of the evolutionary costs associated with increasing the speed of action potential propagation by increasing axon radius.

  2. Phospholipid synthesis in the squid giant axon: incorporation of lipid precursors

    Energy Technology Data Exchange (ETDEWEB)

    Gould, R.M.; Pant, H.; Gainer, H.; Tytell, M.

    1983-05-01

    The squid giant axon and extruded axoplasm from the giant axon were used to study the capacity of axoplasm for phospholipid synthesis. Extruded axoplasm, suspended in chemically defined media, catalyzed the synthesis of phospholipids from all of the precursors tested. /sup 32/P-Labeled inorganic phosphate and gamma-labeled ATP were actively incorporated into phosphatidylinositol phosphate, while (2-/sup 3/H)myo-inositol and L-(/sup 3/H(G))serine were actively incorporated into phosphatidylinositol and phosphatidylserine, respectively. Though less well utilized. (2-/sup 3/H)glycerol was incorporated into phosphatidic acid, phosphatidylinositol, and triglyceride, and methyl-3H)choline and (1-/sup 3/H)ethanolamine were incorporated into phosphatidylcholine and phosphatidylethanolamine, respectively. Isolated squid giant axons were incubated in artificial seawater containing the above precursors. The axoplasm was extruded following the incubations. Although most of the product lipids were recovered in the sheath (composed of cortical axoplasm, axolemma, and surrounding satellite cells), significant amounts (4-20%) were present in the extruded axoplasm. With tritiated choline and myo-inositol, the major labeled phospholipids found in both the extruded axoplasm and the sheath were phosphatidylcholine and phosphatidylinositol, respectively. With both glycerol and phosphate, phosphatidylethanolamine was a major labeled lipid in both axoplasm and sheath. These findings demonstrate that all classes of phospholipids are formed by endogenous synthetic enzymes in axoplasm. In addition, we feel that the different patterns of incorporation by intact axons and extruded axoplasm indicate that surrounding sheath cells contribute lipids to axoplasm. A comprehensive picture of axonal lipid metabolism should include axoplasmic synthesis and glial-axon transfer as pathways complementing the axonal transport of perikaryally formed lipids.

  3. Axon Termination, Pruning, and Synaptogenesis in the Giant Fiber System of Drosophila melanogaster Is Promoted by Highwire.

    Science.gov (United States)

    Borgen, Melissa; Rowland, Kimberly; Boerner, Jana; Lloyd, Brandon; Khan, Aruna; Murphey, Rodney

    2017-03-01

    The ubiquitin ligase Highwire has a conserved role in synapse formation. Here, we show that Highwire coordinates several facets of central synapse formation in the Drosophila melanogaster giant fiber system, including axon termination, axon pruning, and synaptic function. Despite the similarities to the fly neuromuscular junction, the role of Highwire and the underlying signaling pathways are distinct in the fly's giant fiber system. During development, branching of the giant fiber presynaptic terminal occurs and, normally, the transient branches are pruned away. However, in highwire mutants these ectopic branches persist, indicating that Highwire promotes axon pruning. highwire mutants also exhibit defects in synaptic function. Highwire promotes axon pruning and synaptic function cell-autonomously by attenuating a mitogen-activated protein kinase pathway including Wallenda, c-Jun N-terminal kinase/Basket, and the transcription factor Jun. We also show a novel role for Highwire in non-cell autonomous promotion of synaptic function from the midline glia. Highwire also regulates axon termination in the giant fibers, as highwire mutant axons exhibit severe overgrowth beyond the pruning defect. This excessive axon growth is increased by manipulating Fos expression in the cells surrounding the giant fiber terminal, suggesting that Fos regulates a trans -synaptic signal that promotes giant fiber axon growth. Copyright © 2017 by the Genetics Society of America.

  4. Giant axonal neuropathy-like disease in an Alexandrine parrot (Psittacula eupatria).

    Science.gov (United States)

    Stent, Andrew; Gosbell, Matthew; Tatarczuch, Liliana; Summers, Brian A

    2015-09-01

    A chronic progressive neurological condition in an Alexandrine parrot (Psittacula eupatria) was manifest as intention tremors, incoordination, and seizure activity. Histology revealed large eosinophilic bodies throughout the central nervous system, and electron microscopy demonstrated that these bodies were greatly expanded axons distended by short filamentous structures that aggregated to form long strands. The presence of periodic acid-Schiff-positive material within the neuronal bodies of Purkinje cells and ganglionic neurons is another distinctive feature of this disease. The histological features of this case display some features consistent with giant axonal neuropathy as reported in humans and dogs. Based on investigation of the lineage in this case, an underlying inherited defect is suspected, but some additional factor appears to have altered the specific disease presentation in this bird. © 2015 The Author(s).

  5. Penetration of Action Potentials During Collision in the Median and Lateral Giant Axons of Invertebrates

    Directory of Open Access Journals (Sweden)

    Alfredo Gonzalez-Perez

    2014-09-01

    Full Text Available The collisions of two simultaneously generated impulses in the giant axons of both earthworms and lobsters propagating in orthodromic and antidromic direction are investigated. The experiments have been performed on the extracted ventral cords of Lumbricus terrestris and the abdominal ventral cord of a lobster, Homarus americanus, by using external stimulation and recording. The collision of two nerve impulses of orthodromic and antidromic propagation did not result in the annihilation of the two signals, contrary to the common notion that is based on the existence of a refractory period in the well-known Hodgkin-Huxley theory. However, the results are in agreement with the electromechanical soliton theory for nerve-pulse propagation, as suggested by Heimburg and Jackson [On Soliton Propagation in Biomembranes and Nerves, Proc. Natl. Acad. Sci. U.S.A. 102, 9790 (2005.].

  6. Proteomic analysis in giant axonal neuropathy: new insights into disease mechanisms.

    Science.gov (United States)

    Mussche, Silke; De Paepe, Boel; Smet, Joél; Devreese, Katrien; Lissens, Willy; Rasic, Vedrana Milic; Murnane, Matthew; Devreese, Bart; Van Coster, Rudy

    2012-08-01

    Giant axonal neuropathy (GAN) is a progressive hereditary disease that affects the peripheral and central nervous systems. It is characterized morphologically by aggregates of intermediate filaments in different tissues. Mutations have been reported in the gene that codes for gigaxonin. Nevertheless, the underlying molecular mechanism remains obscure. Cell lines from 4 GAN patients and 4 controls were analyzed by iTRAQ. Among the dysregulated proteins were ribosomal protein L29, ribosomal protein L37, galectin-1, glia-derived nexin, and aminopeptidase N. Also, nuclear proteins linked to formin-binding proteins were found to be dysregulated. Although the major role of gigaxonin is reported to be degradation of cytoskeleton-associated proteins, the amount of 76 structural cytoskeletal proteins was unaltered. Several of the dysregulated proteins play a role in cytoskeletal reorganization. Based on these findings, we speculate that disturbed cytoskeletal regulation is responsible for formation of aggregates of intermediate filaments. Copyright © 2012 Wiley Periodicals, Inc.

  7. Effects of channel blocking on information transmission and energy efficiency in squid giant axons.

    Science.gov (United States)

    Liu, Yujiang; Yue, Yuan; Yu, Yuguo; Liu, Liwei; Yu, Lianchun

    2018-04-01

    Action potentials are the information carriers of neural systems. The generation of action potentials involves the cooperative opening and closing of sodium and potassium channels. This process is metabolically expensive because the ions flowing through open channels need to be restored to maintain concentration gradients of these ions. Toxins like tetraethylammonium can block working ion channels, thus affecting the function and energy cost of neurons. In this paper, by computer simulation of the Hodgkin-Huxley neuron model, we studied the effects of channel blocking with toxins on the information transmission and energy efficiency in squid giant axons. We found that gradually blocking sodium channels will sequentially maximize the information transmission and energy efficiency of the axons, whereas moderate blocking of potassium channels will have little impact on the information transmission and will decrease the energy efficiency. Heavy blocking of potassium channels will cause self-sustained oscillation of membrane potentials. Simultaneously blocking sodium and potassium channels with the same ratio increases both information transmission and energy efficiency. Our results are in line with previous studies suggesting that information processing capacity and energy efficiency can be maximized by regulating the number of active ion channels, and this indicates a viable avenue for future experimentation.

  8. Toxins'' and nerve. ; Discussion on the pathogenesis of acrylamide intoxication, giant axonal neuropathy and krabbe disease. Doku'' to shinkei. ; Acrylamide chudoku, kyodaijikusaku neuropathy, Krabbe byo no byotai seiri wo meguru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Igusu, H. (University of Occupational and Environmental Health, Kitakyushu (Japan))

    1992-06-01

    Considerations were given on such neurological diseases as acrylamide intoxication, giant axonal neuropathy, and Krabbe disease. The point common to acrylamide intoxication and giant axonal neuropathy is that both peripheral nerves and central nerves suffer the lesion, and that tumefaction is seen in axonal terminals accompanying an increase in neurofilaments. Further, adding acrylamide to normally cultivated cells generates intermediate filament coagulation, and the same change can be seen in cells of giant axonal neuropathy patients. This suggests that a common pathophysiological mechanism is acting upon both diseases. However, acrylamide intoxication which is exogenous differs from giant axonal neuropathy in that it is an endogenous disease. On the other hand, a serious neuropathy of the Krabbe disease which is a hereditary neuropathy could be caused from actions of highly toxic psychosine. These facts suggest that toxicological approached would be effective in discussing pathologic manifestations. 37 refs., 2 figs., 1 tab.

  9. Thermodynamic analysis of the squid mantle muscles and giant axon during slow swimming and jet escape propulsion

    International Nuclear Information System (INIS)

    Yalçınkaya, Bahar Hazal; Erikli, Şükrü; Özilgen, Burak Arda; Olcay, Ali Bahadır; Sorgüven, Esra; Özilgen, Mustafa

    2016-01-01

    Squids have two substantially different types of muscle fibers: superficial mitochondria rich fibers, which perform aerobic respiration during slow swimming, and central mitochondria poor fibers, which perform anaerobic respiration during jet escape. A detailed thermodynamic analysis shows that during slow swimming, 3.82 J/(kg s) of chemical exergy is consumed, and a total muscle work of 0.28 J/(kg s) is produced. 0.27 J/(kg s) of this is produced by the fin to generate lift, and the rest by the mantle volume contraction. During the jet escape at a speed of 3 mantle length/s, squid consumes an exergy of 9.97 J/(kg s) and produces a muscle work of 0.16 J/(kg s). Exergy destruction rates during slow swimming and jet escape modes are 3.54 and 9.81 J/(kg s), respectively. Exergy destroyed because of the action potential propagation in the squid giant axon is calculated as 0.03 and 0.10 J/(kg s) for the slow and fast swimming modes, respectively. - Highlights: • Slow and fast swimming modes of a squid is thermodynamically analyzed. • As swimming speed increases, respiration mode switches from aerobic to anaerobic, and respiration efficiency decreases. • During fast swimming ca. 2.6 times more chemical exergy is consumed. • Both muscles and giant axon destroy nearly 3 times more exergy during jet escape. • Contraction efficiency decreases from 36.8% to 4.7% as the volume of the passive tissue increases from 5% to 95%.

  10. Giant Axonal Neuropathy

    Science.gov (United States)

    ... may become involved, causing a gradual decline in mental function, loss of control of body movement, and seizures. Most children become ... may become involved, causing a gradual decline in mental function, loss of control of body movement, and seizures. Most children become ...

  11. Comment on "Penetration of Action Potentials During Collision in the Median and Lateral Giant Axons of Invertebrates"

    DEFF Research Database (Denmark)

    Berg, Rune W.; Stauning, Marius Tving; Sorensen, Jakob Balslev

    2017-01-01

    The action potential (AP) is an electrical impulse elicited by depolarization of the neuronal membrane from the resting membrane potential (around − 70 mV). It propagates along the axon, allowing for rapid and distant communication. Recently, it was claimed that two APs traveling in opposite...

  12. Modification of sodium and potassium channel kinetics by diethyl ether and studies on sodium channel inactivation in the crayfish giant axon membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bean, Bruce Palmer [Univ. of Rochester, NY (United States)

    1979-01-01

    The effects of ether and halothane on membrane currents in the voltage clamped crayfish giant axon membrane were investigated. Concentrations of ether up to 300 mM and of halothane up to 32 mM had no effect on resting potential or leakage conductance. Ether and halothane reduced the size of sodium currents without changing the voltage dependence of the peak currents or their reversal potential. Ether and halothane also produced a reversible, dose-dependent speeding of sodium current decay at all membrane potentials. Ether reduced the time constants for inactivation, and also shifted the midpoint of the steady-state inactivation curve in the hyperpolarizing direction. Potassium currents were smaller with ether present, with no change in the voltage dependence of steady-state currents. The activation of potassium channels was faster with ether present. There was no apparent change in the capacitance of the crayfish giant axon membrane with ether concentrations of up to 100 mM. Experiments on sodium channel inactivation kinetics were performed using 4-aminopyridine to block potassium currents. Sodium currents decayed with a time course generally fit well by a single exponential. The time constant of decay was a steep function of voltage, especially in the negative resistance region of the peak current vs voltage relation.The time course of inactivation was very similar to that of the decay of the current at the same potential. The measurement of steady-state inactivation curves with different test pulses showed no shifts along the voltage asix. The voltage-dependence of the integral of sodium conductance was measured to test models of sodium channel inactivation in which channels must open before inactivating; the results appear inconsistent with some of the simplest cases of such models.

  13. Effects of sera obtained from electrically charged human body on action potential of giant axon of squid and its relationship to the therapy of the atomic bomb sequela, (2)

    International Nuclear Information System (INIS)

    Hirofuji, Michio; Hatashita, Toshiyuki; Takemura, Hideyuki; Oda, Nobuo.

    1984-01-01

    The giant axon of squid was perfused for 20 min with sea water and four kinds of mixture of sera and sea water (1:2), and spike potential of the axon was compared by using a computer. Perfusates used were sea water, sera obtained before electric charge to the human body (pre-sera), sera obtained from the human body electrically charged with -300 volt (negative sera), and sera obtained from the human body electrically charged with +300 volt (positive sera). Negative sera increased action potential of the axon, and positive sera decreased action potential of the axon. These results revealed that negative sera have a greater deal of e - , and positive sera have less quantity of e - than pre-sera, suggesting the involvement of e - in the action potential of the axon. Microtubules in the inner part of the axonal membrane and cell membrane seem to be most greatly related to e - ; however, changes in the other axons, cell membrane and protoplasm should also be taken into account. These experimental results seem to be of great value, particularly providing useful information on the treatment for late effects (cell damage) of atomic bombing or burn. (Namekawa, K.)

  14. Comment on "Penetration of Action Potentials During Collision in the Median and Lateral Giant Axons of Invertebrates"

    Science.gov (United States)

    Berg, Rune W.; Stauning, Marius Tving; Sørensen, Jakob Balslev; Jahnsen, Henrik

    2017-04-01

    The action potential (AP) is an electrical impulse elicited by depolarization of the neuronal membrane from the resting membrane potential (around -70 mV ). It propagates along the axon, allowing for rapid and distant communication. Recently, it was claimed that two APs traveling in opposite direction will pass unhindered through each other (penetrate) upon collision [Gonzalez-Perez et al.Phys. Rev. X 4, 031047 (2014), 10.1103/PhysRevX.4.031047]. We tested this claim under carefully controlled conditions and found that we cannot reproduce penetration. Instead, APs consistently annihilated upon collision. This is consistent with a vast body of literature.

  15. Axonal inclusions in the crab Hemigrapsus nudus.

    Science.gov (United States)

    Smith, R S

    1978-10-01

    Light microscopic examination of living giant axons from the walking legs of Hemigrapsus nudus revealed intra-axonal inclusions which were usually several tens of micrometers long and about 5 micron wide. The inclusions were filled with small light-scattering particles. The inclusions were shown, by thin section electron microscopy, to be composed largely 68% by volume) of mitochondria. Each inclusion was surrounded by membrane bounded spaces which are presumed to represent a part of the smooth endoplasmic reticulum. Similar inclusions were not found in the leg axons of a variety of other decapod crustaceans.

  16. Recommendations to enable drug development for inherited neuropathies: Charcot-Marie-Tooth and Giant Axonal Neuropathy [v2; ref status: indexed, http://f1000r.es/3am

    Directory of Open Access Journals (Sweden)

    Lori Sames

    2014-04-01

    Full Text Available Approximately 1 in 2500 Americans suffer from Charcot-Marie-Tooth (CMT disease. The underlying disease mechanisms are unique in most forms of CMT, with many point mutations on various genes causing a toxic accumulation of misfolded proteins. Symptoms of the disease often present within the first two decades of life, with CMT1A patients having reduced compound muscle and sensory action potentials, slow nerve conduction velocities, sensory loss, progressive distal weakness, foot and hand deformities, decreased reflexes, bilateral foot drop and about 5% become wheelchair bound. In contrast, the ultra-rare disease Giant Axonal Neuropathy (GAN is frequently described as a recessively inherited condition that results in progressive nerve death. GAN usually appears in early childhood and progresses slowly as neuronal injury becomes more severe and leads to death in the second or third decade. There are currently no treatments for any of the forms of CMTs or GAN. We suggest that further clinical studies should analyse electrical impedance myography as an outcome measure for CMT. Further, additional quality of life (QoL assessments for these CMTs are required, and we need to identify GAN biomarkers as well as develop new genetic testing panels for both diseases. We propose that using the Global Registry of Inherited Neuropathy (GRIN could be useful for many of these studies. Patient advocacy groups and professional organizations (such as the Hereditary Neuropathy Foundation (HNF, Hannah's Hope Fund (HHF, The Neuropathy Association (TNA and the American Association of Neuromuscular and Electrodiagnostic Medicine (AANEM can play a central role in educating clinicians and patients. Undertaking these studies will assist in the correct diagnosis of disease recruiting patients for clinical studies, and will ultimately improve the endpoints for clinical trials. By addressing obstacles that prevent industry investment in various forms of inherited neuropathies

  17. Genetics Home Reference: giant axonal neuropathy

    Science.gov (United States)

    ... Nerve. 2014 Oct;50(4):467-76. doi: 10.1002/mus.24321. Review. Citation on PubMed Kamate M, ... Nerve. 2012 Aug;46(2):246-56. doi: 10.1002/mus.23306. Citation on PubMed Neuromuscular Disease Center, ...

  18. Axonal GABAA receptors.

    Science.gov (United States)

    Trigo, Federico F; Marty, Alain; Stell, Brandon M

    2008-09-01

    Type A GABA receptors (GABA(A)Rs) are well established as the main inhibitory receptors in the mature mammalian forebrain. In recent years, evidence has accumulated showing that GABA(A)Rs are prevalent not only in the somatodendritic compartment of CNS neurons, but also in their axonal compartment. Evidence for axonal GABA(A)Rs includes new immunohistochemical and immunogold data: direct recording from single axonal terminals; and effects of local applications of GABA(A)R modulators on action potential generation, on axonal calcium signalling, and on neurotransmitter release. Strikingly, whereas presynaptic GABA(A)Rs have long been considered inhibitory, the new studies in the mammalian brain mostly indicate an excitatory action. Depending on the neuron that is under study, axonal GABA(A)Rs can be activated by ambient GABA, by GABA spillover, or by an autocrine action, to increase either action potential firing and/or transmitter release. In certain neurons, the excitatory effects of axonal GABA(A)Rs persist into adulthood. Altogether, axonal GABA(A)Rs appear as potent neuronal modulators of the mammalian CNS.

  19. Acute nutritional axonal neuropathy.

    Science.gov (United States)

    Hamel, Johanna; Logigian, Eric L

    2018-01-01

    This study describes clinical, laboratory, and electrodiagnostic features of a severe acute axonal polyneuropathy common to patients with acute nutritional deficiency in the setting of alcoholism, bariatric surgery (BS), or anorexia. Retrospective analysis of clinical, electrodiagnostic, and laboratory data of patients with acute axonal neuropathy. Thirteen patients were identified with a severe, painful, sensory or sensorimotor axonal polyneuropathy that developed over 2-12 weeks with sensory ataxia, areflexia, variable muscle weakness, poor nutritional status, and weight loss, often with prolonged vomiting and normal cerebrospinal fluid protein. Vitamin B6 was low in half and thiamine was low in all patients when obtained before supplementation. Patients improved with weight gain and vitamin supplementation, with motor greater than sensory recovery. We suggest that acute or subacute axonal neuropathy in patients with weight loss or vomiting associated with alcohol abuse, BS, or dietary deficiency is one syndrome, caused by micronutrient deficiencies. Muscle Nerve 57: 33-39, 2018. © 2017 Wiley Periodicals, Inc.

  20. Axons take a dive

    Science.gov (United States)

    Tong, Cheuk Ka; Cebrián-Silla, Arantxa; Paredes, Mercedes F; Huang, Eric J; García-Verdugo, Jose Manuel; Alvarez-Buylla, Arturo

    2015-01-01

    In the walls of the lateral ventricles of the adult mammalian brain, neural stem cells (NSCs) and ependymal (E1) cells share the apical surface of the ventricular–subventricular zone (V–SVZ). In a recent article, we show that supraependymal serotonergic (5HT) axons originating from the raphe nuclei in mice form an extensive plexus on the walls of the lateral ventricles where they contact E1 cells and NSCs. Here we further characterize the contacts between 5HT supraependymal axons and E1 cells in mice, and show that suprependymal axons tightly associated to E1 cells are also present in the walls of the human lateral ventricles. These observations raise interesting questions about the function of supraependymal axons in the regulation of E1 cells. PMID:26413556

  1. Electrophysiology of Axonal Constrictions

    Science.gov (United States)

    Johnson, Christopher; Jung, Peter; Brown, Anthony

    2013-03-01

    Axons of myelinated neurons are constricted at the nodes of Ranvier, where they are directly exposed to the extracellular space and where the vast majority of the ion channels are located. These constrictions are generated by local regulation of the kinetics of neurofilaments the most important cytoskeletal elements of the axon. In this paper we discuss how this shape affects the electrophysiological function of the neuron. Specifically, although the nodes are short (about 1 μm) in comparison to the distance between nodes (hundreds of μm) they have a substantial influence on the conduction velocity of neurons. We show through computational modeling that nodal constrictions (all other features such as numbers of ion channels left constant) reduce the required fiber diameter for a given target conduction velocity by up to 50% in comparison to an unconstricted axon. We further show that the predicted optimal fiber morphologies closely match reported fiber morphologies. Supported by The National Science Foundation (IOS 1146789)

  2. Studies of axon-glial cell interactions and periaxonal K+ homeostasis--II. The effect of axonal stimulation, cholinergic agents and transport inhibitors on the resistance in series with the axon membrane.

    Science.gov (United States)

    Hassan, S; Lieberman, E M

    1988-06-01

    The small electrical resistance in series with the axon membrane is generally modeled as the intercellular pathway for current flow through the periaxonal glial (Schwann cell) sheath. The series resistance of the medial giant axon of the crayfish, Procambarus clarkii, was found to vary with conditions known to affect the electrical properties of the periaxonal glia. Series resistance was estimated from computer analysed voltage waveforms generated by axial wire-constant current and space clamp techniques. The average series resistance for all axons was 6.2 +/- 0.5 omega cm2 (n = 128). Values ranged between 1 and 30 omega cm2. The series resistance of axons with low resting membrane resistance (less than 1500 omega cm2) increased an average of 30% when stimulated for 45 s to 7 min (50 Hz) whereas the series resistance of high membrane resistance (greater than 1500 omega cm2) axons decreased an average of 10%. Carbachol (10(-7) M) caused the series resistance of low membrane resistance axons to decrease during stimulation but had no effect on high membrane resistance axons. d-Tubocurare (10(-8) M) caused the series resistance of high membrane resistance axons to increase during stimulation but had no effect on low membrane resistance axons. Bumetanide, a Na-K-Cl cotransport inhibitor and low [K+]o, prevented the stimulation-induced increase in series resistance of low membrane resistance axons but had no effect on the high membrane resistance axons. The results suggest that the series resistance of axons varies in response to the activity of the glial K+ uptake mechanisms stimulated by the appearance of K+ in the periaxonal space during action potential generation.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Glia to axon RNA transfer.

    Science.gov (United States)

    Sotelo, José Roberto; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José Roberto; Calliari, Aldo; Cal, Karina; Bresque, Mariana; Dipaolo, Andrés; Farias, Joaquina; Mercer, John A

    2014-03-01

    The existence of RNA in axons has been a matter of dispute for decades. Evidence for RNA and ribosomes has now accumulated to a point at which it is difficult to question, much of the disputes turned to the origin of these axonal RNAs. In this review, we focus on studies addressing the origin of axonal RNAs and ribosomes. The neuronal soma as the source of most axonal RNAs has been demonstrated and is indisputable. However, the surrounding glial cells may be a supplemental source of axonal RNAs, a matter scarcely investigated in the literature. Here, we review the few papers that have demonstrated that glial-to-axon RNA transfer is not only feasible, but likely. We describe this process in both invertebrate axons and vertebrate axons. Schwann cell to axon ribosomes transfer was conclusively demonstrated (Court et al. [2008]: J. Neurosci 28:11024-11029; Court et al. [2011]: Glia 59:1529-1539). However, mRNA transfer still remains to be demonstrated in a conclusive way. The intercellular transport of mRNA has interesting implications, particularly with respect to the integration of glial and axonal function. This evolving field is likely to impact our understanding of the cell biology of the axon in both normal and pathological conditions. Most importantly, if the synthesis of proteins in the axon can be controlled by interacting glia, the possibilities for clinical interventions in injury and neurodegeneration are greatly increased. Copyright © 2013 Wiley Periodicals, Inc.

  4. Signal propagation along the axon.

    Science.gov (United States)

    Rama, Sylvain; Zbili, Mickaël; Debanne, Dominique

    2018-03-08

    Axons link distant brain regions and are usually considered as simple transmission cables in which reliable propagation occurs once an action potential has been generated. Safe propagation of action potentials relies on specific ion channel expression at strategic points of the axon such as nodes of Ranvier or axonal branch points. However, while action potentials are generally considered as the quantum of neuronal information, their signaling is not entirely digital. In fact, both their shape and their conduction speed have been shown to be modulated by activity, leading to regulations of synaptic latency and synaptic strength. We report here newly identified mechanisms of (1) safe spike propagation along the axon, (2) compartmentalization of action potential shape in the axon, (3) analog modulation of spike-evoked synaptic transmission and (4) alteration in conduction time after persistent regulation of axon morphology in central neurons. We discuss the contribution of these regulations in information processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Giant grains

    International Nuclear Information System (INIS)

    Leitch-Devlin, M.A.; Millar, T.J.; Williams, D.A.

    1976-01-01

    Infrared observations of the Orion nebula have been interpreted by Rowan-Robinson (1975) to imply the existence of 'giant' grains, radius approximately 10 -2 cm, throughout a volume about a parsec in diameter. Although Rowan-Robinson's model of the nebula has been criticized and the presence of such grains in Orion is disputed, the proposition is accepted, that they exist, and in this paper situations in which giant grains could arise are examined. It is found that, while a giant-grain component to the interstellar grain density may exist, it is difficult to understand how giant grains arise to the extent apparently required by the Orion nebula model. (Auth.)

  6. The genetics of axonal transport and axonal transport disorders.

    Directory of Open Access Journals (Sweden)

    Jason E Duncan

    2006-09-01

    Full Text Available Neurons are specialized cells with a complex architecture that includes elaborate dendritic branches and a long, narrow axon that extends from the cell body to the synaptic terminal. The organized transport of essential biological materials throughout the neuron is required to support its growth, function, and viability. In this review, we focus on insights that have emerged from the genetic analysis of long-distance axonal transport between the cell body and the synaptic terminal. We also discuss recent genetic evidence that supports the hypothesis that disruptions in axonal transport may cause or dramatically contribute to neurodegenerative diseases.

  7. Giant Chancroid

    Directory of Open Access Journals (Sweden)

    Bhushan Kumar

    1980-01-01

    Full Text Available A case of giant chancroid following rupture of inguinal bubo and having systemic symptoms is described. Response with sulfa and streptomycin combination was excellent and the lesion healed completely in 3 weeks. Early diagnosis and treatment of chancroid will prevent this debilitating complication.

  8. Giant microelectronics

    International Nuclear Information System (INIS)

    Della Sala, D.; Privato, C.; Di Lazzaro, P.; Fortunato, G.

    1999-01-01

    Giant microelectronics, on which the technology of flat liquid-crystal screens is based, is an example of fruitful interaction among independently-developed technologies, in this case thin film micro devices and laser applications. It typifies the interdisciplinary approach needed to produce innovations in microelectronics [it

  9. Axon density and axon orientation dispersion in children born preterm

    NARCIS (Netherlands)

    Kelly, Claire E.; Thompson, Deanne K.; Chen, Jian; Leemans, Alexander; Adamson, Christopher L.; Inder, Terrie E.; Cheong, Jeanie L Y; Doyle, Lex W.; Anderson, Peter J.

    2016-01-01

    Background Very preterm birth (VPT, <32 weeks' gestation) is associated with altered white matter fractional anisotropy (FA), the biological basis of which is uncertain but may relate to changes in axon density and/or dispersion, which can be measured using Neurite Orientation Dispersion and Density

  10. PTEN deletion from adult-generated dentate granule cells disrupts granule cell mossy fiber axon structure.

    Science.gov (United States)

    LaSarge, Candi L; Santos, Victor R; Danzer, Steve C

    2015-03-01

    Dysregulation of the mTOR-signaling pathway is implicated in the development of temporal lobe epilepsy. In mice, deletion of PTEN from hippocampal dentate granule cells leads to mTOR hyperactivation and promotes the rapid onset of spontaneous seizures. The mechanism by which these abnormal cells initiate epileptogenesis, however, is unclear. PTEN-knockout granule cells develop abnormally, exhibiting morphological features indicative of increased excitatory input. If these cells are directly responsible for seizure genesis, it follows that they should also possess increased output. To test this prediction, dentate granule cell axon morphology was quantified in control and PTEN-knockout mice. Unexpectedly, PTEN deletion increased giant mossy fiber bouton spacing along the axon length, suggesting reduced innervation of CA3. Increased width of the mossy fiber axon pathway in stratum lucidum, however, which likely reflects an unusual increase in mossy fiber axon collateralization in this region, offsets the reduction in boutons per axon length. These morphological changes predict a net increase in granule cell innervation of CA3. Increased diameter of axons from PTEN-knockout cells would further enhance granule cell communication with CA3. Altogether, these findings suggest that amplified information flow through the hippocampal circuit contributes to seizure occurrence in the PTEN-knockout mouse model of temporal lobe epilepsy. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Optofluidic control of axonal guidance

    Science.gov (United States)

    Gu, Ling; Ordonez, Simon; Black, Bryan; Mohanty, Samarendra K.

    2013-03-01

    Significant efforts are being made for control on axonal guidance due to its importance in nerve regeneration and in the formation of functional neuronal circuitry in-vitro. These include several physical (topographic modification, optical force, and electric field), chemical (surface functionalization cues) and hybrid (electro-chemical, photochemical etc) methods. Here, we report comparison of the effect of linear flow versus microfluidic flow produced by an opticallydriven micromotor in guiding retinal ganglion axons. A circularly polarized laser tweezers was used to hold, position and spin birefringent calcite particle near growth cone, which in turn resulted in microfluidic flow. The flow rate and resulting shear-force on axons could be controlled by a varying the power of the laser tweezers beam. The calcite particles were placed separately in one chamber and single particle was transported through microfluidic channel to another chamber containing the retina explant. In presence of flow, the turning of axons was found to strongly correlate with the direction of flow. Turning angle as high as 90° was achieved. Optofluidic-manipulation can be applied to other types of mammalian neurons and also can be extended to stimulate mechano-sensing neurons.

  12. The axonal cytoskeleton : from organization to function

    NARCIS (Netherlands)

    Kevenaar, Josta T; Hoogenraad, Casper C

    The axon is the single long fiber that extends from the neuron and transmits electrical signals away from the cell body. The neuronal cytoskeleton, composed of microtubules (MTs), actin filaments and neurofilaments, is not only required for axon formation and axonal transport but also provides the

  13. Slowing of axonal regeneration is correlated with increased axonal viscosity during aging

    Directory of Open Access Journals (Sweden)

    Heidemann Steven R

    2010-10-01

    Full Text Available Abstract Background As we age, the speed of axonal regeneration declines. At the biophysical level, why this occurs is not well understood. Results To investigate we first measured the rate of axonal elongation of sensory neurons cultured from neonatal and adult rats. We found that neonatal axons grew 40% faster than adult axons (11.5 µm/hour vs. 8.2 µm/hour. To determine how the mechanical properties of axons change during maturation, we used force calibrated towing needles to measure the viscosity (stiffness and strength of substrate adhesion of neonatal and adult sensory axons. We found no significant difference in the strength of adhesions, but did find that adult axons were 3 times intrinsically stiffer than neonatal axons. Conclusions Taken together, our results suggest decreasing axonal stiffness may be part of an effective strategy to accelerate the regeneration of axons in the adult peripheral nervous system.

  14. Elucidation of axonal transport by radioautography

    International Nuclear Information System (INIS)

    Droz, Bernard.

    1979-01-01

    Radioautography permits to distinguish various pathways within the axons: the axoplasm which includes soluble enzymes and constituents of the cytoskeleton moving with slow axoplasmic flow; the mitochondria which are conveyed as organelles; the smooth endoplasmic reticulum which ensures the fast axonal transport of membrane constituents delivered to axolemma, synaptic vesicles, presynaptic membranes or mitochondria. Furthermore radioautography makes it possible to visualize intercellular exchanges of molecules between axon and glia

  15. Motor axon excitability during Wallerian degeneration

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez, Susana; Krarup, Christian

    2008-01-01

    Axonal loss and degeneration are major factors in determining long-term outcome in patients with peripheral nerve disorders or injury. Following loss of axonal continuity, the isolated nerve stump distal to the lesion undergoes Wallerian degeneration in several phases. In the initial 'latent' phase......, action potential propagation and structural integrity of the distal segment are maintained. The aim of this study was to investigate in vivo the changes in membrane function of motor axons during the 'latent' phase of Wallerian degeneration. Multiple indices of axonal excitability of the tibial nerve...

  16. Axonal regeneration in zebrafish spinal cord

    Science.gov (United States)

    Hui, Subhra Prakash

    2018-01-01

    Abstract In the present review we discuss two interrelated events—axonal damage and repair—known to occur after spinal cord injury (SCI) in the zebrafish. Adult zebrafish are capable of regenerating axonal tracts and can restore full functionality after SCI. Unlike fish, axon regeneration in the adult mammalian central nervous system is extremely limited. As a consequence of an injury there is very little repair of disengaged axons and therefore functional deficit persists after SCI in adult mammals. In contrast, peripheral nervous system axons readily regenerate following injury and hence allow functional recovery both in mammals and fish. A better mechanistic understanding of these three scenarios could provide a more comprehensive insight into the success or failure of axonal regeneration after SCI. This review summarizes the present understanding of the cellular and molecular basis of axonal regeneration, in both the peripheral nervous system and the central nervous system, and large scale gene expression analysis is used to focus on different events during regeneration. The discovery and identification of genes involved in zebrafish spinal cord regeneration and subsequent functional experimentation will provide more insight into the endogenous mechanism of myelination and remyelination. Furthermore, precise knowledge of the mechanism underlying the extraordinary axonal regeneration process in zebrafish will also allow us to unravel the potential therapeutic strategies to be implemented for enhancing regrowth and remyelination of axons in mammals. PMID:29721326

  17. Axon-Schwann cell interaction in the squid nerve fibre.

    Science.gov (United States)

    Villegas, J

    1972-09-01

    The electrical properties of Schwann cells and the effects of neuronal impulses on their membrane potential have been studied in the giant nerve fibre of the squid.1. The behaviour of the Schwann cell membrane to current injection into the cell was ohmic. No impulse-like responses were observed with displacements of 35 mV in the membrane potential. The resistance of the Schwann cell membrane was found to be approximately 10(3) Omega cm(2).2. A long-lasting hyperpolarization is observed in the Schwann cells following the conduction of impulse trains by the axon. Whereas the propagation of a single impulse had little effect, prolonged stimulation of the fibre at 250 impulses/sec was followed by a hyperpolarization of the Schwann cell that gradually declined over a period of several minutes.3. The prolonged effects of nerve impulse trains on the Schwann cell were similar to those produced by depolarizing current pulses applied to the axon by the voltage-clamp technique. Thus, a series of depolarizing pulses in the axon was followed by a long-lasting hyperpolarization of the Schwann cells. In contrast, the application of a series of hyperpolarizing 100 mV pulses at a frequency of 1/sec had no apparent effects.4. Changes in the external potassium concentration did not reproduce the long-lasting effects of nerve excitation.5. The hyperpolarizing effects of impulse trains were abolished by the incubation of the nerve fibre in a sea-water solution containing trypsin.6. These findings are discussed in relation to the possible mechanisms that might be responsible for the long-lasting hyperpolarizations of the Schwann cells.

  18. Action Potential Dynamics in Fine Axons Probed with an Axonally Targeted Optical Voltage Sensor.

    Science.gov (United States)

    Ma, Yihe; Bayguinov, Peter O; Jackson, Meyer B

    2017-01-01

    The complex and malleable conduction properties of axons determine how action potentials propagate through extensive axonal arbors to reach synaptic terminals. The excitability of axonal membranes plays a major role in neural circuit function, but because most axons are too thin for conventional electrical recording, their properties remain largely unexplored. To overcome this obstacle, we used a genetically encoded hybrid voltage sensor (hVOS) harboring an axonal targeting motif. Expressing this probe in transgenic mice enabled us to monitor voltage changes optically in two populations of axons in hippocampal slices, the large axons of dentate granule cells (mossy fibers) in the stratum lucidum of the CA3 region and the much finer axons of hilar mossy cells in the inner molecular layer of the dentate gyrus. Action potentials propagated with distinct velocities in each type of axon. Repetitive firing broadened action potentials in both populations, but at an intermediate frequency the degree of broadening differed. Repetitive firing also attenuated action potential amplitudes in both mossy cell and granule cell axons. These results indicate that the features of use-dependent action potential broadening, and possible failure, observed previously in large nerve terminals also appear in much finer unmyelinated axons. Subtle differences in the frequency dependences could influence the propagation of activity through different pathways to excite different populations of neurons. The axonally targeted hVOS probe used here opens up the diverse repertoire of neuronal processes to detailed biophysical study.

  19. Differential effects of myostatin deficiency on motor and sensory axons.

    Science.gov (United States)

    Jones, Maria R; Villalón, Eric; Northcutt, Adam J; Calcutt, Nigel A; Garcia, Michael L

    2017-12-01

    Deletion of myostatin in mice (MSTN -/- ) alters structural properties of peripheral axons. However, properties like axon diameter and myelin thickness were analyzed in mixed nerves, so it is unclear whether loss of myostatin affects motor, sensory, or both types of axons. Using the MSTN -/- mouse model, we analyzed the effects of increasing the number of muscle fibers on axon diameter, myelin thickness, and internode length in motor and sensory axons. Axon diameter and myelin thickness were increased in motor axons of MSTN -/- mice without affecting internode length or axon number. The number of sensory axons was increased without affecting their structural properties. These results suggest that motor and sensory axons establish structural properties by independent mechanisms. Moreover, in motor axons, instructive cues from the neuromuscular junction may play a role in co-regulating axon diameter and myelin thickness, whereas internode length is established independently. Muscle Nerve 56: E100-E107, 2017. © 2017 Wiley Periodicals, Inc.

  20. Ascending Midbrain Dopaminergic Axons Require Descending GAD65 Axon Fascicles for Normal Pathfinding

    Directory of Open Access Journals (Sweden)

    Claudia Marcela Garcia-Peña

    2014-06-01

    Full Text Available The Nigrostriatal pathway (NSP is formed by dopaminergic axons that project from the ventral midbrain to the dorsolateral striatum as part of the medial forebrain bundle. Previous studies have implicated chemotropic proteins in the formation of the NSP during development but little is known of the role of substrate-anchored signals in this process. We observed in mouse and rat embryos that midbrain dopaminergic axons ascend in close apposition to descending GAD65-positive axon bundles throughout their trajectory to the striatum. To test whether such interaction is important for dopaminergic axon pathfinding, we analyzed transgenic mouse embryos in which the GAD65 axon bundle was reduced by the conditional expression of the diphtheria toxin. In these embryos we observed dopaminergic misprojection into the hypothalamic region and abnormal projection in the striatum. In addition, analysis of Robo1/2 and Slit1/2 knockout embryos revealed that the previously described dopaminergic misprojection in these embryos is accompanied by severe alterations in the GAD65 axon scaffold. Additional studies with cultured dopaminergic neurons and whole embryos suggest that NCAM and Robo proteins are involved in the interaction of GAD65 and dopaminergic axons. These results indicate that the fasciculation between descending GAD65 axon bundles and ascending dopaminergic axons is required for the stereotypical NSP formation during brain development and that known guidance cues may determine this projection indirectly by instructing the pathfinding of the axons that are part of the GAD65 axon scaffold.

  1. Axon-Axon Interactions Regulate Topographic Optic Tract Sorting via CYFIP2-Dependent WAVE Complex Function.

    Science.gov (United States)

    Cioni, Jean-Michel; Wong, Hovy Ho-Wai; Bressan, Dario; Kodama, Lay; Harris, William A; Holt, Christine E

    2018-03-07

    The axons of retinal ganglion cells (RGCs) are topographically sorted before they arrive at the optic tectum. This pre-target sorting, typical of axon tracts throughout the brain, is poorly understood. Here, we show that cytoplasmic FMR1-interacting proteins (CYFIPs) fulfill non-redundant functions in RGCs, with CYFIP1 mediating axon growth and CYFIP2 specifically involved in axon sorting. We find that CYFIP2 mediates homotypic and heterotypic contact-triggered fasciculation and repulsion responses between dorsal and ventral axons. CYFIP2 associates with transporting ribonucleoprotein particles in axons and regulates translation. Axon-axon contact stimulates CYFIP2 to move into growth cones where it joins the actin nucleating WAVE regulatory complex (WRC) in the periphery and regulates actin remodeling and filopodial dynamics. CYFIP2's function in axon sorting is mediated by its binding to the WRC but not its translational regulation. Together, these findings uncover CYFIP2 as a key regulatory link between axon-axon interactions, filopodial dynamics, and optic tract sorting. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Dynamics of mitochondrial transport in axons

    Directory of Open Access Journals (Sweden)

    Robert Francis Niescier

    2016-05-01

    Full Text Available The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

  3. Transforming giants.

    Science.gov (United States)

    Kanter, Rosabeth Moss

    2008-01-01

    Large corporations have long been seen as lumbering, inflexible, bureaucratic--and clueless about global developments. But recently some multinationals seem to be transforming themselves: They're engaging employees, moving quickly, and introducing innovations that show true connection with the world. Harvard Business School's Kanter ventured with a research team inside a dozen global giants--including IBM, Procter & Gamble, Omron, CEMEX, Cisco, and Banco Real--to discover what has been driving the change. After conducting more than 350 interviews on five continents, she and her colleagues came away with a strong sense that we are witnessing the dawn of a new model of corporate power: The coordination of actions and decisions on the front lines now appears to stem from widely shared values and a sturdy platform of common processes and technology, not from top-down decrees. In particular, the values that engage the passions of far-flung workforces stress openness, inclusion, and making the world a better place. Through this shift in what might be called their guidance systems, the companies have become as creative and nimble as much smaller ones, even while taking on social and environmental challenges of a scale that only large enterprises could attempt. IBM, for instance, has created a nonprofit partnership, World Community Grid, through which any organization or individual can donate unused computing power to research projects and see what is being done with the donation in real time. IBM has gained an inspiring showcase for its new technology, helped business partners connect with the company in a positive way, and offered individuals all over the globe the chance to contribute to something big.

  4. Meninges-derived cues control axon guidance.

    Science.gov (United States)

    Suter, Tracey A C S; DeLoughery, Zachary J; Jaworski, Alexander

    2017-10-01

    The axons of developing neurons travel long distances along stereotyped pathways under the direction of extracellular cues sensed by the axonal growth cone. Guidance cues are either secreted proteins that diffuse freely or bind the extracellular matrix, or membrane-anchored proteins. Different populations of axons express distinct sets of receptors for guidance cues, which results in differential responses to specific ligands. The full repertoire of axon guidance cues and receptors and the identity of the tissues producing these cues remain to be elucidated. The meninges are connective tissue layers enveloping the vertebrate brain and spinal cord that serve to protect the central nervous system (CNS). The meninges also instruct nervous system development by regulating the generation and migration of neural progenitors, but it has not been determined whether they help guide axons to their targets. Here, we investigate a possible role for the meninges in neuronal wiring. Using mouse neural tissue explants, we show that developing spinal cord meninges produce secreted attractive and repulsive cues that can guide multiple types of axons in vitro. We find that motor and sensory neurons, which project axons across the CNS-peripheral nervous system (PNS) boundary, are attracted by meninges. Conversely, axons of both ipsi- and contralaterally projecting dorsal spinal cord interneurons are repelled by meninges. The responses of these axonal populations to the meninges are consistent with their trajectories relative to meninges in vivo, suggesting that meningeal guidance factors contribute to nervous system wiring and control which axons are able to traverse the CNS-PNS boundary. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Ion channel density regulates switches between regular and fast spiking in soma but not in axons.

    Directory of Open Access Journals (Sweden)

    Hugo Zeberg

    2010-04-01

    Full Text Available The threshold firing frequency of a neuron is a characterizing feature of its dynamical behaviour, in turn determining its role in the oscillatory activity of the brain. Two main types of dynamics have been identified in brain neurons. Type 1 dynamics (regular spiking shows a continuous relationship between frequency and stimulation current (f-I(stim and, thus, an arbitrarily low frequency at threshold current; Type 2 (fast spiking shows a discontinuous f-I(stim relationship and a minimum threshold frequency. In a previous study of a hippocampal neuron model, we demonstrated that its dynamics could be of both Type 1 and Type 2, depending on ion channel density. In the present study we analyse the effect of varying channel density on threshold firing frequency on two well-studied axon membranes, namely the frog myelinated axon and the squid giant axon. Moreover, we analyse the hippocampal neuron model in more detail. The models are all based on voltage-clamp studies, thus comprising experimentally measurable parameters. The choice of analysing effects of channel density modifications is due to their physiological and pharmacological relevance. We show, using bifurcation analysis, that both axon models display exclusively Type 2 dynamics, independently of ion channel density. Nevertheless, both models have a region in the channel-density plane characterized by an N-shaped steady-state current-voltage relationship (a prerequisite for Type 1 dynamics and associated with this type of dynamics in the hippocampal model. In summary, our results suggest that the hippocampal soma and the two axon membranes represent two distinct kinds of membranes; membranes with a channel-density dependent switching between Type 1 and 2 dynamics, and membranes with a channel-density independent dynamics. The difference between the two membrane types suggests functional differences, compatible with a more flexible role of the soma membrane than that of the axon membrane.

  6. Giant Cell Arteritis

    Science.gov (United States)

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  7. Dynamics of target recognition by interstitial axon branching along developing cortical axons.

    Science.gov (United States)

    Bastmeyer, M; O'Leary, D D

    1996-02-15

    Corticospinal axons innervate their midbrain, hindbrain, and spinal targets by extending collateral branches interstitially along their length. To establish that the axon shaft rather than the axonal growth cone is responsible for target recognition in this system, and to characterize the dynamics of interstitial branch formation, we have studied this process in an in vivo-like setting using slice cultures from neonatal mice containing the entire pathway of corticospinal axons. Corticospinal axons labeled with the dye 1,1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (or Dil) were imaged using time-lapse video microscopy of their pathway overlying the basilar pons, their major hindbrain target. The axon shaft millimeters behind the growth cone exhibits several dynamic behaviors, including the de novo formation of varicosities and filopodia-like extensions, and a behavior that we term "pulsation," which is characterized by a variable thickening and thining of short segments of the axon. An individual axon can have multiple sites of branching activity, with many of the branches being transient. These dynamic behaviors occur along the portion of the axon shaft overlying the basilar pons, but not just caudal to it. Once the collaterals extend into the pontine neuropil, they branch further in the neuropil, while the parent axon becomes quiescent. Thus, the branching activity is spatially restricted to specific portions of the axon, as well as temporally restricted to a relatively brief time window. These findings provide definitive evidence that collateral branches form de novo along corticospinal axons and establish that the process of target recognition in this system is a property of the axon shaft rather than the leading growth cone.

  8. Cargo distributions differentiate pathological axonal transport impairments.

    Science.gov (United States)

    Mitchell, Cassie S; Lee, Robert H

    2012-05-07

    Axonal transport is an essential process in neurons, analogous to shipping goods, by which energetic and cellular building supplies are carried downstream (anterogradely) and wastes are carried upstream (retrogradely) by molecular motors, which act as cargo porters. Impairments in axonal transport have been linked to devastating and often lethal neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis, Huntington's, and Alzheimer's. Axonal transport impairment types include a decrease in available motors for cargo transport (motor depletion), the presence of defective or non-functional motors (motor dilution), and the presence of increased or larger cargos (protein aggregation). An impediment to potential treatment identification has been the inability to determine what type(s) of axonal transport impairment candidates that could be present in a given disease. In this study, we utilize a computational model and common axonal transport experimental metrics to reveal the axonal transport impairment general characteristics or "signatures" that result from three general defect types of motor depletion, motor dilution, and protein aggregation. Our results not only provide a means to discern these general impairments types, they also reveal key dynamic and emergent features of axonal transport, which potentially underlie multiple impairment types. The identified characteristics, as well as the analytical method, can be used to help elucidate the axonal transport impairments observed in experimental and clinical data. For example, using the model-predicted defect signatures, we identify the defect candidates, which are most likely to be responsible for the axonal transport impairments in the G93A SOD1 mouse model of ALS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Drug therapy for chronic idiopathic axonal polyneuropathy

    NARCIS (Netherlands)

    Vrancken, A. F. J. E.; van Schaik, I. N.; Hughes, R. A. C.; Notermans, N. C.

    2004-01-01

    BACKGROUND: Chronic idiopathic axonal polyneuropathy is an insidiously progressive sensory or sensorimotor polyneuropathy that affects elderly people. Although severe disability or handicap does not occur, it reduces quality of life. OBJECTIVES: To assess whether drug therapy for chronic idiopathic

  10. Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins.

    Science.gov (United States)

    Yalçın, Belgin; Zhao, Lu; Stofanko, Martin; O'Sullivan, Niamh C; Kang, Zi Han; Roost, Annika; Thomas, Matthew R; Zaessinger, Sophie; Blard, Olivier; Patto, Alex L; Sohail, Anood; Baena, Valentina; Terasaki, Mark; O'Kane, Cahir J

    2017-07-25

    Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function.

  11. Con-nectin axons and dendrites.

    Science.gov (United States)

    Beaudoin, Gerard M J

    2006-07-03

    Unlike adherens junctions, synapses are asymmetric connections, usually between axons and dendrites, that rely on various cell adhesion molecules for structural stability and function. Two cell types of adhesion molecules found at adherens junctions, cadherins and nectins, are thought to mediate homophilic interaction between neighboring cells. In this issue, Togashi et al. (see p. 141) demonstrate that the differential localization of two heterophilic interacting nectins mediates the selective attraction of axons and dendrites in cooperation with cadherins.

  12. Dynein is the motor for retrograde axonal transport of organelles

    International Nuclear Information System (INIS)

    Schnapp, B.J.; Reese, T.S.

    1989-01-01

    Vesicular organelles in axons of nerve cells are transported along microtubules either toward their plus ends (fast anterograde transport) or toward their minus ends (retrograde transport). Two microtubule-based motors were previously identified by examining plastic beads induced to move along microtubules by cytosol fractions from the squid giant axon: (i) an anterograde motor, kinesin, and (ii) a retrograde motor, which is characterized here. The retrograde motor, a cytosolic protein previously termed HMW1, was purified from optic lobes and extruded axoplasm by nucleotide-dependent microtubule affinity and release; microtubule gliding was used as the assay of motor activity. The following properties of the retrograde motor suggest that it is cytoplasmic dynein: (i) sedimentation at 20-22 S with a heavy chain of Mr greater than 200,000 that coelectrophoreses with the alpha and beta subunits of axonemal dynein, (ii) cleavage by UV irradiation in the presence of ATP and vanadate, and (iii) a molecular structure resembling two-headed dynein from axonemes. Furthermore, bead movement toward the minus end of microtubules was blocked when axoplasmic supernatants were treated with UV/vanadate. Treatment of axoplasmic supernatant with UV/vanadate also blocks the retrograde movement of purified organelles in vitro without changing the number of anterograde moving organelles, indicating that dynein interacts specifically with a subgroup of organelles programmed to move toward the cell body. However, purified optic lobe dynein, like purified kinesin, does not by itself promote the movement of purified organelles along microtubules, suggesting that additional axoplasmic factors are necessary for retrograde as well as anterograde transport

  13. EFA6 regulates selective polarised transport and axon regeneration from the axon initial segment

    Czech Academy of Sciences Publication Activity Database

    Eva, R.; Koseki, H.; Kanamarlapudi, V.; Fawcett, James

    2017-01-01

    Roč. 130, č. 21 (2017), s. 3663-3675 ISSN 0021-9533 Institutional support: RVO:68378041 Keywords : axon regeneration * axon transport * neuronal polarisation Subject RIV: FH - Neurology OBOR OECD: Neuroscience s (including psychophysiology Impact factor: 4.431, year: 2016

  14. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy

    NARCIS (Netherlands)

    Kole, Maarten H. P.; Letzkus, Johannes J.; Stuart, Greg J.

    2007-01-01

    Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action

  15. Whole mount preparation of the adult Drosophila ventral nerve cord for giant fiber dye injection.

    Science.gov (United States)

    Boerner, Jana; Godenschwege, Tanja A

    2011-06-04

    To analyze the axonal and dendritic morphology of neurons, it is essential to obtain accurate labeling of neuronal structures. Preparing well labeled samples with little to no tissue damage enables us to analyze cell morphology and to compare individual samples to each other, hence allowing the identification of mutant anomalies. In the demonstrated dissection method the nervous system remains mostly inside the adult fly. Through a dorsal incision, the abdomen and thorax are opened and most of the internal organs are removed. Only the dorsal side of the ventral nerve cord (VNC) and the cervical connective (CvC) containing the big axons of the giant fibers (GFs) are exposed, while the brain containing the GF cell body and dendrites remains in the intact head. In this preparation most nerves of the VNC should remain attached to their muscles. Following the dissection, the intracellular filling of the giant fiber (GF) with a fluorescent dye is demonstrated. In the CvC the GF axons are located at the dorsal surface and thus can be easily visualized under a microscope with differential interference contrast (DIC) optics. This allows the injection of the GF axons with dye at this site to label the entire GF including the axons and their terminals in the VNC. This method results in reliable and strong staining of the GFs allowing the neurons to be imaged immediately after filling with an epifluorescent microscope. Alternatively, the fluorescent signal can be enhanced using standard immunohistochemistry procedures suitable for high resolution confocal microscopy.

  16. Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis

    Science.gov (United States)

    Zambonin, Jessica L.; Zhao, Chao; Ohno, Nobuhiko; Campbell, Graham R.; Engeham, Sarah; Ziabreva, Iryna; Schwarz, Nadine; Lee, Sok Ee; Frischer, Josa M.; Turnbull, Doug M.; Trapp, Bruce D.; Lassmann, Hans; Franklin, Robin J. M.

    2011-01-01

    Mitochondrial content within axons increases following demyelination in the central nervous system, presumably as a response to the changes in energy needs of axons imposed by redistribution of sodium channels. Myelin sheaths can be restored in demyelinated axons and remyelination in some multiple sclerosis lesions is extensive, while in others it is incomplete or absent. The effects of remyelination on axonal mitochondrial content in multiple sclerosis, particularly whether remyelination completely reverses the mitochondrial changes that follow demyelination, are currently unknown. In this study, we analysed axonal mitochondria within demyelinated, remyelinated and myelinated axons in post-mortem tissue from patients with multiple sclerosis and controls, as well as in experimental models of demyelination and remyelination, in vivo and in vitro. Immunofluorescent labelling of mitochondria (porin, a voltage-dependent anion channel expressed on all mitochondria) and axons (neurofilament), and ultrastructural imaging showed that in both multiple sclerosis and experimental demyelination, mitochondrial content within remyelinated axons was significantly less than in acutely and chronically demyelinated axons but more numerous than in myelinated axons. The greater mitochondrial content within remyelinated, compared with myelinated, axons was due to an increase in density of porin elements whereas increase in size accounted for the change observed in demyelinated axons. The increase in mitochondrial content in remyelinated axons was associated with an increase in mitochondrial respiratory chain complex IV activity. In vitro studies showed a significant increase in the number of stationary mitochondria in remyelinated compared with myelinated and demyelinated axons. The number of mobile mitochondria in remyelinated axons did not significantly differ from myelinated axons, although significantly greater than in demyelinated axons. Our neuropathological data and findings in

  17. Epigenetic regulation of axon and dendrite growth

    Directory of Open Access Journals (Sweden)

    Ephraim F Trakhtenberg

    2012-03-01

    Full Text Available Neuroregenerative therapies for central nervous system (CNS injury, neurodegenerative disease, or stroke require axons of damaged neurons to grow and reinnervate their targets. However, mature mammalian CNS neurons do not regenerate their axons, limiting recovery in these diseases (Yiu and He, 2006. CNS’ regenerative failure may be attributable to the development of an inhibitory CNS environment by glial-associated inhibitory molecules (Yiu and He, 2006, and by various cell-autonomous factors (Sun and He, 2010. Intrinsic axon growth ability also declines developmentally (Li et al., 1995; Goldberg et al., 2002; Bouslama-Oueghlani et al., 2003; Blackmore and Letourneau, 2006 and is dependent on transcription (Moore et al., 2009. Although neurons’ intrinsic capacity for axon growth may depend in part on the panoply of expressed transcription factors (Moore and Goldberg, 2011, epigenetic factors such as the accessibility of DNA and organization of chromatin are required for downstream genes to be transcribed. Thus a potential approach to overcoming regenerative failure focuses on the epigenetic mechanisms regulating regenerative gene expression in the CNS. Here we review molecular mechanisms regulating the epigenetic state of DNA through chromatin modifications, their implications for regulating axon and dendrite growth, and important new directions for this field of study.

  18. Guidance of retinal axons in mammals.

    Science.gov (United States)

    Herrera, Eloísa; Erskine, Lynda; Morenilla-Palao, Cruz

    2017-11-26

    In order to navigate through the surrounding environment many mammals, including humans, primarily rely on vision. The eye, composed of the choroid, sclera, retinal pigmented epithelium, cornea, lens, iris and retina, is the structure that receives the light and converts it into electrical impulses. The retina contains six major types of neurons involving in receiving and modifying visual information and passing it onto higher visual processing centres in the brain. Visual information is relayed to the brain via the axons of retinal ganglion cells (RGCs), a projection known as the optic pathway. The proper formation of this pathway during development is essential for normal vision in the adult individual. Along this pathway there are several points where visual axons face 'choices' in their direction of growth. Understanding how these choices are made has advanced significantly our knowledge of axon guidance mechanisms. Thus, the development of the visual pathway has served as an extremely useful model to reveal general principles of axon pathfinding throughout the nervous system. However, due to its particularities, some cellular and molecular mechanisms are specific for the visual circuit. Here we review both general and specific mechanisms involved in the guidance of mammalian RGC axons when they are traveling from the retina to the brain to establish precise and stereotyped connections that will sustain vision. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Nanodielectrics with giant permittivity

    Indian Academy of Sciences (India)

    Following the prediction, during the last couple of years we have investigated the effect of giant permittivity in one-dimensional systems of conventional metals and conjugated polymer chains. In this article, we have tried to summarize the works on giant permittivity and finally the fabrication of nanocapacitor using metal ...

  20. Creatine pretreatment protects cortical axons from energy depletion in vitro

    Science.gov (United States)

    Shen, Hua; Goldberg, Mark P.

    2012-01-01

    Creatine is a natural nitrogenous guanidino compound involved in bioenergy metabolism. Although creatine has been shown to protect neurons of the central nervous system (CNS) from experimental hypoxia/ischemia, it remains unclear if creatine may also protect CNS axons, and if the potential axonal protection depends on glial cells. To evaluate the direct impact of creatine on CNS axons, cortical axons were cultured in a separate compartment from their somas and proximal neurites using a modified two-compartment culture device. Axons in the axon compartment were subjected to acute energy depletion, an in vitro model of white matter ischemia, by exposure to 6 mM sodium azide for 30 min in the absence of glucose and pyruvate. Energy depletion reduced axonal ATP by 65%, depolarized axonal resting potential, and damaged 75% of axons. Application of creatine (10 mM) to both compartments of the culture at 24 h prior to energy depletion significantly reduced axonal damage by 50%. In line with the role of creatine in the bioenergy metabolism, this application also alleviated the axonal ATP loss and depolarization. Inhibition of axonal depolarization by blocking sodium influx with tetrodotoxin also effectively reduced the axonal damage caused by energy depletion. Further study revealed that the creatine effect was independent of glial cells, as axonal protection was sustained even when creatine was applied only to the axon compartment (free from somas and glial cells) for as little as 2 h. In contrast, application of creatine after energy depletion did not protect axons. The data provide the first evidence that creatine pretreatment may directly protect CNS axons from energy deficiency. PMID:22521466

  1. EFFECT OF DETERGENT ON ELECTRICAL PROPERTIES OF SQUID AXON MEMBRANE.

    Science.gov (United States)

    KISHIMOTO, U; ADELMAN, W J

    1964-05-01

    The effects of detergents on squid giant axon action and resting potentials as well as membrane conductances in the voltage clamp have been studied. Anionic detergents (sodium lauryl sulfate, 0.1 to 1.0 mM; dimethyl benzene sulfonate, 1 to 20 mM, pH 7.6) cause a temporary increase and a later decrease of action potential height and the value of the resting potential. Cationic detergent (cetyl trimethyl ammonium chloride, 6 x 10(-5)M or more, pH 7.6) generally brings about immediate and irreversible decreases in the action and resting potentials. Non-ionic detergent (tween 80, 0.1 M, pH 7.6) causes a slight reversible reduction of action potential height without affecting the value of the resting potential. Both anionic and cationic detergents generally decrease the sodium and potassium conductances irreversibly. The effect of non-ionic detergent is to decrease the sodium conductance reversibly, leaving the potassium conductance almost unchanged.

  2. [Severe, subacute axonal polyneuropathy due to hypophosphatemia].

    NARCIS (Netherlands)

    Eijk, J.J.J. van; Abdo, W.F.; Deurwaarder, E. den; Zwarts, M.J.; Warrenburg, B.P.C. van de

    2010-01-01

    A 46-year-old man receiving tube feeding because of anorexia and weight loss developed progressive neurological symptoms initially resembling Guillain-Barre syndrome. Eventually axonal neuropathy due to severe hypophosphatemia was diagnosed. Hypophosphatemia can be caused by the so-called refeeding

  3. Macrophages Promote Axon Regeneration with Concurrent Neurotoxicity

    NARCIS (Netherlands)

    Gensel, J.C.; Nakamura, S.; Guan, Z.; Rooijen, van N.; Ankeny, D.P.; Popovich, P.G.

    2009-01-01

    Activated macrophages can promote regeneration of CNS axons. However, macrophages also release factors that kill neurons. These opposing functions are likely induced simultaneously but are rarely considered together in the same experimental preparation. A goal of this study was to unequivocally

  4. Drug therapy for chronic idiopathic axonal polyneuropathy

    NARCIS (Netherlands)

    Warendorf, Janna; Vrancken, Alexander F.J.E.; van Schaik, Ivo N.; Hughes, Richard A.C.; Notermans, Nicolette C.

    2017-01-01

    Background: Chronic idiopathic axonal polyneuropathy (CIAP) is an insidiously progressive sensory or sensorimotor polyneuropathy that affects elderly people. Although severe disability or handicap does not occur, CIAP reduces quality of life. CIAP is diagnosed in 10% to 25% of people referred for

  5. Drug therapy for chronic idiopathic axonal polyneuropathy

    NARCIS (Netherlands)

    Warendorf, Janna; Vrancken, Alexander F. J. E.; van Schaik, Ivo N.; Hughes, Richard A. C.; Notermans, Nicolette C.

    2017-01-01

    Chronic idiopathic axonal polyneuropathy (CIAP) is an insidiously progressive sensory or sensorimotor polyneuropathy that affects elderly people. Although severe disability or handicap does not occur, CIAP reduces quality of life. CIAP is diagnosed in 10% to 25% of people referred for evaluation of

  6. Evidence that glutamate mediates axon-to-Schwann cell signaling in the squid.

    Science.gov (United States)

    Lieberman, E M; Abbott, N J; Hassan, S

    1989-01-01

    High-frequency stimulation (100 Hz) of isolated giant axons of the small squid Alloteuthis subulata and the large squid Loligo forbesi caused the periaxonal Schwann cell resting potential (Em = -40 mV) to hyperpolarize up to 11 mV in direct proportion to train duration and action potential amplitude. In both species, the Schwann cell also hyperpolarized up to 17 mV with the application of L-glutamate (10(-9) to 10(-6) M), in a dose-dependent manner. By contrast, in the presence of 10(-8) M d-tubocurarine (d-TC) to block the cholinergic component of the Schwann cell response, Schwann cells depolarized 8-9 mV during electrical stimulation of the axon or application of L-glutamate. In the presence of 10(-5) M 2-amino-4-phosphonobutyrate (2-APB), the hyperpolarization to glutamate and to axon stimulation was blocked, whereas the cholinergic (carbachol-induced) hyperpolarization was unaffected. In experiments with Alloteuthis, L-aspartate (10(-7) M) also caused a Schwann cell hyperpolarization, but this was not blocked by 2-APB. In tests with glutamate receptor agonists and antagonists, quisqualate (10(-5) M) produced a hyperpolarization blocked by 10(-4) M L-glutamic acid diethylester (GDEE), which also blocked the response to axonal stimulation. Kainic acid (10(-4) M) also caused a hyperpolarization, but n-methyl-D-aspartate (NMDA; 10(-4) M), ibotenate (10(-5) M), alpha-amino-3-hydroxy-5-methyl-isoxazole proprionate (AMPA; (10(-4) M), and isethionate (10(-5) M) had no effect.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Lipase polystyrene giant amphiphiles.

    Science.gov (United States)

    Velonia, Kelly; Rowan, Alan E; Nolte, Roeland J M

    2002-04-24

    A new type of giant amphiphilic molecule has been synthesized by covalently connecting a lipase enzyme headgroup to a maleimide-functionalized polystyrene tail (40 repeat units). The resulting biohybrid forms catalytic micellar rods in water.

  8. Metaphyseal giant cell tumor

    International Nuclear Information System (INIS)

    Pereira, L.F.; Hemais, P.M.P.G.; Aymore, I.L.; Carmo, M.C.R. do; Cunha, M.E.P.R. da; Resende, C.M.C.

    1986-01-01

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed. (Author) [pt

  9. Giant CP stars

    International Nuclear Information System (INIS)

    Loden, L.O.; Sundman, A.

    1989-01-01

    This study is part of an investigation of the possibility of using chemically peculiar (CP) stars to map local galactic structure. Correct luminosities of these stars are therefore crucial. CP stars are generally regarded as main-sequence or near-main-sequence objects. However, some CP stars have been classified as giants. A selection of stars, classified in literature as CP giants, are compared to normal stars in the same effective temperature interval and to ordinary 'non giant' CP stars. There is no clear confirmation of a higher luminosity for 'CP giants', than for CP stars in general. In addition, CP characteristics seem to be individual properties not repeated in a component star or other cluster members. (author). 50 refs., 5 tabs., 3 figs

  10. Two Modes of the Axonal Interferon Response Limit Alphaherpesvirus Neuroinvasion

    Directory of Open Access Journals (Sweden)

    Ren Song

    2016-02-01

    Full Text Available Infection by alphaherpesviruses, including herpes simplex virus (HSV and pseudorabies virus (PRV, typically begins at epithelial surfaces and continues into the peripheral nervous system (PNS. Inflammatory responses are induced at the infected peripheral site prior to invasion of the PNS. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which includes the interferons (IFNs. The fundamental question is how do PNS cell bodies respond to these distant, potentially damaging events experienced by axons. Using compartmented cultures that physically separate neuron axons from cell bodies, we found that pretreating isolated axons with beta interferon (IFN-β or gamma interferon (IFN-γ significantly diminished the number of herpes simplex virus 1 (HSV-1 and PRV particles moving in axons toward the cell bodies in a receptor-dependent manner. Exposing axons to IFN-β induced STAT1 phosphorylation (p-STAT1 only in axons, while exposure of axons to IFN-γ induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated antiviral effects induced by IFN-γ, but not those induced by IFN-β. Proteomic analysis of IFN-β- or IFN-γ-treated axons identified several differentially regulated proteins. Therefore, unlike treatment with IFN-γ, IFN-β induces a noncanonical, local antiviral response in axons. The activation of a local IFN response in axons represents a new paradigm for cytokine control of neuroinvasion.

  11. Axon degeneration: make the Schwann cell great again

    Directory of Open Access Journals (Sweden)

    Keit Men Wong

    2017-01-01

    Full Text Available Axonal degeneration is a pivotal feature of many neurodegenerative conditions and substantially accounts for neurological morbidity. A widely used experimental model to study the mechanisms of axonal degeneration is Wallerian degeneration (WD, which occurs after acute axonal injury. In the peripheral nervous system (PNS, WD is characterized by swift dismantling and clearance of injured axons with their myelin sheaths. This is a prerequisite for successful axonal regeneration. In the central nervous system (CNS, WD is much slower, which significantly contributes to failed axonal regeneration. Although it is well-documented that Schwann cells (SCs have a critical role in the regenerative potential of the PNS, to date we have only scarce knowledge as to how SCs 'sense' axonal injury and immediately respond to it. In this regard, it remains unknown as to whether SCs play the role of a passive bystander or an active director during the execution of the highly orchestrated disintegration program of axons. Older reports, together with more recent studies, suggest that SCs mount dynamic injury responses minutes after axonal injury, long before axonal breakdown occurs. The swift SC response to axonal injury could play either a pro-degenerative role, or alternatively a supportive role, to the integrity of distressed axons that have not yet committed to degenerate. Indeed, supporting the latter concept, recent findings in a chronic PNS neurodegeneration model indicate that deactivation of a key molecule promoting SC injury responses exacerbates axonal loss. If this holds true in a broader spectrum of conditions, it may provide the grounds for the development of new glia-centric therapeutic approaches to counteract axonal loss.

  12. Axonal excitability properties in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Vucic, Steve; Kiernan, Matthew C

    2006-07-01

    To investigate axolemmal ion channel function in patients diagnosed with sporadic amyotrophic lateral sclerosis (ALS). A recently described threshold tracking protocol was implemented to measure multiple indices of axonal excitability in 26 ALS patients by stimulating the median motor nerve at the wrist. The excitability indices studied included: stimulus-response curve (SR); strength-duration time constant (tauSD); current/threshold relationship; threshold electrotonus to a 100 ms polarizing current; and recovery curves to a supramaximal stimulus. Compound muscle action potential (CMAP) amplitudes were significantly reduced in ALS patients (ALS, 2.84+/-1.17 mV; controls, 8.27+/-1.09 mV, P<0.0005) and the SR curves for both 0.2 and 1 ms pulse widths were shifted in a hyperpolarized direction. Threshold electrotonus revealed a greater threshold change to both depolarizing and hyperpolarizing conditioning stimuli, similar to the 'fanned out' appearance that occurs with membrane hyperpolarization. The tauSD was significantly increased in ALS patients (ALS, 0.50+/-0.03 ms; controls, 0.42+/-0.02 ms, P<0.05). The recovery cycle of excitability following a conditioning supramaximal stimulus revealed increased superexcitability in ALS patients (ALS, 29.63+/-1.25%; controls, 25.11+/-1.01%, P<0.01). Threshold tracking studies revealed changes indicative of widespread dysfunction in axonal ion channel conduction, including increased persistent Na+ channel conduction, and abnormalities of fast paranodal K+ and internodal slow K+ channel function, in ALS patients. An increase in persistent Na+ conductances coupled with reduction in K+ currents would predispose axons of ALS patients to generation of fasciculations and cramps. Axonal excitability studies may provide insight into mechanisms responsible for motor neuron loss in ALS.

  13. Synaptic Democracy and Vesicular Transport in Axons

    Science.gov (United States)

    Bressloff, Paul C.; Levien, Ethan

    2015-04-01

    Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".

  14. Retinoic acid signaling in axonal regeneration

    Directory of Open Access Journals (Sweden)

    Radhika ePuttagunta

    2012-01-01

    Full Text Available Following an acute central nervous system injury, axonal regeneration and functional recovery are extremely limited. This is due to an extrinsic inhibitory growth environment and the lack of intrinsic growth competence. Retinoic acid (RA signaling, essential in developmental dorsoventral patterning and specification of spinal motor neurons, has been shown through its receptor, the transcription factor RA receptor β2 (RARß2, to induce axonal regeneration following spinal cord injury (SCI. Recently, it has been shown that in dorsal root ganglia neurons, cAMP levels were greatly increased by lentiviral RARβ2 expression and contributed to neurite outgrowth. Moreover, RARβ agonists, in cerebellar granule neurons and in the brain in vivo, induced phosphoinositide 3-kinase dependent phosphorylation of AKT that was involved in RARβ-dependent neurite outgrowth. More recently, RA-RARß pathways were shown to directly transcriptionally repress a member of the inhibitory Nogo receptor complex, Lingo-1, under an axonal growth inhibitory environment in vitro as well as following spinal injury in vivo. This perspective focuses on these newly discovered molecular mechanisms and future directions in the field.

  15. Dependence of regenerated sensory axons on continuous neurotrophin-3 delivery.

    Science.gov (United States)

    Hou, Shaoping; Nicholson, LaShae; van Niekerk, Erna; Motsch, Melanie; Blesch, Armin

    2012-09-19

    Previous studies have shown that injured dorsal column sensory axons extend across a spinal cord lesion site if axons are guided by a gradient of neurotrophin-3 (NT-3) rostral to the lesion. Here we examined whether continuous NT-3 delivery is necessary to sustain regenerated axons in the injured spinal cord. Using tetracycline-regulated (tet-off) lentiviral gene delivery, NT-3 expression was tightly controlled by doxycycline administration. To examine axon growth responses to regulated NT-3 expression, adult rats underwent a C3 dorsal funiculus lesion. The lesion site was filled with bone marrow stromal cells, tet-off-NT-3 virus was injected rostral to the lesion site, and the intrinsic growth capacity of sensory neurons was activated by a conditioning lesion. When NT-3 gene expression was turned on, cholera toxin β-subunit-labeled sensory axons regenerated into and beyond the lesion/graft site. Surprisingly, the number of regenerated axons significantly declined when NT-3 expression was turned off, whereas continued NT-3 expression sustained regenerated axons. Quantification of axon numbers beyond the lesion demonstrated a significant decline of axon growth in animals with transient NT-3 expression, only some axons that had regenerated over longer distance were sustained. Regenerated axons were located in white matter and did not form axodendritic synapses but expressed presynaptic markers when closely associated with NG2-labeled cells. A decline in axon density was also observed within cellular grafts after NT-3 expression was turned off possibly via reduction in L1 and laminin expression in Schwann cells. Thus, multiple mechanisms underlie the inability of transient NT-3 expression to fully sustain regenerated sensory axons.

  16. Formation of longitudinal axon pathways in Caenorhabditis elegans.

    Science.gov (United States)

    Hutter, Harald

    2017-11-18

    The small number of neurons and the simple architecture of the Caenorhabditis elegans (C. elegans) nervous system enables researchers to study axonal pathfinding at the level of individually identified axons. Axons in C. elegans extend predominantly along one of the two major body axes, the anterior-posterior axis and the dorso-ventral axis. This review will focus on axon navigation along the anterior-posterior axis, leading to the establishment of the longitudinal axon tracts, with a focus on the largest longitudinal axon tract, the ventral nerve cord (VNC). In the VNC, axons grow out in a stereotypic order, with early outgrowing axons (pioneers) playing an important role in guiding later outgrowing (follower) axons. Genetic screens have identified a number of genes specifically affecting the formation of longitudinal axon tracts. These genes include secreted proteins, putative receptors and adhesion molecules, as well as intracellular proteins regulating the cell's response to guidance cues. In contrast to dorso-ventral navigation, no major general guidance cues required for the establishment of longitudinal pathways have been identified so far. The limited penetrance of defects found in many mutants affecting longitudinal navigation suggests that guidance cues act redundantly in this process. The majority of the axon guidance genes identified in C. elegans are evolutionary conserved, i.e. have homologs in other animals, including vertebrates. For a number of these genes, a role in axon guidance has not been described outside C. elegans. Taken together, studies in C. elegans contribute to a fundamental understanding of the molecular basis of axonal navigation that can be extended to other animals, including vertebrates and probably humans as well. Copyright © 2017. Published by Elsevier Ltd.

  17. Giant nuclear resonances

    International Nuclear Information System (INIS)

    Snover, K.A.

    1989-01-01

    Giant nuclear resonances are elementary mods of oscillation of the whole nucleus, closely related to the normal modes of oscillation of coupled mechanical systems. They occur systematically in most if not all nuclei, with oscillation energies typically in the range 10-30 MeV. One of the best - known examples is the giant electric dipole (El) resonance, in which all the protons and all the neutrons oscillate with opposite phase, producing a large time - varying electric dipole moment which acts as an effective antenna for radiating gamma ray. This paper discusses this mode as well as quadrupole and monopole modes

  18. Can injured adult CNS axons regenerate by recapitulating development?

    Science.gov (United States)

    Hilton, Brett J; Bradke, Frank

    2017-10-01

    In the adult mammalian central nervous system (CNS), neurons typically fail to regenerate their axons after injury. During development, by contrast, neurons extend axons effectively. A variety of intracellular mechanisms mediate this difference, including changes in gene expression, the ability to form a growth cone, differences in mitochondrial function/axonal transport and the efficacy of synaptic transmission. In turn, these intracellular processes are linked to extracellular differences between the developing and adult CNS. During development, the extracellular environment directs axon growth and circuit formation. In adulthood, by contrast, extracellular factors, such as myelin and the extracellular matrix, restrict axon growth. Here, we discuss whether the reactivation of developmental processes can elicit axon regeneration in the injured CNS. © 2017. Published by The Company of Biologists Ltd.

  19. Schwann Cell Glycogen Selectively Supports Myelinated Axon Function

    Science.gov (United States)

    Brown, Angus M; Evans, Richard D; Black, Joel; Ransom, Bruce R

    2012-01-01

    Objectives Interruption of energy supply to peripheral axons is a cause of axon loss. We determined if glycogen was present in mammalian peripheral nerve, and if it supported axon conduction during aglycemia. Methods We used biochemical assay and electron microscopy to determine the presence of glycogen, and electrophysiology to monitor axon function. Results Glycogen was present in sciatic nerve, its concentration varying directly with ambient [glucose]. Electron microscopy detected glycogen granules primarily in myelinating Schwann cell cytoplasm and these diminished after exposure to aglycemia. During aglycemia, conduction failure in large myelinated axons (A fibers) mirrored the time-course of glycogen loss. Latency to CAP failure was directly related to nerve glycogen content at aglycemia onset. Glycogen did not benefit the function of slow-conducting, small diameter unmyelinated axons (C fibers) during aglycemia. Blocking glycogen breakdown pharmacologically accelerated CAP failure during aglycemia in A fibers, but not in C fibers. Lactate was as effective as glucose in supporting sciatic nerve function, and was continuously released into the extracellular space in the presence of glucose and fell rapidly during aglycemia. Interpretation Our findings indicated that glycogen is present in peripheral nerve, primarily in myelinating Schwann cells, and exclusively supports large diameter, myelinated axon conduction during aglycemia. Available evidence suggests that peripheral nerve glycogen breaks down during aglycemia and is passed, probably as lactate, to myelinated axons to support function. Unmyelinated axons are not protected by glycogen and are more vulnerable to dysfunction during periods of hypoglycemia. PMID:23034913

  20. Axonal regeneration and development of de novo axons from distal dendrites of adult feline commissural interneurons after a proximal axotomy

    DEFF Research Database (Denmark)

    Fenrich, Keith K; Skelton, Nicole; MacDermid, Victoria E

    2007-01-01

    Following proximal axotomy, several types of neurons sprout de novo axons from distal dendrites. These processes may represent a means of forming new circuits following spinal cord injury. However, it is not know whether mammalian spinal interneurons, axotomized as a result of a spinal cord injury......, develop de novo axons. Our goal was to determine whether spinal commissural interneurons (CINs), axotomized by 3-4-mm midsagittal transection at C3, form de novo axons from distal dendrites. All experiments were performed on adult cats. CINs in C3 were stained with extracellular injections of Neurobiotin...... at 4-5 weeks post injury. The somata of axotomized CINs were identified by the presence of immunoreactivity for the axonal growth-associated protein-43 (GAP-43). Nearly half of the CINs had de novo axons that emerged from distal dendrites. These axons lacked immunoreactivity for the dendritic protein...

  1. Giant Congenital Melanocytic Nevus

    DEFF Research Database (Denmark)

    Rasmussen, Bo Sonnich; Henriksen, Trine Foged; Kølle, Stig-Frederik Trojahn

    2015-01-01

    Giant congenital melanocytic nevi (GCMN) occur in 1:20,000 livebirths and are associated with increased risk of malignant transformation. The treatment of GCMN from 1981 to 2010 in a tertiary referral center was reviewed evaluating the modalities used, cosmetic results, associated complications...

  2. Waking the Sleeping Giant

    NARCIS (Netherlands)

    Ollenburger, Mary H.; Descheemaeker, Katrien; Crane, Todd A.; Sanogo, Ousmane M.; Giller, Ken E.

    2016-01-01

    The World Bank argued that West Africa's Guinea Savannah zone forms part of “Africa's Sleeping Giant,” where increases in agricultural production could be an engine of economic growth, through expansion of cultivated land in sparsely populated areas. The district of Bougouni, in southern Mali,

  3. Isotopic effect giant resonances

    International Nuclear Information System (INIS)

    Buenerd, M.; Lebrun, D.; Martin, P.; Perrin, G.; Saintignon, P. de; Chauvin, J.; Duhamel, G.

    1981-10-01

    The systematics of the excitation energy of the giant dipole, monopole, and quadrupole resonances are shown to exhibit an isotopic effect. For a given element, the excitation energy of the transition decreases faster with the increasing neutron number than the empirical laws fitting the overall data. This effect is discussed in terms of the available models

  4. from the Giant Panda

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... 1College of Life Science, China West Normal University, 44# Yuying Road, 637002, Nanchong, China. 2Zhan Jiang educational ... in Escherichia coli and the RPS28 protein fusioned with the N-terminally GST -tagged protein gave rise ... long Conservation Center of the Giant Panda, Sichuan, China. The.

  5. Giant scrotal elephantiasis.

    Science.gov (United States)

    Kuepper, Daniel

    2005-02-01

    How much can a man carry? Penoscrotal elephantiasis is a debilitating syndrome. This is a case report of a patient with giant genital elephantiasis secondary to long-standing lymphogranuloma venereum infection in Ethiopia. Complete surgical resection of the pathologic tissue and penile reconstruction was undertaken with good cosmetic and functional results.

  6. Giant vesical calculus

    African Journals Online (AJOL)

    Giant vesical calculus. A case report. H. H. LAUBSCHER. Summary. An exceptional case of bladder stone is presented. The case is unusual as regards the size of the stone and the fact that the patient did··not seek medical assistance much earlier, as this was readily avail- able. Furthermore, recovery after removal of the.

  7. Juvenile giant fibroadenoma

    Directory of Open Access Journals (Sweden)

    Vipul Yagnik

    2011-07-01

    Full Text Available Fibroadenomas are benign solid tumor associated with aberration of normal lobular development. Juvenile giant fibroadenoma is usually single and >5 cm in size /or >500 gms in weight. Important differential diagnoses are: phyllodes tumor and juvenile gigantomastia. Simple excision is the treatment of choice.

  8. Giant abdominal cystic lymphangioma

    International Nuclear Information System (INIS)

    Vazquez, V.; Florencio, I.; Boluda, F.

    1996-01-01

    We present a case of giant abdominal cystic lymphangioma in a 10-year-old boy. Despite numerous consultations with physicians to identify the underlying problem, it had originally been attributed to ascites of unknown cause. We review the characteristics of this lesion and the diagnostic features that aid in differentiating it from ascites

  9. Giant peritoneal loose bodies

    African Journals Online (AJOL)

    2015-03-27

    Mar 27, 2015 ... not be familiar with the entity, can potentially be confused with malignant or parasitic lesions. Familiarity with their characteristic computed tomographic ... preventing unnecessary surgical intervention in an asymptomatic patient.3,4 It is important to differentiate giant peritoneal loose bodies from lesions such ...

  10. Cannabinoid receptor CB2 modulates axon guidance

    DEFF Research Database (Denmark)

    Duff, Gabriel; Argaw, Anteneh; Cecyre, Bruno

    2013-01-01

    on axon guidance. These effects are specific to CB2R since no changes were observed in mice where the gene coding for this receptor was altered (cnr2 (-/-)). The CB2R induced morphological changes observed at the growth cone are PKA dependent and require the presence of the netrin-1 receptor, Deleted...... CB2R's implication in retinothalamic development. Overall, this study demonstrates that the contribution of endocannabinoids to brain development is not solely mediated by CB1R, but also involves CB2R....

  11. Death Receptor 6 Promotes Wallerian Degeneration in Peripheral Axons.

    Science.gov (United States)

    Gamage, Kanchana K; Cheng, Irene; Park, Rachel E; Karim, Mardeen S; Edamura, Kazusa; Hughes, Christopher; Spano, Anthony J; Erisir, Alev; Deppmann, Christopher D

    2017-03-20

    Axon degeneration during development is required to sculpt a functional nervous system and is also a hallmark of pathological insult, such as injury [1, 2]. Despite similar morphological characteristics, very little overlap in molecular mechanisms has been reported between pathological and developmental degeneration [3-5]. In the peripheral nervous system (PNS), developmental axon pruning relies on receptor-mediated extrinsic degeneration mechanisms to determine which axons are maintained or degenerated [5-7]. Receptors have not been implicated in Wallerian axon degeneration; instead, axon autonomous, intrinsic mechanisms are thought to be the primary driver for this type of axon disintegration [8-10]. Here we survey the role of neuronally expressed, paralogous tumor necrosis factor receptor super family (TNFRSF) members in Wallerian degeneration. We find that an orphan receptor, death receptor 6 (DR6), is required to drive axon degeneration after axotomy in sympathetic and sensory neurons cultured in microfluidic devices. We sought to validate these in vitro findings in vivo using a transected sciatic nerve model. Consistent with the in vitro findings, DR6 -/- animals displayed preserved axons up to 4 weeks after injury. In contrast to phenotypes observed in Wld s and Sarm1 -/- mice, preserved axons in DR6 -/- animals display profound myelin remodeling. This indicates that deterioration of axons and myelin after axotomy are mechanistically distinct processes. Finally, we find that JNK signaling after injury requires DR6, suggesting a link between this novel extrinsic pathway and the axon autonomous, intrinsic pathways that have become established for Wallerian degeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Axon guidance molecules in vascular patterning.

    Science.gov (United States)

    Adams, Ralf H; Eichmann, Anne

    2010-05-01

    Endothelial cells (ECs) form extensive, highly branched and hierarchically organized tubular networks in vertebrates to ensure the proper distribution of molecular and cellular cargo in the vertebrate body. The growth of this vascular system during development, tissue repair or in disease conditions involves the sprouting, migration and proliferation of endothelial cells in a process termed angiogenesis. Surprisingly, specialized ECs, so-called tip cells, which lead and guide endothelial sprouts, share many feature with another guidance structure, the axonal growth cone. Tip cells are motile, invasive and extend numerous filopodial protrusions sensing growth factors, extracellular matrix and other attractive or repulsive cues in their tissue environment. Axonal growth cones and endothelial tip cells also respond to signals belonging to the same molecular families, such as Slits and Roundabouts, Netrins and UNC5 receptors, Semaphorins, Plexins and Neuropilins, and Eph receptors and ephrin ligands. Here we summarize fundamental principles of angiogenic growth, the selection and function of tip cells and the underlying regulation by guidance cues, the Notch pathway and vascular endothelial growth factor signaling.

  13. Parallel simulation of axon growth in the nervous system

    NARCIS (Netherlands)

    J. Wensch; B.P. Sommeijer (Ben)

    2002-01-01

    textabstractIn this paper we discuss a model from neurobiology, which describes theoutgrowth of axons from neurons in the nervous system. The model combines ordinary differential equations, defining the movement of the axons, with parabolic partial differential equations. The parabolic equations

  14. A dam for retrograde axonal degeneration in multiple sclerosis?

    NARCIS (Netherlands)

    Balk, L.J.; Twisk, J.W.R.; Steenwijk, M.D.; Daams, M.; Tewarie, P.; Killestein, J.; Uitdehaag, B.M.J.; Polman, C.H.; Petzold, A.F.S.

    2014-01-01

    Objective: Trans-synaptic axonal degeneration is a mechanism by which neurodegeneration can spread from a sick to a healthy neuron in the central nervous system. This study investigated to what extent trans-synaptic axonal degeneration takes place within the visual pathway in multiple sclerosis

  15. Is action potential threshold lowest in the axon?

    NARCIS (Netherlands)

    Kole, Maarten H. P.; Stuart, Greg J.

    2008-01-01

    Action potential threshold is thought to be lowest in the axon, but when measured using conventional techniques, we found that action potential voltage threshold of rat cortical pyramidal neurons was higher in the axon than at other neuronal locations. In contrast, both current threshold and voltage

  16. SnoN facilitates axonal regeneration after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Jiun L Do

    Full Text Available Adult CNS neurons exhibit a reduced capacity for growth compared to developing neurons, due in part to downregulation of growth-associated genes as development is completed. We tested the hypothesis that SnoN, an embryonically regulated transcription factor that specifies growth of the axonal compartment, can enhance growth in injured adult neurons. In vitro, SnoN overexpression in dissociated adult DRG neuronal cultures significantly enhanced neurite outgrowth. Moreover, TGF-β1, a negative regulator of SnoN, inhibited neurite outgrowth, and SnoN over-expression overcame this inhibition. We then examined whether SnoN influenced axonal regeneration in vivo: indeed, expression of a mutant form of SnoN resistant to degradation significantly enhanced axonal regeneration following cervical spinal cord injury, despite peri-lesional upregulation of TGF-β1. Thus, a developmental mechanism that specifies extension of the axonal compartment also promotes axonal regeneration after adult CNS injury.

  17. Internodal function in normal and regenerated mammalian axons

    DEFF Research Database (Denmark)

    Moldovan, M; Krarup, C

    2007-01-01

    AIM: Following Wallerian degeneration, peripheral myelinated axons have the ability to regenerate and, given a proper pathway, establish functional connections with targets. In spite of this capacity, the clinical outcome of nerve regeneration remains unsatisfactory. Early studies have found...... that regenerated internodes remain persistently short though this abnormality did not seem to influence recovery in conduction. It remains unclear to which extent abnormalities in axonal function itself may contribute to the poor outcome of nerve regeneration. METHODS: We review experimental evidence indicating...... that internodes play an active role in axonal function. RESULTS: By investigating internodal contribution to axonal excitability we have found evidence that axonal function may be permanently compromised in regenerated nerves. Furthermore, we illustrate that internodal function is also abnormal in regenerated...

  18. Motor Axonal Regeneration After Partial and Complete Spinal Cord Transection

    Science.gov (United States)

    Lu, Paul; Blesch, Armin; Graham, Lori; Wang, Yaozhi; Samara, Ramsey; Banos, Karla; Haringer, Verena; Havton, Leif; Weishaupt, Nina; Bennett, David; Fouad, Karim; Tuszynski, Mark H.

    2012-01-01

    We subjected rats to either partial mid-cervical or complete upper thoracic spinal cord transections and examined whether combinatorial treatments support motor axonal regeneration into and beyond the lesion. Subjects received cAMP injections into brainstem reticular motor neurons to stimulate their endogenous growth state, bone marrow stromal cell grafts in lesion sites to provide permissive matrices for axonal growth, and brain-derived neurotrophic factor (BDNF) gradients beyond the lesion to stimulate distal growth of motor axons. Findings were compared to several control groups. Combinatorial treatment generated motor axon regeneration beyond both C5 hemisection and complete transection sites. Yet despite formation of synapses with neurons below the lesion, motor outcomes worsened after partial cervical lesions and spasticity worsened after complete transection. These findings highlight the complexity of spinal cord repair, and the need for additional control and shaping of axonal regeneration. PMID:22699902

  19. Axon diameter mapping in crossing fibers with diffusion MRI

    DEFF Research Database (Denmark)

    Zhang, Hui; Dyrby, Tim B; Alexander, Daniel C

    2011-01-01

    This paper proposes a technique for a previously unaddressed problem, namely, mapping axon diameter in crossing fiber regions, using diffusion MRI. Direct measurement of tissue microstructure of this kind using diffusion MRI offers a new class of biomarkers that give more specific information about...... tissue than measures derived from diffusion tensor imaging. Most existing techniques for axon diameter mapping assume a single axon orientation in the tissue model, which limits their application to only the most coherently oriented brain white matter, such as the corpus callosum, where the single...... model to enable axon diameter mapping in voxels with crossing fibers. We show in simulation that the technique can provide robust axon diameter estimates in a two-fiber crossing with the crossing angle as small as 45 degrees. Using ex vivo imaging data, we further demonstrate the feasibility...

  20. Giant cystic craniopharyngiomas

    International Nuclear Information System (INIS)

    Young, S.C.; Zimmerman, R.A.; Nowell, M.A.; Bilaniuk, L.T.; Hackney, D.B.; Grossman, R.I.; Goldberg, H.I.

    1987-01-01

    Three cases of giant cystic craniopharyngiomas with large areas of extension beyond the suprasellar area are presented. The magnetic resonance (MR) appearance in one case is described. These giant tumors had large, multilobulated cysts that comprised the bulk of the tumors. In one case, there was an unusual extension of the large tumor cyst into the lateral ventricle. In two cases, the tumors extended to the level of the foramen magnum. On CT, the cyst contents of these two tumors were hyperdense and became hypodense postoperatively. All three tumors harbored calcifications in the form of clumps in the suprasellar region and rim calcifications around the cysts. None of the tumors exhibited contrast enhancement. A literature review of the radiographic features of craniopharyngiomas is discussed. (orig.)

  1. Giant duodenal ulcers

    Institute of Scientific and Technical Information of China (English)

    Eric Benjamin Newton; Mark R Versland; Thomas E Sepe

    2008-01-01

    Giant duodenal ulcers (GDUs) are a subset of duodenal ulcers that have historically resulted in greater morbidity than usual duodenal ulcers. Until recently,few cases had been successfully treated with medical therapy. However, the widespread use of endoscopy,the introduction of H-2 receptor blockers and proton pump inhibitors, and the improvement in surgical techniques all have revolutionized the diagnosis,treatment and outcome of this condition. Nevertheless,GDUs are still associated with high rates of morbidity,mortality and complications. Thus, surgical evaluation of a patient with a GDU should remain an integral part of patient care. These giant variants, while usually benign, can frequently harbor malignancy. A careful review of the literature highlights the important differences when comparing GDUs to classical peptic ulcers and why they must be thought of differently than their more common counterpart.

  2. Multispin giant magnons

    International Nuclear Information System (INIS)

    Bobev, N. P.; Rashkov, R. C.

    2006-01-01

    We investigate giant magnons from classical rotating strings in two different backgrounds. First we generalize the solution of Hofman and Maldacena and investigate new magnon excitations of a spin chain which are dual to a string on RxS 5 with two nonvanishing angular momenta. Allowing string dynamics along the third angle in the five sphere, we find a dispersion relation that reproduces the Hofman and Maldacena one and the one found by Dorey for the two spin case. In the second part of the paper we generalize the two 'spin' giant magnon to the case of β-deformed AdS 5 xS 5 background. We find agreement between the dispersion relation of the rotating string and the proposed dispersion relation of the magnon bound state on the spin chain

  3. Red giants seismology

    Science.gov (United States)

    Mosser, B.; Samadi, R.; Belkacem, K.

    2013-11-01

    The space-borne missions CoRoT and Kepler are indiscreet. With their asteroseismic programs, they tell us what is hidden deep inside the stars. Waves excited just below the stellar surface travel throughout the stellar interior and unveil many secrets: how old is the star, how big, how massive, how fast (or slow) its core is dancing. This paper intends to paparazze the red giants according to the seismic pictures we have from their interiors.

  4. Giant Otters in Peru

    OpenAIRE

    Schenk C.; Staib E.

    1992-01-01

    We are in the second year of fieldwork surveying for Giant Otters in the southeastern rainforest of Peru, in three areas with differing levels of legal protection. While there is some illegal hunting still happening outside the protected areas, the main threat to the otters is badly-conducted tourism. Well-organised tourism can be a promising argument for establishing protected areas like national parks.

  5. Intraoral giant condyloma acuminatum

    Directory of Open Access Journals (Sweden)

    Gupta R

    2001-09-01

    Full Text Available A case of intraoral giant condyloma acuminatum is reported in a 50- year- old Indian. He did not respond to topical application of podophyllin 20% but responded partially to electric cauterisation. Surgical excision was done to get rid of the warty growh completely. Since there were no skin or genital lesions and no history of marital or extramarital sexual contact the lesion was probably acquired from environmental sources. Nonsexual transmission should be considered especially when the lesions are extragenital.

  6. Axonal loss in the multiple sclerosis spinal cord revisited.

    Science.gov (United States)

    Petrova, Natalia; Carassiti, Daniele; Altmann, Daniel R; Baker, David; Schmierer, Klaus

    2018-05-01

    Preventing chronic disease deterioration is an unmet need in people with multiple sclerosis, where axonal loss is considered a key substrate of disability. Clinically, chronic multiple sclerosis often presents as progressive myelopathy. Spinal cord cross-sectional area (CSA) assessed using MRI predicts increasing disability and has, by inference, been proposed as an indirect index of axonal degeneration. However, the association between CSA and axonal loss, and their correlation with demyelination, have never been systematically investigated using human post mortem tissue. We extensively sampled spinal cords of seven women and six men with multiple sclerosis (mean disease duration= 29 years) and five healthy controls to quantify axonal density and its association with demyelination and CSA. 396 tissue blocks were embedded in paraffin and immuno-stained for myelin basic protein and phosphorylated neurofilaments. Measurements included total CSA, areas of (i) lateral cortico-spinal tracts, (ii) gray matter, (iii) white matter, (iv) demyelination, and the number of axons within the lateral cortico-spinal tracts. Linear mixed models were used to analyze relationships. In multiple sclerosis CSA reduction at cervical, thoracic and lumbar levels ranged between 19 and 24% with white (19-24%) and gray (17-21%) matter atrophy contributing equally across levels. Axonal density in multiple sclerosis was lower by 57-62% across all levels and affected all fibers regardless of diameter. Demyelination affected 24-48% of the gray matter, most extensively at the thoracic level, and 11-13% of the white matter, with no significant differences across levels. Disease duration was associated with reduced axonal density, however not with any area index. Significant association was detected between focal demyelination and decreased axonal density. In conclusion, over nearly 30 years multiple sclerosis reduces axonal density by 60% throughout the spinal cord. Spinal cord cross sectional area

  7. Giant prolactinomas in women

    DEFF Research Database (Denmark)

    Delgrange, Etienne; Raverot, Gerald; Bex, Marie

    2014-01-01

    OBJECTIVE: To characterise distinctive clinical features of giant prolactinomas in women. DESIGN: A multicentre, retrospective case series and literature review. METHODS: We collected data from 15 female patients with a pituitary tumour larger than 4 cm and prolactin levels above 1000 μg/l and id......OBJECTIVE: To characterise distinctive clinical features of giant prolactinomas in women. DESIGN: A multicentre, retrospective case series and literature review. METHODS: We collected data from 15 female patients with a pituitary tumour larger than 4 cm and prolactin levels above 1000 μg....../l and identified 19 similar cases from the literature; a gender-based comparison of the frequency and age distribution was obtained from a literature review. RESULTS: The initial PubMed search using the term 'giant prolactinomas' identified 125 patients (13 women) responding to the inclusion criteria. The female......:male ratio was 1:9. Another six female patients were found by extending the literature search, while our own series added 15 patients. The median age at diagnosis was 44 years in women compared with 35 years in men (Pwomen (n=34), we...

  8. 4S RNA is transported axonally in normal and regenerating axons of the sciatic nerves of rats

    Energy Technology Data Exchange (ETDEWEB)

    Lindquist, T D; Ingoglia, N A; Gould, R M [Departments of Physiology and Neuroscience, New Jersey Medical School, Newark, NJ, USA

    1982-12-28

    Experiments were designed to determine if following injection of (/sup 3/H)uridine into the lumbar spinal cord of the rat, (/sup 3/H)RNA could be demonstrated within axons of the sciatic nerve, and if 4S RNA is the predominant predominant RNA species present in these axons.

  9. Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering

    Czech Academy of Sciences Publication Activity Database

    Šmít, Daniel; Fouquet, C.; Pincet, F.; Zápotocký, Martin; Trembleau, A.

    2017-01-01

    Roč. 6, Apr 19 (2017), č. článku e19907. ISSN 2050-084X R&D Projects: GA ČR(CZ) GA14-16755S; GA MŠk(CZ) 7AMB12FR002 Institutional support: RVO:67985823 Keywords : biophysics * cell adhesion * coarsening * developmental biology * mathematical model * mechanical tension * axon guidance Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 7.725, year: 2016

  10. Neuron Morphology Influences Axon Initial Segment Plasticity.

    Science.gov (United States)

    Gulledge, Allan T; Bravo, Jaime J

    2016-01-01

    In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., dentate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neurons having larger dendritic trees (e.g., pyramidal neurons) were most excitable when the AIS was longer and/or located away from the soma. For any given somatodendritic morphology, increasing dendritic membrane capacitance and/or conductance favored a longer and more distally located AIS. Overall, changes to AIS length, with corresponding changes in total sodium conductance, were far more effective in regulating neuron excitability than were changes in AIS location, while dendritic capacitance had a larger impact on AIS performance than did dendritic conductance. The somatodendritic influence on AIS performance reflects modest soma-to-AIS voltage attenuation combined with neuron size-dependent changes in AIS input resistance, effective membrane time constant, and isolation from somatodendritic capacitance. We conclude that the impact of AIS plasticity on neuron excitability will depend largely on somatodendritic morphology, and that, in some neurons, a shorter or more distally located AIS may promote, rather than limit, action potential generation.

  11. Isoscalar giant resonances

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, D. H. [Texas A and M Univ., College Station (USA). Cyclotron Inst.; Ikegami, H.; Muraoka, M. [eds.

    1980-01-01

    The current status of the knowledges of giant quadrupole resonance (GQR), low energy octupole resonance (LEOR), and giant monopole resonance (GMR), is described. In the lowest order of multipole resonance, both isoscalar and isovector modes can occur. The characteristics of the GQR in light nuclei are apparent in the experimental result for Mg-24. All of the isoscalar E2 strength are known in Mg-24. The Goldhaber-Teller model is preferred over the Steinwedel-Jensen model for the giant dipole resonance (GDR) transition density. A few interesting and puzzling features have been seen in Pb-208. There is some conflict between inelastic alpha and electron scatterings. About LEOR, the RPA calculation of Liu and Brown was compared to the data for 3/sup -/ strength in Ca-40, Zr-90 and Pb-208. The calculation was employed the residual interaction of the Skyrme type. The agreement in Zr-90 was excellent. The effect of quadrupole deformation on the LEOR in Sm isotopes was large. The inelastic alpha scattering data on Al-27, Ca-40, Ti-48, Ni-58, Zn-64 and 66, Zr-90, Sn-116, 118, 120 and 124, Sm-144, 148 and 154, and Pb-208 were utilized in order to identify the GMR, and the GMR parameters were obtained. The GMR exhausting a large fraction of the sum rule was apparent in the nuclei with mass larger than 90. The splitting of the GDR and the broadening of the GQR in permanently deformed nuclei were established. The splitting of GMR was seen in Sm-154. The studies with heavy ions are also described.

  12. Giant Ulcerative Dermatofibroma

    Directory of Open Access Journals (Sweden)

    Turgut Karlidag

    2013-01-01

    Full Text Available Dermatofibroma is a slowly growing common benign cutaneous tumor characterized by hard papules and nodules. The rarely seen erosions and ulcerations may cause difficulties in the diagnosis. Dermatofibrosarcoma protuberans, which is clinically and histopathologically of malignant character, displays difficulties in the diagnosis since it has similarities with basal cell carcinoma, epidermoid carcinoma, and sarcomas. Head and neck involvement is very rare. In this study, a giant dermatofibroma case, which is histopathologically, ulcerative dermatofibroma, the biggest lesion of the head and neck region and seen rarely in the literature that has characteristics similar to dermatofibrosarcoma protuberans, has been presented.

  13. GIANT PROSTHETIC VALVE THROMBUS

    Directory of Open Access Journals (Sweden)

    Prashanth Kumar

    2015-04-01

    Full Text Available Mechanical prosthetic valves are predisposed to bleeding, thrombosis & thromboembolic complications. Overall incidence of thromboembolic complications is 1% per year who are on oral anticoagulants, whereas bleeding complications incidence is 0.5% to 6.6% per year. 1, 2 Minimization of Scylla of thromboembolic & Charybdis of bleeding complication needs a balancing act of optimal antithrombotic therapy. We are reporting a case of middle aged male patient with prosthetic mitral valve presenting in heart failure. Patient had discontinued anticoagulants, as he had subdural hematoma in the past. He presented to our institute with a giant prosthetic valve thrombus.

  14. A Giant Urethral Calculus.

    Science.gov (United States)

    Sigdel, G; Agarwal, A; Keshaw, B W

    2014-01-01

    Urethral calculi are rare forms of urolithiasis. Majority of the calculi are migratory from urinary bladder or upper urinary tract. Primary urethral calculi usually occur in presence of urethral stricture or diverticulum. In this article we report a case of a giant posterior urethral calculus measuring 7x3x2 cm in a 47 years old male. Patient presented with acute retention of urine which was preceded by burning micturition and dribbling of urine for one week. The calculus was pushed in to the bladder through the cystoscope and was removed by suprapubic cystolithotomy.

  15. Giant paraganglioma in

    Directory of Open Access Journals (Sweden)

    Alka Gupta

    2017-07-01

    Full Text Available Paraganglioma is a rare neuroendocrine catecholamine producing tumour in childhood which arises outside the adrenal medulla. We present a 12 year old girl with giant paraganglioma with severe hypertension and end organ damage. Diagnosis was confirmed with 24 h urinary Vanillymandelic Acid (VMA and CT scan. Preoperative blood pressure was controlled with intravenous nitroprusside, and oral prazosin, amlodepine, labetalol and metoprolol. General anaesthesia with epidural analgesia was given. Intra operative blood pressure rise was managed with infusion of nitriglycerine (NTG, esmolol, nitroprusside and propofol.

  16. GIANT INTRACANALICULAR FIBROADENOMA

    Science.gov (United States)

    Smith, Clyn; Parsons, Robert J.; Bogart, William M.

    1951-01-01

    Five cases of giant intracanalicular fibroadenoma (“cystosarcoma phylloides”) were observed at one hospital in a period of three years. In a search of the literature, additional reports of breast tumors of this kind, not included in previous reviews, were noted. As there is record of 229 cases, it would appear that this rapidly growing benign tumor should be kept in mind in the diagnosis of masses in the breast. If removal is incomplete, there may be recurrence. Simple mastectomy is the treatment of choice. Radical mastectomy should be avoided. ImagesFigure 1Figure 2.Figure 3Figure 4Figure 5 PMID:14848732

  17. Axonal Membranes and Their Domains: Assembly and Function of the Axon Initial Segment and Node of Ranvier

    Directory of Open Access Journals (Sweden)

    Andrew D. Nelson

    2017-05-01

    Full Text Available Neurons are highly specialized cells of the nervous system that receive, process and transmit electrical signals critical for normal brain function. Here, we review the intricate organization of axonal membrane domains that facilitate rapid action potential conduction underlying communication between complex neuronal circuits. Two critical excitable domains of vertebrate axons are the axon initial segment (AIS and the nodes of Ranvier, which are characterized by the high concentrations of voltage-gated ion channels, cell adhesion molecules and specialized cytoskeletal networks. The AIS is located at the proximal region of the axon and serves as the site of action potential initiation, while nodes of Ranvier, gaps between adjacent myelin sheaths, allow rapid propagation of the action potential through saltatory conduction. The AIS and nodes of Ranvier are assembled by ankyrins, spectrins and their associated binding partners through the clustering of membrane proteins and connection to the underlying cytoskeleton network. Although the AIS and nodes of Ranvier share similar protein composition, their mechanisms of assembly are strikingly different. Here we will cover the mechanisms of formation and maintenance of these axonal excitable membrane domains, specifically highlighting the similarities and differences between them. We will also discuss recent advances in super resolution fluorescence imaging which have elucidated the arrangement of the submembranous axonal cytoskeleton revealing a surprising structural organization necessary to maintain axonal organization and function. Finally, human mutations in axonal domain components have been associated with a growing number of neurological disorders including severe cognitive dysfunction, epilepsy, autism, neurodegenerative diseases and psychiatric disorders. Overall, this review highlights the assembly, maintenance and function of axonal excitable domains, particularly the AIS and nodes of

  18. Npn-1 contributes to axon-axon interactions that differentially control sensory and motor innervation of the limb.

    Directory of Open Access Journals (Sweden)

    Rosa-Eva Huettl

    2011-02-01

    Full Text Available The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1 in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG, we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs.

  19. Neurotrophin Signaling via Long-Distance Axonal Transport

    Science.gov (United States)

    Chowdary, Praveen D.; Che, Dung L.; Cui, Bianxiao

    2012-05-01

    Neurotrophins are a family of target-derived growth factors that support survival, development, and maintenance of innervating neurons. Owing to the unique architecture of neurons, neurotrophins that act locally on the axonal terminals must convey their signals across the entire axon for subsequent regulation of gene transcription in the cell nucleus. This long-distance retrograde signaling, a motor-driven process that can take hours or days, has been a subject of intense interest. In the last decade, live-cell imaging with high sensitivity has significantly increased our capability to track the transport of neurotrophins, their receptors, and subsequent signals in real time. This review summarizes recent research progress in understanding neurotrophin-receptor interactions at the axonal terminal and their transport dynamics along the axon. We emphasize high-resolution studies at the single-molecule level and also discuss recent technical advances in the field.

  20. Spontaneous axonal regeneration in rodent spinal cord after ischemic injury

    DEFF Research Database (Denmark)

    von Euler, Mia; Janson, A M; Larsen, Jytte Overgaard

    2002-01-01

    cells, while other fibers were unmyelinated. Immunohistochemistry demonstrated that some of the regenerated fibers were tyrosine hydroxylase- or serotonin-immunoreactive, indicating a central origin. These findings suggest that there is a considerable amount of spontaneous regeneration after spinal cord......Here we present evidence for spontaneous and long-lasting regeneration of CNS axons after spinal cord lesions in adult rats. The length of 200 kD neurofilament (NF)-immunolabeled axons was estimated after photochemically induced ischemic spinal cord lesions using a stereological tool. The total...... length of all NF-immunolabeled axons within the lesion cavities was increased 6- to 10-fold at 5, 10, and 15 wk post-lesion compared with 1 wk post-surgery. In ultrastructural studies we found the putatively regenerating axons within the lesion to be associated either with oligodendrocytes or Schwann...

  1. Fiber Optic Detection of Action Potentials in Axons

    National Research Council Canada - National Science Library

    Smela, Elisabeth

    2006-01-01

    In prior exploratory research, we had designed a fiber optic sensor utilizing a long period Bragg grating for the purpose of detecting action potentials in axons optically, through a change in index...

  2. Allometry indicates giant eyes of giant squid are not exceptional.

    Science.gov (United States)

    Schmitz, Lars; Motani, Ryosuke; Oufiero, Christopher E; Martin, Christopher H; McGee, Matthew D; Gamarra, Ashlee R; Lee, Johanna J; Wainwright, Peter C

    2013-02-18

    The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone.

  3. Functional characterization and axonal transport of quantum dot labeled BDNF

    OpenAIRE

    Xie, Wenjun; Zhang, Kai; Cui, Bianxiao

    2012-01-01

    Brain derived neurotrophic factor (BDNF) plays a key role in the growth, development and maintenance of the central and peripheral nervous systems. Exogenous BDNF activates its membrane receptors at the axon terminal, and subsequently sends regulation signals to the cell body. To understand how BDNF signal propagates in neurons, it is important to follow the trafficking of BDNF after it is internalized at the axon terminal. Here we labeled BDNF with bright, photostable quantum dot (QD-BDNF) a...

  4. Modality-Specific Axonal Regeneration: Towards selective regenerative neural interfaces

    Directory of Open Access Journals (Sweden)

    Parisa eLotfi

    2011-10-01

    Full Text Available Regenerative peripheral nerve interfaces have been proposed as viable alternatives for the natural control of robotic prosthetic devices. However, sensory and motor axons at the neural interface are of mixed submodality types, which difficult the specific recording from motor axons and the eliciting of precise sensory modalities through selective stimulation. Here we evaluated the possibility of using type-specific neurotrophins to preferentially entice the regeneration of defined axonal populations from transected peripheral nerves into separate compartments. Segregation of mixed sensory fibers from dorsal root ganglion neurons was evaluated in vitro by compartmentalized diffusion delivery of nerve growth factor (NGF and neurotrophin-3 (NT-3, to preferentially entice the growth of TrkA+ nociceptive and TrkC+ proprioceptive subsets of sensory neurons, respectively. The average axon length in the NGF channel increased 2.5 fold compared to that in saline or NT-3, whereas the number of branches increased 3 fold in the NT-3 channels. These results were confirmed using a 3-D Y-shaped in vitro assay showing that the arm containing NGF was able to entice a 5-fold increase in axonal length of unbranched fibers. To address if such segregation can be enticed in vivo, a Y-shaped tubing was used to allow regeneration of the transected adult rat sciatic nerve into separate compartments filled with either NFG or NT-3. A significant increase in the number of CGRP+ pain fibers were attracted towards the sural nerve, while N-52+ large diameter axons were observed in the tibial and NT-3 compartments. This study demonstrates the guided enrichment of sensory axons in specific regenerative chambers, and supports the notion that neurotrophic factors can be used to segregate sensory and perhaps motor axons in separate peripheral interfaces.

  5. Self-amplifying autocrine actions of BDNF in axon development

    OpenAIRE

    Cheng, Pei-Lin; Song, Ai-Hong; Wong, Yu-Hui; Wang, Sheng; Zhang, Xiang; Poo, Mu-Ming

    2011-01-01

    A critical step in neuronal development is the formation of axon/dendrite polarity, a process involving symmetry breaking in the newborn neuron. Local self-amplifying processes could enhance and stabilize the initial asymmetry in the distribution of axon/dendrite determinants, but the identity of these processes remains elusive. We here report that BDNF, a secreted neurotrophin essential for the survival and differentiation of many neuronal populations, serves as a self-amplifying autocrine f...

  6. Fcγ receptor-mediated inflammation inhibits axon regeneration.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Anti-glycan/ganglioside antibodies are the most common immune effectors found in patients with Guillain-Barré Syndrome, which is a peripheral autoimmune neuropathy. We previously reported that disease-relevant anti-glycan autoantibodies inhibited axon regeneration, which echo the clinical association of these antibodies and poor recovery in Guillain-Barré Syndrome. However, the specific molecular and cellular elements involved in this antibody-mediated inhibition of axon regeneration are not previously defined. This study examined the role of Fcγ receptors and macrophages in the antibody-mediated inhibition of axon regeneration. A well characterized antibody passive transfer sciatic nerve crush and transplant models were used to study the anti-ganglioside antibody-mediated inhibition of axon regeneration in wild type and various mutant and transgenic mice with altered expression of specific Fcγ receptors and macrophage/microglia populations. Outcome measures included behavior, electrophysiology, morphometry, immunocytochemistry, quantitative real-time PCR, and western blotting. We demonstrate that the presence of autoantibodies, directed against neuronal/axonal cell surface gangliosides, in the injured mammalian peripheral nerves switch the proregenerative inflammatory environment to growth inhibitory milieu by engaging specific activating Fcγ receptors on recruited monocyte-derived macrophages to cause severe inhibition of axon regeneration. Our data demonstrate that the antibody orchestrated Fcγ receptor-mediated switch in inflammation is one mechanism underlying inhibition of axon regeneration. These findings have clinical implications for nerve repair and recovery in antibody-mediated immune neuropathies. Our results add to the complexity of axon regeneration in injured peripheral and central nervous systems as adverse effects of B cells and autoantibodies on neural injury and repair are increasingly recognized.

  7. Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation

    Science.gov (United States)

    Petralia, Ronald S.; Ott, Carolyn; Wang, Ya-Xian; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2015-01-01

    The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits. PMID:26658865

  8. Kinematics of turnaround and retrograde axonal transport

    International Nuclear Information System (INIS)

    Snyder, R.E.

    1986-01-01

    Rapid axonal transport of a pulse of 35 S-methionine-labelled material was studied in vitro in the sensory neurons of amphibian sciatic nerve using a position-sensitive detector. For 10 nerves studied at 23.0 +/- 0.2 degrees C it was found that a pulse moved in the anterograde direction characterized by front edge, peak, and trailing edge transport rates of (mm/d) 180.8 +/- 2.2 (+/- SEM), 176.6 +/- 2.3, and 153.7 +/- 3.0, respectively. Following its arrival at a distal ligature, a smaller pulse was observed to move in the retrograde direction characterized by front edge and peak transport rates of 158.0 +/- 7.3 and 110.3 +/- 3.5, respectively, indicating that retrograde transport proceeds at a rate of 0.88 +/- 0.04 that of anterograde. The retrograde pulse was observed to disperse at a rate greater than the anterograde. Reversal of radiolabel at the distal ligature began 1.49 +/- 0.15 h following arrival of the first radiolabel. Considerable variation was seen between preparations in the way radiolabel accumulated in the end (ligature) regions of the nerve. Although a retrograde pulse was seen in all preparations, in 7 of 10 preparations there was no evidence of this pulse accumulating within less than 2-3 mm of a proximal ligature; however, accumulation was observed within less than 5 mm in all preparations

  9. Developmental time windows for axon growth influence neuronal network topology.

    Science.gov (United States)

    Lim, Sol; Kaiser, Marcus

    2015-04-01

    Early brain connectivity development consists of multiple stages: birth of neurons, their migration and the subsequent growth of axons and dendrites. Each stage occurs within a certain period of time depending on types of neurons and cortical layers. Forming synapses between neurons either by growing axons starting at similar times for all neurons (much-overlapped time windows) or at different time points (less-overlapped) may affect the topological and spatial properties of neuronal networks. Here, we explore the extreme cases of axon formation during early development, either starting at the same time for all neurons (parallel, i.e., maximally overlapped time windows) or occurring for each neuron separately one neuron after another (serial, i.e., no overlaps in time windows). For both cases, the number of potential and established synapses remained comparable. Topological and spatial properties, however, differed: Neurons that started axon growth early on in serial growth achieved higher out-degrees, higher local efficiency and longer axon lengths while neurons demonstrated more homogeneous connectivity patterns for parallel growth. Second, connection probability decreased more rapidly with distance between neurons for parallel growth than for serial growth. Third, bidirectional connections were more numerous for parallel growth. Finally, we tested our predictions with C. elegans data. Together, this indicates that time windows for axon growth influence the topological and spatial properties of neuronal networks opening up the possibility to a posteriori estimate developmental mechanisms based on network properties of a developed network.

  10. Parametric Probability Distribution Functions for Axon Diameters of Corpus Callosum

    Directory of Open Access Journals (Sweden)

    Farshid eSepehrband

    2016-05-01

    Full Text Available Axon diameter is an important neuroanatomical characteristic of the nervous system that alters in the course of neurological disorders such as multiple sclerosis. Axon diameters vary, even within a fiber bundle, and are not normally distributed. An accurate distribution function is therefore beneficial, either to describe axon diameters that are obtained from a direct measurement technique (e.g., microscopy, or to infer them indirectly (e.g., using diffusion-weighted MRI. The gamma distribution is a common choice for this purpose (particularly for the inferential approach because it resembles the distribution profile of measured axon diameters which has been consistently shown to be non-negative and right-skewed. In this study we compared a wide range of parametric probability distribution functions against empirical data obtained from electron microscopy images. We observed that the gamma distribution fails to accurately describe the main characteristics of the axon diameter distribution, such as location and scale of the mode and the profile of distribution tails. We also found that the generalized extreme value distribution consistently fitted the measured distribution better than other distribution functions. This suggests that there may be distinct subpopulations of axons in the corpus callosum, each with their own distribution profiles. In addition, we observed that several other distributions outperformed the gamma distribution, yet had the same number of unknown parameters; these were the inverse Gaussian, log normal, log logistic and Birnbaum-Saunders distributions.

  11. Axon-glia interaction and membrane traffic in myelin formation

    Directory of Open Access Journals (Sweden)

    Robin eWhite

    2014-01-01

    Full Text Available In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialised glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarisation followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasising the central role of the Src-family kinase Fyn during CNS myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of PLP (proteolipid protein transport by SNARE proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.

  12. Axonal Conduction Delays, Brain State, and Corticogeniculate Communication.

    Science.gov (United States)

    Stoelzel, Carl R; Bereshpolova, Yulia; Alonso, Jose-Manuel; Swadlow, Harvey A

    2017-06-28

    Thalamocortical conduction times are short, but layer 6 corticothalamic axons display an enormous range of conduction times, some exceeding 40-50 ms. Here, we investigate (1) how axonal conduction times of corticogeniculate (CG) neurons are related to the visual information conveyed to the thalamus, and (2) how alert versus nonalert awake brain states affect visual processing across the spectrum of CG conduction times. In awake female Dutch-Belted rabbits, we found 58% of CG neurons to be visually responsive, and 42% to be unresponsive. All responsive CG neurons had simple, orientation-selective receptive fields, and generated sustained responses to stationary stimuli. CG axonal conduction times were strongly related to modulated firing rates (F1 values) generated by drifting grating stimuli, and their associated interspike interval distributions, suggesting a continuum of visual responsiveness spanning the spectrum of axonal conduction times. CG conduction times were also significantly related to visual response latency, contrast sensitivity (C-50 values), directional selectivity, and optimal stimulus velocity. Increasing alertness did not cause visually unresponsive CG neurons to become responsive and did not change the response linearity (F1/F0 ratios) of visually responsive CG neurons. However, for visually responsive CG neurons, increased alertness nearly doubled the modulated response amplitude to optimal visual stimulation (F1 values), significantly shortened response latency, and dramatically increased response reliability. These effects of alertness were uniform across the broad spectrum of CG axonal conduction times. SIGNIFICANCE STATEMENT Corticothalamic neurons of layer 6 send a dense feedback projection to thalamic nuclei that provide input to sensory neocortex. While sensory information reaches the cortex after brief thalamocortical axonal delays, corticothalamic axons can exhibit conduction delays of <2 ms to 40-50 ms. Here, in the corticogeniculate

  13. Recurrent giant juvenile fibroadenoma

    Directory of Open Access Journals (Sweden)

    Kathryn S. King

    2017-11-01

    Full Text Available Breast masses in children, though rare, present a difficult clinical challenge as they can represent a wide variety of entities from benign fibroadenomas to phyllodes tumors. Rapidly growing or recurrent masses can be particularly concerning to patients, families and physicians alike. Clinical examination and conventional imaging modalities are not efficacious in distinguishing between different tumor types and surgical excision is often recommended for both final diagnosis and for treatment of large or rapidly growing masses. While surgical excision can result in significant long-term deformity of the breast there are some surgical techniques that can be used to limit deformity and/or aid in future reconstruction. Here we present a case of recurrent giant juvenile fibroadenoma with a review of the clinical presentation, diagnostic tools and treatment options.

  14. Hadron excitation of giant resonances

    International Nuclear Information System (INIS)

    Morsch, H.-P.

    1985-01-01

    A review is given on giant resonance studies in heavy nuclei using scattering of different hadronic probes. Concerning isoscalar giant resonances compression modes are discussed with the possibility to obtain more detailed structure information. From detailed studies of α scattering the distribution of isoscalar strengths of multipolarity up to L=6 was obtained. Some recent aspects of heavy ion excitation of collective modes are mentioned. The possibility to study isovector giant resonances in hadron charge exchange reactions is discussed. Finally, a comparison is made between α and 200 MeV proton scattering from which isoscalar and spin-isospin continuum response are extracted. (orig.)

  15. Maxillomandibular giant osteosclerotic lesions

    Directory of Open Access Journals (Sweden)

    Constantino LEDESMA-MONTES

    2018-06-01

    Full Text Available Abstract Giant Osteosclerotic Lesions (GOLs are a group of rarely reported intraosseous lesions. Their precise diagnosis is important since they can be confused with malignant neoplasms. Objective This retrospective study aimed to record and analyze the clinical and radiographic Giant Osteosclerotic Lesions (GOLs detected in the maxillomandibular area of patients attending to our institution. Materials and Methods: Informed consent from the patients was obtained and those cases of 2.5 cm or larger lesions with radiopaque or mixed (radiolucid-radiopaque appearance located in the maxillofacial bones were selected. Assessed parameters were: age, gender, radiographic aspect, shape, borders, size, location and relations to roots. Lesions were classified as radicular, apical, interradicular, interradicular-apical, radicular-apical or located in a previous teeth extraction area. Additionally, several osseous and dental developmental alterations (DDAs were assessed. Results Seventeen radiopacities in 14 patients were found and were located almost exclusively in mandible and were two types: idiopathic osteosclerosis and condensing osteitis. GOLs were more frequent in females, and in the anterior and premolar zones. 94.2% of GOLs were qualified as idiopathic osteosclerosis and one case was condensing osteitis. All studied cases showed different osseous and dental developmental alterations (DDAs. The most common were: Microdontia, hypodontia, pulp stones, macrodontia and variations in the mental foramina. Conclusions GOLs must be differentiated from other radiopaque benign and malignant tumors. Condensing osteitis, was considered an anomalous osseous response induced by a chronic low-grade inflammatory stimulus. For development of idiopathic osteosclerosis, two possible mechanisms could be related. The first is modification of the normal turnover with excessive osseous deposition. The second mechanism will prevent the normal bone resorption, arresting the

  16. Quantitative measurements and modeling of cargo–motor interactions during fast transport in the living axon

    International Nuclear Information System (INIS)

    Seamster, Pamela E; Loewenberg, Michael; Pascal, Jennifer; Chauviere, Arnaud; Gonzales, Aaron; Cristini, Vittorio; Bearer, Elaine L

    2012-01-01

    The kinesins have long been known to drive microtubule-based transport of sub-cellular components, yet the mechanisms of their attachment to cargo remain a mystery. Several different cargo-receptors have been proposed based on their in vitro binding affinities to kinesin-1. Only two of these—phosphatidyl inositol, a negatively charged lipid, and the carboxyl terminus of the amyloid precursor protein (APP-C), a trans-membrane protein—have been reported to mediate motility in living systems. A major question is how these many different cargo, receptors and motors interact to produce the complex choreography of vesicular transport within living cells. Here we describe an experimental assay that identifies cargo–motor receptors by their ability to recruit active motors and drive transport of exogenous cargo towards the synapse in living axons. Cargo is engineered by derivatizing the surface of polystyrene fluorescent nanospheres (100 nm diameter) with charged residues or with synthetic peptides derived from candidate motor receptor proteins, all designed to display a terminal COOH group. After injection into the squid giant axon, particle movements are imaged by laser-scanning confocal time-lapse microscopy. In this report we compare the motility of negatively charged beads with APP-C beads in the presence of glycine-conjugated non-motile beads using new strategies to measure bead movements. The ensuing quantitative analysis of time-lapse digital sequences reveals detailed information about bead movements: instantaneous and maximum velocities, run lengths, pause frequencies and pause durations. These measurements provide parameters for a mathematical model that predicts the spatiotemporal evolution of distribution of the two different types of bead cargo in the axon. The results reveal that negatively charged beads differ from APP-C beads in velocity and dispersion, and predict that at long time points APP-C will achieve greater progress towards the presynaptic

  17. Wnt5a regulates midbrain dopaminergic axon growth and guidance.

    Directory of Open Access Journals (Sweden)

    Brette D Blakely

    2011-03-01

    Full Text Available During development, precise temporal and spatial gradients are responsible for guiding axons to their appropriate targets. Within the developing ventral midbrain (VM the cues that guide dopaminergic (DA axons to their forebrain targets remain to be fully elucidated. Wnts are morphogens that have been identified as axon guidance molecules. Several Wnts are expressed in the VM where they regulate the birth of DA neurons. Here, we describe that a precise temporo-spatial expression of Wnt5a accompanies the development of nigrostriatal projections by VM DA neurons. In mice at E11.5, Wnt5a is expressed in the VM where it was found to promote DA neurite and axonal growth in VM primary cultures. By E14.5, when DA axons are approaching their striatal target, Wnt5a causes DA neurite retraction in primary cultures. Co-culture of VM explants with Wnt5a-overexpressing cell aggregates revealed that Wnt5a is capable of repelling DA neurites. Antagonism experiments revealed that the effects of Wnt5a are mediated by the Frizzled receptors and by the small GTPase, Rac1 (a component of the non-canonical Wnt planar cell polarity pathway. Moreover, the effects were specific as they could be blocked by Wnt5a antibody, sFRPs and RYK-Fc. The importance of Wnt5a in DA axon morphogenesis was further verified in Wnt5a-/- mice, where fasciculation of the medial forebrain bundle (MFB as well as the density of DA neurites in the MFB and striatal terminals were disrupted. Thus, our results identify a novel role of Wnt5a in DA axon growth and guidance.

  18. Collective motion and giant resonances

    International Nuclear Information System (INIS)

    Wilhelmi, Z.; Kicinska-Habior, M.

    1984-01-01

    The report contains 15 papers devoted to problems of giant collective excitations of nuclei, heavy-ion induced reactions and their bearing on various aspects of nuclear structure. In some of them the numerical data are given. (A.S.)

  19. Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties.

    Science.gov (United States)

    Casale, Amanda E; Foust, Amanda J; Bal, Thierry; McCormick, David A

    2015-11-25

    The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca(2+)-activated K(+) channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons contain three main

  20. Mechanistic logic underlying the axonal transport of cytosolic proteins

    Science.gov (United States)

    Scott, David A.; Das, Utpal; Tang, Yong; Roy, Subhojit

    2011-01-01

    Proteins vital to presynaptic function are synthesized in the neuronal perikarya and delivered into synapses via two modes of axonal transport. While membrane-anchoring proteins are conveyed in fast axonal transport via motor-driven vesicles, cytosolic proteins travel in slow axonal transport; via mechanisms that are poorly understood. We found that in cultured axons, populations of cytosolic proteins tagged to photoactivable-GFP (PA-GFP) move with a slow motor-dependent anterograde bias; distinct from vesicular-trafficking or diffusion of untagged PA-GFP. The overall bias is likely generated by an intricate particle-kinetics involving transient assembly and short-range vectorial spurts. In-vivo biochemical studies reveal that cytosolic proteins are organized into higher-order structures within axon-enriched fractions that are largely segregated from vesicles. Data-driven biophysical modeling best predicts a scenario where soluble molecules dynamically assemble into mobile supra-molecular structures. We propose a model where cytosolic proteins are transported by dynamically assembling into multi-protein complexes that are directly/indirectly conveyed by motors. PMID:21555071

  1. Protein Prenylation Constitutes an Endogenous Brake on Axonal Growth

    Directory of Open Access Journals (Sweden)

    Hai Li

    2016-07-01

    Full Text Available Suboptimal axonal regeneration contributes to the consequences of nervous system trauma and neurodegenerative disease, but the intrinsic mechanisms that regulate axon growth remain unclear. We screened 50,400 small molecules for their ability to promote axon outgrowth on inhibitory substrata. The most potent hits were the statins, which stimulated growth of all mouse- and human-patient-derived neurons tested, both in vitro and in vivo, as did combined inhibition of the protein prenylation enzymes farnesyltransferase (PFT and geranylgeranyl transferase I (PGGT-1. Compensatory sprouting of motor axons may delay clinical onset of amyotrophic lateral sclerosis (ALS. Accordingly, elevated levels of PGGT1B, which would be predicted to reduce sprouting, were found in motor neurons of early- versus late-onset ALS patients postmortem. The mevalonate-prenylation pathway therefore constitutes an endogenous brake on axonal growth, and its inhibition provides a potential therapeutic approach to accelerate neuronal regeneration in humans.

  2. Mechanisms of Distal Axonal Degeneration in Peripheral Neuropathies

    Science.gov (United States)

    Cashman, Christopher R.; Höke, Ahmet

    2015-01-01

    Peripheral neuropathy is a common complication of a variety of diseases and treatments, including diabetes, cancer chemotherapy, and infectious causes (HIV, hepatitis C, and Campylobacter jejuni). Despite the fundamental difference between these insults, peripheral neuropathy develops as a combination of just six primary mechanisms: altered metabolism, covalent modification, altered organelle function and reactive oxygen species formation, altered intracellular and inflammatory signaling, slowed axonal transport, and altered ion channel dynamics and expression. All of these pathways converge to lead to axon dysfunction and symptoms of neuropathy. The detailed mechanisms of axon degeneration itself have begun to be elucidated with studies of animal models with altered degeneration kinetics, including the slowed Wallerian degeneration (Wlds) and Sarmknockout animal models. These studies have shown axonal degeneration to occur througha programmed pathway of injury signaling and cytoskeletal degradation. Insights into the common disease insults that converge on the axonal degeneration pathway promise to facilitate the development of therapeutics that may be effective against other mechanisms of neurodegeneration. PMID:25617478

  3. Calpain Inhibition Reduces Axolemmal Leakage in Traumatic Axonal Injury

    Directory of Open Access Journals (Sweden)

    János Sándor

    2009-12-01

    Full Text Available Calcium-induced, calpain-mediated proteolysis (CMSP has recently been implicated to the pathogenesis of diffuse (traumatic axonal injury (TAI. Some studies suggested that subaxolemmal CMSP may contribute to axolemmal permeability (AP alterations observed in TAI. Seeking direct evidence for this premise we investigated whether subaxolemmal CMSP may contribute to axolemmal permeability alterations (APA and pre-injury calpain-inhibition could reduce AP in a rat model of TAI. Horseradish peroxidase (HRP, a tracer that accumulates in axons with APA was administered one hour prior to injury into the lateral ventricle; 30 min preinjury a single tail vein bolus injection of 30 mg/kg MDL-28170 (a calpain inhibitor or its vehicle was applied in Wistar rats exposed to impact acceleration brain injury. Histological detection of traumatically injured axonal segments accumulating HRP and statistical analysis revealed that pre-injury administration of the calpain inhibitor MDL-28170 significantly reduced the average length of HRP-labeled axonal segments. The axono-protective effect of pre-injury calpain inhibition recently demonstrated with classical immunohistochemical markers of TAI was further corroborated in this experiment; significant reduction of the length of labeled axons in the drug-treated rats implicate CMSP in the progression of altered AP in TAI.

  4. Subtypes of GABAergic neurons project axons in the neocortex

    Directory of Open Access Journals (Sweden)

    Shigeyoshi Higo

    2009-11-01

    Full Text Available γ-aminobutyric acid (GABAergic neurons in the neocortex have been regarded as interneurons and speculated to modulate the activity of neurons locally. Recently, however, several experiments revealed that neuronal nitric oxide synthase (nNOS-positive GABAergic neurons project cortico-cortically with long axons. In this study, we illustrate Golgi-like images of the nNOS-positive GABAergic neurons using a nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d reaction and follow the emanating axon branches in cat brain sections. These axon branches projected cortico-cortically with other non-labeled arcuate fibers, contra-laterally via the corpus callosum and anterior commissure. The labeled fibers were not limited to the neocortex but found also in the fimbria of the hippocampus. In order to have additional information on these GABAergic neuron projections, we investigated green fluorescent protein (GFP-labeled GABAergic neurons in GAD67-Cre knock-in / GFP Cre-reporter mice. GFP-labeled axons emanate densely, especially in the fimbria, a small number in the anterior commissure, and very sparsely in the corpus callosum. These two different approaches confirm that not only nNOS-positive GABAergic neurons but also other subtypes of GABAergic neurons project long axons in the cerebral cortex and are in a position to be involved in information processing.

  5. Characterization of patients with head trauma and traumatic axonal injury

    International Nuclear Information System (INIS)

    Mosquera Betancourt, Dra.C. Gretel; Van Duc, Dr. Hanh; Casares Delgado, Dr. Jorge Alejandro; Hernández González, Dr. Erick Héctor

    2016-01-01

    Background: traumatic axonal injury is characterized by multifocal lesions, consequences of primary, secondary and tertiary damage which is able to cause varying degrees of disability. Objective: to characterize patients with traumatic axonal injury. Methods: a cross-sectional analytical study was conducted from January 2014 to December 2015. The target population was composed of 35 patients over age 18 whose diagnosis was traumatic axonal injury type I and IV of the Marshall computed tomographic (CT) classification. With the data collected from medical records revisions and direct observation, a database was created in SPSS for its processing through univariate and multivariate techniques. Results: male patients between 18 and 30 years old without bad habits prevailed. Most of the patients survived and death was associated with the presence of severe traumatic axonal injury, Marshall computed tomographic (CT) classification degree III, complications and presence of trauma in thorax, abdomen and cervical spine. Conclusions: diagnosis of traumatic axonal injury is based on the clinical radiological correlation based on images from tomography and it is confirmed by Magnetic resonance imaging (MRI). Histological study shows injuries that are not demonstrated in the most advanced radiological studies. Its prevention is the most fundamental base in medical assistance, followed by neurocritical attention oriented by neuromonitoring. (author)

  6. Highly effective photonic cue for repulsive axonal guidance.

    Directory of Open Access Journals (Sweden)

    Bryan J Black

    Full Text Available In vivo nerve repair requires not only the ability to regenerate damaged axons, but most importantly, the ability to guide developing or regenerating axons along paths that will result in functional connections. Furthermore, basic studies in neuroscience and neuro-electronic interface design require the ability to construct in vitro neural circuitry. Both these applications require the development of a noninvasive, highly effective tool for axonal growth-cone guidance. To date, a myriad of technologies have been introduced based on chemical, electrical, mechanical, and hybrid approaches (such as electro-chemical, optofluidic flow and photo-chemical methods. These methods are either lacking in desired spatial and temporal selectivity or require the introduction of invasive external factors. Within the last fifteen years however, several attractive guidance cues have been developed using purely light based cues to achieve axonal guidance. Here, we report a novel, purely optical repulsive guidance technique that uses low power, near infrared light, and demonstrates the guidance of primary goldfish retinal ganglion cell axons through turns of up to 120 degrees and over distances of ∼90 µm.

  7. Functional complexity of the axonal growth cone: a proteomic analysis.

    Directory of Open Access Journals (Sweden)

    Adriana Estrada-Bernal

    Full Text Available The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥ 99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions.

  8. Axonal transport and axon sprouting in the adult rat dentate gyrus: an autoradiographic study

    International Nuclear Information System (INIS)

    Goldowitz, D.; Cotman, C.W.

    1980-01-01

    In response to an entorhinal lesion, the commissural and associational afferents to the dentate gyrus have been shown to expand beyond their normal terminal zone into the area denervated by the entorhinal lesion. The present study has investigated the axonal transport of [ 3 H]-labeled proteins in the commissural and associational projections following an entorhinal lesion. Injections of [ 3 H]proline, [ 3 H]leucine or [ 3 H)fucose were given in the vicinity of the commissural and associational cells of origin before, immediately subsequent to, or at 5 to 15 days after the entorhinal lesion. The disposition of previously- or newly-synthesized proteins was examined in the commissural and associational terminal field at different times after an entorhinal lesion by light-microscopic autoradiography. (author)

  9. Axonal transport and axon sprouting in the adult rat dentate gyrus: an autoradiographic study

    Energy Technology Data Exchange (ETDEWEB)

    Goldowitz, D; Cotman, C W [California Univ., Irvine (USA)

    1980-12-01

    In response to an entorhinal lesion, the commissural and associational afferents to the dentate gyrus have been shown to expand beyond their normal terminal zone into the area denervated by the entorhinal lesion. The present study has investigated the axonal transport of (/sup 3/H)-labeled proteins in the commissural and associational projections following an entorhinal lesion. Injections of (/sup 3/H)proline, (/sup 3/H)leucine or (/sup 3/H)fucose were given in the vicinity of the commissural and associational cells of origin before, immediately subsequent to, or at 5 to 15 days after the entorhinal lesion. The disposition of previously- or newly-synthesized proteins was examined in the commissural and associational terminal field at different times after an entorhinal lesion by light-microscopic autoradiography.

  10. Localization of mRNA in vertebrate axonal compartments by in situ hybridization.

    Science.gov (United States)

    Sotelo-Silveira, José Roberto; Calliari, Aldo; Kun, Alejandra; Elizondo, Victoria; Canclini, Lucía; Sotelo, José Roberto

    2011-01-01

    The conclusive demonstration of RNA in vertebrate axons by in situ hybridization (ISH) has been elusive. We review the most important reasons for difficulties, including low concentration of axonal RNAs, localization in specific cortical domains, and the need to isolate axons. We demonstrate the importance of axon micro-dissection to obtain a whole mount perspective of mRNA distribution in the axonal territory. We describe a protocol to perform fluorescent ISH in isolated axons and guidelines for the preservation of structural and molecular integrity of cortical RNA-containing domains (e.g., Periaxoplasmic Ribosomal Plaques, or PARPs) in isolated axoplasm.

  11. Bringing Low the Giants

    CERN Multimedia

    2001-01-01

    Their work goes on unseen, because they a hundred metres beneath your feet. But while the race against the clock to build the LHC has begun on the surface, teams underground are feverishly engaged to dismantle LEP and its experiments. Four months after the start of dismantling, the technical coordinators of the different experiments discuss the progress of work. Little men attack the giant ALEPH. The barrel and its two endcaps have been removed to the end of the cavern and stripped of their cables. The breaking up of the detector can now begin. At ALEPH, counting rooms removed all in one go Jean-Paul Fabre, technical coordinator at ALEPH:'After making safe the structure, the first step was to remove the wiring and cables. Some 210 cubic metres were brought out. Then the counting rooms all round the detector were taken out. They were brought up from the cavern all in one go, up through the shaft, which is 10 metres wide and 150 metres deep. They made it with 15 centimetres to spare. They have been emptied of...

  12. Giant high occipital encephalocele

    Directory of Open Access Journals (Sweden)

    Agrawal Amit

    2016-03-01

    Full Text Available Encephaloceles are rare embryological mesenchymal developmental anomalies resulting from inappropriate ossification in skull through with herniation of intracranial contents of the sac. Encephaloceles are classified based on location of the osseous defect and contents of sac. Convexity encephalocele with osseous defect in occipital bone is called occipital encephalocele. Giant occipital encephaloceles can be sometimes larger than the size of baby skull itself and they pose a great surgical challenge. Occipital encephaloceles (OE are further classified as high OE when defect is only in occipital bone above the foramen magnum, low OE when involving occipital bone and foramen magnum and occipito-cervical when there involvement of occipital bone, foramen magnum and posterior upper neural arches. Chiari III malformation can be associated with high or low occipital encephaloceles. Pre-operatively, it is essential to know the size of the sac, contents of the sac, relation to the adjacent structures, presence or absence of venous sinuses/vascular structures and osseous defect size. Sometimes it becomes imperative to perform both CT and MRI for the necessary information. Volume rendered CT images can depict the relation of osseous defect to foramen magnum and provide information about upper neural arches which is necessary in classifying these lesions.

  13. Anogenital giant seborrheic keratosis.

    Science.gov (United States)

    Wollina, Uwe; Chokoeva, Anastasiya; Tchernev, Georgi; Heinig, Birgit; Schönlebe, Jacqueline

    2017-08-01

    Seborrheic keratosis (SK) are very common benign epidermal tumors. Giant seborrheic keratosis (GSK) is a rare variant with clinical characteristics, which leads very often to misdiagnosis. A genital site of SK is very unusual clinical manifestation and although the cause is still unknown, current literature data point to a possible pathogenetic role of chronic friction and HPV infection. The rare genital localization makes Buschke-Löwenstein tumor and verrucous carcinoma important differential diagnoses. GSK may also show some clinical features of a melanoacanthoma, which makes cutaneous melanoma as another possible differential diagnosis. The clinical diagnosis of genital GSK is often a very difficult one, because the typical clinical features of GSK disappear and the most common dermoscopic features of GSK are usually not seen in the genital region lesions. The diagnosis of GSK of the anogenital area should be made only and always after the exact histological verification and variety of differential diagnosis should be carefully considered. The treatment of GSK is primary surgically. We present a rare case of GSK with concomitant HPV infection in the anogenital region of 72-year-old patient. Surgical approach was performed with excellent outcome.

  14. Perilesional edema in radiation necrosis reflects axonal degeneration

    International Nuclear Information System (INIS)

    Perez-Torres, Carlos J; Yuan, Liya; Schmidt, Robert E; Rich, Keith M; Ackerman, Joseph JH; Garbow, Joel R

    2015-01-01

    Recently, we characterized a Gamma Knife® radiation necrosis mouse model with various magnetic resonance imaging (MRI) protocols to identify biomarkers useful in differentiation from tumors. Though the irradiation was focal to one hemisphere, a contralateral injury was observed that appeared to be localized in the white matter only. Interestingly, this injury was identifiable in T2-weighted images, apparent diffusion coefficient (ADC), and magnetization transfer ratio (MTR) maps, but not on post-contrast T1-weighted images. This observation of edema independent of vascular changes is akin to the perilesional edema seen in clinical radiation necrosis. The pathology underlying the observed white-matter MRI changes was explored by performing immunohistochemistry for healthy axons and myelin. The presence of both healthy axons and myelin was reduced in the contralateral white-matter lesion. Based on our immunohistochemical findings, the contralateral white-matter injury is most likely due to axonal degeneration

  15. The nano-architecture of the axonal cytoskeleton.

    Science.gov (United States)

    Leterrier, Christophe; Dubey, Pankaj; Roy, Subhojit

    2017-12-01

    The corporeal beauty of the neuronal cytoskeleton has captured the imagination of generations of scientists. One of the easiest cellular structures to visualize by light microscopy, its existence has been known for well over 100 years, yet we have only recently begun to fully appreciate its intricacy and diversity. Recent studies combining new probes with super-resolution microscopy and live imaging have revealed surprising details about the axonal cytoskeleton and, in particular, have discovered previously unknown actin-based structures. Along with traditional electron microscopy, these newer techniques offer a nanoscale view of the axonal cytoskeleton, which is important for our understanding of neuronal form and function, and lay the foundation for future studies. In this Review, we summarize existing concepts in the field and highlight contemporary discoveries that have fundamentally altered our perception of the axonal cytoskeleton.

  16. Chondroitin-4-sulfation negatively regulates axonal guidance and growth

    Science.gov (United States)

    Wang, Hang; Katagiri, Yasuhiro; McCann, Thomas E.; Unsworth, Edward; Goldsmith, Paul; Yu, Zu-Xi; Tan, Fei; Santiago, Lizzie; Mills, Edward M.; Wang, Yu; Symes, Aviva J.; Geller, Herbert M.

    2008-01-01

    Summary Glycosaminoglycan (GAG) side chains endow extracellular matrix proteoglycans with diversity and complexity based upon the length, composition, and charge distribution of the polysaccharide chain. Using cultured primary neurons, we show that specific sulfation in the GAG chains of chondroitin sulfate (CS) mediates neuronal guidance cues and axonal growth inhibition. Chondroitin-4-sulfate (CS-A), but not chondroitin-6-sulfate (CS-C), exhibits a strong negative guidance cue to mouse cerebellar granule neurons. Enzymatic and gene-based manipulations of 4-sulfation in the GAG side chains alter their ability to direct growing axons. Furthermore, 4-sulfated CS GAG chains are rapidly and significantly increased in regions that do not support axonal regeneration proximal to spinal cord lesions in mice. Thus, our findings provide the evidence showing that specific sulfation along the carbohydrate backbone carries instructions to regulate neuronal function. PMID:18768934

  17. Growing axons analysis by using Granulometric Size Distribution

    International Nuclear Information System (INIS)

    Gonzalez, Mariela A; Ballarin, Virginia L; Rapacioli, Melina; CelIn, A R; Sanchez, V; Flores, V

    2011-01-01

    Neurite growth (neuritogenesis) in vitro is a common methodology in the field of developmental neurobiology. Morphological analyses of growing neurites are usually difficult because their thinness and low contrast usually prevent to observe clearly their shape, number, length and spatial orientation. This paper presents the use of the granulometric size distribution in order to automatically obtain information about the shape, size and spatial orientation of growing axons in tissue cultures. The results here presented show that the granulometric size distribution results in a very useful morphological tool since it allows the automatic detection of growing axons and the precise characterization of a relevant parameter indicative of the axonal growth spatial orientation such as the quantification of the angle of deviation of the growing direction. The developed algorithms automatically quantify this orientation by facilitating the analysis of these images, which is important given the large number of images that need to be processed for this type of study.

  18. The axon-protective WLD(S) protein partially rescues mitochondrial respiration and glycolysis after axonal injury.

    Science.gov (United States)

    Godzik, Katharina; Coleman, Michael P

    2015-04-01

    The axon-protective Wallerian degeneration slow (WLD(S)) protein can ameliorate the decline in axonal ATP levels after neurite transection. Here, we tested the hypothesis that this effect is associated with maintenance of mitochondrial respiration and/or glycolysis. We used isolated neurites of superior cervical ganglion (SCG) cultures in the Seahorse XF-24 Metabolic Flux Analyser to determine mitochondrial respiration and glycolysis under different conditions. We observed that both mitochondrial respiration and glycolysis declined significantly during the latent phase of Wallerian degeneration. WLD(S) partially reduced the decline both in glycolysis and in mitochondrial respiration. In addition, we found that depleting NAD levels in uncut cultures led to changes in mitochondrial respiration and glycolysis similar to those rescued by WLD(S) after cut, suggesting that the maintenance of NAD levels in Wld(S) neurites after axonal injury at least partially underlies the maintenance of ATP levels. However, by using another axon-protective mutation (Sarm1(-/-)), we could demonstrate that rescue of basal ECAR (and hence probably glycolysis) rather than basal OCR (mitochondrial respiration) may be part of the protective phenotype to delay Wallerian degeneration. These findings open new routes to study glycolysis and the connection between NAD and ATP levels in axon degeneration, which may help to eventually develop therapeutic strategies to treat neurodegenerative diseases.

  19. Uncovering sensory axonal dysfunction in asymptomatic type 2 diabetic neuropathy.

    Directory of Open Access Journals (Sweden)

    Jia-Ying Sung

    Full Text Available This study investigated sensory and motor nerve excitability properties to elucidate the development of diabetic neuropathy. A total of 109 type 2 diabetes patients were recruited, and 106 were analyzed. According to neuropathy severity, patients were categorized into G0, G1, and G2+3 groups using the total neuropathy score-reduced (TNSr. Patients in the G0 group were asymptomatic and had a TNSr score of 0. Sensory and motor nerve excitability data from diabetic patients were compared with data from 33 healthy controls. Clinical assessment, nerve conduction studies, and sensory and motor nerve excitability testing data were analyzed to determine axonal dysfunction in diabetic neuropathy. In the G0 group, sensory excitability testing revealed increased stimulus for the 50% sensory nerve action potential (P<0.05, shortened strength-duration time constant (P<0.01, increased superexcitability (P<0.01, decreased subexcitability (P<0.05, decreased accommodation to depolarizing current (P<0.01, and a trend of decreased accommodation to hyperpolarizing current in threshold electrotonus. All the changes progressed into G1 (TNSr 1-8 and G2+3 (TNSr 9-24 groups. In contrast, motor excitability only had significantly increased stimulus for the 50% compound motor nerve action potential (P<0.01 in the G0 group. This study revealed that the development of axonal dysfunction in sensory axons occurred prior to and in a different fashion from motor axons. Additionally, sensory nerve excitability tests can detect axonal dysfunction even in asymptomatic patients. These insights further our understanding of diabetic neuropathy and enable the early detection of sensory axonal abnormalities, which may provide a basis for neuroprotective therapeutic approaches.

  20. Pannexin 1 Modulates Axonal Growth in Mouse Peripheral Nerves

    Directory of Open Access Journals (Sweden)

    Steven M. Horton

    2017-11-01

    Full Text Available The pannexin family of channels consists of three members—pannexin-1 (Panx1, pannexin-2 (Panx2, and pannexin-3 (Panx3 that enable the exchange of metabolites and signaling molecules between intracellular and extracellular compartments. Pannexin-mediated release of intracellular ATP into the extracellular space has been tied to a number of cellular activities, primarily through the activity of type P2 purinergic receptors. Previous work indicates that the opening of Panx1 channels and activation of purinergic receptors by extracellular ATP may cause inflammation and apoptosis. In the CNS (central nervous system and PNS (peripheral nervous system, coupled pannexin, and P2 functions have been linked to peripheral sensitization (pain pathways. Purinergic pathways are also essential for other critical processes in the PNS, including myelination and neurite outgrowth. However, whether such pathways are pannexin-dependent remains to be determined. In this study, we use a Panx1 knockout mouse model and pharmacological inhibitors of the Panx1 and the ATP-mediated signaling pathway to fill gaps in our understanding of Panx1 localization in peripheral nerves, roles for Panx1 in axonal outgrowth and myelination, and neurite extension. Our data show that Panx1 is localized to axonal, myelin, and vascular compartments of the peripheral nerves. Knockout of Panx1 gene significantly increased axonal caliber in vivo and axonal growth rate in cultured dorsal root ganglia (DRG neurons. Furthermore, genetic knockout of Panx1 or inhibition of components of purinergic signaling, by treatment with probenecid and apyrase, resulted in denser axonal outgrowth from cultured DRG explants compared to untreated wild-types. Our findings suggest that Panx1 regulates axonal growth in the peripheral nervous system.

  1. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    International Nuclear Information System (INIS)

    Menelaou, Evdokia; Paul, Latoya T.; Perera, Surangi N.; Svoboda, Kurt R.

    2015-01-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  2. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    Energy Technology Data Exchange (ETDEWEB)

    Menelaou, Evdokia; Paul, Latoya T. [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Perera, Surangi N. [Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States); Svoboda, Kurt R., E-mail: svobodak@uwm.edu [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States)

    2015-04-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  3. Excitation of giant resonances in heavy ion collisions

    International Nuclear Information System (INIS)

    Kuehn, W.

    1991-01-01

    Introduction: What are Giant Resonances? General Features of Giant Resonances, Macroscopic Description and Classification, Basic Excitation Mechanisms, Decay Modes, Giant Resonances Built on Excited States, Relativistic Coulomb Excitation of Giant Resonances, Experimental Situation. (orig.)

  4. Formation of giant planets

    International Nuclear Information System (INIS)

    Perri, F.

    1975-01-01

    When a planetary core composed of condensed matter is accumulated in the primitive solar nebula, the gas of the nebula becomes gravitationally concentrated as an envelope surrounding the planetary core. Models of such gaseous envelopes have been constructed subject to the assumption that the gas everywhere is on the same adiabat as that in the surrounding nebula. The gaseous envelope extends from the surface of the core to the distance at which the gravitational attraction of core plus envelope becomes equal to the gradient of the gravitational potential in the solar nebula; at this point the pressure and temperature of the gas in the envelope are required to attain the background values characteristic of the solar nebula. In general, as the mass of the condensed core increases, increasing amounts of gas became concentrated in the envelope, and these envelopes are stable against hydrodynamic instabilities. However, the core mass then goes through a maximum and starts to decrease. In most of the models tested the envelopes were hydrodynamically unstable beyond the peak in the core mass. An unstable situation was always created if it was insisted that the core mass contain a larger amount of matter than given by these solutions. For an initial adiabat characterized by a temperature of 450 0 K and a pressure of 5 x 10 -6 atmospheres, the maximum core mass at which instability occurs is approximately 115 earth masses. It is concluded that the giant planets obtained their large amounts of hydrogen and helium by a hydrodynamic collapse process in the solar nebula only after the nebula had been subjected to a considerable period of cooling

  5. On Landau Vlasov simulations of giant resonances

    International Nuclear Information System (INIS)

    Pi, M.; Schuck, P.; Suraud, E.; Gregoire, C.; Remaud, B.; Sebille, F.

    1987-05-01

    We present VUU calculations of giant resonances obtained in energetic heavy ion collisions. Also is considered the case of the giant dipole in 40 Ca and the possibility of studying the effects of rotation on such collective modes

  6. Giant lobelias exemplify convergent evolution

    Directory of Open Access Journals (Sweden)

    Givnish Thomas J

    2010-01-01

    Full Text Available Abstract Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution.

  7. CMB lensing and giant rings

    Energy Technology Data Exchange (ETDEWEB)

    Rathaus, Ben; Itzhaki, Nissan, E-mail: nitzhaki@post.tau.ac.il, E-mail: ben.rathaus@gmail.com [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, 69978 (Israel)

    2012-05-01

    We study the CMB lensing signature of a pre-inationary particle (PIP), assuming it is responsible for the giant rings anomaly that was found recently in the WMAP data. Simulating Planck-like data we find that generically the CMB lensing signal to noise ratio associated with such a PIP is quite small and it would be difficult to cross correlate the temperature giant rings with the CMB lensing signal. However, if the pre-inationary particle is also responsible for the bulk flow measured from the local large scale structure, which happens to point roughly at the same direction as the giant rings, then the CMB lensing signal to noise ratio is fairly significant.

  8. Quantifying mechanical force in axonal growth and guidance

    Directory of Open Access Journals (Sweden)

    Ahmad Ibrahim Mahmoud Athamneh

    2015-09-01

    Full Text Available Mechanical force plays a fundamental role in neuronal development, physiology, and regeneration. In particular, research has shown that force is involved in growth cone-mediated axonal growth and guidance as well as stretch-induced elongation when an organism increases in size after forming initial synaptic connections. However, much of the details about the exact role of force in these fundamental processes remain unknown. In this review, we highlight (1 standing questions concerning the role of mechanical force in axonal growth and guidance and (2 different experimental techniques used to quantify forces in axons and growth cones. We believe that satisfying answers to these questions will require quantitative information about the relationship between elongation, forces, cytoskeletal dynamics, axonal transport, signaling, substrate adhesion, and stiffness contributing to directional growth advance. Furthermore, we address why a wide range of force values have been reported in the literature, and what these values mean in the context of neuronal mechanics. We hope that this review will provide a guide for those interested in studying the role of force in development and regeneration of neuronal networks.

  9. Investigation on the mechanism of peripheral axonal injury in glaucoma

    Directory of Open Access Journals (Sweden)

    Jun- Hong Zhao

    2013-05-01

    Full Text Available AIM: To compare the angles of longitudinal section of sclera around optic nerve heads and the never fiber layer changes in healthy adults and patients with glaucoma, and to investigate the mechanism of peripheral retinal axonal injury, with the combined knowledge of biomechanics. METHODS: The optical nerves and their peripheral tissue specimen in the 12 eyes from health adult donators and 12 eyes from glaucoma patient donators were dyed by Glees' method to compare the angles of longitudinal section of sclera around optic nerve heads(through optic nerve center, and to observe the anatomical features of the peripheral retinal axons. RESULTS: The mean angle of longitudinal section of sclera around optic nerve in healthy adults was 73.3°, while that in patients with absolute glaucoma was 75.6°. The difference showed no significance(t=1.44, P>0.05. There was a sharp bend in the course of peripheral optical fiber in healthy adults. However, the optic nerve fiber disappeared completely in patients with glaucoma end stage. CONCLUSION: The angle between the medial edge and leading edge of sclera(around optic nerve headsis an acute angle. The optical fiber in glaucoma end stage disappeared completely. The phenomenon may be related to high intraocular pressure, the sclera shape, the shear modulus of sclera and axons, and “axonal bending-injury” mechanism.

  10. RGM is a repulsive guidance molecule for retinal axons

    DEFF Research Database (Denmark)

    Monnier, Philippe P; Sierra, Ana; Macchi, Paolo

    2002-01-01

    with known guidance cues, and its messenger RNA is distributed in a gradient with increasing concentration from the anterior to posterior pole of the embryonic tectum. Recombinant RGM at low nanomolar concentration induces collapse of temporal but not of nasal growth cones and guides temporal retinal axons...

  11. IFNgamma enhances microglial reactions to hippocampal axonal degeneration

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Lomholt, N D

    2000-01-01

    periods. Message for the immune cytokine interferon-gamma (IFNgamma) was undetectable, and glial reactivity to axonal lesions occurred as normal in IFNgamma-deficient mice. Microglial responses to lesion-induced neuronal injury were markedly enhanced in myelin basic protein promoter-driven transgenic mice...

  12. Multiple sclerosis and anterograde axonal degeneration study by magnetic resonance

    International Nuclear Information System (INIS)

    Martinez Pardo, P.; Capdevila Cirera, A.; Sanz Marin, P.M.; Gili Planas, J.

    1993-01-01

    Multiple sclerosis (MS) is a disease of the central nervous system that affects specifically the myelin. Its diagnosis by imaging techniques is, since the development of magnetic resonance (MR), relatively simple, and its occasional association with anterograde axonal degeneration (WD) has been reported. In both disorders, there is a lengthening of the T1 and T2 relaxation times. In the present report, 76 patients with MS with less than 4 plaques in the typical periventricular position were studied retrospectively, resulting in a rate of association with anterograde axonal degeneration of 8%. We consider that in spite of their same behavior in MR,MS and WD, with moreover represent completely different pathologies, are perfectly differential by MR. The S-E images with longer repetition and echo times in the axial and coronal planes have proved to be those most sensitive for this differentiation. Given that MS is specific pathology of then myelin, the axonal damages in delayed until several plaques adjacent to an axon affect it. We consider that this, added to the restriction of our study group (less than 4 plaques), is the cause of the pow percentage of the MS-WD association in our study. (Author)

  13. Chronic severe axonal polyneuropathy associated with hyperthyroidism and multivitamin deficiency.

    Science.gov (United States)

    Sugie, Kazuma; Umehara, Fujio; Kataoka, Hiroshi; Kumazawa, Aya; Ueno, Satoshi

    2012-01-01

    Hyperthyroidism is often associated with various neuromuscular disorders, most commonly proximal myopathy. Peripheral nerve involvement in hyperthyroidism is very uncommon and has rarely been reported. We describe a 29-year-old woman with untreated hyperthyroidism who presented with chronic severe axonal sensory-motor polyneuropathy. Peripheral nerve involvement developed together with other symptoms of hyperthyroidism 2 years before presentation. She also had anorexia nervosa for the past 6 months, resulting in multivitamin deficiency. Electrophysiological and pathological findings as well as clinical manifestations confirmed the diagnosis of severe axonal polyneuropathy. Anorexia nervosa has been considered a manifestation of untreated hyperthyroidism. We considered hyperthyroidism to be an important causal factor in the polyneuropathy in our patient, although peripheral nerve involvement in hyperthyroidism is rare. To our knowledge, this is the first documented case of chronic severe axonal polyneuropathy ascribed to both hyperthyroidism and multivitamin deficiency. Our findings strongly suggest that not only multivitamin deficiency, but also hyperthyroidism can cause axonal polyneuropathy, thus expanding the clinical spectrum of hyperthyroidism.

  14. Impaired Mitochondrial Dynamics Underlie Axonal Defects in Hereditary Spastic Paraplegias.

    Science.gov (United States)

    Denton, Kyle; Mou, Yongchao; Xu, Chong-Chong; Shah, Dhruvi; Chang, Jaerak; Blackstone, Craig; Li, Xue-Jun

    2018-05-02

    Mechanisms by which long corticospinal axons degenerate in hereditary spastic paraplegia (HSP) are largely unknown. Here, we have generated induced pluripotent stem cells (iPSCs) from patients with two autosomal recessive forms of HSP, SPG15 and SPG48, which are caused by mutations in the ZFYVE26 and AP5Z1 genes encoding proteins in the same complex, the spastizin and AP5Z1 proteins, respectively. In patient iPSC-derived telencephalic glutamatergic and midbrain dopaminergic neurons, neurite number, length and branching are significantly reduced, recapitulating disease-specific phenotypes. We analyzed mitochondrial morphology and noted a significant reduction in both mitochondrial length and their densities within axons of these HSP neurons. Mitochondrial membrane potential was also decreased, confirming functional mitochondrial defects. Notably, mdivi-1, an inhibitor of the mitochondrial fission GTPase DRP1, rescues mitochondrial morphology defects and suppresses the impairment in neurite outgrowth and late-onset apoptosis in HSP neurons. Furthermore, knockdown of these HSP genes causes similar axonal defects, also mitigated by treatment with mdivi-1. Finally, neurite outgrowth defects in SPG15 and SPG48 cortical neurons can be rescued by knocking down DRP1 directly. Thus, abnormal mitochondrial morphology caused by an imbalance of mitochondrial fission and fusion underlies specific axonal defects and serves as a potential therapeutic target for SPG15 and SPG48.

  15. Botulinum toxin's axonal transport from periphery to the spinal cord.

    Science.gov (United States)

    Matak, Ivica; Riederer, Peter; Lacković, Zdravko

    2012-07-01

    Axonal transport of enzymatically active botulinum toxin A (BTX-A) from periphery to the CNS has been described in facial and trigeminal nerve, leading to cleavage of synaptosomal-associated protein 25 (SNAP-25) in central nuclei. Aim of present study was to examine the existence of axonal transport of peripherally applied BTX-A to spinal cord via sciatic nerve. We employed BTX-A-cleaved SNAP-25 immunohistochemistry of lumbar spinal cord after intramuscular and subcutaneous hind limb injections, and intraneural BTX-A sciatic nerve injections. Truncated SNAP-25 in ipsilateral spinal cord ventral horns and dorsal horns appeared after single peripheral BTX-A administrations, even at low intramuscular dose applied (5 U/kg). Cleaved SNAP-25 appearance in the spinal cord after BTX-A injection into the sciatic nerve was prevented by proximal intrasciatic injection of colchicine (5 mM, 2 μl). Cleaved SNAP-25 in ventral horn, using choline-acetyltransferase (ChAT) double labeling, was localized within cholinergic neurons. These results extend the recent findings on BTX-A retrograde axonal transport in facial and trigeminal nerve. Appearance of truncated SNAP-25 in spinal cord following low-dose peripheral BTX-A suggest that the axonal transport of BTX-A occurs commonly following peripheral application. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Computed tomography in diagnosis of diffuse axonal injury

    International Nuclear Information System (INIS)

    Iwadate, Yasuo; Ono, Juniti; Okimura, Yoshitaka; Suda, Sumio; Isobe, Katsumi; Yamaura, Akira.

    1990-01-01

    Diffuse axonal injury (DAI) has been described in instances of prolonged traumatic coma on the basis of the neuropathological findings, but the same findings are also found in patients with cerebral concussion. Experimental studies confirm that the quality of survivors following trauma is directly proportional to the amount of primarily injured-axon. When the injured axon lies in a widespread area of the brain, outcome for the patient is always poor. In a series of 260 severely head-injured patients, based on their poor outcome, 69 (27%) were diagnosed as DAI. Because of their relatively good outcome, eighty-two patients (32%) were classified into non-DAI group. The predominant CT finding of DAI patients was intraparenchymal deep-seated hemorrhagic lesion. This was observed in 28 patients (41%). Normal CT was also observed in 11 patients (16%). On the other hand, 8 of the non-DAI group (10%) manifested deep-seated lesions. Diffuse cerebral swelling (DCS) appeared in both groups in the same incidence. Subarachnoid hematoma in the perimesencephalic cistern (SAH (PMC)) and intraventricular hematoma (IVH) were observed in 64% of the DAI group, and in 23% of the non-DAI group. The available evidence indicates that various types of hematoma seen in the deep-seated structures of the brain do not have an absolute diagnostic value, but the frequency of hematoma is thought to increase in proportion to the amount of injured-axon. (author)

  17. Unravelling the incidence and etiology of chronic idiopathic axonal polyneuropathy

    NARCIS (Netherlands)

    Visser, N.A.

    2016-01-01

    Chronic idiopathic axonal polyneuropathy (CIAP) is a sensory or sensorimotor polyneuropathy that has a slowly progressive course without severe disability. CIAP is diagnosed in a significant proportion of patients with polyneuropathy, but precise figures on the incidence of polyneuropathy and CIAP

  18. Differential Axonal Projection of Mitral and Tufted Cells in the Mouse Main Olfactory System

    Directory of Open Access Journals (Sweden)

    Shin Nagayama

    2010-09-01

    Full Text Available In the past decade, much has been elucidated regarding the functional organization of the axonal connection of olfactory sensory neurons to olfactory bulb (OB glomeruli. However, the manner in which projection neurons of the OB process odorant input and send this information to higher brain centers remains unclear. Here, we report long-range, large-scale tracing of the axonal projection patterns of OB neurons using two-photon microscopy. Tracer injection into a single glomerulus demonstrated widely distributed mitral/tufted cell axonal projections on the lateroventral surface of the mouse brain, including the anterior/posterior piriform cortex (PC and olfactory tubercle (OT. We noted two distinct groups of labeled axons: PC-orienting axons and OT-orienting axons. Each group occupied distinct parts of the lateral olfactory tract. PC-orienting axons projected axon collaterals to a wide area of the PC but only a few collaterals to the OT. OT-orienting axons densely projected axon collaterals primarily to the anterolateral OT (alOT. Different colored dye injections into the superficial and deep portions of the OB external plexiform layer revealed that the PC-orienting axon populations originated in presumed mitral cells and the OT-orienting axons in presumed tufted cells. These data suggest that although mitral and tufted cells receive similar odor signals from a shared glomerulus, they process the odor information in different ways and send their output to different higher brain centers via the PC and alOT.

  19. Imaging of giant pituitary adenomas

    Energy Technology Data Exchange (ETDEWEB)

    Majos, C.; Coll, S.; Aguilera, C.; Pons, L.C. [Bellvitge Univ., Barcelona (Spain). Inst. de Diagnostice per la Imatge; Acebes, J.J. [Department of Neurosurgery, Ciutat Sanitaria i Universitaria de Bellvitge, L`Hospitalet de Llobregat, Barcelona (Spain)

    1998-10-01

    We present five proven giant pituitary adenomas studied by CT and MRI, and review the clinical and imaging findings. Our aim was to examine the radiologic appearances and to search for criteria useful in distinguishing these tumors from other sellar and suprasellar tumours, mainly craniopharyngioma. The main differences from small adenomas were high prevalence of macrocysts, a more invasive behaviour and a clinical picture dominated by mass effect rather than endocrine disturbance. Factors supporting the diagnosis of pituitary adenoma in a giant intra- and suprasellar mass include: infrasellar extension, absence of calcification and presence of low-signal cysts on T1-weighted images. (orig.) (orig.) With 4 figs., 2 tabs., 9 refs.

  20. [Giant intradiploic infratentorial epidermoid cyst].

    Science.gov (United States)

    Alberione, F; Caire, F; Fischer-Lokou, D; Gueye, M; Moreau, J J

    2007-10-01

    Epidermoid cysts are benign, uncommon lesions (1% of all intracranial tumors). Their localization is intradiploic in 25% of cases, and exceptionally subtentorial. We report here a rare case of giant intradiploic infratentorial epidermoid cyst. A 74-year old patient presented with recent diplopia and sindrome cerebellar. CT scan and MR imaging revealed a giant osteolytic extradural lesion of the posterior fossa (5.2 cm x 3.8 cm) with a small area of peripheral enhancement after contrast injection. Retrosigmoid suboccipital craniectomy allowed a satisfactory removal of the tumor, followed by an acrylic cranioplasty. The outcome was good. Neuropathological examination confirmed an epidermoid cyst. We review the literature and discuss our case.

  1. Percolation with multiple giant clusters

    International Nuclear Information System (INIS)

    Ben-Naim, E; Krapivsky, P L

    2005-01-01

    We study mean-field percolation with freezing. Specifically, we consider cluster formation via two competing processes: irreversible aggregation and freezing. We find that when the freezing rate exceeds a certain threshold, the percolation transition is suppressed. Below this threshold, the system undergoes a series of percolation transitions with multiple giant clusters ('gels') formed. Giant clusters are not self-averaging as their total number and their sizes fluctuate from realization to realization. The size distribution F k , of frozen clusters of size k, has a universal tail, F k ∼ k -3 . We propose freezing as a practical mechanism for controlling the gel size. (letter to the editor)

  2. Statistical decay of giant resonances

    International Nuclear Information System (INIS)

    Dias, H.; Teruya, N.; Wolynec, E.

    1986-01-01

    Statistical calculations to predict the neutron spectrum resulting from the decay of Giant Resonances are discussed. The dependence of the resutls on the optical potential parametrization and on the level density of the residual nucleus is assessed. A Hauser-Feshbach calculation is performed for the decay of the monople giant resonance in 208 Pb using the experimental levels of 207 Pb from a recent compilation. The calculated statistical decay is in excelent agreement with recent experimental data, showing that the decay of this resonance is dominantly statistical, as predicted by continuum RPA calculations. (Author) [pt

  3. Giant resonances: reaction theory approach

    International Nuclear Information System (INIS)

    Toledo Piza, A.F.R. de; Foglia, G.A.

    1989-09-01

    The study of giant resonances through the use of reaction theory approach is presented and discussed. Measurements of cross-sections to the many available decay channels following excitation of giant multipole resonances (GMR) led one to view these phenomena as complicated dynamical syndromes so that theoretical requirements for their study must be extended beyond the traditional bounds of nuclear structure models. The spectra of decay products following GMR excitation in heavy nuclei are well described by statistical model (Hauser-Feshback, HF) predictions indicated that spreading of the collective modes plays a major role in shaping exclusive cross-sections. (A.C.A.S.) [pt

  4. Statistical decay of giant resonances

    International Nuclear Information System (INIS)

    Dias, H.; Teruya, N.; Wolynec, E.

    1986-02-01

    Statistical calculations to predict the neutron spectrum resulting from the decay of Giant Resonances are discussed. The dependence of the results on the optical potential parametrization and on the level density of the residual nucleus is assessed. A Hauser-Feshbach calculation is performed for the decay of the monopole giant resonance in 208 Pb using the experimental levels of 207 Pb from a recent compilation. The calculated statistical decay is in excellent agreement with recent experimental data, showing that decay of this resonance is dominantly statistical, as predicted by continuum RPA calculations. (Author) [pt

  5. Migration of accreting giant planets

    Science.gov (United States)

    Robert, C.; Crida, A.; Lega, E.; Méheut, H.

    2017-09-01

    Giant planets forming in protoplanetary disks migrate relative to their host star. By repelling the gas in their vicinity, they form gaps in the disk's structure. If they are effectively locked in their gap, it follows that their migration rate is governed by the accretion of the disk itself onto the star, in a so-called type II fashion. Recent results showed however that a locking mechanism was still lacking, and was required to understand how giant planets may survive their disk. We propose that planetary accretion may play this part, and help reach this slow migration regime.

  6. Giant serpentine intracranial aneurysm: a case report

    International Nuclear Information System (INIS)

    Park, Jae Seong; Lee, Myeong Sub; Kim, Myung Soon; Kim, Dong Jin; Park, Joong Wha; Whang, Kum

    2001-01-01

    The authors present a case of giant serpentine aneurysm (a partially thrombosed aneurysm containing tortuous vascular channels with a separate entrance and outflow pathway). Giant serpentine aneurysms form a subgroup of giant intracranial aneurysms, distinct from saccular and fusiform varieties, and in this case, too, the clinical presentation and radiographic features of CT, MR imaging and angiography were distinct

  7. Giant multipole resonances: perspectives after ten years

    International Nuclear Information System (INIS)

    Bertrand, F.E.

    1980-01-01

    Nearly ten years ago evidence was published for the first of the so-called giant multipole resonances, the giant quadrupole resonance. During the ensuing years research in this field has spread to many nuclear physics laboratories throughout the world. The present status of electric giant multipole resonances is reviewed. 24 figures, 1 table

  8. Giant pulses of pulsar radio emission

    OpenAIRE

    Kuzmin, A. D.

    2007-01-01

    Review report of giant pulses of pulsar radio emission, based on our detections of four new pulsars with giant pulses, and the comparative analysis of the previously known pulsars with giant pulses, including the Crab pulsar and millisecond pulsar PSR B1937+21.

  9. Charting the Giants

    Science.gov (United States)

    2004-06-01

    zero expansion asymptotically after an infinite time and has a flat geometry). All three observational tests by means of supernovae (green), the cosmic microwave background (blue) and galaxy clusters converge at a Universe around Ωm ~ 0.3 and ΩΛ ~ 0.7. The dark red region for the galaxy cluster determination corresponds to 95% certainty (2-sigma statistical deviation) when assuming good knowledge of all other cosmological parameters, and the light red region assumes a minimum knowledge. For the supernovae and WMAP results, the inner and outer regions corespond to 68% (1-sigma) and 95% certainty, respectively. References: Schuecker et al. 2003, A&A, 398, 867 (REFLEX); Tonry et al. 2003, ApJ, 594, 1 (supernovae); Riess et al. 2004, ApJ, 607, 665 (supernovae) Galaxy clusters are far from being evenly distributed in the Universe. Instead, they tend to conglomerate into even larger structures, "super-clusters". Thus, from stars which gather in galaxies, galaxies which congregate in clusters and clusters tying together in super-clusters, the Universe shows structuring on all scales, from the smallest to the largest ones. This is a relict of the very early (formation) epoch of the Universe, the so-called "inflationary" period. At that time, only a minuscule fraction of one second after the Big Bang, the tiny density fluctuations were amplified and over the eons, they gave birth to the much larger structures. Because of the link between the first fluctuations and the giant structures now observed, the unique REFLEX catalogue - the largest of its kind - allows astronomers to put considerable constraints on the content of the Universe, and in particular on the amount of dark matter that is believed to pervade it. Rather interestingly, these constraints are totally independent from all other methods so far used to assert the existence of dark matter, such as the study of very distant supernovae (see e.g. ESO PR 21/98) or the analysis of the Cosmic Microwave background (e

  10. Nursery of Giants

    Science.gov (United States)

    2004-01-01

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion). New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud. This image is a large-scale mosaic assembled from individual photographs obtained with the InfraRed Array Camera (IRAC) aboard Spitzer. The image covers an area about two times that of a full moon. The mosaic is a composite of images obtained at mid-infrared wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). The brightest infrared cloud near the top center corresponds to DR21, which presumably contains a cluster of newly forming stars at a distance of 10,000 light-years. Protruding out from DR21 toward the bottom left of the image is a gaseous outflow (green), containing both carbon monoxide and molecular hydrogen. Data from the Spitzer spectrograph, which breaks light into its constituent individual wavelengths, indicate the presence of hot steam formed as the outflow heats the surrounding molecular gas. Outflows are physical signatures of processes that create supersonic beams, or jets, of gas. They are usually accompanied by discs of material around the new star, which likely contain the materials from which future planetary systems are formed. Additional newborn stars, depicted in green, can be seen surrounding the DR21 region

  11. Oligodendrocyte Development in the Absence of Their Target Axons In Vivo.

    Directory of Open Access Journals (Sweden)

    Rafael Almeida

    Full Text Available Oligodendrocytes form myelin around axons of the central nervous system, enabling saltatory conduction. Recent work has established that axons can regulate certain aspects of oligodendrocyte development and myelination, yet remarkably oligodendrocytes in culture retain the ability to differentiate in the absence of axons and elaborate myelin sheaths around synthetic axon-like substrates. It remains unclear the extent to which the life-course of oligodendrocytes requires the presence of, or signals derived from axons in vivo. In particular, it is unclear whether the specific axons fated for myelination regulate the oligodendrocyte population in a living organism, and if so, which precise steps of oligodendrocyte-cell lineage progression are regulated by target axons. Here, we use live-imaging of zebrafish larvae carrying transgenic reporters that label oligodendrocyte-lineage cells to investigate which aspects of oligodendrocyte development, from specification to differentiation, are affected when we manipulate the target axonal environment. To drastically reduce the number of axons targeted for myelination, we use a previously identified kinesin-binding protein (kbp mutant, in which the first myelinated axons in the spinal cord, reticulospinal axons, do not fully grow in length, creating a region in the posterior spinal cord where most initial targets for myelination are absent. We find that a 73% reduction of reticulospinal axon surface in the posterior spinal cord of kbp mutants results in a 27% reduction in the number of oligodendrocytes. By time-lapse analysis of transgenic OPC reporters, we find that the reduction in oligodendrocyte number is explained by a reduction in OPC proliferation and survival. Interestingly, OPC specification and migration are unaltered in the near absence of normal axonal targets. Finally, we find that timely differentiation of OPCs into oligodendrocytes does not depend at all on the presence of target axons

  12. Time course of ongoing activity during neuritis and following axonal transport disruption.

    Science.gov (United States)

    Satkeviciute, Ieva; Goodwin, George; Bove, Geoffrey M; Dilley, Andrew

    2018-05-01

    Local nerve inflammation (neuritis) leads to ongoing activity and axonal mechanical sensitivity (AMS) along intact nociceptor axons and disrupts axonal transport. This phenomenon forms the most feasible cause of radiating pain, such as sciatica. We have previously shown that axonal transport disruption without inflammation or degeneration also leads to AMS but does not cause ongoing activity at the time point when AMS occurs, despite causing cutaneous hypersensitivity. However, there have been no systematic studies of ongoing activity during neuritis or noninflammatory axonal transport disruption. In this study, we present the time course of ongoing activity from primary sensory neurons following neuritis and vinblastine-induced axonal transport disruption. Whereas 24% of C/slow Aδ-fiber neurons had ongoing activity during neuritis, few (disruption of axonal transport without inflammation does not lead to ongoing activity in sensory neurons, including nociceptors, but does cause a rapid and transient development of AMS. Because it is proposed that AMS underlies mechanically induced radiating pain, and a transient disruption of axonal transport (as previously reported) leads to transient AMS, it follows that processes that disrupt axonal transport, such as neuritis, must persist to maintain AMS and the associated symptoms. NEW & NOTEWORTHY Many patients with radiating pain lack signs of nerve injury on clinical examination but may have neuritis, which disrupts axonal transport. We have shown that axonal transport disruption does not induce ongoing activity in primary sensory neurons but does cause transient axonal mechanical sensitivity. The present data complete a profile of key axonal sensitivities following axonal transport disruption. Collectively, this profile supports that an active peripheral process is necessary for maintained axonal sensitivities.

  13. An αII Spectrin-Based Cytoskeleton Protects Large-Diameter Myelinated Axons from Degeneration.

    Science.gov (United States)

    Huang, Claire Yu-Mei; Zhang, Chuansheng; Zollinger, Daniel R; Leterrier, Christophe; Rasband, Matthew N

    2017-11-22

    Axons must withstand mechanical forces, including tension, torsion, and compression. Spectrins and actin form a periodic cytoskeleton proposed to protect axons against these forces. However, because spectrins also participate in assembly of axon initial segments (AISs) and nodes of Ranvier, it is difficult to uncouple their roles in maintaining axon integrity from their functions at AIS and nodes. To overcome this problem and to determine the importance of spectrin cytoskeletons for axon integrity, we generated mice with αII spectrin-deficient peripheral sensory neurons. The axons of these neurons are very long and exposed to the mechanical forces associated with limb movement; most lack an AIS, and some are unmyelinated and have no nodes. We analyzed αII spectrin-deficient mice of both sexes and found that, in myelinated axons, αII spectrin forms a periodic cytoskeleton with βIV and βII spectrin at nodes of Ranvier and paranodes, respectively, but that loss of αII spectrin disrupts this organization. Avil-cre;Sptan1 f/f mice have reduced numbers of nodes, disrupted paranodal junctions, and mislocalized Kv1 K + channels. We show that the density of nodal βIV spectrin is constant among axons, but the density of nodal αII spectrin increases with axon diameter. Remarkably, Avil-cre;Sptan1 f/f mice have intact nociception and small-diameter axons, but severe ataxia due to preferential degeneration of large-diameter myelinated axons. Our results suggest that nodal αII spectrin helps resist the mechanical forces experienced by large-diameter axons, and that αII spectrin-dependent cytoskeletons are also required for assembly of nodes of Ranvier. SIGNIFICANCE STATEMENT A periodic axonal cytoskeleton consisting of actin and spectrin has been proposed to help axons resist the mechanical forces to which they are exposed (e.g., compression, torsion, and stretch). However, until now, no vertebrate animal model has tested the requirement of the spectrin cytoskeleton in

  14. Giant lipomas of the hand

    Directory of Open Access Journals (Sweden)

    Gokce Yildiran

    2015-04-01

    Conclusion: Giant lipomas of the hand are very rare and may cause compressions and other complications. Thus, they require a careful preoperative evaluation in order to make a proper differential diagnosis. [Hand Microsurg 2015; 4(1.000: 8-11

  15. Management of giant paraesophageal hernia.

    Science.gov (United States)

    Awais, O; Luketich, J D

    2009-04-01

    Management of giant paraesophageal hernia remains one of the most difficult challenges faced by surgeons treating complex benign esophageal disorders. These large hernias are acquired disorders; therefore, they invariably present in elderly patients. The dilemma that surgeons faced in the open surgical era was the risk of open surgery in this elderly, sick patient population versus the life threatening catastrophic complications, nearly 30% in some series, observed with medical management. During the 1990s, it was clearly recognized that laparoscopic surgery led to decreased morbidity with a quicker recovery. This has lead to a 6-fold increase in the surgical management of giant paraesophageal hernias over the last decade compared to a period of five decades of open surgery; however, this has not necessarily translated into better outcomes. One of the major issues with giant paraesophageal hernias is recognizing short esophagus and performing a lengthening procedure, if needed. Open series which report liberal use of Collis gastroplasty leading to a tension-free intraabdominal fundoplication have shown the best anatomic and clinical outcomes. As we duplicate the open experience laparoscopically, the principle of identifying a shortened esophagus and constructing a neo-esophagus must be honored for the success of the operation. The benefits of laparoscopy are obvious but should not come at the cost of a lesser operation. This review will illustrate that laparoscopic repair of giant paraesophageal hernia at experienced centers can be performed safely with similar outcomes to open series when the fundamental principles of the operation are maintained.

  16. A Giant or a Dwarf?

    DEFF Research Database (Denmark)

    Schmid, Herman

    2005-01-01

    EU may appear to be a giant when it can act on behalf of a united Europe, but usually it is hampered by conflicting member state interests. The EU economic and administrative resources for foreign and trade policy are quite small (on level with one of its major member states) and the hopes in many...

  17. Giant resonances on excited states

    International Nuclear Information System (INIS)

    Besold, W.; Reinhard, P.G.; Toepffer, C.

    1984-01-01

    We derive modified RPA equations for small vibrations about excited states. The temperature dependence of collective excitations is examined. The formalism is applied to the ground state and the first excited state of 90 Zr in order to confirm a hypothesis which states that not only the ground state but every excited state of a nucleus has a giant resonance built upon it. (orig.)

  18. Determination of giant resonance strengths

    International Nuclear Information System (INIS)

    Serr, F.E.

    1983-01-01

    Using theoretical strength functions to describe the different giant resonances expected at excitation energies of the order of (60-85)/Asup(1/3) MeV, we calculate the double differential cross sections d 2 sigma/dΩ dE associated with the reactions 208 Pb(α, α') and 90 Zr(α, α') (Esub(α) = 152 MeV). The angular distributions for the giant quadrupole and giant monopole resonances obtained from fits to these spectra, making simple, commonly used assumptions for the peak shapes and background, are compared to the original angular distributions. The differences between them are an indication of some of the uncertainties affecting the giant resonance strengths extracted from hadron inelastic scattering data. Fits to limited angular regions lead to errors of up to 50% in the value of the energy-weighted sum rule, depending on the angles examined. While it seems possible to extract the correct EWSR for the GMR by carrying out the analyses at 0 0 , no single privileged angle seems to exist in the case of the GQR. (orig.)

  19. Michigan has a sleeping giant

    CERN Multimedia

    Brock, Raymond; Nichols, Sue

    2007-01-01

    "That giant is 750 miles of fiber optic cable that lassoes its three biggest research universities and Van Andel Institute to the future. Its mission: to uncover the nature of the Big Bang by connecton U.S. physicists to their huge experiment ATLAS in Geneva.." (4 pages)

  20. Giant hydronephrosis mimicking progressive malignancy

    Science.gov (United States)

    Schrader, Andres Jan; Anderer, Georgia; von Knobloch, Rolf; Heidenreich, Axel; Hofmann, Rainer

    2003-01-01

    Background Cases of giant hydronephroses are rare and usually contain no more than 1–2 litres of fluid in the collecting system. We report a remarkable case of giant hydronephrosis mimicking a progressive malignant abdominal tumour. Case presentation A 78-year-old cachectic woman presented with an enormous abdominal tumour, which, according to the patient, had slowly increased in diameter. Medical history was unremarkable except for a hysterectomy >30 years before. A CT scan revealed a giant cystic tumour filling almost the entire abdominal cavity. It was analysed by two independent radiologists who suspected a tumour originating from the right kidney and additionally a cystic ovarian neoplasm. Subsequently, a diagnostic and therapeutic laparotomy was performed: the tumour presented as a cystic, 35 × 30 × 25 cm expansive structure adhesive to adjacent organs without definite signs of invasive growth. The right renal hilar vessels could finally be identified at its basis. After extirpation another tumourous structure emerged in the pelvis originating from the genital organs and was also resected. The histopathological examination revealed a >15 kg hydronephrotic right kidney, lacking hardly any residual renal cortex parenchyma. The second specimen was identified as an ovary with regressive changes and a large partially calcified cyst. There was no evidence of malignant growth. Conclusion Although both clinical symptoms and the enormous size of the tumour indicated malignant growth, it turned out to be a giant hydronephrosis. Presumably, a chronic obstruction of the distal ureter had caused this extraordinary hydronephrosis. As demonstrated in our case, an accurate diagnosis of giant hydronephrosis remains challenging due to the atrophy of the renal parenchyma associated with chronic obstruction. Therefore, any abdominal cystic mass even in the absence of other evident pathologies should include the differential diagnosis of a possible hydronephrosis. Diagnostic

  1. Environmental Subconcussive Injury, Axonal Injury, and Chronic Traumatic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Wendy A. Morley

    2018-03-01

    Full Text Available Brain injury occurs in two phases: the initial injury itself and a secondary cascade of precise immune-based neurochemical events. The secondary phase is typically functional in nature and characterized by delayed axonal injury with more axonal disconnections occurring than in the initial phase. Axonal injury occurs across the spectrum of disease severity, with subconcussive injury, especially when repetitive, now considered capable of producing significant neurological damage consistent with axonal injury seen in clinically evident concussion, despite no observable symptoms. This review is the first to introduce the concept of environmental subconcussive injury (ESCI and sets out how secondary brain damage from ESCI once past the juncture of microglial activation appears to follow the same neuron-damaging pathway as secondary brain damage from conventional brain injury. The immune response associated with ESCI is strikingly similar to that mounted after conventional concussion. Specifically, microglial activation is followed closely by glutamate and calcium flux, excitotoxicity, reactive oxygen species and reactive nitrogen species (RNS generation, lipid peroxidation, and mitochondrial dysfunction and energy crisis. ESCI damage also occurs in two phases, with the primary damage coming from microbiome injury (due to microbiome-altering events and secondary damage (axonal injury from progressive secondary neurochemical events. The concept of ESCI and the underlying mechanisms have profound implications for the understanding of chronic traumatic encephalopathy (CTE etiology because it has previously been suggested that repetitive axonal injury may be the primary CTE pathogenesis in susceptible individuals and it is best correlated with lifetime brain trauma load. Taken together, it appears that susceptibility to brain injury and downstream neurodegenerative diseases, such as CTE, can be conceptualized as a continuum of brain resilience. At one end

  2. A growing field: The regulation of axonal regeneration by Wnt signaling.

    Science.gov (United States)

    Garcia, Armando L; Udeh, Adanna; Kalahasty, Karthik; Hackam, Abigail S

    2018-01-01

    The canonical Wnt/β-catenin pathway is a highly conserved signaling cascade that plays critical roles during embryogenesis. Wnt ligands regulate axonal extension, growth cone guidance and synaptogenesis throughout the developing central nervous system (CNS). Recently, studies in mammalian and fish model systems have demonstrated that Wnt/β-catenin signaling also promotes axonal regeneration in the adult optic nerve and spinal cord after injury, raising the possibility that Wnt could be developed as a therapeutic strategy. In this review, we summarize experimental evidence that reveals novel roles for Wnt signaling in the injured CNS, and discuss possible mechanisms by which Wnt ligands could overcome molecular barriers inhibiting axonal growth to promote regeneration. A central challenge in the neuroscience field is developing therapeutic strategies that induce robust axonal regeneration. Although adult axons have the capacity to respond to axonal guidance molecules after injury, there are several major obstacles for axonal growth, including extensive neuronal death, glial scars at the injury site, and lack of axonal guidance signals. Research in rodents demonstrated that activation of Wnt/β-catenin signaling in retinal neurons and radial glia induced neuronal survival and axonal growth, but that activation within reactive glia at the injury site promoted proliferation and glial scar formation. Studies in zebrafish spinal cord injury models confirm an axonal regenerative role for Wnt/β-catenin signaling and identified the cell types responsible. Additionally, in vitro and in vivo studies demonstrated that Wnt induces axonal and neurite growth through transcription-dependent effects of its central mediator β-catenin, potentially by inducing regeneration-promoting genes. Canonical Wnt signaling may also function through transcription-independent interactions of β-catenin with cytoskeletal elements, which could stabilize growing axons and control growth cone

  3. Use of self-complementary adeno-associated virus serotype 2 as a tracer for labeling axons: implications for axon regeneration.

    Directory of Open Access Journals (Sweden)

    Yingpeng Liu

    Full Text Available Various types of tracers are available for use in axon regeneration, but they require an extra operational tracer injection, time-consuming immunohistochemical analysis and cause non-specific labeling. Considerable efforts over the past years have explored other methodologies, especially the use of viral vectors, to investigate axon regeneration after injury. Recent studies have demonstrated that self-complementary Adeno-Associated Virus (scAAV induced a high transduction efficiency and faster expression of transgenes. Here, we describe for the first time the use of scAAV2-GFP to label long-projection axons in the corticospinal tract (CST, rubrospinal tract (RST and the central axons of dorsal root ganglion (DRG in the normal and lesioned animal models. We found that scAAV2-GFP could efficiently transduce neurons in the sensorimotor cortex, red nucleus and DRG. Strong GFP expression could be transported anterogradely along the axon to label the numerous axon fibers from CST, RST and central axons of DRG separately. Comparison of the scAAV2 vector with single-stranded (ss AAV2 vector in co-labeled sections showed that the scAAV2 vector induced a faster and stronger transgene expression than the ssAAV2 vector in DRG neurons and their axons. In both spinal cord lesion and dorsal root crush injury models, scAAV-GFP could efficiently label the lesioned and regenerated axons around the lesion cavity and the dorsal root entry zone (DREZ respectively. Further, scAAV2-GFP vector could be combined with traditional tracer to specifically label sensory and motor axons after spinal cord lesion. Thus, we show that using scAAV2-GFP as a tracer is a more effective and efficient way to study axon regeneration following injury.

  4. Antiretroviral Therapy-Associated Acute Motor and Sensory Axonal Neuropathy

    Directory of Open Access Journals (Sweden)

    Kimberly N. Capers

    2011-01-01

    Full Text Available Guillain-Barré syndrome (GBS has been reported in HIV-infected patients in association with the immune reconstitution syndrome whose symptoms can be mimicked by highly active antiretroviral therapy (HAART-mediated mitochondrial toxicity. We report a case of a 17-year-old, HIV-infected patient on HAART with a normal CD4 count and undetectable viral load, presenting with acute lower extremity weakness associated with lactatemia. Electromyography/nerve conduction studies revealed absent sensory potentials and decreased compound muscle action potentials, consistent with a diagnosis of acute motor and sensory axonal neuropathy. Lactatemia resolved following cessation of HAART; however, neurological deficits minimally improved over several months in spite of immune modulatory therapy. This case highlights the potential association between HAART, mitochondrial toxicity and acute axonal neuropathies in HIV-infected patients, distinct from the immune reconstitution syndrome.

  5. Craniocerebral trauma. Magnetic resonance imaging of diffuse axonal injury

    International Nuclear Information System (INIS)

    Mallouhi, A.

    2014-01-01

    Acceleration-deceleration rotational brain trauma is a common cause of disability or death in young adults and often leads to a focal destruction of axons. The resulting pathology, axonal shear injury is referred to as diffuse axonal injury (DAI). The DAI-associated lesions occur bilaterally, are widely dispersed and have been observed in the surface and deep white matter. They are found near to and far from the impact site. When DAI is clinically suspected, magnetic resonance imaging (MRI) is the method of choice for further clarification, especially in patients where cranial computed tomography (CT) is inconspicuous. To investigate the presence of DAI after traumatic brain injury (TBI), a multimodal MRI approach is applied including the common structural and also functional imaging sequences. For structural MRI, fluid-attenuated inversion recovery (FLAIR) weighted and susceptibility contrast imaging (SWI) are the sequences mainly used. The SWI technique is extremely sensitive to blood breakdown products, which appear as small signal voids at three locations, at the gray-white interface, in the corpus callosum and in the brain stem. Functional MRI comprises a group of constantly developing techniques that have great potential in optimal evaluation of the white matter in patients after craniocerebral trauma. These imaging techniques allow the visualization of changes associated with shear injuries, such as functional impairment of axons and decreased blood flow and abnormal metabolic activity of the brain parts affected. The multimodal MRI approach in patients with DAI results in a more detailed and differentiated representation of the underlying pathophysiological changes of the injured nerve tracts and helps to improve the diagnostic and prognostic accuracy of MRI. When DAI is suspected multimodal MRI should be performed as soon as possible after craniocerebral injury. (orig.) [de

  6. Polyethylene glycol restores axonal conduction after corpus callosum transection

    Directory of Open Access Journals (Sweden)

    Ravinder Bamba

    2017-01-01

    Full Text Available Polyethylene glycol (PEG has been shown to restore axonal continuity after peripheral nerve transection in animal models. We hypothesized that PEG can also restore axonal continuity in the central nervous system. In this current experiment, coronal sectioning of the brains of Sprague-Dawley rats was performed after animal sacrifice. 3Brain high-resolution microelectrode arrays (MEA were used to measure mean firing rate (MFR and peak amplitude across the corpus callosum of the ex-vivo brain slices. The corpus callosum was subsequently transected and repeated measurements were performed. The cut ends of the corpus callosum were still apposite at this time. A PEG solution was applied to the injury site and repeated measurements were performed. MEA measurements showed that PEG was capable of restoring electrophysiology signaling after transection of central nerves. Before injury, the average MFRs at the ipsilateral, midline, and contralateral corpus callosum were 0.76, 0.66, and 0.65 spikes/second, respectively, and the average peak amplitudes were 69.79, 58.68, and 49.60 μV, respectively. After injury, the average MFRs were 0.71, 0.14, and 0.25 spikes/second, respectively and peak amplitudes were 52.11, 8.98, and 16.09 μV, respectively. After application of PEG, there were spikes in MFR and peak amplitude at the injury site and contralaterally. The average MFRs were 0.75, 0.55, and 0.47 spikes/second at the ipsilateral, midline, and contralateral corpus callosum, respectively and peak amplitudes were 59.44, 45.33, 40.02 μV, respectively. There were statistically differences in the average MFRs and peak amplitudes between the midline and non-midline corpus callosum groups (P < 0.01, P < 0.05. These findings suggest that PEG restores axonal conduction between severed central nerves, potentially representing axonal fusion.

  7. Polyethylene glycol restores axonal conduction after corpus callosum transection.

    Science.gov (United States)

    Bamba, Ravinder; Riley, D Colton; Boyer, Richard B; Pollins, Alonda C; Shack, R Bruce; Thayer, Wesley P

    2017-05-01

    Polyethylene glycol (PEG) has been shown to restore axonal continuity after peripheral nerve transection in animal models. We hypothesized that PEG can also restore axonal continuity in the central nervous system. In this current experiment, coronal sectioning of the brains of Sprague-Dawley rats was performed after animal sacrifice. 3Brain high-resolution microelectrode arrays (MEA) were used to measure mean firing rate (MFR) and peak amplitude across the corpus callosum of the ex-vivo brain slices. The corpus callosum was subsequently transected and repeated measurements were performed. The cut ends of the corpus callosum were still apposite at this time. A PEG solution was applied to the injury site and repeated measurements were performed. MEA measurements showed that PEG was capable of restoring electrophysiology signaling after transection of central nerves. Before injury, the average MFRs at the ipsilateral, midline, and contralateral corpus callosum were 0.76, 0.66, and 0.65 spikes/second, respectively, and the average peak amplitudes were 69.79, 58.68, and 49.60 μV, respectively. After injury, the average MFRs were 0.71, 0.14, and 0.25 spikes/second, respectively and peak amplitudes were 52.11, 8.98, and 16.09 μV, respectively. After application of PEG, there were spikes in MFR and peak amplitude at the injury site and contralaterally. The average MFRs were 0.75, 0.55, and 0.47 spikes/second at the ipsilateral, midline, and contralateral corpus callosum, respectively and peak amplitudes were 59.44, 45.33, 40.02 μV, respectively. There were statistically differences in the average MFRs and peak amplitudes between the midline and non-midline corpus callosum groups ( P < 0.01, P < 0.05). These findings suggest that PEG restores axonal conduction between severed central nerves, potentially representing axonal fusion.

  8. Prediction of Functional Outcome in Axonal Guillain-Barre Syndrome.

    Science.gov (United States)

    Sung, Eun Jung; Kim, Dae Yul; Chang, Min Cheol; Ko, Eun Jae

    2016-06-01

    To identify the factors that could predict the functional outcome in patients with the axonal type of Guillain-Barre syndrome (GBS). Two hundred and two GBS patients admitted to our university hospital between 2003 and 2014 were reviewed retrospectively. We defined a good outcome as being "able to walk independently at 1 month after onset" and a poor outcome as being "unable to walk independently at 1 month after onset". We evaluated the factors that differed between the good and poor outcome groups. Twenty-four patients were classified into the acute motor axonal neuropathy type. There was a statistically significant difference between the good and poor outcome groups in terms of the GBS disability score at admission, and GBS disability score and Medical Research Council sum score at 1 month after admission. In an electrophysiologic analysis, the good outcome group showed greater amplitude of median, ulnar, deep peroneal, and posterior tibial nerve compound muscle action potentials (CMAP) and greater amplitude of median, ulnar, and superficial peroneal sensory nerve action potentials (SNAP) than the poor outcome group. A lower GBS disability score at admission, high amplitude of median, ulnar, deep peroneal, and posterior tibial CMAPs, and high amplitude of median, ulnar, and superficial peroneal SNAPs were associated with being able to walk at 1 month in patients with axonal GBS.

  9. Axonal Control of the Adult Neural Stem Cell Niche

    Science.gov (United States)

    Tong, Cheuk Ka; Chen, Jiadong; Cebrián-Silla, Arantxa; Mirzadeh, Zaman; Obernier, Kirsten; Guinto, Cristina D.; Tecott, Laurence H.; García-Verdugo, Jose Manuel; Kriegstein, Arnold; Alvarez-Buylla, Arturo

    2014-01-01

    SUMMARY The ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSC) in the walls of the lateral ventricles of the adult brain. How the adult brain’s neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that activation of these receptors in B1 cells induced small inward currents. Intraventricular infusion of 5HT2C agonist or antagonist increased or decreased V-SVZ proliferation, respectively. These results indicate that supraependymal 5HT axons directly interact with NSCs to regulate neurogenesis via 5HT2C. PMID:24561083

  10. Vesicular glutamate release from central axons contributes to myelin damage.

    Science.gov (United States)

    Doyle, Sean; Hansen, Daniel Bloch; Vella, Jasmine; Bond, Peter; Harper, Glenn; Zammit, Christian; Valentino, Mario; Fern, Robert

    2018-03-12

    The axon myelin sheath is prone to injury associated with N-methyl-D-aspartate (NMDA)-type glutamate receptor activation but the source of glutamate in this context is unknown. Myelin damage results in permanent action potential loss and severe functional deficit in the white matter of the CNS, for example in ischemic stroke. Here, we show that in rats and mice, ischemic conditions trigger activation of myelinic NMDA receptors incorporating GluN2C/D subunits following release of axonal vesicular glutamate into the peri-axonal space under the myelin sheath. Glial sources of glutamate such as reverse transport did not contribute significantly to this phenomenon. We demonstrate selective myelin uptake and retention of a GluN2C/D NMDA receptor negative allosteric modulator that shields myelin from ischemic injury. The findings potentially support a rational approach toward a low-impact prophylactic therapy to protect patients at risk of stroke and other forms of excitotoxic injury.

  11. Retinal glia promote dorsal root ganglion axon regeneration.

    Directory of Open Access Journals (Sweden)

    Barbara Lorber

    Full Text Available Axon regeneration in the adult central nervous system (CNS is limited by several factors including a lack of neurotrophic support. Recent studies have shown that glia from the adult rat CNS, specifically retinal astrocytes and Müller glia, can promote regeneration of retinal ganglion cell axons. In the present study we investigated whether retinal glia also exert a growth promoting effect outside the visual system. We found that retinal glial conditioned medium significantly enhanced neurite growth and branching of adult rat dorsal root ganglion neurons (DRG in culture. Furthermore, transplantation of retinal glia significantly enhanced regeneration of DRG axons past the dorsal root entry zone after root crush in adult rats. To identify the factors that mediate the growth promoting effects of retinal glia, mass spectrometric analysis of retinal glial conditioned medium was performed. Apolipoprotein E and secreted protein acidic and rich in cysteine (SPARC were found to be present in high abundance, a finding further confirmed by western blotting. Inhibition of Apolipoprotein E and SPARC significantly reduced the neuritogenic effects of retinal glial conditioned medium on DRG in culture, suggesting that Apolipoprotein E and SPARC are the major mediators of this regenerative response.

  12. Internalization and Axonal Transport of the HIV Glycoprotein gp120

    Science.gov (United States)

    Berth, Sarah; Caicedo, Hector Hugo; Sarma, Tulika; Morfini, Gerardo

    2015-01-01

    The HIV glycoprotein gp120, a neurotoxic HIV glycoprotein that is overproduced and shed by HIV-infected macrophages, is associated with neurological complications of HIV such as distal sensory polyneuropathy, but interactions of gp120 in the peripheral nervous system remain to be characterized. Here, we demonstrate internalization of extracellular gp120 in a manner partially independent of binding to its coreceptor CXCR4 by F11 neuroblastoma cells and cultured dorsal root ganglion neurons. Immunocytochemical and pharmacological experiments indicate that gp120 does not undergo trafficking through the endolysosomal pathway. Instead, gp120 is mainly internalized through lipid rafts in a cholesterol-dependent manner, with a minor fraction being internalized by fluid phase pinocytosis. Experiments using compartmentalized microfluidic chambers further indicate that, after internalization, endocytosed gp120 selectively undergoes retrograde but not anterograde axonal transport from axons to neuronal cell bodies. Collectively, these studies illuminate mechanisms of gp120 internalization and axonal transport in peripheral nervous system neurons, providing a novel framework for mechanisms for gp120 neurotoxicity. PMID:25636314

  13. Pathophysiologic insights into motor axonal function in Kennedy disease.

    Science.gov (United States)

    Vucic, Steve; Kiernan, Matthew C

    2007-11-06

    Kennedy disease (KD), or spinobulbomuscular atrophy, is a slowly progressive inherited neurodegenerative disorder, marked by prominent fasciculations that typically precede the development of other symptoms. Although the genetic basis of KD relates to triplet (CAG) repeat expansion in the androgen receptor (AR) gene on the X chromosome, the mechanisms underlying the clinical presentation in KD have yet to be established. Consequently, the present study applied axonal excitability techniques to investigate the pathophysiologic mechanisms associated with KD. Peripheral nerve excitability studies were undertaken in 7 patients with KD with compound muscle action potentials (CMAP) recorded from the right abductor pollicis brevis. Strength-duration time constant (KD 0.54 +/- 0.03 msec; controls, 0.41 +/- 0.02 msec, p TEd [90 to 100 msec], 50.75 +/- 1.98%; controls TEd [90 to 100 msec], 45.67 +/- 0.67%, p < 0.01) and hyperpolarizing (KD TEh [90 to 100 msec], 128.5 +/- 6.9%; controls TEh [90 to 100 msec], 120.5 +/- 2.4%) conditioning pulses. Measurements of refractoriness, superexcitability, and late subexcitability changed appropriately for axonal hyperpolarization, perhaps reflecting the effects of increased ectopic activity. In total, the increase in the strength-duration time constant may be the primary event, occurring early in course of the disease, contributing to the development of axonal hyperexcitability in Kennedy disease, and thereby to the generation of fasciculations, a characteristic hallmark of the disease.

  14. Giant first-forbidden resonances

    International Nuclear Information System (INIS)

    Krmpotic, F.; Nakayama, K.; Sao Paulo Univ.; Pio Galeao, A.; Sao Paulo Univ.

    1983-01-01

    Recent experimental data on first-forbidden charge-exchange resonances are discussed in the framework of a schematic model. We also evaluate the screening of the weak coupling constants induced by both the giant resonances and the δ-isobar. It is shown that the last effect does not depend on the multipolarity of the one-particle moment. Due to the same reason, the fraction of the reaction strength pushed up into the δ-resonance region is always the same regardless of the quantum numbers carried by the excitation. Simple expressions are derived for the dependence of the excitation energies of the first-forbidden giant resonances on the mass number and isospin of the target. The model reproduces consistently both the Gamow-Teller and the first-forbidden resonances. (orig.)

  15. Giant Low Surface Brightness Galaxies

    Science.gov (United States)

    Mishra, Alka; Kantharia, Nimisha G.; Das, Mousumi

    2018-04-01

    In this paper, we present radio observations of the giant low surface brightness (LSB) galaxies made using the Giant Metrewave Radio Telescope (GMRT). LSB galaxies are generally large, dark matter dominated spirals that have low star formation efficiencies and large HI gas disks. Their properties suggest that they are less evolved compared to high surface brightness galaxies. We present GMRT emission maps of LSB galaxies with an optically-identified active nucleus. Using our radio data and archival near-infrared (2MASS) and near-ultraviolet (GALEX) data, we studied morphology and star formation efficiencies in these galaxies. All the galaxies show radio continuum emission mostly associated with the centre of the galaxy.

  16. Giant condyloma acuminatum of vulva

    Directory of Open Access Journals (Sweden)

    S. M. Ramiz Ahmed

    2017-09-01

    Full Text Available In this paper, A 23 year old married woman who was diagnosed as a case of giant condyloma acuminatum of vulva measuring about 15 x 8 x 3 cm, irregular surface with multiple projections, oval in shape, firm to hard in consistency, mildly tender, exophytic, cauliflower like growth involving the whole vulva (lower part of mons pubis, labia, vestibule, clitoris, around vaginal opening. Another multiple small lesions were present at perineal region but there was no inguinal lymphadenopathy. She underwent a combined electro cauterization and cryotherapy for small to moderate size multiple primary and recurrent warty lesions and wide surgical excision with fasciocutaneous advancement flaps procedure for a giant lesions in the vulva. Excisional biopsies were performed to detect potential malignancy but malignancy was not found histologically. The patient was advised to first follow-up 1 month after operation when multiple small warty lesions were developed and treated and the subsequent follow-ups for 3 months.

  17. In vivo imaging reveals mitophagy independence in the maintenance of axonal mitochondria during normal aging.

    Science.gov (United States)

    Cao, Xu; Wang, Haiqiong; Wang, Zhao; Wang, Qingyao; Zhang, Shuang; Deng, Yuanping; Fang, Yanshan

    2017-10-01

    Mitophagy is thought to be a critical mitochondrial quality control mechanism in neurons and has been extensively studied in neurological disorders such as Parkinson's disease. However, little is known about how mitochondria are maintained in the lengthy neuronal axons in the context of physiological aging. Here, we utilized the unique Drosophila wing nerve model and in vivo imaging to rigorously profile changes in axonal mitochondria during aging. We revealed that mitochondria became fragmented and accumulated in aged axons. However, lack of Pink1 or Parkin did not lead to the accumulation of axonal mitochondria or axonal degeneration. Further, unlike in in vitro cultured neurons, we found that mitophagy rarely occurred in intact axons in vivo, even in aged animals. Furthermore, blocking overall mitophagy by knockdown of the core autophagy genes Atg12 or Atg17 had little effect on the turnover of axonal mitochondria or axonal integrity, suggesting that mitophagy is not required for axonal maintenance; this is regardless of whether the mitophagy is PINK1-Parkin dependent or independent. In contrast, downregulation of mitochondrial fission-fusion genes caused age-dependent axonal degeneration. Moreover, Opa1 expression in the fly head was significantly decreased with age, which may underlie the accumulation of fragmented mitochondria in aged axons. Finally, we showed that adult-onset, neuronal downregulation of the fission-fusion, but not mitophagy genes, dramatically accelerated features of aging. We propose that axonal mitochondria are maintained independently of mitophagy and that mitophagy-independent mechanisms such as fission-fusion may be central to the maintenance of axonal mitochondria and neural integrity during normal aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. Sodium Channel β2 Subunits Prevent Action Potential Propagation Failures at Axonal Branch Points.

    Science.gov (United States)

    Cho, In Ha; Panzera, Lauren C; Chin, Morven; Hoppa, Michael B

    2017-09-27

    Neurotransmitter release depends on voltage-gated Na + channels (Na v s) to propagate an action potential (AP) successfully from the axon hillock to a synaptic terminal. Unmyelinated sections of axon are very diverse structures encompassing branch points and numerous presynaptic terminals with undefined molecular partners of Na + channels. Using optical recordings of Ca 2+ and membrane voltage, we demonstrate here that Na + channel β2 subunits (Na v β2s) are required to prevent AP propagation failures across the axonal arborization of cultured rat hippocampal neurons (mixed male and female). When Na v β2 expression was reduced, we identified two specific phenotypes: (1) membrane excitability and AP-evoked Ca 2+ entry were impaired at synapses and (2) AP propagation was severely compromised with >40% of axonal branches no longer responding to AP-stimulation. We went on to show that a great deal of electrical signaling heterogeneity exists in AP waveforms across the axonal arborization independent of axon morphology. Therefore, Na v β2 is a critical regulator of axonal excitability and synaptic function in unmyelinated axons. SIGNIFICANCE STATEMENT Voltage-gated Ca 2+ channels are fulcrums of neurotransmission that convert electrical inputs into chemical outputs in the form of vesicle fusion at synaptic terminals. However, the role of the electrical signal, the presynaptic action potential (AP), in modulating synaptic transmission is less clear. What is the fidelity of a propagating AP waveform in the axon and what molecules shape it throughout the axonal arborization? Our work identifies several new features of AP propagation in unmyelinated axons: (1) branches of a single axonal arborization have variable AP waveforms independent of morphology, (2) Na + channel β2 subunits modulate AP-evoked Ca 2+ -influx, and (3) β2 subunits maintain successful AP propagation across the axonal arbor. These findings are relevant to understanding the flow of excitation in the

  19. A Giant Juvenile Nasopharyngeal Angiofibroma

    Science.gov (United States)

    Yüce, Salim; Uysal, İsmail Önder; Doğan, Mansur; Polat, Kerem; Şalk, İsmail; Müderris, Suphi

    2012-01-01

    Juvenile nasopharyngeal angiofibroma (JNA) are locally growing highly vascular tumours. They are treated primarily by surgical excision ranging from open approach to endoscopic approach. We presented a 20-year-old male with a giant nasopharyngeal juvenile angiofibroma obliterating the pterygopalatine fossa bilaterally, invasing the sphenoid bone and extending to the left nasal passage. His complaints were epistaxis and nasal obstruction. After embolization, the patient was treated surgically with endoscopic approach and discharged as cured without any complication. PMID:23714961

  20. [Treatment of giant acoustic neuromas].

    Science.gov (United States)

    Samprón, Nicolás; Altuna, Xabier; Armendáriz, Mikel; Urculo, Enrique

    2014-01-01

    To analyze the treatment modality and outcome of a series of patients with giant acoustic neuromas, a particular type of tumour characterised by their size (extracanalicular diameter of 4cm or more) and high morbidity and mortality. This was a retrospective unicentre study of patients with acoustic neuromas treated in a period of 12 years. In our institutional series of 108 acoustic neuromas operated on during that period, we found 13 (12%) cases of giant acoustic neuromas. We reviewed the available data of these cases, including presentation and several clinical, anatomical, and microsurgical aspects. All patients were operated on by the same neurosurgeon and senior author (EU) using the suboccipital retrosigmoid approach and complete microsurgical removal was achieved in 10 cases. In one case, near total removal was deliberately performed, in another case a CSF shunt was placed as the sole treatment measure, and in the remaining case no direct treatment was given. One patient died in the immediate postoperative period. One year after surgery, 4 patients showed facial nerve function of iii or more in the House-Brackman scale. The 4 most important prognostic characteristics of giant acoustic neuromas are size, adhesion to surrounding structures, consistency and vascularity. Only the first of these is evident in neuroimaging. Giant acoustic neuromas are characterised by high morbidity at presentation as well as after treatment. Nevertheless, the objective of complete microsurgical removal with preservation of cranial nerve function is attainable in some cases through the suboccipital retrosigmoid approach. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  1. Giant pediatric cervicofacial lymphatic malformations.

    Science.gov (United States)

    Benazzou, Salma; Boulaadas, Malik; Essakalli, Leila

    2013-07-01

    Lymphatic malformations (LMs) are benign lesions. Most of them are found in head and neck regions as asymptomatic mass, but giant lymphangiomas may affect breathing or swallowing and constitute a major therapeutic challenge. A retrospective analysis of giant head and neck LMs with impairment of respiration or swallow for the past 11 years was performed in the Department of Maxillofacial Surgery and ENT of the Avicenne Medical University Center. Seven patients with large and extensive LMs of the head and neck were identified. There were 3 males and 4 females with a mean age of 6 years. The predominant reason for referral was airway compromise necessitating tracheostomy (57%) and dysphagia (43%). Three patients had macrocystic lesions; others were considered mixed or microcystic. All the patients underwent surgical excision as a primary treatment modality. Complete surgical resection was realized in 4 patients, and subtotal resection in 3 patients. Of 7 patients, 4 patients had complications including nerve damage and recurrence of the disease. The majority of the patients underwent only a single surgical procedure. Cervicofacial LMs in children should be managed in multidisciplinary setting. Surgery remains the first treatment for managing giant, life-threatening lesions.

  2. Guiding the Giant

    Science.gov (United States)

    1998-08-01

    New ESO Survey Provides Targets for the VLT Giant astronomical telescopes like the ESO Very Large Telescope (VLT) must be used efficiently. Observing time is expensive and there are long waiting lines of excellent research programmes. Thus the work at the telescope must be very well prepared and optimized as much as possible - mistakes should be avoided and no time lost! Astronomers working with the new 8-m class optical/infrared telescopes must base their observations on detailed lists of suitable target objects if they want to perform cutting-edge science. This is particularly true for research programmes that depend on observations of large samples of comparatively rare, distant objects. This type of work requires that extensive catalogues of such objects must be prepared in advance. One such major catalogue - that will serve as a very useful basis for future VLT observations - has just become available from the new ESO Imaging Survey (EIS). The Need for Sky Surveys Astronomers have since long recognized the need to carry out preparatory observations with other telescopes in order to "guide" large telescopes. To this end, surveys of smaller or larger parts of the sky have been performed by wide-field telescopes, paving the way for subsequent work at the limits of the largest available ground-based telescopes. For instance, a complete photographic survey of the sourthern sky (declination work at the 3.6-m telescope at the ESO La Silla observatory. However, while until recently most observational programmes could rely on samples of objects found on photographic plates, this is no longer possible. New image surveys must match the fainter limiting magnitudes reached by the new and larger telescopes. Modern digital, multi-colour, deep imaging surveys have thus become an indispensable complement to the 8-m telescopes. The new generation of imaging surveys will, without doubt, be the backbone of future research and are likely to be as long-lived as their earlier

  3. Dynamic Changes of Neuroskeletal Proteins in DRGs Underlie Impaired Axonal Maturation and Progressive Axonal Degeneration in Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Hideki Kamiya

    2009-01-01

    Full Text Available We investigated mechanisms underlying progressive axonal dysfunction and structural deficits in type 1 BB/Wor-rats from 1 week to 10 month diabetes duration. Motor and sensory conduction velocities were decreased after 4 and 6 weeks of diabetes and declined further over the remaining 9 months. Myelinated sural nerve fibers showed progressive deficits in fiber numbers and sizes. Structural deficits in unmyelinated axonal size were evident at 2 month and deficits in number were present at 4 mo. These changes were preceded by decreased availability of insulin, C-peptide and IGF-1 and decreased expression of neurofilaments and β-III-tubulin. Upregulation of phosphorylating stress kinases like Cdk5, p-GSK-3β, and p42/44 resulted in increased phosphorylation of neurofilaments. Increasing activity of p-GSK-3β correlated with increasing phosphorylation of NFH, whereas decreasing Cdk5 correlated with diminishing phosphorylation of NFM. The data suggest that impaired neurotrophic support results in sequentially impaired synthesis and postranslational modifications of neuroskeletal proteins, resulting in progressive deficits in axonal function, maturation and size.

  4. Giant Planets: Good Neighbors for Habitable Worlds?

    Science.gov (United States)

    Georgakarakos, Nikolaos; Eggl, Siegfried; Dobbs-Dixon, Ian

    2018-04-01

    The presence of giant planets influences potentially habitable worlds in numerous ways. Massive celestial neighbors can facilitate the formation of planetary cores and modify the influx of asteroids and comets toward Earth analogs later on. Furthermore, giant planets can indirectly change the climate of terrestrial worlds by gravitationally altering their orbits. Investigating 147 well-characterized exoplanetary systems known to date that host a main-sequence star and a giant planet, we show that the presence of “giant neighbors” can reduce a terrestrial planet’s chances to remain habitable, even if both planets have stable orbits. In a small fraction of systems, however, giant planets slightly increase the extent of habitable zones provided that the terrestrial world has a high climate inertia. In providing constraints on where giant planets cease to affect the habitable zone size in a detrimental fashion, we identify prime targets in the search for habitable worlds.

  5. Solitary ulcerated congenital giant juvenile xanthogranuloma

    Directory of Open Access Journals (Sweden)

    Su Yuen Ng

    2015-01-01

    Full Text Available A 3-month-old female patient with a giant ulcerated nodule over the back since birth was diagnosed as congenital giant juvenile xanthogranuloma (JXG based on clinical and histopathological examination. Congenital giant JXG with ulceration at birth is a rare presentation of JXG and commonly misdiagnosed. This case emphasizes the importance of being aware of the myriad presentations of JXG in order to make a correct diagnosis and avoid unnecessary investigations or treatment.

  6. Giant resonances in heavy-ion reactions

    International Nuclear Information System (INIS)

    Hussein, M.S.

    1982-11-01

    The several roles of multipole giant resonances in heavy-ion reactions are discussed. In particular, the modifications in the effective ion-ion potencial due to the virtual excitation of giant resonances at low energies, are considered and estimated for several systems. Real excitation of giant resonances in heavy-ion reactions at intermediate energies are then discussed and their importance in the approach phase of deeply inelastic processes in emphasized. Several demonstrative examples are given. (Author) [pt

  7. Reply to "Comment on `Penetration of Action Potentials During Collision in the Median and Lateral Giant Axons of Invertebrates"'

    Science.gov (United States)

    Wang, Tian; Gonzalez-Perez, Alfredo; Budvytyte, Rima; Jackson, Andrew D.; Heimburg, Thomas

    2017-04-01

    Berg et al. did not reproduce our results but worked on different preparations and, in one central experiment, used a significantly different electrode configuration. To clarify the situation, we have repeated their experiment on the walking leg of a lobster using an apparatus that can produce both electrode configurations. With the configuration used by Berg et al., the signal of the nerve pulse disappears when forced to pass through the region strongly perturbed by the second stimulus. In our original collision setup, pulses do not travel through perturbed regions, and pulses pass through each other without annihilation as previously reported. These results demonstrate that we handle the preparations correctly. Furthermore, they call for a reinterpretation of the so-called collision block experiment performed by Berg et al. Most likely, their results merely indicate inhibition of the nerve pulse by a strong stimulus and not annihilation upon collision as claimed.

  8. Red giants: then and now

    Science.gov (United States)

    Faulkner, John

    Fred Hoyle's work on the structure and evolution of red giants, particularly his pathbreaking contribution with Martin Schwarzschild (Hoyle and Schwarzschild 1955), is both lauded and critically assessed. In his later lectures and work with students in the early 1960s, Hoyle presented more physical ways of understanding some of the approximations used, and results obtained, in that seminal paper. Although later ideas by other investigators will be touched upon, Hoyle's viewpoint - that low-mass red giants are essentially white dwarfs with a serious mass-storage problem - is still extremely fruitful. Over the years, I have further developed his method of attack. Relatively recently, I have been able to deepen and broaden the approach, finally extending the theory to provide a unifying treatment of the structure of low-mass stars from the main sequence though both the red-giant and horizontal-branch phases of evolution. Many aspects of these stars that had remained puzzling, even mysterious, for decades have now fallen into place, and some questions have been answered that were not even posed before. With low-mass red giants as the simplest example, this recent work emphasizes that stars, in general, may have at least two distinct but very important centres: (I) a geometrical centre, and (II) a separate nuclear centre, residing in a shell outside a zero-luminosity dense core for example. This two-centre perspective leads to an explicit, analytical, asymptotic theory of low-mass red-giant structure. It enables one to appreciate that the problem of understanding why such stars become red giants is one of anticipating a remarkable yet natural structural bifurcation that occurs in them. This bifurcation occurs because of a combination of known and understandable facts just summarized namely that, following central hydrogen exhaustion, a thin nuclear-burning shell does develop outside a more-or-less dense core. In the resulting theory, both ρsh/ρolinec and

  9. Giant multipole resonances: an experimental review

    International Nuclear Information System (INIS)

    Bertrand, F.E.

    1979-01-01

    During the past several years experimental evidence has been published for the existance of nondipole giant resonances. These giant multipole resonances, the so-called new giant resonances were first observed through inelastic hadron and electron scattering and such measurements have continued to provide most of the information in this field. A summary is provided of the experimental evidence for these new resonances. The discussion deals only with results from inelastic scattering and only with the electric multipoles. Emphasis is placed on the recent observations of the giant monopole resonance. Results from recent heavy-ion and pion inelastic scattering are discussed. 38 references

  10. Giant dipole resonance in hot nuclei

    International Nuclear Information System (INIS)

    Mau, N.V.

    1993-01-01

    Giant resonances built on an excited state of the nucleus at a finite temperature T are studied. The following questions are investigated: how long such collective effects occur in a nucleus when T increases. How the properties of the giant resonances vary when the temperature increases. How the study of giant resonances in hot nuclei can give information on the structure of the nucleus in a highly excited state. The special case of the giant dipole resonance is studied. Some of the experimental results are reviewed and in their theoretical interpretation is discussed. (K.A.). 56 refs., 20 figs., 4 tabs

  11. Axonal Spheroid Accumulation In the Brainstem and Spinal Cord of A Young Angus Cow with Ataxia.

    Science.gov (United States)

    Hanshaw, D M; Finnie, J W; Manavis, J; Kessell, A E

    2015-08-01

    An 18-month-old Angus cow presented with rapidly developing ataxia and subsequently died. The finding of large numbers of axonal spheroids in brainstem nuclei and spinal cord grey matter, bilaterally symmetrical in distribution, was consistent with a histopathological diagnosis of neuroaxonal dystrophy (NAD). Most of the axonal swellings were immunopositive to amyloid precursor protein, suggesting that interruption to axonal flow was important in their genesis. The topographical distribution of axonal spheroids in the brain and spinal cord in this bovine case closely resembled that found in the ovine neurodegenerative disorder termed NAD, in which axonal swellings are the major pathological feature. This appears to be the first reported case of this type of NAD in cattle. The aetiology of the spheroidal aggregations in this case was not determined. There was no evidence from the case history or neuropathology to indicate whether the axonal spheroids in this case involved an acquired or heritable aetiology. © 2015 Australian Veterinary Association.

  12. Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon.

    Science.gov (United States)

    Ma, Marek

    2013-12-01

    Axonal injury and degeneration, whether primary or secondary, contribute to the morbidity and mortality seen in many acquired and inherited central nervous system (CNS) and peripheral nervous system (PNS) disorders, such as traumatic brain injury, spinal cord injury, cerebral ischemia, neurodegenerative diseases, and peripheral neuropathies. The calpain family of proteases has been mechanistically linked to the dysfunction and degeneration of axons. While the direct mechanisms by which transection, mechanical strain, ischemia, or complement activation trigger intra-axonal calpain activity are likely different, the downstream effects of unregulated calpain activity may be similar in seemingly disparate diseases. In this review, a brief examination of axonal structure is followed by a focused overview of the calpain family. Finally, the mechanisms by which calpains may disrupt the axonal cytoskeleton, transport, and specialized domains (axon initial segment, nodes, and terminals) are discussed. © 2013.

  13. A Combinatorial Approach to Induce Sensory Axon Regeneration into the Dorsal Root Avulsed Spinal Cord

    DEFF Research Database (Denmark)

    Hoeber, Jan; Konig, Niclas; Trolle, Carl

    2017-01-01

    Spinal root injuries result in newly formed glial scar formation, which prevents regeneration of sensory axons causing permanent sensory loss. Previous studies showed that delivery of trophic factors or implantation of human neural progenitor cells supports sensory axon regeneration and partly......MIM), supported sensory axon regeneration. However, when hscNSPC and MesoMIM were combined, sensory axon regeneration failed. Morphological and tracing analysis showed that sensory axons grow through the newly established glial scar along “bridges” formed by migrating stem cells. Coimplantation of Meso...... their level of differentiation. Our data show that (1) the ability of stem cells to migrate into the spinal cord and organize cellular “bridges” in the newly formed interface is crucial for successful sensory axon regeneration, (2) trophic factor mimetics delivered by mesoporous silica may be a convenient...

  14. REGENERATIVE GROWTH OF CORTICOSPINAL TRACT AXONS VIA THE VENTRAL COLUMN AFTER SPINAL CORD INJURY IN MICE

    OpenAIRE

    Steward, Oswald; Zheng, Binhai; Tessier-Lavigne, Marc; Hofstadter, Maura; Sharp, Kelli; Yee, Kelly Matsudaira

    2008-01-01

    Studies that have assessed regeneration of corticospinal tract (CST) axons in mice following genetic modifications or other treatments have tacitly assumed that there is little if any regeneration of CST axons in normal mice in the absence of some intervention. Here, we document a previously unrecognized capability for regenerative growth of CST axons in normal mice that involves growth past the lesion via the ventral column. Mice received dorsal hemisection injuries at thoracic level 6–7, wh...

  15. Defective Ca2+ channel clustering in axon terminals disturbs excitability in motoneurons in spinal muscular atrophy

    OpenAIRE

    Jablonka, Sibylle; Beck, Marcus; Lechner, Barbara Dorothea; Mayer, Christine; Sendtner, Michael

    2007-01-01

    Proximal spinal muscular atrophy (SMA) is a motoneuron disease for which there is currently no effective treatment. In animal models of SMA, spinal motoneurons exhibit reduced axon elongation and growth cone size. These defects correlate with reduced β-actin messenger RNA and protein levels in distal axons. We show that survival motoneuron gene (Smn)–deficient motoneurons exhibit severe defects in clustering Cav2.2 channels in axonal growth cones. These defects also correlate with a reduced f...

  16. Oligodendroglial MCT1 and Metabolic Support of Axons in Multiple Sclerosis

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0524 TITLE:Oligodendroglial MCT1 and Metabolic Support of Axons in Multiple Sclerosis PRINCIPAL INVESTIGATOR: Jeffrey D...29 Sep 2015 4. TITLE AND SUBTITLE Oligodendroglial MCT1 and Metabolic Support of Axons in Multiple Sclerosis 5a. CONTRACT NUMBER W81XWH-14-1-0524...MCT1 in injured oligodendroglia of multiple sclerosis patients contributes to axon neurodegeneration and that increasing MCT1 will be protective in the

  17. Acutely damaged axons are remyelinated in multiple sclerosis and experimental models of demyelination.

    Science.gov (United States)

    Schultz, Verena; van der Meer, Franziska; Wrzos, Claudia; Scheidt, Uta; Bahn, Erik; Stadelmann, Christine; Brück, Wolfgang; Junker, Andreas

    2017-08-01

    Remyelination is in the center of new therapies for the treatment of multiple sclerosis to resolve and improve disease symptoms and protect axons from further damage. Although remyelination is considered beneficial in the long term, it is not known, whether this is also the case early in lesion formation. Additionally, the precise timing of acute axonal damage and remyelination has not been assessed so far. To shed light onto the interrelation between axons and the myelin sheath during de- and remyelination, we employed cuprizone- and focal lysolecithin-induced demyelination and performed time course experiments assessing the evolution of early and late stage remyelination and axonal damage. We observed damaged axons with signs of remyelination after cuprizone diet cessation and lysolecithin injection. Similar observations were made in early multiple sclerosis lesions. To assess the correlation of remyelination and axonal damage in multiple sclerosis lesions, we took advantage of a cohort of patients with early and late stage remyelinated lesions and assessed the number of APP- and SMI32- positive damaged axons and the density of SMI31-positive and silver impregnated preserved axons. Early de- and remyelinating lesions did not differ with respect to axonal density and axonal damage, but we observed a lower axonal density in late stage demyelinated multiple sclerosis lesions than in remyelinated multiple sclerosis lesions. Our findings suggest that remyelination may not only be protective over a long period of time, but may play an important role in the immediate axonal recuperation after a demyelinating insult. © 2017 The Authors GLIA Published by Wiley Periodicals, Inc.

  18. N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Christian Witzel

    2015-01-01

    Full Text Available Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modified in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the influence of systemic ManNProp application using a specific in vivo mouse model. Using mice expressing axonal fluorescent proteins, we quantified the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow fluorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection. ManNProp significantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm; P < 0.005 and the number of arborizing axons (21% vs. 16% P = 0.008 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoengineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration.

  19. The Molecular and Cellular Mechanisms of Axon Guidance in Mossy Fiber Sprouting

    Directory of Open Access Journals (Sweden)

    Ryuta Koyama

    2018-05-01

    Full Text Available The question of whether mossy fiber sprouting is epileptogenic has not been resolved; both sprouting-induced recurrent excitatory and inhibitory circuit hypotheses have been experimentally (but not fully supported. Therefore, whether mossy fiber sprouting is a potential therapeutic target for epilepsy remains under debate. Moreover, the axon guidance mechanisms of mossy fiber sprouting have attracted the interest of neuroscientists. Sprouting of mossy fibers exhibits several uncommon axonal growth features in the basically non-plastic adult brain. For example, robust branching of axonal collaterals arises from pre-existing primary mossy fiber axons. Understanding the branching mechanisms in adulthood may contribute to axonal regeneration therapies in neuroregenerative medicine in which robust axonal re-growth is essential. Additionally, because granule cells are produced throughout life in the neurogenic dentate gyrus, it is interesting to examine whether the mossy fibers of newly generated granule cells follow the pre-existing trajectories of sprouted mossy fibers in the epileptic brain. Understanding these axon guidance mechanisms may contribute to neuron transplantation therapies, for which the incorporation of transplanted neurons into pre-existing neural circuits is essential. Thus, clarifying the axon guidance mechanisms of mossy fiber sprouting could lead to an understanding of central nervous system (CNS network reorganization and plasticity. Here, we review the molecular and cellular mechanisms of axon guidance in mossy fiber sprouting by discussing mainly in vitro studies.

  20. NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD+ depletion

    Science.gov (United States)

    Sasaki, Yo; Nakagawa, Takashi; Mao, Xianrong; DiAntonio, Aaron; Milbrandt, Jeffrey

    2016-01-01

    Overexpression of the NAD+ biosynthetic enzyme NMNAT1 leads to preservation of injured axons. While increased NAD+ or decreased NMN levels are thought to be critical to this process, the mechanism(s) of this axon protection remain obscure. Using steady-state and flux analysis of NAD+ metabolites in healthy and injured mouse dorsal root ganglion axons, we find that rather than altering NAD+ synthesis, NMNAT1 instead blocks the injury-induced, SARM1-dependent NAD+ consumption that is central to axon degeneration. DOI: http://dx.doi.org/10.7554/eLife.19749.001 PMID:27735788

  1. GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules

    Science.gov (United States)

    Hur, Eun-Mi; Saijilafu; Lee, Byoung Dae; Kim, Seong-Jin; Xu, Wen-Lin; Zhou, Feng-Quan

    2011-01-01

    Suppression of glycogen synthase kinase 3 (GSK3) activity in neurons yields pleiotropic outcomes, causing both axon growth promotion and inhibition. Previous studies have suggested that specific GSK3 substrates, such as adenomatous polyposis coli (APC) and collapsin response mediator protein 2 (CRMP2), support axon growth by regulating the stability of axonal microtubules (MTs), but the substrate(s) and mechanisms conveying axon growth inhibition remain elusive. Here we show that CLIP (cytoplasmic linker protein)-associated protein (CLASP), originally identified as a MT plus end-binding protein, displays both plus end-binding and lattice-binding activities in nerve growth cones, and reveal that the two MT-binding activities regulate axon growth in an opposing manner: The lattice-binding activity mediates axon growth inhibition induced by suppression of GSK3 activity via preventing MT protrusion into the growth cone periphery, whereas the plus end-binding property supports axon extension via stabilizing the growing ends of axonal MTs. We propose a model in which CLASP transduces GSK3 activity levels to differentially control axon growth by coordinating the stability and configuration of growth cone MTs. PMID:21937714

  2. Regulation of Axonal Midline Guidance by Prolyl 4-Hydroxylation in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Torpe, Nanna; Pocock, Roger David John

    2014-01-01

    , little is known of its importance in the control of axon guidance. In a screen of prolyl 4-hydroxylase (P4H) mutants, we found that genetic removal of a specific P4H subunit, DPY-18, causes dramatic defects in C. elegans neuroanatomy. In dpy-18 mutant animals, the axons of specific ventral nerve cord......Neuronal wiring during development requires that the growth cones of axons and dendrites are correctly guided to their appropriate targets. As in other animals, axon growth cones in Caenorhabditis elegans integrate information in their extracellular environment via interactions among transiently...

  3. Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients.

    Directory of Open Access Journals (Sweden)

    Jan Jessen Krut

    Full Text Available Prevalence of neurocognitive impairment in HIV-1 infected patients is reported to be high. Whether this is a result of active HIV-related neurodegeneration is unclear. We examined axonal injury in HIV-1 patients by measuring the light subunit of neurofilament protein (NFL in CSF with a novel, sensitive method.With a cross-sectional design, CSF concentrations of neurofilament protein light (NFL (marker of neuronal injury, neopterin (intrathecal immunoactivation and CSF/Plasma albumin ratio (blood-brain barrier integrity were analyzed on CSF from 252 HIV-infected patients, subdivided into untreated neuroasymptomatics (n = 200, HIV-associated dementia (HAD (n = 14 and on combinations antiretroviral treatment (cART (n = 85, and healthy controls (n = 204. 46 HIV-infected patients were included in both treated and untreated groups, but sampled at different timepoints. Furthermore, 78 neuroasymptomatic patients were analyzed before and after treatment initiation.While HAD patients had the highest NFL concentrations, elevated CSF NFL was also found in 33% of untreated neuroasymptomatic patients, mainly in those with blood CD4+ cell counts below 250 cells/μL. CSF NFL concentrations in the untreated neuroasymptomatics and treated groups were equivalent to controls 18.5 and 3.9 years older, respectively. Neopterin correlated with NFL levels in untreated groups while the albumin ratio correlated with NFL in both untreated and treated groups.Increased CSF NFL indicates ongoing axonal injury in many neuroasymptomatic patients. Treatment decreases NFL, but treated patients retain higher levels than controls, indicating either continued virus-related injury or an aging-like effect of HIV infection. NFL correlates with neopterin and albumin ratio, suggesting an association between axonal injury, neuroinflammation and blood-brain barrier permeability. NFL appears to be a sensitive biomarker of subclinical and clinical brain injury in HIV and warrants further

  4. Excitability properties of motor axons in adults with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Cliff S. Klein

    2015-06-01

    Full Text Available Cerebral Palsy (CP is a permanent disorder caused by a lesion to the developing brain that significantly impairs motor function. The neurophysiological mechanisms underlying motor impairment are not well understood. Specifically, few have addressed whether motoneuron or peripheral axon properties are altered in CP, even though disruption of descending inputs to the spinal cord may cause them to change. In the present study, we have compared nerve excitability properties in seven adults with CP and fourteen healthy controls using threshold tracking techniques by stimulating the median nerve at the wrist and recording the compound muscle action potential (CMAP over the abductor pollicis brevis. The excitability properties in the CP subjects were found to be abnormal. Early and late depolarizing and hyperpolarizing threshold electrotonus was significantly larger (i.e., fanning out, and resting current-threshold (I/V slope was smaller, in CP compared to control. In addition resting threshold and rheobase tended to be larger in CP. According to a modeling analysis of the data, an increase in leakage current under or through the myelin sheath, i.e., the Barrett-Barrett conductance (GBB, combined with a slight hyperpolarization of the resting membrane potential, best explained the group differences in excitability properties. There was a trend for those with greater impairment in gross motor function to have more abnormal axon properties. The findings indicate plasticity of motor axon properties far removed from the site of the lesion. We suspect that this plasticity is caused by disruption of descending inputs to the motoneurons at an early age around the time of their injury.

  5. Mechanisms of hyperpolarization in regenerated mature motor axons in cat

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Krarup, Christian

    2004-01-01

    We found persistent abnormalities in the recovery of membrane excitability in long-term regenerated motor nerve fibres in the cat as indicated in the companion paper. These abnormalities could partly be explained by membrane hyperpolarization. To further investigate this possibility, we compared...... the changes in excitability in control nerves and long-term regenerated cat nerves (3-5 years after tibial nerve crush) during manoeuvres known to alter axonal membrane Na(+)-K(+) pump function: polarization, cooling to 20 degrees C, reperfusion after 10 min ischaemia, and up to 60 s of repetitive stimulation...

  6. Evolution of the giant planets

    International Nuclear Information System (INIS)

    Bodenheimer, P.

    1985-01-01

    The theory of the evolution of the giant planets is discussed with emphasis on detailed numerical calculations in the spherical approximation. Initial conditions are taken to be those provided by the two main hypotheses for the origin of the giant planets. If the planets formed by gravitational instability in the solar nebula, the initial mass is comparable to the present mass or larger. The evolution then goes through the following phases: (1) an initial contraction phase in hydrostatic equilibrium; (2) a hydrodynamic collapse induced by molecular dissociation; and (3) a second equilibrium phase involving contraction and cooling to the present state. During phase (1) a rock-ice core must form by precipitation or accretion. If, on the other hand, the giant planets formed by first accreting a solid core and then capturing gas from the surrounding nebula, then the evolutionary phases are as follows: (1) a period during which planetesimals accrete to form a core of about one earth mass, composed of rock and ice; (2) a gas accretion phase, during which a relatively low-mass gaseous envelope in hydrostatic equilibrium exists around the core, which itself continues to grow to 10 to 20 Earth masses; (3) the point of arrival at the ''critical'' core mass at which point the accretion of gas is much faster than the accretion of the core, and the envelope contracts rapidly; (4) continuation of accretion of gas from the nebula and buildup of the envelope mass to its present value (for the case of Jupiter or Saturn); and (5) a final phase, after termination of accretion, during which the protoplanet contracts and cools to its present state. Some observational constraints are described, and some problems with the two principal hypotheses are discussed

  7. Analysis of giant electrorheological fluids.

    Science.gov (United States)

    Seo, Youngwook P; Seo, Yongsok

    2013-07-15

    The yield stress dependence on electric field strength for giant electrorheological (GER) fluids over the full range of electric fields was examined using Seo's scaling function which incorporated both the polarization and the conductivity models. If a proper scaling was applied to the yield stress data to collapse them onto a single curve, the Seo's scaling function could correctly fit the yield stress behavior of GER suspensions, even at very high electric field strengths. The model predictions were also compared with recently proposed Choi et al.'s model to allow a consideration of the universal framework of ER fluids. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Giant magneto-resistance devices

    CERN Document Server

    Hirota, Eiichi; Inomata, Koichiro

    2002-01-01

    This book deals with the application of giant magneto-resistance (GMR) effects to electronic devices. It will appeal to engineers and graduate students in the fields of electronic devices and materials. The main subjects are magnetic sensors with high resolution and magnetic read heads with high sensitivity, required for hard-disk drives with recording densities of several gigabytes. Another important subject is novel magnetic random-access memories (MRAM) with non-volatile non-destructive and radiation-resistant characteristics. Other topics include future GMR devices based on bipolar spin transistors, spin field-effect transistors (FETs) and double-tunnel junctions.

  9. Nutritional evaluation of the giant grassropper (Zonocerus ...

    African Journals Online (AJOL)

    The biological value of giant grasshopper protein (Zonocerus variegatus) was evaluated by comparing the weight gained, food efficiency ratio (FER), protein efficiency ratio (PER) of rats fed standard laboratory chow with that of rats fed giant grasshopper, Soyabean(Glycine max) and crayfish. The effect of high fibre content ...

  10. Static electromagnetic properties of giant resonances

    International Nuclear Information System (INIS)

    Koo, W.K.

    1986-03-01

    Static electric monopole and quadrupole matrix elements, which are related to the mean square radius and quadrupole moment respectively, are derived for giant resonances of arbitrary multipolarity. The results furnish information on the size and shape of the nucleus in the excited giant states. (author)

  11. Totally thrombosed giant anterior communicating artery aneurysm

    Directory of Open Access Journals (Sweden)

    V R Roopesh Kumar

    2015-01-01

    Full Text Available Giant anterior communicating artery aneurysmsarerare. Apatient presented with visual dysfunction, gait ataxia and urinary incontinence. MRI showed a giant suprasellar mass.At surgery, the lesion was identified as being an aneurysm arising from the anterior communicating artery.The difficulty in preoperative diagnosis and relevant literature are reviewed.

  12. From red giants to planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The transition from red giants to planetary nebulae is studied by comparing the spectral characteristics of red giant envelopes and planetary nebulae. Observational and theoretical evidence both suggest that remnants of red giant envelopes may still be present in planetary nebula systems and should have significant effects on their formation. The dynamical effects of the interaction of stellar winds from central stars of planetary nebulae with the remnant red giant envelopes are evaluated and the mechanism found to be capable of producing the observed masses and momenta of planetary nebulae. The observed mass-radii relation of planetary nebulae may also be best explained by the interacting winds model. The possibility that red giant mass loss, and therefore the production of planetary nebulae, is different between Population I and II systems is also discussed

  13. Plexin A3 and turnout regulate motor axonal branch morphogenesis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Rajiv Sainath

    Full Text Available During embryogenesis motor axons navigate to their target muscles, where individual motor axons develop complex branch morphologies. The mechanisms that control axonal branching morphogenesis have been studied intensively, yet it still remains unclear when branches begin to form or how branch locations are determined. Live cell imaging of individual zebrafish motor axons reveals that the first axonal branches are generated at the ventral extent of the myotome via bifurcation of the growth cone. Subsequent branches are generated by collateral branching restricted to their synaptic target field along the distal portion of the axon. This precisely timed and spatially restricted branching process is disrupted in turnout mutants we identified in a forward genetic screen. Molecular genetic mapping positioned the turnout mutation within a 300 kb region encompassing eight annotated genes, however sequence analysis of all eight open reading frames failed to unambiguously identify the turnout mutation. Chimeric analysis and single cell labeling reveal that turnout function is required cell non-autonomously for intraspinal motor axon guidance and peripheral branch formation. turnout mutant motor axons form the first branch on time via growth cone bifurcation, but unlike wild-type they form collateral branches precociously, when the growth cone is still navigating towards the ventral myotome. These precocious collateral branches emerge along the proximal region of the axon shaft typically devoid of branches, and they develop into stable, permanent branches. Furthermore, we find that null mutants of the guidance receptor plexin A3 display identical motor axon branching defects, and time lapse analysis reveals that precocious branch formation in turnout and plexin A3 mutants is due to increased stability of otherwise short-lived axonal protrusions. Thus, plexin A3 dependent intrinsic and turnout dependent extrinsic mechanisms suppress collateral branch

  14. Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport

    Science.gov (United States)

    Freundt, Eric C.; Maynard, Nate; Clancy, Eileen K.; Roy, Shyamali; Bousset, Luc; Sourigues, Yannick; Covert, Markus; Melki, Ronald; Kirkegaard, Karla; Brahic, Michel

    2012-01-01

    Objective The lesions of Parkinson's disease spread through the brain in a characteristic pattern that corresponds to axonal projections. Previous observations suggest that misfolded α-synuclein could behave as a prion, moving from neuron to neuron and causing endogenous α-synuclein to misfold. Here, we characterized and quantified the axonal transport of α-synuclein fibrils and showed that fibrils could be transferred from axons to second-order neurons following anterograde transport. Methods We grew primary cortical mouse neurons in microfluidic devices to separate soma from axonal projections in fluidically isolated microenvironments. We used live-cell imaging and immunofluorescence to characterize the transport of fluorescent α-synuclein fibrils and their transfer to second-order neurons. Results Fibrillar α-synuclein was internalized by primary neurons and transported in axons with kinetics consistent with slow component-b of axonal transport (fast axonal transport with saltatory movement). Fibrillar α-synuclein was readily observed in the cell bodies of second-order neurons following anterograde axonal transport. Axon-to-soma transfer appeared not to require synaptic contacts. Interpretation These results support the hypothesis that the progression of Parkinson's disease can be caused by neuron-to-neuron spread of α-synuclein aggregates and that the anatomical pattern of progression of lesions between axonally connected areas results from the axonal transport of such aggregates. That the transfer did not appear to be transsynaptic gives hope that α-synuclein fibrils could be intercepted by drugs during the extra-cellular phase of their journey. PMID:23109146

  15. Anatomical evidence for direct fiber projections from the cerebellar nucleus interpositus to rubrospinal neurons. A quantitative EM study in the rat combining anterograde and retrograde intra-axonal tracing methods

    International Nuclear Information System (INIS)

    Dekker, J.J.

    1981-01-01

    A quantitative electron microscopic (EM) study combining the anterograde intra-axonal transport of radioactive amino acids and the retrograde intra-axonal transport of the enzyme horseradish peroxidase (HRP) was performed in the magnocellular red nucleus of the rat to obtain anatomical evidence as to whether there is a direct projection from the cerebellar nucleus interpositus to the cells in the red nucleus that give rise to the rubrospinal tract. Large asymmetrical synaptic terminals were radioactively labeled in the magnocellular red nucleus following injections of [ 3 H]leucine into the cerebellar nucleus interpositus. In these same animals, the postsynaptic target neurons were labeled with HRP granules after injection of this substance in the rubrospinal tract. A quantitative analysis showed that more than 85% of the large and giant neurons in the magnocellular red nucleus were labeled with HRP granules and also received synaptic contacts from radioactively-labeled terminals. Thus, it can be concluded that in the rat, afferents from the cerebellar nucleus interpositus establish asymmetrical synaptic contacts with large and giant rubrospinal neurons, thus confirming and extending the previous physiological evidence of such direct monosynaptic connections. (Auth.)

  16. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    Science.gov (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  17. Nociceptive DRG neurons express muscle lim protein upon axonal injury.

    Science.gov (United States)

    Levin, Evgeny; Andreadaki, Anastasia; Gobrecht, Philipp; Bosse, Frank; Fischer, Dietmar

    2017-04-04

    Muscle lim protein (MLP) has long been regarded as a cytosolic and nuclear muscular protein. Here, we show that MLP is also expressed in a subpopulation of adult rat dorsal root ganglia (DRG) neurons in response to axonal injury, while the protein was not detectable in naïve cells. Detailed immunohistochemical analysis of L4/L5 DRG revealed ~3% of MLP-positive neurons 2 days after complete sciatic nerve crush and maximum ~10% after 4-14 days. Similarly, in mixed cultures from cervical, thoracic, lumbar and sacral DRG ~6% of neurons were MLP-positive after 2 days and maximal 17% after 3 days. In both, histological sections and cell cultures, the protein was detected in the cytosol and axons of small diameter cells, while the nucleus remained devoid. Moreover, the vast majority could not be assigned to any of the well characterized canonical DRG subpopulations at 7 days after nerve injury. However, further analysis in cell culture revealed that the largest population of MLP expressing cells originated from non-peptidergic IB4-positive nociceptive neurons, which lose their ability to bind the lectin upon axotomy. Thus, MLP is mostly expressed in a subset of axotomized nociceptive neurons and can be used as a novel marker for this population of cells.

  18. Profiling biomarkers of traumatic axonal injury: From mouse to man.

    Science.gov (United States)

    Manivannan, Susruta; Makwana, Milan; Ahmed, Aminul Islam; Zaben, Malik

    2018-05-18

    Traumatic brain injury (TBI) poses a major public health problem on a global scale. Its burden results from high mortality and significant morbidity in survivors. This stems, in part, from an ongoing inadequacy in diagnostic and prognostic indicators despite significant technological advances. Traumatic axonal injury (TAI) is a key driver of the ongoing pathological process following TBI, causing chronic neurological deficits and disability. The science underpinning biomarkers of TAI has been a subject of many reviews in recent literature. However, in this review we provide a comprehensive account of biomarkers from animal models to clinical studies, bridging the gap between experimental science and clinical medicine. We have discussed pathogenesis, temporal kinetics, relationships to neuro-imaging, and, most importantly, clinical applicability in order to provide a holistic perspective of how this could improve TBI diagnosis and predict clinical outcome in a real-life setting. We conclude that early and reliable identification of axonal injury post-TBI with the help of body fluid biomarkers could enhance current care of TBI patients by (i) increasing speed and accuracy of diagnosis, (ii) providing invaluable prognostic information, (iii) allow efficient allocation of rehabilitation services, and (iv) provide potential therapeutic targets. The optimal model for assessing TAI is likely to involve multiple components, including several blood biomarkers and neuro-imaging modalities, at different time points. Copyright © 2018. Published by Elsevier B.V.

  19. Electromagnetic decay of giant resonances

    International Nuclear Information System (INIS)

    Beene, J.R.; Bertrand, F.E.; Halbert, M.L.; Auble, R.L.; Hensley, D.C.; Horen, D.J.; Robinson, R.L.; Sayer, R.O.; Sjoreen, T.P.

    1985-01-01

    Coincidence experiments were done to investigate the photon and neutron emission from the giant resonance regions of 208 Pb and 90 Zr using the ORNL Spin Spectrometer, a 72-segment NaI detector system. We have determined the total gamma-decay probability, the ground-state gamma branching ratio, and the branching ratios to a number of low-lying states as a function of excitation energy in 208 Pb to approx.15 MeV. Similar data were also obtained on 90 Zr. The total yield of ground-state E2 gamma radiation in 208 Pb and the comparative absence of such radiation in 90 Zr can only be understood if decay of compound (damped) states is considered. Other observations in 208 Pb include the absence of a significant branch from the giant quadrupole resonance (GQR) to the 3 - state at 2.6 MeV, a strong branch to a 3 - state at 4.97 MeV from the same region, and transitions to various 1 - states between 5 to 7 MeV from the E* approx. 14 MeV region (EO resonance)

  20. Bridging the gap: axonal fusion drives rapid functional recovery of the nervous system

    Directory of Open Access Journals (Sweden)

    Jean-Sébastien Teoh

    2018-01-01

    Full Text Available Injuries to the central or peripheral nervous system frequently cause long-term disabilities because damaged neurons are unable to efficiently self-repair. This inherent deficiency necessitates the need for new treatment options aimed at restoring lost function to patients. Compared to humans, a number of species possess far greater regenerative capabilities, and can therefore provide important insights into how our own nervous systems can be repaired. In particular, several invertebrate species have been shown to rapidly initiate regeneration post-injury, allowing separated axon segments to re-join. This process, known as axonal fusion, represents a highly efficient repair mechanism as a regrowing axon needs to only bridge the site of damage and fuse with its separated counterpart in order to re-establish its original structure. Our recent findings in the nematode Caenorhabditis elegans have expanded the promise of axonal fusion by demonstrating that it can restore complete function to damaged neurons. Moreover, we revealed the importance of injury-induced changes in the composition of the axonal membrane for mediating axonal fusion, and discovered that the level of axonal fusion can be enhanced by promoting a neuron's intrinsic growth potential. A complete understanding of the molecular mechanisms controlling axonal fusion may permit similar approaches to be applied in a clinical setting.

  1. Noninvasive Detection and Differentiation of Axonal Injury/Loss, Demyelination, and Inflammation

    Science.gov (United States)

    2014-10-01

    phosphorylated neurofilament primary antibody (SMI-31; 1:1000, Covance , US) to stain non-injured axons, and in rabbit anti-myelin basic protein (MBP) primary...neurofilament antibody (SMI- 31; 1:1000, Covance , US) to stain non-injured axons or with rabbit anti-myelin basic protein (MBP) antibody (1:1000, Sigma Inc

  2. MuSC is involved in regulating axonal fasciculation of mouse primary vestibular afferents.

    Science.gov (United States)

    Kawauchi, Daisuke; Kobayashi, Hiroaki; Sekine-Aizawa, Yoko; Fujita, Shinobu C; Murakami, Fujio

    2003-10-01

    Regulation of axonal fasciculation plays an important role in the precise patterning of neural circuits. Selective fasciculation contributes to the sorting of different types of axons and prevents the misrouting of axons. However, axons must defasciculate once they reach the target area. To study the regulation of fasciculation, we focused on the primary vestibulo-cerebellar afferents (PVAs), which show a dramatic change from fasciculated axon bundles to defasciculated individual axons at their target region, the cerebellar primordium. To understand how fasciculation and defasciculation are regulated in this system, we investigated the roles of murine SC1-related protein (MuSC), a molecule belonging to the immunoglobulin superfamily. We show: (i) by comparing 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil) labelling and anti-MuSC immunohistochemistry, that downregulation of MuSC in PVAs during development is concomitant with the defasciculation of PVA axons; (ii) in a binding assay with cells expressing MuSC, that MuSC has cell-adhesive activity via a homophilic binding mechanism, and this activity is increased by multimerization; and (iii) that MuSC also displays neurite outgrowth-promoting activity in vestibular ganglion cultures. These findings suggest that MuSC is involved in axonal fasciculation and its downregulation may help to initiate the defasciculation of PVAs.

  3. Interaction between the soma and the axon terminal of horizontal cells in carp retina

    NARCIS (Netherlands)

    Kamermans, M.; van Dijk, B. W.; Spekreijse, H.

    1990-01-01

    In teleost retina, the receptive fields of horizontal cell axon terminals have a larger space constant than the receptive fields of the horizontal cell somata. Generally this difference in receptive field size is attributed to the cell coupling which is assumed to be stronger in the horizontal axon

  4. Axon-somatic back-propagation in detailed models of spinal alpha motoneurons

    Directory of Open Access Journals (Sweden)

    Pietro eBalbi

    2015-02-01

    Full Text Available Antidromic action potentials following distal stimulation of motor axons occasionally fail to invade the soma of alpha motoneurons in spinal cord, due to their passing through regions of high non-uniformity.Morphologically detailed conductance-based models of cat spinal alpha motoneurons have been developed, with the aim to reproduce and clarify some aspects of the electrophysiological behavior of the antidromic axon-somatic spike propagation. Fourteen 3D morphologically detailed somata and dendrites of cat spinal alpha motoneurons have been imported from an open-access web-based database of neuronal morphologies, NeuroMorpho.org, and instantiated in neurocomputational models. An axon hillock, an axonal initial segment and a myelinated axon are added to each model.By sweeping the diameter of the axonal initial segment (AIS and the axon hillock, as well as the maximal conductances of sodium channels at the AIS and at the soma, the developed models are able to show the relationships between different geometric and electrophysiological configurations and the voltage attenuation of the antidromically travelling wave.In particular, a greater than usually admitted sodium conductance at AIS is necessary and sufficient to overcome the dramatic voltage attenuation occurring during antidromic spike propagation both at the myelinated axon-AIS and at the AIS-soma transitions.

  5. Structure and Function of an Actin-Based Filter in the Proximal Axon

    Directory of Open Access Journals (Sweden)

    Varuzhan Balasanyan

    2017-12-01

    Full Text Available Summary: The essential organization of microtubules within neurons has been described; however, less is known about how neuronal actin is arranged and the functional implications of its arrangement. Here, we describe, in live cells, an actin-based structure in the proximal axon that selectively prevents some proteins from entering the axon while allowing the passage of others. Concentrated patches of actin in proximal axons are present shortly after axonal specification in rat and zebrafish neurons imaged live, and they mark positions where anterogradely traveling vesicles carrying dendritic proteins halt and reverse. Patches colocalize with the ARP2/3 complex, and when ARP2/3-mediated nucleation is blocked, a dendritic protein mislocalizes to the axon. Patches are highly dynamic, with few persisting longer than 30 min. In neurons in culture and in vivo, actin appears to form a contiguous, semipermeable barrier, despite its apparently sparse distribution, preventing axonal localization of constitutively active myosin Va but not myosin VI. : Balasanyan et al. find dynamic patches of actin in proximal axons of live neurons, mature and newly differentiated, in culture and in vivo. Patches contribute to a filter that sequesters some proteins within the somatodendritic domain while allowing others to pass into the axon, leading to polarized localization of proteins.

  6. N-docosahexaenoylethanolamine regulates Hedgehog signaling and promotes growth of cortical axons

    Directory of Open Access Journals (Sweden)

    Giorgi Kharebava

    2015-12-01

    Full Text Available Axonogenesis, a process for the establishment of neuron connectivity, is central to brain function. The role of metabolites derived from docosahexaenoic acid (DHA, 22:6n-3 that is specifically enriched in the brain, has not been addressed in axon development. In this study, we tested if synaptamide (N-docosahexaenoylethanolamine, an endogenous metabolite of DHA, affects axon growth in cultured cortical neurons. We found that synaptamide increased the average axon length, inhibited GLI family zinc finger 1 (GLI1 transcription and sonic hedgehog (Shh target gene expression while inducing cAMP elevation. Similar effects were produced by cyclopamine, a regulator of the Shh pathway. Conversely, Shh antagonized elevation of cAMP and blocked synaptamide-mediated increase in axon length. Activation of Shh pathway by a smoothened (SMO agonist (SAG or overexpression of SMO did not inhibit axon growth mediated by synaptamide or cyclopamine. Instead, adenylate cyclase inhibitor SQ22536 abolished synaptamide-mediated axon growth indicating requirement of cAMP elevation for this process. Our findings establish that synaptamide promotes axon growth while Shh antagonizes synaptamide-mediated cAMP elevation and axon growth by a SMO-independent, non-canonical pathway.

  7. A high mitochondrial transport rate characterizes CNS neurons with high axonal regeneration capacity.

    Directory of Open Access Journals (Sweden)

    Romain Cartoni

    Full Text Available Improving axonal transport in the injured and diseased central nervous system has been proposed as a promising strategy to improve neuronal repair. However, the contribution of each cargo to the repair mechanism is unknown. DRG neurons globally increase axonal transport during regeneration. Because the transport of specific cargos after axonal insult has not been examined systematically in a model of enhanced regenerative capacity, it is unknown whether the transport of all cargos would be modulated equally in injured central nervous system neurons. Here, using a microfluidic culture system we compared neurons co-deleted for PTEN and SOCS3, an established model of high axonal regeneration capacity, to control neurons. We measured the axonal transport of three cargos (mitochondria, synaptic vesicles and late endosomes in regenerating axons and found that the transport of mitochondria, but not the other cargos, was increased in PTEN/SOCS3 co-deleted axons relative to controls. The results reported here suggest a pivotal role for this organelle during axonal regeneration.

  8. In silico modeling of axonal reconnection within a discrete fiber tract after spinal cord injury.

    Science.gov (United States)

    Woolfe, Franco; Waxman, Stephen G; Hains, Bryan C

    2007-02-01

    Following spinal cord injury (SCI), descending axons that carry motor commands from the brain to the spinal cord are injured or transected, producing chronic motor dysfunction and paralysis. Reconnection of these axons is a major prerequisite for restoration of function after SCI. Thus far, only modest gains in motor function have been achieved experimentally or in the clinic after SCI, identifying the practical limitations of current treatment approaches. In this paper, we use an ordinary differential equation (ODE) to simulate the relative and synergistic contributions of several experimentally-established biological factors related to inhibition or promotion of axonal repair and restoration of function after SCI. The factors were mathematically modeled by the ODE. The results of our simulation show that in a model system, many factors influenced the achievability of axonal reconnection. Certain factors more strongly affected axonal reconnection in isolation, and some factors interacted in a synergistic fashion to produce further improvements in axonal reconnection. Our data suggest that mathematical modeling may be useful in evaluating the complex interactions of discrete therapeutic factors not possible in experimental preparations, and highlight the benefit of a combinatorial therapeutic approach focused on promoting axonal sprouting, attraction of cut ends, and removal of growth inhibition for achieving axonal reconnection. Predictions of this simulation may be of utility in guiding future experiments aimed at restoring function after SCI.

  9. A developmental timing switch promotes axon outgrowth independent of known guidance receptors.

    Directory of Open Access Journals (Sweden)

    Katherine Olsson-Carter

    2010-08-01

    Full Text Available To form functional neuronal connections, axon outgrowth and guidance must be tightly regulated across space as well as time. While a number of genes and pathways have been shown to control spatial features of axon development, very little is known about the in vivo mechanisms that direct the timing of axon initiation and elongation. The Caenorhabditis elegans hermaphrodite specific motor neurons (HSNs extend a single axon ventrally and then anteriorly during the L4 larval stage. Here we show the lin-4 microRNA promotes HSN axon initiation after cell cycle withdrawal. Axons fail to form in lin-4 mutants, while they grow prematurely in lin-4-overexpressing animals. lin-4 is required to down-regulate two inhibitors of HSN differentiation--the transcriptional regulator LIN-14 and the "stemness" factor LIN-28--and it likely does so through a cell-autonomous mechanism. This developmental switch depends neither on the UNC-40/DCC and SAX-3/Robo receptors nor on the direction of axon growth, demonstrating that it acts independently of ventral guidance signals to control the timing of HSN axon elongation.

  10. Modeling of the axon membrane skeleton structure and implications for its mechanical properties.

    Directory of Open Access Journals (Sweden)

    Yihao Zhang

    2017-02-01

    Full Text Available Super-resolution microscopy recently revealed that, unlike the soma and dendrites, the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under tension. Currently, the structure-function relationship of the axonal structure is unclear. Here, we used atomic force microscopy (AFM to show that the stiffness of the axon plasma membrane is significantly higher than the stiffnesses of dendrites and somata. To examine whether the structure of the axon plasma membrane determines its overall stiffness, we introduced a coarse-grain molecular dynamics model of the axon membrane skeleton that reproduces the structure identified by super-resolution microscopy. Our proposed computational model accurately simulates the median value of the Young's modulus of the axon plasma membrane determined by atomic force microscopy. It also predicts that because the spectrin filaments are under entropic tension, the thermal random motion of the voltage-gated sodium channels (Nav, which are bound to ankyrin particles, a critical axonal protein, is reduced compared to the thermal motion when spectrin filaments are held at equilibrium. Lastly, our model predicts that because spectrin filaments are under tension, any axonal injuries that lacerate spectrin filaments will likely lead to a permanent disruption of the membrane skeleton due to the inability of spectrin filaments to spontaneously form their initial under-tension configuration.

  11. Modeling of the axon membrane skeleton structure and implications for its mechanical properties.

    Science.gov (United States)

    Zhang, Yihao; Abiraman, Krithika; Li, He; Pierce, David M; Tzingounis, Anastasios V; Lykotrafitis, George

    2017-02-01

    Super-resolution microscopy recently revealed that, unlike the soma and dendrites, the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under tension. Currently, the structure-function relationship of the axonal structure is unclear. Here, we used atomic force microscopy (AFM) to show that the stiffness of the axon plasma membrane is significantly higher than the stiffnesses of dendrites and somata. To examine whether the structure of the axon plasma membrane determines its overall stiffness, we introduced a coarse-grain molecular dynamics model of the axon membrane skeleton that reproduces the structure identified by super-resolution microscopy. Our proposed computational model accurately simulates the median value of the Young's modulus of the axon plasma membrane determined by atomic force microscopy. It also predicts that because the spectrin filaments are under entropic tension, the thermal random motion of the voltage-gated sodium channels (Nav), which are bound to ankyrin particles, a critical axonal protein, is reduced compared to the thermal motion when spectrin filaments are held at equilibrium. Lastly, our model predicts that because spectrin filaments are under tension, any axonal injuries that lacerate spectrin filaments will likely lead to a permanent disruption of the membrane skeleton due to the inability of spectrin filaments to spontaneously form their initial under-tension configuration.

  12. Blast overpressure induced axonal injury changes in rat brainstem and spinal cord

    Directory of Open Access Journals (Sweden)

    Srinivasu Kallakuri

    2015-01-01

    Full Text Available Introduction: Blast induced neurotrauma has been the signature wound in returning soldiers from the ongoing wars in Iraq and Afghanistan. Of importance is understanding the pathomechansim(s of blast overpressure (OP induced axonal injury. Although several recent animal models of blast injury indicate the neuronal and axonal injury in various brain regions, animal studies related to axonal injury in the white matter (WM tracts of cervical spinal cord are limited. Objective: The purpose of this study was to assess the extent of axonal injury in WM tracts of cervical spinal cord in male Sprague Dawley rats subjected to a single insult of blast OP. Materials and Methods: Sagittal brainstem sections and horizontal cervical spinal cord sections from blast and sham animals were stained by neurofilament light (NF-L chain and beta amyloid precursor protein immunocytochemistry and observed for axonal injury changes. Results: Observations from this preliminary study demonstrate axonal injury changes in the form of prominent swellings, retraction bulbs, and putative signs of membrane disruptions in the brainstem and cervical spinal cord WM tracts of rats subjected to blast OP. Conclusions: Prominent axonal injury changes following the blast OP exposure in brainstem and cervical spinal WM tracts underscores the need for careful evaluation of blast induced injury changes and associated symptoms. NF-L immunocytochemistry can be considered as an additional tool to assess the blast OP induced axonal injury.

  13. The Kinesin Adaptor Calsyntenin-1 Organizes Microtubule Polarity and Regulates Dynamics during Sensory Axon Arbor Development

    Directory of Open Access Journals (Sweden)

    Mary C. Halloran

    2017-04-01

    Full Text Available Axon growth and branching, and development of neuronal polarity are critically dependent on proper organization and dynamics of the microtubule (MT cytoskeleton. MTs must organize with correct polarity for delivery of diverse cargos to appropriate subcellular locations, yet the molecular mechanisms regulating MT polarity remain poorly understood. Moreover, how an actively branching axon reorganizes MTs to direct their plus ends distally at branch points is unknown. We used high-speed, in vivo imaging of polymerizing MT plus ends to characterize MT dynamics in developing sensory axon arbors in zebrafish embryos. We find that axonal MTs are highly dynamic throughout development, and that the peripheral and central axons of sensory neurons show differences in MT behaviors. Furthermore, we show that Calsyntenin-1 (Clstn-1, a kinesin adaptor required for sensory axon branching, also regulates MT polarity in developing axon arbors. In wild type neurons the vast majority of MTs are directed in the correct plus-end-distal orientation from early stages of development. Loss of Clstn-1 causes an increase in MTs polymerizing in the retrograde direction. These misoriented MTs most often are found near growth cones and branch points, suggesting Clstn-1 is particularly important for organizing MT polarity at these locations. Together, our results suggest that Clstn-1, in addition to regulating kinesin-mediated cargo transport, also organizes the underlying MT highway during axon arbor development.

  14. Integration of shallow gradients of Shh and Netrin-1 guides commissural axons.

    Science.gov (United States)

    Sloan, Tyler F W; Qasaimeh, Mohammad A; Juncker, David; Yam, Patricia T; Charron, Frédéric

    2015-03-01

    During nervous system development, gradients of Sonic Hedgehog (Shh) and Netrin-1 attract growth cones of commissural axons toward the floor plate of the embryonic spinal cord. Mice defective for either Shh or Netrin-1 signaling have commissural axon guidance defects, suggesting that both Shh and Netrin-1 are required for correct axon guidance. However, how Shh and Netrin-1 collaborate to guide axons is not known. We first quantified the steepness of the Shh gradient in the spinal cord and found that it is mostly very shallow. We then developed an in vitro microfluidic guidance assay to simulate these shallow gradients. We found that axons of dissociated commissural neurons respond to steep but not shallow gradients of Shh or Netrin-1. However, when we presented axons with combined Shh and Netrin-1 gradients, they had heightened sensitivity to the guidance cues, turning in response to shallower gradients that were unable to guide axons when only one cue was present. Furthermore, these shallow gradients polarized growth cone Src-family kinase (SFK) activity only when Shh and Netrin-1 were combined, indicating that SFKs can integrate the two guidance cues. Together, our results indicate that Shh and Netrin-1 synergize to enable growth cones to sense shallow gradients in regions of the spinal cord where the steepness of a single guidance cue is insufficient to guide axons, and we identify a novel type of synergy that occurs when the steepness (and not the concentration) of a guidance cue is limiting.

  15. Brief electrical stimulation accelerates axon regeneration in the peripheral nervous system and promotes sensory axon regeneration in the central nervous system.

    Science.gov (United States)

    Gordon, Tessa; Udina, Esther; Verge, Valerie M K; de Chaves, Elena I Posse

    2009-10-01

    Injured peripheral but not central nerves regenerate their axons but functional recovery is often poor. We demonstrate that prolonged periods of axon separation from targets and Schwann cell denervation eliminate regenerative capacity in the peripheral nervous system (PNS). A substantial delay of 4 weeks for all regenerating axons to cross a site of repair of sectioned nerve contributes to the long period of separation. Findings that 1h 20Hz bipolar electrical stimulation accelerates axon outgrowth across the repair site and the downstream reinnervation of denervated muscles in rats and human patients, provides a new and exciting method to improve functional recovery after nerve injuries. Drugs that elevate neuronal cAMP and activate PKA promote axon outgrowth in vivo and in vitro, mimicking the electrical stimulation effect. Rapid expression of neurotrophic factors and their receptors and then of growth associated proteins thereafter via cAMP, is the likely mechanism by which electrical stimulation accelerates axon outgrowth from the site of injury in both peripheral and central nervous systems.

  16. Transfer of vesicles from Schwann cell to axon: a novel mechanism of communication in the peripheral nervous system

    Directory of Open Access Journals (Sweden)

    María Alejandra eLopez-Verrilli

    2012-06-01

    Full Text Available Schwann cells (SCs are the glial component of the peripheral nervous system, with essential roles during development and maintenance of axons, as well as during regenerative processes after nerve injury. SCs increase conduction velocities by myelinating axons, regulate synaptic activity at presynaptic nerve terminals and are a source of trophic factors to neurons. Thus, development and maintenance of peripheral nerves are crucially dependent on local signalling between SCs and axons. In addition to the classic mechanisms of intercellular signalling, the possibility of communication through secreted vesicles has been poorly explored to date. Interesting recent findings suggest the occurrence of lateral transfer mediated by vesicles from glial cells to axons that could have important roles in axonal growth and axonal regeneration. Here, we review the role of vesicular transfer from SCs to axons and propose the benefits of this means in supporting neuronal and axonal maintenance and regeneration after nerve damage.

  17. The disruption of mitochondrial axonal transport is an early event in neuroinflammation

    DEFF Research Database (Denmark)

    Errea, Oihana; Moreno, Beatriz; Gonzalez-Franquesa, Alba

    2015-01-01

    in the cerebellar slice cultures was analyzed through high-resolution respirometry assays and quantification of adenosine triphosphate (ATP) production. RESULTS: Both conditions promoted an increase in the size and complexity of axonal mitochondria evident in electron microscopy images, suggesting a compensatory...... acutely impairs axonal mitochondrial transportation, which would promote an inappropriate delivery of energy throughout axons and, by this way, contribute to axonal damage. Thus, preserving axonal mitochondrial transport might represent a promising avenue to exploit as a therapeutic target...... response. Such compensation was reflected at the tissue level as increased respiratory activity of complexes I and IV and as a transient increase in ATP production in response to acute inflammation. Notably, time-lapse microscopy indicated that mitochondrial transport (mean velocity) was severely impaired...

  18. Golgi bypass for local delivery of axonal proteins, fact or fiction?

    Science.gov (United States)

    González, Carolina; Cornejo, Víctor Hugo; Couve, Andrés

    2018-04-06

    Although translation of cytosolic proteins is well described in axons, much less is known about the synthesis, processing and trafficking of transmembrane and secreted proteins. A canonical rough endoplasmic reticulum or a stacked Golgi apparatus has not been detected in axons, generating doubts about the functionality of a local route. However, axons contain mRNAs for membrane and secreted proteins, translation factors, ribosomal components, smooth endoplasmic reticulum and post-endoplasmic reticulum elements that may contribute to local biosynthesis and plasma membrane delivery. Here we consider the evidence supporting a local secretory system in axons. We discuss exocytic elements and examples of autonomous axonal trafficking that impact development and maintenance. We also examine whether unconventional post-endoplasmic reticulum pathways may replace the canonical Golgi apparatus. Copyright © 2018. Published by Elsevier Ltd.

  19. Nuclear-Encoded Mitochondrial mRNAs: A Powerful Force in Axonal Growth and Development.

    Science.gov (United States)

    Gale, Jenna R; Aschrafi, Armaz; Gioio, Anthony E; Kaplan, Barry B

    2018-04-01

    Axons, their growth cones, and synaptic nerve terminals are neuronal subcompartments that have high energetic needs. As such, they are enriched in mitochondria, which supply the ATP necessary to meet these demands. To date, a heterogeneous population of nuclear-encoded mitochondrial mRNAs has been identified in distal axons and growth cones. Accumulating evidence suggests that the local translation of these mRNAs is required for mitochondrial maintenance and axonal viability. Here, we review evidence that suggests a critical role for axonal translation of nuclear-encoded mitochondrial mRNAs in axonal growth and development. Additionally, we explore the role that site-specific translation at the mitochondria itself may play in this process. Finally, we briefly review the clinical implications of dysregulation of local translation of mitochondrial-related mRNAs in neurodevelopmental disorders.

  20. Intra-axonal Synthesis of SNAP25 Is Required for the Formation of Presynaptic Terminals

    Directory of Open Access Journals (Sweden)

    Andreia F.R. Batista

    2017-09-01

    Full Text Available Localized protein synthesis is a mechanism for developing axons to react acutely and in a spatially restricted manner to extracellular signals. As such, it is important for many aspects of axonal development, but its role in the formation of presynapses remains poorly understood. We found that the induced assembly of presynaptic terminals required local protein synthesis. Newly synthesized proteins were detectable at nascent presynapses within 15 min of inducing synapse formation in isolated axons. The transcript for the t-SNARE protein SNAP25, which is required for the fusion of synaptic vesicles with the plasma membrane, was recruited to presynaptic sites and locally translated. Inhibition of intra-axonal SNAP25 synthesis affected the clustering of SNAP25 and other presynaptic proteins and interfered with the release of synaptic vesicles from presynaptic sites. This study reveals a critical role for the axonal synthesis of SNAP25 in the assembly of presynaptic terminals.

  1. BmRobo2/3 is required for axon guidance in the silkworm Bombyx mori.

    Science.gov (United States)

    Li, Xiao-Tong; Yu, Qi; Zhou, Qi-Sheng; Zhao, Xiao; Liu, Zhao-Yang; Cui, Wei-Zheng; Liu, Qing-Xin

    2016-02-15

    Axon guidance is critical for proper wiring of the nervous system. During the neural development, the axon guidance molecules play a key role and direct axons to choose the correct way to reach the target. Robo, as the receptor of axon guidance molecule Slit, is evolutionarily conserved from planarians to humans. However, the function of Robo in the silkworm, Bombyx mori, remained unknown. In this study, we cloned robo2/3 from B. mori (Bmrobo2/3), a homologue of robo2/3 in Tribolium castaneum. Moreover, BmRobo2/3 was localized in the neuropil, and RNAi-mediated knockdown of Bmrobo2/3 resulted in the longitudinal connectives forming closer to the midline. These data demonstrate that BmRobo2/3 is required for axon guidance in the silkworm. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Axonal sprouting regulates myelin basic protein gene expression in denervated mouse hippocampus

    DEFF Research Database (Denmark)

    Jensen, M B; Poulsen, F R; Finsen, B

    2000-01-01

    to 35 days after transection of the entorhino-hippocampal perforant path axonal projection. In situ hybridization analysis showed that anterograde axonal and terminal degeneration lead to upregulated oligodendrocyte MBP mRNA expression starting between day 2 and day 4, in (1) the deep part of stratum...... axonal and terminal degeneration, myelin degenerative changes, microglial activation and axotomi-induced axonal sprouting. Oligodendrocyte MBP mRNA expression reached maximum in both these areas at day 7. MBP gene transcription remained constant in stratum radiatum, stratum pyramidale and stratum oriens...... of CA1, areas that were unaffected by perforant path transection. These results provide strong evidence that oligodendrocyte MBP gene expression can be regulated by axonal sprouting independently of microglial activation in the injured adult CNS....

  3. Dorsal column sensory axons degenerate due to impaired microvascular perfusion after spinal cord injury in rats

    Science.gov (United States)

    Muradov, Johongir M.; Ewan, Eric E.; Hagg, Theo

    2013-01-01

    The mechanisms contributing to axon loss after spinal cord injury (SCI) are largely unknown but may involve microvascular loss as we have previously suggested. Here, we used a mild contusive injury (120 kdyn IH impactor) at T9 in rats focusing on ascending primary sensory dorsal column axons, anterogradely traced from the sciatic nerves. The injury caused a rapid and progressive loss of dorsal column microvasculature and oligodendrocytes at the injury site and penumbra and a ~70% loss of the sensory axons, by 24 hours. To model the microvascular loss, focal ischemia of the T9 dorsal columns was achieved via phototoxic activation of intravenously injected rose bengal. This caused an ~53% loss of sensory axons and an ~80% loss of dorsal column oligodendrocytes by 24 hours. Axon loss correlated with the extent and axial length of microvessel and oligodendrocyte loss along the dorsal column. To determine if oligodendrocyte loss contributes to axon loss, the glial toxin ethidium bromide (EB; 0.3 µg/µl) was microinjected into the T9 dorsal columns, and resulted in an ~88% loss of dorsal column oligodendrocytes and an ~56% loss of sensory axons after 72 hours. EB also caused an ~72% loss of microvessels. Lower concentrations of EB resulted in less axon, oligodendrocyte and microvessel loss, which were highly correlated (R2 = 0.81). These data suggest that focal spinal cord ischemia causes both oligodendrocyte and axon degeneration, which are perhaps linked. Importantly, they highlight the need of limiting the penumbral spread of ischemia and oligodendrocyte loss after SCI in order to protect axons. PMID:23978615

  4. Delineating neurotrophin-3 dependent signaling pathways underlying sympathetic axon growth along intermediate targets.

    Science.gov (United States)

    Keeler, Austin B; Suo, Dong; Park, Juyeon; Deppmann, Christopher D

    2017-07-01

    Postganglionic sympathetic neurons detect vascular derived neurotrophin 3 (NT3) via the axonally expressed receptor tyrosine kinase, TrkA, to promote chemo-attraction along intermediate targets. Once axons arrive to their final target, a structurally related neurotrophic factor, nerve growth factor (NGF), also acts through TrkA to promote final target innervation. Does TrkA signal differently at these different locales? We previously found that Coronin-1 is upregulated in sympathetic neurons upon exposure to NGF, thereby endowing the NGF-TrkA complex with new signaling capabilities (i.e. calcium signaling), which dampens axon growth and branching. Based on the notion that axons do not express functional levels of Coronin-1 prior to final target innervation, we developed an in vitro model for axon growth and branching along intermediate targets using Coro1a -/- neurons grown in NT3. We found that, similar to NGF-TrkA, NT3-TrkA is capable of inducing MAPK and PI3K in the presence or absence of Coronin-1. However, unlike NGF, NT3 does not induce calcium release from intracellular stores. Using a combination of pharmacology, knockout neurons and in vitro functional assays, we suggest that the NT3-TrkA complex uses Ras/MAPK and/or PI3K-AKT signaling to induce axon growth and inhibit axon branching along intermediate targets. However, in the presence of Coronin-1, these signaling pathways lose their ability to impact NT3 dependent axon growth or branching. This is consistent with a role for Coronin-1 as a molecular switch for axon behavior and suggests that Coronin-1 suppresses NT3 dependent axon behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Giant multimodal heart motoneurons of Achatina fulica: a new cardioregulatory input in pulmonates.

    Science.gov (United States)

    Zhuravlev, V; Bugaj, V; Kodirov, S; Safonova, T; Staruschenko, A

    2001-08-01

    The regulation of the heartbeat by the two largest neurons, d-VLN and d-RPLN, on the dorsal surface of visceral and right parietal ganglia of Giant African snail, Achatina fulica, was examined. Using the new method of animal preparation, for the first time, discrete biphasic inhibitory-excitatory junction potentials (I-EJPs) in the heart and several muscles of the visceral sac were recorded. The duration of hyperpolarizing phase (H-phase) of biphasic I-EJPs was 269+/-5.6 ms (n=5), which is 2-3 times less than that of the cholinergic inhibitory JPs (682+/-68.5 ms, n=5). The H-phase of I-EJPs was not altered by the application of atropine, picrotoxine, succinylcholinchloride, D-tubocurarine and tetraethylammonium or substitution of Cl(-) ions. Even the low-frequency neuronal discharges (1-2 imp/s) evoked significant facilitation and potentiation of the H-phase. Between the multimodal neurons d-VLN/d-RPLN and mantle or visceral organs there is evidence of direct synaptic connections. These neurons were found to have no axonal branches in the intestinal nerve as once suspected but reach the heart through several other nerves. New giant heart motoneurons do not interact with previously identified cardioregulatory neurons.

  6. Electromagnetic decay of giant resonances

    International Nuclear Information System (INIS)

    Beene, J.R.; Bertrand, F.E.; Halbert, M.L.; Auble, R.L.; Hensley, D.C.; Horen, D.J.; Robinson, R.L.; Sayer, R.O.; Sjoreen, T.P.

    1985-01-01

    Coincidence experiments are carried out to investigate the photon and neutron emission from the giant resonance regions of 208 Pb and 90 Zr using the ORNL Spin Spectrometer, a 72-segment NaI detector system. The authors determined the total gamma-decay probability, the ground-state gamma branching ratio, and the branching ratios to a number of low-lying states as a function of excitation energy in 208 Pb to ∼15 MeV. Similar data were also obtained on 90 Zr. The total yield of ground-state E2 gamma radiation in 208 Pb and the comparative absence of such radiation in 90 Zr can only be understood if decay of compound (damped) states is considered. (Auth.)

  7. Giant trichobezoar mimicking gastric tumour

    International Nuclear Information System (INIS)

    Ali, S.A.; Soomro, A.G.; Jarwar, M.; Memon, A.S.; Siddiqui, A.J.

    2012-01-01

    We present a case of giant gastric trichobezoar retrieved through a long gastrotomy in a 40 years old married women from rural Sindh with unreported psychological disturbance. Trichobezoar almost exclusively occur in females with an underlying psychiatric disorder. It has an insidious development of symptoms which accounts for its delayed presentation and large size at the time of diagnosis. They are associated with trichophagia (habit of compulsive hair eating) and are usually diagnosed on CT Scans or upper GI Endoscopy. They can give rise to complications like gastro-duodenal ulceration, haemorrhage, perforation, peritonitis or obstruction with a high rate of mortality. The treatment is endoscopic, laparoscopic or surgical removal and usually followed by psychiatric opinion. (author)

  8. Giant Congenital Melanocytic Naevi: review of literature

    Directory of Open Access Journals (Sweden)

    A. Marchesi

    2012-04-01

    Full Text Available giant congenital pigmented naevi is a great reconstructive challenge for the pediatric and plastic surgeons. due to the increased risk of malignant transformation in such lesions, many procedures have been used to remove giant congenital naevi like dermoabrasion, laser treatment or surgical excision combined with reconstruction through skin expansion or skin grafting; among these, only a complete excision can offer an efficacious treatment. in our centre we use the “tissue expansion” technique in order to achieve a sufficient quantity of normal skin to perform a both staged and radical excision of these giant lesions.

  9. Multipole giant resonances in highly excited nuclei

    International Nuclear Information System (INIS)

    Xia Keding; Cai Yanhuang

    1989-01-01

    The isoscalar giant surface resonance and giant dipole resonance in highly excited nuclei are discussed. Excitation energies of the giant modes in 208 Pb are calculated in a simplified model, using the concept of energy wieghted sum rule (EWSR), and the extended Thomas-Fermi approximation at the finite temperature is employed to describe the finite temperature is employed to describe the finite temperature equilibrium state. It is shown that EWSR and the energy of the resonance depend only weakly on temperature in the system. This weak dependence is analysed

  10. Giant cell arteritis of fallopian tube.

    Science.gov (United States)

    Azzena, A; Altavilla, G; Salmaso, R; Vasoin, F; Pellizzari, P; Doria, A

    1994-01-01

    One case of giant cells arteritis involving tubaric arteries in a postmenopausal woman is described. The patient was 59 years old and presented with asthenia, anemia, fever, weight loss, an abdominal palpable mass and elevated erythrocyte sedimentation rate. Exploratory laparotomy revealed a large ovarian cyst of 14 cm in diameter. Extensive giant cell arteritis, Horton's type, of the small-sizes arteries was found unexpectedly in the fallopian tube of the patient who had had a prior ovariectomy. Giant cell arteritis of the female genital tract is a rare finding in elderly women and may occur as an isolated finding or as part of generalised arteritis.

  11. Gamma graphic findings in giant hepatic hemangioma

    International Nuclear Information System (INIS)

    Cano, R.; Morales, R.; Mendoza, P.; Ramirez, E.; Aguilar, C.

    1994-01-01

    The aim of the present work is to describe gamma graphic findings in patients with giant hepatic hemangiomas, when evaluated with 99m Tc red blood cell (RBC) imaging. Three patients with clinical suspicion of giant hepatic hemangiomas, who had had, ultrasound and computed tomography were studied with RBC using in vivo labelling with pyrophosphate. All cases had dynamic and static views. All cases showed hypoperfusion in dynamics views and over perfusion in delayed studies. Surgery confirmed diagnosis in two cases. 99m Tc RBC is a good method for diagnosis of giant hepatic hemangioma, which generally needs surgical treatment. (Authors). 24 refs., 2 figs

  12. An intracellular study on low-frequency acoustic signal processing in locust——Structure and function of the cercus-to-giant interneuron system

    Institute of Scientific and Technical Information of China (English)

    沈钧贤; 徐智敏

    1995-01-01

    The structure and function of the cercus-to-giant interneuron system,relevant to the receptionof low-frequency sound,within the terminal abdominal ganglion of the locust Locusta migratoria were revealedby using intracellular electrophysiological recording and dye labeling technique.This system consists of 4 bilater-al pairs of the giant interneurons(GIs 1—4).Each GI has distinct dendritic branching fields,position of thesoma,and location and orientation of its major axon.The characteristics of the system in responseto low-frequency sound,such as discharge patterns,the relationships between response threshold-frequency,in-tensity curves,and encoding of stimulus frequency,were also studied.The role of the system in low-frequencysound communication was discussed.

  13. Reversible Axonal Dystrophy by Calcium Modulation in Frataxin-Deficient Sensory Neurons of YG8R Mice

    Directory of Open Access Journals (Sweden)

    Belén Mollá

    2017-08-01

    Full Text Available Friedreich’s ataxia (FRDA is a peripheral neuropathy involving a loss of proprioceptive sensory neurons. Studies of biopsies from patients suggest that axonal dysfunction precedes the death of proprioceptive neurons in a dying-back process. We observed that the deficiency of frataxin in sensory neurons of dorsal root ganglia (DRG of the YG8R mouse model causes the formation of axonal spheroids which retain dysfunctional mitochondria, shows alterations in the cytoskeleton and it produces impairment of axonal transport and autophagic flux. The homogenous distribution of axonal spheroids along the neurites supports the existence of continues focal damages. This lead us to propose for FRDA a model of distal axonopathy based on axonal focal damages. In addition, we observed the involvement of oxidative stress and dyshomeostasis of calcium in axonal spheroid formation generating axonal injury as a primary cause of pathophysiology. Axonal spheroids may be a consequence of calcium imbalance, thus we propose the quenching or removal extracellular Ca2+ to prevent spheroids formation. In our neuronal model, treatments with BAPTA and o-phenanthroline reverted the axonal dystrophy and the mitochondrial dysmorphic parameters. These results support the hypothesis that axonal pathology is reversible in FRDA by pharmacological manipulation of intracellular Ca2+ with Ca2+ chelators or metalloprotease inhibitors, preventing Ca2+-mediated axonal injury. Thus, the modulation of Ca2+ levels may be a relevant therapeutic target to develop early axonal protection and prevent dying-back neurodegeneration.

  14. Extrinsic and intrinsic regulation of axon regeneration at a crossroads.

    Science.gov (United States)

    Kaplan, Andrew; Ong Tone, Stephan; Fournier, Alyson E

    2015-01-01

    Repair of the injured spinal cord is a major challenge in medicine. The limited intrinsic regenerative response mounted by adult central nervous system (CNS) neurons is further hampered by astrogliosis, myelin debris and scar tissue that characterize the damaged CNS. Improved axon regeneration and recovery can be elicited by targeting extrinsic factors as well as by boosting neuron-intrinsic growth regulators. Our knowledge of the molecular basis of intrinsic and extrinsic regulators of regeneration has expanded rapidly, resulting in promising new targets to promote repair. Intriguingly certain neuron-intrinsic growth regulators are emerging as promising targets to both stimulate growth and relieve extrinsic inhibition of regeneration. This crossroads between the intrinsic and extrinsic aspects of spinal cord injury is a promising target for effective therapies for this unmet need.

  15. The cholinergic ligand binding material of axonal membranes

    International Nuclear Information System (INIS)

    Mautner, H.G.; Coronado, R.; Jumblatt, J.E.

    1986-01-01

    Choline acetyltransferase and acetylcholinesterase, the enzymes responsible for the synthesis and hydrolysis of ACh, are present in nerve fibers. In crustacean peripheral nerves, release of ACh from cut nerve fibers has been demonstrated. Previously closed membrane vesicles have been prepared from lobster walking leg nerve plasma membrane and saturable binding of cholinergic agonsist and antagonists to such membranes have been demonstrated. This paper studies this axonal cholinergic binding material, and elucidates its functions. The binding of tritium-nicotine to lobster nerve plasma membranes was antagonized by a series of cholinergic ligands as well as by a series of local anesthetics. This preparation was capable of binding I 125-alpha-bungarotoxin, a ligand widely believed to be a specific label for nicotinic ACh receptor. The labelling of 50 K petide band with tritium-MBTA following disulfide reduction is illustrated

  16. The axonal guidance receptor neogenin promotes acute inflammation.

    Directory of Open Access Journals (Sweden)

    Klemens König

    Full Text Available Neuronal guidance proteins (NGP were originally described in the context of axonal growth and migration. Yet recent work has demonstrated that NGPs also serve as guidance cues for immune competent cells. A crucial target receptor for NGPs during embryonic development is the neogenin receptor, however its role during acute inflammation is unknown. We report here that neogenin is abundantly expressed outside the nervous system and that animals with endogenous repression of neogenin (Neo1(-/- demonstrate attenuated changes of acute inflammation. Studies using functional inhibition of neogenin resulted in a significant attenuation of inflammatory peritonitis. In studies employing bone marrow chimeric animals we found the hematopoietic presence of Neo1(-/- to be responsible for the attenuated inflammatory response. Taken together our studies suggest that the guidance receptor neogenin holds crucial importance for the propagation of an acute inflammatory response and further define mechanisms shared between the nervous and the immune system.

  17. Neurogenetics of slow axonal transport: from cells to animals.

    Science.gov (United States)

    Sadananda, Aparna; Ray, Krishanu

    2012-09-01

    Slow axonal transport is a multivariate phenomenon implicated in several neurodegenerative disorders. Recent reports have unraveled the molecular basis of the transport of certain slow component proteins, such as the neurofilament subunits, tubulin, and certain soluble enzymes such as Ca(2+)/calmodulin-dependent protein kinase IIa (CaM kinase IIa), etc., in tissue cultured neurons. In addition, genetic analyses also implicate microtubule-dependent motors and other housekeeping proteins in this process. However, the biological relevance of this phenomenon is not so well understood. Here, the authors have discussed the possibility of adopting neurogenetic analyses in multiple model organisms to correlate molecular level measurements of the slow transport phenomenon to animal behavior, thus facilitating the investigation of its biological efficacy.

  18. Neuron Morphology Influences Axon Initial Segment Plasticity123

    Science.gov (United States)

    2016-01-01

    In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., dentate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neurons having larger dendritic trees (e.g., pyramidal neurons) were most excitable when the AIS was longer and/or located away from the soma. For any given somatodendritic morphology, increasing dendritic membrane capacitance and/or conductance favored a longer and more distally located AIS. Overall, changes to AIS length, with corresponding changes in total sodium conductance, were far more effective in regulating neuron excitability than were changes in AIS location, while dendritic capacitance had a larger impact on AIS performance than did dendritic conductance. The somatodendritic influence on AIS performance reflects modest soma-to-AIS voltage attenuation combined with neuron size-dependent changes in AIS input resistance, effective membrane time constant, and isolation from somatodendritic capacitance. We conclude that the impact of AIS plasticity on neuron excitability will depend largely on somatodendritic morphology, and that, in some neurons, a shorter or more distally located AIS may promote, rather than limit, action potential generation. PMID:27022619

  19. Diffuse axonal injury at ultra-high field MRI.

    Directory of Open Access Journals (Sweden)

    Christoph Moenninghoff

    Full Text Available Diffuse axonal injury (DAI is a specific type of traumatic brain injury caused by shearing forces leading to widespread tearing of axons and small vessels. Traumatic microbleeds (TMBs are regarded as a radiological marker for DAI. This study aims to compare DAI-associated TMBs at 3 Tesla (T and 7 T susceptibility weighted imaging (SWI to evaluate possible diagnostic benefits of ultra-high field (UHF MRI.10 study participants (4 male, 6 female, age range 20-74 years with known DAI were included. All MR exams were performed with a 3 T MR system (Magnetom Skyra and a 7 T MR research system (Magnetom 7 T, Siemens AG, Healthcare Sector, Erlangen, Germany each in combination with a 32-channel-receive coil. The average time interval between trauma and imaging was 22 months. Location and count of TMBs were independently evaluated by two neuroradiologists on 3 T and 7 T SWI images with similar and additionally increased spatial resolution at 7 T. Inter- and intraobserver reliability was assessed using the interclass correlation coefficient (ICC. Count and diameter of TMB were evaluated with Wilcoxon signed rank test.Susceptibility weighted imaging revealed a total of 485 TMBs (range 1-190, median 25 at 3 T, 584 TMBs (plus 20%, range 1-262, median 30.5 at 7 T with similar spatial resolution, and 684 TMBs (plus 41%, range 1-288, median 39.5 at 7 T with 10-times higher spatial resolution. Hemorrhagic DAI appeared significantly larger at 7 T compared to 3 T (p = 0.005. Inter- and intraobserver correlation regarding the counted TMB was high and almost equal 3 T and 7 T.7 T SWI improves the depiction of small hemorrhagic DAI compared to 3 T and may be supplementary to lower field strengths for diagnostic in inconclusive or medicolegal cases.

  20. Axonal transport of proteoglycans to the goldfish optic tectum

    International Nuclear Information System (INIS)

    Ripellino, J.A.; Elam, J.S.

    1988-01-01

    The study addressed the question of whether 35 SO 4 labeled molecules that have been delivered to the goldfish optic nerve terminals by rapid axonal transport include soluble proteoglycans. For analysis, tectal homogenates were subfractionated into a soluble fraction (soluble after centrifugation at 105,000 g), a lysis fraction (soluble after treatment with hypotonic buffer followed by centrifugation at 105,000 g) and a final 105,000 g pellet fraction. The soluble fraction contained 25.7% of incorporated radioactivity and upon DEAE chromatography was resolved into a fraction of sulfated glycoproteins eluting at 0-0.32 M NaCl and containing 39.5% of total soluble label and a fraction eluting at 0.32-0.60 M NaCl containing 53.9% of soluble label. This latter fraction was included on columns of Sepharose CL-6B with or without 4 M guanidine and after pronase digestion was found to have 51% of its radioactivity contained in the glycosaminoglycans (GAGs) heparan sulfate and chondroitin (4 or 6) sulfate in the ratio of 70% to 30%. Mobility of both intact proteoglycans and constituent GAGs on Sepharose CL-6B indicated a size distribution that is smaller than has been observed for proteoglycans and GAGs from cultured neuronal cell lines. Similar analysis of lysis fraction, containing 11.5% of incorporated 35 SO 4 , showed a mixture of heparan sulfate and chondroitin sulfate containing proteoglycans, apparent free heparan sulfate and few, if any, sulfated glycoproteins. Overall, the results support the hypothesis that soluble proteoglycans are among the molecules axonally transported in the visual system

  1. Live Imaging of Calcium Dynamics during Axon Degeneration Reveals Two Functionally Distinct Phases of Calcium Influx

    Science.gov (United States)

    Yamagishi, Yuya; Tessier-Lavigne, Marc

    2015-01-01

    Calcium is a key regulator of axon degeneration caused by trauma and disease, but its specific spatial and temporal dynamics in injured axons remain unclear. To clarify the function of calcium in axon degeneration, we observed calcium dynamics in single injured neurons in live zebrafish larvae and tested the temporal requirement for calcium in zebrafish neurons and cultured mouse DRG neurons. Using laser axotomy to induce Wallerian degeneration (WD) in zebrafish peripheral sensory axons, we monitored calcium dynamics from injury to fragmentation, revealing two stereotyped phases of axonal calcium influx. First, axotomy triggered a transient local calcium wave originating at the injury site. This initial calcium wave only disrupted mitochondria near the injury site and was not altered by expression of the protective WD slow (WldS) protein. Inducing multiple waves with additional axotomies did not change the kinetics of degeneration. In contrast, a second phase of calcium influx occurring minutes before fragmentation spread as a wave throughout the axon, entered mitochondria, and was abolished by WldS expression. In live zebrafish, chelating calcium after the first wave, but before the second wave, delayed the progress of fragmentation. In cultured DRG neurons, chelating calcium early in the process of WD did not alter degeneration, but chelating calcium late in WD delayed fragmentation. We propose that a terminal calcium wave is a key instructive component of the axon degeneration program. SIGNIFICANCE STATEMENT Axon degeneration resulting from trauma or neurodegenerative disease can cause devastating deficits in neural function. Understanding the molecular and cellular events that execute axon degeneration is essential for developing treatments to address these conditions. Calcium is known to contribute to axon degeneration, but its temporal requirements in this process have been unclear. Live calcium imaging in severed zebrafish neurons and temporally controlled

  2. Compensatory axon sprouting for very slow axonal die-back in a transgenic model of spinal muscular atrophy type III.

    Science.gov (United States)

    Udina, Esther; Putman, Charles T; Harris, Luke R; Tyreman, Neil; Cook, Victoria E; Gordon, Tessa

    2017-03-01

    Smn +/- transgenic mouse is a model of the mildest form of spinal muscular atrophy. Although there is a loss of spinal motoneurons in 11-month-old animals, muscular force is maintained. This maintained muscular force is mediated by reinnervation of the denervated fibres by surviving motoneurons. The spinal motoneurons in these animals do not show an increased susceptibility to death after nerve injury and they retain their regenerative capacity. We conclude that the hypothesized immaturity of the neuromuscular system in this model cannot explain the loss of motoneurons by systematic die-back. Spinal muscular atrophy (SMA) is a common autosomal recessive disorder in humans and is the leading genetic cause of infantile death. Patients lack the SMN1 gene with the severity of the disease depending on the number of copies of the highly homologous SMN2 gene. Although motoneuron death in the Smn +/- transgenic mouse model of the mildest form of SMA, SMA type III, has been reported, we have used retrograde tracing of sciatic and femoral motoneurons in the hindlimb with recording of muscle and motor unit isometric forces to count the number of motoneurons with intact neuromuscular connections. Thereby, we investigated whether incomplete maturation of the neuromuscular system induced by survival motoneuron protein (SMN) defects is responsible for die-back of axons relative to survival of motoneurons. First, a reduction of ∼30% of backlabelled motoneurons began relatively late, at 11 months of age, with a significant loss of 19% at 7 months. Motor axon die-back was affirmed by motor unit number estimation. Loss of functional motor units was fully compensated by axonal sprouting to retain normal contractile force in four hindlimb muscles (three fast-twitch and one slow-twitch) innervated by branches of the sciatic nerve. Second, our evaluation of whether axotomy of motoneurons in the adult Smn +/- transgenic mouse increases their susceptibility to cell death demonstrated

  3. Hindsight regulates photoreceptor axon targeting through transcriptional control of jitterbug/Filamin and multiple genes involved in axon guidance in Drosophila.

    Science.gov (United States)

    Oliva, Carlos; Molina-Fernandez, Claudia; Maureira, Miguel; Candia, Noemi; López, Estefanía; Hassan, Bassem; Aerts, Stein; Cánovas, José; Olguín, Patricio; Sierralta, Jimena

    2015-09-01

    During axon targeting, a stereotyped pattern of connectivity is achieved by the integration of intrinsic genetic programs and the response to extrinsic long and short-range directional cues. How this coordination occurs is the subject of intense study. Transcription factors play a central role due to their ability to regulate the expression of multiple genes required to sense and respond to these cues during development. Here we show that the transcription factor HNT regulates layer-specific photoreceptor axon targeting in Drosophila through transcriptional control of jbug/Filamin and multiple genes involved in axon guidance and cytoskeleton organization.Using a microarray analysis we identified 235 genes whose expression levels were changed by HNT overexpression in the eye primordia. We analyzed nine candidate genes involved in cytoskeleton regulation and axon guidance, six of which displayed significantly altered gene expression levels in hnt mutant retinas. Functional analysis confirmed the role of OTK/PTK7 in photoreceptor axon targeting and uncovered Tiggrin, an integrin ligand, and Jbug/Filamin, a conserved actin- binding protein, as new factors that participate of photoreceptor axon targeting. Moreover, we provided in silico and molecular evidence that supports jbug/Filamin as a direct transcriptional target of HNT and that HNT acts partially through Jbug/Filamin in vivo to regulate axon guidance. Our work broadens the understanding of how HNT regulates the coordinated expression of a group of genes to achieve the correct connectivity pattern in the Drosophila visual system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1018-1032, 2015. © 2015 Wiley Periodicals, Inc.

  4. Tests of the Giant Impact Hypothesis

    Science.gov (United States)

    Jones, J. H.

    1998-01-01

    The giant impact hypothesis has gained popularity as a means of explaining a volatile-depleted Moon that still has a chemical affinity to the Earth. As Taylor's Axiom decrees, the best models of lunar origin are testable, but this is difficult with the giant impact model. The energy associated with the impact would be sufficient to totally melt and partially vaporize the Earth. And this means that there should he no geological vestige of Barber times. Accordingly, it is important to devise tests that may be used to evaluate the giant impact hypothesis. Three such tests are discussed here. None of these is supportive of the giant impact model, but neither do they disprove it.

  5. Giant planets. Holweck prize lecture 1982

    Energy Technology Data Exchange (ETDEWEB)

    Hide, R. (Meteorological Office, Bracknell (UK))

    1982-10-01

    The main characteristics of the giant planets, Jupiter and Saturn, are outlined. Studies which have been made of the circulation of their atmospheres, the structure of their interiors and the origin of their magnetic fields are discussed.

  6. Giant Omental Lipoma in a Child

    International Nuclear Information System (INIS)

    Chaudhary, Vikas; Narula, Mahender Kaur; Anand, Rama; Gupta, Isha; Kaur, Gurmeen; Kalra, Kanika

    2011-01-01

    Omental lipomas are extremely rare tumors of childhood. We report a case of solitary giant lipoma of the omentum in a child, successfully managed by complete excision, without any recurrence on follow-up study

  7. AFSC/ABL: Female Giant Grenadier maturity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Giant grenadiers Albatrossia pectoralis are caught as bycatch in deep-sea commercial fisheries in relatively large numbers. The population appears to be stable,...

  8. Giant pubertal prolactinoma: Complete resolution following short ...

    African Journals Online (AJOL)

    2016-04-06

    Apr 6, 2016 ... disappeared in a short time with cabergoline treatment. Key words: ... Hyperprolactinemia may cause impotence and hypogonadism in adult men, and rarely ... safe treatment method for male patients with giant prolactinoma.

  9. Who's working on giant clam culture?

    OpenAIRE

    Vega, M.J.M.

    1990-01-01

    An examination is made of the literature on giant clam (Tridacna ) culture methods induced spawning, larvae, larval and post-larval rearing and socioeconomics. ASFA and the ICLARM library and professional staff collections were used for the search.

  10. [Tissular expansion in giant congenital nevi treatment].

    Science.gov (United States)

    Nguyen Van Nuoi, V; Francois-Fiquet, C; Diner, P; Sergent, B; Zazurca, F; Franchi, G; Buis, J; Vazquez, M-P; Picard, A; Kadlub, N

    2014-08-01

    Surgical management of giant melanotic naevi remains a surgical challenge. Tissue expansion provides tissue of the same quality for the repair of defects. The aim of this study is to review tissular expansion for giant melanotic naevi. We conducted a retrospective study from 2000 to 2012. All children patients who underwent a tissular expansion for giant congenital naevi had been included. Epidemiological data, surgical procedure, complication rate and results had been analysed. Thirty-tree patients had been included; they underwent 61 procedures with 79 tissular-expansion prosthesis. Previous surgery, mostly simple excision had been performed before tissular expansion. Complete naevus excision had been performed in 63.3% of the cases. Complications occurred in 45% of the cases, however in 50% of them were minor. Iterative surgery increased the complication rate. Tissular expansion is a valuable option for giant congenital naevus. However, complication rate remained high, especially when iterative surgery is needed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Red giants as precursors of planetary nebulae

    International Nuclear Information System (INIS)

    Renzini, A.

    1981-01-01

    It is generally accepted that Planetary Nebulae are produced by asymptotic giant-branch stars. Therefore, several properties of planetary nebulae are discussed in the framework of the current theory of stellar evolution. (Auth.)

  12. Surgical treatment for giant incisional hernia

    DEFF Research Database (Denmark)

    Eriksson, A; Rosenberg, J; Bisgaard, T

    2014-01-01

    INTRODUCTION: Repair for giant incisional hernias is a challenge due to unacceptable high morbidity and recurrence rates. Several surgical techniques are available, but all are poorly documented. This systematic review was undertaken to evaluate the existing literature on repair for giant...... % with a wide range between studies of 4-100 %. The mortality ranged from 0 to 5 % (median 0 %) and recurrence rate ranged from 0 to 53 % (median 5 %). Study follow-up ranged from 15 to 97 months (median 36 months). Mesh repair should always be used for patients undergoing repair for a giant hernia......, and the sublay position may have advantages over onlay positioning. To avoid tension, it may be advisable to use a mesh in combination with a component separation technique. Inlay positioning of the mesh and repair without a mesh should be avoided. CONCLUSIONS: Evidence to optimise repair for giant hernias...

  13. Glia-axon interactions and the regulation of the extracellular K+ in the peripheral nerve.

    Science.gov (United States)

    Jirounek, P; Robert, A; Kindler, E; Blazek, T

    1998-01-01

    Changes in membrane potential of both axons and Schwann cells were measured simultaneously during electrical activity and during the period of recovery in the rabbit vagus nerve by the use of the sucrose-gap apparatus. During low-frequency stimulation (0.5-1 Hz) the preparation developed a ouabain-sensitive hyperpolarization. This hyperpolarization increased when the inwardly rectifying K+ channels in Schwann cells were blocked with Ba2+, indicating that the hyperpolarization was generated by the electrogenic glial Na(+)-K+ pump. During trains at higher frequencies (15 Hz), the preparation depolarized, but after cessation of the stimulation it developed a posttetanic hyperpolarization (PTH). The PTH was also ouabain-sensitive and was strongly enhanced by Cs+ which is known to block the hyperpolarization-activated inward current (Ih) in axons but not in glial cells. These results show that the PTH reflects mainly the axonal electrogenic pump. Our results indicate that during activity the K+ released from the firing axons is removed from the extracellular space by Schwann cells and that after cessation of the stimulation the K+ surplus returns from Schwann cells back to axons. Both the glial and axonal K+ uptake is mediated by successive activation of the glial and axonal Na(+)-K+ pump. The nature of the signalling mechanisms that control the pumping rates of the respective pumps remain unknown.

  14. Characterization of axon formation in the embryonic stem cell-derived motoneuron.

    Science.gov (United States)

    Pan, Hung-Chuan; Wu, Ya-Ting; Shen, Shih-Cheng; Wang, Chi-Chung; Tsai, Ming-Shiun; Cheng, Fu-Chou; Lin, Shinn-Zong; Chen, Ching-Wen; Liu, Ching-San; Su, Hong-Lin

    2011-01-01

    The developing neural cell must form a highly organized architecture to properly receive and transmit nerve signals. Neural formation from embryonic stem (ES) cells provides a novel system for studying axonogenesis, which are orchestrated by polarity-regulating molecules. Here the ES-derived motoneurons, identified by HB9 promoter-driven green fluorescent protein (GFP) expression, showed characteristics of motoneuron-specific gene expression. In the majority of motoneurons, one of the bilateral neurites developed into an axon that featured with axonal markers, including Tau1, vesicle acetylcholine transporter, and synaptophysin. Interestingly, one third of the motoneurons developed bi-axonal processes but no multiple axonal GFP cell was found. The neuronal polarity-regulating proteins, including the phosphorylated AKT and ERK, were compartmentalized into both of the bilateral axonal tips. Importantly, this aberrant axon morphology was still present after the engraftment of GFP(+) neurons into the spinal cord, suggesting that even a mature neural environment fails to provide a proper niche to guide normal axon formation. These findings underscore the necessity for evaluating the morphogenesis and functionality of neurons before the clinical trials using ES or somatic stem cells.

  15. Target-Derived Neurotrophins Coordinate Transcription and Transport of Bclw to Prevent Axonal Degeneration

    Science.gov (United States)

    Cosker, Katharina E.; Pazyra-Murphy, Maria F.; Fenstermacher, Sara J.

    2013-01-01

    Establishment of neuronal circuitry depends on both formation and refinement of neural connections. During this process, target-derived neurotrophins regulate both transcription and translation to enable selective axon survival or elimination. However, it is not known whether retrograde signaling pathways that control transcription are coordinated with neurotrophin-regulated actions that transpire in the axon. Here we report that target-derived neurotrophins coordinate transcription of the antiapoptotic gene bclw with transport of bclw mRNA to the axon, and thereby prevent axonal degeneration in rat and mouse sensory neurons. We show that neurotrophin stimulation of nerve terminals elicits new bclw transcripts that are immediately transported to the axons and translated into protein. Bclw interacts with Bax and suppresses the caspase6 apoptotic cascade that fosters axonal degeneration. The scope of bclw regulation at the levels of transcription, transport, and translation provides a mechanism whereby sustained neurotrophin stimulation can be integrated over time, so that axonal survival is restricted to neurons connected within a stable circuit. PMID:23516285

  16. A Communication Theoretical Modeling of Axonal Propagation in Hippocampal Pyramidal Neurons.

    Science.gov (United States)

    Ramezani, Hamideh; Akan, Ozgur B

    2017-06-01

    Understanding the fundamentals of communication among neurons, known as neuro-spike communication, leads to reach bio-inspired nanoscale communication paradigms. In this paper, we focus on a part of neuro-spike communication, known as axonal transmission, and propose a realistic model for it. The shape of the spike during axonal transmission varies according to previously applied stimulations to the neuron, and these variations affect the amount of information communicated between neurons. Hence, to reach an accurate model for neuro-spike communication, the memory of axon and its effect on the axonal transmission should be considered, which are not studied in the existing literature. In this paper, we extract the important factors on the memory of axon and define memory states based on these factors. We also describe the transition among these states and the properties of axonal transmission in each of them. Finally, we demonstrate that the proposed model can follow changes in the axonal functionality properly by simulating the proposed model and reporting the root mean square error between simulation results and experimental data.

  17. Microtubule-targeting drugs rescue axonal swellings in cortical neurons from spastin knockout mice

    Directory of Open Access Journals (Sweden)

    Coralie Fassier

    2013-01-01

    Mutations in SPG4, encoding the microtubule-severing protein spastin, are responsible for the most frequent form of hereditary spastic paraplegia (HSP, a heterogeneous group of genetic diseases characterized by degeneration of the corticospinal tracts. We previously reported that mice harboring a deletion in Spg4, generating a premature stop codon, develop progressive axonal degeneration characterized by focal axonal swellings associated with impaired axonal transport. To further characterize the molecular and cellular mechanisms underlying this mutant phenotype, we have assessed microtubule dynamics and axonal transport in primary cultures of cortical neurons from spastin-mutant mice. We show an early and marked impairment of microtubule dynamics all along the axons of spastin-deficient cortical neurons, which is likely to be responsible for the occurrence of axonal swellings and cargo stalling. Our analysis also reveals that a modulation of microtubule dynamics by microtubule-targeting drugs rescues the mutant phenotype of cortical neurons. Together, these results contribute to a better understanding of the pathogenesis of SPG4-linked HSP and ascertain the influence of microtubule-targeted drugs on the early axonal phenotype in a mouse model of the disease.

  18. Optogenetically enhanced axon regeneration: motor versus sensory neuron-specific stimulation.

    Science.gov (United States)

    Ward, Patricia J; Clanton, Scott L; English, Arthur W

    2018-02-01

    Brief neuronal activation in injured peripheral nerves is both necessary and sufficient to enhance motor axon regeneration, and this effect is specific to the activated motoneurons. It is less clear whether sensory neurons respond in a similar manner to neuronal activation following peripheral axotomy. Further, it is unknown to what extent enhancement of axon regeneration with increased neuronal activity relies on a reflexive interaction within the spinal circuitry. We used mouse genetics and optical tools to evaluate the precision and selectivity of system-specific neuronal activation to enhance axon regeneration in a mixed nerve. We evaluated sensory and motor axon regeneration in two different mouse models expressing the light-sensitive cation channel, channelrhodopsin (ChR2). We selectively activated either sensory or motor axons using light stimulation combined with transection and repair of the sciatic nerve. Regardless of genotype, the number of ChR2-positive neurons whose axons had regenerated successfully was greater following system-specific optical treatment, with no effect on the number of ChR2-negative neurons (whether motor or sensory neurons). We conclude that acute system-specific neuronal activation is sufficient to enhance both motor and sensory axon regeneration. This regeneration-enhancing effect is likely cell autonomous. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. The Drosophila HEM-2/NAP1 homolog KETTE controls axonal pathfinding and cytoskeletal organization.

    Science.gov (United States)

    Hummel, T; Leifker, K; Klämbt, C

    2000-04-01

    In Drosophila, the correct formation of the segmental commissures depends on neuron-glial interactions at the midline. The VUM midline neurons extend axons along which glial cells migrate in between anterior and posterior commissures. Here, we show that the gene kette is required for the normal projection of the VUM axons and subsequently disrupts glial migration. Axonal projection defects are also found for many other moto- and interneurons. In addition, kette affects the cell morphology of mesodermal and epidermal derivatives, which show an abnormal actin cytoskeleton. The KETTE protein is homologous to the transmembrane protein HEM-2/NAP1 evolutionary conserved from worms to vertebrates. In vitro analysis has shown a specific interaction of the vertebrate HEM-2/NAP1 with the SH2-SH3 adapter protein NCK and the small GTPase RAC1, which both have been implicated in regulating cytoskeleton organization and axonal growth. Hypomorphic kette mutations lead to axonal defects similar to mutations in the Drosophila NCK homolog dreadlocks. Furthermore, we show that kette and dock mutants genetically interact. NCK is thought to interact with the small G proteins RAC1 and CDC42, which play a role in axonal growth. In line with these observations, a kette phenocopy can be obtained following directed expression of mutant DCDC42 or DRAC1 in the CNS midline. In addition, the kette mutant phenotype can be partially rescued by expression of an activated DRAC1 transgene. Our data suggest an important role of the HEM-2 protein in cytoskeletal organization during axonal pathfinding.

  20. The Influence of Glutamate on Axonal Compound Action Potential In Vitro.

    Science.gov (United States)

    Abouelela, Ahmed; Wieraszko, Andrzej

    2016-01-01

    Background  Our previous experiments demonstrated modulation of the amplitude of the axonal compound action potential (CAP) by electrical stimulation. To verify assumption that glutamate released from axons could be involved in this phenomenon, the modification of the axonal CAP induced by glutamate was investigated. Objectives  The major objective of this research is to verify the hypothesis that axonal activity would trigger the release of glutamate, which in turn would interact with specific axonal receptors modifying the amplitude of the action potential. Methods  Segments of the sciatic nerve were exposed to exogenous glutamate in vitro, and CAP was recorded before and after glutamate application. In some experiments, the release of radioactive glutamate analog from the sciatic nerve exposed to exogenous glutamate was also evaluated. Results  The glutamate-induced increase in CAP was blocked by different glutamate receptor antagonists. The effect of glutamate was not observed in Ca-free medium, and was blocked by antagonists of calcium channels. Exogenous glutamate, applied to the segments of sciatic nerve, induced the release of radioactive glutamate analog, demonstrating glutamate-induced glutamate release. Immunohistochemical examination revealed that axolemma contains components necessary for glutamatergic neurotransmission. Conclusion  The proteins of the axonal membrane can under the influence of electrical stimulation or exogenous glutamate change membrane permeability and ionic conductance, leading to a change in the amplitude of CAP. We suggest that increased axonal activity leads to the release of glutamate that results in changes in the amplitude of CAPs.

  1. AGB [asymptotic giant branch]: Star evolution

    International Nuclear Information System (INIS)

    Becker, S.A.

    1987-01-01

    Asymptotic giant branch stars are red supergiant stars of low-to-intermediate mass. This class of stars is of particular interest because many of these stars can have nuclear processed material brought up repeatedly from the deep interior to the surface where it can be observed. A review of recent theoretical and observational work on stars undergoing the asymptotic giant branch phase is presented. 41 refs

  2. The Microtubule Regulatory Protein Stathmin Is Required to Maintain the Integrity of Axonal Microtubules in Drosophila

    Science.gov (United States)

    Duncan, Jason E.; Lytle, Nikki K.; Zuniga, Alfredo; Goldstein, Lawrence S. B.

    2013-01-01

    Axonal transport, a form of long-distance, bi-directional intracellular transport that occurs between the cell body and synaptic terminal, is critical in maintaining the function and viability of neurons. We have identified a requirement for the stathmin (stai) gene in the maintenance of axonal microtubules and regulation of axonal transport in Drosophila . The stai gene encodes a cytosolic phosphoprotein that regulates microtubule dynamics by partitioning tubulin dimers between pools of soluble tubulin and polymerized microtubules, and by directly binding to microtubules and promoting depolymerization. Analysis of stai function in Drosophila , which has a single stai gene, circumvents potential complications with studies performed in vertebrate systems in which mutant phenotypes may be compensated by genetic redundancy of other members of the stai gene family. This has allowed us to identify an essential function for stai in the maintenance of the integrity of axonal microtubules. In addition to the severe disruption in the abundance and architecture of microtubules in the axons of stai mutant Drosophila , we also observe additional neurological phenotypes associated with loss of stai function including a posterior paralysis and tail-flip phenotype in third instar larvae, aberrant accumulation of transported membranous organelles in stai deficient axons, a progressive bang-sensitive response to mechanical stimulation reminiscent of the class of Drosophila mutants used to model human epileptic seizures, and a reduced adult lifespan. Reductions in the levels of Kinesin-1, the primary anterograde motor in axonal transport, enhance these phenotypes. Collectively, our results indicate that stai has an important role in neuronal function, likely through the maintenance of microtubule integrity in the axons of nerves of the peripheral nervous system necessary to support and sustain long-distance axonal transport. PMID:23840848

  3. Schwann cell transplantation improves reticulospinal axon growth and forelimb strength after severe cervical spinal cord contusion.

    Science.gov (United States)

    Schaal, S M; Kitay, B M; Cho, K S; Lo, T P; Barakat, D J; Marcillo, A E; Sanchez, A R; Andrade, C M; Pearse, D D

    2007-01-01

    Schwann cell (SC) implantation alone has been shown to promote the growth of propriospinal and sensory axons, but not long-tract descending axons, after thoracic spinal cord injury (SCI). In the current study, we examined if an axotomy close to the cell body of origin (so as to enhance the intrinsic growth response) could permit supraspinal axons to grow onto SC grafts. Adult female Fischer rats received a severe (C5) cervical contusion (1.1 mm displacement, 3 KDyn). At 1 week postinjury, 2 million SCs ex vivo transduced with lentiviral vector encoding enhanced green fluorescent protein (EGFP) were implanted within media into the injury epicenter; injury-only animals served as controls. Animals were tested weekly using the BBB score for 7 weeks postimplantation and received at end point tests for upper body strength: self-supported forelimb hanging, forearm grip force, and the incline plane. Following behavioral assessment, animals were anterogradely traced bilaterally from the reticular formation using BDA-Texas Red. Stereological quantification revealed a twofold increase in the numbers of preserved NeuN+ neurons rostral and caudal to the injury/graft site in SC implanted animals, corroborating previous reports of their neuroprotective efficacy. Examination of labeled reticulospinal axon growth revealed that while rarely an axon was present within the lesion site of injury-only controls, numerous reticulospinal axons had penetrated the SC implant/lesion milieu. This has not been observed following implantation of SCs alone into the injured thoracic spinal cord. Significant behavioral improvements over injury-only controls in upper limb strength, including an enhanced grip strength (a 296% increase) and an increased self-supported forelimb hanging, accompanied SC-mediated neuroprotection and reticulospinal axon growth. The current study further supports the neuroprotective efficacy of SC implants after SCI and demonstrates that SCs alone are capable of supporting

  4. Molecular Analysis of Sensory Axon Branching Unraveled a cGMP-Dependent Signaling Cascade

    Directory of Open Access Journals (Sweden)

    Alexandre Dumoulin

    2018-04-01

    Full Text Available Axonal branching is a key process in the establishment of circuit connectivity within the nervous system. Molecular-genetic studies have shown that a specific form of axonal branching—the bifurcation of sensory neurons at the transition zone between the peripheral and the central nervous system—is regulated by a cyclic guanosine monophosphate (cGMP-dependent signaling cascade which is composed of C-type natriuretic peptide (CNP, the receptor guanylyl cyclase Npr2, and cGMP-dependent protein kinase Iα (cGKIα. In the absence of any one of these components, neurons in dorsal root ganglia (DRG and cranial sensory ganglia no longer bifurcate, and instead turn in either an ascending or a descending direction. In contrast, collateral axonal branch formation which represents a second type of axonal branch formation is not affected by inactivation of CNP, Npr2, or cGKI. Whereas axon bifurcation was lost in mouse mutants deficient for components of CNP-induced cGMP formation; the absence of the cGMP-degrading enzyme phosphodiesterase 2A had no effect on axon bifurcation. Adult mice that lack sensory axon bifurcation due to the conditional inactivation of Npr2-mediated cGMP signaling in DRG neurons demonstrated an altered shape of sensory axon terminal fields in the spinal cord, indicating that elaborate compensatory mechanisms reorganize neuronal circuits in the absence of bifurcation. On a functional level, these mice showed impaired heat sensation and nociception induced by chemical irritants, whereas responses to cold sensation, mechanical stimulation, and motor coordination are normal. These data point to a critical role of axon bifurcation for the processing of acute pain perception.

  5. Trafficking of cholesterol from cell bodies to distal axons in Niemann Pick C1-deficient neurons.

    Science.gov (United States)

    Karten, Barbara; Vance, Dennis E; Campenot, Robert B; Vance, Jean E

    2003-02-07

    Niemann Pick type C (NPC) disease is a progressive neurodegenerative disorder. In cells lacking functional NPC1 protein, endocytosed cholesterol accumulates in late endosomes/lysosomes. We utilized primary neuronal cultures in which cell bodies and distal axons reside in separate compartments to investigate the requirement of NPC1 protein for transport of cholesterol from cell bodies to distal axons. We have recently observed that in NPC1-deficient neurons compared with wild-type neurons, cholesterol accumulates in cell bodies but is reduced in distal axons (Karten, B., Vance, D. E., Campenot, R. B., and Vance, J. E. (2002) J. Neurochem. 83, 1154-1163). We now show that NPC1 protein is expressed in both cell bodies and distal axons. In NPC1-deficient neurons, cholesterol delivered to cell bodies from low density lipoproteins (LDLs), high density lipoproteins, or cyclodextrin complexes was transported into axons in normal amounts, whereas transport of endogenously synthesized cholesterol was impaired. Inhibition of cholesterol synthesis with pravastatin in wild-type and NPC1-deficient neurons reduced axonal growth. However, LDLs restored a normal rate of growth to wild-type but not NPC1-deficient neurons treated with pravastatin. Thus, although LDL cholesterol is transported into axons of NPC1-deficient neurons, this source of cholesterol does not sustain normal axonal growth. Over the lifespan of NPC1-deficient neurons, these defects in cholesterol transport might be responsible for the observed altered distribution of cholesterol between cell bodies and axons and, consequently, might contribute to the neurological dysfunction in NPC disease.

  6. Molecular Analysis of Sensory Axon Branching Unraveled a cGMP-Dependent Signaling Cascade.

    Science.gov (United States)

    Dumoulin, Alexandre; Ter-Avetisyan, Gohar; Schmidt, Hannes; Rathjen, Fritz G

    2018-04-24

    Axonal branching is a key process in the establishment of circuit connectivity within the nervous system. Molecular-genetic studies have shown that a specific form of axonal branching—the bifurcation of sensory neurons at the transition zone between the peripheral and the central nervous system—is regulated by a cyclic guanosine monophosphate (cGMP)-dependent signaling cascade which is composed of C-type natriuretic peptide (CNP), the receptor guanylyl cyclase Npr2, and cGMP-dependent protein kinase Iα (cGKIα). In the absence of any one of these components, neurons in dorsal root ganglia (DRG) and cranial sensory ganglia no longer bifurcate, and instead turn in either an ascending or a descending direction. In contrast, collateral axonal branch formation which represents a second type of axonal branch formation is not affected by inactivation of CNP, Npr2, or cGKI. Whereas axon bifurcation was lost in mouse mutants deficient for components of CNP-induced cGMP formation; the absence of the cGMP-degrading enzyme phosphodiesterase 2A had no effect on axon bifurcation. Adult mice that lack sensory axon bifurcation due to the conditional inactivation of Npr2-mediated cGMP signaling in DRG neurons demonstrated an altered shape of sensory axon terminal fields in the spinal cord, indicating that elaborate compensatory mechanisms reorganize neuronal circuits in the absence of bifurcation. On a functional level, these mice showed impaired heat sensation and nociception induced by chemical irritants, whereas responses to cold sensation, mechanical stimulation, and motor coordination are normal. These data point to a critical role of axon bifurcation for the processing of acute pain perception.

  7. Macroscopic description of isoscalar giant multipole resonances

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1980-01-01

    On the basis of a simple macroscopic model, we calculate the isoscalar giant-resonance energy as a function of mass number and multipole degree. The restoring force is determined from the distortion of the Fermi surface, and the inertia is determined for the incompressible, irrotational flow of nucleons with unit effective mass. With no adjustable parameters, the resulting closed expression reproduces correctly the available experimental data, namely the magnitude and dependence upon mass number of the giant quadrupole energy and the magnitude of the giant octupole energy for 208 Pb. We also calculate the isoscalar giant-resonance width as a function of mass number and multipole degree for various macroscopic damping mechanisms, including two-body viscosity, one-body dissipation, and modified one-body dissipation. None of these damping mechanisms reproduces correctly all features of the available experimental data, namely the magnitude and dependence upon mass number of the giant quadrupole width and the magnitude of the giant octupole width for 208 Pb

  8. Swiss roll operation for giant fibroadenoma.

    Science.gov (United States)

    Soomro, Saleem A; Memon, Sohail A; Mohammad, Noor; Maher, Mumtaz

    2009-01-01

    Fibroadenoma 5 cm or more is called giant fibroadenoma. Giant fibroadenoma can distort the shape of breast and causes asymmetry, so it should be excised. There are several techniques for excision of giant fibroadenoma. In our technique we remove them through cosmetically acceptable circumareolar incision to maintain the shape and symmetry of breast. The objectives were to assess the cosmetic results of Swiss roll operation for giant fibroadenoma. The study was conducted for six years from January, 2002 to December, 2007. Seventy patients of giant fibroadenoma were included in this study. They were diagnosed on history and clinical examination supported by ultrasound and postoperative histopathological examination. Data were collected from outpatient department and operation theatre. Swiss roll operation was performed under general anaesthesia. Mean tumor size was 6.38 cm. Three cm and 4 cm incisions were used for tumour 6 cm in size respectively. Skin closed with Vicryl 3/0 subcuticular stitches. Sixteen out of 70 patients had no scar while others hadminimal scar. All patients had normal shape and symmetry of breast. On histopathology fibroadenoma was confirmed. Giant fibroadenoma should be removed through cosmetically acceptable cicumareolar incision especially in unmarried young females who have small breast. Swiss-roll operation is superior in maintaining the shape and symmetry of breast. No major complication was found in our series except seroma formation in 10 patients.

  9. Current Opportunities for Clinical Monitoring of Axonal Pathology in Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Parmenion P. Tsitsopoulos

    2017-11-01

    Full Text Available Traumatic brain injury (TBI is a multidimensional and highly complex disease commonly resulting in widespread injury to axons, due to rapid inertial acceleration/deceleration forces transmitted to the brain during impact. Axonal injury leads to brain network dysfunction, significantly contributing to cognitive and functional impairments frequently observed in TBI survivors. Diffuse axonal injury (DAI is a clinical entity suggested by impaired level of consciousness and coma on clinical examination and characterized by widespread injury to the hemispheric white matter tracts, the corpus callosum and the brain stem. The clinical course of DAI is commonly unpredictable and it remains a challenging entity with limited therapeutic options, to date. Although axonal integrity may be disrupted at impact, the majority of axonal pathology evolves over time, resulting from delayed activation of complex intracellular biochemical cascades. Activation of these secondary biochemical pathways may lead to axonal transection, named secondary axotomy, and be responsible for the clinical decline of DAI patients. Advances in the neurocritical care of TBI patients have been achieved by refinements in multimodality monitoring for prevention and early detection of secondary injury factors, which can be applied also to DAI. There is an emerging role for biomarkers in blood, cerebrospinal fluid, and interstitial fluid using microdialysis in the evaluation of axonal injury in TBI. These biomarker studies have assessed various axonal and neuroglial markers as well as inflammatory mediators, such as cytokines and chemokines. Moreover, modern neuroimaging can detect subtle or overt DAI/white matter changes in diffuse TBI patients across all injury severities using magnetic resonance spectroscopy, diffusion tensor imaging, and positron emission tomography. Importantly, serial neuroimaging studies provide evidence for evolving axonal injury. Since axonal injury may be a key

  10. Axonal degeneration stimulates the formation of NG2+ cells and oligodendrocytes in the mouse

    DEFF Research Database (Denmark)

    Nielsen, Helle Hvilsted; Ladeby, Rune; Drøjdahl, Nina

    2006-01-01

    the response of the NG2+ cells to the different components of demyelinating pathology, we investigated the response of adult NG2+ cells to axonal degeneration in the absence of primary myelin or oligodendrocyte pathology. Axonal degeneration was induced in the hippocampal dentate gyrus of adult mice...... by transection of the entorhino-dentate perforant path projection. The acutely induced degeneration of axons and terminals resulted in a prompt response of NG2+ cells, consisting of morphological transformation, cellular proliferation, and upregulation of NG2 expression days 2-3 after surgery. This was followed...

  11. Diffuse axonal injury: detection of changes in anisotropy of water diffusion by diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Chan, J.H.M.; Tsui, E.Y.K.; Yuen, M.K.; Peh, W.C.G.; Fong, D.; Fok, K.F.; Leung, K.M.; Fung, K.K.L.

    2003-01-01

    Myelinated axons of white matter demonstrate prominent directional differences in water diffusion. We performed diffusion-weighted imaging on ten patients with head injury to explore the feasibility of using water diffusion anisotropy for quantitating diffuse axonal injury. We showed significant decrease in diffusion anisotropy indices in areas with or without signal abnormality on T2 and T2*-weighted images. We conclude that the water diffusion anisotropy index a potentially useful, sensitive and quantitative way of diagnosing and assessing patients with diffuse axonal injury. (orig.)

  12. Infiltrating giant cellular blue naevus.

    Science.gov (United States)

    Bittencourt, A L; Monteiro, D A; De Pretto, O J

    2007-01-01

    Cellular blue naevi (CBN) measure 1-2 cm in diameter and affect the dermis, occasionally extending into the subcutaneous fat. The case of a 14-year-old boy with a giant CBN (GCBN) involving the right half of the face, the jugal mucosa and the lower eyelid with a tumour that had infiltrated the bone and the maxillary and ethmoidal sinuses is reported. Biopsies were taken from the skin, jugal mucosa and maxillary sinus. The following markers were used in the immunohistochemical evaluation: CD34, CD56, HMB-45, anti-S100, A-103, Melan A and MIB-1. The biopsy specimens showed a biphasic pattern affecting the lower dermis, subcutaneous fat, skeletal muscle, bone, jugal mucosa and maxillary sinus, but there was no histological evidence of malignancy. The tumour cells were CD34-, CD56-, HMB45+, anti-S100+ and A-103+. Melan A was focally expressed. No positive MIB-1 cells were identified. The present case shows that GCBN may infiltrate deeply, with no evidence of malignancy.

  13. Giant hepatocellular adenoma; case report

    Energy Technology Data Exchange (ETDEWEB)

    Pitella, F.A.; Coutinho, A.M.N.; Coura Filho, G.B.; Costa, P.L.A.; Ono, C.R.; Watanabe, T.; Sapienza, M.T.; Hironaka, F.; Cerri, G.G.; Buchpiguel, C.A. [Universidade de Sao Paulo (FM/USP), SP (Brazil). Inst. de Radiologia. Servico de Medicina Nuclear

    2008-07-01

    Full text: Introduction: Hepatocellular adenoma is a benign hepatic tumor identified mainly in women during fertility age, with estimated incidence of 4/1000 inhabitants. It is usually unique, well circumscribed, with or without a capsule, size varying from 1 to 30 cm, with possible central areas of necrosis and hemorrhage. Case Report: A 37-year-old female patient presenting with no comorbities, use of hormonal birth control pills for 18 years, a condition of reduction in the consistency of feces, increase in number of daily defecations, abdominal cramps, and a stuffed sensation after meals for two years. A palpable abdominal mass extending from the right hypochondriac to the right iliac fossa was noticed four months ago. A computerized tomography (CT) showed an extensive hepatic mass on the right which was considered, within the diagnostic hypotheses, hepatic adenomatosis, without ruling out secondary lesions. A hepatic scintillography with {sup 99m}Tc-DISIDA showed an extensive exophytic area from segment V to the right iliac fossa with arterialized blood flow and hepatocytic activity, as well as a hepatic nodule in segment VII with hepatocytic activity consistent with the hepatic adenomas hypothesis. The biopsy confirmed the hepatic adenoma diagnosis and the patient was submitted to a partial hepatectomy and cholecystectomy with good clinical evolution. Conclusion: Nuclear Medicine may supplement the assessment of hepatic nodules, including giant masses, thus suggesting new hypotheses and direction to therapeutic conduct. (author)

  14. Migration of accreting giant planets

    Science.gov (United States)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  15. The Giant Planet Satellite Exospheres

    Science.gov (United States)

    McGrath, Melissa A.

    2014-01-01

    Exospheres are relatively common in the outer solar system among the moons of the gas giant planets. They span the range from very tenuous, surface-bounded exospheres (e.g., Rhea, Dione) to quite robust exospheres with exobase above the surface (e.g., lo, Triton), and include many intermediate cases (e.g., Europa, Ganymede, Enceladus). The exospheres of these moons exhibit an interesting variety of sources, from surface sputtering, to frost sublimation, to active plumes, and also well illustrate another common characteristic of the outer planet satellite exospheres, namely, that the primary species often exists both as a gas in atmosphere, and a condensate (frost or ice) on the surface. As described by Yelle et al. (1995) for Triton, "The interchange of matter between gas and solid phases on these bodies has profound effects on the physical state of the surface and the structure of the atmosphere." A brief overview of the exospheres of the outer planet satellites will be presented, including an inter-comparison of these satellites exospheres with each other, and with the exospheres of the Moon and Mercury.

  16. Endoscopically removed giant submucosal lipoma

    Directory of Open Access Journals (Sweden)

    Jovanović Ivan

    2007-01-01

    Full Text Available Background. Although uncommon, giant submucosal colon lipomas merit attention as they are often presented with dramatic clinical features such as bleeding, acute bowel obstruction, perforation and sometimes may be mistaken for malignancy. There is a great debate in the literature as to how to treat them. Case report. A patient, 67-year old, was admitted to the Clinic due to a constipation over the last several months, increasing abdominal pain mainly localized in the left lower quadrant accompanied by nausea, vomiting and abdominal distension. Physical examination was unremarkable and the results of the detailed laboratory tests and carcinoembryonic antigen remained within normal limits. Colonoscopy revealed a large 10 cm long, and 4 to 5 cm in diameter, mobile lesion in his sigmoid colon. Conventional endoscopic ultrasound revealed 5 cm hyperechoic lesion of the colonic wall. Twenty MHz mini-probe examination showed that lesion was limited to the submucosa. Since polyp appeared too large for a single transaction, it was removed piecemeal. Once the largest portion of the polyp has been resected, it was relatively easy to place the opened snare loop around portions of the residual polyp. Endoscopic resection was carried out safely without complications. Histological examination revealed the common typical histological features of lipoma elsewhere. The patient remained stable and eventually discharged home. Four weeks later he suffered no recurrent symptoms. Conclusion. Colonic lipomas can be endoscopically removed safely eliminating unnecessary surgery.

  17. YOUNG SOLAR SYSTEM's FIFTH GIANT PLANET?

    International Nuclear Information System (INIS)

    Nesvorný, David

    2011-01-01

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside ∼15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  18. Young Solar System's Fifth Giant Planet?

    Science.gov (United States)

    Nesvorný, David

    2011-12-01

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside ~15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  19. Precise Somatotopic Thalamocortical Axon Guidance Depends on LPA-Mediated PRG-2/Radixin Signaling

    DEFF Research Database (Denmark)

    Cheng, Jin; Sahani, Sadhna; Hausrat, Torben Johann

    2016-01-01

    Precise connection of thalamic barreloids with their corresponding cortical barrels is critical for processing of vibrissal sensory information. Here, we show that PRG-2, a phospholipid-interacting molecule, is important for thalamocortical axon guidance. Developing thalamocortical fibers both...

  20. In vivo electrophysiological measurement of the rat ulnar nerve with axonal excitability testing

    DEFF Research Database (Denmark)

    Wild, Brandon M.; Morris, Renée; Moldovan, Mihai

    2018-01-01

    Electrophysiology enables the objective assessment of peripheral nerve function in vivo. Traditional nerve conduction measures such as amplitude and latency detect chronic axon loss and demyelination, respectively. Axonal excitability techniques "by threshold tracking" expand upon these measures...... by providing information regarding the activity of ion channels, pumps and exchangers that relate to acute function and may precede degenerative events. As such, the use of axonal excitability in animal models of neurological disorders may provide a useful in vivo measure to assess novel therapeutic...... interventions. Here we describe an experimental setup for multiple measures of motor axonal excitability techniques in the rat ulnar nerve. The animals are anesthetized with isoflurane and carefully monitored to ensure constant and adequate depth of anesthesia. Body temperature, respiration rate, heart rate...

  1. Axonal plasticity elicits long-term changes in oligodendroglia and myelinated fibers

    DEFF Research Database (Denmark)

    Drøjdahl, Nina; Nielsen, Helle Hvilsted; Gardi, Jonathan E

    2010-01-01

    Axons are linked to induction of myelination during development and to the maintenance of myelin and myelinated tracts in the adult CNS. Currently, it is unknown whether and how axonal plasticity in adult CNS impacts the myelinating cells and their precursors. In this article, we report that newly...... formed axonal sprouts are able to induce a protracted myelination response in adult CNS. We show that newly formed axonal sprouts, induced by lesion of the entorhino-hippocampal perforant pathway, have the ability to induce a myelination response in stratum radiatum and lucidum CA3. The lesion resulted...... in significant recruitment of newly formed myelinating cells, documented by incorporation of the proliferation marker bromodeoxyuridine into chondroitin sulphate NG2 expressing cells in stratum radiatum and lucidum CA3 early after lesion, and the occurrence of a 28% increase in the number of oligodendrocytes...

  2. Organophosphate-Related Alterations in Myelin and Axonal Transport in the Living Mammalian Brain

    Science.gov (United States)

    2014-10-01

    stress, impairments of mitochondrial function, neuroinflammation, altered neurotrophin responses, etc. (reviewed, Soltaninejad and Abdollahi, 2009...Exposure to Chlorpyrifos in Rats: Protracted Effects on Axonal Transport, Neurotrophin Receptors, Cholinergic Markers, and Information Processing

  3. Organophosphate Related Alterations in Myelin and Axonal Transport in the Living Mammalian Brain

    Science.gov (United States)

    2015-10-01

    function, neuroinflammation, al- tered neurotrophin responses, etc. (reviewed, Soltaninejad and Abdollahi, 2009; Banks and Lein, 2012; Terry, 2012). Conflict...JN, Middlemore ML, Williamson LN, et al. Chronic, intermittent exposure to chlorpyrifos in rats: protracted effects on axonal transport, neurotrophin

  4. Effects of X-irradiation on axonal sprouting induced by botulinum toxin

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, S; Duchen, L W [National Hospital, London (UK); Hornsey, S [Hammersmith Hospital, London (UK). M.R.C. Cyclotron Unit

    1982-01-01

    The effect of X-irradiation on axonal sprouting of motor nerves induced by botulinum toxin was examined. Muscles of one leg in the mouse were X-irradiated (15Gy) prior to the injection of a locally paralysing dose of botulinum toxin. It was found that axonal sprouting occurred as expected, but the sprouts remained unmyelinated and many degenerated. Fewer new end-plates were formed, muscles remained more severely atrophied and supersensitive to acetylcholine and recovery of neuromuscular transmission was greatly delayed when compared with the effects of botulinum toxin alone. X-irradiation did not prevent sprouting but, probably by impairing Schwann cell proliferation, altered axon-Schwann cell relationships and prevented the maturation of newly-formed axons and the differentiation of new end-plates.

  5. BORC/kinesin-1 ensemble drives polarized transport of lysosomes into the axon.

    Science.gov (United States)

    Farías, Ginny G; Guardia, Carlos M; De Pace, Raffaella; Britt, Dylan J; Bonifacino, Juan S

    2017-04-04

    The ability of lysosomes to move within the cytoplasm is important for many cellular functions. This ability is particularly critical in neurons, which comprise vast, highly differentiated domains such as the axon and dendrites. The mechanisms that control lysosome movement in these domains, however, remain poorly understood. Here we show that an ensemble of BORC, Arl8, SKIP, and kinesin-1, previously shown to mediate centrifugal transport of lysosomes in nonneuronal cells, specifically drives lysosome transport into the axon, and not the dendrites, in cultured rat hippocampal neurons. This transport is essential for maintenance of axonal growth-cone dynamics and autophagosome turnover. Our findings illustrate how a general mechanism for lysosome dispersal in nonneuronal cells is adapted to drive polarized transport in neurons, and emphasize the importance of this mechanism for critical axonal processes.

  6. BORC/kinesin-1 ensemble drives polarized transport of lysosomes into the axon

    Science.gov (United States)

    Farías, Ginny G.; Guardia, Carlos M.; De Pace, Raffaella; Britt, Dylan J.; Bonifacino, Juan S.

    2017-01-01

    The ability of lysosomes to move within the cytoplasm is important for many cellular functions. This ability is particularly critical in neurons, which comprise vast, highly differentiated domains such as the axon and dendrites. The mechanisms that control lysosome movement in these domains, however, remain poorly understood. Here we show that an ensemble of BORC, Arl8, SKIP, and kinesin-1, previously shown to mediate centrifugal transport of lysosomes in nonneuronal cells, specifically drives lysosome transport into the axon, and not the dendrites, in cultured rat hippocampal neurons. This transport is essential for maintenance of axonal growth-cone dynamics and autophagosome turnover. Our findings illustrate how a general mechanism for lysosome dispersal in nonneuronal cells is adapted to drive polarized transport in neurons, and emphasize the importance of this mechanism for critical axonal processes. PMID:28320970

  7. Sensory axon-derived neuregulin-1 is required for axoglial signaling and normal sensory function but not for long-term axon maintenance

    DEFF Research Database (Denmark)

    Fricker, F.R.; Zhu, N.; Tsantoulas, C.

    2009-01-01

    " pockets. The total number of axons in the sural nerve was unchanged, but a greater proportion was unmyelinated. In addition, we observed large-diameter axons that were in a 1:1 relationship with Schwann cells, surrounded by a basal lamina but not myelinated. There was no evidence of DRG or Schwann cell...... death; the markers of different DRG cell populations and cutaneous innervation were unchanged. These anatomical changes were reflected in a slowing of conduction velocity at the lower end of the A-fiber conduction velocity range and a new population of more rapidly conducting C-fibers that are likely...

  8. Developmental plasticity of ascending spinal axons studies using the North American opossum, Didelphis virginiana.

    Science.gov (United States)

    Terman, J R; Wang, X M; Martin, G F

    1999-01-11

    The objectives of the present study were to determine if axons of all ascending tracts grow through the lesion after transection of the thoracic spinal cord during development in the North American opossum, and if so, whether they reach regions of the brain they normally innervate. Opossum pups were subjected to transection of the mid-thoracic cord at PD5, PD8, PD12, PD20, or PD26 and injections of Fast Blue (FB) into the lower thoracic or upper lumbar cord 30-40 days or 6 months later. In the PD5 transected cases, labeled axons were present in all of the supraspinal areas labeled by comparable injections in unlesioned, age-matched controls. In the experimental cases, however, labeled axons appeared to be fewer in number and in some areas more restricted in location than in the controls. When lesions were made at PD8, labeled axons were present in the brain of animals allowed to survive 30-40 days prior to FB injections but they were not observed in those allowed to survive 6 months. When lesions were made at PD12 or later, labeled axons were never found rostral to the lesion. It appears, therefore, that axons of all ascending spinal pathways grow though the lesion after transection of the thoracic cord in developing opossums and that they innervate appropriate areas of the brain. Interestingly, the critical period for such growth is shorter than that for most descending axons, suggesting that factors which influence loss of developmental plasticity are not the same for all axons.

  9. Adenosine: an activity-dependent axonal signal regulating MAP kinase and proliferation in developing Schwann cells

    OpenAIRE

    Stevens, Beth; Ishibashi, Tomoko; Chen, Jiang-Fan; Fields, R. Douglas

    2004-01-01

    Nonsynaptic release of ATP from electrically stimulated dorsal root gangion (DRG) axons inhibits Schwann cell (SC) proliferation and arrests SC development at the premyelinating stage, but the specific types of purinergic receptor(s) and intracellular signaling pathways involved in this form of neuron–glia communication are not known. Recent research shows that adenosine is a neuron–glial transmitter between axons and myelinating glia of the CNS. The present study investigates the possibility...

  10. Selective axonal growth of embryonic hippocampal neurons according to topographic features of various sizes and shapes

    Directory of Open Access Journals (Sweden)

    Christine E Schmidt

    2010-12-01

    Full Text Available David Y Fozdar1*, Jae Y Lee2*, Christine E Schmidt2–6, Shaochen Chen1,3–5,7,1Departments of Mechanical Engineering, 2Chemical Engineering, 3Biomedical Engineering; 4Center for Nano Molecular Science and Technology; 5Texas Materials Institute; 6Institute of Neuroscience; 7Microelectronics Research Center, The University of Texas at Austin, Austin, TX, USA *Contributed equally to this workPurpose: Understanding how surface features influence the establishment and outgrowth of the axon of developing neurons at the single cell level may aid in designing implantable scaffolds for the regeneration of damaged nerves. Past studies have shown that micropatterned ridge-groove structures not only instigate axon polarization, alignment, and extension, but are also preferred over smooth surfaces and even neurotrophic ligands.Methods: Here, we performed axonal-outgrowth competition assays using a proprietary four-quadrant topography grid to determine the capacity of various micropatterned topographies to act as stimuli sequestering axon extension. Each topography in the grid consisted of an array of microscale (approximately 2 µm or submicroscale (approximately 300 nm holes or lines with variable dimensions. Individual rat embryonic hippocampal cells were positioned either between two juxtaposing topographies or at the borders of individual topographies juxtaposing unpatterned smooth surface, cultured for 24 hours, and analyzed with respect to axonal selection using conventional imaging techniques.Results: Topography was found to influence axon formation and extension relative to smooth surface, and the distance of neurons relative to topography was found to impact whether the topography could serve as an effective cue. Neurons were also found to prefer submicroscale over microscale features and holes over lines for a given feature size.Conclusion: The results suggest that implementing physical cues of various shapes and sizes on nerve guidance conduits

  11. Regional Retinal Ganglion Cell Axon Loss in a Murine Glaucoma Model.

    Science.gov (United States)

    Schaub, Julie A; Kimball, Elizabeth C; Steinhart, Matthew R; Nguyen, Cathy; Pease, Mary E; Oglesby, Ericka N; Jefferys, Joan L; Quigley, Harry A

    2017-05-01

    To determine if retinal ganglion cell (RGC) axon loss in experimental mouse glaucoma is uniform in the optic nerve. Experimental glaucoma was induced for 6 weeks with a microbead injection model in CD1 (n = 78) and C57BL/6 (B6, n = 68) mice. From epoxy-embedded sections of optic nerve 1 to 2 mm posterior to the globe, total nerve area and regional axon density (axons/1600 μm2) were measured in superior, inferior, nasal, and temporal zones. Control eyes of CD1 mice have higher axon density and more total RGCs than control B6 mice eyes. There were no significant differences in control regional axon density in all mice or by strain (all P > 0.2, mixed model). Exposure to elevated IOP caused loss of RGC in both strains. In CD1 mice, axon density declined without significant loss of nerve area, while B6 mice had less density loss, but greater decrease in nerve area. Axon density loss in glaucoma eyes was not significantly greater in any region in either mouse strain (both P > 0.2, mixed model). In moderately damaged CD1 glaucoma eyes, and CD1 eyes with the greatest IOP elevation exposure, density loss differed by region (P = 0.05, P = 0.03, mixed model) with the greatest loss in the temporal and superior regions, while in severely injured B6 nerves superior loss was greater than inferior loss (P = 0.01, mixed model, Bonferroni corrected). There was selectively greater loss of superior and temporal optic nerve axons of RGCs in mouse glaucoma at certain stages of damage. Differences in nerve area change suggest non-RGC responses differ between mouse strains.

  12. Normal axonal ion channel function in large peripheral nerve fibers following chronic ciguatera sensitization.

    Science.gov (United States)

    Vucic, Steve; Kiernan, Matthew C

    2008-03-01

    Although the acute clinical effects of ciguatera poisoning, due to ingestion of ciguatoxin, are mediated by activation of transient Na+ channels, the mechanisms underlying ciguatera sensitization remain undefined. Axonal excitability studies were performed by stimulating the median motor and sensory nerves in two patients with ciguatera sensitization. Excitability parameters were all within normal limits, thereby arguing against dysfunction of axonal membrane ion channels in large-diameter fibers in ciguatera sensitization.

  13. Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries

    Directory of Open Access Journals (Sweden)

    Oscar A. Carballo-Molina

    2015-02-01

    Full Text Available Damage caused to neural tissue by disease or injury frequently produces a discontinuity in the nervous system. Such damage generates diverse alterations that are commonly permanent, due to the limited regeneration capacity of the adult nervous system, particularly the Central Nervous System (CNS. The cellular reaction to noxious stimulus leads to several events such as the formation of glial and fibrous scars, which inhibit axonal regeneration in both the CNS and the Peripheral Nervous System (PNS. Although in the PNS there is some degree of nerve regeneration, it is common that the growing axons reinnervate incorrect areas, causing mismatches. Providing a permissive substrate for axonal regeneration in combination with delivery systems for the release of molecules, which enhances axonal growth, could increase regeneration and the recovery of functions in the CNS or the PNS. Currently, there are no effective vehicles to supply growth factors or cells to the damaged/diseased nervous system. Hydrogels are polymers that are biodegradable, biocompatible and have the capacity to deliver a large range of molecules in situ. The inclusion of cultured neural cells into hydrogels forming three-dimensional structures allows the formation of synapses and neuronal survival. There is also evidence showing that hydrogels constitute an amenable substrate for axonal growth of endogenous or grafted cells, overcoming the presence of axonal regeneration inhibitory molecules, in both the central and peripheral nervous systems. Recent experiments suggest that hydrogels can carry and deliver several proteins relevant for improving neuronal survival and axonal growth. Although the use of hydrogels is appealing, its effectiveness is still a matter of discussion, and more results are needed to achieve consistent recovery using different parameters. This review also discusses areas of opportunity where hydrogels can be applied, in order to promote axonal regeneration of

  14. Axonal Elongation into Peripheral Nervous System ``Bridges'' after Central Nervous System Injury in Adult Rats

    Science.gov (United States)

    David, Samuel; Aguayo, Albert J.

    1981-11-01

    The origin, termination, and length of axonal growth after focal central nervous system injury was examined in adult rats by means of a new experimental model. When peripheral nerve segments were used as ``bridges'' between the medulla and spinal cord, axons from neurons at both these levels grew approximately 30 millimeters. The regenerative potential of these central neurons seems to be expressed when the central nervous system glial environment is changed to that of the peripheral nervous system.

  15. Axon-Sorting Multifunctional Nerve Guides: Accelerating Restoration of Nerve Function

    Science.gov (United States)

    2014-10-01

    factor (singly & in selected combinations) in the organotypic model system for preferential sensory or motor axon extension. Use confocal microscopy to...track axon extension of labeled sensory or motor neurons from spinal cord slices (motor) or dorsal root ganglia ( DRG ) (sensory). 20 Thy1-YFP mice...RESEARCH ACCOMPLISHMENTS: • Established a system of color-coded mixed nerve tracking using GFP and RFP expressing motor and sensory neurons (Figure 1

  16. Wnt Signalling Promotes Actin Dynamics during Axon Remodelling through the Actin-Binding Protein Eps8.

    Directory of Open Access Journals (Sweden)

    Eleanna Stamatakou

    Full Text Available Upon arrival at their synaptic targets, axons slow down their growth and extensively remodel before the assembly of presynaptic boutons. Wnt proteins are target-derived secreted factors that promote axonal remodelling and synaptic assembly. In the developing spinal cord, Wnts secreted by motor neurons promote axonal remodelling of NT-3 responsive dorsal root ganglia neurons. Axon remodelling induced by Wnts is characterised by growth cone pausing and enlargement, processes that depend on the re-organisation of microtubules. However, the contribution of the actin cytoskeleton has remained unexplored. Here, we demonstrate that Wnt3a regulates the actin cytoskeleton by rapidly inducing F-actin accumulation in growth cones from rodent DRG neurons through the scaffold protein Dishevelled-1 (Dvl1 and the serine-threonine kinase Gsk3β. Importantly, these changes in actin cytoskeleton occurs before enlargement of the growth cones is evident. Time-lapse imaging shows that Wnt3a increases lamellar protrusion and filopodia velocity. In addition, pharmacological inhibition of actin assembly demonstrates that Wnt3a increases actin dynamics. Through a yeast-two hybrid screen, we identified the actin-binding protein Eps8 as a direct interactor of Dvl1, a scaffold protein crucial for the Wnt signalling pathway. Gain of function of Eps8 mimics Wnt-mediated axon remodelling, whereas Eps8 silencing blocks the axon remodelling activity of Wnt3a. Importantly, blockade of the Dvl1-Eps8 interaction completely abolishes Wnt3a-mediated axonal remodelling. These findings demonstrate a novel role for Wnt-Dvl1 signalling through Eps8 in the regulation of axonal remodeling.

  17. Independent signaling by Drosophila insulin receptor for axon guidance and growth

    Directory of Open Access Journals (Sweden)

    Caroline Rita Li

    2014-01-01

    Full Text Available The Drosophila insulin receptor (DInR regulates a diverse array of biological processes including growth, axon guidance, and sugar homeostasis. Growth regulation by DInR is mediated by Chico, the Drosophila homolog of vertebrate insulin-receptor-substrate proteins IRS1-4. In contrast, DInR regulation of photoreceptor axon guidance in the developing visual system is mediated by the SH2-SH3 domain adaptor protein Dreadlocks (Dock. In vitro studies by others identified five NPXY motifs, one in the juxtamembrane region and four in the signaling C-terminal tail (C-tail, important for interaction with Chico. Here we used yeast two-hybrid assays to identify regions in the DInR C-tail that interact with Dock. These Dock-binding sites were in separate portions of the C-tail from the previously identified Chico-binding sites. To test whether these sites are required for growth or axon guidance in whole animals, a panel of DInR proteins, in which the putative Chico and Dock interaction sites had been mutated individually or in combination, were tested for their ability to rescue viability, growth, and axon guidance defects of dinr mutant flies. Sites required for viability were identified. Unexpectedly, mutation of both putative Dock binding sites, either individually or in combination, did not lead to defects in photoreceptor axon guidance. Thus, either sites also required for viability are necessary for DInR function in axon guidance and/or there is redundancy built into the DInR/Dock interaction such that Dock is able to interact with multiple regions of DInR. We also found that simultaneous mutation of all 5 NPXY motifs implicated in Chico interaction drastically decreased growth in both male and female adult flies. Mutation of these 5 NPXY motifs did not affect photoreceptor axon guidance, showing that different sites within DInR control growth and axon guidance.

  18. MRI findings in acute diffuse axonal injured patients

    International Nuclear Information System (INIS)

    Sato, Hidetaka

    2001-01-01

    Diffuse axonal injury (DAI) in the acute stage was clinically evaluated using magnetic resonance imaging (MRI), which is considered superior to computed tomography (CT) in detecting parenchymal brain lesions. MRI was disadvantageous, however, to patients suffering from acute severe head injury because of the long time required to construct imaging and unstable patient vital signs. We conducted MRI safely under a high magnetic field (1.5 tesla) in acute DAI by close observation and with nonmagnetic respirator and electrocardiographic monitoring. MRI was conducted in 95 patients diagnosed with DAI classified into mild (14), moderate (17) and severe (64) DAI by criteria established by Gennarelli (1986). In patients with mild or moderate DAI, CT revealed no lesion in the parenchymal area although MRI detected lesions in every case, mainly in cortical white matter or basal ganglia. In patients with severe DAI, CT revealed parenchymal lesions in 14 although MRI detected further lesions in cortical white matter, basal ganglia, corpus callosum and brainstem in every case. These results correspond well to the experimental model Gennarelli's. This study concluded that MRI was useful in assessing acute DAI patients. (author)

  19. Structural study of Purkinje cell axonal torpedoes in essential tremor.

    Science.gov (United States)

    Louis, Elan D; Yi, Hong; Erickson-Davis, Cordelia; Vonsattel, Jean-Paul G; Faust, Phyllis L

    2009-02-06

    Essential tremor (ET) is one of the most common neurological diseases. A basic understanding of its neuropathology is now emerging. Aside from Purkinje cell loss, a prominent finding is an abundance of torpedoes (rounded swellings of Purkinje cell axons). Such swellings often result from the mis-accumulation of cell constituents. Identifying the basic nature of these accumulations is an important step in understanding the underlying disease process. Torpedoes, only recently identified in ET, have not yet been characterized ultrastructurally. Light and electron microscopy were used to characterize the structural constituents of torpedoes in ET. Formalin-fixed cerebellar cortical tissue from four prospectively collected ET brains was sectioned and immunostained with a monoclonal phosphorylated neurofilament antibody (SMI-31, Covance, Emeryville, CA). Using additional sections from three ET brains, torpedoes were assessed using electron microscopy. Immunoreactivity for phosphorylated neurofilament protein revealed clear labeling of torpedoes in each case. Torpedoes were strongly immunoreactive; in many instances, two or more torpedoes were noted in close proximity to one another. On electron microscopy, torpedoes were packed with randomly arranged 10-12nm neurofilaments. Mitochondria and smooth endoplasmic reticulum were abundant as well, particularly at the periphery of the torpedo. We demonstrated that the torpedoes in ET represent the mis-accumulation of disorganized neurofilaments and other organelles. It is not known where in the pathogenic cascade these accumulations occur (i.e., whether these accumulations are the primary event or a secondary/downstream event) and this deserves further study.

  20. Myelin-associated proteins labelled by slow axonal transport

    International Nuclear Information System (INIS)

    Giorgi, P.P.; DuBois, H.

    1981-01-01

    This paper deals with the problem of protein metabolism and provides evidence that the neuronal contribution to myelin metabolism may be restricted to lipids only. On the other hand this line of research led to the partial characterization of a group of neuronal proteins probably involved in axo-glial interactions subserving the onset of myelination and the structural maintenance of the mature myelin sheath. Intraocular injection of radioactive amino acids allows the study of the anterograde transport of labelled proteins along retinofugal fibres which are well myelinated. Myelin extracted from the optic nerve and tract under these conditions also contains labelled proteins. Three hypotheses are available to explain this phenomenon. To offer an explanation for this phenomenon the work was planned as follows. a) Characterization of the spatio-temporal pattern of labelling of myelin, in order to define the experimental conditions (survival time and region of the optic pathway to be studied) necessary to obtain maximal labelling. b) Characterization (by gel electrophoresis) of the myelin-associated proteins which become labelled by axonal transport, in order to work on a consistent pattern of labelling. c) Investigation of the possible mechanism responsible for the labelling of myelin-associated proteins. (Auth.)

  1. Bridging Physics and Biology Using Resistance and Axons

    Science.gov (United States)

    Dyer, Joshua M.

    2014-11-01

    When teaching physics, it is often difficult to get biology-oriented students to see the relevance of physics.1 A complaint often heard is that biology students are required to take physics for the Medical College Admission Test (MCAT) as part of a "weeding out" process, but that they don't feel like they need physics for biology. Despite this impression held by students, there have been calls for better physics education for future physicians and life scientists.2,3 Research is being performed to improve physics classes and labs by linking topics in biology and physics.4,5 Described here is a laboratory experiment covering the topics of resistance of materials and circuits/Kirchhoff's laws in a biology context with their direct application to neurons, axons, and electrical impulse transmission within animals. This experiment will also demonstrate the mechanism believed to cause multiple sclerosis. The apparatus was designed with low-cost and readily available materials in mind.

  2. Detection of functional homotopy in traumatic axonal injury

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian; Gao, Lei; Xie, Kai; Zhan, Jie; Luo, Xiaoping; Wang, Huifang; Zhang, Huifang; Zhao, Jing; Zhou, Fuqing; Zeng, Xianjun; He, Laichang; He, Yulin; Gong, Honghan [Nanchang University, Department of Radiology, The First Affiliated Hospital, Nanchang City, Jiangxi (China)

    2017-01-15

    This study aimed to explore the interhemispheric intrinsic connectivity in traumatic axonal injury (TAI) patients. Twenty-one patients with TAI (14 males, seven females; mean age, 38.71 ± 15.25 years) and 22 well-matched healthy controls (16 males, six females; mean age, 38.50 ± 13.82 years) were recruited, and from them we obtained resting-state fMRI data. Interhemispheric coordination was examined using voxel-mirrored homotopic connectivity (VMHC) and seed-based functional connectivity analysis was performed. We observed significantly decreased VMHC in a number of regions in TAI patients, including the prefrontal, temporal, occipital, parietal, and posterior cingulate cortices, thalami and cerebellar posterior lobes. Subsequent seed-based functional connectivity analysis revealed widely disrupted functional connectivity between the regions of local homotopic connectivity deficits and other areas of the brain, particularly the areas subserving the default, salience, integrative, and executive systems. The lower VMHC of the inferior frontal gyrus and basal ganglia, thalamus, and caudate were significant correlated with the Beck Depression Inventory score, Clinical Dementia Rating score, and Mini-Mental State Examination score, respectively. TAI is associated with regionally decreased interhemispheric interactions and extensively disrupted seed-based functional connectivity, generating further evidence of diffuse disconnection being associated with clinical symptoms in TAI patients. (orig.)

  3. Detection of functional homotopy in traumatic axonal injury

    International Nuclear Information System (INIS)

    Li, Jian; Gao, Lei; Xie, Kai; Zhan, Jie; Luo, Xiaoping; Wang, Huifang; Zhang, Huifang; Zhao, Jing; Zhou, Fuqing; Zeng, Xianjun; He, Laichang; He, Yulin; Gong, Honghan

    2017-01-01

    This study aimed to explore the interhemispheric intrinsic connectivity in traumatic axonal injury (TAI) patients. Twenty-one patients with TAI (14 males, seven females; mean age, 38.71 ± 15.25 years) and 22 well-matched healthy controls (16 males, six females; mean age, 38.50 ± 13.82 years) were recruited, and from them we obtained resting-state fMRI data. Interhemispheric coordination was examined using voxel-mirrored homotopic connectivity (VMHC) and seed-based functional connectivity analysis was performed. We observed significantly decreased VMHC in a number of regions in TAI patients, including the prefrontal, temporal, occipital, parietal, and posterior cingulate cortices, thalami and cerebellar posterior lobes. Subsequent seed-based functional connectivity analysis revealed widely disrupted functional connectivity between the regions of local homotopic connectivity deficits and other areas of the brain, particularly the areas subserving the default, salience, integrative, and executive systems. The lower VMHC of the inferior frontal gyrus and basal ganglia, thalamus, and caudate were significant correlated with the Beck Depression Inventory score, Clinical Dementia Rating score, and Mini-Mental State Examination score, respectively. TAI is associated with regionally decreased interhemispheric interactions and extensively disrupted seed-based functional connectivity, generating further evidence of diffuse disconnection being associated with clinical symptoms in TAI patients. (orig.)

  4. Early development of the circumferential axonal pathway in mouse and chick spinal cord.

    Science.gov (United States)

    Holley, J A

    1982-03-10

    The early development of the circumferential axonal pathway in the brachial and lumbar spinal cord of mouse and chick embryos was studied by scanning and transmission electron microscopy. The cellular processes which comprise this pathway grow in the transverse plane and along the lateral margin of the marginal zone (i.e., circumferentially oriented), as typified by the early embryonic commissural axons. The first formative event observed was in the ventrolateral margin of the primitive spinal cord ventricular zone. Cellular processes were found near the external limiting membrane that appeared to grow a variable distance either dorsally or ventrally. Later in development, presumptive motor column neurons migrated into the ventrolateral region, distal to these early circumferentially oriented processes. Concurrently, other circumferentially oriented perikarya and processes appeared along the dorsolateral margin. Due to their aligned sites of origin and parallel growth, the circumferential processes formed a more or less continuous line or pathway, which in about 10% of the scanned specimens could be followed along the entire lateral margin of the embryonic spinal cord. Several specimens later in development had two sets of aligned circumferential processes in the ventral region. Large numbers of circumferential axons were then found to follow the preformed pathway by fasciculation, after the primitive motor column had become established. Since the earliest circumferential processes appeared to differentiate into axons and were found nearly 24 hours prior to growth of most circumferential axons, their role in guidance as pioneering axons was suggested.

  5. Fractional cable equation for general geometry: A model of axons with swellings and anomalous diffusion

    Science.gov (United States)

    López-Sánchez, Erick J.; Romero, Juan M.; Yépez-Martínez, Huitzilin

    2017-09-01

    Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.

  6. Vesicular Axonal Transport is Modified In Vivo by Tau Deletion or Overexpression in Drosophila

    Directory of Open Access Journals (Sweden)

    Yasmina Talmat-Amar

    2018-03-01

    Full Text Available Structural microtubule associated protein Tau is found in high amount in axons and is involved in several neurodegenerative diseases. Although many studies have highlighted the toxicity of an excess of Tau in neurons, the in vivo understanding of the endogenous role of Tau in axon morphology and physiology is poor. Indeed, knock-out mice display no strong cytoskeleton or axonal transport phenotype, probably because of some important functional redundancy with other microtubule-associated proteins (MAPs. Here, we took advantage of the model organism Drosophila, which genome contains only one homologue of the Tau/MAP2/MAP4 family to decipher (endogenous Tau functions. We found that Tau depletion leads to a decrease in microtubule number and microtubule density within axons, while Tau excess leads to the opposite phenotypes. Analysis of vesicular transport in tau mutants showed altered mobility of vesicles, but no change in the total amount of putatively mobile vesicles, whereas both aspects were affected when Tau was overexpressed. In conclusion, we show that loss of Tau in tau mutants not only leads to a decrease in axonal microtubule density, but also impairs axonal vesicular transport, albeit to a lesser extent compared to the effects of an excess of Tau.

  7. Drosophila growth cones: a genetically tractable platform for the analysis of axonal growth dynamics.

    Science.gov (United States)

    Sánchez-Soriano, Natalia; Gonçalves-Pimentel, Catarina; Beaven, Robin; Haessler, Ulrike; Ofner-Ziegenfuss, Lisa; Ballestrem, Christoph; Prokop, Andreas

    2010-01-01

    The formation of neuronal networks, during development and regeneration, requires outgrowth of axons along reproducible paths toward their appropriate postsynaptic target cells. Axonal extension occurs at growth cones (GCs) at the tips of axons. GC advance and navigation requires the activity of their cytoskeletal networks, comprising filamentous actin (F-actin) in lamellipodia and filopodia as well as dynamic microtubules (MTs) emanating from bundles of the axonal core. The molecular mechanisms governing these two cytoskeletal networks, their cross-talk, and their response to extracellular signaling cues are only partially understood, hindering our conceptual understanding of how regulated changes in GC behavior are controlled. Here, we introduce Drosophila GCs as a suitable model to address these mechanisms. Morphological and cytoskeletal readouts of Drosophila GCs are similar to those of other models, including mammals, as demonstrated here for MT and F-actin dynamics, axonal growth rates, filopodial structure and motility, organizational principles of MT networks, and subcellular marker localization. Therefore, we expect fundamental insights gained in Drosophila to be translatable into vertebrate biology. The advantage of the Drosophila model over others is its enormous amenability to combinatorial genetics as a powerful strategy to address the complexity of regulatory networks governing axonal growth. Thus, using pharmacological and genetic manipulations, we demonstrate a role of the actin cytoskeleton in a specific form of MT organization (loop formation), known to regulate GC pausing behavior. We demonstrate these events to be mediated by the actin-MT linking factor Short stop, thus identifying an essential molecular player in this context.

  8. DISCO Interacting Protein 2 regulates axonal bifurcation and guidance of Drosophila mushroom body neurons.

    Science.gov (United States)

    Nitta, Yohei; Yamazaki, Daisuke; Sugie, Atsushi; Hiroi, Makoto; Tabata, Tetsuya

    2017-01-15

    Axonal branching is one of the key processes within the enormous complexity of the nervous system to enable a single neuron to send information to multiple targets. However, the molecular mechanisms that control branch formation are poorly understood. In particular, previous studies have rarely addressed the mechanisms underlying axonal bifurcation, in which axons form new branches via splitting of the growth cone. We demonstrate that DISCO Interacting Protein 2 (DIP2) is required for precise axonal bifurcation in Drosophila mushroom body (MB) neurons by suppressing ectopic bifurcation and regulating the guidance of sister axons. We also found that DIP2 localize to the plasma membrane. Domain function analysis revealed that the AMP-synthetase domains of DIP2 are essential for its function, which may involve exerting a catalytic activity that modifies fatty acids. Genetic analysis and subsequent biochemical analysis suggested that DIP2 is involved in the fatty acid metabolization of acyl-CoA. Taken together, our results reveal a function of DIP2 in the developing nervous system and provide a potential functional relationship between fatty acid metabolism and axon morphogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Wnt3 and Gata4 regulate axon regeneration in adult mouse DRG neurons.

    Science.gov (United States)

    Duan, Run-Shan; Liu, Pei-Pei; Xi, Feng; Wang, Wei-Hua; Tang, Gang-Bin; Wang, Rui-Ying; Saijilafu; Liu, Chang-Mei

    2018-05-05

    Neurons in the adult central nervous system (CNS) have a poor intrinsic axon growth potential after injury, but the underlying mechanisms are largely unknown. Wingless-related mouse mammary tumor virus integration site (WNT) family members regulate neural stem cell proliferation, axon tract and forebrain development in the nervous system. Here we report that Wnt3 is an important modulator of axon regeneration. Downregulation or overexpression of Wnt3 in adult dorsal root ganglion (DRG) neurons enhances or inhibits their axon regeneration ability respectively in vitro and in vivo. Especially, we show that Wnt3 modulates axon regeneration by repressing mRNA translation of the important transcription factor Gata4 via binding to the three prime untranslated region (3'UTR). Downregulation of Gata4 could restore the phenotype exhibited by Wnt3 downregulation in DRG neurons. Taken together, these data indicate that Wnt3 is a key intrinsic regulator of axon growth ability of the nervous system. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Conduction velocity is regulated by sodium channel inactivation in unmyelinated axons innervating the rat cranial meninges.

    Science.gov (United States)

    De Col, Roberto; Messlinger, Karl; Carr, Richard W

    2008-02-15

    Axonal conduction velocity varies according to the level of preceding impulse activity. In unmyelinated axons this typically results in a slowing of conduction velocity and a parallel increase in threshold. It is currently held that Na(+)-K(+)-ATPase-dependent axonal hyperpolarization is responsible for this slowing but this has long been equivocal. We therefore examined conduction velocity changes during repetitive activation of single unmyelinated axons innervating the rat cranial meninges. In direct contradiction to the currently accepted postulate, Na(+)-K(+)-ATPase blockade actually enhanced activity-induced conduction velocity slowing, while the degree of velocity slowing was curtailed in the presence of lidocaine (10-300 microm) and carbamazepine (30-500 microm) but not tetrodotoxin (TTX, 10-80 nm). This suggests that a change in the number of available sodium channels is the most prominent factor responsible for activity-induced changes in conduction velocity in unmyelinated axons. At moderate stimulus frequencies, axonal conduction velocity is determined by an interaction between residual sodium channel inactivation following each impulse and the retrieval of channels from inactivation by a concomitant Na(+)-K(+)-ATPase-mediated hyperpolarization. Since the process is primarily dependent upon sodium channel availability, tracking conduction velocity provides a means of accessing relative changes in the excitability of nociceptive neurons.

  11. p27Kip1 Modulates Axonal Transport by Regulating α-Tubulin Acetyltransferase 1 Stability

    Directory of Open Access Journals (Sweden)

    Giovanni Morelli

    2018-05-01

    Full Text Available Summary: The protein p27Kip1 plays roles that extend beyond cell-cycle regulation during cerebral cortex development, such as the regulation of neuronal migration and neurite branching via signaling pathways that converge on the actin and microtubule cytoskeletons. Microtubule-dependent transport is essential for the maturation of neurons and the establishment of neuronal connectivity though synapse formation and maintenance. Here, we show that p27Kip1 controls the transport of vesicles and organelles along the axon of mice cortical projection neurons in vitro. Moreover, suppression of the p27Kip1 ortholog, dacapo, in Drosophila melanogaster disrupts axonal transport in vivo, leading to the reduction of locomotor activity in third instar larvae and adult flies. At the molecular level, p27Kip1 stabilizes the α-tubulin acetyltransferase 1, thereby promoting the acetylation of microtubules, a post-translational modification required for proper axonal transport. : Morelli et al. report that p27Kip1/Dacapo modulates the acetylation of microtubules in axons via stabilization of ATAT1, the main α-tubulin acetyltransferase. Its conditional loss leads to the reduction of bidirectional axonal transport of vesicles and mitochondria in vitro in mice and in vivo in Drosophila. Keywords: p27Kip1, dacapo, acetylation, axonal transport, ATAT1, alpha-tubulin, HDAC6, Drosophila, mouse, cerebral cortex

  12. Electrodynamics on extrasolar giant planets

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, T. T.; Yelle, R. V. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092 (United States); Lavvas, P. [Groupe de Spectroscopie Moléculaire et Atmosphérique UMR CNRS 7331, Université Reims Champagne-Ardenne, F-51687 Reims (France); Cho, J. Y-K., E-mail: tommi@lpl.arizona.edu [Astronomy Unit, School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)

    2014-11-20

    Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of H and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially

  13. A GIANT SAMPLE OF GIANT PULSES FROM THE CRAB PULSAR

    International Nuclear Information System (INIS)

    Mickaliger, M. B.; McLaughlin, M. A.; Lorimer, D. R.; Palliyaguru, N.; Langston, G. I.; Bilous, A. V.; Kondratiev, V. I.; Lyutikov, M.; Ransom, S. M.

    2012-01-01

    We observed the Crab pulsar with the 43 m telescope in Green Bank, WV over a timespan of 15 months. In total we obtained 100 hr of data at 1.2 GHz and seven hours at 330 MHz, resulting in a sample of about 95,000 giant pulses (GPs). This is the largest sample, to date, of GPs from the Crab pulsar taken with the same telescope and backend and analyzed as one data set. We calculated power-law fits to amplitude distributions for main pulse (MP) and interpulse (IP) GPs, resulting in indices in the range of 2.1-3.1 for MP GPs at 1.2 GHz and in the range of 2.5-3.0 and 2.4-3.1 for MP and IP GPs at 330 MHz. We also correlated the GPs at 1.2 GHz with GPs from the Robert C. Byrd Green Bank Telescope (GBT), which were obtained simultaneously at a higher frequency (8.9 GHz) over a span of 26 hr. In total, 7933 GPs from the 43 m telescope at 1.2 GHz and 39,900 GPs from the GBT were recorded during these contemporaneous observations. At 1.2 GHz, 236 (3%) MP GPs and 23 (5%) IP GPs were detected at 8.9 GHz, both with zero chance probability. Another 15 (4%) low-frequency IP GPs were detected within one spin period of high-frequency IP GPs, with a chance probability of 9%. This indicates that the emission processes at high and low radio frequencies are related, despite significant pulse profile shape differences. The 43 m GPs were also correlated with Fermi γ-ray photons to see if increased pair production in the magnetosphere is the mechanism responsible for GP emission. A total of 92,022 GPs and 393 γ-ray photons were used in this correlation analysis. No significant correlations were found between GPs and γ-ray photons. This indicates that increased pair production in the magnetosphere is likely not the dominant cause of GPs. Possible methods of GP production may be increased coherence of synchrotron emission or changes in beaming direction.

  14. A GIANT SAMPLE OF GIANT PULSES FROM THE CRAB PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Mickaliger, M. B.; McLaughlin, M. A.; Lorimer, D. R.; Palliyaguru, N. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); Langston, G. I. [National Radio Astronomy Observatory, Green Bank, WV 24944 (United States); Bilous, A. V. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Kondratiev, V. I. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands); Lyutikov, M. [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907-2036 (United States); Ransom, S. M. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States)

    2012-11-20

    We observed the Crab pulsar with the 43 m telescope in Green Bank, WV over a timespan of 15 months. In total we obtained 100 hr of data at 1.2 GHz and seven hours at 330 MHz, resulting in a sample of about 95,000 giant pulses (GPs). This is the largest sample, to date, of GPs from the Crab pulsar taken with the same telescope and backend and analyzed as one data set. We calculated power-law fits to amplitude distributions for main pulse (MP) and interpulse (IP) GPs, resulting in indices in the range of 2.1-3.1 for MP GPs at 1.2 GHz and in the range of 2.5-3.0 and 2.4-3.1 for MP and IP GPs at 330 MHz. We also correlated the GPs at 1.2 GHz with GPs from the Robert C. Byrd Green Bank Telescope (GBT), which were obtained simultaneously at a higher frequency (8.9 GHz) over a span of 26 hr. In total, 7933 GPs from the 43 m telescope at 1.2 GHz and 39,900 GPs from the GBT were recorded during these contemporaneous observations. At 1.2 GHz, 236 (3%) MP GPs and 23 (5%) IP GPs were detected at 8.9 GHz, both with zero chance probability. Another 15 (4%) low-frequency IP GPs were detected within one spin period of high-frequency IP GPs, with a chance probability of 9%. This indicates that the emission processes at high and low radio frequencies are related, despite significant pulse profile shape differences. The 43 m GPs were also correlated with Fermi {gamma}-ray photons to see if increased pair production in the magnetosphere is the mechanism responsible for GP emission. A total of 92,022 GPs and 393 {gamma}-ray photons were used in this correlation analysis. No significant correlations were found between GPs and {gamma}-ray photons. This indicates that increased pair production in the magnetosphere is likely not the dominant cause of GPs. Possible methods of GP production may be increased coherence of synchrotron emission or changes in beaming direction.

  15. Polarized axonal surface expression of neuronal KCNQ potassium channels is regulated by calmodulin interaction with KCNQ2 subunit.

    Directory of Open Access Journals (Sweden)

    John P Cavaretta

    Full Text Available KCNQ potassium channels composed of KCNQ2 and KCNQ3 subunits give rise to the M-current, a slow-activating and non-inactivating voltage-dependent potassium current that limits repetitive firing of action potentials. KCNQ channels are enriched at the surface of axons and axonal initial segments, the sites for action potential generation and modulation. Their enrichment at the axonal surface is impaired by mutations in KCNQ2 carboxy-terminal tail that cause benign familial neonatal convulsion and myokymia, suggesting that their correct surface distribution and density at the axon is crucial for control of neuronal excitability. However, the molecular mechanisms responsible for regulating enrichment of KCNQ channels at the neuronal axon remain elusive. Here, we show that enrichment of KCNQ channels at the axonal surface of dissociated rat hippocampal cultured neurons is regulated by ubiquitous calcium sensor calmodulin. Using immunocytochemistry and the cluster of differentiation 4 (CD4 membrane protein as a trafficking reporter, we demonstrate that fusion of KCNQ2 carboxy-terminal tail is sufficient to target CD4 protein to the axonal surface whereas inhibition of calmodulin binding to KCNQ2 abolishes axonal surface expression of CD4 fusion proteins by retaining them in the endoplasmic reticulum. Disruption of calmodulin binding to KCNQ2 also impairs enrichment of heteromeric KCNQ2/KCNQ3 channels at the axonal surface by blocking their trafficking from the endoplasmic reticulum to the axon. Consistently, hippocampal neuronal excitability is dampened by transient expression of wild-type KCNQ2 but not mutant KCNQ2 deficient in calmodulin binding. Furthermore, coexpression of mutant calmodulin, which can interact with KCNQ2/KCNQ3 channels but not calcium, reduces but does not abolish their enrichment at the axonal surface, suggesting that apo calmodulin but not calcium-bound calmodulin is necessary for their preferential targeting to the axonal

  16. Effects of certain burning treatments on veld condition in Giant's ...

    African Journals Online (AJOL)

    Effects of certain burning treatments on veld condition in Giant's Castle Game Reserve. ... Keywords: above-ground standing crop; basal cover; burning; composition change; giant's castle game reserve; natal ... AJOL African Journals Online.

  17. Hepatic Giant Cell Arteritis and Polymyalgia Rheumatica

    Directory of Open Access Journals (Sweden)

    Donald R Duerksen

    1994-01-01

    Full Text Available Polymyalgia rheumatica (PMR is a clinical syndrome of the elderly characterized by malaise, proximal muscle aching and stiffness, low grade fever, elevated erythrocyte sedimentation rare and the frequent association with temporal giant cell arteritis. The authors describe a case of PMR associated with hepatic giant cell arteritis. This lesion has been described in two other clinical reports. The distribution of the arteritis may be patchy; in this report, diagnosis was made with a wedge biopsy performed after an initial nonspecific percutaneous liver biopsy. The authors review the spectrum of liver involvement in PMR and giant cell arteritis. Hepatic abnormalities respond to systemic corticosteroids, and patients with hepatic arteritis have a good prognosis.

  18. Excitation of giant resonances through inelastic scattering

    International Nuclear Information System (INIS)

    Kailas, S.

    1981-01-01

    In the last few years, exciting developments have taken place in the study of giant resonances (GR). In addition to the already well known gjant dipole resonance (GDR), the presence of at least two more new GRs viz. giant quadrupole resonance (GQR) and giant monopole resonance (GMR) has been experimentally established. The systematics covering these GRs is found to be consistent with the theoretical expectation. Though the existence of higher multipoles has been predjcted by theory, so far only some of these have been found to be excited experimentally. Various probe particles - electrons, protons (polarized and unpolarized), light and heavy ions and pions - at different bombarding energies have been used to excite the GR region, primarily through the inelastic scattering process. Detailed experiments, looking at the decay modes of GR region, have also been performed. These studies have contributed significantly to a better understanding of the phenomenon of nuclear collective excitation. In this report, the current status of 'GR' research is reviewed. (author)

  19. LITHIUM-RICH GIANTS IN GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Evan N.; Cohen, Judith G. [California Institute of Technology, 1200 E. California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Guhathakurta, Puragra [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Zhang, Andrew J. [The Harker School, 500 Saratoga Avenue, San Jose, CA 95129 (United States); Hong, Jerry [Palo Alto High School, 50 Embarcadero Road, Palo Alto, CA, 94301 (United States); Guo, Michelle [Stanford University, 450 Serra Mall, Stanford, CA 94305 (United States); Guo, Rachel [Irvington High School, 41800 Blacow Road, Fremont, CA 94538 (United States); Cunha, Katia [Observatório Nacional, São Cristóvão Rio de Janeiro (Brazil)

    2016-03-10

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron–Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval.

  20. Partial Denervation of Subbasal Axons Persists Following Debridement Wounds to the Mouse Cornea

    Science.gov (United States)

    Pajoohesh-Ganji, Ahdeah; Pal-Ghosh, Sonali; Tadvalkar, Gauri; Kyne, Briana M.; Saban, Daniel R.; Stepp, Mary Ann

    2015-01-01

    Although sensory reinnervation occurs after injury in the PNS, poor reinnervation in the elderly and those with diabetes often leads to pathology. Here we quantify subbasal axon density in the central and peripheral mouse cornea over time after three different types of injury. The mouse cornea is highly innervated with a dense array of subbasal nerves that form a spiral called the vortex at the corneal center or apex; these nerves are readily detected within flat mounted corneas. After anesthesia, corneal epithelial cells were removed using either a dulled blade or a rotating burr within an area demarcated centrally with a 1.5 mm trephine. A third wound type, superficial trephination, involved demarcating the area with the 1.5 mm trephine but not removing cells. By 7d after superficial trephination, subbasal axon density returns to control levels; by 28d the vortex reforms. Although axon density is similar to control 14d after dulled blade and rotating burr wounding, defects in axon morphology at the corneal apex remain. After 14d, axons retract from the center leaving the subbasal axon density reduced by 37.2% and 36.8% at 28d after dulled blade and rotating burr wounding, respectively, compared to control. Assessment of inflammation using flow cytometry shows that persistent inflammation is not a factor in the incomplete reinnervation. Expression of mRNAs encoding 22 regeneration associated genes (RAGs) involved in axon targeting assessed by QPCR reveals that netrin-1 and ephrin signaling are altered after wounding. Subpopulations of corneal epithelial basal cells at the corneal apex stop expressing ki67 as early as 7d after injury and by 14d and 28d after wounding, many of these basal cells undergo apoptosis and die. While subbasal axons are restored to their normal density and morphology after superficial trephination, subbasal axon recovery is partial after debridement wounds. The increase in corneal epithelial basal cell apoptosis at the apex observed at 14d

  1. Partial denervation of sub-basal axons persists following debridement wounds to the mouse cornea.

    Science.gov (United States)

    Pajoohesh-Ganji, Ahdeah; Pal-Ghosh, Sonali; Tadvalkar, Gauri; Kyne, Briana M; Saban, Daniel R; Stepp, Mary Ann

    2015-11-01

    Although sensory reinnervation occurs after injury in the peripheral nervous system, poor reinnervation in the elderly and those with diabetes often leads to pathology. Here we quantify sub-basal axon density in the central and peripheral mouse cornea over time after three different types of injury. The mouse cornea is highly innervated with a dense array of sub-basal nerves that form a spiral called the vortex at the corneal center or apex; these nerves are readily detected within flat mounted corneas. After anesthesia, corneal epithelial cells were removed using either a dulled blade or a rotating burr within an area demarcated centrally with a 1.5 mm trephine. A third wound type, superficial trephination, involved demarcating the area with the 1.5 mm trephine but not removing cells. By 7 days after superficial trephination, sub-basal axon density returns to control levels; by 28 days the vortex reforms. Although axon density is similar to control 14 days after dulled blade and rotating burr wounding, defects in axon morphology at the corneal apex remain. After 14 days, axons retract from the center leaving the sub-basal axon density reduced by 37.2 and 36.8% at 28 days after dulled blade and rotating burr wounding, respectively, compared with control. Assessment of inflammation using flow cytometry shows that persistent inflammation is not a factor in the incomplete reinnervation. Expression of mRNAs encoding 22 regeneration-associated genes involved in axon targeting assessed by QPCR reveals that netrin-1 and ephrin signaling are altered after wounding. Subpopulations of corneal epithelial basal cells at the corneal apex stop expressing ki67 as early as 7 days after injury and by 14 and 28 days after wounding, many of these basal cells undergo apoptosis and die. Although sub-basal axons are restored to their normal density and morphology after superficial trephination, sub-basal axon recovery is partial after debridement wounds. The increase in corneal

  2. Sustained maximal voluntary contraction produces independent changes in human motor axons and the muscle they innervate.

    Directory of Open Access Journals (Sweden)

    David A Milder

    Full Text Available The repetitive discharges required to produce a sustained muscle contraction results in activity-dependent hyperpolarization of the motor axons and a reduction in the force-generating capacity of the muscle. We investigated the relationship between these changes in the adductor pollicis muscle and the motor axons of its ulnar nerve supply, and the reproducibility of these changes. Ten subjects performed a 1-min maximal voluntary contraction. Activity-dependent changes in axonal excitability were measured using threshold tracking with electrical stimulation at the wrist; changes in the muscle were assessed as evoked and voluntary electromyography (EMG and isometric force. Separate components of axonal excitability and muscle properties were tested at 5 min intervals after the sustained contraction in 5 separate sessions. The current threshold required to produce the target muscle action potential increased immediately after the contraction by 14.8% (p<0.05, reflecting decreased axonal excitability secondary to hyperpolarization. This was not correlated with the decline in amplitude of muscle force or evoked EMG. A late reversal in threshold current after the initial recovery from hyperpolarization peaked at -5.9% at ∼35 min (p<0.05. This pattern was mirrored by other indices of axonal excitability revealing a previously unreported depolarization of motor axons in the late recovery period. Measures of axonal excitability were relatively stable at rest but less so after sustained activity. The coefficient of variation (CoV for threshold current increase was higher after activity (CoV 0.54, p<0.05 whereas changes in voluntary (CoV 0.12 and evoked twitch (CoV 0.15 force were relatively stable. These results demonstrate that activity-dependent changes in motor axon excitability are unlikely to contribute to concomitant changes in the muscle after sustained activity in healthy people. The variability in axonal excitability after sustained activity

  3. Transient developmental Purkinje cell axonal torpedoes in healthy and ataxic mouse cerebellum

    Directory of Open Access Journals (Sweden)

    Lovisa Ljungberg

    2016-11-01

    Full Text Available Information is carried out of the cerebellar cortical microcircuit via action potentials propagated along Purkinje cell axons. In several human neurodegenerative diseases, focal axonal swellings on Purkinje cells – known as torpedoes – have been associated with Purkinje cell loss. Interestingly, torpedoes are also reported to appear transiently during development in rat cerebellum. The function of Purkinje cell axonal torpedoes in health as well as in disease is poorly understood. We investigated the properties of developmental torpedoes in the postnatal mouse cerebellum of wildtype and transgenic mice. We found that Purkinje cell axonal torpedoes transiently appeared on axons of Purkinje neurons, with the largest number of torpedoes observed at postnatal day 11 (P11. This was after peak developmental apoptosis had occurred, when Purkinje cell counts in a lobule were static, suggesting that most developmental torpedoes appear on axons of neurons that persist into adulthood. We found that developmental torpedoes were not associated with a presynaptic GABAergic marker, indicating that they are not synapses. They were seldom found at axonal collateral branch points, and lacked microglia enrichment, suggesting that they are unlikely to be involved in axonal refinement. Interestingly, we found several differences between developmental torpedoes and disease-related torpedoes: developmental torpedoes occured largely on myelinated axons, and were not associated with changes in basket cell innervation on their parent soma. Disease-related torpedoes are typically reported to contain neurofilament; while the majority of developmental torpedoes did as well, a fraction of smaller developmental torpedoes did not. These differences indicate that developmental torpedoes may not be functionally identical to disease-related torpedoes. To study this further, we used a mouse model of spinocerebellar ataxia type 6 (SCA6, and found elevated disease

  4. Blocking effects of human tau on squid giant synapse transmission and its prevention by T-817 MA

    Directory of Open Access Journals (Sweden)

    Herman eMoreno

    2011-05-01

    Full Text Available Filamentous tau inclusions are hallmarks of Alzheimer’s disease (AD and related neurodegenerative tauopathies, but the molecular mechanisms involved in tau mediated changes in neuronal function and their possible effects on synaptic transmission are unknown. We have evaluated the effects of human tau protein injected directly into the presynaptic terminal axon of the squid giant synapse, which affords functional, structural, and biochemical analysis of its action on the synaptic release process. Indeed, we have found that at physiological concentrations recombinant human tau isoforms (h-tau 42 become phosphorylated, produce a rapid synaptic transmission block, and induce the formation of clusters of aggregated synaptic vesicles in the vicinity of the active zone. Presynaptic voltage clamp recordings demonstrate that h-tau does not modify the presynaptic calcium current amplitude or kinetics. Analysis of synaptic noise at the post-synaptic axon following pre-synaptic h-tau42 microinjection revealed an initial phase of increase spontaneous transmitter release followed by a marked reduction in noise. Finally, systemic administration of T-817MA, a proposed neuro-protective agent, rescued tau-induced synaptic abnormalities. Our results show novel mechanisms of h-tau42 mediated synaptic transmission failure and more importantly identify a potential therapeutic agent to treat/prevent tau-related neurotoxicity.

  5. Blocking Effects of Human Tau on Squid Giant Synapse Transmission and Its Prevention by T-817 MA

    Science.gov (United States)

    Moreno, Herman; Choi, Soonwook; Yu, Eunah; Brusco, Janaina; Avila, Jesus; Moreira, Jorge E.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.

    2011-01-01

    Filamentous tau inclusions are hallmarks of Alzheimer's disease and related neurodegenerative tauopathies, but the molecular mechanisms involved in tau-mediated changes in neuronal function and their possible effects on synaptic transmission are unknown. We have evaluated the effects of human tau protein injected directly into the presynaptic terminal axon of the squid giant synapse, which affords functional, structural, and biochemical analysis of its action on the synaptic release process. Indeed, we have found that at physiological concentration recombinant human tau (h-tau42) becomes phosphorylated, produces a rapid synaptic transmission block, and induces the formation of clusters of aggregated synaptic vesicles in the vicinity of the active zone. Presynaptic voltage clamp recordings demonstrate that h-tau42 does not modify the presynaptic calcium current amplitude or kinetics. Analysis of synaptic noise at the post-synaptic axon following presynaptic h-tau42 microinjection revealed an initial phase of increase spontaneous transmitter release followed by a marked reduction in noise. Finally, systemic administration of T-817MA, a proposed neuro-protective agent, rescued tau-induced synaptic abnormalities. Our results show novel mechanisms of h-tau42 mediated synaptic transmission failure and identify a potential therapeutic agent to treat tau-related neurotoxicity. PMID:21629767

  6. Giant Epidermoid Cyst of the Thigh

    Directory of Open Access Journals (Sweden)

    NH Mohamed Haflah

    2011-11-01

    Full Text Available Epidermoid cyst is a common benign cutaneous swelling frequently encountered in surgical practice. It usually presents as a painless lump frequently occurring in hairbearing areas of the body particularly the scalp, scrotum, neck, shoulder and back. Giant epidermoid cysts commonly occur in hairy areas such as the scalp. We present here the case of a rare occurrence of a giant epidermoid cyst in the less hairy area of the right upper thigh mimicking a soft tissue sarcoma. Steps are highlighted for the management of this unusual cyst.

  7. Giant Spermatocele Mimicking Hydrocele: A Case Report

    Directory of Open Access Journals (Sweden)

    Hsin-Chih Yeh

    2007-07-01

    Full Text Available Spermatoceles are usually asymptomatic and often found incidentally during physical examination. We report a case of giant spermatocele that mimicked a hydrocele. A 55-year-old man suffered from right scrotal enlargement for several years. As the heavy sensation and scrotal soreness worsened in recent months, he came to our outpatient clinic for help. Hydrocele was suspected due to transilluminating appearance of the scrotal content. Surgical exploration was arranged and a giant spermatocele was found. Total excision of the spermatocele was performed and the patient recovered well. The specimen was sent for pathology and spermatocele with spermatozoa was noted.

  8. Neglected Giant Scalp Basal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Anne Kristine Larsen, MD

    2014-03-01

    Full Text Available Summary: Rarely, basal cell carcinoma grows to a giant size, invading the underlying deep tissue and complicating the treatment and reconstruction modalities. A giant basal cell carcinoma on the scalp is in some cases treated with a combination of surgery and radiation therapy, resulting in local control, a satisfactory long-term cosmetic and functional result. We present a case with a neglected basal cell scalp carcinoma, treated with wide excision and postoperative radiotherapy, reconstructed with a free latissimus dorsi flap. The cosmetic result is acceptable and there is no sign of recurrence 1 year postoperatively.

  9. Giant HII regions as distance indicators

    International Nuclear Information System (INIS)

    Melnick, Jorge; Terlevich, Robert; Moles, Mariano

    1987-01-01

    The correlations between the integrated Hβ luminosities, the velocity widths of the nebular lines and the metallicities of giant HII regions and HII galaxies are demonstrated to provide powerful distance indicators. They are calibrated on a homogeneous sample of giant HII regions with well determined distances and applied to distant HII galaxies to obtain a value of H 0 =95+-10 for the Hubble parameter, consistent with the value obtained by the Tully-Fisher technique. The effect of Malmquist bias and other systematic effects on the HII region method are discussed in detail. (Author)

  10. Isovector giant quadrupole resonance in 63Cu

    International Nuclear Information System (INIS)

    Wolynec, E.; Pastura, V.F.S.; Martins, M.N.

    1988-01-01

    The decay of the isovector E2 giant resonance in 63 Cu has been studied by measuring the (e,2n) cross section, in the incident electron energy range 22-45 MeV. The photodisintegration induced by bremsstrahlung was also measured. The electrodisintegration results have been analyzed using the distorted wave Born approximation E1 and E2 virtual photon spectra to obtain these multipole components in the corresponding (γ,2n) cross section. It is found that the isovector E2 giant resonance decays dominantly by two-neutron emission in 63 Cu. This decay channel exhausts 65 percent of the energy weighted E2 sum. (author0 [pt

  11. Probing giant magnetoresistance with THz spectroscopy

    DEFF Research Database (Denmark)

    Jin, Zuanming; Tkach, Alexander; Casper, Frederick

    2014-01-01

    We observe a giant magnetoresistance effect in CoFe/Cu-based multistack using THz time-domain spectroscopy. The magnetic field-dependent dc conductivity, electron scattering time, as well as spin-asymmetry parameter of the structure are successfully determined. © 2014 OSA.......We observe a giant magnetoresistance effect in CoFe/Cu-based multistack using THz time-domain spectroscopy. The magnetic field-dependent dc conductivity, electron scattering time, as well as spin-asymmetry parameter of the structure are successfully determined. © 2014 OSA....

  12. Atypical visual loss in giant cell arteritis

    DEFF Research Database (Denmark)

    Thystrup, Jan Deichmann; Knudsen, G M; Mogensen, A M

    1994-01-01

    Three patients with atypical ocular involvement due to histologically verified giant cell arteritis are reported. Prior to diagnosis, the first patient had periods of amaurosis fugax. He presented with normal vision. In spite of high-dose systemic corticosteroid therapy, he became blind in the te......Three patients with atypical ocular involvement due to histologically verified giant cell arteritis are reported. Prior to diagnosis, the first patient had periods of amaurosis fugax. He presented with normal vision. In spite of high-dose systemic corticosteroid therapy, he became blind...

  13. Giant Condyloma Acuminatum: A Surgical Riddle

    Directory of Open Access Journals (Sweden)

    Shukla

    2016-08-01

    Full Text Available Giant condyloma acuminatum (GCA commonly known as Buschke-Lowenstein tumor (BLT is a rare sexually transmitted disease, which is always preceded by condyloma accuminata and linked to human papillomavirus (HPV. Most commonly affected sites are male and female genitalia, anal and perianal regions. Giant condyloma acuminatum is well-known as slow growing but locally destructive with a high rate of recurrence and increased frequency of malignant transformation. Surgical management is considered to be the best among all the options.

  14. The Pseudopod System for Axon-Glia Interactions: Stimulation and Isolation of Schwann Cell Protrusions that Form in Response to Axonal Membranes.

    Science.gov (United States)

    Poitelon, Yannick; Feltri, M Laura

    2018-01-01

    In the peripheral nervous system, axons dictate the differentiation state of Schwann cells. Most of this axonal influence on Schwann cells is due to juxtacrine interactions between axonal transmembrane molecules (e.g., the neuregulin growth factor) and receptors on the Schwann cell (e.g., the ErbB2/ErbB3 receptor). The fleeting nature of this interaction together with the lack of synchronicity in the development of the Schwann cell population limits our capability to study this phenomenon in vivo. Here we present a simple Boyden Chamber-based method to study this important cell-cell interaction event. We isolate the early protrusions of Schwann cells that are generated in response to juxtacrine stimulation by sensory neuronal membranes. This method is compatible with a large array of current biochemical analyses and provides an effective approach to study biomolecules that are differentially localized in Schwann cell protrusions and cell bodies in response to axonal signals. A similar approach can be extended to different kinds of cell-cell interactions.

  15. Peripheral nerve injury fails to induce growth of lesioned ascending dorsal column axons into spinal cord scar tissue expressing the axon repellent Semaphorin3A

    NARCIS (Netherlands)

    Pasterkamp, R Jeroen; Anderson, Patrick N; Verhaagen, J

    We have investigated the hypothesis that the chemorepellent Semaphorin3A may be involved in the failure of axonal regeneration after injury to the ascending dorsal columns of adult rats. Following transection of the thoracic dorsal columns, fibroblasts in the dorsolateral parts of the lesion site

  16. beta(2)-ADRENERGIC RECEPTORS PROTECT AXONS DURING ENERGETIC STRESS BUT DO NOT INFLUENCE BASAL GLIO-AXONAL LACTATE SHUTTLING IN MOUSE WHITE MATTER

    NARCIS (Netherlands)

    Laureys, G.; Valentino, M.; Demol, F.; Zammit, C.; Muscat, R.; Cambron, M.; Kooijman, R.; De Keyser, J.

    2014-01-01

    In vitro studies have demonstrated that beta 2-adrenergic receptor activation stimulates glycogen degradation in astrocytes, generating lactate as a potential energy source for neurons. Using in vivo microdialysis in mouse cerebellar white matter we demonstrate continuous axonal lactate uptake and

  17. Observing giant panda habitat and forage abundance from space

    NARCIS (Netherlands)

    Wang, T.

    2009-01-01

    Giant pandas are obligate bamboo grazers. The bamboos favoured by giant
    pandas are typical forest understorey plants. Therefore, the availability and
    abundance of understorey bamboo is a key factor in determining the quantity
    and quality of giant panda food resources. However,

  18. Evidence for deformation effect on the giant monopole resonance

    International Nuclear Information System (INIS)

    Buenerd, M.; Lebrun, D.; Martin, P.; de Saintignon, P.; Perrin, C.

    1980-01-01

    The giant monopole resonance in the region of deformed nuclei has been investigated by inelastic scattering of 108.5 MeV 3 He at very small scattering angles. Evidence is reported for coupling between the giant monopole and giant quadrupole vibrations, based both on energy shift and transition strength

  19. Giant urinary bladder calculus: Case report | Otieno | East African ...

    African Journals Online (AJOL)

    A vertical calculus weighing more than 100 g is categorised as a giant urinary bladder stone. Giant urinary bladder stones are very rare and very few cases have been reported in English literature and only one case from Africa. This is a case report of a patient with a giant urinary bladder calculus presenting as a rectal ...

  20. Staged Closure of Giant Omphalocele using Synthetic Mesh

    OpenAIRE

    Parida, Lalit; Pal, Kamalesh; Al Buainain, Hussah; Elshafei, Hossam

    2014-01-01

    Giant omphalocele is difficult to manage and is associated with a poor outcome. A male newborn presented to our hospital with a giant omphalocele. We performed a staged closure of giant omphalocele using synthetic mesh to construct a silo and then mesh abdominoplasty in the neonatal period that led to a successful outcome within a reasonable period of hospital stay.

  1. Giant Panda habitat selection in the Foping Nature Reserve, China

    NARCIS (Netherlands)

    Liu, X.; Toxopeus, A.G.; Skidmore, A.K.; Shao, X.; Dang, D.; Wang, T.; Prins, H.H.T.

    2005-01-01

    Little is known about habitat selection of the giant panda (Ailuropoda melanoleuca), especially about the relationship between giant panda presence and bamboo and tree structures. We presented data on giant panda habitat use and selection in Foping Nature Reserve (NR), China. We used 1,066

  2. Channelrhodopsin-2 localised to the axon initial segment.

    Directory of Open Access Journals (Sweden)

    Matthew S Grubb

    2010-10-01

    Full Text Available The light-gated cation channel Channelrhodopsin-2 (ChR2 is a powerful and versatile tool for controlling neuronal activity. Currently available versions of ChR2 either distribute uniformly throughout the plasma membrane or are localised specifically to somatodendritic or synaptic domains. Localising ChR2 instead to the axon initial segment (AIS could prove an extremely useful addition to the optogenetic repertoire, targeting the channel directly to the site of action potential initiation, and limiting depolarisation and associated calcium entry elsewhere in the neuron. Here, we describe a ChR2 construct that we localised specifically to the AIS by adding the ankyrinG-binding loop of voltage-gated sodium channels (Na(vII-III to its intracellular terminus. Expression of ChR2-YFP-Na(vII-III did not significantly affect the passive or active electrical properties of cultured rat hippocampal neurons. However, the tiny ChR2 currents and small membrane depolarisations resulting from AIS targeting meant that optogenetic control of action potential firing with ChR2-YFP-Na(vII-III was unsuccessful in baseline conditions. We did succeed in stimulating action potentials with light in some ChR2-YFP-Na(vII-III-expressing neurons, but only when blocking KCNQ voltage-gated potassium channels. We discuss possible alternative approaches to obtaining precise control of neuronal spiking with AIS-targeted optogenetic constructs and propose potential uses for our ChR2-YFP-Na(vII-III probe where subthreshold modulation of action potential initiation is desirable.

  3. Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI

    DEFF Research Database (Denmark)

    Nunes, Daniel; Cruz, Tomás L; Jespersen, Sune N

    2017-01-01

    available in the clinic, or extremely long acquisition schemes to extract information from parameter-intensive models. In this study, we suggest that simple and time-efficient multi-gradient-echo (MGE) MRI can be used to extract the axon density from susceptibility-driven non-monotonic decay in the time...... the quantitative results are compared against ground-truth histology, they seem to reflect the axonal fraction (though with a bias, as evident from Bland-Altman analysis). As well, the extra-axonal fraction can be estimated. The results suggest that our model is oversimplified, yet at the same time evidencing......-dependent signal. We show, both theoretically and with simulations, that a non-monotonic signal decay will occur for multi-compartmental microstructures – such as axons and extra-axonal spaces, which we here used in a simple model for the microstructure – and that, for axons parallel to the main magnetic field...

  4. ON Cone Bipolar Cell Axonal Synapses in the OFF Inner Plexiform Layer of the Rabbit Retina

    Science.gov (United States)

    Lauritzen, J. Scott; Anderson, James R.; Jones, Bryan W.; Watt, Carl B.; Mohammed, Shoeb; Hoang, John V.; Marc, Robert E.

    2012-01-01

    Analysis of the rabbit retinal connectome RC1 reveals that the division between the ON and OFF inner plexiform layer (IPL) is not structurally absolute. ON cone bipolar cells make non-canonical axonal synapses onto specific targets and receive amacrine cell synapses in the nominal OFF layer, creating novel motifs, including inhibitory crossover networks. Automated transmission electron microscope (ATEM) imaging, molecular tagging, tracing, and rendering of ≈ 400 bipolar cells reveals axonal ribbons in 36% of ON cone bipolar cells, throughout the OFF IPL. The targets include GABA-positive amacrine cells (γACs), glycine-positive amacrine cells (GACs) and ganglion cells. Most ON cone bipolar cell axonal contacts target GACs driven by OFF cone bipolar cells, forming new architectures for generating ON-OFF amacrine cells. Many of these ON-OFF GACs target ON cone bipolar cell axons, ON γACs and/or ON-OFF ganglion cells, representing widespread mechanisms for OFF to ON crossover inhibition. Other targets include OFF γACs presynaptic to OFF bipolar cells, forming γAC-mediated crossover motifs. ON cone bipolar cell axonal ribbons drive bistratified ON-OFF ganglion cells in the OFF layer and provide ON drive to polarity-appropriate targets such as bistratified diving ganglion cells (bsdGCs). The targeting precision of ON cone bipolar cell axonal synapses shows that this drive incidence is necessarily a joint distribution of cone bipolar cell axonal frequency and target cell trajectories through a given volume of the OFF layer. Such joint distribution sampling is likely common when targets are sparser than sources and when sources are coupled, as are ON cone bipolar cells. PMID:23042441

  5. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase

    International Nuclear Information System (INIS)

    Yang Dongren; Howard, Angela; Bruun, Donald; Ajua-Alemanj, Mispa; Pickart, Cecile; Lein, Pamela J.

    2008-01-01

    A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrations that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE -/- ) versus wild type (AChE +/+ ) mice indicated that while these OPs inhibited axonal growth in AChE +/+ DRG neurons, they had no effect on axonal growth in AChE -/- DRG neurons. However, transfection of AChE -/- DRG neurons with cDNA encoding full-length AChE restored the wild type response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs

  6. Development of the Early Axon Scaffold in the Rostral Brain of the Small Spotted Cat Shark (Scyliorhinus canicula) Embryo

    OpenAIRE

    Ware, Michelle; Waring, Colin P.; Schubert, Frank R.

    2014-01-01

    International audience; The cat shark is increasingly used as a model for Chondrichthyes, an evolutionarily important sister group of the bony vertebrates that include teleosts and tetrapods. In the bony vertebrates, the first axon tracts form a highly conserved early axon scaffold. The corresponding structure has not been well characterised in cat shark and will prove a useful model for comparative studies. Using pan-neural markers, the early axon scaffold of the cat shark, Scyliorhinus cani...

  7. Axonal transport and incorporation of radioactivity after injection of N-[3H]acetyl-D-mannosamine into rat mesencephalon

    International Nuclear Information System (INIS)

    Loopuijt, L.D.

    1980-01-01

    A study has been performed to demonstrate the possibility of incorporation of sialic acid into nerve endings of the rubrospinal tract after antegrade axonal transport. Young adult rats received injections of N-[ 3 H]acetyl-D-mannosamine into the red nucleus and axonal transport of the tritiated compounds along the axons of afferent and efferent connections of the red nucleus was studied and the transported material was analysed. Light microscopic autoradiography and biochemical methods were used. (Auth./C.F.)

  8. THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY

    International Nuclear Information System (INIS)

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Oguri, Masamune; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon

    2011-01-01

    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z ∼> 1.4, indicating that the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z ∼> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.

  9. Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites.

    Directory of Open Access Journals (Sweden)

    Fabrice Ango

    2008-04-01

    Full Text Available The geometric and subcellular organization of axon arbors distributes and regulates electrical signaling in neurons and networks, but the underlying mechanisms have remained elusive. In rodent cerebellar cortex, stellate interneurons elaborate characteristic axon arbors that selectively innervate Purkinje cell dendrites and likely regulate dendritic integration. We used GFP BAC transgenic reporter mice to examine the cellular processes and molecular mechanisms underlying the development of stellate cell axons and their innervation pattern. We show that stellate axons are organized and guided towards Purkinje cell dendrites by an intermediate scaffold of Bergmann glial (BG fibers. The L1 family immunoglobulin protein Close Homologue of L1 (CHL1 is localized to apical BG fibers and stellate cells during the development of stellate axon arbors. In the absence of CHL1, stellate axons deviate from BG fibers and show aberrant branching and orientation. Furthermore, synapse formation between aberrant stellate axons and Purkinje dendrites is reduced and cannot be maintained, leading to progressive atrophy of axon terminals. These results establish BG fibers as a guiding scaffold and CHL1 a molecular signal in the organization of stellate axon arbors and in directing their dendritic innervation.

  10. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury.

    Science.gov (United States)

    Liu, Shengwen; Sandner, Beatrice; Schackel, Thomas; Nicholson, LaShae; Chtarto, Abdelwahed; Tenenbaum, Liliane; Puttagunta, Radhika; Müller, Rainer; Weidner, Norbert; Blesch, Armin

    2017-09-15

    Grafting of cell-seeded alginate capillary hydrogels into a spinal cord lesion site provides an axonal bridge while physically directing regenerating axonal growth in a linear pattern. However, without an additional growth stimulus, bridging axons fail to extend into the distal host spinal cord. Here we examined whether a combinatory strategy would support regeneration of descending axons across a cervical (C5) lateral hemisection lesion in the rat spinal cord. Following spinal cord transections, Schwann cell (SC)-seeded alginate hydrogels were grafted to the lesion site and AAV5 expressing brain-derived neurotrophic factor (BDNF) under control of a tetracycline-regulated promoter was injected caudally. In addition, we examined whether SC injection into the caudal spinal parenchyma would further enhance regeneration of descending axons to re-enter the host spinal cord. Our data show that both serotonergic and descending axons traced by biotinylated dextran amine (BDA) extend throughout the scaffolds. The number of regenerating axons is significantly increased when caudal BDNF expression is activated and transient BDNF delivery is able to sustain axons after gene expression is switched off. Descending axons are confined to the caudal graft/host interface even with continuous BDNF expression for 8weeks. Only with a caudal injection of SCs, a pathway facilitating axonal regeneration through the host/graft interface is generated allowing axons to successfully re-enter the caudal spinal cord. Recovery from spinal cord injury is poor due to the limited regeneration observed in the adult mammalian central nervous system. Biomaterials, cell transplantation and growth factors that can guide axons across a lesion site, provide a cellular substrate, stimulate axon growth and have shown some promise in increasing the growth distance of regenerating axons. In the present study, we combined an alginate biomaterial with linear channels with transplantation of Schwann cells within

  11. The Giant Radio Array for Neutrino Detection

    DEFF Research Database (Denmark)

    Martineau-Huynh, Olivier; Bustamante, Mauricio; Carvalho, Washington

    2017-01-01

    The Giant Radio Array for Neutrino Detection (GRAND) is a planned array of ~200 000 radio antennas deployed over ~200 000 km2 in a mountainous site. It aims primarly at detecting high-energy neutrinos via the observation of extensive air showers induced by the decay in the atmosphere of taus...

  12. Nitrogen depletion in field red giants

    DEFF Research Database (Denmark)

    Masseron, T.; Lagarde, N.; Miglio, A.

    2017-01-01

    , the behaviour of nitrogen data along the evolution confirms the existence of non-canonical extramixing on the red giant branch (RGB) for all low-mass stars in the field. But more surprisingly, the data indicate that nitrogen has been depleted between the RGB tip and the red clump. This may suggest that some...

  13. Robust giant magnetoresistive effect type multilayer sensor

    NARCIS (Netherlands)

    Lenssen, K.M.H.; Kuiper, A.E.T.; Roozeboom, F.

    2002-01-01

    A robust Giant Magneto Resistive effect type multilayer sensor comprising a free and a pinned ferromagnetic layer, which can withstand high temperatures and strong magnetic fields as required in automotive applications. The GMR multi-layer has an asymmetric magneto-resistive curve and enables

  14. Giant omental lipoblastoma and CD56 expression

    Directory of Open Access Journals (Sweden)

    Go Miyano

    2013-01-01

    Full Text Available We report a case of giant omental lipoblastoma in a 13-month-old boy, which was treated successfully by total excision. Tumor cells were positive for S100, CD34 and CD56. This is the first report of lipoblastoma expressing CD56, a fact that could be used to differentiate lipoblastoma from liposarcoma.

  15. [Giant paraovarian cyst in childhood - Case report].

    Science.gov (United States)

    Torres, Janina P; Íñiguez, Rodrigo D

    2015-01-01

    Paraovarian cysts are very uncommon in children To present a case of giant paraovarian cyst case in a child and its management using a modified laparoscopic-assisted technique A 13-year-old patient with a 15 day-history of intermittent abdominal pain, located in the left hemiabdomen and associated with progressive increase in abdominal volume. Diagnostic imaging was inconclusive, describing a giant cystic formation that filled up the abdomen, but without specifying its origin. Laboratory tests and tumor markers were within normal range. Video-assisted transumbilical cystectomy, a modified laparoscopic procedure with diagnostic and therapeutic intent, was performed with a successful outcome. The histological study reported giant paraovarian cyst. Cytology results were negative for tumor cells. The patient remained asymptomatic during the postoperative follow-up. The video-assisted transumbilical cystectomy is a safe procedure and an excellent diagnostic and therapeutic alternative for the treatment of giant paraovarian cysts. Copyright © 2015. Publicado por Elsevier España, S.L.U.

  16. The operation of giant incisional hernia

    DEFF Research Database (Denmark)

    Eriksson, Axelina; Krag, Christen; Jørgensen, Lars Nannestad

    2014-01-01

    Incisional hernia is a common complication to laparotomy impacting negatively on quality of life, risk of emergency surgery and cosmesis. The operation of giant incisional hernia (cross diameter of hernia defect > 20 cm) is a high risk procedure and the surgical techniques are not based on high...

  17. Study of giant resonances with pions

    International Nuclear Information System (INIS)

    Baer, H.W.

    1984-01-01

    Recent results on giant resonances obtained with pion-inelastic scattering and with single- and double-charge-exchange scattering are reviewed. The states discussed are isobaric analog states, double-isobaric analog states, and isovector L = 0, 1, and 2 collective states. 36 references

  18. Air pollution effects on giant sequoia ecosystems.

    Science.gov (United States)

    P.R. Miller; Nancy Grulke; K.W. Stolte

    1994-01-01

    Giant sequoia [Sequoiadendron giganteum (Lindl.) Buchholz] groves are found entirely within the Sierra Nevada mixed-conifer type. Several of its companion tree species, mainly ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and Jeffrey pine (P. jeffreyi Grev. & Balf.), show foliar injury after...

  19. Think big--giant genes in bacteria.

    Science.gov (United States)

    Reva, Oleg; Tümmler, Burkhard

    2008-03-01

    Long genes should be rare in archaea and eubacteria because of the demanding costs of time and resources for protein production. The search in 580 sequenced prokaryotic genomes, however, revealed 0.2% of all genes to be longer than 5 kb (absolute number: 3732 genes). Eighty giant bacterial genes of more than 20 kb in length were identified in 47 taxa that belong to the phyla Thermotogae (1), Chlorobi (3), Planctomycetes (1), Cyanobacteria (2), Firmicutes (7), Actinobacteria (9), Proteobacteria (23) or Euryarchaeota (1) (number of taxa in brackets). Giant genes are strain-specific, differ in their tetranucleotide usage from the bulk genome and occur preferentially in non-pathogenic environmental bacteria. The two longest bacterial genes known to date were detected in the green sulfur bacterium Chlorobium chlorochromatii CaD3 encoding proteins of 36 806 and 20 647 amino acids, being surpassed in length only by the human titin coding sequence. More than 90% of bacterial giant genes either encode a surface protein or a polyketide/non-ribosomal peptide synthetase. Most surface proteins are acidic, threonine-rich, lack cystein and harbour multiple amino acid repeats. Giant proteins increase bacterial fitness by the production of either weapons towards or shields against animate competitors or hostile environments.

  20. Ectopic pancreas in a giant mediastinal cyst

    NARCIS (Netherlands)

    Li, Wilson W.; van Boven, Wim Jan; Jurhill, Roy R.; Bonta, Peter I.; Annema, Jouke T.; de Mol, Bas A.

    2016-01-01

    Ectopic pancreas located in the mediastium is an extremely rare anomaly. We present a case of an ectopic pancreas located in a giant mediastinal cyst in an 18-year-old man. He presented with symptoms of dyspnea due to external compression of the cyst on the left main bronchus. Complete surgical

  1. Giant lower oesophageal ulcer Bushman baby

    African Journals Online (AJOL)

    1983-02-26

    Feb 26, 1983 ... The case of a giant, penetrating lower oesophageal ulcer in a 14-month-old Bushman baby is reported. This would probably be classified as a Barrett's ulcer. Histological examination showed that the ulcer developed in columnar epithelium and that there was normal stratified squamous oesophageal.

  2. Excess mortality in giant cell arteritis

    DEFF Research Database (Denmark)

    Bisgård, C; Sloth, H; Keiding, Niels

    1991-01-01

    A 13-year departmental sample of 34 patients with definite (biopsy-verified) giant cell arteritis (GCA) was reviewed. The mortality of this material was compared to sex-, age- and time-specific death rates in the Danish population. The standardized mortality ratio (SMR) was 1.8 (95% confidence...

  3. Looking inside giant resonance fine structure

    International Nuclear Information System (INIS)

    Ponomarev, V.Yu.; Voronov, V.V.

    1993-01-01

    Microscopic calculations of the fine structure of giant resonances for spherical nuclei are presented. Excited states are treated by wave function which takes into account coupling of simple one-phonon configurations with more complex ones. Nuclear structure calculations are applied to the description of the γ-decay of resonances into the ground and low-lying excited states. 16 refs.; 4 figs

  4. Giant Retroperitoneal Lipoma in an Infant

    African Journals Online (AJOL)

    2010-06-29

    Jun 29, 2010 ... We are reporting the case of a six-month-old child who presented with a giant retroperitoneal lipoma that was successfully managed by complete ... Retroperitoneal lipoma is an unusual entity that is most often found in adults between 40 and 60 years of age and rarely occurs in the first decade of life.

  5. Giant light enhancement in atomic clusters

    International Nuclear Information System (INIS)

    Gadomsky, O. N.; Gadomskaya, I. V.; Altunin, K. K.

    2009-01-01

    We show that the polarizing effect of the atoms in an atomic cluster can lead to full compensation of the radiative damping of excited atomic states, a change in the sign of the dispersion of the atomic polarizability, and giant light enhancement by the atomic cluster.

  6. Polarization Spectra of Extrasolar Giant Planets

    NARCIS (Netherlands)

    Stam, D.M.

    2004-01-01

    We present simulated spectra of the flux and degree of polarization of starlight that is reflected by extrasolar giant planets (EGPs). In particular the polarization depends strongly on the structure of the planetary atmosphere, and appears to be a valuable tool for the characterization of EGPs.

  7. Giant resonances in the deformed continuum

    International Nuclear Information System (INIS)

    Nakatsukasa, T.; Yabana, K.

    2004-01-01

    Giant resonances in the continuum for deformed nuclei are studied with the time-dependent Hartree-Fock (TDHF) theory in real time and real space. The continuum effect is effectively taken into account by introducing a complex Absorbing Boundary Condition (ABC). (orig.)

  8. Total hip arthroplasty for giant cell tumour.

    Directory of Open Access Journals (Sweden)

    Kulkarni S

    1996-07-01

    Full Text Available A 32 month follow up of an uncommon case of a Giant Cell Tumour affecting the proximal end of femur is presented. Following a wide excision, the hip was reconstructed using Charnley type of low friction total hip arthroplasty. At a 32 month review, there was no recurrence and the function was good.

  9. Giant dipole resonances built on excited states

    International Nuclear Information System (INIS)

    Snover, K.A.

    1983-01-01

    The properties of giant dipole resonances built on excited nuclear states are reviewed, with emphasis on recent results. Nonstatistical (p,γ) reactions in light nuclei, and statistical complex-particle reactions in light and heavy nuclei are discussed. 27 references

  10. Reading on the Shoulders of Giants

    Science.gov (United States)

    Ben-Chaim, Michael; Riendeau, Michael

    2012-01-01

    Reflecting on his successful scientific career, Isaac Newton highlighted his intellectual debt to his predecessors. "If I have seen further," he wrote, "it was "only" by standing on the shoulders of giants." The authors have chosen the title of their article as a token of recognition of their debt to the teachings of…

  11. Giant cell angiofibroma or localized periorbital lymphedema?

    Science.gov (United States)

    Lynch, Michael C; Chung, Catherine G; Specht, Charles S; Wilkinson, Michael; Clarke, Loren E

    2013-12-01

    Giant cell angiofibroma represents a rare soft tissue neoplasm with a predilection for the orbit. We recently encountered a mass removed from the lower eyelid of a 56-year-old female that histopathologically resembled giant cell angiofibroma. The process consisted of haphazardly arranged CD34-positive spindled and multinucleated cells within an edematous, densely vascular stroma. However, the patient had recently undergone laryngectomy and radiotherapy for a laryngeal squamous cell carcinoma. A similar mass had arisen on the contralateral eyelid, and both had developed several months post-therapy. Lymphedema of the orbit can present as tumor-like nodules and in some cases may share histopathologic features purported to be characteristic of giant cell angiofibroma. A relationship between giant cell angiofibroma and lymphedema has not been established, but our case suggests there may be one. The potential overlap of these two conditions should be recognized, as should other entities that may enter the differential diagnosis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Kepler Asteroseismology of Red-giant Stars

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, J.

    2012-01-01

    The Kepler mission, launched in March 2009, has revolutionized asteroseismology, providing detailed observations of thousands of stars. This has allowed in-depth analyses of stars ranging from compact hot subdwarfs to red giants, and including the detection of solar-like oscillations in hundreds ...

  13. Asteroseismic Diagram for Subgiants and Red Giants

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Ning; Tang, Yanke [College of Physics and Electronic information, Dezhou University, Dezhou 253023 (China); Yu, Peng [College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Dou, Xianghua, E-mail: ning_gai@163.com, E-mail: tyk450@163.com [Shandong Provincial Key Laboratory of Biophysics, Dezhou University, Dezhou 253023 (China)

    2017-02-10

    Asteroseismology is a powerful tool for constraining stellar parameters. NASA’s Kepler mission is providing individual eigenfrequencies for a huge number of stars, including thousands of red giants. Besides the frequencies of acoustic modes, an important breakthrough of the Kepler mission is the detection of nonradial gravity-dominated mixed-mode oscillations in red giants. Unlike pure acoustic modes, mixed modes probe deeply into the interior of stars, allowing the stellar core properties and evolution of stars to be derived. In this work, using the gravity-mode period spacing and the large frequency separation, we construct the ΔΠ{sub 1}–Δ ν asteroseismic diagram from models of subgiants and red giants with various masses and metallicities. The relationship ΔΠ{sub 1}–Δ ν is able to constrain the ages and masses of the subgiants. Meanwhile, for red giants with masses above 1.5 M {sub ⊙}, the ΔΠ{sub 1}–Δ ν asteroseismic diagram can also work well to constrain the stellar age and mass. Additionally, we calculate the relative “isochrones” τ , which indicate similar evolution states especially for similar mass stars, on the ΔΠ{sub 1}–Δ ν diagram.

  14. Giant Plagioclase Basalts, eruption rate versus time

    Indian Academy of Sciences (India)

    R.Narasimhan(krishtel emaging) 1461 1996 Oct 15 13:05:22

    I found the GPB lavas to be very interest- ing because in some ... by Venkatesan et al (1993) and thus in a way validates my approach. ... and age calculation of lavas from phenocrysts. Keywords. Deccan Trap; Giant Plagioclase Basalts; eruption duration. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 111, No. 4, December ...

  15. Surface Magnetic Fields on Giants and Supergiants

    Science.gov (United States)

    Lebre, Agnès

    2018-04-01

    After a short introduction to spectropolarimetry and the tecnics allowing for the detection of surface fields, I will review the numerous and various detections of magnetic fields at the surface of giant and supergiant stars. On Betelgeuse, the prototype of Red Supergiants, I will present recent results collected after a 10 years long spectropolarimetric survey.

  16. Giant dipole resonance by many levels theory

    International Nuclear Information System (INIS)

    Mondaini, R.P.

    1977-01-01

    The many levels theory is applied to photonuclear effect, in particular, in giant dipole resonance. A review about photonuclear dipole absorption, comparing with atomic case is done. The derivation of sum rules; their modifications by introduction of the concepts of effective charges and mass and the Siegert theorem. The experimental distributions are compared with results obtained by curve adjustment. (M.C.K.) [pt

  17. Infrared studies of asymptotic giant branch stars

    International Nuclear Information System (INIS)

    Willems, F.J.

    1987-01-01

    In this thesis studies are presented of asymptotic giant branch stars, which are thought to be an important link in the evolution of the galaxy. The studies were performed on the basis of data collected by the IRAS, the infrared astronomical satelite. 233 refs.; 33 figs.; 16 tabs

  18. Giant pseudoaneurysm from Vieussens' arterial ring.

    Science.gov (United States)

    Kocica, Mladen J; Vranes, Mile R; Djukic, Petar L; Mikic, Aleksandar Dj; Velinovic, Milos M; Havelka, Marija; Kanjuh, Vladimir I

    2004-11-01

    A giant coronary pseudoaneurysm of uncertain cause, arising from Vieussens' arterial ring, was preoperatively diagnosed in an oligosymptomatic female patient. Successful off-pump surgical excision without additional bypass grafting was performed. Difficulties in diagnostic algorithm, as well as possible cause and extremely rare localization were discussed.

  19. Physical properties of the red giant envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, W J [Instituto de Astronomia e Geofisico da Universidade de Sao Paulo (Brazil)

    1978-12-01

    In this work, several model envelopes are calculated for cool giant stars with mass loss due to the action of stellar radiation pressure on molecules and grains. Molecular profiles as well as average values of some physical parameters of the envelopes are obtained.

  20. Physical properties of the red giant envelopes

    International Nuclear Information System (INIS)

    Maciel, W.J.

    1978-01-01

    In this work, several model envelopes are calculated for cool giant stars with mass loss due to the action of stellar radiation pressure on molecules and grains. Molecular profiles as well as average values of some physical parameters of the envelopes are obtained [pt

  1. Stability of the giant dipole resonance

    International Nuclear Information System (INIS)

    Espino, J.M.; Gallardo, M.

    1987-01-01

    The Giant Dipole Resonance (GDR), because of its stability and its typical period of vibration, can be used as a test for compound nucleus reactions at high temperatures. This stability is studied in a simple model up to 6 MeV of temperature. The experimental methods for getting the properties of the GDR at T ≠ 0 are also commented. (author)

  2. Giant Mucinous Cystadenoma in Nnewi, Nigeria

    African Journals Online (AJOL)

    Ovarian mucinous cystadenoma is a benign tumor that arises from the surface ... abdomen. On vaginal examination, the vulva, vaginal and cervix ... Multilocular cyst. Discussion. Giant ovarian tumors have become rare in recent times because most of them are discovered early during routine medical check or incidental ...

  3. Tuberculosis Detection by Giant African Pouched Rats

    Science.gov (United States)

    Poling, Alan; Weetjens, Bart; Cox, Christophe; Beyene, Negussie; Durgin, Amy; Mahoney, Amanda

    2011-01-01

    In recent years, operant discrimination training procedures have been used to teach giant African pouched rats to detect tuberculosis (TB) in human sputum samples. This article summarizes how the rats are trained and used operationally, as well as their performance in studies published to date. Available data suggest that pouched rats, which can…

  4. Giant viruses of amoebas: an update

    Directory of Open Access Journals (Sweden)

    Sarah eAherfi

    2016-03-01

    Full Text Available During the 12 past years, five new or putative virus families encompassing several members, namely Mimiviridae, Marseilleviridae, pandoraviruses, faustoviruses, and virophages were described. In addition, Pithovirus sibericum and Mollivirus sibericum represent type strains of putative new giant virus families. All these viruses were isolated using amoebal coculture methods. These giant viruses were linked by phylogenomic analyses to other large DNA viruses. They were then proposed to be classified in a new viral order, the Megavirales, on the basis of their common origin, as shown by a set of ancestral genes encoding key viral functions, a common virion architecture, and shared major biological features including replication inside cytoplasmic factories. Megavirales is increasingly demonstrated to stand in the tree of life aside Bacteria, Archaea and Eukarya, and the megavirus ancestor is suspected to be as ancient as cellular ancestors. In addition, giant amoebal viruses are visible under a light microscope and display many phenotypic and genomic features not found in other viruses, while they share other characteristics with parasitic microbes. Moreoever, these organisms appear to be common inhabitants of our biosphere, and mimiviruses and marseilleviruses were isolated from human samples and associated to diseases. In the present review, we describe the main features and recent findings on these giant amoebal viruses and virophages.

  5. Standing on the shoulders of giants.

    Science.gov (United States)

    Romanovsky, Andrej A

    2014-01-01

    In this editorial, the author explains that the journal Temperature stands on the shoulders of giants-prominent scientists of the past and current members of the Temperature community. Temperature also uses the best tools, such as Google Scholar profiles. The editorial includes a new puzzle: why does warm water freeze faster than cold water?

  6. Floret-like multinucleated giant cells in neurofibroma

    Directory of Open Access Journals (Sweden)

    Golka Dariusz

    2007-12-01

    Full Text Available Abstract This short report discusses a case of neurofibroma containing floret-like multinucleated giant cells. This being the second such case in the literature. Floret-like multinucleated giant cells have been reported in gynaecomastia and neurofibroma in neurofibromatosis type 1. These cells have been reported in uncommon soft tissue tumours including pleomorphic lipoma, giant cell collagenoma, giant cell fibroblastoma and giant cell angiofibroma. We recommend these cells to be interpreted carefully keeping in mind the rare malignant change in neurofibromas. Immunohistochemistry would help in defining the nature of such cells.

  7. Rapid formation of gas giants, ice giants and super-Earths

    Energy Technology Data Exchange (ETDEWEB)

    Boss, A P [DTM, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States)], E-mail: boss@dtm.ciw.edu

    2008-08-15

    Giant planets might have been formed by either of the two basic mechanisms, top-down (disk instability) or bottom-up (core accretion). The latter mechanism is the most generally accepted mechanism and it begins with the collisional accumulation of solid cores that may then accrete sufficient gas to become gas giants. The former mechanism is more heretical and begins with the gravitational instability of the protoplanetary disk gas, leading to the formation of self-gravitating protoplanets, within which the dust settles to form a solid core. The disk instability mechanism has been thought of primarily as a mechanism for the formation of gas giants, but if it occurs in a disk that is being photoevaporated by the ultraviolet radiation from nearby massive stars, then the outer gaseous protoplanets can be photoevaporated as well and stripped of their gaseous envelopes. The result would then be ice giants (cold super-Earths), such as the objects discovered recently by microlensing orbiting two presumed M dwarf stars. M dwarfs that form in regions of future high-mass star formation would be expected to produce cold super-Earths orbiting at distances of several astronomical units (AU) and beyond, while M dwarfs that form in regions of low-mass star formation would be expected to have gas giants at those distances. Given that most stars are born in the former rather than in the latter regions, M dwarfs should have significantly more super-Earths than gas giants on orbits of several AU or more.

  8. Rapid formation of gas giants, ice giants and super-Earths

    International Nuclear Information System (INIS)

    Boss, A P

    2008-01-01

    Giant planets might have been formed by either of the two basic mechanisms, top-down (disk instability) or bottom-up (core accretion). The latter mechanism is the most generally accepted mechanism and it begins with the collisional accumulation of solid cores that may then accrete sufficient gas to become gas giants. The former mechanism is more heretical and begins with the gravitational instability of the protoplanetary disk gas, leading to the formation of self-gravitating protoplanets, within which the dust settles to form a solid core. The disk instability mechanism has been thought of primarily as a mechanism for the formation of gas giants, but if it occurs in a disk that is being photoevaporated by the ultraviolet radiation from nearby massive stars, then the outer gaseous protoplanets can be photoevaporated as well and stripped of their gaseous envelopes. The result would then be ice giants (cold super-Earths), such as the objects discovered recently by microlensing orbiting two presumed M dwarf stars. M dwarfs that form in regions of future high-mass star formation would be expected to produce cold super-Earths orbiting at distances of several astronomical units (AU) and beyond, while M dwarfs that form in regions of low-mass star formation would be expected to have gas giants at those distances. Given that most stars are born in the former rather than in the latter regions, M dwarfs should have significantly more super-Earths than gas giants on orbits of several AU or more

  9. Co-immobilization of semaphorin3A and nerve growth factor to guide and pattern axons.

    Science.gov (United States)

    McCormick, Aleesha M; Jarmusik, Natalie A; Leipzig, Nic D

    2015-12-01

    Immobilization of axon guidance cues offers a powerful tissue regenerative strategy to control the presentation and spatial location of these biomolecules. We use our previously developed immobilization strategy to specifically tether recombinant biotinylated nerve growth factor (bNGF) and biotinylated semaphorin3A (bSema3A) to chitosan films as an outgrowth and guidance platform. DRG neurite length and number for a range of single cues of immobilized bNGF or bSema3A were examined to determine a concentration response. Next single and dual cues of bNGF and bSema3A were immobilized and DRG guidance was assessed in response to a step concentration change from zero. Overall, immobilized groups caused axon extension, retraction and turning depending on the ratio of bNGF and bSema3A immobilized in the encountered region. This response indicated the exquisite sensitivity of DRG axons to both attractive and repulsive tethered cues. bSema3A concentrations of 0.10 and 0.49 ng/mm(2), when co-immobilized with bNGF (at 0.86 and 0.43 ng/mm(2) respectively), caused axons to turn away from the co-immobilized region. Immunocytochemical analysis showed that at these bSema3A concentrations, axons inside the co-immobilized region display microtubule degradation and breakdown of actin filaments. At the lowest bSema3A concentration (0.01 ng/mm(2)) co-immobilized with a higher bNGF concentration (2.16 ng/mm(2)), neurite lengths are shorter in the immobilized area, but bNGF dominates the guidance mechanism as neurites are directed toward the immobilized region. Future applications can pattern these cues in various geometries and gradients in order to better modulate axon guidance in terms of polarity, extension and branching. Nervous system formation and regeneration requires key molecules for guiding the growth cone and nervous system patterning. In vivo these molecules work in conjunction with one another to modulate axon guidance, and often they are tethered to limit spatial

  10. Slow Muscle Precursors Lay Down a Collagen XV Matrix Fingerprint to Guide Motor Axon Navigation.

    Science.gov (United States)

    Guillon, Emilie; Bretaud, Sandrine; Ruggiero, Florence

    2016-03-02

    The extracellular matrix (ECM) provides local positional information to guide motoneuron axons toward their muscle target. Collagen XV is a basement membrane component mainly expressed in skeletal muscle. We have identified two zebrafish paralogs of the human COL15A1 gene, col15a1a and col15a1b, which display distinct expression patterns. Here we show that col15a1b is expressed and deposited in the motor path ECM by slow muscle precursors also called adaxial cells. We further demonstrate that collagen XV-B deposition is both temporally and spatially regulated before motor axon extension from the spinal cord in such a way that it remains in this region after the adaxial cells have migrated toward the periphery of the myotome. Loss- and gain-of-function experiments in zebrafish embryos demonstrate that col15a1b expression and subsequent collagen XV-B deposition and organization in the motor path ECM depend on a previously undescribed two-step mechanism involving Hedgehog/Gli and unplugged/MuSK signaling pathways. In silico analysis predicts a putative Gli binding site in the col15a1b proximal promoter. Using col15a1b promoter-reporter constructs, we demonstrate that col15a1b participates in the slow muscle genetic program as a direct target of Hedgehog/Gli signaling. Loss and gain of col15a1b function provoke pathfinding errors in primary and secondary motoneuron axons both at and beyond the choice point where axon pathway selection takes place. These defects result in muscle atrophy and compromised swimming behavior, a phenotype partially rescued by injection of a smyhc1:col15a1b construct. These reveal an unexpected and novel role for collagen XV in motor axon pathfinding and neuromuscular development. In addition to the archetypal axon guidance cues, the extracellular matrix provides local information that guides motor axons from the spinal cord to their muscle targets. Many of the proteins involved are unknown. Using the zebrafish model, we identified an

  11. Dendrites of cerebellar granule cells correctly recognize their target axons for synaptogenesis in vitro.

    Science.gov (United States)

    Ito, Shoko; Takeichi, Masatoshi

    2009-08-04

    Neural circuits are generated by precisely ordered synaptic connections among neurons, and this process is thought to rely on the ability of neurons to recognize specific partners. However, it is also known that neurons promiscuously form synapses with nonspecific partners, in particular when cultured in vitro, causing controversies about neural recognition mechanisms. Here we reexamined whether neurons can or cannot select particular partners in vitro. In the cerebellum, granule cell (GC) dendrites form synaptic connections specifically with mossy fibers, but not with climbing fibers. We cocultured GC neurons with pontine or inferior olivary axons, the major sources for mossy and climbing fibers, respectively, as well as with hippocampal axons as a control. The GC neurons formed synapses with pontine axons predominantly at the distal ends of their dendrites, reproducing the characteristic morphology of their synapses observed in vivo, whereas they failed to do so when combined with other axons. In the latter case, synaptic proteins could accumulate between axons and dendrites, but these synapses were randomly distributed throughout the contact sites, and also their synaptic vesicle recycling was anomalous. These observations suggest that GC dendrites can select their authentic partners for synaptogenesis even in vitro, forming the synapses with a GC-specific nature only with them.

  12. Immunohistochemical and transcriptome analyses indicate complex breakdown of axonal transport mechanisms in canine distemper leukoencephalitis.

    Science.gov (United States)

    Spitzbarth, Ingo; Lempp, Charlotte; Kegler, Kristel; Ulrich, Reiner; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang; Seehusen, Frauke

    2016-07-01

    CDV-DL (Canine distemper virus-induced demyelinating leukoencephalitis) represents a spontaneously occurring animal model for demyelinating disorders. Axonopathy represents a key pathomechanism in this disease; however, its underlying pathogenesis has not been addressed in detail so far. This study aimed at the characterization of axonal cytoskeletal, transport, and potential regenerative changes with a parallel focus upon Schwann cell remyelination. Immunohistochemistry of canine cerebellar tissue as well as a comparative analysis of genes from an independent microarray study were performed. Increased axonal immunoreactivity for nonphosphorylated neurofilament was followed by loss of cytoskeletal and motor proteins. Interestingly, a subset of genes encoding for neurofilament subunits and motor proteins was up-regulated in the chronic stage compared to dogs with subacute CDV-DL. However, immunohistochemically, hints for axonal regeneration were restricted to up-regulated axonal positivity of hypoxia-inducible factor 1 alpha, while growth-associated protein 43, erythropoietin and its receptor were not or even down-regulated. Periaxin-positive structures, indicative of Schwann cell remyelination, were only detected within few advanced lesions. The present findings demonstrate a complex sequence of axonal cytoskeletal breakdown mechanisms. Moreover, though sparse, this is the first report of Schwann cell remyelination in CDV-DL. Facilitation of these very limited endogenous regenerative responses represents an important topic for future research.

  13. The transmembrane collagen COL-99 guides longitudinally extending axons in C. elegans.

    Science.gov (United States)

    Taylor, Jesse; Unsoeld, Thomas; Hutter, Harald

    2018-06-01

    We have identified the transmembrane collagen, COL-99, in a genetic screen for novel genes involved in axon guidance in the nematode C. elegans. COL-99 is similar to transmembrane collagens type XIII, XXIII and XXV in vertebrates. col-99 mutants exhibit guidance defects in axons extending along the major longitudinal axon tracts, most prominently the left ventral nerve cord (VNC). COL-99 is expressed in the hypodermis during the time of axon outgrowth. We provide evidence that a furin cleavage site in COL-99 is essential for function, suggesting that COL-99 is released from the cells producing it. Vertebrate homologs of COL-99 have been shown to be expressed in mammalian nervous systems and linked to various neurological disease but have not been associated with guidance of extending neurons. col-99 acts genetically with the discoidin domain receptors ddr-1 and ddr-2, which are expressed by neurons affected in col-99 mutants. Discoidin domain receptors are activated by collagens in vertebrates. DDR-1 and DDR-2 may function as receptors for COL-99. Our results establish a novel role for a transmembrane collagen in axonal guidance and asymmetry establishment of the VNC. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Spinal muscular atrophy pathogenic mutations impair the axonogenic properties of axonal-survival of motor neuron.

    Science.gov (United States)

    Locatelli, Denise; d'Errico, Paolo; Capra, Silvia; Finardi, Adele; Colciaghi, Francesca; Setola, Veronica; Terao, Mineko; Garattini, Enrico; Battaglia, Giorgio

    2012-05-01

    The axonal survival of motor neuron (a-SMN) protein is a truncated isoform of SMN1, the spinal muscular atrophy (SMA) disease gene. a-SMN is selectively localized in axons and endowed with remarkable axonogenic properties. At present, the role of a-SMN in SMA is unknown. As a first step to verify a link between a-SMN and SMA, we investigated by means of over-expression experiments in neuroblastoma-spinal cord hybrid cell line (NSC34) whether SMA pathogenic mutations located in the N-terminal part of the protein affected a-SMN function. We demonstrated here that either SMN1 missense mutations or small intragenic re-arrangements located in the Tudor domain consistently altered the a-SMN capability of inducing axonal elongation in vitro. Mutated human a-SMN proteins determined in almost all NSC34 motor neurons the growth of short axons with prominent morphologic abnormalities. Our data indicate that the Tudor domain is critical in dictating a-SMN function possibly because it is an association domain for proteins involved in axon growth. They also indicate that Tudor domain mutations are functionally relevant not only for FL-SMN but also for a-SMN, raising the possibility that also a-SMN loss of function may contribute to the pathogenic steps leading to SMA. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  15. Assessing the direct effects of deep brain stimulation using embedded axon models

    Science.gov (United States)

    Sotiropoulos, Stamatios N.; Steinmetz, Peter N.

    2007-06-01

    To better understand the spatial extent of the direct effects of deep brain stimulation (DBS) on neurons, we implemented a geometrically realistic finite element electrical model incorporating anisotropic and inhomogenous conductivities. The model included the subthalamic nucleus (STN), substantia nigra (SN), zona incerta (ZI), fields of Forel H2 (FF), internal capsule (IC) and Medtronic 3387/3389 electrode. To quantify the effects of stimulation, we extended previous studies by using multi-compartment axon models with geometry and orientation consistent with anatomical features of the brain regions of interest. Simulation of axonal firing produced a map of relative changes in axonal activation. Voltage-controlled stimulation, with clinically typical parameters at the dorso-lateral STN, caused axon activation up to 4 mm from the target. This activation occurred within the FF, IC, SN and ZI with current intensities close to the average injected during DBS (3 mA). A sensitivity analysis of model parameters (fiber size, fiber orientation, degree of inhomogeneity, degree of anisotropy, electrode configuration) revealed that the FF and IC were consistently activated. Direct activation of axons outside the STN suggests that other brain regions may be involved in the beneficial effects of DBS when treating Parkinsonian symptoms.

  16. Sodium channels in axons and glial cells of the optic nerve of Necturus maculosa.

    Science.gov (United States)

    Tang, C M; Strichartz, G R; Orkand, R K

    1979-11-01

    Experiments investigating both the binding of radioactively labelled saxitoxin (STX) and the electrophysiological response to drugs that increase the sodium permeability of excitable membranes were conducted in an effort to detect sodium channels in glial cells of the optic nerve of Necturus maculosa, the mudpuppy. Glial cells in nerves from chronically enucleated animals, which lack optic nerve axons, show no saturable uptake of STX whereas a saturable uptake is clearly present in normal optic nerves. The normal nerve is depolarized by aconitine, batrachotoxin, and veratridine (10(-6)-10(-5) M), whereas the all-glial preparation is only depolarized by veratridine and at concentrations greater than 10(-3) M. Unlike the depolarization caused by veratridine in normal nerves, the response in the all-glial tissue is not blocked by tetrodotoxin nor enhanced by scorpion venom (Leiurus quinquestriatus). In glial cells of the normal nerve, where axons are also present, the addition of 10(-5) M veratridine does lead to a transient depolarization; however, it is much briefer than the axonal response to veratridine in this same tissue. This glial response to veratridine could be caused by the efflux of K+ from the drug-depolarized axons, and is similar to the glial response to extracellular K+ accumulation resulting from action potentials in the axon.

  17. Formation of compact myelin is required for maturation of the axonal cytoskeleton

    Science.gov (United States)

    Brady, S. T.; Witt, A. S.; Kirkpatrick, L. L.; de Waegh, S. M.; Readhead, C.; Tu, P. H.; Lee, V. M.

    1999-01-01

    Although traditional roles ascribed to myelinating glial cells are structural and supportive, the importance of compact myelin for proper functioning of the nervous system can be inferred from mutations in myelin proteins and neuropathologies associated with loss of myelin. Myelinating Schwann cells are known to affect local properties of peripheral axons (de Waegh et al., 1992), but little is known about effects of oligodendrocytes on CNS axons. The shiverer mutant mouse has a deletion in the myelin basic protein gene that eliminates compact myelin in the CNS. In shiverer mice, both local axonal features like phosphorylation of cytoskeletal proteins and neuronal perikaryon functions like cytoskeletal gene expression are altered. This leads to changes in the organization and composition of the axonal cytoskeleton in shiverer unmyelinated axons relative to age-matched wild-type myelinated fibers, although connectivity and patterns of neuronal activity are comparable. Remarkably, transgenic shiverer mice with thin myelin sheaths display an intermediate phenotype indicating that CNS neurons are sensitive to myelin sheath thickness. These results indicate that formation of a normal compact myelin sheath is required for normal maturation of the neuronal cytoskeleton in large CNS neurons.

  18. Giant hepatic regenerative nodules in Alagille syndrome

    International Nuclear Information System (INIS)

    Rapp, Jordan B.; Bellah, Richard D.; Anupindi, Sudha A.; Maya, Carolina; Pawel, Bruce R.

    2017-01-01

    Children with Alagille syndrome undergo surveillance radiologic examinations as they are at risk for developing cirrhosis and hepatocellular carcinoma. There is limited literature on the imaging of liver masses in Alagille syndrome. We report the ultrasound (US) and magnetic resonance imaging (MRI) appearances of incidental benign giant hepatic regenerative nodules in this population. To describe the imaging findings of giant regenerative nodules in patients with Alagille syndrome. A retrospective search of the hospital database was performed to find all cases of hepatic masses in patients with Alagille syndrome during a 10-year period. Imaging, clinical charts, laboratory data and available pathology were reviewed and analyzed and summarized for each patient. Twenty of 45 patients with confirmed Alagille syndrome had imaging studies. Of those, we identified six with giant focal liver masses. All six patients had large central hepatic masses that were remarkably similar on US and MRI, in addition to having features of cirrhosis. In each case, the mass was located in hepatic segment VIII and imaging showed the mass splaying the main portal venous branches at the hepatic hilum, as well as smaller portal and hepatic venous branches coursing through them. On MRI, signal intensity of the mass was isointense to liver on T1-weighted sequences in four of six patients, but hyperintense on T1 in two of six patients. In all six cases, the mass was hypointense on T2- weighted sequences. The mass post-contrast was isointense to adjacent liver in all phases in five the cases. Five out of six patients had pathological correlation demonstrating preserved ductal architecture confirming the final diagnosis of a regenerative nodule. Giant hepatic regenerative nodules with characteristic US and MR features can occur in patients with Alagille syndrome with underlying cirrhosis. Recognizing these lesions as benign giant hepatic regenerative nodules should, thereby, mitigate any need for

  19. Giant hepatic regenerative nodules in Alagille syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Jordan B. [Lewis Katz School of Medicine at Temple University, Department of Radiology, Temple University Hospital, Philadelphia, PA (United States); Bellah, Richard D.; Anupindi, Sudha A. [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA (United States); Maya, Carolina [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Pawel, Bruce R. [University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA (United States); The Children' s Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, Philadelphia, PA (United States)

    2017-02-15

    Children with Alagille syndrome undergo surveillance radiologic examinations as they are at risk for developing cirrhosis and hepatocellular carcinoma. There is limited literature on the imaging of liver masses in Alagille syndrome. We report the ultrasound (US) and magnetic resonance imaging (MRI) appearances of incidental benign giant hepatic regenerative nodules in this population. To describe the imaging findings of giant regenerative nodules in patients with Alagille syndrome. A retrospective search of the hospital database was performed to find all cases of hepatic masses in patients with Alagille syndrome during a 10-year period. Imaging, clinical charts, laboratory data and available pathology were reviewed and analyzed and summarized for each patient. Twenty of 45 patients with confirmed Alagille syndrome had imaging studies. Of those, we identified six with giant focal liver masses. All six patients had large central hepatic masses that were remarkably similar on US and MRI, in addition to having features of cirrhosis. In each case, the mass was located in hepatic segment VIII and imaging showed the mass splaying the main portal venous branches at the hepatic hilum, as well as smaller portal and hepatic venous branches coursing through them. On MRI, signal intensity of the mass was isointense to liver on T1-weighted sequences in four of six patients, but hyperintense on T1 in two of six patients. In all six cases, the mass was hypointense on T2- weighted sequences. The mass post-contrast was isointense to adjacent liver in all phases in five the cases. Five out of six patients had pathological correlation demonstrating preserved ductal architecture confirming the final diagnosis of a regenerative nodule. Giant hepatic regenerative nodules with characteristic US and MR features can occur in patients with Alagille syndrome with underlying cirrhosis. Recognizing these lesions as benign giant hepatic regenerative nodules should, thereby, mitigate any need for

  20. Modeling Impacts of Climate Change on Giant Panda Habitat

    Directory of Open Access Journals (Sweden)

    Melissa Songer

    2012-01-01

    Full Text Available Giant pandas (Ailuropoda melanoleuca are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.

  1. Oxidative stress and proinflammatory cytokines contribute to demyelination and axonal damage in a cerebellar culture model of neuroinflammation.

    Science.gov (United States)

    di Penta, Alessandra; Moreno, Beatriz; Reix, Stephanie; Fernandez-Diez, Begoña; Villanueva, Maite; Errea, Oihana; Escala, Nagore; Vandenbroeck, Koen; Comella, Joan X; Villoslada, Pablo

    2013-01-01

    Demyelination and axonal damage are critical processes in the pathogenesis of multiple sclerosis (MS). Oxidative stress and pro-inflammatory cytokines elicited by inflammation mediates tissue damage. To monitor the demyelination and axonal injury associated with microglia activation we employed a model using cerebellar organotypic cultures stimulated with lipopolysaccharide (LPS). Microglia activated by LPS released pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), and increased the expression of inducible nitric oxide synthase (iNOS) and production of reactive oxygen species (ROS). This activation was associated with demyelination and axonal damage in cerebellar cultures. Axonal damage, as revealed by the presence of non-phosphorylated neurofilaments, mitochondrial accumulation in axonal spheroids, and axonal transection, was associated with stronger iNOS expression and concomitant increases in ROS. Moreover, we analyzed the contribution of pro-inflammatory cytokines and oxidative stress in demyelination and axonal degeneration using the iNOS inhibitor ethyl pyruvate, a free-scavenger and xanthine oxidase inhibitor allopurinol, as well as via blockage of pro-inflammatory cytokines using a Fc-TNFR1 construct. We found that blocking microglia activation with ethyl pyruvate or allopurinol significantly decreased axonal damage, and to a lesser extent, demyelination. Blocking TNFα significantly decreased demyelination but did not prevented axonal damage. Moreover, the most common therapy for MS, interferon-beta, was used as an example of an immunomodulator compound that can be tested in this model. In vitro, interferon-beta treatment decreased oxidative stress (iNOS and ROS levels) and the release of pro-inflammatory cytokines after LPS stimulation, reducing axonal damage. The model of neuroinflammation using cerebellar culture stimulated with endotoxin mimicked myelin and axonal damage mediated by the combination of oxidative stress and pro-inflammatory cytokines

  2. Oxidative Stress and Proinflammatory Cytokines Contribute to Demyelination and Axonal Damage in a Cerebellar Culture Model of Neuroinflammation

    Science.gov (United States)

    di Penta, Alessandra; Moreno, Beatriz; Reix, Stephanie; Fernandez-Diez, Begoña; Villanueva, Maite; Errea, Oihana; Escala, Nagore; Vandenbroeck, Koen; Comella, Joan X.; Villoslada, Pablo

    2013-01-01

    Background Demyelination and axonal damage are critical processes in the pathogenesis of multiple sclerosis (MS). Oxidative stress and pro-inflammatory cytokines elicited by inflammation mediates tissue damage. Methods/Principal Findings To monitor the demyelination and axonal injury associated with microglia activation we employed a model using cerebellar organotypic cultures stimulated with lipopolysaccharide (LPS). Microglia activated by LPS released pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), and increased the expression of inducible nitric oxide synthase (iNOS) and production of reactive oxygen species (ROS). This activation was associated with demyelination and axonal damage in cerebellar cultures. Axonal damage, as revealed by the presence of non-phosphorylated neurofilaments, mitochondrial accumulation in axonal spheroids, and axonal transection, was associated with stronger iNOS expression and concomitant increases in ROS. Moreover, we analyzed the contribution of pro-inflammatory cytokines and oxidative stress in demyelination and axonal degeneration using the iNOS inhibitor ethyl pyruvate, a free-scavenger and xanthine oxidase inhibitor allopurinol, as well as via blockage of pro-inflammatory cytokines using a Fc-TNFR1 construct. We found that blocking microglia activation with ethyl pyruvate or allopurinol significantly decreased axonal damage, and to a lesser extent, demyelination. Blocking TNFα significantly decreased demyelination but did not prevented axonal damage. Moreover, the most common therapy for MS, interferon-beta, was used as an example of an immunomodulator compound that can be tested in this model. In vitro, interferon-beta treatment decreased oxidative stress (iNOS and ROS levels) and the release of pro-inflammatory cytokines after LPS stimulation, reducing axonal damage. Conclusion The model of neuroinflammation using cerebellar culture stimulated with endotoxin mimicked myelin and axonal damage mediated by the combination of

  3. Neurofilament subunit (NFL) head domain phosphorylation regulates axonal transport of neurofilaments.

    LENUS (Irish Health Repository)

    Yates, Darran M

    2009-04-01

    Neurofilaments are the intermediate filaments of neurons and are synthesised in neuronal cell bodies and then transported through axons. Neurofilament light chain (NFL) is a principal component of neurofilaments, and phosphorylation of NFL head domain is believed to regulate the assembly of neurofilaments. However, the role that NFL phosphorylation has on transport of neurofilaments is poorly understood. To address this issue, we monitored axonal transport of phosphorylation mutants of NFL. We mutated four known phosphorylation sites in NFL head domain to either preclude phosphorylation, or mimic permanent phosphorylation. Mutation to preclude phosphorylation had no effect on transport but mutation of three sites to mimic permanent phosphorylation inhibited transport. Mutation of all four sites together to mimic permanent phosphorylation proved especially potent at inhibiting transport and also disrupted neurofilament assembly. Our results suggest that NFL head domain phosphorylation is a regulator of neurofilament axonal transport.

  4. Myosin-Va-dependent cell-to-cell transfer of RNA from Schwann cells to axons.

    Directory of Open Access Journals (Sweden)

    José R Sotelo

    Full Text Available To better understand the role of protein synthesis in axons, we have identified the source of a portion of axonal RNA. We show that proximal segments of transected sciatic nerves accumulate newly-synthesized RNA in axons. This RNA is synthesized in Schwann cells because the RNA was labeled in the complete absence of neuronal cell bodies both in vitro and in vivo. We also demonstrate that the transfer is prevented by disruption of actin and that it fails to occur in the absence of myosin-Va. Our results demonstrate cell-to-cell transfer of RNA and identify part of the mechanism required for transfer. The induction of cell-to-cell RNA transfer by injury suggests that interventions following injury or degeneration, particularly gene therapy, may be accomplished by applying them to nearby glial cells (or implanted stem cells at the site of injury to promote regeneration.

  5. Myosin-Va-dependent cell-to-cell transfer of RNA from Schwann cells to axons.

    Science.gov (United States)

    Sotelo, José R; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José R; Xu, Lei; Wallrabe, Horst; Calliari, Aldo; Rosso, Gonzalo; Cal, Karina; Mercer, John A

    2013-01-01

    To better understand the role of protein synthesis in axons, we have identified the source of a portion of axonal RNA. We show that proximal segments of transected sciatic nerves accumulate newly-synthesized RNA in axons. This RNA is synthesized in Schwann cells because the RNA was labeled in the complete absence of neuronal cell bodies both in vitro and in vivo. We also demonstrate that the transfer is prevented by disruption of actin and that it fails to occur in the absence of myosin-Va. Our results demonstrate cell-to-cell transfer of RNA and identify part of the mechanism required for transfer. The induction of cell-to-cell RNA transfer by injury suggests that interventions following injury or degeneration, particularly gene therapy, may be accomplished by applying them to nearby glial cells (or implanted stem cells) at the site of injury to promote regeneration.

  6. Genetic dysfunction of MT-ATP6 causes axonal Charcot-Marie-Tooth disease.

    LENUS (Irish Health Repository)

    Pitceathly, Robert D S

    2012-09-11

    Charcot-Marie-Tooth (CMT) disease is the most common inherited neuromuscular disorder, affecting 1 in 2,500 individuals. Mitochondrial DNA (mtDNA) mutations are not generally considered within the differential diagnosis of patients with uncomplicated inherited neuropathy, despite the essential requirement of ATP for axonal function. We identified the mtDNA mutation m.9185T>C in MT-ATP6, encoding the ATP6 subunit of the mitochondrial ATP synthase (OXPHOS complex V), at homoplasmic levels in a family with mitochondrial disease in whom a severe motor axonal neuropathy was a striking feature. This led us to hypothesize that mutations in the 2 mtDNA complex V subunit encoding genes, MT-ATP6 and MT-ATP8, might be an unrecognized cause of isolated axonal CMT and distal hereditary motor neuropathy (dHMN).

  7. Action of a diffusible target-derived chemoattractant on cortical axon branch induction and directed growth.

    Science.gov (United States)

    Sato, M; Lopez-Mascaraque, L; Heffner, C D; O'Leary, D D

    1994-10-01

    Cortical axons innervate their brainstem target, the basilar pons, by the initiation and extension of collateral branches interstitially along their length. To address whether a diffusible pons-derived chemoattractant controls these events, we used cocultures in collagen matrices and time-lapse microscopy. Pontine explants enhanced by 5-fold the de novo initiation of transient branches along cortical axons; most branches were directed toward pons. Of the branches extended toward pons, 2%-3% were stabilized; those extended away were not. Pontine explants also enhanced the stable bifurcation of growth cones and prompted directional changes by growth cone turning and collateral extension. These effects were distance dependent and mimicked by pons-conditioned medium. This evidence indicates that the pons activity promotes branch initiation interstitially along cortical axons, a novel property for a chemoattractant, and provides a directional cue for their growth. These findings suggest that the pons chemoattractant serves as a diffusible target-recognition molecule.

  8. Cross-talk between KLF4 and STAT3 regulates axon regeneration

    Science.gov (United States)

    Qin, Song; Zou, Yuhua; Zhang, Chun-Li

    2013-10-01

    Cytokine-induced activation of signal transducer and activator of transcription 3 (STAT3) promotes the regrowth of damaged axons in the adult central nervous system (CNS). Here we show that KLF4 physically interacts with STAT3 upon cytokine-induced phosphorylation of tyrosine 705 (Y705) on STAT3. This interaction suppresses STAT3-dependent gene expression by blocking its DNA-binding activity. The deletion of KLF4 in vivo induces axon regeneration of adult retinal ganglion cells (RGCs) via Janus kinase (JAK)-STAT3 signalling. This regeneration can be greatly enhanced by exogenous cytokine treatment, or removal of an endogenous JAK-STAT3 pathway inhibitor called suppressor of cytokine signalling 3 (SOCS3). These findings reveal an unexpected cross-talk between KLF4 and activated STAT3 in the regulation of axon regeneration that might have therapeutic implications in promoting repair of injured adult CNS.

  9. Cellular and Axonal Diversity in Molecular Layer Heterotopia of the Rat Cerebellar Vermis

    Directory of Open Access Journals (Sweden)

    Sarah E. Van Dine

    2013-01-01

    Full Text Available Molecular layer heterotopia of the cerebellar primary fissure are a characteristic of many rat strains and are hypothesized to result from defect of granule cells exiting the external granule cell layer during cerebellar development. However, the cellular and axonal constituents of these malformations remain poorly understood. In the present report, we use histochemistry and immunocytochemistry to identify neuronal, glial, and axonal classes in molecular layer heterotopia. In particular, we identify parvalbumin-expressing molecular layer interneurons in heterotopia as well as three glial cell types including Bergmann glia, Olig2-expressing oligodendrocytes, and Iba1-expressing microglia. In addition, we document the presence of myelinated, serotonergic, catecholaminergic, and cholinergic axons in heterotopia indicating possible spinal and brainstem afferent projections to heterotopic cells. These findings are relevant toward understanding the mechanisms of normal and abnormal cerebellar development.

  10. 3Tesla magnetic resonance examination of a patient suffering from diffuse axonal injury

    International Nuclear Information System (INIS)

    Bonchev, S.; Zlatareva, D.; Hadjidekov, V.

    2016-01-01

    Diffuse axonal injury has been observed in traumatic brain injury. Both type of lesions - haemorrhagic and non-haemorrhagic, demonstrate on MRI. We would like to introduce you a 24 year old outpatient man, who was examined in our Department with a past medical history of severe traumatic brain injury, followed by two weeks of coma in Intensive care, discharged from hospital with good outcome. Subsequently cognitive impairments have developed and an episode of tonic-clonic seizure have been undergone by the patient. 3Tesla MRI was performed and lesions typical for diffuse axonal injury were found. MRI is the study of choice for demonstrating the lesions of diffuse axonal injury in the acute and chronic period

  11. Effects of laminin blended with chitosan on axon guidance on patterned substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, N; Guan, Y J; Chen, X B [Division of Biomedical Engineering, University of Saskatchewan, Saskatoon S7N 5A9 (Canada); Li, M G [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon S7N 5A9 (Canada); Schreyer, D J, E-mail: niz504@mail.usask.c [Department of Anatomy and Cell Biology, Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, S7K 0M7 (Canada)

    2010-12-15

    Axon guidance is a crucial consideration in the design of tissue scaffolds used to promote nerve regeneration. Here we investigate the combined use of laminin (a putative axon adhesion and guidance molecule) and chitosan (a leading candidate base material for the construction of scaffolds) for promoting axon guidance in cultured adult dorsal root ganglion (DRG) neurons. Using a dispensing-based rapid prototyping (DBRP) technique, two-dimensional grid patterns were created by dispensing chitosan or laminin-blended chitosan substrate strands oriented in orthogonal directions. In vitro experiments illustrated DRG neurites on these patterns preferentially grew upon and followed the laminin-blended chitosan pathways. These results suggest that an orientation of neurite growth can be achieved in an artificially patterned substrate by creating selectively biofunctional pathways. The DBRP technique may provide improved strategies for the use of biofunctional pathways in the design of three-dimensional scaffolds for guidance of nerve repair.

  12. Retention of retinal axon collateral is responsible for induced ipsilateral retinotectal projections in adult goldfish.

    Science.gov (United States)

    Sharma, S C; Tsai, C

    1991-01-01

    In normal goldfish, optic axons innervate only the contralateral optic tectum. When one eye was enucleated and the optic nerve of the other eye crushed, the regenerating optic axons innervated both optic tecta. We studied the presence of bilaterally projecting retinal ganglion cells by double retrograde cell labeling methods using Nuclear Yellow and True Blue dyes. About 10% of the retinal ganglion cells were double labeled and these cells were found throughout the retina. In addition, HRP application to the ipsilateral tectum revealed retrogradely-labeled retinal ganglion cells of all morphological types. These results suggest that induced ipsilateral projections are formed by regenerating axon collaterals and that all cell types are involved in the generation of normal mirror image typography.

  13. A novel ALS-associated variant in UBQLN4 regulates motor axon morphogenesis

    Science.gov (United States)

    Edens, Brittany M; Yan, Jianhua; Miller, Nimrod; Deng, Han-Xiang; Siddique, Teepu; Ma, Yongchao C

    2017-01-01

    The etiological underpinnings of amyotrophic lateral sclerosis (ALS) are complex and incompletely understood, although contributions to pathogenesis by regulators of proteolytic pathways have become increasingly apparent. Here, we present a novel variant in UBQLN4 that is associated with ALS and show that its expression compromises motor axon morphogenesis in mouse motor neurons and in zebrafish. We further demonstrate that the ALS-associated UBQLN4 variant impairs proteasomal function, and identify the Wnt signaling pathway effector beta-catenin as a UBQLN4 substrate. Inhibition of beta-catenin function rescues the UBQLN4 variant-induced motor axon phenotypes. These findings provide a strong link between the regulation of axonal morphogenesis and a new ALS-associated gene variant mediated by protein degradation pathways. DOI: http://dx.doi.org/10.7554/eLife.25453.001 PMID:28463112

  14. In vivo phosphorylation of axonal proteins in goldfish optic nerve during regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Larrivee, D.C.; Grafstein, B.

    1987-01-01

    In vivo phosphorylation of axonal proteins was investigated in normal and regenerating optic nerves of goldfish by two-dimensional gel electrophoresis. By 6-24 h after intraocular injection of H/sub 3/(32)PO/sub 4/, approximately 20 optic nerve proteins ranging in size from 19 to 180 kilodaltons and in pI from 4.4 to 6.8 were seen to have incorporated radiolabel. Five of these proteins showed a robust increase in incorporation of phosphate during regeneration. Among the latter was an acidic (pI 4.5) 45-kilodalton protein, which has previously been shown to be conveyed by fast axonal transport and to increase dramatically in its rate of synthesis during regeneration of goldfish optic axons.

  15. Effects of laminin blended with chitosan on axon guidance on patterned substrates

    International Nuclear Information System (INIS)

    Zhu, N; Guan, Y J; Chen, X B; Li, M G; Schreyer, D J

    2010-01-01

    Axon guidance is a crucial consideration in the design of tissue scaffolds used to promote nerve regeneration. Here we investigate the combined use of laminin (a putative axon adhesion and guidance molecule) and chitosan (a leading candidate base material for the construction of scaffolds) for promoting axon guidance in cultured adult dorsal root ganglion (DRG) neurons. Using a dispensing-based rapid prototyping (DBRP) technique, two-dimensional grid patterns were created by dispensing chitosan or laminin-blended chitosan substrate strands oriented in orthogonal directions. In vitro experiments illustrated DRG neurites on these patterns preferentially grew upon and followed the laminin-blended chitosan pathways. These results suggest that an orientation of neurite growth can be achieved in an artificially patterned substrate by creating selectively biofunctional pathways. The DBRP technique may provide improved strategies for the use of biofunctional pathways in the design of three-dimensional scaffolds for guidance of nerve repair.

  16. Effects of p-xylene inhalation on axonal transport in the rat retinal ganglion cells

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, S.S.; Lyerly, D.P. (Environmental Protection Agency, Research Triangle Park, NC (USA))

    1989-12-01

    Although the solvent xylene is suspected of producing nervous system dysfunction in animals and humans, little is known regarding the neurochemical consequences of xylene inhalation. The intent of this study was to determine the effect of intermittent, acute, and subchronic p-xylene exposure on the axonal transport of proteins and glycoproteins within the rat retinofugal tract. A number of different exposure regimens were tested ranging from 50 ppm for a single 6-hr exposure to 1600 ppm 6 hr/day, 5 days/week, for a total of 8 exposure days. Immediately following removal from the inhalation chambers rats were injected intraocularly with (35S)methionine and (3H)fucose (to label retinal proteins and glycoproteins, respectively) and the axonal transport of labeled macromolecules to axons (optic nerve and optic tract) and nerve endings (lateral geniculate body and superior colliculus) was examined 20 hr after precursor injection. Only relatively severe exposure regimens (i.e., 800 or 1600 ppm 6 hr/day, 5 days/week, for 1.5 weeks) produced significant reductions in axonal transport; there was a moderate reduction in the axonal transport of 35S-labeled proteins in the 800-ppm-treated group which was more widespread in the 1600 ppm-treated group. Transport of 3H-labeled glycoproteins was less affected. Assessment of retinal metabolism immediately after isotope injection indicated that the rate of precursor uptake was not reduced in either treatment group. Furthermore, rapid transport was still substantially reduced in animals exposed to 1600 ppm p-xylene and allowed a 13-day withdrawal period. These data indicate that p-xylene inhalation decreases rapid axonal transport supplied to the projections of the rat retinal ganglion cells immediately after cessation of inhalation exposure and that this decreased transport is still apparent 13 days after the last exposure.

  17. Effects of p-xylene inhalation on axonal transport in the rat retinal ganglion cells

    International Nuclear Information System (INIS)

    Padilla, S.S.; Lyerly, D.P.

    1989-01-01

    Although the solvent xylene is suspected of producing nervous system dysfunction in animals and humans, little is known regarding the neurochemical consequences of xylene inhalation. The intent of this study was to determine the effect of intermittent, acute, and subchronic p-xylene exposure on the axonal transport of proteins and glycoproteins within the rat retinofugal tract. A number of different exposure regimens were tested ranging from 50 ppm for a single 6-hr exposure to 1600 ppm 6 hr/day, 5 days/week, for a total of 8 exposure days. Immediately following removal from the inhalation chambers rats were injected intraocularly with [35S]methionine and [3H]fucose (to label retinal proteins and glycoproteins, respectively) and the axonal transport of labeled macromolecules to axons (optic nerve and optic tract) and nerve endings (lateral geniculate body and superior colliculus) was examined 20 hr after precursor injection. Only relatively severe exposure regimens (i.e., 800 or 1600 ppm 6 hr/day, 5 days/week, for 1.5 weeks) produced significant reductions in axonal transport; there was a moderate reduction in the axonal transport of 35S-labeled proteins in the 800-ppm-treated group which was more widespread in the 1600 ppm-treated group. Transport of 3H-labeled glycoproteins was less affected. Assessment of retinal metabolism immediately after isotope injection indicated that the rate of precursor uptake was not reduced in either treatment group. Furthermore, rapid transport was still substantially reduced in animals exposed to 1600 ppm p-xylene and allowed a 13-day withdrawal period. These data indicate that p-xylene inhalation decreases rapid axonal transport supplied to the projections of the rat retinal ganglion cells immediately after cessation of inhalation exposure and that this decreased transport is still apparent 13 days after the last exposure

  18. Detection of axonal synapses in 3D two-photon images.

    Directory of Open Access Journals (Sweden)

    Cher Bass

    Full Text Available Studies of structural plasticity in the brain often require the detection and analysis of axonal synapses (boutons. To date, bouton detection has been largely manual or semi-automated, relying on a step that traces the axons before detection the boutons. If tracing the axon fails, the accuracy of bouton detection is compromised. In this paper, we propose a new algorithm that does not require tracing the axon to detect axonal boutons in 3D two-photon images taken from the mouse cortex. To find the most appropriate techniques for this task, we compared several well-known algorithms for interest point detection and feature descriptor generation. The final algorithm proposed has the following main steps: (1 a Laplacian of Gaussian (LoG based feature enhancement module to accentuate the appearance of boutons; (2 a Speeded Up Robust Features (SURF interest point detector to find candidate locations for feature extraction; (3 non-maximum suppression to eliminate candidates that were detected more than once in the same local region; (4 generation of feature descriptors based on Gabor filters; (5 a Support Vector Machine (SVM classifier, trained on features from labelled data, and was used to distinguish between bouton and non-bouton candidates. We found that our method achieved a Recall of 95%, Precision of 76%, and F1 score of 84% within a new dataset that we make available for accessing bouton detection. On average, Recall and F1 score were significantly better than the current state-of-the-art method, while Precision was not significantly different. In conclusion, in this article we demonstrate that our approach, which is independent of axon tracing, can detect boutons to a high level of accuracy, and improves on the detection performance of existing approaches. The data and code (with an easy to use GUI used in this article are available from open source repositories.

  19. Reduced axonal transport in Parkinson's disease cybrid neurites is restored by light therapy

    Directory of Open Access Journals (Sweden)

    De Taboada Luis

    2009-06-01

    Full Text Available Abstract Background It has been hypothesized that reduced axonal transport contributes to the degeneration of neuronal processes in Parkinson's disease (PD. Mitochondria supply the adenosine triphosphate (ATP needed to support axonal transport and contribute to many other cellular functions essential for the survival of neuronal cells. Furthermore, mitochondria in PD tissues are metabolically and functionally compromised. To address this hypothesis, we measured the velocity of mitochondrial movement in human transmitochondrial cybrid "cytoplasmic hybrid" neuronal cells bearing mitochondrial DNA from patients with sporadic PD and disease-free age-matched volunteer controls (CNT. The absorption of low level, near-infrared laser light by components of the mitochondrial electron transport chain (mtETC enhances mitochondrial metabolism, stimulates oxidative phosphorylation and improves redox capacity. PD and CNT cybrid neuronal cells were exposed to near-infrared laser light to determine if the velocity of mitochondrial movement can be restored by low level light therapy (LLLT. Axonal transport of labeled mitochondria was documented by time lapse microscopy in dopaminergic PD and CNT cybrid neuronal cells before and after illumination with an 810 nm diode laser (50 mW/cm2 for 40 seconds. Oxygen utilization and assembly of mtETC complexes were also determined. Results The velocity of mitochondrial movement in PD cybrid neuronal cells (0.175 +/- 0.005 SEM was significantly reduced (p Conclusion The results from this study support our proposal that axonal transport is reduced in sporadic PD and that a single, brief treatment with near-infrared light can restore axonal transport to control levels. These results are the first demonstration that LLLT can increase axonal transport in model human dopaminergic neuronal cells and they suggest that LLLT could be developed as a novel treatment to improve neuronal function in patients with PD.

  20. Tri-partite complex for axonal transport drug delivery achieves pharmacological effect

    Directory of Open Access Journals (Sweden)

    Frederickson Martyn

    2010-01-01

    Full Text Available Abstract Background Targeted delivery of pharmaceutical agents into selected populations of CNS (Central Nervous System neurons is an extremely compelling goal. Currently, systemic methods are generally used for delivery of pain medications, anti-virals for treatment of dermatomal infections, anti-spasmodics, and neuroprotectants. Systemic side effects or undesirable effects on parts of the CNS that are not involved in the pathology limit efficacy and limit clinical utility for many classes of pharmaceuticals. Axonal transport from the periphery offers a possible selective route, but there has been little progress towards design of agents that can accomplish targeted delivery via this intraneural route. To achieve this goal, we developed a tripartite molecular construction concept involving an axonal transport facilitator molecule, a polymer linker, and a large number of drug molecules conjugated to the linker, then sought to evaluate its neurobiology and pharmacological behavior. Results We developed chemical synthesis methodologies for assembling these tripartite complexes using a variety of axonal transport facilitators including nerve growth factor, wheat germ agglutinin, and synthetic facilitators derived from phage display work. Loading of up to 100 drug molecules per complex was achieved. Conjugation methods were used that allowed the drugs to be released in active form inside the cell body after transport. Intramuscular and intradermal injection proved effective for introducing pharmacologically effective doses into selected populations of CNS neurons. Pharmacological efficacy with gabapentin in a paw withdrawal latency model revealed a ten fold increase in half life and a 300 fold decrease in necessary dose relative to systemic administration for gabapentin when the drug was delivered by axonal transport using the tripartite vehicle. Conclusion Specific targeting of selected subpopulations of CNS neurons for drug delivery by axonal

  1. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo.

    Directory of Open Access Journals (Sweden)

    Patricia J Ward

    Full Text Available Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2, we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2 to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555 was greater in mice that received optical treatment. Thus, the acute (1 hour, one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-. We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons.

  2. Axons Pull on the Brain, But Tension Does Not Drive Cortical Folding

    Science.gov (United States)

    Xu, Gang; Knutsen, Andrew K.; Dikranian, Krikor; Kroenke, Christopher D.; Bayly, Philip V.; Taber, Larry A.

    2011-01-01

    During human brain development, the cerebral cortex undergoes substantial folding, leading to its characteristic highly convoluted form. Folding is necessary to accommodate the expansion of the cerbral cortex; abnormal cortical folding is linked to various neurological disorders, including schizophrenia, epilepsy, autism and mental retardation. Although this process requires mechanical forces, the specific force-generating mechanisms that drive folding remain unclear. The two most widely accepted hypotheses are (1) folding is caused by differential growth of the cortex and (2) folding is caused by mechanical tension generated in axons. Direct evidence supporting either theory, however, is lacking. Here we show that axons are indeed under considerable tension in the developing ferret brain, but the patterns of tissue stress are not consistent with a causal role for axonal tension. In particular, microdissection assays reveal that significant tension exists along axons aligned circumferentially in subcortical white matter tracts, as well as those aligned radially inside developing gyri (outward folds). Contrary to previous speculation, however, axonal tension is not directed across developing gyri, suggesting that axon tension does not drive folding. On the other hand, using computational (finite element) models, we show that differential cortical growth accompanied by remodeling of the subplate leads to outward folds and stress fields that are consistent with our microdissection experiments, supporting a mechanism involving differential growth. Local perturbations, such as temporal differences in the initiation of cortical growth, can ensure consistent folding patterns. This study shows that a combination of experimental and computational mechanics can be used to evaluate competing hypotheses of morphogenesis, and illuminate the biomechanics of cortical folding. PMID:20590291

  3. Mouse Intermittent Hypoxia Mimicking Apnea of Prematurity: Effects on Myelinogenesis and Axonal Maturation

    Science.gov (United States)

    CAI, JUN; TUONG, CHI MINH; ZHANG, YIPING; SHIELDS, CHRISTOPHER B.; GUO, GANG; FU, HUI; GOZAL, DAVID

    2014-01-01

    Premature babies are at high risk for both infantile apnea and long-term neurobehavioral deficits. Recent studies suggest that diffuse structural changes in brain white matter are a positive predictor of poor cognitive outcomes. Since oligodendrocyte maturation, myelination, axon development and synapse formation mainly occur in the 3rd trimester of gestation and 1st postnatal year, infantile apnea could lead to and/or exaggerate white matter impairments in preterm neonates. Therefore, we investigated oligodendroglia and axon development in a neonatal mouse model of intermittent hypoxia between postnatal days 2 to 10. During critical phases of central nervous system development, intermittent hypoxia induced hypomyelination in the corpus callosum, striatum, fornix and cerebellum, but not the pons or spinal cord. Intermittent hypoxia-elicited alterations in myelin-forming processes were reflected by decreased expression of myelin proteins, including MBP, PLP, MAG and CNPase, possibly due to arrested maturation of oligodendrocytes. Ultra-structural abnormalities were apparent in the myelin sheath and axon. Immature oligodendrocytes were more vulnerable to neonatal intermittent hypoxia exposures than developing axons, suggesting that hypomyelination may contribute, at least partially, to axonal deficits. Insufficient neurofilament synthesis with anomalous components of neurofilament subunits, β-tubulin and MAP2 isoforms indicated immaturity of axons in intermittent hypoxia-exposed mouse brains. In addition, down-regulation of Synapsin I, Synaptophysin and Gap-43 phosphorylation suggested a potential stunt in axonogenesis and synaptogenesis. The region-selective and complex impairment in brain white matter induced by intermittent hypoxia was further associated with electrophysiological changes that may underlie long-term neurobehavioral sequelae. PMID:21953180

  4. Current contribution of diffusion tensor imaging in the evaluation of diffuse axonal injury

    Directory of Open Access Journals (Sweden)

    Daphine Centola Grassi

    Full Text Available ABSTRACT Traumatic brain injury (TBI is the number one cause of death and morbidity among young adults. Moreover, survivors are frequently left with functional disabilities during the most productive years of their lives. One main aspect of TBI pathology is diffuse axonal injury, which is increasingly recognized due to its presence in 40% to 50% of all cases that require hospital admission. Diffuse axonal injury is defined as widespread axonal damage and is characterized by complete axotomy and secondary reactions due to overall axonopathy. These changes can be seen in neuroimaging studies as hemorrhagic focal areas and diffuse edema. However, the diffuse axonal injury findings are frequently under-recognized in conventional neuroimaging studies. In such scenarios, diffuse tensor imaging (DTI plays an important role because it provides further information on white matter integrity that is not obtained with standard magnetic resonance imaging sequences. Extensive reviews concerning the physics of DTI and its use in the context of TBI patients have been published, but these issues are still hazy for many allied-health professionals. Herein, we aim to review the current contribution of diverse state-of-the-art DTI analytical methods to the understanding of diffuse axonal injury pathophysiology and prognosis, to serve as a quick reference for those interested in planning new studies and who are involved in the care of TBI victims. For this purpose, a comprehensive search in Pubmed was performed using the following keywords: “traumatic brain injury”, “diffuse axonal injury”, and “diffusion tensor imaging”.

  5. Neuron-glia signaling and the protection of axon function by Schwann cells.

    Science.gov (United States)

    Quintes, Susanne; Goebbels, Sandra; Saher, Gesine; Schwab, Markus H; Nave, Klaus-Armin

    2010-03-01

    The interaction between neurons and glial cells is a feature of all higher nervous systems. In the vertebrate peripheral nervous system, Schwann cells ensheath and myelinate axons thereby allowing rapid saltatory conduction and ensuring axonal integrity. Recently, some of the key molecules in neuron-Schwann cell signaling have been identified. Neuregulin-1 (NRG1) type III presented on the axonal surface determines the myelination fate of axons and controls myelin sheath thickness. Recent observations suggest that NRG1 regulates myelination via the control of Schwann cell cholesterol biosynthesis. This concept is supported by the finding that high cholesterol levels in Schwann cells are a rate-limiting factor for myelin protein production and transport of the major myelin protein P0 from the endoplasmic reticulum into the growing myelin sheath. NRG1 type III activates ErbB receptors on the Schwann cell, which leads to an increase in intracellular PIP3 levels via the PI3-kinase pathway. Surprisingly, enforced elevation of PIP3 levels by inactivation of the phosphatase PTEN in developing and mature Schwann cells does not entirely mimic NRG1 type III stimulated myelin growth, but predominantly causes focal hypermyelination starting at Schmidt-Lanterman incisures and nodes of Ranvier. This indicates that the glial transduction of pro-myelinating signals has to be under tight and life-long control to preserve integrity of the myelinated axon. Understanding the cross talk between neurons and Schwann cells will help to further define the role of glia in preserving axonal integrity and to develop therapeutic strategies for peripheral neuropathies such as CMT1A.

  6. Fisiopatología del síndrome de Guillain Barré axonal Physiopathology of axonal acute Guillain Barré syndrome

    Directory of Open Access Journals (Sweden)

    Juan Guillermo Montoya Ch.

    2002-02-01

    Full Text Available Se describe la fisiopatología del síndrome de Guillain Barré axonal. Se consideran especialmente cinco aspectos: 1 Agentes etiológicos, específicamente el Campylobacter jejuni. 2 Susceptibilidad genética humana. 3 Mimetismo molecular entre lipopolisacáridos y lipoproteínas. 4 Mecanismo de acción de los anticuerpos antigangliósidos y 5 Hallazgos patológicos. The physiopathology of axonal acute Guillain Barré syndrome is described. Five aspects are considered, namely: 1 Etiologic agents emphasizing on Campylobacter jejuni. 2 Human genetic predisposition. 3 Molecular mimicry between lipopolysaccharides and gangliosides. 4 Mechanisms of action of antiganglioside antibodies and, 5 Pathologic findings.

  7. Sensory-motor axonal polyneuropathy involving cranial nerves: An uncommon manifestation of disulfiram toxicity.

    Science.gov (United States)

    Santos, Telma; Martins Campos, António; Morais, Hugo

    2017-01-01

    Disulfiram (tetraethylthiuram disulfide) has been used for the treatment of alcohol dependence. An axonal sensory-motor polyneuropathy with involvement of cranial pairs due to disulfiram is exceedingly rare. The authors report a unique case of an extremely severe axonal polyneuropathy involving cranial nerves that developed within weeks after a regular dosage of 500mg/day disulfiram. To the authors best knowledge, such a severe and rapidly-progressive course has never been described with disulfiram dosages of only 500mg/day. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Contrast and stability of the axon diameter index from microstructure imaging with diffusion MRI

    DEFF Research Database (Denmark)

    Dyrby, Tim B; Søgaard, Lise V; Hall, Matt G

    2013-01-01

    (max) ) on a scanner influence the sensitivity to a range of axon diameters. Multishell high-angular-diffusion-imaging (HARDI) protocols for G(max) of 60, 140, 200, and 300 mT/m were optimized for the pulsed-gradient-spin-echo (PGSE) sequence. Data were acquired on a fixed monkey brain and Monte-Carlo simulations......(max) for enhancing contrast between axon diameter distributions and are, therefore, relevant in general for microstructure imaging methods and highlight the need for increased G(max) on future commercial systems. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc....

  9. Aspartoacylase Deficiency in the White Matter of Human Immunodeficiency Virus Encephalitis: Novel Mechanism in Axonal Damage

    Directory of Open Access Journals (Sweden)

    Sankar Surendran

    2011-01-01

    Full Text Available Aspartoacylase/aminoacylase II (ASPA/ACY II is mainly synthesized in oligodendrocytes to contribute in myelin synthesis. Although axonal damage is seen in the brain with human immunodeficiency virus encephalitis (HIVE, ASPA contribution in the pathology is not known. Immunostaining study showed that ASPA protein is reduced in the white matter of patients with HIVE compared to the control. Western blot study further confirmed ASPA deficiency in the HIVE brain compared to the control. This paper suggests that HIVE condition affects ASPA to contribute in myelin loss/axonal damage seen in the disease.

  10. Aging-associated changes in motor axon voltage-gated Na+ channel function in mice

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Rosberg, Mette Romer; Alvarez Herrero, Susana

    2016-01-01

    the functional impairment. The aim of the present study was to investigate the effect of regular aging on motor axon function with particular emphasis on Nav1.8. We compared tibial nerve conduction and excitability measures by threshold tracking in 12 months (mature) and 20 months (aged) wild-type (WT) mice...... expression was found by immunohistochemistry. The depolarizing excitability features were absent in Nav1.8 null mice, and they were counteracted in WT mice by a Nav1.8 blocker. Our data suggest that alteration in voltage-gated Na+ channel isoform expression contributes to changes in motor axon function...

  11. EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans

    Science.gov (United States)

    Koprivica, Vuk; Cho, Kin-Sang; Park, Jong Bae; Yiu, Glenn; Atwal, Jasvinder; Gore, Bryan; Kim, Jieun A.; Lin, Estelle; Tessier-Lavigne, Marc; Chen, Dong Feng; He, Zhigang

    2005-10-01

    Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.

  12. Independent signaling by Drosophila insulin receptor for axon guidance and growth.

    Science.gov (United States)

    Li, Caroline R; Guo, Dongyu; Pick, Leslie

    2013-01-01

    The Drosophila insulin receptor (DInR) regulates a diverse array of biological processes including growth, axon guidance, and sugar homeostasis. Growth regulation by DInR is mediated by Chico, the Drosophila homolog of vertebrate insulin receptor substrate proteins IRS1-4. In contrast, DInR regulation of photoreceptor axon guidance in the developing visual system is mediated by the SH2-SH3 domain adaptor protein Dreadlocks (Dock). In vitro studies by others identified five NPXY motifs, one in the juxtamembrane region and four in the signaling C-terminal tail (C-tail), important for interaction with Chico. Here we used yeast two-hybrid assays to identify regions in the DInR C-tail that interact with Dock. These Dock binding sites were in separate portions of the C-tail from the previously identified Chico binding sites. To test whether these sites are required for growth or axon guidance in whole animals, a panel of DInR proteins, in which the putative Chico and Dock interaction sites had been mutated individually or in combination, were tested for their ability to rescue viability, growth and axon guidance defects of dinr mutant flies. Sites required for viability were identified. Unexpectedly, mutation of both putative Dock binding sites, either individually or in combination, did not lead to defects in photoreceptor axon guidance. Thus, either sites also required for viability are necessary for DInR function in axon guidance and/or there is redundancy built into the DInR/Dock interaction such that Dock is able to interact with multiple regions of DInR. We also found that simultaneous mutation of all five NPXY motifs implicated in Chico interaction drastically decreased growth in both male and female adult flies. These animals resembled chico mutants, supporting the notion that DInR interacts directly with Chico in vivo to control body size. Mutation of these five NPXY motifs did not affect photoreceptor axon guidance, segregating the roles of DInR in the

  13. Diapause formation and downregulation of insulin-like signaling via DAF-16/FOXO delays axonal degeneration and neuronal loss.

    Directory of Open Access Journals (Sweden)

    Andrea Calixto

    Full Text Available Axonal degeneration is a key event in the pathogenesis of neurodegenerative conditions. We show here that mec-4d triggered axonal degeneration of Caenorhabditis elegans neurons and mammalian axons share mechanistical similarities, as both are rescued by inhibition of calcium increase, mitochondrial dysfunction, and NMNAT overexpression. We then explore whether reactive oxygen species (ROS participate in axonal degeneration and neuronal demise. C. elegans dauers have enhanced anti-ROS systems, and dauer mec-4d worms are completely protected from axonal degeneration and neuronal loss. Mechanistically, downregulation of the Insulin/IGF-1-like signaling (IIS pathway protects neurons from degenerating in a DAF-16/FOXO-dependent manner and is related to superoxide dismutase and catalase-increased expression. Caloric restriction and systemic antioxidant treatment, which decrease oxidative damage, protect C. elegans axons from mec-4d-mediated degeneration and delay Wallerian degeneration in mice. In summary, we show that the IIS pathway is essential in maintaining neuronal homeostasis under pro-degenerative stimuli and identify ROS as a key intermediate of neuronal degeneration in vivo. Since axonal degeneration represents an early pathological event in neurodegeneration, our work identifies potential targets for therapeutic intervention in several conditions characterized by axonal loss and functional impairment.

  14. Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons

    NARCIS (Netherlands)

    Battefeld, A.; Tran, B.T.; Gavrilis, J.; Cooper, E.C.; Kole, Maarten|info:eu-repo/dai/nl/256257574

    2014-01-01

    Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of Kv7 potassium channels and voltage-gated sodium (Nav ) channels in the axonal

  15. Neural cell adhesion molecule, NCAM, regulates thalamocortical axon pathfinding and the organization of the cortical somatosensory representation in mouse

    Science.gov (United States)

    Enriquez-Barreto, Lilian; Palazzetti, Cecilia; Brennaman, Leann H.; Maness, Patricia F.; Fairén, Alfonso

    2012-01-01

    To study the potential role of neural cell adhesion molecule (NCAM) in the development of thalamocortical (TC) axon topography, wild type, and NCAM null mutant mice were analyzed for NCAM expression, projection, and targeting of TC afferents within the somatosensory area of the neocortex. Here we report that NCAM and its α-2,8-linked polysialic acid (PSA) are expressed in developing TC axons during projection to the neocortex. Pathfinding of TC axons in wild type and null mutant mice was mapped using anterograde DiI labeling. At embryonic day E16.5, null mutant mice displayed misguided TC axons in the dorsal telencephalon, but not in the ventral telencephalon, an intermediate target that initially sorts TC axons toward correct neocortical areas. During the early postnatal period, rostrolateral TC axons within the internal capsule along the ventral telencephalon adopted distorted trajectories in the ventral telencephalon and failed to reach the neocortex in NCAM null mutant animals. NCAM null mutants showed abnormal segregation of layer IV barrels in a restricted portion of the somatosensory cortex. As shown by Nissl and cytochrome oxidase staining, barrels of the anterolateral barrel subfield (ALBSF) and the most distal barrels of the posteromedial barrel subfield (PMBSF) did not segregate properly in null mutant mice. These results indicate a novel role for NCAM in axonal pathfinding and topographic sorting of TC axons, which may be important for the function of specific territories of sensory representation in the somatosensory cortex. PMID:22723769

  16. Hierarchical axon targeting of Drosophila olfactory receptor neurons specified by the proneural transcription factors Atonal and Amos.

    Science.gov (United States)

    Okumura, Misako; Kato, Tomoko; Miura, Masayuki; Chihara, Takahiro

    2016-01-01

    Sensory information is spatially represented in the brain to form a neural map. It has been suggested that axon-axon interactions are important for neural map formation; however, the underlying mechanisms are not fully understood. We used the Drosophila antennal lobe, the first olfactory center in the brain, as a model for studying neural map formation. Olfactory receptor neurons (ORNs) expressing the same odorant receptor target their axons to a single glomerulus out of approximately 50 glomeruli in the antennal lobe. Previous studies have showed that the axons of Atonal ORNs, specified by Atonal, a basic helix-loop-helix (bHLH) transcription factor, pioneer antennal lobe formation; however, the details remain to be elucidated. Here, we show that genetic ablation of Atonal ORNs affects antennal lobe structure and axon targeting of Amos ORNs, another type of ORN specified by the bHLH transcription factor Amos. During development, Atonal ORNs reach the antennal lobe and form the axon commissure before Amos ORNs. We also found that N-cadherin knockdown specifically in Atonal ORNs disrupts the glomerular boundary in the whole antennal lobe. Our results suggest that Atonal ORNs function as pioneer axons. Thus, correct axon targeting of Atonal ORNs is essential for formation of the whole antennal lobe. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  17. Photon scattering by the giant dipole resonance

    International Nuclear Information System (INIS)

    Bowles, T.J.; Holt, R.J.; Jackson, H.E.; McKeown, R.D.; Specht, J.R.

    1979-01-01

    Although many features of the giant dipole resonance are well known, the coupling between the basic dipole oscillation and other nuclear collective degrees of freedom such as surface vibrations and rotations is poorly understood. This aspect was investigated by elastic and inelastic bremsstrahlung scattering of tagged photons over the energy range 15 to 22 MeV. Target nuclei were 60 Ni, 52 Cr, 56 Fe, 92 Mo, and 96 Mo. Scattering and absorption cross sections are tabulated, along with parameters obtained from a two-Lorentzian analysis of the scattering cross sections; measured spectra are shown. It was necessary to remove Thomson scattering from the experimental results. It was found that coupling to surface vibrations in the giant dipole resonance is much weaker than the dynamic collective model suggests. The elastic scattering cross section for all targets but 60 Ni showed structure that is not evident in the absorption cross section measurement. 12 figures, 2 tables

  18. Thermal escape from extrasolar giant planets.

    Science.gov (United States)

    Koskinen, Tommi T; Lavvas, Panayotis; Harris, Matthew J; Yelle, Roger V

    2014-04-28

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres.

  19. Electroexcitation of giant resonances in 181Ta

    International Nuclear Information System (INIS)

    Hicks, R.S.; Auer, I.P.; Bergstrom, J.C.; Caplan, H.S.

    1977-01-01

    The giant resonance region of 181 Ta has been investigated by means of inelastic electron scattering with primary electron energies of 79.1 to 118.3 MeV. A peak-fitting procedure was employed to separate the measured spectrum into nine different resonance components. Multipolarity and strength assignments were deduced using DWBA analysis with the Goldhaber-Teller and Steinwedel-Jensen models. In addition to the well-known giant dipole structure, other resonances were identified at 23.2+-0.3 MeV (E2), 9.5+-0.2 and 11.5+-0.2 MeV (E2 or E0), 19.5+-0.8 MeV (E3), 3.70+-0.14 MeV (E3 or E4), and 5.40+-0.15 MeV (E4 or E5). The model dependence of the analysis is discussed. (Auth.)

  20. Tracheostomy in the giant anteater (Myrmecophaga tridactyla).

    Science.gov (United States)

    Brainard, Benjamin M; Newton, Alisa; Hinshaw, Keith C; Klide, Alan M

    2008-12-01

    Anesthesia in the giant anteater (Myrmecophaga tridactyla) may be complicated by apnea. Although emergent orotracheal intubation may be possible in other species, the particular anatomy of the anteater prevents a smooth intubation. A technique, developed on a cadaver model, is described for a surgical approach to the trachea of the giant anteater that may be used to secure an airway in an anesthetized animal under emergent conditions. The approach is complicated by the presence of the large paired submaxillary salivary gland and the relatively deep and caudal position of the larynx relative to the ramus of the mandible. This procedure, however, appears to be a feasible method to achieve endotracheal intubation in the anteater.