WorldWideScience

Sample records for myristoylated alanine-rich protein

  1. G-protein α-subunit expression, myristoylation, and membrane association in COS cells

    International Nuclear Information System (INIS)

    Mumby, S.M.; Gilman, A.G.; Heukeroth, R.O.; Gordon, J.I.

    1990-01-01

    Myristolyation of seven different α subunits of guanine nucleotide-binding regulatory proteins (G proteins) was examined by expressing these proteins in monkey kidney COS cells. Metabolic labeling studies of cells transfected with cytomegalovirus-based expression vectors indicated that [ 3 H]myristate was incorporated into α i1 , α i2 , α i3 , α 0 , and α 1 , and α z but not α s subunits. The role of myristoylation in the association of α subunits with membranes was analyzed by site-directed mutagenesis and by substitution of myristate with a less hydrophobic analog, 10-(propoxy)decanoate (11-oxamyristate). Myristoylation of α 0 was blocked when an alanine residue was substituted for its amino-terminal glycine, as was association of the protein with membranes. Substitution of the myristoyl group with 11-oxamyristate affected the cellular distribution of a subset of acylated α subunits. The results are consistent with a model wherein the hydrophobic interaction of myristate with the bilayer permits continued association of the protein with the plasma membrane when G-protein α subunits dissociated from βγ

  2. N-Lauroylation during the Expression of Recombinant N-Myristoylated Proteins: Implications and Solutions.

    Science.gov (United States)

    Flamm, Andrea Gabriele; Le Roux, Anabel-Lise; Mateos, Borja; Díaz-Lobo, Mireia; Storch, Barbara; Breuker, Kathrin; Konrat, Robert; Pons, Miquel; Coudevylle, Nicolas

    2016-01-01

    Incorporation of myristic acid onto the N terminus of a protein is a crucial modification that promotes membrane binding and correct localization of important components of signaling pathways. Recombinant expression of N-myristoylated proteins in Escherichia coli can be achieved by co-expressing yeast N-myristoyltransferase and supplementing the growth medium with myristic acid. However, undesired incorporation of the 12-carbon fatty acid lauric acid can also occur (leading to heterogeneous samples), especially when the available carbon sources are scarce, as it is the case in minimal medium for the expression of isotopically enriched samples. By applying this method to the brain acid soluble protein 1 and the 1-185 N-terminal region of c-Src, we show the significant, and protein-specific, differences in the membrane binding properties of lauroylated and myristoylated forms. We also present a robust strategy for obtaining lauryl-free samples of myristoylated proteins in both rich and minimal media. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Structure and Calcium Binding Properties of a Neuronal Calcium-Myristoyl Switch Protein, Visinin-Like Protein 3.

    Science.gov (United States)

    Li, Congmin; Lim, Sunghyuk; Braunewell, Karl H; Ames, James B

    2016-01-01

    Visinin-like protein 3 (VILIP-3) belongs to a family of Ca2+-myristoyl switch proteins that regulate signal transduction in the brain and retina. Here we analyze Ca2+ binding, characterize Ca2+-induced conformational changes, and determine the NMR structure of myristoylated VILIP-3. Three Ca2+ bind cooperatively to VILIP-3 at EF2, EF3 and EF4 (KD = 0.52 μM and Hill slope of 1.8). NMR assignments, mutagenesis and structural analysis indicate that the covalently attached myristoyl group is solvent exposed in Ca2+-bound VILIP-3, whereas Ca2+-free VILIP-3 contains a sequestered myristoyl group that interacts with protein residues (E26, Y64, V68), which are distinct from myristate contacts seen in other Ca2+-myristoyl switch proteins. The myristoyl group in VILIP-3 forms an unusual L-shaped structure that places the C14 methyl group inside a shallow protein groove, in contrast to the much deeper myristoyl binding pockets observed for recoverin, NCS-1 and GCAP1. Thus, the myristoylated VILIP-3 protein structure determined in this study is quite different from those of other known myristoyl switch proteins (recoverin, NCS-1, and GCAP1). We propose that myristoylation serves to fine tune the three-dimensional structures of neuronal calcium sensor proteins as a means of generating functional diversity.

  4. Uncoordinated (UNC)119: coordinating the trafficking of myristoylated proteins.

    Science.gov (United States)

    Constantine, Ryan; Zhang, Houbin; Gerstner, Cecilia D; Frederick, Jeanne M; Baehr, Wolfgang

    2012-12-15

    The mechanism by which myristoylated proteins are targeted to specific subcellular membrane compartments is poorly understood. Two novel acyl-binding proteins, UNC119A and UNC119B, have been shown recently to function as chaperones/co-factors in the transport of myristoylated G protein α-subunits and src-type tyrosine kinases. UNC119 polypeptides feature an immunoglobulin-like β-sandwich fold that forms a hydrophobic pocket capable of binding lauroyl (C12) and myristoyl (C14) side chains. UNC119A in rod photoreceptors facilitates the transfer of transducin α subunits (Tα) from inner segment to outer segment membranes by forming an intermediate diffusible UNC119-Tα complex. Similar complexes are formed in other sensory neurons, as the G proteins ODR-3 and GPA-13 in Caenorhabditis elegans unc-119 mutants traffic inappropriately. UNC119B knockdown in IMCD3 cells prevents trafficking ofmyristoylated nephrocystin-3 (NPHP3), a protein associated with nephronophthisis, to cilia. Further, UNC119A was shown to transport myristoylated src-type tyrosine kinases to cell membranes and to affect T-cell receptor (TCR) and interleukin-5 receptor (IL-5R) activities. These interactions establish UNC119 polypeptides as novel lipid-binding chaperones with specificity for a diverse subset of myristoylated proteins. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Protein N-myristoylation in Escherichia coli: Reconstitution of a eukaryotic protein modification in bacteria

    International Nuclear Information System (INIS)

    Duronio, R.J.; Jackson-Machelski, E.; Heuckeroth, R.O.; Gordon, J.I.; Olins, P.O.; Devine, C.S.; Yonemoto, W.; Slice, L.W.; Taylor, S.S.

    1990-01-01

    Protein N-myristoylation refers to the covalent attachment of a myristoyl group (C14:0), via amide linkage, to the NH 2 -terminal glycine residue of certain cellular and viral proteins. Myristoyl-CoA:protein N-myristoyltransferase (NMT) catalyzes this cotranslational modification. The authors have developed a system for studying the substrate requirements and biological effects of protein N-myristoylation as well as NMT structure-activity relationships. Expression of the yeast NMT1 gene in Escherichia coli, a bacterium that has no endogenous NMT activity, results in production of the intact 53-kDa NMT polypeptide as well as a truncated polypeptide derived from proteolytic removal of its NH 2 -terminal 39 amino acids. By using a dual plasmid system, N-myristoylation of a mammalian protein was reconstituted in E. coli by simultaneous expression of the yeast NMT1 gene and a murine cDNA encoding the catalytic (C) subunit of cAMP-dependent protein kinase (PK-A). A major advantage of the bacterial system over eukaryotic systems is the absence of endogenous NMT and substrates, providing a more straightforward way of preparing myristoylated, analog-substituted, and nonmyristoylated forms of a given protein for comparison of their structural and functional properties. The experimental system may prove useful for recapitulating other eukaryotic protein modifications in E. coli so that structure-activity relationships of modifying enzymes and their substrates can be more readily assessed

  6. Single vector system for efficient N-myristoylation of recombinant proteins in E. coli.

    Directory of Open Access Journals (Sweden)

    Julian M Glück

    Full Text Available BACKGROUND: N-myristoylation is a crucial covalent modification of numerous eukaryotic and viral proteins that is catalyzed by N-myristoyltransferase (NMT. Prokaryotes are lacking endogenous NMT activity. Recombinant production of N-myristoylated proteins in E. coli cells can be achieved by coexpression of heterologous NMT with the target protein. In the past, dual plasmid systems were used for this purpose. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a single vector system for efficient coexpression of substrate and enzyme suitable for production of co- or posttranslationally modified proteins. The approach was validated using the HIV-1 Nef protein as an example. A simple and efficient protocol for production of highly pure and completely N-myristoylated Nef is presented. The yield is about 20 mg myristoylated Nef per liter growth medium. CONCLUSIONS/SIGNIFICANCE: The single vector strategy allows diverse modifications of target proteins recombinantly coexpressed in E. coli with heterologous enzymes. The method is generally applicable and provides large amounts of quantitatively processed target protein that are sufficient for comprehensive biophysical and structural studies.

  7. Myristoylation as a general method for immobilization and alignment of soluble proteins for solid-state NMR structural studies

    International Nuclear Information System (INIS)

    Mesleh, M.F.; Valentine, K.G.; Opella, S.J.; Louis, J.M.; Gronenborn, A.M.

    2003-01-01

    N-terminal myristoylation of the immunoglobulin-binding domain of protein G (GB1) from group G Streptococcus provides the means to bind the protein to aligned phospholipid bilayers for solid-state NMR structural studies. The myristoylated protein is immobilized by its interactions with bilayers, and the sample alignment enables orientationally dependent 15 N chemical shifts and 1 H- 15 N-dipolar couplings to be measured. Spectra calculated for the average solution NMR structure of the protein at various orientations with respect to the magnetic field direction were compared to the experimental spectrum. The best fit identified the orientation of the myristoylated protein on the lipid bilayers, and demonstrated that the protein adopts a similar structure in both its myristoylated and non-myristoylated forms, and that the structure is not grossly distorted by its interaction with the phosholipid bilayer surface or by its location in the restricted aqueous space between bilayer leaflets. The protein is oriented such that its charged sides face the phosphatidylcholine headgroups of the lipids with the single amphiphilic helix running parallel to the bilayer surface

  8. β-subunit myristoylation functions as an energy sensor by modulating the dynamics of AMP-activated Protein Kinase.

    Science.gov (United States)

    Ali, Nada; Ling, Naomi; Krishnamurthy, Srinath; Oakhill, Jonathan S; Scott, John W; Stapleton, David I; Kemp, Bruce E; Anand, Ganesh Srinivasan; Gooley, Paul R

    2016-12-21

    The heterotrimeric AMP-activated protein kinase (AMPK), consisting of α, β and γ subunits, is a stress-sensing enzyme that is activated by phosphorylation of its activation loop in response to increases in cellular AMP. N-terminal myristoylation of the β-subunit has been shown to suppress Thr172 phosphorylation, keeping AMPK in an inactive state. Here we use amide hydrogen-deuterium exchange mass spectrometry (HDX-MS) to investigate the structural and dynamic properties of the mammalian myristoylated and non-myristoylated inactivated AMPK (D139A) in the presence and absence of nucleotides. HDX MS data suggests that the myristoyl group binds near the first helix of the C-terminal lobe of the kinase domain similar to other kinases. Our data, however, also shows that ATP.Mg 2+ results in a global stabilization of myristoylated, but not non-myristoylated AMPK, and most notably for peptides of the activation loop of the α-kinase domain, the autoinhibitory sequence (AIS) and the βCBM. AMP does not have that effect and HDX measurements for myristoylated and non-myristoylated AMPK in the presence of AMP are similar. These differences in dynamics may account for a reduced basal rate of phosphorylation of Thr172 in myristoylated AMPK in skeletal muscle where endogenous ATP concentrations are very high.

  9. One-step separation of myristoylated and nonmyristoylated retroviral matrix proteins

    Czech Academy of Sciences Publication Activity Database

    Doležal, Michal; Zábranský, Aleš; Hrabal, R.; Ruml, T.; Pichová, Iva; Rumlová, Michaela

    2013-01-01

    Roč. 92, č. 1 (2013), s. 94-99 ISSN 1046-5928 R&D Projects: GA ČR GA204/09/1388 Institutional support: RVO:61388963 Keywords : matrix protein * mouse mammary tumor virus * murine leukemia virus * myristoylation * N-myristoyltransferase * retrovirus Subject RIV: CE - Biochemistry Impact factor: 1.508, year: 2013

  10. Myristoylated proteins and peptidyl myristoyltransferase

    International Nuclear Information System (INIS)

    Marchildon, G.A.

    1986-01-01

    The distribution and intracellular locations of myristoylated proteins have been examined in cultured cells. Incubating a variety of cells in minimal medium containing / 3 H/ myristate led to the incorporation of labeled myristate into as many as twenty-five different intracellular proteins. The incorporation increased linearly with time for up to six hours and then increased more slowly for an additional ten hours. The chemical stability indicated that the attachment was covalent and excluded nucleophile-labile bonds such as thioesters. Fluorographs of proteins modified by / 3 H/ myristate and resolved on gradient SDS-PAGE showed patterns that differed from cell type to cell type. To examine the intracellular locations of the myristate-labeled proteins, cells were isotonically subfractionated. Most of the myristate-labeled proteins remained in the high speed supernatant devoid of microsomal membranes. This indicated that the myristate modification in itself is not sufficient to serve as an anchor for membrane association. Myristate labeled catalytic subunit of the cyclic AMP dependent protein kinase was specifically immunoprecipitated from an aliquot of the high speed supernatant proteins. However, the prominent tyrosine protein kinase of the murine lymphoma cell line LSTRA, pp56/sup lstra/, also incorporated myristate and was specifically immunoprecipitated from the high speed pellet (particulate) fraction of labeled LSTRA cells. To begin to understand the biochemical mechanism of myristate attachment to protein. The authors partially purified and characterized the peptidyl myristoyltransferase from monkey liver. Recovery of enzymatic activity was 69%

  11. Biochemical Characterization of Bovine Brain Myristoyl-CoA:Protein N-Myristoyltransferase Type 2

    Directory of Open Access Journals (Sweden)

    Ponniah Selvakumar

    2009-01-01

    Full Text Available Protein N-myristoylation is a lipidic modification which refers to the covalent attachment of myristate, a 14-carbon saturated fatty acid, to the N-terminal glycine residue of a number of mammalian, viral, and fungal proteins. In this paper, we have cloned the gene coding for myristoyl-CoA:protein N-myristoyltransferase (NMT from Bos tarus brain. The open reading frame codes for a 410-amino-acid protein and overexpressed in Escherichia coli. Kinetic studies suggested that bovine brain NMT2 and human NMT1 show significant differences in their peptide substrate specificities. The metal ion Ca2+ had stimulatory effects on NMT2 activity while Mn2+ and Zn2+ inhibited the enzyme activity. In addition, NMT2 activity was inhibited by various organic solvents and other detergents while NMT1 had a stimulatory effect. Biochemical characterization suggested that both forms of NMT have unique characteristics. Further analysis towards functional role NMT2 will lead the development of therapeutic target for the progression of various diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases.

  12. The structure of myristoylated Mason-Pfizer monkey virus matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in its membrane binding.

    Science.gov (United States)

    Prchal, Jan; Srb, Pavel; Hunter, Eric; Ruml, Tomáš; Hrabal, Richard

    2012-10-26

    We determined the solution structure of myristoylated Mason-Pfizer monkey virus matrix protein by NMR spectroscopy. The myristoyl group is buried inside the protein and causes a slight reorientation of the helices. This reorientation leads to the creation of a binding site for phosphatidylinositols. The interaction between the matrix protein and phosphatidylinositols carrying C(8) fatty acid chains was monitored by observation of concentration-dependent chemical shift changes of the affected amino acid residues, a saturation transfer difference experiment and changes in (31)P chemical shifts. No differences in the binding mode or affinity were observed with differently phosphorylated phosphatidylinositols. The structure of the matrix protein-phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] complex was then calculated with HADDOCK software based on the intermolecular nuclear Overhauser enhancement contacts between the ligand and the matrix protein obtained from a (13)C-filtered/(13)C-edited nuclear Overhauser enhancement spectroscopy experiment. PI(4,5)P(2) binding was not strong enough for triggering of the myristoyl-switch. The structural changes of the myristoylated matrix protein were also found to result in a drop in the oligomerization capacity of the protein. Copyright © 2012. Published by Elsevier Ltd.

  13. Alanine repeats influence protein localization in splicing speckles and paraspeckles.

    Science.gov (United States)

    Chang, Shuo-Hsiu; Chang, Wei-Lun; Lu, Chia-Chen; Tarn, Woan-Yuh

    2014-12-16

    Mammalian splicing regulatory protein RNA-binding motif protein 4 (RBM4) has an alanine repeat-containing C-terminal domain (CAD) that confers both nuclear- and splicing speckle-targeting activities. Alanine-repeat expansion has pathological potential. Here we show that the alanine-repeat tracts influence the subnuclear targeting properties of the RBM4 CAD in cultured human cells. Notably, truncation of the alanine tracts redistributed a portion of RBM4 to paraspeckles. The alanine-deficient CAD was sufficient for paraspeckle targeting. On the other hand, alanine-repeat expansion reduced the mobility of RBM4 and impaired its splicing activity. We further took advantage of the putative coactivator activator (CoAA)-RBM4 conjoined splicing factor, CoAZ, to investigate the function of the CAD in subnuclear targeting. Transiently expressed CoAZ formed discrete nuclear foci that emerged and subsequently separated-fully or partially-from paraspeckles. Alanine-repeat expansion appeared to prevent CoAZ separation from paraspeckles, resulting in their complete colocalization. CoAZ foci were dynamic but, unlike paraspeckles, were resistant to RNase treatment. Our results indicate that the alanine-rich CAD, in conjunction with its conjoined RNA-binding domain(s), differentially influences the subnuclear localization and biogenesis of RBM4 and CoAZ. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Myristoylation drives dimerization of matrix protein from mouse mammary tumor virus

    Czech Academy of Sciences Publication Activity Database

    Doležal, Michal; Zábranský, Aleš; Dostál, Jiří; Vaněk, O.; Brynda, Jiří; Lepšík, Martin; Hadravová, Romana; Pichová, Iva

    2016-01-01

    Roč. 13, Jan 5 (2016), č. článku 2. ISSN 1742-4690 R&D Projects: GA MŠk LO1302; GA MŠk(CZ) LO1304; GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : dimerization * matrix protein * MMTV * molecular dynamics * mouse mammary tumor virus * myristoylation Subject RIV: CE - Biochemistry Impact factor: 3.867, year: 2016 http://retrovirology.biomedcentral.com/articles/10.1186/s12977-015-0235-8

  15. Frog virus 3 ORF 53R, a putative myristoylated membrane protein, is essential for virus replication in vitro

    International Nuclear Information System (INIS)

    Whitley, Dexter S.; Yu, Kwang; Sample, Robert C.; Sinning, Allan; Henegar, Jeffrey; Norcross, Erin; Chinchar, V. Gregory

    2010-01-01

    Although previous work identified 12 complementation groups with possible roles in virus assembly, currently only one frog virus 3 protein, the major capsid protein (MCP), has been linked with virion formation. To identify other proteins required for assembly, we used an antisense morpholino oligonucleotide to target 53R, a putative myristoylated membrane protein, and showed that treatment resulted in marked reductions in 53R levels and a 60% drop in virus titers. Immunofluorescence assays confirmed knock down and showed that 53R was found primarily within viral assembly sites, whereas transmission electron microscopy detected fewer mature virions and, in some cells, dense granular bodies that may represent unencapsidated DNA-protein complexes. Treatment with a myristoylation inhibitor (2-hydroxymyristic acid) resulted in an 80% reduction in viral titers. Collectively, these data indicate that 53R is an essential viral protein that is required for replication in vitro and suggest it plays a critical role in virion formation.

  16. Resonance assignments of the myristoylated Y28F/Y67F mutant of the Mason-Pfizer monkey virus matrix protein

    Czech Academy of Sciences Publication Activity Database

    Doležal, Michal; Hrabal, R.; Ruml, T.; Rumlová, Michaela

    2015-01-01

    Roč. 9, č. 2 (2015), s. 229-233 ISSN 1874-2718 Institutional support: RVO:61388963 Keywords : isotopic labeling * matrix protein * M-PMV * myristoylation * resonance assignment * reverse labeling Subject RIV: CE - Biochemistry Impact factor: 0.687, year: 2015

  17. Functional analysis of protein N-myristoylation: Metabolic labeling studies using three oxygen-substituted analogs of myristic acid and cultured mammalian cells provide evidence for protein-sequence-specific incorporation and analog-specific redistribution

    International Nuclear Information System (INIS)

    Johnson, D.R.; Heuckeroth, R.O.; Gordon, J.I.; Cox, A.D.; Solski, P.A.; Buss, J.E.; Devadas, B.; Adams, S.P.; Leimgruber, R.M.

    1990-01-01

    Covalent attachment of myristic acid (C14:0) to the NH 2 -terminal glycine residue of a number of cellular, viral, and oncogene-encoded proteins is essential for full expression of their biological function. Substitution of oxygen for methylene groups in this fatty acid does not produce a significant change in chain length or stereochemistry but does result in a reduction in hydrophobicity. These heteroatom-containing analogs serve as alternative substrates for mammalian myristoyl-CoA: protein N-myristoyltransferase and offer the opportunity to explore structure/function relationships of myristate in N-myristoyltransferase proteins. The authors have synthesized three tritiated analogs of myristate with oxygen substituted for methylene groups at C6, C11, and C13. Metabolic labeling studies were performed with these compounds and (i) a murine myocyte cell line (BC 3 H1), (ii) a rat fibroblast cell that produces p60 v-src (3Xsrc), or (iii) NIH 3T3 cells that have been engineered to express a fusion protein consisting of an 11-residue myristoylation signal from the Rasheed sarcoma virus (RaSV) gag protein linked to c-Ha-ras with a Cys → Ser-186 mutation. Two-dimensional gel electrophoresis of membrane and soluble fractions prepared from cell lysates revealed different patterns of incorporation of the analogs into cellular N-myristoyl proteins. The demonstration that these analogs differ in the extent to which they are incorporated and in their ability to cause redistribution of any single protein suggests that they may also have sufficient selectivity to be of potential therapeutic value

  18. Alanine Counteracts the Destabilizing Effect that Urea has on RNase-A.

    Science.gov (United States)

    Chowhan, Rimpy K; Ali, Fasil; Bhat, Mohd Y; Rahman, Safikur; Singh, Laishram R; Ahmad, Faizan; Dar, Tanveer A

    2016-01-01

    It is generally believed that organisms use and accumulate methylamine osmolytes to prevent urea's damaging effect on protein stability and activity. However, urea-rich cells not only accumulate methylamines but also many other methylated and non-methylated compounds as well. But, so far it is not known whether osmolytes that are not accumulated in urea-rich cells could also confer urea-counteracting properties. We investigated the behavior of a non-methylamine osmolyte, alanine for its counteracting effect against urea denaturation of a model protein, ribonuclease A (RNase-A). We have measured structure and thermodynamic parameters (Tm, ΔHm, and ΔGD°) of RNase-A in the presence of alanine, urea and their combination. The results were also compared with the ability of glycine (osmolyte lacking one methyl group when compared with alanine) to counter urea's effect on protein stability. We observed that alanine but not glycine counteracts urea's harmful effect on RNase-A stability. The results indicated that alanine (in addition to methylamine osmolytes) may serve as an alternate urea-counteractant. Since glycine fails to protect RNase-A from urea's destabilizing effect, it seems that methylation to glycine might have some evolutionary significance to protect proteins against harmful effects of urea.

  19. DNA vaccine encoding myristoylated membrane protein (MMP) of rock bream iridovirus (RBIV) induces protective immunity in rock bream (Oplegnathus fasciatus).

    Science.gov (United States)

    Jung, Myung-Hwa; Nikapitiya, Chamilani; Jung, Sung-Ju

    2018-02-01

    Rock bream iridovirus (RBIV) causes severe mass mortalities in rock bream (Oplegnathus fasciatus) in Korea. In this study, we investigated the potential of viral membrane protein to induce antiviral status protecting rock bream against RBIV infection. We found that fish administered with ORF008L (myristoylated membrane protein, MMP) vaccine exhibited significantly higher levels of survival compared to ORF007L (major capsid protein, MCP). Moreover, ORF008L-based DNA vaccinated fish showed significant protection at 4 and 8 weeks post vaccination (wpv) than non-vaccinated fish after infected with RBIV (6.7 × 10 5 ) at 23 °C, with relative percent survival (RPS) of 73.36% and 46.72%, respectively. All of the survivors from the first RBIV infection were strongly protected (100% RPS) from re-infected with RBIV (1.1 × 10 7 ) at 100 dpi. In addition, the MMP (ORF008L)-based DNA vaccine significantly induced the gene expression of TLR3 (14.2-fold), MyD88 (11.6-fold), Mx (84.7-fold), ISG15 (8.7-fold), PKR (25.6-fold), MHC class I (13.3-fold), Fas (6.7-fold), Fas ligand (6.7-fold), caspase9 (17.0-fold) and caspase3 (15.3-fold) at 7 days post vaccination in the muscle (vaccine injection site). Our results showed the induction of immune responses and suggest the possibility of developing preventive measures against RBIV using myristoylated membrane protein-based DNA vaccine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein

    International Nuclear Information System (INIS)

    Ayala, Isabel; Sounier, Remy; Use, Nathalie; Gans, Pierre; Boisbouvier, Jerome

    2009-01-01

    A strategy for the introduction of ( 1 H, 13 C-methyl)-alanine into perdeuterated proteins is described. Specific protonation of alanine methyl groups to a level of 95% can be achieved by overexpressing proteins in M9/D 2 O based bacterial growth medium supplemented with 800 mg/l of 2-[ 2 H], 3-[ 13 C] l-alanine. However, though simple, this approach results in undesired, non-specific background labeling due to isotope scrambling via different amino acid metabolic pathways. Following a careful analysis of known metabolic pathways we found that co-addition of perdeuterated forms of α-ketoisovalerate-d 7 , succinate-d 4 and l-isoleucine-d 10 with labeled l-alanine, reduces undesired background labeling to <1%. When combined with recently developed methyl TROSY experiments, this methyl-specific labeling protocol permits the acquisition of excellent quality correlation spectra of alanine methyl groups in high molecular weight proteins. Our cost effective strategy offers a significant enhancement in the level of incorporation of methyl-labeled alanine in overexpressed proteins over previously reported methods

  1. Alanine rich peptide from Populus trichocarpa inhibit growth of Staphylococcus aureus via targetting its extracellular domain of Sensor Histidine Kinase YycGex protein.

    Science.gov (United States)

    Al Akeel, Raid; Mateen, Ayesha; Syed, Rabbani; Al-Qahtani, Mohammed S; Alqahtani, A

    2018-05-11

    Due to growing concern towards microbial resistance, ongoing search for developing novel bioactive compounds such as peptides is on rise. The aim of this study was to evaluate antimicrobial effect of Populus trichocarpa extract, chemically identify the active peptide fraction and finds its target in Staphylococcus aureus. In this study the active fraction of P. trichocarpa crude extract was purified and characterized using MS/MS. This peptide PT13 antimicrobial activity was confirmed by in-vitro agar based disk diffusion and in-vivo infection model of G. mellonella. The proteomic expression analysis of S. aureus under influence of PT13 was studied using LTQ-Orbitrap-MS in-solution digestion and identity of target protein was acquired with their quantified expression using label-free approach of Progenesis QI software. Docking study was performed with peptide PT13 and its target YycG protein using CABS-dock. The active fraction PT13 sequence was identified as KVPVAAAAAAAAAVVASSMVVAAAK, with 25 amino acid including 13 alanine having M/Z 2194.2469. PT13 was uniformly inhibited growth S. aureus SA91 and MIC was determined 16 μg/mL for SA91 S. aureus strain. Sensor histidine kinase (YycG) was most significant target found differentially expressed under influence of PT13. G. mellonella larvae were killed rapidly due to S aureus infection, whereas death in protected group was insignificant in compare to control. The docking models showed ten docking models with RMSD value 1.89 for cluster 1 and RMSD value 3.95 for cluster 2 which is predicted to be high quality model. Alanine rich peptide could be useful in constructing as antimicrobial peptide for targeting extracellular Domain of Sensor Histidine Kinase YycG from S. aureus used in the study. Copyright © 2018. Published by Elsevier Ltd.

  2. Whole-protein alanine-scanning mutagenesis of allostery: A large percentage of a protein can contribute to mechanism.

    Science.gov (United States)

    Tang, Qingling; Fenton, Aron W

    2017-09-01

    Many studies of allosteric mechanisms use limited numbers of mutations to test whether residues play "key" roles. However, if a large percentage of the protein contributes to allosteric function, mutating any residue would have a high probability of modifying allostery. Thus, a predicted mechanism that is dependent on only a few residues could erroneously appear to be supported. We used whole-protein alanine-scanning mutagenesis to determine which amino acid sidechains of human liver pyruvate kinase (hL-PYK; approved symbol PKLR) contribute to regulation by fructose-1,6-bisphosphate (Fru-1,6-BP; activator) and alanine (inhibitor). Each nonalanine/nonglycine residue of hL-PYK was mutated to alanine to generate 431 mutant proteins. Allosteric functions in active proteins were quantified by following substrate affinity over a concentration range of effectors. Results show that different residues contribute to the two allosteric functions. Only a small fraction of mutated residues perturbed inhibition by alanine. In contrast, a large percentage of mutated residues influenced activation by Fru-1,6-BP; inhibition by alanine is not simply the reverse of activation by Fru-1,6-BP. Moreover, the results show that Fru-1,6-BP activation would be extremely difficult to elucidate using a limited number of mutations. Additionally, this large mutational data set will be useful to train and test computational algorithms aiming to predict allosteric mechanisms. © 2017 Wiley Periodicals, Inc.

  3. Role of myristoylation in membrane attachment and function of G alpha i-3 on Golgi membranes.

    Science.gov (United States)

    Brand, S H; Holtzman, E J; Scher, D A; Ausiello, D A; Stow, J L

    1996-05-01

    Heterotrimeric G protein alpha-subunits localized on the cytoplasmic face of Golgi membranes are involved in regulating vesicle trafficking and protein secretion. We investigated the role of myristoylation in attachment of the G alpha i-3 subunit to Golgi membranes. G alpha i-3 was epitope-tagged by insertion of a FLAG sequence at an NH2-terminal site predicted to interfere with myristoylation, and the resulting NT-alpha i-3 construct was stably transfected and expressed in polarized epithelial LLC-PK1 cells. Metabolic labeling confirmed that the translation product of NT-alpha i-3 was not myristoylated. In contrast to endogenous G alpha 1-3, which is tightly bound to Golgi membranes, the unmyristoylated FLAG-tagged NT-alpha i-3 did not attach to membranes; it was localized by immunofluorescence in the cytoplasm of LLC-PK1 cells and was detected only in the cytosol fraction of cell homogenates. Pertussis toxin-dependent ADP-ribosylation was used to test the ability of NT-alpha i-3 to interact with membrane-bound beta gamma-subunits. In both in vitro and in vivo assays, cytosolic NT-alpha i-3 alone was not ADP-ribosylated, although in the presence of membranes it could interact with G beta gamma-subunits to form heterotrimers. The expression of NT-alpha i-3 in LLC-PK1 cells altered the rate of basolateral secretion of sulfated proteoglycans, consistent with the demonstrated function of endogenous G alpha i-3. These data are consistent with a model in which G alpha i-3 utilizes NH2-terminal myristoylation to bind to Golgi membranes and to maximize its interaction with G beta gamma-subunits. Furthermore, our results show that stable attachment of G alpha i-3 to Golgi membranes is not required for it to participate as a regulatory element in vesicle trafficking in the secretory pathway.

  4. Rapid mapping of protein functional epitopes by combinatorial alanine scanning

    OpenAIRE

    Weiss, GA; Watanabe, CK; Zhong, A; Goddard, A; Sidhu, SS

    2000-01-01

    A combinatorial alanine-scanning strategy was used to determine simultaneously the functional contributions of 19 side chains buried at the interface between human growth hormone and the extracellular domain of its receptor. A phage-displayed protein library was constructed in which the 19 side chains were preferentially allowed to vary only as the wild type or alanine. The library pool was subjected to binding selections to isolate functional clones, and DNA sequencing was used to determine ...

  5. Liberated PKA Catalytic Subunits Associate with the Membrane via Myristoylation to Preferentially Phosphorylate Membrane Substrates.

    Science.gov (United States)

    Tillo, Shane E; Xiong, Wei-Hong; Takahashi, Maho; Miao, Sheng; Andrade, Adriana L; Fortin, Dale A; Yang, Guang; Qin, Maozhen; Smoody, Barbara F; Stork, Philip J S; Zhong, Haining

    2017-04-18

    Protein kinase A (PKA) has diverse functions in neurons. At rest, the subcellular localization of PKA is controlled by A-kinase anchoring proteins (AKAPs). However, the dynamics of PKA upon activation remain poorly understood. Here, we report that elevation of cyclic AMP (cAMP) in neuronal dendrites causes a significant percentage of the PKA catalytic subunit (PKA-C) molecules to be released from the regulatory subunit (PKA-R). Liberated PKA-C becomes associated with the membrane via N-terminal myristoylation. This membrane association does not require the interaction between PKA-R and AKAPs. It slows the mobility of PKA-C and enriches kinase activity on the membrane. Membrane-residing PKA substrates are preferentially phosphorylated compared to cytosolic substrates. Finally, the myristoylation of PKA-C is critical for normal synaptic function and plasticity. We propose that activation-dependent association of PKA-C renders the membrane a unique PKA-signaling compartment. Constrained mobility of PKA-C may synergize with AKAP anchoring to determine specific PKA function in neurons. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. N-myristoylated ubiquitin ligase Cbl-b inhibitor prevents on glucocorticoid-induced atrophy in mouse skeletal muscle.

    Science.gov (United States)

    Ochi, Arisa; Abe, Tomoki; Nakao, Reiko; Yamamoto, Yoriko; Kitahata, Kanako; Takagi, Marina; Hirasaka, Katsuya; Ohno, Ayako; Teshima-Kondo, Shigetada; Taesik, Gwag; Choi, Inho; Kawamura, Tomoyuki; Nemoto, Hisao; Mukai, Rie; Terao, Junji; Nikawa, Takeshi

    2015-03-15

    A DGpYMP peptide mimetic of tyrosine(608)-phosphorylated insulin receptor substrate-1 (IRS-1), named Cblin, was previously shown to significantly inhibit Cbl-b-mediated IRS-1 ubiquitination. In the present study, we developed N-myristoylated Cblin and investigated whether it was effective in preventing glucocorticoid-induced muscle atrophy. Using HEK293 cells overexpressing Cbl-b, IRS-1 and ubiquitin, we showed that the 50% inhibitory concentrations of Cbl-b-mediated IRS-1 ubiquitination by N-myristoylated Cblin and Cblin were 30 and 120 μM, respectively. Regarding the DEX-induced atrophy of C2C12 myotubes, N-myristoylated Cblin was more effective than Cblin for inhibiting the DEX-induced decreases in C2C12 myotube diameter and IRS-1 degradation. The inhibitory efficacy of N-myristoylated Cblin on IRS-1 ubiquitination in C2C12 myotubes was approximately fourfold larger than that of Cblin. Furthermore, N-myristoylation increased the incorporation of Cblin into HEK293 cells approximately 10-folds. Finally, we demonstrated that N-myristoylated Cblin prevented the wet weight loss, IRS-1 degradation, and MAFbx/atrogin-1 and MuRF-1 expression in gastrocnemius muscle of DEX-treated mice approximately fourfold more effectively than Cblin. Taken together, these results suggest that N-myristoylated Cblin prevents DEX-induced skeletal muscle atrophy in vitro and in vivo, and that N-myristoylated Cblin more effectively prevents muscle atrophy than unmodified Cblin. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Antiviral activity against human immunodeficiency virus-1 in vitro by myristoylated-peptide from Heliothis virescens

    International Nuclear Information System (INIS)

    Ourth, Donald D.

    2004-01-01

    An insect antiviral compound was purified from Heliothis virescens larval hemolymph by gel-filtration high pressure liquid chromatography (HPLC) and C-18 reverse-phase HPLC and its structure was determined by mass spectrometry. The antiviral compound is an N-myristoylated-peptide containing six amino acids with calculated molecular weight of 916 Da. The N-terminus contains the fatty acid myristoyl, and the C-terminus contains histidine with two methyl groups giving the histidine a permanent positive charge. The remainder of the compound is essentially non-polar. The structure of the compound corresponds with the 'myristate plus basic' motif expressed by certain viral proteins in their binding to the cytoplasmic side of the plasma membrane to initiate viral assembly and budding from a host cell. The insect antiviral compound may inhibit viral assembly and/or budding of viruses from host cells that could include the human immunodeficiency virus-1 (HIV-1) and herpes simplex virus-1 that use this motif for exit from a host cell. Using the formazan assay, the myristoylated-peptide was effective against HIV-1, with a nine times increase in the viability and protection in vitro of treated CEM-SS cells when compared with infected but untreated control cells

  8. Protein Homeostasis Defects of Alanine-Glyoxylate Aminotransferase: New Therapeutic Strategies in Primary Hyperoxaluria Type I

    Directory of Open Access Journals (Sweden)

    Angel L. Pey

    2013-01-01

    Full Text Available Alanine-glyoxylate aminotransferase catalyzes the transamination between L-alanine and glyoxylate to produce pyruvate and glycine using pyridoxal 5′-phosphate (PLP as cofactor. Human alanine-glyoxylate aminotransferase is a peroxisomal enzyme expressed in the hepatocytes, the main site of glyoxylate detoxification. Its deficit causes primary hyperoxaluria type I, a rare but severe inborn error of metabolism. Single amino acid changes are the main type of mutation causing this disease, and considerable effort has been dedicated to the understanding of the molecular consequences of such missense mutations. In this review, we summarize the role of protein homeostasis in the basic mechanisms of primary hyperoxaluria. Intrinsic physicochemical properties of polypeptide chains such as thermodynamic stability, folding, unfolding, and misfolding rates as well as the interaction of different folding states with protein homeostasis networks are essential to understand this disease. The view presented has important implications for the development of new therapeutic strategies based on targeting specific elements of alanine-glyoxylate aminotransferase homeostasis.

  9. The effect of taurine and β-alanine supplementation on taurine transporter protein and fatigue resistance in skeletal muscle from mdx mice.

    Science.gov (United States)

    Horvath, Deanna M; Murphy, Robyn M; Mollica, Janelle P; Hayes, Alan; Goodman, Craig A

    2016-11-01

    This study investigated the effect of taurine and β-alanine supplementation on muscle function and muscle taurine transporter (TauT) protein expression in mdx mice. Wild-type (WT) and mdx mice (5 months) were supplemented with taurine or β-alanine for 4 weeks, after which in vitro contractile properties, fatigue resistance and force recovery, and the expression of the TauT protein and proteins involved in excitation-contraction (E-C) coupling were examined in fast-twitch muscle. There was no difference in basal TauT protein expression or basal taurine content between mdx than WT muscle. Supplementation with taurine and β-alanine increased and reduced taurine content, respectively, in muscle from WT and mdx mice but had no effect of TauT protein. Taurine supplementation reduced body and muscle mass, and enhanced fatigue resistance and force recovery in mdx muscle. β-Alanine supplementation enhanced fatigue resistance in WT and mdx muscle. There was no difference in the basal expression of key E-C coupling proteins [ryanodine receptor 1 (RyR1), dihydropyridine receptor (DHPR), sarco(endo)plasmic reticulum Ca 2+ -ATPase 1 (SERCA1) or calsequestrin 1 (CSQ1)] between WT and mdx mice, and the expression of these proteins was not altered by taurine or β-alanine supplementation. These findings suggest that TauT protein expression is relatively insensitive to changes in muscle taurine content in WT and mdx mice, and that taurine and β-alanine supplementation may be viable therapeutic strategies to improve fatigue resistance of dystrophic skeletal muscle.

  10. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yong-Zhi; Sheng, Yu [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); Li, Lan-Fen [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Tang, De-Wei [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); Liu, Xiang-Yu [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Zhao, Xiaojun, E-mail: zhaoxj@scu.edu.cn [Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China); Liang, Yu-He, E-mail: zhaoxj@scu.edu.cn; Su, Xiao-Dong [National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871 (China); Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610065, Sichuan (China)

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.

  11. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    International Nuclear Information System (INIS)

    Lu, Yong-Zhi; Sheng, Yu; Li, Lan-Fen; Tang, De-Wei; Liu, Xiang-Yu; Zhao, Xiaojun; Liang, Yu-He; Su, Xiao-Dong

    2007-01-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni 2+ -chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3 1 21 or P3 2 21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit

  12. Cytochalasin E alters the cytoskeleton and decreases ENaC activity in Xenopus 2F3 cells.

    Science.gov (United States)

    Reifenberger, Matthew S; Yu, Ling; Bao, Hui-Fang; Duke, Billie Jeanne; Liu, Bing-Chen; Ma, He-Ping; Alli, Ahmed A; Eaton, Douglas C; Alli, Abdel A

    2014-07-01

    Numerous reports have linked cytoskeleton-associated proteins with the regulation of epithelial Na(+) channel (ENaC) activity. The purpose of the present study was to determine the effect of actin cytoskeleton disruption by cytochalasin E on ENaC activity in Xenopus 2F3 cells. Here, we show that cytochalasin E treatment for 60 min can disrupt the integrity of the actin cytoskeleton in cultured Xenopus 2F3 cells. We show using single channel patch-clamp experiments and measurements of short-circuit current that ENaC activity, but not its density, is altered by cytochalasin E-induced disruption of the cytoskeleton. In nontreated cells, 8 of 33 patches (24%) had no measurable ENaC activity, whereas in cytochalasin E-treated cells, 17 of 32 patches (53%) had no activity. Analysis of those patches that did contain ENaC activity showed channel open probability significantly decreased from 0.081 ± 0.01 in nontreated cells to 0.043 ± 0.01 in cells treated with cytochalasin E. Transepithelial current from mpkCCD cells treated with cytochalasin E, cytochalasin D, or latrunculin B for 60 min was decreased compared with vehicle-treated cells. The subcellular expression of fodrin changed significantly, and several protein elements of the cytoskeleton decreased at least twofold after 60 min of cytochalasin E treatment. Cytochalasin E treatment disrupted the association between ENaC and myristoylated alanine-rich C-kinase substrate. The results presented here suggest disruption of the actin cytoskeleton by different compounds can attenuate ENaC activity through a mechanism involving changes in the subcellular expression of fodrin, several elements of the cytoskeleton, and destabilization of the ENaC-myristoylated alanine-rich C-kinase substrate complex. Copyright © 2014 the American Physiological Society.

  13. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

    Science.gov (United States)

    Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V

    2017-09-01

    G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (H II ) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi 1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi 1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Determination of muscle protein synthesis rates in fish using (2)H2O and (2)H NMR analysis of alanine.

    Science.gov (United States)

    Marques, Cátia; Viegas, Filipa; Rito, João; Jones, John; Viegas, Ivan

    2016-09-15

    Following administration of deuterated water ((2)H2O), the fractional synthetic rate (FSR) of a given endogenous protein can be estimated by (2)H-enrichment quantification of its alanine residues. Currently, this is measured by mass spectrometry following a derivatization procedure. Muscle FSR was measured by (1)H/(2)H NMR analysis of alanine from seabass kept for 6 days in 5% (2)H-enriched saltwater, following acid hydrolysis and amino acid isolation by cation-exchange chromatography of muscle tissue. The analysis is simple and robust, and provides precise measurements of excess alanine (2)H-enrichment in the 0.1-0.4% range from 50 mmol of alanine recovered from muscle protein. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Functional Characterization of Alanine Racemase from Schizosaccharomyces pombe: a Eucaryotic Counterpart to Bacterial Alanine Racemase

    OpenAIRE

    Uo, Takuma; Yoshimura, Tohru; Tanaka, Naotaka; Takegawa, Kaoru; Esaki, Nobuyoshi

    2001-01-01

    Schizosaccharomyces pombe has an open reading frame, which we named alr1+, encoding a putative protein similar to bacterial alanine racemase. We cloned the alr1+ gene in Escherichia coli and purified the gene product (Alr1p), with an Mr of 41,590, to homogeneity. Alr1p contains pyridoxal 5′-phosphate as a coenzyme and catalyzes the racemization of alanine with apparent Km and Vmax values as follows: for l-alanine, 5.0 mM and 670 μmol/min/mg, respectively, and for d-alanine, 2.4 mM and 350 μmo...

  16. Myristoylation of Src kinase mediates Src-induced and high-fat diet-accelerated prostate tumor progression in mice.

    Science.gov (United States)

    Kim, Sungjin; Yang, Xiangkun; Li, Qianjin; Wu, Meng; Costyn, Leah; Beharry, Zanna; Bartlett, Michael G; Cai, Houjian

    2017-11-10

    Exogenous fatty acids provide substrates for energy production and biogenesis of the cytoplasmic membrane, but they also enhance cellular signaling during cancer cell proliferation. However, it remains controversial whether dietary fatty acids are correlated with tumor progression. In this study, we demonstrate that increased Src kinase activity is associated with high-fat diet-accelerated progression of prostate tumors and that Src kinases mediate this pathological process. Moreover, in the in vivo prostate regeneration assay, host SCID mice carrying Src(Y529F)-transduced regeneration tissues were fed a low-fat diet or a high-fat diet and treated with vehicle or dasatinib. The high-fat diet not only accelerated Src-induced prostate tumorigenesis in mice but also compromised the inhibitory effect of the anticancer drug dasatinib on Src kinase oncogenic potential in vivo We further show that myristoylation of Src kinase is essential to facilitate Src-induced and high-fat diet-accelerated tumor progression. Mechanistically, metabolism of exogenous myristic acid increased the biosynthesis of myristoyl CoA and myristoylated Src and promoted Src kinase-mediated oncogenic signaling in human cells. Of the fatty acids tested, only exogenous myristic acid contributed to increased intracellular myristoyl CoA levels. Our results suggest that targeting Src kinase myristoylation, which is required for Src kinase association at the cellular membrane, blocks dietary fat-accelerated tumorigenesis in vivo Our findings uncover the molecular basis of how the metabolism of myristic acid stimulates high-fat diet-mediated prostate tumor progression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Alanine metabolism in pyridoxine-depleted rat liver

    International Nuclear Information System (INIS)

    Okada, Mitsuko; Abe, Midori

    1976-01-01

    Alanine metabolism in normal and pyridoxine-deficient rats was studied in vivo and in vitro. Incorporation of 14 C-alanine into various liver components was determined and no difference was shown between normal and deficient animals in the incorporation into liver homogenates, lipid, protein and plasma glucose. Using the liver slice system, gluconeogenic activity from alanine or pyruvate was 40% lower in deficient rats compared with the activity of normal rats. However, inhibition was completely removed by the addition of 2-oxoglutarate to alanine. Penicillamine did not affect glucose formation from alanine in the liver slice. (auth.)

  18. Alanine and proline content modulate global sensitivity to discrete perturbations in disordered proteins.

    Science.gov (United States)

    Perez, Romel B; Tischer, Alexander; Auton, Matthew; Whitten, Steven T

    2014-12-01

    Molecular transduction of biological signals is understood primarily in terms of the cooperative structural transitions of protein macromolecules, providing a mechanism through which discrete local structure perturbations affect global macromolecular properties. The recognition that proteins lacking tertiary stability, commonly referred to as intrinsically disordered proteins (IDPs), mediate key signaling pathways suggests that protein structures without cooperative intramolecular interactions may also have the ability to couple local and global structure changes. Presented here are results from experiments that measured and tested the ability of disordered proteins to couple local changes in structure to global changes in structure. Using the intrinsically disordered N-terminal region of the p53 protein as an experimental model, a set of proline (PRO) and alanine (ALA) to glycine (GLY) substitution variants were designed to modulate backbone conformational propensities without introducing non-native intramolecular interactions. The hydrodynamic radius (R(h)) was used to monitor changes in global structure. Circular dichroism spectroscopy showed that the GLY substitutions decreased polyproline II (PP(II)) propensities relative to the wild type, as expected, and fluorescence methods indicated that substitution-induced changes in R(h) were not associated with folding. The experiments showed that changes in local PP(II) structure cause changes in R(h) that are variable and that depend on the intrinsic chain propensities of PRO and ALA residues, demonstrating a mechanism for coupling local and global structure changes. Molecular simulations that model our results were used to extend the analysis to other proteins and illustrate the generality of the observed PRO and alanine effects on the structures of IDPs. © 2014 Wiley Periodicals, Inc.

  19. The unresolved puzzle why alanine extensions cause disease.

    Science.gov (United States)

    Winter, Reno; Liebold, Jens; Schwarz, Elisabeth

    2013-08-01

    The prospective increase in life expectancy will be accompanied by a rise in the number of elderly people who suffer from ill health caused by old age. Many diseases caused by aging are protein misfolding diseases. The molecular mechanisms underlying these disorders receive constant scientific interest. In addition to old age, mutations also cause congenital protein misfolding disorders. Chorea Huntington, one of the most well-known examples, is caused by triplet extensions that can lead to more than 100 glutamines in the N-terminal region of huntingtin, accompanied by huntingtin aggregation. So far, nine disease-associated triplet extensions have also been described for alanine codons. The extensions lead primarily to skeletal malformations. Eight of these proteins represent transcription factors, while the nuclear poly-adenylate binding protein 1, PABPN1, is an RNA binding protein. Additional alanines in PABPN1 lead to the disease oculopharyngeal muscular dystrophy (OPMD). The alanine extension affects the N-terminal domain of the protein, which has been shown to lack tertiary contacts. Biochemical analyses of the N-terminal domain revealed an alanine-dependent fibril formation. However, fibril formation of full-length protein did not recapitulate the findings of the N-terminal domain. Fibril formation of intact PABPN1 was independent of the alanine segment, and the fibrils displayed biochemical properties that were completely different from those of the N-terminal domain. Although intranuclear inclusions have been shown to represent the histochemical hallmark of OPMD, their role in pathogenesis is currently unclear. Several cell culture and animal models have been generated to study the molecular processes involved in OPMD. These studies revealed a number of promising future therapeutic strategies that could one day improve the quality of life for the patients.

  20. Control of alanine metabolism in rat liver by transport processes or cellular metabolism.

    OpenAIRE

    Fafournoux, P; Rémésy, C; Demigné, C

    1983-01-01

    1. Factors governing hepatic utilization of alanine were studied in vivo and in vitro in rats adapted to increasing dietary protein. 2. Hepatic alanine utilization was enhanced 5-fold with a 90%-casein diet, compared with a 13%-casein diet. The increased uptake resulted from enhanced fractional extraction in the presence of high concentrations of alanine in the portal vein. 3. The increase in alanine metabolism on high-protein diets was associated with an increase in alanine aminotransferase ...

  1. Protein kinase Cepsilon is important for migration of neuroblastoma cells

    International Nuclear Information System (INIS)

    Stensman, Helena; Larsson, Christer

    2008-01-01

    Migration is important for the metastatic capacity and thus for the malignancy of cancer cells. There is limited knowledge on regulatory factors that promote the migration of neuroblastoma cells. This study investigates the hypothesis that protein kinase C (PKC) isoforms regulate neuroblastoma cell motility. PKC isoforms were downregulated with siRNA or modulated with activators and inhibitors. Migration was analyzed with scratch and transwell assays. Protein phosphorylation and expression levels were measured with Western blot. Stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA) induced migration of SK-N-BE(2)C neuroblastoma cells. Treatment with the general protein kinase C (PKC) inhibitor GF109203X and the inhibitor of classical isoforms Gö6976 inhibited migration while an inhibitor of PKCβ isoforms did not have an effect. Downregulation of PKCε, but not of PKCα or PKCδ, with siRNA led to a suppression of both basal and TPA-stimulated migration. Experiments using PD98059 and LY294002, inhibitors of the Erk and phosphatidylinositol 3-kinase (PI3K) pathways, respectively, showed that PI3K is not necessary for TPA-induced migration. The Erk pathway might be involved in TPA-induced migration but not in migration driven by PKCε. TPA induced phosphorylation of the PKC substrate myristoylated alanine-rich C kinase substrate (MARCKS) which was suppressed by the PKC inhibitors. Treatment with siRNA oligonucleotides against different PKC isoforms before stimulation with TPA did not influence the phosphorylation of MARCKS. PKCε is important for migration of SK-N-BE(2)C neuroblastoma cells. Neither the Erk pathway nor MARCKS are critical downstream targets of PKCε but they may be involved in TPA-mediated migration

  2. The phosphoinositide 3-kinase α selective inhibitor BYL719 enhances the effect of the protein kinase C inhibitor AEB071 in GNAQ/GNA11-mutant uveal melanoma cells.

    Science.gov (United States)

    Musi, Elgilda; Ambrosini, Grazia; de Stanchina, Elisa; Schwartz, Gary K

    2014-05-01

    G-protein mutations are one of the most common mutations occurring in uveal melanoma activating the protein kinase C (PKC)/mitogen-activated protein kinase and phosphoinositide 3-kinase (PI3K)/AKT pathways. In this study, we described the effect of dual pathway inhibition in uveal melanoma harboring GNAQ and GNA11 mutations via PKC inhibition with AEB071 (sotrastaurin) and PI3K/AKT inhibition with BYL719, a selective PI3Kα inhibitor. Growth inhibition was observed in GNAQ/GNA11-mutant cells with AEB071 versus no activity in wild-type cells. In the GNAQ-mutant cells, AEB071 decreased phosphorylation of myristoylated alanine-rich C-kinase substrate, a substrate of PKC, along with ERK1/2 and ribosomal S6, but persistent AKT activation was present. BYL719 had minimal antiproliferative activity in all uveal melanoma cell lines, and inhibited phosphorylation of AKT in most cell lines. In the GNA11-mutant cell line, similar effects were observed with ERK1/2 inhibition, mostly inhibited by BYL719. With the combination treatment, both GNAQ- and GNA11-mutant cell lines showed synergistic inhibition of cell proliferation and apoptotic cell death. In vivo studies correlated with in vitro findings showing reduced xenograft tumor growth with the combination therapy in a GNAQ-mutant model. These findings suggest a new therapy treatment option for G-protein-mutant uveal melanoma with a focus on specific targeting of multiple downstream pathways as part of combination therapy.

  3. The Alanine Racemase of Mycobacterium smegmatis Is Essential for Growth in the Absence of d-Alanine▿ †

    Science.gov (United States)

    Milligan, Daniel L.; Tran, Sieu L.; Strych, Ulrich; Cook, Gregory M.; Krause, Kurt L.

    2007-01-01

    Alanine racemase, encoded by the gene alr, is an important enzyme in the synthesis of d-alanine for peptidoglycan biosynthesis. Strains of Mycobacterium smegmatis with a deletion mutation of the alr gene were found to require d-alanine for growth in both rich and minimal media. This indicates that alanine racemase is the only source of d-alanine for cell wall biosynthesis in M. smegmatis and confirms alanine racemase as a viable target gene for antimycobacterial drug development. PMID:17827284

  4. Lyso-myristoyl phosphatidylcholine micelles sustain the activity of Dengue non-structural (NS) protein 3 protease domain fused with the full-length NS2B.

    Science.gov (United States)

    Huang, Qiwei; Li, Qingxin; Joy, Joma; Chen, Angela Shuyi; Ruiz-Carrillo, David; Hill, Jeffrey; Lescar, Julien; Kang, Congbao

    2013-12-01

    Dengue virus (DENV), a member of the flavivirus genus, affects 50-100 million people in tropical and sub-tropical regions. The DENV protease domain is located at the N-terminus of the NS3 protease and requires for its enzymatic activity a hydrophilic segment of the NS2B that acts as a cofactor. The protease is an important antiviral drug target because it plays a crucial role in virus replication by cleaving the genome-coded polypeptide into mature functional proteins. Currently, there are no drugs to inhibit DENV protease activity. Most structural and functional studies have been conducted using protein constructs containing the NS3 protease domain connected to a soluble segment of the NS2B membrane protein via a nine-residue linker. For in vitro structural and functional studies, it would be useful to produce a natural form of the DENV protease containing the NS3 protease domain and the full-length NS2B protein. Herein, we describe the expression and purification of a natural form of DENV protease (NS2BFL-NS3pro) containing the full-length NS2B protein and the protease domain of NS3 (NS3pro). The protease was expressed and purified in detergent micelles necessary for its folding. Our results show that this purified protein was active in detergent micelles such as lyso-myristoyl phosphatidylcholine (LMPC). These findings should facilitate further structural and functional studies of the protease and will facilitate drug discovery targeting DENV. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Metabolism of leucine and alanine in growing rats fed the diets with various protein to energy ratios

    International Nuclear Information System (INIS)

    Tanaka, Hideyuki; Yamaguchi, Michio; Kametaka, Masao

    1975-01-01

    In order to clarify the nutritional significance of metabolism of the carbon skeleton of individual amino acids, the metabolic fates of L-leucine-U- 14 C and L-alanine-U- 14 C were investigated in growing rats fed the diets with various protein calories percents (PC%) at 410 kcal of metabolizable energy. The incorporation of 14 C into body protein in 12 hr after the injection of leucine- 14 C was about 73% of the dose in the 0 and 5 PC% groups, though it decreased with increasing the levels of dietary protein from 10 to 30 PC%. The value of 14 C recovery in body protein almost agreed with the net protein utilization (NPU) determined for the whole egg protein in a similar experimental condition. The 14 C recovery in expired CO 2 and body lipid suggested that the carbon skeleton of leucine is well utilized as an energy source when the dietary carbohydrate is extensively replaced by protein. While, the incorporation of 14 C into body protein from alanine- 14 C was less than about 11% of the dose in all the dietary groups, and the majority of 14 C was recovered in expired CO 2 and body lipid in a remarked contrast to leucine. A similar pattern in urinary excretion of 14 C was obtained for these amino acids, and the refracted rise of 14 C from 10 PC% may give an indication for minimum protein requirements. (auth.)

  6. Catalytic Stereoinversion of L-Alanine to Deuterated D-Alanine.

    Science.gov (United States)

    Moozeh, Kimia; So, Soon Mog; Chin, Jik

    2015-08-03

    A combination of an achiral pyridoxal analogue and a chiral base has been developed for catalytic deuteration of L-alanine with inversion of stereochemistry to give deuterated D-alanine under mild conditions (neutral pD and 25 °C) without the use of any protecting groups. This system can also be used for catalytic deuteration of D-alanine with retention of stereochemistry to give deuterated D-alanine. Thus a racemic mixture of alanine can be catalytically deuterated to give an enantiomeric excess of deuterated D-alanine. While catalytic deracemization of alanine is forbidden by the second law of thermodynamics, this system can be used for catalytic deracemization of alanine with deuteration. Such green and biomimetic approach to catalytic stereocontrol provides insights into efficient amino acid transformations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. System in biology leading to cell pathology: stable protein-protein interactions after covalent modifications by small molecules or in transgenic cells.

    Science.gov (United States)

    Malina, Halina Z

    2011-01-19

    The physiological processes in the cell are regulated by reversible, electrostatic protein-protein interactions. Apoptosis is such a regulated process, which is critically important in tissue homeostasis and development and leads to complete disintegration of the cell. Pathological apoptosis, a process similar to apoptosis, is associated with aging and infection. The current study shows that pathological apoptosis is a process caused by the covalent interactions between the signaling proteins, and a characteristic of this pathological network is the covalent binding of calmodulin to regulatory sequences. Small molecules able to bind covalently to the amino group of lysine, histidine, arginine, or glutamine modify the regulatory sequences of the proteins. The present study analyzed the interaction of calmodulin with the BH3 sequence of Bax, and the calmodulin-binding sequence of myristoylated alanine-rich C-kinase substrate in the presence of xanthurenic acid in primary retinal epithelium cell cultures and murine epithelial fibroblast cell lines transformed with SV40 (wild type [WT], Bid knockout [Bid-/-], and Bax-/-/Bak-/- double knockout [DKO]). Cell death was observed to be associated with the covalent binding of calmodulin, in parallel, to the regulatory sequences of proteins. Xanthurenic acid is known to activate caspase-3 in primary cell cultures, and the results showed that this activation is also observed in WT and Bid-/- cells, but not in DKO cells. However, DKO cells were not protected against death, but high rates of cell death occurred by detachment. The results showed that small molecules modify the basic amino acids in the regulatory sequences of proteins leading to covalent interactions between the modified sequences (e.g., calmodulin to calmodulin-binding sites). The formation of these polymers (aggregates) leads to an unregulated and, consequently, pathological protein network. The results suggest a mechanism for the involvement of small molecules

  8. Evolutionary plasticity of plasma membrane interaction in DREPP family proteins.

    Science.gov (United States)

    Vosolsobě, Stanislav; Petrášek, Jan; Schwarzerová, Kateřina

    2017-05-01

    The plant-specific DREPP protein family comprises proteins that were shown to regulate the actin and microtubular cytoskeleton in a calcium-dependent manner. Our phylogenetic analysis showed that DREPPs first appeared in ferns and that DREPPs have a rapid and plastic evolutionary history in plants. Arabidopsis DREPP paralogues called AtMDP25/PCaP1 and AtMAP18/PCaP2 are N-myristoylated, which has been reported as a key factor in plasma membrane localization. Here we show that N-myristoylation is neither conserved nor ancestral for the DREPP family. Instead, by using confocal microscopy and a new method for quantitative evaluation of protein membrane localization, we show that DREPPs rely on two mechanisms ensuring their plasma membrane localization. These include N-myristoylation and electrostatic interaction of a polybasic amino acid cluster. We propose that various plasma membrane association mechanisms resulting from the evolutionary plasticity of DREPPs are important for refining plasma membrane interaction of these signalling proteins under various conditions and in various cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. G-rich, a Drosophila selenoprotein, is a Golgi-resident type III membrane protein

    International Nuclear Information System (INIS)

    Chen, Chang Lan; Shim, Myoung Sup; Chung, Jiyeol; Yoo, Hyun-Seung; Ha, Ji Min; Kim, Jin Young; Choi, Jinmi; Zang, Shu Liang; Hou, Xiao; Carlson, Bradley A.; Hatfield, Dolph L.; Lee, Byeong Jae

    2006-01-01

    G-rich is a Drosophila melanogaster selenoprotein, which is a homologue of human and mouse SelK. Subcellular localization analysis using GFP-tagged G-rich showed that G-rich was localized in the Golgi apparatus. The fusion protein was co-localized with the Golgi marker proteins but not with an endoplasmic reticulum (ER) marker protein in Drosophila SL2 cells. Bioinformatic analysis of G-rich suggests that this protein is either type II or type III transmembrane protein. To determine the type of transmembrane protein experimentally, GFP-G-rich in which GFP was tagged at the N-terminus of G-rich, or G-rich-GFP in which GFP was tagged at the C-terminus of G-rich, were expressed in SL2 cells. The tagged proteins were then digested with trypsin, and analyzed by Western blot analysis. The results showed that the C-terminus of the G-rich protein was exposed to the cytoplasm indicating it is a type III microsomal membrane protein. G-rich is First selenoprotein identified in the Golgi apparatus

  10. Regulation of the ald Gene Encoding Alanine Dehydrogenase by AldR in Mycobacterium smegmatis

    Science.gov (United States)

    Jeong, Ji-A; Baek, Eun-Young; Kim, Si Wouk; Choi, Jong-Soon

    2013-01-01

    The regulatory gene aldR was identified 95 bp upstream of the ald gene encoding l-alanine dehydrogenase in Mycobacterium smegmatis. The AldR protein shows sequence similarity to the regulatory proteins of the Lrp/AsnC family. Using an aldR deletion mutant, we demonstrated that AldR serves as both activator and repressor for the regulation of ald gene expression, depending on the presence or absence of l-alanine. The purified AldR protein exists as a homodimer in the absence of l-alanine, while it adopts the quaternary structure of a homohexamer in the presence of l-alanine. The binding affinity of AldR for the ald control region was shown to be increased significantly by l-alanine. Two AldR binding sites (O1 and O2) with the consensus sequence GA-N2-ATC-N2-TC and one putative AldR binding site with the sequence GA-N2-GTT-N2-TC were identified upstream of the ald gene. Alanine and cysteine were demonstrated to be the effector molecules directly involved in the induction of ald expression. The cellular level of l-alanine was shown to be increased in M. smegmatis cells grown under hypoxic conditions, and the hypoxic induction of ald expression appears to be mediated by AldR, which senses the intracellular level of alanine. PMID:23749971

  11. An N-myristoylated globin with a redox-sensing function that regulates the defecation cycle in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Lesley Tilleman

    Full Text Available Globins occur in all kingdoms of life where they fulfill a wide variety of functions. In the past they used to be primarily characterized as oxygen transport/storage proteins, but since the discovery of new members of the globin family like neuroglobin and cytoglobin, more diverse and complex functions have been assigned to this heterogeneous family. Here we propose a function for a membrane-bound globin of C. elegans, GLB-26. This globin was predicted to be myristoylated at its N-terminus, a post-translational modification only recently described in the globin family. In vivo, this globin is found in the membrane of the head mesodermal cell and in the tail stomato-intestinal and anal depressor muscle cells. Since GLB-26 is almost directly oxidized when exposed to oxygen, we postulate a possible function as electron transfer protein. Phenotypical studies show that GLB-26 takes part in regulating the length of the defecation cycle in C. elegans under oxidative stress conditions.

  12. Serine and alanine racemase activities of VanT: a protein necessary for vancomycin resistance in Enterococcus gallinarum BM4174.

    Science.gov (United States)

    Arias, C A; Weisner, J; Blackburn, J M; Reynolds, P E

    2000-07-01

    Vancomycin resistance in Enterococcus gallinarum results from the production of UDP-MurNAc-pentapeptide[D-Ser]. VanT, a membrane-bound serine racemase, is one of three proteins essential for this resistance. To investigate the selectivity of racemization of L-Ser or L-Ala by VanT, a strain of Escherichia coli TKL-10 that requires D-Ala for growth at 42 degrees C was used as host for transformation experiments using plasmids containing the full-length vanT from Ent. gallinarum or the alanine racemase gene (alr) of Bacillus stearothermophilus: both plasmids were able to complement E. coli TKL-10 at 42 degrees C. No alanine or serine racemase activities were detected in the host strain E. coli TKL-10 grown at 30, 34 or 37 degrees C. Serine and alanine racemase activities were found almost exclusively (96%) in the membrane fraction of E. coli TKL-10/pCA4(vanT): the alanine racemase activity of VanT was 14% of the serine racemase activity in both E. coli TKL-10/pCA4(vanT) and E. coli XL-1 Blue/pCA4(vanT). Alanine racemase activity was present mainly (95%) in the cytoplasmic fraction of E. coli TKL-10/pJW40(alr), with a trace (1.6%) of serine racemase activity. Additionally, DNA encoding the soluble domain of VanT was cloned and expressed in E. coli M15 as a His-tagged polypeptide and purified: this polypeptide also exhibited both serine and alanine racemase activities; the latter was approximately 18% of the serine racemase activity, similar to that of the full-length, membrane-bound enzyme. N-terminal sequencing of the purified His-tagged polypeptide revealed a single amino acid sequence, indicating that the formation of heterodimers between subunits of His-tagged C-VanT and endogenous alanine racemases from E. coli was unlikely. The authors conclude that the membrane-bound serine racemase VanT also has alanine racemase activity but is able to racemize serine more efficiently than alanine, and that the cytoplasmic domain is responsible for the racemase activity.

  13. New Parameters for Higher Accuracy in the Computation of Binding Free Energy Differences upon Alanine Scanning Mutagenesis on Protein-Protein Interfaces.

    Science.gov (United States)

    Simões, Inês C M; Costa, Inês P D; Coimbra, João T S; Ramos, Maria J; Fernandes, Pedro A

    2017-01-23

    Knowing how proteins make stable complexes enables the development of inhibitors to preclude protein-protein (P:P) binding. The identification of the specific interfacial residues that mostly contribute to protein binding, denominated as hot spots, is thus critical. Here, we refine an in silico alanine scanning mutagenesis protocol, based on a residue-dependent dielectric constant version of the Molecular Mechanics/Poisson-Boltzmann Surface Area method. We have used a large data set of structurally diverse P:P complexes to redefine the residue-dependent dielectric constants used in the determination of binding free energies. The accuracy of the method was validated through comparison with experimental data, considering the per-residue P:P binding free energy (ΔΔG binding ) differences upon alanine mutation. Different protocols were tested, i.e., a geometry optimization protocol and three molecular dynamics (MD) protocols: (1) one using explicit water molecules, (2) another with an implicit solvation model, and (3) a third where we have carried out an accelerated MD with explicit water molecules. Using a set of protein dielectric constants (within the range from 1 to 20) we showed that the dielectric constants of 7 for nonpolar and polar residues and 11 for charged residues (and histidine) provide optimal ΔΔG binding predictions. An overall mean unsigned error (MUE) of 1.4 kcal mol -1 relative to the experiment was achieved in 210 mutations only with geometry optimization, which was further reduced with MD simulations (MUE of 1.1 kcal mol -1 for the MD employing explicit solvent). This recalibrated method allows for a better computational identification of hot spots, avoiding expensive and time-consuming experiments or thermodynamic integration/ free energy perturbation/ uBAR calculations, and will hopefully help new drug discovery campaigns in their quest of searching spots of interest for binding small drug-like molecules at P:P interfaces.

  14. Synthesis and GGCT Inhibitory Activity of N-Glutaryl-L-alanine Analogues.

    Science.gov (United States)

    Ii, Hiromi; Yoshiki, Tatsuhiro; Hoshiya, Naoyuki; Uenishi, Jun'ichi

    2016-01-01

    γ-Glutamylcyclotransferase (GGCT) is an important enzyme that cleaves γ-glutamyl-amino acid in the γ-glutamyl cycle to release 5-oxoproline and amino acid. Eighteen N-acyl-L-alanine analogues including eleven new compounds have been synthesized and examined for their inhibitory activity against recombinant human GGCT protein. Simple N-glutaryl-L-alanine was found to be the most potent inhibitor for GGCT. Other N-glutaryl-L-alanine analogues having methyl and dimethyl substituents at the 2-position were moderately effective, while N-(3R-aminoglutary)-L-alanine, the substrate having an (R)-amino group at the 3-position or N-(N-methyl-3-azaglutaryl)-L-alanine, the substrate having an N-methyl substituent on the 3-azaglutaryl carbon, in constract, exhibited excellent inhibition properties.

  15. HIV-1 Myristoylated Nef Treatment of Murine Microglial Cells Activates Inducible Nitric Oxide Synthase, NO2 Production and Neurotoxic Activity.

    Directory of Open Access Journals (Sweden)

    Giorgio Mangino

    Full Text Available The potential role of the human immunodeficiency virus-1 (HIV-1 accessory protein Nef in the pathogenesis of neuroAIDS is still poorly understood. Nef is a molecular adapter that influences several cellular signal transduction events and membrane trafficking. In human macrophages, Nef expression induces the production of extracellular factors (e.g. pro-inflammatory chemokines and cytokines and the recruitment of T cells, thus favoring their infection and its own transfer to uninfected cells via exosomes, cellular protrusions or cell-to-cell contacts. Murine cells are normally not permissive for HIV-1 but, in transgenic mice, Nef is a major disease determinant. Both in human and murine macrophages, myristoylated Nef (myr+Nef treatment has been shown to activate NF-κB, MAP kinases and interferon responsive factor 3 (IRF-3, thereby inducing tyrosine phosphorylation of signal transducers and activator of transcription (STAT-1, STAT-2 and STAT-3 through the production of proinflammatory factors.We report that treatment of BV-2 murine microglial cells with myr+Nef leads to STAT-1, -2 and -3 tyrosine phosphorylation and upregulates the expression of inducible nitric oxide synthase (iNOS with production of nitric oxide. We provide evidence that extracellular Nef regulates iNOS expression through NF-κB activation and, at least in part, interferon-β (IFNβ release that acts in concert with Nef. All of these effects require both myristoylation and a highly conserved acidic cluster in the viral protein. Finally, we report that Nef induces the release of neurotoxic factors in the supernatants of microglial cells.These results suggest a potential role of extracellular Nef in promoting neuronal injury in the murine model. They also indicate a possible interplay between Nef and host factors in the pathogenesis of neuroAIDS through the production of reactive nitrogen species in microglial cells.

  16. Alanine water complexes.

    Science.gov (United States)

    Vaquero, Vanesa; Sanz, M Eugenia; Peña, Isabel; Mata, Santiago; Cabezas, Carlos; López, Juan C; Alonso, José L

    2014-04-10

    Two complexes of alanine with water, alanine-(H2O)n (n = 1,2), have been generated by laser ablation of the amino acid in a supersonic jet containing water vapor and characterized using Fourier transform microwave spectroscopy. In the observed complexes, water molecules bind to the carboxylic group of alanine acting as both proton donors and acceptors. In alanine-H2O, the water molecule establishes two intermolecular hydrogen bonds forming a six-membered cycle, while in alanine-(H2O)2 the two water molecules establish three hydrogen bonds forming an eight-membered ring. In both complexes, the amino acid moiety is in its neutral form and shows the conformation observed to be the most stable for the bare molecule. The microsolvation study of alanine-(H2O)n (n = 1,2) can be taken as a first step toward understanding bulk properties at a microscopic level.

  17. Revised mechanism of d-alanine incorporation into cell wall polymers in Gram-positive bacteria

    Science.gov (United States)

    Reichmann, Nathalie T.; Cassona, Carolina Picarra

    2013-01-01

    Teichoic acids (TAs) are important for growth, biofilm formation, adhesion and virulence of Gram-positive bacterial pathogens. The chemical structures of the TAs vary between bacteria, though they typically consist of zwitterionic polymers that are anchored to either the peptidoglycan layer as in the case of wall teichoic acid (WTA) or the cell membrane and named lipoteichoic acid (LTA). The polymers are modified with d-alanines and a lack of this decoration leads to increased susceptibility to cationic antimicrobial peptides. Four proteins, DltA–D, are essential for the incorporation of d-alanines into cell wall polymers and it has been established that DltA transfers d-alanines in the cytoplasm of the cell onto the carrier protein DltC. However, two conflicting models have been proposed for the remainder of the mechanism. Using a cellular protein localization and membrane topology analysis, we show here that DltC does not traverse the membrane and that DltD is anchored to the outside of the cell. These data are in agreement with the originally proposed model for d-alanine incorporation through a process that has been proposed to proceed via a d-alanine undecaprenyl phosphate membrane intermediate. Furthermore, we found that WTA isolated from a Staphylococcus aureus strain lacking LTA contains only a small amount of d-alanine, indicating that LTA has a role, either direct or indirect, in the efficient d-alanine incorporation into WTA in living cells. PMID:23858088

  18. A strategy for isolation of cDNAs encoding proteins affecting human intestinal epithelial cell growth and differentiation: characterization of a novel gut-specific N-myristoylated annexin.

    Science.gov (United States)

    Wice, B M; Gordon, J I

    1992-01-01

    differentiation/translocation up the villus. Immunocytochemical studies reveal that the intestine-specific annexin (ISA) is associated with the plasma membrane of undifferentiated, proliferating crypt epithelial cells as well as differentiated villus enterocytes. In polarized enterocytes, the highest concentrations of ISA are found at the apical compared to basolateral membrane. In vitro studies using an octapeptide derived from residues 2-9 of the primary translation product of ISA mRNA and purified myristoyl-CoA:protein N-myristoyltransferase suggested that it is N-myristoylated. In vivo labeling studies confirmed that myristate is covalently attached to ISA via a hydroxylamine resistant amide linkage. The restricted cellular expression and acylation of ISA distinguish it from other known annexins.(ABSTRACT TRUNCATED AT 400 WORDS)

  19. Truly Absorbed Microbial Protein Synthesis, Rumen Bypass Protein, Endogenous Protein, and Total Metabolizable Protein from Starchy and Protein-Rich Raw Materials

    NARCIS (Netherlands)

    Parand, Ehsan; Vakili, Alireza; Mesgaran, Mohsen Danesh; Duinkerken, Van Gert; Yu, Peiqiang

    2015-01-01

    This study was carried out to measure truly absorbed microbial protein synthesis, rumen bypass protein, and endogenous protein loss, as well as total metabolizable protein, from starchy and protein-rich raw feed materials with model comparisons. Predictions by the DVE2010 system as a more

  20. Stereoselective aminoacylation of a dinucleoside monophosphate by the imidazolides of DL-alanine and N-(tert-butoxycarbonyl)-DL-alanine

    Science.gov (United States)

    Profy, A. T.; Usher, D. A.

    1984-01-01

    The aminoacylation of diinosine monophosphate was studied experimentally. When the acylating agent was the imidazolide of N-(tert-butoxycarbonyl)-DL-alanine, a 40 percent enantiomeric excess of the isomer was incorporated at the 2' site and the positions of equilibrium for the reversible 2'-3' migration reaction differed for the D and L enantiomers. The reactivity of the nucleoside hydroxyl groups was found to decrease on the order 2'(3') less than internal 2' and less than 5', and the extent of the reaction was affected by the concentration of the imidazole buffer. Reaction of IpI with imidazolide of unprotected DL-alanine, by contrast, led to an excess of the D isomer at the internal 2' site. Finally, reaction with the N-carboxy anhydride of DL-alanine occurred without stereoselection. These results are found to be relevant to the study of the evolution of optical chemical activity and the origin of genetically directed protein synthesis.

  1. Dose response of alanine and methyl alanine towards gamma and in-situ alpha irradiation

    International Nuclear Information System (INIS)

    Mohapatra, M.; Rajeswari, B.; Bhide, M.K.; Rane, Vinayak; Kadam, R.M.

    2017-01-01

    In situ alpha and external gamma dose response of two ESR (electron spin resonance) dosimetric materials namely alanine and methyl alanine were investigated. It was observed that alanine dosimeter had a better dose response in comparison to methyl alanine for the in-situ alpha irradiation by using 239 Pu powder. On the other hand, in case of gamma radiation, methyl alanine was found to have the sensitivity as twice that of alanine. (author)

  2. Physiological hypercortisolemia increases proteolysis, glutamine, and alanine production

    International Nuclear Information System (INIS)

    Darmaun, D.; Matthews, D.E.; Bier, D.M.

    1988-01-01

    Physiological elevations of plasma cortisol levels, as are encountered in stress and severe trauma, were produced in six normal subjects by infusing them with hydrocortisone for 64 h. Amino acid kinetics were measured in the postabsorptive state using three 4-h infusions of L-[1- 13 C]leucine, L-phenyl[ 2 H 5 ]phenylalanine, L-[2- 15 N]glutamine, and L-[1- 13 C]alanine tracers (1) before, (2) at 12 h, and (3) at 60 h of cortisol infusion. Before and throughout the study, the subjects ate a normal diet of adequate protein and energy intake. The cortisol infusion raised plasma cortisol levels significantly from 10 ± 1 to 32 ± 4 μg/dl, leucine flux from 83 ± 3 to 97 ± 3 μmol·kg -1 ·h -1 , and phenylalanine flux from 34 ± 1 to 39 ± 1 (SE) μmol·kg -1 ·h -1 after 12 h of cortisol infusion. These increases were maintained until the cortisol infusion was terminated. These nearly identical 15% increases in two different essential amino acid appearance rates are reflective of increased whole body protein breakdown. Glutamine flux rose by 12 h of cortisol infusion and remained elevated at the same level at 64 h. The increase in flux was primarily due to a 55% increase in glutamine de novo synthesis. Alanine flux increased with acute hypercortisolemia and increased further at 60 h of cortisol infusion, a result primarily of increased alanine de novo synthesis. Insulin, alanine, and lactate plasma levels responded similarly with significant rises between the acute and chronic periods of cortisol infusion. Thus hypercortisolemia increases both protein breakdown and the turnover of important nonessential amino acids for periods of up to 64 h

  3. A modified GFP facilitates counting membrane protein subunits by step-wise photobleaching in Arabidopsis.

    Science.gov (United States)

    Song, Kai; Xue, Yiqun; Wang, Xiaohua; Wan, Yinglang; Deng, Xin; Lin, Jinxing

    2017-06-01

    Membrane proteins exert functions by forming oligomers or molecular complexes. Currently, step-wise photobleaching has been applied to count the fluorescently labelled subunits in plant cells, for which an accurate and reliable control is required to distinguish individual subunits and define the basal fluorescence. However, the common procedure using immobilized GFP molecules is obviously not applicable for analysis in living plant cells. Using the spatial intensity distribution analysis (SpIDA), we found that the A206K mutation reduced the dimerization of GFP molecules. Further ectopic expression of Myristoyl-GFP A206K driven by the endogenous AtCLC2 promoter allowed imaging of individual molecules at a low expression level. As a result, the percentage of dimers in the transgenic pCLC2::Myristoyl-mGFP A206K line was significantly reduced in comparison to that of the pCLC2::Myristoyl-GFP line, confirming its application in defining the basal fluorescence intensity of GFP. Taken together, our results demonstrated that pCLC2::Myristoyl-mGFP A206K can be used as a standard control for monomer GFP, facilitating the analysis of the step-wise photobleaching of membrane proteins in Arabidopsis thaliana. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Structure of alanine racemase from Oenococcus oeni with bound pyridoxal 5′-phosphate

    International Nuclear Information System (INIS)

    Palani, Kandavelu; Burley, Stephen K.; Swaminathan, Subramanyam

    2012-01-01

    Alanine racemase from O. oeni exists as a dimer in the crystal structure. Both monomers contribute to the two active sites present, one for each monomer. The crystal structure of alanine racemase from Oenococcus oeni has been determined at 1.7 Å resolution using the single-wavelength anomalous dispersion (SAD) method and selenium-labelled protein. The protein exists as a symmetric dimer in the crystal, with both protomers contributing to the two active sites. Pyridoxal 5′-phosphate, a cofactor, is bound to each monomer and forms a Schiff base with Lys39. Structural comparison of alanine racemase from O. oeni (Alr) with homologous family members revealed similar domain organization and cofactor binding

  5. Changes in alanine turnover rate due to nutritional and genetic obesity in the rat.

    Science.gov (United States)

    Yebras, M; Salvadó, J; Arola, L; Remesar, X; Segués, T

    1994-08-01

    The changes in alanine turnover were determined in Zucker rats, which were either genetically obese (fa/fa) or rendered obese by dietary treatment (cafeteria fed). The whole body rate of alanine turnover was higher in genetically obese rats than in rats in which obesity was induced by diet (cafeteria). This is possibly due to variations in the rate of the amino acid incorporation into proteins, since the rate of whole body alanine degradation is the same for both groups. Thus, the different pattern followed by alanine turnover rate in these types of obese animals reflects the differences in the nitrogen economy of these animals, pointing to a higher alanine utilization in the genetically obese animals and a conservative management of alanine in the cafeteria-fed animals.

  6. Beta-alanine and dopamine in the reddish brown scales of Papilio butterflies

    International Nuclear Information System (INIS)

    Umebachi, Yoshishige; Ishizaki, Yumi

    1983-01-01

    (1) Reddish brown scales of the anal eye spot in the hind-wings of P. demoleus and P. machaon have been examined for β-alanine and dopamine. (2) The scales were fractionated into 70% ethanol-soluble fraction, 4% HCl-methanol-soluble fraction, and the residua l scales, and the β-alanine content of each fraction was determined. Most of the β-alanine present in the scales has been found in the residual scales. On acid hydrolysis of the residual scales, the β-alanine has been rather rapidly released, and the hydrolysate has contained a large amount of β-alanine. (3) The protein-bound brown pigment (HCl-ppt fraction), which was extracted with 1 N NaOH and precipitated by being acidified with HCl, has contained a large amount of β-alanine. In most or at least some of the β-alanine, the NH 2 -group has been proved to be free. (4) 14 C-Labelled β-alanine and 14 C-dopamine, which were injected at prepupal or pupal stage, have been incorporated in the highest degree into the residual scales. And the 14 C has been confirmed to be present in the HCl-ppt fraction. (5) All these results indicate that the pigment of the reddish brown scales contains β-alanine and dopamine. (author)

  7. AlaScan: A Graphical User Interface for Alanine Scanning Free-Energy Calculations.

    Science.gov (United States)

    Ramadoss, Vijayaraj; Dehez, François; Chipot, Christophe

    2016-06-27

    Computation of the free-energy changes that underlie molecular recognition and association has gained significant importance due to its considerable potential in drug discovery. The massive increase of computational power in recent years substantiates the application of more accurate theoretical methods for the calculation of binding free energies. The impact of such advances is the application of parent approaches, like computational alanine scanning, to investigate in silico the effect of amino-acid replacement in protein-ligand and protein-protein complexes, or probe the thermostability of individual proteins. Because human effort represents a significant cost that precludes the routine use of this form of free-energy calculations, minimizing manual intervention constitutes a stringent prerequisite for any such systematic computation. With this objective in mind, we propose a new plug-in, referred to as AlaScan, developed within the popular visualization program VMD to automate the major steps in alanine-scanning calculations, employing free-energy perturbation as implemented in the widely used molecular dynamics code NAMD. The AlaScan plug-in can be utilized upstream, to prepare input files for selected alanine mutations. It can also be utilized downstream to perform the analysis of different alanine-scanning calculations and to report the free-energy estimates in a user-friendly graphical user interface, allowing favorable mutations to be identified at a glance. The plug-in also assists the end-user in assessing the reliability of the calculation through rapid visual inspection.

  8. Myristoylated α subunits of guanine nucleotide-binding regulatory proteins

    International Nuclear Information System (INIS)

    Buss, J.E.; Mumby, S.M.; Casey, P.J.; Gilman, A.G.; Sefton, B.M.

    1987-01-01

    Antisera directed against specific subunits of guanine nucleotide-binding regulatory proteins (G proteins) were used to immunoprecipitate these polypeptides from metabolically labeled cells. This technique detects, in extracts of a human astrocytoma cell line, the α subunits of G/sub s/ (stimulatory) (α 45 and α 52 ), a 41-kDa subunit of G/sub i/ (inhibitory) (α 41 ), a 40-kDa protein (α 40 ), and the 36-kDa β subunit. No protein that comigrated with the α subunit of G 0 (unknown function) (α 39 ) was detected. In cells grown in the presence of [ 3 H]myristic acid, α 41 and α 40 contained 3 H label, while the β subunit did not. Chemical analysis of lipids attached covalently to purified α 41 and α 39 from bovine brain also revealed myristic acid. Similar analysis of brain G protein β and γ subunits and of G/sub t/ (Transducin) subunits (α, β, and γ) failed to reveal fatty acids. The fatty acid associated with α 41 , α 40 , and α 39 was stable to treatment with base, suggesting that the lipid is linked to the polypeptide via an amide bond. These GTP binding proteins are thus identified as members of a select group of proteins that contains myristic acid covalently attached to the peptide backbone. Myristate may play an important role in stabilizing interactions of G proteins with phospholipid or with membrane-bound proteins

  9. Alanine dosimetry for clinical applications. Proceedings

    International Nuclear Information System (INIS)

    Anton, M.

    2006-05-01

    The following topics are dealt with: Therapy level alanine dosimetry at the UK Nationational Physical Laboratory, alanine as a precision validation tool for reference dosimetry, composition of alanine pellet dosimeters, the angular dependence of the alanine ESR spectrum, the CIAE alanine dosimeter for radiotherapy level, a correction for temporal evolution effects in alanine dosimetry, next-generation services foe e-traceability to ionization radiation national standards, establishing e-traceability to HIST high-dose measurement standards, alanine dosimetry of dose delivery from clinical accelerators, the e-scan alanine dosimeter reader, alanine dosimetry at ISS, verification of the integral delivered dose for IMRT treatment in the head and neck region with ESR/alanine dosimetry, alanine dosimetry in helical tomotherapy beams, ESR dosimetry research and development at the University of Palermo, lithium formate as a low-dose EPR radiation dosimeter, sensitivity enhancement of alanine/EPR dosimetry. (HSI)

  10. Alanine Enhances Aminoglycosides-Induced ROS Production as Revealed by Proteomic Analysis

    Directory of Open Access Journals (Sweden)

    Jin-zhou Ye

    2018-01-01

    Full Text Available Metabolite-enabled killing of antibiotic-resistant pathogens by antibiotics is an attractive strategy to manage antibiotic resistance. Our previous study demonstrated that alanine or/and glucose increased the killing efficacy of kanamycin on antibiotic-resistant bacteria, whose action is through up-regulating TCA cycle, increasing proton motive force and enhancing antibiotic uptake. Despite the fact that alanine altered several metabolic pathways, other mechanisms could be potentially involved in alanine-mediated kanamycin killing of bacteria which remains to be explored. In the present study, we adopted proteomic approach to analyze the proteome changes induced by exogenous alanine. Our results revealed that the expression of three outer membrane proteins was altered and the deletion of nagE and fadL decreased the intracellular kanamycin concentration, implying their possible roles in mediating kanamycin transport. More importantly, the integrated analysis of proteomic and metabolomic data pointed out that alanine metabolism could connect to riboflavin metabolism that provides the source for reactive oxygen species (ROS production. Functional studies confirmed that alanine treatment together with kanamycin could promote ROS production that in turn potentiates the killing of antibiotic-resistant bacteria. Further investigation showed that alanine repressed the transcription of antioxidant-encoding genes, and alanine metabolism to riboflavin metabolism connected with riboflavin metabolism through TCA cycle, glucogenesis pathway and pentose phosphate pathway. Our results suggest a novel mechanism by which alanine facilitates kanamycin killing of antibiotic-resistant bacteria via promoting ROS production.

  11. beta-Chloro-L-alanine inhibition of the Escherichia coli alanine-valine transaminase.

    OpenAIRE

    Whalen, W A; Wang, M D; Berg, C M

    1985-01-01

    beta-Chloro-L-alanine, an amino acid analog which inhibits a number of enzymes, reversibly inhibited the Escherichia coli K-12 alanine-valine transaminase, transaminase C. This inhibition, along with the inhibition of transaminase B, accounted for the isoleucine-plus-valine requirement of E. coli in the presence of beta-chloro-L-alanine.

  12. Controlling the prion propensity of glutamine/asparagine-rich proteins.

    Science.gov (United States)

    Paul, Kacy R; Ross, Eric D

    2015-01-01

    The yeast Saccharomyces cerevisiae can harbor a number of distinct prions. Most of the yeast prion proteins contain a glutamine/asparagine (Q/N) rich region that drives prion formation. Prion-like domains, defined as regions with high compositional similarity to yeast prion domains, are common in eukaryotic proteomes, and mutations in various human proteins containing prion-like domains have been linked to degenerative diseases, including amyotrophic lateral sclerosis. Here, we discuss a recent study in which we utilized two strategies to generate prion activity in non-prion Q/N-rich domains. First, we made targeted mutations in four non-prion Q/N-rich domains, replacing predicted prion-inhibiting amino acids with prion-promoting amino acids. All four mutants formed foci when expressed in yeast, and two acquired bona fide prion activity. Prion activity could be generated with as few as two mutations, suggesting that many non-prion Q/N-rich proteins may be just a small number of mutations from acquiring aggregation or prion activity. Second, we created tandem repeats of short prion-prone segments, and observed length-dependent prion activity. These studies demonstrate the considerable progress that has been made in understanding the sequence basis for aggregation of prion and prion-like domains, and suggest possible mechanisms by which new prion domains could evolve.

  13. Role of the gerA operon in L-alanine germination of Bacillus licheniformis spores

    Directory of Open Access Journals (Sweden)

    Løvdal Irene S

    2012-03-01

    Full Text Available Abstract Background The genome of Bacillus licheniformis DSM 13 harbours three neighbouring open reading frames showing protein sequence similarities to the proteins encoded from the Bacillus subtilis subsp. subtilis 168 gerA operon, GerAA, GerAB and GerAC. In B. subtilis, these proteins are assumed to form a germinant receptor involved in spore germination induced by the amino acid L-alanine. Results In this study we show that disruption of the gerAA gene in B. licheniformis MW3 hamper L-alanine and casein hydrolysate-triggered spore germination, measured by absorbance at 600 nm and confirmed by phase contrast microscopy. This ability was restored by complementation with a plasmid-borne copy of the gerA locus. Addition of D-alanine in the casein hydrolysate germination assay abolished germination of both B. licheniformis MW3 and the complementation mutant. Germination of both B. licheniformis MW3 and the gerA disruption mutant was induced by the non-nutrient germinant Ca2+-Dipicolinic acid. Conclusions These results demonstrate that the B. licheniformis MW3 gerA locus is involved in germination induced by L-alanine and potentially other components present in casein hydrolysate.

  14. Role of the gerA operon in L-alanine germination of Bacillus licheniformis spores

    Science.gov (United States)

    2012-01-01

    Background The genome of Bacillus licheniformis DSM 13 harbours three neighbouring open reading frames showing protein sequence similarities to the proteins encoded from the Bacillus subtilis subsp. subtilis 168 gerA operon, GerAA, GerAB and GerAC. In B. subtilis, these proteins are assumed to form a germinant receptor involved in spore germination induced by the amino acid L-alanine. Results In this study we show that disruption of the gerAA gene in B. licheniformis MW3 hamper L-alanine and casein hydrolysate-triggered spore germination, measured by absorbance at 600 nm and confirmed by phase contrast microscopy. This ability was restored by complementation with a plasmid-borne copy of the gerA locus. Addition of D-alanine in the casein hydrolysate germination assay abolished germination of both B. licheniformis MW3 and the complementation mutant. Germination of both B. licheniformis MW3 and the gerA disruption mutant was induced by the non-nutrient germinant Ca2+-Dipicolinic acid. Conclusions These results demonstrate that the B. licheniformis MW3 gerA locus is involved in germination induced by L-alanine and potentially other components present in casein hydrolysate. PMID:22420404

  15. Utilization of protein-rich residues in biotechnological processes.

    Science.gov (United States)

    Pleissner, Daniel; Venus, Joachim

    2016-03-01

    A drawback of biotechnological processes, where microorganisms convert biomass constituents, such as starch, cellulose, hemicelluloses, lipids, and proteins, into wanted products, is the economic feasibility. Particularly the cost of nitrogen sources in biotechnological processes can make up a large fraction of total process expenses. To further develop the bioeconomy, it is of considerable interest to substitute cost-intensive by inexpensive nitrogen sources. The aim of this mini-review was to provide a comprehensive insight of utilization methods of protein-rich residues, such as fish waste, green biomass, hairs, and food waste. The methods described include (i) production of enzymes, (ii) recovery of bioactive compounds, and/or (iii) usage as nitrogen source for microorganisms in biotechnological processes. In this aspect, the utilization of protein-rich residues, which are conventionally considered as waste, allows the development of value-adding processes for the production of bioactive compounds, biomolecules, chemicals, and materials.

  16. Phospho-regulated Drosophila adducin is a determinant of synaptic plasticity in a complex with Dlg and PIP2 at the larval neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Simon Ji Hau Wang

    2014-11-01

    Full Text Available Adducin is a ubiquitously expressed actin- and spectrin-binding protein involved in cytoskeleton organization, and is regulated through phosphorylation of the myristoylated alanine-rich C-terminal kinase (MARCKS-homology domain by protein kinase C (PKC. We have previously shown that the Drosophila adducin, Hu-li tai shao (Hts, plays a role in larval neuromuscular junction (NMJ growth. Here, we find that the predominant isoforms of Hts at the NMJ contain the MARCKS-homology domain, which is important for interactions with Discs large (Dlg and phosphatidylinositol 4,5-bisphosphate (PIP2. Through the use of Proximity Ligation Assay (PLA, we show that the adducin-like Hts isoforms are in complexes with Dlg and PIP2 at the NMJ. We provide evidence that Hts promotes the phosphorylation and delocalization of Dlg at the NMJ through regulation of the transcript distribution of the PAR-1 and CaMKII kinases in the muscle. We also show that Hts interactions with Dlg and PIP2 are impeded through phosphorylation of the MARCKS-homology domain. These results are further evidence that Hts is a signaling-responsive regulator of synaptic plasticity in Drosophila.

  17. Resveratrol Inhibits Porcine Intestinal Glucose and Alanine Transport: Potential Roles of Na+/K+-ATPase Activity, Protein Kinase A, AMP-Activated Protein Kinase and the Association of Selected Nutrient Transport Proteins with Detergent Resistant Membranes

    Directory of Open Access Journals (Sweden)

    Stefanie Klinger

    2018-03-01

    Full Text Available Background: Beneficial effects of Resveratrol (RSV have been demonstrated, including effects on transporters and channels. However, little is known about how RSV influences intestinal transport. The aim of this study was to further characterize the effects of RSV on intestinal transport and the respective mechanisms. Methods: Porcine jejunum and ileum were incubated with RSV (300 µM, 30 min in Ussing chambers (functional studies and tissue bathes (detection of protein expression, phosphorylation, association with detergent resistant membranes (DRMs. Results: RSV reduced alanine and glucose-induced short circuit currents (ΔIsc and influenced forskolin-induced ΔIsc. The phosphorylation of sodium–glucose-linked transporter 1 (SGLT1, AMP-activated protein kinase (AMPK, protein kinase A substrates (PKA-S and liver kinase B1 (LKB1 increased but a causative relation to the inhibitory effects could not directly be established. The DRM association of SGLT1, peptide transporter 1 (PEPT1 and (phosphorylated Na+/H+-exchanger 3 (NHE3 did not change. Conclusion: RSV influences the intestinal transport of glucose, alanine and chloride and is likely to affect other transport processes. As the effects of protein kinase activation vary between the intestinal localizations, it would appear that increasing cyclic adenosine monophosphate (cAMP levels are part of the mechanism. Nonetheless, the physiological responses depend on cell type-specific structures.

  18. Effect of Amino Acid Substitutions in the GerAA Protein on the Function of the Alanine-Responsive Germinant Receptor of Bacillus subtilis Spores▿

    Science.gov (United States)

    Mongkolthanaruk, Wiyada; Cooper, Gareth R.; Mawer, Julia S. P.; Allan, Raymond N.; Moir, Anne

    2011-01-01

    Spores of Bacillus subtilis require the GerAA, GerAB, and GerAC receptor proteins for l-alanine-induced germination. Mutations in gerAA, both random and site directed, result in phenotypes that identify amino acid residues important for receptor function in broad terms. They highlight the functional importance of two regions in the central, integral membrane domain of GerAA. A P324S substitution in the first residue of a conserved PFPP motif results in a 10-fold increase in a spore's sensitivity to alanine; a P326S change results in the release of phase-dark spores, in which the receptor may be in an “activated” or “quasigerminated” state. Substitutions in residues 398 to 400, in a short loop between the last two likely membrane-spanning helices of this central domain, all affect the germination response, with the G398S substitution causing a temperature-sensitive defect. In others, there are wider effects on the receptor: if alanine is substituted for conserved residue N146, H304, or E330, a severe defect in l-alanine germination results. This correlates with the absence of GerAC, suggesting that the assembly or stability of the entire receptor complex has been compromised by the defect in GerAA. In contrast, severely germination-defective mutants such as E129K, L373F, S400F, and M409N mutants retain GerAC at normal levels, suggesting more local and specific effects on the function of GerAA itself. Further interpretation will depend on progress in structural analysis of the receptor proteins. PMID:21378197

  19. Production of D-alanine from DL-alanine using immobilized cells of Bacillus subtilis HLZ-68.

    Science.gov (United States)

    Zhang, Yangyang; Li, Xiangping; Zhang, Caifei; Yu, Xiaodong; Huang, Fei; Huang, Shihai; Li, Lianwei; Liu, Shiyu

    2017-09-13

    Immobilized cells of Bacillus subtilis HLZ-68 were used to produce D-alanine from DL-alanine by asymmetric degradation. Different compounds such as polyvinyl alcohol and calcium alginate were employed for immobilizing the B. subtilis HLZ-68 cells, and the results showed that cells immobilized using a mixture of these two compounds presented higher L-alanine degradation activity, when compared with free cells. Subsequently, the effects of different concentrations of polyvinyl alcohol and calcium alginate on L-alanine consumption were examined. Maximum L-alanine degradation was exhibited by cells immobilized with 8% (w/v) polyvinyl alcohol and 2% (w/v) calcium alginate. Addition of 400 g of DL-alanine (200 g at the beginning of the reaction and 200 g after 30 h of incubation) into the reaction solution at 30 °C, pH 6.0, aeration of 1.0 vvm, and agitation of 400 rpm resulted in complete L-alanine degradation within 60 h, leaving 185 g of D-alanine in the reaction solution. The immobilized cells were applied for more than 15 cycles of degradation and a maximum utilization rate was achieved at the third cycle. D-alanine was easily extracted from the reaction solution using cation-exchange resin, and the chemical and optical purity of the extracted D-alanine was 99.1 and 99.6%, respectively.

  20. A study of the irradiation temperature coefficient for L-alanine and DL-alanine dosemeters

    International Nuclear Information System (INIS)

    Desrosiers, M. F.; Lin, M.; Cooper, S. L.; Cui, Y.; Chen, K.

    2006-01-01

    Alanine dosimetry is now well established both as a reference and routine dosemeter for industrial irradiation processing. Accurate dosimetry under the relatively harsh conditions of industrial processing requires a characterisation of the parameters that influence the dosemeter response. The temperature of the dosemeter during irradiation is a difficult quantity to measure so that the accuracy of the temperature coefficient that governs the dosemeter response becomes a critical factor. Numerous publications have reported temperature coefficients for several types of alanine dosemeters. The observed differences in the measured values were commonly attributed to the differences in the polymer binder or the experimental design of the measurement. However, the data demonstrated a consistent difference in the temperature coefficients between L-alanine and DL-alanine. Since there were no commonalities in the dosemeter composition or the measurement methods applied, a clear conclusion is not possible. To resolve this issue, the two isomeric forms of alanine dosemeters were prepared and irradiated in an identical manner. The results indicated that the DL-alanine temperature coefficient is more than 50% higher than the L-alanine temperature coefficient. (authors)

  1. Secretion of d-alanine by Escherichia coli.

    Science.gov (United States)

    Katsube, Satoshi; Sato, Kazuki; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2016-07-01

    Escherichia coli has an l-alanine export system that protects the cells from toxic accumulation of intracellular l-alanine in the presence of l-alanyl-l-alanine (l-Ala-l-Ala). When a DadA-deficient strain was incubated with 6.0 mM l-Ala-l-Ala, we detected l-alanine and d-alanine using high-performance liquid chromatography (HPLC) analysis at a level of 7.0 mM and 3.0 mM, respectively, after 48 h incubation. Treatment of the culture supernatant with d-amino acid oxidase resulted in the disappearance of a signal corresponding to d-alanine. Additionally, the culture supernatant enabled a d-alanine auxotroph to grow without d-alanine supplementation, confirming that the signal detected by HPLC was authentic d-alanine. Upon introduction of an expression vector harbouring the alanine racemase genes, alr or dadX, the extracellular level of d-alanine increased to 11.5 mM and 8.5 mM, respectively, under similar conditions, suggesting that increased metabolic flow from l-alanine to d-alanine enhanced d-alanine secretion. When high-density DadA-deficient cells preloaded with l-Ala-l-Ala were treated with 20 µM carbonyl cyanide m-chlorophenyl hydrazone (CCCP), secretion of both l-alanine and d-alanine was enhanced ~twofold compared with that in cells without CCCP treatment. In contrast, the ATPase inhibitor dicyclohexylcarbodiimide did not exert such an effect on the l-alanine and d-alanine secretion. Furthermore, inverted membrane vesicles prepared from DadA-deficient cells lacking the l-alanine exporter AlaE accumulated [3H]D-alanine in an energy-dependent manner. This energy-dependent accumulation of [3H]D-alanine was strongly inhibited by CCCP. These results indicate that E. coli has a transport system(s) that exports d-alanine and that this function is most likely modulated by proton electrochemical potential.

  2. Comparison of alanine dosimeters using silicone as their binder to a commercial, polystyrene-bound, alanine dosimeter

    International Nuclear Information System (INIS)

    Galindo, S.; Urena-Nunez, F.

    1997-01-01

    The feasibility of practical boron-containing alanine ESR dosimeters for gamma-neutron mixed field irradiation dosimeters depends in part on whether the γ response characteristics of these silicone-bound dosimeters are comparable to those of a commercially available dosimeter that has been used by the International Atomic Energy Agency (International Dose Assurance Service) as a transfer reference dosimeter. This work presents the results of the comparison of 3 batches of silicone-bound alanine dosimeters. The first batch consists of a mixture of alanine and boric acid; the second, alanine and borax; and the last contains only alanine. Results indicate that γ response characteristics of the silicone-bound samples are comparable to those of the commercial, polystyrene-bound, alanine dosimeter and that silicone has a strong potential as a binding substance for alanine ESR dosimetry. (Author)

  3. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity

    DEFF Research Database (Denmark)

    Gojkovic, Zoran; Sandrini, Michael; Piskur, Jure

    2001-01-01

    no pyrimidine catabolic pathway, it enabled growth on N-carbamyl- beta -alanine as the sole nitrogen source. The D. discoideum and D. melanogaster PYD3 gene products are similar to mammalian beta -alanine synthases. In contrast, the S. kluyveri protein is quite different from these and more similar to bacterial......beta -Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamy-beta -alanine as the sole nitrogen source and exhibits diminished beta -alanine synthase...... N- carbamyl amidohydrolases. All three beta -alanine synthases are to some degree related to various aspartate transcarbamylases, which catalyze the second step of the de novo pyrimidine biosynthetic pathway. PYD3 expression in yeast seems to be inducible by dihydrouracil and N...

  4. Selection of D-Alanine-Tolerant Rice Cells

    OpenAIRE

    Hisashi, Manabe; Koji, Ohira; Aizu Junior College of Fukushima Prefecture; Department of Agricultural Chemistry, Faculty of Agriculture, Tohoku University

    1984-01-01

    By repeating subculture of rice cells (parent cells) in a D-alanine containing medium, we could select rice cells which grew well in the D-alanine medium. The D-alanine-tolerant cells absorbed a fairly small amount of D-alanine from the medium and did not accumulate much D-alanine in the cells. Aggregation of D-alanine-tolerant cells was greater than that of parent cells. D-Alanine metabolism of D-alanine.-tolerant cells did not increase in comparison with parent cells.

  5. Antibodies to a recombinant glutamate-rich Plasmodium falciparum protein

    DEFF Research Database (Denmark)

    Hogh, B; Petersen, E; Dziegiel, Morten Hanefeld

    1992-01-01

    A Plasmodium falciparum antigen gene coding for a 220-kD glutamate-rich protein (GLURP) has been cloned, and the 783 C-terminal amino acids of this protein (GLURP489-1271) have been expressed as a beta-galactosidase fusion protein in Escherichia coli. The encoded 783 amino acid residues contain two...... areas of repeated amino acid sequences. Antibodies against recombinant GLURP489-1271, as well as against a synthetic peptide corresponding to GLURP899-916, and against a synthetic peptide representing the major glutamate rich repeat sequence from the P. falciparum ring erythrocyte surface antigen (Pf155...... between the anti-GLURP489-1271 and anti-(EENV)6 antibody responses. The data provide indirect evidence for a protective role of antibodies reacting with recombinant GLURP489-1271 as well as with the synthetic peptide (EENV)6 from the Pf155/RESA....

  6. Comparison of EPR response of alanine and Gd₂O₃-alanine dosimeters exposed to TRIGA Mainz reactor.

    Science.gov (United States)

    Marrale, M; Schmitz, T; Gallo, S; Hampel, G; Longo, A; Panzeca, S; Tranchina, L

    2015-12-01

    In this work we report some preliminary results regarding the analysis of electron paramagnetic resonance (EPR) response of alanine pellets and alanine pellets added with gadolinium used for dosimetry at the TRIGA research reactor in Mainz, Germany. Two set-ups were evaluated: irradiation inside PMMA phantom and irradiation inside boric acid phantom. We observed that the presence of Gd2O3 inside alanine pellets increases the EPR signal by a factor of 3.45 and 1.24 in case of PMMA and boric acid phantoms, respectively. We can conclude that in the case of neutron beam with a predominant thermal neutron component the addition of gadolinium oxide can significantly improve neutron sensitivity of alanine pellets. Monte Carlo (MC) simulations of both response of alanine and Gd-added alanine pellets with FLUKA code were performed and a good agreement was achieved for pure alanine dosimeters. For Gd2O3-alanine deviations between MC simulations and experimental data were observed and discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Effect of Exogenous _D-Alanine on _D-Alanyl-_D-alanine Content in Leaf Blades of Oryza australiensis Domin

    OpenAIRE

    Hisashi, Manabe; Aizu Junior College of Fukushima Prefecture

    1986-01-01

    In seedlings of Oryza australiensis Domin (W0008), most of the D-alanyl-D-alanine was distributed in the leaf blades. In excised leaf blades of W0008, exogenous D-alanine was incorporated into D-alanyl-D-alanine irrespective of the light condition as in Sasanishiki. With cultivation in D-alanine medium for several days, the D-alanyl-D-alanine content in W0008 leaf blades was found to increase, but no other D-alanine-containing dipeptides such as D-alanylglycine or D-alanyl-L-alanine were dete...

  8. Correlation of secreted protein acidic and rich in cysteine with diabetic nephropathy

    OpenAIRE

    Li, Lei; Song, Hai-Yan; Liu, Kai; An, Meng-Meng

    2015-01-01

    To detect the serum concentrations of secreted protein acidic and rich in cysteine (SPARC) in patients with diabetic nephropathy and SPARC mRNA and protein expressions in renal tissue of db/db mice (C57BL/KsJ, diabetic nephropathy mice), thus preliminary exploration on the role of secreted protein acidic riches in cysteine in the development of diabetic nephropathy were carried out. Serum SPARC levels in normal subjects, patients with type 2 diabetes mellitus (without diabetic nephropathy), c...

  9. N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects

    Science.gov (United States)

    Varland, Sylvia; Osberg, Camilla; Arnesen, Thomas

    2015-01-01

    The vast majority of eukaryotic proteins are N-terminally modified by one or more processing enzymes. Enzymes acting on the very first amino acid of a polypeptide include different peptidases, transferases, and ligases. Methionine aminopeptidases excise the initiator methionine leaving the nascent polypeptide with a newly exposed amino acid that may be further modified. N-terminal acetyl-, methyl-, myristoyl-, and palmitoyltransferases may attach an acetyl, methyl, myristoyl, or palmitoyl group, respectively, to the α-amino group of the target protein N-terminus. With the action of ubiquitin ligases, one or several ubiquitin molecules are transferred, and hence, constitute the N-terminal modification. Modifications at protein N-termini represent an important contribution to proteomic diversity and complexity, and are essential for protein regulation and cellular signaling. Consequently, dysregulation of the N-terminal modifying enzymes is implicated in human diseases. We here review the different protein N-terminal modifications occurring co- or post-translationally with emphasis on the responsible enzymes and their substrate specificities. PMID:25914051

  10. Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport

    International Nuclear Information System (INIS)

    Hempe, J.M.; Cousins, R.J.

    1991-01-01

    The mechanism of zinc absorption has not been delineated, but kinetic studies show that both passive and carrier-mediated processes are involved. The authors have identified a low molecular mass zinc-binding protein in the soluble fraction of rat intestinal mucosa that could function as an intracellular zinc carrier. The protein was not detected in liver or pancreas, suggesting a role specific to the intestine. The protein binds zinc during transmucosal zinc transport and shows signs of saturation at higher luminal zinc concentrations, characteristics consistent with a role in carrier-mediated zinc absorption. Microsequence analysis of the protein purified by gel-filtration HPCL and SDS/PAGE showed complete identity within the first 41 N-terminal amino acids with the deduced protein sequence of cysteine-rich intestinal protein. These investigators showed that the gene for this protein is developmentally regulated in neonates during the suckling period, conserved in many vertebrate species, and predominantly expressed in the small intestine. Cysteine-rich intestinal protein contains a recently identified conserved sequence of histidine and cysteine residues, the LIM motif, which our results suggest confers metal-binding properties that are important for zinc transport and/or functions of this micronutrient

  11. A Clostridium difficile alanine racemase affects spore germination and accommodates serine as a substrate.

    Science.gov (United States)

    Shrestha, Ritu; Lockless, Steve W; Sorg, Joseph A

    2017-06-23

    Clostridium difficile has become one of the most common bacterial pathogens in hospital-acquired infections in the United States. Although C. difficile is strictly anaerobic, it survives in aerobic environments and transmits between hosts via spores. C. difficile spore germination is triggered in response to certain bile acids and glycine. Although glycine is the most effective co-germinant, other amino acids can substitute with varying efficiencies. Of these, l-alanine is an effective co-germinant and is also a germinant for most bacterial spores. Many endospore-forming bacteria embed alanine racemases into their spore coats, and these enzymes are thought to convert the l-alanine germinant into d-alanine, a spore germination inhibitor. Although the C. difficile Alr2 racemase is the sixth most highly expressed gene during C. difficile spore formation, a previous study reported that Alr2 has little to no role in germination of C. difficile spores in rich medium. Here, we hypothesized that Alr2 could affect C. difficile l-alanine-induced spore germination in a defined medium. We found that alr2 mutant spores more readily germinate in response to l-alanine as a co-germinant. Surprisingly, d-alanine also functioned as a co-germinant. Moreover, we found that Alr2 could interconvert l- and d-serine and that Alr2 bound to l- and d-serine with ∼2-fold weaker affinity to that of l- and d-alanine. Finally, we demonstrate that l- and d-serine are also co-germinants for C. difficile spores. These results suggest that C. difficile spores can respond to a diverse set of amino acid co-germinants and reveal that Alr2 can accommodate serine as a substrate. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Identification and elucidation of in vivo function of two alanine racemases from Pseudomonas putida KT2440.

    Science.gov (United States)

    Duque, Estrella; Daddaoua, Abdelali; Cordero, Baldo F; De la Torre, Jesús; Antonia Molina-Henares, Maria; Ramos, Juan-Luis

    2017-10-01

    The genome of Pseudomonas putida KT2440 contains two open reading frames (ORFs), PP_3722 and PP_5269, that encode proteins with a Pyridoxal phosphate binding motif and a high similarity to alanine racemases. Alanine racemases play a key role in the biosynthesis of D-alanine, a crucial amino acid in the peptidoglycan layer. For these ORFs, we generated single and double mutants and found that inactivation of PP_5269 resulted in D-alanine auxotrophy, while inactivation of PP_3722 did not. Furthermore, as expected, the PP_3722/PP_5269 double mutant was a strict auxotroph for D-alanine. These results indicate that PP_5269 is an alr allele and that it is the essential alanine racemase in P. putida. We observed that the PP_5269 mutant grew very slowly, while the double PP_5269/PP_3722 mutant did not grow at all. This suggests that PP_3722 may replace PP_5269 in vivo. In fact, when the ORF encoding PP_3772 was cloned into a wide host range expression vector, ORF PP_3722 successfully complemented P. putida PP_5269 mutants. We purified both proteins to homogeneity and while they exhibit similar K M values, the V max of PP_5269 is fourfold higher than that of PP_3722. Here, we propose that PP_5269 and PP_3722 encode functional alanine racemases and that these genes be named alr-1 and alr-2 respectively. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Heterologous gln/asn-rich proteins impede the propagation of yeast prions by altering chaperone availability.

    Directory of Open Access Journals (Sweden)

    Zi Yang

    Full Text Available Prions are self-propagating conformations of proteins that can cause heritable phenotypic traits. Most yeast prions contain glutamine (Q/asparagine (N-rich domains that facilitate the accumulation of the protein into amyloid-like aggregates. Efficient transmission of these infectious aggregates to daughter cells requires that chaperones, including Hsp104 and Sis1, continually sever the aggregates into smaller "seeds." We previously identified 11 proteins with Q/N-rich domains that, when overproduced, facilitate the de novo aggregation of the Sup35 protein into the [PSI(+] prion state. Here, we show that overexpression of many of the same 11 Q/N-rich proteins can also destabilize pre-existing [PSI(+] or [URE3] prions. We explore in detail the events leading to the loss (curing of [PSI(+] by the overexpression of one of these proteins, the Q/N-rich domain of Pin4, which causes Sup35 aggregates to increase in size and decrease in transmissibility to daughter cells. We show that the Pin4 Q/N-rich domain sequesters Hsp104 and Sis1 chaperones away from the diffuse cytoplasmic pool. Thus, a mechanism by which heterologous Q/N-rich proteins impair prion propagation appears to be the loss of cytoplasmic Hsp104 and Sis1 available to sever [PSI(+].

  14. 21 CFR 172.540 - DL-Alanine.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true DL-Alanine. 172.540 Section 172.540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents and Related Substances § 172.540 DL-Alanine. DL-Alanine (a racemic mixture of D- and L-alanine...

  15. PGC-1α regulates alanine metabolism in muscle cells.

    Science.gov (United States)

    Hatazawa, Yukino; Qian, Kun; Gong, Da-Wei; Kamei, Yasutomi

    2018-01-01

    The skeletal muscle is the largest organ in the human body, depositing energy as protein/amino acids, which are degraded in catabolic conditions such as fasting. Alanine is synthesized and secreted from the skeletal muscle that is used as substrates of gluconeogenesis in the liver. During fasting, the expression of PGC-1α, a transcriptional coactivator of nuclear receptors, is increased in the liver and regulates gluconeogenesis. In the present study, we observed increased mRNA expression of PGC-1α and alanine aminotransferase 2 (ALT2) in the skeletal muscle during fasting. In C2C12 myoblast cells overexpressing PGC-1α, ALT2 expression was increased concomitant with an increased alanine level in the cells and medium. In addition, PGC-1α, along with nuclear receptor ERR, dose-dependently enhanced the ALT2 promoter activity in reporter assay using C2C12 cells. In the absence of glucose in the culture medium, mRNA levels of PGC-1α and ALT2 increased. Endogenous PGC-1α knockdown in C2C12 cells reduced ALT2 gene expression level, induced by the no-glucose medium. Taken together, in the skeletal muscle, PGC-1α activates ALT2 gene expression, and alanine production may play roles in adaptation to fasting.

  16. 21 CFR 582.5118 - Alanine.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... § 582.5118 Alanine. (a) Product. Alanine (L- and DL-forms). (b) Conditions of use. This substance is...

  17. ald of Mycobacterium tuberculosis Encodes both the Alanine Dehydrogenase and the Putative Glycine Dehydrogenase

    Science.gov (United States)

    Giffin, Michelle M.; Modesti, Lucia; Raab, Ronald W.; Wayne, Lawrence G.

    2012-01-01

    The putative glycine dehydrogenase of Mycobacterium tuberculosis catalyzes the reductive amination of glyoxylate to glycine but not the reverse reaction. The enzyme was purified and identified as the previously characterized alanine dehydrogenase. The Ald enzyme was expressed in Escherichia coli and had both pyruvate and glyoxylate aminating activities. The gene, ald, was inactivated in M. tuberculosis, which resulted in the loss of all activities. Both enzyme activities were found associated with the cell and were not detected in the extracellular filtrate. By using an anti-Ald antibody, the protein was localized to the cell membrane, with a smaller fraction in the cytosol. None was detected in the extracellular medium. The ald knockout strain grew without alanine or glycine and was able to utilize glycine but not alanine as a nitrogen source. Transcription of ald was induced when alanine was the sole nitrogen source, and higher levels of Ald enzyme were measured. Ald is proposed to have several functions, including ammonium incorporation and alanine breakdown. PMID:22210765

  18. Evolutionary Diversification of Alanine Transaminases in Yeast: Catabolic Specialization and Biosynthetic Redundancy

    Directory of Open Access Journals (Sweden)

    Ximena Escalera-Fanjul

    2017-06-01

    Full Text Available Gene duplication is one of the major evolutionary mechanisms providing raw material for the generation of genes with new or modified functions. The yeast Saccharomyces cerevisiae originated after an allopolyploidization event, which involved mating between two different ancestral yeast species. ScALT1 and ScALT2 codify proteins with 65% identity, which were proposed to be paralogous alanine transaminases. Further analysis of their physiological role showed that while ScALT1 encodes an alanine transaminase which constitutes the main pathway for alanine biosynthesis and the sole pathway for alanine catabolism, ScAlt2 does not display alanine transaminase activity and is not involved in alanine metabolism. Moreover, phylogenetic studies have suggested that ScALT1 and ScALT2 come from each one of the two parental strains which gave rise to the ancestral hybrid. The present work has been aimed to the understanding of the properties of the ancestral type Lacchancea kluyveri LkALT1 and Kluyveromyces lactis KlALT1, alanine transaminases in order to better understand the ScALT1 and ScALT2 evolutionary history. These ancestral -type species were chosen since they harbor ALT1 genes, which are related to ScALT2. Presented results show that, although LkALT1 and KlALT1 constitute ScALT1 orthologous genes, encoding alanine transaminases, both yeasts display LkAlt1 and KlAlt1 independent alanine transaminase activity and additional unidentified alanine biosynthetic and catabolic pathway(s. Furthermore, phenotypic analysis of null mutants uncovered the fact that KlAlt1 and LkAlt1 have an additional role, not related to alanine metabolism but is necessary to achieve wild type growth rate. Our study shows that the ancestral alanine transaminase function has been retained by the ScALT1 encoded enzyme, which has specialized its catabolic character, while losing the alanine independent role observed in the ancestral type enzymes. The fact that ScAlt2 conserves 64

  19. Transport of the alpha-amino-mono-carboxylic acid L-alanine by the beta-alanine carrier of the rabbit ileum

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Munck, B G

    1987-01-01

    The proposal that the beta-alanine carrier of the rabbit ileum is a high affinity carrier of the neutral amino acids was examined by means of measurements of influx across the brush border membrane of the intact epithelium using L-alanine as a representative of the neutral amino acids. Confirming...... the proposal, evidence was provided for mutual competitive inhibition between beta-alanine and L-alanine; and it was also demonstrated that a process contributes to the influx of L-alanine, which is characterized by a maximum rate of transport equal to that of beta-alanine and a Kt, which is equal to the Ki...... of L-alanine against the influx of beta-alanine. In the concentration range 0.01 to 0.125 mM the influx of L-alanine was found to be linearly related to the concentration indicating a significant unstirred layer influence on present and previous estimates of the Kt values for influx of amino acids...

  20. Determination of chromium combined with DNA, RNA and protein in chromium-rich brewer's yeast

    International Nuclear Information System (INIS)

    Ding Wenjun; Qian Qinfang; Hou Xiaolin; Feng Weiyue; Chai Zhifang

    2000-01-01

    The contents of chromium in the DNA, RNA and protein fractions separated from chromium-rich and normal brewer's yeast were determined with the neutron activation analysis in order to study the combination of Cr with DNA, RNA and protein in chromium-rich brewer's yeast. The results showed that the extracting rats and concentrations of DNA, RNA and protein had no significant difference in two types of yeast, but the chromium contents of DNA, RNA and protein in the chromium-rich yeast were significantly higher than those in the normal. In addition, the content of chromium in DNA was much higher than that in RNA and protein, which indicated that the inorganic chromium compounds entered into the yeast cell, during the yeast cultivation in the culture medium containing chromium were converted into organic chromium compounds combined with DNA, RNA and protein

  1. Highly Efficient Fumed Silica Nanoparticles for Peptide Bond Formation: Converting Alanine to Alanine Anhydride.

    Science.gov (United States)

    Guo, Chengchen; Jordan, Jacob S; Yarger, Jeffery L; Holland, Gregory P

    2017-05-24

    In this work, thermal condensation of alanine adsorbed on fumed silica nanoparticles is investigated using thermal analysis and multiple spectroscopic techniques, including infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectroscopies. Thermal analysis shows that adsorbed alanine can undergo thermal condensation, forming peptide bonds within a short time period and at a lower temperature (∼170 °C) on fumed silica nanoparticle surfaces than that in bulk (∼210 °C). Spectroscopic results further show that alanine is converted to alanine anhydride with a yield of 98.8% during thermal condensation. After comparing peptide formation on solution-derived colloidal silica nanoparticles, it is found that fumed silica nanoparticles show much better efficiency and selectivity than solution-derived colloidal silica nanoparticles for synthesizing alanine anhydride. Furthermore, Raman spectroscopy provides evidence that the high efficiency for fumed silica nanoparticles is likely related to their unique surface features: the intrinsic high population of strained ring structures present at the surface. This work indicates the great potential of fumed silica nanoparticles in synthesizing peptides with high efficiency and selectivity.

  2. Procedure for preparation of 3-fluor-D-alanine, 2-deutero-3-fluor-D-alanine and 2,3,3-trideutero-3-fluor-D-alanine and their salts

    International Nuclear Information System (INIS)

    Kollonitsch, J.; Kahan, F.M.

    1971-01-01

    Procedures for the preparation of 3-fluor-D-alanine, 2-deutero-3-fluor-D-alanine and 2,3,3-trideutero-3-fluor-D-alanine, and salts of these compounds, are described. These new compounds are useful antibacterial substances not only applicable in the disinfection of pharmaceutical, dental and medical equipment, but also in the treatment of diseases caused by bacteria, and may be administered orally. While 3-fluor-L-alanine metabolises rapidly with toxic results, 3-fluor-D-alanine is much more slowly broken down in vivo and is not harmful in normal doses. Further it has been found that deuteration gives new deutero-analogues which are less subject to metabolic breaking down and still retain the antibacterial strength of the original compound. The in vivo activity is thereby increased and maintained. (JIW)

  3. Monosodium glutamate delivered in a protein-rich soup improves subsequent energy compensation.

    Science.gov (United States)

    Masic, Una; Yeomans, Martin R

    2014-01-01

    Previous research suggests that monosodium glutamate (MSG) may have a biphasic effect on appetite, increasing appetite within a meal with its flavour-enhancing effect, but enhancing subsequent satiety due to its proposed role as a predictor of protein content. The present study explored this by assessing the impact of a 450 g soup preload differing in MSG concentration (1 % MSG added (MSG+) or no MSG (MSG-)) and nutrient content (low-energy control or high-energy carbohydrate or high-energy protein) on rated appetite and ad libitum intake of a test meal in thirty-five low-restraint male volunteers using a within-participant design. Protein-rich preloads significantly reduced intake at the test meal and resulted in more accurate energy compensation than did carbohydrate-rich preloads. This energy compensation was stronger in the MSG+ protein conditions when compared with MSG+ carbohydrate conditions. No clear differences in rated appetite were seen in MSG or the macronutrient conditions alone during preload ingestion or 45 min after intake. Overall, these findings indicate that MSG may act to further improve energy compensation when provided in a protein-rich context.

  4. Alanine flux in obese and healthy humans as evaluated by 15N- and 2H3-labeled alanines

    International Nuclear Information System (INIS)

    Hoffer, L.J.; Yang, R.D.; Matthews, D.E.; Bistrian, B.R.; Bier, D.M.; Young, V.R.

    1988-01-01

    Estimates of plasma alanine flux as measured in humans using L-[ 15 N]-alanine or L-[3,3,3- 2 H 3 ]alanine were compared by simultaneous intravenous infusion of both tracers. Plasma isotope enrichments were measured by chemical ionization gas chromatography-mass spectrometry. In 16 obese women before and during a hypocaloric diet and in 4 normal men in the postabsorptive and fed states, the fluxes were highly correlated (r2 = 0.93) although plasma alanine flux with the 2 H tracer was two to three times greater than that obtained with [ 15 N]alanine. The fluxes decreased with the hypocaloric diet in obese subjects and increased during the fed state in healthy adults. Thus, although the estimates of alanine flux differed according to the tracer used, both appear to give equivalent information about changes in alanine kinetics induced by the nutritional conditions examined

  5. Quantitative Tissue Proteomics Analysis Reveals Versican as Potential Biomarker for Early-Stage Hepatocellular Carcinoma.

    Science.gov (United States)

    Naboulsi, Wael; Megger, Dominik A; Bracht, Thilo; Kohl, Michael; Turewicz, Michael; Eisenacher, Martin; Voss, Don Marvin; Schlaak, Jörg F; Hoffmann, Andreas-Claudius; Weber, Frank; Baba, Hideo A; Meyer, Helmut E; Sitek, Barbara

    2016-01-04

    Hepatocellular carcinoma (HCC) is one of the most aggressive tumors, and the treatment outcome of this disease is improved when the cancer is diagnosed at an early stage. This requires biomarkers allowing an accurate and early tumor diagnosis. To identify potential markers for such applications, we analyzed a patient cohort consisting of 50 patients (50 HCC and 50 adjacent nontumorous tissue samples as controls) using two independent proteomics approaches. We performed label-free discovery analysis on 19 HCC and corresponding tissue samples. The data were analyzed considering events known to take place in early events of HCC development, such as abnormal regulation of Wnt/b-catenin and activation of receptor tyrosine kinases (RTKs). 31 proteins were selected for verification experiments. For this analysis, the second set of the patient cohort (31 HCC and corresponding tissue samples) was analyzed using selected (multiple) reaction monitoring (SRM/MRM). We present the overexpression of ATP-dependent RNA helicase (DDX39), Fibulin-5 (FBLN5), myristoylated alanine-rich C-kinase substrate (MARCKS), and Serpin H1 (SERPINH1) in HCC for the first time. We demonstrate Versican core protein (VCAN) to be significantly associated with well differentiated and low-stage HCC. We revealed for the first time the evidence of VCAN as a potential biomarker for early-HCC diagnosis.

  6. Simultaneous determination of F-beta-alanine and beta-alanine in plasma and urine with dual-column reversed-phase high-performance liquid chromatography

    NARCIS (Netherlands)

    van Kuilenburg, A. B.; Stroomer, A. E.; Peters, G. J.; van Gennip, A. H.

    2001-01-01

    F-beta-Alanine and beta-alanine were detected in plasma and urine samples with fluorescence detection of orthophthaldialdehyde derivatives of F-beta-alanine and beta-alanine after separation with dual-column reversed-phase HPLC. The detection limits of F-beta-alanine and beta-alanine in the HPLC

  7. Weight loss and elevated gluconeogenesis from alanine in lung cancer patients

    NARCIS (Netherlands)

    S. Leij-Halfwerk (Susanne); P.C. Dagnelie (Pieter); J.W.O. van den Berg (Willem); J.L.D. Wattimena (Josias); C.H. Hordijk-Luijk; J.H.P. Wilson (Paul)

    2000-01-01

    textabstractBACKGROUND: The role of gluconeogenesis from protein in the pathogenesis of weight loss in lung cancer is unclear. OBJECTIVE: Our aim was to study gluconeogenesis from alanine in lung cancer patients and to analyze its relation to the degree of weight loss.

  8. Water-resistant alanine-EPR dosimeter alanpol

    International Nuclear Information System (INIS)

    Peimel-Stuglik, Zofia; Bryl-Sandelewska, Teresa; Mirkowski, Krzysztof; Sartowska, Bozena

    2009-01-01

    Alanpol-water-resistant alanine-electron paramagnetic resonance (EPR) dosimeter consisted of cheap DL-α-alanine (9.8-27%) suspended in polyethylene matrix was presented. The rods (O=2.8 mm) were extruded from a hot mixture of alanine and low-density polyethylene. No grinding or crushing was used for alanine preparation. An orientation of cylindrical crystals, up to 300 μm long in parallel to the rod axis was responsible for some differences in a shape of EPR signal. These differences had no negative consequences for dosimetric applications. Signal-to-dose dependence was linear up to 10 kGy. Standard deviation of dosimetric answer was up to ±1.8% and up to 2.4% for dosimeters with 9.8% and 27% of DL-α-alanine, respectively. Irradiation temperature coefficient for both dosimeters was equal 0.2%/ deg. C. Hydrophobic properties of polyethylene and small number of alanine crystals located on the surface of the rod led to high resistance of dosimeters to water and humidity. The 24 h soaking of irradiated dosimeters in liquid water-reduced EPR signals by 3-4% and by 2-3% for dosimeters with 27% and 9.8% of DL-α-alanine, respectively. Three month storage time of irradiated dosimeters in room conditions decreases EPR signal for ∼3%.

  9. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    Science.gov (United States)

    Jessen, Holly Jean [Chanhassen, MN; Liao, Hans H [Eden Prairie, MN; Gort, Steven John [Apple Valley, MN; Selifonova, Olga V [Plymouth, MN

    2011-10-04

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  10. Alanine-polymer dosemeter of ionizing radiation

    International Nuclear Information System (INIS)

    Tomasinski, Z.; Mirkowski, K.; Panta, P.; Stachowicz, W.

    1994-01-01

    The method of chemical preparation of alanine-copolymer of ethylene and vinyl acetate has been worked out. The material has been in a form of rods. The content of alanine has not exceeded 30%. The ESR signal of alanine radicals has been detected after exposition to ionizing radiation. The dose-response relationship has been presented

  11. Alanine transaminase (ALT) blood test

    Science.gov (United States)

    ... gov/ency/article/003473.htm Alanine transaminase (ALT) blood test To use the sharing features on this page, please enable JavaScript. The alanine transaminase (ALT) blood test measures the level of the enzyme ALT in ...

  12. Staphylococcus aureus MurC participates in L-alanine recognition via histidine 343, a conserved motif in the shallow hydrophobic pocket.

    Science.gov (United States)

    Kurokawa, Kenji; Nishida, Satoshi; Ishibashi, Mihoko; Mizumura, Hikaru; Ueno, Kohji; Yutsudo, Takashi; Maki, Hideki; Murakami, Kazuhisa; Sekimizu, Kazuhisa

    2008-03-01

    UDP-N-acetylmuramic acid:L-alanine ligase that is encoded by the murC gene, is indispensable for bacterial peptidoglycan biosynthesis and an important target for the development of antibacterial agents. Structure of MurC ligase with substrates has been described, however, little validation via studying the effects of mutations on the structure of MurC has been performed. In this study, we carried out a functional in vitro and in vivo characterization of Staphylococcus aureus MurCH343Y protein that has a temperature-sensitive mutation of a conserved residue in the predicted shallow hydrophobic pocket that holds a short L-alanine side chain. Purified H343Y and wild-type MurC had K(m) values for L-alanine of 3.2 and 0.44 mM, respectively, whereas there was no significant difference in their K(m) values for ATP and UDP-N-acetylmuramic acid, suggesting the specific alteration of L-alanine recognition in MurCH343Y protein. In a synthetic medium that excluded L-alanine, S. aureus murCH343Y mutant cells showed an allele-specific slow growth phenotype that was suppressed by addition of L-alanine. These results suggest that His343 of S. aureus MurC is essential for high-affinity binding to L-alanine both in vitro and in vivo and provide experimental evidence supporting the structural information of MurC ligase.

  13. Protection against hyperthermic cell killing by alanine

    International Nuclear Information System (INIS)

    Cunningham, A.; Henle, K.J.; Moss, A.J.; Nagle, W.A.

    1987-01-01

    Compounds capable of protecting cells against hyperthermia may provide new insights into potential mechanisms of thermotolerance and cellular heat death. The authors characterized heat protection by alanine and related compounds as a function of concentration, temperature and preincubation time. Alanine was added either to complete medium or to HBSS before hyperthermia. Maximal heat protection required 3 hr, 37 0 ; longer preincubation intervals resulted in lower levels of protection. Addition of alanine to medium after hyperthermia had no protective effect. Protection was concentration dependent with a 20- or 200-fold increase in cell survival after 40 min, 45 0 C at 60 mM in medium or in HBSS, respectively. Higher alanine concentrations up to 120mM did not significantly increase heat protection. A 45 0 -heat survival curve showed that 100mM alanine increased the D/sub q/ by approx. 12 min with little change in the D/sub o/. Hyperthermia of 1 hr at temperatures between 42 0 and 45 0 indicated that 100mM alanine shifted the isotoxic temperature by 0.5 Celsius degrees. Polymers of either L or D,L alanine and related compounds, like pyruvate, also protected cells against heat killing. These results indicate that heat protection by alanine shows characteristics that are not shared by polyhydroxy compounds

  14. Isotopic effects in mechanistic studies of biotransformations of fluorine derivatives of L-alanine catalysed by L-alanine dehydrogenase

    International Nuclear Information System (INIS)

    Szymańska-Majchrzak, Jolanta; Pałka, Katarzyna; Kańska, Marianna

    2017-01-01

    Synthesis of 3-fluoro-[2- 2 H]-L-alanine (3-F-[ 2 H]-L-Ala) in reductive amination of 3-fluoropyruvic acid catalysed by L-alanine dehydrogenase (AlaDH) was described. Fluorine derivative was used to study oxidative deamination catalysed by AlaDH applied kinetic (for 3-F-L-Ala in H 2 O - KIE’s on V max : 1.1; on V max /K M : 1.2; for 3-F-L-Ala in 2 H 2 O – on V max : 1.4; on V max /K M : 2.1) and solvent isotope effect methods (for 3-F-L-Ala - SIE’s on V max : 1.0; on V max /K M : 0.87; for 3-F-[2- 2 H]-L-Ala – on V max : 1.4; on V max /K M : 1.5). Studies explain some details of reaction mechanism. - Highlights: • Synthesis of 3-fluoro-[2- 2 H]-L-alanine was performed. • The reactions were catalysed using the enzyme L-alanine dehydrogenase. • Performed reactions involved fluorinated analogues of L-alanine. • Solvent isotope effects of deuterium were determined. • Kinetic isotope effects were determined for obtained 3-fluoro-L-alanine. • The mechanism of reaction catalysed by L-alanine dehydrogenase was proposed.

  15. Why are proteins with glutamine- and asparagine-rich regions associated with protein misfolding diseases?

    Energy Technology Data Exchange (ETDEWEB)

    Cruzeiro, Leonor [CCMAR and FCT, University of Algarve, Campus de Gambelas, 8000 Faro (Portugal)

    2005-12-21

    The possibility that vibrational excited states (VESs) are the drivers of protein folding and function (the VES hypothesis) is explored to explain the reason why Gln- and Asn-rich proteins are associated with degenerative diseases. The Davydov/Scott model is extended to describe energy transfer from the water solution to the protein and vice versa. Computer simulations show that, on average, Gln and Asn residues lead to an initial larger absorption of energy from the environment to the protein, something that can explain the greater structural instability of prions. The sporadic, inherited and infectious character of prion diseases is discussed in the light of the VES hypothesis. An alternative treatment for prion diseases is suggested.

  16. Capture ELISA for IgM antibodies against Plasmodium falciparum glutamate rich protein

    DEFF Research Database (Denmark)

    Dziegiel, M; Borre, Mette; Petersen, E

    1992-01-01

    This report describes a novel mu chain capture ELISA for the detection of IgM antibodies against a Plasmodium falciparum antigen. A fragment of the 220 kDa P. falciparum glutamate rich protein containing amino acid residues 489-1271 was expressed in E. coli as a recombinant chimeric beta-galactos......This report describes a novel mu chain capture ELISA for the detection of IgM antibodies against a Plasmodium falciparum antigen. A fragment of the 220 kDa P. falciparum glutamate rich protein containing amino acid residues 489-1271 was expressed in E. coli as a recombinant chimeric beta...

  17. Calcium Sensing Receptor Mutations Implicated in Pancreatitis and Idiopathic Epilepsy Syndrome Disrupt an Arginine-rich Retention Motif

    Science.gov (United States)

    Stepanchick, Ann; McKenna, Jennifer; McGovern, Olivia; Huang, Ying; Breitwieser, Gerda E.

    2010-01-01

    Calcium sensing receptor (CaSR) mutations implicated in familial hypocalciuric hypercalcemia, pancreatitis and idiopathic epilepsy syndrome map to an extended arginine-rich region in the proximal carboxyl terminus. Arginine-rich motifs mediate endoplasmic reticulum retention and/or retrieval of multisubunit proteins so we asked whether these mutations, R886P, R896H or R898Q, altered CaSR targeting to the plasma membrane. Targeting was enhanced by all three mutations, and Ca2+-stimulated ERK1/2 phosphorylation was increased for R896H and R898Q. To define the role of the extended arginine-rich region in CaSR trafficking, we independently determined the contributions of R890/R891 and/or R896/K897/R898 motifs by mutation to alanine. Disruption of the motif(s) significantly increased surface expression and function relative to wt CaSR. The arginine-rich region is flanked by phosphorylation sites at S892 (protein kinase C) and S899 (protein kinase A). The phosphorylation state of S899 regulated recognition of the arginine-rich region; S899D showed increased surface localization. CaSR assembles in the endoplasmic reticulum as a covalent disulfide-linked dimer and we determined whether retention requires the presence of arginine-rich regions in both subunits. A single arginine-rich region within the dimer was sufficient to confer intracellular retention comparable to wt CaSR. We have identified an extended arginine-rich region in the proximal carboxyl terminus of CaSR (residues R890 - R898) which fosters intracellular retention of CaSR and is regulated by phosphorylation. Mutation(s) identified in chronic pancreatitis and idiopathic epilepsy syndrome therefore increase plasma membrane targeting of CaSR, likely contributing to the altered Ca2+ signaling characteristic of these diseases. PMID:20798521

  18. NMR characterization of HtpG, the E. coli Hsp90, using sparse labeling with 13C-methyl alanine.

    Science.gov (United States)

    Pederson, Kari; Chalmers, Gordon R; Gao, Qi; Elnatan, Daniel; Ramelot, Theresa A; Ma, Li-Chung; Montelione, Gaetano T; Kennedy, Michael A; Agard, David A; Prestegard, James H

    2017-07-01

    A strategy for acquiring structural information from sparsely isotopically labeled large proteins is illustrated with an application to the E. coli heat-shock protein, HtpG (high temperature protein G), a 145 kDa dimer. It uses 13 C-alanine methyl labeling in a perdeuterated background to take advantage of the sensitivity and resolution of Methyl-TROSY spectra, as well as the backbone-centered structural information from 1 H- 13 C residual dipolar couplings (RDCs) of alanine methyl groups. In all, 40 of the 47 expected crosspeaks were resolved and 36 gave RDC data. Assignments of crosspeaks were partially achieved by transferring assignments from those made on individual domains using triple resonance methods. However, these were incomplete and in many cases the transfer was ambiguous. A genetic algorithm search for consistency between predictions based on domain structures and measurements for chemical shifts and RDCs allowed 60% of the 40 resolved crosspeaks to be assigned with confidence. Chemical shift changes of these crosspeaks on adding an ATP analog to the apo-protein are shown to be consistent with structural changes expected on comparing previous crystal structures for apo- and complex- structures. RDCs collected on the assigned alanine methyl peaks are used to generate a new solution model for the apo-protein structure.

  19. New directions towards structure formation and stability of protein-rich foods from globular proteins

    NARCIS (Netherlands)

    Purwanti, N.; Goot, van der A.J.; Boom, R.M.; Vereijken, J.M.

    2010-01-01

    Concentrated protein-rich foods have strong potential to be developed in terms of health and well-being roles. Unfortunately, limitations in creating products with the rights texture and stability hinder the use of those products by consumers. Main reason is that the formation of micro- and

  20. Alanine substitutions in the GXXXG motif alter C99 cleavage by γ-secretase but not its dimerization.

    Science.gov (United States)

    Higashide, Hidekazu; Ishihara, Seiko; Nobuhara, Mika; Ihara, Yasuo; Funamoto, Satoru

    2017-03-01

    The amyloid β (Aβ) protein is a major component of senile plaques, one of the neuropathological hallmarks of Alzheimer's disease. Amyloidogenic processing of amyloid precursor protein (APP) by β- and γ-secretases leads to production of Aβ. APP contains tandem triple repeats of the GXXXG motif in its extracellular juxtamembrane and transmembrane regions. It is reported that the GXXXG motif is related to protein-protein interactions, but it remains controversial whether the GXXXG motif in APP is involved in substrate dimerization and whether dimerization affects γ-secretase-dependent cleavage. Therefore, the relationship between the GXXXG motifs, substrate dimerization, and γ-secretase-dependent cleavage sites remains unclear. Here, we applied blue native poly acrylamide gel electrophoresis to examine the effect of alanine substitutions within the GXXXG motifs of APP carboxyl terminal fragment (C99) on its dimerization and Aβ production. Surprisingly, alanine substitutions in the motif failed to alter C99 dimerization in detergent soluble state. Cell-based and solubilized γ-secretase assays demonstrated that increasing alanine substitutions in the motif tended to decrease long Aβ species such as Aβ42 and Aβ43 and to increase in short Aβ species concomitantly. Our data suggest that the GXXXG motif is crucial for Aβ production, but not for C99 dimerization. © 2016 International Society for Neurochemistry.

  1. Quantitative analysis and prediction of curvature in leucine-rich repeat proteins.

    Science.gov (United States)

    Hindle, K Lauren; Bella, Jordi; Lovell, Simon C

    2009-11-01

    Leucine-rich repeat (LRR) proteins form a large and diverse family. They have a wide range of functions most of which involve the formation of protein-protein interactions. All known LRR structures form curved solenoids, although there is large variation in their curvature. It is this curvature that determines the shape and dimensions of the inner space available for ligand binding. Unfortunately, large-scale parameters such as the overall curvature of a protein domain are extremely difficult to predict. Here, we present a quantitative analysis of determinants of curvature of this family. Individual repeats typically range in length between 20 and 30 residues and have a variety of secondary structures on their convex side. The observed curvature of the LRR domains correlates poorly with the lengths of their individual repeats. We have, therefore, developed a scoring function based on the secondary structure of the convex side of the protein that allows prediction of the overall curvature with a high degree of accuracy. We also demonstrate the effectiveness of this method in selecting a suitable template for comparative modeling. We have developed an automated, quantitative protocol that can be used to predict accurately the curvature of leucine-rich repeat proteins of unknown structure from sequence alone. This protocol is available as an online resource at http://www.bioinf.manchester.ac.uk/curlrr/.

  2. Experiences with alanine dosimetry in afterloading brachytherapy

    International Nuclear Information System (INIS)

    Eberhardt, H.-J.; Gohs, U.

    1996-01-01

    At the present, the most commonly used dosimetry for radiotherapy applications are ionisation chambers and thermoluminescent dosimeters (TLD). However, there are some undesirable characteristics of these dosimetry systems, such as large detection volume (ionisation chamber) as well as fading of the radiation induced signal with time and destructive readout (TLG). The present study is an investigation into the use of the alanine/ESR dosimetry in fractionated afterloading brachytherapy during the whole radiotherapy course. There are some qualities which make alanine dosimetry attractive. These are the linear energy response, low fading under standard conditions, and the nondestructive readout. Thus the alanine dosimetry makes possible cumulative dose measurements during the radiotherapy course and an archival storage. By ionizing radiation (gamma, e, n, p, charged particles) free radicals (unpaired electrons) are produced in the amino acid alanine. The continuous wave electron spin resonance (ESR) spectroscopy is used to determine the number of free radicals, which is proportional to the absorbed dose and the alanine content of the dosimeter. The ESR measurements were made at room temperature using a Bruker EPR analyzer EMS-104. The dosimeters used in the test are alanine pellets (23.72 mg weight, 4.9 mm diameter, 1 mm height) as well as flexible alanine film dosimeters (thickness about 500 μm). The dosimeters consist of a blend of L-alpha-alanine and a binder. The alanine content of the pellets and the film dosimeters is about 88 % and 50 % by weight, respectively. The dosimeters for the calculation of the dose-effect-relationship were irradiated at the Physical-Technical Bundesanstalt in Braunschweig by a standard 60Co source. The maximum deviation from the calculated linear function is about 0.12 Gy in the dose range up to 80 Gy. The goal of medical applications was the superficial dose measurement in afterloading brachytherapy during the radiotherapy course in

  3. Alanine increases blood pressure during hypotension

    Science.gov (United States)

    Conlay, L. A.; Maher, T. J.; Wurtman, R. J.

    1990-01-01

    The effect of L-alanine administration on blood pressure (BP) during haemorrhagic shock was investigated using anesthetized rats whose left carotid arteries were cannulated for BP measurement, blood removal, and drug administration. It was found that L-alanine, in doses of 10, 25, 50, 100, and 200 mg/kg, increased the systolic BP of hypotensive rats by 38 to 80 percent (while 100 mg/kg pyruvate increased BP by only 9.4 mmhg, not significantly different from saline). The results suggest that L-alanine might influence cardiovascular function.

  4. Expression, crystallization and preliminary X-ray crystallographic analysis of Xoo0352, d-alanine-d-alanine ligase A, from Xanthomonas oryzae pv. oryzae

    International Nuclear Information System (INIS)

    Doan, Thanh Thi Ngoc; Kim, Jin-Kwang; Kim, Hyesoon; Ahn, Yeh-Jin; Kim, Jeong-Gu; Lee, Byoung-Moo; Kang, Lin-Woo

    2008-01-01

    Xoo0352, which encodes d-alanine-d-alanine ligase A (DdlA), from X. oryzae pv. oryzae was cloned, purified and crystallized. Preliminary X-ray crystallographic analysis of DdlA crystals was performed. Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight (BB), which is one of the most devastating diseases of rice in most rice-growing countries. d-Alanine-d-alanine ligase A (DdlA), coded by the Xoo0352 gene, was expressed, purified and crystallized. DdlA is an enzyme that is involved in d-alanine metabolism and the biosynthesis of an essential bacterial peptidoglycan precursor, in which it catalyzes the formation of d-alanyl-d-alanine from two d-alanines, and is thus an attractive antibacterial drug target against Xoo. The DdlA crystals diffracted to 2.3 Å resolution and belonged to the primitive tetragonal space group P4 3 2 1 2, with unit-cell parameters a = b = 83.0, c = 97.6 Å. There is one molecule in the asymmetric unit, with a corresponding V M of 1.88 Å 3 Da −1 and a solvent content of 34.6%. The initial structure was determined by molecular replacement using d-alanine-d-alanine ligase from Staphylococcus aureus as a template model

  5. Racemization of alanine by the alanine racemases from Salmonella typhimurium and Bacillus stearothermophilus: energetic reaction profiles

    International Nuclear Information System (INIS)

    Faraci, W.S.; Walsh, C.T.

    1988-01-01

    Alanine racemases are bacterial pyridoxal 5'-phosphate (PLP) dependent enzymes providing D-alanine as an essential building block for biosynthesis of the peptidoglycan layer of the cell wall. Two isozymic alanine racemases, encoded by the dadB gene and the alr gene, from the Gram-negative mesophilic Salmonella typhimurium and one from the Gram-positive thermophilic Bacillus stearothermophilus have been examined for the racemization mechanism. Substrate deuterium isotope effects and solvent deuterium isotope effects have been measured in both L → D and D→ L directions for all three enzymes to assess the degree to which abstraction of the α-proton or protonation of substrate PLP carbanion is limiting in catalysis. Additionally, experiments measuring internal return of α- 3 H from substrate to product and solvent exchange/substrate conversion experiments in 3 H 2 O have been used with each enzyme to examine the partitioning of substrate PLP carbanion intermediates and to obtain the relative heights of kinetically significant energy barriers in alanine racemase catalysis

  6. Arginine-rich intracellular delivery peptides noncovalently transport protein into living cells

    International Nuclear Information System (INIS)

    Wang, Y.-H.; Chen, C.-P.; Chan, M.-H.; Chang, M.; Hou, Y.-W.; Chen, H.-H.; Hsu, H.-R.; Liu, Kevin; Lee, H.-J.

    2006-01-01

    Plasma membranes of plant or animal cells are generally impermeable to peptides or proteins. Many basic peptides have previously been investigated and covalently cross-linked with cargoes for cellular internalization. In the current study, we demonstrate that arginine-rich intracellular delivery (AID) peptides are able to deliver fluorescent proteins or β-galactosidase enzyme into animal and plant cells, as well as animal tissue. Cellular internalization and transdermal delivery of protein could be mediated by effective and nontoxic AID peptides in a neither fusion protein nor conjugation fashion. Therefore, noncovalent AID peptides may provide a useful strategy to have active proteins function in living cells and tissues in vivo

  7. Imaging analysis of direct alanine uptake by rice seedlings

    International Nuclear Information System (INIS)

    Nihei, Naoto; Masuda, Sayaka; Rai, Hiroki; Nakanishi, Tomoko M.

    2008-01-01

    We presented alanine, a kind of amino acids, uptake by a rice seedling to study the basic mechanism of the organic fertilizer effectiveness in organic farming. The rice grown in the culture solution containing alanine as a nitrogen source absorbed alanine approximately two times faster than that grown with NH 4 + from analysis of 14 C-alanine images by Imaging Plate method. It was suggested that the active transport ability of the rice seeding was induced in roots by existence of alanine in the rhizosphere. The alanine uptake images of the rice roots were acquired every 5 minutes successively by the real-time autoradiography system we developed. The analysis of the successive images showed that alanine uptake was not uniform throughout the root but especially active at the root tip. (author)

  8. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.

    Science.gov (United States)

    Zerbe, Brandon S; Hall, David R; Vajda, Sandor; Whitty, Adrian; Kozakov, Dima

    2012-08-27

    In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.

  9. Structures of an alanine racemase from Bacillus anthracis (BA0252) in the presence and absence of (R)-1-aminoethylphosphonic acid (l-Ala-P)

    International Nuclear Information System (INIS)

    Au, Kinfai; Ren, Jingshan; Walter, Thomas S.; Harlos, Karl; Nettleship, Joanne E.; Owens, Raymond J.; Stuart, David I.; Esnouf, Robert M.

    2008-01-01

    Structures of BA0252, an alanine racemase from B. anthracis, in the presence and absence of the inhibitor (R)-1-aminoethylphosphonic acid (l-Ala-P) and determined by X-ray crystallography to resolutions of 2.1 and 1.47 Å, respectively, are described. Bacillus anthracis, the causative agent of anthrax, has been targeted by the Oxford Protein Production Facility to validate high-throughput protocols within the Structural Proteomics in Europe project. As part of this work, the structures of an alanine racemase (BA0252) in the presence and absence of the inhibitor (R)-1-aminoethylphosphonic acid (l-Ala-P) have determined by X-ray crystallo@@graphy to resolutions of 2.1 and 1.47 Å, respectively. Difficulties in crystallizing this protein were overcome by the use of reductive methylation. Alanine racemase has attracted much interest as a possible target for anti-anthrax drugs: not only is d-alanine a vital component of the bacterial cell wall, but recent studies also indicate that alanine racemase, which is accessible in the exosporium, plays a key role in inhibition of germination in B. anthracis. These structures confirm the binding mode of l-Ala-P but suggest an unexpected mechanism of inhibition of alanine racemase by this compound and could provide a basis for the design of improved alanine racemase inhibitors with potential as anti-anthrax therapies

  10. Alanine metabolism in acute falciparum malaria

    NARCIS (Netherlands)

    Pukrittayakamee, S.; Krishna, S.; ter Kuile, F.; Wilaiwan, O.; Williamson, D. H.; White, N. J.

    2002-01-01

    We investigated the integrity of the gluconeogenic pathway in severe malaria using alanine metabolism as a measure. Alanine disposition and liver blood flow, assessed by indocyanine green (ICG) clearance, were measured simultaneously in 10 patients with falciparum malaria (six severe and four

  11. Calcium Sensing by Recoverin: Effect of Protein Conformation on Ion Affinity.

    Science.gov (United States)

    Timr, Štěpán; Kadlec, Jan; Srb, Pavel; Ollila, O H Samuli; Jungwirth, Pavel

    2018-04-05

    The detailed functional mechanism of recoverin, which acts as a myristoyl switch at the rod outer-segment disk membrane, is elucidated by direct and replica-exchange molecular dynamics. In accord with NMR structural evidence and calcium binding assays, simulations point to the key role of enhanced calcium binding to the EF3 loop of the semiopen state of recoverin as compared to the closed state. This 2-4-order decrease in calcium dissociation constant stabilizes the semiopen state in response to the increase of cytosolic calcium concentration in the vicinity of recoverin. A second calcium ion then binds to the EF2 loop and, consequently, the structure of the protein changes from the semiopen to the open state. The latter has the myristoyl chain extruded to the cytosol, ready to act as a membrane anchor of recoverin.

  12. Alanine EPR dosimetry of therapeutic irradiators

    International Nuclear Information System (INIS)

    Bugay, O.; Bartchuk, V.; Kolesnik, S.; Mazin, M.; Gaponenko, H.

    1999-01-01

    The high-dose alanine EPR dosimetry is a very precise method in the dose range 1-100 kGy. The system is used generally as the standard high-dose transfer dosimetry in many laboratories. This is comparatively expensive technique so it is important to use it as a more universal dosimetry system also in the middle and low dose ranges. The problems of the middle-dose alanine dosimetry are discussed and the solution of several problems is proposed. The alanine EPR dosimetry has been applied to the dose measurements of medical irradiators in the Kiev City Oncology Center. (author)

  13. Resistance to mitomycin C requires direct interaction between the Fanconi anemia proteins FANCA and FANCG in the nucleus through an arginine-rich domain.

    Science.gov (United States)

    Kruyt, F A; Abou-Zahr, F; Mok, H; Youssoufian, H

    1999-11-26

    Fanconi anemia (FA) is a genetically heterogeneous disorder characterized by bone marrow failure, birth defects, and chromosomal instability. Because FA cells are sensitive to mitomycin C (MMC), FA gene products could be involved in cellular defense mechanisms. The FANCA and FANCG proteins deficient in FA groups A and G interact directly with each other. We have localized the mutual interaction domains of these proteins to amino acids 18-29 of FANCA and to two noncontiguous carboxyl-terminal domains of FANCG encompassing amino acids 400-475 and 585-622. Site-directed mutagenesis of FANCA residues 18-29 revealed a novel arginine-rich interaction domain (RRRAWAELLAG). By alanine mutagenesis, Arg(1), Arg(2), and Leu(8) but not Arg(3), Trp(5), and Glu(7) appeared to be critical for binding to FANCG. Similar immunolocalization for FANCA and FANCG suggested that these proteins interact in vivo. Moreover, targeting of FANCA to the nucleus or the cytoplasm with nuclear localization and nuclear export signals, respectively, showed concordance between the localization patterns of FANCA and FANCG. The complementation function of FANCA was abolished by mutations in its FANCG-binding domain. Conversely, stable expression of FANCA mutants encoding intact FANCG interaction domains induced hypersensitivity to MMC in HeLa cells. These results demonstrate that FANCA-FANCG complexes are required for cellular resistance to MMC. Because the FANCC protein deficient in FA group C works within the cytoplasm, we suggest that FANCC and the FANCA-FANCG complexes suppress MMC cytotoxicity within distinct cellular compartments.

  14. Study on the EPR/dosimetric properties of some substituted alanines

    International Nuclear Information System (INIS)

    Gancheva, Veselka; Sagstuen, Einar; Yordanov, Nicola D.

    2006-01-01

    Polycrystalline phenyl-alanine and perdeuterated l-α-alanine (l-α-alanine-d 4 ) were studied as potential high-energy radiation-sensitive materials (RSM) for solid state/EPR dosimetry. It was found that phenyl-alanine exhibits a linear dose response in the dose region 0.1-17kGy. However, phenyl-alanine is about 10 times less sensitive to γ-irradiation than standard l-α-alanine irradiated at the same doses. Moreover, the EPR response from phenyl-alanine is unstable and, independent of the absorbed dose, decreases by about 50% within 20 days after irradiation upon storage at room temperature. γ-irradiated polycrystalline perdeuterated l-α-alanine (CD 3 CD(NH 2 )COOH) has not previously been studied at room temperature by EPR spectroscopy. The first part of the present analysis was with respect to the structure of the EPR spectrum. By spectrum simulations, the presence of at least two radiation induced free radicals, R 1 =CH 3 C*(H)COOH and R 2 =H 3 N + -C*(CH 3 )COO - , was confirmed very clearly. Both these radicals were suggested previously from EPR and ENDOR studies of standard alanine crystals. The further investigations into the potential use of alanine-d 4 as RSM, after choosing optimal EPR spectrometer settings parameters for this purpose, show that it is ca. two times more sensitive than standard l-α-alanine

  15. Structure-Function Analysis of Cf-9, a Receptor-Like Protein with Extracytoplasmic Leucine-Rich Repeats

    NARCIS (Netherlands)

    Hoorn, van der R.A.L.; Wulff, B.B.H.; Rivas, S.; Durrant, M.C.; Ploeg, van der A.; Wit, de P.J.G.M.; Jones, J.D.G.

    2005-01-01

    The tomato (Lycopersicon pimpinellifolium) resistance protein Cf-9 belongs to a large class of plant proteins with extracytoplasmic Leu-rich repeats (eLRRs). eLRR proteins play key roles in plant defense and development, mainly as receptor-like proteins or receptor-like kinases, conferring

  16. Autoantibodies in infectious mononucleosis have specificity for the glycine-alanine repeating region of the Epstein-Barr virus nuclear antigen

    Science.gov (United States)

    1987-01-01

    Viruses have been postulated to be involved in the induction of autoantibodies by: autoimmunization with tissue proteins released by virally induced tissue damage; immunization with virally encoded antigens bearing molecular similarities to normal tissue proteins; or nonspecific (polyclonal) B cell stimulation by the infection. Infectious mononucleosis (IM) is an experiment of nature that provides the opportunity for examining these possibilities. We show here that IgM antibodies produced in this disease react with at least nine normal tissue proteins, in addition to the virally encoded Epstein-Barr nuclear antigen (EBNA-1). The antibodies are generated to configurations in the glycine-alanine repeat region of EBNA-1 and are crossreactive with the normal tissue proteins through similar configurations, as demonstrated by the effectiveness of a synthetic glycine-alanine peptide in inhibiting the reactions. The antibodies are absent in preillness sera and gradually disappear over a period of months after illness, being replaced by IgG anti-EBNA-1 antibodies that do not crossreact with the normal tissue proteins but that are still inhibited by the glycine-alanine peptide. These findings are most easily explained by either a molecular mimicry model of IgM autoantibody production or by the polyclonal activation of a germline gene for a crossreactive antibody. It also indicates a selection of highly specific, non-crossreactive anti-EBNA-1 antibodies during IgM to IgG isotype switching. PMID:2435830

  17. Medical reference dosimetry using EPR measurements of alanine

    DEFF Research Database (Denmark)

    Helt-Hansen, Jakob; Rosendal, F.; Kofoed, I.M.

    2009-01-01

    Background. Electron spin resonance (EPR) is used to determine the absorbed dose of alanine dosimeters exposed to clinical photon beams in a solid-water phantom. Alanine is potentially suitable for medical reference dosimetry, because of its near water equivalence over a wide energy spectrum, low...... methods the proposed algorithm can be applied without normalisation of phase shifts caused by changes in the g-value of the cavity. The study shows that alanine dosimetry is a suitable candidate for medical reference dosimetry especially for quality control applications.......Background. Electron spin resonance (EPR) is used to determine the absorbed dose of alanine dosimeters exposed to clinical photon beams in a solid-water phantom. Alanine is potentially suitable for medical reference dosimetry, because of its near water equivalence over a wide energy spectrum, low...

  18. A novel disulfide-rich protein motif from avian eggshell membranes.

    Directory of Open Access Journals (Sweden)

    Vamsi K Kodali

    2011-03-01

    Full Text Available Under the shell of a chicken egg are two opposed proteinaceous disulfide-rich membranes. They are fabricated in the avian oviduct using fibers formed from proteins that are extensively coupled by irreversible lysine-derived crosslinks. The intractability of these eggshell membranes (ESM has slowed their characterization and their protein composition remains uncertain. In this work, reductive alkylation of ESM followed by proteolytic digestion led to the identification of a cysteine rich ESM protein (abbreviated CREMP that was similar to spore coat protein SP75 from cellular slime molds. Analysis of the cysteine repeats in partial sequences of CREMP reveals runs of remarkably repetitive patterns. Module a contains a C-X(4-C-X(5-C-X(8-C-X(6 pattern (where X represents intervening non-cysteine residues. These inter-cysteine amino acid residues are also strikingly conserved. The evolutionarily-related module b has the same cysteine spacing as a, but has 11 amino acid residues at its C-terminus. Different stretches of CREMP sequences in chicken genomic DNA fragments show diverse repeat patterns: e.g. all a modules; an alternation of a-b modules; or an a-b-b arrangement. Comparable CREMP proteins are found in contigs of the zebra finch (Taeniopygia guttata and in the oviparous green anole lizard (Anolis carolinensis. In all these cases the long runs of highly conserved modular repeats have evidently led to difficulties in the assembly of full length DNA sequences. Hence the number, and the amino acid lengths, of CREMP proteins are currently unknown. A 118 amino acid fragment (representing an a-b-a-b pattern from a chicken oviduct EST library expressed in Escherichia coli is a well folded, highly anisotropic, protein with a large chemical shift dispersion in 2D solution NMR spectra. Structure is completely lost on reduction of the 8 disulfide bonds of this protein fragment. Finally, solid state NMR spectra suggest a surprising degree of order in intact

  19. Insight into the intermolecular recognition mechanism between Keap1 and IKKβ combining homology modelling, protein-protein docking, molecular dynamics simulations and virtual alanine mutation.

    Directory of Open Access Journals (Sweden)

    Zheng-Yu Jiang

    Full Text Available Degradation of certain proteins through the ubiquitin-proteasome pathway is a common strategy taken by the key modulators responsible for stress responses. Kelch-like ECH-associated protein-1(Keap1, a substrate adaptor component of the Cullin3 (Cul3-based ubiquitin E3 ligase complex, mediates the ubiquitination of two key modulators, NF-E2-related factor 2 (Nrf2 and IκB kinase β (IKKβ, which are involved in the redox control of gene transcription. However, compared to the Keap1-Nrf2 protein-protein interaction (PPI, the intermolecular recognition mechanism of Keap1 and IKKβ has been poorly investigated. In order to explore the binding pattern between Keap1 and IKKβ, the PPI model of Keap1 and IKKβ was investigated. The structure of human IKKβ was constructed by means of the homology modeling method and using reported crystal structure of Xenopus laevis IKKβ as the template. A protein-protein docking method was applied to develop the Keap1-IKKβ complex model. After the refinement and visual analysis of docked proteins, the chosen pose was further optimized through molecular dynamics simulations. The resulting structure was utilized to conduct the virtual alanine mutation for the exploration of hot-spots significant for the intermolecular interaction. Overall, our results provided structural insights into the PPI model of Keap1-IKKβ and suggest that the substrate specificity of Keap1 depend on the interaction with the key tyrosines, namely Tyr525, Tyr574 and Tyr334. The study presented in the current project may be useful to design molecules that selectively modulate Keap1. The selective recognition mechanism of Keap1 with IKKβ or Nrf2 will be helpful to further know the crosstalk between NF-κB and Nrf2 signaling.

  20. Alanine racemase mutants of Burkholderia pseudomallei and Burkholderia mallei and use of alanine racemase as a non-antibiotic-based selectable marker.

    Directory of Open Access Journals (Sweden)

    Sheryl L W Zajdowicz

    Full Text Available Burkholderia pseudomallei and Burkholderia mallei are category B select agents and must be studied under BSL3 containment in the United States. They are typically resistant to multiple antibiotics, and the antibiotics used to treat B. pseudomallei or B. mallei infections may not be used as selective agents with the corresponding Burkholderia species. Here, we investigated alanine racemase deficient mutants of B. pseudomallei and B. mallei for development of non-antibiotic-based genetic selection methods and for attenuation of virulence. The genome of B. pseudomallei K96243 has two annotated alanine racemase genes (bpsl2179 and bpss0711, and B. mallei ATCC 23344 has one (bma1575. Each of these genes encodes a functional enzyme that can complement the alanine racemase deficiency of Escherichia coli strain ALA1. Herein, we show that B. pseudomallei with in-frame deletions in both bpsl2179 and bpss0711, or B. mallei with an in-frame deletion in bma1575, requires exogenous D-alanine for growth. Introduction of bpsl2179 on a multicopy plasmid into alanine racemase deficient variants of either Burkholderia species eliminated the requirement for D-alanine. During log phase growth without D-alanine, the viable counts of alanine racemase deficient mutants of B. pseudomallei and B. mallei decreased within 2 hours by about 1000-fold and 10-fold, respectively, and no viable bacteria were present at 24 hours. We constructed several genetic tools with bpsl2179 as a selectable genetic marker, and we used them without any antibiotic selection to construct an in-frame ΔflgK mutant in the alanine racemase deficient variant of B. pseudomallei K96243. In murine peritoneal macrophages, wild type B. mallei ATCC 23344 was killed much more rapidly than wild type B. pseudomallei K96243. In addition, the alanine racemase deficient mutant of B. pseudomallei K96243 exhibited attenuation versus its isogenic parental strain with respect to growth and survival in murine

  1. Alanine Racemase Mutants of Burkholderia pseudomallei and Burkholderia mallei and Use of Alanine Racemase as a Non-Antibiotic-Based Selectable Marker

    Science.gov (United States)

    Zajdowicz, Sheryl L. W.; Jones-Carson, Jessica; Vazquez-Torres, Andres; Jobling, Michael G.; Gill, Ronald E.; Holmes, Randall K.

    2011-01-01

    Burkholderia pseudomallei and Burkholderia mallei are category B select agents and must be studied under BSL3 containment in the United States. They are typically resistant to multiple antibiotics, and the antibiotics used to treat B. pseudomallei or B. mallei infections may not be used as selective agents with the corresponding Burkholderia species. Here, we investigated alanine racemase deficient mutants of B. pseudomallei and B. mallei for development of non-antibiotic-based genetic selection methods and for attenuation of virulence. The genome of B. pseudomallei K96243 has two annotated alanine racemase genes (bpsl2179 and bpss0711), and B. mallei ATCC 23344 has one (bma1575). Each of these genes encodes a functional enzyme that can complement the alanine racemase deficiency of Escherichia coli strain ALA1. Herein, we show that B. pseudomallei with in-frame deletions in both bpsl2179 and bpss0711, or B. mallei with an in-frame deletion in bma1575, requires exogenous d-alanine for growth. Introduction of bpsl2179 on a multicopy plasmid into alanine racemase deficient variants of either Burkholderia species eliminated the requirement for d-alanine. During log phase growth without d-alanine, the viable counts of alanine racemase deficient mutants of B. pseudomallei and B. mallei decreased within 2 hours by about 1000-fold and 10-fold, respectively, and no viable bacteria were present at 24 hours. We constructed several genetic tools with bpsl2179 as a selectable genetic marker, and we used them without any antibiotic selection to construct an in-frame ΔflgK mutant in the alanine racemase deficient variant of B. pseudomallei K96243. In murine peritoneal macrophages, wild type B. mallei ATCC 23344 was killed much more rapidly than wild type B. pseudomallei K96243. In addition, the alanine racemase deficient mutant of B. pseudomallei K96243 exhibited attenuation versus its isogenic parental strain with respect to growth and survival in murine peritoneal macrophages

  2. Naturally Inspired Peptide Leads: Alanine Scanning Reveals an Actin-Targeting Thiazole Analogue of Bisebromoamide.

    Science.gov (United States)

    Johnston, Heather J; Boys, Sarah K; Makda, Ashraff; Carragher, Neil O; Hulme, Alison N

    2016-09-02

    Systematic alanine scanning of the linear peptide bisebromoamide (BBA), isolated from a marine cyanobacterium, was enabled by solid-phase peptide synthesis of thiazole analogues. The analogues have comparable cytotoxicity (nanomolar) to that of BBA, and cellular morphology assays indicated that they target the actin cytoskeleton. Pathway inhibition in human colon tumour (HCT116) cells was explored by reverse phase protein array (RPPA) analysis, which showed a dose-dependent response in IRS-1 expression. Alanine scanning reveals a structural dependence to the cytotoxicity, actin targeting and pathway inhibition, and allows a new readily synthesised lead to be proposed. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Impact of casein and egg white proteins on the structure of wheat gluten-based protein-rich food.

    Science.gov (United States)

    Wouters, Arno G B; Rombouts, Ine; Lagrain, Bert; Delcour, Jan A

    2016-02-01

    There is a growing interest in texturally and nutritionally satisfying vegetable alternatives to meat. Wheat gluten proteins have unique functional properties but a poor nutritional value in comparison to animal proteins. This study investigated the potential of egg white and bovine milk casein with well-balanced amino acid composition to increase the quality of wheat gluten-based protein-rich foods. Heating a wheat gluten (51.4 g)-water (100.0 mL) blend for 120 min at 100 °C increased its firmness less than heating a wheat gluten (33.0 g)-freeze-dried egg white (16.8 g)-water (100.0 mL) blend. In contrast, the addition of casein to the gluten-water blend negatively impacted firmness after heating. Firmness was correlated with loss of protein extractability in sodium dodecyl sulfate containing medium during heating, which was higher with egg white than with casein. Even more, heat-induced polymerization of the gluten-water blend with egg white but not with casein was greater than expected from the losses in extractability of gluten and egg white on their own. Structure formation was favored by mixing gluten with egg white but not with casein. These observations were linked to the intrinsic polymerization behavior of egg white and casein, but also to their interaction with gluten. Thus not all nutritionally suitable proteins can be used for enrichment of gluten-based protein-rich foods. © 2015 Society of Chemical Industry.

  4. On the existence of 'L-alanine cadmium bromide'.

    Science.gov (United States)

    Srinivasan, Bikshandarkoil R

    2013-12-01

    It is argued that the recently reported nonlinear optical crystal L-alanine cadmium bromide, grown by slow solvent evaporation method at room temperature [P. Ilayabarathi, J. Chandrasekaran, Spectrochim. Acta 96A (2012) 684-689] is the well-known L-alanine crystal. The isolation of L-alanine crystal is explained due to fractional crystallization. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Immunolocalization of keratin-associated beta-proteins (beta-keratins) in pad lamellae of geckos suggest that glycine-cysteine-rich proteins contribute to their flexibility and adhesiveness.

    Science.gov (United States)

    Alibardi, Lorenzo

    2013-03-01

    The epidermis of digital pads in geckos comprises superficial microornamentation from the oberhautchen layer that form long setae allowing these lizards to climb vertical surfaces. The beta-layer is reduced in pad lamellae but persists up to the apical free margin. Setae are made of different proteins including keratin-associated beta-proteins, formerly indicated as beta-keratins. In order to identify specific setal proteins the present ultrastructural study on geckos pad lamellae analyzes the immunolocalization of three beta-proteins previously found in the epidermis and adhesive setae of the green anolis. A protein rich in glycine but poor in cysteine (HgG5-like) is absent or masked in gecko pad lamellae. Another protein rich in glycine and cysteine (HgGC3-like) is weakly present in setae, oberhautchen and beta-layer. A glycine and cysteine medium rich beta-protein (HgGC10-like) is present in the lower part of the beta-layer but is absent in the oberhautchen, setae, and mesos layer. The latter two proteins may form intermolecular bonds that contribute to the flexibility of the corneous material sustaining the setae. The pliable alpha-layer present beneath the thin beta-layer and in the hinge region of the pad lamellae also contains HgGC10-like proteins. Based on the possibility that some HgGC3-like or other cys-rich beta-proteins are charged in the setae it is suggested that their charges influence the mechanism of adhesion increasing the induction of dipoles on the substrate and enhancing attractive van der Waals forces. Copyright © 2013 Wiley Periodicals, Inc.

  6. Solved? The reductive radiation chemistry of alanine.

    Science.gov (United States)

    Pauwels, Ewald; De Cooman, Hendrik; Waroquier, Michel; Hole, Eli O; Sagstuen, Einar

    2014-02-14

    The structural changes throughout the entire reductive radiation-induced pathway of l-α-alanine are solved on an atomistic level with the aid of periodic DFT and nudged elastic band (NEB) simulations. This yields unprecedented information on the conformational changes taking place, including the protonation state of the carboxyl group in the "unstable" and "stable" alanine radicals and the internal transformation converting these two radical variants at temperatures above 220 K. The structures of all stable radicals were verified by calculating EPR properties and comparing those with experimental data. The variation of the energy throughout the full radiochemical process provides crucial insight into the reason why these structural changes and rearrangements occur. Starting from electron capture, the excess electron quickly localizes on the carbon of a carboxyl group, which pyramidalizes and receives a proton from the amino group of a neighboring alanine molecule, forming a first stable radical species (up to 150 K). In the temperature interval 150-220 K, this radical deaminates and deprotonates at the carboxyl group, the detached amino group undergoes inversion and its methyl group sustains an internal rotation. This yields the so-called "unstable alanine radical". Above 220 K, triggered by the attachment of an additional proton on the detached amino group, the radical then undergoes an internal rotation in the reverse direction, giving rise to the "stable alanine radical", which is the final stage in the reductive radiation-induced decay of alanine.

  7. Postprandial triglyceride-rich lipoproteins regulate perilipin-2 and perilipin-3 lipid-droplet-associated proteins in macrophages.

    Science.gov (United States)

    Varela, Lourdes M; López, Sergio; Ortega-Gómez, Almudena; Bermúdez, Beatriz; Buers, Insa; Robenek, Horst; Muriana, Francisco J G; Abia, Rocío

    2015-04-01

    Lipid accumulation in macrophages contributes to atherosclerosis. Within macrophages, lipids are stored in lipid droplets (LDs); perilipin-2 and perilipin-3 are the main LD-associated proteins. Postprandial triglyceride (TG)-rich lipoproteins induce LD accumulation in macrophages. The role of postprandial lipoproteins in perilipin-2 and perilipin-3 regulation was studied. TG-rich lipoproteins (TRLs) induced the levels of intracellular TGs, LDs and perilipin-2 protein expression in THP-1 macrophages and in Apoe(-/-) mice bone-marrow-derived macrophages with low and high basal levels of TGs. Perilipin-3 was only synthesized in mice macrophages with low basal levels of TGs. The regulation was dependent on the fatty acid composition of the lipoproteins; monounsaturated and polyunsaturated fatty acids (PUFAs) more strongly attenuated these effects compared with saturated fatty acids. In THP-1 macrophages, immunofluorescence microscopy and freeze-fracture immunogold labeling indicated that the lipoproteins translocated perilipin-3 from the cytoplasm to the LD surface; only the lipoproteins that were rich in PUFAs suppressed this effect. Chemical inhibition showed that lipoproteins induced perilipin-2 protein expression through the peroxisome proliferator-activated nuclear receptor (PPAR) PPARα and PPARγ pathways. Overall, our data indicate that postprandial TRLs may be involved in atherosclerotic plaque formation through the regulation of perilipin-2 and perilipin-3 proteins in macrophages. Because the fatty acid composition of the lipoproteins is dependent on the type of fat consumed, the ingestion of olive oil, which is rich in monounsaturated fatty acids, and fish oil, which is rich in omega-3 fatty acids, can be considered a good nutritional strategy to reduce the risk of atherosclerosis by LD-associated proteins decrease. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Emerging pharmaceutical therapies for COPD

    Science.gov (United States)

    Lakshmi, Sowmya P; Reddy, Aravind T; Reddy, Raju C

    2017-01-01

    COPD, for which cigarette smoking is the major risk factor, remains a worldwide burden. Current therapies provide only limited short-term benefit and fail to halt progression. A variety of potential therapeutic targets are currently being investigated, including COPD-related proinflammatory mediators and signaling pathways. Other investigational compounds target specific aspects or complications of COPD such as mucus hypersecretion and pulmonary hypertension. Although many candidate therapies have shown no significant effects, other emerging therapies have improved lung function, pulmonary hypertension, glucocorticoid sensitivity, and/or the frequency of exacerbations. Among these are compounds that inhibit the CXCR2 receptor, mitogen-activated protein kinase/Src kinase, myristoylated alanine-rich C kinase substrate, selectins, and the endothelin receptor. Activation of certain transcription factors may also be relevant, as a large retrospective cohort study of COPD patients with diabetes found that the peroxisome proliferator-activated receptor γ (PPARγ) agonists rosiglitazone and pioglitazone were associated with reduced COPD exacerbation rate. Notably, several therapies have shown efficacy only in identifiable subgroups of COPD patients, suggesting that subgroup identification may become more important in future treatment strategies. This review summarizes the status of emerging therapeutic pharmaceuticals for COPD and highlights those that appear most promising. PMID:28790817

  9. A conserved residue of l-alanine dehydrogenase from Bacillus pseudofirmus, Lys-73, participates in the catalytic reaction through hydrogen bonding.

    Science.gov (United States)

    He, Guangzheng; Xu, Shujing; Wang, Shanshan; Zhang, Qing; Liu, Dong; Chen, Yuling; Ju, Jiansong; Zhao, Baohua

    2018-03-01

    A multiple protein sequence alignment of l-alanine dehydrogenases from different bacterial species revealed that five highly conserved amino acid residues Arg-15, Lys-73, Lys-75, His-96 and Asp-269 are potential catalytic residues of l-alanine dehydrogenase from Bacillus pseudofirmus OF4. In this study, recombinant OF4Ald and its mutants of five conserved residues were constructed, expressed in Escherichia coli, purified by His 6 -tag affinity column and gel filtration chromatography, structure homology modeling, and characterized. The purified protein OF4Ald displayed high specificity to l-alanine (15Umg -1 ) with an optimal temperature and pH of 40°C and 10.5, respectively. Enzymatic assay and activity staining in native gels showed that mutations at four conserved residue Arg-15, Lys-75, His-96 and Asp-269 (except residue Lys-73) resulted in a complete loss in enzymatic activity, which signified that these predicted active sites are indispensable for OF4Ald activity. In contrast, the mutant K73A resulted in 6-fold improvement in k cat /K m towards l-alanine as compared to the wild type protein. Further research of the residue Lys-73 substituted by various amino acids and structural modeling revealed that residue Lys-73 might be involved in the catalytic reaction of the enzyme by influencing the enzyme-substrate binding through the hydrogen-bonding interaction with conserved residue Lys-75. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The leucine-rich repeat structure.

    Science.gov (United States)

    Bella, J; Hindle, K L; McEwan, P A; Lovell, S C

    2008-08-01

    The leucine-rich repeat is a widespread structural motif of 20-30 amino acids with a characteristic repetitive sequence pattern rich in leucines. Leucine-rich repeat domains are built from tandems of two or more repeats and form curved solenoid structures that are particularly suitable for protein-protein interactions. Thousands of protein sequences containing leucine-rich repeats have been identified by automatic annotation methods. Three-dimensional structures of leucine-rich repeat domains determined to date reveal a degree of structural variability that translates into the considerable functional versatility of this protein superfamily. As the essential structural principles become well established, the leucine-rich repeat architecture is emerging as an attractive framework for structural prediction and protein engineering. This review presents an update of the current understanding of leucine-rich repeat structure at the primary, secondary, tertiary and quaternary levels and discusses specific examples from recently determined three-dimensional structures.

  11. Alanine-ESR dosimetry for radiotherapy IAEA experience

    International Nuclear Information System (INIS)

    Mehta, K.; Girzikowsky, R.; )

    1997-01-01

    At present, the most commonly used transfer dosimeters for radiotherapy applications are TL dosemeters. They are being used for intercomparison between SSDLs (about 70) and the IAEA dosimetry laboratory. However, there are some undesirable characteristics of this dosimetry system. We have a study in progress at the IAEA to evaluate the alanine-ESR systems as an alternative to TLDs. There are several desirable qualities which make alanine an attractive dosemeter. Preliminary data suggest that the alanine-ESR dosimetry system has the potential to replace TLDs for intercomparison amongst SSDLs in the therapy-level dose regions. (Author)

  12. Determination of chromium combined with DNA, RNA and proteins in chromium-rich brewer's yeast by NAA

    International Nuclear Information System (INIS)

    Ding, W.J.; Qian, Q.F.; Hou, X.L.; Feng, W.Y.; Chai, Z.F.

    2000-01-01

    The content of chromium in the DNA, RNA and protein fractions separated from chromium-rich and normal brewer's yeast was determined by neutron activation analysis (NAA). Our results show that the extracted relative amounts and concentrations of DNA, RNA and proteins have no significant difference for two types of yeast, but the chromium content in DNA, RNA and proteins fractions extracted from the chromium-rich yeast are substantially higher than those from the normal. In addition, the concentration of chromium in DNA is much higher than that in RNA and proteins. It is evident that the inorganic chromium compounds can enter the yeast cell during the yeast cultivation in the chromium-containing culture medium and are converted into organic chromium species, which are combined with DNA, RNA and proteins. (author)

  13. Metabolism of [15N]alanine in the ectomycorrhizal fungus Paxillus involutus

    International Nuclear Information System (INIS)

    Chalot, M.; Finlay, R.D.; Ek, H.; Söderström, B.

    1995-01-01

    Chalot, M., Finlay, R. D., Ek, H., and Söderström, B. 1995. Metabolism of [ 15 N]alanine in the ectomycorrhizal fungus Paxillus involutus. Experimental Mycology 19, 297-304. Alanine metabolism in the ectomycorrhizal fungus Paxillus involutus was investigated using [ 15 N]alanine. Short-term exposure of mycelial discs to [ 15 N]alanine showed that the greatest flow of 15 N was to glutamate and to aspartate. Levels of enrichment were as high as 15-20% for glutamate and 13-18% for aspartate, whereas that of alanine reached 30%. Label was also detected in the amino-N of glutamine and in serine and glycine, although at lower levels. Preincubation of mycelia with aminooxyacetate, an inhibitor of transamination reactions. resulted in complete inhibition of the flow of the label to glutamate, aspartate, and amino-N of glutamine, whereas [ 15 N]alanine rapidly accumulated. This evidence indicates the direct involvement of alanine aminotransferase for translocation of 15 N from alanine to glutamate. Alanine may be a convenient reservoir of both nitrogen and carbon. (author)

  14. Tuning electronic transport via hepta-alanine peptides junction by tryptophan doping.

    Science.gov (United States)

    Guo, Cunlan; Yu, Xi; Refaely-Abramson, Sivan; Sepunaru, Lior; Bendikov, Tatyana; Pecht, Israel; Kronik, Leeor; Vilan, Ayelet; Sheves, Mordechai; Cahen, David

    2016-09-27

    Charge migration for electron transfer via the polypeptide matrix of proteins is a key process in biological energy conversion and signaling systems. It is sensitive to the sequence of amino acids composing the protein and, therefore, offers a tool for chemical control of charge transport across biomaterial-based devices. We designed a series of linear oligoalanine peptides with a single tryptophan substitution that acts as a "dopant," introducing an energy level closer to the electrodes' Fermi level than that of the alanine homopeptide. We investigated the solid-state electron transport (ETp) across a self-assembled monolayer of these peptides between gold contacts. The single tryptophan "doping" markedly increased the conductance of the peptide chain, especially when its location in the sequence is close to the electrodes. Combining inelastic tunneling spectroscopy, UV photoelectron spectroscopy, electronic structure calculations by advanced density-functional theory, and dc current-voltage analysis, the role of tryptophan in ETp is rationalized by charge tunneling across a heterogeneous energy barrier, via electronic states of alanine and tryptophan, and by relatively efficient direct coupling of tryptophan to a Au electrode. These results reveal a controlled way of modulating the electrical properties of molecular junctions by tailor-made "building block" peptides.

  15. Distribution and Evolution of Yersinia Leucine-Rich Repeat Proteins

    Science.gov (United States)

    Hu, Yueming; Huang, He; Hui, Xinjie; Cheng, Xi; White, Aaron P.

    2016-01-01

    Leucine-rich repeat (LRR) proteins are widely distributed in bacteria, playing important roles in various protein-protein interaction processes. In Yersinia, the well-characterized type III secreted effector YopM also belongs to the LRR protein family and is encoded by virulence plasmids. However, little has been known about other LRR members encoded by Yersinia genomes or their evolution. In this study, the Yersinia LRR proteins were comprehensively screened, categorized, and compared. The LRR proteins encoded by chromosomes (LRR1 proteins) appeared to be more similar to each other and different from those encoded by plasmids (LRR2 proteins) with regard to repeat-unit length, amino acid composition profile, and gene expression regulation circuits. LRR1 proteins were also different from LRR2 proteins in that the LRR1 proteins contained an E3 ligase domain (NEL domain) in the C-terminal region or an NEL domain-encoding nucleotide relic in flanking genomic sequences. The LRR1 protein-encoding genes (LRR1 genes) varied dramatically and were categorized into 4 subgroups (a to d), with the LRR1a to -c genes evolving from the same ancestor and LRR1d genes evolving from another ancestor. The consensus and ancestor repeat-unit sequences were inferred for different LRR1 protein subgroups by use of a maximum parsimony modeling strategy. Structural modeling disclosed very similar repeat-unit structures between LRR1 and LRR2 proteins despite the different unit lengths and amino acid compositions. Structural constraints may serve as the driving force to explain the observed mutations in the LRR regions. This study suggests that there may be functional variation and lays the foundation for future experiments investigating the functions of the chromosomally encoded LRR proteins of Yersinia. PMID:27217422

  16. β-N-Methylamino-L-alanine (BMAA) perturbs alanine, aspartate and glutamate metabolism pathways in human neuroblastoma cells as determined by metabolic profiling.

    Science.gov (United States)

    Engskog, Mikael K R; Ersson, Lisa; Haglöf, Jakob; Arvidsson, Torbjörn; Pettersson, Curt; Brittebo, Eva

    2017-05-01

    β-Methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid that induces long-term cognitive deficits, as well as an increased neurodegeneration and intracellular fibril formation in the hippocampus of adult rodents following short-time neonatal exposure and in vervet monkey brain following long-term exposure. It has also been proposed to be involved in the etiology of neurodegenerative disease in humans. The aim of this study was to identify metabolic effects not related to excitotoxicity or oxidative stress in human neuroblastoma SH-SY5Y cells. The effects of BMAA (50, 250, 1000 µM) for 24 h on cells differentiated with retinoic acid were studied. Samples were analyzed using LC-MS and NMR spectroscopy to detect altered intracellular polar metabolites. The analysis performed, followed by multivariate pattern recognition techniques, revealed significant perturbations in protein biosynthesis, amino acid metabolism pathways and citrate cycle. Of specific interest were the BMAA-induced alterations in alanine, aspartate and glutamate metabolism and as well as alterations in various neurotransmitters/neuromodulators such as GABA and taurine. The results indicate that BMAA can interfere with metabolic pathways involved in neurotransmission in human neuroblastoma cells.

  17. Performance effects of acute β-alanine induced paresthesia in competitive cyclists.

    Science.gov (United States)

    Bellinger, Phillip M; Minahan, Clare L

    2016-01-01

    β-alanine is a common ingredient in supplements consumed by athletes. Indeed, athletes may believe that the β-alanine induced paresthesia, experienced shortly after ingestion, is associated with its ergogenic effect despite no scientific mechanism supporting this notion. The present study examined changes in cycling performance under conditions of β-alanine induced paresthesia. Eight competitive cyclists (VO2max = 61.8 ± 4.2 mL·kg·min(-1)) performed three practices, one baseline and four experimental trials. The experimental trials comprised a 1-km cycling time trial under four conditions with varying information (i.e., athlete informed β-alanine or placebo) and supplement content (athlete received β-alanine or placebo) delivered to the cyclist: informed β-alanine/received β-alanine, informed placebo/received β-alanine, informed β-alanine/received placebo and informed placebo/received placebo. Questionnaires were undertaken exploring the cyclists' experience of the effects of the experimental conditions. A possibly likely increase in mean power was associated with conditions in which β-alanine was administered (±95% CL: 2.2% ± 4.0%), but these results were inconclusive for performance enhancement (p = 0.32, effect size = 0.18, smallest worthwhile change = 56% beneficial). A possibly harmful effect was observed when cyclists were correctly informed that they had ingested a placebo (-1.0% ± 1.9%). Questionnaire data suggested that β-alanine ingestion resulted in evident sensory side effects and six cyclists reported placebo effects. Acute ingestion of β-alanine is not associated with improved 1-km TT performance in competitive cyclists. These findings are in contrast to the athlete's "belief" as cyclists reported improved energy and the ability to sustain a higher power output under conditions of β-alanine induced paresthesia.

  18. Alanine - Valine dynamics in pregnant rabbits | Emudianughe ...

    African Journals Online (AJOL)

    [15N]-alanine and [15N]–valine dynamics were studied in 29 -30 days pregnant New-Zealand rabbits. Over the experimental period, there was no detectable significant difference of mean ± SD of alanine concentrations within the sampling intervals in maternal, umbilical venous and arterial blood samples suggesting that ...

  19. IAEA reference dosimeter: Alanine-ESR

    International Nuclear Information System (INIS)

    Mehta, K.; Girzikowsky, R.

    1999-01-01

    Since 1985, the IAEA has been using alanine-ESR as a transfer dosimeter for its dose quality audit service, namely the International Dose Assurance Service. The alanine dosimeters are rod-type containing 70 wt% DL--α-alanine and 30 wt% polystyrene. We have two self-shielded gamma facilities for the calibration of the dosimetry system, where the temperature within the irradiation chamber can be controlled by a specially designed unit. A 4th order polynomial is fitted to the 16 data points in the dose range of 100 Gy to 50 kGy. The measured value of the irradiation temperature coefficient at two dose values (15 and 45 kGy) is 0.23 %/deg. C. Also, the ESR-response was followed for several dosimeters for about 8 months to study the post-irradiation effect. A value of 0.008 %/day was observed for the fading of the response for two dose values (15 and 45 kGy) and three irradiation temperatures (15, 27 and 40 deg. C). The effect of the analysis temperature on the ESR response was also studied. The combined relative uncertainty for the IAEA alanine-ESR dosimetry system is 1.5% (k=1). This includes that transferred from the primary laboratory for the dose rate measurements of the gamma facilities, dosimetry system calibration uncertainties, batch variability and uncertainty in the curve fitting procedure. This value however does not include the contribution due to the irradiation temperature correction which is applied when it differs from that during calibration; this component being specific for each dose measurement. (author)

  20. A sporozoite asparagine-rich protein controls initiation of Plasmodium liver stage development.

    Directory of Open Access Journals (Sweden)

    Olivier Silvie

    2008-06-01

    Full Text Available Plasmodium sporozoites invade host hepatocytes and develop as liver stages (LS before the onset of erythrocytic infection and malaria symptoms. LS are clinically silent, and constitute ideal targets for causal prophylactic drugs and vaccines. The molecular and cellular mechanisms underlying LS development remain poorly characterized. Here we describe a conserved Plasmodium asparagine-rich protein that is specifically expressed in sporozoites and liver stages. Gene disruption in Plasmodium berghei results in complete loss of sporozoite infectivity to rodents, due to early developmental arrest after invasion of hepatocytes. Mutant sporozoites productively invade host cells by forming a parasitophorous vacuole (PV, but subsequent remodelling of the membrane of the PV (PVM is impaired as a consequence of dramatic down-regulation of genes encoding PVM-resident proteins. These early arrested mutants confer only limited protective immunity in immunized animals. Our results demonstrate the role of an asparagine-rich protein as a key regulator of Plasmodium sporozoite gene expression and LS development, and suggest a requirement of partial LS maturation to induce optimal protective immune responses against malaria pre-erythrocytic stages. These findings have important implications for the development of genetically attenuated parasites as a vaccine approach.

  1. High-level production of α-amylase by manipulating the expression of alanine racamase in Bacillus licheniformis.

    Science.gov (United States)

    He, Penghui; Zhang, Zeying; Cai, Dongbo; Chen, Yaozhong; Wang, Hao; Wei, Xuetuan; Li, Shunyi; Chen, Shouwen

    2017-09-01

    To improve target protein production by manipulating expression levels of alanine racemase in Bacillus licheniformis. The gene of dal was identified to be responsible for alanine racemase function. Based on the selection marker of dal, a food-grade expression system was constructed in B. licheniformis, and effects of different dal expression levels mediated by promoters on α-amylase production were investigated. The highest α-amylase activity (155 U/ml) was obtained in BL10D/pP43SAT-PtetDal, increased by 27% compared with that of the control strain BL10/pP43SAT in tetracycline-based system (123 U/ml). Moreover, the dal transcriptional level was not correlated positively with that of amyL. A food-grade system for high-level production of α-amylase was constructed in B. licheniformis, revealing that expression levels of selection marker significantly affected target protein production.

  2. Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth.

    Science.gov (United States)

    Draeger, Christian; Ndinyanka Fabrice, Tohnyui; Gineau, Emilie; Mouille, Grégory; Kuhn, Benjamin M; Moller, Isabel; Abdou, Marie-Therese; Frey, Beat; Pauly, Markus; Bacic, Antony; Ringli, Christoph

    2015-06-24

    Leucine-rich repeat extensins (LRXs) are extracellular proteins consisting of an N-terminal leucine-rich repeat (LRR) domain and a C-terminal extensin domain containing the typical features of this class of structural hydroxyproline-rich glycoproteins (HRGPs). The LRR domain is likely to bind an interaction partner, whereas the extensin domain has an anchoring function to insolubilize the protein in the cell wall. Based on the analysis of the root hair-expressed LRX1 and LRX2 of Arabidopsis thaliana, LRX proteins are important for cell wall development. The importance of LRX proteins in non-root hair cells and on the structural changes induced by mutations in LRX genes remains elusive. The LRX gene family of Arabidopsis consists of eleven members, of which LRX3, LRX4, and LRX5 are expressed in aerial organs, such as leaves and stem. The importance of these LRX genes for plant development and particularly cell wall formation was investigated. Synergistic effects of mutations with gradually more severe growth retardation phenotypes in double and triple mutants suggest a similar function of the three genes. Analysis of cell wall composition revealed a number of changes to cell wall polysaccharides in the mutants. LRX3, LRX4, and LRX5, and most likely LRX proteins in general, are important for cell wall development. Due to the complexity of changes in cell wall structures in the lrx mutants, the exact function of LRX proteins remains to be determined. The increasingly strong growth-defect phenotypes in double and triple mutants suggests that the LRX proteins have similar functions and that they are important for proper plant development.

  3. The Importance of the KR-Rich Region of the Coat Protein of Ourmia melon virus for Host Specificity, Tissue Tropism, and Interference With Antiviral Defense.

    Science.gov (United States)

    Rossi, Marika; Vallino, Marta; Abbà, Simona; Ciuffo, Marina; Balestrini, Raffaella; Genre, Andrea; Turina, Massimo

    2015-01-01

    The N-terminal region of the Ourmia melon virus (OuMV) coat protein (CP) contains a short lysine/arginine-rich (KR) region. By alanine scanning mutagenesis, we showed that the KR region influences pathogenicity and virulence of OuMV without altering viral particle assembly. A mutant, called OuMV6710, with three basic residue substitutions in the KR region, was impaired in the ability to maintain the initial systemic infection in Nicotiana benthamiana and to infect both cucumber and melon plants systemically. The integrity of this protein region was also crucial for encapsidation of viral genomic RNA; in fact, certain mutations within the KR region partially compromised the RNA encapsidation efficiency of the CP. In Arabidopsis thaliana Col-0, OuMV6710 was impaired in particle accumulation; however, this phenotype was abolished in dcl2/dcl4 and dcl2/dcl3/dcl4 Arabidopsis mutants defective for antiviral silencing. Moreover, in contrast to CPwt, in situ immunolocalization experiments indicated that CP6710 accumulates efficiently in the spongy mesophyll tissue of infected N. benthamiana and A. thaliana leaves but only occasionally infects palisade tissues. These results provided strong evidence of a crucial role for OuMV CP during viral infection and highlighted the relevance of the KR region in determining tissue tropism, host range, pathogenicity, and RNA affinity, which may be all correlated with a possible CP silencing-suppression activity.

  4. Sequential assignment of proline-rich regions in proteins: Application to modular binding domain complexes

    International Nuclear Information System (INIS)

    Kanelis, Voula; Donaldson, Logan; Muhandiram, D.R.; Rotin, Daniela; Forman-Kay, Julie D.; Kay, Lewis E.

    2000-01-01

    Many protein-protein interactions involve amino acid sequences containing proline-rich motifs and even poly-proline stretches. The lack of amide protons in such regions complicates assignment, since 1 HN-based triple-resonance assignment strategies cannot be employed. Two such systems that we are currently studying include an SH2 domain from the protein Crk with a region containing 9 prolines in a 14 amino acid sequence, as well as a WW domain that interacts with a proline-rich target. A modified version of the HACAN pulse scheme, originally described by Bax and co-workers [Wang et al. (1995) J. Biomol. NMR, 5, 376-382], and an experiment which correlates the intra-residue 1 H α , 13 C α / 13 C β chemical shifts with the 15 N shift of the subsequent residue are presented and applied to the two systems listed above, allowing sequential assignment of the molecules

  5. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives.

    Science.gov (United States)

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Hori, Hatsuhiro; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2015-08-01

    We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intracellular l-alanine and its derivatives. Furthermore, the growth of the alaE-deficient mutant derived from the l-alanine-metabolizing strain was strongly inhibited in the presence of a physiological level of l-alanyl-l-alanine. Intact MLA301ΔalaE and MLA301ΔalaE/pAlaE cells producing plasmid-borne AlaE, accumulated approximately 200% and 50%, respectively, of the [(3) H]l-alanine detected in MLA301 cells, suggesting that AlaE exports l-alanine. When 200 mmol/L l-alanine-loaded inverted membrane vesicles prepared from MLA301ΔalaE/pAlaE were placed in a solution containing 200 mmol/L or 0.34 μmol/L l-alanine, energy-dependent [(3) H]l-alanine accumulation occurred under either condition. This energy-dependent uphill accumulation of [(3) H]l-alanine was strongly inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone but not by dicyclohexylcarbodiimide, suggesting that the AlaE-mediated l-alanine extrusion was driven by proton motive force. Based on these results, physiological roles of the l-alanine exporter are discussed. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  6. EPR/alanine dosimetry for two therapeutic proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Marrale, Maurizio, E-mail: maurizio.marrale@unipa.it [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Gruppo V Sezione INFN di Catania, Via Santa Sofia, 64, 95123 Catania (Italy); Carlino, Antonio [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); EBG MedAustron GmbH, Marie Curie-Straße 5, A-2700 Wiener Neustadt (Austria); Gallo, Salvatore [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Gruppo V Sezione INFN di Catania, Via Santa Sofia, 64, 95123 Catania (Italy); Laboratorio PH3DRA, Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania (Italy); Longo, Anna; Panzeca, Salvatore [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Gruppo V Sezione INFN di Catania, Via Santa Sofia, 64, 95123 Catania (Italy); Bolsi, Alessandra; Hrbacek, Jan; Lomax, Tony [Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2016-02-01

    In this work the analysis of the electron paramagnetic resonance (EPR) response of alanine pellets exposed to two different clinical proton beams employed for radiotherapy is performed. One beam is characterized by a passive delivery technique and is dedicated to the eyes treatment (OPTIS2 beam line). Alanine pellets were irradiated with a 70 MeV proton beam corresponding to 35 mm range in eye tissue. We investigated how collimators with different sizes and shape used to conform the dose to the planned target volume influence the delivered dose. For this purpose we performed measurements with varying the collimator size (Output Factor) and the results were compared with those obtained with other dosimetric techniques (such as Markus chamber and diode detector). This analysis showed that the dosimeter response is independent of collimator diameter if this is larger than or equal to 10 mm. The other beam is characterized by an active spot-scanning technique, the Gantry1 beam line (maximum energy 230 MeV), and is used to treat deep-seated tumors. The dose linearity of alanine response in the clinical dose range was tested and the alanine dose response at selected locations in depth was measured and compared with the TPS planned dose in a quasi-clinical scenario. The alanine response was found to be linear in the dose in the clinical explored range (from 10 to 70 Gy). Furthermore, a depth dose profile in a quasi-clinical scenario was measured and compared to the dose computed by the Treatment Planning System PSIPLAN. The comparison of calibrated proton alanine measurements and TPS dose shows a difference under 1% in the SOBP and a “quenching” effect up to 4% in the distal part of SOBP. The positive dosimetric characteristics of the alanine pellets confirm the feasibility to use these detectors for “in vivo” dosimetry in clinical proton beams.

  7. EPR/alanine dosimetry for two therapeutic proton beams

    International Nuclear Information System (INIS)

    Marrale, Maurizio; Carlino, Antonio; Gallo, Salvatore; Longo, Anna; Panzeca, Salvatore; Bolsi, Alessandra; Hrbacek, Jan; Lomax, Tony

    2016-01-01

    In this work the analysis of the electron paramagnetic resonance (EPR) response of alanine pellets exposed to two different clinical proton beams employed for radiotherapy is performed. One beam is characterized by a passive delivery technique and is dedicated to the eyes treatment (OPTIS2 beam line). Alanine pellets were irradiated with a 70 MeV proton beam corresponding to 35 mm range in eye tissue. We investigated how collimators with different sizes and shape used to conform the dose to the planned target volume influence the delivered dose. For this purpose we performed measurements with varying the collimator size (Output Factor) and the results were compared with those obtained with other dosimetric techniques (such as Markus chamber and diode detector). This analysis showed that the dosimeter response is independent of collimator diameter if this is larger than or equal to 10 mm. The other beam is characterized by an active spot-scanning technique, the Gantry1 beam line (maximum energy 230 MeV), and is used to treat deep-seated tumors. The dose linearity of alanine response in the clinical dose range was tested and the alanine dose response at selected locations in depth was measured and compared with the TPS planned dose in a quasi-clinical scenario. The alanine response was found to be linear in the dose in the clinical explored range (from 10 to 70 Gy). Furthermore, a depth dose profile in a quasi-clinical scenario was measured and compared to the dose computed by the Treatment Planning System PSIPLAN. The comparison of calibrated proton alanine measurements and TPS dose shows a difference under 1% in the SOBP and a “quenching” effect up to 4% in the distal part of SOBP. The positive dosimetric characteristics of the alanine pellets confirm the feasibility to use these detectors for “in vivo” dosimetry in clinical proton beams.

  8. The result of Alanine/ESR dosimetry at Wolsung unit 1

    International Nuclear Information System (INIS)

    Park, Byeong Ryong; Choi, Hoon; Lim, Young Khi

    2008-01-01

    It needs accurate estimation of radiation level for verifying machinery and cable in Nuclear Power Plant. Therefore, in this study, we used ESR(Electron Spin Resonance) system for estimate dose of Alanine dosimeter. Alanine/ESR dosimetry, already known as a dosimetric method in medical and industrial field, was applied to estimate dose quantity at cable locations within a nuclear power plant as a part of equipment qualification program. Alanine/ESR dosimetry of absorbed dose range is 1 - 100 KGy. The alanine dosimeter is not significantly affected by temperature and fading is limited to 1% per year. The alanine dosimeters were fixed on the targeted cable or nearest position to measure dose quantity to get accurate value. Alanine dosimeters were scanned by commercially used two different ESR systems, e-scan and EMX series for alanine dosimeters. To estimate more accurate dose, two environmental correction factors, irradiation temperature and dosimeter weight, were used in calculation of absorbed dose quantity. In this study, dose values which are alinine dosimeter from Wolsong unit 1 are measured by two ESR systems. And then the results was compared each other

  9. Impact of charged amino acid substitution in the transmembrane domain of L-alanine exporter, AlaE, of Escherichia coli on the L-alanine export.

    Science.gov (United States)

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2017-01-01

    The Escherichia coli alaE gene encodes the L-alanine exporter, AlaE, that catalyzes active export of L-alanine using proton electrochemical potential. The transporter comprises only 149 amino acid residues and four predicted transmembrane domains (TMs), which contain three charged amino acid residues. The AlaE-deficient L-alanine non-metabolizing cells (ΔalaE cells) appeared hypersusceptible to L-alanyl-L-alanine showing a minimum inhibitory concentration (MIC) of 2.5 µg/ml for the dipeptide due to a toxic accumulation of L-alanine. To elucidate the mechanism by which AlaE exports L-alanine, we replaced charged amino acid residues in the TMs, glutamic acid-30 (TM-I), arginine-45 (TM-II), and aspartic acid-84 (TM-III) with their respective charge-conserved amino acid or a net neutral cysteine. The ΔalaE cells producing R45K or R45C appeared hypersusceptible to the dipeptide, indicating that arginine-45 is essential for AlaE activity. MIC of the dipeptide in the ΔalaE cells expressing E30D and E30C was 156 µg/ml and >10,000 µg/ml, respectively, thereby suggesting that a negative charge at this position is not essential. The ΔalaE cells expressing D84E or D84C showed an MIC >10,000 and 78 µg/ml, respectively, implying that a negative charge is required at this position. These results were generally consistent with that of the L-alanine accumulation experiments in intact cells. We therefore concluded that charged amino acid residues (R45 and D84) in the AlaE transmembrane domain play a pivotal role in L-alanine export. Replacement of three cysteine residues at C22, C28 (both in TM-I), and C135 (C-terminal region) with alanine showed only a marginal effect on L-alanine export.

  10. L-alanine as a precursor of ethylamine in camellia sinensis

    International Nuclear Information System (INIS)

    Takeo, Tadakazu

    1975-01-01

    After absorption of ammonium nitrogen, nitrogen-deficient Camellia sinensis synthesized theanine following synthesis of glutamic acid and alanine. The rate of incorporation of 14 C from L-alanine U- 14 C into theanine was faster than from acetaldehyde 1-2 14 C. Incorporation of 14 C from L-alanine U- 14 C into the ethylamide of theanine was prevented by adding an excess of ethylamine to the culture solution. Green seedlings converted alanine to ethylamine more rapidly than did etiolated seedlings. (auth.)

  11. Monopeptide versus Monopeptoid: Insights on Structure and Hydration of Aqueous Alanine and Sarcosine via X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uejio, Janel S.; Schwartz, Craig P.; Duffin, Andrew M.; England, Alice; Prendergast, David; Saykally, Richard J.

    2009-11-19

    Despite the obvious significance, the aqueous interactions of peptides remain incompletely understood. Their synthetic analogues called peptoids (poly-N-substituted glycines), have recently emerged as a promising biomimetic material, particularly due to their robust secondary structure and resistance to denaturation. We describe comparative near-edge x-ray absorption fine structure (NEXAFS) spectroscopy studies of aqueous sarcosine, the simplest peptoid, and alanine, its peptide isomer, interpreted by density functional theory calculations. The sarcosine nitrogen K-edge spectrum is blue-shifted with respect to that of alanine, in agreement with our calculations; we conclude that this shift results primarily from the methyl group substitution on the nitrogen of sarcosine. Our calculations indicate that the nitrogen K-edge spectrum of alanine differs significantly between dehydrated and hydrated scenarios, while that of the sarcosine zwitterion is less affected by hydration. In contrast, the computed sarcosine spectrum is greatly impacted by conformational variations, while the alanine spectrum is not. This relates to a predicted solvent dependence for alanine, as compared to sarcosine. Additionally, we show the theoretical nitrogen K-edge spectra to be sensitive to the degree of hydration, indicating that experimental X-ray spectroscopy may be able to distinguish between bulk and partial hydration, such as found in confined environments near proteins and in reverse micelles.

  12. Taurine and β-alanine intraperitoneal injection in lactating mice modifies the growth and behavior of offspring.

    Science.gov (United States)

    Nishigawa, Takuma; Nagamachi, Satsuki; Chowdhury, Vishwajit S; Yasuo, Shinobu; Furuse, Mitsuhiro

    2018-01-08

    Taurine, one of the sulfur-containing amino acids, has several functions in vivo. It has been reported that taurine acts on γ-aminobutyric acid receptors as an agonist and to promote inhibitory neurotransmission. Milk, especially colostrum, contains taurine and it is known that milk taurine is essential for the normal development of offspring. β-Alanine is transported via a taurine transporter and a protein-assisted amino acid transporter, the same ones that transport taurine. The present study aimed to investigate whether the growth and behavior of offspring could be altered by modification of the taurine concentration in milk. Pregnant ICR mice were separated into 3 groups: 1) a control group, 2) a taurine group, and 3) a β-alanine group. During the lactation periods, dams were administered, respectively, with 0.9% saline (10 ml/kg, i.p.), taurine dissolved in 0.9% saline (43 mg/10 ml/kg, i.p.), or β-alanine dissolved in 0.9% saline (31 mg/10 ml/kg, i.p.). Interestingly, the taurine concentration in milk was significantly decreased by the administration of β-alanine, but not altered by the taurine treatment. The body weight of offspring was significantly lower in the β-alanine group. β-Alanine treatment caused a significant decline in taurine concentration in the brains of offspring, and it was negatively correlated with total distance traveled in the open field test at postnatal day 15. Thus, decreased taurine concentration in the brain induced hyperactivity in offspring. These results suggested that milk taurine may have important role of regulating the growth and behavior of offspring. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Analysis of an Alanine/Arginine Mixture by Using TLC/FTIR Technique

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2014-01-01

    Full Text Available We applied TLC/FTIR coupled with mapping technique to analyze an alanine/arginine mixture. Narrow band TLC plates prepared by using AgI as a stationary phase were used to separate alanine and arginine. The distribution of alanine and arginine spots was manifested by a 3D chromatogram. Alanine and arginine can be successfully separated by the narrow band TLC plate. In addition, the FTIR spectra of the separated alanine and arginine spots on the narrow band TLC plate are roughly the same as the corresponding reference IR spectra.

  14. Partial alanine scan of mast cell degranulating peptide (MCD): importance of the histidine- and arginine residues.

    Science.gov (United States)

    Buku, Angeliki; Mendlowitz, Milton; Condie, Barry A; Price, Joseph A

    2004-06-01

    The influence of the two histidine and two arginine residues of mast cell degranulating peptide (MCD) in activity and binding was studied by replacing these amino acids in the MCD sequence with L-alanine. Their histamine releasing activity was determined on rat peritoneal mast cells. Their binding affinity to the FcepsilonRIalpha binding subunit of the human mast cell receptor protein, was carried out using fluorescence polarization. The histamine assay showed that replacement of His13 by Ala o ccurred without loss of activity compared with the activity of MCD. Alanine substitutions for Arg7 and His8 resulted in an approximately 40 fold increase, and for Arg16 in a 14-fold increase in histamine-releasing activity of MCD. The binding affinities of the analogs were tested by competitive displacement of bound fluorescent MCD peptide from the FcepsilonRIalpha binding protein of the mast cell receptor by the Ala analogs using fluorescence polarization. The analogs Ala8 (for His) and Ala16 (for Arg) showed the same binding affinities as MCD, whereas analog Ala7 (for Arg) and analog Ala13 (for His) showed slightly better binding affinity than the parent compound. This study showed that the introduction of alanine residues in these positions resulted in MCD agonists of diverse potency. These findings will be useful in further MCD structure-activity studies.

  15. EPR of alanine irradiated by neutrons

    International Nuclear Information System (INIS)

    Pivovarov, S.P.; Seredavina, T.A.; Zhdanov, S.V.; Mul'gin, S.I.; Zhakparov, R.K.

    2001-01-01

    In the work the first results of EPR studies of alanine, irradiated with diverse doses at neutron cyclotron generator different conditions and on the critical reactor stand are presented. A dose linearity dependence of EPR signal is observing, the methods of γ-background contribution separation are discussed. Obtain results is giving the basis to recommendation of alanine as an effective detector irradiation. However it is demanded the farther study on clarification of radiation sensitivity value dependence on the neutron energy spectrum form

  16. Conductivity of alanine solution for high level dosimetry

    International Nuclear Information System (INIS)

    Wieser, A.; Figel, M.; Regulla, D.F.

    1993-01-01

    The amino acid alanine is well known as a dosimetric detector material for high level dosimetry. Its application is based on the formation of radicals by ionising radiation. The free radicals are earlier detected by electron spin resonance (ESR) spectroscopy or chemically after dissolving the irradiated samples. Of all these methods the ESR/alanine system is the most advanced and is suggested for reference dosimetry. At present, however, the high cost of the system is a serious handicap for a large scale routine application in radiation plants. In this study the variation of electrical conductivity of L-alanine solution with applied dose is investigated in the range from 0.5-200 kGy. The conductivity was measured with a 50 MHz RF oscillator. This readout method is uncomplicated and may be suitable for routine application. The experiments were performed with L-alanine solution in glass ampoules. (Author)

  17. Src protein-tyrosine kinase structure and regulation

    International Nuclear Information System (INIS)

    Roskoski, Robert

    2004-01-01

    Src and Src-family protein kinases are proto-oncogenes that play key roles in cell morphology, motility, proliferation, and survival. v-Src (a viral protein) is encoded by the chicken oncogene of Rous sarcoma virus, and Src (the cellular homologue) is encoded by a physiological gene, the first of the proto-oncogenes. From the N- to C-terminus, Src contains an N-terminal 14-carbon myristoyl group, a unique segment, an SH3 domain, an SH2 domain, a protein-tyrosine kinase domain, and a C-terminal regulatory tail. The chief phosphorylation sites of Src include tyrosine 416 that results in activation from autophosphorylation and tyrosine 527 that results in inhibition from phosphorylation by C-terminal Src kinase. In the restrained state, the SH2 domain forms a salt bridge with phosphotyrosine 527, and the SH3 domain binds to the kinase domain via a polyproline type II left-handed helix. The SH2 and SH3 domains occur on the backside of the kinase domain away from the active site where they stabilize a dormant enzyme conformation. Protein-tyrosine phosphatases such as PTPα displace phosphotyrosine 527 from the Src SH2 domain and mediate its dephosphorylation leading to Src kinase activation. C-terminal Src kinase consists of an SH3, SH2, and kinase domain; it lacks an N-terminal myristoyl group and a C-terminal regulatory tail. Its X-ray structure has been determined, and the SH2 lobe occupies a position that is entirely different from that of Src. Unlike Src, the C-terminal Src kinase SH2 and SH3 domains stabilize an active enzyme conformation. Amino acid residues in the αD helix near the catalytic loop in the large lobe of C-terminal Src kinase serve as a docking site for the physiological substrate (Src) but not for an artificial substrate (polyGlu 4 Tyr)

  18. Alanine EPR dosimeter response in proton therapy beams

    International Nuclear Information System (INIS)

    Gall, K.; Serago, C.; Desrosiers, M.; Bensen, D.

    1997-01-01

    We report a series of measurements directed to assess the suitability of alanine as a mailable dosimeter for dosimetry quality assurance of proton radiation therapy beams. These measurements include dose-response of alanine at 140 MeV, and comparison of response vs energy with a parallel plate ionization chamber. All irradiations were made at the Harvard Cyclotron Laboratory, and the dosimeters were read at NIST. The results encourage us that alanine could be expected to serve as a mailable dosimeter with systematic error due to differential energy response no greater than 3% when doses of 25 Gy are used. (Author)

  19. Effect of alpha interferon on glucose and alanine transport by rat renal brush border membrane vesicles

    International Nuclear Information System (INIS)

    Batuman, V.; Chadha, I.

    1990-01-01

    To investigate the pathogenetic mechanisms of interferon nephrotoxicity, we studied the effect of recombinant interferon alfa-2b on the uptake of 14 C-D-glucose and 14 C-L-alanine by rat renal brush-border-membrane vesicles. Interferon significantly inhibited 20 sec. sodium-dependent and 5 and 10 min. equilibrium uptake of both glucose and alanine. The inhibitory effect was dose dependent with maximum effect achieved at interferon concentration of 5 x 10 -8 M in the uptake media. The half-maximal inhibitory concentrations, IC 50 , of interferon on glucose uptake was 1.8 x 10 -8 M, and 5.4 x 10 -9 M on alanine uptake. Dixon plot analysis of uptake data was consistent with pure non-competitive inhibition. The inhibition constants, K i , 1.5 x 10 -8 M for glucose uptake, and 7.3 x 10 -9 M for alanine uptake, derived from Dixon plots were in close agreement with the IC 50 s calculated from the semilog dose response curves. These observations reveal that direct interactions at the proximal tubule cell membrane are involved in the pathogenesis of interferon nephrotoxicity, and that its mechanism of nephrotoxicity is similar to that of other low molecular weight proteins

  20. Complexation of vanadium (v) with alanine in different ionic strength

    International Nuclear Information System (INIS)

    Garib, F.; Zare, K.; Fekri, H

    2002-01-01

    The formation constants of species formed in the system H ++ alanine and VO 2 + alanine have be determined in aqueous solution for 1.0 3 NaCIO 4 ,using a combination of pramiracetam and spectrophotometric techniques. The compositions of the formed complexes and their stability constants were determined ny curve fitting method and it was shown that di oxovanadium(V) forms two mononuclear 1:1 and 1:2 species with alanine of the type VO 2 L and VO 2 L 2 The protonation constant of the amino group of alanine has been determined using a computer program which employ a least-squares method. The defence of the protonation of alanine and the stability constant of the species on ionic strength are described by a Debby-huckel type equation

  1. Alanine/ESR dosimetry system for routine use in radiation processing

    International Nuclear Information System (INIS)

    Kojima, T.; Haruyama, Y.; Tachibana, H.; Tanaka, R.; Okamoto, J.; Hara, H.; Kashiwazaki, S.

    1993-01-01

    A new alanine-polystyrene(PS) dosimeter prepared with simplified molding procedure and an automatic desk-top dose-reader of alanine dosimeter were developed for the purpose of routine use. Combination of these two allows us to apply a reliable alanine/ESR dosimetry system to routine dosimetric process control in industrial gamma radiation processing. (Author)

  2. Protein association of β-N-methylamino-L-alanine in Triticum aestivum via irrigation.

    Science.gov (United States)

    Contardo-Jara, Valeska; Schwanemann, Torsten; Esterhuizen-Londt, Maranda; Pflugmacher, Stephan

    2018-04-01

    Bioaccumulation of several cyanotoxins has been observed in numerous food webs. More recently, the neurotoxic, non-proteinogenic amino acid β-N-methylamino-L-alanine (BMAA) was shown to biomagnify in marine food webs. It was thus necessary to assess whether a human exposure risk via a terrestrial food source could exist. As shown for other cyanotoxins, spray irrigation of crop plants with cyanobacterial bloom-contaminated surface water poses the risk of toxin transfer into edible plant parts. Therefore, in the present study, we evaluated a possible transfer of BMAA via spray irrigation into the seeds of one of the world's most widely cultivated crop plants, Triticum aestivum. Wheat plants were irrigated with water containing 10 µg L -1 BMAA until they reached maturity and seed-bearing stage (205 days). Several morphological characteristics, such as germination rate, number of roots per seedling, length of primary root and cotyledon, and diameter of the stems were evaluated to assess the effects of chronic exposure. After 205 days, BMAA bioaccumulation was quantified in roots, shoots, and mature seeds of T. aestivum. No adverse morphology effects were observed and no free intracellular BMAA was detected in any of the exposed plants. However, in mature seeds, protein-associated BMAA was detected at 217 ± 150 ng g FW -1 ; significantly more than in roots and shoots. This result demonstrates the unexpected bioaccumulation of a hydrophilic compound and highlights the demand to specify in addition to limit values for drinking water, tolerable daily intake rates for the cyanobacterial-neurotoxin BMAA.

  3. Reproducibility and signal response linearity of Alanine gel dosimeter

    International Nuclear Information System (INIS)

    Silva, Cleber Feijo Silva; Campos, Leticia Lucente

    2008-01-01

    Gel Dosimetry has been studied mainly for medical applications, because it presents signal response in the dose range used in radiotherapy treatments and it can be applied for three dimensional dosimetry. Alanine gel dosimeter is a new gel material developed at IPEN that presents significant improvement on previous alanine systems developed by Costa (1994). The DL-Alanine (C 3 H 7 NO 2 ) is an amino acid tissue equivalent that improves the production of ferric ions in the solution. These ferric ions concentration can be measured by spectrophotometry technique. This work aims to study the reproducibility of the alanine gel solutions and the signal response as a function of gamma radiation dose, considering that these two properties are very important for characterizing and standardizing any dosimeter. (author)

  4. High Energy Electron Dosimetry by Alanine/ESR Spectroscopy

    International Nuclear Information System (INIS)

    Chu, Sung Sil

    1989-01-01

    Dosimetry based on electron spin resonance(ESR) analysis of radiation induced free radicals in amino acids is relevant to biological dosimetry applications. Alanine detectors are without walls and are tissue equivalent. Therefore, alanine ESR dosimetry looks promising for use in the therapy level. The dose range of the alanine/ESR dosimetry system can be extended down to l Gy. In a water phantom the absorbed dose of electrons generated by a medical linear accelerator of different initial energies (6-21 MeV) and therapeutic dose levels(1-60 Gy) was measured. Furthermore, depth dose measurements carried out with alanine dosimeters were compared with ionization chamber measurements. As the results, the measured absorbed doses for shallow depth of initial electron energies above 15 MeV were higher by 2-5% than those calculated by nominal energy CE factors. This seems to be caused by low energy scattered beams generated from the scattering foil and electron cones of beam projecting device in medical linear accelerator

  5. Nanoscale protein arrays of rich morphologies via self-assembly on chemically treated diblock copolymer surfaces

    International Nuclear Information System (INIS)

    Song Sheng; Milchak, Marissa; Zhou Hebing; Lee, Thomas; Hanscom, Mark; Hahm, Jong-in

    2013-01-01

    Well-controlled assembly of proteins on supramolecular templates of block copolymers can be extremely useful for high-throughput biodetection. We report the adsorption and assembly characteristics of a model antibody protein to various polystyrene-block-poly(4-vinylpyridine) templates whose distinctive nanoscale structures are obtained through time-regulated exposure to chloroform vapor. The strong adsorption preference of the protein to the polystyrene segment in the diblock copolymer templates leads to an easily predictable, controllable, rich set of nanoscale protein morphologies through self-assembly. We also demonstrate that the chemical identities of various subareas within individual nanostructures can be readily elucidated by investigating the corresponding protein adsorption behavior on each chemically distinct area of the template. In our approach, a rich set of intricate nanoscale morphologies of protein arrays that cannot be easily attained through other means can be generated straightforwardly via self-assembly of proteins on chemically treated diblock copolymer surfaces, without the use of clean-room-based fabrication tools. Our approach provides much-needed flexibility and versatility for the use of block copolymer-based protein arrays in biodetection. The ease of fabrication in producing well-defined and self-assembled templates can contribute to a high degree of versatility and simplicity in acquiring an intricate nanoscale geometry and spatial distribution of proteins in arrays. These advantages can be extremely beneficial both for fundamental research and biomedical detection, especially in the areas of solid-state-based, high-throughput protein sensing. (paper)

  6. Efficient L-Alanine Production by a Thermo-Regulated Switch in Escherichia coli.

    Science.gov (United States)

    Zhou, Li; Deng, Can; Cui, Wen-Jing; Liu, Zhong-Mei; Zhou, Zhe-Min

    2016-01-01

    L-Alanine has important applications in food, pharmaceutical and veterinary and is used as a substrate for production of engineered thermoplastics. Microbial fermentation could reduce the production cost and promote the application of L-alanine. However, the presence of L-alanine significantly inhibit cell growth rate and cause a decrease in the ultimate L-alanine productivity. For efficient L-alanine production, a thermo-regulated genetic switch was designed to dynamically control the expression of L-alanine dehydrogenase (alaD) from Geobacillus stearothermophilus on the Escherichia coli B0016-060BC chromosome. The optimal cultivation conditions for the genetically switched alanine production using B0016-060BC were the following: an aerobic growth phase at 33 °C with a 1-h thermo-induction at 42 °C followed by an oxygen-limited phase at 42 °C. In a bioreactor experiment using the scaled-up conditions optimized in a shake flask, B0016-060BC accumulated 50.3 g biomass/100 g glucose during the aerobic growth phase and 96 g alanine/100 g glucose during the oxygen-limited phase, respectively. The L-alanine titer reached 120.8 g/l with higher overall and oxygen-limited volumetric productivities of 3.09 and 4.18 g/l h, respectively, using glucose as the sole carbon source. Efficient cell growth and L-alanine production were reached separately, by switching cultivation temperature. The results revealed the application of a thermo-regulated strategy for heterologous metabolic production and pointed to strategies for improving L-alanine production.

  7. Corrosion inhibition of nickel in H2SO4 solution by alanine

    International Nuclear Information System (INIS)

    Hamed, E.; Abd El-REhim, S.S.; El-Shahat, M.F.; Shaltot, A.M.

    2012-01-01

    Highlights: ► Corrosion of Ni in 1 M H 2 SO 4 in the absence and the presence of alanine. ► Alanine acts as a moderate mixed type inhibitor. ► Physical adsorption of alanine and formation of protective film are on Ni surface. ► Addition of KI improves the inhibition efficiency (synergistic effect). ► EFM technique is in reasonably good agreement with the different techniques used. - Abstract: The effect of alanine, as a safe inhibitor, was studied by measuring the corrosion of Ni in aerated and stagnant 1 M H 2 SO 4 solution (pH ∼0.2). Measurements were performed under various conditions using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and the new electrochemical frequency modulation (EFM) methods. The obtained results showed that the addition of alanine alone gives a moderate inhibition and acts as an anodic-type inhibitor. The inhibition is due to physical adsorption of alanine on the metal surface. The inhibition efficiency enhances with increasing alanine concentration and immersion time but decreases with rise in temperature. The apparent activation energy, E a , is higher in the presence than in the absence of alanine. Addition of I − ions greatly improves the inhibition efficiency of alanine. The synergistic effect is due to enhanced adsorption of alanine cations by chemisorbed I − anions on the metal surface. The results obtained from polarization, EIS and EFM techniques are in good agreement indicating that EFM method can be used successfully for monitoring corrosion rate of Ni in H 2 SO 4 solution with and without alanine.

  8. Crystal structure and dimerization equilibria of PcoC, a methionine-rich copper resistance protein from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Wernimont, A.K.; Huffman, D.L.; Finney, L.A.; Demeler, B.; O' Halloran, T.V.; Rosenzweig, A.C.

    2010-03-08

    PcoC is a soluble periplasmic protein encoded by the plasmid-born pco copper resistance operon of Escherichia coli. Like PcoA, a multicopper oxidase encoded in the same locus and its chromosomal homolog CueO, PcoC contains unusual methionine rich sequences. Although essential for copper resistance, the functions of PcoC, PcoA, and their conserved methionine-rich sequences are not known. Similar methionine motifs observed in eukaryotic copper transporters have been proposed to bind copper, but there are no precedents for such metal binding sites in structurally characterized proteins. The high-resolution structures of apo PcoC, determined for both the native and selenomethionine-containing proteins, reveal a seven-stranded barrel with the methionines unexpectedly housed on a solvent-exposed loop. Several potential metal-binding sites can be discerned by comparing the structures to spectroscopic data reported for copper-loaded PcoC. In the native structure, the methionine loop interacts with the same loop on a second molecule in the asymmetric unit. In the selenomethionine structure, the methionine loops are more exposed, forming hydrophobic patches on the protein surface. These two arrangements suggest that the methionine motifs might function in protein-protein interactions between PcoC molecules or with other methionine-rich proteins such as PcoA. Analytical ultracentrifugation data indicate that a weak monomer-dimer equilibrium exists in solution for the apo protein. Dimerization is significantly enhanced upon binding Cu(I) with a measured {Delta}({Delta}G{sup o}) {le} -8.0 kJ/mole, suggesting that copper might bind at the dimer interface.

  9. Preparation of α-alanine-3H by the interaction of atomic tritium heated up to 2000 K with a solid alanine target at 77 K

    International Nuclear Information System (INIS)

    Filatov, Eh.S.; Simonov, E.F.; Shishkov, A.V.; Mogil'nikov, V.P.

    1979-01-01

    Absorption of hydrogen by alanine targets, the target behaviour and the yield of α-alanine- 3 H were studied in experiments involving straight passage of H and T atoms from the sourse (2000 K) to the target (77 K) as a function of the exposure time. In the studies with 3 H 2 the radioactivity of the gas phase was decreasing more rapidly than the overall pressure of hydrogen: H 3 H accumulates more rapidly in the gas phase. Alanine decomposition products were identified. The conditions for the studies of α-alanine- 3 H are suggested

  10. Two alanine racemase genes in Salmonella typhimurium that differ in structure and function.

    OpenAIRE

    Wasserman, S A; Walsh, C T; Botstein, D

    1983-01-01

    Mutations were isolated in a previously undescribed Salmonella typhimurium gene encoding an alanine racemase essential for utilization of L-alanine as a source of carbon, energy, and nitrogen. This new locus, designated dadB, lies within one kilobase of the D-alanine dehydrogenase locus (dadA), which is also required for alanine catabolism. The dadA and dadB genes are coregulated. Mutants (including insertions) lacking the dadB alanine racemase do not require D-alanine for growth unless a mut...

  11. EPR of gamma-irradiated polycrystalline alanine-in-glass dosimeter

    International Nuclear Information System (INIS)

    Al-Karmi, Anan M.; Morsy, M.A.

    2008-01-01

    This study attempts to overcome some of the reported discrepancies in alanine-EPR reproducibility that may be related to alanine dosimeter preparation and/or EPR spectrometer settings. The dosimeters were prepared by packing pure polycrystalline L-α-alanine directly as supplied by the manufacturer in glass tubes. This dosimeter production scheme avoids any possible contribution to the EPR signal from a binding material. The dosimeters were irradiated with gamma ray to low-dose ranges typical for medical therapy (0-20 Gy). Special attention has been paid to the study of minimum detectable dose, measurement repeatability and reproducibility, and post-irradiation stability. The dosimeter exhibited a linear dose response in the dose range from 0.1 to 20 Gy. These positive properties favor the polycrystalline alanine-in-glass tube as a radiation dosimeter

  12. Method Development to Increase Protein Enrichment During Dry Fractionation of Starch-Rich Legumes

    NARCIS (Netherlands)

    Pelgrom, P.J.M.; Boom, R.M.; Schutyser, M.A.I.

    2015-01-01

    A facile method was developed to establish milling settings that optimally separate starch granules from protein bodies and cell wall fibres for starch-rich legumes. Optimal separation was obtained for pea, bean, lentil and chickpea when the particle size distribution curve of flour and isolated

  13. Alanine-ESR dosimeter: application for dosimetry in industrial electron beam accelerator

    International Nuclear Information System (INIS)

    Murali, S.; Venkataramani, R.; Pushparaja; Sarma, K.S.S.; Natarajan, V.; Sastry, M.D.

    2000-01-01

    The feasibility of DL-α-alanine, as ESR dosimeter in powder form, was examined under the conditions of pulse electron accelerator used as an industrial irradiator. The investigations were carried out to examine the following aspects: (i) Alanine-ESR dose response in irradiator characteristics viz. various beam energies, beam currents, product conveying speeds, (ii) linearity of dose response of irradiated alanine signal for suitable range, (iii) dose uniformity of the irradiated samples and (iv) depth dose measurements using alanine powder dosimeters sandwiched between polyethylene layers. Experiments were carried out by varying some of the irradiator parameters at mobile mode of the conveyor (product under movement) and also at stationary mode for different EB energies and pulse rates. For estimation of EB dose, signal intensities of gamma irradiated DL--alanine powder calibrated with Fricke dosimetry have been used. Feasibility of application of alanine ESR dosimeter for low dose measurement down to 350 Gy has been experimentally established. The present studies show that under variable operating conditions of irradiator, alanine ESR dosimetry is suitable for dosimetric applications from low dose (350 Gy) to high dose (53 kgy). (author)

  14. A molecular receptor selective for zwitterionic alanine.

    Science.gov (United States)

    Rubio, Omayra H; Taouil, Rachid; Muñiz, Francisco M; Monleón, Laura M; Simón, Luis; Sanz, Francisca; Morán, Joaquín R

    2017-01-04

    A molecular receptor has been synthesized joining an aza-crown ether with a chiral chromane which mimics the oxyanion hole of the enzymes. With this receptor an apolar host-guest complex with zwitterionic alanine has been achieved through the formation of up to seven H-bonds. This complex allows the extraction of aqueous alanine to a chloroform phase, while other natural amino acids are poorly extracted or are not extracted at all. Due to the chiral nature of the receptor, enantioselective extraction from the aqueous alanine solution to a chloroform phase takes place. X-Ray analysis combined with anisotropic effects, NOE and CD studies revealed the absolute configuration of both strong and weak complexes. Modelling studies also support the proposed structures. The presence of an oxyanion-hole motif in this structure was corroborated by X-ray diffraction studies.

  15. Compound-specific nitrogen isotope analysis of D-alanine, L-alanine, and valine: application of diastereomer separation to delta15N and microbial peptidoglycan studies.

    Science.gov (United States)

    Takano, Yoshinori; Chikaraishi, Yoshito; Ogawa, Nanako O; Kitazato, Hiroshi; Ohkouchi, Naohiko

    2009-01-01

    We have developed an analytical method to determine the compound-specific nitrogen isotope compositions of individual amino acid enantiomers using gas chromatography/combustion/isotope ratio mass spectrometry. A novel derivatization of amino acid diastereomers by optically active (R)-(-)-2-butanol or (S)-(+)-2-butanol offers two advantages for nitrogen isotope analysis. First, chromatographic chiral separation can be achieved without the use of chiral stationary-phase columns. Second, the elution order of these compounds on the chromatogram can be switched by a designated esterification reaction. We applied the method to the compound-specific nitrogen isotope analysis of D- and L-alanine in a peptidoglycan derived from the cell walls of cultured bacteria (Firmicutes and Actinobacteria; Enterococcus faecalis, Staphylococcus aureus, Staphylococcus staphylolyticus, Lactobacillus acidophilus, Bacillus subtilis, Micrococcus luteus, and Streptomyces sp.), natural whole bacterial cells (Bacillus subtilis var. natto), (pseudo)-peptidoglycan from archaea (Methanobacterium sp.), and cell wall from eukaryota (Saccharomyces cerevisiae). We observed statistically significant differences in nitrogen isotopic compositions; e.g., delta15N ( per thousand vs air) in Staphylococcus staphylolyticus for d-alanine (19.2 +/- 0.5 per thousand, n = 4) and L-alanine (21.3 +/- 0.8 per thousand, n = 4) and in Bacillus subtilis for D-alanine (6.2 +/- 0.2 per thousand, n = 3) and L-alanine (8.2 +/- 0.4 per thousand, n = 3). These results suggest that enzymatic reaction pathways, including the alanine racemase reaction, produce a nitrogen isotopic difference in amino acid enantiomers, resulting in 15N-depleted D-alanine. This method is expected to facilitate compound-specific nitrogen isotope studies of amino acid stereoisomers.

  16. Dosimetry of electron and gamma radiation with DL-alanine

    International Nuclear Information System (INIS)

    Costa, Z.M. da; Campos, L.L.

    1996-01-01

    A dosimetric method based on the quantitative determination of stabilised free radicals in irradiated crystalline DL-alanine by electron spin resonance (ESR) spectroscopy was proposed as early in 1962. Since then, alanine dosemeters owing to their unique properties have been investigated by many authors and used in dosimetry of various types of radiation, namely gamma rays, electron and neutrons. Alanine is a simple aminoacid, on irradiation at room temperature predominantly free paramagnetic radicals of the type CH 3 -CH-COOH are produced. This paper reports the application of powder DL-alanine/ESR dosemeter for measurement of absorbed dose of gamma radiation from 60 Co sources and reactor nucleus and electron beams from accelerator. The obtained results give useful information about the instrumental care necessary to obtain the needed overall accuracy in determination of absorbed dose. (author)

  17. Shaking alone induces de novo conversion of recombinant prion proteins to β-sheet rich oligomers and fibrils.

    Directory of Open Access Journals (Sweden)

    Carol L Ladner-Keay

    Full Text Available The formation of β-sheet rich prion oligomers and fibrils from native prion protein (PrP is thought to be a key step in the development of prion diseases. Many methods are available to convert recombinant prion protein into β-sheet rich fibrils using various chemical denaturants (urea, SDS, GdnHCl, high temperature, phospholipids, or mildly acidic conditions (pH 4. Many of these methods also require shaking or another form of agitation to complete the conversion process. We have identified that shaking alone causes the conversion of recombinant PrP to β-sheet rich oligomers and fibrils at near physiological pH (pH 5.5 to pH 6.2 and temperature. This conversion does not require any denaturant, detergent, or any other chemical cofactor. Interestingly, this conversion does not occur when the water-air interface is eliminated in the shaken sample. We have analyzed shaking-induced conversion using circular dichroism, resolution enhanced native acidic gel electrophoresis (RENAGE, electron microscopy, Fourier transform infrared spectroscopy, thioflavin T fluorescence and proteinase K resistance. Our results show that shaking causes the formation of β-sheet rich oligomers with a population distribution ranging from octamers to dodecamers and that further shaking causes a transition to β-sheet fibrils. In addition, we show that shaking-induced conversion occurs for a wide range of full-length and truncated constructs of mouse, hamster and cervid prion proteins. We propose that this method of conversion provides a robust, reproducible and easily accessible model for scrapie-like amyloid formation, allowing the generation of milligram quantities of physiologically stable β-sheet rich oligomers and fibrils. These results may also have interesting implications regarding our understanding of prion conversion and propagation both within the brain and via techniques such as protein misfolding cyclic amplification (PMCA and quaking induced conversion (QuIC.

  18. Evaluation of some selected blood parameters and histopathology of liver and kidney of rats fed protein-substituted mucuna flour and derived protein rich product.

    Science.gov (United States)

    Ngatchic, Josiane Therese Metsagang; Sokeng, Selestion Dongmo; Njintang, Nicolas Yanou; Maoundombaye, Theophile; Oben, Julius; Mbofung, Carl Moses F

    2013-07-01

    This comparative study reports the nutritional and toxicological characteristics of Mucuna pruriens flour and a protein-rich product developed from it. The protein-rich mucuna product (PRMP) was obtained by the three steps procedure: protein solubilization, heat-coagulation and sieving. Three weeks rats (n=6 per group) were fed for 28 days on standard protein-substituted rat feed with mucuna flour or PRMP. The experimental design was a factorial design with three mucuna accessions (Velvet, Black and White) and two treatments (flour and PRMP). The protein content ranged 27.2-31.5 g/100 g for flour and 58.8-61.1% for PRMP. Processing flour into PRMP led to a significant (pmucuna flour lost weight. The levels of total cholesterol, HDL-cholesterol and LDL-cholesterol observed in animals groups fed mucuna flour and PRMP were significantly lower (pmucuna flour were significantly (pmucuna flour. PRMP then represents a good alternative of using mucuna proteins for human nutrition. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alanine amino transferase (ALT/SGPT) test system... Test Systems § 862.1030 Alanine amino transferase (ALT/SGPT) test system. (a) Identification. An alanine amino transferase (ALT/SGPT) test system is a device intended to measure the activity of the...

  20. Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley

    DEFF Research Database (Denmark)

    Rayapuram, Channabasavangowda; Jensen, Michael Krogh; Maiser, Fabian

    2012-01-01

    The receptor-like protein kinases (RLKs) constitute a large and diverse group of proteins controlling numerous plant physiological processes, including development, hormone perception and stress responses. The cysteine-rich RLKs (CRKs) represent a prominent subfamily of transmembrane-anchored RLKs...

  1. Cysteine-rich secretory protein 3 is a ligand of alpha1B-glycoprotein in human plasma

    DEFF Research Database (Denmark)

    Udby, Lene; Sørensen, Ole E; Pass, Jesper

    2004-01-01

    Human cysteine-rich secretory protein 3 (CRISP-3; also known as SGP28) belongs to a family of closely related proteins found in mammals and reptiles. Some mammalian CRISPs are known to be involved in the process of reproduction, whereas some of the CRISPs from reptiles are neurotoxin...

  2. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells

    International Nuclear Information System (INIS)

    Li, Tao; Li, Dong; Sha, Jianjun; Sun, Peng; Huang, Yiran

    2009-01-01

    Prostate cancer is one of the most common malignant cancers in men. Recent studies have shown that microRNA-21 (miR-21) is overexpressed in various types of cancers including prostate cancer. Studies on glioma, colon cancer cells, hepatocellular cancer cells and breast cancer cells have indicated that miR-21 is involved in tumor growth, invasion and metastasis. However, the roles of miR-21 in prostate cancer are poorly understood. In this study, the effects of miR-21 on prostate cancer cell proliferation, apoptosis, and invasion were examined. In addition, the targets of miR-21 were identified by a reported RISC-coimmunoprecipitation-based biochemical method. Inactivation of miR-21 by antisense oligonucleotides in androgen-independent prostate cancer cell lines DU145 and PC-3 resulted in sensitivity to apoptosis and inhibition of cell motility and invasion, whereas cell proliferation were not affected. We identified myristoylated alanine-rich protein kinase c substrate (MARCKS), which plays key roles in cell motility, as a new target in prostate cancer cells. Our data suggested that miR-21 could promote apoptosis resistance, motility, and invasion in prostate cancer cells and these effects of miR-21 may be partly due to its regulation of PDCD4, TPM1, and MARCKS. Gene therapy using miR-21 inhibition strategy may therefore be useful as a prostate cancer therapy.

  3. Upregulation of MARCKS in kidney cancer and its potential as a therapeutic target.

    Science.gov (United States)

    Chen, C-H; Fong, L W R; Yu, E; Wu, R; Trott, J F; Weiss, R H

    2017-06-22

    Targeted therapeutics, such as those abrogating hypoxia inducible factor (HIF)/vascular endothelial growth factor signaling, are initially effective against kidney cancer (or renal cell carcinoma, RCC); however, drug resistance frequently occurs via subsequent activation of alternative pathways. Through genome-scale integrated analysis of the HIF-α network, we identified the major protein kinase C substrate MARCKS (myristoylated alanine-rich C kinase substrate) as a potential target molecule for kidney cancer. In a screen of nephrectomy samples from 56 patients with RCC, we found that MARCKS expression and its phosphorylation are increased and positively correlate with tumor grade. Genetic and pharmacologic suppression of MARCKS in high-grade RCC cell lines in vitro led to a decrease in cell proliferation and migration. We further demonstrated that higher MARCKS expression promotes growth and angiogenesis in vivo in an RCC xenograft tumor. MARCKS acted upstream of the AKT/mTOR pathway, activating HIF-target genes, notably vascular endothelial growth factor-A. Following knockdown of MARCKS in RCC cells, the IC50 of the multikinase inhibitor regorafenib was reduced. Surprisingly, attenuation of MARCKS using the MPS (MARCKS phosphorylation site domain) peptide synergistically interacted with regorafenib treatment and decreased survival of kidney cancer cells through inactivation of AKT and mTOR. Our data suggest a major contribution of MARCKS to kidney cancer growth and provide an alternative therapeutic strategy of improving the efficacy of multikinase inhibitors.

  4. Immunoglobulin M and G antibody responses to Plasmodium falciparum glutamate-rich protein

    DEFF Research Database (Denmark)

    Dziegiel, Morten Hanefeld; Rowe, P; Bennett, S

    1993-01-01

    were measured with a recombinant fusion protein consisting of the carboxy-terminal 783 amino acids of the GLURP. Samples for the study were obtained during a longitudinal malaria morbidity survey performed in The Gambia; cross-sectional surveys were performed at the beginning of the transmission season......The aims of the present study were to describe the age-related immunoglobulin M (IgM) and IgG response to part of a 220-kDa glutamate-rich protein (GLURP) from Plasmodium falciparum and to determine possible correlations of possession of these antibodies with malaria morbidity. IgM and IgG levels...

  5. In Quest of the Alanine R3 Radical: Multivariate EPR Spectral Analyses of X-Irradiated Alanine in the Solid State.

    Science.gov (United States)

    Jåstad, Eirik O; Torheim, Turid; Villeneuve, Kathleen M; Kvaal, Knut; Hole, Eli O; Sagstuen, Einar; Malinen, Eirik; Futsaether, Cecilia M

    2017-09-28

    The amino acid l-α-alanine is the most commonly used material for solid-state electron paramagnetic resonance (EPR) dosimetry, due to the formation of highly stable radicals upon irradiation, with yields proportional to the radiation dose. Two major alanine radical components designated R1 and R2 have previously been uniquely characterized from EPR and electron-nuclear double resonance (ENDOR) studies as well as from quantum chemical calculations. There is also convincing experimental evidence of a third minor radical component R3, and a tentative radical structure has been suggested, even though no well-defined spectral signature has been observed experimentally. In the present study, temperature dependent EPR spectra of X-ray irradiated polycrystalline alanine were analyzed using five multivariate methods in further attempts to understand the composite nature of the alanine dosimeter EPR spectrum. Principal component analysis (PCA), maximum likelihood common factor analysis (MLCFA), independent component analysis (ICA), self-modeling mixture analysis (SMA), and multivariate curve resolution (MCR) were used to extract pure radical spectra and their fractional contributions from the experimental EPR spectra. All methods yielded spectral estimates resembling the established R1 spectrum. Furthermore, SMA and MCR consistently predicted both the established R2 spectrum and the shape of the R3 spectrum. The predicted shape of the R3 spectrum corresponded well with the proposed tentative spectrum derived from spectrum simulations. Thus, results from two independent multivariate data analysis techniques strongly support the previous evidence that three radicals are indeed present in irradiated alanine samples.

  6. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alanine, N-(2-carboxyethyl)-N-alkyl... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical substance... alanine, N-(2-carboxyethyl)-N- alkyl-, salt (P-89-336) is subject to reporting under this section for the...

  7. A comparison of three materials used in ESR dosimetry: L-α-alanine, DL-α-alanine and standard bone powder. Response to Co-60 gamma radiation

    International Nuclear Information System (INIS)

    Stuglik, Z.; Sadlo, J.

    1995-01-01

    Three solid state materials: L-α-alanine, DL-α-alanine and standard bone powder were irradiated with gamma analyzed with ESR method. It was stated that the G-value of paramagnetic centres in L-α-alanine is practically the same as in DL-alpha-alanine and about 50 times higher than in non-deproteinized bone powder. The sensitivities of investigated materials are proportional to their G-values if double integrals of ESR signals are chosen as a measure of radiation effects. When first derivatives of ESR absorption bands are used to the construction of dose-response curves (peak-to-peak method) the sensitivities of all investigated materials are comparable. (author). 14 refs, 1 fig., 3 tabs

  8. Dose intercomparison study involving Fricke, ethanol chlorobenzene, PMMA and alanine dosimeters

    International Nuclear Information System (INIS)

    Lanuza, L.G.; Cabalfin, E.G.; Kojima, T.; Tachibana, H.

    1999-01-01

    A dose intercomparison study was carried out between the Philippine Nuclear Research Institute (PNRI) and Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute (JAERI) to determine reliability of the dosimetry systems being used by PNRI employing ethanol chlorobenzene (ECB), Fricke and alanine dosimeters. The Fricke and ECB dosimeters were prepared at PNRI while the alanine-polystyrene dosimeter was provided by JAERI. Fricke or ECB dosimeters were irradiated together with alanine at PNRI gamma irradiation facilities. Analyses of the Fricke and ECB dosimeters were performed at PNRI while alanine dosimeters were analyzed at JAERI. A comparison study between alanine and polymethylmethacrylate (PMMA, Radix RN15) dosimeters was also undertaken at JAERI. The dosimeters were irradiated together under different irradiation conditions using the gamma irradiation facilities of JAERI and Radia Industry Co. Ltd. (Japan). Evaluations of PMMA and alanine dosimeters were both performed at JAERI. Result of the dose intercomparison of PNRI with the International Atomic Energy Agency through the International Dose Assurance Service (IDAS) is also presented. (author)

  9. Dose intercomparison study involving Fricke, ethanol chlorobenzene, PMMA and alanine dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Lanuza, L G; Cabalfin, E G [Philippine Nuclear Research Institute, Quezon City (Philippines); Kojima, T; Tachibana, H [Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research institute, Takasaki (Japan)

    1999-03-01

    A dose intercomparison study was carried out between the Philippine Nuclear Research Institute (PNRI) and Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute (JAERI) to determine reliability of the dosimetry systems being used by PNRI employing ethanol chlorobenzene (ECB), Fricke and alanine dosimeters. The Fricke and ECB dosimeters were prepared at PNRI while the alanine-polystyrene dosimeter was provided by JAERI. Fricke or ECB dosimeters were irradiated together with alanine at PNRI gamma irradiation facilities. Analyses of the Fricke and ECB dosimeters were performed at PNRI while alanine dosimeters were analyzed at JAERI. A comparison study between alanine and polymethylmethacrylate (PMMA, Radix RN15) dosimeters was also undertaken at JAERI. The dosimeters were irradiated together under different irradiation conditions using the gamma irradiation facilities of JAERI and Radia Industry Co. Ltd. (Japan). Evaluations of PMMA and alanine dosimeters were both performed at JAERI. Result of the dose intercomparison of PNRI with the International Atomic Energy Agency through the International Dose Assurance Service (IDAS) is also presented. (author) 8 refs, 3 figs, 4 tabs

  10. Interactions Between Flavonoid-Rich Extracts and Sodium Caseinate Modulate Protein Functionality and Flavonoid Bioaccessibility in Model Food Systems.

    Science.gov (United States)

    Elegbede, Jennifer L; Li, Min; Jones, Owen G; Campanella, Osvaldo H; Ferruzzi, Mario G

    2018-05-01

    With growing interest in formulating new food products with added protein and flavonoid-rich ingredients for health benefits, direct interactions between these ingredient classes becomes critical in so much as they may impact protein functionality, product quality, and flavonoids bioavailability. In this study, sodium caseinate (SCN)-based model products (foams and emulsions) were formulated with grape seed extract (GSE, rich in galloylated flavonoids) and green tea extract (GTE, rich in nongalloylated flavonoids), respectively, to assess changes in functional properties of SCN and impacts on flavonoid bioaccessibility. Experiments with pure flavonoids suggested that galloylated flavonoids reduced air-water interfacial tension of 0.01% SCN dispersions more significantly than nongalloylated flavonoids at high concentrations (>50 μg/mL). This observation was supported by changes in stability of 5% SCN foam, which showed that foam stability was increased at high levels of GSE (≥50 μg/mL, P < 0.05) but was not affected by GTE. However, flavonoid extracts had modest effects on SCN emulsion. In addition, galloylated flavonoids had higher bioaccessibility in both SCN foam and emulsion. These results suggest that SCN-flavonoid binding interactions can modulate protein functionality leading to difference in performance and flavonoid bioaccessibility of protein-based products. As information on the beneficial health effects of flavonoids expands, it is likely that usage of these ingredients in consumer foods will increase. However, the necessary levels to provide such benefits may exceed those that begin to impact functionality of the macronutrients such as proteins. Flavonoid inclusion within protein matrices may modulate protein functionality in a food system and modify critical consumer traits or delivery of these beneficial plant-derived components. The product matrices utilized in this study offer relevant model systems to evaluate how fortification with flavonoid-rich

  11. The antiproton depth–dose curve measured with alanine detectors

    CERN Document Server

    Bassler, Niels; Palmans, Hugo; Holzscheiter, Michael H; Kovacevic, Sandra

    2008-01-01

    n this paper we report on the measurement of the antiproton depth–dose curve, with alanine detectors. The results are compared with simulations using the particle energy spectrum calculated by FLUKA, and using the track structure model of Hansen and Olsen for conversion of calculated dose into response. A good agreement is observed between the measured and calculated relative effectiveness although an underestimation of the measured values beyond the Bragg-peak remains unexplained. The model prediction of response of alanine towards heavy charged particles encourages future use of the alanine detectors for dosimetry of mixed radiation fields.

  12. The Antiproton Depth Dose Curve Measured with Alanine Detectors

    DEFF Research Database (Denmark)

    Bassler, Niels; Hansen, Johnny Witterseh; Palmans, Hugo

    2008-01-01

    In this paper we report on the measurement of the antiproton depth dose curve, with alanine detectors. The results are compared with simulations using the particle energy spectrum calculated by FLUKA, and using the track structure model of Hansen et Olsen for conversion of calculated dose...... into response. A good agreement was observed between the measured and calculated relative effectiveness although a slight underestimation of the calculated values in the Bragg peak remains unexplained. The model prediction of response of alanine towards heavy charged particles encourages future use...... of the alanine detectors for dosimetry of mixed radiation fields....

  13. A Hybrid Dry and Aqueous Fractionation Method to Obtain Protein-Rich Fractions from Quinoa (Chenopodium quinoa Willd)

    NARCIS (Netherlands)

    Avila Ruiz, Geraldine; Arts, Anke; Minor, Marcel; Schutyser, Maarten

    2016-01-01

    Combination of dry and aqueous fractionation is investigated to obtain protein-rich fractions from quinoa in a milder and more sustainable way compared to conventional wet fractionation. Dry fractionation of quinoa involved milling and subsequent air classification, generating a protein-enriched

  14. A High Sensitivity EPR Technique for Alanine Dosimetry (invited paper)

    International Nuclear Information System (INIS)

    Haskell, E.H.; Hayes, R.B.; Kenner, G.H.

    1998-01-01

    Uncertainties of ± 5 mGy were achieved in the measurement of alanine dosemeters using optimised EPR parameters, instrumentation, spectral manipulation and subtraction techniques. Modulation amplitude and microwave power were adjusted to combine resonances of two neighbouring alanine signals. Instrumental variations were minimised by combining and subtracting pre- and post-measurement spectra of the empty EPR tube. A spectrum of the native signal of non-dosed alanine was generated from a single batch of dosemeters and subtracted from spectra of the irradiated dosemeters, also from the same batch. Field alignment was adjusted with the use of an in-cavity Mn ++ standard. A constant rotation goniometer was used to eliminate anisotropies in the EPR tube and alanine samples. Finally, digital filters were applied to the resulting spectra. (author)

  15. Identification of a novel Leucine-rich repeat protein and candidate PP1 regulatory subunit expressed in developing spermatids

    Directory of Open Access Journals (Sweden)

    Sperry Ann O

    2008-01-01

    Full Text Available Abstract Background Spermatogenesis is comprised of a series of highly regulated developmental changes that transform the precursor germ cell into a highly specialized spermatozoon. The last phase of spermatogenesis, termed spermiogenesis, involves dramatic morphological change including formation of the acrosome, elongation and condensation of the nucleus, formation of the flagella, and disposal of unnecessary cytoplasm. A prominent cytoskeletal component of the developing spermatid is the manchette, a unique microtubular structure that surrounds the nucleus of the developing spermatid and is thought to assist in both the reshaping of the nucleus and redistribution of spermatid cytoplasm. Although the molecular motor KIFC1 has been shown to associate with the manchette, its precise role in function of the manchette and the identity of its testis specific protein partners are unknown. The purpose of this study was to identify proteins in the testis that interact with KIFC1 using a yeast 2 hybrid screen of a testis cDNA library. Results Thirty percent of the interacting clones identified in our screen contain an identical cDNA encoding a 40 kD protein. This interacting protein has 4 leucine-rich repeats in its amino terminal half and is expressed primarily in the testis; therefore we have named this protein testis leucine-rich repeat protein or TLRR. TLRR was also found to associate tightly with the KIFC1 targeting domain using affinity chromatography. In addition to the leucine-rich repeats, TLRR contains a consensus-binding site for protein phosphatase-1 (PP1. Immunocytochemistry using a TLRR specific antibody demonstrates that this protein is found near the manchette of developing spermatids. Conclusion We have identified a previously uncharacterized leucine-rich repeat protein that is expressed abundantly in the testis and associates with the manchette of developing spermatids, possibly through its interaction with the KIFC1 molecular motor

  16. Anabolic effects of leucine-rich whey protein, carbohydrate, and soy protein with and without β-hydroxy-β-methylbutyrate (HMB) during fasting-induced catabolism: A human randomized crossover trial.

    Science.gov (United States)

    Rittig, Nikolaj; Bach, Ermina; Thomsen, Henrik H; Møller, Andreas B; Hansen, Jakob; Johannsen, Mogens; Jensen, Erik; Serena, Anja; Jørgensen, Jens O; Richelsen, Bjørn; Jessen, Niels; Møller, Niels

    2017-06-01

    Protein-rich beverages are widely used clinically to preserve muscle protein and improve physical performance. Beverages with high contents of leucine or its keto-metabolite β-hydroxy-β-methylbutyrate (HMB) are especially anabolic in muscle, but it is uncertain whether this also applies to catabolic conditions such as fasting and whether common or separate intracellular signaling cascades are involved. To compare a specific leucine-rich whey protein beverage (LWH) with isocaloric carbohydrate- (CHO), soy protein (SOY), and soy protein +3 g HMB (HMB) during fasting-induced catabolic conditions. Eight healthy lean male subjects underwent four interventions (LWH, CHO, SOY, and HMB) using a randomized crossover design. Each trial included a 36 h fast and consisted of a 3 h basal fasting period and a 4 h 'sipping' period. Forearm net balances of phenylalanine (NB phe , measure of net protein loss) improved for all groups (p HMB compared with SOY (p HMB have superior anabolic effects on muscle protein kinetics after 36 h of fasting, and LWH distinctly activates the mTOR pathway. These novel findings suggest that leucine-rich whey protein and/or HMB are specifically beneficial during fasting-induced catabolic conditions. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  17. Determination of the dose of traffic in HDR brachytherapy with ALANINE/R PE technique

    International Nuclear Information System (INIS)

    Guzman Calcina, C. S.; Chen, F.; Almeida, A. de; Baffa, O.

    2001-01-01

    It determines, experimentally, the dose of traffic in brachytherapy for High Dose Rate (HDR), using for the first-time the Electronic Paramagnetic Resonance (EPR) technique with alanine detectors. The value obtained is the published next to obtained using lithium fluoride thermoluminescent dosimeters [es

  18. Importance of intrahepatic mechanisms to gluconeogenesis from alanine during exercise and recovery

    International Nuclear Information System (INIS)

    Wasserman, D.H.; Williams, P.E.; Lacy, D.B.; Green, D.R.; Cherrington, A.D.

    1988-01-01

    These studies were performed to assess the importance of intrahepatic mechanisms to gluconeogenesis in the dog during 150 min of treadmill exercise and 90 min of recovery. Sampling catheters were implanted in an artery and portal and hepatic veins 16 days before experimentation. Infusions of [U- 14 C]alanine, [3- 3 H]glucose, and indocyanine green were used to assess gluconeogenesis. During exercise, a decline in arterial and portal vein plasma alanine and in hepatic blood flow led to a decrease in hepatic alanine delivery. During recovery, hepatic blood flow was restored to basal, causing an increase in hepatic alanine delivery beyond exercise rates but still below resting rates. Hepatic fractional alanine extraction increased from 0.26 +/- 0.02 at rest to 0.64 +/- 0.03 during exercise and remained elevated during recovery. Net hepatic alanine uptake was 2.5 +/- 0.2 mumol.kg-1.min-1 at rest and remained unchanged during exercise but was increased during recovery. The conversion rate of [ 14 C]alanine to glucose had increased by 248 +/- 38% by 150 min of exercise and had increased further during recovery. The efficiency with which alanine was channeled into glucose in the liver was accelerated to a rate of 338 +/- 55% above basal by 150 min of exercise but declined slightly during recovery. In conclusion, 1) gluconeogenesis from alanine is accelerated during exercise, due to an increase in the hepatic fractional extraction of the amino acid and through intrahepatic mechanisms that more efficiently channel it into glucose

  19. Mitochondrial defects associated with β-alanine toxicity: relevance to hyper-beta-alaninemia

    Science.gov (United States)

    Shetewy, Aza; Shimada-Takaura, Kayoko; Warner, Danielle; Jong, Chian Ju; Mehdi, Abu-Bakr Al; Alexeyev, Mikhail; Takahashi, Kyoko; Schaffer, Stephen W.

    2016-01-01

    Hyper-beta-alaninemia is a rare metabolic condition that results in elevated plasma and urinary β-alanine levels and is characterized by neurotoxicity, hypotonia, and respiratory distress. It has been proposed that at least some of the symptoms are caused by oxidative stress; however, only limited information is available on the mechanism of reactive oxygen species generation. The present study examines the hypothesis that β-alanine reduces cellular levels of taurine, which are required for normal respiratory chain function; cellular taurine depletion is known to reduce respiratory function and elevate mitochondrial superoxide generation. To test the taurine hypothesis, isolated neonatal rat cardiomyocytes and mouse embryonic fibroblasts were incubated with medium lacking or containing β-alanine. β-alanine treatment led to mitochondrial superoxide accumulation in conjunction with a decrease in oxygen consumption. The defect in β-alanine-mediated respiratory function was detected in permeabilized cells exposed to glutamate/malate but not in cells utilizing succinate, suggesting that β-alanine leads to impaired complex I activity. Taurine treatment limited mitochondrial superoxide generation, supporting a role for taurine in maintaining complex I activity. Also affected by taurine is mitochondrial morphology, as β-alanine-treated fibroblasts undergo fragmentation, a sign of unhealthy mitochondria that is reversed by taurine treatment. If left unaltered, β-alanine-treated fibroblasts also undergo mitochondrial apoptosis, as evidenced by activation of caspases 3 and 9 and the initiation of the mitochondrial permeability transition. Together, these data show that β-alanine mediates changes that reduce ATP generation and enhance oxidative stress, factors that contribute to heart failure. PMID:27023909

  20. The features of radiation damages in L-alanine crystals

    International Nuclear Information System (INIS)

    Zaitov, V.R.; Onischuk, V.A.

    1996-01-01

    The method of the ESR alanine dosimetry has appeared the most convenient one for measurement of radiation dose in the range 1-10 6 Gy. Its peculiarities are the wide dose range, the high accuracy, the absence fading at room temperature, the possibility of many times repeated measurements as dosemeter accumulates dose, the simplicity of measurements. Because of this performance ESR alanine dosimetry technique can be applied to continuous monitoring radiation doses absorbed by materials on nuclear power stations as well as of dose fields and restoration doses after an accident situation. In order to determine accurately the absorbed dose in an accident on background of accumulated dose for previous period, it is necessary to the utmost increase the accuracy of dosimetry system. For this reason it is necessary to know how the properties of free radicals which formings in irradiated L-alanine are displayed in signal ESR. With the purpose to detect the structure of the free radicals the ESR spectra the L-alanine and L-alanine-d 3 single crystals were studied. The samples were grown by slow evaporation of the saturated aqueous solution. For obtain the L-alanine-d 3 the three-divisible recrystallization in heavy water had been used. The samples were irradiated with 60 Co at room temperature and in liquid nitrogen. The irradiation doses were 10 kGy and dose rate was 8,3 Gy/s. To increase the resolution of the ESR spectra hyperfine structure the second derivative for the absorption curve was registered. The measurements were conducted in X-range at temperatures 77-430 K. (author)

  1. Asymmetric adsorption of alanine by quartz powder from ethanol solution

    Energy Technology Data Exchange (ETDEWEB)

    Furuyama, Shozo; Sawada, Michio; Hachiya, Kinji; Morimoto, Tetsuo (Okayama Univ. (Japan). Faculty of Science)

    1982-11-01

    The asymmetric adsorption of the racemic alanine by the optically active quartz from ethanol solution at 8/sup 0/C was studied by the /sup 14/C-tracer method and the newly developed /sup 14/C-tracer ninhydrin-colorimetry combination method. The preferential adsorption of L-alanine by levorotatory quartz (l-quartz) and D-alanine by dextrorotatory quartz (d-quartz) was confirmed. The asymmetric adsorptivity (Asub(s)) falls in the range of 1.1 - 1.3, which is comparable with the value determined at - 80/sup 0/C in the previous paper. The effects of water content in the ethanol solution and of the adsorption temperature upon the adsorption affinity of alanine to quartz were also measured. The cause for the asymmetric adsorption is discussed from the crystallographic point of view.

  2. Calmodulin and CaMKII modulate ENaC activity by regulating the association of MARCKS and the cytoskeleton with the apical membrane.

    Science.gov (United States)

    Alli, Abdel A; Bao, Hui-Fang; Liu, Bing-Chen; Yu, Ling; Aldrugh, Summer; Montgomery, Darrice S; Ma, He-Ping; Eaton, Douglas C

    2015-09-01

    Phosphatidylinositol bisphosphate (PIP2) regulates epithelial sodium channel (ENaC) open probability. In turn, myristoylated alanine-rich C kinase substrate (MARCKS) protein or MARCKS-like protein 1 (MLP-1) at the plasma membrane regulates the delivery of PIP2 to ENaC. MARCKS and MLP-1 are regulated by changes in cytosolic calcium; increasing calcium promotes dissociation of MARCKS from the membrane, but the calcium-regulatory mechanisms are unclear. However, it is known that increased intracellular calcium can activate calmodulin and we show that inhibition of calmodulin with calmidazolium increases ENaC activity presumably by regulating MARCKS and MLP-1. Activated calmodulin can regulate MARCKS and MLP-1 in two ways. Calmodulin can bind to the effector domain of MARCKS or MLP-1, inactivating both proteins by causing their dissociation from the membrane. Mutations in MARCKS that prevent calmodulin association prevent dissociation of MARCKS from the membrane. Calmodulin also activates CaM kinase II (CaMKII). An inhibitor of CaMKII (KN93) increases ENaC activity, MARCKS association with ENaC, and promotes MARCKS movement to a membrane fraction. CaMKII phosphorylates filamin. Filamin is an essential component of the cytoskeleton and promotes association of ENaC, MARCKS, and MLP-1. Disruption of the cytoskeleton with cytochalasin E reduces ENaC activity. CaMKII phosphorylation of filamin disrupts the cytoskeleton and the association of MARCKS, MLP-1, and ENaC, thereby reducing ENaC open probability. Taken together, these findings suggest calmodulin and CaMKII modulate ENaC activity by destabilizing the association between the actin cytoskeleton, ENaC, and MARCKS, or MLP-1 at the apical membrane. Copyright © 2015 the American Physiological Society.

  3. A new synthesis of [3-11C]pyruvic acid using alanine racemase

    International Nuclear Information System (INIS)

    Ikemoto, M.; Okamoto, E.; Sasaki, M.; Haradahira, T.; Omura, H.; Furuya, Y.; Suzuki, K.; Watanabe, Y.

    1998-01-01

    The synthesis of [3- 11 C]pyruvic acid was attempted by two reaction systems (A: alanine racemase and D-amino acid oxidase, B: alanine racemase and L-alanine dehydrogenase) utilizing a new thermostable enzyme, alanine racemase. Conversion rates from D,L-[3- 11 C]alanine to [3- 11 C]pyruvic acid were almost 100% in both methods. Similar results were obtained with immobilized enzymes packed in a single column. Furthermore, the same column could be used repeatedly without a remarkable decrease of the [3- 11 C]pyruvic acid yield. Various matrices were tested for the immobilizing enzyme, and Aminopropyl-CPG was concluded to be the most suitable since the loss of the enzyme activity was the least in the studied matrices

  4. Uses of polymer-alanine film/ESR dosimeters in dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Xie Liqing; Zhang Yinfeng; Dai Jinxian; Lu Ting; Chen Ruyi; Yang Hua

    1993-01-01

    Alanine ESR dosimetry is a reliable method, used in a various fields of ionizing radiation. The polymer-alanine film/ESR dosimeters of 0.3 -0.4 mm thickness were prepared and their dosimetric properties were studied for 60 Co γ photons and 3 - 5 MeV electrons in the dose range from 20 Gy to 100 kGy. The results show that under normal conditions the alanine calibration curves are linear in the dose range from 100 Gy to 10kGy. The dose profiles at the electron radiation field were measured with the film alanine dosimeters. The polymer-alanine film dosimeters were used for ion implantation of 400 keV ion implantor. Their dose response and energy dependence were investigated initially. (Author)

  5. Thin layer alanine dosimeter with optical spectrophotometric evaluation

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    2000-01-01

    Experience in the high dose dosimetry of gamma radiation, gathered in our group from the sixties till now, allows to express the opinion, that techniques applied are adequate to solve problems. It can be confirmed by the fact that 60% of laboratories participating in the international comparison during the duration of the contract obtained satisfactory results. Adaptation of these methods, in particular of the alanine-ESR dosimetry to highly inhomogeneous fields of EB gives poor results, as it has been shown on thin films of the alanine/polymer composite. However, the applications of these films give excellent results if the concentration of the radical CH 3 C·H CO 2 - is measured by diffuse reflection spectrophotometry, which tolerates poor transparency of the composite and is insensitive to the orientation of crystals of alanine in thin films, what is disqualifying the ESR measurements. The development of thin-film dosimeters for EB processing was possible due to new developments in solid state radiation chemistry. The research has revealed some unsolved questions, e.g. of the high temperature coefficient of alanine based dosimeters, of the role of the size of spurs and the necessity to adapt dosimetry to the energy spectrum of electrons, because every type of accelerators differs in that respect. (author)

  6. Alanine turnover in the postabsorptive state and during parenteral hyperalimentation before and after surgery

    NARCIS (Netherlands)

    Sauerwein, H. P.; Michels, R. P.; Cejka, V.

    1981-01-01

    Influence of total parenteral nutrition and operation on alanine turnover and venous alanine concentration was determined in 5 patients with stomach carcinoma using single technique of U-14C alanine. Every patient served at his own control. In the postabsorptive state alanine turnover was 1.63 +/-

  7. Role of L-alanine for redox self-sufficient amination of alcohols.

    Science.gov (United States)

    Klatte, Stephanie; Wendisch, Volker F

    2015-01-23

    In white biotechnology biocatalysis represents a key technology for chemical functionalization of non-natural compounds. The plasmid-born overproduction of an alcohol dehydrogenase, an L-alanine-dependent transaminase and an alanine dehydrogenase allows for redox self-sufficient amination of alcohols in whole cell biotransformation. Here, conditions to optimize the whole cell biocatalyst presented in (Bioorg Med Chem 22:5578-5585, 2014), and the role of L-alanine for efficient amine functionalization of 1,10-decanediol to 1,10-diaminodecane were analyzed. The enzymes of the cascade for amine functionalization of alcohols were characterized in vitro to find optimal conditions for an efficient process. Transaminase from Chromobacterium violaceum, TaCv, showed three-fold higher catalytic efficiency than transaminase from Vibrio fluvialis, TaVf, and improved production at 37°C. At 42°C, TaCv was more active, which matched thermostable alcohol dehydrogenase and alanine dehydrogenase and improved the 1,10-diaminodecane production rate four-fold. To study the role of L-alanine in the whole cell biotransformation, the L-alanine concentration was varied and 1,10.diaminodecane formation tested with constant 10 mM 1,10- decanediol and 100 mM NH4Cl. Only 5.6% diamine product were observed without added L-alanine. L-alanine concentrations equimolar to that of the alcohol enabled for 94% product formation but higher L-alanine concentrations allowed for 100% product formation. L-alanine was consumed by the E. coli biocatalyst, presumably due to pyruvate catabolism since up to 16 mM acetate accumulated. Biotransformation employing E. coli strain YYC202/pTrc99a-ald-adh-ta Cv, which is unable to catabolize pyruvate, resulted in conversion with a selectivity of 42 mol-%. Biotransformation with E. coli strains only lacking pyruvate oxidase PoxB showed similar reduced amination of 1,10-decanediol indicating that oxidative decarboxylation of pyruvate to acetate by PoxB is primarily

  8. Preparation of alanine/ESR dosimeter using different binder of polymer blend

    International Nuclear Information System (INIS)

    Razzak, M.T.; Sudiro, Sutjipto; Sudradjat, Adjat; Waskito, Ashar; Djamili, M.F.

    1995-01-01

    Different composition of polymer blend of low density polyethylene (PE) and polystyrene (PS) have been studied to be used as a binder for the preparation of Alanine/ESR dosimeter. The polymer binder and Alanine powder were blended in Laboplastomil Mixer at 140 o C and then it was pressed into a plastic film of 0.50 mm thickness. The film was cut into sample size of 250 mm x 2.5 mm and irradiated by gamma rays from a cobalt-60 source at different dose and dose rate. It was found that a blend of Alanine, PS and PE in composition of 60:30:10 is appropriate to prepare the Alanine/ESR dosimeter. (author)

  9. Alanine Zipper-Like Coiled-Coil Domains Are Necessary for Homotypic Dimerization of Plant GAGA-Factors in the Nucleus and Nucleolus

    Science.gov (United States)

    Bloss, Ulrich; Hecker, Andreas; Elgass, Kirstin; Hummel, Sabine; Hahn, Achim; Caesar, Katharina; Schleifenbaum, Frank; Harter, Klaus; Berendzen, Kenneth W.

    2011-01-01

    GAGA-motif binding proteins control transcriptional activation or repression of homeotic genes. Interestingly, there are no sequence similarities between animal and plant proteins. Plant BBR/BPC-proteins can be classified into two distinct groups: Previous studies have elaborated on group I members only and so little is known about group II proteins. Here, we focused on the initial characterization of AtBPC6, a group II protein from Arabidopsis thaliana. Comparison of orthologous BBR/BPC sequences disclosed two conserved signatures besides the DNA binding domain. A first peptide signature is essential and sufficient to target AtBPC6-GFP to the nucleus and nucleolus. A second domain is predicted to form a zipper-like coiled-coil structure. This novel type of domain is similar to Leucine zippers, but contains invariant alanine residues with a heptad spacing of 7 amino acids. By yeast-2-hybrid and BiFC-assays we could show that this Alanine zipper domain is essential for homotypic dimerization of group II proteins in vivo. Interhelical salt bridges and charge-stabilized hydrogen bonds between acidic and basic residues of the two monomers are predicted to form an interaction domain, which does not follow the classical knobs-into-holes zipper model. FRET-FLIM analysis of GFP/RFP-hybrid fusion proteins validates the formation of parallel dimers in planta. Sequence comparison uncovered that this type of domain is not restricted to BBR/BPC proteins, but is found in all kingdoms. PMID:21347358

  10. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells

    NARCIS (Netherlands)

    Barker, N.; Clevers, H.

    2010-01-01

    Molecular markers are used to characterize and track adult stem cells. Colon cancer research has led to the identification of 2 related receptors, leucine-rich repeat-containing, G-protein-coupled receptors (Lgr)5 and Lgr6, that are expressed by small populations of cells in a variety of adult

  11. Glassin, a histidine-rich protein from the siliceous skeletal system of the marine sponge Euplectella, directs silica polycondensation.

    Science.gov (United States)

    Shimizu, Katsuhiko; Amano, Taro; Bari, Md Rezaul; Weaver, James C; Arima, Jiro; Mori, Nobuhiro

    2015-09-15

    The hexactinellids are a diverse group of predominantly deep sea sponges that synthesize elaborate fibrous skeletal systems of amorphous hydrated silica. As a representative example, members of the genus Euplectella have proved to be useful model systems for investigating structure-function relationships in these hierarchically ordered siliceous network-like composites. Despite recent advances in understanding the mechanistic origins of damage tolerance in these complex skeletal systems, the details of their synthesis have remained largely unexplored. Here, we describe a previously unidentified protein, named "glassin," the main constituent in the water-soluble fraction of the demineralized skeletal elements of Euplectella. When combined with silicic acid solutions, glassin rapidly accelerates silica polycondensation over a pH range of 6-8. Glassin is characterized by high histidine content, and cDNA sequence analysis reveals that glassin shares no significant similarity with any other known proteins. The deduced amino acid sequence reveals that glassin consists of two similar histidine-rich domains and a connecting domain. Each of the histidine-rich domains is composed of three segments: an amino-terminal histidine and aspartic acid-rich sequence, a proline-rich sequence in the middle, and a histidine and threonine-rich sequence at the carboxyl terminus. Histidine always forms HX or HHX repeats, in which most of X positions are occupied by glycine, aspartic acid, or threonine. Recombinant glassin reproduces the silica precipitation activity observed in the native proteins. The highly modular composition of glassin, composed of imidazole, acidic, and hydroxyl residues, favors silica polycondensation and provides insights into the molecular mechanisms of skeletal formation in hexactinellid sponges.

  12. Dynamics of solid alanine by means of nuclear magnetic resonance relaxometry

    Science.gov (United States)

    Kubica-Misztal, A.; Rochowski, P.; Florek-Wojciechowska, M.; Kruk, D.

    2017-04-01

    1H nuclear magnetic resonance relaxometry was applied to investigate the dynamics of l-alanine in the solid phase (powder). The experimental studies were carried out in a very broad frequency range, covering four orders of magnitude—from 4 kHz to 40 MHz (referring to the 1H resonance frequency) in order to probe motional processes of much different time scales by a single experiment. To get access to the dynamics of different proton groups of alanine, the 1H spin-lattice relaxation measurements were performed for non-deuterated and partially deuterated alanine. The experiments were carried out in the temperature range of 293 K-370 K (non-deuterated alanine) and 318 K-370 K (partially deuterated alanine). As a result of a thorough theoretical analysis of the extensive set of experimental results, three motional processes occurring on different time scales are identified and quantitatively described. The slowest process occurs on a time scale of μs and it is attributed to the collective dynamics of a 3D hydrogen bond network of alanine, while the intermediate, attributed to the dynamics of the NH3 group, corresponds to the range of tenths of ns. The fast process describes the rotation of the CH3 group.

  13. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives

    OpenAIRE

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Hori, Hatsuhiro; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2015-01-01

    We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intr...

  14. Sensitivity comparison of two L-alanine doped blends to different photon energies

    International Nuclear Information System (INIS)

    Chen, Felipe; Vega Ramirez, Jose; Nicolucci, Patricia; Baffa, Oswaldo

    2008-01-01

    Full text: Blends of L-alanine (85% weight proportion) with KI (10%) and with PbI 2 (10%), these last two compounds acting as dopants, and with PVA (5%) acting as binder, were prepared in water at 80 C degrees. A blend of pure L-alanine (95%) with PVA (5%) was also prepared. The three blends were irradiated with photon beams of different energies (120 kV, 60 Co and 10 MV) with a unique dose of 30 Gy to compare their sensitivities for those three energies. EPR spectra of the three irradiated blends were recorded in a K-Band spectrometer (24 GHz) taking aliquots of about 4 mg for each blend. The energy sensitivity of a blend was defined as the peak-to-peak amplitude of its EPR spectrum central line. For the 60 Co energy (1.25 MeV) the blends presented practically the same sensitivity indicating that the presence of the dopants does not affect the sensitivity of L-alanine. For 10 MV X-rays there was an increment (around 20% - 30 %) in sensitivity for the two L-alanine doped blends compared with the pure L-alanine blend (not doped). In the case of 120 kV X-rays, the blends ala+KI and ala+PbI 2 showed an increment of 10 and 20 times, respectively, more sensitivity than the pure L-alanine blend. It is concluded that the dopants KI and PbI 2 produce a great enhance of the L-alanine sensitivity to low-energy photons. For the same dopant's content (10%) in the blend, PbI 2 showed a better performance. These results encourage us to try to enhance the sensitivity of L-alanine even more increasing the dopant's content in the blend. Application of these L-alanine doped blends in the dosimetry in diagnostic radiology could be possible. (author)

  15. Contribution of the first K-homology domain of poly(C)-binding protein 1 to its affinity and specificity for C-rich oligonucleotides

    OpenAIRE

    Yoga, Yano M. K.; Traore, Daouda A. K.; Sidiqi, Mahjooba; Szeto, Chris; Pendini, Nicole R.; Barker, Andrew; Leedman, Peter J.; Wilce, Jacqueline A.; Wilce, Matthew C. J.

    2012-01-01

    Poly-C-binding proteins are triple KH (hnRNP K homology) domain proteins with specificity for single stranded C-rich RNA and DNA. They play diverse roles in the regulation of protein expression at both transcriptional and translational levels. Here, we analyse the contributions of individual αCP1 KH domains to binding C-rich oligonucleotides using biophysical and structural methods. Using surface plasmon resonance (SPR), we demonstrate that KH1 makes the most stable interactions with both RNA...

  16. Postirradiation effects in alanine dosimeter probes of two different suppliers

    International Nuclear Information System (INIS)

    Anton, Mathias

    2008-01-01

    The measurand relevant for the dosimetry for radiation therapy is the absorbed dose to water, D W . The Physikalisch-Technische Bundesanstalt (PTB) is establishing a secondary standard for D W for high-energy photon and electron radiation based on electron spin resonance (ESR) of the amino acid alanine. For practical applications, like, for example, intercomparison measurements using the ESR/alanine dosimetry system, the temporal evolution of the ESR signal of irradiated probes is an important issue. This postirradiation behaviour is investigated for alanine pellets of two different suppliers for different storage conditions. The influence of the storage conditions on the temporal evolution may be dependent on the type of probes used. The measurement and analysis method developed at the PTB is able to circumvent the apparent difficulties in the case of alanine/paraffin probes. Care has to be taken in case this method cannot be applied

  17. Suitability of Protein-Rich Extract from Okra Seed for Formulation of ...

    African Journals Online (AJOL)

    After 21 days, the rats were decapitated and blood samples harvested. The blood was used for the haematological tests. Liver and heart toxicity indicator including aspartate amino transferase (AST) and alanine amino transferase (ALT) were assayed. Ready-to-use therapeutic food (RUTF) prepared with PRE of okra seeds ...

  18. EPR structure of the gamma irradiated alanine spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Cabral P, A; Jimenez D, H; Urena N, F; Galindo, S; Bosch, P

    1992-03-15

    In this study is shown that the broadened five-line EPR pattern of the gamma irradiated alanine possibly decomposes into a more complex pattern when the recorded spectrum is subject to an operation of deconvolution. The EPR powder spectra of gamma irradiated DL- and L-alanine with and without binders are analysed. In all recorded spectra, each observed line is resolved into an asymmetrical triplet when a Gaussian distribution of 8.2 gauss width is removed, by deconvolution, from the observed spectrum. On the other hand, from a simple fitting analysis carried out on the original data, one encounters that some calculated relations between characteristic parameters, such as intensity ratios, deviate consistently from assumed height ratios. Both, from deconvolution and fitting results, a different structure is suggested for the observed broadened five-line EPR pattern of {gamma}-irradiated powder DL- and L-alanine. (Author)

  19. EPR structure of the gamma irradiated alanine spectrum

    International Nuclear Information System (INIS)

    Cabral P, A.; Jimenez D, H.; Urena N, F.; Galindo, S.; Bosch, P.

    1992-03-01

    In this study is shown that the broadened five-line EPR pattern of the gamma irradiated alanine possibly decomposes into a more complex pattern when the recorded spectrum is subject to an operation of deconvolution. The EPR powder spectra of gamma irradiated DL- and L-alanine with and without binders are analysed. In all recorded spectra, each observed line is resolved into an asymmetrical triplet when a Gaussian distribution of 8.2 gauss width is removed, by deconvolution, from the observed spectrum. On the other hand, from a simple fitting analysis carried out on the original data, one encounters that some calculated relations between characteristic parameters, such as intensity ratios, deviate consistently from assumed height ratios. Both, from deconvolution and fitting results, a different structure is suggested for the observed broadened five-line EPR pattern of γ-irradiated powder DL- and L-alanine. (Author)

  20. Characterization of intronic uridine-rich sequence elements acting as possible targets for nuclear proteins during pre-mRNA splicing in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Gniadkowski, M; Hemmings-Mieszczak, M; Klahre, U; Liu, H X; Filipowicz, W

    1996-02-15

    Introns of nuclear pre-mRNAs in dicotyledonous plants, unlike introns in vertebrates or yeast, are distinctly rich in A+U nucleotides and this feature is essential for their processing. In order to define more precisely sequence elements important for intron recognition in plants, we investigated the effects of short insertions, either U-rich or A-rich, on splicing of synthetic introns in transfected protoplast of Nicotiana plumbaginifolia. It was found that insertions of U-rich (sequence UUUUUAU) but not A-rich (AUAAAAA) segments can activate splicing of a GC-rich synthetic infron, and that U-rich segments, or multimers thereof, can function irrespective of the site of insertion within the intron. Insertions of multiple U-rich segments, either at the same or different locations, generally had an additive, stimulatory effect on splicing. Mutational analysis showed that replacement of one or two U residues in the UUUUUAU sequence with A or C residues had only a small effect on splicing, but replacement with G residues was strongly inhibitory. Proteins that interact with fragments of natural and synthetic pre-mRNAs in vitro were identified in nuclear extracts of N.plumbaginifolia by UV cross- linking. The profile of cross-linked plant proteins was considerably less complex than that obtained with a HeLa cell nuclear extract. Two major cross-linkable plant proteins had apparent molecular mass of 50 and 54 kDa and showed affinity for oligouridilates present in synGC introns or for poly(U).

  1. Proliferation related acidic leucine-rich protein PAL31 functions as a caspase-3 inhibitor

    International Nuclear Information System (INIS)

    Sun Weiyong; Kimura, Hiromichi; Hattori, Naka; Tanaka, Satoshi; Matsuyama, Shigemi; Shiota, Kunio

    2006-01-01

    Proliferation related acidic leucine-rich protein PAL31 (PAL31) is expressed in proliferating cells and consists of 272 amino acids with a tandem structure of leucine-rich repeats in the N-terminus and a highly acidic region with a putative nuclear localization signal in the C-terminus. We previously reported that PAL31 is required for cell cycle progression. In the present study, we found that the antisense oligonucleotide of PAL31 induced apoptosis to the transfected Nb2 cells. Stable transfectants, in which PAL31 was regulated by an inducible promoter, were generated to gain further insight into the signaling role of PAL31 in the regulation of apoptosis. Expression of PAL31 resulted in the marked rescue of Rat1 cells from etoposide and UV radiation-induced apoptosis and the cytoprotection was correlated with the levels of PAL31 protein. Thus, cytoprotection from apoptosis is a physiological function of PAL31. PAL31 can suppress caspase-3 activity but not cytochrome c release in vitro, indicating that PAL31 is a direct caspase-3 inhibitor. In conclusion, PAL31 is a multifunctional protein working as a cell cycle progression factor as well as a cell survival factor

  2. Brain alanine formation as an ammonia-scavenging pathway during hyperammonemia

    DEFF Research Database (Denmark)

    Dadsetan, Sherry; Kukolj, Eva; Bak, Lasse Kristoffer

    2013-01-01

    (MSO) enhances incorporation of (15)NH4(+) in alanine during acute hyperammonemia. We observed a fourfold increased amount of (15)NH4 incorporation in brain alanine in rats treated with MSO. Furthermore, co-cultures of neurons and astrocytes exposed to (15)NH4Cl in the absence or presence of MSO...... demonstrated a dose-dependent incorporation of (15)NH4 into alanine together with increased (15)N incorporation in glutamate. These findings provide evidence that ammonia is detoxified by the concerted action of GDH and ALAT both in vivo and in vitro, a mechanism that is accelerated in the presence of MSO...

  3. Isotope effect of optical activity measurements on L-α-alanine

    International Nuclear Information System (INIS)

    Darge, W.; Laczko, I.; Thiemann, W.

    1976-01-01

    If an optically active organic substance is labelled in the chirality center with another isotopic species (such as 15 N for 14 N) a pronounced variation of rotatory power is predicted. It was tried to varify this idea experimentally on L-α-alanine and found an isotope effect in ORD (optical rotatory dispersion). The magnitude of the rotation is mainly dependent on the pH of the solvent. The ratio of the optical activity alanine- 14 N/alanine- 15 N is about 1.02. It can be seen that the ratios of the molecular rotations are consistently lower than the corresponding ratios of the specific rotations. This is of course due to the fact that the molecular mass 15 M is larger than 14 M. This means tthat the mass difference is already taken into account so that the ratio of the molecular rotations could be defined as the ''net'' isotope effect in the ORDs of 15 N-substitued alanine. From the fact the ORD is different for the isotope-substitued alanine, one can reasonably assume that the absorption coefficient is also different. This leads to speculations about certain problems in the chemical evolution of the biosphere, such as the origin of optical activity. (T.G.)

  4. Heterochiral Knottin Protein: Folding and Solution Structure.

    Science.gov (United States)

    Mong, Surin K; Cochran, Frank V; Yu, Hongtao; Graziano, Zachary; Lin, Yu-Shan; Cochran, Jennifer R; Pentelute, Bradley L

    2017-10-31

    Homochirality is a general feature of biological macromolecules, and Nature includes few examples of heterochiral proteins. Herein, we report on the design, chemical synthesis, and structural characterization of heterochiral proteins possessing loops of amino acids of chirality opposite to that of the rest of a protein scaffold. Using the protein Ecballium elaterium trypsin inhibitor II, we discover that selective β-alanine substitution favors the efficient folding of our heterochiral constructs. Solution nuclear magnetic resonance spectroscopy of one such heterochiral protein reveals a homogeneous global fold. Additionally, steered molecular dynamics simulation indicate β-alanine reduces the free energy required to fold the protein. We also find these heterochiral proteins to be more resistant to proteolysis than homochiral l-proteins. This work informs the design of heterochiral protein architectures containing stretches of both d- and l-amino acids.

  5. The dengue vector Aedes aegypti contains a functional high mobility group box 1 (HMGB1 protein with a unique regulatory C-terminus.

    Directory of Open Access Journals (Sweden)

    Fabio Schneider Ribeiro

    Full Text Available The mosquito Aedes aegypti can spread the dengue, chikungunya and yellow fever viruses. Thus, the search for key molecules involved in the mosquito survival represents today a promising vector control strategy. High Mobility Group Box (HMGB proteins are essential nuclear factors that maintain the high-order structure of chromatin, keeping eukaryotic cells viable. Outside the nucleus, secreted HMGB proteins could alert the innate immune system to foreign antigens and trigger the initiation of host defenses. In this work, we cloned and functionally characterized the HMGB1 protein from Aedes aegypti (AaHMGB1. The AaHMGB1 protein typically consists of two HMG-box DNA binding domains and an acidic C-terminus. Interestingly, AaHMGB1 contains a unique alanine/glutamine-rich (AQ-rich C-terminal region that seems to be exclusive of dipteran HMGB proteins. AaHMGB1 is localized to the cell nucleus, mainly associated with heterochromatin. Circular dichroism analyses of AaHMGB1 or the C-terminal truncated proteins revealed α-helical structures. We showed that AaHMGB1 can effectively bind and change the topology of DNA, and that the AQ-rich and the C-terminal acidic regions can modulate its ability to promote DNA supercoiling, as well as its preference to bind supercoiled DNA. AaHMGB1 is phosphorylated by PKA and PKC, but not by CK2. Importantly, phosphorylation of AaHMGB1 by PKA or PKC completely abolishes its DNA bending activity. Thus, our study shows that a functional HMGB1 protein occurs in Aedes aegypt and we provide the first description of a HMGB1 protein containing an AQ-rich regulatory C-terminus.

  6. Structure and Intramolecular Proton Transfer of Alanine Radical Cations

    International Nuclear Information System (INIS)

    Lee, Gab Yong

    2012-01-01

    The structures of the four lowest alanine conformers, along with their radical cations and the effect of ionization on the intramolecular proton transfer process, are studied using the density functional theory and MP2 method. The energy order of the radical cations of alanine differs from that of the corresponding neutral conformers due to changes in the basicity of the NH 2 group upon ionization. Ionization favors the intramolecular proton transfer process, leading to a proton-transferred radical-cation structure, [NH 3 + -CHCH 3 -COO·], which contrasts with the fact that a proton-transferred zwitterionic conformer is not stable for a neutral alanine in the gas phase. The energy barrier during the proton transfer process is calculated to be about 6 kcal/mol

  7. Adsorption of alanine with heteroatom substituted fullerene for solar cell application: A DFT study.

    Science.gov (United States)

    Dheivamalar, S; Sugi, L; Ravichandran, K; Sriram, S

    2018-05-14

    C 20 is the most important fullerene cage and alanine is the simplest representation of a backbone unit of the protein. The absorption feasibility of alanine molecule in the Si-doped C 20 and B-doped C 20 fullerenes has been studied based on calculated electronic properties of fullerenes using density functional theory (DFT). In this work, we explore the ability of Si-doped C 20 , B-doped C 20 fullerene to interact with alanine at the DFT-B3LYP/6-31G, RHF level of theory. We find that noticeable structural change takes place in C 20 when one of its carbon is substituted with Si or B. The molecular geometry, electronic properties and vibrational analysis have also been performed on the title compounds. The NMR study reveals the aromaticity of the pure and doped fullerene compounds. Stability of the doped fullerene - alanine compound arises from hyper conjugative interactions. It leads to one of the major property of bioactivity, charge transfer and delocalization of charge and this properties has been analyzed using Natural Bond Orbital (NBO) analysis. The energy gap of the doped fullerene reveals that there is a decrease in the size of energy gap significantly, making them more reactive as compared to C 20 fullerene. Theoretical studies of the electronic spectra by using time - dependent density functional theory (TD-DFT) method were helpful to interpret the observed electronic transition state. We aim to optimize the performance of the solar cells by altering the frontier orbital energy gaps. Considering all studied properties, it may be inferred that the applicability of C 20 fullerene as the non-linear optical (NLO) material and its NLO property would increase on doping fullerene with Si and B atom. Specifically C 19 Si would be better among them. Copyright © 2018. Published by Elsevier B.V.

  8. Development of portable ESR spectrometer as a reader for alanine dosimeters

    International Nuclear Information System (INIS)

    Kojima, T.; Haruyama, Y.; Tachibana, H.; Tanaka, R.; Okamoto, J.

    1993-01-01

    A prototype portable electron spin resonance (ESR) spectrometer was designed and tested, and its feasibility as a reader of alanine dosimeters was studied from the two standpoints of reproducibility of readings and sensitivity sufficient for dosimetry in the absorbed dose range 1-100 kGy. It has two main components: a permanent magnet and resonator; and a unit box with a microwave and auto-frequency control (AFC) circuit, a sweep controller of magnetic field, display, etc. In the present preliminary study, reproducibility values are measured with the same ESR parameters and alanine-polystyrene (alanine-PS) dosimeter at a dose of 1 kGy: repeatedly measuring without removing dosimeter from the cavity; individual measurement with removing and inserting again into the cavity with readjustment of ESR parameters. Alanine/ESR dosimetry using this spectrometer has a measurable dose range from 1 to 100 kGy with relatively high precision within ± 3% (1σ) as a preliminary result. The portable ESR spectrometer may also be modified as an automatic, more precise, dedicated alanine dosimeter reader. (author)

  9. d-Alanine metabolism is essential for growth and biofilm formation of Streptococcus mutans.

    Science.gov (United States)

    Qiu, W; Zheng, X; Wei, Y; Zhou, X; Zhang, K; Wang, S; Cheng, L; Li, Y; Ren, B; Xu, X; Li, Y; Li, M

    2016-10-01

    Part of the d-alanine (d-Ala) metabolic pathway in bacteria involves the conversion of l-alanine to d-Ala by alanine racemase and the formation of d-alanyl-d-alanine by d-alanine-d-alanine ligase, the product of which is involved in cell wall peptidoglycan synthesis. At present, drugs that target the metabolic pathway of d-Ala are already in clinical use - e.g. d-cycloserine (DCS) is used as an antibiotic against Mycobacterium tuberculosis. Streptococcus mutans is the main cariogenic bacterium in the oral cavity. Its d-Ala metabolism-associated enzymes alanine racemase and d-alanine-d-alanine ligase are encoded by the genes smu.1834 and smu.599, respectively, which may be potential targets for inhibitors. In this study, the addition of DCS blocked the d-Ala metabolic pathway in S. mutans, leading to bacterial cell wall defects, significant inhibition of bacterial growth and biofilm formation, and reductions in extracellular polysaccharide production and bacterial adhesion. However, the exogenous addition of d-Ala could reverse the inhibitory effect of DCS. Through the means of drug regulation, our study demonstrated, for the first time, the importance of d-Ala metabolism in the survival and biofilm formation of S. mutans. If the growth of S. mutans can be specifically inhibited by designing drugs that target d-Ala metabolism, then this may serve as a potential new treatment for dental caries. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Systematic replacement of lysine with glutamine and alanine in Escherichia coli malate synthase G: effect on crystallization

    International Nuclear Information System (INIS)

    Anstrom, David M.; Colip, Leslie; Moshofsky, Brian; Hatcher, Eric; Remington, S. James

    2005-01-01

    Alanine and glutamine mutations were made to the same 15 lysine positions on the surface of E. coli malate synthase G and the impact on crystallization observed. The results support lysine replacement for improvement of crystallization and provide insight into site selection and type of amino-acid replacement. Two proposals recommend substitution of surface lysine residues as a means to improve the quality of protein crystals. In proposal I, substitution of lysine by alanine has been suggested to improve crystallization by reducing the entropic cost of ordering flexible side chains at crystal contacts. In proposal II, substitution of lysine by residues more commonly found in crystal contacts, such as glutamine, has been proposed to improve crystallization. 15 lysine residues on the surface of Escherichia coli malate synthase G, distributed over a variety of secondary structures, were individually mutated to both alanine and glutamine. For 28 variants, detailed studies of the effect on enzymatic activity and crystallization were conducted. This has permitted direct comparison of the relative effects of the two types of mutations. While none of the variants produced crystals suitable for X-ray structural determination, small crystals were obtained in a wide variety of conditions, in support of the general approach. Glutamine substitutions were found to be more effective than alanine in producing crystals, in support of proposal II. Secondary structure at the site of mutation does not appear to play a major role in determining the rate of success

  11. Synthesis of silver nanoparticles using DL-alanine for ESR dosimetry applications

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D.; Nicolucci, Patricia; Baffa, Oswaldo

    2012-01-01

    The potential use of alanine for the production of nanoparticles is presented here for the first time. Silver nanoparticles were synthesized using a simple green method, namely the thermal treatment of silver nitrate aqueous solutions with DL-alanine. The latter compound was employed both as a reducing and a capping agent. Particles with average size equal to 7.5 nm, face-centered cubic crystalline structure, narrow size distribution, and spherical shape were obtained. Interaction between the silver ions present on the surface of the nanoparticles and the amine group of the DL-alanine molecule seems to be responsible for reduction of the silver ions and for the stability of the colloid. The bio-hybrid nano-composite was used as an ESR dosimeter. The amount of silver nanoparticles in the nanocomposite was not sufficient to cause considerable loss of tissue equivalency. Moreover, the samples containing nanoparticles presented increased sensitivity and reduced energetic dependence as compared with pure DL-alanine, contributing to the construction of small-sized dosimeters. - Highlights: ► The synthesis is environmentally benign, easy to perform, and of low-cost. ► DL-Alanine was employed both as reducing and capping agent. ► Mean size of 7.5 nm, narrow size distribution, and spherical shape of particles. ► Increased sensitivity and reduced energetic dependence compared with pure alanine. ► The nanocomposite has potential application for ESR dosimetry.

  12. Prolonged continuous intravenous infusion of the dipeptide L-alanine- L-glutamine significantly increases plasma glutamine and alanine without elevating brain glutamate in patients with severe traumatic brain injury.

    Science.gov (United States)

    Nägeli, Mirjam; Fasshauer, Mario; Sommerfeld, Jutta; Fendel, Angela; Brandi, Giovanna; Stover, John F

    2014-07-02

    Low plasma glutamine levels are associated with worse clinical outcome. Intravenous glutamine infusion dose- dependently increases plasma glutamine levels, thereby correcting hypoglutaminemia. Glutamine may be transformed to glutamate which might limit its application at a higher dose in patients with severe traumatic brain injury (TBI). To date, the optimal glutamine dose required to normalize plasma glutamine levels without increasing plasma and cerebral glutamate has not yet been defined. Changes in plasma and cerebral glutamine, alanine, and glutamate as well as indirect signs of metabolic impairment reflected by increased intracranial pressure (ICP), lactate, lactate-to-pyruvate ratio, electroencephalogram (EEG) activity were determined before, during, and after continuous intravenous infusion of 0.75 g L-alanine-L-glutamine which was given either for 24 hours (group 1, n = 6) or 5 days (group 2, n = 6) in addition to regular enteral nutrition. Lab values including nitrogen balance, urea and ammonia were determined daily. Continuous L-alanine-L-glutamine infusion significantly increased plasma and cerebral glutamine as well as alanine levels, being mostly sustained during the 5 day infusion phase (plasma glutamine: from 295 ± 62 to 500 ± 145 μmol/ l; brain glutamine: from 183 ± 188 to 549 ± 120 μmol/ l; plasma alanine: from 327 ± 91 to 622 ± 182 μmol/ l; brain alanine: from 48 ± 55 to 89 ± 129 μmol/ l; p alanine-L-glutamine infusion (0.75 g/ kg/ d up to 5 days) increased plasma and brain glutamine and alanine levels. This was not associated with elevated glutamate or signs of potential glutamate-mediated cerebral injury. The increased nitrogen load should be considered in patients with renal and hepatic dysfunction. Clinicaltrials.gov NCT02130674. Registered 5 April 2014.

  13. Study of human salivary proline-rich proteins interaction with food tannins.

    Science.gov (United States)

    Soares, Susana; García-Estévez, Ignacio; Ferrer-Galego, Raúl; Brás, Natércia F; Brandão, Elsa; Silva, Mafalda; Teixeira, Natércia; Fonseca, Fátima; Sousa, Sérgio F; Ferreira-da-Silva, Frederico; Mateus, Nuno; de Freitas, Victor

    2018-03-15

    In this work, saturation transfer difference-NMR, isothermal microcalorimetry and molecular dynamics simulations have been used to study the individual interactions between basic, glycosylated and acidic proline-rich proteins (bPRPS, gPRPs, aPRPs) and P-B peptide with some representative food tannins [procyanidin B2, procyanidin B2 3'-O-gallate (B2g) and procyanidin trimer (catechin-4-8-catechin-4-8-catechin)]. Results showed that P-B peptide was in general the salivary protein (SP) with higher affinity whereas aPRPs showed lower affinity to the studied procyanidins. Moreover, B2g was the procyanidin with higher affinity for all SP. Hydrophobic and hydrogen bonds were present in all interactions but the major driving force depended on the procyanidin-SP pair. Furthermore, proline clusters or residues in their vicinity were identified as the probable sites of proteins for interaction with procyanidins. For bPRP and aPRP a significant change to less extended conformations was observed, while P-B peptide did not display any structural rearrangement upon procyanidins binding. Copyright © 2017. Published by Elsevier Ltd.

  14. Substrate specificity of the aspartate:alanine antiporter (AspT) of Tetragenococcus halophilus in reconstituted liposomes.

    Science.gov (United States)

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-08-19

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of L-aspartate(1-) with L-alanine(0). Although physiological functions of AspT were well studied, L-aspartate(1-):L-alanine(0) antiport mechanisms are still unsolved. Here we report that the binding sites of L-aspartate and L-alanine are independently present in AspT by means of the kinetic studies. We purified His(6)-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (K(m) = 0.35 ± 0.03 mm for L-aspartate, K(m) = 0.098 ± 0 mm for D-aspartate, K(m) = 26 ± 2 mm for L-alanine, K(m) = 3.3 ± 0.2 mm for D-alanine). Competitive inhibition by various amino acids of L-aspartate or L-alanine in self-exchange reactions revealed that L-cysteine selectively inhibited L-aspartate self-exchange but only weakly inhibited L-alanine self-exchange. Additionally, L-serine selectively inhibited L-alanine self-exchange but barely inhibited L-aspartate self-exchange. The aspartate analogs L-cysteine sulfinic acid, L-cysteic acid, and D-cysteic acid competitively and strongly inhibited L-aspartate self-exchange compared with L-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of L-aspartate and L-alanine are independently located in the substrate translocation pathway of AspT.

  15. Substrate Specificity of the Aspartate:Alanine Antiporter (AspT) of Tetragenococcus halophilus in Reconstituted Liposomes*

    Science.gov (United States)

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-01-01

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of l-aspartate1− with l-alanine0. Although physiological functions of AspT were well studied, l-aspartate1−:l-alanine0 antiport mechanisms are still unsolved. Here we report that the binding sites of l-aspartate and l-alanine are independently present in AspT by means of the kinetic studies. We purified His6-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (Km = 0.35 ± 0.03 mm for l-aspartate, Km = 0.098 ± 0 mm for d-aspartate, Km = 26 ± 2 mm for l-alanine, Km = 3.3 ± 0.2 mm for d-alanine). Competitive inhibition by various amino acids of l-aspartate or l-alanine in self-exchange reactions revealed that l-cysteine selectively inhibited l-aspartate self-exchange but only weakly inhibited l-alanine self-exchange. Additionally, l-serine selectively inhibited l-alanine self-exchange but barely inhibited l-aspartate self-exchange. The aspartate analogs l-cysteine sulfinic acid, l-cysteic acid, and d-cysteic acid competitively and strongly inhibited l-aspartate self-exchange compared with l-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of l-aspartate and l-alanine are independently located in the substrate translocation pathway of AspT. PMID:21719707

  16. EPR dosimetry of radiotherapy photon beams in inhomogeneous media using alanine films

    Energy Technology Data Exchange (ETDEWEB)

    Oesteraas, Bjoern Helge [Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Montebello, N-0310 Oslo (Norway); Hole, Eli Olaug [Department of Physics, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo (Norway); Olsen, Dag Rune [Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310 Oslo (Norway); Malinen, Eirik [Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310 Oslo (Norway)

    2006-12-21

    In the current work, EPR (electron paramagnetic resonance) dosimetry using alanine films (134 {mu}m thick) was utilized for dose measurements in inhomogeneous phantoms irradiated with radiotherapy photon beams. The main phantom material was PMMA, while either Styrofoam or aluminium was introduced as an inhomogeneity. The phantoms were irradiated to a maximum dose of about 30 Gy with 6 or 15 MV photons. The performance of the alanine film dosimeters was investigated and compared to results from ion chamber dosimetry, Monte Carlo simulations and radiotherapy treatment planning calculations. It was found that the alanine film dosimeters had a linear dose response above approximately 5 Gy, while a background signal obscured the response at lower dose levels. For doses between 5 and 60 Gy, the standard deviation of single alanine film dose estimates was about 2%. The alanine film dose estimates yielded results comparable to those from the Monte Carlo simulations and the ion chamber measurements, with absolute differences between estimates in the order of 1-15%. The treatment planning calculations exhibited limited applicability. The current work shows that alanine film dosimetry is a method suitable for estimating radiotherapeutical doses and for dose measurements in inhomogeneous media.

  17. EPR dosimetry of radiotherapy photon beams in inhomogeneous media using alanine films

    International Nuclear Information System (INIS)

    Oesteraas, Bjoern Helge; Hole, Eli Olaug; Olsen, Dag Rune; Malinen, Eirik

    2006-01-01

    In the current work, EPR (electron paramagnetic resonance) dosimetry using alanine films (134 μm thick) was utilized for dose measurements in inhomogeneous phantoms irradiated with radiotherapy photon beams. The main phantom material was PMMA, while either Styrofoam or aluminium was introduced as an inhomogeneity. The phantoms were irradiated to a maximum dose of about 30 Gy with 6 or 15 MV photons. The performance of the alanine film dosimeters was investigated and compared to results from ion chamber dosimetry, Monte Carlo simulations and radiotherapy treatment planning calculations. It was found that the alanine film dosimeters had a linear dose response above approximately 5 Gy, while a background signal obscured the response at lower dose levels. For doses between 5 and 60 Gy, the standard deviation of single alanine film dose estimates was about 2%. The alanine film dose estimates yielded results comparable to those from the Monte Carlo simulations and the ion chamber measurements, with absolute differences between estimates in the order of 1-15%. The treatment planning calculations exhibited limited applicability. The current work shows that alanine film dosimetry is a method suitable for estimating radiotherapeutical doses and for dose measurements in inhomogeneous media

  18. Structural features and kinetic characterization of alanine racemase from Bacillus pseudofirmus OF4.

    Science.gov (United States)

    Dong, Hui; Hu, Tingting; He, Guangzheng; Lu, Deren; Qi, Jianxun; Dou, Yanshu; Long, Wei; He, Xin; Ju, Jiansong; Su, Dan

    2018-02-26

    Alanine racemase (Alr) is a pyridoxal-5'-phosphate-dependent (PLP) enzyme that catalyzes a reversible racemization between the enantiomers of alanine. d-Alanine is an indispensable constituent in the biosynthesis of bacterial cell-wall peptidoglycan, and its inhibition is lethal to prokaryotes, which makes it an attractive target for designing antibacterial drugs. In this study, the molecular structure of alanine racemase from Bacillus pseudofirmus OF4 (DadX OF4 ) was determined by X-ray crystallography to a resolution of 1.8 Å. The comparison of DadX OF4 with alanine racemases from other bacteria demonstrated a conserved overall fold. Enzyme kinetics analysis showed that the conserved residues at the substrate entryway and the salt bridge at the dimer interface are critical for enzyme activity. These structural and biochemical findings provide a template for future structure-based drug-development efforts targeting alanine racemases. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Excess of L-Alanine in Amino Acids Synthesized in a Plasma Torch Generated by a Hypervelocity Meteorite Impact Reproduced in the Laboratory

    Science.gov (United States)

    Managadze, George G.; Engle, Michael H.; Getty, Stephanie A.; Wurz, Peter; Brinckerhoff, William B.; Shokolov, Anatoly; Sholin, Gennady; Terent'ev, Sergey A.; Chumikov, Alexander E.; Skalkin, Alexander S

    2016-01-01

    We present a laboratory reproduction of hypervelocity impacts of a carbon containing meteorite on a mineral substance representative of planetary surfaces. The physical conditions of the resulting impact plasma torch provide favorable conditions for abiogenic synthesis of protein amino acids: We identified glycine and alanine, and in smaller quantities serine, in the produced material. Moreover, we observe breaking of alanine mirror symmetry with L excess, which coincides with the bioorganic world. Therefore the selection of L-amino acids for the formation of proteins for living matter could have been the result from plasma processes occurring during the impact meteorites on the surface. This indicates that the plasma torch from meteorite impacts could play an important role in the formation of biomolecular homochirality. Thus, meteorite impacts possibly were the initial stage of this process and promoted conditions for the emergence of a living matter.

  20. Alanine Radiation Detectors in Therapeutic Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo

    of the depth dose curves. Solid state detectors, such as diamond detectors, radiochromic films, TLDs and the amino acid alanine are used due to there good spatial resolution. If used in particle beams their response often exhibits a dependence on particle energy and type, so the acquired signal is not always...... proportional to absorbed dose. A model by Hansen and Olsen, based on the Track Structure Theory is available, which can predict the relative efficiency of some detectors, when the particle spectrum is known. For alanine detectors the model was successfully validated by Hansen and Olsen for several ion species...... at energies below 20 MeV/u. We implemented this model in the Monte Carlo code FLUKA. At the GSI heavy ion facility in Darmstadt, Germany, alanine has been irradiated with carbon ions at energies between 88 an 400 MeV/u, which is the energy range used for therapy. The irradiation and the detector response have...

  1. Green reduction of graphene oxide using alanine

    International Nuclear Information System (INIS)

    Wang, Jiabin; Salihi, Elif Caliskan; Šiller, Lidija

    2017-01-01

    There remains a real need for the easy, eco-friendly and scalable preparation method of graphene due to various potential applications. Chemical reduction is the most versatile method for the large scale production of graphene. Here we report the operating conditions for a one-step, economical and green synthesis method for the reduction of graphene oxide using a biomolecule (alanine). Graphene oxide was produced by the oxidation and exfoliation of natural graphite flake with strong oxidants using Hummers method (Hummers and Offeman, 1958), but the method was revised in our laboratory to set up a safe and environmentally friendly route. The reduction of graphene oxide was investigated using alanine at various operating conditions in order to set up optimum conditions (treatment time, temperature and concentration of the reagent). Samples have been characterized by using UV–Visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, Raman spectroscopy and X-ray diffraction analysis. - Highlights: • An environmentally friendly route was reported for the chemical reduction of graphene oxide (GO). • Alanine could reduce GO to rGO (reduced graphene oxide) without using any stabilizer or alcaline medium. • Characterization studies confirmed the successful deoxygenation of GO.

  2. Green reduction of graphene oxide using alanine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiabin [Newcastle University, School of Chemical Engineering and Advanced Materials, Newcastle upon Tyne NE1 7RU (United Kingdom); Salihi, Elif Caliskan, E-mail: caliskanelif@gmail.com [Newcastle University, School of Chemical Engineering and Advanced Materials, Newcastle upon Tyne NE1 7RU (United Kingdom); Marmara University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, 34668 Istanbul (Turkey); Šiller, Lidija [Newcastle University, School of Chemical Engineering and Advanced Materials, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2017-03-01

    There remains a real need for the easy, eco-friendly and scalable preparation method of graphene due to various potential applications. Chemical reduction is the most versatile method for the large scale production of graphene. Here we report the operating conditions for a one-step, economical and green synthesis method for the reduction of graphene oxide using a biomolecule (alanine). Graphene oxide was produced by the oxidation and exfoliation of natural graphite flake with strong oxidants using Hummers method (Hummers and Offeman, 1958), but the method was revised in our laboratory to set up a safe and environmentally friendly route. The reduction of graphene oxide was investigated using alanine at various operating conditions in order to set up optimum conditions (treatment time, temperature and concentration of the reagent). Samples have been characterized by using UV–Visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, Raman spectroscopy and X-ray diffraction analysis. - Highlights: • An environmentally friendly route was reported for the chemical reduction of graphene oxide (GO). • Alanine could reduce GO to rGO (reduced graphene oxide) without using any stabilizer or alcaline medium. • Characterization studies confirmed the successful deoxygenation of GO.

  3. Implementation of an alanine dosimetry service

    International Nuclear Information System (INIS)

    Gago Arias, A.; Nunez Pelaez, N.; Peteiro Vilaseco, E.; Gomez Rodriguez, F.; Gonzalez Castano, D. M.

    2011-01-01

    This work facing the implementation of an alanine dosimetry service, linked to the installation of Co 6 0 Radio physics Laboratory (LP) and Paramagnetic Resonance Service of the University of Santiago de Compostela (USC).

  4. Global characterization of signalling networks associated with tamoxifen resistance in breast cancer

    DEFF Research Database (Denmark)

    Browne, Brigid C.; Hochgräfe, Falko; Wu, Jianmin

    2013-01-01

    R cells. Phosphorylation of the tyrosine kinase Yes and expression of the actin‐binding protein myristoylated alanine‐rich C‐kinase substrate (MARCKS) were increased two‐ and eightfold in TamR cells respectively, and these proteins were selected for further analysis. Knockdown of either protein in Tam......Acquired resistance to the anti‐estrogen tamoxifen remains a significant challenge in breast cancer management. In this study, we used an integrative approach to characterize global protein expression and tyrosine phosphorylation events in tamoxifen‐resistant MCF7 breast cancer cells (Tam...... was perturbed in TamR cells, together with pathways enriched for proteins associated with growth factor, cell–cell and cell matrix‐initiated signalling. Consistent with known roles for Ras/MAPK and PI3‐kinase signalling in tamoxifen resistance, tyrosine‐phosphorylated MAPK1, SHC1 and PIK3R2 were elevated in Tam...

  5. Native Alanine Substitution in the Glycine Hinge Modulates Conformational Flexibility of Heme Nitric Oxide/Oxygen (H-NOX) Sensing Proteins.

    Science.gov (United States)

    Hespen, Charles W; Bruegger, Joel J; Guo, Yirui; Marletta, Michael A

    2018-06-15

    Heme nitric oxide/oxygen sensing (H-NOX) domains are direct NO sensors that regulate a variety of biological functions in both bacteria and eukaryotes. Previous work on H-NOX proteins has shown that upon NO binding, a conformational change occurs along two glycine residues on adjacent helices (termed the glycine hinge). Despite the apparent importance of the glycine hinge, it is not fully conserved in all H-NOX domains. Several H-NOX sensors from the family Flavobacteriaceae contain a native alanine substitution in one of the hinge residues. In this work, the effect of the increased steric bulk within the Ala-Gly hinge on H-NOX function was investigated. The hinge in Kordia algicida OT-1 ( Ka H-NOX) is composed of A71 and G145. Ligand-binding properties and signaling function for this H-NOX were characterized. The variant A71G was designed to convert the hinge region of Ka H-NOX to the typical Gly-Gly motif. In activity assays with its cognate histidine kinase (HnoK), the wild type displayed increased signal specificity compared to A71G. Increasing titrations of unliganded A71G gradually inhibits HnoK autophosphorylation, while increasing titrations of unliganded wild type H-NOX does not inhibit HnoK. Crystal structures of both wild type and A71G Ka H-NOX were solved to 1.9 and 1.6 Å, respectively. Regions of H-NOX domains previously identified as involved in protein-protein interactions with HnoK display significantly higher b-factors in A71G compared to wild-type H-NOX. Both biochemical and structural data indicate that the hinge region controls overall conformational flexibility of the H-NOX, affecting NO complex formation and regulation of its HnoK.

  6. An Exonic Insertion Encodes an Alanine Stretch in Porcine Synapsin I

    DEFF Research Database (Denmark)

    Hedegaard, Claus; Bendixen, Emøke; Jensen, Poul Henning

    2009-01-01

    regulatory roles in linking the vesicles to the cytoskeleton, supported by the identified abilities of the syns to bind both phospholipids (Schiebler et al. 1986 ) and tubulin/actin (Baines and Bennett 1986 ; Bähler and Greengard 1987 ). Originating from an alternatively spliced common transcript, syn Ia...... experiments, a nonsense mutation leading to a truncated form of syn I, without domain D and E/F, was identified in a family with frequent cases of X-linked epilepsy (Garcia et al. 2004 ). This study reports molecular cloning and characterization of the coding sequence of the porcine ortholog of syn I......, including identification and verification at the protein level of an alanine-encoding insert...

  7. Saccharomyces cerevisiae Differential Functionalization of Presumed ScALT1 and ScALT2 Alanine Transaminases Has Been Driven by Diversification of Pyridoxal Phosphate Interactions

    Directory of Open Access Journals (Sweden)

    Erendira Rojas-Ortega

    2018-05-01

    Full Text Available Saccharomyces cerevisiae arose from an interspecies hybridization (allopolyploidiza-tion, followed by Whole Genome Duplication. Diversification analysis of ScAlt1/ScAlt2 indicated that while ScAlt1 is an alanine transaminase, ScAlt2 lost this activity, constituting an example in which one of the members of the gene pair lacks the apparent ancestral physiological role. This paper analyzes structural organization and pyridoxal phosphate (PLP binding properties of ScAlt1 and ScAlt2 indicating functional diversification could have determined loss of ScAlt2 alanine transaminase activity and thus its role in alanine metabolism. It was found that ScAlt1 and ScAlt2 are dimeric enzymes harboring 67% identity and intact conservation of the catalytic residues, with very similar structures. However, tertiary structure analysis indicated that ScAlt2 has a more open conformation than that of ScAlt1 so that under physiological conditions, while PLP interaction with ScAlt1 allows the formation of two tautomeric PLP isomers (enolimine and ketoenamine ScAlt2 preferentially forms the ketoenamine PLP tautomer, indicating a modified polarity of the active sites which affect the interaction of PLP with these proteins, that could result in lack of alanine transaminase activity in ScAlt2. The fact that ScAlt2 forms a catalytically active Schiff base with PLP and its position in an independent clade in “sensu strictu” yeasts suggests this protein has a yet undiscovered physiological function.

  8. Saccharomyces cerevisiae Differential Functionalization of Presumed ScALT1 and ScALT2 Alanine Transaminases Has Been Driven by Diversification of Pyridoxal Phosphate Interactions

    Science.gov (United States)

    Rojas-Ortega, Erendira; Aguirre-López, Beatriz; Reyes-Vivas, Horacio; González-Andrade, Martín; Campero-Basaldúa, Jose C.; Pardo, Juan P.; González, Alicia

    2018-01-01

    Saccharomyces cerevisiae arose from an interspecies hybridization (allopolyploidiza-tion), followed by Whole Genome Duplication. Diversification analysis of ScAlt1/ScAlt2 indicated that while ScAlt1 is an alanine transaminase, ScAlt2 lost this activity, constituting an example in which one of the members of the gene pair lacks the apparent ancestral physiological role. This paper analyzes structural organization and pyridoxal phosphate (PLP) binding properties of ScAlt1 and ScAlt2 indicating functional diversification could have determined loss of ScAlt2 alanine transaminase activity and thus its role in alanine metabolism. It was found that ScAlt1 and ScAlt2 are dimeric enzymes harboring 67% identity and intact conservation of the catalytic residues, with very similar structures. However, tertiary structure analysis indicated that ScAlt2 has a more open conformation than that of ScAlt1 so that under physiological conditions, while PLP interaction with ScAlt1 allows the formation of two tautomeric PLP isomers (enolimine and ketoenamine) ScAlt2 preferentially forms the ketoenamine PLP tautomer, indicating a modified polarity of the active sites which affect the interaction of PLP with these proteins, that could result in lack of alanine transaminase activity in ScAlt2. The fact that ScAlt2 forms a catalytically active Schiff base with PLP and its position in an independent clade in “sensu strictu” yeasts suggests this protein has a yet undiscovered physiological function. PMID:29867852

  9. Alanine-EPR as a transfer standard dosimetry system for low energy X radiation

    International Nuclear Information System (INIS)

    Khoury, H.J.; Silva, E.J. da; Mehta, K.; Barros, V.S. de; Asfora, V.K.; Guzzo, P.L.; Parker, A.G.

    2015-01-01

    The purpose of this paper is to evaluate the use of alanine-EPR as a transfer standard dosimetry system for low energy X radiation, such as that in RS-2400, which operates in the range from 25 to 150 kV and 2 to 45 mA. Two types of alanine dosimeters were investigated. One is a commercial alanine pellets from Aérial-Centre de Ressources Technologiques, France and one was prepared in our laboratory (LMRI-DEN/UFPE). The EPR spectra of the irradiated dosimeters were recorded in the Nuclear Energy Department of UFPE, using a Bruker EMX10 EPR spectrometer operating in the X-band. The alanine-EPR dosimetry system was calibrated in the range of 20–220 Gy in this X-ray field, against an ionization chamber calibrated at the relevant X-ray energy with traceability to PTB. The results showed that both alanine dosimeters presented a linear dose response the same sensitivity, when the EPR signal was normalized to alanine mass. The total uncertainty in the measured dose was estimated to be about 3%. The results indicate that it is possible to use the alanine-EPR dosimetry system for validation of a low-energy X ray irradiator, such as RS-2400.

  10. Hybrid proline-rich proteins: novel players in plant cell elongation?

    Science.gov (United States)

    Dvořáková, Lenka; Srba, Miroslav; Opatrny, Zdenek; Fischer, Lukas

    2012-01-01

    Background and Aims Hybrid proline-rich proteins (HyPRPs) represent a large family of putative cell-wall proteins characterized by the presence of a variable N-terminal domain and a conserved C-terminal domain that is related to non-specific lipid transfer proteins. The function of HyPRPs remains unclear, but their widespread occurrence and abundant expression patterns indicate that they may be involved in a basic cellular process. Methods To elucidate the cellular function of HyPRPs, we modulated the expression of three HyPRP genes in tobacco (Nicotiana tabacum) BY-2 cell lines and in potato (Solanum tuberosum) plants. Key Results In BY-2 lines, over-expression of the three HyPRP genes with different types of N-terminal domains resulted in similar phenotypic changes, namely increased cell elongation, both in suspension culture and on solid media where the over-expression resulted in enhanced calli size. The over-expressing cells showed increased plasmolysis in a hypertonic mannitol solution and accelerated rate of protoplast release, suggesting loosening of the cell walls. In contrast to BY-2 lines, no phenotypic changes were observed in potato plants over-expressing the same or analogous HyPRP genes, presumably due to more complex compensatory mechanisms in planta. Conclusions Based on the results from BY-2 lines, we propose that HyPRPs, more specifically their C-terminal domains, represent a novel group of proteins involved in cell expansion. PMID:22028464

  11. Effect of beta-alanine, with and without sodium bicarbonate, on 2000-m rowing performance.

    Science.gov (United States)

    Hobson, Ruth M; Harris, Roger C; Martin, Dan; Smith, Perry; Macklin, Ben; Gualano, Bruno; Sale, Craig

    2013-10-01

    To examine the effect of beta-alanine only and beta-alanine with sodium bicarbonate supplementation on 2,000-m rowing performance. Twenty well-trained rowers (age 23 ± 4 y; height 1.85 ± 0.08 m; body mass 82.5 ± 8.9 kg) were assigned to either a placebo or beta-alanine (6.4 g · d(-1) for 4 weeks) group. A 2,000-m rowing time trial (TT) was performed before supplementation (Baseline) and after 28 and 30 days of supplementation. The post supplementation trials involved supplementation with either maltodextrin or sodium bicarbonate in a double-blind, crossover design, creating four study conditions (placebo with maltodextrin; placebo with sodium bicarbonate; beta-alanine with maltodextrin; beta-alanine with sodium bicarbonate). Blood lactate, pH, bicarbonate, and base excess were measured pre-TT, immediately post-TT and at TT+5 min. Performance data were analyzed using magnitude based inferences. Beta-alanine supplementation was very likely to be beneficial to 2,000-m rowing performance (6.4 ± 8.1 s effect compared with placebo), with the effect of sodium bicarbonate having a likely benefit (3.2 ± 8.8 s). There was a small (1.1 ± 5.6 s) but possibly beneficial additional effect when combining chronic beta-alanine supplementation with acute sodium bicarbonate supplementation compared with chronic beta-alanine supplementation alone. Sodium bicarbonate ingestion led to increases in plasma pH, base excess, bicarbonate, and lactate concentrations. Both chronic beta-alanine and acute sodium bicarbonate supplementation alone had positive effects on 2,000-m rowing performance. The addition of acute sodium bicarbonate to chronic beta-alanine supplementation may further enhance rowing performance.

  12. L-alanine uptake in membrane vesicles from Mytilus edulis gills

    International Nuclear Information System (INIS)

    Pajor, A.M.; Wright, S.H.

    1986-01-01

    Previous studies have shown that gills from M. edulis can accumulate L-alanine from seawater by a saturable process specific for α-neutral amino acids. This uptake occurs against chemical gradients in excess of 10 6 to 1. To further characterize this uptake, membrane vesicles were prepared from M. edulis gill tissue by differential centrifugation. Enrichments of putative enzyme markers (relative to that in combined initial fractions) were as follows: γ-Glutamyltranspeptidase, 25-30x; Alkaline Phosphatase, 5-6x; K + -dependent para-Nitrophenyl Phosphatase, 3-5x; Succinate Dehydrogenase 0.1-0.2x. These results suggest that the preparation is enriched in plasma membranes, although histochemical studies will be needed to verify this. The time course of 14 C-L-alanine uptake in the presence of inwardly-directed Na + gradient showed a transient overshoot (3-5 fold) at 10 minutes which decreased to equilibrium after six hours. The size of the overshoot and early uptake rates depended on the size of the inwardly-directed Na + gradient. No overshoot was seen in the presence of inwardly-directed gradients of LiCl or choline-Cl, or with equilibrium concentrations NaCl or mannitol. A reduced overshoot was seen with a gradient of NaSCN. A small overshoot was seen with an inwardly-directed gradient of KCl. Transport of L-alanine included saturable and diffusive components. Uptake of 6 μM L-alanine was inhibited more than 80% by 100 μM α-zwitterionic amino acids (alanine, leucine, glycine); by 30 to 75% by proline, aspartate and lysine; and less than 20% by a β-amino acid, taurine. The results of these experiments agree with those from intact gill studies and support the hypothesis that L-alanine is transported into gill epithelial cells by a secondary active transport process involving Na +

  13. Salivary proline-rich protein may reduce tannin-iron chelation: a systematic narrative review

    OpenAIRE

    Delimont, Nicole M.; Rosenkranz, Sara K.; Haub, Mark D.; Lindshield, Brian L.

    2017-01-01

    Background Tannins are often cited for antinutritional effects, including chelation of non-heme iron. Despite this, studies exploring non-heme iron bioavailability inhibition with long-term consumption have reported mixed results. Salivary proline-rich proteins (PRPs) may mediate tannin-antinutritional effects on non-heme iron bioavailability. Aim To review evidence regarding biochemical binding mechanisms and affinity states between PRPs and tannins, as well as effects of PRPs on non-heme ir...

  14. Spectrophotometric readout for an alanine dosimeter for food irradiation applications

    International Nuclear Information System (INIS)

    Ebraheem, S.; Beshir, W.B.; Eid, S.; Sobhy, R.; Kovacs, A.

    2003-01-01

    The alanine-electron spin resonance (EPR) readout system is well known as a reference and transfer dosimetry system for the evaluation of high doses in radiation processing. The high cost of an EPR/alanine dosimetry system is a serious handicap for large-scale routine application in irradiation facilities. In this study, the use of a complex produced by dissolving irradiated L-alanine in 1,4-phenyl diammonium dichloride solution was investigated for dosimetry purposes. This complex--having a purple colour--has an increasing absorbance with increasing dose in the range of 1-20 kGy. The applicability of spectrophotometric evaluation was studied by measuring the absorbance intensity of this complex at 360 and 505 nm, respectively. Fluorimetric evaluation was also investigated by measuring the emission of the complex at 435 nm as a function of dose. The present method is easy for routine application. The effect of the dye concentration as well as the suitable amount of irradiated alanine has been studied. With respect to routine application, the stability of the product complex after its formation was also investigated

  15. Carbohydrate- and protein-rich diets in McArdle disease: Effects on exercise capacity

    DEFF Research Database (Denmark)

    Andersen, S.T.; Vissing, J.

    2008-01-01

    metabolism during exercise, which questions the effect of protein in McArdle disease. METHODS: In a crossover, open design, we studied 7 patients with McArdle disease, who were randomised to follow either a carbohydrate- or protein-rich diet for three days before testing. Caloric intake on each diet...... was identical, and was adjusted to the subject's weight, age and sex. After each diet, exercise tolerance and maximal work capacity were tested on a bicycle ergometer, using a constant workload for 15 minutes followed by an incremental workload to exhaustion. RESULTS: During the constant workload, heart rate...... capacity and exercise tolerance to submaximal workloads by maintaining a diet high in carbohydrate instead of protein. The carbohydrate diet not only improves tolerance to every-day activities, but will likely also help to prevent exercise-induced episodes of muscle injury in McArdle disease Udgivelsesdato...

  16. Application of an alanine dosimetry system for industrial irradiation and radiation protection

    International Nuclear Information System (INIS)

    Gohs, U.

    1996-01-01

    This paper reports the application of alanine dosimetry in radiation processing. Continuous checks of the EPR measuring conditions as well as using high-quality alanine dosimeters and consistent technique for dose determination guarantee an accuracy of about ± 3% intermediate dose levels. The alanine dosimetry system was applied for dose mapping measurements during irradiator qualification and performance qualification of different products, routine dosimetry, and special radiation protection applications within the gamma irradiator. (author)

  17. Contribution of liver and skeletal muscle to alanine and lactate metabolism in humans

    International Nuclear Information System (INIS)

    Consoli, A.; Nurjhan, N.; Reilly, J.J. Jr.; Bier, D.M.; Gerich, J.E.

    1990-01-01

    To quantitate alanine and lactate gluconeogenesis in postabsorptive humans and to test the hypothesis that muscle is the principal source of these precursors, we infused normal volunteers with [3-14C]lactate, [3-13C]alanine, and [6-3H]glucose and calculated alanine and lactate incorporation into plasma glucose corrected for tricarboxylic acid cycle carbon exchange, the systemic appearance of these substrates, and their forearm fractional extraction, uptake, and release. Forearm alanine and lactate fractional extraction averaged 37 +/- 3 and 27 +/- 2%, respectively; muscle alanine release (2.94 +/- 0.27 mumol.kg body wt-1.min-1) accounted for approximately 70% of its systemic appearance (4.18 +/- 0.31 mumol.kg body wt-1.min-1); muscle lactate release (5.51 +/- 0.42 mumol.kg body wt-1.min-1) accounted for approximately 40% of its systemic appearance (12.66 +/- 0.77 mumol.kg body wt-1.min-1); muscle alanine and lactate uptake (1.60 +/- 0.7 and 3.29 +/- 0.36 mumol.kg body wt-1.min-1, respectively) accounted for approximately 30% of their overall disappearance from plasma, whereas alanine and lactate incorporation into plasma glucose (1.83 +/- 0.20 and 4.24 +/- 0.44 mumol.kg body wt-1.min-1, respectively) accounted for approximately 50% of their disappearance from plasma. We therefore conclude that muscle is the major source of plasma alanine and lactate in postabsorptive humans and that factors regulating their release from muscle may thus exert an important influence on hepatic gluconeogenesis

  18. Characterizing the Hot Spots Involved in RON-MSPβ Complex Formation Using In Silico Alanine Scanning Mutagenesis and Molecular Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Omid Zarei

    2017-04-01

    Full Text Available Purpose: Implication of protein-protein interactions (PPIs in development of many diseases such as cancer makes them attractive for therapeutic intervention and rational drug design. RON (Recepteur d’Origine Nantais tyrosine kinase receptor has gained considerable attention as promising target in cancer therapy. The activation of RON via its ligand, macrophage stimulation protein (MSP is the most common mechanism of activation for this receptor. The aim of the current study was to perform in silico alanine scanning mutagenesis and to calculate binding energy for prediction of hot spots in protein-protein interface between RON and MSPβ chain (MSPβ. Methods: In this work the residues at the interface of RON-MSPβ complex were mutated to alanine and then molecular dynamics simulation was used to calculate binding free energy. Results: The results revealed that Gln193, Arg220, Glu287, Pro288, Glu289, and His424 residues from RON and Arg521, His528, Ser565, Glu658, and Arg683 from MSPβ may play important roles in protein-protein interaction between RON and MSP. Conclusion: Identification of these RON hot spots is important in designing anti-RON drugs when the aim is to disrupt RON-MSP interaction. In the same way, the acquired information regarding the critical amino acids of MSPβ can be used in the process of rational drug design for developing MSP antagonizing agents, the development of novel MSP mimicking peptides where inhibition of RON activation is required, and the design of experimental site directed mutagenesis studies.

  19. Characterization of serine hydroxymethyltransferase GlyA as a potential source of D-alanine in Chlamydia pneumoniae.

    Science.gov (United States)

    De Benedetti, Stefania; Bühl, Henrike; Gaballah, Ahmed; Klöckner, Anna; Otten, Christian; Schneider, Tanja; Sahl, Hans-Georg; Henrichfreise, Beate

    2014-01-01

    For intracellular Chlamydiaceae, there is no need to withstand osmotic challenges, and a functional cell wall has not been detected in these pathogens so far. Nevertheless, penicillin inhibits cell division in Chlamydiaceae resulting in enlarged aberrant bodies, a phenomenon known as chlamydial anomaly. D-alanine is a unique and essential component in the biosynthesis of bacterial cell walls. In free-living bacteria like Escherichia coli, penicillin-binding proteins such as monofunctional transpeptidases PBP2 and PBP3, the putative targets of penicillin in Chlamydiaceae, cross-link adjacent peptidoglycan strands via meso-diaminopimelic acid and D-Ala-D-Ala moieties of pentapeptide side chains. In the absence of genes coding for alanine racemase Alr and DadX homologs, the source of D-Ala and thus the presence of substrates for PBP2 and PBP3 activity in Chlamydiaceae has puzzled researchers for years. Interestingly, Chlamydiaceae genomes encode GlyA, a serine hydroxymethyltransferase that has been shown to exhibit slow racemization of D- and L-alanine as a side reaction in E. coli. We show that GlyA from Chlamydia pneumoniae can serve as a source of D-Ala. GlyA partially reversed the D-Ala auxotrophic phenotype of an E. coli racemase double mutant. Moreover, purified chlamydial GlyA had racemase activity on L-Ala in vitro and was inhibited by D-cycloserine, identifying GlyA, besides D-Ala ligase MurC/Ddl, as an additional target of this competitive inhibitor in Chlamydiaceae. Proof of D-Ala biosynthesis in Chlamydiaceae helps to clarify the structure of cell wall precursor lipid II and the role of chlamydial penicillin-binding proteins in the development of non-dividing aberrant chlamydial bodies and persistence in the presence of penicillin.

  20. Characterization of serine hydroxymethyltransferase GlyA as a potential source of D-alanine in Chlamydia pneumoniae

    Directory of Open Access Journals (Sweden)

    Stefania eDe Benedetti

    2014-02-01

    Full Text Available For intracellular Chlamydiaceae, there is no need to withstand osmotic challenges, and a functional cell wall has not been detected in these pathogens so far. Nevertheless, penicillin inhibits cell division in Chlamydiaceae resulting in enlarged aberrant bodies, a phenomenon known as chlamydial anomaly.D-alanine is a unique and essential component in the biosynthesis of bacterial cell walls. In free-living bacteria like Escherichia coli, penicillin-binding proteins such as monofunctional transpeptidases PBP2 and PBP3, the putative targets of penicillin in Chlamydiaceae, cross-link adjacent peptidoglycan strands via meso-diaminopimelic acid and D-Ala-D-Ala moieties of pentapeptide side chains. In the absence of genes coding for alanine racemase Alr and DadX homologs, the source of D-Ala and thus the presence of substrates for PBP2 and PBP3 activity in Chlamydiaceae has puzzled researchers for years. Interestingly, Chlamydiaceae genomes encode GlyA, a serine hydroxymethyltransferase that has been shown to exhibit slow racemization of D- and L- alanine as a side reaction in E. coli. We show that GlyA from Chlamydia pneumoniae can serve as a source of D-Ala. GlyA partially reversed the D-Ala auxotrophic phenotype of an E. coli racemase double mutant. Moreover, purified chlamydial GlyA had racemase activity on L-Ala in vitro and was inhibited by D-cycloserine, identifying GlyA, besides D-Ala ligase MurC/Ddl, as an additional target of this competitive inhibitor in Chlamydiaceae. Proof of D-Ala biosynthesis in Chlamydiaceae helps to clarify the structure of cell wall precursor lipid II and the role of chlamydial penicillin-binding proteins in the development of non-dividing aberrant chlamydial bodies and persistence in the presence of penicillin.

  1. IPP-rich milk protein hydrolysate lowers blood pressure in subjects with stage 1 hypertension, a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Kloek Joris

    2010-11-01

    Full Text Available Abstract Background Milk derived peptides have been identified as potential antihypertensive agents. The primary objective was to investigate the effectiveness of IPP-rich milk protein hydrolysates (MPH on reducing blood pressure (BP as well as to investigate safety parameters and tolerability. The secondary objective was to confirm or falsify ACE inhibition as the mechanism underlying BP reductions by measuring plasma renin activity and angiotensin I and II. Methods We conducted a randomized, placebo-controlled, double blind, crossover study including 70 Caucasian subjects with prehypertension or stage 1 hypertension. Study treatments consisted of daily consumption of two capsules MPH1 (each containing 7.5 mg Isoleucine-Proline-Proline; IPP, MPH2 (each containing 6.6 mg Methionine-Alanine-Proline, 2.3 mg Leucine-Proline-Proline, 1.8 mg IPP, or placebo (containing cellulose for 4 weeks. Results In subjects with stage 1 hypertension, MPH1 lowered systolic BP by 3.8 mm Hg (P = 0.0080 and diastolic BP by 2.3 mm Hg (P = 0.0065 compared with placebo. In prehypertensive subjects, the differences in BP between MPH1 and placebo were not significant. MPH2 did not change BP significantly compared with placebo in stage I hypertensive or prehypertensive subjects. Intake of MPHs was well tolerated and safe. No treatment differences in hematology, clinical laboratory parameters or adverse effects were observed. No significant differences between MPHs and placebo were found in plasma renin activity, or angiotensin I and II. Conclusions MPH1, containing IPP and no minerals, exerts clinically relevant BP lowering effects in subjects with stage 1 hypertension. It may be included in lifestyle changes aiming to prevent or reduce high BP. Trial registration ClinicalTrials.gov NCT00471263

  2. The Tomato Hybrid Proline-Rich Protein regulates the abcission zone competence to respond to ethylene signals

    Science.gov (United States)

    The Tomato Hybrid Proline-Rich Protein (THyPRP) gene was specifically expressed in the tomato (Solanum lycopersicum) flower abscission zone (FAZ), and its stable antisense silencing under the control of an abscission zone (AZ)-specific promoter, Tomato Abscission Polygalacturonase4,significantly inh...

  3. Earthworms accumulate alanine in response to drought.

    Science.gov (United States)

    Holmstrup, Martin; Slotsbo, Stine; Henriksen, Per G; Bayley, Mark

    2016-09-01

    Earthworms have ecologically significant functions in tropical and temperate ecosystems and it is therefore important to understand how these animals survive during drought. In order to explore the physiological responses to dry conditions, we simulated a natural drought incident in a laboratory trial exposing worms in slowly drying soil for about one month, and then analyzed the whole-body contents of free amino acids (FAAs). We investigated three species forming estivation chambers when soils dry out (Aporrectodea tuberculata, Aporrectodea icterica and Aporrectodea longa) and one species that does not estivate during drought (Lumbricus rubellus). Worms subjected to drought conditions (alanine that was significantly upregulated in all tested species. Alanine was the most important FAA reaching 250-650μmolg(-1) dry weight in dehydrated Aporrectodea species and 300μmolg(-1) dry weight in L. rubellus. Proline was only weakly upregulated in some species as were a few other FAAs. Species forming estivation chambers (Aporrectodea spp.) did not show a better ability to conserve body water than the non-estivating species (L. rubellus) at the same drought level. These results suggest that the accumulation of alanine is an important adaptive trait in drought tolerance of earthworms in general. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Characteristics and application of alanine dosimeter 'Aminogray'

    International Nuclear Information System (INIS)

    Kashiwazaki, Shigeru; Matsuyama, Shigeki; Hatta, Toshimasa; Yagyu, Hideki; Kojima, Takuji; Tanaka, Ryuichi; Morita, Yohsuke.

    1988-01-01

    Recently, accompanying the progress of nuclear power generation and space development, the evaluation of reliability for the materials and parts used under irradiation has become important. For the evaluation of reliability, the accurate grasp of radiation dose is the prerequisite. In some case, the measurement of cumulative dose in a long period in an actual environment becomes necessary. In this paper, the characteristics and application of a new dosimeter element 'Aminogray' which is suitable to the above requirement are reported. Aminogray is rodshape element made by forming alanine, a kind of amino acid, using a binder polymer, and the alanine content is 70 wt.%, and the polymer is polystyrene. An element of 3 mm diameter and 30 mm length is enclosed in a polystyrene cylinder of 4 mm thickness. This thickness was determined by considering the electronic equilibrium condition in Co-60 gamma-ray irradiation. The principle of the measurement is to determine a dose by measuring the amount of free radicals produced in alanine by radiation using ESR method. The free radicals are extremely stable, and exist for a long period, and the amount of radical production is proportional to absorbed dose. The development, characteristics and application of Aminogray are reported. (K.I.)

  5. No effect of β-alanine on muscle function and kayak performance

    DEFF Research Database (Denmark)

    Bech, Signe Refsgaard; Nielsen, Tobias Schmidt; Hald, Martin

    2018-01-01

    PURPOSE: It was investigated if β-alanine supplementation counteracts muscular fatigue development or improves athletic performance. METHODS: Elite kayak rowers (10 males and 7 females) were supplemented with either 80 mg/kg body mass/day β-alanine or placebo for 8 weeks. Muscular fatigue...

  6. Hyperoxygenated hydrogen-rich solution suppresses shock- and resuscitation-induced liver injury.

    Science.gov (United States)

    Dang, Yangjie; Liu, Ting; Mei, Xiaopeng; Meng, Xiangzhong; Gou, Xingchun; Deng, Bin; Xu, Hao; Xu, Lixian

    2017-12-01

    It is not known whether simultaneous delivery of hydrogen and oxygen can reduce injury caused by hemorrhagic shock and resuscitation (HSR). This study investigated the therapeutic potential of hyperoxygenated hydrogen-rich solution (HHOS), a combined hydrogen/oxygen carrier, in a rat model of HSR-induced liver injury. Rats (n = 60) were randomly divided into 5 groups (n = 6 per group at each time point). One group underwent sham operation, and the others were subjected to severe hemorrhagic shock and then treated with lactated Ringer's solution (LRS), hydrogen-rich solution, hyperoxygenated solution, or HHOS. At 2 and 6 h after resuscitation, blood samples (n = 6) were collected from the femoral artery and serum concentrations of alanine aminotransferase and aspartate aminotransferase (AST) were measured. Rats were then sacrificed, and histopathological changes in the liver were evaluated by quantifying the percentage of apoptotic cells by caspase-3 immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick-end labeling. Inflammation was assessed by assessing malondialdehyde content and tumor necrosis factor-α, and interleukin (IL)-6 expression. Compared to lactated Ringer's solution, hydrogen-rich solution, or hyperoxygenated solution groups, serum AST and alanine aminotransferase levels and IL-6, tumor necrosis factor-α, and malondialdehyde expression in liver tissue were decreased by HHOS treatment. The number of caspase-3- and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells was decreased (P < 0.05) by HHOS treatment, 2 and 6 h after resuscitation. HHOS has protective effects against liver injury in a rat model of HSR. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effect of β-alanine supplementation on 20 km cycling time trial performance

    Directory of Open Access Journals (Sweden)

    Ruth Margaret JAMES

    2014-09-01

    Full Text Available The effects of β-alanine supplementation on high-intensity cycling performance and capacity have been evaluated, although the effects on longer duration cycling performance are unclear. Nineteen UK category 1 male cyclists completed four 20 km cycling time trials, two before and two after supplementation with either 6.4 g•d-1 β-alanine (n = 10; BA or a matched placebo (n = 9; P. Performance time for the 20 km time trial and 1 km split times were recorded. There was no significant effect of β-alanine supplementation on 20 km time trial performance (BA-pre 1943 ± 129 s; BA-post 1950 ± 147 s; P-pre 1989 ± 106 s; P-post 1986 ± 115 s or on the performance of each 1 km split. The effect of β-alanine on 20 km time trial performance was deemed unclear as determined by magnitude based inferences. Supplementation with 6.4 g•d-1 of β-alanine for 4 weeks did not affect 20 km cycling time trial performance in well trained male cyclists.

  8. Soilborne wheat mosaic virus (SBWMV 19K protein belongs to a class of cysteine rich proteins that suppress RNA silencing

    Directory of Open Access Journals (Sweden)

    Howard Amanda

    2005-03-01

    Full Text Available Abstract Amino acid sequence analyses indicate that the Soilborne wheat mosaic virus (SBWMV 19K protein is a cysteine-rich protein (CRP and shares sequence homology with CRPs derived from furo-, hordei-, peclu- and tobraviruses. Since the hordei- and pecluvirus CRPs were shown to be pathogenesis factors and/or suppressors of RNA silencing, experiments were conducted to determine if the SBWMV 19K CRP has similar activities. The SBWMV 19K CRP was introduced into the Potato virus X (PVX viral vector and inoculated to tobacco plants. The SBWMV 19K CRP aggravated PVX-induced symptoms and restored green fluorescent protein (GFP expression to GFP silenced tissues. These observations indicate that the SBWMV 19K CRP is a pathogenicity determinant and a suppressor of RNA silencing.

  9. ESR/Alanine {gamma}-dosimetry in the 10-30 Gy range

    Energy Technology Data Exchange (ETDEWEB)

    Fainstein, C. E-mail: cfainstein@cab.cnea.gov.ar; Winkler, E.; Saravi, M

    2000-05-15

    We report Alanine Dosimeter preparation, procedures for using the ESR/Dosimetry method, and the resulting calibration curve for {gamma}-irradiation in the range from 10-30 Gy. We use calibration curve to measure the irradiation dose in {gamma}-irradiation of human blood, as required in Blood Transfusion Therapy. The ESR/Alanine results are compared against those obtained using the thermoluminescent dosimetry (TLD) method.

  10. The addition of a protein-rich breakfast and its effects on acute appetite control and food intake in 'breakfast-skipping' adolescents.

    Science.gov (United States)

    Leidy, H J; Racki, E M

    2010-07-01

    Breakfast skipping (BS) is closely associated with overeating (in the evening), weight gain and obesity. It is unclear whether the addition of breakfast, with emphasis on dietary protein, leads to better appetite and energy intake regulation in adolescents. The purpose of the study was to examine the impact of addition of a normal-protein (PN) breakfast vs protein-rich (PR) breakfast on appetite and food intake in 'breakfast-skipping' adolescents. A total of 13 adolescents (age 14.3+/-0.3 years; body mass index percentile 79+/-4 percentile; skipped breakfast 5+/-1 x per week) randomly completed 3 testing days that included a PN (18+/-1 g protein), PR (48+/-2 g protein) or BS. Breakfast was 24% of estimated daily energy needs. Appetite, satiety and hormonal responses were collected over 5 h followed by an ad libitum lunch and 24-h food intake assessments. Perceived appetite was not different following PN vs BS; PR led to greater reductions vs BS (PLunch energy intake was not different following PN vs BS; PR led to fewer kcal consumed vs BS (PDaily food intake was not different among treatments. Breakfast led to increased satiety through increased fullness and PYY concentrations in 'breakfast skipping' adolescents. A breakfast rich in dietary protein provides additional benefits through reductions in appetite and energy intake. These findings suggest that the addition of a protein-rich breakfast might be an effective strategy to improve appetite control in young people.

  11. Inducible l-Alanine Exporter Encoded by the Novel Gene ygaW (alaE) in Escherichia coli ▿

    Science.gov (United States)

    Hori, Hatsuhiro; Yoneyama, Hiroshi; Tobe, Ryuta; Ando, Tasuke; Isogai, Emiko; Katsumata, Ryoichi

    2011-01-01

    We previously isolated a mutant hypersensitive to l-alanyl-l-alanine from a non-l-alanine-metabolizing Escherichia coli strain and found that it lacked an inducible l-alanine export system. Consequently, this mutant showed a significant accumulation of intracellular l-alanine and a reduction in the l-alanine export rate compared to the parent strain. When the mutant was used as a host to clone a gene(s) that complements the dipeptide-hypersensitive phenotype, two uncharacterized genes, ygaW and ytfF, and two characterized genes, yddG and yeaS, were identified. Overexpression of each gene in the mutant resulted in a decrease in the intracellular l-alanine level and enhancement of the l-alanine export rate in the presence of the dipeptide, suggesting that their products function as exporters of l-alanine. Since ygaW exhibited the most striking impact on both the intra- and the extracellular l-alanine levels among the four genes identified, we disrupted the ygaW gene in the non-l-alanine-metabolizing strain. The resulting isogenic mutant showed the same intra- and extracellular l-alanine levels as observed in the dipeptide-hypersensitive mutant obtained by chemical mutagenesis. When each gene was overexpressed in the wild-type strain, which does not intrinsically excrete alanine, only the ygaW gene conferred on the cells the ability to excrete alanine. In addition, expression of the ygaW gene was induced in the presence of the dipeptide. On the basis of these results, we concluded that YgaW is likely to be the physiologically most relevant exporter for l-alanine in E. coli and proposed that the gene be redesignated alaE for alanine export. PMID:21531828

  12. New Generation of self-calibrated SS/EPR dosimeters: Alanine/EPR dosimeters

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Gancheva, V.

    1999-01-01

    A new type of solid state/EPR dosimeters is described. Principally, it contains radiation sensitive diamagnetic material, some quantity of EPR active, but radiation insensitive, substance (for example Mn 2+ /MgO) and a binding material. In the present case alanine is used as a radiation sensitive substance. With this dosimeter, the EPR spectra of alanine and Mn 2+ are simultaneously recorded and the calibration graph represents the ratio of alanine versus Mn 2+ EPR signal intensity as a function of absorbed dose. In this way the reproducibility of the results is expected to be improved significantly including their intercomparison among different laboratories. Homogeneity of the prepared dosimeters and their behaviour (fading of EPR signals with time, influence of different meteorological conditions) show satisfactory reproducibility and stability with time. Because two different EPR active samples are recorded simultaneously, the influence of some instrument setting parameters (microwave power, modulation amplitude and modulation frequency) on the ratio I alanine /I Mn is also investigated. (author)

  13. Effect of combined β-alanine and sodium bicarbonate supplementation on cycling performance.

    Science.gov (United States)

    Bellinger, Phillip M; Howe, Samuel T; Shing, Cecilia M; Fell, James W

    2012-08-01

    The purpose of this study was to investigate the effects of 28 d of β-alanine supplementation on 4-min cycling time trial performance and to determine whether there was an additive effect of combined β-alanine and sodium bicarbonate (NaHCO3) supplementation on high-intensity cycling performance. Fourteen highly trained cyclists (mean ± SD: age = 25.4 ± 7.2 yr, mass = 71.1 ± 7.1 kg, V˙O(2max) = 66.6 ± 5.7 mL·kg·min) supplemented for 28 d with β-alanine (65 mg·kg body mass each day) or placebo. A maximal 4-min bout of cycling was performed before supplementation (baseline) and twice after supplementation: after ingestion of NaHCO3 (300 mg·kg body mass) and ingestion of a placebo using a randomized crossover design with 2 d between trials. Blood pH and HCO3 concentration were determined before loading (postsupplementation trials) and at pretest and posttest. In the acute NaHCO3 loading trials, blood pH and HCO3 were elevated from before loading to pretest, and the magnitude of the change in HCO3 from pretest to posttest was significantly greater compared with the acute placebo loading trial (P < 0.001). Average power output in the 4-min cycling performance trial was increased in placebo + NaHCO3 (+3.1% ± 1.8%) and β-alanine + NaHCO3 (+3.3% ± 3.0%) compared with baseline (P < 0.05). β-alanine + placebo did not significantly improve average power output compared with baseline (+1.6% ± 1.7%, P = 0.20); however, magnitude-based inferences demonstrated that β-alanine + placebo was associated with a 37% likelihood of producing average power improvements. In trained cyclists, β-alanine supplementation did not significantly improve 4-min cycling performance; however, there may be a small meaningful improvement in performance. Acute NaHCO3 supplementation significantly improved 4-min cycling performance. There seemed to be a minimal additive effect of combined β-alanine and NaHCO3 supplementation.

  14. SU-E-T-643: Pure Alanine Dosimeter for Verification Dosimetry in IMRT

    International Nuclear Information System (INIS)

    Al-Karmi, Anan M.; Zraiqat, Fadi

    2015-01-01

    Purpose: The objective of this study was evaluation of accuracy of pure alanine dosimeters measuring intensity-modulated radiation therapy (IMRT) dose distributions in a thorax phantom. Methods: Alanine dosimeters were prepared in the form of 110 mg pure L-α-alanine powder filled into clear tissue-equivalent polymethylmethacrylate (PMMA) plastic tubes with the dimensions 25 mm length, 3 mm inner diameter, and 1 mm wall thickness. A dose-response calibration curve was established for the alanine by placing the dosimeters at 1.5 cm depth in a 30×30×30 cm 3 solid water phantom and then irradiating on a linac with 6 MV photon beam at 10×10 cm 2 field size to doses ranging from 1 to 5 Gy. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the absorbed dose in alanine. An IMRT treatment plan was designed for a commercial heterogeneous CIRS thorax phantom and the dose values were calculated at three different points located in tissue, lung, and bone equivalent materials. A set of dose measurements was carried out to compare measured and calculated dose values by placing the alanine dosimeters at those selected locations inside the thorax phantom and delivering the IMRT to the phantom. Results: The alanine dose measurements and the IMRT plan dose calculations were found to be in agreement within ±2%. Specifically, the deviations were −0.5%, 1.3%, and −1.7% for tissue, lung, and bone; respectively. The slightly large deviations observed for lung and bone may be attributed to tissue inhomogeneity, steep dose gradients in these regions, and uncontrollable changes in spectrometer conditions. Conclusion: The results described herein confirmed that pure alanine dosimeter was suitable for in-phantom dosimetry of IMRT beams because of its high sensitivity and acceptable accuracy. This makes the dosimeter a promising option for quality control of the therapeutic beams, complementing the commonly used ionization chambers, TLDs, and films

  15. Cellular and Physiological Effects of Dietary Supplementation with β-Hydroxy-β-Methylbutyrate (HMB) and β-Alanine in Late Middle-Aged Mice.

    Science.gov (United States)

    Vallejo, Julian; Spence, Madoka; Cheng, An-Lin; Brotto, Leticia; Edens, Neile K; Garvey, Sean M; Brotto, Marco

    2016-01-01

    There is growing evidence that severe decline of skeletal muscle mass and function with age may be mitigated by exercise and dietary supplementation with protein and amino acid ingredient technologies. The purposes of this study were to examine the effects of the leucine catabolite, beta-hydroxy-beta-methylbutyrate (HMB), in C2C12 myoblasts and myotubes, and to investigate the effects of dietary supplementation with HMB, the amino acid β-alanine and the combination thereof, on muscle contractility in a preclinical model of pre-sarcopenia. In C2C12 myotubes, HMB enhanced sarcoplasmic reticulum (SR) calcium release beyond vehicle control in the presence of all SR agonists tested (KCl, PHMB also improved C2C12 myoblast viability (25 μM HMB, P = 0.03) and increased proliferation (25 μM HMB, P = 0.04; 125 μM HMB, PHMB, diet with β-alanine, or diet with HMB and β-alanine. In β-alanine fed mice, EDL muscle showed a 7% increase in maximum absolute force compared to the control diet (202 ± 3vs. 188± 5 mN, P = 0.02). At submaximal frequency of stimulation (20 Hz), EDL from mice fed HMB plus β-alanine showed an 11% increase in absolute force (88.6 ± 2.2 vs. 79.8 ± 2.4 mN, P = 0.025) and a 13% increase in specific force (12.2 ± 0.4 vs. 10.8 ± 0.4 N/cm2, P = 0.021). Also in EDL muscle, β-alanine increased the rate of force development at all frequencies tested (PHMB reduced the time to reach peak contractile force (TTP), with a significant effect at 80 Hz (P = 0.0156). In soleus muscle, all experimental diets were associated with a decrease in TTP, compared to control diet. Our findings highlight beneficial effects of HMB and β-alanine supplementation on skeletal muscle function in aging mice.

  16. Expression of the alaE gene is positively regulated by the global regulator Lrp in response to intracellular accumulation of l-alanine in Escherichia coli.

    Science.gov (United States)

    Ihara, Kohei; Sato, Kazuki; Hori, Hatsuhiro; Makino, Yumiko; Shigenobu, Shuji; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2017-04-01

    The alaE gene in Escherichia coli encodes an l-alanine exporter that catalyzes the active export of l-alanine using proton electrochemical potential. In our previous study, alaE expression was shown to increase in the presence of l-alanyl-l-alanine (Ala-Ala). In this study, the global regulator leucine-responsive regulatory protein (Lrp) was identified as an activator of the alaE gene. A promoter less β-galactosidase gene was fused to an alaE upstream region (240 nucleotides). Cells that were lacZ-deficient and harbored this reporter plasmid showed significant induction of β-galactosidase activity (approximately 17-fold) in the presence of 6 mM l-alanine, l-leucine, and Ala-Ala. However, a reporter plasmid possessing a smaller alaE upstream region (180 nucleotides) yielded transformants with strikingly low enzyme activity under the same conditions. In contrast, lrp-deficient cells showed almost no β-galactosidase induction, indicating that Lrp positively regulates alaE expression. We next performed an electrophoretic mobility shift assay (EMSA) and a DNase I footprinting assay using purified hexahistidine-tagged Lrp (Lrp-His). Consequently, we found that Lrp-His binds to the alaE upstream region spanning nucleotide -161 to -83 with a physiologically relevant affinity (apparent K D , 288.7 ± 83.8 nM). Furthermore, the binding affinity of Lrp-His toward its cis-element was increased by l-alanine and l-leucine, but not by Ala-Ala and d-alanine. Based on these results, we concluded that the gene expression of the alaE is regulated by Lrp in response to intracellular levels of l-alanine, which eventually leads to intracellular homeostasis of l-alanine concentrations. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. 6-shogaol-rich extract from ginger up-regulates the antioxidant defense systems in cells and mice.

    Science.gov (United States)

    Bak, Min-Ji; Ok, Seon; Jun, Mira; Jeong, Woo-Sik

    2012-07-04

    The rhizome of ginger (Zingiber officinale Roscoe) is known to have several bioactive compounds including gingerols and shogaols which possess beneficial health properties such as anti-inflammatory and chemopreventive effects. Based on recent observations that 6-shogaol may have more potent bioactivity than 6-gingerol, we obtained a 6-shogaol-rich extract from ginger and examined its effects on the nuclear factor E2-related factor2 (Nrf2)/antioxidant response element (ARE) pathway in vitro and in vivo. 6-Shogaol-rich extract was produced by extracting ginger powder with 95% ethanol at 80 °C after drying at 80 °C (GEE8080). GEE8080 contained over 6-fold more 6-shogaol compared to the room temperature extract (GEE80RT). In HepG2 cells, GEE8080 displayed much stronger inductions of ARE-reporter gene activity and Nrf2 expression than GEE80RT. GEE8080 stimulated phosphorylations of mitogen-activated protein kinases (MAPKs) such as ERK, JNK, and p38. Moreover, the GEE8080-induced expressions of Nrf2 and HO-1 were attenuated by treatments of SB202190 (a p38 specific inhibitor) and LY294002 (an Akt specific inhibitor). In a mouse model, the GEE8080 decreased the diethylnitrosamine (DEN)-mediated elevations of serum aspartate transaminase and alanine transaminase as well as the DEN-induced hepatic lipid peroxidation. Inductions of Nrf2 and HO-1 by GEE8080 were also confirmed in the mice. In addition, the administration of GEE8080 to the mice also restored the DEN-reduced activity and protein expression of hepatic antioxidant enzymes such as superoxide dismutase, glutathione peroxidase and catalase. In conclusion, GEE8080, a 6-shogaol-rich ginger extract, may enhance antioxidant defense mechanism through the induction of Nrf2 and HO-1 regulated by p38 MAPK and PI3k/Akt pathway in vitro and in vivo.

  18. Introgression of leginsulin, a cysteine-rich protein, and high-protein trait from an Asian soybean plant introduction genotype into a North American experimental soybean line.

    Science.gov (United States)

    Krishnan, Hari B; Kim, Won-Seok; Oehrle, Nathan W; Alaswad, Alaa A; Baxter, Ivan; Wiebold, William J; Nelson, Randall L

    2015-03-25

    Soybean is an important protein source for both humans and animals. However, soybean proteins are relatively poor in the sulfur-containing amino acids, cysteine and methionine. Improving the content of endogenous proteins rich in sulfur-containing amino acids could enhance the nutritive value of soybean meal. Leginsulin, a cysteine-rich peptide, predominantly accumulates in Asian soybean accessions but not in most North American cultivars. By screening diverse soybean accessions from the USDA Soybean Germplasm Collection, we were able to identify one plant introduction, PI 427138, as a high-protein line with relatively high amounts of both elemental sulfur and leginsulin. We introgressed these desirable traits from PI 427138 into an experimental line with the aim of improving the overall protein content and quality of seed proteins. Biochemical characterization of inbred progenies from the cross of LD00-3309 with PI 427138 grown at six locations revealed stable ingression of high protein, high elemental sulfur, and high leginsulin accumulation. Comparison of soybean seed proteins resolved by high-resolution 2-D gel electrophoresis in combination with Delta2D image analysis software revealed preferential accumulation of a few glycinin subunits contributed to the increased protein content in the introgressed lines. Amino acid analysis revealed that even though the leginsulin introgressed lines had higher protein, leginsulin, and elemental sulfur, the overall concentration of sulfur-containing amino acids was not significantly altered when compared with the parental lines. The experimental soybean lines developed during this study (Leg-3, Leg-7, and Leg-8) lack A5, A4, and B3 glycinin subunits and could be utilized in breeding programs to develop high-quality tofu cultivars.

  19. Dextran Sulfate Sodium Inhibits Alanine Synthesis in Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Carolyn M. Slupsky

    2011-04-01

    Full Text Available To understand and characterize the pathogenic mechanisms of inflammatory bowel disease, dextran sulfate sodium (DSS has been used to induce acute and chronic colitis in animal models by causing intestinal epithelium damage. The mechanism of action of DSS in producing this outcome is not well understood. In an effort to understand how DSS might impact epithelial cell metabolism, we studied the intestinal epithelial cell line Caco-2 incubated with 1% DSS over 56 hours using 1H NMR spectroscopy. We observed no difference in cell viability as compared to control cultures, and an approximately 1.5-fold increase in IL-6 production upon incubation with 1% DSS. The effect on Caco-2 cell metabolism as measured through changes in the concentration of metabolites in the cell supernatant included a three-fold decrease in the concentration of alanine. Given that the concentrations of other amino acids in the cell culture supernatant were not different between treated and control cultures over 56 hours suggest that DSS inhibits alanine synthesis, specifically alanine aminotransferase, without affecting other key metabolic pathways. The importance of alanine aminotransferase in inflammatory bowel disease is discussed.

  20. Synthesis, characterization, and biocompatible properties of alanine-grafted chitosan copolymers.

    Science.gov (United States)

    Park, Gyu Han; Kang, Min-Sil; Knowles, Jonathan C; Gong, Myoung-Seon

    2016-04-01

    In order to overcome major problems regarding the lack of affinity to solvents and limited reactivity of the free amines of chitosan, introduction of appropriate spacer arms having terminal amine function is considered of interest. L-Alanine-N-carboxyanhydride was grafted onto chitosan via anionic ring-opening polymerization. The chemical and structural characterizations of L-alanine-grafted chitosan (Ala-g-Cts) were confirmed through Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy ((1)H NMR). In addition, the viscoelastic properties of Ala-g-Cts were examined by means of a rotational viscometer, and thermal analysis was carried out with a thermogravimetric analyzer and differential scanning calorimetry. Morphological changes in the chitosan L-alanine moiety were determined by x-ray diffraction. To determine the feasibility of using these films as biomedical materials, we investigated the effects of their L-alanine content on physical and mechanical properties. The biodegradation results of crosslinked Ala-g-Cts films were evaluated in phosphate-buffered solution containing lysozyme at 37℃. Proliferation of MC3T3-E1 cells on crosslinked Ala-g-Cts films was also investigated with use of the CCK-8 assay. © The Author(s) 2016.

  1. Comparative analysis and molecular characterization of a gene BANF1 encoded a DNA-binding protein during mitosis from the Giant Panda and Black Bear.

    Science.gov (United States)

    Zeng, Yichun; Hou, Yi-Ling; Ding, Xiang; Hou, Wan-Ru; Li, Jian

    2014-01-01

    Barrier to autointegration factor 1 (BANF1) is a DNA-binding protein found in the nucleus and cytoplasm of eukaryotic cells that functions to establish nuclear architecture during mitosis. The cDNA and the genomic sequence of BANF1 were cloned from the Giant Panda (Ailuropoda melanoleuca) and Black Bear (Ursus thibetanus mupinensis) using RT-PCR technology and Touchdown-PCR, respectively. The cDNA of the BANF1 cloned from Giant Panda and Black Bear is 297 bp in size, containing an open reading frame of 270 bp encoding 89 amino acids. The length of the genomic sequence from Giant Panda is 521 bp, from Black Bear is 536 bp, which were found both to possess 2 exons. Alignment analysis indicated that the nucleotide sequence and the deduced amino acid sequence are highly conserved to some mammalian species studied. Topology prediction showed there is one Protein kinase C phosphorylation site, one Casein kinase II phosphorylation site, one Tyrosine kinase phosphorylation site, one N-myristoylation site, and one Amidation site in the BANF1 protein of the Giant Panda, and there is one Protein kinase C phosphorylation site, one Tyrosine kinase phosphorylation site, one N-myristoylation site, and one Amidation site in the BANF1 protein of the Black Bear. The BANF1 gene can be readily expressed in E. coli. Results showed that the protein BANF1 fusion with the N-terminally His-tagged form gave rise to the accumulation of an expected 14 kD polypeptide that formed inclusion bodies. The expression products obtained could be used to purify the proteins and study their function further.

  2. Electron Paramagnetic Resonance signal ratio of Alanine Pellets In Nuclear Power Plants

    International Nuclear Information System (INIS)

    Choi, Hoon; Sung, In Bok; Lee, Byung Il; Lim, Young Ki

    2011-01-01

    As a dosimeter for ESR dosimetry, alanine has many useful features including relatively long endurance time of radicals and almost no difference with the radiation dose rate and radiation quality. Alanine dosimeters have been accepted as transfer dosimeters for their good precision at high radiation range. For alanine/ESR spectra, it was reported that the peaks of the spectra are due to the three kinds of radicals induced by radiation. The ratio of the weak 'satellite line' and the central peak of the three man in alanine specta(in this study x /y ratio ) are changed on the LET value of radiation. In case of lithium formate monohydrate was recently identified as a promising dosimetric material. in addition, it was reported the the peak height in the signal spectra is not easily saturated when power is irradiated with relatively high LET radiation such as neutron rays. The difference in the peak height ratio was reported to be caused by increased local radical density following the radiation of high LET. The spectrum shape of some alanine dosimeter installed in the containment buildings of NPPs showed differences in comparison with dosimeters exposed only to gamma rays. There was apparent change of spectra, expressed as the 'x/y ratio'. As noted in other papers, high LET radiation such as neutron rays causes shape changes of the spectrum of alanine dosimeters. Thus, the unanticipated high dose level and low 'x/y ratio' of some alanine dosimeters from the containment building could be explained b exposure to mixed radiation with high LET. Generally, the locations evaluated in this study are regarded as being exposed only to gamma rays, because the positions are blocked from direct neutron rays, because the positions are blocked from direct neutron rays from reactor by thick cement barriers and heavy instruments.

  3. First evidences of interaction between pyranoanthocyanins and salivary proline-rich proteins.

    Science.gov (United States)

    García-Estévez, Ignacio; Cruz, Luís; Oliveira, Joana; Mateus, Nuno; de Freitas, Victor; Soares, Susana

    2017-08-01

    The contribution of other classes of polyphenol compounds besides tannins to the overall perception of astringency is still poorly understood. So, this work aimed to study the interaction between a family of salivary proline-rich proteins (aPRPs) and representative pyranoanthocyanins in red wines [pyranomalvidin-3-glucoside (vitisin B), pyranomalvidin-3-glucoside-catechol, and pyranomalvidin-3-glucoside-epicatechin] using saturation transfer difference-NMR and MALDI-TOF. For vitisin B K D was of 1.74mM; for pyranomalvidin-3-glucoside-catechol was 1.17mM and for pyranomalvidin-3-glucoside-epicatechin it was 0.87mM. The presence of the flavanol structural unit in the pyranoanthocyanins led to an increase in their interaction with aPRPs. Further, it is also interesting that the values obtained were in the range of K D obtained previously reported for the interaction between the human saliva proline-rich peptides (IB7 14 and IB9 37 ) and procyanidins. Overall, the results obtained suggest that, along with tannins, other polyphenols present in red wine, namely pyranoanthocyanins, could actively contribute to red wine global astringency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A C-terminal, cysteine-rich site in poliovirus 2C(ATPase) is required for morphogenesis.

    Science.gov (United States)

    Wang, Chunling; Ma, Hsin-Chieh; Wimmer, Eckard; Jiang, Ping; Paul, Aniko V

    2014-06-01

    The morphogenesis of viruses belonging to the genus Enterovirus in the family Picornaviridae is still poorly understood despite decades-long investigations. However, we recently provided evidence that 2C(ATPase) gives specificity to poliovirus encapsidation through an interaction with capsid protein VP3. The polypeptide 2C(ATPase) is a highly conserved non-structural protein of enteroviruses with important roles in RNA replication, encapsidation and uncoating. We have identified a site (K279/R280) near the C terminus of the polypeptide that is required for morphogenesis. The aim of the current project was to search for additional functional sites near the C terminus of the 2C(ATPase) polypeptide, with particular interest in those that are required for encapsidation. We selected for analysis a cysteine-rich site of the polypeptide and constructed four mutants in which cysteines or a histidine was changed to an alanine. The RNA transcripts were transfected into HeLa cells yielding two lethal, one temperature-sensitive and one quasi-infectious mutants. All four mutants exhibited normal protein translation in vitro and three of them possessed severe RNA replication defects. The quasi-infectious mutant (C286A) yielded variants with a pseudo-reversion at the original site (A286D), but some also contained one additional mutation: A138V or M293V. The temperature-sensitive mutant (C272A/H273A) exhibited an encapsidation and possibly also an uncoating defect at 37 °C. Variants of this mutant revealed suppressor mutations at three different sites in the 2C(ATPase) polypeptide: A138V, M293V and K295R. We concluded that the cysteine-rich site near the C terminus of 2C(ATPase) is involved in encapsidation, possibly through an interaction with an upstream segment located between boxes A and B of the nucleotide-binding domain. © 2014 The Authors.

  5. Polymerization of alanine in the presence of a non-swelling montmorillonite

    Science.gov (United States)

    Paecht-Horowitz, M.; Lahav, N.

    1977-01-01

    Alanine, starting from alanine-adenylate, has been polymerized in the presence of non-swelling Al-montmorillonite. The yield of polymerization is much lower than that obtained in the presence of swelling Na-montmorillonite. The possibility that the changing interlayer spacing in Na-montmorillonite might be responsible for its catalytic properties, is discussed.

  6. A thin alanine-polyethylene film dosimetry system with diffuse reflection spectrophotometric evaluation

    International Nuclear Information System (INIS)

    Zagorski, Z.P.; Rafalski, A.

    1995-01-01

    Characteristics of a new alanine dosimeter in the shape of a thin film, with the measurement of optical absorption of the CH 3 CHCOO - radical is described. That type of dosimeter, ALA/DRS (for diffuse reflection spectrophotometry) is compared, to an alanine dosimeter with EPR evaluation (ALA/EPR for short). In many respects the simple ALA/DRS version, as the alanine-polyethylene composite is superior. The paper shows the importance of the new experimental approach to free radical research in solid state radiation chemistry. (author). 7 refs., 3 figs

  7. PRELP (proline/arginine-rich end leucine-rich repeat protein) promotes osteoblastic differentiation of preosteoblastic MC3T3-E1 cells by regulating the β-catenin pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haiying; Cui, Yazhou; Luan, Jing [School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji' nan, Shandong (China); Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji' nan, Shandong (China); Zhang, Xiumei [School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji' nan, Shandong (China); Li, Chengzhi; Zhou, Xiaoyan; Shi, Liang [School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji' nan, Shandong (China); Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji' nan, Shandong (China); Wang, Huaxin [Shandong University of Traditional Chinese Medicine, Ji' an, Shandong (China); Han, Jinxiang, E-mail: jxhan9888@aliyun.com [School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji' nan, Shandong (China); Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji' nan, Shandong (China)

    2016-02-12

    Proline/arginine-rich end leucine-rich repeat protein (PRELP) is a collagen-binding proteoglycan highly expressed in the developing bones. Recent studies indicated that PRELP could inhibit osteoclastogenesis as a NF-κB inhibitor. However, its role during osteoblast differentiation is still unclear. In this study, we confirmed that the expression of PRELP increased with the osteogenesis induction of preosteoblastic MC3T3-E1 cells. Down-regulation of PRELP expression by shRNA reduced ALP activity, mineralization and expression of osteogenic marker gene Runx2. Our microarray analysis data suggested that β-catenin may act as a hub gene in the PRELP-mediated gene network. We validated furtherly that PRELP knockdown could inhibit the level of connexin43, a key regulator of osteoblast differentiation by affecting β-catenin protein expression, and its nuclear translocation in MC3T3-E1 preosteoblasts. Therefore, this study established a new role of PRELP in modulating β-catenin/connexin43 pathway and osteoblast differentiation.

  8. Degradation of pyrimidines in Saccharomyces kluyveri: transamination of beta-alanine

    DEFF Research Database (Denmark)

    Schnackerz, K D; Andersen, G; Dobritzsch, D

    2008-01-01

    Beta-alanine is an intermediate in the reductive degradation of uracil. Recently we have identified and characterized the Saccharomyces kluyveri PYD4 gene and the corresponding enzyme beta -alanine aminotransferase ((Sk)Pyd4p), highly homologous to eukaryotic gamma-aminobutyrate aminotransferase ...

  9. Relative response of the alanine dosimeter to medium energy x-rays.

    Science.gov (United States)

    Anton, M; Büermann, L

    2015-08-07

    The response of the alanine dosimeter to kilovoltage x-rays with respect to the dose to water was measured, relative to the response to Co-60 radiation.Two series of x-ray qualities were investigated, one ranging from 30 kV to 100 kV tube voltage (TW series), the other one ranging from 70 kV to 280 kV (TH series). Due to the use of the water calorimeter as a primary standard, the uncertainty of the delivered dose is significantly lower than for other published data. The alanine response was measured as described in a previous publication (Anton et al 2013 Phys. Med. Biol. 58 3259-82). The uncertainty component due to the alanine measurement and analysis is ⩽0.4%, the major part of the combined uncertainty of the relative response originates from the uncertainty of the delivered dose. The relative uncertainties of the relative response vary from ⩽2% for the TW series to ⩽1.1% for the TH series.Different from the behaviour of the alanine dosimeter for megavoltage x-rays or electrons, the relative response drops significantly from unity for Co-60 radiation to less than 64% for the TW quality with a tube voltage of 30 kV. In order to reproduce this behaviour through Monte Carlo simulations, not only the ratio of the absorbed dose to alanine to the absorbed dose to water has to be known, but also the intrinsic efficiency, i.e. the dependence of the number of free radicals generated per unit of absorbed dose on the photon energy. This quantity is not yet accessible for the TW series.For a possible use of the alanine dosimeter for kilovoltage x-rays, for example in electronic brachytherapy, users should rely on the measured data for the relative response which have become available with this publication.

  10. End-to-end tests using alanine dosimetry in scanned proton beams

    Science.gov (United States)

    Carlino, A.; Gouldstone, C.; Kragl, G.; Traneus, E.; Marrale, M.; Vatnitsky, S.; Stock, M.; Palmans, H.

    2018-03-01

    This paper describes end-to-end test procedures as the last fundamental step of medical commissioning before starting clinical operation of the MedAustron synchrotron-based pencil beam scanning (PBS) therapy facility with protons. One in-house homogeneous phantom and two anthropomorphic heterogeneous (head and pelvis) phantoms were used for end-to-end tests at MedAustron. The phantoms were equipped with alanine detectors, radiochromic films and ionization chambers. The correction for the ‘quenching’ effect of alanine pellets was implemented in the Monte Carlo platform of the evaluation version of RayStation TPS. During the end-to-end tests, the phantoms were transferred through the workflow like real patients to simulate the entire clinical workflow: immobilization, imaging, treatment planning and dose delivery. Different clinical scenarios of increasing complexity were simulated: delivery of a single beam, two oblique beams without and with range shifter. In addition to the dose comparison in the plastic phantoms the dose obtained from alanine pellet readings was compared with the dose determined with the Farmer ionization chamber in water. A consistent systematic deviation of about 2% was found between alanine dosimetry and the ionization chamber dosimetry in water and plastic materials. Acceptable agreement of planned and delivered doses was observed together with consistent and reproducible results of the end-to-end testing performed with different dosimetric techniques (alanine detectors, ionization chambers and EBT3 radiochromic films). The results confirmed the adequate implementation and integration of the new PBS technology at MedAustron. This work demonstrates that alanine pellets are suitable detectors for end-to-end tests in proton beam therapy and the developed procedures with customized anthropomorphic phantoms can be used to support implementation of PBS technology in clinical practice.

  11. Determination of steady-state protein breakdown rate in vivo by the disappearance of protein-bound tracer-labeled amino acids

    DEFF Research Database (Denmark)

    Holm, Lars; O'Rourke, Bruce; Ebenstein, David

    2013-01-01

    A method to determine the rate of protein breakdown in individual proteins was developed and tested in rats and confirmed in humans, using administration of deuterium oxide and incorporation of the deuterium into alanine that was subsequently incorporated into body proteins. Measurement of the fr...

  12. The acyl-CoA binding protein affects Monascus pigment production in Monascus ruber CICC41233.

    Science.gov (United States)

    Long, Chuannan; Liu, Mengmeng; Chen, Xia; Wang, Xiaofang; Ai, Mingqiang; Cui, Jingjing; Zeng, Bin

    2018-02-01

    The present study verified whether acyl-coenzyme A (acyl-CoA)-binding protein (ACBP) affected the production of Monascus pigments (MPs) in Monascus ruber CICC41233 (MrACBP). Phylogenetic analysis revealed that the cloned Mracbp gene, which encoded the MrACBP protein, exhibited the closest match (99% confidence level) to the gene from Penicilliopsis zonata . The MrACBP and maltose-binding protein (MBP) were simultaneously expressed in Escherichia coli Rosetta DE3 in the form of a fusion protein. The microscale thermophoresis binding assay revealed that the purified MBP-MrACBP exhibited a higher affinity for myristoyl-CoA (Kd = 88.16 nM) than for palmitoyl-CoA (Kd = 136.07 nM) and octanoyl-CoA (Kd = 270.9 nM). Further, the Mracbp gene was homologously overexpressed in M. ruber CICC41233, and a positive transformant M. ruber ACBP5 was isolated. The fatty acid myristic acid in M. ruber ACBP5 was lower than that in the parent strain M. ruber CICC41233. However, when compared with the parent strain, the production of total MPs, water-soluble pigment, and ethanol-soluble pigment in M. ruber ACBP5 increased by 11.67, 9.80, and 12.70%, respectively, after 6 days. The relative gene expression level, as determined by a quantitative real-time polymerase chain reaction analysis, of the key genes acbp , pks , mppr1 , fasA , and fasB increased by 4.03-, 3.58-, 1.67-, 2.11-, and 2.62-fold after 6 days. These data demonstrate the binding preference of MrACBP for myristoyl-CoA, and its influence on MPs production.

  13. Effect of irradiation, as a pretreatment, on bioconversion of corn stover into protein-rich mycelial biomass of Pleurotus sajor-caju

    International Nuclear Information System (INIS)

    Awafo, V.A.; Chahal, D.S.; Charbonneau, R.

    1995-01-01

    Application of irradiation for food preservation, for pretreatment of lignocellulosic materials for their hydrolysis and to increase the digestibility of lignocellulosic materials for rumen animals have been reported in the literature. In the present study, irradiation (100 KGy to 1.7 MGy) of corn stover as a pretreatment to make it susceptible for its bioconversion into protein-rich mycelial biomass of Pleurotus sajor-caju NRRL 18757 has been compared with that of mild alkali treatment (0.01 to 0.15 g NaOH/g corn stover), the most commonly used pretreatment. Protein synthesis increased with the increase in doses of irradiation as well as with the increase in concentration of NaOH. Combination pretreatment with NaOH and γ-irradiation reduced the quantity of NaOH and doses of irradiation required to get optimum yields of protein indicating a strong synergistic effect. The highest protein content of the final product, mycelial biomass, was about 45% on dry weight basis. More than 90% utilization of corn stover polysaccharides for the synthesis of protein-rich mycelial biomass of P. sajor-caju was recorded. (author)

  14. Effect of irradiation, as a pretreatment, on bioconversion of corn stover into protein-rich mycelial biomass of Pleurotus sajor-caju

    International Nuclear Information System (INIS)

    Awafo, V.A.; Chahal, D.S.; Charbonneau, R.

    1995-01-01

    Application of irradiation for food preservation, for pretreatment of lignocellulosic materials for their hydrolysis and to increase the digestibility of lignocellulosic materials for rumen animals have been reported in the literature. In the present study, irradiation (100 KGy to 1.7 MGy) of corn stover as a pretreatment to make it susceptible for its bioconversion into protein-rich mycelial biomass of Pleurotus sajor-caju NRRL 18757 has been compared with that of mied alkali treatment (0.01 to 0.15 g NaOH/g corn stover), the most commonly used pretreatment. Protein synthesis increased with the increase in doses of irradiation as well as with the increase in concentration of NaOH. Combination pretreatment with NaOH and γ-irradiation reduced the quantity of NaOH and doses of irradiation required to get optimum yields of protein indicating a strong synergistic effect. This highest protein content of the final product, mycelial biomass, was about 45% on dry weight basis. More than 90% utilization of corn stover polysaccharides for the synthesis of protein-rich mycelial biomass of P.sajor-caju was recorded. (author)

  15. Effect of irradiation, as a pretreatment, on bioconversion of corn stover into protein-rich mycelial biomass of Pleurotus sajor-caju

    Energy Technology Data Exchange (ETDEWEB)

    Awafo, V.A.; Chahal, D.S.; Charbonneau, R. [Universite du Quebec (Canada). Applied Microbiology Research Center

    1995-10-01

    Application of irradiation for food preservation, for pretreatment of lignocellulosic materials for their hydrolysis and to increase the digestibility of lignocellulosic materials for rumen animals have been reported in the literature. In the present study, irradiation (100 KGy to 1.7 MGy) of corn stover as a pretreatment to make it susceptible for its bioconversion into protein-rich mycelial biomass of Pleurotus sajor-caju NRRL 18757 has been compared with that of mild alkali treatment (0.01 to 0.15 g NaOH/g corn stover), the most commonly used pretreatment. Protein synthesis increased with the increase in doses of irradiation as well as with the increase in concentration of NaOH. Combination pretreatment with NaOH and {gamma}-irradiation reduced the quantity of NaOH and doses of irradiation required to get optimum yields of protein indicating a strong synergistic effect. The highest protein content of the final product, mycelial biomass, was about 45% on dry weight basis. More than 90% utilization of corn stover polysaccharides for the synthesis of protein-rich mycelial biomass of P. sajor-caju was recorded. (author).

  16. Deletion of AU-rich elements within the Bcl2 3'UTR reduces protein expression and B cell survival in vivo.

    Directory of Open Access Journals (Sweden)

    Manuel D Díaz-Muñoz

    Full Text Available Post-transcriptional mRNA regulation by RNA binding proteins (RBPs associated with AU-rich elements (AREs present in the 3' untranslated region (3'UTR of specific mRNAs modulates transcript stability and translation in eukaryotic cells. Here we have functionally characterised the importance of the AREs present within the Bcl2 3'UTR in order to maintain Bcl2 expression. Gene targeting deletion of 300 nucleotides of the Bcl2 3'UTR rich in AREs diminishes Bcl2 mRNA stability and protein levels in primary B cells, decreasing cell lifespan. Generation of chimeric mice indicates that Bcl2-ARE∆/∆ B cells have an intrinsic competitive disadvantage compared to wild type cells. Biochemical assays and predictions using a bioinformatics approach show that several RBPs bind to the Bcl2 AREs, including AUF1 and HuR proteins. Altogether, association of RBPs to Bcl2 AREs contributes to Bcl2 protein expression by stabilizing Bcl2 mRNA and promotes B cell maintenance.

  17. Anchoring plant metallothioneins to the inner face of the plasma membrane of Saccharomyces cerevisiae cells leads to heavy metal accumulation.

    Directory of Open Access Journals (Sweden)

    Lavinia Liliana Ruta

    Full Text Available In this study we engineered yeast cells armed for heavy metal accumulation by targeting plant metallothioneins to the inner face of the yeast plasma membrane. Metallothioneins (MTs are cysteine-rich proteins involved in the buffering of excess metal ions, especially Cu(I, Zn(II or Cd(II. The cDNAs of seven Arabidopsis thaliana MTs (AtMT1a, AtMT1c, AtMT2a, AtMT2b, AtMT3, AtMT4a and AtMT4b and four Noccaea caerulescens MTs (NcMT1, NcMT2a, NcMT2b and NcMT3 were each translationally fused to the C-terminus of a myristoylation green fluorescent protein variant (myrGFP and expressed in Saccharomyces cerevisiae cells. The myrGFP cassette introduced a yeast myristoylation sequence which allowed directional targeting to the cytosolic face of the plasma membrane along with direct monitoring of the intracellular localization of the recombinant protein by fluorescence microscopy. The yeast strains expressing plant MTs were investigated against an array of heavy metals in order to identify strains which exhibit the (hyperaccumulation phenotype without developing toxicity symptoms. Among the transgenic strains which could accumulate Cu(II, Zn(II or Cd(II, but also non-canonical metal ions, such as Co(II, Mn(II or Ni(II, myrGFP-NcMT3 qualified as the best candidate for bioremediation applications, thanks to the robust growth accompanied by significant accumulative capacity.

  18. Anchoring plant metallothioneins to the inner face of the plasma membrane of Saccharomyces cerevisiae cells leads to heavy metal accumulation.

    Science.gov (United States)

    Ruta, Lavinia Liliana; Lin, Ya-Fen; Kissen, Ralph; Nicolau, Ioana; Neagoe, Aurora Daniela; Ghenea, Simona; Bones, Atle M; Farcasanu, Ileana Cornelia

    2017-01-01

    In this study we engineered yeast cells armed for heavy metal accumulation by targeting plant metallothioneins to the inner face of the yeast plasma membrane. Metallothioneins (MTs) are cysteine-rich proteins involved in the buffering of excess metal ions, especially Cu(I), Zn(II) or Cd(II). The cDNAs of seven Arabidopsis thaliana MTs (AtMT1a, AtMT1c, AtMT2a, AtMT2b, AtMT3, AtMT4a and AtMT4b) and four Noccaea caerulescens MTs (NcMT1, NcMT2a, NcMT2b and NcMT3) were each translationally fused to the C-terminus of a myristoylation green fluorescent protein variant (myrGFP) and expressed in Saccharomyces cerevisiae cells. The myrGFP cassette introduced a yeast myristoylation sequence which allowed directional targeting to the cytosolic face of the plasma membrane along with direct monitoring of the intracellular localization of the recombinant protein by fluorescence microscopy. The yeast strains expressing plant MTs were investigated against an array of heavy metals in order to identify strains which exhibit the (hyper)accumulation phenotype without developing toxicity symptoms. Among the transgenic strains which could accumulate Cu(II), Zn(II) or Cd(II), but also non-canonical metal ions, such as Co(II), Mn(II) or Ni(II), myrGFP-NcMT3 qualified as the best candidate for bioremediation applications, thanks to the robust growth accompanied by significant accumulative capacity.

  19. Lack of Effect of Sodium Benzoate at Reported Clinical Therapeutic Concentration on d-Alanine Metabolism in Dogs.

    Science.gov (United States)

    Popiolek, Michael; Tierney, Brendan; Steyn, Stefanus J; DeVivo, Michael

    2018-06-19

    Cognitive decline and psychosis have been hypothesized to be mediated by N-methyl-d-aspartate receptor (NMDAR) hypofunction. Consistent with this hypothesis, chronic treatment with d-alanine, a coagonist at the glycine site of the NMDAR, leads to an improvement of positive and cognitive symptoms in schizophrenic patients. d-alanine is oxidized by d-amino acid oxidase (DAAO); thus, an inhibitor of DAAO would be expected to enhance d-alanine levels and likewise lead to desirable clinical outcomes. Sodium benzoate, on the basis of d-amino acid inhibition, was observed to display beneficial clinical effects in schizophrenic and Alzheimer's patients. However, in the clinical pilot studies using sodium benzoate, d-amino acids were not quantified to verify that sodium benzoate's efficacy was mediated through DAAO inhibition. In this study, d-alanine content was monitored in cerebral spinal fluid (CSF) of dogs treated with daily injections of d-alanine (30 mg/kg) alone and in combination with sodium benzoate (30 mg/kg) for seven consecutive days. We reasoned that the cerebral spinal fluid d-alanine quantity is reflective of the brain d-alanine levels and it would increase as a consequence of DAAO inhibition with sodium benzoate. We found that d-alanine treatment lead to maximal concentration of 7.51 μM CSF d-alanine level; however, coadministration of sodium benzoate and d-alanine did not change CSF d-alanine level beyond that of d-alanine treatment alone. As a consequence, we conclude that clinical efficacy associated with chronic administration of sodium benzoate in schizophrenic and Alzheimer's patients is likely not mediated through inhibition of DAAO.

  20. Carnosine and anserine homeostasis in skeletal muscle and heart is controlled by β‐alanine transamination

    Science.gov (United States)

    Blancquaert, Laura; Baba, Shahid P.; Kwiatkowski, Sebastian; Stautemas, Jan; Stegen, Sanne; Barbaresi, Silvia; Chung, Weiliang; Boakye, Adjoa A.; Hoetker, J. David; Bhatnagar, Aruni; Delanghe, Joris; Vanheel, Bert; Veiga‐da‐Cunha, Maria; Derave, Wim

    2016-01-01

    Key points Using recombinant DNA technology, the present study provides the first strong and direct evidence indicating that β‐alanine is an efficient substrate for the mammalian transaminating enzymes 4‐aminobutyrate‐2‐oxoglutarate transaminase and alanine‐glyoxylate transaminase.The concentration of carnosine and anserine in murine skeletal and heart muscle depends on circulating availability of β‐alanine, which is in turn controlled by degradation of β‐alanine in liver and kidney.Chronic oral β‐alanine supplementation is a popular ergogenic strategy in sports because it can increase the intracellular carnosine concentration and subsequently improve the performance of high‐intensity exercises. The present study can partly explain why the β‐alanine supplementation protocol is so inefficient, by demonstrating that exogenous β‐alanine can be effectively routed toward oxidation. Abstract The metabolic fate of orally ingested β‐alanine is largely unknown. Chronic β‐alanine supplementation is becoming increasingly popular for improving high‐intensity exercise performance because it is the rate‐limiting precursor of the dipeptide carnosine (β‐alanyl‐l‐histidine) in muscle. However, only a small fraction (3–6%) of the ingested β‐alanine is used for carnosine synthesis. Thus, the present study aimed to investigate the putative contribution of two β‐alanine transamination enzymes, namely 4‐aminobutyrate‐2‐oxoglutarate transaminase (GABA‐T) and alanine‐glyoxylate transaminase (AGXT2), to the homeostasis of carnosine and its methylated analogue anserine. We found that, when transfected into HEK293T cells, recombinant mouse and human GABA‐T and AGXT2 are able to transaminate β‐alanine efficiently. The reaction catalysed by GABA‐T is inhibited by vigabatrin, whereas both GABA‐T and AGXT2 activity is inhibited by aminooxyacetic acid (AOA). Both GABA‐T and AGXT2 are highly expressed in the mouse liver and

  1. Ubiquilin overexpression reduces GFP-polyalanine-induced protein aggregates and toxicity

    International Nuclear Information System (INIS)

    Wang Hongmin; Monteiro, Mervyn J.

    2007-01-01

    Several human disorders are associated with an increase in a continuous stretch of alanine amino acids in proteins. These so-called polyalanine expansion diseases share many similarities with polyglutamine-related disorders, including a length-dependent reiteration of amino acid induction of protein aggregation and cytotoxicity. We previously reported that overexpression of ubiquilin reduces protein aggregates and toxicity of expanded polyglutamine proteins. Here, we demonstrate a similar role for ubiquilin toward expanded polyalanine proteins. Overexpression of ubiquilin-1 in HeLa cells reduced protein aggregates and the cytotoxicity associated with expression of a transfected nuclear-targeted GFP-fusion protein containing 37-alanine repeats (GFP-A37), in a dose dependent manner. Ubiquilin coimmunoprecipitated more with GFP proteins containing a 37-polyalanine tract compared to either 7 (GFP-A7), or no alanine tract (GFP). Moreover, overexpression of ubiquilin suppressed the increased vulnerability of HeLa cell lines stably expressing the GFP-A37 fusion protein to oxidative stress-induced cell death compared to cell lines expressing GFP or GFP-A7 proteins. By contrast, siRNA knockdown of ubiquilin expression in the GFP-A37 cell line was associated with decreased cellular proliferation, and increases in GFP protein aggregates, nuclear fragmentation, and cell death. Our results suggest that boosting ubiquilin levels in cells might provide a universal and attractive strategy to prevent toxicity of proteins containing reiterative expansions of amino acids involved in many human diseases

  2. [Alanine solution as enzyme reaction buffer used in A to O blood group conversion].

    Science.gov (United States)

    Li, Su-Bo; Zhang, Xue; Zhang, Yin-Ze; Tan, Ying-Xia; Bao, Guo-Qiang; Wang, Ying-Li; Ji, Shou-Ping; Gong, Feng; Gao, Hong-Wei

    2014-06-01

    The aim of this study was to investigate the effect of alanine solution as α-N-acetylgalactosaminidase enzyme reaction buffer on the enzymatic activity of A antigen. The binding ability of α-N-acetylgalactosaminidase with RBC in different reaction buffer such as alanine solution, glycine solution, normal saline (0.9% NaCl), PBS, PCS was detected by Western blot. The results showed that the efficiency of A to O conversion in alanine solution was similar to that in glycine solution, and Western blot confirmed that most of enzymes blinded with RBC in glycine or alanine solution, but few enzymes blinded with RBC in PBS, PCS or normal saline. The evidences indicated that binding of enzyme with RBC was a key element for A to O blood group conversion, while the binding ability of α-N-acetylgalactosaminidase with RBC in alanine or glycine solution was similar. It is concluded that alanine solution can be used as enzyme reaction buffer in A to O blood group conversion. In this buffer, the α-N-acetylgalactosaminidase is closely blinded with RBC and α-N-acetylgalactosaminidase plays efficient enzymatic activity of A antigen.

  3. Recombinant expression, purification, and characterization of an acyl-CoA binding protein from Aspergillus oryzae.

    Science.gov (United States)

    Hao, Qing; Liu, Xiaoguang; Zhao, Guozhong; Jiang, Lu; Li, Ming; Zeng, Bin

    2016-03-01

    To characterize biochemically the lipid metabolism-regulating acyl-CoA binding protein (ACBP) from the industrially-important fungus Aspergillus oryzae. A full-length cDNA encoding a candidate ACBP from A. oryzae (AoACBP) was cloned and expressed in Escherichia coli as a maltose-binding protein (MBP) fusion protein. The MBP-AoACBP protein was purified by an amylose resin chromatography column. SDS-PAGE showed that MBP-AoACBP has an estimated molecular weight of 82 kDa. Microscale thermophoresis binding assay showed that the recombinant AoACBP displayed much greater affinity for palmitoyl-CoA (K d = 80 nM) than for myristoyl-CoA (K d = 510 nM), thus demonstrating the preference of AoACBP for long-chain acyl-CoA. The data support the identification of AoACBP as a long-chain ACBP in A. oryzae.

  4. Technology development of protein rich concentrates for nutrition in extreme conditions using soybean and meat by-products.

    Science.gov (United States)

    Kalenik, Tatiana K; Costa, Rui; Motkina, Elena V; Kosenko, Tamara A; Skripko, Olga V; Kadnikova, Irina A

    2017-01-01

    There is a need to develop new foods for participants of expeditions in extreme conditions, which must be self-sufficient. These foods should be light to carry, with a long shelf life, tasty and with  high nutrient density. Currently, protein sources are limited mainly to dried and canned meat. In this work, a protein-rich dried concentrate suitable for extreme expeditions was developed using soya, tomato, milk whey and meat by-products. Protein concentrates were developed using minced beef liver and heart, dehydrated and mixed with a soya protein-lycopene coagulate (SPLC) obtained from a solution prepared with germi- nated soybeans and mixed with tomato paste in milk whey, and finally dried. The technological parameters of pressing SPLC and of drying the protein concentrate were optimized using response surface methodology. The optimized technological parameters to prepare the protein concentrates were obtained, with 70:30 being the ideal ratio of minced meat to SPLC. The developed protein concentrates are characterized by a high calorific value of 376 kcal/100 g of dry product, with a water content of 98 g·kg-1, and 641-644 g·kg-1 of proteins. The essential amino acid indices are 100, with minimum essential amino acid content constitut- ing 100-128% of the FAO standard, depending on the raw meat used. These concentrates are also rich in micronutrients such as β-carotene and vitamin C. Analysis of the nutrient content showed that these non-perishable concentrates present a high nutritional value and complement other widely available vegetable concentrates to prepare a two-course meal. The soups and porridges prepared with these concentrates can be classified as functional foods, and comply with army requirements applicable to food products for extreme conditions.

  5. Spectrophotometric readout for alanine dosimeter to be used for food irradiation applications

    International Nuclear Information System (INIS)

    Ebraheem, S.; Beshir, W.B.; Eid, S.

    2002-01-01

    The electron spin resonance (EPR) readout of radical concentration produced upon irradiation of L-alanine is well known as a transfer dosimetry system for high dose level. The highly cost of EPR/alanine dosimetry system is a serious handicap for large scale routine application to be used in irradiation facilities. In this study, the reaction between L-alanine and 1,4-phenyl diammonium dichloride (PAC) solution produces a complex has a purple color. This complex has a variable absorbance with applied doses in the range from 1-20 kGy. Spectrophotometric evaluation at 368 and 505 nm for the absorbance intensity of this color as well as fluorimetric emission wavelength 435 nm were investigated, as a function of dose. The used method is uncomplicated and very easy for routine application. Evaluation of the dye concentration and the suitable amount of alanine has been studied. Stability of the product complex, for long period of time after the reaction had taken place, was also investigated

  6. Soluble cysteine-rich tick saliva proteins Salp15 and Iric-1 from E. coli

    OpenAIRE

    Kolb, Philipp; Vorreiter, Jolanta; Habicht, J?ri; Bentrop, Detlef; Wallich, Reinhard; Nassal, Michael

    2014-01-01

    Ticks transmit numerous pathogens, including borreliae, which cause Lyme disease. Tick saliva contains a complex mix of anti-host defense factors, including the immunosuppressive cysteine-rich secretory glycoprotein Salp15 from Ixodes scapularis ticks and orthologs like Iric-1 from Ixodes ricinus. All tick-borne microbes benefit from the immunosuppression at the tick bite site; in addition, borreliae exploit the binding of Salp15 to their outer surface protein C (OspC) for enhanced transmissi...

  7. 14N nuclear quadrupole interaction in Cu(II) doped L-alanine

    International Nuclear Information System (INIS)

    Murgich, J.; Calvo, R.; Oseroff, S.B.; Instituto Venezolano de Investigaciones Cientificas, Caracas. Dept. de Quimica)

    1980-01-01

    The 14 N nuclear quadrupole interaction tensor Psub(N) measured by ENDOR in Cu(II) doped L-alanine is analyzed in terms of the Townes and Daily theory assuming a tetra-hedrally bonded N atom. The results of this analysis are compared with those for the 14 N in pure L-alanine and it is found that the principal directions of the Psub(N) tensor are drastically changed upon metal complexation as a consequence of the higher electron affinity of Cu(II) with respect to C and H. Comparison of the corresponding bond populations in pure and Cu(II) doped L-alanine indicates that the Cu draws 0.11 more electron from the N than the substituted H atom. (orig.)

  8. Mechanism of mercurial inhibition of sodium-coupled alanine uptake in liver plasma membrane vesicles from Raja erinacea

    International Nuclear Information System (INIS)

    Sellinger, M.; Ballatori, N.; Boyer, J.L.

    1991-01-01

    In mammalian hepatocytes the L-alanine carrier contains a sulfhydryl group that is essential for its activity and is inhibited by mercurials. In hepatocytes of the evolutionarily primitive little skate (Raja erinacea), HgCl2 inhibits Na(+)-dependent alanine uptake and Na+/K(+)-ATPase and increase K+ permeability. To distinguish between direct effects of HgCl2 on the Na(+)-alanine cotransporter and indirect effects on membrane permeability, [3H]alanine transport was studied in plasma membrane vesicles. [3H]Alanine uptake was stimulated by an out-to-in Na+ but not K+ gradient and was saturable confirming the presence of Na(+)-alanine cotransport in liver plasma membranes from this species. Preincubation of the vesicles with HgCl2 for 5 min reduced initial rates of Na(+)-dependent but not Na(+)-independent alanine uptake in a dose-dependent manner (10-200 microM). In the presence of equal concentrations of NaCl or KCl inside and outside of the vesicles, 75 microM HgCl2 directly inhibited sodium-dependent alanine-[3H]alanine exchange, demonstrating that HgCl2 directly affected the alanine cotransporter. Inhibition of Na(+)-dependent alanine uptake by 30 microM HgCl2 was reversed by dithiothreitol (1 mM). HgCl2 (10-30 microM) also increased initial rates of 22Na uptake (at 5 sec), whereas 22Na uptake rates were decreased at HgCl2 concentrations greater than 50 microM. Higher concentrations of HgCl2 (100-200 microM) produced nonspecific effects on vesicle integrity. These studies indicate that HgCl2 inhibits Na(+)-dependent alanine uptake in skate hepatocytes by three different concentration-dependent mechanisms: direct interaction with the transporters, dissipation of the driving force (Na+ gradient), and loss of membrane integrity

  9. The application of Alanine/ESR dosimetry in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hoon; Lee, Byung Il [Radiation Health Research Institute, Seoul (Korea, Republic of)

    2014-05-15

    Alanine/Electron spin resonance(ESR) has been proven very effective tool which dosimetric characteristics is better suitable than generally used personnel dosimeter for long term dose estimation. L-α-alanine has unusual stability of radiation induced radicals. The fading is known as about 1% a year by IAEA technical documentary. It also has linear signal response on gamma rays over the wide range of dose quantity. Alanine is a kind of unnecessary amino acid in 20 amino acids. Estimation of the accumulated gamma dose is important to predict the life expectancy of cables. However, exact estimation of gamma dose at containment building of NPP is very difficult, because the variability of estimation value is apparently depending on the each installation position in containment building. Especially, some installation positions near reactor change extremely. So, the data from ESR measurement should be checked to the details on referring installation map and pictures.

  10. Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance

    Directory of Open Access Journals (Sweden)

    Maria Azucena Ortega-Amaro

    2015-01-01

    Full Text Available Proteins with glycine-rich signatures have been reported in a wide variety of organisms including plants, mammalians, fungi, and bacteria. Plant glycine-rich protein genes exhibit developmental and tissue-specific expression patterns. Herein, we present the characterization of the AtGRDP2 gene using Arabidopsis null and knockdown mutants and, Arabidopsis and lettuce over-expression lines. AtGRDP2 encodes a short glycine-rich domain protein, containing a DUF1399 domain and a putative RNA recognition motif. AtGRDP2 transcript is mainly expressed in Arabidopsis floral organs, and its deregulation in Arabidopsis Atgrdp2 mutants and 35S::AtGRDP2 over-expression lines produces alterations in development. The 35S::AtGRDP2 over-expression lines grow faster than the WT, while the Atgrdp2 mutants have a delay in growth and development. The over-expression lines accumulate higher levels of indole-3-acetic acid and, have alterations in the expression pattern of ARF6, ARF8 and miR167 regulators of floral development and auxin signaling. Under salt stress conditions, 35S::AtGRDP2 over-expression lines displayed higher tolerance and increased expression of stress marker genes. Likewise, transgenic lettuce plants over-expressing the AtGRDP2 gene manifest increased growth rate and early flowering time. Our data reveal an important role for AtGRDP2 in Arabidopsis development and stress response, and suggest a connection between AtGRDP2 and auxin signaling.

  11. Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism.

    Science.gov (United States)

    Li, MinChao; Li, Qi; Yang, Gang; Kolosov, Victor P; Perelman, Juliy M; Zhou, Xiang Dong

    2011-09-01

    Cold air stimulus is a major environmental factor that exacerbates chronic inflammatory airway diseases, such as chronic obstructive pulmonary disease (COPD) and asthma. At the molecular level, cold is detected by transient receptor potential melastatin 8 (TRPM8). To date, TRPM8 expression has not been characterized in the airway epithelium of patients with COPD. The role of TRPM8 channels in a series of airway responses induced by cold stimuli and the molecular and biochemical pathways of TRPM8 in regulating cold-induced responses are largely unknown. We sought to explore the role of TRPM8 in cold air-provoked mucus hypersecretion and the potential signaling pathway involved in this process. The expression of TRPM8 in the bronchial epithelium was examined by means of immunohistochemistry, RT-PCR, and Western blotting. TRPM8 receptor function and hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) were characterized by means of Ca(2+) imaging and spatiotemporal dynamics of phospholipase C (PLC) δ1-pleckstrin homology-green fluorescent protein, respectively. The expression of MUC5AC mRNA and MUC5AC mucin protein was measured by using real-time PCR and ELISA, respectively. Four serine residues in the myristoylated alanine-rich C kinase substrate (MARCKS)-phosphorylation site domain were mutated to identify the function of MARCKS in TRPM8-mediated airway mucus hypersecretion. TRPM8 protein and mRNA expression were significantly increased in patients with COPD compared with expression seen in healthy subjects. Cold produced robust increases in intracellular Ca(2+) levels and promoted translocation of PLCδ1-pleckstrin homology-green fluorescent protein. Cold increased expression of MUC5AC mRNA and intracellular and secreted MUC5AC protein in a nonsustained way. Phosphorylation site domain-mutant MARCKS cDNA hindered MUC5AC secretion induced by cold. These results indicate that the TRPM8 receptor is involved in cold-induced mucus hypersecretion through the Ca(2

  12. Sustainable production of housefly (Musca domestica) larvae as a protein-rich feed ingredient by utilizing cattle manure

    Science.gov (United States)

    Hussein, Mahmoud; Pillai, Viju V.; Goddard, Joshua M.; Park, Hui G.; Kothapalli, Kumar S.; Ross, Deborah A.; Ketterings, Quirine M.; Brenna, J. Thomas; Milstein, Mark B.; Marquis, Helene; Johnson, Patricia A.; Nyrop, Jan P.

    2017-01-01

    The common housefly, Musca domestica, is a considerable component of nutrient recycling in the environment. Use of housefly larvae to biodegrade manure presents an opportunity to reduce waste disposal while the rapidly assimilated insect biomass can also be used as a protein rich animal feed. In this study, we examine the biodegradation of dairy cattle manure using housefly larvae, and the nutritional value of the resulting larva meal as a feed ingredient. Our results demonstrated that dairy cattle manure presents a balanced substrate for larval growth, and the spent manure showed reductions in concentration of total nitrogen (24.9%) and phosphorus (6.2%) with an overall reduction in mass. Larva yield at an optimum density was approximately 2% of manure weight. Nutritional analysis of M. domestica larva meal showed values comparable to most high protein feed ingredients. Larva meal was 60% protein with a well-balanced amino acid profile, and 20% fat with 57% monounsaturated fatty acids, and 39% saturated fatty acids. Larva meal lacked any significant amount of omega-3 fatty acids. Evaluation of micronutrients in larva meal suggested that it is a good source of calcium and phosphorus (0.5% and 1.1% respectively). The nutritional value of larva meal closely matches that of fishmeal, making it a potentially attractive alternative for use as a protein-rich feed ingredient for livestock and aquaculture operations. PMID:28170420

  13. Optical signal response pf the alanine gel solution for photons and electrons clinical beams

    International Nuclear Information System (INIS)

    Silva, Cleber Feijo; Campos, Leticia Lucente

    2009-01-01

    Alanine gel dosimeter is a new gel material developed at IPEN that presents significant improvement on previous alanine systems developed by Costa (1994). The measure technique is based on the transformation of ferrous ions (Fe 2+ ) in ferric ions (Fe 3+ ) after irradiation. The DL-Alanine (C 3 H 7 NO 2 ) is an aminoacid tissue equivalent that improves the production of ferric ions in the solution. This work aims to study the comparison of optical signal response of the alanine gel solution for photons and electrons clinical beams. It was observed that the calibration factor can be considered independent of quality of the radiation for photons and electrons clinical beams. Therefore, it can be used the same calibration factor for evaluating the absorbed dose in photons and electrons fields in the energy of 6 MeV. Alanine Gel Dosimeter presents good performance and can be useful as alternative dosimeter in the radiotherapy area using MRI technique for 3D dose distribution evaluation. (author)

  14. L-alanine-induced germination in Bacillus licheniformis -the impact of native gerA sequences.

    Science.gov (United States)

    Madslien, Elisabeth H; Granum, Per Einar; Blatny, Janet M; Lindbäck, Toril

    2014-04-22

    L-alanine, acting through the GerA receptor, was recently found to be an efficient germinant in Bacillus licheniformis ATCC14580/DSM13. In this study, we show that several of 46 examined B. licheniformis strains germinate remarkably slower than the type strain when exposed to L-alanine. These strains are not necessarily closely related, as determined by MLST (multi-locus sequence typing). Three of the slow-germinating strains were further examined in order to see whether nucleotide substitutions in the gerA sequences were responsible for the slow L-alanine germination. This was performed by complementing the transformable type strain derivate MW3ΔgerAA with gerA variants from the three slow-germinating strains; NVH1032, NVH1112 and NVH800. A wide selection of B. licheniformis strains was evaluated for L-alanine-induced germination efficiency. Our results show that gerA substitutions could only partially explain why spores of some B. licheniformis strains responded slower than others in the presence of L-alanine.

  15. Radical formation of irradiated α-alanine and N-acetyl alanine with heavy ion beams. Effects of the irradiation temperature

    International Nuclear Information System (INIS)

    Minegishi, Atsuko; Nagasaki, Jun; Mori, Wasuke; Amano, Chikara; Takagi, Shinji; Murakami, Takeshi; Kanai, Tatsuaki; Furusawa, Yoshiya; Iwata, Yoshiyuki

    2003-01-01

    The characteristics of irradiation with C290 MeV/u ion beams were investigated using X-band electron spin resonance (ESR) spectroscopy for a polycrystalline powder of L-α-alanine at from 77K to 310K. The formed main radicals at 190K∼310K were the deamino radical and the decarboxyl radical. Because of the first-derivative ESR, decarboxyl radical showed an expanded spectral width and a lower peak height because of its amino hydrogen and nitrogen than that of the same amount of deamino radical. The ESR of irradiated L-α-alanine predominantly indicates the spectrum of the deamino radical. On the irradiated, L-α-alanine at from 77K to 310K ESR showed 1:4:6:4:1 lines at 220K and at room temperature, which indicate that the methyl group of the radical was rotating. On the other hand, at 77K ESR the spectrum showed nearly 1:5:5:5:1 lines, like the teeth of a saw, on samples irradiated at 270K∼350K (range IV), and 1:4:6:4:1 lines for those irradiated at 180K∼260K (range II and III), respectively. It is considered that the radical conformation of the deamino radical is planar (most stable conformation) on an irradiated sample in range IV, and a pyramidal structure on the irradiated sample in ranges II and III. (author)

  16. Synthesis and Analysis of Methacryloyl-L-Alanine Methyl Ester using fourier Transform Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Tri Darwinto

    2008-01-01

    Methacryloyl-L-alanine methyl ester was synthesized by reacting methacrylic acid with L-alanine methyl ester hydrochloride in triethylamine at temperature of 90 o C. Hydrogel polymer of poly(methacryloyl-L-alanine methyl ester) was much used for diagnosis and therapy of vascular tumor. The molecular structure methacryloyl-L-alanine methyl ester analyzed by fourier transform nuclear magnetic resonance (FT-NMR) for analyzing of carbon atom ( 13 C) using Distortionless Enhancement by Polarization Transfer (DEPT) measurement mode with coupling as well as without coupling from proton atom ( 1 H). Molecular structure analysis result showed that DEPT FT-NMR measurement mode with coupling as well as without coupling from 1 H was very fast, exact and accurate method for molecular analysis of organic compound especially methacryloyl-L-alanine methyl ester. (author)

  17. Serum alanine aminotransferase levels, hematocrit rate and body weight correlations before and after hemodialysis session

    Directory of Open Access Journals (Sweden)

    Edmundo Pessoa Lopes

    2009-01-01

    Full Text Available PURPOSE: To evaluate alanine aminotransferase levels before and after a hemodialysis session and to correlate these values with the hematocrit rate and weight loss during hemodialysis. PATIENTS AND METHODS: The serum alanine aminotransferase levels, hematocrit rate and body weight were measured and correlated before and after a single hemodialysis session for 146 patients with chronic renal failure. An receiver operating characteristic (ROC curve for the serum alanine aminotransferase levels collected before and after hemodialysis was plotted to identify hepatitis C virus-infected patients. RESULTS: The mean weight loss of the 146 patients during hemodialysis was 5.3% (p < 0.001. The mean alanine aminotransferase levels before and after hemodialysis were 18.8 and 23.9 IU/, respectively, denoting a significant 28.1% increase. An equally significant increase of 16.4% in the hematocrit rate also occurred after hemodialysis. The weight loss was inversely correlated with the rise in both the alanine aminotransferase level (r = 0.3; p < 0.001 and hematocrit rate (r = 0.5; p < 0.001. A direct correlation was found between the rise in alanine aminotransferase levels and the hematocrit during the hemodialysis session (r = 0.4; p < 0.001. Based on the ROC curve, the upper limit of the normal alanine aminotransferase level should be reduced by 40% relative to the upper limit of normal if the blood samples are collected before the hemodialysis session or by 60% if blood samples are collected after the session. CONCLUSION: In the present study, significant elevations in the serum alanine aminotransferase levels and hematocrit rates occurred in parallel to a reduction in body weight after the hemodialysis session. These findings suggest that one of the factors for low alanine aminotransferase levels prior to hemodialysis could be hemodilution in patients with chronic renal failure.

  18. The Cyanobacteria Derived Toxin Beta-N-Methylamino-L-Alanine and Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Elijah W. Stommel

    2010-12-01

    Full Text Available There is mounting evidence to suggest that environmental factors play a major role in the development of neurodegenerative diseases like ALS (Amyotrophic Lateral Sclerosis. The non-protein amino acid beta-N-methylamino-L-alanine (BMAA was first associated with the high incidence of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC in Guam, and has been implicated as a potential environmental factor in ALS, Alzheimer’s disease, and other neurodegenerative diseases. BMAA has a number of toxic effects on motor neurons including direct agonist action on NMDA and AMPA receptors, induction of oxidative stress, and depletion of glutathione. As a non-protein amino acid, there is also the strong possibility that BMAA could cause intraneuronal protein misfolding, the hallmark of neurodegeneration. While an animal model for BMAA-induced ALS is lacking, there is substantial evidence to support a link between this toxin and ALS. The ramifications of discovering an environmental trigger for ALS are enormous. In this article, we discuss the history, ecology, pharmacology and clinical ramifications of this ubiquitous, cyanobacteria-derived toxin.

  19. Effect of the ionizing radiation on alanine solution for a dosimeter application

    International Nuclear Information System (INIS)

    Abdessamad, Nour El Houda

    2007-01-01

    The amino acid alanine is well known as a dosimetric detector material for high level dosimetry. Its application is based on the formation of radicals by ionising radiation. In this study the effect of several parameters such as: the ionising radiation, the concentration, the dose on the pH, conductivity and the oscillotitrometric answer of L a lanine solution was investigated. The results show that there is a significant production of new species. The formation of these species increases upon increasing dose. The comparison between the repeatability of the used techniques led us to choose of the system alanine/pH and the alanine/conductivity as the most adapted. (Author)

  20. Development of a dosimeter for high doses assessment based on Alanine/EPR

    International Nuclear Information System (INIS)

    Galante, O.L.; Rodrigues, O. Jr.; Campos, L.L.

    2000-01-01

    The increasing use of radiation sources of high activity for industrial and medical applications becomes important the research and the development of detectors and dosimetric methods for quality control of the applied doses. This work presents the current stage of the research at IPEN/CNEN-SP that has as objective the development of a standard dosimetric system for high doses assessment based on the alanine as radiation detector and electron paramagnetic resonance (EPR) as measurement technique. The developed system consists of the cylindrical container built in polyethylene of high density and the detector element based on DL-alanine commercially available. For the detector preparation different binding materials such as paraffin and acetate polyvinyl solution (pva) and also the use of a polyethylene tube of low density with 3.2 mm of external diameter, 2 mm of internal diameter and 30 mm of length were tested to provide the easier preparation method and the most sensitive detector. For the alanine + paraffin detector it was used 80% of alanine and 20% of paraffin, for the alanine + pva detector it was used 70% of alanine and 30% of pva solution, and pure alanine was encapsulated, compacted and sealed in the case of the polyethylene tube. The obtained results with respect to handling, packing and construction easiness showed that the polyethylene tube presents all characteristics to obtain of a good detector element. The validation of the dosimetric system was carried out with gamma radiation of the cobalt-60 with doses in the range between 0.2 Gy to 200 kGy. Type tests such as fading, lowest detection limit, reproducibility and energy dependence of the sign EPR were performed. All measurements were carried out at room temperature using a spectrometer of electron paramagnetic resonance (EPR) Bruker model MXE. Taking into account the results obtained: linearity of the EPR signal between 10 Gy and 50 kGy, reproducibility better than 3%, low fading associated with

  1. The influence of measurement and storage conditions on alanine ESR dosimeters

    International Nuclear Information System (INIS)

    Alexandre, A.C.

    1992-01-01

    Alanine has several desirable properties as an ESR dosemeter e.g. tissue equivalence, low fading and an approximately linear response for doses up to 10 kGy. This work reports on a simple system to produce the alanine dosemeter, the signal intensity for a range of doses and energies, and the effect of the air humidity and the spectrometer settings on the ESR signal. (Author)

  2. The effect of a home delivery meal service of energy- and protein-rich meals on quality of life in malnourished outpatients suffering from lung cancer

    DEFF Research Database (Denmark)

    Leedo, Eva; Gade, Josephine; Granov, Sabrina

    2017-01-01

    Undernutrition is prevalent in cancer patients and associated with increased incidence of complications and mortality. We investigated the effects of a home delivery meal service, providing a selection of energy-dense, protein-rich meals, on quality of life (QoL) in malnourished lung cancer....... Intervention exerted a significant positive effect on performance score after 12 wk (P = 0.047). Increased energy and protein intakes were strongly associated with improved QoL, functional score, hand grip strength, symptom and performance scores. Food delivery service with energy- and protein-rich main meals...

  3. Calculations of the relative effectiveness of alanine for neutrons with energies up to 17.1 MeV

    International Nuclear Information System (INIS)

    Gerstenberg, H.M.; Coyne, J.J.

    1990-01-01

    The relative effectiveness (RE) of alanine has been calculated for neutrons using the RE of alanine for charged particles. The neutrons interact with one or more of the elements (hydrogen, carbon, nitrogen and oxygen) that compose the alanine. These interactions produce spectra of secondary charged particles consisting of ions of H, D, He, Be, B, C, N and O. From a combination of the calculated secondary charged particle spectra generated by the slowing down neutrons, and the calculated RE of the ions produced, a RE for the neutrons can be obtained. In addition, lineal energy spectra were determined for neutrons with energies up to 17.1 MeV interacting with alanine. An analytical code was used to calculate these spectra for a 1 μm diameter alanine cell surrounded by an alanine medium. For comparison, similar calculations were made for muscle tissue. Finally, the calculated differential RE was folded with dose distributions to obtain RE-weighted distributions for alanine. (author)

  4. Effects of dose fractionation on the response of alanine dosimetry

    International Nuclear Information System (INIS)

    Lundahl, Brad; Logar, John; Desrosiers, Marc; Puhl, James

    2014-01-01

    Alanine dosimetry is well established as a transfer standard and is becoming more prevalently used in routine dosimetry systems for radiation processing. Many routine measurement applications in radiation processing involve absorbed dose measurements resulting from fractioned exposures to ionizing radiation. Fractioning of absorbed dose is identified as an influence quantity (ISO/ASTM, 2013). This paper reports on study results of absorbed dose fractioning characteristics of alanine for gamma and high energy electron beam radiation sources. The results of this study indicate a radiation response difference due to absorbed dose fractioning in response can be observed after four fractionations for high-energy electron beams and no difference up to seven fractions for gamma rays using an ANOVA evaluation method. - Highlights: • Fractioning effects signaled in electron beam using an ANOVA at 6 equal increments. • Fractioning effects not signaled in gamma using an ANOVA up to 7 equal increments. • Insensitivity of alanine to dose fractioning indicates nominal impact on calibration

  5. Determination of the carbon, hydrogen and nitrogen contents of alanine and their uncertainties using the certified reference material L-alanine (NMIJ CRM 6011-a).

    Science.gov (United States)

    Itoh, Nobuyasu; Sato, Ayako; Yamazaki, Taichi; Numata, Masahiko; Takatsu, Akiko

    2013-01-01

    The carbon, hydrogen, and nitrogen (CHN) contents of alanine and their uncertainties were estimated using a CHN analyzer and the certified reference material (CRM) L-alanine. The CHN contents and their uncertainties, as measured using the single-point calibration method, were 40.36 ± 0.20% for C, 7.86 ± 0.13% for H, and 15.66 ± 0.09% for N; the results obtained using the bracket calibration method were also comparable. The method described in this study is reasonable, convenient, and meets the general requirement of having uncertainties ≤ 0.4%.

  6. Dependence of alanine gel dosimeter response as a function of photon clinical beams dose rate

    International Nuclear Information System (INIS)

    Silva, Cleber Feijo; Campos, Leticia Lucente

    2013-01-01

    Gel dosimetry is a new area developed by Gore, it is ery useful for application in radiotherapy because using NMR imaging as evaluation technique is possible to evaluate three dimensional absorbed dose distribution. The measure technique is based on difference of ferrous (Fe 2+ ) and ferric (Fe 3+ ) ) ions concentration that can be measured also by spectrophotometry technique. The Alanine gel dosimeter was developed at IPEN. The alanine is an amino acid and tissue equivalent material that presents significant improvement on previous alanine dosimetry systems. The addition of Alanine increases the production of ferric ions in the solution. This work aims to study the dose rate dependence of photon clinical beams radiation on the alanine gel dosimeter optical response, as well as the response repeatability and gel production reproducibility, since this property is very important for characterization and standardization of any dosimeter. (author)

  7. Structure of poly (. beta. -alanine) polymerized in the solid state. Koso jugo shita. beta. -alanine no kozo

    Energy Technology Data Exchange (ETDEWEB)

    Sakabe, Hiroshi; Nakamura, Hiroyoshi; Kimura, Hirokazu; Konishi, Takashi [Kyoto Inst. of Tech., Kyoto (Japan). Faculty of Textile Science

    1989-12-05

    The structure of poly({beta}-alanine) polymerized in the solid state was studied. This polymerization was carried out on a single crystal of {beta}-alanine at 170 centigrade for 40 h in an evacuated tube. The crystal structure of the polymer was assigned to I-type crystal of Nylon 3. The polymer chains were oriented vertical to the crystal side and different to monomer crystal orientation. This may be caused by the molecular layer slipping along the cleavage plane of monomer crystal. A scanning electron microscope(SEM) showed the band structure of hundreds nm width of same orientation, but X ray showed only unoriented rings, so that they are estimated to be the structure of fine fibril like assembly or necklace like continuous chain structure of grains. Near the surface, whiskers which were thought to be oligomer of low degree of polymerization, were observed. The SEM of end view of the etched surface did not show the laminated structure but showed the network structure of about 1 mu-m which is thought to be fibril precursor. 12 refs., 10 figs.

  8. Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking.

    Science.gov (United States)

    Pinaud, Fabien; Michalet, Xavier; Iyer, Gopal; Margeat, Emmanuel; Moore, Hsiao-Ping; Weiss, Shimon

    2009-06-01

    Recent experimental developments have led to a revision of the classical fluid mosaic model proposed by Singer and Nicholson more than 35 years ago. In particular, it is now well established that lipids and proteins diffuse heterogeneously in cell plasma membranes. Their complex motion patterns reflect the dynamic structure and composition of the membrane itself, as well as the presence of the underlying cytoskeleton scaffold and that of the extracellular matrix. How the structural organization of plasma membranes influences the diffusion of individual proteins remains a challenging, yet central, question for cell signaling and its regulation. Here we have developed a raft-associated glycosyl-phosphatidyl-inositol-anchored avidin test probe (Av-GPI), whose diffusion patterns indirectly report on the structure and dynamics of putative raft microdomains in the membrane of HeLa cells. Labeling with quantum dots (qdots) allowed high-resolution and long-term tracking of individual Av-GPI and the classification of their various diffusive behaviors. Using dual-color total internal reflection fluorescence (TIRF) microscopy, we studied the correlation between the diffusion of individual Av-GPI and the location of glycosphingolipid GM1-rich microdomains and caveolae. We show that Av-GPI exhibit a fast and a slow diffusion regime in different membrane regions, and that slowing down of their diffusion is correlated with entry in GM1-rich microdomains located in close proximity to, but distinct, from caveolae. We further show that Av-GPI dynamically partition in and out of these microdomains in a cholesterol-dependent manner. Our results provide direct evidence that cholesterol-/sphingolipid-rich microdomains can compartmentalize the diffusion of GPI-anchored proteins in living cells and that the dynamic partitioning raft model appropriately describes the diffusive behavior of some raft-associated proteins across the plasma membrane.

  9. A high-fat diet and the threonine-encoding allele (Thr54) polymorphism of fatty acid–binding protein 2 reduce plasma triglyceride–rich lipoproteins

    Science.gov (United States)

    The Thr54 allele of the fatty acid binding protein 2 (FABP2) DNA polymorphism is associated with increased triglyceride-rich lipoproteins and insulin resistance. We investigated whether the triglyceride-rich lipoprotein response to diets of varied fat content is affected by the fatty acid binding pr...

  10. The photon energy dependence of the alanine/EPR dosimetry system, an experimental investigation

    International Nuclear Information System (INIS)

    Bergstrand, E.S.; Hole, E.O.; Shortt, K.R.; Ross, C.K.

    2002-01-01

    The energy dependence of a dosimetry system based on electron paramagnetic resonance (EPR) spectroscopy of alanine has been studied to determine its suitability for use in dose verification for radiotherapy. A few experiments with high-energy photon irradiation of alanine have been reported in the literature. However, the reported results disagree whether the ratio of dose in alanine to dose in water is independent of the radiation energy or whether there is a small dependence for photon energies of relevance to radiotherapy. The concentration of free radicals in alanine is proportional to the absorbed dose in alanine over a wide dose range covering three decades. The relative number of radicals may be determined by examining the EPR spectrum, and hence it is possible to determine the dose with a system that has been calibrated using a known dose of 60 Co radiation. In the present work, irradiations of alanine dosimeters were performed at the National Research Council (NRC), in Ottawa, Canada. The radiation qualities investigated were 10, 20 and 30 MV x-rays using the NRC linac. For each radiation quality, 30 dosimeters were irradiated in a water phantom with a level of absorbed dose to water ranging from 10 to 50 Gy. For reference purposes, irradiations using the NRC 60 Co source were performed on more or less the same day as the irradiations at each specific linac quality. In all beams, the dose to water was measured using a graphite-walled NE2571 ionisation chamber that was originally calibrated by comparison with a sealed-water calorimeter. The alanine dosimeters were evaluated at the EPR laboratory at the University of Oslo, Norway, using an X-band Bruker ESP300E spectrometer with a rectangular double resonator. One of the resonators contained a Mn 2+ /MgO sample that was read after each dosimeter reading, in order to provide independence from short-term sensitivity fluctuations in the spectrometer. All dosimeters irradiated at one specific linac quality were

  11. An investigation of the photon energy dependence of the EPR alanine dosimetry system

    International Nuclear Information System (INIS)

    Bergstrand, Eva Stabell; Shortt, Ken R; Ross, Carl K; Hole, Eli Olaug

    2003-01-01

    The electron paramagnetic resonance (EPR) alanine dosimetry system is based on EPR measurements of radicals formed in alanine by ionizing radiation. The system has been studied to determine its energy dependence for photons in the 10-30 MV region relative to those of 60 Co and to find out if the system would be suitable for dosimetry comparisons. The irradiations were carried out at the National Research Council, Ottawa, Canada and the doses ranged from 8 to 54 Gy. The EPR measurements were performed at the University of Oslo, Norway. The ratio of the slope of the alanine reading versus dose-to-water curve for a certain linac photon beam quality and the corresponding slope for a reference 60 Co γ-radiation gives an experimental measure of the relative dose-to-water response of the EPR alanine dosimetry system. For calculating the linear regression coefficients of these alanine reading versus dose curves, the method of weighted least squares was used. This method is assumed to produce more accurate regression coefficients when applied to EPR dosimetry than the common method of standard least squares. The overall uncertainty on the ratio of slopes was between 0.5 and 0.6% for all three linac energies. The relative response for all the linac beams compared to cobalt was less than unity: by about 0.5% for the 20 and 30 MV points but by more than 1% for the 10 MV point. The given standard uncertainties negate concluding that there is any significant internal variation in the measured response as a function of beam quality between the three linac energies. Thus, we calculated the average dose response for all three energies and found that the alanine response is 0.8% (±0.5%) lower for high energy x-rays than for 60 Co γ-rays. This result indicates a small energy dependence in the alanine response for the high-energy photons relative to 60 Co which may be significant. This result is specific to our dosimetry system (alanine with 20% polyethylene binder pressed into a

  12. Spectrophotometric readout for alanine dosimeter to be used for food irradiation applications

    International Nuclear Information System (INIS)

    Ebraheem, S.; Beshir, W.B.; Sobhy, R.; Kovacs, A.; Wojnarovits, L.

    2002-01-01

    Complete text of publication follows. The electron spin resonance (EPR) readout of radical concentration produced upon irradiation of L-alanine is well known as a transfer dosimetry system for high dose range. The high cost of EPR/alanine dosimetry system is a serious handicap for large-scale routine application for use in irradiation facilities. In this study the irradiated L-alanine was dissolved in 1,4 -phenyl diammonium dichloride (PAC) solution resulting a complex of a purple colour. This complex has a variable absorbance with applied dose in the range from 1 - 20 kGy. The absorbance of this complex using spectrophotometric evaluation was investigated at 401 and 478 nm with increasing dose. The fluorimetric emission was also studied at the wavelength of 475 nm as a function of dose. This methos for dose evaluation is uncomplicated and very easy for routine application. The effect of the dye concentration as well as the suitable amount of alanine has been studied with respect to practical use. The stability of the complex for long period of time was also investigated

  13. Selfcalibrated alanine/EPR dosimeters. A new generation of solid state/EPR dosimeters

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Gancheva, V.

    1999-01-01

    Alanine/EPR dosimeters are well established as secondary, reference dosimeters for high-energy radiation. However, there are various sources of uncertainty in the evaluation of absorbed dose. This arises primarily from the necessity to calibrate each EPR spectrometer and each batch of dosimeters before their use. In order to overcome this disadvantage, a new generation alanine/EPR dosimeter has been developed, and its possibilities as a radiation detector are reported. Principally, it is a mixture of alanine, some quantity of EPR active substance, and a binding material. The EPR active substance, acting as an internal EPR standard, is chosen to have EPR parameters which are independent of the irradiation dose. The simultaneous recording of the spectra of both the sample and the standard under the same experimental conditions and the estimation of the ratio I alanine /I Mn as a function of the absorbed dose strongly reduces the uncertainties. The response of these dosimeters for 60 Co γ-radiation exhibits excellent linearity and reproducibility in the range of absorbed dose, 10 2 - 5 x 10 4 Gy. (author)

  14. Influence of the irradiation temperature on the free-radical response of alanine

    International Nuclear Information System (INIS)

    Wieser, A.; Siegele, R.; Regulla, D.F.

    1989-01-01

    GSF operates the only IAEA high-level dosimetry reference laboratory and, as a joint project with the IAEA, the International Dose Assurance Service (IDAS). Dosimetry is based on long-lived free radicals in organic alanine induced by ionizing radiation and readout by ESR spectroscopy. The thermal time response of the radical concentration in alanine is fairly constant after irradiation provided that the alanine samples are stored at temperatures below 50 0 C. By contrast, a positive temperature coefficient had earlier been found at GSF for the production rate of alanine radicals, for irradiation temperatures between 0 and 50 0 C. This effect has to be considered for reference dosimetry in radiation processing. Radiation processing is also of interest at irradiation temperatures below 0 0 C. The present study describes experiments on the influence of irradiation temperatures between +50 and -100 0 C. Comparison is made between the present and earlier results, in the overlapping temperature range. An empirical function is proposed for the temperature coefficient based on the experimental data. (author)

  15. Different β-alanine dimeric forms in trifluoromethanesulfonic acid salts. XRD and vibrational studies

    Science.gov (United States)

    Wołoszyn, Łukasz; Ilczyszyn, Maria M.

    2018-03-01

    Two new crystalline salts: β-alaninium trifluoromethanesulfonate (β-AlaOTf) and bis(β-alanine) trifluoromethanesulfonate (β-2AlaOTf) were obtained. The former one contains diprotonated β-alanine dimer, the latter one monoprotonated β-alanine dimer. Both compounds were studied by single crystal XRD, vibrational (IR and Raman) spectroscopy and calorimetric method. The quantum-mechanical calculations (DFT/B3LYP/6-311 ++G(2d,2p)) for the diprotonated dimer were carried out. The β-AlaOTf salt crystallizes in the P 1 bar space group of triclinic system (Z = 2), the β-2AlaOTf in the P21/m space group of monoclinic system (Z = 2). The vibrational data for the studied compounds are discussed in relation to their crystal structure, and provide insight into the character of hydrogen bonds and β-alanine protonation. The studied crystals do not exhibit phase transitions in the solid state.

  16. Electrocautery-induced localized colonic injury elicits increased levels of pro-inflammatory cytokines in small bowel and decreases jejunal alanine absorption.

    Science.gov (United States)

    Barada, Kassem; Mourad, Fadi H; Noutsi, Bakiza; Saadé, Nayef E

    2015-01-01

    Colitis is associated with functional abnormalities in proximal non-inflamed gut areas, but animal models to study small bowel dysfunction in colitis have limitations. This study aims to determine small intestinal alanine absorption and cytokine expression in a novel model of colonic ulceration induced by electro-cautery. A descending colon ulcer was induced in rats by a bipolar electro-cautery probe. Ulcer score was determined using Satoh's criteria. Jejunal alanine absorption was measured immediately and at different time intervals post ulcer induction. Levels of interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) protein and m-RNA were determined in mucosal scrapings obtained from the colon, duodenum, jejunum and ileum at various time intervals after colonic ulcer induction. The mean ulcer score was 3 up to 48h, followed by healing by 96h post ulcer induction. Small bowel histology was normal throughout. Jejunal alanine absorption was reduced by 12-34% immediately and up to 72h after cautery and returned to normal at 96h. IL-1 and TNF-α mRNA increased significantly in the colon, duodenum, jejunum and ileum 3h post electro-cautery and returned to normal at 48h, while that of IL-6 increased significantly at 48h post ulcer induction. Similarly, IL-1, IL-6 and TNF-α protein levels increased in the duodenum, jejunum, ileum and colon up to 48h post ulcer induction. Electrically induced localized colonic injury increased production of pro-inflammatory cytokines in non-inflamed segments of the small intestine and was associated with derangements of jejunal absorptive function. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Potential energy surface of alanine polypeptide chains

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2006-01-01

    The multidimensional potential energy surfaces of the peptide chains consisting of three and six alanine (Ala) residues have been studied with respect to the degrees of freedom related to the twist of these molecules relative to the peptide backbone (these degrees of freedom are responsible...

  18. Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade.

    Science.gov (United States)

    Kim, Geun-Young; Park, Soon Yong; Jo, Ara; Kim, Mira; Leem, Sun-Hee; Jun, Woo-Jin; Shim, Sang In; Lee, Sang Chul; Chung, Jin Woong

    2015-09-01

    Gecko proteins have long been used as anti-tumor agents in oriental medicine, without any scientific background. Although anti-tumor effects of Gecko proteins on several cancers were recently reported, their effect on bladder cancer has not been investigated. Thus, we explored the anti-tumor effect of Gecko proteins and its cellular mechanisms in human bladder cancer 5637 cells. Gecko proteins significantly reduced the viability of 5637 cells without any cytotoxic effect on normal cells. These proteins increased the Annexin-V staining and the amount of condensed chromatin, demonstrating that the Gecko proteinsinduced cell death was caused by apoptosis. Gecko proteins suppressed Akt activation, and the overexpression of constitutively active form of myristoylated Akt prevented Gecko proteins-induced death of 5637 cells. Furthermore, Gecko proteins activated caspase 9 and caspase 3/7. Taken together, our data demonstrated that Gecko proteins suppressed the Akt pathway and activated the intrinsic caspase pathway, leading to the apoptosis of bladder cancer cells. [BMB Reports 2015; 48(9): 531-536].

  19. Classification of EA1-box proteins and new insights into their role during reproduction in grasses.

    Science.gov (United States)

    Uebler, Susanne; Márton, Mihaela L; Dresselhaus, Thomas

    2015-12-01

    EA1-box protein classification. Success in reproduction and vegetative development in flowering plants strongly depends on precise cell-to-cell signaling events mediated by secreted peptides.A small peptide family named as EA1-like (EAL) has been first described 10 years ago and includes EA1 involved in pollen tubes attraction by the female gametophyte and EAL1-regulating germ cell identity in maize. EALs consist of an N-terminal endoplasmic reticulum-targeting motif, the highly conserved EA1-box and a short C-terminal alanine-rich domain. Whereas EAL peptides are exclusively found in the Gramineae, the EA1-box is widely distributed throughout the plant kingdom. Based on in silico analysis and subcellular localization studies, we report here a new classification of EA1-box proteins in flowering plants. They can be distinguished into three protein classes: the already defined EAL proteins, the EAG (EA1-box glycine-rich) proteins and the EAC (EA1-box containing)proteins. While fusion proteins of EAL and EAC classes locate to the secretory pathway, EAGs are cytoplasmic and locate also to the nucleus. Moreover, we further show that the third EAL protein of Zea mays, EAL2, appears to be also involved in processes related to late embryogenic development as its peptide level increases after formation of leaf primordia. Immunohistochemical studies indicate its presence in the scutellar parenchyma and around the vasculature, where it is secreted to the extracellular space. In conclusion, the members of the maize EAL family possess very diverse functions during reproduction and it will now be exciting to elucidate the functions of EAGs and EACs in plants.

  20. Regulation of tumor cell migration by protein tyrosine phosphatase (PTP)-proline-, glutamate-, serine-, and threonine-rich sequence (PEST)

    Science.gov (United States)

    Zheng, Yanhua; Lu, Zhimin

    2013-01-01

    Protein tyrosine phosphatase (PTP)–proline-, glutamate-, serine-, and threonine-rich sequence (PEST) is ubiquitously expressed and is a critical regulator of cell adhesion and migration. PTP-PEST activity can be regulated transcriptionally via gene deletion or mutation in several types of human cancers or via post-translational modifications, including phosphorylation, oxidation, and caspase-dependent cleavage. PTP-PEST interacts with and dephosphorylates cytoskeletal and focal adhesion-associated proteins. Dephosphorylation of PTP-PEST substrates regulates their enzymatic activities and/or their interaction with other proteins and plays an essential role in the tumor cell migration process. PMID:23237212

  1. Absorbed dose determination in kilovoltage X-ray synchrotron radiation using alanine dosimeters.

    Science.gov (United States)

    Butler, D J; Lye, J E; Wright, T E; Crossley, D; Sharpe, P H G; Stevenson, A W; Livingstone, J; Crosbie, J C

    2016-12-01

    Alanine dosimeters from the National Physical Laboratory (NPL) in the UK were irradiated using kilovoltage synchrotron radiation at the imaging and medical beam line (IMBL) at the Australian Synchrotron. A 20 × 20 mm 2 area was irradiated by scanning the phantom containing the alanine through the 1 mm × 20 mm beam at a constant velocity. The polychromatic beam had an average energy of 95 keV and nominal absorbed dose to water rate of 250 Gy/s. The absorbed dose to water in the solid water phantom was first determined using a PTW Model 31014 PinPoint ionization chamber traceable to a graphite calorimeter. The alanine was read out at NPL using correction factors determined for 60 Co, traceable to NPL standards, and a published energy correction was applied to correct for the effect of the synchrotron beam quality. The ratio of the doses determined by alanine at NPL and those determined at the synchrotron was 0.975 (standard uncertainty 0.042) when alanine energy correction factors published by Waldeland et al. (Waldeland E, Hole E O, Sagstuen E and Malinen E, Med. Phys. 2010, 37, 3569) were used, and 0.996 (standard uncertainty 0.031) when factors by Anton et al. (Anton M, Büermann L., Phys Med Biol. 2015 60 6113-29) were used. The results provide additional verification of the IMBL dosimetry.

  2. High abundance of Serine/Threonine-rich regions predicted to be hyper-O-glycosylated in the secretory proteins coded by eight fungal genomes

    Directory of Open Access Journals (Sweden)

    González Mario

    2012-09-01

    Full Text Available Abstract Background O-glycosylation of secretory proteins has been found to be an important factor in fungal biology and virulence. It consists in the addition of short glycosidic chains to Ser or Thr residues in the protein backbone via O-glycosidic bonds. Secretory proteins in fungi frequently display Ser/Thr rich regions that could be sites of extensive O-glycosylation. We have analyzed in silico the complete sets of putatively secretory proteins coded by eight fungal genomes (Botrytis cinerea, Magnaporthe grisea, Sclerotinia sclerotiorum, Ustilago maydis, Aspergillus nidulans, Neurospora crassa, Trichoderma reesei, and Saccharomyces cerevisiae in search of Ser/Thr-rich regions as well as regions predicted to be highly O-glycosylated by NetOGlyc (http://www.cbs.dtu.dk. Results By comparison with experimental data, NetOGlyc was found to overestimate the number of O-glycosylation sites in fungi by a factor of 1.5, but to be quite reliable in the prediction of highly O-glycosylated regions. About half of secretory proteins have at least one Ser/Thr-rich region, with a Ser/Thr content of at least 40% over an average length of 40 amino acids. Most secretory proteins in filamentous fungi were predicted to be O-glycosylated, sometimes in dozens or even hundreds of sites. Residues predicted to be O-glycosylated have a tendency to be grouped together forming hyper-O-glycosylated regions of varying length. Conclusions About one fourth of secretory fungal proteins were predicted to have at least one hyper-O-glycosylated region, which consists of 45 amino acids on average and displays at least one O-glycosylated Ser or Thr every four residues. These putative highly O-glycosylated regions can be found anywhere along the proteins but have a slight tendency to be at either one of the two ends.

  3. Dose Response of Alanine Detectors Irradiated with Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo

    2011-01-01

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type, when irradiated with ion beams. The purpose of this study is to investigate the response behaviour of the alanine detector in clinical carbon ion beams and compare the results with model predictions......-dose curves deviate from predictions in the peak region, most pronounced at the distal edge of the peak. Conclusions: The used model and its implementation show a good overall agreement for quasi mono energetic measurements. Deviations in depth-dose measurements are mainly attributed to uncertainties...

  4. Further biochemical characterization of Mycobacterium leprae laminin-binding proteins

    Directory of Open Access Journals (Sweden)

    M.A.M. Marques

    2001-04-01

    Full Text Available It has been demonstrated that the alpha2 chain of laminin-2 present on the surface of Schwann cells is involved in the process of attachment of Mycobacterium leprae to these cells. Searching for M. leprae laminin-binding molecules, in a previous study we isolated and characterized the cationic proteins histone-like protein (Hlp and ribosomal proteins S4 and S5 as potential adhesins involved in M. leprae-Schwann cell interaction. Hlp was shown to bind alpha2-laminins and to greatly enhance the attachment of mycobacteria to ST88-14 Schwann cells. In the present study, we investigated the laminin-binding capacity of the ribosomal proteins S4 and S5. The genes coding for these proteins were PCR amplified and their recombinant products were shown to bind alpha2-laminins in overlay assays. However, when tested in ELISA-based assays and in adhesion assays with ST88-14 cells, in contrast to Hlp, S4 and S5 failed to bind laminin and act as adhesins. The laminin-binding property and adhesin capacity of two basic host-derived proteins were also tested, and only histones, but not cytochrome c, were able to increase bacterial attachment to ST88-14 cells. Our data suggest that the alanine/lysine-rich sequences shared by Hlp and eukaryotic H1 histones might be involved in the binding of these cationic proteins to laminin.

  5. Green reduction of graphene oxide using alanine.

    Science.gov (United States)

    Wang, Jiabin; Salihi, Elif Caliskan; Šiller, Lidija

    2017-03-01

    There remains a real need for the easy, eco-friendly and scalable preparation method of graphene due to various potential applications. Chemical reduction is the most versatile method for the large scale production of graphene. Here we report the operating conditions for a one-step, economical and green synthesis method for the reduction of graphene oxide using a biomolecule (alanine). Graphene oxide was produced by the oxidation and exfoliation of natural graphite flake with strong oxidants using Hummers method (Hummers and Offeman, 1958), but the method was revised in our laboratory to set up a safe and environmentally friendly route. The reduction of graphene oxide was investigated using alanine at various operating conditions in order to set up optimum conditions (treatment time, temperature and concentration of the reagent). Samples have been characterized by using UV-Visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, Raman spectroscopy and X-ray diffraction analysis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Alanine-EPR dosimetry system. Why we like it?

    International Nuclear Information System (INIS)

    Stuglik, Z.

    2007-01-01

    To develop a new high-dose dosimeter we should: (1) to find material with radiation effect monotonically (if possible linearly) dependent on an absorbed dose; (2) to investigate its dosimetric characteristics (sensitivity, dose range, repeatability, accuracy, post-effects); (3) to evaluate economical parameters of new method (cost and availability of dosimetric material, cost of analytical instrument and its services); (4) to evaluate operational features of new dosimeter (sensitivity for environmental conditions, time from irradiation to the read-out); (5) to perform a calibration curve, i.e. functional dependence between radiation effect (dosimetric signal) and absorbed dose. On the base of this very stable stable ammonium radical (SAR) generated in crystalline α-alanine was established in the INCT as an alanine-EPR dosimetry system. Presented lecture describes the main features of this dosimeter

  7. Structures of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels: implications for movement of the C-terminal cysteine-rich domain

    International Nuclear Information System (INIS)

    Suzuki, Nobuhiro; Yamazaki, Yasuo; Brown, R. Lane; Fujimoto, Zui; Morita, Takashi; Mizuno, Hiroshi

    2008-01-01

    The structures of pseudechetoxin and pseudecin suggest that both proteins bind to cyclic nucleotide-gated ion channels in a manner in which the concave surface occludes the pore entrance. Cyclic nucleotide-gated (CNG) ion channels play pivotal roles in sensory transduction by retinal photoreceptors and olfactory neurons. The elapid snake toxins pseudechetoxin (PsTx) and pseudecin (Pdc) are the only known protein blockers of CNG channels. These toxins belong to a cysteine-rich secretory protein (CRISP) family containing an N-terminal pathogenesis-related proteins of group 1 (PR-1) domain and a C-terminal cysteine-rich domain (CRD). PsTx and Pdc are highly homologous proteins, but their blocking affinities on CNG channels are different: PsTx blocks both the olfactory and retinal channels with ∼15–30-fold higher affinity than Pdc. To gain further insights into their structure and function, the crystal structures of PsTx, Pdc and Zn 2+ -bound Pdc were determined. The structures revealed that most of the amino-acid-residue differences between PsTx and Pdc are located around the concave surface formed between the PR-1 domain and the CRD, suggesting that the concave surface is functionally important for CNG-channel binding and inhibition. A structural comparison in the presence and absence of Zn 2+ ion demonstrated that the concave surface can open and close owing to movement of the CRD upon Zn 2+ binding. The data suggest that PsTx and Pdc occlude the pore entrance and that the dynamic motion of the concave surface facilitates interaction with the CNG channels

  8. Structures of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels: implications for movement of the C-terminal cysteine-rich domain

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Nobuhiro [Department of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572 (Japan); Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602 (Japan); Yamazaki, Yasuo [Department of Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588 (Japan); Brown, R. Lane [Neurological Science Institute, Oregon Health and Science University, Beaverton, Oregon 97006 (United States); Fujimoto, Zui [Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602 (Japan); Morita, Takashi, E-mail: tmorita@my-pharm.ac.jp [Department of Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588 (Japan); Mizuno, Hiroshi, E-mail: tmorita@my-pharm.ac.jp [Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602 (Japan); VALWAY Technology Center, NEC Soft Ltd, Koto-ku, Tokyo 136-8627 (Japan); Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Central 6, Tsukuba, Ibaraki 305-8566 (Japan); Department of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572 (Japan)

    2008-10-01

    The structures of pseudechetoxin and pseudecin suggest that both proteins bind to cyclic nucleotide-gated ion channels in a manner in which the concave surface occludes the pore entrance. Cyclic nucleotide-gated (CNG) ion channels play pivotal roles in sensory transduction by retinal photoreceptors and olfactory neurons. The elapid snake toxins pseudechetoxin (PsTx) and pseudecin (Pdc) are the only known protein blockers of CNG channels. These toxins belong to a cysteine-rich secretory protein (CRISP) family containing an N-terminal pathogenesis-related proteins of group 1 (PR-1) domain and a C-terminal cysteine-rich domain (CRD). PsTx and Pdc are highly homologous proteins, but their blocking affinities on CNG channels are different: PsTx blocks both the olfactory and retinal channels with ∼15–30-fold higher affinity than Pdc. To gain further insights into their structure and function, the crystal structures of PsTx, Pdc and Zn{sup 2+}-bound Pdc were determined. The structures revealed that most of the amino-acid-residue differences between PsTx and Pdc are located around the concave surface formed between the PR-1 domain and the CRD, suggesting that the concave surface is functionally important for CNG-channel binding and inhibition. A structural comparison in the presence and absence of Zn{sup 2+} ion demonstrated that the concave surface can open and close owing to movement of the CRD upon Zn{sup 2+} binding. The data suggest that PsTx and Pdc occlude the pore entrance and that the dynamic motion of the concave surface facilitates interaction with the CNG channels.

  9. l-glutamine and l-alanine supplementation increase glutamine-glutathione axis and muscle HSP-27 in rats trained using a progressive high-intensity resistance exercise.

    Science.gov (United States)

    Leite, Jaqueline Santos Moreira; Raizel, Raquel; Hypólito, Thaís Menezes; Rosa, Thiago Dos Santos; Cruzat, Vinicius Fernandes; Tirapegui, Julio

    2016-08-01

    In this study we investigated the chronic effects of oral l-glutamine and l-alanine supplementation, either in their free or dipeptide form, on glutamine-glutathione (GLN-GSH) axis and cytoprotection mediated by HSP-27 in rats submitted to resistance exercise (RE). Forty Wistar rats were distributed into 5 groups: sedentary; trained (CTRL); and trained supplemented with l-alanyl-l-glutamine, l-glutamine and l-alanine in their free form (GLN+ALA), or free l-alanine (ALA). All trained animals were submitted to a 6-week ladder-climbing protocol. Supplementations were offered in a 4% drinking water solution for 21 days prior to euthanasia. Plasma glutamine, creatine kinase (CK), myoglobin (MYO), and erythrocyte concentration of reduced GSH and glutathione disulfide (GSSG) were measured. In tibialis anterior skeletal muscle, GLN-GSH axis, thiobarbituric acid reactive substances (TBARS), and the expression of heat shock factor 1 (HSF-1), 27-kDa heat shock protein (HSP-27), and glutamine synthetase were determined. In CRTL animals, high-intensity RE reduced muscle glutamine levels and increased GSSG/GSH rate and TBARS, as well as augmented plasma CK and MYO levels. Conversely, l-glutamine-supplemented animals showed an increase in plasma and muscle levels of glutamine, with a reduction in GSSG/GSH rate, TBARS, and CK. Free l-alanine administration increased plasma glutamine concentration and lowered muscle TBARS. HSF-1 and HSP-27 were high in all supplemented groups when compared with CTRL (p alanine, in both a free or dipeptide form, improve the GLN-GSH axis and promote cytoprotective effects in rats submitted to high-intensity RE training.

  10. A method to improve application technique in Alanine/ESR dosimetry

    International Nuclear Information System (INIS)

    Choi, Hoon; Ha, Ju Hee; Choi, Won; Lim, Young Khi

    2008-01-01

    Full text: For long-term radiation monitoring to assess the cable aging in harsh condition of nuclear power plant, ESR dosimetry method using alanine dosimeters was already recommended in many technical document and paper. Several ESR dosimetry systems were already produced and used widely, but the actual application of these systems for industrial dosimetry needs careful consideration of error sources in process of dose measurement. The alanine dosimeters were measured by E-scan alanine analyzer system or EMX ESR spectrometer. For the accurate measurement of the dosimeters, we have studied various source of errors. First, this paper discusses sources of inaccuracy related to data processing. To make a meaningful dose assessment, the dosimeter measurements need to be compared with measurements made using certified dosimeters of known dose. This is achieved by performing the routine calibration procedure which creates a calibration curve and corresponding fit coefficients from measurements made with a set of dosimeters with known certified dose. The calibration curves in ESR dosimetry are usually constructed by means of the least-squares technique in its simplest variant. The recommended alternative linearity several replicate measurements of Y at each used X value. Also, measurement is subject to error, so repeat measurements will not be identical. A technical description of a linear calibration is assumed that the dispersion of the measurements is the same for each standard. But in some cases, the standard deviation has to be specified separately for each value of concentration. In this case, it used the WLS (Weighted Least-Squared Regression) method instead of the OLS (Ordinary Least-Squared Regression) method. Second, the precision of the ESR spectrum was showed as a reproducibility test for the two ESR systems. The reproducibility test was performed at an absorbed dose of 1 k Gy, which is at least three orders of magnitude above the background reading of an

  11. Different β-alanine dimeric forms in trifluoromethanesulfonic acid salts. XRD and vibrational studies.

    Science.gov (United States)

    Wołoszyn, Łukasz; Ilczyszyn, Maria M

    2018-03-15

    Two new crystalline salts: β-alaninium trifluoromethanesulfonate (β-AlaOTf) and bis(β-alanine) trifluoromethanesulfonate (β-2AlaOTf) were obtained. The former one contains diprotonated β-alanine dimer, the latter one monoprotonated β-alanine dimer. Both compounds were studied by single crystal XRD, vibrational (IR and Raman) spectroscopy and calorimetric method. The quantum-mechanical calculations (DFT/B3LYP/6-311++G(2d,2p)) for the diprotonated dimer were carried out. The β-AlaOTf salt crystallizes in the P1¯ space group of triclinic system (Z=2), the β-2AlaOTf in the P2 1 /m space group of monoclinic system (Z=2). The vibrational data for the studied compounds are discussed in relation to their crystal structure, and provide insight into the character of hydrogen bonds and β-alanine protonation. The studied crystals do not exhibit phase transitions in the solid state. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Electron paramagnetic resonance radiation dosimetry: possible inorganic alternatives to the EPR/alanine dosimeter

    International Nuclear Information System (INIS)

    Keizer, P.N.; Morton, J.R.; Preston, K.F.

    1991-01-01

    The intensity of the EPR spectrum of γ-irradiated L-α-alanine has been accepted by the International Atomic Energy Agency as a secondary standard for high-dose (10-100 000 Gy) dosimetry. The alanine dosimeter is not without its disadvantages, however, and in this article alternative EPR dosimeters are explored. These include SO 3 - in irradiated K 2 CH 2 (SO 3 ) 2 and CO 2 - in irradiated sodium formate (NaHCO 2 ), both of which have some advantages over CH 3 CHCO 2 - in L-α-alanine. Using as a readout parameter the peak-to-peak excursion of the strongest line, these systems have a four-fold sensitivity advantage over alanine. The radicals SO 3 - and CO 2 - are, moreover, found in a wide variety of matrices, and it may be possible to find one in which they are even stronger. The need to discover a dosimeter material sensitive enough to function in the 'clinical' dose range (below 10 Gy) is emphasized. (author)

  13. Knockout of the alanine racemase gene in Lactobacillus plantarum results in septation defects and cell wall perforation

    NARCIS (Netherlands)

    Palumbo, E.; Favier, C.F.; Deghorain, M.; Cocconcelli, P.S.; Grangette, C.; Mercenier, A.M.E.; Vaughan, E.E.; Hols, P.

    2004-01-01

    A stable mutant of Lactobacillus plantarum deficient in alanine racemase (Alr) was constructed by two successive homologous recombination steps. When the mutant was supplemented with D-alanine, growth and viability were unaffected. Surprisingly, deprivation Of D-alanine during exponential growth did

  14. Preliminary assessment of LiF and alanine detectors for the dosimetry of proton therapy beams

    International Nuclear Information System (INIS)

    Fattibene, P.; Calicchia, A.; De Angelis, C.; Onori, S.; Egger, E.

    1996-01-01

    An experimental intercomparison between the proton response of LiF TLD-100 and alanine detectors is reported. The investigations were performed with LiF chips and alanine pellets in a 62 MeV proton beam at the Paul Scherrer Institut in Villigen (CH). Results were compared with reference dosimetry provided by Markus type parallel plate ionization chamber. The response of the detectors was studied, in a phantom, at different beam penetration depths in pristine and modulated beams. For both alanine and TL detectors, within the experimental uncertainty of the measurements, no significant energy dependence in the response was observed down to the Bragg peak region. The sensitivity of alanine and LiF detectors to protons was measured in the centre of modulated Bragg peak and no significant difference was found with respect to 60 Co. Contrary to LiF, alanine also offers a remarkable tissue equivalence which favours its choice for in-phantom dosimetry. (author)

  15. Muscle glycogen metabolism changes in rats fed early postnatal a fructose-rich diet after maternal protein malnutrition: effects of acute physical exercise at the maximal lactate steady-state intensity.

    Science.gov (United States)

    Cambri, Lucieli T; Ribeiro, Carla; Botezelli, José D; Ghezzi, Ana C; Mello, Maria Ar

    2014-01-01

    The objective was to evaluate the muscle glucose metabolism in rats fed a fructose-rich diet after fetal protein malnutrition, at rest and after acute physical exercise at maximal lactate steady-state intensity. The male offspring born of mothers fed on a balanced or low-protein diet were split in four groups until 60 days: Balanced (B): balanced diet during the whole period; Balanced/Fructose (BF): balanced diet in utero and fructose-rich diet after birth; Low protein/Balanced (LB): low-protein diet in utero and balanced diet after birth; Low protein/Fructose (LF): low protein diet in utero and fructose-rich diet after birth. Acute physical exercise reduced the muscle glycogen concentrations in all groups, although the LF group showed higher concentrations at rest. There was no difference among the groups in the glucose uptake and oxidation rates in the isolated soleus muscle neither at rest nor after acute exercise. However, glycogen synthesis was higher in the LF muscle than in the others at rest. Acute physical exercise increased glycogen synthesis in all groups, and the LF group showed the highest values. The fructose-rich diet administered in rats after fetal protein malnutrition alters muscle glycogen concentrations and glycogen synthesis in the rest and after acute exercise at maximal lactate steady-state intensity.

  16. Cytophilic antibodies to Plasmodium falciparum glutamate rich protein are associated with malaria protection in an area of holoendemic transmission

    DEFF Research Database (Denmark)

    Lusingu, John P A; Vestergaard, Lasse S; Alifrangis, Michael

    2005-01-01

    BACKGROUND: Several studies conducted in areas of medium or low malaria transmission intensity have found associations between malaria immunity and plasma antibody levels to glutamate rich protein (GLURP). This study was conducted to analyse if a similar relationship could be documented in an area...... of intense malaria transmission. METHODS: A six month longitudinal study was conducted in an area of holoendemic malaria transmission in north-eastern Tanzania, where the incidence of febrile malaria decreased sharply by the age of three years, and anaemia constituted a significant part of the malaria...... disease burden. Plasma antibodies to glutamate rich protein (GLURP) were analysed and related with protection against malaria morbidity in models correcting for the effect of age. RESULTS: The risk of febrile malaria episodes was reduced significantly in children with measurable anti-GLURP IgG1 antibodies...

  17. Emerging pharmaceutical therapies for COPD

    Directory of Open Access Journals (Sweden)

    Lakshmi SP

    2017-07-01

    Full Text Available Sowmya P Lakshmi,1,2 Aravind T Reddy,1,2 Raju C Reddy1,2 1Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, 2Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA Abstract: COPD, for which cigarette smoking is the major risk factor, remains a worldwide burden. Current therapies provide only limited short-term benefit and fail to halt progression. A variety of potential therapeutic targets are currently being investigated, including COPD-related proinflammatory mediators and signaling pathways. Other investigational compounds target specific aspects or complications of COPD such as mucus hypersecretion and pulmonary hypertension. Although many candidate therapies have shown no significant effects, other emerging therapies have improved lung function, pulmonary hypertension, glucocorticoid sensitivity, and/or the frequency of exacerbations. Among these are compounds that inhibit the CXCR2 receptor, mitogen-activated protein kinase/Src kinase, myristoylated alanine-rich C kinase substrate, selectins, and the endothelin receptor. Activation of certain transcription factors may also be relevant, as a large retrospective cohort study of COPD patients with diabetes found that the peroxisome proliferator-activated receptor γ (PPARγ agonists rosiglitazone and pioglitazone were associated with reduced COPD exacerbation rate. Notably, several therapies have shown efficacy only in identifiable subgroups of COPD patients, suggesting that subgroup identification may become more important in future treatment strategies. This review summarizes the status of emerging therapeutic pharmaceuticals for COPD and highlights those that appear most promising. Keywords: pulmonary, PPAR, phosphodiesterase, emphysema, cigarette, mucus 

  18. Sorption and Microbial Uptake of Alanine, Glucose and Acetate in Soil

    Science.gov (United States)

    Fischer, H.; Ingwersen, J.; Kuzyakov, Y.

    2009-04-01

    Low molecular weight organic substances (LMWOS), e. g. amino acids, sugars, and carboxylic acids, are C compounds that are most rapidly turned-over in the C cycle of soil. Despite of their importance it is still unknown how sorption to the soil matrix affects their turnover in soil solution. The goals of this study were (1) to describe the dynamics of the fluxes of LMWOS (10 µmol l-1) in various pools (dissolved, adsorbed, decomposed to CO2, incorporated into microbial biomass) and (2) to assess the LMWOS distribution in these pools in dependence of very wide range of concentration (0.01 to 1000 µmol l-1). Representatives of each LMWOS group (glucose for sugars, alanine for amino acids, Na-acetate for carboxylic acids) uniformly labeled with 14C were added to sterilized or non-sterilized soil and analyzed in dif-ferent compartments between 1 min and 5.6 hours after addition. LMWOS were almost completely taken up by microorganisms within the first 30 min. Microbial uptake was much faster than the physicochemical sorption (estimated in sterilized soil), which needed to reach quasi-equilibrium 60 min for alanine and about 400 min for glucose. Only sorption of acetate was instantaneous (>1 min). While for acetate the maximum sorption capacity was reached at 100 µmol l-1 no such maximum was found for glucose and alanine in the studied concentra-tion range. At the concentration of 100 µmol l-1, microbial decomposition after 4.5 h hours was higher for alanine (76.7±1.1%) than acetate (55.2±0.9%) and glucose (28.5±1.5%). On the contrary, incorporation into microbial biomass was higher for glucose (59.8±1.2%) than for acetate (23.4±5.9%) and alanine (5.2±2.8%). Within 10 to 500 µmol l-1 the pathways of the three LMWOS transformation changed: at 500 µmol l-1 alanine and acetate were less mineralized and more incorporated into microbial biomass than at 10 µmol l-1, while glucose incorporation decreased. Consequently, the concentrations of alanine, glucose, and

  19. Dosimetric calibration of humidity chamber inside the 60Co-PANBIT irradiator using alanine ESR dosimeter

    International Nuclear Information System (INIS)

    Murali, S.; Venkataramani, R.; Pushparaja; Natarajan, V.; Sastry, M.D.; Bora, J.S.; Venkatacharyulu, K.

    1998-01-01

    In the present work the suitability of the electron spin resonance (ESR) technique, using DL - α - alanine sample is examined. It is well documented that radiation induced free radicals in alanine give strong ESR spectrum which can be used for dosimetry purposes. The aspects that are relevant to the present work are: (I) stability of the radicals in temperature and humidity conditions in which the experiments were carried out; (II) linearity at high doses; and (III) establishing the utility of alanine ESR dosimeter by cross checking the dose values with more established dosimeters. The details of these investigations are presented and it is shown that alanine ESR dosimeter will meet all the required conditions satisfactorily

  20. Protein-Rich Fraction of Cnidoscolus urens (L. Arthur Leaves: Enzymatic Characterization and Procoagulant and Fibrinogenolytic Activities

    Directory of Open Access Journals (Sweden)

    Yamara A. S. de Menezes

    2014-03-01

    Full Text Available Proteolytic enzymes are important macromolecules in the regulation of biochemical processes in living organisms. Additionally, these versatile biomolecules have numerous applications in the industrial segment. In this study we have characterized a protein-rich fraction of Cnidoscolus urens (L. Arthur leaves, rich in proteolytic enzymes, and evaluated its effects on the coagulation cascade. Three protein-rich fractions were obtained from the crude extract of C. urens leaves by precipitation with acetone. Fraction F1.0 showed higher proteolytic activity upon azocasein, and thus, was chosen for subsequent tests. The proteolytic activity of F1.0 on fibrinogen was dose-dependent and time-dependent. The extract demonstrated procoagulant activity on citrated plasma and reduced the APTT, not exerting effects on PT. Despite the fibrin(ogenolytic activity, F1.0 showed no defibrinogenating activity in vivo. The fraction F1.0 did not express hemorrhagic nor hemolytic activities. The proteolytic activity was inhibited by E-64, EDTA and in the presence of metal ions, and increased when pretreated with reducing agents, suggesting that the observed activity was mostly due to cysteine proteases. Several bands with proteolytic activity were detected by zymography with gelatin, albumin and fibrinogen. The optimal enzymatic activity was observed in temperature of 60 °C and pH 5.0, demonstrating the presence of acidic proteases. In conclusion, these results could provide basis for the pharmacological application of C. urens proteases as a new source of bioactive molecules to treat bleeding and thrombotic disorders.

  1. Diffusion of Integral Membrane Proteins in Protein-Rich Membranes

    DEFF Research Database (Denmark)

    Javanainen, Matti; Martinez-Seara, Hector; Metzler, Ralf

    2017-01-01

    of being protein-poor, native cell membranes are extremely crowded with proteins. On the basis of extensive molecular simulations, we here demonstrate that protein crowding of the membrane at physiological levels leads to deviations from the SD relation and to the emergence of a stronger Stokes......-like dependence D ∝ 1/R. We propose that this 1/R law mainly arises due to geometrical factors: smaller proteins are able to avoid confinement effects much better than their larger counterparts. The results highlight that the lateral dynamics in the crowded setting found in native membranes is radically different......The lateral diffusion of embedded proteins along lipid membranes in protein-poor conditions has been successfully described in terms of the Saffman-Delbrück (SD) model, which predicts that the protein diffusion coefficient D is weakly dependent on its radius R as D ∝ ln(1/R). However, instead...

  2. Alanine dosimetry using a spectrophotometric ferric-xylenol orange complex readout

    International Nuclear Information System (INIS)

    Laere, K. van; Buysse, J.; Berkvens, P.

    1989-01-01

    The spectrophotometric dosimetric method using the indirect oxidation of ferrous ions after dissolution of irradiated DL-and L-alanine has been thoroughly investigated with respect to its composition, read-out procedure and dose-response. Optimal concentration of 0.10 N H 2 SO 4 , 0.2 mM xylenol orange and 0.2 mM Fe 2+ were found, giving an absorption maximum at 547 nm. Standardization of chemical processing procedures allows a reproducibility better than 0.5%. The useful dose range has been extended to 0.03-12 kGy by means of slightly different read-out procedure. The quantitative concept of ''indirect yield'', G id , was introduced for this procedure as a measure of the indirect oxidation capacity of the radicals. It was found to be G id,0 (Fe 3+ ) 7.1 ions/100 eV transferred into the alanine. The spectrophotometric readout combines the highly advantageous use of alanine as a dosemeter with the straightforwardness, accuracy and low costs of the chemical procedure. (author)

  3. A diet containing whey protein, glutamine, and TGFbeta modulates gut protein metabolism during chemotherapy-induced mucositis in rats.

    Science.gov (United States)

    Boukhettala, Nabile; Ibrahim, Ayman; Claeyssens, Sophie; Faure, Magali; Le Pessot, Florence; Vuichoud, Jacques; Lavoinne, Alain; Breuillé, Denis; Déchelotte, Pierre; Coëffier, Moïse

    2010-08-01

    Mucositis, a common side effect of chemotherapy, is characterized by compromised digestive function, barrier integrity and immune competence. Our aim was to evaluate the impact of a specifically designed diet Clinutren Protect (CP), which contains whey proteins, TGFbeta-rich casein, and free glutamine, on mucositis in rats. Mucositis was induced by three consecutive injections (day 0, day 1, day 2) of methotrexate (2.5 mg/kg). Rats had free access to CP or placebo diets from days -7 to 9. In the placebo diet, whey proteins and TGFbeta-rich casein were replaced by TGFbeta-free casein and glutamine by alanine. Intestinal parameters were assessed at day 3 and 9. Values, expressed as mean +/- SEM, were compared using two-way ANOVA. At day 3, villus height was markedly decreased in the placebo (296 +/- 11 microm) and CP groups (360 +/- 10 microm) compared with controls (464 +/- 27 microm), but more markedly in the placebo as compared to CP group. The intestinal damage score was also reduced in the CP compared with the placebo group. Glutathione content increased in the CP compared with the placebo group (2.2 +/- 0.2 vs. 1.7 +/- 0.2 micromol/g tissue). Gut protein metabolism was more affected in the placebo than in the CP group. The fractional synthesis rate was decreased in the placebo group (93.8 +/- 4.9%/day) compared with controls (121.5 +/- 12.1, P < 0.05), but not in the CP group (106.0 +/- 13.1). In addition, at day 9, rats exhibited improved body weight and food intake recovery in the CP compared to the placebo group. Clinutren Protect feeding reduces intestinal injury in the acute phase of methotrexate-induced mucositis in rats and improves recovery.

  4. Cellular and Physiological Effects of Dietary Supplementation with β-Hydroxy-β-Methylbutyrate (HMB and β-Alanine in Late Middle-Aged Mice.

    Directory of Open Access Journals (Sweden)

    Julian Vallejo

    Full Text Available There is growing evidence that severe decline of skeletal muscle mass and function with age may be mitigated by exercise and dietary supplementation with protein and amino acid ingredient technologies. The purposes of this study were to examine the effects of the leucine catabolite, beta-hydroxy-beta-methylbutyrate (HMB, in C2C12 myoblasts and myotubes, and to investigate the effects of dietary supplementation with HMB, the amino acid β-alanine and the combination thereof, on muscle contractility in a preclinical model of pre-sarcopenia. In C2C12 myotubes, HMB enhanced sarcoplasmic reticulum (SR calcium release beyond vehicle control in the presence of all SR agonists tested (KCl, P<0.01; caffeine, P = 0.03; ionomycin, P = 0.03. HMB also improved C2C12 myoblast viability (25 μM HMB, P = 0.03 and increased proliferation (25 μM HMB, P = 0.04; 125 μM HMB, P<0.01. Furthermore, an ex vivo muscle contractility study was performed on EDL and soleus muscle from 19 month old, male C57BL/6nTac mice. For 8 weeks, mice were fed control AIN-93M diet, diet with HMB, diet with β-alanine, or diet with HMB and β-alanine. In β-alanine fed mice, EDL muscle showed a 7% increase in maximum absolute force compared to the control diet (202 ± 3vs. 188± 5 mN, P = 0.02. At submaximal frequency of stimulation (20 Hz, EDL from mice fed HMB plus β-alanine showed an 11% increase in absolute force (88.6 ± 2.2 vs. 79.8 ± 2.4 mN, P = 0.025 and a 13% increase in specific force (12.2 ± 0.4 vs. 10.8 ± 0.4 N/cm2, P = 0.021. Also in EDL muscle, β-alanine increased the rate of force development at all frequencies tested (P<0.025, while HMB reduced the time to reach peak contractile force (TTP, with a significant effect at 80 Hz (P = 0.0156. In soleus muscle, all experimental diets were associated with a decrease in TTP, compared to control diet. Our findings highlight beneficial effects of HMB and β-alanine supplementation on skeletal muscle function in aging mice.

  5. [Establishing biological reference intervals of alanine transaminase for clinical laboratory stored database].

    Science.gov (United States)

    Guo, Wei; Song, Binbin; Shen, Junfei; Wu, Jiong; Zhang, Chunyan; Wang, Beili; Pan, Baishen

    2015-08-25

    To establish an indirect reference interval based on the test results of alanine aminotransferase stored in a laboratory information system. All alanine aminotransferase results were included for outpatients and physical examinations that were stored in the laboratory information system of Zhongshan Hospital during 2014. The original data were transformed using a Box-Cox transformation to obtain an approximate normal distribution. Outliers were identified and omitted using the Chauvenet and Tukey methods. The indirect reference intervals were obtained by simultaneously applying nonparametric and Hoffmann methods. The reference change value was selected to determine the statistical significance of the observed differences between the calculated and published reference intervals. The indirect reference intervals for alanine aminotransferase of all groups were 12 to 41 U/L (male, outpatient), 12 to 48 U/L (male, physical examination), 9 to 32 U/L (female, outpatient), and 8 to 35 U/L (female, physical examination), respectively. The absolute differences when compared with the direct results were all smaller than the reference change value of alanine aminotransferase. The Box-Cox transformation combined with the Hoffmann and Tukey methods is a simple and reliable technique that should be promoted and used by clinical laboratories.

  6. ESR investigation of L-α-alanine and sucrose radicals produced by heavy-ion irradiation

    International Nuclear Information System (INIS)

    Nakagawa, K.; Sato, Y.

    2005-01-01

    We investigated sucrose and L-α-alanine radicals produced by heavy (particle) ion irradiation with various LETs (linear energy transfer). The impact of the heavy ions on the samples produced stable free radicals, which were analyzed by ESR (electron spin resonance). Identical spectra were measured after one year. The obtained spectral patterns were the same as those for helium (He), carbon (C), and neon (Ne) ions irradiation. The absorbed dose dependences for the irradiated sucrose and alanine samples were examined. The ESR response has a linear relation with the absorbed dose. The ESR response at 60 Gy was slightly lower than a linear line for sucrose; however, the response showed good linearity for the alanine. In addition, the total spin concentration obtained by heavy-ion irradiation correlated logarithmically with the LET. Qualitative ESR analyse showed that the production of sucrose and alanine radicals depended on both different particle irradiation and the LET under the same dose. Thus, the present ESR results imply that sucrose together with L-α-alanine can be used to monitor LET as well as the number of ionizing particle for the production of stable free radicals. (author)

  7. Genetic polymorphisms in the glutamate-rich protein of Plasmodium falciparum field isolates from a malaria-endemic area of Brazil

    DEFF Research Database (Denmark)

    Pratt-Riccio, Lilian Rose; Perce-da-Silva, Daiana de Souza; Lima-Junior, Josué da Costa

    2013-01-01

    The genetic diversity displayed by Plasmodium falciparum, the most deadly Plasmodium species, is a significant obstacle for effective malaria vaccine development. In this study, we identified genetic polymorphisms in P. falciparum glutamate-rich protein (GLURP), which is currently being tested in...

  8. Contribution of the first K-homology domain of poly(C)-binding protein 1 to its affinity and specificity for C-rich oligonucleotides.

    Science.gov (United States)

    Yoga, Yano M K; Traore, Daouda A K; Sidiqi, Mahjooba; Szeto, Chris; Pendini, Nicole R; Barker, Andrew; Leedman, Peter J; Wilce, Jacqueline A; Wilce, Matthew C J

    2012-06-01

    Poly-C-binding proteins are triple KH (hnRNP K homology) domain proteins with specificity for single stranded C-rich RNA and DNA. They play diverse roles in the regulation of protein expression at both transcriptional and translational levels. Here, we analyse the contributions of individual αCP1 KH domains to binding C-rich oligonucleotides using biophysical and structural methods. Using surface plasmon resonance (SPR), we demonstrate that KH1 makes the most stable interactions with both RNA and DNA, KH3 binds with intermediate affinity and KH2 only interacts detectibly with DNA. The crystal structure of KH1 bound to a 5'-CCCTCCCT-3' DNA sequence shows a 2:1 protein:DNA stoichiometry and demonstrates a molecular arrangement of KH domains bound to immediately adjacent oligonucleotide target sites. SPR experiments, with a series of poly-C-sequences reveals that cytosine is preferred at all four positions in the oligonucleotide binding cleft and that a C-tetrad binds KH1 with 10 times higher affinity than a C-triplet. The basis for this high affinity interaction is finally detailed with the structure determination of a KH1.W.C54S mutant bound to 5'-ACCCCA-3' DNA sequence. Together, these data establish the lead role of KH1 in oligonucleotide binding by αCP1 and reveal the molecular basis of its specificity for a C-rich tetrad.

  9. 6-Shogaol-Rich Extract from Ginger Up-Regulates the Antioxidant Defense Systems in Cells and Mice

    Directory of Open Access Journals (Sweden)

    Mira Jun

    2012-07-01

    Full Text Available The rhizome of ginger (Zingiber officinale Roscoe is known to have several bioactive compounds including gingerols and shogaols which possess beneficial health properties such as anti-inflammatory and chemopreventive effects. Based on recent observations that 6-shogaol may have more potent bioactivity than 6-gingerol, we obtained a 6-shogaol-rich extract from ginger and examined its effects on the nuclear factor E2-related factor2 (Nrf2/antioxidant response element (ARE pathway in vitro and in vivo. 6-Shogaol-rich extract was produced by extracting ginger powder with 95% ethanol at 80 °C after drying at 80 °C (GEE8080. GEE8080 contained over 6-fold more 6-shogaol compared to the room temperature extract (GEE80RT. In HepG2 cells, GEE8080 displayed much stronger inductions of ARE-reporter gene activity and Nrf2 expression than GEE80RT. GEE8080 stimulated phosphorylations of mitogen-activated protein kinases (MAPKs such as ERK, JNK, and p38. Moreover, the GEE8080-induced expressions of Nrf2 and HO-1 were attenuated by treatments of SB202190 (a p38 specific inhibitor and LY294002 (an Akt specific inhibitor. In a mouse model, the GEE8080 decreased the diethylnitrosamine (DEN-mediated elevations of serum aspartate transaminase and alanine transaminase as well as the DEN-induced hepatic lipid peroxidation. Inductions of Nrf2 and HO-1 by GEE8080 were also confirmed in the mice. In addition, the administration of GEE8080 to the mice also restored the DEN-reduced activity and protein expression of hepatic antioxidant enzymes such as superoxide dismutase, glutathione peroxidase and catalase. In conclusion, GEE8080, a 6-shogaol-rich ginger extract, may enhance antioxidant defense mechanism through the induction of Nrf2 and HO-1 regulated by p38 MAPK and PI3k/Akt pathway in vitro and in vivo.

  10. Thermochemistry of the solution of β-alanine in (H2O + alcohol) mixtures at 298.15 K

    International Nuclear Information System (INIS)

    Smirnov, Valeriy I.; Badelin, Valentin G.

    2013-01-01

    Highlights: • Enthalpies of β-alanine dissolution have been measured in aqueous solution of MeOH, EtOH, 1-PrOH and 2-PrOH. • Measured data were reported as functions of composition of water + alcohol mixtures. • Enthalpy coefficients of pairwise interactions have been analyzed in terms of McMillan–Mayer theory. - Abstract: The enthalpies of the solution of β-alanine in H 2 O + (methanol, ethanol, 1-propanol and 2-propanol) mixtures with alcohol content up to 0.4 mol fractions, have been determined calorimetrically at T = 298.15 K. The standard enthalpies of the solution and transfer of β-alanine from water to aqueous alcohol have been calculated. The effect of structure properties of a mixed solvent on specified enthalpy characteristics of β-alanine is discussed. The enthalpy coefficients of pairwise interactions between β-alanine and alcohol molecules have been computed. It has been found that these coefficients become increasingly positive in methanol, ethanol, 1-propanol, and 2-propanol sequence. A comparative analysis of thermodynamic characteristics of dissolution of β-alanine and D,L-α-alanine in the mixtures studied has been made

  11. Plant Glycine-Rich Proteins in Stress Response: An Emerging, Still Prospective Story

    Directory of Open Access Journals (Sweden)

    Magdalena Czolpinska

    2018-03-01

    Full Text Available Seed plants are sessile organisms that have developed a plethora of strategies for sensing, avoiding, and responding to stress. Several proteins, including the glycine-rich protein (GRP superfamily, are involved in cellular stress responses and signaling. GRPs are characterized by high glycine content and the presence of conserved segments including glycine-containing structural motifs composed of repetitive amino acid residues. The general structure of this superfamily facilitates division of GRPs into five main subclasses. Although the participation of GRPs in plant stress response has been indicated in numerous model and non-model plant species, relatively little is known about the key physiological processes and molecular mechanisms in which those proteins are engaged. Class I, II, and IV members are known to be involved in hormone signaling, stress acclimation, and floral development, and are crucial for regulation of plant cells growth. GRPs of class IV [RNA-binding proteins (RBPs] are involved in alternative splicing or regulation of transcription and stomatal movement, seed, pollen, and stamen development; their accumulation is regulated by the circadian clock. Owing to the fact that the overexpression of GRPs can confer tolerance to stress (e.g., some are involved in cold acclimation and may improve growth at low temperatures, these proteins could play a promising role in agriculture through plant genetic engineering. Consequently, isolation, cloning, characterization, and functional validation of novel GRPs expressed in response to the diverse stress conditions are expected to be growing areas of research in the coming years. According to our knowledge, this is the first comprehensive review on participation of plant GRPs in the response to diverse stress stimuli.

  12. Comparison of the UDP-N-Acetylmuramate:l-Alanine Ligase Enzymes from Mycobacterium tuberculosis and Mycobacterium leprae

    OpenAIRE

    Mahapatra, Sebabrata; Crick, Dean C.; Brennan, Patrick J.

    2000-01-01

    In the peptidoglycan of Mycobacterium leprae, l-alanine of the side chain is replaced by glycine. When expressed in Escherichia coli, MurC (UDP-N-acetyl-muramate:l-alanine ligase) of M. leprae showed Km and Vmax for l-alanine and glycine similar to those of Mycobacterium tuberculosis MurC, suggesting that another explanation should be sought for the presence of glycine.

  13. Effect of the ionizing radiation on alanine solution for a dosimeter application

    International Nuclear Information System (INIS)

    Ketata, Ameni

    2011-01-01

    The electron spin resonance spectroscopy is well known as a reference and transfer dosimetry system for the evaluation of high doses in radiation processing. The high cost of an EPR/alanine dosimetry system is a serious handicap for large-scale routine application. In this study, the use of irradiated L-alanine dissolved in color indicator solutions (bromothymol blue and fuchsin) was investigated for dosimetry purposes. This solution has an absorbance varies linearly with the absorbed dose in the dose range of 0-25 kGy for the bromothymol blue, and 0-45 kGy for the fuchsin. The effects of the dye and the alanine concentration, the p H value as well as of the solvent have been studied. With respect to routine application, the stability of dosimeters was also investigated

  14. Molecular characterization of Trypanosoma cruzi SAP proteins with host-cell lysosome exocytosis-inducing activity required for parasite invasion.

    Science.gov (United States)

    Zanforlin, Tamiris; Bayer-Santos, Ethel; Cortez, Cristian; Almeida, Igor C; Yoshida, Nobuko; da Silveira, José Franco

    2013-01-01

    To invade target cells, Trypanosoma cruzi metacyclic forms engage distinct sets of surface and secreted molecules that interact with host components. Serine-, alanine-, and proline-rich proteins (SAP) comprise a multigene family constituted of molecules with a high serine, alanine and proline residue content. SAP proteins have a central domain (SAP-CD) responsible for interaction with and invasion of mammalian cells by metacyclic forms. Using a 513 bp sequence from SAP-CD in blastn analysis, we identified 39 full-length SAP genes in the genome of T. cruzi. Although most of these genes were mapped in the T. cruzi in silico chromosome TcChr41, several SAP sequences were spread out across the genome. The level of SAP transcripts was twice as high in metacyclic forms as in epimastigotes. Monoclonal (MAb-SAP) and polyclonal (anti-SAP) antibodies produced against the recombinant protein SAP-CD were used to investigate the expression and localization of SAP proteins. MAb-SAP reacted with a 55 kDa SAP protein released by epimastigotes and metacyclic forms and with distinct sets of SAP variants expressed in amastigotes and tissue culture-derived trypomastigotes (TCTs). Anti-SAP antibodies reacted with components located in the anterior region of epimastigotes and between the nucleus and the kinetoplast in metacyclic trypomastigotes. In contrast, anti-SAP recognized surface components of amastigotes and TCTs, suggesting that SAP proteins are directed to different cellular compartments. Ten SAP peptides were identified by mass spectrometry in vesicle and soluble-protein fractions obtained from parasite conditioned medium. Using overlapping sequences from SAP-CD, we identified a 54-aa peptide (SAP-CE) that was able to induce host-cell lysosome exocytosis and inhibit parasite internalization by 52%. This study provides novel information about the genomic organization, expression and cellular localization of SAP proteins and proposes a triggering role for extracellular SAP

  15. Accurate measurement of the optical activity of alanine crystals and the determination of their absolute chirality

    Science.gov (United States)

    Ishikawa, Kazuhiko; Terasawa, Yukana; Tanaka, Masahito; Asahi, Toru

    2017-05-01

    Wavelength dependence measurements of the chiroptical properties in alanine crystals have so far been unsuccessful using conventional spectroscopic techniques. We describe our attempts to measure the wavelength dependence of the optical activity in L- and D-alanine crystals along each crystallographic axis, and to determine the absolute chirality of alanine crystals by correlating the absolute structure to the optical activity using an x-ray diffractometer and a generalized high accuracy universal polarimeter. We have succeeded in accurately measuring the optical rotatory dispersion in the direction, which shows that the optical rotation of the D-alanine crystal is dextrorotatory and that of the L-alanine crystal is laevorotatory, thereby determining the absolute chirality. Furthermore, comparison with the optical activity in solution shows that the optical activity in alanine crystals is different not only in value, but also in the sign. These results have led us to conclude that the optical rotatory power in the crystalline state should not be simply the summation of molecular optical rotatory power values. We propose the necessity of a theory, which contains the contribution of molecular interactions within the crystal, in order to calculate the optical rotatory power of the crystalline state.

  16. Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy

    DEFF Research Database (Denmark)

    Ableitinger, Alexander; Vatnitsky, Stanislav; Herrmann, Rochus

    2013-01-01

    Background and purpose In the next few years the number of facilities providing ion beam therapy with scanning beams will increase. An auditing process based on an end-to-end test (including CT imaging, planning and dose delivery) could help new ion therapy centres to validate their entire logistic...... of the biological dose is out of scope of the current work. Materials and methods The audit procedure was based on a homogeneous phantom that mimics the dimension of a head (20 × 20 × 21 cm3). The phantom can be loaded either with an ionisation chamber or 20 alanine dosimeters plus 2 radiochromic EBT films. Dose...... fluence in the alanine detector. A pilot run was performed with protons and carbon ions at the Heidelberg Ion Therapy facility (HIT). Results The mean difference of the absolute physical dose measured with the alanine dosimeters compared with the expected dose from the treatment planning system was −2...

  17. Alanine and TLD coupled detectors for fast neutron dose measurements in neutron capture therapy (NCT)

    Energy Technology Data Exchange (ETDEWEB)

    Cecilia, A.; Baccaro, S.; Cemmi, A. [ENEA-FIS-ION, Casaccia RC, Via Anguillarese 301, 00060 Santa Maria di Galeria, Rome (Italy); Colli, V.; Gambarini, G. [Dept. of Physics of the Univ., INFN, Via Celoria 16, 20133 Milan (Italy); Rosi, G. [ENEA-FIS-ION, Casaccia RC, Via Anguillarese 301, 00060 Santa Maria di Galeria, Rome (Italy); Scolari, L. [Dept. of Physics of the Univ., INFN, Via Celoria 16, 20133 Milan (Italy)

    2004-07-01

    A method was investigated to measure gamma and fast neutron doses in phantoms exposed to an epithermal neutron beam designed for neutron capture therapy (NCT). The gamma dose component was measured by TLD-300 [CaF{sub 2}:Tm] and the fast neutron dose, mainly due to elastic scattering with hydrogen nuclei, was measured by alanine dosemeters [CH{sub 3}CH(NH{sub 2})COOH]. The gamma and fast neutron doses deposited in alanine dosemeters are very near to those released in tissue, because of the alanine tissue equivalence. Couples of TLD-300 and alanine dosemeters were irradiated in phantoms positioned in the epithermal column of the Tapiro reactor (ENEA-Casaccia RC). The dosemeter response depends on the linear energy transfer (LET) of radiation, hence the precision and reliability of the fast neutron dose values obtained with the proposed method have been investigated. Results showed that the combination of alanine and TLD detectors is a promising method to separate gamma dose and fast neutron dose in NCT. (authors)

  18. Thermal decomposition behavior of potassium and sodium jarosite synthesized in the presence of methylamine and alanine

    Energy Technology Data Exchange (ETDEWEB)

    J. Michelle Kotler; Nancy W. Hinman; C. Doc Richardson; Jill R. Scott

    2010-10-01

    Biomolecules, methylamine and alanine, found associated with natural jarosite samples peaked the interest of astrobiologists and planetary geologists. How the biomolecules are associated with jarosite remains unclear although the mechanism could be important for detecting biosignatures in the rock record on Earth and other planets. A series of thermal gravimetric experiments using synthetic K-jarosite and Na-jarosite were conducted to determine if thermal analysis could differentiate physical mixtures of alanine and methylamine with jarosite from samples where the methylamine or alanine was incorporated into the synthesis procedure. Physical mixtures and synthetic experiments with methylamine and alanine could be differentiated from one another and from the standards by thermal analysis for both the K-jarosite and Na-jarosite end-member suites. Changes included shifts in on-set temperatures, total temperature changes from on-set to final, and the presence of indicator peaks for methylamine and alanine in the physical mixture experiments.

  19. Mutagens from the cooking of food. II. Survey by Ames/Salmonella test of mutagen formation in the major protein-rich foods of the American diet

    Energy Technology Data Exchange (ETDEWEB)

    Bjeldanes, L.F. (Univ. of California, Berkeley); Morris, M.M.; Felton, J.S.; Healy, S.; Stuermer, D.; Berry, P.; Timourian, H.; Hatch, F.T.

    1982-01-01

    The formation of mutagens in the major cooked protein-rich foods in the US diet was studied in the Ames Salmonella typhimurium test. The nine protein-rich foods most commonly eaten in the USA--ground beef, beef steak, eggs, pork chops, fried chicken, pot-roasted beef, ham, roast beef and bacon--were examined for their mutagenicity towards S. typhimurium TA1538 after normal 'household' cooking (deep frying, griddle/pan frying, baking/roasting, broiling, stewing, braising or boiling at 100-475/sup 0/C). Well-done fried ground beef, beef steak, ham, pork chops and bacon showed significant mutagen formation. For chicken and beef steak high-temperature broiling produced the most mutagenicity, followed by baking/roasting and frying. Stewing, braising and deep frying produced little mutagen. Eggs andd egg products produced mutagens only after cooking at high temperatures (the yolk to a greater extent than the white). Commercially cooked hamburgers showed a wide range of mutagenic activity. We conclude that mutagen formation following cooking of protein-containing foods is a complex function of food type, cooking time and cooking temperature. It seems clear that all the major protein-rich foods if cooked to a well-done state on the griddle (eggs only at temperature above 225/sup 0/C) or by broiling will contain mutagens detectable by the Ames/Salmonella assay. This survey is a step towards determining whether any human health hazard results from cooking protein-rich foods. Further testing in both short- and long-term genotoxicity bioassays and carcinogenesis assays are needed before any human risk extrapolations can be made.

  20. Mutagens from the cooking of food. II. Survey by Ames/Salmonella test of mutagen formation in the major protein-rich foods of the American diet.

    Science.gov (United States)

    Bjeldanes, L F; Morris, M M; Felton, J S; Healy, S; Stuermer, D; Berry, P; Timourian, H; Hatch, F T

    1982-08-01

    The formation of mutagens in the major cooked protein-rich foods in the US diet was studied in the Ames Salmonella typhimurium test. The nine protein-rich foods most commonly eaten in the USA--ground beef, beef steak, eggs, pork chops, fried chicken, pot-roasted beef, ham, roast beef and bacon--were examined for their mutagenicity towards S. typhimurium TA1538 after normal 'household' cooking (deep frying, griddle/pan frying, baking/roasting, broiling, stewing, braising or boiling of 100-475 degrees C). Well-done fried ground beef, beef steak, ham pork chops and bacon showed significant mutagen formation. For chicken and beef steak high-temperature broiling produced the most mutagenicity, followed by baking/roasting and frying. Stewing, braising and deep frying produced little mutagen. Eggs and egg products produced mutagens only after cooking at high temperatures (the yolk to a greater extent than the white). Commercially cooked hamburgers showed a wide range of mutagenic activity. We conclude that mutagen formation following cooking of protein-containing foods is a complex function of food type, cooking time and cooking temperature. It seems clear that all the major protein-rich foods if cooked to a well-done state on the griddle (eggs only at temperatures above 225 degrees C) or by broiling will contain mutagens detectable by the Ames/Salmonella assay. This survey is a step towards determining whether any human health hazard results from cooking protein-rich foods. Further testing in both short- and long-term genotoxicity bioassays and carcinogenesis assays are needed before any human risk extrapolations can be made.

  1. Brain transcriptome-wide screen for HIV-1 Nef protein interaction partners reveals various membrane-associated proteins.

    Directory of Open Access Journals (Sweden)

    Ellen C Kammula

    Full Text Available HIV-1 Nef protein contributes essentially to the pathology of AIDS by a variety of protein-protein-interactions within the host cell. The versatile functionality of Nef is partially attributed to different conformational states and posttranslational modifications, such as myristoylation. Up to now, many interaction partners of Nef have been identified using classical yeast two-hybrid screens. Such screens rely on transcriptional activation of reporter genes in the nucleus to detect interactions. Thus, the identification of Nef interaction partners that are integral membrane proteins, membrane-associated proteins or other proteins that do not translocate into the nucleus is hampered. In the present study, a split-ubiquitin based yeast two-hybrid screen was used to identify novel membrane-localized interaction partners of Nef. More than 80% of the hereby identified interaction partners of Nef are transmembrane proteins. The identified hits are GPM6B, GPM6A, BAP31, TSPAN7, CYB5B, CD320/TCblR, VSIG4, PMEPA1, OCIAD1, ITGB1, CHN1, PH4, CLDN10, HSPA9, APR-3, PEBP1 and B3GNT, which are involved in diverse cellular processes like signaling, apoptosis, neurogenesis, cell adhesion and protein trafficking or quality control. For a subfraction of the hereby identified proteins we present data supporting their direct interaction with HIV-1 Nef. We discuss the results with respect to many phenotypes observed in HIV infected cells and patients. The identified Nef interaction partners may help to further elucidate the molecular basis of HIV-related diseases.

  2. Comparison of the UDP-N-Acetylmuramate:l-Alanine Ligase Enzymes from Mycobacterium tuberculosis and Mycobacterium leprae

    Science.gov (United States)

    Mahapatra, Sebabrata; Crick, Dean C.; Brennan, Patrick J.

    2000-01-01

    In the peptidoglycan of Mycobacterium leprae, l-alanine of the side chain is replaced by glycine. When expressed in Escherichia coli, MurC (UDP-N-acetyl-muramate:l-alanine ligase) of M. leprae showed Km and Vmax for l-alanine and glycine similar to those of Mycobacterium tuberculosis MurC, suggesting that another explanation should be sought for the presence of glycine. PMID:11073931

  3. The metabolism of histamine in the Drosophila optic lobe involves an ommatidial pathway: β-alanine recycles through the retina

    Science.gov (United States)

    Borycz, Janusz; Borycz, Jolanta A.; Edwards, Tara N.; Boulianne, Gabrielle L.; Meinertzhagen, Ian A.

    2012-01-01

    SUMMARY Flies recycle the photoreceptor neurotransmitter histamine by conjugating it to β-alanine to form β-alanyl-histamine (carcinine). The conjugation is regulated by Ebony, while Tan hydrolyses carcinine, releasing histamine and β-alanine. In Drosophila, β-alanine synthesis occurs either from uracil or from the decarboxylation of aspartate but detailed roles for the enzymes responsible remain unclear. Immunohistochemically detected β-alanine is present throughout the fly’s entire brain, and is enhanced in the retina especially in the pseudocone, pigment and photoreceptor cells of the ommatidia. HPLC determinations reveal 10.7 ng of β-alanine in the wild-type head, roughly five times more than histamine. When wild-type flies drink uracil their head β-alanine increases more than after drinking l-aspartic acid, indicating the effectiveness of the uracil pathway. Mutants of black, which lack aspartate decarboxylase, cannot synthesize β-alanine from l-aspartate but can still synthesize it efficiently from uracil. Our findings demonstrate a novel function for pigment cells, which not only screen ommatidia from stray light but also store and transport β-alanine and carcinine. This role is consistent with a β-alanine-dependent histamine recycling pathway occurring not only in the photoreceptor terminals in the lamina neuropile, where carcinine occurs in marginal glia, but vertically via a long pathway that involves the retina. The lamina’s marginal glia are also a hub involved in the storage and/or disposal of carcinine and β-alanine. PMID:22442379

  4. The colloidal state of tannins impacts the nature of their interaction with proteins: the case of salivary proline-rich protein/procyanidins binding.

    Science.gov (United States)

    Cala, Olivier; Dufourc, Erick J; Fouquet, Eric; Manigand, Claude; Laguerre, Michel; Pianet, Isabelle

    2012-12-18

    While the definition of tannins has been historically associated with its propensity to bind proteins in a nonspecific way, it is now admitted that specific interaction also occurs. The case of the astringency perception is a good example to illustrate this phenomenon: astringency is commonly described as a tactile sensation induced by the precipitation of a complex composed of proline-rich proteins present in the human saliva and tannins present in beverages such as tea or red wines. In the present work, the interactions between a human saliva protein segment and three different procyanidins (B1, B3, and C2) were investigated at the atomic level by NMR and molecular dynamics. The data provided evidence for (i) an increase in affinity compared to shortest human saliva peptides, which is accounted for by protein "wraping around" the tannin, (ii) a specificity in the interaction below tannin critical micelle concentration (CMC) of ca. 10 mM, with an affinity scale such that C2 > B1 > B3, and (iii) a nonspecific binding above tannin CMC that conducts irremediably to the precipitation of the tannins/protein complex. Such physicochemical findings describe in accurate terms saliva protein-tannin interactions and provide support for a more subtle description by oenologists of wine astringency perception in the mouth.

  5. Purification, characterization and gene cloning of thermostable O-acetyl-L-serine sulfhydrylase forming β-cyano-L-alanine

    International Nuclear Information System (INIS)

    Omura, Hironori; Yoshida, Toyokazu; Nagasawa, Toru; Kobayashi, Michihiko; Shimizu, Sakayu

    2003-01-01

    A thermophilic and cyanide ion-tolerant bacterium, Bacillus stearothermophilus CN3 isolated from a hot spring in Japan, was found to produce thermostable β-cyano-L-alanine synthase. The enzyme catalyzes the synthesis of β-cyano-L-alanine from O-acetyl-L-serine and cyanide ions. The purified enzyme has a molecular mass of approximately 70 kDa and consists of two identical sub-units. It was stable in the pH range of 6.0 to 10.0 and up to 70degC. The enzyme also catalyzes the synthesis of various β-substituted-L-alanine derivatives from O-acetyl-L-serine and nucleophilic reagents. The gene encoding the β-cyano-L-alanine synthase was isolated from B. stearothermophilus CN3. Sequence homology analysis revealed that the β-cyano-L-alanine synthase of the bacterium is O-acetyl-L-serine sulfhydrylase. A recombinant plasmid, constructed by ligation of the cloned gene and an expression vector, pKK223-3, was introduced into E. coli JM109. The transformed E. coli cells overexpressed β-cyano-L-alanine synthase. Heat stable β-cyano-L-alanine synthase can be applied to the synthesis of [4- 11 C]L-2,4-diaminobutyric acid as a tracer for positron emission tomography. (author)

  6. Purification, characterization and gene cloning of thermostable O-acetyl-L-serine sulfhydrylase forming {beta}-cyano-L-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Omura, Hironori; Yoshida, Toyokazu; Nagasawa, Toru [Gifu Univ. (Japan). Dept. of Biomolecular Science; Kuroda, Masako [Ikeda Food Research Co., Ltd., Fukuyama, Hiroshima (Japan); Kobayashi, Michihiko; Shimizu, Sakayu [Kyoto Univ. (Japan). Agricultural Sciences

    2003-10-01

    A thermophilic and cyanide ion-tolerant bacterium, Bacillus stearothermophilus CN3 isolated from a hot spring in Japan, was found to produce thermostable {beta}-cyano-L-alanine synthase. The enzyme catalyzes the synthesis of {beta}-cyano-L-alanine from O-acetyl-L-serine and cyanide ions. The purified enzyme has a molecular mass of approximately 70 kDa and consists of two identical sub-units. It was stable in the pH range of 6.0 to 10.0 and up to 70degC. The enzyme also catalyzes the synthesis of various {beta}-substituted-L-alanine derivatives from O-acetyl-L-serine and nucleophilic reagents. The gene encoding the {beta}-cyano-L-alanine synthase was isolated from B. stearothermophilus CN3. Sequence homology analysis revealed that the {beta}-cyano-L-alanine synthase of the bacterium is O-acetyl-L-serine sulfhydrylase. A recombinant plasmid, constructed by ligation of the cloned gene and an expression vector, pKK223-3, was introduced into E. coli JM109. The transformed E. coli cells overexpressed {beta}-cyano-L-alanine synthase. Heat stable {beta}-cyano-L-alanine synthase can be applied to the synthesis of [4-{sup 11}C]L-2,4-diaminobutyric acid as a tracer for positron emission tomography. (author)

  7. A spectrophotometric readout for γ irradiated alanine solution - a dosimetric application

    International Nuclear Information System (INIS)

    Marzouk, Asma

    2007-01-01

    Alanine is a stable dosimeter of reference in its solid state. Its installation in solution as being a dosimetric system of routine remains very useful. A follow-up of the behaviour of the irradiated alanine solution with 15 kGy according to the concentration is carried out by UV-Visible spectrophotometry. The results obtained prove the difficulty in analytical studies of the radiolysis of aqueous solutions by optical absorption due to the ambiguous broad spectra of the species and the reaction products. (Author). 47 refs

  8. Selection of glutamate-rich protein long synthetic peptides for vaccine development: antigenicity and relationship with clinical protection and immunogenicity

    DEFF Research Database (Denmark)

    Theisen, M; Dodoo, D; Toure-Balde, A

    2001-01-01

    Antibodies against three long synthetic peptides (LSPs) derived from the glutamate-rich protein (GLURP) of Plasmodium falciparum were analyzed in three cohorts from Liberia, Ghana, and Senegal. Two overlapping LSPs, LR67 and LR68, are derived from the relatively conserved N-terminal nonrepeat...

  9. Perturbation correction for alanine dosimeters in different phantom materials in high-energy photon beams.

    Science.gov (United States)

    von Voigts-Rhetz, P; Anton, M; Vorwerk, H; Zink, K

    2016-02-07

    In modern radiotherapy the verification of complex treatments plans is often performed in inhomogeneous or even anthropomorphic phantoms. For dose verification small detectors are necessary and therefore alanine detectors are most suitable. Though the response of alanine for a wide range of clinical photon energies in water is well know, the knowledge about the influence of the surrounding phantom material on the response of alanine is sparse. Therefore we investigated the influence of twenty different surrounding/phantom materials for alanine dosimeters in clinical photon fields via Monte Carlo simulations. The relative electron density of the used materials was in the range [Formula: see text] up to 1.69, covering almost all materials appearing in inhomogeneous or anthropomorphic phantoms used in radiotherapy. The investigations were performed for three different clinical photon spectra ranging from 6 to 25 MV-X and Co-60 and as a result a perturbation correction [Formula: see text] depending on the environmental material was established. The Monte Carlo simulation show, that there is only a small dependence of [Formula: see text] on the phantom material and the photon energy, which is below  ±0.6%. The results confirm the good suitability of alanine detectors for in-vivo dosimetry.

  10. Differential dynamic microscopy of weakly scattering and polydisperse protein-rich clusters

    Science.gov (United States)

    Safari, Mohammad S.; Vorontsova, Maria A.; Poling-Skutvik, Ryan; Vekilov, Peter G.; Conrad, Jacinta C.

    2015-10-01

    Nanoparticle dynamics impact a wide range of biological transport processes and applications in nanomedicine and natural resource engineering. Differential dynamic microscopy (DDM) was recently developed to quantify the dynamics of submicron particles in solutions from fluctuations of intensity in optical micrographs. Differential dynamic microscopy is well established for monodisperse particle populations, but has not been applied to solutions containing weakly scattering polydisperse biological nanoparticles. Here we use bright-field DDM (BDDM) to measure the dynamics of protein-rich liquid clusters, whose size ranges from tens to hundreds of nanometers and whose total volume fraction is less than 10-5. With solutions of two proteins, hemoglobin A and lysozyme, we evaluate the cluster diffusion coefficients from the dependence of the diffusive relaxation time on the scattering wave vector. We establish that for weakly scattering populations, an optimal thickness of the sample chamber exists at which the BDDM signal is maximized at the smallest sample volume. The average cluster diffusion coefficient measured using BDDM is consistently lower than that obtained from dynamic light scattering at a scattering angle of 90∘. This apparent discrepancy is due to Mie scattering from the polydisperse cluster population, in which larger clusters preferentially scatter more light in the forward direction.

  11. Alanine racemase is essential for the growth and interspecies competitiveness of Streptococcus mutans.

    Science.gov (United States)

    Wei, Yuan; Qiu, Wei; Zhou, Xue-Dong; Zheng, Xin; Zhang, Ke-Ke; Wang, Shi-Da; Li, Yu-Qing; Cheng, Lei; Li, Ji-Yao; Xu, Xin; Li, Ming-Yun

    2016-12-16

    D-alanine (D-Ala) is an essential amino acid that has a key role in bacterial cell wall synthesis. Alanine racemase (Alr) is a unique enzyme that interconverts L-alanine and D-alanine in most bacteria, making this enzyme a potential target for antimicrobial drug development. Streptococcus mutans is a major causative factor of dental caries. The factors involved in the survival, virulence and interspecies interactions of S. mutans could be exploited as potential targets for caries control. The current study aimed to investigate the physiological role of Alr in S. mutans. We constructed alr mutant strain of S. mutans and evaluated its phenotypic traits and interspecies competitiveness compared with the wild-type strain. We found that alr deletion was lethal to S. mutans. A minimal supplement of D-Ala (150 μg·mL -1 ) was required for the optimal growth of the alr mutant. The depletion of D-alanine in the growth medium resulted in cell wall perforation and cell lysis in the alr mutant strain. We also determined the compromised competitiveness of the alr mutant strain relative to the wild-type S. mutans against other oral streptococci (S. sanguinis or S. gordonii), demonstrated using either conditioned medium assays or dual-species fluorescent in situ hybridization analysis. Given the importance and necessity of alr to the growth and competitiveness of S. mutans, Alr may represent a promising target to modulate the cariogenicity of oral biofilms and to benefit the management of dental caries.

  12. Adsorption characteristics of 14C-labeled alanine, aspartic acid and adenosine triphosphate by metal-chelating resins

    International Nuclear Information System (INIS)

    Ishiyama, Toshio; Matsunami, Tadao; Shibata, Setsuko; Honda, Yoshihide.

    1987-01-01

    (1) Adsorption properties of 14 C-alanine, 14 C-ATP (adenosine triphosphate) and 14 C-aspartic acid on the metal-chelating resins were determined and found that the Cu(II)-Chelex 100 and Fe(III)-Unicellex UR10, Fe(III)-Chelex 100 chelating resins were highly effective for the adsorption of 14 C-alanine and 14 C-ATP, respectively. (2) Desorption rate of 14 C-ATP from the Fe(III)-Unicellex UR10 and Fe(III)-Chelex 100 resins was somewhat higher than the case of 14 C-alanine, probably because the coordination bonds of Cu-alanine might be stronger than those of Fe-ATP. Thus, 14 C-labeled organic compounds such as 14 C-alanine and 14 C-ATP of a low activity concentration (3.7 mBq/ml) (1 x 10 -7 μCi/ml) in aqueous solution may be measured with liquid scintillation counter after pre-concentration by use of the Fe(III)- and Cu(II)-chelating resin columns. (author)

  13. Alanine dosimetry at NPL - the development of a mailed reference dosimetry service at radiotherapy dose levels

    International Nuclear Information System (INIS)

    Sharpe, P.H.G.; Sephton, J.P.

    1999-01-01

    In this paper we describe the work that has been carried out at National Physical Laboratory (NPL) to develop a mailed alanine reference dosimetry service for radiotherapy dose levels. The service is based on alanine/paraffin wax dosimeters produced at NPL. Using a data analysis technique based on spectrum fitting, it has been possible to achieve a precision of dose measurement better than ±0.05 Gy (1σ). A phantom set has been developed for use in high energy photon beams, which enables simultaneous irradiation of alanine dosimeters and ionisation chambers in a well defined geometry. Studies in photon beams of energies between 60 Co and 20 MeV have shown no significant energy dependence (<1%) for alanine relative to dose determination using a graphite calorimeter. Work is underway to extend the service to electron beams, and preliminary results are presented on the direct calibration of alanine in electron beams using a graphite calorimeter. (author)

  14. A PUFA-rich diet improves fat oxidation following saturated fat-rich meal.

    Science.gov (United States)

    Stevenson, Jada L; Miller, Mary K; Skillman, Hannah E; Paton, Chad M; Cooper, Jamie A

    2017-08-01

    To determine substrate oxidation responses to saturated fatty acid (SFA)-rich meals before and after a 7-day polyunsaturated fatty acid (PUFA)-rich diet versus control diet. Twenty-six, normal-weight, adults were randomly assigned to either PUFA or control diet. Following a 3-day lead-in diet, participants completed the pre-diet visit where anthropometrics and resting metabolic rate (RMR) were measured, and two SFA-rich HF meals (breakfast and lunch) were consumed. Indirect calorimetry was used to determine fat oxidation (Fox) and energy expenditure (EE) for 4 h after each meal. Participants then consumed a PUFA-rich diet (50 % carbohydrate, 15 % protein, 35 % fat, of which 21 % of total energy was PUFA) or control diet (50 % carbohydrate, 15 % protein, 35 % fat, of which 7 % of total energy was PUFA) for the next 7 days. Following the 7-day diet, participants completed the post-diet visit. From pre- to post-PUFA-rich diet, there was no change in RMR (16.3 ± 0.8 vs. 16.4 ± 0.8 kcal/20 min) or in incremental area under the curve for EE (118.9 ± 20.6-126.9 ± 14.1 kcal/8h, ns). Fasting respiratory exchange ratio increased from pre- to post-PUFA-rich diet only (0.83 ± 0.1-0.86 ± 0.1, p diet (0.03 ± 0.1-0.23 ± 0.1 g/15 min for cumulative Fox; p diet initiates greater fat oxidation after eating occasional high SFA meals compared to a control diet, an effect achieved in 7 days.

  15. Effects of high-salinity seawater acclimation on the levels of D-alanine in the muscle and hepatopancreas of kuruma prawn, Marsupenaeus japonicus.

    Science.gov (United States)

    Yoshikawa, Naoko; Yokoyama, Masahumi

    2015-12-10

    Changes in D- and L-alanine contents were determined in the muscle and hepatopancreas of kuruma prawn Marsupenaeus japonicus, during acclimation from seawater containing 100% salinity to artificial seawater containing 150% salinity. In the hepatopancreas, contents of both amino acids increased by approximately threefold. The activity of alanine racemase, which catalyzes the interconversion of D- and L-alanine, also increased in the high-salinity seawater. In addition, the expression of the gene encoding alanine racemase increased in the hepatopancreas with an increase in the alanine racemase activity. These data indicate that the biosynthesis of D- and L-alanine is controlled by the gene expression level of alanine racemase, and D-alanine in the hepatopancreas functions as a major osmolyte for isosmotic regulation. In contrast, the content of D-alanine and alanine racemase activity did not change in the muscle during hyper-osmotic acclimation. Therefore, we suggest that D-alanine, which exists in the several tissues of M. japonicus, is considered to be utilized in some different physiological phenomena in different tissues. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Photochemical redox reactions of copper(II)-alanine complexes in aqueous solutions.

    Science.gov (United States)

    Lin, Chen-Jui; Hsu, Chao-Sheng; Wang, Po-Yen; Lin, Yi-Liang; Lo, Yu-Shiu; Wu, Chien-Hou

    2014-05-19

    The photochemical redox reactions of Cu(II)/alanine complexes have been studied in deaerated solutions over an extensive range of pH, Cu(II) concentration, and alanine concentration. Under irradiation, the ligand-to-metal charge transfer results in the reduction of Cu(II) to Cu(I) and the concomitant oxidation of alanine, which produces ammonia and acetaldehyde. Molar absorptivities and quantum yields of photoproducts for Cu(II)/alanine complexes at 313 nm are characterized mainly with the equilibrium Cu(II) speciation where the presence of simultaneously existing Cu(II) species is taken into account. By applying regression analysis, individual Cu(I) quantum yields are determined to be 0.094 ± 0.014 for the 1:1 complex (CuL) and 0.064 ± 0.012 for the 1:2 complex (CuL2). Individual quantum yields of ammonia are 0.055 ± 0.007 for CuL and 0.036 ± 0.005 for CuL2. Individual quantum yields of acetaldehyde are 0.030 ± 0.007 for CuL and 0.024 ± 0.007 for CuL2. CuL always has larger quantum yields than CuL2, which can be attributed to the Cu(II) stabilizing effect of the second ligand. For both CuL and CuL2, the individual quantum yields of Cu(I), ammonia, and acetaldehyde are in the ratio of 1.8:1:0.7. A reaction mechanism for the formation of the observed photoproducts is proposed.

  17. Predicting Three-Dimensional Conformations of Peptides Constructed of Only Glycine, Alanine, Aspartic Acid, and Valine

    Science.gov (United States)

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  18. Comparative study of C-Reactive Protein and other biochemical ...

    African Journals Online (AJOL)

    Serum levels of C-reactive proteins (CRP), Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), total protein, albumin and globulins were investigated using high sensitivity Immunoturbidometric and colorimetric techniques in individuals with hepatitis (n=50), Malaria (n=50) and 40 control subjects in age ...

  19. Quantifying Protein Synthesis and Degradation in Arabidopsis by Dynamic 13CO2 Labeling and Analysis of Enrichment in Individual Amino Acids in Their Free Pools and in Protein1[OPEN

    Science.gov (United States)

    Fernie, Alisdair R.; Stitt, Mark

    2015-01-01

    Protein synthesis and degradation represent substantial costs during plant growth. To obtain a quantitative measure of the rate of protein synthesis and degradation, we supplied 13CO2 to intact Arabidopsis (Arabidopsis thaliana) Columbia-0 plants and analyzed enrichment in free amino acids and in amino acid residues in protein during a 24-h pulse and 4-d chase. While many free amino acids labeled slowly and incompletely, alanine showed a rapid rise in enrichment in the pulse and a decrease in the chase. Enrichment in free alanine was used to correct enrichment in alanine residues in protein and calculate the rate of protein synthesis. The latter was compared with the relative growth rate to estimate the rate of protein degradation. The relative growth rate was estimated from sequential determination of fresh weight, sequential images of rosette area, and labeling of glucose in the cell wall. In an 8-h photoperiod, protein synthesis and cell wall synthesis were 3-fold faster in the day than at night, protein degradation was slow (3%–4% d−1), and flux to growth and degradation resulted in a protein half-life of 3.5 d. In the starchless phosphoglucomutase mutant at night, protein synthesis was further decreased and protein degradation increased, while cell wall synthesis was totally inhibited, quantitatively accounting for the inhibition of growth in this mutant. We also investigated the rates of protein synthesis and degradation during leaf development, during growth at high temperature, and compared synthesis rates of Rubisco large and small subunits of in the light and dark. PMID:25810096

  20. Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition.

    Directory of Open Access Journals (Sweden)

    Etelka Kovács

    Full Text Available It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the

  1. Biogas Production from Protein-Rich Biomass: Fed-Batch Anaerobic Fermentation of Casein and of Pig Blood and Associated Changes in Microbial Community Composition

    Science.gov (United States)

    Kovács, Etelka; Wirth, Roland; Maróti, Gergely; Bagi, Zoltán; Rákhely, Gábor; Kovács, Kornél L.

    2013-01-01

    It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids) in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM) significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM) were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the alterations in

  2. Beta-alanine supplementation improves jumping power and affects severe-intensity performance in professional alpine skiers.

    Science.gov (United States)

    Gross, Micah; Bieri, Kathrin; Hoppeler, Hans; Norman, Barbara; Vogt, Michael

    2014-12-01

    Supplementation with beta-alanine may have positive effects on severe-intensity, intermittent, and isometric strength-endurance performance. These could be advantageous for competitive alpine skiers, whose races last 45 to 150 s, require metabolic power above the aerobic maximum, and involve isometric muscle work. Further, beta-alanine supplementation affects the muscle force-frequency relationship, which could influence explosiveness. We explored the effects of beta-alanine on explosive jump performance, severe exercise energy metabolism, and severe-intensity ski-like performance. Nine male elite alpine skiers consumed 4.8 g/d beta-alanine or placebo for 5 weeks in a double-blind fashion. Before and after, they performed countermovement jumps (CMJ), a 90-s cycling bout at 110% VO2max (CLT), and a maximal 90-s box jump test (BJ90). Beta-alanine improved maximal (+7 ± 3%, d = 0.9) and mean CMJ power (+7 ± 2%, d = 0.7), tended to reduce oxygen deficit (-3 ± 8%, p = .06) and lactate accumulation (-12 ± 31%) and enhance aerobic energy contribution (+1.3 ± 2.9%, p = .07) in the CLT, and improved performance in the last third of BJ90 (+7 ± 4%, p = .02). These effects were not observed with placebo. Beta-alanine supplementation improved explosive and repeated jump performance in elite alpine skiers. Enhanced muscle contractility could possibly explain improved explosive and repeated jump performance. Increased aerobic energy production could possibly help explain repeated jump performance as well.

  3. Human Polycomb group EED protein negatively affects HIV-1 assembly and release

    Directory of Open Access Journals (Sweden)

    Darlix Jean-Luc

    2007-06-01

    Full Text Available Abstract Background The human EED protein, a member of the superfamily of Polycomb group (PcG proteins with WD-40 repeats, has been found to interact with three HIV-1 components, namely the structural Gag matrix protein (MA, the integrase enzyme (IN and the Nef protein. The aim of the present study was to analyze the possible biological role of EED in HIV-1 replication, using the HIV-1-based vector HIV-Luc and EED protein expressed by DNA transfection of 293T cells. Results During the early phase of HIV-1 infection, a slight negative effect on virus infectivity occurred in EED-expressing cells, which appeared to be dependent on EED-MA interaction. At late times post infection, EED caused an important reduction of virus production, from 20- to 25-fold as determined by CAp24 immunoassay, to 10- to 80-fold based on genomic RNA levels, and this decrease was not due to a reduction of Gag protein synthesis. Coexpression of WTNef, or the non-N-myristoylated mutant NefG2A, restored virus yields to levels obtained in the absence of exogenous EED protein. This effect was not observed with mutant NefΔ57 mimicking the Nef core, or with the lipid raft-retargeted fusion protein LAT-Nef. LATAA-Nef, a mutant defective in the lipid raft addressing function, had the same anti-EED effect as WTNef. Cell fractionation and confocal imaging showed that, in the absence of Nef, EED mainly localized in membrane domains different from the lipid rafts. Upon co-expression with WTNef, NefG2A or LATAA-Nef, but not with NefΔ57 or LAT-Nef, EED was found to relocate into an insoluble fraction along with Nef protein. Electron microscopy of HIV-Luc producer cells overexpressing EED showed significant less virus budding at the cell surface compared to control cells, and ectopic assembly and clustering of nuclear pore complexes within the cytoplasm. Conclusion Our data suggested that EED exerted an antiviral activity at the late stage of HIV-1 replication, which included genomic

  4. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants

    OpenAIRE

    Liu, Ping-Li; Du, Liang; Huang, Yuan; Gao, Shu-Min; Yu, Meng

    2017-01-01

    Background Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are the largest group of receptor-like kinases in plants and play crucial roles in development and stress responses. The evolutionary relationships among LRR-RLK genes have been investigated in flowering plants; however, no comprehensive studies have been performed for these genes in more ancestral groups. The subfamily classification of LRR-RLK genes in plants, the evolutionary history and driving force for the evolution...

  5. Hydrogen bonds in crystalline d-alanine: diffraction and spectroscopic evidence for differences between enantiomers

    Directory of Open Access Journals (Sweden)

    Ezequiel A. Belo

    2018-01-01

    Full Text Available Enantiomeric amino acids have specific physiological functions in complex biological systems. Systematic studies focusing on the solid-state properties of d-amino acids are, however, still limited. To shed light on this field, structural and spectroscopic studies of d-alanine using neutron powder diffraction, polarized Raman scattering and ab initio calculations of harmonic vibrational frequencies were carried out. Clear changes in the number of vibrational modes are observed as a function of temperature, which can be directly connected to variations of the N—D bond lengths. These results reveal dissimilarities in the structural properties of d-alanine compared with l-alanine.

  6. Quantifying protein synthesis and degradation in Arabidopsis by dynamic 13CO2 labeling and analysis of enrichment in individual amino acids in their free pools and in protein.

    Science.gov (United States)

    Ishihara, Hirofumi; Obata, Toshihiro; Sulpice, Ronan; Fernie, Alisdair R; Stitt, Mark

    2015-05-01

    Protein synthesis and degradation represent substantial costs during plant growth. To obtain a quantitative measure of the rate of protein synthesis and degradation, we supplied (13)CO2 to intact Arabidopsis (Arabidopsis thaliana) Columbia-0 plants and analyzed enrichment in free amino acids and in amino acid residues in protein during a 24-h pulse and 4-d chase. While many free amino acids labeled slowly and incompletely, alanine showed a rapid rise in enrichment in the pulse and a decrease in the chase. Enrichment in free alanine was used to correct enrichment in alanine residues in protein and calculate the rate of protein synthesis. The latter was compared with the relative growth rate to estimate the rate of protein degradation. The relative growth rate was estimated from sequential determination of fresh weight, sequential images of rosette area, and labeling of glucose in the cell wall. In an 8-h photoperiod, protein synthesis and cell wall synthesis were 3-fold faster in the day than at night, protein degradation was slow (3%-4% d(-1)), and flux to growth and degradation resulted in a protein half-life of 3.5 d. In the starchless phosphoglucomutase mutant at night, protein synthesis was further decreased and protein degradation increased, while cell wall synthesis was totally inhibited, quantitatively accounting for the inhibition of growth in this mutant. We also investigated the rates of protein synthesis and degradation during leaf development, during growth at high temperature, and compared synthesis rates of Rubisco large and small subunits of in the light and dark. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. Knockout of the alanine racemase gene in Aeromonas hydrophila HBNUAh01 results in cell wall damage and enhanced membrane permeability.

    Science.gov (United States)

    Liu, Dong; Zhang, Lu; Xue, Wen; Wang, Yaping; Ju, Jiansong; Zhao, Baohua

    2015-07-01

    This study focused on the alanine racemase gene (alr-2), which is involved in the synthesis of d-alanine that forms the backbone of the cell wall. A stable alr-2 knockout mutant of Aeromonas hydrophila HBNUAh01 was constructed. When the mutant was supplemented with d-alanine, growth was unaffected; deprivation of d-alanine caused the growth arrest of the starved mutant cells, but not cell lysis. No alanine racemase activity was detected in the culture of the mutant. Additionally, a membrane permeability assay showed increasing damage to the cell wall during d-alanine starvation. No such damage was observed in the wild type during culture. Scanning and transmission electron microscopy analyses revealed deficiencies of the cell envelope and perforation of the cell wall. Leakage of UV-absorbing substances from the mutants was also observed. Thus, the partial viability of the mutants and their independence of d-alanine for growth indicated that inactivation of alr-2 does not impose an auxotrophic requirement for d-alanine. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Alanine-EPR dosimetry system for high industrial as well radiotherapeutic dose measurement

    International Nuclear Information System (INIS)

    Dobrovodsky, J.; Bukovjan, J.

    2005-01-01

    Slovak Institute of Metrology is developing new metrology standard for high doses, based on the alanine-EPR as a reference dosimetry system. A Bruker e-scan EPR analyser developed specifically for alanine dosimetry has improved stability of EPR measurement, especially at lower dose range. The standard e-scan system provides sensitivity below 1 Gray. After further improvement of the system and lowering of dose determination expanded uncertainty down below 1 %, its utilisation for radiotherapy field is expected (authors)

  9. Muscle glycogen metabolism changes in rats fed early postnatal a fructose-rich diet after maternal protein malnutrition: effects of acute physical exercise at the maximal lactate steady-state intensity

    OpenAIRE

    Cambri, Lucieli Teresa [UNESP; Ribeiro, Carla [UNESP; Botezelli, Jose Diego [UNESP; Ghezzi, Ana Carolina [UNESP; Mello, Maria Alice Rostom de [UNESP

    2014-01-01

    Background: The objective was to evaluate the muscle glucose metabolism in rats fed a fructose-rich diet after fetal protein malnutrition, at rest and after acute physical exercise at maximal lactate steady-state intensity.Methods: The male offspring born of mothers fed on a balanced or low-protein diet were split in four groups until 60 days: Balanced (B): balanced diet during the whole period; Balanced/Fructose (BF): balanced diet in utero and fructose-rich diet after birth; Low protein/Bal...

  10. Cysteine-rich buccal gland protein suppressed the proliferation, migration and invasion of hela cells through akt pathway.

    Science.gov (United States)

    Han, Jianmei; Liu, Yu; Jiang, Qi; Xiao, Rong

    2017-11-01

    Cysteine-rich buccal gland protein (CRBGP) as a member of cysteine-rich secretory proteins (CRISPs) superfamily was isolated from the buccal glands of Lampetra japonica, the blood suckers in the marine. Previous studies showed CRBGP could suppress angiogenesis probably due to its ion channel blocking activity. Whether CRBGP could also affect the activity of tumor cells has not been reported yet. In this study, CRBGP suppressed the proliferation of Hela cells with an IC 50 of 6.7 μM by inducing apoptosis. Both microscopic observation and Western blot indicated that CRBGP was able to induce the nuclei shrinking, downregulate the protein level of BCL2 and caspase 3 as well as upregulate the level of BAX in Hela cells, suggested that CRBGP might induce apoptosis of Hela cells in a mitochondrial-dependent pathway. Furthermore, CRBGP could disturb F-actin organization, which would finally cause the Hela cells to lose their shape and to lessen their abilities on adhesion, migration and invasion. Finally, CRBGP was shown to reduce the phosphorylation level of Akt, which indicated that CRBGP might inhibit the proliferation and metastasis of Hela cells through Akt pathway. CRBGP, as a voltage-gated sodium channel blocker, also possesses the anti-tumor abilities which provided information on the effects and action manner of the other CRISPs. © 2017 IUBMB Life, 69(11):856-866, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  11. Determination of isodose curves in Radiotherapy using an Alanine/ESR dosemeter

    International Nuclear Information System (INIS)

    Chen, F.; Baffa, O.; Graeff, C.F.O.

    1998-01-01

    It was studied the possible use of an Alanine/ESR dosemeter in the isodose curves mapping in normal treatments of Radiotherapy. It was manufactured a lot of 150 dosemeters with base in a mixture of D-L Alanine dust (80 %) and paraffin (20 %). Each dosemeter has 4.7 mm diameter and 12 mm length. A group of 100 dosemeters of the lot were arranged inside 50 holes of the slice 25 of the phantom Rando Man. The phantom irradiation was realized in two opposed projections (AP and PA) in Co-60 equipment. A group of 15 dosemeters was take of the same lot for obtaining the calibration curve in a 1-20 Gy range. After irradiation the signal of each dosemeter was measured in an ESR spectrometer operating in the X-band (∼ 9.5 GHz) and the wideness of Alanine ESR spectra central line was correlated with the radiation dose. The wideness dose calibration curve resulted linear with a correlation coefficient 0.9996. The isodose curves obtained show a profile enough similar at comparing with the theoretical curves. (Author)

  12. Alanine Aminotransferase, ?-Glutamyltransferase, and Incident Diabetes

    OpenAIRE

    Fraser, Abigail; Harris, Ross; Sattar, Naveed; Ebrahim, Shah; Davey Smith, George; Lawlor, Debbie A.

    2009-01-01

    OBJECTIVE: To estimate and compare associations of alanine aminotransferase (ALT) and gamma-glutamyltransferase (GGT) with incident diabetes. RESEARCH DESIGN AND METHODS: ALT and GGT were studied as determinants of diabetes in the British Women's Heart and Health Study, a cohort of 4,286 women 60-79 years old (median follow-up 7.3 years). A systematic review and a meta-analysis of 21 prospective, population-based studies of ultrasonography, which diagnosed nonalcoholic fatty liver disease (NA...

  13. Stability constants of mixed ligand complexes of dioxouranium(II) and thorium(IV) with complexones and isomeric alanines

    International Nuclear Information System (INIS)

    Singh, R.K.; Saxena, M.C.

    1992-01-01

    The present work reports on the stability sequence between UO 2 II and Th IV ions for their mixed ligands complexes with the two isomeric alanines, α-alanine (α-ala) and β-alanine (β-ala) containing a complexone as primary ligand. The complexones used are iminodiacetate (IMDA), nitrilotricetate (NTA), 2-hydroxyethylenediaminetriacetate (HEDTA), ethylenediaminetetraacetate (EDTA), 1,2-diaminocyclohexanetraacetate (CDTA) and diethylenetriminepentaacetate (DTPA). (author). 9 refs., 1 tab

  14. Assessment of Metabolic Changes in Mycobacterium smegmatis Wild-Type and alr Mutant Strains: Evidence of a New Pathway of d-Alanine Biosynthesis.

    Science.gov (United States)

    Marshall, Darrell D; Halouska, Steven; Zinniel, Denise K; Fenton, Robert J; Kenealy, Katie; Chahal, Harpreet K; Rathnaiah, Govardhan; Barletta, Raúl G; Powers, Robert

    2017-03-03

    In mycobacteria, d-alanine is an essential precursor for peptidoglycan biosynthesis. The only confirmed enzymatic pathway to form d-alanine is through the racemization of l-alanine by alanine racemase (Alr, EC 5.1.1.1). Nevertheless, the essentiality of Alr in Mycobacterium tuberculosis and Mycobacterium smegmatis for cell survivability in the absence of d-alanine has been a point of controversy with contradictory results reported in the literature. To address this issue, we examined the effects of alr inactivation on the cellular metabolism of M. smegmatis. The M. smegmatis alr insertion mutant TAM23 exhibited essentially identical growth to wild-type mc 2 155 in the absence of d-alanine. NMR metabolomics revealed drastically distinct phenotypes between mc 2 155 and TAM23. A metabolic switch was observed for TAM23 as a function of supplemented d-alanine. In the absence of d-alanine, the metabolic response directed carbon through an unidentified transaminase to provide the essential d-alanine required for survival. The process is reversed when d-alanine is available, in which the d-alanine is directed to peptidoglycan biosynthesis. Our results provide further support for the hypothesis that Alr is not an essential function of M. smegmatis and that specific Alr inhibitors will have no bactericidal action.

  15. Synthesis and characterization of alanine boron hydrate for its use in thermal neutron dosimetry

    International Nuclear Information System (INIS)

    Yanez S, J.C.

    1994-01-01

    Alanine boron hydrate was synthesized for its possible use as intercomparison dosimeter for thermal neutron irradiation. The irradiations were performed in the Nuclear Reactor of the Nuclear Center of Mexico. The salt was prepared by reacting alanine and boric acid in a (1:1) stoichiometric ratio in neutral pH 7.5 aqueous solution and also in a basic pH 13 solution. The latter reaction was prepared with the addition of ammonia hydroxide (25%). Solutions were stirred and afterwards were let to evaporate. The obtained product in each reaction is a white solid. Dosimeters were prepared with the obtained reaction products and irradiated under thermal neutron flux of 5 x 10 7 n/cm 2 s. For 30 hours. The analysis of irradiated samples was made in a Variant E-15 Electron Paramagnetic Resonance spectrometer. The observed response of the samples prepared with the reaction product at the basic pH is approximately 50% higher than the neutral pH samples. In order to investigate the optimum signal enhancement samples were prepared in a basic pH medium in the following stoichiometric ratios: (1:0.5); (1:0.75); (1:1.25); (1:1.5) and (1:1.75). It was observed that the samples of the reaction (1:0.75) produced the higher response. The response was 2728% higher than the alanine only dosimeters. The reaction product was chemically characterized by X-ray diffraction, Nuclear Magnetic Resonance, Chromatography, Refractometry and Solubility tests. Results indicate that alanine boron hydrate is formed in basic media and in a stoichiometric ratio (1:0.75). The dosimetric characterization of alanine boron hydrate was performed, results are reported. It is concluded that alanine boron hydrate may be a good intercomparison dosimeter for thermal neutron irradiation. (Author)

  16. MARS: A protein family involved in the formation of vertical skeletal elements.

    Science.gov (United States)

    Abehsera, Shai; Peles, Shani; Tynyakov, Jenny; Bentov, Shmuel; Aflalo, Eliahu D; Li, Shihao; Li, Fuhua; Xiang, Jianhai; Sagi, Amir

    2017-05-01

    Vertical organizations of skeletal elements are found in various vertebrate teeth and invertebrate exoskeletons. The molecular mechanism behind the development of such structural organizations is poorly known, although it is generally held that organic matrix proteins play an essential role. While most crustacean cuticular organizations exhibit horizontal chitinous layering, a typical vertical organization is found towards the surface of the teeth in the mandibles of the crayfish Cherax quadricarinatus. Candidate genes encoding for mandible-forming structural proteins were mined in C. quadricarinatus molt-related transcriptomic libraries by using a binary patterning approach. A new protein family, termed the Mandible Alanine Rich Structural (MARS) protein family, with a modular sequence design predicted to form fibers, was found. Investigations of spatial and temporal expression of the different MARS genes suggested specific expression in the mandibular teeth-forming epithelium, particularly during the formation of the chitinous vertical organization. MARS loss-of-function RNAi experiments resulted in the collapse of the organization of the chitin fibers oriented vertically to the surface of the crayfish mandibular incisor tooth. A general search of transcriptomic libraries suggested conservation of MARS proteins across a wide array of crustaceans. Our results provide a first look into the molecular mechanism used to build the complex crustacean mandible and into the specialized vertical structural solution that has evolved in skeletal elements. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Identification and function of leucine-rich repeat flightless-I-interacting protein 2 (LRRFIP2 in Litopenaeus vannamei.

    Directory of Open Access Journals (Sweden)

    Shuang Zhang

    Full Text Available Leucine-rich repeat flightless-I-interacting protein 2 (LRRFIP2 is a myeloid differentiation factor 88-interacting protein with a positive regulatory function in toll-like receptor signaling. In this study, seven LRRFIP2 protein variants (LvLRRFIP2A-G were identified in Litopenaeus vannamei. All the seven LvLRRFIP2 protein variants encode proteins with a DUF2051 domain. LvLRRFIP2s were upregulated in hemocytes after challenged with lipopolysaccharide, poly I:C, CpG-ODN2006, Vibrio parahaemolyticus, Staphylococcus aureus, and white spot syndrome virus (WSSV. Dual-luciferase reporter assays in Drosophila Schneider 2 cells revealed that LvLRRFIP2 activates the promoters of Drosophila and shrimp AMP genes. The knockdown of LvLRRFIP2 by RNA interference resulted in higher cumulative mortality of L. vannamei upon V. parahaemolyticus but not S. aureus and WSSV infections. The expression of L. vannamei AMP genes were reduced by dsLvLRRFIP2 interference. These results indicate that LvLRRFIP2 has an important function in antibacterials via the regulation of AMP gene expression.

  18. Stimulation of Na+-alanine cotransport activates a voltage-dependent conductance in single proximal tubule cells isolated from frog kidney

    Science.gov (United States)

    Robson, L; Hunter, M

    1999-01-01

    The swelling induced by Na+-alanine cotransport in proximal tubule cells of the frog kidney is followed by regulatory volume decrease (RVD). This RVD is inhibited by gadolinium (Gd3+), an inhibitor of stretch-activated channels, but is independent of extracellular Ca2+. In this study, the whole cell patch clamp technique was utilized to examine the effect of Na+-alanine cotransport on two previously identified volume- and Gd3+-sensitive conductances. One conductance is voltage dependent and anion selective (GVD) whilst the other is voltage independent and cation selective (GVI). Addition of 5 mM L-alanine to the bathing solution increased the whole cell conductance and gave a positive (depolarizing) shift in the reversal potential (Vrev, equivalent to the membrane potential in current-clamped cells) consistent with activation of Na+-alanine cotransport. Vrev shifted from -36 ± 4·9 to +12·9 ± 4·2 mV (n= 15). In the presence of alanine, the total whole cell conductance had several components including the cotransporter conductance and GVD and GVI. These conductances were separated using Gd3+, which inhibits both GVD and GVI, and the time dependency of GVD. Of these two volume-sensitive conductances, L-alanine elicited a specific increase in GVD, whereas GVI was unaffected. The L-alanine-induced activation of GVD was significantly reduced when cells were incubated in a hypertonic bathing solution. In summary, in single proximal tubule cells isolated from frog kidney, on stimulation of Na+-alanine cotransport GVD is activated, while GVI is unaffected. Taken with other evidence, this suggests that GVD is activated by cell swelling, consequent upon alanine entry, and may play a role as an anion efflux pathway during alanine-induced volume regulation. PMID:10226159

  19. Amorphous track predictions in ‘libamtrack’ for alanine relative effectiveness in ion beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Greilich, Steffen; Grzanka, Leszek

    2011-01-01

    and simple dose response, the alanine detector can help to study fundamental assumptions and accuracy in amorphous track modelling. The libamtrack project enabled recently to directly compare various flavours of ATMs. We therefore present here the potential of predictions for alanine from two libamtrack ATMs...... transport and stopping powers hinders a thorough interpretation of the deviation found and stress the necessity for a broader data base at lower particle energies....

  20. Association between the Frequency of Protein-Rich Food Intakes and Kihon-Checklist Frailty Indices in Older Japanese Adults: The Kyoto-Kameoka Study.

    Science.gov (United States)

    Yamaguchi, Miwa; Yamada, Yosuke; Nanri, Hinako; Nozawa, Yoshizu; Itoi, Aya; Yoshimura, Eiichi; Watanabe, Yuya; Yoshida, Tsukasa; Yokoyama, Keiichi; Goto, Chiho; Ishikawa-Takata, Kazuko; Kobayashi, Hisamine; Kimura, Misaka

    2018-01-13

    We aimed to investigate whether frequencies of protein-rich food intake were associated with frailty among older Japanese adults. A cross-sectional study was conducted in 2011 among 3843 men and 4331 women in a population-based cohort of Kameoka city, Kyoto Prefecture, Japan. Frailty was assessed by the weighted score based on the 25-item Kihon-Checklist. The frequency of protein-rich food intake was examined as "seafood", "meat", "dairy products", "eggs", and "soy products". The outcome of frailty was analyzed with a multiple logistic regression model using the frequency of protein-rich food intake. When compared to the first quartile, it was observed that there was a significant association between the lower adjusted prevalence ratio (PR) for frailty and the frequency of seafood intake in the fourth quartile among men (PR 0.64, 95% confidence interval (CI), 0.42, 0.99) and from the second quartile to the third quartile among women (PR 0.61, 95% CI, 0.43, 0.85; PR 0.64, 95% CI, 0.46, 0.91). The frequency of dairy products intake in the third quartile among women was significantly associated with a lower PR for frailty ( p -value = 0.013). Our findings suggest that the consumption of seafood and dairy products may help older adults in maintaining their independence.

  1. Association between the Frequency of Protein-Rich Food Intakes and Kihon-Checklist Frailty Indices in Older Japanese Adults: The Kyoto-Kameoka Study

    Directory of Open Access Journals (Sweden)

    Miwa Yamaguchi

    2018-01-01

    Full Text Available We aimed to investigate whether frequencies of protein-rich food intake were associated with frailty among older Japanese adults. A cross-sectional study was conducted in 2011 among 3843 men and 4331 women in a population-based cohort of Kameoka city, Kyoto Prefecture, Japan. Frailty was assessed by the weighted score based on the 25-item Kihon-Checklist. The frequency of protein-rich food intake was examined as “seafood”, “meat”, “dairy products”, “eggs”, and “soy products”. The outcome of frailty was analyzed with a multiple logistic regression model using the frequency of protein-rich food intake. When compared to the first quartile, it was observed that there was a significant association between the lower adjusted prevalence ratio (PR for frailty and the frequency of seafood intake in the fourth quartile among men (PR 0.64, 95% confidence interval (CI, 0.42, 0.99 and from the second quartile to the third quartile among women (PR 0.61, 95% CI, 0.43, 0.85; PR 0.64, 95% CI, 0.46, 0.91. The frequency of dairy products intake in the third quartile among women was significantly associated with a lower PR for frailty (p-value = 0.013. Our findings suggest that the consumption of seafood and dairy products may help older adults in maintaining their independence.

  2. Characterization of Chlamydia MurC-Ddl, a fusion protein exhibiting D-alanyl-D-alanine ligase activity involved in peptidoglycan synthesis and D-cycloserine sensitivity.

    Science.gov (United States)

    McCoy, Andrea J; Maurelli, Anthony T

    2005-07-01

    Recent characterization of chlamydial genes encoding functional peptidoglycan (PG)-synthesis proteins suggests that the Chlamydiaceae possess the ability to synthesize PG yet biochemical evidence for the synthesis of PG has yet to be demonstrated. The presence of D-amino acids in PG is a hallmark of bacteria. Chlamydiaceae do not appear to encode amino acid racemases however, a D-alanyl-D-alanine (D-Ala-D-Ala) ligase homologue (Ddl) is encoded in the genome. Thus, we undertook a genetics-based approach to demonstrate and characterize the D-Ala-D-Ala ligase activity of chlamydial Ddl, a protein encoded as a fusion with MurC. The full-length murC-ddl fusion gene from Chlamydia trachomatis serovar L2 was cloned and placed under the control of the arabinose-inducible ara promoter and transformed into a D-Ala-D-Ala ligase auxotroph of Escherichia coli possessing deletions of both the ddlA and ddlB genes. Viability of the E. coliDeltaddlADeltaddlB mutant in the absence of exogenous D-Ala-D-Ala dipeptide became dependent on the expression of the chlamydial murC-ddl thus demonstrating functional ligase activity. Domain mapping of the full-length fusion protein and site-directed mutagenesis of the MurC domain revealed that the structure of the full fusion protein but not MurC enzymatic activity was required for ligase activity in vivo. Recombinant MurC-Ddl exhibited substrate specificity for D-Ala. Chlamydia growth is inhibited by D-cycloserine (DCS) and in vitro analysis provided evidence for the chlamydial MurC-Ddl as the target for DCS sensitivity. In vivo sensitivity to DCS could be reversed by addition of exogenous D-Ala and D-Ala-D-Ala. Together, these findings further support our hypothesis that PG is synthesized by members of the Chlamydiaceae family and suggest that D-amino acids, specifically D-Ala, are present in chlamydial PG.

  3. Impact of weight reduction program on serum alanine ...

    African Journals Online (AJOL)

    Objective: This study was to examine the correlation between body mass index, serum alanine .... level recorded at least 2 distinct instances at an interval of ... ing exercises, 30 minutes of aerobic exercise training with intensity equal 60-70% of the individual maximum heart .... loric restriction after consuming a high-fat diet.

  4. K-band EPR dosimetry: small-field beam profile determination with miniature alanine dosimeter

    International Nuclear Information System (INIS)

    Chen, Felipe; Graeff, Carlos F.O.; Baffa, Oswaldo

    2005-01-01

    The use of small-size alanine dosimeters presents a challenge because the signal intensity is less than the spectrometer sensitivity. K-band (24 GHz) EPR spectrometer seems to be a good compromise between size and sensitivity of the sample. Miniature alanine pellets were evaluated for small-field radiation dosimetry. Dosimeters of DL-alanine/PVC with dimensions of 1.5 mm diameter and 2.5 mm length with 5 mg mass were developed. These dosimeters were irradiated with 10 MV X-rays in the dose range 0.05-60 Gy and the first harmonic (1 h) spectra were recorded. Microwave power, frequency and amplitude of modulation were optimized to obtain the best signal-to-noise ratio (S/N). For beam profile determination, a group of 25 dosimeters were placed in an acrylic device with dimensions of (7.5x2.5x1) cm 3 and irradiated with a (3x3) cm 2 10 MV X-rays beam field size. The dose at the central region of the beam was 20 Gy at a depth of 2.2 cm (build up for acrylic). The acrylic device was oriented perpendicular to the beam axis and to the gantry rotation axis. For the purposes of comparison of the spatial resolution, the beam profile was also determined with a radiographic film and 2 mm aperture optical densitometer; in this case the dose was 1 cGy. The results showed a similar spatial resolution for both types of dosimeters. The dispersion in dose reading was larger for alanine in comparison with the film, but alanine dosimeters can be read faster and more directly than film over a wide dose range

  5. Sequential enzymatic synthesis and separation of 13N-L-glutamic acid and 13N-L-alanine

    International Nuclear Information System (INIS)

    Cohen, M.B.; Spolter, L.; MacDonald, M.; Chang, C.C.; Takahashi, J.

    1975-01-01

    The sequential enzymatic synthesis and separation of 13 N-L-glutamic acid and 13 N-L-alanine are described. Basically, that involves the synthesis of 13 N-L-glutamic acid by one enzyme, the transamination of the labeled glutamic acid to form 13 N-L-alanine by a second enzyme, and the separation of the two amino acids by rapid column chromatography. The 13 N-L-alanine was evaluated in animals by imaging and tissue distribution studies and showed good potential as a pancreatic imaging agent

  6. Activity of the lactate-alanine shuttle is independent of glutamate-glutamine cycle activity in cerebellar neuronal-astrocytic cultures

    DEFF Research Database (Denmark)

    Bak, Lasse K; Sickmann, Helle M; Schousboe, Arne

    2004-01-01

    The glutamate-glutamine cycle describes the neuronal release of glutamate into the synaptic cleft, astrocytic uptake, and conversion into glutamine, followed by release for use as a neuronal glutamate precursor. This only explains the fate of the carbon atoms, however, and not that of the ammonia....... Recently, a role for alanine has been proposed in transfer of ammonia between glutamatergic neurons and astrocytes, denoted the lactate-alanine shuttle (Waagepetersen et al. [ 2000] J. Neurochem. 75:471-479). The role of alanine in this context has been studied further using cerebellar neuronal cultures...... and corresponding neuronal-astrocytic cocultures. A superfusion paradigm was used to induce repetitively vesicular glutamate release by N-methyl-D-aspartate (NMDA) in the neurons, allowing the relative activity dependency of the lactate-alanine shuttle to be assessed. [(15)N]Alanine (0.2 mM), [2-(15)N]/[5-(15)N...

  7. Theoretical and experimental approach on the molecular interactions of the DL-Alanine with an electrolytic environment

    Science.gov (United States)

    Cantero-López, Plinio; Yañez-Osses, Osvaldo; Páez-Meza, Manuel Silvestre; López, Johana E.; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2017-11-01

    The molecular interactions that promote the stability of proteins and amino acids in saline solutions is a central topic of molecular biophysics. However, a well-supported molecular picture of the phenomena has not been established yet. In this paper, we studied as model system the mix between DL-Alanine in aqueous solutions of STP (Na2S2O3·5H2O) at different temperatures, from volumetric and viscometric properties. The thermophysical properties obtained indicate the presence of a strong preferential solvation, structure-making action and a possible salt in effect. Quantum chemical calculations and molecular dynamic (MD) simulations provide a new insight to support these arguments.

  8. Alanine administration does not stimulate gluconeogenesis in preterm infants

    NARCIS (Netherlands)

    van Kempen, Anne A. M. W.; Romijn, Johannes A.; Ruiter, An F. C.; Endert, Erik; Weverling, Gerrit Jan; Kok, Johanna H.; Sauerwein, Hans P.

    2003-01-01

    Gluconeogenesis partially depends on sufficient precursor supply, and plasma alanine concentrations are generally low in preterm infants. Stimulation of gluconeogenesis may contribute to the prevention of hypoglycemia, an important clinical problem in these infants. In this study we evaluated the

  9. Soluble cysteine-rich tick saliva proteins Salp15 and Iric-1 from E. coli.

    Science.gov (United States)

    Kolb, Philipp; Vorreiter, Jolanta; Habicht, Jüri; Bentrop, Detlef; Wallich, Reinhard; Nassal, Michael

    2015-01-01

    Ticks transmit numerous pathogens, including borreliae, which cause Lyme disease. Tick saliva contains a complex mix of anti-host defense factors, including the immunosuppressive cysteine-rich secretory glycoprotein Salp15 from Ixodes scapularis ticks and orthologs like Iric-1 from Ixodes ricinus. All tick-borne microbes benefit from the immunosuppression at the tick bite site; in addition, borreliae exploit the binding of Salp15 to their outer surface protein C (OspC) for enhanced transmission. Hence, Salp15 proteins are attractive targets for anti-tick vaccines that also target borreliae. However, recombinant Salp proteins are not accessible in sufficient quantity for either vaccine manufacturing or for structural characterization. As an alternative to low-yield eukaryotic systems, we investigated cytoplasmic expression in Escherichia coli, even though this would not result in glycosylation. His-tagged Salp15 was efficiently expressed but insoluble. Among the various solubility-enhancing protein tags tested, DsbA was superior, yielding milligram amounts of soluble, monomeric Salp15 and Iric-1 fusions. Easily accessible mutants enabled epitope mapping of two monoclonal antibodies that, importantly, cross-react with glycosylated Salp15, and revealed interaction sites with OspC. Free Salp15 and Iric-1 from protease-cleavable fusions, despite limited solubility, allowed the recording of (1)H-(15)N 2D NMR spectra, suggesting partial folding of the wild-type proteins but not of Cys-free variants. Fusion to the NMR-compatible GB1 domain sufficiently enhanced solubility to reveal first secondary structure elements in (13)C/(15)N double-labeled Iric-1. Together, E. coli expression of appropriately fused Salp15 proteins may be highly valuable for the molecular characterization of the function and eventually the 3D structure of these medically relevant tick proteins.

  10. A lepidopteran-specific gene family encoding valine-rich midgut proteins.

    Directory of Open Access Journals (Sweden)

    Jothini Odman-Naresh

    Full Text Available Many lepidopteran larvae are serious agricultural pests due to their feeding activity. Digestion of the plant diet occurs mainly in the midgut and is facilitated by the peritrophic matrix (PM, an extracellular sac-like structure, which lines the midgut epithelium and creates different digestive compartments. The PM is attracting increasing attention to control lepidopteran pests by interfering with this vital function. To identify novel PM components and thus potential targets for insecticides, we performed an immunoscreening with anti-PM antibodies using an expression library representing the larval midgut transcriptome of the tobacco hornworm, Manduca sexta. We identified three cDNAs encoding valine-rich midgut proteins of M. sexta (MsVmps, which appear to be loosely associated with the PM. They are members of a lepidopteran-specific family of nine VMP genes, which are exclusively expressed in larval stages in M. sexta. Most of the MsVMP transcripts are detected in the posterior midgut, with the highest levels observed for MsVMP1. To obtain further insight into Vmp function, we expressed MsVMP1 in insect cells and purified the recombinant protein. Lectin staining and glycosidase treatment indicated that MsVmp1 is highly O-glycosylated. In line with results from qPCR, immunoblots revealed that MsVmp1 amounts are highest in feeding larvae, while MsVmp1 is undetectable in starving and molting larvae. Finally using immunocytochemistry, we demonstrated that MsVmp1 localizes to the cytosol of columnar cells, which secrete MsVmp1 into the ectoperitrophic space in feeding larvae. In starving and molting larvae, MsVmp1 is found in the gut lumen, suggesting that the PM has increased its permeability. The present study demonstrates that lepidopteran species including many agricultural pests have evolved a set of unique proteins that are not found in any other taxon and thus may reflect an important adaptation in the highly specialized lepidopteran

  11. Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy

    International Nuclear Information System (INIS)

    Ableitinger, Alexander; Vatnitsky, Stanislav; Herrmann, Rochus; Bassler, Niels; Palmans, Hugo; Sharpe, Peter; Ecker, Swantje; Chaudhri, Naved; Jäkel, Oliver; Georg, Dietmar

    2013-01-01

    Background and purpose: In the next few years the number of facilities providing ion beam therapy with scanning beams will increase. An auditing process based on an end-to-end test (including CT imaging, planning and dose delivery) could help new ion therapy centres to validate their entire logistic chain of radiation delivery. An end-to-end procedure was designed and tested in both scanned proton and carbon ion beams, which may also serve as a dosimetric credentialing procedure for clinical trials in the future. The developed procedure is focused only on physical dose delivery and the validation of the biological dose is out of scope of the current work. Materials and methods: The audit procedure was based on a homogeneous phantom that mimics the dimension of a head (20 × 20 × 21 cm 3 ). The phantom can be loaded either with an ionisation chamber or 20 alanine dosimeters plus 2 radiochromic EBT films. Dose verification aimed at measuring a dose of 10 Gy homogeneously delivered to a virtual-target volume of 8 × 8 × 12 cm 3 . In order to interpret the readout of the irradiated alanine dosimeters additional Monte Carlo simulations were performed to calculate the energy dependent detector response of the particle fluence in the alanine detector. A pilot run was performed with protons and carbon ions at the Heidelberg Ion Therapy facility (HIT). Results: The mean difference of the absolute physical dose measured with the alanine dosimeters compared with the expected dose from the treatment planning system was −2.4 ± 0.9% (1σ) for protons and −2.2 ± 1.1% (1σ) for carbon ions. The measurements performed with the ionisation chamber indicate this slight underdosage with a dose difference of −1.7% for protons and −1.0% for carbon ions. The profiles measured by radiochromic films showed an acceptable homogeneity of about 3%. Conclusions: Alanine dosimeters are suitable detectors for dosimetry audits in ion beam therapy and the presented end-to-end test is

  12. Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy.

    Science.gov (United States)

    Ableitinger, Alexander; Vatnitsky, Stanislav; Herrmann, Rochus; Bassler, Niels; Palmans, Hugo; Sharpe, Peter; Ecker, Swantje; Chaudhri, Naved; Jäkel, Oliver; Georg, Dietmar

    2013-07-01

    In the next few years the number of facilities providing ion beam therapy with scanning beams will increase. An auditing process based on an end-to-end test (including CT imaging, planning and dose delivery) could help new ion therapy centres to validate their entire logistic chain of radiation delivery. An end-to-end procedure was designed and tested in both scanned proton and carbon ion beams, which may also serve as a dosimetric credentialing procedure for clinical trials in the future. The developed procedure is focused only on physical dose delivery and the validation of the biological dose is out of scope of the current work. The audit procedure was based on a homogeneous phantom that mimics the dimension of a head (20 × 20 × 21 cm(3)). The phantom can be loaded either with an ionisation chamber or 20 alanine dosimeters plus 2 radiochromic EBT films. Dose verification aimed at measuring a dose of 10Gy homogeneously delivered to a virtual-target volume of 8 × 8 × 12 cm(3). In order to interpret the readout of the irradiated alanine dosimeters additional Monte Carlo simulations were performed to calculate the energy dependent detector response of the particle fluence in the alanine detector. A pilot run was performed with protons and carbon ions at the Heidelberg Ion Therapy facility (HIT). The mean difference of the absolute physical dose measured with the alanine dosimeters compared with the expected dose from the treatment planning system was -2.4 ± 0.9% (1σ) for protons and -2.2 ± 1.1% (1σ) for carbon ions. The measurements performed with the ionisation chamber indicate this slight underdosage with a dose difference of -1.7% for protons and -1.0% for carbon ions. The profiles measured by radiochromic films showed an acceptable homogeneity of about 3%. Alanine dosimeters are suitable detectors for dosimetry audits in ion beam therapy and the presented end-to-end test is feasible. If further studies show similar results, this dosimetric audit could be

  13. Relationship between turnover rate and oxidation rate of alanine in the post-absorptive state and during parenteral nutrition before and after surgery

    NARCIS (Netherlands)

    Sauerwein, H. P.; Michels, R. P.; Cejka, V.

    1985-01-01

    The influence of total parenteral nutrition and stomach resection on alanine turnover rate and alanine oxidation rate was measured in ten patients after single injection of U-14 C-alanine. Sequential studies were done in three patients. During parenteral nutrition alanine turnover was significantly

  14. Interaction of Prevotella intermedia strain 17 leucine-rich repeat domain protein AdpF with eukaryotic cells promotes bacterial internalization.

    Science.gov (United States)

    Sengupta, Dipanwita; Kang, Dae-Joong; Anaya-Bergman, Cecilia; Wyant, Tiana; Ghosh, Arnab K; Miyazaki, Hiroshi; Lewis, Janina P

    2014-06-01

    Prevotella intermedia is an oral bacterium implicated in a variety of oral diseases. Although internalization of this bacterium by nonphagocytic host cells is well established, the molecular players mediating the process are not well known. Here, the properties of a leucine-rich repeat (LRR) domain protein, designated AdpF, are described. This protein contains a leucine-rich region composed of 663 amino acid residues, and molecular modeling shows that it folds into a classical curved solenoid structure. The cell surface localization of recombinant AdpF (rAdpF) was confirmed by electron and confocal microscopy analyses. The recombinant form of this protein bound fibronectin in a dose-dependent manner. Furthermore, the protein was internalized by host cells, with the majority of the process accomplished within 30 min. The internalization of rAdpF was inhibited by nystatin, cytochalasin, latrunculin, nocodazole, and wortmannin, indicating that microtubules, microfilaments, and signal transduction are required for the invasion. It is noteworthy that preincubation of eukaryotic cells with AdpF increased P. intermedia 17 internalization by 5- and 10-fold for HeLa and NIH 3T3 fibroblast cell lines, respectively. The addition of the rAdpF protein was also very effective in inducing bacterial internalization into the oral epithelial cell line HN4, as well as into primary cells, including human oral keratinocytes (HOKs) and human umbilical vein endothelial cells (HUVECs). Finally, cells exposed to P. intermedia 17 internalized the bacteria more readily upon reinfection. Taken together, our data demonstrate that rAdpF plays a role in the internalization of P. intermedia 17 by a variety of host cells.

  15. Study of the interactions between a proline-rich protein and a flavan-3-ol by NMR: residual structures in the natively unfolded protein provides anchorage points for the ligands.

    Science.gov (United States)

    Pascal, Christine; Paté, Franck; Cheynier, Véronique; Delsuc, Marc-André

    2009-09-01

    Astringency is one of the major organoleptic properties of food and beverages that are made from plants, such as tea, chocolate, beer, or red wine. This sensation is thought to be due to interactions between tannins and salivary proline-rich proteins, which are natively unfolded proteins. A human salivary proline-rich protein, namely IB-5, was produced by the recombinant method. Its interactions with a model tannin, epigallocatechin gallate (EGCG), the major flavan-3-ol in green tea, were studied here. Circular dichroism experiments showed that IB-5 presents residual structures (PPII helices) when the ionic strength is close to that in saliva. In the presence of these residual structures, IB-5 undergoes an increase in structural content upon binding to EGCG. NMR data corroborated the presence of preformed structural elements within the protein prior to binding and a partial assignment was proposed, showing partial structuration. TOCSY experiments showed that amino acids that are involved in PPII helices are more likely to interact with EGCG than those in random coil regions, as if they were anchorage points for the ligand. The signal from IB-5 in the DOSY NMR spectrum revealed an increase in polydispersity upon addition of EGCG while the mean hydrodynamic radius remained unchanged. This strongly suggests the formation of IB-5/EGCG aggregates.

  16. Unique Aspects of Cryptochrome in Chronobiology and Metabolism, Pancreatic β-Cell Dysfunction, and Regeneration: Research into Cysteine414-Alanine Mutant CRY1

    OpenAIRE

    Satoshi Okano

    2016-01-01

    Cryptochrome proteins (CRYs), which can bind noncovalently to cofactor (chromophore) flavin adenine dinucleotide (FAD), occur widely among organisms. CRYs play indispensable roles in the generation of circadian rhythm in mammals. Transgenic mice (Tg mice), ubiquitously expressing mouse CRY1 having a mutation in which cysteine414 (the zinc-binding site of CRY1) being replaced with alanine, display unique phenotypes in their circadian rhythms. Moreover, male Tg mice exhibit symptoms of diabetes...

  17. Translation, modification and cellular distribution of two AC4 variants of African cassava mosaic virus in yeast and their pathogenic potential in plants

    International Nuclear Information System (INIS)

    Hipp, Katharina; Rau, Peter; Schäfer, Benjamin; Pfannstiel, Jens; Jeske, Holger

    2016-01-01

    Plant infecting geminiviruses encode a small (A)C4 protein within the open reading frame of the replication-initiator protein. In African cassava mosaic virus, two in-frame start codons may be used for the translation of a longer and a shorter AC4 variant. Both were fused to green fluorescent protein or glutathione-S-transferase genes and expressed in fission yeast. The longer variant accumulated in discrete spots in the cytoplasm, whereas the shorter variant localized to the plasma membrane. A similar expression pattern was found in plants. A myristoylation motif may promote a targeting of the shorter variant to the plasma membrane. Mass spectrometry analysis of the yeast-expressed shorter variant detected the corresponding myristoylation. The biological relevance of the second start codon was confirmed using mutated infectious clones. Whereas mutating the first start codon had no effect on the infectivity in Nicotiana benthamiana plants, the second start codon proved to be essential. -- Highlights: •The ACMV AC4 may be translated from one or the other in-frame start codon. •Both AC4 variants are translated in fission yeast. •The long AC4 protein localizes to the cytoplasm, the short to the plasma membrane. •The short variant is myristoylated in yeast and may promote membrane localization. •Only the shorter AC4 variant has an impact on viral infections in plants.

  18. Translation, modification and cellular distribution of two AC4 variants of African cassava mosaic virus in yeast and their pathogenic potential in plants

    Energy Technology Data Exchange (ETDEWEB)

    Hipp, Katharina, E-mail: katharina.hipp@bio.uni-stuttgart.de [University of Stuttgart, Institute of Biomaterials and biomolecular Systems, Department of Molecular Biology and Plant Virology, Pfaffenwaldring 57, 70550 Stuttgart (Germany); Rau, Peter; Schäfer, Benjamin [University of Stuttgart, Institute of Biomaterials and biomolecular Systems, Department of Molecular Biology and Plant Virology, Pfaffenwaldring 57, 70550 Stuttgart (Germany); Pfannstiel, Jens [University of Hohenheim, Mass Spectrometry Core Facility, August-von-Hartmann-Straße 3, 70599 Stuttgart (Germany); Jeske, Holger [University of Stuttgart, Institute of Biomaterials and biomolecular Systems, Department of Molecular Biology and Plant Virology, Pfaffenwaldring 57, 70550 Stuttgart (Germany)

    2016-11-15

    Plant infecting geminiviruses encode a small (A)C4 protein within the open reading frame of the replication-initiator protein. In African cassava mosaic virus, two in-frame start codons may be used for the translation of a longer and a shorter AC4 variant. Both were fused to green fluorescent protein or glutathione-S-transferase genes and expressed in fission yeast. The longer variant accumulated in discrete spots in the cytoplasm, whereas the shorter variant localized to the plasma membrane. A similar expression pattern was found in plants. A myristoylation motif may promote a targeting of the shorter variant to the plasma membrane. Mass spectrometry analysis of the yeast-expressed shorter variant detected the corresponding myristoylation. The biological relevance of the second start codon was confirmed using mutated infectious clones. Whereas mutating the first start codon had no effect on the infectivity in Nicotiana benthamiana plants, the second start codon proved to be essential. -- Highlights: •The ACMV AC4 may be translated from one or the other in-frame start codon. •Both AC4 variants are translated in fission yeast. •The long AC4 protein localizes to the cytoplasm, the short to the plasma membrane. •The short variant is myristoylated in yeast and may promote membrane localization. •Only the shorter AC4 variant has an impact on viral infections in plants.

  19. Liver peroxisomal alanine:glyoxylate aminotransferase and the effects of mutations associated with Primary Hyperoxaluria Type I: An overview.

    Science.gov (United States)

    Oppici, Elisa; Montioli, Riccardo; Cellini, Barbara

    2015-09-01

    Liver peroxisomal alanine:glyoxylate aminotransferase (AGT) (EC 2.6.1.44) catalyses the conversion of l-alanine and glyoxylate to pyruvate and glycine, a reaction that allows glyoxylate detoxification. Inherited mutations on the AGXT gene encoding AGT lead to Primary Hyperoxaluria Type I (PH1), a rare disorder characterized by the deposition of calcium oxalate crystals primarily in the urinary tract. Here we describe the results obtained on the biochemical features of AGT as well as on the molecular and cellular effects of polymorphic and pathogenic mutations. A complex scenario on the molecular pathogenesis of PH1 emerges in which the co-inheritance of polymorphic changes and the condition of homozygosis or compound heterozygosis are two important factors that determine the enzymatic phenotype of PH1 patients. All the reported data represent relevant steps toward the understanding of genotype/phenotype correlations, the prediction of the response of the patients to the available therapies, and the development of new therapeutic approaches. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Electron beam dose measurements with alanine/ESR dosimeter

    International Nuclear Information System (INIS)

    Rodrigues, O. Jr.; Galante, O.L.; Campos, L.L.

    2001-01-01

    When the aminoacid alanine, CH 3 -CH(NH 2 )-COOH, is exposed to radiation field, stable free radicals are produced. The predominant paramagnetic specie found at room temperature is the CH 3 -CH-COOH. Electron Spin Resonance - ESR is a technique used for quantification and analysis of radicals in solid and liquid samples. The evaluation of the amount of produced radicals can be associated with the absorbed dose . The alanine/ESR is an established dosimetry method employed for high doses evaluation, it presents good performance for X-rays, gamma, electrons, and protons radiation detection. The High Doses Dosimetry Laboratory of Ipen developed a dosimetric system based on alanina/ESR that presents good characteristics for use in gamma fields such as: wide dose range from 10 to 10 5 Gy, low fading, low uncertainty (<5%), no dose rate dependence and non-destructive ESR single readout. The detector is encapsulated in a special polyethylene tube that reduces the humidity problems and improves the mechanical resistance. The IPEN dosimeter was investigated for application in electron beam fields dosimetry

  1. Coordinated research efforts for establishing an international radiotherapy dose intercomparison service based on the alanine/ESR system

    International Nuclear Information System (INIS)

    Nette, H.P.; Onori, S.; Fattibene, P.; Regulla, D.; Wieser, A.

    1993-01-01

    The IAEA has long been active in the field of high-dose standardization. An International Dose Assurance Service (IDAS) was established based on alanine/ESR dosimetry. This service operates over the range of 100 Gy to 100 kGy and is directed towards industrial radiation processing in IAEA member states. It complements the IAEA/WHO TLD postal dose intercomparison service for dose assurance in hospital radiotherapy departments. Experience with the alanine high dose service suggests that the alanine dosimeter might provide superior performance to TLD in the therapy dose range. Preliminary test measurements with the participation of GSF/Germany, Istituto Superiore di Sanita/Italy (both providing alanine dosimeters and their evaluation) and IAEA (providing reference irradiations) seems to justify research efforts through an IAEA Coordinated Research Programme (CRP). This CRP, entitled ''Therapy Level Dosimetry with the Alanine/ESR System'' is presently under set-up. It will include general work common to all assigned/potential contract holders as well as some specific research topics in accordance to individual proposals of each participant. (author)

  2. Dosimetric evaluation of spectrophotometric response of alanine gel solution for gamma, photons, electrons and thermal neutrons radiations

    International Nuclear Information System (INIS)

    Silva, Cleber Feijo

    2009-01-01

    Alanine Gel Dosimeter is a new gel material developed at IPEN that presents significant improvement on Alanine system developed by Costa. The DL-Alanine (C 3 H 7 NO 2 ) is an amino acid tissue equivalent that improves the production of ferric ions in the solution. This work aims to analyse the main dosimetric characteristics this new gel material for future application to measure dose distribution. The performance of Alanine gel solution was evaluated to gamma, photons, electrons and thermal neutrons radiations using the spectrophotometry technique. According to the obtained results for the different studied radiation types, the reproducibility intra-batches and inter-batches is better than 4% and 5%, respectively. The dose response presents a linear behavior in the studied dose range. The response dependence as a function of dose rate and incident energy is better 2% and 3%, respectively. The lower detectable dose is 0.1 Gy. The obtained results indicate that the Alanine gel dosimeter presents good performance and can be useful as an alternative dosimeter in the radiotherapy area, using MRI technique for tridimensional dose distribution evaluation. (author)

  3. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion.

    Science.gov (United States)

    Sousa, Cristovão M; Biancur, Douglas E; Wang, Xiaoxu; Halbrook, Christopher J; Sherman, Mara H; Zhang, Li; Kremer, Daniel; Hwang, Rosa F; Witkiewicz, Agnes K; Ying, Haoqiang; Asara, John M; Evans, Ronald M; Cantley, Lewis C; Lyssiotis, Costas A; Kimmelman, Alec C

    2016-08-25

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by an intense fibrotic stromal response and deregulated metabolism. The role of the stroma in PDAC biology is complex and it has been shown to play critical roles that differ depending on the biological context. The stromal reaction also impairs the vasculature, leading to a highly hypoxic, nutrient-poor environment. As such, these tumours must alter how they capture and use nutrients to support their metabolic needs. Here we show that stroma-associated pancreatic stellate cells (PSCs) are critical for PDAC metabolism through the secretion of non-essential amino acids (NEAA). Specifically, we uncover a previously undescribed role for alanine, which outcompetes glucose and glutamine-derived carbon in PDAC to fuel the tricarboxylic acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift in fuel source decreases the tumour’s dependence on glucose and serum-derived nutrients, which are limited in the pancreatic tumour microenvironment. Moreover, we demonstrate that alanine secretion by PSCs is dependent on PSC autophagy, a process that is stimulated by cancer cells. Thus, our results demonstrate a novel metabolic interaction between PSCs and cancer cells, in which PSC-derived alanine acts as an alternative carbon source. This finding highlights a previously unappreciated metabolic network within pancreatic tumours in which diverse fuel sources are used to promote growth in an austere tumour microenvironment.

  4. Use of a range scaling method to determine alanine/water stopping power ratios

    International Nuclear Information System (INIS)

    McEwen, M.R.; Sephton, J.P.; Sharpe, P.H.G.; Shipley, D.R.

    2003-01-01

    A phantom composed of alanine dosimeter material has been constructed and depth-dose measurements made in a 10 MeV electron beam. The results have demonstrated the feasibility of using relative depth-dose measurements to determine stopping power ratios in materials of dosimetric interest. Experimental stopping power ratios for alanine dosimeter material and water agreed with the data of ICRU Report 37 within the uncertainty of the experiment (±1.2% at a 95% confidence level)

  5. Towards Sustainable Production of Protein-Rich Foods: Appraisal of Eight Crops for Western Europe. Part II: Analysis of the Technological Aspects of the Production Chain

    NARCIS (Netherlands)

    Swaving Dijkstra, D.; Linnemann, A.R.; Boekel, van M.A.J.S.

    2003-01-01

    Increased production of plant protein is required to support the production of protein-rich foods which can replace meat in the human diet to reduce the strain that intensive animal husbandry poses on the environment. The suitability of lupin (Lupinus spp.), pea (Pisum sativum), quinoa (Chenopodium

  6. Neuronal RING finger protein 11 (RNF11 regulates canonical NF-κB signaling

    Directory of Open Access Journals (Sweden)

    Pranski Elaine L

    2012-04-01

    Full Text Available Abstract Background The RING domain-containing protein RING finger protein 11 (RNF11 is a member of the A20 ubiquitin-editing protein complex and modulates peripheral NF-κB signaling. RNF11 is robustly expressed in neurons and colocalizes with a population of α-synuclein-positive Lewy bodies and neurites in Parkinson disease patients. The NF-κB pathway has an important role in the vertebrate nervous system, where the absence of NF-κB activity during development can result in learning and memory deficits, whereas chronic NF-κB activation is associated with persistent neuroinflammation. We examined the functional role of RNF11 with respect to canonical NF-κB signaling in neurons to gain understanding of the tight association of inflammatory pathways, including NF-κB, with the pathogenesis of neurodegenerative diseases. Methods and results Luciferase assays were employed to assess NF-κB activity under targeted short hairpin RNA (shRNA knockdown of RNF11 in human neuroblastoma cells and murine primary neurons, which suggested that RNF11 acts as a negative regulator of canonical neuronal NF-κB signaling. These results were further supported by analyses of p65 translocation to the nucleus following depletion of RNF11. Coimmunoprecipitation experiments indicated that RNF11 associates with members of the A20 ubiquitin-editing protein complex in neurons. Site-directed mutagenesis of the myristoylation domain, which is necessary for endosomal targeting of RNF11, altered the impact of RNF11 on NF-κB signaling and abrogated RNF11’s association with the A20 ubiquitin-editing protein complex. A partial effect on canonical NF-κB signaling and an association with the A20 ubiquitin-editing protein complex was observed with mutagenesis of the PPxY motif, a proline-rich region involved in Nedd4-like protein interactions. Last, shRNA-mediated reduction of RNF11 in neurons and neuronal cell lines elevated levels of monocyte chemoattractant protein 1 and

  7. Markov dynamic models for long-timescale protein motion.

    KAUST Repository

    Chiang, Tsung-Han

    2010-06-01

    Molecular dynamics (MD) simulation is a well-established method for studying protein motion at the atomic scale. However, it is computationally intensive and generates massive amounts of data. One way of addressing the dual challenges of computation efficiency and data analysis is to construct simplified models of long-timescale protein motion from MD simulation data. In this direction, we propose to use Markov models with hidden states, in which the Markovian states represent potentially overlapping probabilistic distributions over protein conformations. We also propose a principled criterion for evaluating the quality of a model by its ability to predict long-timescale protein motions. Our method was tested on 2D synthetic energy landscapes and two extensively studied peptides, alanine dipeptide and the villin headpiece subdomain (HP-35 NleNle). One interesting finding is that although a widely accepted model of alanine dipeptide contains six states, a simpler model with only three states is equally good for predicting long-timescale motions. We also used the constructed Markov models to estimate important kinetic and dynamic quantities for protein folding, in particular, mean first-passage time. The results are consistent with available experimental measurements.

  8. Markov dynamic models for long-timescale protein motion.

    KAUST Repository

    Chiang, Tsung-Han; Hsu, David; Latombe, Jean-Claude

    2010-01-01

    Molecular dynamics (MD) simulation is a well-established method for studying protein motion at the atomic scale. However, it is computationally intensive and generates massive amounts of data. One way of addressing the dual challenges of computation efficiency and data analysis is to construct simplified models of long-timescale protein motion from MD simulation data. In this direction, we propose to use Markov models with hidden states, in which the Markovian states represent potentially overlapping probabilistic distributions over protein conformations. We also propose a principled criterion for evaluating the quality of a model by its ability to predict long-timescale protein motions. Our method was tested on 2D synthetic energy landscapes and two extensively studied peptides, alanine dipeptide and the villin headpiece subdomain (HP-35 NleNle). One interesting finding is that although a widely accepted model of alanine dipeptide contains six states, a simpler model with only three states is equally good for predicting long-timescale motions. We also used the constructed Markov models to estimate important kinetic and dynamic quantities for protein folding, in particular, mean first-passage time. The results are consistent with available experimental measurements.

  9. X-ray diffraction study on the structure of concentrated aqueous solutions involving alanine molecules with different optical activities

    International Nuclear Information System (INIS)

    Kameda, Yasuo; Okuyama, Aya; Amo, Yuko; Usuki, Takeshi; Kohara, Shinji

    2007-01-01

    X-ray diffraction measurements on aqueous 2.5 mol% DL-, L-, and D-alanine solutions in D 2 O were carried out at 26±2degC in order to obtain information concerning the difference in the hydrogen-bonded structure between aqueous solutions involving amino acid molecules with different optical activities. The difference function, Δi inter (Q), between intermolecular interference term observed for DL- and L-alanine and between DL- and D-alanine solutions both exhibited a first peak at Q=1.6 A -1 , followed by oscillatory features extending to higher-Q region, implying that there is a difference in the intermolecular structure is present between these solutions. The difference distribution function, Δg inter (r), obtained from the Fourier transform of the Δi inter (Q) between DL- and L-, and between DL- and D-alanine solutions showed an obvious negative peak at r=2.8 A, which was attributed to the nearest neighbor hydrogen-bonded O...O interaction. The least squares fitting analysis of the observed Δi inter (Q) showed that the intermolecular O...O distance and the difference in the coordination number between DL- and L-, and between DL- and D-alanine solutions are 2.76(2) A and -0.18(1), and 2.81(3) A and -0.18(1), respectively. It was concluded that the intermolecular hydrogen-bonded network in aqueous L- and D-alanine solutions is stronger than that in the DL-alanine solution. (author)

  10. Genome-wide functional analysis of plasmodium protein phosphatases reveals key regulators of parasite development and differentiation

    KAUST Repository

    Guttery, David  S.; Poulin, Benoit; Ramaprasad, Abhinay; Wall, Richard  J.; Ferguson, David  J.P.; Brady, Declan; Patzewitz, Eva-Maria; Whipple, Sarah; Straschil, Ursula; Wright, Megan  H.; Mohamed, Alyaa  M.A.H.; Radhakrishnan, Anand; Arold, Stefan T.; Tate, Edward  W.; Holder, Anthony  A.; Wickstead, Bill; Pain, Arnab; Tewari, Rita

    2014-01-01

    Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria. © 2014 The Authors.

  11. Genome-wide functional analysis of plasmodium protein phosphatases reveals key regulators of parasite development and differentiation

    KAUST Repository

    Guttery, David S.

    2014-07-09

    Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria. © 2014 The Authors.

  12. Electrophoretic mobility shift in native gels indicates calcium-dependent structural changes of neuronal calcium sensor proteins.

    Science.gov (United States)

    Viviano, Jeffrey; Krishnan, Anuradha; Wu, Hao; Venkataraman, Venkat

    2016-02-01

    In proteins of the neuronal calcium sensor (NCS) family, changes in structure as well as function are brought about by the binding of calcium. In this article, we demonstrate that these structural changes, solely due to calcium binding, can be assessed through electrophoresis in native gels. The results demonstrate that the NCS proteins undergo ligand-dependent conformational changes that are detectable in native gels as a gradual decrease in mobility with increasing calcium but not other tested divalent cations such as magnesium, strontium, and barium. Surprisingly, such a gradual change over the entire tested range is exhibited only by the NCS proteins but not by other tested calcium-binding proteins such as calmodulin and S100B, indicating that the change in mobility may be linked to a unique NCS family feature--the calcium-myristoyl switch. Even within the NCS family, the changes in mobility are characteristic of the protein, indicating that the technique is sensitive to the individual features of the protein. Thus, electrophoretic mobility on native gels provides a simple and elegant method to investigate calcium (small ligand)-induced structural changes at least in the superfamily of NCS proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. A non-enzymic browning induced by gamma cobalt-60 irradiation and heating in a fructose-alanine model system

    International Nuclear Information System (INIS)

    Bachman, S.; Zegota, A.; Zegota, H.

    1981-01-01

    The Maillard browning reaction between reducing sugars and amino compounds is important in food chemistry and may considerably affect the colour, aroma and nutritional value of food after thermal processing. In this study, the effect of irradiation combined with heating on the course of browning reaction in the model system of aqueous solution of fructose (0.03M) and alanine (0.01M) was investigated. The optical absorption spectra recorded for irradiated and heated solution of fructose-alanine were different from those of only irradiated or only heated solution. The brown colour of the samples is caused by the extension of the tail-end absorption into the visible region of the spectrum. No absorption maximum appears in the visible range. The heating of irradiated fructose solution with non-irradiated alanine develops markedly more intensive browning than that of the heating of irradiated alanine solution with non-irradiated fructose. The products of fructose radiolysis are responsible for the acceleration of browning in the fructose-alanine system. (author)

  14. GLYCINE-RICH RNA-BINDING PROTEIN1 interacts with RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 and suppresses cell death and defense responses in pepper (Capsicum annuum).

    Science.gov (United States)

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Plants use a variety of innate immune regulators to trigger cell death and defense responses against pathogen attack. We identified pepper (Capsicum annuum) GLYCINE-RICH RNA-BINDING PROTEIN1 (CaGRP1) as a RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 (CaPIK1)-interacting partner, based on bimolecular fluorescence complementation and coimmunoprecipitation analyses as well as gene silencing and transient expression analysis. CaGRP1 contains an N-terminal RNA recognition motif and a glycine-rich region at the C-terminus. The CaGRP1 protein had DNA- and RNA-binding activity in vitro. CaGRP1 interacted with CaPIK1 in planta. CaGRP1 and CaGRP1-CaPIK1 complexes were localized to the nucleus in plant cells. CaPIK1 phosphorylated CaGRP1 in vitro and in planta. Transient coexpression of CaGRP1 with CaPIK1 suppressed the CaPIK1-triggered cell death response, accompanied by a reduced CaPIK1-triggered reactive oxygen species (ROS) burst. The RNA recognition motif region of CaGRP1 was responsible for the nuclear localization of CaGRP1 as well as the suppression of the CaPIK1-triggered cell death response. CaGRP1 silencing in pepper conferred enhanced resistance to Xanthomonas campestris pv vesicatoria (Xcv) infection; however, CaPIK1-silenced plants were more susceptible to Xcv. CaGRP1 interacts with CaPIK1 and negatively regulates CaPIK1-triggered cell death and defense responses by suppressing ROS accumulation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  15. Coupling of anaerobic waste treatment to produce protein- and lipid-rich bacterial biomass

    Science.gov (United States)

    Steinberg, Lisa M.; Kronyak, Rachel E.; House, Christopher H.

    2017-11-01

    Future long-term manned space missions will require effective recycling of water and nutrients as part of a life support system. Biological waste treatment is less energy intensive than physicochemical treatment methods, yet anaerobic methanogenic waste treatment has been largely avoided due to slow treatment rates and safety issues concerning methane production. However, methane is generated during atmosphere regeneration on the ISS. Here we propose waste treatment via anaerobic digestion followed by methanotrophic growth of Methylococcus capsulatus to produce a protein- and lipid-rich biomass that can be directly consumed, or used to produce other high-protein food sources such as fish. To achieve more rapid methanogenic waste treatment, we built and tested a fixed-film, flow-through, anaerobic reactor to treat an ersatz wastewater. During steady-state operation, the reactor achieved a 97% chemical oxygen demand (COD) removal rate with an organic loading rate of 1740 g d-1 m-3 and a hydraulic retention time of 12.25 d. The reactor was also tested on three occasions by feeding ca. 500 g COD in less than 12 h, representing 50x the daily feeding rate, with COD removal rates ranging from 56-70%, demonstrating the ability of the reactor to respond to overfeeding events. While investigating the storage of treated reactor effluent at a pH of 12, we isolated a strain of Halomonas desiderata capable of acetate degradation under high pH conditions. We then tested the nutritional content of the alkaliphilic Halomonas desiderata strain, as well as the thermophile Thermus aquaticus, as supplemental protein and lipid sources that grow in conditions that should preclude pathogens. The M. capsulatus biomass consisted of 52% protein and 36% lipids, the H. desiderata biomass consisted of 15% protein and 7% lipids, and the Thermus aquaticus biomass consisted of 61% protein and 16% lipids. This work demonstrates the feasibility of rapid waste treatment in a compact reactor design

  16. Improved scFv Anti-HIV-1 p17 Binding Affinity Guided from the Theoretical Calculation of Pairwise Decomposition Energies and Computational Alanine Scanning

    Directory of Open Access Journals (Sweden)

    Panthip Tue-ngeun

    2013-01-01

    Full Text Available Computational approaches have been used to evaluate and define important residues for protein-protein interactions, especially antigen-antibody complexes. In our previous study, pairwise decomposition of residue interaction energies of single chain Fv with HIV-1 p17 epitope variants has indicated the key specific residues in the complementary determining regions (CDRs of scFv anti-p17. In this present investigation in order to determine whether a specific side chain group of residue in CDRs plays an important role in bioactivity, computational alanine scanning has been applied. Molecular dynamics simulations were done with several complexes of original scFv anti-p17 and scFv anti-p17mutants with HIV-1 p17 epitope variants with a production run up to 10 ns. With the combination of pairwise decomposition residue interaction and alanine scanning calculations, the point mutation has been initially selected at the position MET100 to improve the residue binding affinity. The calculated docking interaction energy between a single mutation from methionine to either arginine or glycine has shown the improved binding affinity, contributed from the electrostatic interaction with the negative favorably interaction energy, compared to the wild type. Theoretical calculations agreed well with the results from the peptide ELISA results.

  17. A novel glutamine-rich putative transcriptional adaptor protein (TIG-1), preferentially expressed in placental and bone-marrow tissues.

    Science.gov (United States)

    Abraham, S; Solomon, W B

    2000-09-19

    We used a subtractive hybridization protocol to identify novel expressed sequence tags (ESTs) corresponding to mRNAs whose expression was induced upon exposure of the human leukemia cell line K562 to the phorbol ester 12-O-tetradecanolyphorbol-13-acetate (TPA). The complete open reading frame of one of the novel ESTs, named TIG-1, was obtained by screening K562 cell and placental cDNA libraries. The deduced open reading frame of the TIG-1 cDNA encodes for a glutamine repeat-rich protein with a predicted molecular weight of 63kDa. The predicted open reading frame also contains a consensus bipartite nuclear localization signal, though no specific DNA-binding domain is found. The corresponding TIG-1 mRNA is ubiquitously expressed. Placental tissue expresses the TIG-1 mRNA 200 times more than the lowest expressing tissues such as kidney and lung. There is also preferential TIG-1 mRNA expression in cells of bone-marrow lineage.In-vitro transcription/translation of the TIG-1 cDNA yielded a polypeptide with an apparent molecular weight of 97kDa. Using polyclonal antibodies obtained from a rabbit immunized with the carboxy-terminal portion of bacterially expressed TIG-1 protein, a polypeptide with molecular weight of 97kDa was identified by Western blot analyses of protein lysates obtained from K562 cells. Cotransfection assays of K562 cells, using a GAL4-TIG-1 fusion gene and GAL4 operator-CAT, indicate that the TIG-1 protein may have transcriptional regulatory activity when tethered to DNA. We hypothesize that this novel glutamine-rich protein participates in a protein complex that regulates gene transcription. It has been demonstrated by Naar et al. (Naar, A.M., Beaurang, P.A., Zhou, S., Abraham, S., Solomon, W.B., Tjian, R., 1999, Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature 398, 828-830) that the amino acid sequences of peptide fragments obtained from a polypeptide found in a complex of proteins that alters chromatin

  18. Topology of AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, determined by site-directed fluorescence labeling.

    Science.gov (United States)

    Nanatani, Kei; Fujiki, Takashi; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko; Umeyama, Hideaki; Ye, Liwen; Wang, Xicheng; Nakajima, Tasuku; Uchida, Takafumi; Maloney, Peter C; Abe, Keietsu

    2007-10-01

    The gram-positive lactic acid bacterium Tetragenococcus halophilus catalyzes the decarboxylation of L-aspartate (Asp) with release of L-alanine (Ala) and CO(2). The decarboxylation reaction consists of two steps: electrogenic exchange of Asp for Ala catalyzed by an aspartate:alanine antiporter (AspT) and intracellular decarboxylation of the transported Asp catalyzed by an L-aspartate-beta-decarboxylase (AspD). AspT belongs to the newly classified aspartate:alanine exchanger family (transporter classification no. 2.A.81) of transporters. In this study, we were interested in the relationship between the structure and function of AspT and thus analyzed the topology by means of the substituted-cysteine accessibility method using the impermeant, fluorescent, thiol-specific probe Oregon Green 488 maleimide (OGM) and the impermeant, nonfluorescent, thiol-specific probe [2-(trimethylammonium)ethyl]methanethiosulfonate bromide. We generated 23 single-cysteine variants from a six-histidine-tagged cysteineless AspT template. A cysteine position was assigned an external location if the corresponding single-cysteine variant reacted with OGM added to intact cells, and a position was assigned an internal location if OGM labeling required cell lysis. The topology analyses revealed that AspT has a unique topology; the protein has 10 transmembrane helices (TMs), a large hydrophilic cytoplasmic loop (about 180 amino acids) between TM5 and TM6, N and C termini that face the periplasm, and a positively charged residue (arginine 76) within TM3. Moreover, the three-dimensional structure constructed by means of the full automatic modeling system indicates that the large hydrophilic cytoplasmic loop of AspT possesses a TrkA_C domain and a TrkA_C-like domain and that the three-dimensional structures of these domains are similar to each other even though their amino acid sequences show low similarity.

  19. Acidogenic fermentation characteristics of different types of protein-rich substrates in food waste to produce volatile fatty acids.

    Science.gov (United States)

    Shen, Dongsheng; Yin, Jun; Yu, Xiaoqin; Wang, Meizhen; Long, Yuyang; Shentu, Jiali; Chen, Ting

    2017-03-01

    In this study, tofu and egg white, representing typical protein-rich substrates in food waste based on vegetable and animal protein, respectively, were investigated for producing volatile fatty acids (VFAs) by acidogenic fermentation. VFA production, composition, conversion pathways and microbial communities in acidogenesis from tofu and egg white with and without hydrothermal (HT) pretreatment were compared. The results showed HT pretreatment could improve the VFA production of tofu but not for egg white. The optimum VFA yields were 0.46g/gVS (tofu with HT) and 0.26g/gVS (egg white without HT), respectively. Tofu could directly produce VFAs through the Stickland reaction, while egg white was converted to lactate and VFAs simultaneously. About 30-40% of total protein remained in all groups after fermentation. Up to 50% of the unconverted soluble protein in the HT groups was protease. More lactate-producing bacteria, mainly Leuconostoc and Lactobacillus, were present during egg white fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. β-alanine supplementation improves isometric endurance of the knee extensor muscles

    Directory of Open Access Journals (Sweden)

    Sale Craig

    2012-06-01

    Full Text Available Abstract Background We examined the effect of four weeks of β-alanine supplementation on isometric endurance of the knee extensors at 45% maximal voluntary isometric contraction (MVIC. Methods Thirteen males (age 23 ± 6 y; height 1.80 ± 0.05 m; body mass 81.0 ± 10.5 kg, matched for pre-supplementation isometric endurance, were allocated to either a placebo (n = 6 or β-alanine (n = 7; 6.4 g·d-1 over 4 weeks supplementation group. Participants completed an isometric knee extension test (IKET to fatigue, at an intensity of 45% MVIC, before and after supplementation. In addition, two habituation tests were completed in the week prior to the pre-supplementation test and a further practice test was completed in the week prior to the post-supplementation test. MVIC force, IKET hold-time, and impulse generated were recorded. Results IKET hold-time increased by 9.7 ± 9.4 s (13.2% and impulse by 3.7 ± 1.3 kN·s-1 (13.9% following β-alanine supplementation. These changes were significantly greater than those in the placebo group (IKET: t(11 = 2.9, p ≤0.05; impulse: t(11 = 3.1, p ≤ 0.05. There were no signif