WorldWideScience

Sample records for mwt modular htgr

  1. Preliminary design of 600 MWt HTGR-gas turbine plant

    Energy Technology Data Exchange (ETDEWEB)

    Muto, Yasushi; Miyamoto, Yoshiaki; Shiozawa, Shusaku [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1999-07-01

    In JAERI a feasibility study of the High Temperature Gas-cooled Reactor - Gas Turbine (HTGR-GT) system has been carried out since January, 1997 as an assigned work by the Science and Technology Agency. This paper describes a result of a preliminary design for a direct cycle plant of 600 MWt carried out in 1997 fiscal year within the framework of this feasibility study. A reactor inlet gas temperature of 460degC, a reactor outlet gas temperature of 850degC and a helium gas pressure of 6 MPa were selected. A power density of 6 MW/m{sup 3} and the maximum burnup of 10{sup 5} MWD/ton were achieved. A single-shaft horizontal turbomachine of 3600 rpm was selected and placed in a turbine vessel. A net thermal efficiency of 45.7% is expected to be achieved. (author)

  2. Modular HTGR Safety Basis and Approach

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Hicks

    2011-08-01

    The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) capable of producing electricity and/or high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) process, as recommended in the NGNP Licensing Strategy - A Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy [DOE/NRC 2008]. Nuclear Regulatory Commission (NRC) licensing of the NGNP plant utilizing this process will demonstrate the efficacy for licensing future HTGRs for commercial industrial applications. This information paper is one in a series of submittals that address key generic issues of the priority licensing topics as part of the process for establishing HTGR regulatory requirements. This information paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach with the NRC staff and public stakeholders. The NGNP project does not expect to receive comments on this information paper because other white papers are addressing key generic issues of the priority licensing topics in greater detail.

  3. Probabilistic risk assessment of the modular HTGR plant. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Everline, C.J.; Bellis, E.A.; Vasquez, J.

    1986-06-01

    A preliminary probabilistic risk assessment (PRA) has been performed for the modular HTGR (MHTGR). This PRA is preliminary in the context that although it updates the PRA issued earlier to include a wider spectrum of events for Licensing Basis Events (LBE) selection, the final version will not be issued until later. The primary function of the assessment was to assure compliance with the NRC interim safety goals imposed by the top-level regulatory criteria, and utility/user requirements regarding public evacuation or sheltering. In addition, the assessment provides a basis for designer feedback regarding reliability allocations and barrier retention requirements as well as providing a basis for the selection of licensing basis events (LBEs) and the safety classification of structures, systems, and components. The assessment demonstrates that both the NRC interim safety goals and utility/user imposed sheltering/evacuation requirements are satisfied. Moreover, it is not anticipated that design changes introduced will jeopardize compliance with the interim safety goals or utility/user requirements. 61 refs., 48 figs., 24 tabs.

  4. OVERVIEW OF MODULAR HTGR SAFETY CHARACTERIZATION AND POSTULATED ACCIDENT BEHAVIOR LICENSING STRATEGY

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Sydney J [ORNL

    2014-06-01

    This report provides an update on modular high-temperature gas-cooled reactor (HTGR) accident analyses and risk assessments. One objective of this report is to improve the characterization of the safety case to better meet current regulatory practice, which is commonly geared to address features of today s light water reactors (LWRs). The approach makes use of surrogates for accident prevention and mitigation to make comparisons with LWRs. The safety related design features of modular HTGRs are described, along with the means for rigorously characterizing accident selection and progression methodologies. Approaches commonly used in the United States and elsewhere are described, along with detailed descriptions and comments on design basis (and beyond) postulated accident sequences.

  5. Interactive simulations of gas-turbine modular HTGR transients and heatup accidents

    Energy Technology Data Exchange (ETDEWEB)

    Ball, S.J.; Nypaver, D.J.

    1994-06-01

    An interactive workstation-based simulator has been developed for performing analyses of modular high-temperature gas-cooled reactor (MHTGR) core transients and accidents. It was originally developed at Oak Ridge National Laboratory for the US Nuclear Regulatory Commission to assess the licensability of the US Department of Energy (DOE) steam cycle design 350-MW(t) MHTGR. Subsequently, the code was modified under DOE sponsorship to simulate the 450-MW(t) Gas Turbine (GT) design and to aid in development and design studies. Features of the code (MORECA-GT) include detailed modeling of 3-D core thermal-hydraulics, interactive workstation capabilities that allow user/analyst or ``operator`` involvement in accident scenarios, and options for studying anticipated transients without scram (ATWS) events. In addition to the detailed models for the core, MORECA includes models for the vessel, Shutdown Cooling System (SCS), and Reactor Cavity Cooling System (RCCS), and core point kinetics to accommodate ATWS events. The balance of plant (BOP) is currently not modeled. The interactive workstation features include options for on-line parameter plots and 3-D graphic temperature profiling. The studies to date show that the proposed MHTGR designs are very robust and can generally withstand the consequences of even the extremely low probability postulated accidents with little or no damage to the reactor`s fuel or metallic components.

  6. Security monitoring subsystem design description: 4 x 350 MW(t) Modular HTGR [High-Temperature Gas-Cooled Reactor] Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-06-01

    Security Monitoring acquires and processes sensor data for use by security personnel in the performance of their function. Security Monitoring is designed and implemented as a part of an overall security plan which is classified as Safeguards Information under 10CFR73.21.

  7. HTGR Cost Model Users' Manual

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Gandrik

    2012-01-01

    The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

  8. HTGR Application Economic Model Users' Manual

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Gandrik

    2012-01-01

    The High Temperature Gas-Cooled Reactor (HTGR) Application Economic Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Application Economic Model calculates either the required selling price of power and/or heat for a given internal rate of return (IRR) or the IRR for power and/or heat being sold at the market price. The user can generate these economic results for a range of reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for up to 16 reactor modules; and for module ratings of 200, 350, or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Application Economic Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Application Economic Model. This model was designed for users who are familiar with the HTGR design and Excel and engineering economics. Modification of the HTGR Application Economic Model should only be performed by users familiar with the HTGR and its applications, Excel, and Visual Basic.

  9. HTGR fuel element structural design considerations

    Energy Technology Data Exchange (ETDEWEB)

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1986-09-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabalistic stress analysis techniques coupled with probabalistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistent with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the USA is discussed in the context of stress analysis uncertainty and structural criteria development.

  10. HTGR Economic / Business Analysis and Trade Studies Market Analysis for HTGR Technologies and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Matt [Ultra Safe Nuclear Corporation, Los Alamos, NM (United States); Hamilton, Chris [Ultra Safe Nuclear Corporation, Los Alamos, NM (United States)

    2013-11-01

    This report provides supplemental information to the assessment of target markets provided in Appendix A of the 2012 Next Generation Nuclear Plant (NGNP) Industry Alliance (NIA) business plan [NIA 2012] for deployment of High Temperature Gas-Cooled Reactors (HTGRs) in the 2025 – 2050 time frame. This report largely reiterates the [NIA 2012] assessment for potential deployment of 400 to 800 HTGR modules (100 to 200 HTGR plants with 4 reactor modules) in the 600-MWt class in North America by 2050 for electricity generation, co-generation of steam and electricity, oil sands operations, hydrogen production, and synthetic fuels production (e.g., coal to liquids). As the result of increased natural gas supply from hydraulic fracturing, the current and historically low prices of natural gas remain a significant barrier to deployment of HTGRs and other nuclear reactor concepts in the U.S. However, based on U.S. Department of Energy (DOE) Energy Information Agency (EIA) data, U.S. natural gas prices are expected to increase by the 2030 – 2040 timeframe when a significant number of HTGR modules could be deployed. An evaluation of more recent EIA 2013 data confirms the assumptions in [NIA 2012] of future natural gas prices in the range of approximately $7/MMBtu to $10/MMBtu during the 2030 – 2040 timeframe. Natural gas prices in this range will make HTGR energy prices competitive with natural gas, even in the absence of carbon-emissions penalties. Exhibit ES-1 presents the North American projections in each market segment including a characterization of the market penetration logic. Adjustments made to the 2012 data (and reflected in Exhibit ES-1) include normalization to the slightly larger 625MWt reactor module, segregation between steam cycle and more advanced (higher outlet temperature) modules, and characterization of U.S. synthetic fuel process applications as a separate market segment.

  11. HTGR nuclear heat source component design and experience

    Energy Technology Data Exchange (ETDEWEB)

    Peinado, C.O.; Wunderlich, R.G.; Simon, W.A.

    1982-05-01

    The high-temperature gas-cooled reactor (HTGR) nuclear heat source components have been under design and development since the mid-1950's. Two power plants have been designed, constructed, and operated: the Peach Bottom Atomic Power Station and the Fort St. Vrain Nuclear Generating Station. Recently, development has focused on the primary system components for a 2240-MW(t) steam cycle HTGR capable of generating about 900 MW(e) electric power or alternately producing high-grade steam and cogenerating electric power. These components include the steam generators, core auxiliary heat exchangers, primary and auxiliary circulators, reactor internals, and thermal barrier system. A discussion of the design and operating experience of these components is included.

  12. HTGR Fuel performance basis

    Energy Technology Data Exchange (ETDEWEB)

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-05-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600/sup 0/C, and complete fuel failure occurs at 2660/sup 0/C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents.

  13. Predictions for LHC from SO(4) MWT

    DEFF Research Database (Denmark)

    Hietanen, Ari; Pica, Claudio; Sannino, Francesco;

    2013-01-01

    We investigate the vector, axial and pseudo scalar mass spectrum of an SO(4) - MWT gauge theory with fermions in the vector representation of SO(4). Here we present the preliminary lattice results for the masses of vector and axial vector meson using Wilson fermions. These spectra are crucial for...... for the discovery and to guide the searches of composite dynamics at the LHC....

  14. Predictions for LHC from SO(4) MWT

    CERN Document Server

    Hietanen, Ari; Sannino, Francesco; Søndergaard, Ulrik

    2013-01-01

    We investigate the vector, axial and pseudo scalar mass spectrum of an SO(4) - MWT gauge theory with fermions in the vector representation of SO(4). Here we present the preliminary lattice results for the masses of vector and axial vector meson using Wilson fermions. These spectra are crucial for the discovery and to guide the searches of composite dynamics at the LHC.

  15. Innovative safety features of the modular HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Silady, F.A.; Simon, W.A.

    1992-04-01

    In this document the innovative safety features of the MHTGR are reviewed by examining the safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles. A broad range of challenges to core heat removal are examined, including a loss of helium pressure and a simultaneous loss of forced cool of the core.

  16. A SMALL MODULAR REACTOR DESIGN FOR MULTIPLE ENERGY APPLICATIONS: HTR50S

    Directory of Open Access Journals (Sweden)

    X. YAN

    2013-06-01

    Full Text Available HTR50S is a small modular reactor system based on HTGR. It is designed for a triad of applications to be implemented in successive stages. In the first stage, a base plant for heat and power is constructed of the fuel proven in JAEA's 950°C, 30MWt test reactor HTTR and a conventional steam turbine to minimize development risk. While the outlet temperature is lowered to 750°C for the steam turbine, thermal power is raised to 50MWt by enabling 40% greater power density in 20% taller core than the HTTR. However the fuel temperature limit and reactor pressure vessel diameter are kept. In second stage, a new fuel that is currently under development at JAEA will allow the core outlet temperature to be raised to 900°C for the purpose of demonstrating more efficient gas turbine power generation and high temperature heat supply. The third stage adds a demonstration of nuclear-heated hydrogen production by a thermochemical process. A licensing approach to coupling high temperature industrial process to nuclear reactor will be developed. The low initial risk and the high longer-term potential for performance expansion attract development of the HTR50S as a multipurpose industrial or distributed energy source.

  17. NGNP Project Regulatory Gap Analysis for Modular HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Moe

    2011-09-01

    The Next Generation Nuclear Plant (NGNP) Project Regulatory Gap Analysis (RGA) for High Temperature Gas-Cooled Reactors (HTGR) was conducted to evaluate existing regulatory requirements and guidance against the design characteristics specific to a generic modular HTGR. This final report presents results and identifies regulatory gaps concerning current Nuclear Regulatory Commission (NRC) licensing requirements that apply to the modular HTGR design concept. This report contains appendices that highlight important HTGR licensing issues that were found during the RGA study. The information contained in this report will be used to further efforts in reconciling HTGR-related gaps in the NRC licensing structure, which has to date largely focused on light water reactor technology.

  18. Burning of spent fuel of an accelerator-driven modular HTGR in sub-critical condition%乏燃料在加速器驱动的次临界模块式HTGR中的燃烧

    Institute of Scientific and Technical Information of China (English)

    经荥清; 杨永伟; 常鸿; 吴宗鑫; 古玉祥

    2002-01-01

    环状模块式高温气冷堆(HTGR)采用包覆颗粒燃料,其乏燃料经过一段时间的堆外冷却后,可以再利用.研究了350 MW环状模块式HTGR乏燃料在加速器驱动的次临界堆中燃烧的物理可行性.给出了功率为30 MW次临界堆概念设计,利用MCNP程序模拟中子在次临界堆内的输运过程,利用ORIGEN2程序进行燃耗计算.结果表明: 加速器驱动的次临界气冷堆具有可靠的次临界度和低的功率密度,用于燃烧350 MW环状模块式HTGR乏燃料, 从能源利用的角度考虑,可以获得约20%的额外收益.

  19. High-temperature Gas Reactor (HTGR)

    Science.gov (United States)

    Abedi, Sajad

    2011-05-01

    General Atomics (GA) has over 35 years experience in prismatic block High-temperature Gas Reactor (HTGR) technology design. During this period, the design has recently involved into a modular have been performed to demonstrate its versatility. This versatility is directly related to refractory TRISO coated - particle fuel that can contain any type of fuel. This paper summarized GA's fuel cycle studies individually and compares each based upon its cycle sustainability, proliferation-resistance capabilities, and other performance data against pressurized water reactor (PWR) fuel cycle data. Fuel cycle studies LEU-NV;commercial HEU-Th;commercial LEU-Th;weapons-grade plutonium consumption; and burning of LWR waste including plutonium and minor actinides in the MHR. results show that all commercial MHR options, with the exception of HEU-TH, are more sustainable than a PWR fuel cycle. With LEU-NV being the most sustainable commercial options. In addition, all commercial MHR options out perform the PWR with regards to its proliferation-resistance, with thorium fuel cycle having the best proliferation-resistance characteristics.

  20. HTGR severe accident sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, R.M.; Ball, S.J.; Kornegay, F.C.

    1982-01-01

    Thermal-hydraulic, fission product transport, and atmospheric dispersion calculations are presented for hypothetical severe accident release paths at the Fort St. Vrain (FSV) high temperature gas cooled reactor (HTGR). Off-site radiation exposures are calculated for assumed release of 100% of the 24 hour post-shutdown core xenon and krypton inventory and 5.5% of the iodine inventory. The results show conditions under which dose avoidance measures would be desirable and demonstrate the importance of specific release characteristics such as effective release height. 7 tables.

  1. p-Type MWT. Integrated cell and module technology

    Energy Technology Data Exchange (ETDEWEB)

    Tool, C.J.J.; Kossen, E.J.; Bennett, I.J.

    2013-10-15

    A major issue of concern in MWT solar cells is the increased leakage current at reversed bias voltage through the vias compared. At ECN we have been working on reducing this leakage current to levels comparable to H-pattern cells. In this study we present the results of this work. We further show the benefit of a combined cell and module design for MWT solar cells. At the cell level, MWT production costs per wafer are comparable with H-pattern while the cell output increases. At the module level this design results in a further increase of the power output.

  2. p-type MWT. Integrated Cell and Module Technology

    Energy Technology Data Exchange (ETDEWEB)

    Tool, C.J.J.; Kossen, E.J.; Bennett, I.J. [ECN Solar Energy, Petten (Netherlands)

    2013-03-15

    A major issue of concern in MWT (metal wrap-through) solar cells is the increased leakage current at reversed bias voltage through the vias compared. At ECN we have been working on reducing this leakage current to levels comparable to H-pattern cells. In this study we present the results of this work. We further show the benefit of a combined cell and module design for MWT solar cells. At the cell level, MWT production costs per wafer are comparable with H-pattern while the cell output increases. At the module level this design results in a further increase of the power output.

  3. A Small-Sized HTGR System Design for Multiple Heat Applications for Developing Countries

    Directory of Open Access Journals (Sweden)

    Hirofumi Ohashi

    2013-01-01

    Full Text Available Japan Atomic Energy Agency has conducted a conceptual design of a 50 MWt small-sized high temperature gas cooled reactor (HTGR for multiple heat applications, named HTR50S, with the reactor outlet coolant temperature of 750°C and 900°C. It is first-of-a-kind of the commercial plant or a demonstration plant of a small-sized HTGR system to be deployed in developing countries in the 2020s. The design concept of HTR50S is to satisfy the user requirements for multipurpose heat applications such as the district heating and process heat supply based on the steam turbine system and the demonstration of the power generation by helium gas turbine and the hydrogen production using the water splitting iodine-sulfur process, to upgrade its performance compared to that of HTTR without significant R&D utilizing the knowledge obtained by the HTTR design and operation, and to fulfill the high level of safety by utilizing the inherent features of HTGR and a passive decay heat removal system. The evaluation of technical feasibility shows that all design targets were satisfied by the design of each system and the preliminary safety analysis. This paper describes the conceptual design and the preliminary safety analysis of HTR50S.

  4. New small HTGR power plant concept with inherently safe features - an engineering and economic challenge

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, C.F.; Sonn, D.L.

    1983-01-01

    Studies are in a very early design stage to establish a modular concept High-Temperature Gas-Cooled Reactor (HTGR) plant of about 100-MW(e) size to meet the special needs of small energy users in the industrialized and developing nations. The basic approach is to design a small system in which, even under the extreme conditions of loss of reactor pressure and loss of forced core cooling, the temperature would remain low enough so that the fuel would retain essentially all the fission products and the owner's investment would not be jeopardized. To realize economic goals, the designer faces the challenge of providing a standardized nuclear heat source, relying on a high percentage of factory fabrication to reduce site construction time, and keeping the system simple. While the proposed nuclear plant concept embodies new features, there is a large technology base to draw upon for the design of a small HTGR.

  5. Innovative safety features of the modular HTGR. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Silady, F.A.; Simon, W.A.

    1992-04-01

    In this document the innovative safety features of the MHTGR are reviewed by examining the safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles. A broad range of challenges to core heat removal are examined, including a loss of helium pressure and a simultaneous loss of forced cool of the core.

  6. Gas-Cooled Reactor Programs annual progress report for period ending December 31, 1973. [HTGR fuel reprocessing, fuel fabrication, fuel irradiation, core materials, and fission product distribution; GCFR fuel irradiation and steam generator modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Coobs, J.H.; Lotts, A.L.

    1976-04-01

    Progress is summarized in studies relating to HTGR fuel reprocessing, refabrication, and recycle; HTGR fuel materials development and performance testing; HTGR PCRV development; HTGR materials investigations; HTGR fuel chemistry; HTGR safety studies; and GCFR irradiation experiments and steam generator modeling.

  7. HTGR generic technology program. Semiannual report ending March 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the first half of FY-80. It covers a period when the design direction of the National HTGR Program is in the process of an overall review. The HTGR Generic Technology Program activities have continued so as to provide the basic technology required for all HTGR applications. The activities include the need to develop an MEU fuel and the need to qualify materials and components for the higher temperatures of the gas turbine and process heat plants.

  8. Fission-product retention in HTGR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Homan, F.J.; Kania, M.J.; Tiegs, T.N.

    1982-01-01

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed.

  9. HTGR Mechanistic Source Terms White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Moe

    2010-07-01

    The primary purposes of this white paper are: (1) to describe the proposed approach for developing event specific mechanistic source terms for HTGR design and licensing, (2) to describe the technology development programs required to validate the design methods used to predict these mechanistic source terms and (3) to obtain agreement from the NRC that, subject to appropriate validation through the technology development program, the approach for developing event specific mechanistic source terms is acceptable

  10. Study on commercial HTGR hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Nishihara, Tetsuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Hada, Kazuhiko [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Nishimura, Kuniyuki [Mitsubishi Research Institute, Tokyo (Japan)

    2000-07-01

    The Japanese energy demand in 2030 will increase up to 117% in comparison with one in 2000. We have to avoid a large consumption of fossil fuel that induces a large CO{sub 2} emission from viewpoint of global warming. Furthermore new energy resources expected to resolve global warming have difficulty to be introduced more because of their low energy density. As a result, nuclear power still has a possibility of large introduction to meet the increasing energy demand. On the other hand, in Japan, 40% of fossil fuels in the primary energy are utilized for power generation, and the remaining are utilized as a heat source. New clean energy is required to reduce the consumption of fossil fuels and hydrogen is expected as a alternative energy resource. Prediction of potential hydrogen demand in Japan is carried out and it is clarified that the demand will potentially increase up to 4% of total primary energy in 2050. In present, steam reforming method is the most economical among hydrogen generation processes and the cost of hydrogen production is about 7 to 8 yen/m{sup 3} in Europe and the United States and about 13 yen/m{sup 3} in Japan. JAERI has proposed for using the HTGR whose maximum core outlet temperature is at 950degC as a heat source in the steam reforming to reduced the consumption of fossil fuels and resulting CO{sub 2} emission. Based on the survey of the production rate and the required thermal energy in conventional industry, it is clarified that a hydrogen production system by the steam reforming is the best process for the commercial HTGR nuclear heat utilization. The HTGR steam reforming system and other candidate nuclear heat utilization systems are considered from viewpoint of system layout and economy. From the results, the hydrogen production cost in the HTGR stream reforming system is expected to be about 13.5 yen/m{sup 3} if the cost of nuclear heat of the HTGR is the same as one of the LWR. (author)

  11. Results for Phase I of the IAEA Coordinated Research Program on HTGR Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bostelmann, Friederike [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yoon, Su Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    The quantification of uncertainties in design and safety analysis of reactors is today not only broadly accepted, but in many cases became the preferred way to replace traditional conservative analysis for safety and licensing analysis. The use of a more fundamental methodology is also consistent with the reliable high fidelity physics models and robust, efficient, and accurate codes available today. To facilitate uncertainty analysis applications a comprehensive approach and methodology must be developed and applied. High Temperature Gas-cooled Reactors (HTGR) has its own peculiarities, coated particle design, large graphite quantities, different materials and high temperatures that also require other simulation requirements. The IAEA has therefore launched a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modeling (UAM) in 2013 to study uncertainty propagation specifically in the HTGR analysis chain. Two benchmark problems are defined, with the prismatic design represented by the General Atomics (GA) MHTGR-350 and a 250 MW modular pebble bed design similar to the HTR-PM (INET, China). This report summarizes the contributions of the HTGR Methods Simulation group at Idaho National Laboratory (INL) up to this point of the CRP. The activities at INL have been focused so far on creating the problem specifications for the prismatic design, as well as providing reference solutions for the exercises defined for Phase I. An overview is provided of the HTGR UAM objectives and scope, and the detailed specifications for Exercises I-1, I-2, I-3 and I-4 are also included here for completeness. The main focus of the report is the compilation and discussion of reference results for Phase I (i.e. for input parameters at their nominal or best-estimate values), which is defined as the first step of the uncertainty quantification process. These reference results can be used by other CRP participants for comparison with other codes or their own reference

  12. INVESTIGATION ON THERMAL-FLOW CHARACTERISTICS OF HTGR CORE USING THERMIX-KONVEK MODULE AND VSOP'94 CODE

    Directory of Open Access Journals (Sweden)

    Sudarmono Sudarmono

    2015-03-01

    Full Text Available The failure of heat removal system of water-cooled reactor such as PWR in Three Mile Islands and Fukushima Daiichi BWR makes nuclear society starting to consider the use of high temperature gas-cooled reactor (HTGR. Reactor Physics and Technology Division – Center for Nuclear Reactor Safety and Technology  (PTRKN has tasks to perform research and development on the conceptual design of cogeneration gas cooled reactor with medium power level of 200 MWt. HTGR is one of nuclear energy generation system, which has high energy efficiency, and has high and clean inherent safety level. The geometry and structure of the HTGR200 core are designed to produce the output of helium gas coolant temperature as high as 950 °C to be used for hydrogen production and other industrial processes in co-generative way. The output of very high temperature helium gas will cause thermal stress on the fuel pebble that threats the integrity of fission product confinement. Therefore, it is necessary to perform thermal-flow evaluation to determine the temperature distribution in the graphite and fuel pebble in the HTGR core. The evaluation was carried out by Thermix-Konvek module code that has been already integrated into VSOP'94 code. The HTGR core geometry was done using BIRGIT module code for 2-D model (RZ model with 5 channels of pebble flow in active core in the radial direction. The evaluation results showed that the highest and lowest temperatures in the reactor core are 999.3 °C and 886.5 °C, while the highest temperature of TRISO UO2 is 1510.20 °C in the position (z= 335.51 cm; r=0 cm. The analysis done based on reactor condition of 120 kg/s of coolant mass flow rate, 7 MPa of pressure and 200 MWth of power. Compared to the temperature distribution resulted between VSOP’94 code and fuel temperature limitation as high as 1600 oC, there is enough safety margin from melting or disintegrating. Keywords: Thermal-Flow, VSOP’94, Thermix-Konvek, HTGR, temperature

  13. The IAEA Coordinated Research Program on HTGR Uncertainty Analysis: Phase I Status and Initial Results

    Energy Technology Data Exchange (ETDEWEB)

    Strydom, Gerhard; Bostelmann, Friederike; Ivanov, Kostadin

    2014-10-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. One way to address the uncertainties in the HTGR analysis tools is to assess the sensitivity of critical parameters (such as the calculated maximum fuel temperature during loss of coolant accidents) to a few important input uncertainties. The input parameters were identified by engineering judgement in the past but are today typically based on a Phenomena Identification Ranking Table (PIRT) process. The input parameters can also be derived from sensitivity studies and are then varied in the analysis to find a spread in the parameter of importance. However, there is often no easy way to compensate for these uncertainties. In engineering system design, a common approach for addressing performance uncertainties is to add compensating margins to the system, but with passive properties credited it is not so clear how to apply it in the case of modular HTGR heat removal path. Other more sophisticated uncertainty modelling approaches, including Monte Carlo analysis, have also been proposed and applied. Ideally one wishes to apply a more fundamental approach to determine the predictive capability and accuracies of coupled neutronics/thermal-hydraulics and depletion simulations used for reactor design and safety assessment. Today there is a broader acceptance of the use of uncertainty analysis even in safety studies, and it has been accepted by regulators in some cases to replace the traditional conservative analysis. Therefore some safety analysis calculations may use a mixture of these approaches for different parameters depending upon the particular requirements of the analysis problem involved. Sensitivity analysis can for example be used to provide information as part of an uncertainty analysis to determine best estimate plus uncertainty results to the

  14. Measurement of Strains in MWT Modules During Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, I.J.; Loiseaux, N.L.P. [ECN Solar Energy, Petten (Netherlands)

    2012-07-01

    In this paper a method of measuring the residual strains in a foil-based MWT (metal wrap-through) module is introduced. These strains are a result of differences in thermal expansion coefficients between the different components in the module. The method involves the design and manufacture of a test module allowing the different components to be visualised and the development of a camera system and software for strain measurement and analysis. Strains were measured in the glass, cells and back-sheet foil for a module laminated at 150C and subsequently cooled to room temperature. The results show that strain is dominated by the glass sheet and that strain is uniform in the glass and cells, but complex in the foil. Strain in the foil and cell is relatively small. Parallel to this, a study was made of the relationship between the position of a conductive adhesive contact in the module and its shape. Analysis of the shape showed that a contact with concave sides was the most stable, whereas contacts with a convex shape result in a weaker interface with the cell and foil. Combining the two techniques allows analysis of the module design, in particular of the interconnections. The results can be used to adjust, for example, the foil specification and the conductive adhesive print size. This will result in an improved module reliability and lifetime.

  15. The Pebble Bed Modular Reactor: An obituary

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Steve, E-mail: stephen.thomas@gre.ac.u [Public Services International Research Unit (PSIRU), Business School, University of Greenwich, 30 Park Row, London SE10 9LS (United Kingdom)

    2011-05-15

    The High Temperature Gas-cooled Reactor (HTGR) has exerted a peculiar attraction over nuclear engineers. Despite many unsuccessful attempts over half a century to develop it as a commercial power reactor, there is still a strong belief amongst many nuclear advocates that a highly successful HTGR technology will emerge. The most recent attempt to commercialize an HTGR design, the Pebble Bed Modular Reactor (PBMR), was abandoned in 2010 after 12 years of effort and the expenditure of a large amount of South African public money. This article reviews this latest attempt to commercialize an HTGR design and attempts to identify which issues have led to its failure and what lessons can be learnt from this experience. It concludes that any further attempts to develop HTGRs using Pebble Bed technology should only be undertaken if there is a clear understanding of why earlier attempts have failed and a high level of confidence that earlier problems have been overcome. It argues that the PBMR project has exposed serious weaknesses in accountability mechanisms for the expenditure of South African public money. - Research highlights: {yields} In this study we examine the reasons behind the failure of the South African PBMR programme. {yields} The study reviews the technical issues that have arisen and lessons for future reactor developments. {yields} The study also identifies weaknesses in the accountability mechanisms for public spending.

  16. Reliability and validity of 6MWT for outpatients with schizophrenia: A preliminary study.

    Science.gov (United States)

    Gomes, Eluana; Bastos, Tânia; Probst, Michel; Ribeiro, José Carlos; Silva, Gustavo; Corredeira, Rui

    2016-03-30

    Although the 6-minute walk test (6MWT) has been widely used in patients with schizophrenia, there is a lack of scientific evidence about its reliability and validity in this population. The first goal of this study was to explore the test-retest reliability of the 6MWT and to identify the associated parameters that contribute to the variability of the distance walked during the 6MWT in outpatients with schizophrenia. The second goal was to assess the criterion validity of the 6MWT in men with schizophrenia. Fifty one outpatients with schizophrenia participated in the study. To test-retest reliability (men=39; women=12), participants performed the 6MWT twice within 3 days interval. To test criterion validity (men=13), peak oxygen uptake (VO2peak) was measured on a treadmill. For the associated parameters with the distance walked (n=51), medications use, smoking behavior, body and bone composition, and physical activity levels were analyzed. No significant differences between the means of the two 6MWTs were found. The intraclass correlation coefficient was 0.94 indicating good reliability. 6MWT correlated significantly with VO2peak (r=0.67) indicating criterion validity. Height, body fat mass, smoking behavior and minutes of PA/week were significantly associated with the 6MWT. Results suggest that 6MWT shows good reliability for individuals with schizophrenia and good validity for the small sample of male participants in this study.

  17. Using SA508/533 for the HTGR Vessel Material

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2012-06-01

    This paper examines the influence of High Temperature Gas-cooled Reactor (HTGR) module power rating and normal operating temperatures on the use of SA508/533 material for the HTGR vessel system with emphasis on the calculated times at elevated temperatures approaching or exceeding ASME Code Service Limits (Levels B&C) to which the reactor pressure vessel could be exposed during postulated pressurized and depressurized conduction cooldown events over its design lifetime.

  18. HTGR fuel and fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Lotts, A.L.; Coobs, J.H.

    1976-08-01

    The status of fuel and fuel cycle technology for high-temperature gas-cooled reactors (HTGRs) is reviewed. The all-ceramic core of the HTGRs permits high temperatures compared with other reactors. Core outlet temperatures of 740/sup 0/C are now available for the steam cycle. For advanced HTGRs such as are required for direct-cycle power generation and for high-temperature process heat, coolant temperatures as high as 1000/sup 0/C may be expected. The paper discusses the variations of HTGR fuel designs that meet the performance requirements and the requirements of the isotopes to be used in the fuel cycle. Also discussed are the fuel cycle possibilities, which include the low-enrichment cycle, the Th-/sup 233/U cycle, and plutonium utilization in either cycle. The status of fuel and fuel cycle development is summarized.

  19. HTGR Generic Technology Program. Semiannual report for the period ending March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the first half of FY-79. It covers a period when the major design direction of the National HTGR Program is in the process of changing from the HTGR-SC emphasis to an HTGR-GT emphasis in the near term. The HTGR Generic Technology Program activities have been redirected to ensure that the tasks covered are supportive of this changing emphasis in HTGR applications. The activities include the need to develop a medium enriched uranium (MEU) fuel, and the need to qualify materials and components for the higher temperatures of the gas turbine plant.

  20. HTGR Generic Technology Program. Semiannual report for the period ending September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    The technical accomplishments on the HTGR Generic Technology Program at General Atomic during the second half of FY-79 are reported. The report covers a period when the major design direction of the National HTGR Program is in the process of changing from the HTGR-SC emphasis to an HTGR-GT emphasis in the near term. The HTGR Generic Technology Program activities have been redirected to ensure that the tasks covered are supportive of this changing emphasis in HTGR applications. The activities include the need to develop an MEU fuel, and the need to qualify materials and components for the higher temperatures of the gas turbine plant.

  1. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Saurwein, John

    2011-07-15

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  2. Defining Modules, Modularity and Modularization

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth; Pedersen, Per Erik Elgård

    The paper describes the evolution of the concept of modularity in a historical perspective. The main reasons for modularity are: create variety, utilize similarities, and reduce complexity. The paper defines the terms: Module, modularity, and modularization.......The paper describes the evolution of the concept of modularity in a historical perspective. The main reasons for modularity are: create variety, utilize similarities, and reduce complexity. The paper defines the terms: Module, modularity, and modularization....

  3. HTGR-GT and electrical load integrated control

    Energy Technology Data Exchange (ETDEWEB)

    Chan, T.; Openshaw, F.; Pfremmer, D.

    1980-05-01

    A discussion of the control and operation of the HTGR-GT power plant is presented in terms of its closely coupled electrical load and core cooling functions. The system and its controls are briefly described and comparisons are made with more conventional plants. The results of analyses of selected transients are presented to illustrate the operation and control of the HTGR-GT. The events presented were specifically chosen to show the controllability of the plant and to highlight some of the unique characteristics inherent in this multiloop closed-cycle plant.

  4. New research heavy-water reactors with the capacities 25 MWt and 100 MWt for the production of radionuclides with high specific radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, G.V.; Myrtsimova, L.A.; Shvedov, I.I. [Institute of Theroretical and Experimental Physics, Moscow (Russian Federation). State Scientific Center of the Russian Federation

    1997-10-01

    Information about the design and performance of two new heavy-water research reactors, HWR-25 and HWR-1 is given. These reactors have multiple-functions: neutron investigations, experimental grounding of fuel for the power reactors, production of radionuclides and so on. Reactor HWR-25 has the capacity 25 MWt and maximal thermal neutron density flux in the reflector is 4,6.1024 cm{sup 2}s{sup -1}. Burn-up of fuel is 50%, duration of the campaign is 105 days. Reactor HWR-100 has the capacity 100 MWt and maximal thermal neutron density flux in the reflector is approximately 1,2.1015 cm{sup 2}s{sup -1}. Both reactors have a large amount of channels for the place of target for the production of radionuclides 2 refs., 6 tabs., 3 figs.

  5. Estimation and control in HTGR fuel rod fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Downing, D J; Bailey, M J

    1980-01-01

    A control algorithm has been derived for a HTGR Fuel Rod Fabrication Process utilizing the method of Box and Jenkins. The estimator is a Kalman filter and is compared with a Least Square estimator and a standard control chart. The effects of system delays are presented.

  6. HTGR spent fuel composition and fuel element block flow

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, C.J.; Holder, N.D.; Pierce, V.H.; Robertson, M.W.

    1976-07-01

    The High-Temperature Gas-Cooled Reactor (HTGR) utilizes the thorium-uranium fuel cycle. Fully enriched uranium fissile material and thorium fertile material are used in the initial reactor core and for makeup fuel in the recycle core loadings. Bred /sup 233/U and unburned /sup 235/U fissile materials are recovered from spent fuel elements, refabricated into recycle fuel elements, and used as part of the recycle core loading along with the makeup fuel elements. A typical HTGR employs a 4-yr fuel cycle with approximately one-fourth of the core discharged and reloaded annually. The fuel element composition, including heavy metals, impurity nuclides, fission products, and activation products, has been calculated for discharged spent fuel elements and for reload fresh fuel and recycle fuel elements for each cycle over the life of a typical HTGR. Fuel element compositions are presented for the conditions of equilibrium recycle. Data describing compositions for individual reloads throughout the reactor life are available in a detailed volume upon request. Fuel element block flow data have been compiled based on a forecast HTGR market. Annual block flows are presented for each type of fuel element discharged from the reactors for reprocessing and for refabrication.

  7. A hybrid HTGR system producing electricity, hydrogen and such other products as water demanded in the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X., E-mail: yan.xing@jaea.go.jp; Noguchi, H.; Sato, H.; Tachibana, Y.; Kunitomi, K.; Hino, R.

    2014-05-01

    Alternative energy products are being considered by the Middle East countries for both consumption and export. Electricity, water, and hydrogen produced not from oil and gas are amongst those desirable. A hybrid nuclear production system, GTHTR300C, under development in JAEA can achieve this regional strategic goal. The system is based on a 600 MWt HTGR and equipped to cogenerate electricity by gas turbine and seawater desalination by using only the nuclear plant waste heat. Hydrogen is produced via a thermochemical water-splitting process driven by the reactor's 950 °C heat. Additionally process steam may be produced for industrial uses. An example is shown of manufacturing soda ash, an internationally traded commodity, from using the steam produced and the brine discharged from desalination. The nuclear reactor satisfies nearly all energy requirements for the hybrid generations without emitting CO{sub 2}. The passive safety of the reactor as described in the paper permits proximity of siting the reactor with the production facilities to enhance energy transmission. Production flowsheet of the GTHTR300C is given for up to 300 MWe electricity, 58 t/day hydrogen, 56,000 m{sup 3}/day potable water, 3500 t/day steam, and 1000 t/day soda ash. The production thermal efficiency reaches 88%.

  8. HTGR fuel recycle development program. Quarterly progress report for the period ending August 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The work reported includes the development of unit processes and equipment for reprocessing of High-Temperature Gas-Cooled Reactor (HTGR) fuel, the design and development of an integrated pilot line to demonstrate the head end of HTGR reprocessing using unirradiated fuel materials, and design work in support of Hot Engineering Tests (HET). Work is also described on tradeoff studies concerning the required design of facilities and equipment for the large-scale recycle of HTGR fuels in order to guide the development activities for HTGR fuel recycle.

  9. HTGR Generic Technology Program. Semiannual report for the period ending September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the second half of FY-80. It covers a period when the design direction of the National HTGR Program is in the process of an overall review. The HTGR Generic Technology Program activities have continued so as to provide the basic technology required for all HTGR applications. The activities include the need to develop an LEU fuel and the need to qualify materials and components for the higher temperatures of the gas turbines and process heat plants.

  10. Improved gas distributor for coating HTGR fuel particles

    Energy Technology Data Exchange (ETDEWEB)

    Lackey, W. J.; Stinton, D. P.; Sease, J. D.

    1977-01-01

    A new and improved gas distributor was developed for use in coating fuel particles for the HTGR. The coating gas enters the coating furnace through multiple thin regions of a porous plate. This more uniformly disperses the gas and leads to improved coating properties. High-quality carbon and SiC coatings have been deposited with the new distributor in both 13- and 24-cm-diam coating furnaces.

  11. Modular High Temperature Gas-Cooled Reactor Safety Basis and Approach

    Energy Technology Data Exchange (ETDEWEB)

    David Petti; Jim Kinsey; Dave Alberstein

    2014-01-01

    Various international efforts are underway to assess the safety of advanced nuclear reactor designs. For example, the International Atomic Energy Agency has recently held its first Consultancy Meeting on a new cooperative research program on high temperature gas-cooled reactor (HTGR) safety. Furthermore, the Generation IV International Forum Reactor Safety Working Group has recently developed a methodology, called the Integrated Safety Assessment Methodology, for use in Generation IV advanced reactor technology development, design, and design review. A risk and safety assessment white paper is under development with respect to the Very High Temperature Reactor to pilot the Integrated Safety Assessment Methodology and to demonstrate its validity and feasibility. To support such efforts, this information paper on the modular HTGR safety basis and approach has been prepared. The paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach. The paper gives those involved in the assessment of advanced reactor designs an opportunity to assess an advanced design that has already received extensive review by regulatory authorities and to judge the utility of recently proposed new methods for advanced reactor safety assessment such as the Integrated Safety Assessment Methodology.

  12. Simulation of the steady state of the Laguna Verde Nuclear power station at full power (1931 MWt and 2027 Mwt) with the SCDAPSIM code; Simulacion del estado estacionario de la Central Nucleoelectrica de Laguna Verde a plena potencia (1931 MWt y 2027 MWt) con el codigo SCDAPSIM

    Energy Technology Data Exchange (ETDEWEB)

    Amador G, R.; Nunez C, A.; Mateos, E. del A. [Comision Nacional de Seguridad Nuclear y Salvaguardias, Mexico D.F. (Mexico)

    2001-07-01

    This document describes two models developed for the Laguna Verde Nuclear Power Station (LVNPP) using SCDAPSIM computer code. These models represent the LVNPP in normal operation with a nominal power of 1931 MWt and power uprate conditions of 2027 MWt. The steady states obtained by means of these models comply with the criteria established by the ANSI/ANS-3.5-1985 for nuclear power plant simulators. This criteria has been applied to the models of the LVNPP developed by CNSNS in want of some international accepted criteria for ''Best Estimation'' computer codes. These models will be the bases to carry out studies of validation of the own models as well as the analysis of diverse scenarios that evolve to a severe accident. (Author)

  13. Report on the symposium and workshop on the 5 MWt solar thermal test facility

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Design concepts and applications for the 5 MWt Solar Thermal Test Facility at Albuquerque are discussed in 43 papers. Session topics include central receivers, solar collectors, solar energy storage, high temperature materials and chemistry. A program overview and individual contractor reports for the test facility project are included, along with reports on conference workshop sessions and users group recommendations. A list of conference attendees is appended. Separate abstracts are prepared for 39 papers.

  14. HTGR gas turbine program. Semiannual progress report, April 1-September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report describes work performed under the gas turbine HTGR (HTGR-GT) program, Department of Energy Contract DE-AT03-76-SF70046, during the period April 1, 1978 through September 30, 1978. The work reported covers the demonstration and commercial plant concept studies including plant layout, heat exchanger studies, turbomachine studies, systems analysis, and reactor core engineering.

  15. HTGR Fuel Technology Program. Semiannual report for the period ending March 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1983-07-01

    This document reports the technical accomplishments of the HTGR Fuel Technology Program at GA Technologies Inc. during the first half of FY 83. The activities include the fuel process, fuel materials, fuel cycle, fission product transport, core component verification, and core technology transfer tasks necessary to support the design and development of a steam cycle/cogeneration (SC/C) version of the HTGR.

  16. Service Modularity

    DEFF Research Database (Denmark)

    Avlonitis, Viktor; Hsuan, Juliana

    2015-01-01

    The purpose of this research is to investigate the studies on service modularity with a goal of informing service science and advancing contemporary service systems research. Modularity, a general systems property, can add theoretical underpinnings to the conceptual development of service science...... in general and service systems in particular. Our research is guided by the following question: how can modularity theory inform service system design? We present a review of the modularity literature and associated concepts. We then introduce the contemporary service science and service system discourse...

  17. Advanced Control and Protection system Design Methods for Modular HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Sydney J [ORNL; Wilson Jr, Thomas L [ORNL; Wood, Richard Thomas [ORNL

    2012-06-01

    The project supported the Nuclear Regulatory Commission (NRC) in identifying and evaluating the regulatory implications concerning the control and protection systems proposed for use in the Department of Energy's (DOE) Next-Generation Nuclear Plant (NGNP). The NGNP, using modular high-temperature gas-cooled reactor (HTGR) technology, is to provide commercial industries with electricity and high-temperature process heat for industrial processes such as hydrogen production. Process heat temperatures range from 700 to 950 C, and for the upper range of these operation temperatures, the modular HTGR is sometimes referred to as the Very High Temperature Reactor or VHTR. Initial NGNP designs are for operation in the lower temperature range. The defining safety characteristic of the modular HTGR is that its primary defense against serious accidents is to be achieved through its inherent properties of the fuel and core. Because of its strong negative temperature coefficient of reactivity and the capability of the fuel to withstand high temperatures, fast-acting active safety systems or prompt operator actions should not be required to prevent significant fuel failure and fission product release. The plant is designed such that its inherent features should provide adequate protection despite operational errors or equipment failure. Figure 1 shows an example modular HTGR layout (prismatic core version), where its inlet coolant enters the reactor vessel at the bottom, traversing up the sides to the top plenum, down-flow through an annular core, and exiting from the lower plenum (hot duct). This research provided NRC staff with (a) insights and knowledge about the control and protection systems for the NGNP and VHTR, (b) information on the technologies/approaches under consideration for use in the reactor and process heat applications, (c) guidelines for the design of highly integrated control rooms, (d) consideration for modeling of control and protection system designs

  18. HTGR-INTEGRATED COAL TO LIQUIDS PRODUCTION ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Anastasia M Gandrik; Rick A Wood

    2010-10-01

    As part of the DOE’s Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to “shift” the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700°C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: • 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal

  19. Recent developments in graphite. [Use in HTGR and aerospace

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, J.E.

    1983-01-01

    Overall, the HTGR graphite situation is in excellent shape. In both of the critical requirements, fuel blocks and support structures, adequate graphites are at hand and improved grades are sufficiently far along in truncation. In the aerospace field, GraphNOL N3M permits vehicle performance with confidence in trajectories unobtainable with any other existing material. For fusion energy applications, no other graphite can simultaneously withstand both extreme thermal shock and neutron damage. Hence, the material promises to create new markets as well as to offer a better candidate material for existing applications.

  20. Project summary plan for HTGR recycle reference facility

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, B.J.

    1979-11-01

    A summary plan is introduced for completing conceptual definition of an HTGR Recycle Reference Facility (HRRF). The plan describes a generic project management concept, often referred to as the requirements approach to systems engineering. The plan begins with reference flow sheets and provides for the progressive evolution of HRRF requirements and definition through feasibility, preconceptual, and conceptual phases. The plan lays end-to-end all the important activities and elements to be treated during each phase of design. Identified activities and elements are further supported by technical guideline documents, which describe methodology, needed terminology, and where relevant a worked example.

  1. IAEA CRP on HTGR Uncertainties in Modeling: Assessment of Phase I Lattice to Core Model Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Rouxelin, Pascal Nicolas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Best-estimate plus uncertainty analysis of reactors is replacing the traditional conservative (stacked uncertainty) method for safety and licensing analysis. To facilitate uncertainty analysis applications, a comprehensive approach and methodology must be developed and applied. High temperature gas cooled reactors (HTGRs) have several features that require techniques not used in light-water reactor analysis (e.g., coated-particle design and large graphite quantities at high temperatures). The International Atomic Energy Agency has therefore launched the Coordinated Research Project on HTGR Uncertainty Analysis in Modeling to study uncertainty propagation in the HTGR analysis chain. The benchmark problem defined for the prismatic design is represented by the General Atomics Modular HTGR 350. The main focus of this report is the compilation and discussion of the results obtained for various permutations of Exercise I 2c and the use of the cross section data in Exercise II 1a of the prismatic benchmark, which is defined as the last and first steps of the lattice and core simulation phases, respectively. The report summarizes the Idaho National Laboratory (INL) best estimate results obtained for Exercise I 2a (fresh single-fuel block), Exercise I 2b (depleted single-fuel block), and Exercise I 2c (super cell) in addition to the first results of an investigation into the cross section generation effects for the super-cell problem. The two dimensional deterministic code known as the New ESC based Weighting Transport (NEWT) included in the Standardized Computer Analyses for Licensing Evaluation (SCALE) 6.1.2 package was used for the cross section evaluation, and the results obtained were compared to the three dimensional stochastic SCALE module KENO VI. The NEWT cross section libraries were generated for several permutations of the current benchmark super-cell geometry and were then provided as input to the Phase II core calculation of the stand alone neutronics Exercise

  2. Safety Analysis of Pb-208 Cooled 800 MWt Modified CANDLE Reactors

    Science.gov (United States)

    Su'ud, Zaki; Widiawati, Nina; Sekimoto, H.; Artoto, A.

    2017-01-01

    Safely analysis of 800MWt Pb-208 cooled fast reactors with natural Uranium as fuel cycle input employing axial-radial combined Modiified CANDLE burnup scheme has been performed. The analysis of unprotected loss of flow(ULOF) and unprotected rod run-out transient overpower (UTOP) are discussed. Some simulations for 800 MWt Pb-208 cooled fast reactors has been performed and the results show that the reactor can anticipate complete pumping failure inherently by reducing power through reactivity feedback and remove the rest of heat through natural circulations. Compared to the Pb-nat cooled long life Fast Reactors, Pb-208 cooled reactors have smaller Doppler but higher coolant density reactivity coefficient. In the UTOP accident case the analysis has been performed against external reactivity up to 0.003dk/k. And for ULOHS case it is assumed that the secondary cooling system has broken. During all accident the cladding temperature is the most critical. Especially for the case of UTOP accident. In addition the steam generator design has also consider excess power which may reach 50% extra during severe UTOP case..

  3. Modular Entanglement

    CERN Document Server

    Gualdi, Giulia; Illuminati, Fabrizio

    2010-01-01

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting blocks of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent blocks. We clarify the mechanisms underlying the onset of entanglement between distant and non-interacting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.

  4. Modular entanglement.

    Science.gov (United States)

    Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio

    2011-02-04

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.

  5. The IAEA Coordinated Research Program on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis: Description of the Benchmark Test Cases and Phases

    Energy Technology Data Exchange (ETDEWEB)

    Frederik Reitsma; Gerhard Strydom; Bismark Tyobeka; Kostadin Ivanov

    2012-10-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The uncertainties in the HTR analysis tools are today typically assessed with sensitivity analysis and then a few important input uncertainties (typically based on a PIRT process) are varied in the analysis to find a spread in the parameter of importance. However, one wish to apply a more fundamental approach to determine the predictive capability and accuracies of coupled neutronics/thermal-hydraulics and depletion simulations used for reactor design and safety assessment. Today there is a broader acceptance of the use of uncertainty analysis even in safety studies and it has been accepted by regulators in some cases to replace the traditional conservative analysis. Finally, there is also a renewed focus in supplying reliable covariance data (nuclear data uncertainties) that can then be used in uncertainty methods. Uncertainty and sensitivity studies are therefore becoming an essential component of any significant effort in data and simulation improvement. In order to address uncertainty in analysis and methods in the HTGR community the IAEA launched a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modelling early in 2012. The project is built on the experience of the OECD/NEA Light Water Reactor (LWR) Uncertainty Analysis in Best-Estimate Modelling (UAM) benchmark activity, but focuses specifically on the peculiarities of HTGR designs and its simulation requirements. Two benchmark problems were defined with the prismatic type design represented by the MHTGR-350 design from General Atomics (GA) while a 250 MW modular pebble bed design, similar to the INET (China) and indirect-cycle PBMR (South Africa) designs are also included. In the paper more detail on the benchmark cases, the different specific phases and tasks and the latest

  6. Gamma spectroscopic examination of Peach Bottom HTGR core components

    Energy Technology Data Exchange (ETDEWEB)

    Holzgraf, J.F.; McCord, F.; Wallroth, C.F.

    1978-04-01

    During discharge of Core 2 from the Peach Bottom High-Temperature Gas-Cooled Reactor (HTGR), 55 driver elements, 21 test elements, three reflector elements, and one control rod with sleeve were axially gamma scanned with a high-resolution Ge(Li) detector. The purpose of the exercise was to determine fission product distributions for use in burnup calculations, power profile determinations, and fission product release and redistribution studies. The results showed that the predicted and measured burnups had a +-7 percent root mean square deviation on an element-to-element basis and were within +-0.7 percent (1 sigma) on a core average basis. The element-to-element variation of +-7 percent is within the generally stated +-3 percent to 8 percent accuracy for nuclear predictions.

  7. Review of fatigue criteria development for HTGR core supports

    Energy Technology Data Exchange (ETDEWEB)

    Ho, F.H.; Vollman, R.E.

    1979-10-01

    Fatigue criteria for HTGR core support graphite structure are presented. The criteria takes into consideration the brittle nature of the material, and emphasizes the probabilistic approach in the treatment of strength data. The stress analysis is still deterministic. The conventional cumulative damage approach is adopted here. A specified minimum S-N curve is defined as the curve with 99% probability of survival at a 95% confidence level to accommodate random variability of the material strength. A constant life diagram is constructed to reconcile the effect of mean stress. The linear damage rule is assumed to account for the effect of random cycles. An additional factor of safety of three on cycles is recommended. The uniaxial S-N curve is modified in the medium-to-high cycle range (> 2 x 10/sup 3/ cycles) for mutiaxial fatigue effects.

  8. Chemical thermodynamics of iodine species in the HTGR fuel particle

    Energy Technology Data Exchange (ETDEWEB)

    Lindemer, T.B.

    1982-09-01

    The iodine-containing species in an intact fuel particle in the high-temperature gas-cooled reactor (HTGR) have been calculated. Assumptions include: (1) attainment of chemical thermodynamic equilibrium among all species in the open porosity of the particle, primarily in the buffer layer; and (2) fission-product concentrations in proportion to their yields. The primary gaseous species is calculated to be cesium iodide; in carbide-containing fuels, gaseous barium iodide may exhibit equivalent pressures. The condensed iodine-containing phase is usually cesium iodide, but in carbide-containing fuels, barium iodide may be stable instead. Absorption of elemental iodine on the carbon in the particle appears to be less than or equal to 10/sup -4/ ..mu..g I/g C. The fission-product-spectra excess of cesium over iodine would generally be adsorbed on the carbon, but may form Cs/sub 2/MoO/sub 4/ under some circumstances.

  9. 2400MWt GAS-COOLED FAST REACTOR DHR STUDIES STATUS UPDATE.

    Energy Technology Data Exchange (ETDEWEB)

    CHENG,L.Y.; LUDEWIG, H.

    2007-06-01

    A topical report on demonstrating the efficacy of a proposed hybrid active/passive combination approach to the decay heat removal for an advanced 2400MWt GEN-IV gas-cooled fast reactor was published in March 2006. The analysis was performed with the system code RELAP5-3D (version 2.4.1.1a) and the model included the full complement of the power conversion unit (PCU): heat exchange components (recuperator, precooler, intercooler) and rotating machines (turbine, compressor). A re-analysis of the success case in Ref is presented in this report. The case was redone to correct unexpected changes in core heat structure temperatures when the PCU model was first integrated with the reactor model as documented in Ref [1]. Additional information on the modeling of the power conversion unit and the layout of the heat exchange components is provided in Appendix A.

  10. Performance tests of the 1MWt shell-and-tube heat exchangers for OTEC

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, A.; Lorenz, J. J.; Hillis, D. L.; Yung, D. T.; Sather, N. P.

    1979-01-01

    Final test results are reported for the five 1 MWt shell-and-tube heat exchangers tested at Argonne National Laboratory. These five heat exchangers are the Union Carbide flooded-bundle evaporator, the Union Carbide sprayed-bundle evaporator, the Union Carbide enhanced-tube condenser, the Carnegie-Mellon vertical fluted-tube evaporator, and the Carnegie-Mellon vertical fluted-tube condenser. Performance parameters measured include the overall heat transfer coefficient (U/sub 0/), the water-side pressure drop, and the vapor quality. Also measured were operational characteristics of the heat exchangers such as repeatability of results and the dependence of U/sub 0/ on heat duty, ammonia flow rate, and subcooling. Individual water-side and ammonia-side coefficients were deduced using the Wilson Plot method.

  11. Symbiotic Pu/Th fuel cycle for HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Girardi, Enrico; Lecarpentier, David [EDF R and D, Les Renardieres, 77818 Moret sur Loing cedex (France)

    2006-07-01

    HTGRs, loaded with uranium or plutonium fuel do not authorize high breeding ratios. Consequently, the Gen IV requirement of sustainability with respect to the use of fissile resources may be difficult to meet. Relying on the thorium conversion into fissile uranium 233, the use of thorium is promising regarding the breeding ratio. Accordingly, the symbiotic Pu/Th fuel cycle is an interesting way to optimize the energetic use of plutonium. In the first part of this paper, we compare the performances of HTRs with different types of fuel (15% enriched U, Pu alone, Th-Pu) on the resource consumption. Relying on HTGRs, a good conversion ratio (typically 0.8) is mandatory to satisfy high temperature needs in the long term. In the second part, we discuss the neutronic calculation scheme for a prismatic HTGR annular core (GTMHR like, with an internal graphite reflector), and for a large HTGR (modeled with an assembly calculation). In the last part of the paper, Pu/Th, U233/Th and Pu-U233/Th fuel cycle are studied for the two types of HTGRs. The performances in terms of conversion ratios are compared. For a given power of 300 Mwe, several compositions for the fuel are studied. The fraction of thorium in the fuel composition is varying from 0% to 99% and the total fuel mass charged in the core ranges from 1200 kg to 15,000 kg. We show that good conversion ratios are very difficult to obtain for annular HTGRs. New designs must be considered, with a larger core, and a smaller power density (to reach the passive evacuation of residual power). Finally, a preliminary strategy for the deployment of these fuel cycles is presented. (authors)

  12. HTGR Technology Family Assessment for a Range of Fuel Cycle Missions

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Samuel E. Bays; Nick Soelberg

    2010-08-01

    This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR “full recycle” service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the “pebble bed” approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R&D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in “limited separation” or “minimum fuel treatment” separation approaches motivates study of impurity-tolerant fuel fabrication. Several issues are outside the scope of this report, including the following: thorium fuel cycles, gas-cooled fast reactors, the reliability of TRISO-coated particles (billions in a reactor), and how soon any new reactor or fuel type could be licensed and then deployed and therefore impact fuel cycle performance measures.

  13. Preliminary experiment design of graphite dust emission measurement under accident conditions for HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei, E-mail: pengwei@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Chen, Tao; Sun, Qi; Wang, Jie [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2017-05-15

    Highlights: • A theoretical analysis is used to predict the total graphite dust release for an AVR LOCA. • Similarity criteria must be satisfied between the experiment and the actual HTGR system. • Model experiments should be conducted to predict the graphite dust resuspension rate. - Abstract: The graphite dust movement behavior is significant for the safety analyses of high-temperature gas cooled reactor (HTGR). The graphite dust release for accident conditions is an important source term for HTGR safety analyses. Depressurization release tests are not practical in HTGR because of a radioactivity release to the environment. Thus, a theoretical analysis and similarity principles were used to design a group of modeling experiments. Modeling experiments for fan start-up and depressurization process and actual experiments of helium circulator start-up in an HTGR were used to predict the rate of graphite dust resuspension and the graphite dust concentration, which can be used to predict the graphite dust release during accidents. The modeling experiments are easy to realize and the helium circulator start-up test does not harm the reactor system or the environment, so this experiment program is easily achieved. The revised Rock’n’Roll model was then used to calculate the AVR reactor release. The calculation results indicate that the total graphite dust releases during a LOCA will be about 0.65 g in AVR.

  14. Fission-product SiC reaction in HTGR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, F.

    1981-07-13

    The primary barrier to release of fission product from any of the fuel types into the primary circuit of the HTGR are the coatings on the fuel particles. Both pyrolytic carbon and silicon carbide coatings are very effective in retaining fission gases under normal operating conditions. One of the possible performance limitations which has been observed in irradiation tests of TRISO fuel is chemical interaction of the SiC layer with fission products. This reaction reduces the thickness of the SiC layer in TRISO particles and can lead to release of fission products from the particles if the SiC layer is completely penetrated. The experimental section of this report describes the results of work at General Atomic concerning the reaction of fission products with silicon carbide. The discussion section describes data obtained by various laboratories and includes (1) a description of the fission products which have been found to react with SiC; (2) a description of the kinetics of silicon carbide thinning caused by fission product reaction during out-of-pile thermal gradient heating and the application of these kinetics to in-pile irradiation; and (3) a comparison of silicon carbide thinning in LEU and HEU fuels.

  15. Chemical thermodynamics of iodine species in the HTGR fuel particle

    Energy Technology Data Exchange (ETDEWEB)

    Lindemer, T.B. (Oak Ridge National Lab., TN (USA))

    The iodine-containing species in an intact fuel particle in the high-temperature gas-cooled reactor (HTGR) have been calculated. Assumptions include: (i) attainment of chemical thermodynamic equilibrium among all species in the open porosity of the particle, primarily in the buffer layer; and (ii) fission-product concentrations in proportion to their yields. The primary gaseous species is calculated to be cesium iodide; in carbide-containing fuels, gaseous barium iodide may exhibit equivalent pressures. The condensed iodine-containing phase is usually cesium iodide, but in carbide-containing fuels, barium iodide may be stable instead. Adsorption of elemental iodine on the carbon in the particle appears to be < 10/sup -4/ ..mu..g I/g C. The fission-product-spectra excess of cesium over iodine would generally be adsorbed on the carbon, but may form Cs/sub 2/MoO/sub 4/ under some circumstances. Equilibria exterior fuel particle have not been analyzed, and may be considerably different from those given above.

  16. Metric modular spaces

    CERN Document Server

    Chistyakov, Vyacheslav

    2015-01-01

    Aimed toward researchers and graduate students familiar with elements of functional analysis, linear algebra, and general topology; this book contains a general study of modulars, modular spaces, and metric modular spaces. Modulars may be thought of as generalized velocity fields and serve two important purposes: generate metric spaces in a unified manner and provide a weaker convergence, the modular convergence, whose topology is non-metrizable in general. Metric modular spaces are extensions of metric spaces, metric linear spaces, and classical modular linear spaces. The topics covered include the classification of modulars, metrizability of modular spaces, modular transforms and duality between modular spaces, metric  and modular topologies. Applications illustrated in this book include: the description of superposition operators acting in modular spaces, the existence of regular selections of set-valued mappings, new interpretations of spaces of Lipschitzian and absolutely continuous mappings, the existe...

  17. IAEA CRP on HTGR Uncertainty Analysis: Benchmark Definition and Test Cases

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard Strydom; Frederik Reitsma; Hans Gougar; Bismark Tyobeka; Kostadin Ivanov

    2012-11-01

    Uncertainty and sensitivity studies are essential elements of the reactor simulation code verification and validation process. Although several international uncertainty quantification activities have been launched in recent years in the LWR, BWR and VVER domains (e.g. the OECD/NEA BEMUSE program [1], from which the current OECD/NEA LWR Uncertainty Analysis in Modelling (UAM) benchmark [2] effort was derived), the systematic propagation of uncertainties in cross-section, manufacturing and model parameters for High Temperature Reactor (HTGR) designs has not been attempted yet. This paper summarises the scope, objectives and exercise definitions of the IAEA Coordinated Research Project (CRP) on HTGR UAM [3]. Note that no results will be included here, as the HTGR UAM benchmark was only launched formally in April 2012, and the specification is currently still under development.

  18. Methods for calculating group cross sections for doubly heterogeneous thermal reactor systems. [HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Stamatelatos, M G; LaBauve, R J

    1977-02-01

    The report discusses methods used at LASL for calculating group cross sections for doubly heterogeneous HTGR systems of the General Atomic design. These cross sections have been used for the neutronic safety analysis calculations of such HTGR systems at various points in reactor lifetime (e.g., beginning-of-life, end-of-equilibrium cycle). They were also compared with supplied General Atomic cross sections generated with General Atomic codes. The overall agreement between the LASL and the GA cross sections has been satisfactory.

  19. HTGR accident initiation and progression analysis status report. Volume V. AIPA fission product source terms

    Energy Technology Data Exchange (ETDEWEB)

    Alberstein, D.; Apperson, C.E. Jr.; Hanson, D.L.; Myers, B.F.; Pfeiffer, W.W.

    1976-02-01

    The primary objective of the Accident Initiation and Progression Analysis (AIPA) Program is to provide guidance for high-temperature gas-cooled reactor (HTGR) safety research and development. Among the parameters considered in estimating the uncertainties in site boundary doses are uncertainties in fission product source terms generated under normal operating conditions, i.e., fuel body inventories, circulating coolant activity, total plateout activity in the primary circuit, and plateout distributions. The volume presented documents the analyses of these source term uncertainties. The results are used for the detailed consequence evaluations, and they provide the basis for evaluation of fission products important for HTGR maintenance and shielding.

  20. Safety concerns and suggested design approaches to the HTGR Reformer process concept

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.C.

    1981-09-01

    This report is a safety review of the High Temperature Gas-Cooled Reactor Reformer Application Study prepared by Gas-Cooled Reactor Associates (GCRA) of La Jolla, California. The objective of this review was to identify safety concerns and suggests design approaches to minimize risk in the High Temperature Gas-Cooled Reactor Reformer (HTGR-R) process concept.

  1. COCO: a computer program for seismic analysis of a single column of the HTGR core

    Energy Technology Data Exchange (ETDEWEB)

    Rickard, N.D.

    1978-02-01

    The document serves as a user's manual and theoretical manual for the COCO code. COCO is a nonlinear numerical integration program designed to analyze a single column of the HTGR core for seismic excitation. Output of the code includes dowel forces, collision forces, and a time history of the motion of the blocks.

  2. Understanding Socio Technical Modularity

    DEFF Research Database (Denmark)

    Thuesen, Christian Langhoff; Kudsk, Anders; Hvam, Lars

    2011-01-01

    Modularity has gained an increasing popularity as a central concept for exploring product structure, process structure, organization structure and supply chain structure. With the offset in system theory the predominant understanding of modularity however faces difficulties in explaining the social...... Theory in particular. By formulating modularity from an ANT perspective covering social, material and process aspects, the modularity of a socio-technical system can be understood as an entanglement of product, process, organizational and institutional modularity. The theoretical framework is illustrated...

  3. Graphite technology development plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-07-01

    This document presents the plan for the graphite technology development required to support the design of the 350 MW(t) Modular HTGR within the US National Gas-Cooled Reactor Program. Besides descriptions of the required technology development, cost estimates, and schedules, the plan also includes the associated design functions and design requirements.

  4. Development of a system model for advanced small modular reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandias concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  5. The 6MWT: will different methods of instruction and measurement affect performance of healthy aging and older adults?

    Science.gov (United States)

    Southard, Veronica; Gallagher, Rosemary

    2013-01-01

    The Six-Minute Walk Test (6MWT) is commonly used to assess the fitness level of healthy adults and of older adults with disabilities. It can also be used as an intervention to increase walking endurance. However, its use may be limited in certain rehabilitation settings due to space requirements. If it can be shown that the measured linear distance walked in the 6-minute walk is comparable to the distance walked as measured by a pedometer, the test may be more widely used in a variety of rehabilitation settings. In addition, questions exist as to whether the method of instruction ("walk as far as you can" vs "walk as fast as you can") can impact the rate of perceived exertion of the person performing the test. The purposes of this study were to assess for differences in the measured linear distance and from the gender-based predicted value when compared to the pedometer measurement. In addition, we assessed the difference, if any, in the rate of perceived exertion (RPE) using the 2 different methods of administration. Furthermore, the distance in meters walked using the 2 different methods of instruction was compared; likewise, comparisons were made of these values to predicted values. A group of 26 older adults participated in this descriptive study. After a practice trial, each person completed 2 linear trials using different methods of instruction, ("walk as fast as you can" or "walk as far as you can") of the 6MWT while wearing a DIGI-WALKER SW-651 pedometer. Vital signs were taken before and after each trial. Linear distance, pedometer distance, and numeric value RPE were recorded. Paired t tests demonstrated no gender differences. An intraclass correlation coefficient (2,1) of 0.822 was calculated between all dependent variables. A repeated measures MANOVA was conducted to assess for differences between all variables resulting in no differences (F = 1.98; P = .13). Pairwise comparisons were also insignificant for the distance measurements except predicted

  6. A numerical study of helium-heated inorganic membrane reformer coupling to HTGR

    Institute of Scientific and Technical Information of China (English)

    YIN Huaqiang; JIANG Shengyao; JU Huaiming; ZHANG Youjie

    2007-01-01

    Based on one-dimensional quasi-homogeneous model,a steady-state model and its computer program were developed for helium-heated inorganic membrane reformer coupling to high temperature gas-cooled reactor (HTGR).The results show that the average heat flux of inorganic membrane reformer is 25% higher than that of the conventional one.A compact reformer can be designed,which is significant in making the system safer and more economical.A methane conversion rate of 95% can be achieved by inorganic membrane reformer with a little increase in pressure loss.With thinner membrane and higher sweep ratio,methane conversion rate increases with high reforming pressure,which will change the unfavorable condition of high pressure of HTGR methane reforming hydrogen production system into a favorable one.

  7. HTGR high temperature process heat design and cost status report. Volume II. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-12-01

    Information is presented concerning the 850/sup 0/C IDC reactor vessel; primary cooling system; secondary helium system; steam generator; heat cycle evaluations for the 850/sup 0/C IDC plant; 950/sup 0/C DC reactor vessel; 950/sup 0/C DC steam generator; direct and indirect cycle reformers; methanation plant; thermochemical pipeline; methodology for screening candidate synfuel processes; ECCG process; project technical requirements; process gas explosion assessment; HTGR program economic guidelines; and vendor respones.

  8. Complexity in Managing Modularization

    DEFF Research Database (Denmark)

    Hansen, Poul H. Kyvsgård; Sun, Hongyi

    2011-01-01

    In general, the phenomenon of managing modularization is not well known. The cause-effect relationships between modularization and realized benefits are complex and comprehensive. Though a number of research works have contributed to the study of the phenomenon of efficient and effective modulari......In general, the phenomenon of managing modularization is not well known. The cause-effect relationships between modularization and realized benefits are complex and comprehensive. Though a number of research works have contributed to the study of the phenomenon of efficient and effective...... modularization management it is far from clarified. Recognizing the need for further empirical research, we have studied 40 modularity cases in various companies. The studies have been designed as long-term studies leaving time for various types of modularization benefits to emerge. Based on these studies we...... have developed a framework to support the heuristic and iterative process of planning and realizing modularization benefits....

  9. Modularity and Economic Organization

    DEFF Research Database (Denmark)

    Sanchez, Ron; Mahoney, Joseph T.

    This paper addresses modularity as a basis for organizing economic activity. We first define the key concepts of architecture and of modularity as a special form of architecture. We then suggest how modular systems of all types may exhibit several properties of fundamental importance...... to the organization of economic activities, including greater adaptability and evolvability than systems that lack modular properties. We draw extensively on our original 1996 paper on modularity and subsequent research to suggest broad theoretical implications of modularity for (i) firms' product strategies...... and the nature of product market competition, (ii) the organization designs firms may adopt and the industry structures that can result when significant numbers of firms adopt modular product architectures, and (iii) learning processes and knowledge structures at the firm and industry levels in modular product...

  10. Understanding Socio Technical Modularity

    DEFF Research Database (Denmark)

    Thuesen, Christian Langhoff; Kudsk, Anders; Hvam, Lars

    2011-01-01

    Modularity has gained an increasing popularity as a central concept for exploring product structure, process structure, organization structure and supply chain structure. With the offset in system theory the predominant understanding of modularity however faces difficulties in explaining the social...... dimension of modularity like irrational behaviors, cultural differences, learning processes, social organization and institutional influences on modularity. The paper addresses this gab offering a reinterpretation of the modularity concept from a socio-technical perspective in general and Actor Network...... Theory in particular. By formulating modularity from an ANT perspective covering social, material and process aspects, the modularity of a socio-technical system can be understood as an entanglement of product, process, organizational and institutional modularity. The theoretical framework is illustrated...

  11. Baseline Concept Description of a Small Modular High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gougar, Hans D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the

  12. Baseline Concept Description of a Small Modular High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hans Gougar

    2014-05-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the

  13. Complexity in Managing Modularization

    DEFF Research Database (Denmark)

    Hansen, Poul H. Kyvsgård; Sun, Hongyi

    2011-01-01

    modularization management it is far from clarified. Recognizing the need for further empirical research, we have studied 40 modularity cases in various companies. The studies have been designed as long-term studies leaving time for various types of modularization benefits to emerge. Based on these studies we......In general, the phenomenon of managing modularization is not well known. The cause-effect relationships between modularization and realized benefits are complex and comprehensive. Though a number of research works have contributed to the study of the phenomenon of efficient and effective...

  14. Modularity and Economic Organization

    DEFF Research Database (Denmark)

    Sanchez, Ron; Mahoney, Joseph T.

    and the nature of product market competition, (ii) the organization designs firms may adopt and the industry structures that can result when significant numbers of firms adopt modular product architectures, and (iii) learning processes and knowledge structures at the firm and industry levels in modular product...... markets. We also discuss an evolutionary perspective on modularity as an emergent phenomenon in firms and industries. We explain how modularity as a relatively new field of strategy and economic research may provide a new theoretical perspective on economic organizing that has significant potential......This paper addresses modularity as a basis for organizing economic activity. We first define the key concepts of architecture and of modularity as a special form of architecture. We then suggest how modular systems of all types may exhibit several properties of fundamental importance...

  15. Product Architecture Modularity Strategies

    DEFF Research Database (Denmark)

    Mikkola, Juliana Hsuan

    2003-01-01

    The focus of this paper is to integrate various perspectives on product architecture modularity into a general framework, and also to propose a way to measure the degree of modularization embedded in product architectures. Various trade-offs between modular and integral product architectures...... and how components and interfaces influence the degree of modularization are considered. In order to gain a better understanding of product architecture modularity as a strategy, a theoretical framework and propositions are drawn from various academic literature sources. Based on the literature review......, the following key elements of product architecture are identified: components (standard and new-to-the-firm), interfaces (standardization and specification), degree of coupling, and substitutability. A mathematical function, termed modularization function, is introduced to measure the degree of modularization...

  16. Creep-Rupture Properties and Corrosion Behaviour of 21/4 Cr-1 Mo Steel and Hastelloy X-Alloys in Simulated HTGR Environment

    DEFF Research Database (Denmark)

    Lystrup, Aage; Rittenhouse, P. L.; DiStefano, J. R.

    Hastelloy X and 2/sup 1///sub 4/ Cr-1 Mo steel are being considered as structural alloys for components of a High-Temperature Gas-Cooled Reactor (HTGR) system. Among other mechanical properties, the creep behavior of these materials in HTGR primary coolant helium must be established to form part ...

  17. Modular Robotic Wearable

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2009-01-01

    In this concept paper we trace the contours and define a new approach to robotic systems, composed of interactive robotic modules which are somehow worn on the body. We label such a field as Modular Robotic Wearable (MRW). We describe how, by using modular robotics for creating wearable....... Finally, by focusing on the intersection of the combination modular robotic systems, wearability, and bodymind we attempt to explore the theoretical characteristics of such approach and exploit the possible playware application fields....

  18. An Online Non-Invasive Condition Monitoring Method for Stepping Motor CRDM in HTGR

    Directory of Open Access Journals (Sweden)

    S. Bakhri

    2016-12-01

    Full Text Available Control Rod Drive Mechanism (CRDM based on stepping motor is one of the components applied in High Temperature Gas Coold Reactor (HTGR to control the reactivity as well as to maintain the safety of reactor. The stepping motor requires a unique condition monitoring to avoid any failures especially due to the specific environments of CRDM in HTGR such as the allowable of high temperature, high radiation and the location of stepper motor inside a pressure shell. This research aims to demonstrate an online non-invasive condition monitoring method without direct access to the CRDM of HTGR based on voltage and stator current measurements. A simple stepping motor CRDM simulator is employed. The online condition monitoring is carried out by direct pattern matching of the output signals of logic generator block and the output signals of motor driver. The online method utilizes signature patterns of voltage and stator current signals of the healthy motor as a baseline for healthy motor. In addition, the method is applied to detect high-resistance problem on the connector between the motor driver block and the stepper motor to show the effectiveness and the applicability of this method. The online condition monitoring system demonstrates a capability to identify a minimum detectable simulated high-resistance for about 2.9% which decreases the measured stator current and motor’s torque for around 5.1% and 3.3%, respectively. The paper also points out signatures of healthy motor, including mutual inductions of the motor’s winding in voltage and current measurement which can be used as the fault symptom indicators for online monitoring purposes.

  19. Designing Modular Robotic Playware

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Marti, Patrizia

    2009-01-01

    In this paper, we explore the design of modular robotic objects that may enhance playful experiences. The approach builds upon the development of modular robotics to create a kind of playware, which is flexible in both set-up and activity building for the end-user to allow easy creation of games....... Key features of this design approach are modularity, flexibility, and construction, immediate feedback to stimulate engagement, activity design by end-users, and creative exploration of play activities. These features permit the use of such modular playware by a vast array of users, including disabled...

  20. Further HTGR core support structure reliability studies. Interim report No. 1

    Energy Technology Data Exchange (ETDEWEB)

    Platus, D.L.

    1976-01-13

    Results of a continuing effort to investigate high temperature gas cooled reactor (HTGR) core support structure reliability are described. Graphite material and core support structure component physical, mechanical and strength properties required for the reliability analysis are identified. Also described are experimental and associated analytical techniques for determining the required properties, a procedure for determining number of tests required, properties that might be monitored by special surveillance of the core support structure to improve reliability predictions, and recommendations for further studies. Emphasis in the study is directed towards developing a basic understanding of graphite failure and strength degradation mechanisms; and validating analytical methods for predicting strength and strength degradation from basic material properties.

  1. Process behavior and environmental assessment of /sup 14/C releases from an HTGR fuel reprocessing facility

    Energy Technology Data Exchange (ETDEWEB)

    Snider, J.W.; Kaye, S.V.

    1976-01-01

    Large quantities of /sup 14/CO/sub 2/ will be evolved when graphite fuel blocks are burned during reprocessing of spent fuel from HTGR reactors. The possible release of some or all of this /sup 14/C to the environment is a matter of concern which is investigated in this paper. Various alternatives are considered in this study for decontaminating and releasing the process off-gas to the environment. Concomitant radiological analyses have been done for the waste process scenarios to supply the necessary feedbacks for process design.

  2. HTGR plant availability and reliability evaluations. Volume I. Summary of evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, G.J.; Hannaman, G.W.; Jacobsen, F.K.; Stokely, R.J.

    1976-12-01

    The report (1) describes a reliability assessment methodology for systematically locating and correcting areas which may contribute to unavailability of new and uniquely designed components and systems, (2) illustrates the methodology by applying it to such components in a high-temperature gas-cooled reactor (Public Service Company of Colorado's Fort St. Vrain 330-MW(e) HTGR), and (3) compares the results of the assessment with actual experience. The methodology can be applied to any component or system; however, it is particularly valuable for assessments of components or systems which provide essential functions, or the failure or mishandling of which could result in relatively large economic losses.

  3. Modular Forms and Weierstrass Mock Modular Forms

    Directory of Open Access Journals (Sweden)

    Amanda Clemm

    2016-02-01

    Full Text Available Alfes, Griffin, Ono, and Rolen have shown that the harmonic Maass forms arising from Weierstrass ζ-functions associated to modular elliptic curves “encode” the vanishing and nonvanishing for central values and derivatives of twisted Hasse-Weil L-functions for elliptic curves. Previously, Martin and Ono proved that there are exactly five weight 2 newforms with complex multiplication that are eta-quotients. In this paper, we construct a canonical harmonic Maass form for these five curves with complex multiplication. The holomorphic part of this harmonic Maass form arises from the Weierstrass ζ-function and is referred to as the Weierstrass mock modular form. We prove that the Weierstrass mock modular form for these five curves is itself an eta-quotient or a twist of one. Using this construction, we also obtain p-adic formulas for the corresponding weight 2 newform using Atkin’s U-operator.

  4. HTGR process heat program design and analysis. Semiannual progress report, October 1, 1979-March 28, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This report summarizes the results of concept design studies implemented at General Atomic Company (GA) during the first half of FY-80. The studies relate to a plant design for an 842-MW(t) High-Temperature Gas-Cooled Reactor utilizing an intermediate helium heat transfer loop to provide high temperature thermal energy for the production of hydrogen or synthesis gas (H/sub 2/ + CO) by steam-reforming a light hydrocarbon. Basic carbon sources may be coal, residual oil, or oil shale. Work tasks conducted during this period included the 842-MW(t) plant concept design and cost estimate for an 850/sup 0/C reactor outlet temperature. An assessment of the main-loop cooling shutdown system is reported. Major component cost models were prepared and programmed into the Process Heat Reactor Evaluation and Design (PHRED) code.

  5. A dictionary of modular threefolds

    OpenAIRE

    Meyer, Christian

    2005-01-01

    The thesis deals with the modularity conjecture for three-dimensional Calabi-Yau varieties. This is a generalization of the work of A. Wiles and others on modularity of elliptic curves. Modularity connects the number of points on varieties with coefficients of certain modular forms. In chapter 1 we collect the basics on arithmetic on Calabi-Yau manifolds, including general modularity results and strategies for modularity proofs. In chapters 2, 3, 4 and 5 we investigate exa...

  6. Supercongruences via modular forms

    CERN Document Server

    Osburn, Robert

    2009-01-01

    We prove two supercongruences for the coefficients of power series expansions in t of modular forms where t is a modular function. As a result, we settle two recent conjectures of Chan, Cooper and Sica. Additionally, we provide a table of supercongruences for numbers which appear in similar power series expansions and in the study of integral solutions of Apery-like differential equations.

  7. Modular Tree Automata

    DEFF Research Database (Denmark)

    Bahr, Patrick

    2012-01-01

    Tree automata are traditionally used to study properties of tree languages and tree transformations. In this paper, we consider tree automata as the basis for modular and extensible recursion schemes. We show, using well-known techniques, how to derive from standard tree automata highly modular r...

  8. Small Modular Biomass Systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-12-01

    This fact sheet provides information about modular biomass systems. Small modular biomass systems can help supply electricity to rural areas, businesses, and the billions of people who live without power worldwide. These systems use locally available biomass fuels such as wood, crop waste, animal manures, and landfill gas.

  9. Modular tree automata

    DEFF Research Database (Denmark)

    Bahr, Patrick

    2012-01-01

    Tree automata are traditionally used to study properties of tree languages and tree transformations. In this paper, we consider tree automata as the basis for modular and extensible recursion schemes. We show, using well-known techniques, how to derive from standard tree automata highly modular...

  10. Modular Abelian Varieties of Odd Modular Degree

    OpenAIRE

    Yazdani, Soroosh

    2009-01-01

    In this paper, we will study modular Abelian varieties with odd congruence numbers by examining the cuspidal subgroup of $J_0(N)$. We will show that the conductor of such Abelian varieties must be of a special type. For example, if $N$ is the conductor of an absolutely simple modular Abelian variety with an odd congruence number, then $N$ has at most two prime divisors, and if $N$ is odd, then $N=p^\\alpha$ or $N=pq$ for some prime $p$ and $q$. In the second half of this paper, we will focus o...

  11. Proposed Advanced Reactor Adaptation of the Standard Review Plan NUREG-0800 Chapter 4 (Reactor) for Sodium-Cooled Fast Reactors and Modular High-Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poore, III, Willis P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holbrook, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Moe, Wayne [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sofu, Tanju [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-based description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.

  12. The Modular Robots Kinematics

    Directory of Open Access Journals (Sweden)

    Claudiu Pozna

    2007-08-01

    Full Text Available The present paper intention is to develop a kinematical foundation for our nextworks in industrial robots (IR modular design. The goal of this works is todevelop cheap and improved robots which are adapted to the costumer needs. Inorder to achieve the mentioned goal, in [43], we have started a bibliographicalresearch of the main modular design aspects. The mentioned analyze of the actualresults in modular robots design gives us the possibility to establish our researchprogram. The idea of this paper is to develop a kinematical formalism which willbe use in the next dedicated to this subject.

  13. IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bostelmann, F. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained). SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on

  14. EFFECTS OF GRAPHITE SURFACE ROUGHNESS ON BYPASS FLOW COMPUTATIONS FOR AN HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Rich Johnson; Yu-Hsin Tung; Hiroyuki Sato

    2011-07-01

    Bypass flow in a prismatic high temperature gas reactor (HTGR) occurs between graphite blocks as they sit side by side in the core. Bypass flow is not intentionally designed to occur in the reactor, but is present because of tolerances in manufacture, imperfect installation and expansion and shrinkage of the blocks from heating and irradiation. It is desired to increase the knowledge of the effects of such flow, which has been estimated to be as much as 20% of the total helium coolant flow. Computational fluid dynamic (CFD) simulations can provide estimates of the scale and impacts of bypass flow. Previous CFD calculations have examined the effects of bypass gap width, level and distribution of heat generation and effects of shrinkage. The present contribution examines the effects of graphite surface roughness on the bypass flow for different relative roughness factors on three gap widths. Such calculations should be validated using specific bypass flow measurements. While such experiments are currently underway for the specific reference prismatic HTGR design for the next generation nuclear plant (NGNP) program of the U. S. Dept. of Energy, the data are not yet available. To enhance confidence in the present calculations, wall shear stress and heat transfer results for several turbulence models and their associated wall treatments are first compared for flow in a single tube that is representative of a coolant channel in the prismatic HTGR core. The results are compared to published correlations for wall shear stress and Nusselt number in turbulent pipe flow. Turbulence models that perform well are then used to make bypass flow calculations in a symmetric onetwelfth sector of a prismatic block that includes bypass flow. The comparison of shear stress and Nusselt number results with published correlations constitutes a partial validation of the CFD model. Calculations are also compared to ones made previously using a different CFD code. Results indicate that

  15. Exploring Modularity in Services

    DEFF Research Database (Denmark)

    Avlonitis, Viktor; Hsuan, Juliana

    2017-01-01

    Purpose The purpose of this paper is to examine how modularity manifests in the design of services. The study brings new insights on the organization of service firms by empirically exploring and theoretically advancing the intersection of modularity and service design. Design/methodology/approac......Purpose The purpose of this paper is to examine how modularity manifests in the design of services. The study brings new insights on the organization of service firms by empirically exploring and theoretically advancing the intersection of modularity and service design. Design...... concept), intra-firm organization (service delivery system), and inter-firm relationships (service network). They posit that service architectures require the examination of different analytical levels due to the complex and dynamic nature of service business. Additionally, the analysis provides new...

  16. Successful Modular Cosmology

    CERN Document Server

    Kadota, K; Kadota, Kenji; Stewart, Ewan D.

    2003-01-01

    We present a modular cosmology scenario where the difficulties encountered in conventional modular cosmology are solved in a self-consistent manner, with definite predictions to be tested by observation. Notably, the difficulty of the dilaton finding its way to a precarious weak coupling minimum is made irrelevant by having eternal modular inflation at the vacuum supersymmetry breaking scale after the dilaton is stabilised. Neither this eternal inflation nor the subsequent non-slow-roll modular inflation destabilise the dilaton from its precarious minimum due to the low energy scale of the inflation and consequent small back reaction on the dilaton potential. The observed flat CMB spectrum is obtained from fluctuations in the angular component of a modulus near a symmetric point, which are hugely magnified by the roll down of the modulus to Planckian values, allowing them to dominate the final curvature perturbation. We also give precise calculations of the spectral index and its running.

  17. Service Modularity and Architecture

    DEFF Research Database (Denmark)

    Brax, Saara A.; Bask, Anu; Hsuan, Juliana

    2017-01-01

    Purpose: Services are highly important in a world economy which has increasingly become service driven. There is a growing need to better understand the possibilities for, and requirements of, designing modular service architectures. The purpose of this paper is to elaborate on the roots of the e......Purpose: Services are highly important in a world economy which has increasingly become service driven. There is a growing need to better understand the possibilities for, and requirements of, designing modular service architectures. The purpose of this paper is to elaborate on the roots...... of the emerging research stream on service modularity, provide a concise overview of existing work on the subject, and outline an agenda for future research on service modularity and architecture. The articles in the special issue offer four diverse sets of research on service modularity and architecture. Design....../methodology/approach: The paper is built on a literature review mapping the current body of literature on the topic and developing future research directions in service modularity and architecture. Findings: The growing focus on services has triggered needs to investigate the suitability and implementation of physical...

  18. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  19. Thermochemical Water Splitting for Hydrogen Production Utilizing Nuclear Heat from an HTGR

    Institute of Scientific and Technical Information of China (English)

    WU Xinxin; ONUKI Kaoru

    2005-01-01

    A very promising technology to achieve a carbon free energy system is to produce hydrogen from water, rather than from fossil fuels. Iodine-sulfur (IS) thermochemical water decomposition is one promising process. The IS process can be used to efficiently produce hydrogen using the high temperature gas-cooled reactor (HTGR) as the energy source supplying gas at 1000℃. This paper describes that demonstration experiment for hydrogen production was carried out by an IS process at a laboratory scale. The results confirmed the feasibility of the closed-loop operation for recycling all the reactants besides the water, H2, and O2. Then the membrane technology was developed to enhance the decomposition efficiency. The maximum attainable one-pass conversion rate of HI exceeds 90% by membrane technology, whereas the equilibrium rate is about 20%.

  20. LABORATORY-SCALE PRODUCTION OF ADU GELS BY EXTERNAL GELATION FOR AN INTERMEDIATE HTGR NUCLEAR

    Directory of Open Access Journals (Sweden)

    S Simbolon

    2015-03-01

    Full Text Available LABORATORY-SCALE PRODUCTION OF ADU GELS BY EXTERNAL GELATION FOR AN INTERMEDIATE HTGR NUCLEAR. The The aim of this research is to produce thousands of microsphere ADU (Ammonium Diuranate gels by using external gelation for an intermediate HTGR (High Temperature Gas-cooled Reactor nuclear fuel in laboratory-scale. Microsphere ADU gels were based on sol-solution which was made from a homogeneous mixture of ADUN (Acid Deficient Uranyl Nitrate which was containing uranyl ion in high concentration, a water soluble organic compound PVA (Polyvinyl Alcohol and THFA (Tetrahydrofurfuryl Alcohol. The simple unified home made laboratory experimental machine was developed to replace test tube experiment method which was once used due to a tiny amount of microsphere ADU gels produced. It consists of four main parts: tank filled sol-solution connecting to peristaltic pump and vibrating nozzle, preliminary gelation and gelation column. The machine has successfully converted 150 mL sol-solution into thousands of drops which produced 120 - 130 drops in each minute in steady state in ammonia gas free sector. Preliminary gelation reaction was carried out in ammonia gas sector where drops react with ammonia gas in a bat an eye followed by gelation reaction in column containing ammonia solution 7 M. In ageing process, ADU gels were collected and submerged into a vessel containing ammonia solution which was shaken for 1 hour in a shaker device. Isopropyl alcohol (90% solution was used to wash ADU gels and a digital camera was used to measured spherical form of ADU gels. Diameters in spherical spheroid form were found between 1.8 mm until 2.2 mm. The spherical purity of ADU gels were 10% - 20% others were oblate, prolate spheroid and microsphere which have hugetiny of dimples on the surface.   PRODUKSI GEL ADU SKALA LABORATORIUM DENGAN MENGGUNAKAN GELASI EKSTERNAL UNTUK BAHAN BAKAR ANTARA HTGR. Penelitian ini bertujuan untuk membuat ribuan gel bulat ADU (Ammonium

  1. CFD simulations of separate effects in an HTGR lower plenum under air ingress condition

    Energy Technology Data Exchange (ETDEWEB)

    Gregor, Karel, E-mail: karel.gregor@fs.cvut.cz [Czech Technical University in Prague, Technicka 4, 160 00, Praha 6 (Czech Republic); Dostal, Vaclav [Czech Technical University in Prague, Technicka 4, 160 00, Praha 6 (Czech Republic)

    2012-10-15

    The local heat transfer in an HTGR lower plenum is investigated at the Czech Technical University (CTU) in Prague with collaboration with the U.S. Nuclear Regulatory Commission (NRC). NRC has initiated efforts to build a technical infrastructure necessary to support licensing activities for HTGR's. These efforts include the development and evaluation of computational fluid dynamics (CFD) tools to analyze the system during various conditions. In this case air ingress condition is investigated. The local heat transfer under air ingress condition is strongly affected by the physical phenomena such as molecular diffusion and natural circulation. These separate effects are not yet well understood. Therefore, in the first phase of research it is necessary to perform separate-effects simulations. The CFD solver is exercised and the results are compared with experimental data. The separate-effect benchmarking of the CFD code includes simulations of two separate phases of the JAERI experiments: isothermal molecular diffusion of a binary gas mixture and non-isothermal diffusion and natural circulation of a binary gas mixture. Computational model of experimental apparatus consists of a vertical inverted U-tube connected at the bottom to a cylindrical tank. Commercial CFD solver Fluent 6.3 was used for the simulations. The influence of the size of computational mesh and length of time step of unsteady solver was studied. For the simulation of isothermal molecular diffusion the coarser mesh with about 9000 hexahedral cells was suitable. The length of time step about 0.05 s seems to be optimal. The non-isothermal diffusion and natural circulation simulations were made and compared with experimental data. The onset time of the natural circulation was simulated in good agreement with experiment with small deviation of 2.3%.

  2. 013. Complementary role of 6-minutes walking test (6MWT) in the assessment of functional status of patients with chronic obstructive pulmonary disease (COPD)

    Science.gov (United States)

    Mathioudakis, Alexander G.; Evangelopoulou, Efstathia I.; Karapiperis, Georgios C.; Perros, Elias I.; Simou, Georgia; Kiritsi, Evridiki; Chatzimavridou-Grigoriadou, Victoria; Mathioudakis, Georgios A.

    2015-01-01

    Background Despite its limited repeatability, spirometry is the most widely used method of assessment of the pulmonary ventilation. However, it is not a safe measure of the functional reserve of chronic obstructive pulmonary disease (COPD) patients with multiple comorbidities. Consequently, a stress test that would include cardiovascular and neuromuscular variables would be a useful complimentary test. Objective The aim of this observational study was to investigate the correlation between FEV1 and 6MWT, in patients with stable COPD (mean FEV1% pred =43.9%, SD =15.3). Methods 174 male ex-smokers with stable COPD, with a mean age of 63±6.7 years, mean height of 171.4 and weight of 73.9 were included and grouped according to their GOLD severity staging. A control group consisting of 87 healthy volunteers (mean age: 64±6.2, height: 175.2 and weight: 70.5) was also included. All the patient and controls had spirometry before and after bronchodilatation, on a daily scaled turbine spirometer, and 6MWT, on a 10-meter straight corridor. Elapsed distance (eD), haemoglobin saturation (Sats) and heart rate (HR) were continuously monitored during the 6MWT. All the data of our study were imported in an excel sheet for statistical analysis. Results Among the main results of our study, FEV1 decrease by year of age was less pronounced among healthy volunteers (21 mL/year, r2=0.4) compared to COPD patients (53 mL/year, r2=0.06). Similarly, volunteers had a significantly lower decrease by year of age in eD (2.3 m/year, r2=0.4) compared to COPD patients (7.7 m/year, r2=0.7). A more pronounced decrease of eD by year of age was recognized in patients with later COPD stages, while weight was more significantly correlated to eD compared to age. Post-bronchodilatation FEV1 was correlated to eD in COPD patients (r2=0.7); for each 1% decrease in the FEV1, COPD patients also lose approximately 7 m of walking distance in 6MWT. Conclusions 6MWT is a reliable measure of COPD progression and

  3. On sub-modularization and morphological heterogeneity in modular robotics

    DEFF Research Database (Denmark)

    Lyder, A. H.; Stoy, K.; Garciá, R. F. M.

    2012-01-01

    Modular robots are a kind of robots built from mechatronic modules, which can be assembled in many different ways allowing the modular robot to assume a wide range of morphologies and functions. An important question in modular robotics is to which degree modules should be heterogeneous...... and implement the Thor robot and evaluate it by participating in the ICRA Planetary Robotic Contingency Challenge. The Thor robot demonstrates that sub-functional modularity and morphological heterogeneity may increase the versatility of modular robots while reducing the complexity of individual modules, which...... in the longer term may lead to more affordable modular robots. © 2013 Springer-Verlag....

  4. On sub-modularization and morphological heterogeneity in modular robotics

    DEFF Research Database (Denmark)

    Lyder, A. H.; Stoy, K.; Garciá, R. F. M.

    2012-01-01

    Modular robots are a kind of robots built from mechatronic modules, which can be assembled in many different ways allowing the modular robot to assume a wide range of morphologies and functions. An important question in modular robotics is to which degree modules should be heterogeneous...... and implement the Thor robot and evaluate it by participating in the ICRA Planetary Robotic Contingency Challenge. The Thor robot demonstrates that sub-functional modularity and morphological heterogeneity may increase the versatility of modular robots while reducing the complexity of individual modules, which...... in the longer term may lead to more affordable modular robots. © 2013 Springer-Verlag....

  5. Role of Nuclear Grade Graphite in Oxidation in Modular HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    Willaim Windes; G. Strydom; J. Kane; R. Smith

    2014-11-01

    The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940’s and has performed remarkably well over a wide range of core environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.

  6. Preliminary plan for the qualification of the LEU/Th fuel cycle for the Fort St. Vrain HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Gulden, T.D.; Gainey, B.W.; Altschwager, C.J. (comps.)

    1980-03-01

    This plan was prepared to ensure that low-enriched uranium/thorium (LEU/Th) would be available as a backup to the highly enriched uranium/thorium (HEU/Th) fuel cycle currently being used in the Fort St. Vrain (FSV) high-temperature gas-cooled reactor (HTGR) in the event that the US nonproliferation policies require it. It describes the program that would be required to develop, qualify, and introduce an LEU/Th fuel cycle into the FSV HTGR on the earliest possible and most optimistic schedule. The results of the study indicate that licensing of the LEU/Th fuel cycle for FSV could be completed and fuel manufacturing could begin about 4.5 years from inception of the program.

  7. Properties of unirradiated HTGR core support and permanent side reflector graphites: PGX, HLM, 2020, and H-440N

    Energy Technology Data Exchange (ETDEWEB)

    Engle, G.B.

    1977-05-01

    Candidate materials for HTGR core supports and permanent side reflectors--graphite grades 2020 (Stackpole Carbon Company), H-440N (Great Lakes Carbon Corporation), PGX (Union Carbide Corporation), and HLM (Great Lakes Carbon Corporation)--are described and property data are presented. Properties measured are bulk density; tensile properties including ultimate strength, modulus of elasticity, and strain at fracture; flexural strength; compressive properties including ultimate strength, modulus of elasticity, and strain at fracture; and chemical impurity content.

  8. Modular Optofluidic Systems (MOPS)

    Science.gov (United States)

    Ackermann, Tobias N.; Dietvorst, Jiri; Sanchis, Ana; Salvador, Juan P.; Munoz-Berbel, Xavier; Alvarez-Conde, Erica; Kopp, Daniel; Zappe, Hans; Marco, M.-Pilar; Llobera, Andreu

    2016-12-01

    Elementary PDMS-based building blocks of fluidic, optical and optofluidic components for Lab on a chip (LOC) platforms has here been developed. All individual modules are compatible and can be anchored and released with the help of puzzle-type connectors This approach is a powerful toolbox to create modular optofluidic systems (MOPS), which can be modified/upgraded to user needs and in-situ reconfigurable. In addition, the PDMS can locally be functionalized, defining a modular biosensor. Measurements in absorbance and fluorescence have been pursued as demonstrator.

  9. Modular assembled space telescope

    Science.gov (United States)

    Feinberg, Lee D.; Budinoff, Jason; MacEwen, Howard; Matthews, Gary; Postman, Marc

    2013-09-01

    We present a new approach to building a modular segmented space telescope that greatly leverages the heritage of the Hubble Space Telescope and the James Webb Space Telescope. The modular design in which mirror segments are assembled into identical panels allows for economies of scale and for efficient space assembly that make a 20-m aperture approach cost effective. This assembly approach can leverage NASA's future capabilities and has the power to excite the public's imagination. We discuss the science drivers, basic architecture, technology, and leveraged NASA infrastructure, concluding with a proposed plan for going forward.

  10. Maximizing Modularity is hard

    CERN Document Server

    Brandes, U; Gaertler, M; Goerke, R; Hoefer, M; Nikoloski, Z; Wagner, D

    2006-01-01

    Several algorithms have been proposed to compute partitions of networks into communities that score high on a graph clustering index called modularity. While publications on these algorithms typically contain experimental evaluations to emphasize the plausibility of results, none of these algorithms has been shown to actually compute optimal partitions. We here settle the unknown complexity status of modularity maximization by showing that the corresponding decision version is NP-complete in the strong sense. As a consequence, any efficient, i.e. polynomial-time, algorithm is only heuristic and yields suboptimal partitions on many instances.

  11. Improvement of Modeling HTGR Neutron Physics by Uncertainty Analysis with the Use of Cross-Section Covariance Information

    Science.gov (United States)

    Boyarinov, V. F.; Grol, A. V.; Fomichenko, P. A.; Ternovykh, M. Yu

    2017-01-01

    This work is aimed at improvement of HTGR neutron physics design calculations by application of uncertainty analysis with the use of cross-section covariance information. Methodology and codes for preparation of multigroup libraries of covariance information for individual isotopes from the basic 44-group library of SCALE-6 code system were developed. A 69-group library of covariance information in a special format for main isotopes and elements typical for high temperature gas cooled reactors (HTGR) was generated. This library can be used for estimation of uncertainties, associated with nuclear data, in analysis of HTGR neutron physics with design codes. As an example, calculations of one-group cross-section uncertainties for fission and capture reactions for main isotopes of the MHTGR-350 benchmark, as well as uncertainties of the multiplication factor (k∞) for the MHTGR-350 fuel compact cell model and fuel block model were performed. These uncertainties were estimated by the developed technology with the use of WIMS-D code and modules of SCALE-6 code system, namely, by TSUNAMI, KENO-VI and SAMS. Eight most important reactions on isotopes for MHTGR-350 benchmark were identified, namely: 10B(capt), 238U(n,γ), ν5, 235U(n,γ), 238U(el), natC(el), 235U(fiss)-235U(n,γ), 235U(fiss).

  12. Modular High Voltage Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Newell, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-18

    The goal of this project is to develop a modular high voltage power supply that will meet the needs of safeguards applications and provide a modular plug and play supply for use with standard electronic racks.

  13. The Evolution of Modular Construction.

    Science.gov (United States)

    American School & University, 1993

    1993-01-01

    Explores how the myths of modular construction for schools began; also discusses the advances made in steel and modular construction. The major advantages of using permanent modular construction for schools are highlighted, including its rapid construction, use of standard building materials, financial flexibility, and durability. (GR)

  14. Modular invariant inflation

    CERN Document Server

    Kobayashi, Tatsuo; Urakawa, Yuko

    2016-01-01

    Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field $T$ whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by $T$. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile, a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential $V_{ht}$, but it also has a non-negligible deviation from $V_{ht}$. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still po...

  15. Modular invariant inflation

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tatsuo [Department of Physics, Hokkaido University,Kita, Sapporo, 060-0810 (Japan); Nitta, Daisuke; Urakawa, Yuko [Department of Physics and Astrophysics, Nagoya University,Chikusa, Nagoya 464-8602 (Japan)

    2016-08-08

    Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile, a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential V{sub ht}, but it also has a non-negligible deviation from V{sub ht}. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.

  16. Modular cleanroom construction success.

    Science.gov (United States)

    Möllmann, Markus

    2007-09-01

    The completion of a 408 m2 major new aseptic pharmacy unit for the St George's Hospital NHS Trust, London, is a significant example of the benefits of using modern modular construction techniques compared to a traditional cleanroom build. At every stage from concept through project planning to final completion, the use of modules proved to be the most appropriate for the task.

  17. Network modularity promotes cooperation.

    Science.gov (United States)

    Marcoux, Marianne; Lusseau, David

    2013-05-01

    Cooperation in animals and humans is widely observed even if evolutionary biology theories predict the evolution of selfish individuals. Previous game theory models have shown that cooperation can evolve when the game takes place in a structured population such as a social network because it limits interactions between individuals. Modularity, the natural division of a network into groups, is a key characteristic of all social networks but the influence of this crucial social feature on the evolution of cooperation has never been investigated. Here, we provide novel pieces of evidence that network modularity promotes the evolution of cooperation in 2-person prisoner's dilemma games. By simulating games on social networks of different structures, we show that modularity shapes interactions between individuals favouring the evolution of cooperation. Modularity provides a simple mechanism for the evolution of cooperation without having to invoke complicated mechanisms such as reputation or punishment, or requiring genetic similarity among individuals. Thus, cooperation can evolve over wider social contexts than previously reported.

  18. Evolution of Modularity Literature

    DEFF Research Database (Denmark)

    Frandsen, Thomas

    2017-01-01

    Purpose The purpose of this paper is to review and analyze the modularity literature to identify the established and emerging perspectives. Design/methodology/approach A systematic literature search and review was conducted through the use of bibliometrics and network analysis. The analysis ident...

  19. Modular invariant inflation

    Science.gov (United States)

    Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko

    2016-08-01

    Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile, a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential Vht, but it also has a non-negligible deviation from Vht. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.

  20. Modular co-ordination

    DEFF Research Database (Denmark)

    Blach, K.

    Notatet er på engelsk, idet det er lavet som et oplæg til den internationale standardiseringsorganisations (ISO) arbejde med målkoordinering i byggeriet. Materialet har også været forelagt ekspertgrupperne i CIB W24 og i International Modular Group. Det i notatet præsenterede materiale er blevet ...

  1. Preliminary Study of the Supercritical CO{sub 2} Hybrid Cycle for the HTGR Application

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Seong Jun; Ahn, Yoonhan; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    This study was conducted to explore the potential of Supercritical Carbon Dioxide (S-CO{sub 2}) Brayton cycle for the HTGR application. The S-CO{sub 2} cycle is being considered as a PCS due to its high thermal efficiency, simplicity, compactness and so on. Generally, the S-CO{sub 2} Brayton cycle is characterized as a highly recuperated cycle which means that to achieve high thermal efficiency, the cycle requires a highly effective recuperator. Argonne National Laboratory (ANL) showed that direct application of the standard S-CO{sub 2} recompressing Brayton cycle to the HTGR or the Very High Temperature Reactor (VHTR) is difficult to achieve high thermal efficiency due to the mismatch of the temperature difference between the temperature drop of helium as the primary reactor coolant and the temperature rise of CO{sub 2} as the PCS coolant through an Intermediate Heat Exchanger (IHX). Therefore, our research team suggests a novel S-CO{sub 2} cycle configuration, the S-CO{sub 2} Brayton and Rankine hybrid cycle, to solve this limitation. This S-CO{sub 2} hybrid concept is utilizing the waste heat of the S-CO{sub 2} Brayton cycle as heat input to the S-CO{sub 2} Rankine cycle. Dividing the thermal capacity of the heat source in to the Brayton cycle part and Rankine cycle part of the S-CO{sub 2} hybrid cycle appropriately, the temperature difference at the IHX could be reduced, therefore the net system performance and operating range can be improved. In this study, the ANL research is reviewed by the in-house cycle analysis codes developed by the Korea Advanced Institute of Science and Technology (KAIST) research team. And the S-CO{sub 2} Brayton and Rankine hybrid cycle is studied as a PCS for the VHTR condition which was utilized by ANL research team; it was assumed that the core outlet temperature to be 850 .deg. C and the core inlet temperature of 400 .deg. C.

  2. Effect of steam corrosion on core post strength loss: I. Low, chronic steam ingress rates. [HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Wichner, R.P.

    1976-10-01

    The purpose of the study was to assess the effect of chronic, low levels of steam ingress into the primary system of the HTGR on the corrosion, and consequent strength loss of the core support posts. The assessment proceeded through the following three steps: (1) The impurity composition in the primary system was estimated as a function of a range of steady ingress rates of from 0.001 to 1.0 g/sec, both by means of an analysis of the Dragon steam ingress experiment and a computer code, TIMOX, which treats the primary system as a well-mixed pot. (2) The core post burnoffs which result from 40-year exposures to these determined impurity atmospheres were then estimated using a corrosion rate expression derived from published ATJ-graphite corrosion rate data. Burnoffs were determined for both the core posts at the nominal and the maximum sustained temperature, estimated to be 90/sup 0/C above nominal. (3) The final step involved assessment of the degree of strength loss resulting from the estimated burnoffs. An empirical equation was developed for this purpose which compares reasonably well with strength loss data for a number of different graphites and specimen geometries.

  3. ICP-MS measurement of iodine diffusion in IG-110 graphite for HTGR/VHTR

    Science.gov (United States)

    Carter, L. M.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.

    2016-05-01

    Graphite functions as a structural material and as a barrier to fission product release in HTGR/VHTR designs, and elucidation of transport parameters for fission products in reactor-grade graphite is thus required for reactor source terms calculations. We measured iodine diffusion in spheres of IG-110 graphite using a release method based on Fickain diffusion kinetics. Two sources of iodine were loaded into the graphite spheres; molecular iodine (I2) and cesium iodide (CsI). Measurements of the diffusion coefficient were made over a temperature range of 873-1293 K. We have obtained the following Arrhenius expressions for iodine diffusion:DI , CsI infused =(6 ×10-12 2/s) exp(30,000 J/mol RT) And,DI , I2 infused =(4 ×10-10 m2/s) exp(-11,000 J/mol RT ) The results indicate that iodine diffusion in IG-110 graphite is not well-described by Fickan diffusion kinetics. To our knowledge, these are the first measurements of iodine diffusion in IG-110 graphite.

  4. Thermophoretic and turbulent deposition of graphite dust in HTGR steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei, E-mail: pengwei@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Zhang, Tianqi; Sun, Xiaokai [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2016-04-15

    Graphical abstract: Most of small graphite dust particles are deposited in steam generators at low reactor power levels, mostly small and large particles are deposited with few medium-size particles at high reactor power levels. - Highlights: • Thermophoretic deposition is the main mechanism for small particles. • Turbulent deposition is dominant for large particles. • Mostly small particles were deposited at low reactor power. • Both small and large particles are deposited at high reactor power. - Abstract: The present study calculated the graphite dust deposition in the steam generator of HTGR by using a thermophoretic deposition model and a turbulent deposition model based on the temperature and flow field distributions calculated by a computational fluid dynamics (CFD) model. The results showed that the heat flux along the heat transfer surface was not evenly distributed which affect the particle deposition. Thermophoretic deposition is the main factor causing small graphite dust particles to deposit on the surface while turbulent deposition plays the dominant role for large particle deposition. The results also indicate that the deposited particles are mainly small graphite dust particles in steam generator when the reactor is running at low power, with both small and large graphite dust particles at high reactor power levels with fewer medium size particles.

  5. Fort Saint Vrain HTGR (Th/U carbide) Fuel Characteristics for Disposal Criticality Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Larry Lorin

    2001-01-01

    DOE-owned spent nuclear fuels encompass many fuel types. In an effort to facilitate criticality analysis for these various fuel types, they were categorized into eight characteristic fuel groups with emphasis on fuel matrix composition. Out of each fuel group, a representative fuel type was chosen for analysis as a bounding case within that fuel group. Generally, burnup data, fissile enrichments and total fuel mass govern the selection of the representative or candidate fuel within that group. For the HTGR group, the Fort Saint Vrain (FSV) reactor fuel has been chosen for the evaluation of viability for waste co-disposal. The FSV reactor was operated by Public Service of Colorado as a licensed power reactor. The FSV fuel employs a U/Th carbide matrix in individually pyrolytic carbon-coated particles. These individual particles are in turn coated with silicon carbide (SiC) and contained within fuel compacts, that are in turn embedded in graphite blocks that comprised the structural core of the reactor.

  6. Quantum Spaces are Modular

    CERN Document Server

    Freidel, Laurent; Minic, Djordje

    2016-01-01

    At present, our notion of space is a classical concept. Taking the point of view that quantum theory is more fundamental than classical physics, and that space should be given a purely quantum definition, we revisit the notion of Euclidean space from the point of view of quantum mechanics. Since space appears in physics in the form of labels on relativistic fields or Schrodinger wave functionals, we propose to define Euclidean quantum space as a choice of polarization for the Heisenberg algebra of quantum theory. We show, following Mackey, that generically, such polarizations contain a fundamental length scale and that contrary to what is implied by the Schrodinger polarization, they possess topologically distinct spectra. These are the modular spaces. We show that they naturally come equipped with additional geometrical structures usually encountered in the context of string theory or generalized geometry. Moreover, we show how modular space reconciles the presence of a fundamental scale with translation and...

  7. Site Suitability and Hazard Assessment Guide for Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Moe

    2013-10-01

    Commercial nuclear reactor projects in the U.S. have traditionally employed large light water reactors (LWR) to generate regional supplies of electricity. Although large LWRs have consistently dominated commercial nuclear markets both domestically and abroad, the concept of small modular reactors (SMRs) capable of producing between 30 MW(t) and 900 MW(t) to generating steam for electricity is not new. Nor is the idea of locating small nuclear reactors in close proximity to and in physical connection with industrial processes to provide a long-term source of thermal energy. Growing problems associated continued use of fossil fuels and enhancements in efficiency and safety because of recent advancements in reactor technology suggest that the likelihood of near-term SMR technology(s) deployment at multiple locations within the United States is growing. Many different types of SMR technology are viable for siting in the domestic commercial energy market. However, the potential application of a particular proprietary SMR design will vary according to the target heat end-use application and the site upon which it is proposed to be located. Reactor heat applications most commonly referenced in connection with the SMR market include electric power production, district heating, desalinization, and the supply of thermal energy to various processes that require high temperature over long time periods, or a combination thereof. Indeed, the modular construction, reliability and long operational life purported to be associated with some SMR concepts now being discussed may offer flexibility and benefits no other technology can offer. Effective siting is one of the many early challenges that face a proposed SMR installation project. Site-specific factors dealing with support to facility construction and operation, risks to the plant and the surrounding area, and the consequences subsequent to those risks must be fully identified, analyzed, and possibly mitigated before a license

  8. Modularity promotes epidemic recurrence

    CERN Document Server

    Jesan, T; Sinha, Sitabhra

    2016-01-01

    The long-term evolution of epidemic processes depends crucially on the structure of contact networks. As empirical evidence indicates that human populations exhibit strong community organization, we investigate here how such mesoscopic configurations affect the likelihood of epidemic recurrence. Through numerical simulations on real social networks and theoretical arguments using spectral methods, we demonstrate that highly contagious diseases that would have otherwise died out rapidly can persist indefinitely for an optimal range of modularity in contact networks.

  9. Quantum spaces are modular

    Science.gov (United States)

    Freidel, Laurent; Leigh, Robert G.; Minic, Djordje

    2016-11-01

    At present, our notion of space is a classical concept. Taking the point of view that quantum theory is more fundamental than classical physics, and that space should be given a purely quantum definition, we revisit the notion of Euclidean space from the point of view of quantum mechanics. Since space appears in physics in the form of labels on relativistic fields or Schrödinger wave functionals, we propose to define Euclidean quantum space as a choice of polarization for the Heisenberg algebra of quantum theory. We show, following Mackey, that generically, such polarizations contain a fundamental length scale and that contrary to what is implied by the Schrödinger polarization, they possess topologically distinct spectra. These are the modular spaces. We show that they naturally come equipped with additional geometrical structures usually encountered in the context of string theory or generalized geometry. Moreover, we show how modular space reconciles the presence of a fundamental scale with translation and rotation invariance. We also discuss how the usual classical notion of space comes out as a form of thermodynamical limit of modular space while the Schrödinger space is a singular limit.

  10. MUSIC, MODULARITY AND SYNTAX

    Directory of Open Access Journals (Sweden)

    Javier Valenzuela

    2007-06-01

    Full Text Available First generation cognitive science has always maintained that the mind/brain is a modular system. This has been especially apparent in linguistics, where the modularity thesis goes largely unquestioned by the linguistic mainstream. Cognitive linguists have long disputed the reality of modular architectures of grammar. Instead of conceiving syntax as a computational system of a relatively small set of formal principles and parameters, cognitive linguists take the notion of grammatical construction to be the basic unit of syntax: syntax is simply our repertoire of form-meaning pairings. On such a view, there is no a-priori reason to believe that semantics and phonology cannot affect syntax. In the present paper, we want to take things a step further and suggest, more generally, that language is not a module of cognition in any strict sense. We present preliminary results from research in progress concerning the effect of music on grammatical constructions. More specifically, our experiment compares reaction times between two grammatical constructions that differ in semantics and intonational curves but share lexical material. Our data so far suggests that subjects take less time reading the construction when the semantic bias and intonation match than in non-matching cases. This, we argue, suggests not only that semantics, phonology and syntax form an information bundle (i.e. a construction in the cognitive linguistic sense, but that perceived similarity of music can influence linguistic cognition.

  11. [Modular enteral nutrition in pediatrics].

    Science.gov (United States)

    Murillo Sanchís, S; Prenafeta Ferré, M T; Sempere Luque, M D

    1991-01-01

    Modular Enteral Nutrition may be a substitute for Parenteral Nutrition in children with different pathologies. Study of 4 children with different pathologies selected from a group of 40 admitted to the Maternal-Childrens Hospital "Valle de Hebrón" in Barcelona, who received modular enteral nutrition. They were monitored on a daily basis by the Dietician Service. Modular enteral nutrition consists of modules of proteins, peptides, lipids, glucids and mineral salts-vitamins. 1.--Craneo-encephalic traumatisms with loss of consciousness, Feeding with a combination of parenteral nutrition and modular enteral nutrition for 7 days. In view of the tolerance and good results of the modular enteral nutrition, the parenteral nutrition was suspended and modular enteral nutrition alone used up to a total of 43 days. 2.--55% burns with 36 days of hyperproteic modular enteral nutrition together with normal feeding. A more rapid recovery was achieved with an increase in total proteins and albumin. 3.--Persistent diarrhoea with 31 days of modular enteral nutrition, 5 days on parenteral nutrition alone and 8 days on combined parenteral nutrition and modular enteral nutrition. In view of the tolerance and good results of the modular enteral nutrition, the parenteral nutrition was suspended. 4.--Mucoviscidosis with a total of 19 days on modular enteral nutrition, 12 of which were exclusively on modular enteral nutrition and 7 as a night supplement to normal feeding. We administered proteic intakes of up to 20% of the total calorific intake and in concentrations of up to 1.2 calories/ml of the final preparation, always with a good tolerance. Modular enteral nutrition can and should be used as a substitute for parenteral nutrition in children with different pathologies, thus preventing the complications inherent in parenteral nutrition.

  12. Depletion Analysis of Modular High Temperature Gas-cooled Reactor Loaded with LEU/Thorium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sonat Sen; Gilles Youinou

    2013-02-01

    Thorium based fuel has been considered as an option to uranium-based fuel, based on considerations of resource utilization (Thorium is more widely available when compared to Uranium). The fertile isotope of Thorium (Th-232) can be converted to fissile isotope U-233 by neutron capture during the operation of a suitable nuclear reactor such as High Temperature Gas-cooled Reactor (HTGR). However, the fertile Thorium needs a fissile supporter to start and maintain the conversion process such as U-235 or Pu-239. This report presents the results of a study that analyzed the thorium utilization in a prismatic HTGR, namely Modular High Temperature Gas-Cooled Reactor (MHTGR) that was designed by General Atomics (GA). The collected for the modeling of this design come from Chapter 4 of MHTGR Preliminary Safety Information Document that GA sent to Department of Energy (DOE) on 1995. Both full core and unit cell models were used to perform this analysis using SCALE 6.1 and Serpent 1.1.18. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were set to match the spectral index between unit cell and full core domains. It was found that for the purposes of this study an adjusted unit cell model is adequate. Discharge isotopics and one-group cross-sections were delivered to the transmutation analysis team. This report provides documentation for these calculations

  13. The modularity of pollination networks

    DEFF Research Database (Denmark)

    Olesen, Jens Mogens; Bascompte, J.; Dupont, Yoko

    2007-01-01

    consist of strongly connected species. The importance of modularity has been discussed for a long time, but no consensus on its prevalence in ecological networks has yet been reached. Progress is hampered by inadequate methods and a lack of large datasets. We analyzed 51 pollination networks including...... almost 10,000 species and 20,000 links and tested for modularity by using a recently developed simulated annealing algorithm. All networks with >150 plant and pollinator species were modular, whereas networks with

  14. Assessment of generic solar thermal systems for large power applications. Volume II. Analysis of thermal energy production costs for systems from 50 to 600 MWt

    Energy Technology Data Exchange (ETDEWEB)

    Bird, S.P.; Apley, W.J.; Barnhart, J.S.; Brown, D.R.; Drost, M.K.; Fort, J.A.; Garrett-Price, B.A.; Williams, T.A.

    1981-06-01

    A comparative analysis of solar thermal concepts that are potentially suitable for development as large process heat systems (50 to 600 MWt) was performed. The concepts considered can be classified into three categories based on the type of solar tracking used by the collector: (1) two-axis tracking, in which concentrators track the sun's motion in both azimuth and altitude; (2) one-axis tracking, in which concentrators track changes in either azimuth or altitude; and (3) non-tracking, in which the concentrators are fixed. Seven generic types of collectors were considered. Conceptual designs developed for the seven systems were based on common assumptions of available technology in the 1990 to 2000 time frame. Costs were estimated on the basis of identical assumptions, ground rules, methodologies, and unit costs of materials and labor applied uniformly to all of the concepts.

  15. Development of a preliminary PIRT (Phenomena Identification and Ranking Table) of thermal-hydraulic phenomena for 330MWt SMART integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Lee, W. J.; Sim, S. K.; Song, J. H.; Kim, H. C.

    1997-09-01

    The work reported in this document identifies the thermal-hydraulic phenomena that are expected to occur during a number of key transients in a 330 MWt SMART integral reactor which is under development at KAERI. The result of this efforts is based on the current design concept of SMART integral reactor. Although the design is still evolving, the preliminary Phenomena Identification and Ranking Table (PIRT) has been developed based on the experts` knowledge and experience. The preliminary PIRT has been developed by the consensus of KAERI expert panelists and AHP (Analytical Hierarchy Process). Preliminary PIRT developed in this report is intended for use to identify and integrate development areas of further experimental tests needed and thermal-hydraulic models and correlations and code improvements for the safety analysis of the SMART integral reactor. (author). 7 refs., 21 tabs., 22 figs.

  16. A Unifying Modularity in Networks

    Institute of Scientific and Technical Information of China (English)

    HAO Jun-Jun; CAI Shui-Ming; HE Qin-Bin; LIU Zeng-Rong

    2010-01-01

    @@ We propose a new modularity criterion in complex networks,called the unifying modularity q which is independent of the number of partitions.It is shown that,for a given network,the relationship between the upper limit of Q and the number of the partitions,k,is sup(Qk)=(k-1)/k.Since the range of Q for each partition number is inconsistent,we try to extend the concept Q to unifying modularity q,which is independent of the number of partitions.Subsequently,we indicate that it is more accurately to determine the number of partitions by using unifying modularity q than Q.

  17. Uniruledness of orthogonal modular varieties

    CERN Document Server

    Gritsenko, Valery

    2012-01-01

    A strongly reflective modular form with respect to an orthogonal group of signature (2,n) determines a Lorentzian Kac--Moody algebra. We find a new geometric application of such modular forms: we prove that if the weight is larger than n then the corresponding modular variety is uniruled. We also construct new reflective modular forms and thus provide new examples of uniruled moduli spaces of lattice polarised K3 surfaces. Finally we prove that the moduli space of Kummer surfaces associated to (1,21)-polarised abelian surfaces is uniruled.

  18. Irradiated-Microsphere Gamma Analyzer (IMGA): an integrated system for HTGR coated particle fuel performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kania, M.J.; Valentine, K.H.

    1980-02-01

    The Irradiated-Microsphere Gamma Analyzer (IMGA) System, designed and built at ORNL, provides the capability of making statistically accurate failure fraction measurements on irradiated HTGR coated particle fuel. The IMGA records the gamma-ray energy spectra from fuel particles and performs quantitative analyses on these spectra; then, using chemical and physical properties of the gamma emitters it makes a failed-nonfailed decision concerning the ability of the coatings to retain fission products. Actual retention characteristics for the coatings are determined by measuring activity ratios for certain gamma emitters such as /sup 137/Cs//sup 95/Zr and /sup 144/Ce//sup 95/Zr for metallic fission product retention and /sup 134/Cs//sup 137/Cs for an indirect measure of gaseous fission product retention. Data from IMGA (which can be put in the form of n failures observed in N examinations) can be accurately described by the binomial probability distribution model. Using this model, a mathematical relationship between IMGA data (n,N), failure fraction, and confidence level was developed. To determine failure fractions of less than or equal to 1% at confidence levels near 95%, this model dictates that from several hundred to several thousand particles must be examined. The automated particle handler of the IMGA system provides this capability. As a demonstration of failure fraction determination, fuel rod C-3-1 from the OF-2 irradiation capsule was analyzed and failure fraction statistics were applied. Results showed that at the 1% failure fraction level, with a 95% confidence level, the fissile particle batch could not meet requirements; however, the fertile particle exceeded these requirements for the given irradiation temperature and burnup.

  19. Development of a system code for transient analysis in a HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Beom

    2004-02-15

    A GAMMA (GAs Multi-component Multi-dimensional Analysis) code is developed for transient analysis and air ingress analysis in High Temperature Gas-cooled Reactors (HTGR). The PBMR of ESKOM is selected as a reference plant for the High Temperature Gas-cooled Reactor here, which uses a direct helium cycle and pebble fuel. Physical models included in GAMMA are the pebble conduction model, radiation heat transfer model, point kinetics model, decay heat model, and component models for break flow, valve, pump, cooler, power conversion unit model. The temperature distribution and the flow distribution of the PBMR are calculated for initial and accident core in the present study. In the accident analysis, typical design basis accident (DBA), including the load transient accident and depressurization accident into the system are selected and analyzed in detail. The predictions by GAMMA for PBMR at 100% power are compared with those by VSOP and PBR{sub S}IM. It turns out that the temperature in the upper region in the third channel predicted by GAMMA is about 62 .deg. C at maximum higher than that by VSOP, but is pretty close to that by PBR{sub S}IM. The center temperature of the fuel shows that that predicted by considering swelling effect is higher than that without swelling effect by about 10 .deg. C. The net efficiency of direct system is higher than that of indirect system due to an effect of the circulator power. The transient capability of GAMMA is validated through analytical solution and PBR{sub S}IM analyzing the depressurization (Loss Of Coolant Accident, LOCA) and load transient accident. After the LOCA the system pressure decreases dramatically from 8MPa to 0.4MPa within 2 sec. After the PI (Proportional-plus-Integral) controller senses that the power shaft is over the set-point of 3,600 rpm, the bypass valve makes shaft speed back to the set-point.

  20. Modular Cure Provision

    DEFF Research Database (Denmark)

    Winther-Hansen, Casper; Frandsen, Thomas

    facilitate co-creation through open platforms and service modularity. Based on data from two pharmaceuticals we explore issues of governance related to the relative openness of platforms and their completeness. Whereas some pharmaceuticals should cater to sophisticated needs of competent users through open......Pharmaceuticals increasingly consider the potential of services, as healthcare payers require them to provide data on treatment outcomes. Ranging from corporate websites to free apps, these services are meant to increase the value of product offerings. This paper investigates how services can...

  1. Modular gear bearings

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2009-01-01

    A gearing system using modular gear bearing components. Each component is composed of a core, one or more modules attached to the core and two or more fastening modules rigidly attaching the modules to the core. The modules, which are attached to the core, may consist of gears, rollers or gear bearing components. The core orientation affects the orientation of the modules attached to the core. This is achieved via the keying arrangement of the core and the component modules that attach to the core. Such an arrangement will also facilitate the phase tuning of gear modules with respect to the core and other gear modules attached to the core.

  2. Modular Biometric Monitoring System

    Science.gov (United States)

    Chmiel, Alan J. (Inventor); Humphreys, Bradley T. (Inventor)

    2017-01-01

    A modular system for acquiring biometric data includes a plurality of data acquisition modules configured to sample biometric data from at least one respective input channel at a data acquisition rate. A representation of the sampled biometric data is stored in memory of each of the plurality of data acquisition modules. A central control system is in communication with each of the plurality of data acquisition modules through a bus. The central control system is configured to control communication of data, via the bus, with each of the plurality of data acquisition modules.

  3. Modular Mobile Application Design

    Directory of Open Access Journals (Sweden)

    Jim Hahn

    2012-10-01

    Full Text Available This article describes the development of the Minrva library app for Android phones. The decisions to build a native application with Java and use a modular design are discussed. The application includes five modules: catalog search, in-building navigation, a barcode scanning feature, and up to date notifications of circulating technology availability. A sixth module, Amazon recommendations, that is not included in the version of the app that was released is also discussed. The article also reports on the findings of two rounds of usability testing and the plans for future development of the app.

  4. Preliminary Core Analysis of a Micro Modular Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Chang Keun; Chang, Jongwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Venneri, Francesco [Ultra Safe Nuclear Corporation, Los Alamos (United States); Hawari, Ayman [NC State Univ., Raleigh (United States)

    2014-05-15

    The Micro Modular Reactor (MMR) will be 'melt-down proof'(MDP) under all circumstances, including the complete loss of coolant, and will be easily transportable and retrievable, and suitable for use with very little site preparation and Balance of Plant (BOP) requirements for a variety of applications, from power generation and process heat applications in remote areas to grid-unattached locations, including ship propulsion. The Micro Modular Reactor design proposed in this paper has 3 meter diameter core (2 meter active core) which is suitable for 'factory manufactured' and has few tens year of service life for remote deployment. We confirmed the feasibility of long term service life by a preliminary neutronic analysis in terms of the excess reactivity, the temperature feedback coefficient, and the control margins. We are able to achieve a reasonably long core life time of 5 ∼ 10 years under typical thermal hydraulic condition of a helium cooled reactor. However, on a situation where longer service period and safety is important, we can reduce the power density to the level of typical pebble bed reactor. In this case we can design 10 MWt MMR with core diameter for 10 ∼ 40 years core life time without much loss in the economics. Several burnable poisons are studied and it is found that erbia mixed in the compact matrix seems reasonably good poison. The temperature feedback coefficients were remaining negative during lifetime. Drum type control rods at reflector region and few control rods inside core region are sufficient to control the reactivity during operation and to achieve safe cold shutdown state.

  5. Modular radiochemistry synthesis system

    Energy Technology Data Exchange (ETDEWEB)

    Satyamurthy, Nagichettiar; Barrio, Jorge R.; Amarasekera, Bernard; Van Dam, Michael R.; Olma, Sebastian; Williams, Dirk; Eddings, Mark; Shen, Clifton Kwang-Fu

    2016-11-01

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  6. Modular Robotic Vehicle

    Science.gov (United States)

    Borroni-Bird, Christopher E. (Inventor); Vitale, Robert L. (Inventor); Lee, Chunhao J. (Inventor); Ambrose, Robert O. (Inventor); Bluethmann, William J. (Inventor); Junkin, Lucien Q. (Inventor); Lutz, Jonathan J. (Inventor); Guo, Raymond (Inventor); Lapp, Anthony Joseph (Inventor); Ridley, Justin S. (Inventor)

    2015-01-01

    A modular robotic vehicle includes a chassis, driver input devices, an energy storage system (ESS), a power electronics module (PEM), modular electronic assemblies (eModules) connected to the ESS via the PEM, one or more master controllers, and various embedded controllers. Each eModule includes a drive wheel containing a propulsion-braking module, and a housing containing propulsion and braking control assemblies with respective embedded propulsion and brake controllers, and a mounting bracket covering a steering control assembly with embedded steering controllers. The master controller, which is in communication with each eModule and with the driver input devices, communicates with and independently controls each eModule, by-wire, via the embedded controllers to establish a desired operating mode. Modes may include a two-wheel, four-wheel, diamond, and omni-directional steering modes as well as a park mode. A bumper may enable docking with another vehicle, with shared control over the eModules of the vehicles.

  7. Preheating after modular inflation

    Science.gov (United States)

    Barnaby, Neil; Bond, J. Richard; Huang, Zhiqi; Kofman, Lev

    2009-12-01

    We study (p)reheating in modular (closed string) inflationary scenarios, with a special emphasis on Kähler moduli/Roulette models. It is usually assumed that reheating in such models occurs through perturbative decays. However, we find that there are very strong non-perturbative preheating decay channels related to the particular shape of the inflaton potential (which is highly nonlinear and has a very steep minimum). Preheating after modular inflation, proceeding through a combination of tachyonic instability and broad-band parametric resonance, is perhaps the most violent example of preheating after inflation known in the literature. Further, we consider the subsequent transfer of energy to the standard model sector in scenarios where the standard model particles are confined to a D7-brane wrapping the inflationary blow-up cycle of the compactification manifold or, more interestingly, a non-inflationary blow-up cycle. We explicitly identify the decay channels of the inflaton in these two scenarios. We also consider the case where the inflationary cycle shrinks to the string scale at the end of inflation; here a field theoretical treatment of reheating is insufficient and one must turn instead to a stringy description. We estimate the decay rate of the inflaton and the reheat temperature for various scenarios.

  8. Modular radiochemistry synthesis system

    Energy Technology Data Exchange (ETDEWEB)

    Satyamurthy, Nagichettiar; Barrio, Jorge R.; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark; Shen, Clifton Kwang-Fu

    2015-12-15

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  9. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    Energy Technology Data Exchange (ETDEWEB)

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next

  10. 3D Nondestructive Visualization and Evaluation of TRISO Particles Distribution in HTGR Fuel Pebbles Using Cone-Beam Computed Tomography

    Directory of Open Access Journals (Sweden)

    Gongyi Yu

    2017-01-01

    Full Text Available A nonuniform distribution of tristructural isotropic (TRISO particles within a high-temperature gas-cooled reactor (HTGR pebble may lead to excessive thermal gradients and nonuniform thermal expansion during operation. If the particles are closely clustered, local hotspots may form, leading to excessive stresses on particle layers and an increased probability of particle failure. Although X-ray digital radiography (DR is currently used to evaluate the TRISO distributions in pebbles, X-ray DR projection images are two-dimensional in nature, which would potentially miss some details for 3D evaluation. This paper proposes a method of 3D visualization and evaluation of the TRISO distribution in HTGR pebbles using cone-beam computed tomography (CBCT: first, a pebble is scanned on our high-resolution CBCT, and 2D cross-sectional images are reconstructed; secondly, all cross-sectional images are restructured to form the 3D model of the pebble; then, volume rendering is applied to segment and display the TRISO particles in 3D for visualization and distribution evaluation. For method validation, several pebbles were scanned and the 3D distributions of the TRISO particles within the pebbles were produced. Experiment results show that the proposed method provides more 3D than DR, which will facilitate pebble fabrication research and production quality control.

  11. Modular Engineering of Production Plants

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth

    1998-01-01

    Based on a case-study on design of pharmaceutical production plants, this paper suggests that modularity may support business efficiency for companies with one-of-a-kind production and without in-house manufacturing. Modularity may support efficient management of design knowledge and may facilitate...

  12. Fable: Socially Interactive Modular Robot

    DEFF Research Database (Denmark)

    Magnússon, Arnþór; Pacheco, Moises; Moghadam, Mikael

    2013-01-01

    Modular robots have a significant potential as user-reconfigurable robotic playware, but often lack sufficient sensing for social interaction. We address this issue with the Fable modular robotic system by exploring the use of smart sensor modules that has a better ability to sense the behavior...

  13. Modular Decomposition of Boolean Functions

    NARCIS (Netherlands)

    J.C. Bioch (Cor)

    2002-01-01

    textabstractModular decomposition is a thoroughly investigated topic in many areas such as switching theory, reliability theory, game theory and graph theory. Most appli- cations can be formulated in the framework of Boolean functions. In this paper we give a uni_ed treatment of modular decompositio

  14. Modular Engineering of Production Plants

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth

    1998-01-01

    Based on a case-study on design of pharmaceutical production plants, this paper suggests that modularity may support business efficiency for companies with one-of-a-kind production and without in-house manufacturing. Modularity may support efficient management of design knowledge and may facilitate...

  15. Modular Decomposition of Boolean Functions

    NARCIS (Netherlands)

    J.C. Bioch (Cor)

    2002-01-01

    textabstractModular decomposition is a thoroughly investigated topic in many areas such as switching theory, reliability theory, game theory and graph theory. Most appli- cations can be formulated in the framework of Boolean functions. In this paper we give a uni_ed treatment of modular

  16. Quantum modular forms, mock modular forms, and partial theta functions

    Science.gov (United States)

    Kimport, Susanna

    Defined by Zagier in 2010, quantum modular forms have been the subject of an explosion of recent research. Many of these results are aimed at discovering examples of these functions, which are defined on the rational numbers and have "nice" modularity properties. Though the subject is in its early stages, numerous results (including Zagier's original examples) show these objects naturally arising from many areas of mathematics as limits of other modular-like functions. One such family of examples is due to Folsom, Ono, and Rhoades, who connected these new objects to partial theta functions (introduced by Rogers in 1917) and mock modular forms (about which there is a rich theory, whose origins date back to Ramanujan in 1920). In this thesis, we build off of the work of Folsom, Ono, and Rhoades by providing an infinite family of quantum modular forms of arbitrary positive half-integral weight. Further, this family of quantum modular forms "glues" mock modular forms to partial theta functions and is constructed from a so-called "universal" mock theta function by extending a method of Eichler and Zagier (originally defined for holomorphic Jacobi forms) into a non-holomorphic setting. In addition to the infinite family, we explore the weight 1/2 and 3/2 functions in more depth. For both of these weights, we are able to explicitly write down the quantum modular form, as well as the corresponding "errors to modularity," which can be shown to be Mordell integrals of specific theta functions and, as a consequence, are real-analytic functions. Finally, we turn our attention to the partial theta functions associated with these low weight examples. Berndt and Kim provide asymptotic expansions for a certain class of partial theta functions as q approaches 1 radially within the unit disk. Here, we extend this work to not only obtain asymptotic expansions for this class of functions as q approaches any root of unity, but also for a certain class of derivatives of these functions

  17. Configuring Product Modularity and Service Modularity for Mass Customization Strategies

    DEFF Research Database (Denmark)

    Bask, Anu; Hsuan, Juliana; Rajahonka, Mervi

    Service modularity is an emerging field of research, and there has been a growing interest on how it can contribute to service design and operations management. In this study we develop a framework to assess configurations of the bundling of products and services through modularization strategies......, and how such configurations become the foundations for mass customization strategies. As a result we identify critical characteristics that are relevant for both product and services, and suggest a conceptual framework consisting of twelve dynamic mass customization strategies with paired product...... and service modularity. Case examples are used for illustration of different strategies....

  18. Configuring Product Modularity and Service Modularity for Mass Customization Strategies

    DEFF Research Database (Denmark)

    Bask, Anu; Hsuan, Juliana; Rajahonka, Mervi

    , and how such configurations become the foundations for mass customization strategies. As a result we identify critical characteristics that are relevant for both product and services, and suggest a conceptual framework consisting of twelve dynamic mass customization strategies with paired product......Service modularity is an emerging field of research, and there has been a growing interest on how it can contribute to service design and operations management. In this study we develop a framework to assess configurations of the bundling of products and services through modularization strategies...... and service modularity. Case examples are used for illustration of different strategies....

  19. Modular Bootstrap Revisited

    CERN Document Server

    Collier, Scott; Yin, Xi

    2016-01-01

    We constrain the spectrum of two-dimensional unitary, compact conformal field theories with central charge c > 1 using modular bootstrap. Upper bounds on the gap in the dimension of primary operators of any spin, as well as in the dimension of scalar primaries, are computed numerically as functions of the central charge using semi-definite programming. Our bounds refine those of Hellerman and Friedan-Keller, and are in some cases saturated by known CFTs. In particular, we show that unitary CFTs with c < 8 must admit relevant deformations, and that a nontrivial bound on the gap of scalar primaries exists for c < 25. We also study bounds on the dimension gap in the presence of twist gaps, bounds on the degeneracy of operators, and demonstrate how "extremal spectra" which maximize the degeneracy at the gap can be determined numerically.

  20. Modular small hydro configuration

    Science.gov (United States)

    1981-09-01

    Smaller sites (those under 750 kilowatts) which previously were not attractive to develop using equipment intended for application at larger scale sites, were the focal point in the conception of a system which utilizes standard industrial components which are generally available within short procurement times. Such components were integrated into a development scheme for sites having 20 feet to 150 feet of head. The modular small hydro configuration maximizes the use of available components and minimizes modification of existing civil works. A key aspect of the development concept is the use of a vertical turbine multistage pump, used in the reverse mode as a hydraulic turbine. The configuration allows for automated operation and control of the hydroelectric facilities with sufficient flexibility for inclusion of potential hydroelectric sites into dispersed storage and generation (DSG) utility grid systems.

  1. Modular reconfigurable machines incorporating modular open architecture control

    CSIR Research Space (South Africa)

    Padayachee, J

    2008-01-01

    Full Text Available degrees of freedom on a single platform. A corresponding modular Open Architecture Control (OAC) system is presented. OAC overcomes the inflexibility of fixed proprietary automation, ensuring that MRMs provide the reconfigurability and extensibility...

  2. RoboMusic with modular playware

    DEFF Research Database (Denmark)

    Falkenberg, Kasper; Bærendsen, Niels Kristian; Nielsen, Jacob

    2011-01-01

    Based on the concepts of RoboMusic and modular playware, we developed a system composed of modular playware devices which allow any user to perform music in a simple, interactive manner. The key features exploited in the modular playware approach are modularity, fl exibility, construction...

  3. RoboMusic with Modular Playware

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Bærendsen, Niels Kristian; Nielsen, Jacob

    2010-01-01

    Based on the concepts of RoboMusic and Modular Playware, we developed a system composed of modular playware devices, which allow any user to perform music in a simple, interactive manner. The key features exploited from the Modular Playware approach are modularity, flexibility, and construction...

  4. 先进的规则床模块式高温气冷堆概念%Advanced ordered bed modular HTGR reactor concept

    Institute of Scientific and Technical Information of China (English)

    田嘉夫

    2008-01-01

    规则床模块堆是燃料球呈规则堆积的一种先进的模块式高温气冷堆设计.燃料球在平面上成正方形排列,四个球的中心是次一层球的位置,形成正四棱锥堆积.当燃料球落入被做成一定几何形状的堆芯空腔时,就自动形成规则堆积.燃料球可以从反应堆顶部装入和卸出,能够在较短的停堆时间内完成换料操作.规则床堆芯是一种密实体,具有很强的结构适应性和稳定性.在模块化设计中,保持非能动冷却和限制最高燃料温度的条件下,它能够提高输出功率和降低堆芯压降,同时还兼有球形燃料堆和柱状燃料堆的主要优点.本文介绍规则堆积床特性和预测规则床模块堆的设计性能.

  5. AES Modular Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goals of this project are to 1) develop modular power design concepts for human exploration flight vehicles (longer-term) and assess, develop, and/or...

  6. Hierarchy of Modular Graph Identities

    CERN Document Server

    D'Hoker, Eric

    2016-01-01

    The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop graphs at all weights, and between higher-loop graphs of weights four and five were constructed. In the present paper, these results are generalized in two complementary directions. First, all identities at weight six and all dihedral identities at weight seven are obtained and proven. Whenever the Laurent polynomial at the cusp is available, the form of these identities confirms the pattern by which the vanishing of the Laurent polynomial governs the full modular identity. Second, the family of modular graph functions is extended to include all graphs with derivative couplings and worldsheet fermions. These extended families of modular graph functions are shown to obey a hierarchy of inhomogeneous Laplace eigenvalue equations. The eigenvalues are calculated analy...

  7. Resilience of modular complex networks

    CERN Document Server

    Shai, Saray; Kenett, Yoed N; Faust, Miriam; Dobson, Simon; Havlin, Shlomo

    2014-01-01

    Complex networks often have a modular structure, where a number of tightly- connected groups of nodes (modules) have relatively few interconnections. Modularity had been shown to have an important effect on the evolution and stability of biological networks, on the scalability and efficiency of large-scale infrastructure, and the development of economic and social systems. An analytical framework for understanding modularity and its effects on network vulnerability is still missing. Through recent advances in the understanding of multilayer networks, however, it is now possible to develop a theoretical framework to systematically study this critical issue. Here we study, analytically and numerically, the resilience of modular networks under attacks on interconnected nodes, which exhibit high betweenness values and are often more exposed to failure. Our model provides new understandings into the feedback between structure and function in real world systems, and consequently has important implications as divers...

  8. Habidite: viviendas modulares industrializadas

    Directory of Open Access Journals (Sweden)

    Gómez Jáuregui, V.

    2009-03-01

    Full Text Available This paper is an introduction to one of the most relevant constructive systems of the last years: The integral industrialized construction. This method, based on three-dimensional modules, produces buildings made mainly from spatial cells of big dimensions; these three-dimensional modules are fabricated entirely in factory and, once they are finished, they are carried out to the site, where they are assembled in an easy manner. Even though it’s not a totally new system (in fact, the precedents will also be mentioned in this essay, Habidite is very confident in backing this tendency and doing its part in order to obtain modular reinforced concrete buildings of extraordinary quality, with domotic implements totally integrated in the dwellings and a high degree of sustainability, eco-technology and energetic efficiency. Many advantages are exposed and explained, dealing with the optimization of the productive processes in construction by means of the most advanced technologies.En este artículo se realiza una breve introducción a uno de los sistemas constructivos que más auge está teniendo en los últimos años: la edificación industrializada integral. Realizado a base de módulos tridimensionales, es éste un método de construcción en el cual los edificios se conforman básicamente por medio de células espaciales de grandes dimensiones; estos módulos tridimensionales se elaboran íntegramente en fábrica y, una vez están totalmente terminados, se transportan a obra, donde son montados de forma sencilla y rápida. Aunque no es un sistema totalmente novedoso (de hecho sus antecedentes también serán tratados brevemente en este texto, Habidite apuesta fuertemente por esta tendencia y aporta su grano de arena para conseguir edificios modulares de hormigón armado de extraordinaria calidad, con implementos domóticos totalmente integrados en la vivienda y un alto grado de sostenibilidad, eco-tecnología y eficiencia energética. Se abordan

  9. Enzymatic computation and cognitive modularity

    OpenAIRE

    Barrett, H. Clark

    2005-01-01

    Currently, there is widespread skepticism that higher cognitive processes, given their apparent flexibility and globality, could be carried out by specialized computational devices, or modules. This skepticism is largely due to Fodor's influential definition of modularity. From the rather flexible catalogue of possible modular features that Fodor originally proposed has emerged a widely held notion of modules as rigid, informationally encapsulated devices that accept highly local inputs and w...

  10. Simulated fission product-SiC interaction in Triso-coated LEU or MEU HTGR fuel particles

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, R.L.; Lindemer, T.B.; Beahm, E.C.

    1980-11-01

    Proliferation issues relating to the use of highly enriched uranium (HEU) have led to an evaluation of the fission product-SiC interaction problems that might arise if low enriched uranium (LEU) or medium enriched uranium (MEU) were used as fissile fuel in HTGR systems. Simulated Triso-coated UO/sub 2/, UC/sub 2/, and UO/sub 2//UC/sub 2/ particles mixed with varying amounts of Mo, Ru, Rh, Pd, Ag, and Cd were prepared. These fission products were chosen because, after full burnup, their concentrations are higher in LEU and MEU fuels than in HEU fuel. After the particles were heat treated in the laboratory, their behavior was examined by use of metallography, scanning electron microscopy, and electron microprobe x-ray analysis.

  11. Assesment of advanced step models for steady state Monte Carlo burnup calculations in application to prismatic HTGR

    Directory of Open Access Journals (Sweden)

    Kępisty Grzegorz

    2015-09-01

    Full Text Available In this paper, we compare the methodology of different time-step models in the context of Monte Carlo burnup calculations for nuclear reactors. We discuss the differences between staircase step model, slope model, bridge scheme and stochastic implicit Euler method proposed in literature. We focus on the spatial stability of depletion procedure and put additional emphasis on the problem of normalization of neutron source strength. Considered methodology has been implemented in our continuous energy Monte Carlo burnup code (MCB5. The burnup simulations have been performed using the simplified high temperature gas-cooled reactor (HTGR system with and without modeling of control rod withdrawal. Useful conclusions have been formulated on the basis of results.

  12. Spacecraft Modularity for Serviceable Satellites

    Science.gov (United States)

    Rossetti, Dino; Keer, Beth; Panek, John; Reed, Benjamin; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Satellite servicing has been a proven capability of NASA since the first servicing missions in the 1980s with astronauts on the space shuttle. This capability enabled the on-orbit assembly of the International Space Station (ISS) and saved the Hubble Space Telescope (HST) mission following the discovery of the flawed primary mirror. The effectiveness and scope of servicing opportunities, especially using robotic servicers, is a function of how cooperative a spacecraft is. In this paper, modularity will be presented as a critical design aspect for a spacecraft that is cooperative from a servicing perspective. Different features of modularity are discussed using examples from HST and the Multimission Modular Spacecraft (MMS) program from the 1980s and 1990s. The benefits of modularity will be presented including those directly related to servicing and those outside of servicing including reduced costs and increased flexibility. The new Reconfigurable Operational spacecraft for Science and Exploration (ROSE) concept is introduced as an affordable implementation of modularity that provides cost savings and flexibility. Key aspects of the ROSE architecture are discussed such as the module design and the distributed avionics architecture. The ROSE concept builds on the experience from MMS and due to its modularity, would be highly suitable as a future client for on-orbit servicing.

  13. Modular Isotopic Thermoelectric Generator

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1981-04-03

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing ~24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Details analysis indicates that the design offers a substantial improvement in specific power over the present generator of RTGs, using the same heat source modules. There are three copies in the file.

  14. Modular Nuclear Testing Concept

    Energy Technology Data Exchange (ETDEWEB)

    Wouters, L. F.

    1964-07-01

    The continuing concern with efficient utilization of manpower at the Nevada Test Site (NTS) and the seemingly high cost of individual nuclear shots, together with the recent evolution of the L-12 scope, generated some fresh thoughts concerning more efficient procedures for the `average` test. Every time anyone looks at the problem., they tend to analyze the existing conventional approach and try to find the one or two most expensive and `lossy` factors in the can of worms. Usually this turns out to be a problem within the realm of specialization of the particular analyst! People not so directly concerned with the program tend to look for, or wish for, or even `invent` miracles`. Our present techniques appear to be the sum (and possibly even the product) of many small contributions which have all been beaten down to the same level of importance. Such a situation in any systemic problem is usually symptomatic of the need for fairly violent departures in the aver-all system approach, at least in thinking. This report proposes and details a modular nuclear testing concept.

  15. Modular Approach to Spintronics.

    Science.gov (United States)

    Camsari, Kerem Yunus; Ganguly, Samiran; Datta, Supriyo

    2015-06-11

    There has been enormous progress in the last two decades, effectively combining spintronics and magnetics into a powerful force that is shaping the field of memory devices. New materials and phenomena continue to be discovered at an impressive rate, providing an ever-increasing set of building blocks that could be exploited in designing transistor-like functional devices of the future. The objective of this paper is to provide a quantitative foundation for this building block approach, so that new discoveries can be integrated into functional device concepts, quickly analyzed and critically evaluated. Through careful benchmarking against available theory and experiment we establish a set of elemental modules representing diverse materials and phenomena. These elemental modules can be integrated seamlessly to model composite devices involving both spintronic and nanomagnetic phenomena. We envision the library of modules to evolve both by incorporating new modules and by improving existing modules as the field progresses. The primary contribution of this paper is to establish the ground rules or protocols for a modular approach that can build a lasting bridge between materials scientists and circuit designers in the field of spintronics and nanomagnetics.

  16. Lectures on Hilbert modular varieties and modular forms

    CERN Document Server

    Goren, Eyal Z

    2001-01-01

    This book is devoted to certain aspects of the theory of p-adic Hilbert modular forms and moduli spaces of abelian varieties with real multiplication. The theory of p-adic modular forms is presented first in the elliptic case, introducing the reader to key ideas of N. M. Katz and J.-P. Serre. It is re-interpreted from a geometric point of view, which is developed to present the rudiments of a similar theory for Hilbert modular forms. The theory of moduli spaces of abelian varieties with real multiplication is presented first very explicitly over the complex numbers. Aspects of the general theory are then exposed, in particular, local deformation theory of abelian varieties in positive characteristic. The arithmetic of p-adic Hilbert modular forms and the geometry of moduli spaces of abelian varieties are related. This relation is used to study q-expansions of Hilbert modular forms, on the one hand, and stratifications of moduli spaces on the other hand. The book is addressed to graduate students and non-exper...

  17. Modular Stirling Radioisotope Generator

    Science.gov (United States)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  18. One-dimensional modeling of radial heat removal during depressurized heatup transients in modular pebble-bed and prismatic high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Savage, M.G.

    1984-07-01

    A one-dimensional computational model was developed to evaluate the heat removal capabilities of both prismatic-core and pebble-bed modular HTGRs during depressurized heatup transients. A correlation was incorporated to calculate the temperature- and neutron-fluence-dependent thermal conductivity of graphite. The modified Zehner-Schluender model was used to determine the effective thermal conductivity of a pebble bed, accounting for both conduction and radiation. Studies were performed for prismatic-core and pebble-bed modular HTGRs, and the results were compared to analyses performed by GA and GR, respectively. For the particular modular reactor design studied, the prismatic HTGR peak temperature was 2152.2/sup 0/C at 38 hours following the transient initiation, and the pebble-bed peak temperature was 1647.8/sup 0/C at 26 hours. These results compared favorably with those of GA and GE, with only slight differences caused by neglecting axial heat transfer in a one-dimensional radial model. This study found that the magnitude of the initial power density had a greater effect on the temperature excursion than did the initial temperature.

  19. Modular Power Standard for Space Explorations Missions

    Science.gov (United States)

    Oeftering, Richard C.; Gardner, Brent G.

    2016-01-01

    Future human space exploration will most likely be composed of assemblies of multiple modular spacecraft elements with interconnected electrical power systems. An electrical system composed of a standardized set modular building blocks provides significant development, integration, and operational cost advantages. The modular approach can also provide the flexibility to configure power systems to meet the mission needs. A primary goal of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project is to establish a Modular Power Standard that is needed to realize these benefits. This paper is intended to give the space exploration community a "first look" at the evolving Modular Power Standard and invite their comments and technical contributions.

  20. Role of nuclear grade graphite in controlling oxidation in modular HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    Windes, Willaim [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kane, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940’s and has performed remarkably well over a wide range of core environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.

  1. Pebble bed modular reactor safeguards: developing new approaches and implementing safeguards by design

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Brian David [Los Alamos National Laboratory; Beddingfield, David H [Los Alamos National Laboratory; Durst, Philip [INL; Bean, Robert [INL

    2010-01-01

    The design of the Pebble Bed Modular Reactor (PBMR) does not fit or seem appropriate to the IAEA safeguards approach under the categories of light water reactor (LWR), on-load refueled reactor (OLR, i.e. CANDU), or Other (prismatic HTGR) because the fuel is in a bulk form, rather than discrete items. Because the nuclear fuel is a collection of nuclear material inserted in tennis-ball sized spheres containing structural and moderating material and a PBMR core will contain a bulk load on the order of 500,000 spheres, it could be classified as a 'Bulk-Fuel Reactor.' Hence, the IAEA should develop unique safeguards criteria. In a multi-lab DOE study, it was found that an optimized blend of: (i) developing techniques to verify the plutonium content in spent fuel pebbles, (ii) improving burn-up computer codes for PBMR spent fuel to provide better understanding of the core and spent fuel makeup, and (iii) utilizing bulk verification techniques for PBMR spent fuel storage bins should be combined with the historic IAEA and South African approaches of containment and surveillance to verify and maintain continuity of knowledge of PBMR fuel. For all of these techniques to work the design of the reactor will need to accommodate safeguards and material accountancy measures to a far greater extent than has thus far been the case. The implementation of Safeguards-by-Design as the PBMR design progresses provides an approach to meets these safeguards and accountancy needs.

  2. HTGR Generic Technology Program: safety, systems and component design and development. Quarterly progress report for the period ending March 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    The work documented includes HTGR safety and safety-related studies to better understand and more accurately define safety characteristics and safety margins of GCRs under postulated accident conditions. Also included are the design, analysis, and testing of th PCRV, liner, penetrations, thermal barrier, reactor internals, steam generator, CAHE, and rotating machinery. Design studies and analysis plus experimental procedures and results are discussed and, where appropriate, the data are presented in tables, graphs, and photographs.

  3. Product Modular Design Incorporating Preventive Maintenance Issues

    Institute of Scientific and Technical Information of China (English)

    GAO Yicong; FENG Yixiong; TAN Jianrong

    2016-01-01

    Traditional modular design methods lead to product maintenance problems, because the module form of a system is created according to either the function requirements or the manufacturing considerations. For solving these problems, a new modular design method is proposed with the considerations of not only the traditional function related attributes, but also the maintenance related ones. First, modularity parameters and modularity scenarios for product modularity are defined. Then the reliability and economic assessment models of product modularity strategies are formulated with the introduction of the effective working age of modules. A mathematical model used to evaluate the difference among the modules of the product so that the optimal module of the product can be established. After that, a multi-objective optimization problem based on metrics for preventive maintenance interval different degrees and preventive maintenance economics is formulated for modular optimization. Multi-objective GA is utilized to rapidly approximate the Pareto set of optimal modularity strategy trade-offs between preventive maintenance cost and preventive maintenance interval difference degree. Finally, a coordinate CNC boring machine is adopted to depict the process of product modularity. In addition, two factorial design experiments based on the modularity parameters are constructed and analyzed. These experiments investigate the impacts of these parameters on the optimal modularity strategies and the structure of module. The research proposes a new modular design method, which may help to improve the maintainability of product in modular design.

  4. Product modular design incorporating preventive maintenance issues

    Science.gov (United States)

    Gao, Yicong; Feng, Yixiong; Tan, Jianrong

    2016-03-01

    Traditional modular design methods lead to product maintenance problems, because the module form of a system is created according to either the function requirements or the manufacturing considerations. For solving these problems, a new modular design method is proposed with the considerations of not only the traditional function related attributes, but also the maintenance related ones. First, modularity parameters and modularity scenarios for product modularity are defined. Then the reliability and economic assessment models of product modularity strategies are formulated with the introduction of the effective working age of modules. A mathematical model used to evaluate the difference among the modules of the product so that the optimal module of the product can be established. After that, a multi-objective optimization problem based on metrics for preventive maintenance interval different degrees and preventive maintenance economics is formulated for modular optimization. Multi-objective GA is utilized to rapidly approximate the Pareto set of optimal modularity strategy trade-offs between preventive maintenance cost and preventive maintenance interval difference degree. Finally, a coordinate CNC boring machine is adopted to depict the process of product modularity. In addition, two factorial design experiments based on the modularity parameters are constructed and analyzed. These experiments investigate the impacts of these parameters on the optimal modularity strategies and the structure of module. The research proposes a new modular design method, which may help to improve the maintainability of product in modular design.

  5. Modular robotics for playful physiotherapy

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop

    2009-01-01

    We developed modular robotic tiles to be used for playful physiotherapy, which is supposed to motivate patients to engage in and perform physical rehabilitation exercises. We tested the modular robotic tiles for an extensive period of time (3 years) in daily use in a hospital rehabilitation unit e.......g. for cardiac patients. Also, the tiles were tested for performing physical rehabilitation of stroke patients in their private home. In all pilot test cases qualitative feedback indicate that the patients find the playful use of modular robotic tiles engaging and motivating for them to perform...... the rehabilitation. Also, initial pilot test data suggest that some playful exercises on the tiles demand an average heart rate of 75% and 86% of the maximum heart rate....

  6. Modular Software-Defined Radio

    Directory of Open Access Journals (Sweden)

    Rhiemeier Arnd-Ragnar

    2005-01-01

    Full Text Available In view of the technical and commercial boundary conditions for software-defined radio (SDR, it is suggestive to reconsider the concept anew from an unconventional point of view. The organizational principles of signal processing (rather than the signal processing algorithms themselves are the main focus of this work on modular software-defined radio. Modularity and flexibility are just two key characteristics of the SDR environment which extend smoothly into the modeling of hardware and software. In particular, the proposed model of signal processing software includes irregular, connected, directed, acyclic graphs with random node weights and random edges. Several approaches for mapping such software to a given hardware are discussed. Taking into account previous findings as well as new results from system simulations presented here, the paper finally concludes with the utility of pipelining as a general design guideline for modular software-defined radio.

  7. Modular process modeling for OPC

    Science.gov (United States)

    Keck, M. C.; Bodendorf, C.; Schmidtling, T.; Schlief, R.; Wildfeuer, R.; Zumpe, S.; Niehoff, M.

    2007-03-01

    Modular OPC modeling, describing mask, optics, resist and etch processes separately is an approach to keep efforts for OPC manageable. By exchanging single modules of a modular OPC model, a fast response to process changes during process development is possible. At the same time efforts can be reduced, since only single modular process steps have to be re-characterized as input for OPC modeling as the process is adjusted and optimized. Commercially available OPC tools for full chip processing typically make use of semi-empirical models. The goal of our work is to investigate to what extent these OPC tools can be applied for modeling of single process steps as separate modules. For an advanced gate level process we analyze the modeling accuracy over different process conditions (focus and dose) when combining models for each process step - optics, resist and etch - for differing single processes to a model describing the total process.

  8. Modular system design and evaluation

    CERN Document Server

    Levin, Mark Sh

    2015-01-01

    This book examines seven key combinatorial engineering frameworks (composite schemes consisting of algorithms and/or interactive procedures) for hierarchical modular (composite) systems. These frameworks are based on combinatorial optimization problems (e.g., knapsack problem, multiple choice problem, assignment problem, morphological clique problem), with the author’s version of morphological design approach – Hierarchical Morphological Multicritieria Design (HMMD) – providing a conceptual lens with which to elucidate the examples discussed. This approach is based on ordinal estimates of design alternatives for systems parts/components, however, the book also puts forward an original version of HMMD that is based on new interval multiset estimates for the design alternatives with special attention paid to the aggregation of modular solutions (system versions). The second part of ‘Modular System Design and Evaluation’ provides ten information technology case studies that enriches understanding of th...

  9. Emergent interfaces for feature modularization

    CERN Document Server

    Ribeiro, Márcio; Brabrand, Claus

    2014-01-01

    Developers frequently introduce errors into software systems when they fail to recognise module dependencies. Using forty-three software families and Software Product Lines (SPLs), where the majority are commonly used in industrial practice, the authors reports on the feature modularization problem and provides a study of how often it may occur in practice. To solve the problem they present the concept of emergent feature modularization which aims to establish contracts between features to prevent developers from breaking other features when performing a maintenance task.

  10. Walk modularity and community structure in networks

    CERN Document Server

    Mehrle, David; Harkin, Anthony

    2014-01-01

    Modularity maximization has been one of the most widely used approaches in the last decade for discovering community structure in networks of practical interest in biology, computing, social science, statistical mechanics, and more. Modularity is a quality function that measures the difference between the number of edges found within clusters minus the number of edges one would statistically expect to find based on random chance. We present a natural generalization of modularity based on the difference between the actual and expected number of walks within clusters, which we call walk-modularity. Walk-modularity can be expressed in matrix form, and community detection can be performed by finding leading eigenvectors of the walk-modularity matrix. We demonstrate community detection on both synthetic and real-world networks and find that walk-modularity maximization returns significantly improved results compared to traditional modularity maximization.

  11. Modularity for Modulating Exercises and Levels

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Nielsen, Camilla Balslev

    2011-01-01

    The modular interactive tiles aim at engaging anybody (elderly, carer, hospital personnel, children) in performing playful and motivating physical activities. Inspired by modular robotics, each tile is a self-contained module with processing power and communication to neighbouring modules...

  12. p-adic Modular Symbols and Λ-adic Modular Forms

    Institute of Scientific and Technical Information of China (English)

    Fu Zheng WANG

    2006-01-01

    A construction of Λ-adic modular forms from p-adic modular symbols is described. It showsthat each Λ linear map satisfying some certain conditions from the module of p-adic modular symbols to Λ corresponds to a Λ-adic modular form.

  13. Additive Approximation Algorithms for Modularity Maximization

    OpenAIRE

    Kawase, Yasushi; Matsui, Tomomi; Miyauchi, Atsushi

    2016-01-01

    The modularity is a quality function in community detection, which was introduced by Newman and Girvan (2004). Community detection in graphs is now often conducted through modularity maximization: given an undirected graph $G=(V,E)$, we are asked to find a partition $\\mathcal{C}$ of $V$ that maximizes the modularity. Although numerous algorithms have been developed to date, most of them have no theoretical approximation guarantee. Recently, to overcome this issue, the design of modularity max...

  14. Development of evaluation method with X-ray tomography for material property of IG-430 graphite for VHTR/HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Sumita, Junya, E-mail: sumita.junya@jaea.go.jp [HTGR Design Group Nuclear Hydrogen and Heat Application Research Center, Japan Atomic Energy Agency, 4002 Oarai-machi, Higashiibaraki-gun, Ibaraki-ken 311-1393 (Japan); Shibata, Taiju [Graphite and Carbon Materials Characterization Special Group, Nuclear Engineering Research Collaboration Center, Japan Atomic Energy Agency, 4002 Oarai-machi, Higashiibaraki-gun, Ibaraki-ken, 311-1393 (Japan); Fujita, Ichiro; Kunimoto, Eiji; Yamaji, Masatoshi; Eto, Motokuni; Konishi, Takashi [Atomic Energy Section, Production Division, Toyo Tanso Co., Ltd., 2791 Matsuzaki, Takuma-cho, Mitoyoshi, Kagawa-ken, 769-1102 (Japan); Sawa, Kazuhiro [Department of HTTR, Japan Atomic Energy Agency, Higashiibaraki-gun, Ibaraki-ken 311-1393 (Japan)

    2014-05-01

    Graphite materials are used for the in-core components of High Temperature Gas-cooled Reactor (HTGR) which is a graphite-moderated and helium gas-cooled reactor. The HTGR is particularly attractive due to capability of producing high temperature helium gas, and its passive and inherent safety features. The Very High Temperature Reactor (VHTR) is one of the most promising candidates for the Generation-IV nuclear reactor systems. IG-110 graphite having high strength and resistance to oxidation is used in the HTTR of JAEA. IG-110 is a major candidate for the in-core graphite components of VHTR, too. From the standpoint of the safety at air ingress accident, it is important for graphite materials to have adequate resistance against oxidation damage. IG-430 graphite having higher strength and resistance to oxidation than IG-110 is an advanced candidate for the VHTR. Recently, X-ray tomography method is expected to apply the evaluation of neutron irradiation effects by measuring the irradiation-induced change of geometry of graphite grains and pores. This method is also applicable to evaluate the oxidation damage on graphite from the oxidation-induced change of grain/pore microstructures. In this study, in order to develop evaluation method for material properties and to evaluate the irradiation-induced property changes under higher neutron doses for IG-430, the oxidation and densification effects on elastic modulus of IG-430 were investigated. Moreover, the correlation of the microstructure based on the X-ray tomography images and the material properties was discussed. It was shown that the elastic modulus of the densified graphite depends on only the open pores and it is possible to evaluate the material properties of graphite by using X-ray tomography method. However, it is necessary to take into account of the change in the number and shape of closed pores in the grain to simulate the elastic modulus of the highly oxidized and irradiated materials by the

  15. A Modular Rewriting Semantics for CML

    DEFF Research Database (Denmark)

    Chalub, Fabricio; Braga, Christiano de Oliveira

    2004-01-01

    This paper presents a modular rewriting semantics (MRS) specification for Reppy's Concurrent ML (CML), based on Peter Mosses' modular structural operational semantics specification for CML. A modular rewriting semantics specification for a programming language is a rewrite theory in rewriting log...

  16. Generating graphs that approach a prescribed modularity

    NARCIS (Netherlands)

    Trajanovski, S.; Kuipers, F.A.; Martín-Hernández, J.; Van Mieghem, P.

    2013-01-01

    Modularity is a quantitative measure for characterizing the existence of a community structure in a network. A network's modularity depends on the chosen partitioning of the network into communities, which makes finding the specific partition that leads to the maximum modularity a hard problem. In t

  17. SOME RESULTS OF MODULAR LIE SUPERALGEBRAS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In the present article, the authors give some properties on subinvariant subalgebras of modular Lie superalgebras and obtain the derivation tower theorem of modular Lie superalgebras, which is analogous to the automorphism tower theorem of finite groups.Moreover, they announce and prove some results of modular complete Lie superalgebras.

  18. On modular Galois representations modulo prime powers

    DEFF Research Database (Denmark)

    Chen, Imin; Kiming, Ian; Wiese, Gabor

    2013-01-01

    We study modular Galois representations mod pm. We show that there are three progressively weaker notions of modularity for a Galois representation mod pm: We have named these "strongly", "weakly", and "dc-weakly" modular. Here, "dc" stands for "divided congruence" in the sense of Katz and Hida. ...

  19. On modular Galois representations modulo prime powers

    DEFF Research Database (Denmark)

    Chen, Imin; Kiming, Ian; Wiese, Gabor

    2013-01-01

    . These notions of modularity are relative to a fixed level M. Using results of Hida we display a level-lowering result ("stripping-of-powers of p away from the level"): A mod pm strongly modular representation of some level Npr is always dc-weakly modular of level N (here, N is a natural number not divisible...

  20. Uncertainty and Sensitivity Analyses of a Pebble Bed HTGR Loss of Cooling Event

    Directory of Open Access Journals (Sweden)

    Gerhard Strydom

    2013-01-01

    Full Text Available The Very High Temperature Reactor Methods Development group at the Idaho National Laboratory identified the need for a defensible and systematic uncertainty and sensitivity approach in 2009. This paper summarizes the results of an uncertainty and sensitivity quantification investigation performed with the SUSA code, utilizing the International Atomic Energy Agency CRP 5 Pebble Bed Modular Reactor benchmark and the INL code suite PEBBED-THERMIX. Eight model input parameters were selected for inclusion in this study, and after the input parameters variations and probability density functions were specified, a total of 800 steady state and depressurized loss of forced cooling (DLOFC transient PEBBED-THERMIX calculations were performed. The six data sets were statistically analyzed to determine the 5% and 95% DLOFC peak fuel temperature tolerance intervals with 95% confidence levels. It was found that the uncertainties in the decay heat and graphite thermal conductivities were the most significant contributors to the propagated DLOFC peak fuel temperature uncertainty. No significant differences were observed between the results of Simple Random Sampling (SRS or Latin Hypercube Sampling (LHS data sets, and use of uniform or normal input parameter distributions also did not lead to any significant differences between these data sets.

  1. Hierarchy of modular graph identities

    Energy Technology Data Exchange (ETDEWEB)

    D’Hoker, Eric; Kaidi, Justin [Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy,University of California,Los Angeles, CA 90095 (United States)

    2016-11-09

    The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop graphs at all weights, and between higher-loop graphs of weights four and five were constructed. In the present paper, these results are generalized in two complementary directions. First, all identities at weight six and all dihedral identities at weight seven are obtained and proven. Whenever the Laurent polynomial at the cusp is available, the form of these identities confirms the pattern by which the vanishing of the Laurent polynomial governs the full modular identity. Second, the family of modular graph functions is extended to include all graphs with derivative couplings and worldsheet fermions. These extended families of modular graph functions are shown to obey a hierarchy of inhomogeneous Laplace eigenvalue equations. The eigenvalues are calculated analytically for the simplest infinite sub-families and obtained by Maple for successively more complicated sub-families. The spectrum is shown to consist solely of eigenvalues s(s−1) for positive integers s bounded by the weight, with multiplicities which exhibit rich representation-theoretic patterns.

  2. Modular crystals as modulated structures

    DEFF Research Database (Denmark)

    Elcoro, L.; Perez-Mato, J.M.; Friese, K.;

    2008-01-01

    The use of the superspace formalism is extended to the description and refinement of the homologous series of modular structures with two symmetry-related modules with different orientations. The lillianite homologous series has been taken as a study case. Starting from a commensurate modulated c...

  3. Physical Modeling Modular Boxes: PHOXES

    DEFF Research Database (Denmark)

    Gelineck, Steven; Serafin, Stefania

    2010-01-01

    This paper presents the development of a set of musical instruments, which are based on known physical modeling sound synthesis techniques. The instruments are modular, meaning that they can be combined in various ways. This makes it possible to experiment with physical interaction and sonic expl...

  4. Modularity in Cancer Care Provision

    DEFF Research Database (Denmark)

    Gobbi, Chiara; Hsuan, Juliana

    2012-01-01

    The paper presents the findings of a case study research conducted within the Danish healthcare system aimed at analyzing how modularity is deployed in the process of delivery cancer care. Three cancer packages are presented into detailed describing the process of defining the diagnosis and treat...

  5. Modeling of the vapor cycle of Laguna Verde with the PEPSE code to conditions of thermal power licensed at present (2027 MWt); Modelado del ciclo de vapor de Laguna Verde con el codigo PEPSE a condiciones de potencia termica actualmente licenciada (2027 MWt)

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda G, M. A.; Maya G, F.; Medel C, J. E.; Cardenas J, J. B.; Cruz B, H. J.; Mercado V, J. J., E-mail: miguel.castaneda01@cfe.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Carretera Cardel-Nautla Km 42.5, Veracruz (Mexico)

    2011-11-15

    By means of the use of the performance evaluation of power system efficiencies (PEPSE) code was modeled the vapor cycle of the nuclear power station of Laguna Verde to reproduce the nuclear plant behavior to conditions of thermal power, licensed at present (2027 MWt); with the purpose of having a base line before the implementation of the project of extended power increase. The model of the gauged vapor cycle to reproduce the nuclear plant conditions makes use of the PEPSE model, design case of the vapor cycle of nuclear power station of Laguna Verde, which has as main components of the model the great equipment of the vapor cycle of Laguna Verde. The design case model makes use of information about the design requirements of each equipment for theoretically calculating the electric power of exit, besides thermodynamic conditions of the vapor cycle in different points. Starting from the design model and making use of data of the vapor cycle measured in the nuclear plant; the adjustment factors were calculated for the different equipment s of the vapor cycle, to reproduce with the PEPSE model the real vapor cycle of Laguna Verde. Once characterized the model of the vapor cycle of Laguna Verde, we can realize different sensibility studies to determine the effects macros to the vapor cycle by the variation of certain key parameters. (Author)

  6. Bundling Products and Services Through Modularization Strategies

    DEFF Research Database (Denmark)

    Bask, Anu; Hsuan, Juliana; Rajahonka, Mervi;

    2012-01-01

    Modularity has been recognized as a powerful tool in improving the efficiency and management of product design and manufacturing. However, the integrated view on covering both, product and service modularity for product-service systems (PSS), is under researched. Therefore, in this paper our...... objective is to contribute to the PSS modularity. Thus, we describe configurations of PSSs and the bundling of products and services through modularization strategies. So far there have not been tools to analyze and determine the correct combinations of degrees of product and service modularities....

  7. Towards a Standard for Modular Petri Nets

    DEFF Research Database (Denmark)

    Kindler, Ekkart; Petrucci, Laure

    2009-01-01

    as a mechanism for modules in Petri nets that is independent from a particular version of Petri nets and that can mimic many composition mechanisms by a simple import and export concept. Due to its generality, the semantics of modular PNML was only informally defined. Moreover, modular PNML did not define which...... concepts could or should be subject to import and export in high-level Petri nets. In this paper, we formalise a minimal version of modular high-level Petri nets, which is based on the concepts of modular PNML. This shows that modular PNML can be formalised once a specific version of Petri net is fixed...

  8. Reflective modular forms in algebraic geometry

    CERN Document Server

    Gritsenko, Valery

    2010-01-01

    We prove that the existence of a strongly reflective modular form of a large weight implies that the Kodaira dimension of the corresponding modular variety is negative or, in some special case, it is equal to zero. Using the Jacobi lifting we construct three towers of strongly reflective modular forms with the simplest possible divisor. In particular we obtain a Jacobi lifting construction of the Borcherds-Enriques modular form Phi_4 and Jacobi liftings of automorphic discriminants of the K\\"ahler moduli of Del Pezzo surfaces constructed recently by Yoshikawa. We obtain also three modular varieties of dimension 4, 6 and 7 of Kodaira dimension 0.

  9. Modularity and stability in ecological communities

    Science.gov (United States)

    Grilli, Jacopo; Rogers, Tim; Allesina, Stefano

    2016-01-01

    Networks composed of distinct, densely connected subsystems are called modular. In ecology, it has been posited that a modular organization of species interactions would benefit the dynamical stability of communities, even though evidence supporting this hypothesis is mixed. Here we study the effect of modularity on the local stability of ecological dynamical systems, by presenting new results in random matrix theory, which are obtained using a quaternionic parameterization of the cavity method. Results show that modularity can have moderate stabilizing effects for particular parameter choices, while anti-modularity can greatly destabilize ecological networks. PMID:27337386

  10. Implications of Results from the Advanced Gas Reactor Fuel Development and Qualification Program on Licensing of Modular HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    David Petti

    2001-10-01

    The high level of safety of modular high temperature gas-cooled reactor (HTGR) designs is achieved by passively maintaining core temperatures below fission product release thresholds under all envisioned accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude relative to other reactor types but is predicated on exceptionally high coated-particle fuel fabrication quality and excellent fuel performance under normal operation and accident conditions. The Advanced Gas Reactor Fuel Development and Qualification (AGR) Program decided to qualify for uranium oxide/uranium carbide (UCO) TRISO coated-particle fuel in an operating envelope that would bound both pebble bed and prismatic modular HTGR options. By using a mixture of uranium oxide and uranium carbide, the kernel composition is engineered to minimize CO formation and fuel kernel migration, which is key to maintain to fuel integrity at the higher burnups, temperatures, and temperature gradients anticipated in prismatic HTGRs. Fuel fabrication conducted at both laboratory and engineering scale has demonstrated the ability to fabricate high quality UCO TRISO fuel with very low defects. The first irradiation (AGR 1) exposed about 300,000 TRISO fuel particles to a peak burnup of 19.6% FIMA, a peak fast-neutron fluence of about 4.3 × 1025 n/m2, and a maximum time-averaged fuel temperature of about 1,200°C without a single particle failure. The very low release of key metallic fission products (except silver) measured in post-irradiation examination (PIE) confirms the excellent performance measured under irradiation. Very low releases have been measured in accident simulation heatup testing (''safety testing'') after hundreds of hours at 1600 and 1700°C and no particle failures (no noble gas release measured) have been observed. Even after hundreds of hours at 1800°C, the releases are

  11. Quasispecies theory for evolution of modularity.

    Science.gov (United States)

    Park, Jeong-Man; Niestemski, Liang Ren; Deem, Michael W

    2015-01-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a quasispecies theory for the dynamics of modularity in populations of these systems. We show how the steady-state fitness in a randomly changing environment can be computed. We derive a fluctuation dissipation relation for the rate of change of modularity and use it to derive a relationship between rate of environmental changes and rate of growth of modularity. We also find a principle of least action for the evolved modularity at steady state. Finally, we compare our predictions to simulations of protein evolution and find them to be consistent.

  12. Quasispecies theory for evolution of modularity

    Science.gov (United States)

    Park, Jeong-Man; Niestemski, Liang Ren; Deem, Michael W.

    2015-01-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a quasispecies theory for the dynamics of modularity in populations of these systems. We show how the steady-state fitness in a randomly changing environment can be computed. We derive a fluctuation dissipation relation for the rate of change of modularity and use it to derive a relationship between rate of environmental changes and rate of growth of modularity. We also find a principle of least action for the evolved modularity at steady state. Finally, we compare our predictions to simulations of protein evolution and find them to be consistent.

  13. Modular Platforms for Optofluidic Systems

    Science.gov (United States)

    Brammer, Marko; Mappes, Timo

    2014-01-01

    Optofluidics is increasingly gaining impact in a number of different fields of research, namely biology and medicine, environmental monitoring and green energy. However, the market for optofluidic products is still in the early development phase. In this manuscript, we discuss modular platforms as a potential concept to facilitate the transfer of optofluidic sensing systems to an industrial implementation. We present microfluidic and optical networks as a basis for the interconnection of optofluidic sensor modules. Finally, we show the potential for entire optofluidic networks

  14. On modular semifinite index theory

    CERN Document Server

    Kaad, Jens

    2011-01-01

    We propose a definition of a modular spectral triple which covers existing examples arising from KMS-states, Podles sphere and quantum SU(2). The definition also incorporates the notion of twisted commutators appearing in recent work of Connes and Moscovici. We show how a finitely summable modular spectral triple admits a twisted index pairing with unitaries satisfying a modular condition. The twist means that the dimensions of kernels and cokernels are measured with respect to two different but intimately related traces. The twisted index pairing can be expressed by pairing Chern characters in reduced versions of twisted cyclic theories. We end the paper by giving a local formula for the reduced Chern character in the case of quantum SU(2). It appears as a twisted coboundary of the Haar-state. In particular we present an explicit computation of the twisted index pairing arising from the sequence of corepresentation unitaries. As an important tool we construct a family of derived integration spaces associated...

  15. Cyclic modular beta-sheets.

    Science.gov (United States)

    Woods, R Jeremy; Brower, Justin O; Castellanos, Elena; Hashemzadeh, Mehrnoosh; Khakshoor, Omid; Russu, Wade A; Nowick, James S

    2007-03-07

    The development of peptide beta-hairpins is problematic, because folding depends on the amino acid sequence and changes to the sequence can significantly decrease folding. Robust beta-hairpins that can tolerate such changes are attractive tools for studying interactions involving protein beta-sheets and developing inhibitors of these interactions. This paper introduces a new class of peptide models of protein beta-sheets that addresses the problem of separating folding from the sequence. These model beta-sheets are macrocyclic peptides that fold in water to present a pentapeptide beta-strand along one edge; the other edge contains the tripeptide beta-strand mimic Hao [JACS 2000, 122, 7654] and two additional amino acids. The pentapeptide and Hao-containing peptide strands are connected by two delta-linked ornithine (deltaOrn) turns [JACS 2003, 125, 876]. Each deltaOrn turn contains a free alpha-amino group that permits the linking of individual modules to form divalent beta-sheets. These "cyclic modular beta-sheets" are synthesized by standard solid-phase peptide synthesis of a linear precursor followed by solution-phase cyclization. Eight cyclic modular beta-sheets 1a-1h containing sequences based on beta-amyloid and macrophage inflammatory protein 2 were synthesized and characterized by 1H NMR. Linked cyclic modular beta-sheet 2, which contains two modules of 1b, was also synthesized and characterized. 1H NMR studies show downfield alpha-proton chemical shifts, deltaOrn delta-proton magnetic anisotropy, and NOE cross-peaks that establish all compounds but 1c and 1g to be moderately or well folded into a conformation that resembles a beta-sheet. Pulsed-field gradient NMR diffusion experiments show little or no self-association at low (

  16. Modular Robotics in an African Context

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop

    2011-01-01

    In this paper, we review the concept, development and use of modular robotic devices for education, health improvements, and business in Africa. The modular robotics inspired technology has the advantage of allowing any user easy access to a physical construction of new and advanced technology. We...... conceptualized several educational tools inspired by modular robotics for contextualized IT education in Tanzania, leading to a novel IT degree program and the development of East Africa’s first science and business park in Iringa, Tanzania. The prototypes inspired by modular robotics were developed in the local......, rural context and tested by local users in hospitals and rehabilitation centres. In this paper, we review the development of both modular building blocks for education and modular robotic tiles for rehabilitation in Tanzania....

  17. (Automated) software modularization using community detection

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Manikas, Konstantinos

    2015-01-01

    detection algorithm of Reichardt and Bornholdt improved community quality for all systems, that coupling decreased for 99 of the systems, and that coherence increased for 102 of the systems. Furthermore, the modularity function correlates with existing metrics for coupling and coherence.......The modularity of a software system is known to have an effect on, among other, development effort, change impact, and technical debt. Modularizing a specific system and evaluating this modularization is, however, challenging. In this paper, we apply community detection methods to the graph...... of class dependencies in software systems to find optimal modularizations through communities. We evaluate this approach through a study of 111 Java systems contained in the Qualitas Corpus. We found that using the modularity function of Newman with an Erdős-Rényi null-model and using the community...

  18. Modular Design in Treaty Verification Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Macarthur, Duncan Whittemore [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Benz, Jacob [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tolk, Keith [Milagro Consulting, Albuquerque, NM (United States); Weber, Tom [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-27

    It is widely believed that modular design is a good thing. However, there are often few explicit arguments, or even an agreed range of definitions, to back up this belief. In this paper, we examine the potential range of design modularity, the implications of various amounts of modularity, and the advantages and disadvantages of each level of modular construction. We conclude with a comparison of the advantages and disadvantages of each type, as well as discuss many caveats that should be observed to take advantage of the positive features of modularity and minimize the effects of the negative. The tradeoffs described in this paper will be evaluated during the conceptual design to determine what amount of modularity should be included.

  19. Progress report on evaluation of potential impact of /sup 14/C releases from an HTGR reprocessing facility

    Energy Technology Data Exchange (ETDEWEB)

    Killough, G.G.; Dixon, K.R.; Edwards, N.T.; Murphy, B.D.; Rohwer, P.S.; Harris, W.F.; Kaye, S.V.

    1976-07-01

    The potential radiological impacts of atmospheric releases of /sup 14/CO/sub 2/ are assessed for a model HTGR reprocessing facility. Two off-gas systems were considered: (1) a 300-ft stack with no thermal output, and (2) a 1000-ft stack with a stack gas temperature of 80/sup 0/C and heat output of 4.2 x 10/sup 7/ Btu/hr. Meteorological data for the Oak Ridge area were used with an assumed annual release rate of 5000 Ci as input to an atmospheric transport model, which in turn was used to predict air concentrations of /sup 14/C at points of habitation and food production in the local area (within 50 miles) of the facility. The total-body dose rates estimated for the average resident living in the local area were 0.107 mrem/yr for the 300-ft stack and 0.063 mrem/yr for the 1000-ft stack. Population doses were computed for a population of 10/sup 6/ individuals uniformly distributed within the 50-mile local area of the facility; these were 110 man-rem for the 300-ft stack and 63 man-rem for the 1000-ft stack. The results of these dose calculations suggest that a 1000-ft stack would be very effective in reducing the estimated doses. Plant growth carbon assimilation model was derived in order to investigate the adequacy of the assumption of tissue equilibration with time-averaged ambient specific activity as a basis for dose estimates. Simulation runs with these models suggest that in the presence of frequent fluctuations of large amplitude in the ambient air /sup 14/CO/sub 2/ concentrations, specific activity in plant tissue can exceed conventionally calculated time-averaged specific activity.

  20. Modular, Hierarchical Learning By Artificial Neural Networks

    Science.gov (United States)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  1. A Modular Rewriting Semantics for CML

    DEFF Research Database (Denmark)

    Chalub, Fabricio; Braga, Christiano de Oliveira

    2004-01-01

    This paper presents a modular rewriting semantics (MRS) specification for Reppy's Concurrent ML (CML), based on Peter Mosses' modular structural operational semantics specification for CML. A modular rewriting semantics specification for a programming language is a rewrite theory in rewriting log...... of rewriting logic, and to verify CML programs using Maude's built-in LTL model checker. It is assumed that the reader is familiar with basic concepts of structural operational semantics and algebraic specifications....

  2. Identification of drivers for modular production

    DEFF Research Database (Denmark)

    Brunoe, Thomas Ditlev; Bossen, Jacob; Nielsen, Kjeld

    2015-01-01

    Todays competitive environment in industry creates a need for companies to enhance their ability to introduce new products faster. To increase rampup speed reconfigurable manufacturing systems is a promising concept, however to implement this production platforms and modular manufacturing...... is required. This paper presents an analysis whether and which module drivers from general product development can be applied to the development process of a modular manufacturing system. The result is a compiled list of modular drivers for manufacturing and examples of their use....

  3. Modularity and its effects on innovation

    DEFF Research Database (Denmark)

    Boer, Henrike Engele Elisabeth; Hansen, Poul H. Kyvsgård

    Purpose Through a discussion of the link between modularity and innovation, it is assessed whether and, then, when it is appropriate for an entrepreneur to apply modularity in his company’s innovation processes. Design/Methodology/Approach A conceptual paper, which aims to combine three theoretical...... fields: Modularity, Innovation, and Entrepreneurship Findings: Modularization can provide huge advantages for entrepreneurs. However, the true benefits can first be pursued when the product and production processes are mature enough. At this point of time the entrepreneur will need to accept more...

  4. A SCALABLE HYBRID MODULAR MULTIPLICATION ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Meng Qiang; Chen Tao; Dai Zibin; Chen Quji

    2008-01-01

    Based on the analysis of several familiar large integer modular multiplication algorithms,this paper proposes a new Scalable Hybrid modular multiplication (SHyb) algorithm which has scalable operands, and presents an RSA algorithm model with scalable key size. Theoretical analysis shows that SHyb algorithm requires m2n/2+2m iterations to complete an mn-bit modular multiplication with the application of an n-bit modular addition hardware circuit. The number of the required iterations can be reduced to a half of that of the scalable Montgomery algorithm. Consequently, the application scope of the RSA cryptosystem is expanded and its operation speed is enhanced based on SHyb algorithm.

  5. Problems in the theory of modular forms

    CERN Document Server

    Murty, M Ram; Graves, Hester

    2016-01-01

    This book introduces the reader to the fascinating world of modular forms through a problem-solving approach. As such, besides researchers, the book can be used by the undergraduate and graduate students for self-instruction. The topics covered include q-series, the modular group, the upper half-plane, modular forms of level one and higher level, the Ramanujan τ-function, the Petersson inner product, Hecke operators, Dirichlet series attached to modular forms and further special topics. It can be viewed as a gentle introduction for a deeper study of the subject. Thus, it is ideal for non-experts seeking an entry into the field. .

  6. Pre-Conceptual Design of a Fluoride-Salt-Cooled Small Modular Advanced High Temperature Reactor (SmAHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Sherrell R [ORNL; Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Carbajo, Juan J [ORNL; Ilas, Dan [ORNL; Cisneros, Anselmo T [ORNL; Varma, Venugopal Koikal [ORNL; Corwin, William R [ORNL; Wilson, Dane F [ORNL; Yoder Jr, Graydon L [ORNL; Qualls, A L [ORNL; Peretz, Fred J [ORNL; Flanagan, George F [ORNL; Clayton, Dwight A [ORNL; Bradley, Eric Craig [ORNL; Bell, Gary L [ORNL; Hunn, John D [ORNL; Pappano, Peter J [ORNL; Cetiner, Sacit M [ORNL

    2011-02-01

    This document presents the results of a study conducted at Oak Ridge National Laboratory during 2010 to explore the feasibility of small modular fluoride salt-cooled high temperature reactors (FHRs). A preliminary reactor system concept, SmATHR (for Small modular Advanced High Temperature Reactor) is described, along with an integrated high-temperature thermal energy storage or salt vault system. The SmAHTR is a 125 MWt, integral primary, liquid salt cooled, coated particle-graphite fueled, low-pressure system operating at 700 C. The system employs passive decay heat removal and two-out-of-three , 50% capacity, subsystem redundancy for critical functions. The reactor vessel is sufficiently small to be transportable on standard commercial tractor-trailer transport vehicles. Initial transient analyses indicated the transition from normal reactor operations to passive decay heat removal is accomplished in a manner that preserves robust safety margins at all times during the transient. Numerous trade studies and trade-space considerations are discussed, along with the resultant initial system concept. The current concept is not optimized. Work remains to more completely define the overall system with particular emphasis on refining the final fuel/core configuration, salt vault configuration, and integrated system dynamics and safety behavior.

  7. Three-Dimensional Analysis of the Hot-Spot Fuel Temperature in Pebble Bed and Prismatic Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    In, W. K.; Lee, S. W.; Lim, H. S.; Lee, W. J. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    High temperature gas-cooled reactors(HTGR) have been reviewed as potential sources for future energy needs, particularly for a hydrogen production. Among the HTGRs, the pebble bed reactor(PBR) and a prismatic modular reactor(PMR) are considered as the nuclear heat source in Korea's nuclear hydrogen development and demonstration project. PBR uses coated fuel particles embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the core during an operation. PMR uses graphite fuel blocks which contain cylindrical fuel compacts consisting of the fuel particles. The fuel blocks also contain coolant passages and locations for absorber and control material. The maximum fuel temperature in the core hot spot is one of the important design parameters for both a PBR and a PMR. The objective of this study is to predict the hot-spot fuel temperature distributions in a PBR and a PMR at a steady state. The computational fluid dynamics(CFD) code, CFX-10 is used to perform the three-dimensional analysis. The latest design data was used here based on the reference reactor designs, PBMR400 and GTMHR60.

  8. Functional annotation of hierarchical modularity.

    Directory of Open Access Journals (Sweden)

    Kanchana Padmanabhan

    Full Text Available In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function-hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology and the association of individual genes or proteins with these concepts (e.g., GO terms, our method will assign a Hierarchical Modularity Score (HMS to each node in the hierarchy of functional modules; the HMS score and its p-value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of "enriched" functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our

  9. Geometric Kac-Moody Modularity

    CERN Document Server

    Lynker, M; Lynker, Monika; Schimmrigk, Rolf

    2004-01-01

    It is shown how the arithmetic structure of algebraic curves encoded in the Hasse-Weil L-function can be related to affine Kac-Moody algebras. This result is useful in relating the arithmetic geometry of Calabi-Yau varieties to the underlying exactly solvable theory. In the case of the genus three Fermat curve we identify the Hasse-Weil L-function with the Mellin transform of the twist of a number theoretic modular form derived from the string function of a non-twisted affine Lie algebra. The twist character is associated to the number field of quantum dimensions of the conformal field theory.

  10. Modular training for career counsellors

    Directory of Open Access Journals (Sweden)

    Maruša Goršak

    2015-12-01

    Full Text Available Exactly ten years have passed since first attempts were made in Slovenia to establish a comprehensive and formalized educational program for counsellors working in the field of lifelong career guidance. In the past, organizations providing (career guidance services have established their own non-formal employee trainings. A step forward has been made under the framework of the project “National coordination point for lifelong career guidance”, which enabled the implementation of the first joint training for (career guidance counsellors, called Modular training of career counsellors.

  11. STAT, GAPS, STRAIN, DRWDIM: a system of computer codes for analyzing HTGR fuel test element metrology data. User's manual

    Energy Technology Data Exchange (ETDEWEB)

    Saurwein, J.J.

    1977-08-01

    A system of computer codes has been developed to statistically reduce Peach Bottom fuel test element metrology data and to compare the material strains and fuel rod-fuel hole gaps computed from these data with HTGR design code predictions. The codes included in this system are STAT, STRAIN, GAPS, and DRWDIM. STAT statistically evaluates test element metrology data yielding fuel rod, fuel body, and sleeve irradiation-induced strains; fuel rod anisotropy; and additional data characterizing each analyzed fuel element. STRAIN compares test element fuel rod and fuel body irradiation-induced strains computed from metrology data with the corresponding design code predictions. GAPS compares test element fuel rod, fuel hole heat transfer gaps computed from metrology data with the corresponding design code predictions. DRWDIM plots the measured and predicted gaps and strains. Although specifically developed to expedite the analysis of Peach Bottom fuel test elements, this system can be applied, without extensive modification, to the analysis of Fort St. Vrain or other HTGR-type fuel test elements.

  12. THE COMPONENT TEST FACILITY – A NATIONAL USER FACILITY FOR TESTING OF HIGH TEMPERATURE GAS-COOLED REACTOR (HTGR) COMPONENTS AND SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    David S. Duncan; Vondell J. Balls; Stephanie L. Austad

    2008-09-01

    The Next Generation Nuclear Plant (NGNP) and other High-Temperature Gas-cooled Reactor (HTGR) Projects require research, development, design, construction, and operation of a nuclear plant intended for both high-efficiency electricity production and high-temperature industrial applications, including hydrogen production. During the life cycle stages of an HTGR, plant systems, structures and components (SSCs) will be developed to support this reactor technology. To mitigate technical, schedule, and project risk associated with development of these SSCs, a large-scale test facility is required to support design verification and qualification prior to operational implementation. As a full-scale helium test facility, the Component Test facility (CTF) will provide prototype testing and qualification of heat transfer system components (e.g., Intermediate Heat Exchanger, valves, hot gas ducts), reactor internals, and hydrogen generation processing. It will perform confirmation tests for large-scale effects, validate component performance requirements, perform transient effects tests, and provide production demonstration of hydrogen and other high-temperature applications. Sponsored wholly or in part by the U.S. Department of Energy, the CTF will support NGNP and will also act as a National User Facility to support worldwide development of High-Temperature Gas-cooled Reactor technologies.

  13. Compactification of Drinfeld modular varieties and Drinfeld Modular Forms of Arbitrary Rank

    CERN Document Server

    Pink, Richard

    2010-01-01

    We give an abstract characterization of the Satake compactification of a general Drinfeld modular variety. We prove that it exists and is unique up to unique isomorphism, though we do not give an explicit stratification by Drinfeld modular varieties of smaller rank which is also expected. We construct a natural ample invertible sheaf on it, such that the global sections of its $k$-th power form the space of (algebraic) Drinfeld modular forms of weight~$k$. We show how the Satake compactification and modular forms behave under all natural morphisms between Drinfeld modular varieties; in particular we define Hecke operators. We give explicit results in some special cases.

  14. Westinghouse Small Modular Reactor nuclear steam supply system design

    Energy Technology Data Exchange (ETDEWEB)

    Memmott, M. J.; Harkness, A. W.; Van Wyk, J. [Westinghouse Electric Company LLC, 600 Cranberry Woods Drive, Cranberry Twp. PA 16066 (United States)

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the first in a series of four papers which describe the design and functionality of the Westinghouse SMR. Also described in this series are the key drivers influencing the design of the Westinghouse SMR and the unique passive safety features of the Westinghouse SMR. Several critical motivators contributed to the development and integration of the Westinghouse SMR design. These design driving motivators dictated the final configuration of the Westinghouse SMR to varying degrees, depending on the specific features under consideration. These design drivers include safety, economics, AP1000{sup R} reactor expertise and experience, research and development requirements, functionality of systems and components, size of the systems and vessels, simplicity of design, and licensing requirements. The Westinghouse SMR NSSS consists of an integral reactor vessel within a compact containment vessel. The core is located in the bottom of the reactor vessel and is composed of 89 modified Westinghouse 17x17 Robust Fuel Assemblies (RFA). These modified fuel assemblies have an active core length of only 2.4 m (8 ft) long, and the entirety of the core is encompassed by a radial reflector. The Westinghouse SMR core operates on a 24 month fuel cycle. The reactor vessel is approximately 24.4 m (80 ft) long and 3.7 m (12 ft) in diameter in order to facilitate standard rail shipping to the site. The reactor vessel houses hot and cold leg channels to facilitate coolant flow, control rod drive mechanisms (CRDM), instrumentation and cabling, an intermediate flange to separate flow and instrumentation and facilitate simpler refueling, a pressurizer, a straight tube, recirculating steam

  15. Modularity, noise, and natural selection.

    Science.gov (United States)

    Marroig, Gabriel; Melo, Diogo A R; Garcia, Guilherme

    2012-05-01

    Most biological systems are formed by component parts that are to some degree interrelated. Groups of parts that are more associated among themselves and are relatively autonomous from others are called modules. One of the consequences of modularity is that biological systems usually present an unequal distribution of the genetic variation among traits. Estimating the covariance matrix that describes these systems is a difficult problem due to a number of factors such as poor sample sizes and measurement errors. We show that this problem will be exacerbated whenever matrix inversion is required, as in directional selection reconstruction analysis. We explore the consequences of varying degrees of modularity and signal-to-noise ratio on selection reconstruction. We then present and test the efficiency of available methods for controlling noise in matrix estimates. In our simulations, controlling matrices for noise vastly improves the reconstruction of selection gradients. We also perform an analysis of selection gradients reconstruction over a New World Monkeys skull database to illustrate the impact of noise on such analyses. Noise-controlled estimates render far more plausible interpretations that are in full agreement with previous results. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  16. Decentralized and Modular Electrical Architecture

    Science.gov (United States)

    Elisabelar, Christian; Lebaratoux, Laurence

    2014-08-01

    This paper presents the studies made on the definition and design of a decentralized and modular electrical architecture that can be used for power distribution, active thermal control (ATC), standard inputs-outputs electrical interfaces.Traditionally implemented inside central unit like OBC or RTU, these interfaces can be dispatched in the satellite by using MicroRTU.CNES propose a similar approach of MicroRTU. The system is based on a bus called BRIO (Bus Réparti des IO), which is composed, by a power bus and a RS485 digital bus. BRIO architecture is made with several miniature terminals called BTCU (BRIO Terminal Control Unit) distributed in the spacecraft.The challenge was to design and develop the BTCU with very little volume, low consumption and low cost. The standard BTCU models are developed and qualified with a configuration dedicated to ATC, while the first flight model will fly on MICROSCOPE for PYRO actuations and analogue acquisitions. The design of the BTCU is made in order to be easily adaptable for all type of electric interface needs.Extension of this concept is envisaged for power conditioning and distribution unit, and a Modular PCDU based on BRIO concept is proposed.

  17. Modular polynomials via isogeny volcanoes

    CERN Document Server

    Broker, Reinier; Sutherland, Andrew V

    2010-01-01

    We present a new algorithm to compute the classical modular polynomial Phi_n in the rings Z[X,Y] and (Z/mZ)[X,Y], for a prime n and any positive integer m. Our approach uses the graph of n-isogenies to efficiently compute Phi_n mod p for many primes p of a suitable form, and then applies the Chinese Remainder Theorem (CRT). Under the Generalized Riemann Hypothesis (GRH), we achieve an expected running time of O(n^3 (log n)^3 log log n), and compute Phi_n mod m using O(n^2 (log n)^2 + n^2 log m) space. We have used the new algorithm to compute Phi_n with n over 5000, and Phi_n mod m with n over 20000. We also consider several modular functions g for which Phi_n^g is smaller than Phi_n, allowing us to handle n over 60000.

  18. Modular invariance and the fusion algebra

    Science.gov (United States)

    Dijkgraaf, Robbert; Verlinde, Erik

    1988-12-01

    We discuss the relation between modular transformations and the fusion algebra, and explain its proof. It is shown that the existence of off-diagonal modular invariant partition functions imply the existence of a non-trivial automorphism of the fusion algebra. This is illustrated using the SU(2) affine models.

  19. Algebra and Arithmetic of Modular Forms

    DEFF Research Database (Denmark)

    Rustom, Nadim

    In [Rus14b] and [Rus14a], we study graded rings of modular forms over congruence subgroups, with coefficients in subrings A of C, and determine bounds of the weights of modular forms constituting a minimal set of generators, as well as on the degree of the generators of the ideal of relations bet...

  20. A Modular Laser Graphics Projection System

    Science.gov (United States)

    Newswanger, Craig D.

    1984-05-01

    WED Enterprises has designed and built a modular projection system for the presentation of animated laser shows. This system was designed specifically for use in Disney theme shows. Its modular design allows it to be adapted to many show situations with simple hardware and software adjustments. The primary goals were superior animation, long life, low maintenance and stand alone operation.

  1. Modular bootstrap in Liouville field theory

    Energy Technology Data Exchange (ETDEWEB)

    Hadasz, Leszek, E-mail: hadasz@th.if.uj.edu.p [M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Jaskolski, Zbigniew, E-mail: jask@ift.uni.wroc.p [Institute of Theoretical Physics, University of Wroclaw, pl. M. Borna, 50-204 Wroclaw (Poland); Suchanek, Paulina, E-mail: paulina@ift.uni.wroc.p [Institute of Theoretical Physics, University of Wroclaw, pl. M. Borna, 50-204 Wroclaw (Poland)

    2010-02-22

    The modular matrix for the generic 1-point conformal blocks on the torus is expressed in terms of the fusion matrix for the 4-point blocks on the sphere. The modular invariance of the toric 1-point functions in the Liouville field theory with DOZZ structure constants is proved.

  2. Modular bootstrap in Liouville field theory

    CERN Document Server

    Hadasz, Leszek; Suchanek, Paulina

    2009-01-01

    The modular matrix for the generic 1-point conformal blocks on the torus is expressed in terms of the fusion matrix for the 4-point blocks on the sphere. The modular invariance of the toric 1-point functions in the Liouville field theory with DOZZ structure constants is proved.

  3. Analytic properties of the Virasoro modular kernel

    CERN Document Server

    Nemkov, Nikita

    2016-01-01

    On the space of generic conformal blocks the modular transformation of the underlying surface is realized as a linear integral transformation. We show that the analytic properties of conformal block implied by Zamolodchikov's formula are shared by the kernel of the modular transformation and illustrate this by explicit computation in the case of the one-point toric conformal block.

  4. Detectability thresholds of general modular graphs

    CERN Document Server

    Kawamoto, Tatsuro

    2016-01-01

    We investigate the detectability thresholds of various modular structures in the stochastic block model. Our analysis reveals how the detectability threshold is related to the details of the modular pattern, including the hierarchy of the clusters. We show that certain planted structures are impossible to infer regardless of their fuzziness.

  5. Modular Construction: The Wave of the Future.

    Science.gov (United States)

    Savage, Chuck

    1989-01-01

    Modular construction of school buildings offers speed of construction, with 100 percent contractor responsibility for the completed structures. Under negotiated terms, modular projects can be purchased outright or through long-term leasing arrangements that provide ownership at the end of the lease period. (MLF)

  6. Mapping Modular SOS to Rewriting Logic

    DEFF Research Database (Denmark)

    Braga, Christiano de Oliveira; Haeusler, Edward Hermann; Meseguer, José;

    2003-01-01

    Modular SOS (MSOS) is a framework created to improve the modularity of structural operational semantics specifications, a formalism frequently used in the fields of programming languages semantics and process algebras. With the objective of defining formal tools to support the execution and verif...

  7. Complex Convexity of Orlicz Modular Sequence Spaces

    Directory of Open Access Journals (Sweden)

    Lili Chen

    2016-01-01

    Full Text Available The concepts of complex extreme points, complex strongly extreme points, complex strict convexity, and complex midpoint locally uniform convexity in general modular spaces are introduced. Then we prove that, for any Orlicz modular sequence space lΦ,ρ, lΦ,ρ is complex midpoint locally uniformly convex. As a corollary, lΦ,ρ is also complex strictly convex.

  8. Analytic properties of the Virasoro modular kernel

    Energy Technology Data Exchange (ETDEWEB)

    Nemkov, Nikita [Moscow Institute of Physics and Technology (MIPT), Dolgoprudny (Russian Federation); Institute for Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); National University of Science and Technology MISIS, The Laboratory of Superconducting metamaterials, Moscow (Russian Federation)

    2017-06-15

    On the space of generic conformal blocks the modular transformation of the underlying surface is realized as a linear integral transformation. We show that the analytic properties of conformal block implied by Zamolodchikov's formula are shared by the kernel of the modular transformation and illustrate this by explicit computation in the case of the one-point toric conformal block. (orig.)

  9. The Algorithmic Complexity of Modular Decomposition

    NARCIS (Netherlands)

    J.C. Bioch (Cor)

    2001-01-01

    textabstractModular decomposition is a thoroughly investigated topic in many areas such as switching theory, reliability theory, game theory and graph theory. We propose an O(mn)-algorithm for the recognition of a modular set of a monotone Boolean function f with m prime implicants and n variables.

  10. Algebra and Arithmetic of Modular Forms

    DEFF Research Database (Denmark)

    Rustom, Nadim

    In [Rus14b] and [Rus14a], we study graded rings of modular forms over congruence subgroups, with coefficients in subrings A of C, and determine bounds of the weights of modular forms constituting a minimal set of generators, as well as on the degree of the generators of the ideal of relations bet...

  11. Modular Power Architectures for Microgrid Clusters

    DEFF Research Database (Denmark)

    Lin, Hengwei; Liu, Leo; Guerrero, Josep M.

    2014-01-01

    . The user-frame concept proposed here when designing microgrids considers that the end-user is the basis for the geographical deployment. Meanwhile, a modular user-oriented approach is adopted in order to enhance reliability and expansibility. Finally, a unified dispatching and hierarchical management...... approach is proposed and evaluated to effectively optimize and manage modular microgrid architectures....

  12. Modularity bounds for clusters located by leading eigenvectors of the normalized modularity matrix

    CERN Document Server

    Fasino, Dario

    2016-01-01

    Nodal theorems for generalized modularity matrices ensure that the cluster located by the positive entries of the leading eigenvector of various modularity matrices induces a connected subgraph. In this paper we obtain lower bounds for the modularity of that set of nodes showing that, under certain conditions, the nodal domains induced by eigenvectors corresponding to highly positive eigenvalues of the normalized modularity matrix have indeed positive modularity, that is they can be recognized as modules inside the network. Moreover we establish Cheeger-type inequalities for the cut-modularity of the graph, providing a theoretical support to the common understanding that highly positive eigenvalues of modularity matrices are related with the possibility of subdividing a network into communities.

  13. A Formal Theory for Modular ERDF Ontologies

    Science.gov (United States)

    Analyti, Anastasia; Antoniou, Grigoris; Damásio, Carlos Viegas

    The success of the Semantic Web is impossible without any form of modularity, encapsulation, and access control. In an earlier paper, we extended RDF graphs with weak and strong negation, as well as derivation rules. The ERDF #n-stable model semantics of the extended RDF framework (ERDF) is defined, extending RDF(S) semantics. In this paper, we propose a framework for modular ERDF ontologies, called modular ERDF framework, which enables collaborative reasoning over a set of ERDF ontologies, while support for hidden knowledge is also provided. In particular, the modular ERDF stable model semantics of modular ERDF ontologies is defined, extending the ERDF #n-stable model semantics. Our proposed framework supports local semantics and different points of view, local closed-world and open-world assumptions, and scoped negation-as-failure. Several complexity results are provided.

  14. Modular Product Families and Assembly Systems

    DEFF Research Database (Denmark)

    Thyssen, Jesper

    2005-01-01

    This research centres on assembly systems designed for utilizing product modularization. Altogether, the task for companies has become an issue of managing the overall trade-off between the external market’s desire for variety and the internal efficiency and effectiveness. Product modularization...... of the rela-tionship between variables associated with configuration of modular product families and the interacting assembly system. One core result is the development of a system model based on the longitudinal case study incorporating both structural and performance elements. Based on the system model......) the mix flexible con-figuration focusing on the simultaneous product variety. These two views are in particular different in respect to the understanding of product modularization. All in all, modularization needs to be, and can be, configured in regard to the specific task, which is believed constituting...

  15. Synthesizing Modular Invariants for Synchronous Code

    Directory of Open Access Journals (Sweden)

    Pierre-Loic Garoche

    2014-12-01

    Full Text Available In this paper, we explore different techniques to synthesize modular invariants for synchronous code encoded as Horn clauses. Modular invariants are a set of formulas that characterizes the validity of predicates. They are very useful for different aspects of analysis, synthesis, testing and program transformation. We describe two techniques to generate modular invariants for code written in the synchronous dataflow language Lustre. The first technique directly encodes the synchronous code in a modular fashion. While in the second technique, we synthesize modular invariants starting from a monolithic invariant. Both techniques, take advantage of analysis techniques based on property-directed reachability. We also describe a technique to minimize the synthesized invariants.

  16. Modularity maximization using completely positive programming

    Science.gov (United States)

    Yazdanparast, Sakineh; Havens, Timothy C.

    2017-04-01

    Community detection is one of the most prominent problems of social network analysis. In this paper, a novel method for Modularity Maximization (MM) for community detection is presented which exploits the Alternating Direction Augmented Lagrangian (ADAL) method for maximizing a generalized form of Newman's modularity function. We first transform Newman's modularity function into a quadratic program and then use Completely Positive Programming (CPP) to map the quadratic program to a linear program, which provides the globally optimal maximum modularity partition. In order to solve the proposed CPP problem, a closed form solution using the ADAL merged with a rank minimization approach is proposed. The performance of the proposed method is evaluated on several real-world data sets used for benchmarks community detection. Simulation results shows the proposed technique provides outstanding results in terms of modularity value for crisp partitions.

  17. Finding network communities using modularity density

    Science.gov (United States)

    Botta, Federico; del Genio, Charo I.

    2016-12-01

    Many real-world complex networks exhibit a community structure, in which the modules correspond to actual functional units. Identifying these communities is a key challenge for scientists. A common approach is to search for the network partition that maximizes a quality function. Here, we present a detailed analysis of a recently proposed function, namely modularity density. We show that it does not incur in the drawbacks suffered by traditional modularity, and that it can identify networks without ground-truth community structure, deriving its analytical dependence on link density in generic random graphs. In addition, we show that modularity density allows an easy comparison between networks of different sizes, and we also present some limitations that methods based on modularity density may suffer from. Finally, we introduce an efficient, quadratic community detection algorithm based on modularity density maximization, validating its accuracy against theoretical predictions and on a set of benchmark networks.

  18. A study of fuel failure behavior in high burnup HTGR fuel. Analysis by STRESS3 and STAPLE codes

    Energy Technology Data Exchange (ETDEWEB)

    Martin, David G.; Sawa, Kazuhiro; Ueta, Shouhei; Sumita, Junya [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2001-05-01

    In current high temperature gas-cooled reactors (HTGRs), Tri-isotropic coated fuel particles are employed as fuel. In safety design of the HTGR fuels, it is important to retain fission products within particles so that their release to primary coolant does not exceed an acceptable level. From this point of view, the basic design criteria for the fuel are to minimize the failure fraction of as-fabricated fuel coating layers and to prevent significant additional fuel failures during operation. This report attempts to model fuel behavior in irradiation tests using the U.K. codes STRESS3 and STAPLE. Test results in 91F-1A and HRB-22 capsules irradiation tests, which were carried out at the Japan Materials Testing Reactor of JAERI and at the High Flux Isotope Reactor of Oak Ridge National Laboratory, respectively, were employed in the calculation. The maximum burnup and fast neutron fluence were about 10%FIMA and 3 x 10{sup 25} m{sup -2}, respectively. The fuel for the irradiation tests was called high burnup fuel, whose target burnup and fast neutron fluence were higher than those of the first-loading fuel of the High Temperature Engineering Test Reactor. The calculation results demonstrated that if only mean fracture stress values of PyC and SiC are used in the calculation it is not possible to predict any particle failures, by which is meant when all three load bearing layers have failed. By contrast, when statistical variations in the fracture stresses and particle specifications are taken into account, as is done in the STAPLE code, failures can be predicted. In the HRB-22 irradiation test, it was concluded that the first two particles which had failed were defective in some way, but that the third and fourth failures can be accounted for by the pressure vessel model. In the 91F-1A irradiation test, the result showed that 1 or 2 particles had failed towards the end of irradiation in the upper capsule and no particles failed in the lower capsule. (author)

  19. Small Modular Reactors: Institutional Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Perkowski, Ph.D.

    2012-06-01

    ? Objectives include, among others, a description of the basic development status of “small modular reactors” (SMRs) focused primarily on domestic activity; investigation of the domestic market appeal of modular reactors from the viewpoints of both key energy sector customers and also key stakeholders in the financial community; and consideration of how to proceed further with a pro-active "core group" of stakeholders substantially interested in modular nuclear deployment in order to provide the basis to expedite design/construction activity and regulatory approval. ? Information gathering was via available resources, both published and personal communications with key individual stakeholders; published information is limited to that already in public domain (no confidentiality); viewpoints from interviews are incorporated within. Discussions at both government-hosted and private-hosted SMR meetings are reflected herein. INL itself maintains a neutral view on all issues described. Note: as per prior discussion between INL and CAP, individual and highly knowledgeable senior-level stakeholders provided the bulk of insights herein, and the results of those interviews are the main source of the observations of this report. ? Attachment A is the list of individual stakeholders consulted to date, including some who provided significant earlier assessments of SMR institutional feasibility. ? Attachments B, C, and D are included to provide substantial context on the international status of SMR development; they are not intended to be comprehensive and are individualized due to the separate nature of the source materials. Attachment E is a summary of the DOE requirements for winning teams regarding the current SMR solicitation. Attachment F deserves separate consideration due to the relative maturity of the SMART SMR program underway in Korea. Attachment G provides illustrative SMR design features and is intended for background. Attachment H is included for overview

  20. Modular generation of fluorescent phycobiliproteins.

    Science.gov (United States)

    Wu, Xian-Jun; Chang, Kun; Luo, Juan; Zhou, Ming; Scheer, Hugo; Zhao, Kai-Hong

    2013-06-01

    Phycobiliproteins are brightly-fluorescent light-harvesting pigments for photosynthesis in cyanobacteria and red algae. They are also of interest as fluorescent biomarkers, but their heterologous generation in vivo has previously required multiple transformations. We report here a modular approach that requires only two DNA segments. The first codes for the apo-protein. The second codes for fusions capable of chromophore biosynthesis and its covalent attachment to the apo-protein; it contains the genes of heme oxygenase, a bilin reductase, and a chromophore lyase. Phycobiliproteins containing phycoerythrobilin (λ(fluor) ~ 560 nm), phycourobilin (λ(fluor) ~ 500 nm), phycocyanobilin (λ(fluor) ~ 630 nm) or phycoviolobilin (λ(fluor) ~ 580 nm) were obtained in high yield in E. coli. This approach facilitates chromophorylation studies of phycobiliproteins, as well as their use for fluorescence labeling based on their high fluorescence.

  1. Analytical Spectroscopy Using Modular Systems

    Science.gov (United States)

    Patterson, Brian M.; Danielson, Neil D.; Lorigan, Gary A.; Sommer, André J.

    2003-12-01

    This article describes the development of three analytical spectroscopy experiments that compare the determination of salicylic acid (SA) content in aspirin tablets. The experiments are based on UV vis, fluorescence, and Raman spectroscopies and utilize modular spectroscopic components. Students assemble their own instruments, optimize them with respect to signal-to-noise, generate calibration curves, determine the SA content in retail aspirin tablets, and assign features in the respective spectra to functional groups within the active material. Using this approach in the discovery-based setting, the students gain invaluable insight into method-specific parameters, such as instrumental components, sample preparation, and analytical capability. In addition, the students learn the fundamentals of fiber optics and signal processing using the low-cost CCD based spectroscopic components.

  2. Modular construction of dynamic nucleodendrimers.

    Science.gov (United States)

    Abet, Valentina; Evans, Robert; Guibbal, Florian; Caldarelli, Stefano; Rodriguez, Raphaël

    2014-05-01

    Isoguanosine-containing dendritic small molecules self-assemble into decameric nucleodendrimers as observed by 1D NMR spectroscopy, 2D DOSY, and mass spectrometry. In particular, apolar building blocks readily form pentameric structures in acetonitrile while the presence of alkali metals promotes the formation of stable decameric assemblies with a preference for cesium ions. Remarkably, co-incubation of guanosine and isoguanosine-containing nucleodendrons results in the formation of decameric structures in absence of added salts. Further analysis of the mixture indicated that guanosine derivatives facilitate the formation, but are not involved in decameric structures; a process reminiscent of molecular crowding. This molecular system provides a powerful canvas for the rapid and modular assembly of polyfunctional dendritic macromolecules.

  3. MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Joseph W. Geisinger, Ph.D.

    2001-07-31

    ARM Automation, Inc. is developing a framework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator from these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the development of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC{trademark}s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost.

  4. Spectral characterization of hierarchical network modularity and limits of modularity detection.

    Directory of Open Access Journals (Sweden)

    Somwrita Sarkar

    Full Text Available Many real world networks are reported to have hierarchically modular organization. However, there exists no algorithm-independent metric to characterize hierarchical modularity in a complex system. The main results of the paper are a set of methods to address this problem. First, classical results from random matrix theory are used to derive the spectrum of a typical stochastic block model hierarchical modular network form. Second, it is shown that hierarchical modularity can be fingerprinted using the spectrum of its largest eigenvalues and gaps between clusters of closely spaced eigenvalues that are well separated from the bulk distribution of eigenvalues around the origin. Third, some well-known results on fingerprinting non-hierarchical modularity in networks automatically follow as special cases, threreby unifying these previously fragmented results. Finally, using these spectral results, it is found that the limits of detection of modularity can be empirically established by studying the mean values of the largest eigenvalues and the limits of the bulk distribution of eigenvalues for an ensemble of networks. It is shown that even when modularity and hierarchical modularity are present in a weak form in the network, they are impossible to detect, because some of the leading eigenvalues fall within the bulk distribution. This provides a threshold for the detection of modularity. Eigenvalue distributions of some technological, social, and biological networks are studied, and the implications of detecting hierarchical modularity in real world networks are discussed.

  5. Deep-Burn Modular Helium Reactor Fuel Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    McEachern, D

    2002-12-02

    This document contains the workscope, schedule and cost for the technology development tasks needed to satisfy the fuel and fission product transport Design Data Needs (DDNs) for the Gas Turbine-Modular Helium Reactor (GT-MHR), operating in its role of transmuting transuranic (TRU) nuclides in spent fuel discharged from commercial light-water reactors (LWRs). In its application for transmutation, the GT-MHR is referred to as the Deep-Burn MHR (DB-MHR). This Fuel Development Plan (FDP) describes part of the overall program being undertaken by the U.S. Department of Energy (DOE), utilities, and industry to evaluate the use of the GT-MHR to transmute transuranic nuclides from spent nuclear fuel. The Fuel Development Plan (FDP) includes the work on fuel necessary to support the design and licensing of the DB-MHR. The FDP is organized into ten sections. Section 1 provides a summary of the most important features of the plan, including cost and schedule information. Section 2 describes the DB-MHR concept, the features of its fuel and the plan to develop coated particle fuel for transmutation. Section 3 describes the knowledge base for fabrication of coated particles, the experience with irradiation performance of coated particle fuels, the database for fission product transport in HTGR cores, and describes test data and calculations for the performance of coated particle fuel while in a repository. Section 4 presents the fuel performance requirements in terms of as-manufactured quality and performance of the fuel coatings under irradiation and accident conditions. These requirements are provisional because the design of the DB-MHR is in an early stage. However, the requirements are presented in this preliminary form to guide the initial work on the fuel development. Section 4 also presents limits on the irradiation conditions to which the coated particle fuel can be subjected for the core design. These limits are based on past irradiation experience. Section 5 describes

  6. Size reduction of complex networks preserving modularity

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.; Duch, J.; Fernandez, A.; Gomez, S.

    2008-12-24

    The ubiquity of modular structure in real-world complex networks is being the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the NP-hard class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining invariant its modularity. This size reduction allows the heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the Extremal Optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.

  7. On modular Galois representations modulo prime powers

    CERN Document Server

    Chen, Imin; Wiese, Gabor

    2011-01-01

    We study modular Galois representations mod $p^m$. We show that there are three progressively weaker notions of modularity for a Galois representation mod $p^m$: we have named these `strongly', `weakly', and `dc-weakly' modular. Here, `dc' stands for `divided congruence' in the sense of Katz and Hida. These notions of modularity are relative to a fixed level $M$. Using results of Hida we display a `stripping-of-powers of $p$ away from the level' type of result: A mod $p^m$ strongly modular representation of some level $Np^r$ is always dc-weakly modular of level $N$ (here, $N$ is a natural number not divisible by $p$). We also study eigenforms mod $p^m$ corresponding to the above three notions. Assuming residual irreducibility, we utilize a theorem of Carayol to show that one can attach a Galois representation mod $p^m$ to any `dc-weak' eigenform, and hence to any eigenform mod $p^m$ in any of the three senses. We show that the three notions of modularity coincide when $m=1$ (as well as in other, particular ca...

  8. Specialization can drive the evolution of modularity.

    Directory of Open Access Journals (Sweden)

    Carlos Espinosa-Soto

    2010-03-01

    Full Text Available Organismal development and many cell biological processes are organized in a modular fashion, where regulatory molecules form groups with many interactions within a group and few interactions between groups. Thus, the activity of elements within a module depends little on elements outside of it. Modularity facilitates the production of heritable variation and of evolutionary innovations. There is no consensus on how modularity might evolve, especially for modules in development. We show that modularity can increase in gene regulatory networks as a byproduct of specialization in gene activity. Such specialization occurs after gene regulatory networks are selected to produce new gene activity patterns that appear in a specific body structure or under a specific environmental condition. Modules that arise after specialization in gene activity comprise genes that show concerted changes in gene activities. This and other observations suggest that modularity evolves because it decreases interference between different groups of genes. Our work can explain the appearance and maintenance of modularity through a mechanism that is not contingent on environmental change. We also show how modularity can facilitate co-option, the utilization of existing gene activity to build new gene activity patterns, a frequent feature of evolutionary innovations.

  9. 高温气冷堆和轻水堆超铀元素管理特性研究%Management Feature of Transuranic for HTGR and LWR

    Institute of Scientific and Technical Information of China (English)

    位金锋; 李富; 孙玉良

    2013-01-01

    Long-lived actinides from spent fuels can cause potential long-term environmental hazards.The generation and incineration of transuranic in different closed fuel cycles were studied.U and Pu were recycled from spent fuel in the 250 MW hightemperature gas-cooled reactor-pebble-bed-module (HTR-PM) U-Pu fuelled core,and then PuO2 and MOX fuel elements were designed based on this recycled U and Pu.These fuel elements were used to build up a new PuO2 or MOX fuelled core with the same geometry of the original reactor.Characteristics of transuranic incineration with HTGR open and closed fuel cycles were studied with VSOP code,and the corresponding results from the light water reactor were compared and analyzed.The transuranic generation with HTGR open fuel cycle is almost half of the corresponding result of the light water reactor.Thus,HTGR closed fuel cycles can effectively burn transuranic.%乏燃料中长寿命锕系元素对环境造成长期潜在危害,本文研究球床高温气冷堆不同燃料循环中超铀元素的产生和焚烧特性.在250 MW球床模块式高温气冷堆示范电站HTR-PM铀钚循环的乏燃料中提取铀和钚作为核燃料,设计了PuO2和MOX燃料元件,将新设计的燃料元件重新装入与HTR-PM相同结构和尺寸的堆芯,分别形成纯钚燃料循环和MOX燃料循环.采用高温气冷堆物理设计程序VSOP,研究了高温气冷堆一次通过燃料循环和不同闭式燃料循环的超铀元素焚烧特性,并与轻水堆燃料循环结果进行比较和分析.结果表明:高温气冷堆一次通过燃料循环超铀元素生成率约为轻水堆的1/2;高温气冷堆闭式燃料循环能有效嬗变超铀元素.

  10. Rational design of efficient modular cells.

    Science.gov (United States)

    Trinh, Cong T; Liu, Yan; Conner, David J

    2015-11-01

    The modular cell design principle is formulated to devise modular (chassis) cells. These cells can be assembled with exchangeable production modules in a plug-and-play fashion to build microbial cell factories for efficient combinatorial biosynthesis of novel molecules, requiring minimal iterative strain optimization steps. A modular cell is designed to be auxotrophic, containing core metabolic pathways that are necessary but insufficient to support cell growth and maintenance. To be functional, it must tightly couple with an exchangeable production module containing auxiliary metabolic pathways that not only complement cell growth but also enhance production of targeted molecules. We developed a MODCELL (modular cell) framework based on metabolic pathway analysis to implement the modular cell design principle. MODCELL identifies genetic modifications and requirements to construct modular cell candidates and their associated exchangeable production modules. By defining the degree of similarity and coupling metrics, MODCELL can evaluate which exchangeable production module(s) can be tightly coupled with a modular cell candidate. We first demonstrated how MODCELL works in a step-by-step manner for example metabolic networks, and then applied it to design modular Escherichia coli cells for efficient combinatorial biosynthesis of five alcohols (ethanol, propanol, isopropanol, butanol and isobutanol) and five butyrate esters (ethyl butyrate, propyl butyrate, isopropyl butyrate, butyl butyrate and isobutyl butyrate) from pentose sugars (arabinose and xylose) and hexose sugars (glucose, mannose, and galactose) under anaerobic conditions. We identified three modular cells, MODCELL1, MODCELL2 and MODCELL3, that can couple well with Group 1 of modules (ethanol, isobutanol, butanol, ethyl butyrate, isobutyl butyrate, butyl butyrate), Group 2 (isopropanol, isopropyl butyrate), and Group 3 (propanol, isopropanol), respectively. We validated the design of MODCELL1 for anaerobic

  11. Enablers & Barriers for Realizing Modularity Benefits

    DEFF Research Database (Denmark)

    Storbjerg, Simon Haahr; Brunø, Thomas Ditlev; Thyssen, Jesper

    2012-01-01

    Although modularization is becoming both a well-described domain in academia and a broadly applied concept in business, many of today’s firm still struggle to realize the promised benefits of this approach. Managing modularization is a complex matter, and in spite of this, a topic that has received...... are the organizational and systems related aspects. Recognizing the need for guidance to realize the benefits of modularity, the purpose of this study is through a literature study and a case study to improve the insight into the organizational and systems related enablers and barriers with regard to obtaining the full...

  12. Generalized epidemic process on modular networks

    CERN Document Server

    Chung, Kihong; Kim, Daniel; Ha, Meesoon; Jeong, Hawoong

    2013-01-01

    Social reinforcement and modular structure are two salient features observed in the spreading of behavior through social contacts. In order to investigate the interplay between these two features, we study the generalized epidemic process on modular networks with equal-sized finite communities and adjustable modularity. Using the analytical approach originally applied to clique-based random networks, we show that the system exhibits a bond-percolation type continuous phase transition for weak social reinforcement, whereas a discontinuous phase transition occurs for sufficiently strong social reinforcement. Our findings are numerically verified by the finite-size scaling analysis for critical behaviors and the bimodality coefficient test for discontinuous transitions.

  13. Principles for Implementing Modularity in Healthcare

    DEFF Research Database (Denmark)

    Soffers, Ruter; Meijboom, Bert; Hsuan, Juliana

    Modularity can help address urgent societal needs of cost reductions and improved patient centeredness in healthcare, but has only rarely been implemented in that sector. We propound that this is at least partially due to the lack of guidance on reorganizations of existing healthcare offerings...... in a modular way. We identify three principles to do so: 1) the service architecture should be decomposable; 2) a proper service specification process should be introduced; and 3) the presence of interfaces should be ensured. Followingthese principles should help policy makers as well as managers to implement...... modularity in existing healthcare offerings....

  14. Eigenvector dynamics under perturbation of modular networks

    CERN Document Server

    Sarkar, Somwrita; Robinson, Peter A; Fortunato, Santo

    2015-01-01

    Rotation dynamics of eigenvectors of modular network adjacency matrices under random perturbations are presented. In the presence of $q$ communities, the number of eigenvectors corresponding to the $q$ largest eigenvalues form a "community" eigenspace and rotate together, but separately from that of the "bulk" eigenspace spanned by all the other eigenvectors. Using this property, the number of modules or clusters in a network can be estimated in an algorithm-independent way. A general derivation for the theoretical detectability limit for sparse modular networks with $q$ communities is presented, beyond which modularity persists in the system but cannot be detected, and estimation results are shown to hold right to this limit.

  15. Immersed surfaces in the modular orbifold

    CERN Document Server

    Calegari, Danny

    2010-01-01

    A hyperbolic conjugacy class in the modular group PSL(2,Z) corresponds to a closed geodesic in the modular orbifold. Some of these geodesics virtually bound immersed surfaces, and some do not; the distinction is related to the polyhedral structure in the unit ball of the stable commutator length norm. We prove the following stability theorem: for every hyperbolic element of the modular group, the product of this element with a sufficiently large power of a parabolic element is represented by a geodesic that virtually bounds an immersed surface.

  16. Study of SiC Layer with Fine Grains in HTGR Coated Fuel Particles%HTGR 包覆燃料颗粒碳化硅层细晶化研究

    Institute of Scientific and Technical Information of China (English)

    刘荣正; 刘马林; 刘兵; 邵友林

    2015-01-01

    高温气冷堆(HTGR)是能适应未来能源市场的第四代先进核反应堆堆型之一,其固有安全性的第一道保障是使用的T RISO型包覆燃料颗粒。在T RISO型燃料颗粒4层包覆结构中,SiC包覆层是承受包覆燃料颗粒内压和阻挡裂变产物释放的关键层,制备高质量S iC包覆层是核燃料领域中的重大问题和关键技术之一。本文介绍高温气冷堆燃料颗粒的基本结构,详述制备S iC包覆层的流化床‐化学气相沉积过程,提出S iC层细晶化这一研究方向,并系统阐述包覆燃料颗粒S iC包覆层细晶化的优势。在细晶化S iC材料制备方法方面,系统分析S iC粉体、陶瓷、薄膜和厚膜材料的研究现状,并结合本实验室前期研究成果提出制备细晶S iC包覆层的可行制备策略。%High temperature gas‐cooled reactor (HTGR) with inherent safety character‐istics is considered as one of the attractive and competitive generation Ⅳ nuclear reactors in the future energy markets .Tristructural‐isotropic (TRISO)‐coated particle fuel is the most significant safety aspect in this nuclear reactor ,since it relies on the properties of the four coating layers surrounding the kernel fuel to hinder the release of harmful radio‐active material .Among these layers ,the silicon carbide (SiC) coating is considered the most important as it not only provides the TRISO particle with structural integrity but also retains fission products at elevated temperatures .The preparation of high quality SiC layers is one of significant issues and key technologies in nuclear fuel fabrication . T he basic structure of the T RISO‐coated fuel particles and the fluidized bed chemical vapor deposition (FBCVD) method to prepare SiC layers were introduced .The advanta‐ges of decreasing grain size of SiC layers were analyzed and the idea to prepare SiC layers with fine grain size was proposed .In the preparation strategies ,recent

  17. Increased Versatility of Modular Robots through Layered Heterogeneity

    DEFF Research Database (Denmark)

    Larsen, Jørgen Christian; Støy, Kasper; Garcia, Ricardo Franco Mendoza

    2011-01-01

    This paper introduces a new class of modular robots, called: “layered heterogeneous modular robots”, which is a type of modular robot, where the functionality of a robot is modularized into three layers of heterogeneous modules: mechanics, actuation and electronics. This novel approach may make i...

  18. Modular playware as a playful diagnosis tool for autistic children

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop

    2009-01-01

    Based upon user-configurable modular robotics and design principles for modular playware, we developed modular robotic tiles to be used as playful, interactive tools for children with autism. The modular playware can make automatic documentation of the construction play activities by the autistic...

  19. Modular robotic tiles: experiments for children with autism

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Dam Pedersen, Martin; Beck, Richard

    2009-01-01

    We developed a modular robotic tile and a system composed of a number of these modular robotic tiles. The system composed of the modular robotic tiles engages the user in physical activities, e.g., physiotherapy, sports, fitness, and entertainment. The modular robotic tiles motivate the user to p...

  20. Modular optimization code package: MOZAIK

    Science.gov (United States)

    Bekar, Kursat B.

    This dissertation addresses the development of a modular optimization code package, MOZAIK, for geometric shape optimization problems in nuclear engineering applications. MOZAIK's first mission, determining the optimal shape of the D2O moderator tank for the current and new beam tube configurations for the Penn State Breazeale Reactor's (PSBR) beam port facility, is used to demonstrate its capabilities and test its performance. MOZAIK was designed as a modular optimization sequence including three primary independent modules: the initializer, the physics and the optimizer, each having a specific task. By using fixed interface blocks among the modules, the code attains its two most important characteristics: generic form and modularity. The benefit of this modular structure is that the contents of the modules can be switched depending on the requirements of accuracy, computational efficiency, or compatibility with the other modules. Oak Ridge National Laboratory's discrete ordinates transport code TORT was selected as the transport solver in the physics module of MOZAIK, and two different optimizers, Min-max and Genetic Algorithms (GA), were implemented in the optimizer module of the code package. A distributed memory parallelism was also applied to MOZAIK via MPI (Message Passing Interface) to execute the physics module concurrently on a number of processors for various states in the same search. Moreover, dynamic scheduling was enabled to enhance load balance among the processors while running MOZAIK's physics module thus improving the parallel speedup and efficiency. In this way, the total computation time consumed by the physics module is reduced by a factor close to M, where M is the number of processors. This capability also encourages the use of MOZAIK for shape optimization problems in nuclear applications because many traditional codes related to radiation transport do not have parallel execution capability. A set of computational models based on the

  1. MELCOR程序在HTGR事故分析中的最新进展%Latest Progress of HTGR Accident Analysis in MELCOR

    Institute of Scientific and Technical Information of China (English)

    周克峰; 陈召林; 冯进军; 高强; 李茂林; 刘运陶

    2013-01-01

    MELCOR程序是美国NRC在安全评审中使用的一体化系统分析程序,早期主要用于轻水堆严重事故分析.近年来,该程序逐渐用于高温气冷堆的石墨腐蚀、裂变产物行为和石墨粉尘等物理现象方面的研究.本文介绍了在最新版本的MELCOR 2.1程序中,针对高温气冷堆特点所进行的扩展和开发,以及MELCOR程序在高温气冷堆(HTGR)事故分析中的计算流程.

  2. Modular solar-heating system - design package

    Science.gov (United States)

    Sinton, D. S.

    1979-01-01

    Compilation contains design, performance, and hardware specifications in sufficient detail to fabricate or procure materials and install, operate, and maintain complete modular solar heating and hot water system for single family size dwellings.

  3. Permanent Magnet Boosted Modular Switched Reluctance Motor

    Directory of Open Access Journals (Sweden)

    SZABÓ Loránd

    2016-10-01

    Full Text Available This paper deals with the analyses of a novel motor structure obtained by boosting with permanent magnets a formerly studied modular switched reluctance motor. Upon dynamic simulation results the improvements of the proposed motor are emphasized.

  4. Modular Actuators for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Rocketstar Robotics is proposing the development of a modern dual drive actuator. Rocketstar has put together numerous modern concepts for modular actuators that...

  5. Volkov's Pentagon for the Modular Quantum Dilogarithm

    CERN Document Server

    Faddeev, L D

    2012-01-01

    The new form of pentagon equations suggested by Volkov for the $ q $-exponential on the basis of formal series is derived within the Hilbert space framework for the modular version of the quantum dilogarithm.

  6. Hierarchical modularity in human brain functional networks

    CERN Document Server

    Meunier, D; Fornito, A; Ersche, K D; Bullmore, E T; 10.3389/neuro.11.037.2009

    2010-01-01

    The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or "modules-within-modules") decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI) in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at ...

  7. Modular, Plug and Play, Distributed Avionics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this SBIR effort was to prove the viability of an Ethernet version of the MicroSat Systems, Inc. (MSI) modular, plug and play (PnP) spacecraft...

  8. Mapping Modular SOS to Rewriting Logic

    DEFF Research Database (Denmark)

    Braga, Christiano de Oliveira; Haeusler, Erik Hermann; Meseguer, José

    Modular SOS (MSOS) is a framework created to improve the modularity of structural operational semantics specifications, a formalism frequently used in the fields of programming languages semantics and process algebras. With the objective of defining formal tools to support the execution and verif......Modular SOS (MSOS) is a framework created to improve the modularity of structural operational semantics specifications, a formalism frequently used in the fields of programming languages semantics and process algebras. With the objective of defining formal tools to support the execution......-performance implementation of RWL. In this paper we characterize the mapping and the MSOS-SL Interpreter. The reader is assumed to have some basic knowledge of structural operational semantics and object-oriented concepts....

  9. Mapping Modular SOS to Rewriting Logic

    DEFF Research Database (Denmark)

    Braga, Christiano de Oliveira; Haeusler, Edward Hermann; Meseguer, José

    2003-01-01

    Modular SOS (MSOS) is a framework created to improve the modularity of structural operational semantics specifications, a formalism frequently used in the fields of programming languages semantics and process algebras. With the objective of defining formal tools to support the execution and verif......Modular SOS (MSOS) is a framework created to improve the modularity of structural operational semantics specifications, a formalism frequently used in the fields of programming languages semantics and process algebras. With the objective of defining formal tools to support the execution......-performance implementation of RWL. In this paper we characterize the mapping and the MSOS-SL Interpreter. The reader is assumed to have some basic knowledge of structural operational semantics and object-oriented concepts....

  10. Individualized Project Physics in a Modular Schedule.

    Science.gov (United States)

    Cange, Francis

    1985-01-01

    Project Physics is taught at Gibault High School (Waterloo, IL) using a modular schedule and learning activity packets. A description of the course, instructional strategies used, and the learning activity packets is provided. (JN)

  11. Modular Stirling Power System (MSPS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Infinia Technology Corporation's (ITC) proposed Modular Stirling Power System (MSPS) is a free-piston Stirling system that addresses NASA needs in 12-kW increments....

  12. 47 CFR 15.212 - Modular transmitters.

    Science.gov (United States)

    2010-10-01

    ... modular transmitter must have their own shielding. The physical crystal and tuning capacitors may be... shielded. The physical crystal and tuning capacitors may be located external to the shielded radio...

  13. A merged modular/nonmodular multiplier

    Science.gov (United States)

    Phillips, Braden

    2005-02-01

    A new hardware architecture is described to perform multiplication and modular multiplication with a modulus of variable wordlength. It is intended for a microprocessor datapath to support efficient implementation of long wordlength operations using the residue number system.

  14. Modular biowaste monitoring system conceptual design

    Science.gov (United States)

    Fogal, G. L.

    1974-01-01

    The objective of the study was to define requirements and generate a conceptual design for a Modular Biowaste Monitoring System for specifically supporting shuttle life science experimental and diagnostic programs.

  15. Modular solar-heating system - design package

    Science.gov (United States)

    Sinton, D. S.

    1979-01-01

    Compilation contains design, performance, and hardware specifications in sufficient detail to fabricate or procure materials and install, operate, and maintain complete modular solar heating and hot water system for single family size dwellings.

  16. Reconfigurable robot based on modular joint concept

    Institute of Scientific and Technical Information of China (English)

    Shi Shicai; Xie Zongwu; Gao Xiaohui; Jin Minghe; Zhu Yingyuan; Ni Fenglei; Liu Hong; Kraemer Erich; Hirzinger Gerd

    2006-01-01

    A reconfigurable modular robot was developed for a free-flying robot project. This robot was composed of 6 same modular joints and one gripper. In order to save space and cost for transporting it into the space, the robot should be folded overall and locked. A big central hole in the modular joint was designed for the placement of the cables and plugs in the robot arm, which prevented them from damage of high temperature, radiation in the space environment and the motion of the robot. Multiple sensors were integrated into the fully modular joint, such as joint torque sensor, joint position sensor and temperature sensors, which made the joint more intelligent. A zero gravity experimental system was developed to verify the functions of the robot under zero gravity environment.

  17. Modular modelling with Physiome standards.

    Science.gov (United States)

    Cooling, Michael T; Nickerson, David P; Nielsen, Poul M F; Hunter, Peter J

    2016-12-01

    The complexity of computational models is increasing, supported by research in modelling tools and frameworks. But relatively little thought has gone into design principles for complex models. We propose a set of design principles for complex model construction with the Physiome standard modelling protocol CellML. By following the principles, models are generated that are extensible and are themselves suitable for reuse in larger models of increasing complexity. We illustrate these principles with examples including an architectural prototype linking, for the first time, electrophysiology, thermodynamically compliant metabolism, signal transduction, gene regulation and synthetic biology. The design principles complement other Physiome research projects, facilitating the application of virtual experiment protocols and model analysis techniques to assist the modelling community in creating libraries of composable, characterised and simulatable quantitative descriptions of physiology. The ability to produce and customise complex computational models has great potential to have a positive impact on human health. As the field develops towards whole-cell models and linking such models in multi-scale frameworks to encompass tissue, organ, or organism levels, reuse of previous modelling efforts will become increasingly necessary. Any modelling group wishing to reuse existing computational models as modules for their own work faces many challenges in the context of construction, storage, retrieval, documentation and analysis of such modules. Physiome standards, frameworks and tools seek to address several of these challenges, especially for models expressed in the modular protocol CellML. Aside from providing a general ability to produce modules, there has been relatively little research work on architectural principles of CellML models that will enable reuse at larger scales. To complement and support the existing tools and frameworks, we develop a set of principles to

  18. Reliability and diagnostic of modular systems

    Directory of Open Access Journals (Sweden)

    J. Kohlas

    2014-01-01

    Full Text Available Reliability and diagnostic are in general two problems discussed separately. Yet the two problems are in fact closely related to each other. Here, this relation is considered in the simple case of modular systems. We show, how the computation of reliability and diagnostic can efficiently be done within the same Bayesian network induced by the modularity of the structure function of the system.

  19. A Framework for Determining Product Modularity Levels

    DEFF Research Database (Denmark)

    Hvam, Lars; Herbert-Hansen, Zaza Nadja Lee; Haug, Anders

    2017-01-01

    products have been implemented in specific types companies (mostly mass producers), but little guidance exists on how to identify the right level of modularity for other types of companies (such as engineer-to-order companies). In this article, we address this gap by suggesting a framework that categorizes...... in practice is illustrated. This paper thereby contributes with new theoretical developments as well as a practical tool for practitioners in industries using partial modularization, such as, for example, the construction and building industry....

  20. Parametric Design of Modular Fixture Structure

    Institute of Scientific and Technical Information of China (English)

    陈冰冰

    2001-01-01

    Based on an example of its typical structure, the concept of modular fixture structure module is presented, and the structure module system of modular fixture is summarized. Then the parametric design of structure is discussed, and its advantages are also emphasized.Furthermore, some specific methods are provided, such as the selection of fixture components, the determination and input of parameters, drawing representative model,and the creation of drawing. Finally an applied example of strcture parametric design is presented.

  1. On Shanks' Algorithm for Modular Square Roots

    CERN Document Server

    Schlage-Puchta, Jan-Christoph

    2011-01-01

    Let $p$ be a prime number, $p=2^nq+1$, where $q$ is odd. D. Shanks described an algorithm to compute square roots $\\pmod{p}$ which needs $O(\\log q + n^2)$ modular multiplications. In this note we describe two modifications of this algorithm. The first needs only $O(\\log q + n^{3/2})$ modular multiplications, while the second is a parallel algorithm which needs $n$ processors and takes $O(\\log q+n)$ time.

  2. Contract modularity in design by contract languages

    OpenAIRE

    Rebêlo, Henrique Emanuel Mostaert

    2014-01-01

    Design by Contract (DbC) is a popular technique for developing programs using behavioral specifications. In this context, researchers have found that the realization of DbC is crosscutting and fares better when modularized by Aspect-Oriented Programming. However, previous efforts aimed at supporting crosscutting contracts modularly actually compromised the main DbC principles. For example, in AspectJ-style, reasoning about the correctness of a method call may require a whole-pr...

  3. Modular realizations of hyperbolic Weyl groups

    CERN Document Server

    Kleinschmidt, Axel; Palmkvist, Jakob

    2010-01-01

    We study the recently discovered isomorphisms between hyperbolic Weyl groups and unfamiliar modular groups. These modular groups are defined over integer domains in normed division algebras, and we focus on the cases involving quaternions and octonions. We outline how to construct and analyse automorphic forms for these groups; their structure depends on the underlying arithmetic properties of the integer domains. We also give a new realization of the Weyl group W(E8) in terms of unit octavians and their automorphism group.

  4. Modular Parameter Identification of Biomolecular Networks

    OpenAIRE

    Lang, Moritz; Stelling, Jörg

    2016-01-01

    The increasing complexity of dynamic models in systems and synthetic biology poses computational challenges especially for the identification of model parameters. While modularization of the corresponding optimization problems could help reduce the "curse of dimensionality," abundant feedback and crosstalk mechanisms prohibit a simple decomposition of most biomolecular networks into subnetworks, or modules. Drawing on ideas from network modularization and multiple-shooting optimization, we pr...

  5. Theory for the Emergence of Modularity in Complex Systems

    Science.gov (United States)

    Deem, Michael; Park, Jeong-Man

    2013-03-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a theory for the dynamics of modularity in these systems. We find a principle of least action for the evolved modularity at long times. In addition, we find a fluctuation dissipation relation for the rate of change of modularity at short times. We discuss a number of biological and social systems that can be understood with this framework. The modularity of the protein-protein interaction network increases when yeast are exposed to heat shock, and the modularity of the protein-protein networks in both yeast and E. coli appears to have increased over evolutionary time. Food webs in low-energy, stressful environments are more modular than those in plentiful environments, arid ecologies are more modular during droughts, and foraging of sea otters is more modular when food is limiting. The modularity of social networks changes over time: stock brokers instant messaging networks are more modular under stressful market conditions, criminal networks are more modular under increased police pressure, and world trade network modularity has decreased

  6. Fitness, environmental changes and the growth of modularity- a quasispecies theory for the evolutionary dynamics of modularity

    Science.gov (United States)

    Niestemski, Liang; Park, Jeong-Man; Deem, Michael

    2015-03-01

    Although the modularity of a biological system is demonstrated and recognized, the evolution of the modularity is not well understood. We here present a quasispecies theory for the evolutionary dynamics of modularity. Complemented with numerical models, this analytical theory shows the calculation of the steady-state fitness in a randomly changing environment, the relationship between rate of environmental changes and rate of growth of modularity, as well as a principle of least action for the evolved modularity at steady state.

  7. 鞘内注射JNK特异性抑制剂SP600125对CCI大鼠痛行为的影响%Effect of intrathecal administration of SP600125 on MWT and TWL of rats after chronic constriction injury

    Institute of Scientific and Technical Information of China (English)

    闫哲; 杨承祥; 王汉兵; 赵伟成; 周小丽

    2009-01-01

    Objective To observe the effect of intrathecal administration of SP600125 on both MWT and TWL of rats after chronic constriction injury (CCI) of the sciatic nerve. Methods 40 male SD rats were randomized to deride into 5 groups (n=8). Rats in group SP5 received SP600125 5 μg after CCI; rats in group SP25 received SP600125 25 μg after CCI; rats in group SP50 received SP600125 50 μg after CCI; rats in group DMSO received 2% DMSO 10 μl after CCI; rats in group Naive received SP600125 50 μg without sciatic nerve injury. SP600125 was dissolved in 10 μl 2%DMSO solvent. On the 7th day after CCI, MWT and TWL were determined with yon Frey filaments and thermal radiation apparatus repectively after intrathecal administration of SP600125. Results Intrathecal administration certain dosage of SP600125 could attenuate the established mechanical allodynia and thermal hyperalgesia induced by CCI rather than normal rats. Conclusion Intrathecal administration certain dosage of SP600125 could attenuate the established mechanical allodynia and thermal hyperalgesia induced by CCI.%目的 观察鞘内注射c-Jun氨基末端蛋白激酶(c-Jun N-terminal protein kinase,JNK)特异性抑制剂SP600125对慢性压榨性损伤(chronic constriction injury,CCI)大鼠痛行为的影响.方法 雄性sD大鼠40只,随机分为5组(n=8). SP5组:CCI模型,鞘内注射SP600125 5μg;SP25组:CCI模型,鞘内注射SP600125 25 μg;SP50组:CCI模型,鞘内注射SP600125 50μg;DMSO组:CCI模型,鞘内注射2%二甲亚砜溶剂10 μl;Naive组:正常大鼠,鞘内注射SP600125 50μg.SP600125均溶于2%二甲亚砜10μl.CCI模型制作7 d后行鞘内注射,并测定大鼠机械缩足反射阈值(mechanical withdrawal threshold,MWT)及热缩足反射潜伏期(thermal withdrawal latency,TWL).结果 鞘内注射SP600125对正常大鼠的痛行为无影响.鞘内注射一定剂量SP600125能减轻CCI大鼠的机械痛敏及热痛敏.结论 鞘内注射一定剂量的SP600125能够减轻CCI大鼠的机械痛敏及热痛敏.

  8. Modular Packaging Development: Incorporating a modular perspective in the packaging design process

    OpenAIRE

    Karlsson, John

    2013-01-01

    This report presents the result of a research project conducted in 2012-2013 that aimed to adjust the existing modularity theories so that they could be used in packaging development. The study resulted in a model that can be incorporated into an existing packaging design process, thereby complementing this with aspects of modularity. The research project was conducted in close collaboration with Ericsson.

  9. Theoretical Analysis of the Relationships Between Modularity in Design and Modularity in Production

    DEFF Research Database (Denmark)

    Kubota, Flávio Issao; Hsuan, Juliana; Cauchick-Miguel, Paulo Augusto

    2017-01-01

    This paper investigates the relationships between modularity in design (MID) and modularity in production (MIP) in the automotive industry in terms of how automotive companies obtain benefits and/or drawbacks through MID/MIP relationships. A literature analysis was conducted in order to identify ...

  10. Advanced Modular Inverter Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Adam Szczepanek

    2006-02-04

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main

  11. Modular supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Lemos Pereira, A. de

    2000-06-01

    The power supply of remote places has been commonly provided by thermal power plants, usually diesel generators. Although hybrid power systems may constitute the most economical solution in many applications their widespread application to the electrification schemes of remote areas still depends on improvements in the issues of design and operation control. The main limitations of the present hybrid power systems technology, which are identified in this work, are related to the control and supervision of the power system. Therefore this thesis focuses on the modularity of supervisory controllers in order to design cost-competitive and reliable hybrid power systems. The modular supervisory controller created in this project is considered an important part of a system design approach that aims to overcome the technical difficulties of the current engineering practice and contribute to open the market of hybrid power systems. The term modular refers to a set of design characteristics that allows the use of basically the same supervisory controller in different projects. The modularization and standardisation of the controller include several issues such as interfacing components, communication protocols, modelling, programming and control strategies. The modularity can reduce the highly specialised system engineering related to the integration of components, operation and control. It can also avoid the high costs for installation, service and maintenance. A modular algorithm for supervisory controllers has been developed (a Matlab program called SuperCon) using an object-oriented design and it has been tested through several simulations using different hybrid system configurations and different control strategies. This thesis presents a complete control system design process which can be used as the basis for the development and implementation of intelligent and autonomous supervisory controllers for hybrid power systems with modular characteristics. (au)

  12. Teleoperated Modular Robots for Lunar Operations

    Science.gov (United States)

    Globus, Al; Hornby, Greg; Larchev, Greg; Hancher, Matt; Cannon, Howard; Lohn, Jason

    2004-01-01

    Solar system exploration is currently carried out by special purpose robots exquisitely designed for the anticipated tasks. However, all contingencies for in situ resource utilization (ISRU), human habitat preparation, and exploration will be difficult to anticipate. Furthermore, developing the necessary special purpose mechanisms for deployment and other capabilities is difficult and error prone. For example, the Galileo high gain antenna never opened, severely restricting the quantity of data returned by the spacecraft. Also, deployment hardware is used only once. To address these problems, we are developing teleoperated modular robots for lunar missions, including operations in transit from Earth. Teleoperation of lunar systems from Earth involves a three second speed-of-light delay, but experiment suggests that interactive operations are feasible.' Modular robots typically consist of many identical modules that pass power and data between them and can be reconfigured for different tasks providing great flexibility, inherent redundancy and graceful degradation as modules fail. Our design features a number of different hub, link, and joint modules to simplify the individual modules, lower structure cost, and provide specialized capabilities. Modular robots are well suited for space applications because of their extreme flexibility, inherent redundancy, high-density packing, and opportunities for mass production. Simple structural modules can be manufactured from lunar regolith in situ using molds or directed solar sintering. Software to direct and control modular robots is difficult to develop. We have used genetic algorithms to evolve both the morphology and control system for walking modular robots3 We are currently using evolvable system technology to evolve controllers for modular robots in the ISS glove box. Development of lunar modular robots will require software and physical simulators, including regolith simulation, to enable design and test of robot

  13. Local modularity for community detection in complex networks

    Science.gov (United States)

    Xiang, Ju; Hu, Tao; Zhang, Yan; Hu, Ke; Li, Jian-Ming; Xu, Xiao-Ke; Liu, Cui-Cui; Chen, Shi

    2016-02-01

    Community detection is a topic of interest in the study of complex networks such as the protein-protein interaction networks and metabolic networks. In recent years, various methods were proposed to detect community structures of the networks. Here, a kind of local modularity with tunable parameter is derived from the Newman-Girvan modularity by a special self-loop strategy that depends on the community division of the networks. By the self-loop strategy, one can easily control the definition of modularity, and the resulting modularity can be optimized by using the existing modularity optimization algorithms. The local modularity is used as the target function for community detection, and a self-consistent method is proposed for the optimization of the local modularity. We analyze the behaviors of the local modularity and show the validity of the local modularity in detecting community structures on various networks.

  14. ON THE PRIMARY DECOMPOSITION THEOREM OF MODULAR LIE SUPERALGEBRAS

    Institute of Scientific and Technical Information of China (English)

    CHEN LIANGYUN; MENG DAOJI

    2005-01-01

    This gives some identities of associative Lie superalgebras and some properties of modular Lie superalgebras. Furthermore, the primry decomposition theorem of modular Lie superalgebras is shown. It is well known that the primary decomposition theorem of modular Lie algebras has played an important role in the classification of the finite-dimensional simple modular Lie algebras (see [5, 6]). Analogously, the primary decomposition theorem of modular Lie superalgebras may play an important role in the open classification of the finite dimensional simple modular Lie superalgebras.

  15. Measuring Modularity in Open Source Code Bases

    Directory of Open Access Journals (Sweden)

    Roberto Milev

    2009-03-01

    Full Text Available Modularity of an open source software code base has been associated with growth of the software development community, the incentives for voluntary code contribution, and a reduction in the number of users who take code without contributing back to the community. As a theoretical construct, modularity links OSS to other domains of research, including organization theory, the economics of industry structure, and new product development. However, measuring the modularity of an OSS design has proven difficult, especially for large and complex systems. In this article, we describe some preliminary results of recent research at Carleton University that examines the evolving modularity of large-scale software systems. We describe a measurement method and a new modularity metric for comparing code bases of different size, introduce an open source toolkit that implements this method and metric, and provide an analysis of the evolution of the Apache Tomcat application server as an illustrative example of the insights gained from this approach. Although these results are preliminary, they open the door to further cross-discipline research that quantitatively links the concerns of business managers, entrepreneurs, policy-makers, and open source software developers.

  16. Decomposition theorems for Hilbert modular newforms

    CERN Document Server

    Linowitz, Benjamin

    2011-01-01

    Let $\\mathscr{S}_k^+(\\cn,\\Phi)$ denote the space generated by Hilbert modular newforms (over a fixed totally real field $K$) of weight $k$, level $\\cn$ and Hecke character $\\Phi$. We show how to decompose $\\mathscr{S}_k^+(\\cn,\\Phi)$ into direct sums of twists of other spaces of newforms. This sheds light on the behavior of a newform under a character twist: the exact level of the twist of a newform, when such a twist is itself a newform, and when a newform may be realized as the twist of a primitive newform. These results were proven for elliptic modular forms by Hijikata, Pizer and Shemanske by employing a formula for the trace of the Hecke operator $T_k(n)$. We obtain our results not by employing a more general formula for the trace of Hecke operators on spaces of Hilbert modular forms, but instead by using basic properties of newforms which were proven for elliptic modular forms by Li, and Atkin and Li, and later extended to Hilbert modular forms by Shemanske and Walling.

  17. PLM system support for modular product development

    DEFF Research Database (Denmark)

    Bruun, Hans Peter Lomholt; Mortensen, Niels Henrik; Harlou, Ulf

    2015-01-01

    properties such as cost and performance. Companies often use a PLM tool for management of CAD files, documents, and drawings, but they do not take advantage of the full potential of the PLM system to support the development activities of modular product designs. The key result of this paper......A modular design strategy both enables, but also demands, parallelism in design activities and collaboration between a diversity of disciplines in companies, which often involves supporting computer-based tools for enhancing interaction, design management, and communication. Product data management...... (PDM) and product lifecycle management (PLM) systems offer support by automating and managing some of the operational complexity of modular design activities. PLM system tools are used for handling a variety of product definitions, to manage workflow of development activities, and to measure relational...

  18. Inverse theta functions as quantum modular forms

    CERN Document Server

    Bringmann, Kathrin; Rolen, Larry

    2014-01-01

    In this paper, we consider the Fourier coefficients of a special class of meromorphic Jaocbi forms of negative index. Much recent work has been done on the Fourier coefficients of meromorphic Jacobi forms of positive index, but almost nothing is known for Jacobi forms of negative index. Here we show from two different perspectives that their Fourier coefficients have a simple decomposition in terms of partial theta functions. The first perspective uses the language of Lie super algebras, and the second applies the theory of elliptic functions. In particular, we find a new infinite family of rank-crank type PDEs generalizing the famous example of Atkin and Garvan. We then describe the modularity properties of these coefficients, showing that they are \\emph{mixed quantum modular forms}, along the way determining a new class of quantum modular partial theta functions.

  19. Eigenvector dynamics under perturbation of modular networks

    Science.gov (United States)

    Sarkar, Somwrita; Chawla, Sanjay; Robinson, P. A.; Fortunato, Santo

    2016-06-01

    Rotation dynamics of eigenvectors of modular network adjacency matrices under random perturbations are presented. In the presence of q communities, the number of eigenvectors corresponding to the q largest eigenvalues form a "community" eigenspace and rotate together, but separately from that of the "bulk" eigenspace spanned by all the other eigenvectors. Using this property, the number of modules or clusters in a network can be estimated in an algorithm-independent way. A general argument and derivation for the theoretical detectability limit for sparse modular networks with q communities is presented, beyond which modularity persists in the system but cannot be detected. It is shown that for detecting the clusters or modules using the adjacency matrix, there is a "band" in which it is hard to detect the clusters even before the theoretical detectability limit is reached, and for which the theoretically predicted detectability limit forms the sufficient upper bound. Analytic estimations of these bounds are presented and empirically demonstrated.

  20. More Modular Invariant Anomalous U(1) Breaking

    CERN Document Server

    Gaillard, Mary Katherin; Gaillard, Mary K.; Giedt, Joel

    2002-01-01

    We consider the case of several scalar fields, charged under a number of U(1) factors, acquiring vacuum expectation values due to an anomalous U(1). We demonstrate how to make redefinitions at the superfield level in order to account for tree-level exchange of vector supermultiplets in the effective supergravity theory of the light fields in the supersymmetric vacuum phase. Our approach builds upon previous results that we obtained in a more elementary case. We find that the modular weights of light fields are typically shifted from their original values, allowing an interpretation in terms of the preservation of modular invariance in the effective theory. We address various subtleties in defining unitary gauge that are associated with the noncanonical Kahler potential of modular invariant supergravity, the vacuum degeneracy, and the role of the dilaton field. We discuss the effective superpotential for the light fields and note how proton decay operators may be obtained when the heavy fields are integrated o...

  1. Evolution of a Modular Software Network

    CERN Document Server

    Fortuna, Miguel A; Levin, Simon A

    2011-01-01

    "Evolution behaves like a tinkerer" (Francois Jacob, Science, 1977). Software systems provide a unique opportunity to understand biological processes using concepts from network theory. The Debian GNU/Linux operating system allows us to explore the evolution of a complex network in a novel way. The modular design detected during its growth is based on the reuse of existing code in order to minimize costs during programming. The increase of modularity experienced by the system over time has not counterbalanced the increase in incompatibilities between software packages within modules. This negative effect is far from being a failure of design. A random process of package installation shows that the higher the modularity the larger the fraction of packages working properly in a local computer. The decrease in the relative number of conflicts between packages from different modules avoids a failure in the functionality of one package spreading throughout the entire system. Some potential analogies with the evolu...

  2. Understanding Complex Construction Systems Through Modularity

    DEFF Research Database (Denmark)

    Jensen, Tor Clarke; Bekdik, Baris; Thuesen, Christian

    2014-01-01

    finds that the main driver of complexity is the fragmentation of the design and production, which causes the production modules to construct and install new product types and variants for each project as the designers are swapped for every project. The many interfaces are characteristics of an integral......This paper develops a framework for understanding complexity in construction projects by combining theories of complexity management and modularization. The framework incorporates three dimensions of product, process, and organizational modularity with the case of gypsum wall elements. The analysis...

  3. Parallel Relational Universes – experiments in modularity

    DEFF Research Database (Denmark)

    Pagliarini, Luigi; Lund, Henrik Hautop

    2015-01-01

    : We here describe Parallel Relational Universes, an artistic method used for the psychological analysis of group dynamics. The design of the artistic system, which mediates group dynamics, emerges from our studies of modular playware and remixing playware. Inspired from remixing modular playware......, where users remix samples in the form of physical and functional modules, we created an artistic instantiation of such a concept with the Parallel Relational Universes, allowing arts alumni to remix artistic expressions. Here, we report the data emerged from a first pre-test, run with gymnasium’s alumni...

  4. Aspects and modular reasoning in nonmonotonic logic

    DEFF Research Database (Denmark)

    Ostermann, Klaus

    2008-01-01

    Nonmonotonic logic is a branch of logic that has been developed to model situations with incomplete information. We argue that there is a connection between AOP and nonmonotonic logic which deserves further study. As a concrete technical contribution and "appetizer", we outline an AO semantics de...... defined in default logic (a form of nonmonotonic logic), propose a definition of modular reasoning, and show that the default logic version of the language semantics admits modular reasoning whereas a conventional language semantics based on weaving does not....

  5. Proving relations between modular graph functions

    Science.gov (United States)

    Basu, Anirban

    2016-12-01

    We consider modular graph functions that arise in the low energy expansion of the four graviton amplitude in type II string theory. The vertices of these graphs are the positions of insertions of vertex operators on the toroidal worldsheet, while the links are the scalar Green functions connecting the vertices. Graphs with four and five links satisfy several non-trivial relations, which have been proved recently. We prove these relations by using elementary properties of Green functions and the details of the graphs. We also prove a relation between modular graph functions with six links.

  6. Modular arrangement of regulatory RNA elements

    Science.gov (United States)

    Roßmanith, Johanna; Narberhaus, Franz

    2017-01-01

    ABSTRACT Due to their simple architecture and control mechanism, regulatory RNA modules are attractive building blocks in synthetic biology. This is especially true for riboswitches, which are natural ligand-binding regulators of gene expression. The discovery of various tandem riboswitches inspired the design of combined RNA modules with activities not yet found in nature. Riboswitches were placed in tandem or in combination with a ribozyme or temperature-responsive RNA thermometer resulting in new functionalities. Here, we compare natural examples of tandem riboswitches with recently designed artificial RNA regulators suggesting substantial modularity of regulatory RNA elements. Challenges associated with modular RNA design are discussed. PMID:28010165

  7. Research in Green Modularity Design Methodology

    Institute of Scientific and Technical Information of China (English)

    LI Fang-yi; LI Jian-feng; DUAN Guang-hong; ZHANG Hong-chao; XU Jin-yong; MA Kai-ling

    2005-01-01

    Green design and manufacturing is a proactive approach to minimize wastes during a product's design stage, thus preventing future environmental impacts. Current modular design method mainly focuses on productfunctional and manufacturing issues. In this paper,a theoretical scheme of multi-objective modularity analysis for discrete electromechanical product design was proposed. Product physical architecture was represented by a fuzzy graph, where fuzzy relationships contain environmental objectives and influence module formulation. Finally the optimal product modules combining all objectives can be searched by clustering algorithm.

  8. Successes and failures in modular genetic engineering.

    Science.gov (United States)

    Kittleson, Joshua T; Wu, Gabriel C; Anderson, J Christopher

    2012-08-01

    Synthetic biology relies on engineering concepts such as abstraction, standardization, and decoupling to develop systems that address environmental, clinical, and industrial needs. Recent advances in applying modular design to system development have enabled creation of increasingly complex systems. However, several challenges to module and system development remain, including syntactic errors, semantic errors, parameter mismatches, contextual sensitivity, noise and evolution, and load and stress. To combat these challenges, researchers should develop a framework for describing and reasoning about biological information, design systems with modularity in mind, and investigate how to predictively describe the diverse sources and consequences of metabolic load and stress.

  9. Conditionals and Modularity in General Logics

    CERN Document Server

    Gabbay, Dov M

    2011-01-01

    This text centers around three main subjects. The first is the concept of modularity and independence in classical logic and nonmonotonic and other nonclassical logic, and the consequences on syntactic and semantical interpolation and language change. In particular, we will show the connection between interpolation for nonmonotonic logic and manipulation of an abstract notion of size. Modularity is essentially the ability to put partial results achieved independently together for a global result. The second aspect of the book is the authors' uniform picture of conditionals, including many-valu

  10. Towards a Standard for Modular Petri Nets

    DEFF Research Database (Denmark)

    Kindler, Ekkart; Petrucci, Laure

    2009-01-01

    When designing complex systems, mechanisms for structuring, composing, and reusing system components are crucial. Today, there are many approaches for equipping Petri nets with such mechanisms. In the context of defining a standard interchange format for Petri nets, modular PNML was defined....... Moreover, we present and discuss some more advanced features of modular Petri nets that could be included in the standard. This way, we provide a formal foundation and a basis for a discussion of features to be included in the upcoming standard of a module concept for Petri nets in general and for high...

  11. Modular Forms of Weight One Over Finite Fields

    NARCIS (Netherlands)

    Wiese, Gabor

    2005-01-01

    The thesis deals with certain aspects of Katz modular forms over finite fields, in particular of weight one. A special case of Serre's conjecture is proved and the faithfulness of the Hecke module of modular symbols is studied.

  12. R and D status and requirements for PIE in the fields of the HTGR fuel and the innovative basic research on High-Temperature Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Sawa, Kazuhiro; Tobita, Tsutomu; Sumita, Junya [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Ishihara, Masahiro; Hayashi, Kimio; Hoshiya, Taiji; Sekino, Hajime; Ooeda, Etsurou

    1999-09-01

    The High Temperature Engineering Test Reactor (HTTR), which is the first high temperature gas-cooled reactor (HTGR) in Japan, achieved its first criticality in November 1998 at the Oarai Research Establishment of the Japan Atomic Energy Research Institute (JAERI). In the field of HTGR fuel development, JAERI will proceed research and development (R and D) works by the following steps: (STEP-1) confirmation of irradiation performance of the first-loading fuel of the HTTR, (STEP-2) study on irradiation performance of high burnup SiC-coated fuel particle and (STEP-3) development of ZrC-coated fuel particle. Requirements for post-irradiation examination (PIE) are different for each R and D step. In STEP-1, firstly, hot cells will be prepared in the HTTR reactor building to handle spent fuels. In parallel, general equipments such as those for deconsolidation of fuel compacts and for handling coated fuel particles will be installed in the Hot Laboratory at Oarai. In STEP-2, precise PIE techniques, for example, Raman spectroscopy for measurement of stress on irradiated SiC layer, will be investigated. In STEP-3, new PIE techniques should be developed to investigate irradiation behavior of ZrC-coated particle. In the field of the innovative basic research on high-temperature engineering, some preliminary tests have been made on the research areas of (1) new materials development, (2) fusion technology, (3) radiation chemistry and (4) high-temperature in-core instrumentation. Requirements for PIE are under investigation, in particular in the field of the new materials development. Besides more general apparatuses including transmission electron microscopy (TEM), some special apparatuses such as an electron spin resonance (ESR) spectrometer, a specific resistance/Hall coefficient measuring system and a differential scanning calorimeter (DSC) are planned to install in the Hot Laboratory at Oarai. Acquisition of advanced knowledge on the irradiation behavior is expected in

  13. Safety-related Innovative Nuclear Reactor Technology Elements R and D (SINTER) Network and Global HTGR R and D Network (GHTRN). Strategic benefits of international networking

    Energy Technology Data Exchange (ETDEWEB)

    Von Lensa, W. [Institut fuer Sicherheitsforschung und Reaktortechnik ISR, Forschungszentrum Juelich, Juelich (Germany)

    1998-09-01

    Action on `Safety-related Innovative Nuclear Reactor Technology Elements - R and D - (SINTER) Network` both aim at the identification of priority items for sustainable innovations of nuclear technologies and work-shared European collaboration structures. Such an approach can also be realised for future R and D on HTGR-related R and D under the umbrella of the IAEA as already proposed by the `International Working Group on Gas-Cooled Reactors (IWGGCR)` in 1996 and illustrated in this paper for the construction of a `Global HTGR R and D Network (GHTRN)`. 3 refs.

  14. Optimization of MOX Fuel Cycles in Pebble Bed HTGR%球床式高温气冷堆MOX燃料循环优化

    Institute of Scientific and Technical Information of China (English)

    位金锋; 李富; 孙玉良

    2013-01-01

    与压水堆相比,球床式高温气冷堆能在堆芯结构不做明显改变的情况下采用全堆芯装载混合氧化物(MOX)燃料元件.基于250 MW球床模块式高温气冷堆堆芯结构,设计了4种球床式高温气冷堆下MOX燃料循环方式,包括铀钚混合的燃料球和独立的钚球与铀球混合装载的等效方式,采用高温气冷堆设计程序VSOP进行分析,比较了初装堆的有效增殖因数、燃料元件在堆芯内滞留时间、卸料燃耗、温度系数等主要物理特性.结果表明:采用纯铀和纯钚两种分离燃料球且铀燃料球循环时间更长的方案,平均卸料燃耗较高,总体性能较其他循环方式优越.%Compared with light water reactor (LWR),the pebble bed high temperature gas-cooled reactor (HTGR) is able to operate in a full mixed oxide (MOX) fuelled core without significant change to core structure design. Based on a reference design of 250 MW pebble bed HTGR, four MOX fuel cycles were designed and evaluated by VSOP program package, including the mixed Pu-U fuel pebbles and mixed loading of separate Pu-pebbles and U-pebbles. Some important physics features were investigated and compared for these four cycles, such as the effective multiplication factor of initial core, the pebble residence time, discharge burnup, and temperature coefficients. Preliminary results show that the overall performance of one case is superior to other equivalent MOX fuel cycles on condition that uranium fuel elements and plutonium fuel elements are separated as the different fuel pebbles and that the uranium fuel elements are irradiated longer in the core than the plutonium fuel elements, and the average discharge burnup of this case is also higher than others.

  15. Fixed Points of Multivalued Maps in Modular Function Spaces

    Directory of Open Access Journals (Sweden)

    Kutbi MarwanA

    2009-01-01

    Full Text Available The purpose of this paper is to study the existence of fixed points for contractive-type and nonexpansive-type multivalued maps in the setting of modular function spaces. We also discuss the concept of -modular function and prove fixed point results for weakly-modular contractive maps in modular function spaces. These results extend several similar results proved in metric and Banach spaces settings.

  16. Pick'n'Fix: Capturing Control Flow in Modular Compilers

    DEFF Research Database (Denmark)

    Day, Laurence E.; Bahr, Patrick

    2014-01-01

    We present a modular framework for implementing languages with effects and control structures such as loops and conditionals. This framework enables modular definitions of both syntax and semantics as well as modular implementations of compilers and virtual machines. In order to compile control s...

  17. Procedure-modular specification and verification of temporal safety properties

    NARCIS (Netherlands)

    Soleimanifard, Siavash; Gurov, Dilian; Huisman, Marieke

    2015-01-01

    This paper describes ProMoVer, a tool for fully automated procedure-modular verification of Java programs equipped with method-local and global assertions that specify safety properties of sequences of method invocations. Modularity at the procedure-level is a natural instantiation of the modular ve

  18. Siegel modular forms of genus 2 and level 2

    NARCIS (Netherlands)

    Cléry, F.; van der Geer, G.; Grushevsky, S.

    2015-01-01

    We study vector-valued Siegel modular forms of genus 2 on the three level 2 groups Γ[2] ◁ Γ1[2] ◁ Γ0[2] ⊂ Sp(4, ℤ). We give generating functions for the dimension of spaces of vector-valued modular forms, construct various vector-valued modular forms by using theta functions and describe the structu

  19. Logarithmic conformal field theory, log-modular tensor categories and modular forms

    CERN Document Server

    Creutzig, Thomas

    2016-01-01

    The two pillars of rational conformal field theory and rational vertex operator algebras are modularity of characters on the one hand and its interpretation of modules as objects in a modular tensor category on the other one. Overarching these pillars is the Verlinde formula. In this paper we consider the more general class of logarithmic conformal field theories and $C_2$-cofinite vertex operator algebras. We suggest that their modular pillar are trace functions with insertions corresponding to intertwiners of the projective cover of the vacuum, and that the categorical pillar are finite tensor categories $\\mathcal C$ which are ribbon and whose double is isomorphic to the Deligne product $\\mathcal C\\otimes \\mathcal C^{opp}$. Overarching these pillars is then a logarithmic variant of Verlinde's formula. Numerical data realizing this are the modular $S$-matrix and modified traces of open Hopf links. The representation categories of $C_2$-cofinite and logarithmic conformal field theories that are fairly well un...

  20. Consciousness in SLA: A Modular Perspective

    Science.gov (United States)

    Truscott, John

    2015-01-01

    Understanding the place of consciousness in second language acquisition (SLA) is crucial for an understanding of how acquisition occurs. Considerable work has been done on this topic, but nearly all of it assumes a highly non-modular view, according to which language and its development is "nothing special". As this assumption runs…

  1. Modular Engineering Concept at Novo Nordisk Engineering

    DEFF Research Database (Denmark)

    Moelgaard, Gert; Miller, Thomas Dedenroth

    1997-01-01

    This report describes the concept of a new engineering method at Novo Nordisk Engineering: Modular Engineering (ME). Three tools are designed to support project phases with different levels of detailing and abstraction. ME supports a standard, cross-functional breakdown of projects that facilitates...

  2. Modular Engineering Concept at Novo Nordisk Engineering

    DEFF Research Database (Denmark)

    Moelgaard, Gert; Miller, Thomas Dedenroth

    1997-01-01

    This report describes the concept of a new engineering method at Novo Nordisk Engineering: Modular Engineering (ME). Three tools are designed to support project phases with different levels of detailing and abstraction. ME supports a standard, cross-functional breakdown of projects that facilitates...

  3. Modularizing a DSL implementation with Rascal

    NARCIS (Netherlands)

    Timmer, J.J.W.

    2013-01-01

    To make compilers more maintainable, one could build the language implementation in a modular way. This would mean adding only new les to the existing base language. Rascal is a language workbench that supports this for Domain Specific Languages (DSLs), as claimed by it's developers. To test this, a

  4. Honeywell Modular Automation System Computer Software Documentation

    Energy Technology Data Exchange (ETDEWEB)

    CUNNINGHAM, L.T.

    1999-09-27

    This document provides a Computer Software Documentation for a new Honeywell Modular Automation System (MAS) being installed in the Plutonium Finishing Plant (PFP). This system will be used to control new thermal stabilization furnaces in HA-211 and vertical denitration calciner in HC-230C-2.

  5. GAMBIT: Global And Modular BSM Inference Tool

    Science.gov (United States)

    GAMBIT Collaboration; Athron, Peter; Balazs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrzä Szcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Dickinson, Hugh; Edsjö, Joakim; Farmer, Ben; Jackson, Paul; Krislock, Abram; Kvellestad, Anders; Lundberg, Johan; McKay, James; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje Raklev, Are; Ripken, Joachim; Rogan, Christopher; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Seo, Seon-Hee; Serra, Nicola; Weniger, Christoph; White, Martin; Wild, Sebastian

    2017-08-01

    GAMBIT (Global And Modular BSM Inference Tool) performs statistical global fits of generic physics models using a wide range of particle physics and astrophysics data. Modules provide native simulations of collider and astrophysics experiments, a flexible system for interfacing external codes (the backend system), a fully featured statistical and parameter scanning framework, and additional tools for implementing and using hierarchical models.

  6. Higher-order (non-)modularity

    NARCIS (Netherlands)

    Appel, Claus; Oostrom, V. van; Grue Simonsen, Jakob

    2010-01-01

    We show that, contrary to the situation in first-order term rewriting, almost none of the usual properties of rewriting are modular for higher-order rewriting, irrespective of the higher-order rewriting format. For the particular format of simply typed applicative term rewriting systems we prove tha

  7. Modular Infrastructure for Rapid Flight Software Development

    Science.gov (United States)

    Pires, Craig

    2010-01-01

    This slide presentation reviews the use of modular infrastructure to assist in the development of flight software. A feature of this program is the use of model based approach for application unique software. A review of two programs that this approach was use on are: the development of software for Hover Test Vehicle (HTV), and Lunar Atmosphere and Dust Environment Experiment (LADEE).

  8. Enablers & Barriers for Realizing Modularity Benefits

    DEFF Research Database (Denmark)

    Storbjerg, Simon Haahr; Brunø, Thomas Ditlev; Thyssen, Jesper

    2012-01-01

    are the organizational and systems related aspects. Recognizing the need for guidance to realize the benefits of modularity, the purpose of this study is through a literature study and a case study to improve the insight into the organizational and systems related enablers and barriers with regard to obtaining the full...

  9. Modularity, Working Memory and Language Acquisition

    Science.gov (United States)

    Baddeley, Alan D.

    2017-01-01

    The concept of modularity is used to contrast the approach to working memory proposed by Truscott with the Baddeley and Hitch multicomponent model. This proposes four sub components comprising the "central executive," an executive control system of limited attentional capacity that utilises storage based on separate but interlinked…

  10. Modular microfluidic system for biological sample preparation

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  11. Modular evolution of the Cetacean vertebral column.

    Science.gov (United States)

    Buchholtz, Emily A

    2007-01-01

    Modular theory predicts that hierarchical developmental processes generate hierarchical phenotypic units that are capable of independent modification. The vertebral column is an overtly modular structure, and its rapid phenotypic transformation in cetacean evolution provides a case study for modularity. Terrestrial mammals have five morphologically discrete vertebral series that are now known to be coincident with Hox gene expression patterns. Here, I present the hypothesis that in living Carnivora and Artiodactyla, and by inference in the terrestrial ancestors of whales, the series are themselves components of larger precaudal and caudal modular units. Column morphology in a series of fossil and living whales is used to predict the type and sequence of developmental changes responsible for modification of that ancestral pattern. Developmental innovations inferred include independent meristic additions to the precaudal column in basal archaeocetes and basilosaurids, stepwise homeotic reduction of the sacral series in protocetids, and dissociation of the caudal series into anterior tail and fluke subunits in basilosaurids. The most dramatic change was the novel association of lumbar and anterior caudal vertebrae in a module that crosses the precaudal/caudal boundary. This large unit is defined by shared patterns of vertebral morphology, count, and size in all living whales (Neoceti).

  12. Higher-Order (Non-)Modularity

    DEFF Research Database (Denmark)

    Appel, Claus; van Oostrom, Vincent; Simonsen, Jakob Grue

    2010-01-01

    We show that, contrary to the situation in first-order term rewriting, almost none of the usual properties of rewriting are modular for higher-order rewriting, irrespective of the higher-order rewriting format. We show that for the particular format of simply typed applicative term rewriting syst...

  13. Consciousness in SLA: A Modular Perspective

    Science.gov (United States)

    Truscott, John

    2015-01-01

    Understanding the place of consciousness in second language acquisition (SLA) is crucial for an understanding of how acquisition occurs. Considerable work has been done on this topic, but nearly all of it assumes a highly non-modular view, according to which language and its development is "nothing special". As this assumption runs…

  14. Automatic configuration of modular vault walls

    Directory of Open Access Journals (Sweden)

    Grković Vladan

    2012-01-01

    Full Text Available Products such as modular partition walls of vault rooms (with or without vault doors are made at the request of the client who chooses the safety degree and provides the available dimensions of the wall that should be made. Modular construction of vault walls is the system of construction of industrially made elements which are composed in situ, which allows design of products adjusted to individual requirements of clients. Since the vault wall modules repeat in every new project and since they differ only by their number and dimensions, the use of modern CA (Computer Aided tools and the possibility of application of parameter and variant design shorten design time and eliminate possible errors in the process of design of modular vault walls, which reduces the costs of production and increases the level of product quality. The paper presents the procedure for calculation of parameters of parts, modules and the entire vault wall in Microsoft Excel based on which the 3D model of a modular vault wall is automatically configured and developed in software package Autodesk Inventor. [Projekat Ministarstva nauke Republike Srbije, br. TR37020

  15. Higher-order (non-)modularity

    DEFF Research Database (Denmark)

    Appel, Claus; van Oostrom, Vincent; Simonsen, Jakob Grue

    2010-01-01

    We show that, contrary to the situation in first-order term rewriting, almost none of the usual properties of rewriting are modular for higher-order rewriting, irrespective of the higher-order rewriting format. We show that for the particular format of simply typed applicative term rewriting syst...

  16. A Modular SOS for Action Notation - Revisited

    DEFF Research Database (Denmark)

    Mosses, Peter David

    A draft modular SOS for the new version of AN, referred to as AN-2, has been available since 2000. It is written in CASL and has been checked for well-formedness using CATS (CASL Tool Set). It appears to be significantly more accessible than the original SOS of AN-1. However, it now appears that ...

  17. Principles for Implementing Modularity in Healthcare

    DEFF Research Database (Denmark)

    Soffers, Ruter; Meijboom, Bert; Hsuan, Juliana

    in a modular way. We identify three principles to do so: 1) the service architecture should be decomposable; 2) a proper service specification process should be introduced; and 3) the presence of interfaces should be ensured. Followingthese principles should help policy makers as well as managers to implement...

  18. A Modified Feistel Cipher Involving Modular Arithmetic Addition and Modular Arithmetic Inverse of a Key Matrix

    Directory of Open Access Journals (Sweden)

    K. Anup Kumar

    2012-07-01

    Full Text Available In this investigation, we have modified the Feistel cipher by taking the plaintext in the form of a pair of square matrices. Here we have introduced the operation multiplication with the key matrices and the modular arithmetic addition in encryption. The modular arithmetic inverse of the key matrix is introduced in decryption. The cryptanalysis carried out in this paper clearly indicate that this cipher cannot be broken by the brute force attack and the known plaintext attack.

  19. Modularity for Motor Control and Motor Learning.

    Science.gov (United States)

    d'Avella, Andrea

    2016-01-01

    How the central nervous system (CNS) overcomes the complexity of multi-joint and multi-muscle control and how it acquires or adapts motor skills are fundamental and open questions in neuroscience. A modular architecture may simplify control by embedding features of both the dynamic behavior of the musculoskeletal system and of the task into a small number of modules and by directly mapping task goals into module combination parameters. Several studies of the electromyographic (EMG) activity recorded from many muscles during the performance of different tasks have shown that motor commands are generated by the combination of a small number of muscle synergies, coordinated recruitment of groups of muscles with specific amplitude balances or activation waveforms, thus supporting a modular organization of motor control. Modularity may also help understanding motor learning. In a modular architecture, acquisition of a new motor skill or adaptation of an existing skill after a perturbation may occur at the level of modules or at the level of module combinations. As learning or adapting an existing skill through recombination of modules is likely faster than learning or adapting a skill by acquiring new modules, compatibility with the modules predicts learning difficulty. A recent study in which human subjects used myoelectric control to move a mass in a virtual environment has tested this prediction. By altering the mapping between recorded muscle activity and simulated force applied on the mass, as in a complex surgical rearrangement of the tendons, it has been possible to show that it is easier to adapt to a perturbation that is compatible with the muscle synergies used to generate hand force than to a similar but incompatible perturbation. This result provides direct support for a modular organization of motor control and motor learning.

  20. Gas turbine and advanced HTGR materials screening test program: 10,000-hour results and semiannual progress report for the period ending March 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Rosenwasser, S.N.; Johnson, W.R.

    1977-07-01

    Work on the Gas-Turbine and Advanced High-Temperature Gas-Cooled Reactor (HTGR) Materials Screening Test Program is documented. Emphasis is on the results and analyses of creep data to 11,000 hr and the detailed metallurgical evaluations performed on candidate alloy specimens tested for up to 10,000 hr. Long-term creep and unstressed aging data in controlled-impurity helium and in air at 650, 800, and 900/sup 0/C are reported for the original alloys in the program, including the vacuum-cast Ni-base superalloys, IN 100, Rene 100, IN 713, MM 004, M 21, and IN 738; the wrought solid-solution-strengthened Ni--Cr alloys, Hastelloy X and Inconel 617; the centrifugally-cast austenitic Fe--Ni--Cr alloy, IN 519; the oxide-dispersion-strengthened (ODS) Ni--Cr alloys, MA 753 and MA 754; and the wrought Mo-base alloy, MoTZM. Results at 650/sup 0/C and 10,000 hr for the precipitation-strengthened alloys Inconel 718, Inconel 706, and A 286 are also included. Similar, but much shorter term data at 800, 900, and 1000/sup 0/C for the recently added wrought alloys Hastelloy X (second heat), Hastelloy S, RA 333, and HD 556, and the additional centrifugally-cast alloys HK 40, Supertherm, Manaurite 36X, Manaurige 36XS, and Manaurite 900, are also reported.

  1. The Impact of Product and Service Modularity on Business Performance

    DEFF Research Database (Denmark)

    Hsuan, Juliana; Frandsen, Thomas; Raja, Jawwad

    Modularity has been proposed as a powerful way of managing complexity. The emerging literature points to the importance of modularity of service architecture, with case based studies in logistics and healthcare. Little is known about the relationship between product and service modularity...... and their effects on business performance, both empirically and theoretically. This paper explores the relationship between product and service modularity and their effects on business performance based on a survey of Danish manufacturers. We provide empirical and theoretical insights into the emerging fields...... of service modularity and industrial services....

  2. Understanding the Modularity of Socio-technical Production Systems

    DEFF Research Database (Denmark)

    Thuesen, Christian Langhoff

    This paper seeks to contribute to the development of Configurational Theory by offering a reinterpretation of the modularity concept from a socio-technical perspective in general and Actor Network Theory (ANT) in particular. By formulating modularity from an ANT perspective covering social......, material and process aspects, the modularity of a socio-technical system can be understood as an entanglement of product, process, organizational and institutional modularity dimension. The developed theoretical framework is used for analyzing the modularity of three different production systems the pre......-modern, modern and post-modern construction practices....

  3. Modularity and the Spread of Perturbations in Complex Dynamical Systems

    CERN Document Server

    Kolchinsky, Artemy; Rocha, Luis M

    2015-01-01

    We propose a method to decompose a multivariate dynamical system into weakly-coupled modules based on the idea that module boundaries constrain the spread of perturbations. Using a novel quality function called 'perturbation modularity', we find system coarse-grainings that optimally separate the dynamics of perturbation spreading into fast intra-modular and slow inter-modular components. Our method is defined directly in terms of system dynamics, unlike approaches that find communities in networks (whether in structural networks or 'functional networks' of statistical dependencies) or that impose arbitrary dynamics onto graphs. Due to this, we are able to capture the variation of modular organization across states, timescales, and in response to different perturbations, aspects of modularity which are all relevant to real-world dynamical systems. However, in certain cases, mappings exist between perturbation modularity and community detection methods of `Markov stability' and Newman's modularity. Our approac...

  4. Community Detection via Maximization of Modularity and Its Variants

    CERN Document Server

    Chen, Mingming; Szymanski, Boleslaw K

    2015-01-01

    In this paper, we first discuss the definition of modularity (Q) used as a metric for community quality and then we review the modularity maximization approaches which were used for community detection in the last decade. Then, we discuss two opposite yet coexisting problems of modularity optimization: in some cases, it tends to favor small communities over large ones while in others, large communities over small ones (so called the resolution limit problem). Next, we overview several community quality metrics proposed to solve the resolution limit problem and discuss Modularity Density (Qds) which simultaneously avoids the two problems of modularity. Finally, we introduce two novel fine-tuned community detection algorithms that iteratively attempt to improve the community quality measurements by splitting and merging the given network community structure. The first of them, referred to as Fine-tuned Q, is based on modularity (Q) while the second one is based on Modularity Density (Qds) and denoted as Fine-tu...

  5. On the Classification of Weakly Integral Modular Categories

    Energy Technology Data Exchange (ETDEWEB)

    Bruillard, Paul J.; Galindo, Cesar; Ng, Siu Hung; Plavnik, Julia Y.; Rowell, Eric C.; Wang, Zhenghan

    2016-09-01

    In this paper we classify all modular categories of dimension 4m, where m is an odd square-free integer, and all rank 6 and rank 7 weakly integral modular categories. This completes the classification of weakly integral modular categories through rank 7. In particular, our results imply that all integral modular categories of rank at most 7 are pointed (that is, every simple object has dimension 1). All the non-integral (but weakly integral) modular categories of ranks 6 and 7 have dimension 4m, with m an odd square free integer, so their classification is an application of our main result. The classification of rank 7 integral modular categories is facilitated by an analysis of the two group actions on modular categories: the Galois group of the field generated by the entries of the S-matrix and the group of invertible isomorphism classes of objects. We derive some valuable arithmetic consequences from these actions.

  6. Modular quantum-information processing by dissipation

    Science.gov (United States)

    Marshall, Jeffrey; Campos Venuti, Lorenzo; Zanardi, Paolo

    2016-11-01

    Dissipation can be used as a resource to control and simulate quantum systems. We discuss a modular model based on fast dissipation capable of performing universal quantum computation, and simulating arbitrary Lindbladian dynamics. The model consists of a network of elementary dissipation-generated modules and it is in principle scalable. In particular, we demonstrate the ability to dissipatively prepare all single-qubit gates, and the controlled-not gate; prerequisites for universal quantum computing. We also show a way to implement a type of quantum memory in a dissipative environment, whereby we can arbitrarily control the loss in both coherence, and concurrence, over the evolution. Moreover, our dissipation-assisted modular construction exhibits a degree of inbuilt robustness to Hamiltonian and, indeed, Lindbladian errors, and as such is of potential practical relevance.

  7. Modular PEM Fuel Cell SCADA & Simulator System

    Directory of Open Access Journals (Sweden)

    Francisca Segura

    2015-09-01

    Full Text Available The paper presents a Supervision, Control, Data Acquisition and Simulation (SCADA & Simulator system that allows for real-time training in the actual operation of a modular PEM fuel cell system. This SCADA & Simulator system consists of a free software tool that operates in real time and simulates real situations like failures and breakdowns in the system. This developed SCADA & Simulator system allows us to properly operate a fuel cell and helps us to understand how fuel cells operate and what devices are needed to configure and run the fuel cells, from the individual stack up to the whole fuel cell system. The SCADA & Simulator system governs a modular system integrated by three PEM fuel cells achieving power rates higher than tens of kilowatts.

  8. Mapping Modular SOS to Rewriting Logic

    DEFF Research Database (Denmark)

    Braga, Christiano de Oliveira; Haeusler, Erik Hermann; Meseguer, José;

    Modular SOS (MSOS) is a framework created to improve the modularity of structural operational semantics specifications, a formalism frequently used in the fields of programming languages semantics and process algebras. With the objective of defining formal tools to support the execution and verif......-performance implementation of RWL. In this paper we characterize the mapping and the MSOS-SL Interpreter. The reader is assumed to have some basic knowledge of structural operational semantics and object-oriented concepts....... and verification of MSOS specifications, we have defined a mapping, named , from MSOS to rewriting logic (RWL), a logic which has been proposed as a logical and semantic framework. We have proven the correctness of and implemented it as a prototype, the MSOS-SL Interpreter, in the Maude system, a high...

  9. Versatile microrobotics using simple modular subunits

    Science.gov (United States)

    Cheang, U. Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun

    2016-07-01

    The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size.

  10. Reasoning about modular datatypes with Mendler induction

    Directory of Open Access Journals (Sweden)

    Paolo Torrini

    2015-09-01

    Full Text Available In functional programming, datatypes a la carte provide a convenient modular representation of recursive datatypes, based on their initial algebra semantics. Unfortunately it is highly challenging to implement this technique in proof assistants that are based on type theory, like Coq. The reason is that it involves type definitions, such as those of type-level fixpoint operators, that are not strictly positive. The known work-around of impredicative encodings is problematic, insofar as it impedes conventional inductive reasoning. Weak induction principles can be used instead, but they considerably complicate proofs. This paper proposes a novel and simpler technique to reason inductively about impredicative encodings, based on Mendler-style induction. This technique involves dispensing with dependent induction, ensuring that datatypes can be lifted to predicates and relying on relational formulations. A case study on proving subject reduction for structural operational semantics illustrates that the approach enables modular proofs, and that these proofs are essentially similar to conventional ones.

  11. Modular Curvature for Noncommutative Two-Tori

    CERN Document Server

    Connes, Alain

    2011-01-01

    Starting from the description of the conformal geometry of noncommutative 2-tori in the framework of modular spectral triples, we explicitly compute the local curvature functionals determined by the value at zero of the zeta functions affiliated with these spectral triples. We give a closed formula for the Ray-Singer analytic torsion in terms of the Dirichlet quadratic form and the generating function for Bernoulli numbers applied to the modular operator. The gradient of the Ray-Singer analytic torsion is then expressed in terms of these functionals, and yields the analogue of scalar curvature. Computing this gradient in two ways elucidates the meaning of the complicated two variable functions occurring in the formula for the scalar curvature. Moreover, the corresponding evolution equation for the metric produces the appropriate analogue of Ricci curvature. We prove the analogue of the classical result which asserts that in every conformal class the maximum value of the determinant of the Laplacian on metrics...

  12. Pipelined Two-Operand Modular Adders

    Directory of Open Access Journals (Sweden)

    M. Czyzak

    2015-04-01

    Full Text Available Pipelined two-operand modular adder (TOMA is one of basic components used in digital signal processing (DSP systems that use the residue number system (RNS. Such modular adders are used in binary/residue and residue/binary converters, residue multipliers and scalers as well as within residue processing channels. The design of pipelined TOMAs is usually obtained by inserting an appriopriate number of latch layers inside a nonpipelined TOMA structure. Hence their area is also determined by the number of latches and the delay by the number of latch layers. In this paper we propose a new pipelined TOMA that is based on a new TOMA, that has the smaller area and smaller delay than other known structures. Comparisons are made using data from the very large scale of integration (VLSI standard cell library.

  13. Hierarchical State Machines as Modular Horn Clauses

    Directory of Open Access Journals (Sweden)

    Pierre-Loïc Garoche

    2016-07-01

    Full Text Available In model based development, embedded systems are modeled using a mix of dataflow formalism, that capture the flow of computation, and hierarchical state machines, that capture the modal behavior of the system. For safety analysis, existing approaches rely on a compilation scheme that transform the original model (dataflow and state machines into a pure dataflow formalism. Such compilation often result in loss of important structural information that capture the modal behaviour of the system. In previous work we have developed a compilation technique from a dataflow formalism into modular Horn clauses. In this paper, we present a novel technique that faithfully compile hierarchical state machines into modular Horn clauses. Our compilation technique preserves the structural and modal behavior of the system, making the safety analysis of such models more tractable.

  14. Discrete optimization in architecture extremely modular systems

    CERN Document Server

    Zawidzki, Machi

    2017-01-01

    This book is comprised of two parts, both of which explore modular systems: Pipe-Z (PZ) and Truss-Z (TZ), respectively. It presents several methods of creating PZ and TZ structures subjected to discrete optimization. The algorithms presented employ graph-theoretic and heuristic methods. The underlying idea of both systems is to create free-form structures using the minimal number of types of modular elements. PZ is more conceptual, as it forms single-branch mathematical knots with a single type of module. Conversely, TZ is a skeletal system for creating free-form pedestrian ramps and ramp networks among any number of terminals in space. In physical space, TZ uses two types of modules that are mirror reflections of each other. The optimization criteria discussed include: the minimal number of units, maximal adherence to the given guide paths, etc.

  15. Siegel Modular Forms and Black Hole Entropy

    CERN Document Server

    Belin, Alexandre; Gomes, Joao; Keller, Christoph A

    2016-01-01

    We discuss the application of Siegel Modular Forms to Black Hole entropy counting. The role of the Igusa cusp form $\\chi_{10}$ in the D1D5P system is well-known, and its transformation properties are what allows precision microstate counting in this case. We implement this counting for other Siegel modular and paramodular forms, and we show that they could serve as candidates for other types of black holes. We investigate the growth of their coefficients, identifying the dominant contributions and the leading logarithmic corrections in various regimes. We also discuss similarities and differences to the behavior of $\\chi_{10}$, and possible physical interpretations of such forms both from a microscopic and gravitational point of view.

  16. CosmoSIS: modular cosmological parameter estimation

    CERN Document Server

    Zuntz, Joe; Jennings, Elise; Rudd, Douglas; Manzotti, Alessandro; Dodelson, Scott; Bridle, Sarah; Sehrish, Saba; Kowalkowski, James

    2014-01-01

    Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. We present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in CosmoSIS, including CAMB, Planck, cosmic shear calculations, and a suite of samplers. We illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis

  17. A modular guitar for teaching musical acoustics

    DEFF Research Database (Denmark)

    Marozeau, Jeremy

    2016-01-01

    In order to keep students activated in a course on musical acoustics, they were asked to build a modular guitar, designed to be updated throughout the course. In the first stage, dedicated to the physics of strings, a guitar was made out of three strings attached to a long piece of wood. The stud......In order to keep students activated in a course on musical acoustics, they were asked to build a modular guitar, designed to be updated throughout the course. In the first stage, dedicated to the physics of strings, a guitar was made out of three strings attached to a long piece of wood....... The students measured the effect of the place of plucking on the mode of the vibrations of the strings. The second stage was dedicated to the acoustic resonances. Using a laser cutter, the students built a wooden box that was coupled to their guitar using straps. New acoustical measurements were made to study...

  18. Robustness and modular structure in networks

    CERN Document Server

    Bagrow, James P; Ahn, Yong-Yeol

    2011-01-01

    Many complex systems, from power grids and the internet, to the brain and society, can be modeled using modular networks. Modules, densely interconnected groups of elements, often overlap due to elements that belong to multiple modules. The elements and modules of these networks perform individual and collective tasks such as generating and consuming electrical load, transmitting data, or executing parallelized computations. We study the robustness of these systems to the failure of random elements. We show that it is possible for the modules themselves to become isolated or uncoupled (non-overlapping) well before the network falls apart. When modular organization is critical to overall functionality, networks may be far more vulnerable than expected.

  19. Versatile microrobotics using simple modular subunits.

    Science.gov (United States)

    Cheang, U Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun

    2016-07-28

    The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size.

  20. Autonomous vehicle platforms from modular robotic components

    Science.gov (United States)

    Schonlau, William J.

    2004-09-01

    A brief survey of current autonomous vehicle (AV) projects is presented with intent to find common infrastructure or subsystems that can be configured from commercially available modular robotic components, thereby providing developers with greatly reduced timelines and costs and encouraging focus on the selected problem domain. The Modular Manipulator System (MMS) robotic system, based on single degree of freedom rotary and linear modules, is introduced and some approaches to autonomous vehicle configuration and deployment are examined. The modules may be configured to provide articulated suspensions for very rugged terrain and fall recovery, articulated sensors and tooling plus a limited capacity for self repair and self reconfiguration. The MMS on-board visually programmed control software (Model Manager) supports experimentation with novel physical configurations and behavior algorithms via real-time 3D graphics for operations simulation and provides useful subsystems for vision, learning and planning to host intelligent behavior.

  1. Modular Chemical Process Intensification: A Review.

    Science.gov (United States)

    Kim, Yong-Ha; Park, Lydia K; Yiacoumi, Sotira; Tsouris, Costas

    2017-06-07

    Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. These dramatic improvements lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. This article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.

  2. Modular, bluetooth enabled, wireless electroencephalograph (EEG) platform.

    Science.gov (United States)

    Lovelace, Joseph A; Witt, Tyler S; Beyette, Fred R

    2013-01-01

    A design for a modular, compact, and accurate wireless electroencephalograph (EEG) system is proposed. EEG is the only non-invasive measure for neuronal function of the brain. Using a number of digital signal processing (DSP) techniques, this neuronal function can be acquired and processed into meaningful representations of brain activity. The system described here utilizes Bluetooth to wirelessly transmit the digitized brain signal for an end application use. In this way, the system is portable, and modular in terms of the device to which it can interface. Brain Computer Interface (BCI) has become a popular extension of EEG systems in modern research. This design serves as a platform for applications using BCI capability.

  3. Modular stellarator reactor: a fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.; Bathke, C.G.; Krakowski, R.A.; Heck, F.M.; Green, L.; Karbowski, J.S.; Murphy, J.H.; Tupper, R.B.; DeLuca, R.A.; Moazed, A.

    1983-07-01

    A comparative analysis of the modular stellarator and the torsatron concepts is made based upon a steady-state ignited, DT-fueled, reactor embodiment of each concept for use as a central electric-power station. Parametric tradeoff calculations lead to the selection of four design points for an approx. 4-GWt plant based upon Alcator transport scaling in l = 2 systems of moderate aspect ratio. The four design points represent high-aspect ratio. The four design points represent high-(0.08) and low-(0.04) beta versions of the modular stellarator and torsatron concepts. The physics basis of each design point is described together with supporting engineering and economic analyses. The primary intent of this study is the elucidation of key physics and engineering tradeoffs, constraints, and uncertainties with respect to the ultimate power reactor embodiment.

  4. Modular architecture for robotics and teleoperation

    Science.gov (United States)

    Anderson, Robert J.

    1996-12-03

    Systems and methods for modularization and discretization of real-time robot, telerobot and teleoperation systems using passive, network based control laws. Modules consist of network one-ports and two-ports. Wave variables and position information are passed between modules. The behavior of each module is decomposed into uncoupled linear-time-invariant, and coupled, nonlinear memoryless elements and then are separately discretized.

  5. A Modular Toolkit for Distributed Interactions

    Directory of Open Access Journals (Sweden)

    Julien Lange

    2011-10-01

    Full Text Available We discuss the design, architecture, and implementation of a toolkit which supports some theories for distributed interactions. The main design principles of our architecture are flexibility and modularity. Our main goal is to provide an easily extensible workbench to encompass current algorithms and incorporate future developments of the theories. With the help of some examples, we illustrate the main features of our toolkit.

  6. Integrated modular propulsion for launch vehicles

    Science.gov (United States)

    Knuth, William; Crawford, Roger; Litchford, Ron

    1993-01-01

    The paper proposes a modular approach to rocket propulsion which offers a versatile method for realizing the goals of low cost, safety, reliability, and ease of operation. It is shown that, using practical modules made up of only 4-6 individual elements, it is possible to achieve thrust levels of 2-3 mln lbf and more, using turbomachinery, thrust chambers, lines, and valves about the size of SSME hardware. The approach is illustrated by a LOX/LH2 configuration.

  7. A Modular Approach for Automating Video Analysis

    OpenAIRE

    Nadarajan, Gayathri; Renouf, Arnaud

    2007-01-01

    International audience; Automating the steps involved in video processing has yet to be tackled with much success by vision developers and knowledge engineers. This is due to the difficulty in formulating vision problems and their solutions in a generalised manner. In this collaborated work, we introduce a modular approach that utilises ontologies to capture the goals, domain description and capabilities for performing video analysis. This modularisation is tested on real-world videos from an...

  8. Maass Forms and Quantum Modular Forms

    Science.gov (United States)

    Rolen, Larry

    This thesis describes several new results in the theory of harmonic Maass forms and related objects. Maass forms have recently led to a flood of applications throughout number theory and combinatorics in recent years, especially following their development by the work of Bruinier and Funke the modern understanding Ramanujan's mock theta functions due to Zwegers. The first of three main theorems discussed in this thesis concerns the integrality properties of singular moduli. These are well-known to be algebraic integers, and they play a beautiful role in complex multiplication and explicit class field theory for imaginary quadratic fields. One can also study "singular moduli" for special non-holomorphic functions, which are algebraic but are not necessarily algebraic integers. Here we will explain the phenomenon of integrality properties and provide a sharp bound on denominators of symmetric functions in singular moduli. The second main theme of the thesis concerns Zagier's recent definition of a quantum modular form. Since their definition in 2010 by Zagier, quantum modular forms have been connected to numerous different topics such as strongly unimodal sequences, ranks, cranks, and asymptotics for mock theta functions. Motivated by Zagier's example of the quantum modularity of Kontsevich's "strange" function F(q), we revisit work of Andrews, Jimenez-Urroz, and Ono to construct a natural vector-valued quantum modular form whose components. The final chapter of this thesis is devoted to a study of asymptotics of mock theta functions near roots of unity. In his famous deathbed letter, Ramanujan introduced the notion of a mock theta function, and he offered some alleged examples. The theory of mock theta functions has been brought to fruition using the framework of harmonic Maass forms, thanks to Zwegers. Despite this understanding, little attention has been given to Ramanujan's original definition. Here we prove that Ramanujan's examples do indeed satisfy his

  9. The Galois closure of Drinfeld modular towers

    DEFF Research Database (Denmark)

    Bassa, Alp; Beelen, Peter

    2011-01-01

    In this article we study Drinfeld modular curves X0(pn) associated to congruence subgroups Γ0(pn) of GL(2,Fq[T]) where p is a prime of Fq[T]. For n>r>0 we compute the extension degrees and investigate the structure of the Galois closures of the covers X0(pn)→X0(pr) and some of their variations. T...

  10. Modular Zero Energy. BrightBuilt Home

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Steven Winter Associates, Inc., Norwalk, CT (United States); Butterfield, Karla [Steven Winter Associates, Inc., Norwalk, CT (United States)

    2016-03-01

    With funding from the Building America Program, part of the U.S. Department of Energy Building Technologies Office, the Consortium for Advanced Residential Buildings (CARB) worked with BrightBuilt Home (BBH) to evaluate and optimize building systems. CARB’s work focused on a home built by Black Bros. Builders in Lincolnville, Maine (International Energy Conservation Code Climate Zone 6). As with most BBH projects to date, modular boxes were built by Keiser Homes in Oxford, Maine.

  11. Bifurcated, modular syntheses of chiral annulet triazacyclononanes.

    Science.gov (United States)

    Argouarch, Gilles; Stones, Graham; Gibson, Colin L; Kennedy, Alan R; Sherrington, David C

    2003-12-21

    Three chiral 2,6-disubstituted tri-N-methyl azamacrocycles have been prepared by modular methods. These macrocycles were accessed from three chiral 1,4,7-triazaheptanes intermediates that were prepared by two independent routes. The first of these routes involved the benzylamine opening of chiral tosyl aziridines followed by debenzylation but was problematic on solubility grounds. A second, more effective, route was developed which avoided debenzylation by using ammonia in the nucleophilic opening of chiral tosyl aziridines.

  12. AP1000{sup TM} plant modularization

    Energy Technology Data Exchange (ETDEWEB)

    Cantarero L, C.; Demetri, K. J. [Westinghouse Electric Co., 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States); Quintero C, F. P., E-mail: cantarc@westinghouse.com [Westinghouse Electric Spain, Padilla 17, 28006 Madrid (Spain)

    2016-09-15

    The AP1000{sup TM} plant is an 1100 M We pressurized water reactor (PWR) with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. Modules are used extensively in the design of the AP1000 plant nuclear island. The AP1000 plant uses modern, modular-construction techniques for plant construction. The design incorporates vendor-designed skids and equipment packages, as well as large, multi-ton structural modules and special equipment modules. Modularization allows traditionally sequential construction tasks to be completed simultaneously. Factory-built modules can be installed at the site in a planned construction schedule. The modularized AP1000 plant allows many more construction activities to proceed in parallel. This reduces plant construction calendar time, thus lowering the costs of plant financing. Furthermore, performing less work onsite significantly reduces the amount of skilled field-craft labor, which costs more than shop labor. In addition to labor cost savings, doing more welding and fabrication in a factory environment raises the quality of work, allowing more scheduling flexibility and reducing the amount of specialized tools required onsite. The site layout for the AP1000 plant has been established to support modular construction and efficient operations during construction. The plant layout is compact, using less space than previous conventional plant layouts. This paper provides and overview of the AP1000 plant modules with an emphasis on structural modules. Currently the Westinghouse AP1000 plant has four units under construction in China and four units under construction in the United States. All have shown successful fabrication and installation of various AP1000 plant modules. (Author)

  13. The small (or large) modular CANDU

    Energy Technology Data Exchange (ETDEWEB)

    Meneley, D.; Harvel, G. [Univ. of Ontario Inst. of Tech., Oshawa, Ontario (Canada)

    2013-07-01

    This presentation outlines the design for small (or large) modular CANDU. The origins of this work go back many years to a comment by John Foster, then President of AECL CANDU. Foster noted that the CANDU reactor, with its many small fuel channels, was like a wood campfire. To make a bigger fire, just throw on some more logs (channels). If you want a smaller fire, just use fewer logs. The design process is greatly simplified.

  14. Modular Avionics for Seamless Reconfigurable UAS Missions

    OpenAIRE

    2008-01-01

    Abstract Integrated Modular Avionics (IMA) architecture is a trend in current avionics that employs a partitioned environment in which different avionics functions share a unique computing environment. UAS avionics, especially in small UAS, are usually of less complexity than not the present on airliners, however, in real autonomous UAS, the onboard avionics should control not only the flight and navigation but also the mission and payload of the aircraft. This involves more complex softwa...

  15. Modular vaccine packaging increases packing efficiency.

    Science.gov (United States)

    Norman, Bryan A; Rajgopal, Jayant; Lim, Jung; Gorham, Katrin; Haidari, Leila; Brown, Shawn T; Lee, Bruce Y

    2015-06-17

    Within a typical vaccine supply chain, vaccines are packaged into individual cylindrical vials (each containing one or more doses) that are bundled together in rectangular "inner packs" for transport via even larger groupings such as cold boxes and vaccine carriers. The variability of vaccine inner pack and vial size may hinder efficient vaccine distribution because it constrains packing of cold boxes and vaccine carriers to quantities that are often inappropriate or suboptimal in the context of country-specific vaccination guidelines. We developed in Microsoft Excel (Microsoft Corp., Redmond, WA) a spreadsheet model that evaluated the impact of different packing schemes for the Benin routine regimen plus the introduction of the Rotarix vaccine. Specifically, we used the model to compare the current packing scheme to that of a proposed modular packing scheme. Conventional packing of a Dometic RCW25 that aims to maximize fully-immunized children (FICs) results in 123 FICs and a packing efficiency of 81.93% compared to a maximum of 155 FICs and 94.1% efficiency for an alternative modular packaging system. Our analysis suggests that modular packaging systems could offer significant advantages over conventional vaccine packaging systems with respect to space efficiency and potential FICs, when they are stored in standard vaccine carrying devices. This allows for more vaccines to be stored within the same volume while also simplifying the procedures used by field workers to pack storage devices. Ultimately, modular packaging systems could be a simple way to help increase vaccine coverage worldwide. Copyright © 2015. Published by Elsevier Ltd.

  16. Good families of Drinfeld modular curves

    DEFF Research Database (Denmark)

    Bassa, Alp; Beelen, Peter; Nguyen, Nhut

    2015-01-01

    In this paper, we investigate examples of good and optimal Drinfeld modular towers of function fields. Surprisingly, the optimality of these towers has not been investigated in full detail in the literature. We also give an algorithmic approach for obtaining explicit defining equations for some...... of these towers and, in particular, give a new explicit example of an optimal tower over a quadratic finite field....

  17. Topological Strings And (Almost) Modular Forms

    Energy Technology Data Exchange (ETDEWEB)

    Aganagic, Mina; Bouchard, Vincent; Klemm, Albrecht

    2007-05-04

    The B-model topological string theory on a Calabi-Yau threefold X has a symmetry group {Lambda}, generated by monodromies of the periods of X. This acts on the topological string wave function in a natural way, governed by the quantum mechanics of the phase space H{sup 3}(X). We show that, depending on the choice of polarization, the genus g topological string amplitude is either a holomorphic quasi-modular form or an almost holomorphic modular form of weight 0 under {Lambda}. Moreover, at each genus, certain combinations of genus g amplitudes are both modular and holomorphic. We illustrate this for the local Calabi-Yau manifolds giving rise to Seiberg-Witten gauge theories in four dimensions and local IP{sub 2} and IP{sub 1} x IP{sub 1}. As a byproduct, we also obtain a simple way of relating the topological string amplitudes near different points in the moduli space, which we use to give predictions for Gromov-Witten invariants of the orbifold C{sub 3}/ZZ{sub 3}.

  18. Using Modularity with Rough Decision Models

    Directory of Open Access Journals (Sweden)

    Ahmed T. Shawky

    2012-01-01

    Full Text Available Many real world applications need to deal with imprecise data. Therefore, there is a need for new techniques which can manage such imprecision. Computational Intelligence (CI techniques are the most appropriate for dealing with imprecise data to help decision makers. It is well known that soft computing techniques like genetic algorithms, neural networks, and fuzzy logic are effective in dealing with problems without explicit model and characterized by uncertainties Using fuzzy set theory considered as major techniques, which allows decision makers to take a good decision using imprecise inexact data and knowledge. Now using rough set is getting quite necessary to be used for its ability to mining such type of data. In this research, we are looking forward to propose a novel technique, which depends on the integration between fuzzy set concepts and rough set theory in mining relational databases. The proposed model allows introducing modularity mechanism, by building a virtual modular decision tables according to variety of decision makers points of view. And introduce decision grouping mechanism for getting the optimizing decision. This approach provides flexibility in decision making verifies all decision standards and determines decision requirements, through modularizing rough decision table, extraction of rough association rules and developing mechanisms for decision grouping.

  19. USING MODULARITY WITH ROUGH DECISION MODELS

    Directory of Open Access Journals (Sweden)

    Ahmed T. Shawky

    2012-02-01

    Full Text Available Many real world applications need to deal with imprecise data. Therefore, there is a need for newtechniques which can manage such imprecision. Computational Intelligence (CI techniques are the mostappropriate for dealing with imprecise data to help decision makers. It is well known that soft computingtechniques like genetic algorithms, neural networks, and fuzzy logic are effective in dealing with problemswithout explicit model and characterized by uncertainties Using fuzzy set theory considered as majortechniques, which allows decision makers to take a good decision using imprecise inexact data andknowledge. Now using rough set is getting quite necessary to be used for its ability to mining such type ofdata. In this research, we are looking forward to propose a novel technique, which depends on theintegration between fuzzy set concepts and rough set theory in mining relational databases. The proposedmodel allows introducing modularity mechanism, by building a virtual modular decision tables accordingto variety of decision makers points of view. And introduce decision grouping mechanism for getting theoptimizing decision. This approach provides flexibility in decision making verifies all decision standardsand determines decision requirements, through modularizing rough decision table, extraction of roughassociation rules and developing mechanisms for decision grouping.

  20. Modular Zero Energy. BrightBuilt Home

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States). Steven Winters Associates, Inc.; Butterfield, Karla [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States). Steven Winters Associates, Inc.

    2016-03-01

    Kaplan Thompson Architects (KTA) has specialized in sustainable, energy-efficient buildings, and they have designed several custom, zero-energy homes in New England. These zero-energy projects have generally been high-end, custom homes with budgets that could accommodate advanced energy systems. In an attempt to make zero energy homes more affordable and accessible to a larger demographic, KTA explored modular construction as way to provide high-quality homes at lower costs. In the mid-2013, KTA formalized this concept when they launched BrightBuilt Home (BBH). The BBH mission is to offer a line of architect-designed, high-performance homes that are priced to offer substantial savings off the lifetime cost of a typical home and can be delivered in less time. For the past two years, CARB has worked with BBH and Keiser Homes (the primary modular manufacturer for BBH) to discuss challenges related to wall systems, HVAC, and quality control. In Spring of 2014, CARB and BBH began looking in detail on a home to be built in Lincolnville, ME by Black Bros. Builders. This report details the solution package specified for this modular plan and the challenges that arose during the project.

  1. Modular injection systems for miniature engines

    Science.gov (United States)

    Cochran, Mike

    1992-07-01

    Mission requirements for Kinetic Energy Weapons will require miniaturization of current vehicle propulsion systems for future Space Defence Iniative Programs. A modular injection system (MIS) valve is presented which will decrease cost, size and weight of miniaturized storable bipropellant rocket engines and features two poppet-type propellant valve modules pneumatically linked to a pilot solenoid module. A prototype modular injection valve sized for 100lbf thrust was designed and is being tested to show lower costs, fewer moving parts and a reduction in weight and size. Results show that this valve meets objectives of one-half weight, one-half cost and one-fifth the envelopment of current production valves. Studies indicate that a cruciform configuration of four nominal 100lbf thrust engines can be controlled by four modular injection valve systems in a single housing of less than 1.0 m3. Following further development and correlation of results this concept may be scaled to control four higher thrust engines.

  2. Evolution of a modular software network.

    Science.gov (United States)

    Fortuna, Miguel A; Bonachela, Juan A; Levin, Simon A

    2011-12-13

    "Evolution behaves like a tinkerer" (François Jacob, Science, 1977). Software systems provide a singular opportunity to understand biological processes using concepts from network theory. The Debian GNU/Linux operating system allows us to explore the evolution of a complex network in a unique way. The modular design detected during its growth is based on the reuse of existing code in order to minimize costs during programming. The increase of modularity experienced by the system over time has not counterbalanced the increase in incompatibilities between software packages within modules. This negative effect is far from being a failure of design. A random process of package installation shows that the higher the modularity, the larger the fraction of packages working properly in a local computer. The decrease in the relative number of conflicts between packages from different modules avoids a failure in the functionality of one package spreading throughout the entire system. Some potential analogies with the evolutionary and ecological processes determining the structure of ecological networks of interacting species are discussed.

  3. RAMS (Risk Analysis - Modular System) methodology

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, R.D.; Strenge, D.L.; Buck, J.W. [and others

    1996-10-01

    The Risk Analysis - Modular System (RAMS) was developed to serve as a broad scope risk analysis tool for the Risk Assessment of the Hanford Mission (RAHM) studies. The RAHM element provides risk analysis support for Hanford Strategic Analysis and Mission Planning activities. The RAHM also provides risk analysis support for the Hanford 10-Year Plan development activities. The RAMS tool draws from a collection of specifically designed databases and modular risk analysis methodologies and models. RAMS is a flexible modular system that can be focused on targeted risk analysis needs. It is specifically designed to address risks associated with overall strategy, technical alternative, and `what if` questions regarding the Hanford cleanup mission. RAMS is set up to address both near-term and long-term risk issues. Consistency is very important for any comparative risk analysis, and RAMS is designed to efficiently and consistently compare risks and produce risk reduction estimates. There is a wide range of output information that can be generated by RAMS. These outputs can be detailed by individual contaminants, waste forms, transport pathways, exposure scenarios, individuals, populations, etc. However, they can also be in rolled-up form to support high-level strategy decisions.

  4. Modular load flow for restructured power systems

    CERN Document Server

    Hariharan, M V; Gupta, Pragati P

    2016-01-01

    In the subject of power systems, authors felt that a re-look is necessary at some conventional methods of analysis. In this book, the authors have subjected the time-honoured load flow to a close scrutiny. Authors have discovered and discussed a new load flow procedure – Modular Load Flow. Modular Load Flow explores use of power – a scalar – as source for electrical circuits which are conventionally analysed by means of phasors – the ac voltages or currents. The method embeds Kirchhoff’s circuit laws as topological property into its scalar equations and results in a unique wonderland where phase angles do not exist! Generators are shown to have their own worlds which can be superimposed to obtain the state of the composite power system. The treatment is useful in restructured power systems where stakeholders and the system operators may desire to know individual generator contributions in line flows and line losses for commercial reasons. Solution in Modular Load Flow consists of explicit expression...

  5. Survey on research and development of reconfigurable modular robots

    Directory of Open Access Journals (Sweden)

    Jinguo Liu

    2016-08-01

    Full Text Available This article presents a comprehensive survey of reconfigurable modular robots, which covers the origin, history, the state of the art, key technologies, challenges, and applications of reconfigurable modular robots. An elaborative classification of typical reconfigurable modular robots is proposed based on the characteristics of the modules and the reconfiguration mechanism. As the system characteristics of reconfigurable modular robots are mainly dependent on the functions of modules, the mechanical and electrical design features of modules of typical reconfigurable modular robots are discussed in detail. Furthermore, an in-depth comparison analysis is conducted, which encompasses discussions of module shape, module degrees of freedom, module attribute, connection mechanisms, interface autonomy, locomotion modes, and workspace. Meanwhile, many reconfigurable modular robot researches focus on the study of self-X capabilities (i.e. self-reconfiguration, self-assembly, self-adaption, etc., which embodies autonomy performance of reconfigurable modular robots in certain extent. An evolutionary cobweb evaluation model is proposed in this article to evaluate the autonomy level of reconfigurable modular robots. Although various reconfigurable modular robots have been developed and some of them have been put into practical applications such as search and rescue missions, there still exist many open theoretical, technical, and practical challenges in this field. This work is hopefully to offer a reference for the further developments of reconfigurable modular robots.

  6. A Comprehensive View On Benefits From Product Modularization

    DEFF Research Database (Denmark)

    Hansen, Poul H. Kyvsgård; Sun, Hongyi

    2010-01-01

    . Definitely, the many various aspects of product modularization have demonstrated substantial potentials regarding improved and enhanced competitiveness, but our empirical studies illustrate that the efforts in regards to realizing specific product modularization benefits need to be managed carefully. Our......In many cases the phenomenon of product modularization is presented in an inherently positive way. Based on the frequency of these positive cases it might be expected that product modularization is a universal cure for any competitive weaknesses experienced by manufacturing or service companies...... studies illustrates that the expected and the realized benefits from a product modularization effort rarely match. In most cases the companies have only weak estimations about both the type and the magnitude of the potential benefits when planning the modularization project. This indicates a serious need...

  7. Research on Modular Manufacture Strategy under New Economic Circumstance

    Institute of Scientific and Technical Information of China (English)

    WU Zhenggang; SHI Chunsheng

    2006-01-01

    Modularity can simplify the process of complex product design and manufacture effectively, and it can also optimize the supply resource to satisfy the customization needs of customers, which has aroused more and more awareness of people both in management theory research and in enterprise practice recently. In the article, we analyze the difficulty of complex product manufacture, introduce the idea of modular manufacture and research the basic content of modular manufacture strategy. Meanwhile, the significance of modular manufacture strategy to build up core competition and fast innovation for the manufacture industry are studied. At last, we discuss the necessity of building modular manufacture strategy and its modes and process. The studies demonstrate that based on modular manufacture is crucial to establish enterprise strategy and optimize enterprise competence.

  8. Summer School and Conference : Computations with Modular Forms

    CERN Document Server

    Wiese, Gabor

    2014-01-01

    This volume contains original research articles, survey articles and lecture notes related to the Computations with Modular Forms 2011 Summer School and Conference, held at the University of Heidelberg. A key theme of the Conference and Summer School was the interplay between theory, algorithms and experiment. The 14 papers offer readers both, instructional courses on the latest algorithms for computing modular and automorphic forms, as well as original research articles reporting on the latest developments in the field. The three Summer School lectures provide an introduction to modern algorithms together with some theoretical background for computations of and with modular forms, including computing cohomology of arithmetic groups, algebraic automorphic forms, and overconvergent modular symbols. The 11 Conference papers cover a wide range of themes related to computations with modular forms, including lattice methods for algebraic modular forms on classical groups, a generalization of the Maeda conjecture, ...

  9. Environmental variability and modularity of bacterial metabolic networks

    Directory of Open Access Journals (Sweden)

    Kashtan Nadav

    2007-09-01

    Full Text Available Abstract Background Biological systems are often modular: they can be decomposed into nearly-independent structural units that perform specific functions. The evolutionary origin of modularity is a subject of much current interest. Recent theory suggests that modularity can be enhanced when the environment changes over time. However, this theory has not yet been tested using biological data. Results To address this, we studied the relation between environmental variability and modularity in a natural and well-studied system, the metabolic networks of bacteria. We classified 117 bacterial species according to the degree of variability in their natural habitat. We find that metabolic networks of organisms in variable environments are significantly more modular than networks of organisms that evolved under more constant conditions. Conclusion This study supports the view that variability in the natural habitat of an organism promotes modularity in its metabolic network and perhaps in other biological systems.

  10. The hyperbolic modular double and Yang-Baxter equation

    CERN Document Server

    Chicherin, D

    2015-01-01

    We construct a hyperbolic modular double -- an algebra lying in between the Faddeev modular double for U_q(sl_2) and the elliptic modular double. The intertwining operator for this algebra leads to an integral operator solution of the Yang-Baxter equation associated with a generalized Faddeev-Volkov lattice model introduced by the second author. We describe also the L-operator and finite-dimensional R-matrices for this model.

  11. A New Modular Multilevel Converter with Integrated Energy Storage

    DEFF Research Database (Denmark)

    Trintis, Ionut; Munk-Nielsen, Stig; Teodorescu, Remus

    2011-01-01

    This paper introduces a new modular converter with integrated energy storage based on the cascaded half-bridge modular multilevel converter with common DC bus. It represents a complete modular solution with power electronics and energy storage building blocks, for medium and high voltage...... in the future HVDC meshed grids. Its functionality and flexibility makes the converter independent on the energy storage unit characteristic. The converter concept with its basic functions and control schemes are described and evaluated in this paper....

  12. A measure of centrality based on modularity matrix

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, a kind of measure of structural centrality for networks, called modularity centrality, is introduced. This centrality index is based on the eigenvector belonging to the largest magnitude eigenvalue of modularity matrix. The measure is illustrated and compared with the standard centrality measures using a classic dataset. The statistical distribution of modularity centrality is investigated by con- sidering large computer generated graphs and two networks from the real world.

  13. Cogging torque mitigation of modular permanent magnet machines

    OpenAIRE

    Li, G. J.; Ren, B.; Zhu, Z-Q.; Li, Y X; Ma, J.

    2015-01-01

    This paper proposes a novel cogging torque mitigation method for modular permanent magnet (PM) machines with flux gaps in alternate stator teeth. The slot openings of the modular PM machines are divided into two groups in a special way. By shifting the slot openings of two groups in opposite directions with the same angle, the machine cogging torque can be significantly reduced. Analytical formula of the desired shift angle is derived, and can be applicable to other modular machines with diff...

  14. Modular Permanent Magnet Machines with Alternate Teeth Having Tooth Tips

    OpenAIRE

    Li, G. J.; Zhu, Z.Q.; Foster, M. P.; Stone, D. A.; Zhan, H.L.

    2015-01-01

    This paper presents single layer modular permanent magnet machines with either wound or unwound teeth with tooth tips. The structures with wound teeth having tooth tips are suitable for modular machines with slot number higher than pole number to compensate for the drop in winding factor due to the flux gaps in alternate stator teeth, accordingly to maintain or even to increase their average torques. However, the structures with unwound teeth having tooth tips are suitable for modular machine...

  15. Compensating Interpolation Distortion by Using New Optimized Modular Method

    CERN Document Server

    Tofighi, Mohammad; Marvasti, Farokh

    2012-01-01

    A modular method was suggested before to recover a band limited signal from the sample and hold and linearly interpolated (or, in general, an nth-order-hold) version of the regular samples. In this paper a novel approach for compensating the distortion of any interpolation based on modular method has been proposed. In this method the performance of the modular method is optimized by adding only some simply calculated coefficients. This approach causes drastic improvement in terms of signal-to-noise ratios with fewer modules compared to the classical modular method. Simulation results clearly confirm the improvement of the proposed method and also its superior robustness against additive noise.

  16. Modularity of tree-like and random regular graphs

    CERN Document Server

    McDiarmid, Colin

    2016-01-01

    Clustering algorithms for large networks typically use the modularity score to compare which partitions better represent modular structure in the data. Given a network, the modularity of a partition of the vertex set is a number in [0, 1) which measures the extent to which edge density is higher within parts than between parts; and the modularity of the network is the maximum modularity of any partition. We show that random cubic graphs usually have modularity in the interval (0.666, 0.804); and random r-regular graphs for large r usually have modularity ${\\Theta}(1/\\sqrt{r})$. Our results can give thresholds for the statistical significance of clustering found in large regular networks. The modularity of cycles and low degree trees is known to be asymptotically 1. We extend these results to all graphs whose product of treewidth and maximum degree is much less than the number of edges. This shows for example that random planar graphs typically have modularity close to 1.

  17. Cascading failures of interdependent modular small-world networks

    Science.gov (United States)

    Zhu, Guowei; Wang, Xianpei; Tian, Meng; Dai, Dangdang; Long, Jiachuan; Zhang, Qilin

    2016-07-01

    Much empirical evidence shows that many real-world networks fall into the broad class of small-world networks and have a modular structure. The modularity has been revealed to have an important effect on cascading failure in isolated networks. However, the corresponding results for interdependent modular small-world networks remain missing. In this paper, we investigate the relationship between cascading failures and the intra-modular rewiring probabilities and inter-modular connections under different coupling preferences, i.e. random coupling with modules (RCWM), assortative coupling in modules (ACIM) and assortative coupling with modules (ACWM). The size of the largest connected component is used to evaluate the robustness from global and local perspectives. Numerical results indicate that increasing intra-modular rewiring probabilities and inter-modular connections can improve the robustness of interdependent modular small-world networks under intra-attacks and inter-attacks. Meanwhile, experiments on three coupling strategies demonstrate that ACIM has a better effect on preventing the cascading failures compared with RCWM and ACWM. These results can be helpful to allocate and optimize the topological structure of interdependent modular small-world networks to improve the robustness of such networks.

  18. Morphological modularity in the vertebral column of Felidae (Mammalia, Carnivora)

    National Research Council Canada - National Science Library

    Marcela Randau; Anjali Goswami

    2017-01-01

    ... (Felidae, Carnivora, Mammalia) with pairwise comparisons of vertebral shape covariation (i.e. integration) and evaluate our results against hypotheses of developmental and functional modularity...

  19. Modular Epidemic Spreading in Small-World Networks

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hui; GAO Zi-You

    2007-01-01

    We study the epidemic spreading of the susceptible-infected-susceptible model on small-world networks with modular structure.It is found that the epidemic threshold increases linearly with the modular strength.Furthermore,the modular structure may influence the infected density in the steady state and the spreading velocity at the beginning of propagation.Practically,the propagation can be hindered by strengthening the modular structure in the view of network topology.In addition,to reduce the probability of reconnection between modules may also help to control the propagation.

  20. Corrosion behavior of tantalum-coated cobalt-chromium modular necks compared to titanium modular necks in a simulator test.

    Science.gov (United States)

    Dorn, Ulrich; Neumann, Daniel; Frank, Mario

    2014-04-01

    This study compared the corrosion behavior of tantalum-coated cobalt-chromium modular necks with that of titanium alloy modular necks at their junction to titanium-alloy femoral stem. Tests were performed in a dry assembly and two wet assemblies, one contaminated with calf serum and the other contaminated with calf serum and bone particles. Whereas the titanium modular neck tested in the dry assembly showed no signs of corrosion, the titanium modular necks tested in both wet assemblies showed marked depositions and corrosive attacks. By contrast, the tantalum-coated cobalt-chromium modular necks showed no traces of corrosion or chemical attack in any of the three assemblies. This study confirms the protective effect of tantalum coating the taper region of cobalt-chromium modular neck components, suggesting that the use of tantalum may reduce the risk of implant failure due to corrosion.

  1. Lightweight composites for modular panelized construction

    Science.gov (United States)

    Vaidya, Amol S.

    Rapid advances in construction materials technology have enabled civil engineers to achieve impressive gains in the safety, economy, and functionality of structures built to serve the common needs of society. Modular building systems is a fast-growing modern, form of construction gaining recognition for its increased efficiency and ability to apply modern technology to the needs of the market place. In the modular construction technique, a single structural panel can perform a number of functions such as providing thermal insulation, vibration damping, and structural strength. These multifunctional panels can be prefabricated in a manufacturing facility and then transferred to the construction site. A system that uses prefabricated panels for construction is called a "panelized construction system". This study focuses on the development of pre-cast, lightweight, multifunctional sandwich composite panels to be used for panelized construction. Two thermoplastic composite panels are proposed in this study, namely Composite Structural Insulated Panels (CSIPs) for exterior walls, floors and roofs, and Open Core Sandwich composite for multifunctional interior walls of a structure. Special manufacturing techniques are developed for manufacturing these panels. The structural behavior of these panels is analyzed based on various building design codes. Detailed descriptions of the design, cost analysis, manufacturing, finite element modeling and structural testing of these proposed panels are included in this study in the of form five peer-reviewed journal articles. The structural testing of the proposed panels involved in this study included flexural testing, axial compression testing, and low and high velocity impact testing. Based on the current study, the proposed CSIP wall and floor panels were found satisfactory, based on building design codes ASCE-7-05 and ACI-318-05. Joining techniques are proposed in this study for connecting the precast panels on the construction

  2. Interfaces in service modularity : A typology developed in modular health care provision

    NARCIS (Netherlands)

    de Blok, C.; Meijboom, B.R.; Luijkx, K.G.; Schols, J.M.G.A.; Schroeder, R.G.

    2014-01-01

    We conduct case research in a particular service context, i.e. the sector for elderly care, in order to explore characteristics of interfaces and the role they play in service customization. Even though the study of modularity in areas other than goods production is increasing, little is known about

  3. Interfaces in service modularity : A typology developed in modular health care provision

    NARCIS (Netherlands)

    de Blok, C.; Meijboom, B.R.; Luijkx, K.G.; Schols, J.M.G.A.; Schroeder, R.G.

    2014-01-01

    We conduct case research in a particular service context, i.e. the sector for elderly care, in order to explore characteristics of interfaces and the role they play in service customization. Even though the study of modularity in areas other than goods production is increasing, little is known about

  4. Modular software-controlled electrochemical system

    Science.gov (United States)

    Hagan, D.; Spivey, J.; Niculescu, V. A.

    1987-03-01

    A modular microcomputer-controlled three-electrode potentiostat configured with graphics is presented. The system is designed for metallic surface characterization and is capable of performing in different modes of operation including single sweep voltammetry, cyclic voltammetry, and chronoamperometry. An integrated and flexible software system for control, data taking, data storage, and transfer is described. Data analysis software for the IBM-PC computer including two- and three-dimensional plotting as well as menu-driven theoretical modeling, simulation, and curvefitting has been developed.

  5. Modular Track System For Positioning Mobile Robots

    Science.gov (United States)

    Miller, Jeff

    1995-01-01

    Conceptual system for positioning mobile robotic manipulators on large main structure includes modular tracks and ancillary structures assembled easily along with main structure. System, called "tracked robotic location system" (TROLS), originally intended for application to platforms in outer space, but TROLS concept might also prove useful on Earth; for example, to position robots in factories and warehouses. T-cross-section rail keeps mobile robot on track. Bar codes mark locations along track. Each robot equipped with bar-code-recognizing circuitry so it quickly finds way to assigned location.

  6. Robustness and modular structure in networks

    DEFF Research Database (Denmark)

    Bagrow, James P.; Lehmann, Sune; Ahn, Yong-Yeol

    2015-01-01

    Complex networks have recently attracted much interest due to their prevalence in nature and our daily lives [1, 2]. A critical property of a network is its resilience to random breakdown and failure [3-6], typically studied as a percolation problem [7-9] or by modeling cascading failures[10......-12]. Many complex systems, from power grids and the Internet to the brain and society [13-15], can be modeled using modular networks comprised of small, densely connected groups of nodes [16, 17]. These modules often overlap, with network elements belonging to multiple modules [18, 19]. Yet existing work...

  7. Modular system design for plastic euro pallets

    Directory of Open Access Journals (Sweden)

    J. Tepić

    2012-04-01

    Full Text Available Although pallet, as a tool, yields significant and widely recognized economic effects in production and distribution systems, it is still not fully utilized, indicating that it needs to be defined and developed as a specific product. Euro pallet product was designed using PRO/ENGINEER software system CAD module, as one of the most popular Cax systems, yielding a pallet of novel modular design that meets all the operational requirements of the existing range. The chosen material ensures high pallet longevity and durability, in line with the concept of sustainable development.

  8. Morphology Independent Learning in Modular Robots

    DEFF Research Database (Denmark)

    Christensen, David Johan; Bordignon, Mirko; Schultz, Ulrik Pagh

    2009-01-01

    Hand-coding locomotion controllers for modular robots is difficult due to their polymorphic nature. Instead, we propose to use a simple and distributed reinforcement learning strategy. ATRON modules with identical controllers can be assembled in any configuration. To optimize the robot’s locomotion...... speed its modules independently and in parallel adjust their behavior based on a single global reward signal. In simulation, we study the learning strategy’s performance on different robot configurations. On the physical platform, we perform learning experiments with ATRON robots learning to move as fast...

  9. Data Acquisition for Modular Biometric Monitoring System

    Science.gov (United States)

    Chmiel, Alan J. (Inventor); Humphreys, Bradley T. (Inventor); Grodsinsky, Carlos M. (Inventor)

    2014-01-01

    A modular system for acquiring biometric data includes a plurality of data acquisition modules configured to sample biometric data from at least one respective input channel at a data acquisition rate. A representation of the sampled biometric data is stored in memory of each of the plurality of data acquisition modules. A central control system is in communication with each of the plurality of data acquisition modules through a bus. The central control system is configured to collect data asynchronously, via the bus, from the memory of the plurality of data acquisition modules according to a relative fullness of the memory of the plurality of data acquisition modules.

  10. Shape optimization of the modular press body

    Directory of Open Access Journals (Sweden)

    Pabiszczak Stanisław

    2016-12-01

    Full Text Available A paper contains an optimization algorithm of cross-sectional dimensions of a modular press body for the minimum mass criterion. Parameters of the wall thickness and the angle of their inclination relative to the base of section are assumed as the decision variables. The overall dimensions are treated as a constant. The optimal values of parameters were calculated using numerical method of the tool Solver in the program Microsoft Excel. The results of the optimization procedure helped reduce body weight by 27% while maintaining the required rigidity of the body.

  11. The Axion Mass in Modular Invariant Supergravity

    CERN Document Server

    Butter, D; Butter, Daniel; Gaillard, Mary K.

    2005-01-01

    When supersymmetry is broken by condensates with a single condensing gauge group, there is a nonanomalous R-symmetry that prevents the universal axion from acquiring a mass. It has been argued that, in the context of supergravity, higher dimension operators will break this symmetry and may generate an axion mass too large to allow the identification of the universal axion with the QCD axion. We show that such contributions to the axion mass are highly suppressed in a class of models where the effective Lagrangian for gaugino and matter condensation respects modular invariance (T-duality).

  12. Modularizing and Specifying Protocols among Threads

    Directory of Open Access Journals (Sweden)

    Farhad Arbab

    2013-02-01

    Full Text Available We identify three problems with current techniques for implementing protocols among threads, which complicate and impair the scalability of multicore software development: implementing synchronization, implementing coordination, and modularizing protocols. To mend these deficiencies, we argue for the use of domain-specific languages (DSL based on existing models of concurrency. To demonstrate the feasibility of this proposal, we explain how to use the model of concurrency Reo as a high-level protocol DSL, which offers appropriate abstractions and a natural separation of protocols and computations. We describe a Reo-to-Java compiler and illustrate its use through examples.

  13. Playful Interaction with Voice Sensing Modular Robots

    DEFF Research Database (Denmark)

    Heesche, Bjarke; MacDonald, Ewen; Fogh, Rune

    2013-01-01

    This paper describes a voice sensor, suitable for modular robotic systems, which estimates the energy and fundamental frequency, F0, of the user’s voice. Through a number of example applications and tests with children, we observe how the voice sensor facilitates playful interaction between...... children and two different robot configurations. In future work, we will investigate if such a system can motivate children to improve voice control and explore how to extend the sensor to detect emotions in the user’s voice....

  14. Morphology Independent Learning in Modular Robots

    DEFF Research Database (Denmark)

    Christensen, David Johan; Bordignon, Mirko; Schultz, Ulrik Pagh

    2009-01-01

    Hand-coding locomotion controllers for modular robots is dif?cult due to their polymorphic nature. Instead, we propose to use a simple and distributed reinforcement learning strategy. ATRON modules with identical controllers can be assembled in any con?guration. To optimize the robot?s locomotion...... speed its modules independently and in parallel adjust their behavior based on a single global reward signal. In simulation, we study the learning strategy?s performance on different robot con?gurations. On the physical platform, we perform learning experiments with ATRON robots learning to move as fast...

  15. Generalized modular multilevel converter and modulation

    DEFF Research Database (Denmark)

    Liu, Hui; Loh, Poh Chiang; Blaabjerg, Frede

    2014-01-01

    Modular multilevel converter (MMC) has gained popularity recently with its modulation, capacitor voltage balancing and circulating current issues widely discussed. Contributing to this effort, a study is presented here to show how the MMC topology can be derived from the viewpoint of two series...... converters regulating a power grid. The generalized topology derived and notated as GMMC can then be altered to create various types of MMC, including the traditional topology that is presently well-known. This effort has not been previously discussed, and may smoothen the understanding of MMC operation...

  16. Modular assembly of thick multifunctional cardiac patches

    Science.gov (United States)

    Fleischer, Sharon; Shapira, Assaf; Feiner, Ron; Dvir, Tal

    2017-01-01

    In cardiac tissue engineering cells are seeded within porous biomaterial scaffolds to create functional cardiac patches. Here, we report on a bottom-up approach to assemble a modular tissue consisting of multiple layers with distinct structures and functions. Albumin electrospun fiber scaffolds were laser-patterned to create microgrooves for engineering aligned cardiac tissues exhibiting anisotropic electrical signal propagation. Microchannels were patterned within the scaffolds and seeded with endothelial cells to form closed lumens. Moreover, cage-like structures were patterned within the scaffolds and accommodated poly(lactic-co-glycolic acid) (PLGA) microparticulate systems that controlled the release of VEGF, which promotes vascularization, or dexamethasone, an anti-inflammatory agent. The structure, morphology, and function of each layer were characterized, and the tissue layers were grown separately in their optimal conditions. Before transplantation the tissue and microparticulate layers were integrated by an ECM-based biological glue to form thick 3D cardiac patches. Finally, the patches were transplanted in rats, and their vascularization was assessed. Because of the simple modularity of this approach, we believe that it could be used in the future to assemble other multicellular, thick, 3D, functional tissues. PMID:28167795

  17. Intelligent modular manipulation for mobile robots

    Science.gov (United States)

    Culbertson, John

    2008-04-01

    As mobile robots continue to gain acceptance across a variety of applications within the defense and civilian markets, the number of tasks that these robot platforms are expected to accomplish are expanding. Robot operators are asked to do more with the same platforms - from EOD missions to reconnaissance and inspection operations. Due to the fact that a majority of missions are dangerous in nature, it is critical that users are able to make remote adjustments to the systems to ensure that they are kept out of harm's way. An efficient way to expand the capabilities of existing robot platforms, improve the efficiency of robot missions, and to ultimately improve the operator's safety is to integrate JAUS-enabled Intelligent Modular Manipulation payloads. Intelligent Modular Manipulation payloads include both simple and dexterous manipulator arms with plug-and-play end-effector tools that can be changed based on the specific mission. End-effectors that can be swapped down-range provide an added benefit of decreased time-on-target. The intelligence in these systems comes from semi-autonomous mobile manipulation actions that enable the robot operator to perform manipulation task with the touch of a button on the OCU. RE2 is supporting Unmanned Systems Interoperability by utilizing the JAUS standard as the messaging protocol for all of its manipulation systems. Therefore, they can be easily adapted and integrated onto existing JAUS-enabled robot platforms.

  18. Modular Construction of Shape-Numeric Analyzers

    Directory of Open Access Journals (Sweden)

    Bor-Yuh Evan Chang

    2013-09-01

    Full Text Available The aim of static analysis is to infer invariants about programs that are precise enough to establish semantic properties, such as the absence of run-time errors. Broadly speaking, there are two major branches of static analysis for imperative programs. Pointer and shape analyses focus on inferring properties of pointers, dynamically-allocated memory, and recursive data structures, while numeric analyses seek to derive invariants on numeric values. Although simultaneous inference of shape-numeric invariants is often needed, this case is especially challenging and is not particularly well explored. Notably, simultaneous shape-numeric inference raises complex issues in the design of the static analyzer itself. In this paper, we study the construction of such shape-numeric, static analyzers. We set up an abstract interpretation framework that allows us to reason about simultaneous shape-numeric properties by combining shape and numeric abstractions into a modular, expressive abstract domain. Such a modular structure is highly desirable to make its formalization and implementation easier to do and get correct. To achieve this, we choose a concrete semantics that can be abstracted step-by-step, while preserving a high level of expressiveness. The structure of abstract operations (i.e., transfer, join, and comparison follows the structure of this semantics. The advantage of this construction is to divide the analyzer in modules and functors that implement abstractions of distinct features.

  19. Modularized study of human calcium signalling pathway

    Indian Academy of Sciences (India)

    Losiana Nayak; Rajat K De

    2007-08-01

    Signalling pathways are complex biochemical networks responsible for reg ulation of numerous cellular functions. These networks function by serial and successive interactions among a large number of vital biomolecules and chemical compounds. For deciphering and analysing the underlying mechanism of such networks, a modularized study is quite helpful. Here we propose an algorithm for modularization of calcium signalling pathway of H. sapiens. The idea that ``a node whose function is dependant on maximum number of other nodes tends to be the center of a sub network” is used to divide a large signalling network into smaller sub networks. Inclusion of node(s) into sub networks(s) is dependant on the outdegree of the node(s). Here outdegree of a node refers to the number of re lations of the considered node lying outside the constructed sub network. Node(s) having more than c relations lying outside the expanding subnetwork have to be excluded from it. Here is a specified variable based on user preference, which is finally fixed during adjustments of created subnetworks, so that certain biological significance can be conferred on them.

  20. Recent ARC developments: Through modularity to interoperability

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, O; Cameron, D; Ellert, M; Groenager, M; Johansson, D; Kleist, J [NDGF, Kastruplundsgade 22, DK-2770 Kastrup (Denmark); Dobe, P; Joenemo, J; Konya, B [Lund University, Experimental High Energy Physics, Institute of Physics, Box 118, SE-22100 Lund (Sweden); Fraagaat, T; Konstantinov, A; Nilsen, J K; Saada, F Ould; Qiang, W; Read, A [University of Oslo, Department of Physics, P. O. Box 1048, Blindern, N-0316 Oslo (Norway); Kocan, M [Pavol Jozef Safarik University, Faculty of Science, Jesenna 5, SK-04000 Kosice (Slovakia); Marton, I; Nagy, Zs [NIIF/HUNGARNET, Victor Hugo 18-22, H-1132 Budapest (Hungary); Moeller, S [University of Luebeck, Inst. Of Neuro- and Bioinformatics, Ratzeburger Allee 160, D-23538 Luebeck (Germany); Mohn, B, E-mail: oxana.smirnova@hep.lu.s [Uppsala University, Department of Physics and Astronomy, Div. of Nuclear and Particle Physics, Box 535, SE-75121 Uppsala (Sweden)

    2010-04-01

    The Advanced Resource Connector (ARC) middleware introduced by NorduGrid is one of the basic Grid solutions used by scientists worldwide. While being well-proven in daily use by a wide variety of scientific applications at large-scale infrastructures like the Nordic DataGrid Facility (NDGF) and smaller scale projects, production ARC of today is still largely based on conventional Grid technologies and custom interfaces introduced a decade ago. In order to guarantee sustainability, true cross-system portability and standards-compliance based interoperability, the ARC community undertakes a massive effort of implementing modular Web Service (WS) approach into the middleware. With support from the EU KnowARC project, new components were introduced and the existing key ARC services got extended with WS technology based standard-compliant interfaces following a service-oriented architecture. Such components include the hosting environment framework, the resource-coupled execution service, the re-engineered client library, the self-healing storage solution and the peer-to-peer information system, to name a few. Gradual introduction of these new services and client tools into the production middleware releases is carried out together with NDGF and thus ensures a smooth transition to the next generation Grid middleware. Standard interfaces and modularity of the new component design are essential for ARC contributions to the planned Universal Middleware Distribution of the European Grid Initiative.

  1. Plant systems/components modularization study. Final report. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-01

    The final results are summarized of a Plant Systems/Components Modularization Study based on Stone and Webster's Pressurized Water Reactor Reference Design. The program has been modified to include evaluation of the most promising areas for modular consideration based on the level of the Sundesert Project engineering design completion and the feasibility of their incorporation into the plant construction effort.

  2. Hyperbolic lattice-point counting and modular symbols

    DEFF Research Database (Denmark)

    N. Petridis, Yiannis; Risager, Morten S.

    2009-01-01

    For a cocompact group $\\G$ of $\\slr$ we fix a real non-zero harmonic 1-form $\\alpha$. We study the asymptotics of the hyperbolic lattice-counting problem for $\\G$ under restrictions imposed by the modular symbols $\\modsym{\\gamma}{\\a}$. We prove that the normalized values of the modular symbols...

  3. 24 CFR 3282.12 - Excluded structures-modular homes.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Excluded structures-modular homes... HOUSING AND URBAN DEVELOPMENT MANUFACTURED HOME PROCEDURAL AND ENFORCEMENT REGULATIONS General § 3282.12 Excluded structures—modular homes. (a) The purpose of this section is to provide the certification...

  4. Dynamics of modular expansion joints: The Martinus Nijhoff Bridge

    NARCIS (Netherlands)

    Zuada Coelho, B.A.; Vervuurt, A.H.J.M.; Peelen, W.H.A.; Leendertz, J.S.

    2013-01-01

    Modular expansion joints are structures that are submitted to severe fatigue load conditions. This may lead to unexpected premature damage of the structure which, besides the economic cost of repair, may limit the regular service of the bridge. To better understand the dynamic behaviour of modular e

  5. Adapting to change: the advantage of modular clinic design.

    Science.gov (United States)

    Arsenault, Bruce

    2004-01-01

    Architects have applied modular design concepts for years. Projects benefiting most are those where a few room types are repeated often. Ambulatory care facilities are excellent candidates because this project type typically consists of a large number of rooms that can be standardized. The new Kaiser Permanente Santa Clara Medical Office Building illustrates the benefits and flexibility of modular design.

  6. The Potential for Computer Based Systems in Modular Engineering

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth

    1998-01-01

    The paper elaborates on knowledge management and the possibility for computer support of the design process of pharmaceutical production plants in relation to the ph.d. project modular engineering.......The paper elaborates on knowledge management and the possibility for computer support of the design process of pharmaceutical production plants in relation to the ph.d. project modular engineering....

  7. Poisson Manifolds, Lie Algebroids, Modular Classes: a Survey

    Directory of Open Access Journals (Sweden)

    Yvette Kosmann-Schwarzbach

    2008-01-01

    Full Text Available After a brief summary of the main properties of Poisson manifolds and Lie algebroids in general, we survey recent work on the modular classes of Poisson and twisted Poisson manifolds, of Lie algebroids with a Poisson or twisted Poisson structure, and of Poisson-Nijenhuis manifolds. A review of the spinor approach to the modular class concludes the paper.

  8. An Incremental Approach to Support Realization of Modularization Benefits

    DEFF Research Database (Denmark)

    Hansen, Poul H. Kyvsgård; Sun, Hongyi

    2010-01-01

    In general, the phenomenon of managing modularization is not well known. The cause-effect relationships between modularization and realized benefits are complex and comprehensive. Though a number of research works have contributed to the study of the phenomenon of efficient and effective modulari...

  9. Modular microfluidic systems using reversibly attached PDMS fluid control modules

    DEFF Research Database (Denmark)

    Skafte-Pedersen, Peder; Sip, Christopher G.; Folch, Albert;

    2013-01-01

    The use of soft lithography-based poly(dimethylsiloxane) (PDMS) valve systems is the dominating approach for high-density microscale fluidic control. Integrated systems enable complex flow control and large-scale integration, but lack modularity. In contrast, modular systems are attractive altern...

  10. Modularity, Working Memory, and Second Language Acquisition: A Research Program

    Science.gov (United States)

    Truscott, John

    2017-01-01

    Considerable reason exists to view the mind, and language within it, as modular, and this view has an important place in research and theory in second language acquisition (SLA) and beyond. But it has had very little impact on the study of working memory and its role in SLA. This article considers the need for modular study of working memory,…

  11. Modular functors are determined by their genus zero data

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Ueno, Kenji

    2012-01-01

    We prove in this paper that the genus zero data of a modular functor determines the modular functor. We do this by establishing that the S-matrix in genus one with one point labeled arbitrarily can be expressed in terms of the genus zero information and we give an explicit formula. We do not assu...

  12. Modular invariants and fusion rule automorphisms from Galois theory

    CERN Document Server

    Fuchs, J; Schellekens, Adrian Norbert; Schweigert, C; Beatriz Gato-Rivera; Bert Schellekens; Christoph Schweigert

    1994-01-01

    We show that Galois theory of cyclotomic number fields provides a powerful tool to construct systematically integer-valued matrices commuting with the modular matrix S, as well as automorphisms of the fusion rules. Both of these prescriptions allow the construction of modular invariants and offer new insight in the structure of known exceptional invariants.

  13. The Potential for Computer Based Systems in Modular Engineering

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth

    1998-01-01

    The paper elaborates on knowledge management and the possibility for computer support of the design process of pharmaceutical production plants in relation to the ph.d. project modular engineering.......The paper elaborates on knowledge management and the possibility for computer support of the design process of pharmaceutical production plants in relation to the ph.d. project modular engineering....

  14. Analysis of enabling factors in realizing modularization benefits

    DEFF Research Database (Denmark)

    Storbjerg, Simon Haahr; Brunø, Thomas Ditlev

    2012-01-01

    Although modularization is becoming a welldescribed and broadly applied concept, many of today’s firms still struggle to realize the promised benefits of this approach. Managing modularization is a complex matter, and in spite of this, a topic that has received far less attention compared to theo...

  15. TRIZ based Interface Conflict Resolving Strategies for Modular Product Architectures

    NARCIS (Netherlands)

    Wits, Wessel W.; Vaneker, Tom H.J.

    2010-01-01

    In product development, the chosen product architecture often possesses characteristics of both modular and integral design. Within a modular architecture, a Function-Behavior-Structure (FBS) model has been applied to describe modules and their interfaces. To resolve emerging interface conflicts, se

  16. Modularization, inter-functional integration and operational performance

    DEFF Research Database (Denmark)

    Boer, Henrike Engele Elisabeth; Boer, Harry

    2014-01-01

    for firms to indeed use product modularity beneficially, in particular inter-functional integration between manufacturing and purchasing, design and sales, respectively. The purpose of the paper is to investigate the direct performance effects of modularization, as well as the mediating effects of the three...

  17. Analysis of enabling factors in realizing modularization benefits

    DEFF Research Database (Denmark)

    Storbjerg, Simon Haahr; Brunø, Thomas Ditlev

    2012-01-01

    to theories and methods concerning modularization of technical systems.Recognizing the need for guidance to realize the benefits of modularity, the purpose of this study is through a literature study and a case study to improve the insight into the organizational and systems related enablers and barriers...

  18. Dynamics of modular expansion joints: The Martinus Nijhoff Bridge

    NARCIS (Netherlands)

    Zuada Coelho, B.A.; Vervuurt, A.H.J.M.; Peelen, W.H.A.; Leendertz, J.S.

    2013-01-01

    Modular expansion joints are structures that are submitted to severe fatigue load conditions. This may lead to unexpected premature damage of the structure which, besides the economic cost of repair, may limit the regular service of the bridge. To better understand the dynamic behaviour of modular

  19. An instrumental puzzle: the modular integration of AOLI

    CERN Document Server

    López, Roberto L; Colodro-Conde, Carlos; Valdivia, Juan J F; Puga, Marta; Oscoz, Alejandro; Rebolo, Rafael; Mackay, Craig; Pérez-Garrido, Antonio; Rodríguez-Ramos, Luis Fernando; Rodríguez-Ramos, José M; King, David; Labadie, Lucas; Muthusubramanian, Balaji; Rodríguez-Coira, Gustavo

    2016-01-01

    The Adaptive Optics Lucky Imager, AOLI, is an instrument developed to deliver the highest spatial resolution ever obtained in the visible, 20 mas, from ground-based telescopes. In AOLI a new philosophy of instrumental prototyping has been applied, based on the modularization of the subsystems. This modular concept offers maximum flexibility regarding the instrument, telescope or the addition of future developments.

  20. Advanced Manufacturing Technologies (AMT): Modular Rapidly Manufactured SmallSat Element

    Data.gov (United States)

    National Aeronautics and Space Administration — Rapidly fabricated, modular and integrated small satellite subsystems will be developed from digital fabrication workflows. The following are planned modular...

  1. A Comprehensive View On Benefits From Product Modularization

    DEFF Research Database (Denmark)

    Hansen, Poul H. Kyvsgård; Sun, Hongyi

    2010-01-01

    for tools and methods to support companies in being more specific about the expected benefits. Furthermore, this indicates a need for more precise perceptions of the challenges of managing product modularization efforts. This paper deals with three challenges according to the outset as described initially......In many cases the phenomenon of product modularization is presented in an inherently positive way. Based on the frequency of these positive cases it might be expected that product modularization is a universal cure for any competitive weaknesses experienced by manufacturing or service companies...... studies illustrates that the expected and the realized benefits from a product modularization effort rarely match. In most cases the companies have only weak estimations about both the type and the magnitude of the potential benefits when planning the modularization project. This indicates a serious need...

  2. The performance of modularity maximization in practical contexts

    CERN Document Server

    Good, Benjamin H; Clauset, Aaron

    2009-01-01

    Although widely used in practice, the behavior and accuracy of the popular module identification technique called modularity maximization is not well understood. Here, we present a broad and systematic characterization of its performance in practical situations. First, we generalize and clarify the recently identified resolution limit phenomenon. Second, we show that the modularity function Q exhibits extreme degeneracies: that is, the modularity landscape admits an exponential number of distinct high-scoring solutions and does not typically exhibit a clear global maximum. Third, we derive the limiting behavior of the maximum modularity Q_max for infinitely modular networks, showing that it depends strongly on the size of the network and the number of module-like subgraphs it contains. Finally, using three real-world examples of metabolic networks, we show that the degenerate solutions can fundamentally disagree on the composition of even the largest modules. Together, these results significantly extend and c...

  3. An preliminar analysis of product modularity contribuitions to ecodesign

    Directory of Open Access Journals (Sweden)

    Flavio Issao Kubota

    2014-05-01

    Full Text Available This study aims to conduct a preliminary literature analysis regarding the contributions of modularity to ecodesign principles. The research considered that modularity is a growing product development strategy in organizations, bringing a variety of contributions and benefits. A theoretical-conceptual approach was used as research method, which started with a structured search for related subject (modularity and ecodesign articles, followed by a non-structured search, both considering the related keywords. We found a limited number of publications regarding the two topics. However we could see that product modularity brings potential environmental benefits in product development and use, mainly through multifunctional products and modules reuse, disassembly and easy disposal after using. We conclude, hence, that product modularity can provide relevant contributions and benefits to ecodesign principles and practices, being needed empirical studies for future literature comparison.

  4. Z-Score-Based Modularity for Community Detection in Networks.

    Science.gov (United States)

    Miyauchi, Atsushi; Kawase, Yasushi

    2016-01-01

    Identifying community structure in networks is an issue of particular interest in network science. The modularity introduced by Newman and Girvan is the most popular quality function for community detection in networks. In this study, we identify a problem in the concept of modularity and suggest a solution to overcome this problem. Specifically, we obtain a new quality function for community detection. We refer to the function as Z-modularity because it measures the Z-score of a given partition with respect to the fraction of the number of edges within communities. Our theoretical analysis shows that Z-modularity mitigates the resolution limit of the original modularity in certain cases. Computational experiments using both artificial networks and well-known real-world networks demonstrate the validity and reliability of the proposed quality function.

  5. Adopting Product Modularity in House Building to Support Mass Customisation

    Directory of Open Access Journals (Sweden)

    Cecília G. da Rocha

    2015-04-01

    Full Text Available Product modularity is a concept that can contribute to the improvement of product quality and production efficiency in house-building. However, there is a lack of consensus in the literature on the concepts that define product modularity. Furthermore, little attention has been given to the differences between building construction and manufacturing, for which product modularity was originally developed. This research aims to address that gap by adapting the conceptualization of product modularity so that it can effectively be used in the house-building industry. The methodological approach adopted in this study was Design Science Research, and two empirical studies were carried out on construction companies based in Brazil and in the U.K. Those studies are used to illustrate the applicability and utility of the proposed concepts and tools. Research findings indicate that the adoption of product modularity concepts results in benefits to both traditional construction technologies and pre-fabricated building systems.

  6. Towards Versatile Robots Through Open Heterogeneous Modular Robots

    DEFF Research Database (Denmark)

    Lyder, Andreas

    Robots are important tools in our everyday life. Both in industry and at the consumer level they serve the purpose of increasing our scope and extending our capabilities. Modular robots take the next step, allowing us to easily create and build various robots from a set of modules. If a problem...... arises, a new robot can be assembled rapidly from the existing modules, in contrast to conventional robots, which require a time consuming and expensive development process. In this thesis we define a modular robot to be a robot consisting of dynamically reconfigurable modules. The goal of this thesis...... is to increase the versatility and practical usability of modular robots by introducing new conceptual designs. Until now modular robots have been based on a pre-specified set of modules, and thus, their functionality is limited. We propose an open heterogeneous design concept, which allows a modular robot...

  7. Understanding Project Based Production through Socio-technical Modularity

    DEFF Research Database (Denmark)

    Thuesen, Christian Langhoff

    to the practices of PBP and other production practices is the goal of balancing the dilemma between creativity and productivity. In response to industrialized production, the concept of modularity gained popularity for addressing this dilemma by exploring product, process and organization structures. However...... with the starting point in system theory and a strong bias towards industrial production, the predominant understanding of modularity faces difficulty in explaining practices of Project Based Production in both social – technical and dynamic – stable aspects. Illustrated by a case the paper addresses this gap......, by offering a reinterpretation of the modularity concept from a socio-technical perspective in general and Actor Network Theory (ANT) in particular. By formulating modularity from an ANT perspective covering social, material and process aspects, the modularity of a socio-technical practice can be understood...

  8. Modularity Induced Gating and Delays in Neuronal Networks.

    Science.gov (United States)

    Shein-Idelson, Mark; Cohen, Gilad; Ben-Jacob, Eshel; Hanein, Yael

    2016-04-01

    Neural networks, despite their highly interconnected nature, exhibit distinctly localized and gated activation. Modularity, a distinctive feature of neural networks, has been recently proposed as an important parameter determining the manner by which networks support activity propagation. Here we use an engineered biological model, consisting of engineered rat cortical neurons, to study the role of modular topology in gating the activity between cell populations. We show that pairs of connected modules support conditional propagation (transmitting stronger bursts with higher probability), long delays and propagation asymmetry. Moreover, large modular networks manifest diverse patterns of both local and global activation. Blocking inhibition decreased activity diversity and replaced it with highly consistent transmission patterns. By independently controlling modularity and disinhibition, experimentally and in a model, we pose that modular topology is an important parameter affecting activation localization and is instrumental for population-level gating by disinhibition.

  9. Some improvements on RNS Montgomery modular multiplication

    Science.gov (United States)

    Bajard, Jean-Claude; Didier, Laurent-Stephane; Kornerup, Peter; Rico, Fabien

    2000-11-01

    In Residue Number Systems (RNS), an integer X is represented by its residues {x0,...,xn-1} modulo a base of relatively prime numbers {m0,...,mn-1}. Thus a large number can be represented as a set of small integers. Addition and multiplication can be easily parallelized, there is no carry propagation. The time is reduced to the evaluation of these operations with small numbers. This representation is useful in cryptography and digital signal processing. Furthermore, in these two domains, modular multiplication (A X B mod N) is frequently used. So, in 1998, we have presented in IEEE journal of transactions on computers, a new modular multiplication algorithm in RNS. This algorithm is based on the Montgomery algorithm, using the associated Mixed Radix representation, for the weighted digits. It was the first algorithm of this type. In this paper, we present two remarks. First, if we develop the different expressions due to the algorithm, we obtain some mathematical simplifications that allow us to suppress some Mixed Radix occurrence in the basic iteration simply with a new initialization of our variables. Thus, in this new version, the complexity of each basic iteration, becomes equivalent to two products of small integers instead of three. The second remark is that, most of the time, modular multiplications are done with the same modulo N. We can precompute some values and reduce the complexity of each basic iteration to one multiplication of two small integers. Thus, the basic iteration is three times faster, and the global computation, due to the initialization, is 8/5 time faster than the original version. Sometime after the last basic iteration a Mixed Radix conversion can be needed. Classical parallel methods are linear. We propose an algorithmic parallel algorithm for this translation from RNS to Mixed Radix. For this, we use a result that comes from an RNS division algorithm, we published in Journal of VLSI signal processing systems 1998. We obtain in a

  10. Honeywell Modular Automation System Acceptance Test Procedure

    Energy Technology Data Exchange (ETDEWEB)

    STUBBS, A.M.

    1999-09-21

    The purpose of this Acceptance Test Procedure (ATP) is to verify the operability of the three new furnaces as controlled by the new Honeywell Modular Automation System (MAS). The Honeywell MAS is being installed in PFP to control the three thermal stabilization furnaces in glovebox HA-211. The ATP provides instructions for testing the configuration of the Honeywell MAS at the Plutonium Finishing Plant(PFP). The test will be a field test of the analog inputs, analog outputs, and software interlocks. The interlock test will check the digital input and outputs. Field equipment will not be connected forth is test. Simulated signals will be used to test thermocouple, limit switch, and vacuum pump inputs to the PLUMAS.

  11. On Gauging Symmetry of Modular Categories

    Science.gov (United States)

    Cui, Shawn X.; Galindo, César; Plavnik, Julia Yael; Wang, Zhenghan

    2016-05-01

    Topological order of a topological phase of matter in two spacial dimensions is encoded by a unitary modular (tensor) category (UMC). A group symmetry of the topological phase induces a group symmetry of its corresponding UMC. Gauging is a well-known theoretical tool to promote a global symmetry to a local gauge symmetry. We give a mathematical formulation of gauging in terms of higher category formalism. Roughly, given a UMC with a symmetry group G, gauging is a 2-step process: first extend the UMC to a G-crossed braided fusion category and then take the equivariantization of the resulting category. Gauging can tell whether or not two enriched topological phases of matter are different, and also provides a way to construct new UMCs out of old ones. We derive a formula for the {H^4} -obstruction, prove some properties of gauging, and carry out gauging for two concrete examples.

  12. Temperature Sensing in Modular Microfluidic Architectures

    Directory of Open Access Journals (Sweden)

    Krisna C. Bhargava

    2016-01-01

    Full Text Available A discrete microfluidic element with integrated thermal sensor was fabricated and demonstrated as an effective probe for process monitoring and prototyping. Elements were constructed using stereolithography and market-available glass-bodied thermistors within the modular, standardized framework of previous discrete microfluidic elements demonstrated in the literature. Flow rate-dependent response due to sensor self-heating and microchannel heating and cooling was characterized and shown to be linear in typical laboratory conditions. An acid-base neutralization reaction was performed in a continuous flow setting to demonstrate applicability in process management: the ratio of solution flow rates was varied to locate the equivalence point in a titration, closely matching expected results. This element potentially enables complex, three-dimensional microfluidic architectures with real-time temperature feedback and flow rate sensing, without application specificity or restriction to planar channel routing formats.

  13. Modular Hydropower Engineering and Pilot Scale Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Chesser, Phillip C. [ORNL

    2017-09-01

    Emrgy has developed, prototyped and tested a modular hydropower system for renewable energy generation. ORNL worked with Emrgy to demonstrate the use of additive manufacturing in the production of the hydrofoils and spokes for the hydrokinetic system. Specifically, during Phase 1 of this effort, ORNL printed and finished machined patterns for both the hydrofoils and spokes that were subsequently used in a sand casting manufacturing process. Emrgy utilized the sand castings for a pilot installation in Denver, CO, where the parts represented an 80% cost savings from the previous prototype build that was manufactured using subtractive manufacturing. In addition, the castings were completed with ORNL’s newly developed AlCeMg alloy that will be tested for performance improvements including higher corrosion resistance in a water application than the 6160 alloy used previously

  14. Kahler stabilized, modular invariant heterotic string models

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, Mary K.; Gaillard, Mary K.; Nelson, Brent D.

    2007-03-19

    We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kahler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Binétruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed.

  15. RSA and its Correctness through Modular Arithmetic

    Science.gov (United States)

    Meelu, Punita; Malik, Sitender

    2010-11-01

    To ensure the security to the applications of business, the business sectors use Public Key Cryptographic Systems (PKCS). An RSA system generally belongs to the category of PKCS for both encryption and authentication. This paper describes an introduction to RSA through encryption and decryption schemes, mathematical background which includes theorems to combine modular equations and correctness of RSA. In short, this paper explains some of the maths concepts that RSA is based on, and then provides a complete proof that RSA works correctly. We can proof the correctness of RSA through combined process of encryption and decryption based on the Chinese Remainder Theorem (CRT) and Euler theorem. However, there is no mathematical proof that RSA is secure, everyone takes that on trust!.

  16. A modular system for computational fluid dynamics

    Science.gov (United States)

    McCarthy, D. R.; Foutch, D. W.; Shurtleff, G. E.

    This paper describes the Modular System for Compuational Fluid Dynamics (MOSYS), a software facility for the construction and execution of arbitrary solution procedures on multizone, structured body-fitted grids. It focuses on the structure and capabilities of MOSYS and the philosophy underlying its design. The system offers different levels of capability depending on the objectives of the user. It enables the applications engineer to quickly apply a variety of methods to geometrically complex problems. The methods developer can implement new algorithms in a simple form, and immediately apply them to problems of both theoretical and practical interest. And for the code builder it consitutes a toolkit for fast construction of CFD codes tailored to various purposes. These capabilities are illustrated through applications to a particularly complex problem encountered in aircraft propulsion systems, namely, the analysis of a landing aircraft in reverse thrust.

  17. Modular Chemical Descriptor Language (MCDL: Stereochemical modules

    Directory of Open Access Journals (Sweden)

    Gakh Andrei A

    2011-01-01

    Full Text Available Abstract Background In our previous papers we introduced the Modular Chemical Descriptor Language (MCDL for providing a linear representation of chemical information. A subsequent development was the MCDL Java Chemical Structure Editor which is capable of drawing chemical structures from linear representations and generating MCDL descriptors from structures. Results In this paper we present MCDL modules and accompanying software that incorporate unique representation of molecular stereochemistry based on Cahn-Ingold-Prelog and Fischer ideas in constructing stereoisomer descriptors. The paper also contains additional discussions regarding canonical representation of stereochemical isomers, and brief algorithm descriptions of the open source LINDES, Java applet, and Open Babel MCDL processing module software packages. Conclusions Testing of the upgraded MCDL Java Chemical Structure Editor on compounds taken from several large and diverse chemical databases demonstrated satisfactory performance for storage and processing of stereochemical information in MCDL format.

  18. General Relativity, Cosmological Constant and Modular Forms

    CERN Document Server

    Kraniotis, G V

    2001-01-01

    Strong field (exact) solutions of the gravitational field equations of General Relativity in the presence of a Cosmological Constant are investigated. In particular, a full exact solution is derived within the inhomogeneous Szekeres-Szafron family of space-time line element with a nonzero Cosmological Constant. The resulting solution connects, in an intrinsic way, General Relativity with the theory of modular forms and elliptic curves and thus to the theory of Taniyama-Shimura.The homogeneous FLRW limit of the above space-time elements is recovered and we solve exactly the resulting Friedmann Robertson field equation with the appropriate matter density for generic values of the Cosmological Constant $ \\Lambda $ and curvature constant $K$. A formal expression for the Hubble constant is derived. The cosmological implications of the resulting non-linear solutions are systematically investigated. Two particularly interesting solutions i) the case of a flat universe $K=0,\\Lambda \

  19. Auditory-visual spatial interaction and modularity

    Science.gov (United States)

    Radeau, M

    1994-02-01

    The results of dealing with the conditions for pairing visual and auditory data coming from spatially separate locations argue for cognitive impenetrability and computational autonomy, the pairing rules being the Gestalt principles of common fate and proximity. Other data provide evidence for pairing with several properties of modular functioning. Arguments for domain specificity are inferred from comparison with audio-visual speech. Suggestion of innate specification can be found in developmental data indicating that the grouping of visual and auditory signals is supported very early in life by the same principles that operate in adults. Support for a specific neural architecture comes from neurophysiological studies of the bimodal (auditory-visual) neurons of the cat superior colliculus. Auditory-visual pairing thus seems to present the four main properties of the Fodorian module.

  20. Generic small modular reactor plant design.

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Tom Goslee,; Cipiti, Benjamin B.; Jordan, Sabina Erteza; Baum, Gregory A.

    2012-12-01

    This report gives an overview of expected design characteristics, concepts, and procedures for small modular reactors. The purpose of this report is to provide those who are interested in reducing the cost and improving the safety of advanced nuclear power plants with a generic design that possesses enough detail in a non-sensitive manner to give merit to their conclusions. The report is focused on light water reactor technology, but does add details on what could be different in a more advanced design (see Appendix). Numerous reactor and facility concepts were used for inspiration (documented in the bibliography). The final design described here is conceptual and does not reflect any proposed concept or sub-systems, thus any details given here are only relevant within this report. This report does not include any design or engineering calculations.