WorldWideScience

Sample records for mw monolithic yb

  1. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2008-01-01

    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  2. Monolithic femtosecond Yb-fiber laser with photonic crystal fibers

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    We demonstrate a monolithic stable SESAM-modelocked self-starting Yb-fiber laser. A novel PM all-solid photonic bandgap fiber is used for intra-cavity of dispersion management. The ex-cavity final pulse compression is performed in a spliced-on PM hollow-core photonic crystal fiber. The laser...... directly delivers 9 nJ pulses of 275 fs duration with pulse repetition of 26.7MHz....

  3. Monolithic all-PM femtosecond Yb-doped fiber laser using photonic bandgap fibers

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2009-01-01

    We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm.......We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm....

  4. Monolithic stabilized Yb-fiber All-PM laser directly delivering nJ-level femtosecond pulses

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    We present a monolithic, self-starting, all-PM, stabilized Yb-fiber laser, pulse-compressed in a hollow-core PM photonic crystal fiber, providing the 370 fs pulses of 4 nJ energy with high mode quality.......We present a monolithic, self-starting, all-PM, stabilized Yb-fiber laser, pulse-compressed in a hollow-core PM photonic crystal fiber, providing the 370 fs pulses of 4 nJ energy with high mode quality....

  5. Development and applications of femtosecond monolithic Yb-doped fiber chirped-pulse amplifiers

    Zhu, L.

    2011-01-01

    In the past few years, compact and environmentally stable high-energy ultrashort pulse laser sources have been broadly utilized in many different applications. Fiber lasers offer big practical advantages over bulk solid-state laser systems in terms of flexibility, compactness, reliability, cost effectiveness and turn-key operability. Moreover, thermal effects are dramatically reduced due to the large surface-to-volume ratio of an optical fiber, and good spatial mode quality can be ensured by its waveguiding property. Therefore, a fiber-based laser system is considered to be the preferred laser architecture. The main theme of this thesis is the development of various femtosecond monolithic Yb-doped fiber chirped-pulse-amplification (FCPA) system and their applications. We demonstrate an ultrafast high-energy monolithic Yb-doped FCPA system in which the pulse fidelity is preserved by weakening the nonlinear effects via a substantial level of temporal stretching of the seed pulses and by using highly doped active fibers as amplifying media. The presented monolithic FCPA delivers up to ∼ 25 μJ diffraction-limited pulses that can be recompressed to sub-200 fs duration, and the pulse quality has been confirmed through the second-harmonic-generation (SHG) conversion efficiency of over 52%. Improved dispersion and nonlinearity management schemes of the FCPA system allowing substantial pulse energy scaling in the monolithic format as well as methods for overcoming a series of technological challenges are reported. Three different types of Yb-doped fiber oscillators have been developed and built in the course of this PhD work. First, we compare two oscillator types that are based on the all-normal-dispersion (ANDi) regime and the dispersion-managed (DM) regime. Both of them have been tested as the seed-pulse source of the monolithic Yb-doped FCPA system. Then we introduce another novel design based on higher-order-mode (HOM) dispersion management that competes with a

  6. Highly-stable monolithic femtosecond Yb-fiber laser system based on photonic crystal fibers

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2010-01-01

    in the oscillator cavity for dispersion balancing and nonlinear optical limiting, and another one is used for low nonlinearity final pulse recompression. The chirped-pulse amplification and recompression of the 232-fs, 45-pJ/pulse oscillator output yields a final direct fiber-end delivery of 7.3-nJ energy pulses......A self-starting, passively stabilized, monolithic all polarizationmaintaining femtosecond Yb-fiber master oscillator / power amplifier with very high operational and environmental stability is demonstrated. The system is based on the use of two different photonic crystal fibers. One is used...... of around 297 fs duration. Our laser shows exceptional stability. No Q-switched modelocking events were detected during 4-days long observation. An average fluctuation of only 7.85 · 10−4 over the mean output power was determined as a result of more than 6-hours long measurement. The laser is stable towards...

  7. Monolithic Highly Stable Yb-Doped Femtosecond Fiber Lasers for Applications in Practical Biophotonics

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2012-01-01

    in the development of all-fiber nonlinear-optical laser control schemes, which resulted in the demonstration of highly stable monolithic, i.e., not containing any free-space elements, lasers with direct fiber-end delivery of femtosecond pulses. This paper provides an overview of the progress in the development...... of such all-fiber mode-locked lasers based on Yb-fiber as gain medium, operating at the wavelength around 1 $\\mu$m, and delivering femtosecond pulses reaching tens of nanojoules of energy.......Operational and environmental stability of ultrafast laser systems is critical for their applications in practical biophotonics. Mode-locked fiber lasers show great promise in applications such as supercontinuum sources or multiphoton microscopy systems. Recently, substantial progress has been made...

  8. Equilibrium core layout for the 1000 MW direct cycle HTR (HHT) with hexagonal monolith moulded fuel blocks

    Dworak, A

    1973-03-15

    The aim of this survey is to calculate an equilibrium Thorium fuel cycle for a 1000 MW HHT-core in off-load refuelling with hexagonal monolith moulded fuel blocks. It was tried to achieve an axial power distribution similar to the advanced pebble-bed reactors (OTTO) by introducing three axial core zones with different heavy metal content and initial enrichment.

  9. Monolithic Yb-fiber femtosecond laser with intracavity all-solid PBG fiber and ex-cavity HC-PCF

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2010-01-01

    (PM) photonic bandgap fiber (PBG) is used in the cavity of the master oscillator for dispersion compensation and stabilization of modelocking. The final compression of an chirped-pulse-amplified laser signal is performed in a hollow PM PCF, yielding final fiber-delivered pulse energy of around 7 n......J, and pulse duration of around 297 fs. The self-stabilization mechanism of the oscillator, based on the optical nonlinearities in an AS PCF, results in excellent environmental and operational stability of our laser. Stable self-starting fundamental modelocking is maintained for at least 4 days of operation......We demonstrate an all-fiber femtosecond master oscillator / power amplifier operating at the central wavelength of 1033 nm, based on Yb-doped fiber as gain medium, and two different kinds of photonic crystal fibers for dispersion control and stabilization. An all-solid (AS) polarization maintaining...

  10. Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    . The laser output is compressed in a spliced-on hollow-core PM photonic crystal fiber, thus providing direct end-of-the-fiber delivery of pulses of around 370 fs duration and 4 nJ energy with high mode quality. Tuning the pump power of the end amplifier of the laser allows for the control of output pulse......We report on an environmentally stable self-starting monolithic (i.e. without any free-space coupling) all-polarization-maintaining (PM) femtosecond Yb-fiber laser, stabilized against Q-switching by a narrow-band fiber Bragg grating and modelocked using a semiconductor saturable absorber mirror...

  11. Comprehensive analysis of proteins of pH fractionated samples using monolithic LC/MS/MS, intact MW measurement and MALDI-QIT-TOF MS

    Yoo, Chul; Patwa, Tasneem H.; Kreunin, Paweena; Miller, Fred R.; Huber, Christian G.; Nesvizhskii, Alexey I.; Lubman, David M.

    2012-01-01

    A comprehensive platform that integrates information from the protein and peptide levels by combining various MS techniques has been employed for the analysis of proteins in fully malignant human breast cancer cells. The cell lysates were subjected to chromatofocusing fractionation, followed by tryptic digestion of pH fractions for on-line monolithic RP-HPLC interfaced with linear ion trap MS analysis for rapid protein identification. This unique approach of direct analysis of pH fractions resulted in the identification of large numbers of proteins from several selected pH fractions, in which approximately 1.5 μg of each of the pH fraction digests was consumed for an analysis time of ca 50 min. In order to combine valuable information retained at the protein level with the protein identifications obtained from the peptide level information, the same pH fraction was analyzed using nonporous (NPS)-RP-HPLC/ESI-TOF MS to obtain intact protein MW measurements. In order to further validate the protein identification procedures from the fraction digest analysis, NPS-RP-HPLC separation was performed for off-line protein collection to closely examine each protein using MALDI-TOF MS and MALDI-quadrupole ion trap (QIT)-TOF MS, and excellent agreement of protein identifications was consistently observed. It was also observed that the comparison to intact MW and other MS information was particularly useful for analyzing proteins whose identifications were suggested by one sequenced peptide from fraction digest analysis. PMID:17206599

  12. Luminescent and laser properties of Yb Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers

    Denker, B.; Galagan, B.; Ivleva, L.; Osiko, V.; Sverchkov, S.; Voronina, I.; Hellstrom, J. E.; Karlsson, G.; Laurell, F.

    2004-09-01

    We present for the first time 1.5-μm laser emission in Yb Er:GdCa4O(BO3)3 (GdCOB). The crystals were grown by the Czochralski method from platinum crucibles. Spectroscopic and laser tests of the crystals are described. A continuous-wave output power of 80 mW was achieved in a monolithic microchip cavity under laser-diode pumping.

  13. Influence of temperature on Yb:YAG/Cr:YAG microchip laser operation

    Šulc, Jan; Eisenschreiber, Jan; Jelínková, Helena; Nejezchleb, Karel; Å koda, Václav

    2017-02-01

    The goal of this work was an investigation of the temperature influence (in range from 80 up to 320 K) on the laser properties of Yb:YAG/Cr:YAG Q-switched diode-pumped microchip laser. This laser was based on monolith crystal (diameter 3mm) which combines in one piece an active laser part (Yb:YAG crystal, 10 at.% Yb/Y, 3mm long) and saturable absorber (Cr:YAG crystal, 1.36mm long, initial transmission 90% @ 1031 nm). The laser resonator pump mirror (HT for pump radiation, HR for generated radiation) was directly deposited on the Yb:YAG monolith part. The output coupler with reflection 55% for the generated wavelength was placed on the Cr:YAG part. The microchip laser was placed in the temperature controlled cupreous holder inside vacuum chamber of the liquid nitrogen cryostat. For Yb:YAG part longitudinal pulsed pumping (pumping pulse length 2.5 ms, rep-rate 20 Hz, power amplitude 21W) a fibre coupled (core diameter 400 μm, NA= 0:22) laser diode, operating at wavelength 933 nm, was used. The microchip laser mean output power, pulse duration, repetition rate, emission wavelength, and laser beam profile were measured in dependence on temperature. The generated pulse length was in range from 2.2 ns to 1.1 ns (FWHM) with the minimum at 230 K. The single pulse energy was peaking (0.4 mJ) at 180 K. The highest peak power (325 kW) was obtained at 220 K. The highest pulse repetition rate (38 kHz) and output mean power (370mW) was reached for temperature 80 K.

  14. New configurations for short-pulses high power solid-state lasers: conception and realization of highly doped waveguide amplifiers/lasers grown by liquid phase epitaxy and demonstration of Y2SiO5: Yb and Lu2SiO5: Yb femtosecond lasers

    Thibault, F.

    2006-04-01

    Yb-doped yttrium and lutetium ortho-silicates, Y 2 SiO 5 :Yb and Lu 2 SiO 5 :Yb respectively, exhibit spectroscopic properties favorable to an efficient laser operation in both high power cw and femtosecond regime. Their first diode-pumped femtosecond operation demonstration lead to exceptional performances in terms of output power and efficiency. In order to realize compact and efficient solid-state laser devices using those materials, we chose a configuration with an Yb-doped medium planar waveguide geometry, grown by liquid phase epitaxy, face-pumped by a single laser diode bar. The growth of highly doped Y 2 SiO 5 :Yb layers, within a large range of compositions and thicknesses, was demonstrated. The refractive index increase due to the substitution of the various dopants is analyzed. The layers spectroscopic properties are similar to the bulk ones, with an noticeably higher crystalline quality. The Yb ion lifetime evolution with respect to its doping shows up a particularly low decrease, proof of a low concentration of extrinsic quenching centers. The covered YSO:24%Yb waveguides exhibit lower than 0.3 dB/cm propagation losses, and provided up to 2.9 dB/cm net amplification at 1082 nm with a single mode output. The realization of the first diode-pumped monolithic cw waveguide lasers was also demonstrated. For a 4% output coupler, they provided up to 340 mW at 1082 nm with a 14% slope efficiency. (author)

  15. Monolithic spectrometer

    Rajic, Slobodan (Knoxville, TN); Egert, Charles M. (Oak Ridge, TN); Kahl, William K. (Knoxville, TN); Snyder, Jr., William B. (Knoxville, TN); Evans, III, Boyd M. (Oak Ridge, TN); Marlar, Troy A. (Knoxville, TN); Cunningham, Joseph P. (Oak Ridge, TN)

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  16. Lifetimes Measurements in 160Yb,162Yb,164Yb,166Yb,168Yb

    Araddad, S. Y.; El-barouni, A. M.; Rateb, G. M.; Mosbah, D. S.; Elahrash, M. S.; Sergiwa, S. M.

    2004-01-01

    From our measurements of the lifetimes of high spin states in 168 Yb along with the published lifetime data for the nearby even even ytterbium isotopes, 160-168 Yb using the Recoil Distance Method (RDM) and the Doppler Shift Attenuation Method (DSAM) present a great opportunity to probe systematically the relationship between the nuclear shape changes and the reduction in collectivity. (authors)

  17. 12 MW

    Hasager, Charlotte Bay; Pena Diaz, Alfredo; Mikkelsen, Torben

    '12MW: final report' is for the project with the full title ‘12 MW wind turbines: the scientific basis for their operation at 70 to 270 m height offshore’ that had the goal to experimentally investigate the wind and turbulence characteristics between 70 and 270 m above sea level and thereby...... establish the scientific basis relevant for the next generation of huge 12 MW wind turbines operating offshore. The project started 1st October 2005 and ended 31st March 2009. Firstly was conducted a 6-month experiment at the Horns Rev offshore wind farm deploying a lidar and a sodar on the transformer...

  18. Monoliths in Bioprocess Technology

    Vignesh Rajamanickam

    2015-04-01

    Full Text Available Monolithic columns are a special type of chromatography column, which can be used for the purification of different biomolecules. They have become popular due to their high mass transfer properties and short purification times. Several articles have already discussed monolith manufacturing, as well as monolith characteristics. In contrast, this review focuses on the applied aspect of monoliths and discusses the most relevant biomolecules that can be successfully purified by them. We describe success stories for viruses, nucleic acids and proteins and compare them to conventional purification methods. Furthermore, the advantages of monolithic columns over particle-based resins, as well as the limitations of monoliths are discussed. With a compilation of commercially available monolithic columns, this review aims at serving as a ‘yellow pages’ for bioprocess engineers who face the challenge of purifying a certain biomolecule using monoliths.

  19. Growth and continuous-wave laser operation of disordered crystals of Yb3+:NaLa(WO4)2 and Yb3+:NaLa(MoO4)2

    Liu, J.; Cano-Torres, J. M.; Cascales, C.; Esteban-Betegón, F.; Serrano, M. D.; Volkov, V.; Zaldo, C.; Rico, M.; Griebner, U.; Petrov, V.

    2005-03-01

    Single crystals of disordered NaLa(WO4)2 and NaLa(MoO4)2 doped with Yb3+ are grown by the Czochralski method from the melt. Continuous-wave laser operation with Ti:sapphire laser pumping is demonstrated at room temperature without special cooling. Tunability from 1017 to 1057 nm and from 1015 to 1053 nm is achieved for Yb:NaLa(WO4)2 and Yb:NaLa(MoO4)2, respectively. A maximum output power of 205 mW is obtained with Yb:NaLa(WO4)2.

  20. Monolithic exploding foil initiator

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  1. YB0 HAS LANDED

      On Feb 28th after a majestic descent of 90m taking 11 hours, the 2000t YB0 central wheel of CMS, containing the superconducting solenoid, gently touched down on the floor of the experimental cavern UXC55.

  2. Continuous wave and tunable laser operation of Yb3+ in disordered NaLa(MoO4)2

    Rico, M.; Liu, J.; Cano-Torres, J. M.; García-Cortés, A.; Cascales, C.; Zaldo, C.; Griebner, U.; Petrov, V.

    2005-09-01

    Continuous-wave Yb3+ laser operation is studied in single crystals of disordered NaLa(MoO4)2 at room temperature. The sample used was grown by the Czochralski technique and incorporates an Yb ion density of 3.1×1020 cm-3. The effect of the Yb concentration on some of the crystal properties is described as well as the spectroscopic Yb3+ properties at 5 K. Maximum slope efficiencies of about 40% for π and 38% for σ polarization were obtained under Ti:sapphire laser pumping near 976 nm, respectively. The maximum output power for the π polarization was 400 mW at 1039.5 nm, the threshold in this case amounted to 240 mW (absorbed pump power). The laser emission was tunable between 1016 and 1064 nm with a Lyot filter. Lasing was also realized by pumping with a fiber-coupled diode laser module. Maximum output power of 900 mW at 1035 nm was achieved in this case for the π polarization and the threshold was 280 mW. The results, in terms of output power and tunability, are superior in comparison to all previous reports on Yb-doped disordered double tungstate or molybdate crystals and represent a significant improvement in comparison to earlier experiments with low-doped Yb:NaLa(MoO4)2.

  3. YB0 SERVICES INSTALLATION COMPLETED

    The beauty of the completed YB0 was briefly visible at P5 as preparations continue for Tracker installation. A tremendous effort, lasting 7 months and involving more than 100 workers on the busiest days, resulted in 5700 electrical cables, 780 optical cables with 65k fibre channels, and 550 pipes laid on YB0 for HB, EB and Tracker.

  4. High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings.

    Palmer, Guido; Gross, Simon; Fuerbach, Alexander; Lancaster, David G; Withford, Michael J

    2013-07-15

    We report the first Yb:ZBLAN and Yb:IOG10 waveguide lasers fabricated by the fs-laser direct-writing technique. Pulses from a Titanium-Sapphire laser oscillator with 5.1 MHz repetition rate were utilized to generate negative refractive index modifications in both glasses. Multiple modifications were aligned in a depressed cladding geometry to create a waveguide. For Yb:ZBLAN we demonstrate high laser slope efficiency of 84% with a maximum output power of 170 mW. By using Yb:IOG10 a laser performance of 25% slope efficiency and 72 mW output power was achieved and we measured a remarkably high refractive index change exceeding Δn = 2.3 × 10(-2).

  5. Absorption Spectra Of Rbcl:Yb Rbbr:Yb And Rbi:Yb Crystals ...

    Single crystals of rubidium chloride, bromide and iodide were doped with substitutional divalent ytterbium, Yb ions, by heating them in ytterbium atmosphere. The absorption spectra of the Yb doped crystals were measured at room and liquid nitrogen temperatures. The spectra were found to consist of intense broad ...

  6. Fibrous monolithic ceramics

    Kovar, D.; King, B.H.; Trice, R.W.; Halloran, J.W.

    1997-01-01

    Fibrous monolithic ceramics are an example of a laminate in which a controlled, three-dimensional structure has been introduced on a submillimeter scale. This unique structure allows this all-ceramic material to fail in a nonbrittle manner. Materials have been fabricated and tested with a variety of architectures. The influence on mechanical properties at room temperature and at high temperature of the structure of the constituent phases and the architecture in which they are arranged are discussed. The elastic properties of these materials can be effectively predicted using existing models. These models also can be extended to predict the strength of fibrous monoliths with an arbitrary orientation and architecture. However, the mechanisms that govern the energy absorption capacity of fibrous monoliths are unique, and experimental results do not follow existing models. Energy dissipation occurs through two dominant mechanisms--delamination of the weak interphases and then frictional sliding after cracking occurs. The properties of the constituent phases that maximize energy absorption are discussed. In this article, the authors examine the structure of Si 3 N 4 -BN fibrous monoliths from the submillimeter scale of the crack-deflecting cell-cell boundary features to the nanometer scale of the BN cell boundaries

  7. DANAERO MW: Final Report

    Troldborg, Niels; Bak, Christian; Aagaard Madsen, Helge

    This report describes the results of the EUDP funded DANAERO MW II project carried out by DTU Wind Energy (formerly Risø DTU) and the industrial partners, LM Wind Power, Vestas Wind Systems A/S and Siemens Wind Power. An overview of the data available from the project as well as the results from...... analysis of the data is given with the main objective to explore in detail the influence of atmospheric and wake turbulence on MW turbine performance, loading and stability. Finally, validation and demonstration of simulation codes are carried out....

  8. Preparation and radiopharmaceutical control of 169Yb EDTA an agent for kidney function and scintigraphy

    Gulbaba, G.; Ozker; Tomek, F.

    1976-01-01

    169 Yb was produced by thermal neutron irradiation of Yb 2 O 3 in 1 MW research reactor at Cekmece Nuclear Research Center. 169 Yb-EDTA complex was then prepared with a sodium salt of EDTA. Radionuclidic and radiochemical purities of the compound were determined by gama spectral analysis and radiochromatography-electrophoresis following preparation. Ionic Yb(III) which accumulates at bone and liver was not observed on the radiochromatographic and electrophoretic analysis of the final compound. There was no separation of the label for two months of examination in order to determine stability of the compound. In conclusion, the labeled compound has been prepared for use in the external scanning of kidney and determining the glomerular filtration rate. The label appears to be firmly bound so that the agent can be stored for a reasonably long period as 31 days half-life of 169 Yb permits. Administration of the compound is safe from the stand point of radiation dose since a 30 micro-Ci 169 Yb-EDTA for a glomerular filtration study delivers no more than 0.4 mrad whole-body and 5 mrad kidney dose. (author)

  9. Monolith electroplating process

    Agarrwal, Rajev R.

    2001-01-01

    An electroplating process for preparing a monolith metal layer over a polycrystalline base metal and the plated monolith product. A monolith layer has a variable thickness of one crystal. The process is typically carried in molten salts electrolytes, such as the halide salts under an inert atmosphere at an elevated temperature, and over deposition time periods and film thickness sufficient to sinter and recrystallize completely the nucleating metal particles into one single crystal or crystals having very large grains. In the process, a close-packed film of submicron particle (20) is formed on a suitable substrate at an elevated temperature. The temperature has the significance of annealing particles as they are formed, and substrates on which the particles can populate are desirable. As the packed bed thickens, the submicron particles develop necks (21) and as they merge into each other shrinkage (22) occurs. Then as micropores also close (23) by surface tension, metal density is reached and the film consists of unstable metal grain (24) that at high enough temperature recrystallize (25) and recrystallized grains grow into an annealed single crystal over the electroplating time span. While cadmium was used in the experimental work, other soft metals may be used.

  10. Low-power, miniature {sup 171}Yb ion clock using an ultra-small vacuum package

    Jau, Y.-Y.; Schwindt, P. D. D. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Partner, H. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Center for Quantum Information and Control (CQuIC), Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Prestage, J. D.; Kellogg, J. R.; Yu, N. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)

    2012-12-17

    We report a demonstration of a very small microwave atomic clock using the 12.6 GHz hyperfine transition of the trapped {sup 171}Yb ions inside a miniature, completely sealed-off 3 cm{sup 3} ion-trap vacuum package. In the ion clock system, all of the components are highly miniaturized with low power consumption except the 369 nm optical pumping laser still under development for miniaturization. The entire clock, including the control electronics, consumes <300 mW. The fractional frequency instability of the miniature Yb{sup +} clock reaches the 10{sup -14} range after a few days of integration.

  11. Wave Dragon MW

    Kofoed, Jens Peter; Frigaard, Peter

    Wave Dragon is a wave energy converter of the overtopping type. The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based on the experience gained a full scale, multi MW prototype...

  12. Transportin-1-dependent YB-1 nuclear import

    Mordovkina, Daria A.; Kim, Ekaterina R.; Buldakov, Ilya A.; Sorokin, Alexey V.; Eliseeva, Irina A.; Lyabin, Dmitry N.; Ovchinnikov, Lev P.

    2016-01-01

    The DNA/RNA-binding protein YB-1 (Y-box binding protein 1) performs multiple functions both in the cytoplasm and the nucleus of the cell. Generally localized to the cytoplasm, under certain conditions YB-1 is translocated to the nucleus. Here we report for the first time a transport factor that mediates YB-1 nuclear import – transportin-1. The YB-1/transportin-1 complex can be isolated from HeLa cell extract. Nuclear import of YB-1 and its truncated form YB-1 (1-219) in in vitro transport assay was diminished in the presence of a competitor substrate and ceased in the presence of transportin-1 inhibitor M9M. Inhibitors of importin β1 had no effect on YB-1 transport. Furthermore, transport of YB-1 (P201A/Y202A) and YB-1 (1–219) (P201A/Y202A) bearing inactivating mutations in the transportin-1-dependent nuclear localization signal was practically abolished. Together, these results indicate that transportin-1 mediates YB-1 nuclear translocation. - Highlights: • Transportin-1 mediates YB-1 nuclear import. • YB-1 nuclear translocation is diminished in the presence of transportin-1 inhibitors. • Mutations in the PY motif of YB-1 NLS prevent its translocation to the nucleus.

  13. Monolithic Ytterbium All-single-mode Fiber Laser with Direct Fiber-end Delivery of nJ-level Femtosecond Pulses

    Turchinovich, Dmitry

    2008-01-01

    We demonstrate a monolithic, i.e. without any free-space coupling, all-single-mode passively modelocked Yb-fiber laser, with direct fiber-end delivery of 364−405 fs pulses of 4 nJ pulse energy using a low-loss hollow-core photonic crystal fiber compression....

  14. Growth and continuous-wave laser operation of disordered crystals of Yb3+:NaLa(WO4)2 and Yb3+:NaLa(MoO4)2

    Liu, J.; Rico, M.; Griebner, U.; Petrov, V.; Cano-Torres, J.M.; Cascales, C.; Esteban-Betegon, F.; Serrano, M.D.; Volkov, V.; Zaldo, C.

    2005-01-01

    Single crystals of disordered NaLa(WO 4 ) 2 and NaLa(MoO 4 ) 2 doped with Yb 3+ are grown by the Czochralski method from the melt. Continuous-wave laser operation with Ti:sapphire laser pumping is demonstrated at room temperature without special cooling. Tunability from 1017 to 1057 nm and from 1015 to 1053 nm is achieved for Yb:NaLa(WO 4 ) 2 and Yb:NaLa(MoO 4 ) 2 , respectively. A maximum output power of 205 mW is obtained with Yb:NaLa(WO 4 ) 2 . (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Efficient room temperature cw Yb:glass laser pumped by a 946nm Nd:YAG laser

    Koch, R.; Clarkson, W.A.; Hanna, D.C.; Jiang, S.; Myers, M.J.; Rhonehouse, D.; Hamlin, S.J.; Griebner, U.; Schönnagel, H.

    1997-01-01

    By pumping with a cw diode-pumped Nd:YAG laser operating at 946nm laser operation of a new Yb-doped phosphate glass with 440mW cw output power and a slope efficiency of 48% with respect to the absorbed pump power was achieved at room temperature

  16. Porous polymer monolithic col

    Lydia Terborg

    2015-05-01

    Full Text Available A new approach has been developed for the preparation of mixed-mode stationary phases to separate proteins. The pore surface of monolithic poly(glycidyl methacrylate-co-ethylene dimethacrylate capillary columns was functionalized with thiols and coated with gold nanoparticles. The final mixed mode surface chemistry was formed by attaching, in a single step, alkanethiols, mercaptoalkanoic acids, and their mixtures on the free surface of attached gold nanoparticles. Use of these mixtures allowed fine tuning of the hydrophobic/hydrophilic balance. The amount of attached gold nanoparticles according to thermal gravimetric analysis was 44.8 wt.%. This value together with results of frontal elution enabled calculation of surface coverage with the alkanethiol and mercaptoalkanoic acid ligands. Interestingly, alkanethiols coverage in a range of 4.46–4.51 molecules/nm2 significantly exceeded that of mercaptoalkanoic acids with 2.39–2.45 molecules/nm2. The mixed mode character of these monolithic stationary phases was for the first time demonstrated in the separations of proteins that could be achieved in the same column using gradient elution conditions typical of reverse phase (using gradient of acetonitrile in water and ion exchange chromatographic modes (applying gradient of salt in water, respectively.

  17. Kondo effect and heavy fermions in Yb compounds

    Bonville, P.

    1987-01-01

    The Kondo properties of Yb dilute alloys and intermetallics have been investigated using Moessbauer spectroscopy on 170 Yb. In the dilute alloys AuYb and LaBe 13 Yb, the Kondo logarithmic anomaly of the impurity relaxation rate has been detected, and in the concentrated Yb compounds YbBe 13 , YbP and YbAs, and YbCuAl, the manifestations of the interplay between the Kondo effect and the magnetic ordering due to the RKKY interaction have been characterized

  18. Yb valence state in Yb{sub 5}Rh{sub 4}Ge{sub 10}

    Sato, Hitoshi; Arita, Masashi; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki [Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima (Japan); Utsumi, Yuki [Synchrotron SOLEIL, L' Orme des Merisiers, Gif-sur-Yvette (France); Katoh, Kenichi [Department of Applied Physics, National Defense Academy, Yokosuka (Japan); Mimura, Kojiro [Graduate School of Engineering, Osaka Prefecture University, Sakai (Japan); Ueda, Shigenori [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, Hyogo (Japan); Quantum Beam Unit, National Institute for Materials Science, Tsukuba (Japan); Yamaoka, Hitoshi [RIKEN SPring-8 Center, Hyogo (Japan); Rousuli, Awabaikeli [Graduate School of Science, Hiroshima University, Higashi-Hiroshima (Japan); Umeo, Kazunori [NBARD, Hiroshima University, Higashi-Hiroshima (Japan)

    2017-06-15

    Temperature- and pressure-dependent Yb valence state in Yb{sub 5}Rh{sub 4}Ge{sub 10} has been investigated by means of Yb 3d hard X-ray photoemission spectroscopy (HAXPES) and Yb L{sub 3} absorption spectroscopy (XAS). The mean Yb valence derived from the Yb 3d HAXPES is estimated to be ∝2.78 at 300 K and decreases to ∝2.74 at 20 K. On the other hand, the Yb valence deduced from the Yb L{sub 3} XAS at 300 K is almost constant with ∝2.81 in the pressure range between 9.2 and 34.7 GPa. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Cryogenic Yb: YAG Thin-Disk Laser

    2016-09-09

    as a 4- level laser. Its absorption and emission cross-sections increase, and its thermal conductivity improves. Yb:YAG thin disk laser performance...Air Force Base, NM USA 87117 4RINI Technologies, 582 South Econ Circle, Oviedo, FL USA 32765 Keywords: Laser materials; Lasers, ytterbium...temperatures, Yb:YAG behaves as a 4- level laser. Its absorption and emission cross-sections increase, and its thermal conductivity improves. Yb:YAG

  20. Ytterbium silicide (YbSi{sub 2}). A promising thermoelectric material with a high power factor at room temperature

    Tanusilp, Sora-at; Ohishi, Yuji; Muta, Hiroaki [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Yamanaka, Shinsuke [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Research Institute of Nuclear Engineering, University of Fukui, Tsuruga (Japan); Nishide, Akinori [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji, Tokyo (Japan); Hayakawa, Jun [Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji, Tokyo (Japan); Kurosaki, Ken [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Research Institute of Nuclear Engineering, University of Fukui, Tsuruga (Japan); JST, PRESTO, Kawaguchi, Saitama (Japan)

    2018-02-15

    Metal silicide-based thermoelectric (TE) materials have attracted attention in the past two decades, because they are less toxic, with low production cost and high chemical stability. Here, we study the TE properties of ytterbium silicide YbSi{sub 2} with a specific layered structure and the mixed valence state of Yb{sup 2+} and Yb{sup 3+}. YbSi{sub 2} exhibits large Seebeck coefficient, S, accompanied by high electrical conductivity, σ, leading to high power factor, S{sup 2}σ, of 2.2 mW m{sup -1} K{sup -2} at room temperature, which is comparable to those of state-of-the-art TE materials such as Bi{sub 2}Te{sub 3} and PbTe. Moreover, YbSi{sub 2} exhibits high Grueneisen parameter of 1.57, which leads to relatively low lattice thermal conductivity, κ{sub lat}, of 3.0 W m{sup -1} K{sup -1} at room temperature. The present study reveals that YbSi{sub 2} can be a good candidate of TE materials working near room temperature. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Alloying of Yb-Cu and Yb-Ag utilizing liquid ammonia metal solutions of ytterbium

    Imamura, H.; Yoshimura, T.; Sakata, Y.

    2003-01-01

    In the course of the studies on preparation of novel compounds using the dissolution of Eu or Yb metals in liquid ammonia, the formation of Yb-Cu and Yb-Ag intermetallic films has been found. When Cu or Ag metal powders were placed in a reactor containing a solution of Yb metal in liquid ammonia, the dissolved Yb readily react with the Cu or Ag metal particles to form surface alloy compounds. X-ray diffraction of Yb-Cu showed that upon thermal treatment above 673 K, the Yb metal deposited on the Cu particles reacted together to be transformed into the YbCu 6.5 intermetallic compound. A characteristic endothermic peak at 749 K, due to alloying of Yb-Cu, was observed by the differential scanning calorimeter measurements. By use of the high reactivity of liquid ammonia metal solutions of ytterbium, it was found that the ytterbium intermetallic films were readily formed under mild conditions. Yb-Cu and Yb-Ag exhibited enhanced catalytic activity for the hydrogenation of ethene as a result of alloying

  2. Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses

    Qiao Yanbo; Wen Lei; Wu Botao; Ren Jinjun; Chen Danping; Qiu Jianrong

    2008-01-01

    Yb-doped and Yb-Al-codoped high silica glasses have been prepared by sintering nanoporous glasses. The absorption, fluorescent spectra and fluorescent lifetimes have been measured and the emission cross-section and minimum pump intensities were calculated. Codoping aluminum ions enhanced the fluorescence intensity of Yb-doped high silica glass obviously. The emission cross-sections of Yb-doped and Yb-Al-codoped high silica glasses were 0.65 and 0.82 pm 2 , respectively. The results show that Yb-Al-codoped high silica glass has better spectroscopic properties for a laser material. The study of high silica glass doped with ytterbium is helpful for its application in Yb laser systems, especially for high-power and high-repetition lasers

  3. Acoustic of monolithic dome structures

    Mostafa Refat Ismail

    2018-03-01

    The interior of monolithic domes have perfect, concave shapes to ensure that sound travels through the dome and perfectly collected at different vocal points. These dome structures are utilized for domestic use because the scale allows the focal points to be positioned across daily life activities, thereby affecting the sonic comfort of the internal space. This study examines the various acoustic treatments and parametric configurations of monolithic dome sizes. A geometric relationship of acoustic treatment and dome radius is established to provide architects guidelines on the correct selection of absorption needed to maintain the acoustic comfort of these special spaces.

  4. Quantum sized Ag nanocluster assisted fluorescence enhancement in Tm3+-Yb3+ doped optical fiber beyond plasmonics

    Chattopadhyay, Rik; Haldar, Arindam; Paul, Mukul C.; Das, Shyamal; Bhadra, Shyamal K.

    2015-01-01

    We report a process for enhancing fluorescence emission from conventional rare earth ions in optical fiber by metal nanocluster (MNC) in nonresonant indirect pumping. The process is completely different from formal metal enhanced fluorescence phenomenon as the MNCs are too small in size to support localized surface plasmon and the excitation wavelength is far from plasmon resonance frequency. We used an established theory of two coupled oscillators to explain the simultaneous enhancement of Ytterbium (Yb 3+ ) and Thulium (Tm 3+ ) emission by silver (Ag) NCs under nonresonant pumping in optical fiber. The fiber is pumped with a 980 nm fiber pigtailed laser diode with input power of 20–100 mW to excite the Yb 3+ . Four times enhancement of Yb 3+ emission of 900–1100 nm and Tm 3+ upconversion emission around 474 nm, 650 nm, and 790 nm is observed in the fiber with Ag NCs

  5. Hurricane Satellite (HURSAT) Microwave (MW)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hurricane Satellite (HURSAT) from Microwave (MW) observations of tropical cyclones worldwide data consist of raw satellite observations. The data derive from the...

  6. Monolithic fiber optic sensor assembly

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  7. Monolithic Integrated Ceramic Waveguide Filters

    Hunter, IC; Sandhu, MY

    2014-01-01

    Design techniques for a new class of integrated monolithic high permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled TEM filters with the same unloaded Q-Factor. Designs for both chebyshev and asymmetric generalized chebyshev filter are presented, with experimental results for an 1800 MHz chebyshev filter showing excellent agreement with theory.

  8. Quasi-three-level thin-disk laser at 1024 nm based on diode-pumped Yb:YAG crystal

    Wang, A G; Li, Y L; Fu, X H

    2011-01-01

    We present for the first time, to the best of our knowledge, a Yb:YAG laser operating in a continuous wave (CW) on the quasi-three-level laser at 1024 nm, based on the 2 F 5/2 – 2 F 7/2 transition, generally used for a 1030 nm emission. The use of a pump module with 16 passes through the crystal allowed the realization of a Yb:YAG thin-disk laser with 370 mW of CW output power at 1024 nm. Moreover, intracavity second-harmonic generation (SHG) has also been achieved with a power of 45 mW at 512 nm by using a LiB 3 O 5 (LBO) nonlinear crystal

  9. Protective Skins for Aerogel Monoliths

    Leventis, Nicholas; Johnston, James C.; Kuczmarski, Maria A.; Meador, Ann B.

    2007-01-01

    A method of imparting relatively hard protective outer skins to aerogel monoliths has been developed. Even more than aerogel beads, aerogel monoliths are attractive as thermal-insulation materials, but the commercial utilization of aerogel monoliths in thermal-insulation panels has been inhibited by their fragility and the consequent difficulty of handling them. Therefore, there is a need to afford sufficient protection to aerogel monoliths to facilitate handling, without compromising the attractive bulk properties (low density, high porosity, low thermal conductivity, high surface area, and low permittivity) of aerogel materials. The present method was devised to satisfy this need. The essence of the present method is to coat an aerogel monolith with an outer polymeric skin, by painting or spraying. Apparently, the reason spraying and painting were not attempted until now is that it is well known in the aerogel industry that aerogels collapse in contact with liquids. In the present method, one prevents such collapse through the proper choice of coating liquid and process conditions: In particular, one uses a viscous polymer precursor liquid and (a) carefully controls the amount of liquid applied and/or (b) causes the liquid to become cured to the desired hard polymeric layer rapidly enough that there is not sufficient time for the liquid to percolate into the aerogel bulk. The method has been demonstrated by use of isocyanates, which, upon exposure to atmospheric moisture, become cured to polyurethane/polyurea-type coats. The method has also been demonstrated by use of commercial epoxy resins. The method could also be implemented by use of a variety of other resins, including polyimide precursors (for forming high-temperature-resistant protective skins) or perfluorinated monomers (for forming coats that impart hydrophobicity and some increase in strength).

  10. Diode-pumped Kerr-lens mode-locked femtosecond Yb:YAG ceramic laser

    Zi-Ye, Gao; Jiang-Feng, Zhu; Ke, Wang; Jun-Li, Wang; Zhao-Hua, Wang; Zhi-Yi, Wei

    2016-02-01

    We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser based on an Yb:YAG ceramic. Stable laser pulses with 97-fs duration, 2.8-nJ pulse energy, and 320-mW average power were obtained. The femtosecond oscillator operated at a central wavelength of 1049 nm and a repetition rate of 115 MHz. To the best of our knowledge, this is the first demonstration of a Kerr-lens mode-locked operation in a diode-pumped Yb:YAG ceramic laser with sub-100 fs pulse duration. Project supported by the National Major Scientific Instrument Development Project of China (Grant No. 2012YQ120047), the National Natural Science Foundation of China (Grant No. 61205130), and the Fundamental Research Funds for the Central Universities, China (Grant No. JB140502).

  11. Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities

    Kozlovsky, William J.; Nabors, C. D.; Byer, Robert L.

    1988-01-01

    56-percent efficient external-cavity-resonant second-harmonic generation of a diode-laser pumped, CW single-axial-mode Nd:YAG laser is reported. A theory of external doubling with a resonant fundamental is presented and compared to experimental results for three monolithic cavities of nonlinear MgO:LiNbO3. The best conversion efficiency was obtained with a 12.5-mm-long monolithic ring cavity doubler, which produced 29.7 mW of CW, single-axial model 532-nm radiation from an input of 52.5 mW.

  12. InP Devices For Millimeter-Wave Monolithic Circuits

    Binari, S. C.; Neidert, R. E.; Dietrich, H. B.

    1989-11-01

    High efficiency, mm-wave operation has been obtained from lateral transferred-electron devices (TEDs) designed with a high resistivity region located near the cathode contact. At 29.9 GHz, a CW power output of 29.1 mW with a conversion efficiency of 6.7% has been achieved with cavity-tuned discrete devices. This result represents the highest power output and efficiency of a lateral TED in this frequency range. The lateral devices also had a CW power output of 0.4 mW at 98.5 GHz and 0.9 mW at 75.2 GHz. In addition, a monolithic oscillator incorporating the lateral TED has been demonstrated at 79.9 GHz. InP Schottky-barrier diodes have been fabricated using selective MeV ion implantation into semi-insulating InP substrates. Using Si implantation with energies of up to 6.0 MeV, n+ layers as deep as 3 μm with peak carrier concentrations of 2 x 1018 cm-3 have been obtained. These devices have been evaluated as mixers and detectors at 94 GHz and have demonstrated a conversion loss of 7.6 dB and a zero-bias detector sensitivity as high as 400 mV/mW.

  13. Are there non-statistical effects in /sup 173/Yb(n,gamma)/sup 174/Yb?

    Pospisil, S.; Becvar, F.; Chrien, R.E.; Kopecky, J.

    1987-01-01

    The resonance-averaged capture of neutrons in 173 Yb has been studied at energy of 2 keV. With a statistical significance of 99.5% an enhancement of E1-transition to the neutron 2QP levels in 174 Yb is observed. 8 refs

  14. HIGH REPETITION RATE MICROCHIP ER3+,YB3+:YAL3(BO34 DIODE-PUMPED LASER

    K. N. Gorbachenya

    2012-01-01

    Full Text Available Diode-pumped passively Q-switched microchip Er,Yb:YAl3(BO34 laser for range-finding has been demonstrated. By using a Co2+:MgAl2O4 as a saturable absorber TEM00–mode Q-switched average output power of 315 mW was demonstrated at 1522 nm with pulse duration of 5 ns and pulse energy of 5,25 μJ at a repetition rate of 60 kHz.

  15. Components for monolithic fiber chirped pulse amplification laser systems

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54

  16. Spectroscopic properties and diode-pumped 1594 nm laser performance of Er:Yb:Li6Y(BO3)3 crystal

    Zhao, Y. W.; Lin, Y. F.; Chen, Y. J.; Gong, X. H.; Luo, Z. D.; Huang, Y. D.

    2008-03-01

    An Er3+/Yb3+-codoped Li6Y(BO3)3 crystal was grown by the Czochralski method. The polarized absorption spectra and the fluorescence decay curve were recorded. The efficiency of energy transfer from Yb3+ to Er3+ ions was estimated. Quasi-continuous-wave output power of 325 mW at 1594 nm was realized under the absorbed pump power of 10.4 W in a hemispherical cavity. The absorbed pump threshold and slope efficiency of the laser are 6.0 W and 7.2%, respectively.

  17. Tubular depressed cladding waveguide laser realized in Yb: YAG by direct inscription of femtosecond laser

    Tang, Wenlong; Zhang, Wenfu; Liu, Xin; Liu, Shuang; Cheng, Guanghua; Stoian, Razvan

    2015-01-01

    We report on the fabrication of tubular depressed cladding waveguides in single crystalline Yb:YAG by the direct femtosecond laser writing technique. Full control over the confined light spatial distribution is demonstrated by the photoinscription of high index contrast waveguides with tubular configuration. Under optical pumping, highly efficient laser oscillation in depressed cladding waveguide at 1030 nm is demonstrated. The maximum output power obtained is 68 mW with a slope efficiency of 35% for an outcoupling transmission of 50%. A slope efficiency as high as 44% is realized when the coupling output ratio is 91% and a low lasing threshold of 70 mW is achieved with the output coupling mirror of 10%. (paper)

  18. 600 MW nuclear power database

    Cao Ruiding; Chen Guorong; Chen Xianfeng; Zhang Yishu

    1996-01-01

    600 MW Nuclear power database, based on ORACLE 6.0, consists of three parts, i.e. nuclear power plant database, nuclear power position database and nuclear power equipment database. In the database, there are a great deal of technique data and picture of nuclear power, provided by engineering designing units and individual. The database can give help to the designers of nuclear power

  19. A monolithic silicon detector telescope

    Cardella, G.; Amorini, F.; Cabibbo, M.; Di Pietro, A.; Fallica, G.; Franzo, G.; Figuera, P.; Papa, M.; Pappalardo, G.; Percolla, G.; Priolo, F.; Privitera, V.; Rizzo, F.; Tudisco, S.

    1996-01-01

    An ultrathin silicon detector (1 μm) thick implanted on a standard 400 μm Si-detector has been built to realize a monolithic telescope detector for simultaneous charge and energy determination of charged particles. The performances of the telescope have been tested using standard alpha sources and fragments emitted in nuclear reactions with different projectile-target colliding systems. An excellent charge resolution has been obtained for low energy (less than 5 MeV) light nuclei. A multi-array lay-out of such detectors is under construction to charge identify the particles emitted in reactions induced by low energy radioactive beams. (orig.)

  20. Imaging monolithic silicon detector telescopes

    Amorini, F.; Sipala, V.; Cardella, G.; Boiano, C.; Carbone, B.; Cosentino, L.; Costa, E.; Di Pietro, A.; Emanuele, U.; Fallica, G.; Figuera, P.; Finocchiaro, P.; La Guidara, E.; Marchetta, C.; Pappalardo, A.; Piazza, A.; Randazzo, N.; Rizzo, F.; Russo, G.V.; Russotto, P.

    2008-01-01

    We show the results of some test beams performed on a new monolithic strip silicon detector telescope developed in collaboration with the INFN and ST-microelectronics. Using an appropriate design, the induction on the ΔE stages, generated by the charge released in the E stage, was used to obtain the position of the detected particle. The position measurement, together with the low threshold for particle charge identification, allows the new detector to be used for a large variety of applications due to its sensitivity of only a few microns measured in both directions

  1. Luminescent properties of LuAG:Yb and YAG:Yb single crystalline films grown by Liquid Phase Epitaxy method

    Zorenko, Yu; Zorenko, T.; Gorbenko, V.; Voznyak, T.; Popielarski, P.; Batentschuk, M.; Osvet, A.; Brabec, Ch; Kolobanov, V.; Spasky, D.; Fedorov, A.

    2016-01-01

    In this work, investigation of the spectroscopic parameters of the luminescence of Yb"3"+ ions in single crystalline films of Lu_3Al_5O_1_2 and Y_3Al_5O_1_2 garnets was performed using the synchrotron radiation excitation with the energy in the range of Yb"3"+ charge transitions (CT), exciton range and the onset of interband transitions of these garnets. The basic spectroscopic parameters of the Yb"3"+ CT luminescence in LuAG and YAG hosts were determined and summarized with taking into account the differences in the band gap structure of these garnets. - Highlights: • Single crystalline films of Yb doped LuAG and YAG garnets were grown by LPE method. • Yb"3"+ luminescence of LuAG:Yb and YAG:Yb film were studied using synchrotron radiation. • Basic parameters of Yb"3"+ charge transfer luminescence in LuAG and YAG were determined.

  2. Growth and laser action of Yb: YVO4 crystals with low Yb doping concentration

    Zhong, Degao; Teng, Bing; Li, Jianhong; Zhang, Shiming; Zhang, Bingtao; Wang, Chao; Tian, Xueping; Liu, Junhai

    2012-11-01

    Yb: YVO4 single crystals with low doping concentrations of Yb3+ less than 0.3 at% were grown using the Czochralski method. The polarized absorption spectra were measured at room temperature. Strong anisotropy exists in the absorption spectra, resulting in almost entirely different features for π-polarization and σ-polarization. The laser emission spectrum and relationship curve between the output power and absorbed pump power (Pabs) were measured. The continuous-wave laser action of Yb: YVO4 single crystal in a range of 1020.4-1026.3 nm was realized by using a high-power diode laser as the pump source.

  3. Spectral and laser properties of Er3+/Yb3+/Ce3+ tri-doped Ca3NbGa3Si2O14 crystal at 1.55 µm

    Gong, Guoliang; Chen, Yujin; Lin, Yanfu; Huang, Jianhua; Gong, Xinghong; Luo, Zundu; Huang, Yidong

    2018-04-01

    An Er3+/Yb3+/Ce3+ tri-doped Ca3NbGa3Si2O14 (CNGS) crystal was grown by the Czochralski method. Spectral properties of the crystal, including the polarized absorption and fluorescence spectra, the fluorescence decay, as well as the energy transfer efficiency from Yb3+ to Er3+ were investigated in detail. End-pumped by a 976 nm diode laser, a 1556 nm continuous-wave laser with a maximum output power of 202 mW and a slope efficiency of 11.4% was achieved in the Er,Yb,Ce:CNGS crystal. The results indicate the Er,Yb,Ce:CNGS crystal is a promising 1.55 µm laser gain medium.

  4. Pump polarization insensitive and efficient laser-diode pumped Yb:KYW ultrafast oscillator.

    Wang, Sha; Wang, Yan-Biao; Feng, Guo-Ying; Zhou, Shou-Huan

    2016-02-01

    We theoretically and experimentally report and evaluate a novel split laser-diode (LD) double-end pumped Yb:KYW ultrafast oscillator aimed at improving the performance of an ultrafast laser. Compared to a conventional unpolarized single-LD end-pumped ultrafast laser system, we improve the laser performance such as absorption efficiency, slope efficiency, cw mode-locking threshold, and output power by this new structure LD-pumped Yb:KYW ultrafast laser. Experiments were carried out with a 1 W output fiber-coupled LD. Experimental results show that the absorption increases from 38.7% to 48.4%, laser slope efficiency increases from 18.3% to 24.2%, cw mode-locking threshold decreases 12.7% from 630 to 550 mW in cw mode-locking threshold, and maximum output-power increases 28.5% from 158.4 to 221.5 mW when we switch the pump scheme from an unpolarized single-end pumping structure to a split LD double-end pumping structure.

  5. Five MW Nuclear Heating Reactor

    Zhang Dafang; Dong Duo; Su Qingshan

    1997-01-01

    The 5 MW Nuclear Heating Reactor (NHR-5) developed and designed by the Institute of Nuclear Energy Technology (INET) has been operated for four winter seasons since 1989. During the time of commissioning and operation a number of experiments including self-stability, self-regulation, and simulation of ATWS etc. were carried out. Some operating experiences such as water chemistry, radiation protection and environmental impacts and so on were also obtained at the same time. All of these results demonstrate the design of the NHR-5 is successful. (author). 9 refs, 11 figs, 5 tabs

  6. Five MW Nuclear Heating Reactor

    Dafang, Zhang; Duo, Dong; Qingshan, Su [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The 5 MW Nuclear Heating Reactor (NHR-5) developed and designed by the Institute of Nuclear Energy Technology (INET) has been operated for four winter seasons since 1989. During the time of commissioning and operation a number of experiments including self-stability, self-regulation, and simulation of ATWS etc. were carried out. Some operating experiences such as water chemistry, radiation protection and environmental impacts and so on were also obtained at the same time. All of these results demonstrate the design of the NHR-5 is successful. (author). 9 refs, 11 figs, 5 tabs.

  7. Microfluidic devices and methods including porous polymer monoliths

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  8. Monolithic blue LED series arrays for high-voltage AC operation

    Ao, Jin-Ping [Satellite Venture Business Laboratory, University of Tokushima, Tokushima 770-8506 (Japan); Sato, Hisao; Mizobuchi, Takashi; Morioka, Kenji; Kawano, Shunsuke; Muramoto, Yoshihiko; Sato, Daisuke; Sakai, Shiro [Nitride Semiconductor Co. Ltd., Naruto, Tokushima 771-0360 (Japan); Lee, Young-Bae; Ohno, Yasuo [Department of Electrical and Electronic Engineering, University of Tokushima, Tokushima 770-8506 (Japan)

    2002-12-16

    Design and fabrication of monolithic blue LED series arrays that can be operated under high ac voltage are described. Several LEDs, such as 3, 7, and 20, are connected in series and in parallel to meet ac operation. The chip size of a single device is 150 {mu}m x 120 {mu}m and the total size is 1.1 mm x 1 mm for a 40(20+20) LED array. Deep dry etching was performed as device isolation. Two-layer interconnection and air bridge are utilized to connect the devices in an array. The monolithic series array exhibit the expected operation function under dc and ac bias. The output power and forward voltage are almost proportional to LED numbers connected in series. On-wafer measurement shows that the output power is 40 mW for 40(20+20) LED array under ac 72 V. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  9. A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics.

    Huang, Haiyun; Wang, Dejun; Xu, Yue

    2015-10-27

    This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS) technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW.

  10. Resonance transition array of Yb IV

    Kaufman, V.; Sugar, J.

    1976-01-01

    Nineteen pairs of lines in the wavelength range of 800--1300 A were identified as transitions to the two levels of the ground term of Yb IV, 4f 13 2 F. The 2 F 5 / 2 -- 2 F 7 / 2 interval is 10 214.0 cm -1 with an rms deviation of 0.4 cm -1

  11. Continuous-wave green thin-disk laser at 524 nm based on frequency-doubled diode-pumped Yb:GSO crystal

    Shao, Y; Zhang, D; Liu, H P; Jin, H J; Li, Y L; Tao, Z H; Ruan, Q R; Zhang, T Y

    2011-01-01

    We report what is believed to be the first demonstration of diode-pumped continuous-wave (CW) thin-disk Yb 3+ -doped Gd 2 SiO 5 (Yb:GSO) laser at 1048 nm. With a 3.8% output coupler, the maximum output power is 1.38 W under a pump power of 17.8 W. Moreover, intracavity second-harmonic generation (SHG) has also been achieved with a power of 337 mW at 524 nm by using a LiB 3 O 5 (LBO) nonlinear crystal. At the output power level of 337 mW, the green power stability is better than 5% and the ellipticity of spot is 0.97

  12. Nuclear spectroscopic studies in 162Yb

    Behrens, H.

    1980-01-01

    The decay of the highly excited 162 Yb nuclei formed in the reaction 150 Sm( 16 O,4n) 162 Yb to the ground state was studied using different gamma detectors and an electron spectrometer, a so called mini-orange. The isotope 162 Yb was moreover produced and spectroscoped by the beta-decay of 162 Lu. For the identification of decay cascades, which were passed after the fusion, and for the determination of the multipolarity of the contributing energy transitions a series of experiments took place: The excitation functions and the angular distributions of the emitted gamma radiation was measured, the conversion coefficients of important transitions were determined, and coincidence events between two detectors occasionally were registrated and analyzed. In the beta decay measurement an assignment of gamma transitions to 162 Yb followed due to the lifetime, under which they occured. The found states of 162 Yb upto spins of 22 h/2π and excitation energies above 5 MeV belong to five rotational bands. The yrast band shows a weak backbending. Corresponding to their spins and parities the bands can be reduced to intrinsic excitation of two quasineutrons. The analysis of the beta-decay of 162 Lu, which takes place from three states in 162 Lu, leads to the lowest levels of the gamma-vibrational band and the band head of the beta band. The microscopic interpretation of the rotational bands and the description of the backbending behaviour are as the interpretation of the states involved at the beta decay in agreement with experimental and theoretical results for neighbouring ytterbium isotopes. (orig.) [de

  13. Enhancing photovoltaic performance of dye-sensitized solar cell by rare-earth doped oxide of Lu2O3:(Tm3+, Yb3+)

    Li Qingbei; Lin Jianming; Wu Jihuai; Lan Zhang; Wang Yue; Peng Fuguo; Huang Miaoliang

    2011-01-01

    Highlights: → Tm 3+ /Yb 3+ codoped oxide is introduced into the TiO 2 film in dye-sensitized solar cell. → The RE improves light harvest via conversion luminescence and increases photocurrent. → The RE elevates the oxide film energy level and increases the cell photovoltage. → The cell efficiency is increased by 11.1% compared to the cell lacking of RE doping. - Abstract: In order to increase of the photocurrent, photovoltage and energy conversion efficiency of dye-sensitized solar cell (DSSC), rare-earth doped oxide of Lu 2 O 3 :(Tm 3+ , Yb 3+ ) is prepared and introduced into the TiO 2 film in the DSSC. As a luminescence medium, Lu 2 O 3 :(Tm 3+ , Yb 3+ ) improves incident light harvest via a conversion luminescence process and increases photocurrent; as a p-type dopant, the rare-earth ions elevate the energy level of the oxide film and increase the photovoltage. Under a simulated solar light irradiation of 100 mW cm -2 , the light-to-electric energy conversion efficiency of the DSSC with Lu 2 O 3 :(Tm 3+ , Yb 3+ ) doping reaches 6.63%, which is increased by 11.1% compared to the DSSC without Lu 2 O 3 :(Tm 3+ , Yb 3+ ) doping.

  14. A quasi-three-level dual-wavelength thin-disk laser at 1024 and 1030 nm based on a diode-pumped Yb:YAG crystal

    Sun, G C; Li, Y D; Zhao, M; Chen, X Y; Wang, J B; Chen, G B

    2013-01-01

    A diode-end-pumped Yb:YAG dual-wavelength continuous-wave (cw) laser that generates simultaneous laser action at wavelengths of 1024 and 1030 nm is demonstrated for the first time. A total output power of 897 mW for the dual-wavelength was achieved at an incident pump power of 17.8 W. Furthermore, intracavity sum-frequency mixing at 1024 and 1030 nm was then realized in an LBO crystal to reach the green range. We obtained a total cw output power of 85 mW at 513.5 nm. (paper)

  15. Monolithic solid-state lasers for spaceflight

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  16. Monolithically integrated 8-channel WDM reflective modulator

    Stopinski, S.T.; Malinowski, M.; Piramidowicz, R.; Smit, M.K.; Leijtens, X.J.M.

    2013-01-01

    In this work the design and characterization of a monolithically integrated photonic circuit acting as a reflective modulator for eight WDM channels is presented. The chip was designed and fabricated in a generic integration technology

  17. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    Wang, Daojing [Daly City, CA; Yang, Peidong [Kensington, CA; Kim, Woong [Seoul, KR; Fan, Rong [Pasadena, CA

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  18. Decomposition of monolithic web application to microservices

    Zaymus, Mikulas

    2017-01-01

    Solteq Oyj has an internal Wellbeing project for massage reservations. The task of this thesis was to transform the monolithic architecture of this application to microservices. The thesis starts with a detailed comparison between microservices and monolithic application. It points out the benefits and disadvantages microservice architecture can bring to the project. Next, it describes the theory and possible strategies that can be used in the process of decomposition of an existing monoli...

  19. A 1.5 Gb/s monolithically integrated optical receiver in the standard CMOS process

    Xiao Xindong; Mao Luhong; Yu Changliang; Zhang Shilin; Xie Sheng, E-mail: xxd@tju.edu.c [School of Electronic Information Engineering, Tianjin University, Tianjin 300072 (China)

    2009-12-15

    A monolithically integrated optical receiver, including the photodetector, has been realized in Chartered 0.35 {mu}m EEPROM CMOS technology for 850 nm optical communication. The optical receiver consists of a differential photodetector, a differential transimpedance amplifier, three limiting amplifiers and an output circuit. The experiment results show that the receiver achieves an 875 MHz 3 dB bandwidth, and a data rate of 1.5 Gb/s is achieved at a bit-error-rate of 10{sup -9}. The chip dissipates 60 mW under a single 3.3 V supply. (semiconductor integrated circuits)

  20. A 1.5 Gb/s monolithically integrated optical receiver in the standard CMOS process

    Xiao Xindong; Mao Luhong; Yu Changliang; Zhang Shilin; Xie Sheng

    2009-01-01

    A monolithically integrated optical receiver, including the photodetector, has been realized in Chartered 0.35 μm EEPROM CMOS technology for 850 nm optical communication. The optical receiver consists of a differential photodetector, a differential transimpedance amplifier, three limiting amplifiers and an output circuit. The experiment results show that the receiver achieves an 875 MHz 3 dB bandwidth, and a data rate of 1.5 Gb/s is achieved at a bit-error-rate of 10 -9 . The chip dissipates 60 mW under a single 3.3 V supply. (semiconductor integrated circuits)

  1. ZnMoO4:Er3+,Yb3+ phosphor with controlled morphology and enhanced upconversion through alkali ions doping

    Luitel, Hom Nath; Chand, Rumi; Watari, Takanori

    2018-04-01

    A facile hydrothermal method was used to synthesize ZnMoO4:Er3+,Yb3+ nanoparticles. The shapes and sizes of the nanoparticles were well tuned by simply monitoring the pH of the starting solution. Microballs consisting of agglomerated nanograins were observed at strong acidic condition. At mild pH, plates and rectangular particles were realized, while strong basic pH stabilized rods. Further increasing pH to extremely basic conditions (pH > 13), rods changed to fragile hairy structures. The nucleation and growth mechanism of nanograins to form different morphology nanoparticles were studied and illustrated. XRD patterns confirmed well crystalline, triclinic structure despite small amount of aliovalent metal ions doping. Under 980 nm excitation, the ZnMoO4:Er3+,Yb3+ nanophosphor exhibited strong green (centered at 530 and 560 nm) and weak red (centered at 660 nm) upconversion (UC) emissions. Substitution of part of the Zn2+ ions by monovalent alkali ions intensified the UC emission intensities drastically. The order of intensification was K+>Na+>Li+>Rb+>no alkali ion. When Zn2+ ions were substituted with 10 at% K+ ions, the green and red UC emissions intensities increased by more than 50 and 15 folds, respectively. Time dependent measurements confirmed efficient Yb to Er energy transfer in the ZnMoO4:Er3+,Yb3+,K+ nanophosphor. The optimized ZnMoO4:Er3+,Yb3+,K+ phosphor exhibited intense UC emissions with 0.31% quantum yield. The upconverted light is visible to naked eye while pumping by laser of less than 1 mW power and opens door for variety of novel applications.

  2. Activated Carbon Fiber Monoliths as Supercapacitor Electrodes

    Gelines Moreno-Fernandez

    2017-01-01

    Full Text Available Activated carbon fibers (ACF are interesting candidates for electrodes in electrochemical energy storage devices; however, one major drawback for practical application is their low density. In the present work, monoliths were synthesized from two different ACFs, reaching 3 times higher densities than the original ACFs’ apparent densities. The porosity of the monoliths was only slightly decreased with respect to the pristine ACFs, the employed PVDC binder developing additional porosity upon carbonization. The ACF monoliths are essentially microporous and reach BET surface areas of up to 1838 m2 g−1. SEM analysis reveals that the ACFs are well embedded into the monolith structure and that their length was significantly reduced due to the monolith preparation process. The carbonized monoliths were studied as supercapacitor electrodes in two- and three-electrode cells having 2 M H2SO4 as electrolyte. Maximum capacitances of around 200 F g−1 were reached. The results confirm that the capacitance of the bisulfate anions essentially originates from the double layer, while hydronium cations contribute with a mixture of both, double layer capacitance and pseudocapacitance.

  3. Uncooled monolithic ferroelectric IRFPA technology

    Belcher, James F.; Hanson, Charles M.; Beratan, Howard R.; Udayakumar, K. R.; Soch, Kevin L.

    1998-10-01

    Once relegated to expensive military platforms, occasionally to civilian platforms, and envisioned for individual soldiers, uncooled thermal imaging affords cost-effective solutions for police cars, commercial surveillance, driving aids, and a variety of other industrial and consumer applications. System prices are continuing to drop, and swelling production volume will soon drive prices substantially lower. The impetus for further development is to improve performance. Hybrid barium strontium titanate (BST) detectors currently in production are relatively inexpensive, but have limited potential for improved performance. The MTF at high frequencies is limited by thermal conduction through the optical coating. Microbolometer arrays in development at Raytheon have recently demonstrated performance superior to hybrid detectors. However, microbolometer technology lacks a mature, low-cost system technology and an abundance of upgradable, deployable system implementations. Thin-film ferroelectric (TFFE) detectors have all the performance potential of microbolometers. They are also compatible with numerous fielded and planned system implementations. Like the resistive microbolometer, the TFFE detector is monolithic; i.e., the detector material is deposited directly on the readout IC rather than being bump bonded to it. Imaging arrays of 240 X 320 pixels have been produced, demonstrating the feasibility of the technology.

  4. CW and femtosecond operation of a diode-pumped Yb:BaY(2)F(8) laser.

    Galzerano, G; Coluccelli, N; Gatti, D; Di Lieto, A; Tonelli, M; Laporta, P

    2010-03-15

    We report for the first time on laser action of a diode-pumped Yb:BaY(2)F(8) crystal. Both CW and femtosecond operations have been demonstrated at room-temperature conditions. A maximum output power of 0.56 W, a slope efficiency of 34%, and a tunability range from 1013 to 1067 nm have been obtained in CW regime. Transform-limited pulse trains with a minimum duration of 275 fs, an average power of 40 mW, and a repetition rate of 83 MHz have been achieved in a passive mode-locked regime using a semiconductor saturable absorber mirror.

  5. Kerr-Lens Mode-Locked Femtosecond Yb:GdYSiO5 Laser Directly Pumped by a Laser Diode

    Jiangfeng Zhu

    2015-10-01

    Full Text Available We demonstrate the first Kerr-lens mode-locked operation in a diode-pumped Yb:GdYSiO5 oscillator. Under a diode pump power of 5 W, 141 fs pulses with an average power of 237 mW were obtained at a repetition rate of 118 MHz. The central wavelength was at 1094 nm with a bandwidth of 10.1 nm. Shorter pulses were obtained by adjusting the cavity to operate at a shorter wavelength, resulting in 55 fs pulse duration at the central wavelength of 1054 nm with a bandwidth of 23.5 nm.

  6. 650-nJ pulses from a cavity-dumped Yb:fiber-pumped ultrafast optical parametric oscillator

    Lamour, Tobias P.; Reid, Derryck T.

    2011-08-01

    Sub-250-fs pulses with energies of up to 650 nJ and peak powers up to 2.07 MW were generated from a cavity-dumped optical parametric oscillator, synchronously-pumped at 15.3 MHz with sub-400-fs pulses from an Yb:fiber laser. The average beam quality factor of the dumped output was M2 ~1.2 and the total relative-intensity noise was 8 mdBc, making the system a promising candidate for ultrafast laser inscription of infrared materials.

  7. Excited negative parity bands in 160Yb

    Saha, A.; Bhattacharjee, T.; Curien, D.; Dedes, I.; Mazurek, K.; Banerjee, S. R.; Rajbanshi, S.; Bisoi, A.; de Angelis, G.; Bhattacharya, Soumik; Bhattacharyya, S.; Biswas, S.; Chakraborty, A.; Das Gupta, S.; Dey, B.; Goswami, A.; Mondal, D.; Pandit, D.; Palit, R.; Roy, T.; Singh, R. P.; Saha Sarkar, M.; Saha, S.; Sethi, J.

    2018-03-01

    Negative parity rotational bands in {} 70160Yb{}90 nucleus have been studied. They were populated in the 148Sm(16O, 4n)160Yb reaction at 90 MeV. The gamma-coincidence data have been collected using Indian National Gamma Array composed of twenty Compton suppressed clover germanium (Ge) detectors. Double gating on triple gamma coincidence data were selectively used to develop the decay scheme for these negative parity bands by identifying and taking care of the multiplet transitions. The even- and odd-spin negative parity bands in 160Yb have been studied by comparing the reduced transition probability ratios with the similar bands in neighbouring even-even rare earth nuclei. It is concluded that the concerned odd-spin and even-spin bands are not signature partners and that their structures are compatible with those of the ‘pear-shape’ and ‘pyramid-shape’ oscillations, respectively, the octupole shapes superposed with the quadrupole shape of the ground-state.

  8. Melt processing of Yb-123 tapes

    Athur, S. P.; Balachandran, U.; Salama, K.

    2000-01-01

    The innovation of a simple, scalable process for manufacturing long-length conductors of HTS is essential to potential commercial applications such as power cables, magnets, and transformers. In this paper the authors demonstrate that melt processing of Yb-123 tapes made by the PIT route is an alternative to the coated conductor and Bi-2223 PIT tape fabrication techniques. Ag-clad Yb-123 tapes were fabricated by groove rolling and subsequently, melt processed in different oxygen partial pressures in a zone-melting furnace with a gradient of 140 C/cm. The transition temperatures measured were found to be around 81 K undermost processing conditions. EPMA of the tapes processed under different conditions show the 123 phase to be Ba deficient and Cu and Yb rich. Critical current was measured at various temperatures from 77 K to 4.2 K. The J c increased with decrease in pO 2 . The highest I c obtained was 52 A at 4.2 K

  9. Structural, spectroscopic, and tunable laser properties of Yb3+ -doped NaGd(WO4)2

    Cascales, C.; Serrano, M. D.; Esteban-Betegón, F.; Zaldo, C.; Peters, R.; Petermann, K.; Huber, G.; Ackermann, L.; Rytz, D.; Dupré, C.; Rico, M.; Liu, J.; Griebner, U.; Petrov, V.

    2006-11-01

    Single crystals of Yb3+ -doped NaGd(WO4)2 with up to 20mol% ytterbium content have been grown by the Czochralski technique in air or in N2+O2 atmosphere and cooled to room temperature at different rates (4-250°C/h) . Only the noncentrosymmetric tetragonal space group I4¯ accounts for all reflections observed in the single crystal x-ray diffraction analysis. The distortion of this symmetry with respect to the centrosymmetric tetragonal space group I41/a is much lower for crystals cooled at a fast rate. Na+ , Gd3+ , and Yb3+ ions share the two nonequivalent 2b and 2d sites of the I4¯ structure, but Yb3+ (and Gd3+ ) ions are found preferentially in the 2b site. Optical spectroscopy at low (5K) temperature provides additional evidence of the existence of these two sites contributing to the line broadening. The comparison with the F7/22(n) and F5/22(n') Stark energy levels calculated using the crystallographic Yb-O bond distances allows to correlate the experimental optical bands with the 2b and 2d sites. As a novel uniaxial laser host for Yb3+ , NaGd(WO4)2 is characterized also with respect to its transparency, band-edge, refractive indices, and main optical phonons. Continuous-wave Yb3+ -laser operation is studied at room temperature both under Ti:sapphire and diode laser pumping. A maximum slope efficiency of 77% with respect to the absorbed power is achieved for the π polarization by Ti:sapphire laser pumping in a three-mirror cavity with Brewster geometry. The emission is tunable in the 1014-1079nm spectral range with an intracavity Lyot filter. Passive mode locking of this laser produces 120fs long pulses at 1037.5nm with an average power of 360mW at ≈97MHz repetition rate. Using uncoated samples of Yb:NaGd(WO4)2 at normal incidence in simple two-mirror cavities, output powers as high as 1.45W and slope efficiencies as high as 51% are achieved with different diode laser pump sources.

  10. Development of Yb-169 radiation source for new nondestructive inspection

    Yamabayashi, Hisamichi

    1994-01-01

    As the nondestructive inspection method for large structures, there has been radiography, and X-ray and γ-ray have been used as the radiation. The transmissivity of radiation through materials changes by the energy of the radiation and the density and thickness of the materials. At present about 880 γ-ray radiography apparatuses are used in Japanese private enterprises, and about 70% of them use 192 Ir γ-ray sources, and about 30% use 60 Co or 137 Cs sources. Recently the defect inspection for the worlded parts of thin wall small tubes and so on have become to be regarded as important, and the 169 Yb source that emits lower energy γ-ray is suitable to the purpose. There are many reports that 169 Yb radiography was applied successfully. As the 169 Yb radiation source, pellets and balls are on the market. 169 Yb is made by the neutron irradiation of 168 Yb in nuclear reactors. The characteristics of 169 Yb, the manufacture of 169 Yb radiation sources and the applicability of 169 Yb radiation sources to nondestructive inspection are reported. Also in Japan, many basic experiments on 169 Yb radiation sources have been carried out, and the irradiation apparatuses are small and light, and the control area can be set small. (K.I.)

  11. Single-crystal structure refinement of YbF{sub 2} with a remark about YbH{sub 2}

    Reckeweg, Olaf; DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States). Dept. of Chemistry and Chemical Biology

    2017-07-01

    Transparent-yellow single crystals of YbF{sub 2} were obtained as only crystalline product from the solid-state reaction of Yb and teflon designed to yield 'Yb{sub 3}C{sub 3}F{sub 2}' in addition to some amorphous black material. The first single-crystal structure determination of YbF{sub 2} (cubic space group Fm anti 3m, CaF{sub 2}-type structure, a = 559.46(16) pm; R1 = 1.2%, wR2 = 3.2%) was the starting point to compare isostructural binary fluorides MF{sub 2} and hydrides MH{sub 2} (M = Ca, Yb, Eu, Sr and Ba) exhibiting an as-yet unexplained small volume per formula unit for YbH{sub 2}.

  12. Conceptual designs for 100-MW space radiators

    Prenger, F.C.; Sullivan, J.A.

    1982-01-01

    A description and comparison of heat rejection systems for multimegawatt space-based power supplies is given. Current concepts are described, and through a common performance parameter, these are compared with three advanced radiator concepts. The comparison is based on a power system that rejects 100 MW of heat while generating 10 MW of electrical power

  13. Passively Q-switched microchip Er, Yb:YAl3(BO3)4 diode-pumped laser.

    Kisel, V E; Gorbachenya, K N; Yasukevich, A S; Ivashko, A M; Kuleshov, N V; Maltsev, V V; Leonyuk, N I

    2012-07-01

    We report, for the first time to our knowledge, a diode-pumped cw and passively Q-switched microchip Er, Yb:YAl(3)(BO(3))(4) laser. A maximal output power of 800 mW at 1602 nm in the cw regime was obtained at an absorbed pump power of 7.7 W. By using Co(2+):MgAl(2)O(4) as a saturable absorber, a TEM(00)-mode Q-switched average output power of 315 mW was demonstrated at 1522 nm, with pulse duration of 5 ns and pulse energy of 5.25 μJ at a repetition rate of 60 kHz.

  14. Fire resistance of prefabricated monolithic slab

    Gravit Marina

    2017-01-01

    Full Text Available A prefabricated monolithic slab (PMS has a number of valuable advantages, they allow to significantly decrease the weight of construction keeping the necessary structural-load capacity, to speed up and cheapen work conduction, to increase the heat isolating properties of an enclosure structure [1]. In order to create a design method of prefabricated monolithic slab fire-resistance, it's necessary to perform a series of PMS testing, one of which is being described in this article. Subjected to the test is a fragment of prefabricated monolithic slab with polystyrene concrete inserts along the beams with bent metal profile 250 mm thick, with a 2.7 m span loaded with evenly spread load equal to 600 kg/m2. After 3 hour testing for fire-resistance [2] no signs of construction ultimate behavior were detected.

  15. Synthesis and up-conversion emissions of Yb3+/Er3+, Yb3+/Tm3+

    42

    which has received considerable attention for material studies [25-28]. ... Though the energy gap between the ground state 8S7/2 and the first excited state 6P7/2 of ... XRD pattern (Figure 1a) of the 20 mol% Yb3+, 2 mol% Er3+ co-doped ...

  16. Enhanced frequency upconversion study in Er3+/Yb3+ doped/codoped TWTi glasses

    Azam, Mohd; Rai, Vineet Kumar

    2018-04-01

    Er3+/Yb3+ doped/codoped TeO2-WO3-TiO2 (TWTi) glasses have been prepared by using the melt-quenching technique. The upconversion (UC) emission spectra of the developed glasses have been recorded upon 980 nm laser excitation. Three intense UC emission bands have been observed within the green and red region centered at ˜532 nm, ˜553 nm and ˜669 nm corresponding to the 2H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions respectively in the singly Er3+ doped glass. On introducing Yb3+ ions in the singly Er3+ doped glass, an enhancement of about ˜ 12 times and ˜50 times in the green and red bands respectively have been observed even at low pump power ˜ 364 mW followed by two photon absorption process. Colour tunability from yellowish green to pure green colour region has been observed on varying the pump power. The prepared glass can be used to produce NIR to green upconverter and colour tunable display devices.

  17. Diode-pumped passively mode-locked sub-picosecond Yb:LuAG ceramic laser

    Zhu Jiang-Feng; Liu Kai; Wang Jun-Li; Yang Yu; Wang Hui-Bo; Gao Zi-Ye; Jiang Li; Xie Teng-Fei; Chao-Yu Li; Pan Yu-Bai; Wei Zhi-Yi

    2017-01-01

    In this paper the laser activities of a diode-pumped Yb:LuAG ceramic which was prepared by the solid-state reactive sintering method were reported. The maximum output power was 1.86 W in the continuous wave (CW) laser operation, corresponding to a slope efficiency of 53.6%. The CW laser could be tuned from 1030 to 1096 nm by inserting a prism in the cavity. With the assist of a semiconductor saturable absorber mirror (SESAM), passive mode-locking was realized, delivering sub-picosecond pulses with 933 fs duration and an average power of 532 mW at a repetition rate of 90.35 MHz. (paper)

  18. Optical properties of highly crystalline Y2O3:Er,Yb nanoparticles prepared by laser ablation in water

    Nunokawa, Takashi; Odawara, Osamu; Wada, Hiroyuki

    2014-01-01

    Y 2 O 3 :Er,Yb nanoparticles were prepared by laser ablation in water. We investigated crystallinity, distribution of dopant, and optical properties of the prepared nanoparticles. The full-width half-maximum (FWHD) of the crystalline peak of nanoparticles measured by an x-ray diffractometer (XRD) barely changed. Further, using scanning transmission electron microscopy–energy dispersive x-ray spectroscopy (STEM–EDX), we confirmed the peaks of Y, Er, Yb, and O. Moreover, on the basis of the optical properties of the nanoparticles, the emission of red ( 2 F 9/2  →  4 I 15/2 ) and green ( 2 H 11/2 , 4 S 3/2  →  4 I 15/2 ) was confirmed. We also investigated the emission intensity as a function of the excitation power of 980 nm LD in the prepared nanoparticles. The photon avalanche effect was observed at the excitation power of 100 mW. These results confirmed that uniformly Er-Yb-doped Y 2 O 3 nanoparticles were successfully prepared by laser ablation in water. (paper)

  19. Valence mixing in YbCuAl: a case study

    Mattens, W.

    1980-01-01

    Results are presented of a study of the valence state of Yb in the intermetallic compound YbCuAl. Both macroscopic physical properties (magnetic susceptibility, heat capacity, thermal expansion, electric resistivity) and microscopic physical properties (neutron inelastic scattering, nuclear magnetic resonance) are determined. The results are compared with a local Fermi liquid theory. (G.T.H.)

  20. Level structures in Yb nuclei far from stable nuclei

    Hashizume, Akira

    1982-01-01

    Applying n-γ, γ-γ coincidence techniques, the excited levels in 158 Yb and in 157 Yb nuclei were studied. Stress is placed ona neutron detection technique to assign (HI,xn) reactions which produce the nuclei far from β stability line. (author)

  1. Long-Wavelength InAs/GaAs Quantum-Dot Light Emitting Sources Monolithically Grown on Si Substrate

    Siming Chen

    2015-06-01

    Full Text Available Direct integration of III–V light emitting sources on Si substrates has attracted significant interest for addressing the growing limitations for Si-based electronics and allowing the realization of complex optoelectronics circuits. However, the high density of threading dislocations introduced by large lattice mismatch and incompatible thermal expansion coefficient between III–V materials and Si substrates have fundamentally limited monolithic epitaxy of III–V devices on Si substrates. Here, by using the InAlAs/GaAs strained layer superlattices (SLSs as dislocation filter layers (DFLs to reduce the density of threading dislocations. We firstly demonstrate a Si-based 1.3 µm InAs/GaAs quantum dot (QD laser that lases up to 111 °C, with a low threshold current density of 200 A/cm2 and high output power over 100 mW at room temperature. We then demonstrate the operation of InAs/GaAs QD superluminescent light emitting diodes (SLDs monolithically grown on Si substrates. The fabricated two-section SLD exhibits a 3 dB linewidth of 114 nm, centered at ~1255 nm with a corresponding output power of 2.6 mW at room temperature. Our work complements hybrid integration using wafer bonding and represents a significant milestone for direct monolithic integration of III–V light emitters on Si substrates.

  2. Monolithic JFET preamplifier for ionization chamber calorimeter

    Radeka, V.; Rescia, S.; Manfredi, P.F.; Speziali, V.

    1990-10-01

    A monolithic charge sensitive preamplifier using exclusively n-channel diffused JFETs has been designed and is now being fabricated by INTERFET Corp. by means of a dielectrically isolated process which allows preserving as much as possible the technology upon which discrete JFETs are based. A first prototype built by means of junction isolated process has been delivered. The characteristics of monolithically integrated JFETs compare favorably with discrete devices. First results of tests of a preamplifier which uses these devices are reported. 4 refs

  3. Increased thermal conductivity monolithic zeolite structures

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  4. Technology development for SOI monolithic pixel detectors

    Marczewski, J.; Domanski, K.; Grabiec, P.; Grodner, M.; Jaroszewicz, B.; Kociubinski, A.; Kucharski, K.; Tomaszewski, D.; Caccia, M.; Kucewicz, W.; Niemiec, H.

    2006-01-01

    A monolithic detector of ionizing radiation has been manufactured using silicon on insulator (SOI) wafers with a high-resistivity substrate. In our paper the integration of a standard 3 μm CMOS technology, originally designed for bulk devices, with fabrication of pixels in the bottom wafer of a SOI substrate is described. Both technological sequences have been merged minimizing thermal budget and providing suitable properties of all the technological layers. The achieved performance proves that fully depleted monolithic active pixel matrix might be a viable option for a wide spectrum of future applications

  5. Near-yrast spectroscopy of 164Yb and neighbouring nuclei

    Jonsson, S.; Roy, H. and others.

    1983-03-01

    High-spin states in 164 Yb have been populated in the 152 Sm( 16 0,4n) and 150 Sm( 18 0,4n) reactions. From studies of γ-γ coincidences, γ-ray angular distributions and conversion electron measurements the level scheme has been constructed. The g-band and the S-band have been established to spin and parity 22(sup)+ and 26(sup)+, respectively, and the rotational sequences (π,α)=(-,1) 1 , (-,0) 1 and (-,0) 2 to 23(sup)-, 24(sup)- and 18(sup)-, respectively. The sidebands in 162 , 164 Er and 164 , 166 Yb are discussed. Constructed two-quasineutron configurations and cranked shell model (CSM) calculations are compared with the experimental results in 164 Yb. Residual interactions between quasiparticles in 164 Yb are calculated. Crossing frequencies and the gain in alignment are summarized for the Yb isotopes and the main features are discussed. (author)

  6. The DAN-AERO MW Experiments

    Aagaard Madsen, Helge; Bak, Christian; Schmidt Paulsen, Uwe

    a number of coordinated, innovative measurements on full scale MW size rotors as well as on airfoils for MW size turbines in wind tunnels. Shear and turbulence inflow characteristics were measured on a Siemens 3.6 MW turbine with a five hole pitot tube. Pressure and turbulent inflow characteristics were...... on the blade was further instrumented with around 50 microphones for high frequency surface pressure measurements. The surface pressure measurements have been correlated with inflow measurements from four five hole pitot tubes and two sensors for measuring the high frequency (50 Hz to10 kHz) contents...

  7. Brief introduction to 60 MW CARR

    Tonghua, Yang; Chuntang, Ye [China Inst. of Atomic Energy, Beijing BJ (China)

    1998-10-01

    CARR, a 60 MW reactor will be constructed at China Institute of Atomic Energy (CIAE). The reactor type, its safety features, core lay-out, fuel assemblies, main parameters designed, main applications of are briefly described. (author)

  8. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    Jantzen, C

    2006-01-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO 2 and steam, and nitrate/nitrite components, if any, to N 2 . The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO 4 , I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the 2 durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form

  9. Package Holds Five Monolithic Microwave Integrated Circuits

    Mysoor, Narayan R.; Decker, D. Richard; Olson, Hilding M.

    1996-01-01

    Packages protect and hold monolithic microwave integrated circuit (MMIC) chips while providing dc and radio-frequency (RF) electrical connections for chips undergoing development. Required to be compact, lightweight, and rugged. Designed to minimize undesired resonances, reflections, losses, and impedance mismatches.

  10. 30 400 MW worldwide in early 2003

    Anon.

    2003-01-01

    Accounting for more than 74% of wind power output in the world, Europe is now more than ever the spearhead of the wind energy industry. First estimates for 2002 show a 6 000 MW progression that now places total world output around 30 400 MW, that is enough to electrify 17 million households. Nevertheless, although it's still growing at a remarkable speed, the rate of development for wind energy has slowed down for the first time in years. (authors)

  11. Magnetic susceptibility of YbN

    Zhou, Y.; Bowen, S.P.; Koelling, D.D.; Monnier, R.

    1991-01-01

    Applying the Zwicknagl, Zevin, and Fulde (ZZF) approximation for the spectral densities of the occupied and empty f states resulting from a degenerate-Anderson-impurity model, which incorporates crystal fields, we compute the low-temperature magnetic susceptibility of YbN. The model, in which each crystal-field level couples to the band states with its own hybridization function, has previously been successfully applied without the ZZF approximation to explain the specific-heat structure at low temperatures. The ZZF approximation removes the spurious zero-temperature behavior of the parent noncrossing approximation for the susceptibility. Surprisingly, even at the low crystal-field degeneracy (N=2) of YbN, the Shiba relation is very nearly satisfied. The appropriate experimental impurity susceptibility for comparison is extracted from the measurement by removing an empirical exchange interaction. The resultant Kondo temperature (T 0 =8.49 K) is consistent with previous specific-heat estimates (10--11 K), and the agreement with experiment is good

  12. Methacrylate monolithic columns functionalized with epinephrine for capillary electrochromatography applications.

    Carrasco-Correa, Enrique Javier; Ramis-Ramos, Guillermo; Herrero-Martínez, José Manuel

    2013-07-12

    Epinephrine-bonded polymeric monoliths for capillary electrochromatography (CEC) were developed by nucleophilic substitution reaction of epoxide groups of poly(glycidyl-methacrylate-co-ethylenedimethacrylate) (poly(GMA-co-EDMA)) monoliths using epinephrine as nucleophilic reagent. The ring opening reaction under dynamic conditions was optimized. Successful chemical modification of the monolith surface was ascertained by in situ Raman spectroscopy characterization. In addition, the amount of epinephrine groups that was bound to the monolith surface was evaluated by oxidation of the catechol groups with Ce(IV), followed by spectrophotometric measurement of unreacted Ce(IV). About 9% of all theoretical epoxide groups of the parent monolith were bonded to epinephrine. The chromatographic behavior of the epinephrine-bonded monolith in CEC conditions was assessed with test mixtures of alkyl benzenes, aniline derivatives and substituted phenols. In comparison to the poly(GMA-co-EDMA) monoliths, the epinephrine-bonded monoliths exhibited a much higher retention and slight differences in selectivity. The epinephrine-bonded monolith was further modified by oxidation with a Ce(IV) solution and compared with the epinephrine-bonded monoliths. The resulting monolithic stationary phases were evaluated in terms of reproducibility, giving RSD values below 9% in the parameters investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Vaporization thermodynamics of Pd-rich intermediate phases in the Pd–Yb system

    Ciccioli, A., E-mail: andrea.ciccioli@uniroma1.it [Dipartimento di Chimica, Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma (Italy); Balducci, G.; Gigli, G. [Dipartimento di Chimica, Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma (Italy); Provino, A. [Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genova (Italy); Istituto SPIN-CNR, Corso Perrone 24, 16152 Genova (Italy); Palenzona, A. [Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genova (Italy); Manfrinetti, P. [Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genova (Italy); Istituto SPIN-CNR, Corso Perrone 24, 16152 Genova (Italy)

    2016-02-20

    Highlights: • Vaporization equilibria of Pd–Yb intermediate phases investigated by effusion techniques. • Heats of formation of Pd–Yb compounds determined from decomposition/atomization enthalpies. • Phase diagram of the Pd–Yb system re-drawn. • Influence of the Yb valence state on the thermodynamic properties observed. - Abstract: The vaporization thermodynamics of several intermediate phases in the Pd–Yb system was investigated by means of vaporization experiments performed under Knudsen conditions (KEML, Knudsen Effusion Mass Loss). The following thermal decomposition processes were studied in the overall temperature range 819–1240 K and their enthalpy changes determined: 4 PdYb(s) = Pd{sub 4}Yb{sub 3}(s) + Yb(g); 5/3 Pd{sub 4}Yb{sub 3}(s) = 4/3 Pd{sub 5}Yb{sub 3}(s) + Yb(g); 21/13 Pd{sub 5}Yb{sub 3}(s) = 5/13 Pd{sub 21}Yb{sub 10}(s) + Yb(g); 1/3 Pd{sub 21}Yb{sub 10}(s) = 21/9 Pd{sub 3}Yb(s) + Yb(g). Additional measurements were performed by KEMS (Knudsen Effusion Mass Spectrometry) on a Pd-rich two-phase sample, which allowed to detect both Yb(g) and Pd(g) in the vapor phase and to determine the atomization enthalpy of the Pd{sub 3}Yb phase (Pd-rich composition boundary, Pd{sub 3.08}Yb{sub 0.92}): Pd{sub 3.08}Yb{sub 0.92}(s) = 0.92 Yb(g) + 3.08 Pd(g). The enthalpy of formation of this compound was thereafter determined as −68 ± 2 kJ/mol at. and, by combining this value with the decomposition enthalpies derived by KEML, the enthalpies of formation of the studied Pd–Yb intermediate phases were evaluated (kJ/mol at.): −75 ± 4 (Pd{sub 21}Yb{sub 10}), −75 ± 3 (Pd{sub 5}Yb{sub 3}), −73 ± 3 (Pd{sub 4}Yb{sub 3}), and −66 ± 3 (PdYb). A modified version of the Pd–Yb phase diagram is also reported, re-drawn on the basis of literature data and of new experimental information recently become available.

  14. Level Densities and Radiative Strength Functions in 170,171Yb

    Agvaanluvsan, U.; Schiller, A.; Becker, J.A.; Berstein, L.A.; Guttormsen, M.; Mitchell, G.E.; Rekstad, J.; Siem, S.; Voinov, A.

    2003-01-01

    Level densities and radiative strength functions in 171 Yb and 170 Yb nuclei have been measured with the 171 Yb( 3 He, 3 He(prime) γ) 171 Yb and 171 Yb( 3 He, αγ) 170 Yb reactions. A simultaneous determination of the nuclear level density and the radiative strength function was made. The present data adds to and is consistent with previous results for several other rare earth nuclei. The method will be briefly reviewed and the result from the analysis will be presented. The radiative strength function for 171 Yb is compared to previously published work.

  15. Labelling of ethylenediaminetetramethylene phosphonic acid (EDTMP) with 175Yb

    Azmairit Aziz

    2009-01-01

    Ytterbium-175 ( 175 Yb) is one of radioisotopes that can be used for therapy due to its β-particle emission (T 1/2 = 4.2 d, E β(max) = 480 keV). Beside that, this radioisotope also emits γ-rays of 113 keV (1.9%), 282 keV (3.1%) and 396 keV (6.5%) which are suitable energy for imaging as long as therapeutic applications. EDTMP could be labeled with radionuclide of 175 Yb as an alternative radiopharmaceutical for bone pain palliation due to bone metastases. Labeling of ethylenediaminetetramethylenephosphonic acid with 175 Yb has been studied. Various influential parameters in labeling conditions i.e. the amount of EDTMP ligand, the pH of labeling, incubation time and the amount of 175 Yb solution were studied in order to obtain high labeling efficiency of 175 Yb-EDTMP. The labeling efficiency was obtained by radiochemical purity that was determined by paper chromatography and paper electrophoresis techniques. The optimum labeling condition was obtained at pH 7, 4 mg of EDTMP ligand, 100 µL (105 µg; 0.6 µmol) of 175 Yb solution and 30 minutes incubation time at room temperature. The complex formed was gave maximum labeling efficiency of 98.81 ± 0.15%. Owing to the results, EDTMP ligand can be labeled with 175 Yb radionuclide with labeling efficiency more than 95%. (author)

  16. Study of the production of 177Lu through 176Yb (n, γ) 177Yb → 177Lu nuclear reaction

    Silva, Giovana Pasqualini da; Osso Junior, Joao Alberto

    2007-01-01

    The beta minus emitter 177 Lu is a promising therapeutic radioisotope for the curative treatment of cancer using labelled proteins. It has a half - life of T 1/2 = 6.71 day and maximum and average β - energies of 421 and 133 keV, resulting in a short range of radiation in tissue. The decay is accompanied by the emission of low energy γ-radiation with 208.3 keV (11%) and 113 keV (6.4%) suitable for simultaneous imaging, 177 Lu can be produced by two different routes, namely, by irradiation of natural Lu 2 O 3 target ( 176 Lu, 2.6%) or enriched (in 176 Lu) Lu 2 O 3 target, as also by irradiation of Yb target (Yb 2 O 3 ) followed by radiochemical separation of 177 Lu from Yb isotopes. The objective of this work is to study the production of 177 Lu through the indirect 176 Yb(n,γ) 177 Yb → 177 Lu nuclear reaction. The results of the production yield of 177 Lu will be shown and compared with the direct reaction. The method of choice for the chemical separation between Lu and Yb was the ion exchange, using an cation exchange resin in Cl - form and α-HIBA as eluent. Preliminary results showed a good separation of 177 Lu from Yb 2 O 3 indirect targets. (author)

  17. A monolithic integrated photonic microwave filter

    Fandiño, Javier S.; Muñoz, Pascual; Doménech, David; Capmany, José

    2017-02-01

    Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base stations that are capable of smoothly interfacing the radio and fibre segments. Fully functional microwave photonic chips are promising candidates in attempts to meet these goals. In recent years, many integrated microwave photonic chips have been reported in different technologies. To the best of our knowledge, none has monolithically integrated all the main active and passive optoelectronic components. Here, we report the first demonstration of a tunable microwave photonics filter that is monolithically integrated into an indium phosphide chip. The reconfigurable radiofrequency photonic filter includes all the necessary elements (for example, lasers, modulators and photodetectors), and its response can be tuned by means of control electric currents. This is an important step in demonstrating the feasibility of integrated and programmable microwave photonic processors.

  18. Test of the TRAPPISTe monolithic detector system

    Soung Yee, L.; Álvarez, P.; Martin, E.; Cortina, E.; Ferrer, C.

    2013-12-01

    A monolithic pixel detector named TRAPPISTe-2 has been developed in Silicon-on-Insulator (SOI) technology. A p-n junction is implanted in the bottom handle wafer and connected to readout electronics integrated in the top active layer. The two parts are insulated from each other by a buried oxide layer resulting in a monolithic detector. Two small pixel matrices have been fabricated: one containing a 3-transistor readout and a second containing a charge sensitive amplifier readout. These two readout structures have been characterized and the pixel matrices were tested with an infrared laser source. The readout circuits are adversely affected by the backgate effect, which limits the voltage that can be applied to the metal back plane to deplete the sensor, thus narrowing the depletion width of the sensor. Despite the low depletion voltages, the integrated pixel matrices were able to respond to and track a laser source.

  19. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    Jantzen, C

    2006-12-22

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

  20. An overview of monolithic zirconia in dentistry

    Özlem Malkondu

    2016-07-01

    Full Text Available Zirconia restorations have been used successfully for years in dentistry owing to their biocompatibility and good mechanical properties. Because of their lack of translucency, zirconia cores are generally veneered with porcelain, which makes restorations weaker due to failure of the adhesion between the two materials. In recent years, all-ceramic zirconia restorations have been introduced in the dental sector with the intent to solve this problem. Besides the elimination of chipping, the reduced occlusal space requirement seems to be a clear advantage of monolithic zirconia restorations. However, scientific evidence is needed to recommend this relatively new application for clinical use. This mini-review discusses the current scientific literature on monolithic zirconia restorations. The results of in vitro studies suggested that monolithic zirconia may be the best choice for posterior fixed partial dentures in the presence of high occlusal loads and minimal occlusal restoration space. The results should be supported with much more in vitro and particularly in vivo studies to obtain a final conclusion.

  1. Characterization of SOI monolithic detector system

    Álvarez-Rengifo, P. L.; Soung Yee, L.; Martin, E.; Cortina, E.; Ferrer, C.

    2013-12-01

    A monolithic active pixel sensor for charged particle tracking was developed. This research is performed within the framework of an R&D project called TRAPPISTe (Tracking Particles for Physics Instrumentation in SOI Technology) whose aim is to evaluate the feasibility of developing a Monolithic Active Pixel Sensor (MAPS) with Silicon-on-Insulator (SOI) technology. Two chips were fabricated: TRAPPISTe-1 and TRAPPISTe-2. TRAPPISTe-1 was produced at the WINFAB facility at the Université catholique de Louvain (UCL), Belgium, in a 2 μm fully depleted (FD-SOI) CMOS process. TRAPPISTe-2 was fabricated with the LAPIS 0.2 μm FD-SOI CMOS process. The electrical characterization on single transistor test structures and of the electronic readout for the TRAPPISTe series of monolithic pixel detectors was carried out. The behavior of the prototypes’ electronics as a function of the back voltage was studied. Results showed that both readout circuits exhibited sensitivity to the back voltage. Despite this unwanted secondary effect, the responses of TRAPPISTe-2 amplifiers can be improved by a variation in the circuit parameters.

  2. Metal oxide nanorod arrays on monolithic substrates

    Gao, Pu-Xian; Guo, Yanbing; Ren, Zheng

    2018-01-02

    A metal oxide nanorod array structure according to embodiments disclosed herein includes a monolithic substrate having a surface and multiple channels, an interface layer bonded to the surface of the substrate, and a metal oxide nanorod array coupled to the substrate surface via the interface layer. The metal oxide can include ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide. The substrate can include a glass substrate, a plastic substrate, a silicon substrate, a ceramic monolith, and a stainless steel monolith. The ceramic can include cordierite, alumina, tin oxide, and titania. The nanorod array structure can include a perovskite shell, such as a lanthanum-based transition metal oxide, or a metal oxide shell, such as ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide, or a coating of metal particles, such as platinum, gold, palladium, rhodium, and ruthenium, over each metal oxide nanorod. Structures can be bonded to the surface of a substrate and resist erosion if exposed to high velocity flow rates.

  3. Fracture-resistant monolithic dental crowns.

    Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian

    2016-03-01

    To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Experimental measurements and XFEM predictions were self-consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. Copyright © 2015 Academy of Dental Materials. All rights reserved.

  4. Thermodynamic and transport properties of YbNi 4Cd

    Lee, J.; Park, H.; Lee-Hone, N. R.; Broun, D. M.; Mun, E.

    2018-05-01

    The single crystal growth and the physical properties of the intermetallic compounds R Ni4Cd (R =Y and Yb) which crystallize in the face-centered cubic (fcc) MgCu4Sn -type structure (space group F 4 ¯3 m ) are discussed. Thermodynamic and transport properties of YbNi4Cd are studied by measuring the magnetization, electrical resistivity, and specific heat. The magnetic susceptibility measurement shows that the 4 f electrons of Yb3 + ions are well localized. The electrical resistivity and specific heat exhibits an antiferromagnetic ordering below TN=0.97 K. Applying the field along the [111] direction results in the suppression of TN below 0.4 K at the critical field Hc˜4.5 kOe. No non-Fermi liquid behavior has been observed in the vicinity of Hc. Above Hc, the magnetoresistivity shows an unconventional temperature dependence ρ (T ) =ρ0+A Tn with n >2 , suggesting that an additional scattering mechanism in the resistivity needs to be considered. Based on the analysis of experimental results, we conclude that the Yb3 + moments and conduction electrons are weakly coupled. Despite the antiferromagnetic ordering below TN, YbNi4Cd exhibits a large frustration parameter | θp/TN|˜16 , where the magnetic Yb3 + ions occupy the tetrahedra on the fcc lattice.

  5. Lifetimes of high-spin states in {sup 162}Yb

    Carpenter, M.P.; Janssens, R.V.F.; Henry, R.G. [and others

    1995-08-01

    A measurement on lifetimes of high-spin states in the yrast and near-yrast rotational bands in {sup 162}Yb was carried out at ATLAS in order to determine the evolution of collectivity as a function of angular momentum using the {sup 126}Te({sup 40}Ar,4n){sup 162}Yb reaction at 170 MeV. Previous lifetime measurements in the {sup 164,166,168}Yb isotopes showed a dramatic decrease in the transition quadrupole moment Q{sub t} with increasing spin. It was suggested that this decrease in Q{sub t} is brought about by the rotationally-induced deoccupation of high-j configurations, mainly i{sub 13/2} neutrons. If this interpretation is correct, the heavier isotopes should have a larger decrease in Q{sub t} than the lighter mass nuclides due to the position of the Fermi surface in the i{sub 13/2} subshell. Indeed, {sup 160}Yb does not show a clear decrease in Q{sub t} at high spin. No high spin lifetime information exists for {sup 162}Yb, thus this experiment fills the gap of measured Q{sub t}`s in the light Yb series. The data is currently being analyzed.

  6. Assessment of effect of Yb3+ ion pairs on a highly Yb-doped double-clad fibre laser

    Vallés, J. A.; Martín, J. C.; Berdejo, V.; Cases, R.; Álvarez, J. M.; Rebolledo, M. Á.

    2018-03-01

    Using a previously validated characterization method based on the careful measurement of the characteristic parameters and fluorescence emission spectra of a highly Yb-doped double-clad fibre, we evaluate the contribution of ion pair induced processes to the output power of a double-clad Yb-doped fibre ring laser. This contribution is proved to be insignificant, contrary to analysis by other authors, who overestimate the role of ion pairs.

  7. Magnetic linear dichroism in x-ray emission spectroscopy: Yb in Yb3 Fe5 O12

    Groot, F.M.F. de; Krisch, M.H.; Sette, F.; Vogel, J.

    2000-01-01

    A magnetic linear dichroism MLD effect of up to 5% has been observed in the 2p 1/2 4d x-ray emission spectrum of Yb in Yb 3 Fe 5 O 12 . The spectral shape is well reproduced with an atomic multiplet calculation of the 4d to 2p decay. It is shown that the details of the spectral shapes are

  8. High efficiency, monolithic fiber chirped pulse amplification system for high energy femtosecond pulse generation.

    Peng, Xiang; Kim, Kyungbum; Mielke, Michael; Jennings, Stephen; Masor, Gordon; Stohl, Dave; Chavez-Pirson, Arturo; Nguyen, Dan T; Rhonehouse, Dan; Zong, Jie; Churin, Dmitriy; Peyghambarian, N

    2013-10-21

    A novel monolithic fiber-optic chirped pulse amplification (CPA) system for high energy, femtosecond pulse generation is proposed and experimentally demonstrated. By employing a high gain amplifier comprising merely 20 cm of high efficiency media (HEM) gain fiber, an optimal balance of output pulse energy, optical efficiency, and B-integral is achieved. The HEM amplifier is fabricated from erbium-doped phosphate glass fiber and yields gain of 1.443 dB/cm with slope efficiency >45%. We experimentally demonstrate near diffraction-limited beam quality and near transform-limited femtosecond pulse quality at 1.55 µm wavelength. With pulse energy >100 µJ and pulse duration of 636 fs (FWHM), the peak power is estimated to be ~160 MW. NAVAIR Public Release Distribution Statement A-"Approved for Public release; distribution is unlimited".

  9. Monolithic Ge-on-Si lasers for large-scale electronic-photonic integration

    Liu, Jifeng; Kimerling, Lionel C.; Michel, Jurgen

    2012-09-01

    A silicon-based monolithic laser source has long been envisioned as a key enabling component for large-scale electronic-photonic integration in future generations of high-performance computation and communication systems. In this paper we present a comprehensive review on the development of monolithic Ge-on-Si lasers for this application. Starting with a historical review of light emission from the direct gap transition of Ge dating back to the 1960s, we focus on the rapid progress in band-engineered Ge-on-Si lasers in the past five years after a nearly 30-year gap in this research field. Ge has become an interesting candidate for active devices in Si photonics in the past decade due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS) processing. In 2007, we proposed combing tensile strain with n-type doping to compensate the energy difference between the direct and indirect band gap of Ge, thereby achieving net optical gain for CMOS-compatible diode lasers. Here we systematically present theoretical modeling, material growth methods, spontaneous emission, optical gain, and lasing under optical and electrical pumping from band-engineered Ge-on-Si, culminated by recently demonstrated electrically pumped Ge-on-Si lasers with >1 mW output in the communication wavelength window of 1500-1700 nm. The broad gain spectrum enables on-chip wavelength division multiplexing. A unique feature of band-engineered pseudo-direct gap Ge light emitters is that the emission intensity increases with temperature, exactly opposite to conventional direct gap semiconductor light-emitting devices. This extraordinary thermal anti-quenching behavior greatly facilitates monolithic integration on Si microchips where temperatures can reach up to 80 °C during operation. The same band-engineering approach can be extended to other pseudo-direct gap semiconductors, allowing us to achieve efficient light emission at wavelengths previously

  10. Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration

    Liu, Jifeng; Kimerling, Lionel C; Michel, Jurgen

    2012-01-01

    A silicon-based monolithic laser source has long been envisioned as a key enabling component for large-scale electronic–photonic integration in future generations of high-performance computation and communication systems. In this paper we present a comprehensive review on the development of monolithic Ge-on-Si lasers for this application. Starting with a historical review of light emission from the direct gap transition of Ge dating back to the 1960s, we focus on the rapid progress in band-engineered Ge-on-Si lasers in the past five years after a nearly 30-year gap in this research field. Ge has become an interesting candidate for active devices in Si photonics in the past decade due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS) processing. In 2007, we proposed combing tensile strain with n-type doping to compensate the energy difference between the direct and indirect band gap of Ge, thereby achieving net optical gain for CMOS-compatible diode lasers. Here we systematically present theoretical modeling, material growth methods, spontaneous emission, optical gain, and lasing under optical and electrical pumping from band-engineered Ge-on-Si, culminated by recently demonstrated electrically pumped Ge-on-Si lasers with >1 mW output in the communication wavelength window of 1500–1700 nm. The broad gain spectrum enables on-chip wavelength division multiplexing. A unique feature of band-engineered pseudo-direct gap Ge light emitters is that the emission intensity increases with temperature, exactly opposite to conventional direct gap semiconductor light-emitting devices. This extraordinary thermal anti-quenching behavior greatly facilitates monolithic integration on Si microchips where temperatures can reach up to 80 °C during operation. The same band-engineering approach can be extended to other pseudo-direct gap semiconductors, allowing us to achieve efficient light emission at wavelengths previously

  11. All-PM monolithic fs Yb-fiber laser, dispersion-managed with all-solid photonic bandgap fiber

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2009-01-01

    All-in-fiber SESAM-modelocked self-starting fiber laser is demonstrated. Cavity dispersion is managed by a spliced-in PM all-solid photonic bandgap fiber. The laser directly delivers 1.25 nJ pulses of 280 fs duration.......All-in-fiber SESAM-modelocked self-starting fiber laser is demonstrated. Cavity dispersion is managed by a spliced-in PM all-solid photonic bandgap fiber. The laser directly delivers 1.25 nJ pulses of 280 fs duration....

  12. A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics

    Haiyun Huang

    2015-10-01

    Full Text Available This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW.

  13. Selective oxidation of cyclohexene through gold functionalized silica monolith microreactors

    Alotaibi, Mohammed T.; Taylor, Martin J.; Liu, Dan; Beaumont, Simon K.; Kyriakou, Georgios

    2016-04-01

    Two simple, reproducible methods of preparing evenly distributed Au nanoparticle containing mesoporous silica monoliths are investigated. These Au nanoparticle containing monoliths are subsequently investigated as flow reactors for the selective oxidation of cyclohexene. In the first strategy, the silica monolith was directly impregnated with Au nanoparticles during the formation of the monolith. The second approach was to pre-functionalize the monolith with thiol groups tethered within the silica mesostructure. These can act as evenly distributed anchors for the Au nanoparticles to be incorporated by flowing a Au nanoparticle solution through the thiol functionalized monolith. Both methods led to successfully achieving even distribution of Au nanoparticles along the length of the monolith as demonstrated by ICP-OES. However, the impregnation method led to strong agglomeration of the Au nanoparticles during subsequent heating steps while the thiol anchoring procedure maintained the nanoparticles in the range of 6.8 ± 1.4 nm. Both Au nanoparticle containing monoliths as well as samples with no Au incorporated were tested for the selective oxidation of cyclohexene under constant flow at 30 °C. The Au free materials were found to be catalytically inactive with Au being the minimum necessary requirement for the reaction to proceed. The impregnated Au-containing monolith was found to be less active than the thiol functionalized Au-containing material, attributable to the low metal surface area of the Au nanoparticles. The reaction on the thiol functionalized Au-containing monolith was found to depend strongly on the type of oxidant used: tert-butyl hydroperoxide (TBHP) was more active than H2O2, likely due to the thiol induced hydrophobicity in the monolith.

  14. Spectroscopic and laser investigations of Nd3+ and Yb3+ in rare-earth oxyborates

    Lupei, A.; Lupei, V.; Gheorghe, L.; Aka, G.; Vivien, D.; Antic- Fidancev, E.

    2002-01-01

    minority sites in these crystals as due to non-stoichiometric or inversion charge defects of the type RE 3+ -> 2+ or RE 3+ in Ca 2+ sites were proposed and their effects in emission investigated. Extended energy level schemes for Yb 3+ and Nd 3+ prevailing (in RE 3+ sites) and minority centers in GdCOB and YCOB were determined. A theoretical parametric crystal field calculation was performed for Nd 3+ by varying free ion and crystal field parameters. A characteristic of the crystal field parameters is the large value of the second order parameters that leads to a strong splitting of metastable 4 F 3/2 Nd 3+ level (∼190 cm -1 ) that leads to a parasitic effect for Nd 3+ in GdCOB, i. e. the shift of the laser emission from 1.06 mm to 1.09 mm at high pumping. The spectroscopic bases for the improvement of the laser emission parameters in fundamental and self-doubling regime of Nd 3+ : GdCOB and the reduction of heat generation were investigated. The analysis of spectral data shows that the laser emission parameters of Nd 3+ in GdCOB at 1.06 mm can be improved by direct pumping in the emitting level in the band 4 I 9/2 (Z 2 )→ 4 F 3/2 (R 1 ) at 887 nm, instead of using the usual diode pumping in the line 4 I 9/2 (Z 1 )→ 4 F 5/2 (S 1 ) at 811 nm. Experimental investigations confirmed this idea and for fundamental emission at 1.06 mm the slope efficiency increased from ∼ 0.46 to ∼ 0.61 while the threshold decreased from ∼ 115 mW to ∼ 75 mW. The parasitic change of emission wavelength at high powers did not show. These improvements are amplified in self-doubling emission. The emission characteristics under direct pump 887 nm as compared to the conventional pump 811 nm are evidently improved. Thus at 600 mW absorbed power the emitted power in green was 2.16 larger than with conventional pumping. (authors)

  15. Safety characteristics of the monolithic CFC divertor

    Zucchetti, M.; Merola, M.; Matera, R.

    1994-01-01

    The main distinguishing feature of the monolithic CFC divertor is the use of a single material, a carbon fibre reinforced carbon, for the protective armour, the heat sink and the cooling channels. This removes joint interface problems which are one of the most important concerns related to the reference solutions of the ITER CDA divertor. An activation analysis of the different coolant options for this concept is presented. It turns out that neither short-term nor long-term activation are a concern for any coolants investigated. Therefore the proposed concept proves to be attractive from a safety stand-point also. ((orig.))

  16. Safety characteristics of the monolithic CFC divertor

    Zucchetti, M.; Merola, M.; Matera, R.

    1994-09-01

    The main distinguishing feature of the monolithic CFC divertor is the use of a single material, a carbon fibre reinforced carbon, for the protective armour, the heat sink and the cooling channels. This removes joint interface problems which are one of the most important concerns related to the reference solutions of the ITER CDA divertor. An activation analysis of the different coolant options for this concept is presented. It turns out that neither short-term nor long-term activation are a concern for any coolants investigated. Therefore the proposed concept proves to be attractive from a safety stand-point also.

  17. Dielectric relaxation in Yb-doped SrZrO3

    Kamishima, O; Abe, Y; Ishii, T; Kawamura, J; Hattori, T

    2004-01-01

    The dielectric constant of the proton conductor SrZr 1-x Yb x O 3 (x 0-0.1) was measured as a function of temperature and frequency. Two well-defined relaxation peaks were observed in SrZrO 3 doped with more than 1 mol% of Yb. The assignment of the two dielectric relaxations is discussed in terms of IR spectra and by free energy calculation for a miscibility of dopant Yb ions. The Yb concentration dependence of the relaxation strength of the two dielectric relaxations is in agreement with the results calculated from the free energy. The two relaxations can be assigned to a reorientation of a single Yb-OH dipole and of Yb-OH dipoles associated with Yb-clusters. The attractive energy for Yb-clustering in SrZrO 3 is evaluated at about -85 meV

  18. YB-1 promotes microtubule assembly in vitro through interaction with tubulin and microtubules

    Baconnais Sonia

    2008-09-01

    Full Text Available Abstract Background YB-1 is a major regulator of gene expression in eukaryotic cells. In addition to its role in transcription, YB-1 plays a key role in translation and stabilization of mRNAs. Results We show here that YB-1 interacts with tubulin and microtubules and stimulates microtubule assembly in vitro. High resolution imaging via electron and atomic force microscopy revealed that microtubules assembled in the presence of YB-1 exhibited a normal single wall ultrastructure and indicated that YB-1 most probably coats the outer microtubule wall. Furthermore, we found that YB-1 also promotes the assembly of MAPs-tubulin and subtilisin-treated tubulin. Finally, we demonstrated that tubulin interferes with RNA:YB-1 complexes. Conclusion These results suggest that YB-1 may regulate microtubule assembly in vivo and that its interaction with tubulin may contribute to the control of mRNA translation.

  19. Role of the stimulated radiation of Yb3+ ions in the formation of luminescence of the Y0.8Yb0.2F3:Tm3+ solid solution

    Mikheev, A. V.; Kazakov, B. N.

    2015-09-01

    A new mechanism has been proposed for the transfer of the energy of exciting laser radiation through the donor subsystem (Yb3+) to acceptors (Tm3+), which induces multiphoton transitions in the acceptor subsystem. The coherence of the induced radiation of donors is of key importance in this mechanism. An analytical dependence of the intensity of the up-conversion luminescence of Tm3+ (1G4 → 3H6) ions in the Y0.8Yb0.2F3:Tm3+ system on the pump power at the steady-state excitation by 934-nm infrared radiation of a laser diode has been obtained using the mathematical technique of the theory of Poisson processes. In contrast to known mechanisms, this dependence approximates the experimental dependence well in a wide power range (200-1200 mW). The proposed model is applicable for any system where the energy of pump radiation is transferred to acceptors through the subsystem of donor ions.

  20. A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis

    Du, P.; Carneiro, J.T.; Moulijn, J.A.; Mul, Guido

    2008-01-01

    A novel reactor for multi-phase photocatalysis is presented, the so-called internally illuminated monolith reactor (IIMR). In the concept of the IIMR, side light emitting fibers are placed inside the channels of a ceramic monolith, equipped with a TiO2 photocatalyst coated on the wall of each

  1. Immobilisation of shredded soft waste in cement monolith

    Brown, D.J.; Dalton, M.J.; Smith, D.L.

    1983-04-01

    A grouting process for the immobilisation of shredded contaminated laboratory waste in a cement monolith is being developed at the Atomic Energy Establishment Winfrith. The objective is to produce a 'monolithic' type package which is acceptable both for sea and land disposal. The work carried out on this project in the period April 1982 - March 1983 is summarised in this report. (author)

  2. Fabrication of mesoporous polymer monolith: a template-free approach.

    Okada, Keisuke; Nandi, Mahasweta; Maruyama, Jun; Oka, Tatsuya; Tsujimoto, Takashi; Kondoh, Katsuyoshi; Uyama, Hiroshi

    2011-07-14

    Mesoporous polyacrylonitrile (PAN) monolith has been fabricated by a template-free approach using the unique affinity of PAN towards a water/dimethyl sulfoxide (DMSO) mixture. A newly developed Thermally Induced Phase Separation Technique (TIPS) has been used to obtain the polymer monoliths and their microstructures have been controlled by optimizing the concentration and cooling temperature.

  3. Creating deep soil core monoliths: Beyond the solum

    Soil monoliths serve as useful teaching aids in the study of the Earth’s critical zone where rock, soil, water, air, and organisms interact. Typical monolith preparation has so far been confined to the 1 to 2-m depth of the solum. Critical ecosystem services provided by soils include materials from ...

  4. A Monolithic Perovskite Structure for Use as a Magnetic Regenerator

    Pryds, Nini; Clemens, Frank; Menon, Mohan

    2011-01-01

    A La0.67Ca0.26Sr0.07Mn1.05O3 (LCSM) perovskite was prepared for the first time as a ceramic monolithic regenerator used in a regenerative magnetic refrigeration device. The parameters influencing the extrusion process and the performance of the regenerator, such as the nature of the monolith paste...

  5. Fine-grain concrete from mining waste for monolithic construction

    Lesovik, R. V.; Ageeva, M. S.; Lesovik, G. A.; Sopin, D. M.; Kazlitina, O. V.; Mitrokhin, A. A.

    2018-03-01

    The technology of a monolithic construction is a well-established practice among most Russian real estate developers. The strong points of the technology are low cost of materials and lower demand for qualified workers. The monolithic construction uses various types of reinforced slabs and foamed concrete, since they are easy to use and highly durable; they also need practically no additional treatment.

  6. Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders

    De Kanter, J.L.C.G.

    2006-01-01

    Summary accompanying the thesis: Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders by Jens de Kanter This thesis presents the investigation of the crush behaviour of both monolithic aluminium cylinders and externally fibre reinforced aluminium cylinders. The research is based

  7. Media Presentation Synchronisation for Non-monolithic Rendering Architectures

    I. Vaishnavi (Ishan); D.C.A. Bulterman (Dick); P.S. Cesar Garcia (Pablo Santiago); B. Gao (Bo)

    2007-01-01

    htmlabstractNon-monolithic renderers are physically distributed media playback engines. Non-monolithic renderers may use a number of different underlying network connection types to transmit media items belonging to a presentation. There is therefore a need for a media based and inter-network- type

  8. Operating experiences with 1 MW steam generator

    Sano, A; Kanamori, A; Tsuchiya, T

    1975-07-01

    1 MW steam generator, which was planned as the first stage of steam generator development in Power Reactor and Nuclear Fuel Corp. (PNC) in Japan, is a single-unit, once-through, integrated shell and tube type with multi-helical coil tubes. It was completed in Oarai Engineering Center of PNC in March of 1971, and the various performance tests were carried out up to April, 1972. After the dismantle of the steam generator for structural inspection and material test, it was restored with some improvements. In this second 1 MW steam generator, small leak occurred twice during normal operation. After repairing the failure, the same kind of performance tests as the first steam generator were conducted in order to verify the thermal insulation effect of argon gas in downcomer zone from March to June, 1974. In this paper the above operating experiences were presented including the outline of some performance test results. (author)

  9. 1-MW klystron for fusion plasma heating

    Okamoto, Tadashi; Miyake, Setsuo; Ohno, Hiroaki

    1985-01-01

    A plasma test apparatus to bring about the critical plasma conditions for nuclear fusion is now under construction in Japan Atomic Energy Research Institute. Among various means of plasma heating, the most promising is the lower hybrid resonance heating (LHRF) in the 2-GHz region. Although it has so far requied 7 to 8 MW of microwave power for the plasma test apparatus, the new klystron, E3778, now constructed by Toshiba has the world's highest output power of 1 MW in the 2-GHz region. In addition to the excellent high-power operation for 10 seconds, the wide operating frequency range of 1.7 to 2.26 GHz by dint of sophisticated high-speed tuning mechanism, and the high durability to reflected power of up to 2.0 of VSWR are the high-lighted features of this klystron, which have never been achieved by conventional klystrons. (author)

  10. The Winfrith 9MW heat transfer rig

    Obertelli, J.D.

    1976-01-01

    The Winfrith 9MW Rig is used for studying heat transfer and flow resistance in a variety of test sections at system pressures up to 68 bar. The basic rig and its instrumentation are discussed together with the characteristics of the test section design. The rig has been used in studies involving the full scale simulation of Steam Generating Heavy Water (SGHW) fuel assemblies and the paper discusses the measurements made in this type of study. (author)

  11. Synthesis of Porous Carbon Monoliths Using Hard Templates.

    Klepel, Olaf; Danneberg, Nina; Dräger, Matti; Erlitz, Marcel; Taubert, Michael

    2016-03-21

    The preparation of porous carbon monoliths with a defined shape via template-assisted routes is reported. Monoliths made from porous concrete and zeolite were each used as the template. The porous concrete-derived carbon monoliths exhibited high gravimetric specific surface areas up to 2000 m²·g -1 . The pore system comprised macro-, meso-, and micropores. These pores were hierarchically arranged. The pore system was created by the complex interplay of the actions of both the template and the activating agent as well. On the other hand, zeolite-made template shapes allowed for the preparation of microporous carbon monoliths with a high volumetric specific surface area. This feature could be beneficial if carbon monoliths must be integrated into technical systems under space-limited conditions.

  12. Ultrafast, high repetition rate, ultraviolet, fiber-laser-based source: application towards Yb+ fast quantum-logic.

    Hussain, Mahmood Irtiza; Petrasiunas, Matthew Joseph; Bentley, Christopher D B; Taylor, Richard L; Carvalho, André R R; Hope, Joseph J; Streed, Erik W; Lobino, Mirko; Kielpinski, David

    2016-07-25

    Trapped ions are one of the most promising approaches for the realization of a universal quantum computer. Faster quantum logic gates could dramatically improve the performance of trapped-ion quantum computers, and require the development of suitable high repetition rate pulsed lasers. Here we report on a robust frequency upconverted fiber laser based source, able to deliver 2.5 ps ultraviolet (UV) pulses at a stabilized repetition rate of 300.00000 MHz with an average power of 190 mW. The laser wavelength is resonant with the strong transition in Ytterbium (Yb+) at 369.53 nm and its repetition rate can be scaled up using high harmonic mode locking. We show that our source can produce arbitrary pulse patterns using a programmable pulse pattern generator and fast modulating components. Finally, simulations demonstrate that our laser is capable of performing resonant, temperature-insensitive, two-qubit quantum logic gates on trapped Yb+ ions faster than the trap period and with fidelity above 99%.

  13. Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm.

    Tsai, Tzong-Yow; Fang, Yen-Cheng; Huang, Huai-Min; Tsao, Hong-Xi; Lin, Shih-Ting

    2010-11-08

    We demonstrate a novel passively pulsed all-Yb3+ all-fiber laser pumped by a continuous-wave 915-nm pump laser diode. The laser was saturable absorber Q-switched at 976 nm and gain-switched at 1064 nm, using the method of mode-field-area mismatch. With a pump power of 
105 mW, the laser iteratively produced a 976-nm pulse with an energy of 2.8 μJ and a duration of 280 ns, followed by a 1064-nm pulse with 1.1 μJ and a 430-ns duration at a repetition rate of 9 kHz. A set of rate equations was established to simulate the self-balancing mechanism and the correlation between the Q- and gain-switched photon numbers and the populations of the gain and absorber fibers.

  14. Quantum sized Ag nanocluster assisted fluorescence enhancement in Tm{sup 3+}-Yb{sup 3+} doped optical fiber beyond plasmonics

    Chattopadhyay, Rik; Haldar, Arindam; Paul, Mukul C.; Das, Shyamal; Bhadra, Shyamal K., E-mail: skbhadra@cgcri.res.in [Fiber Optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032 (India)

    2015-12-07

    We report a process for enhancing fluorescence emission from conventional rare earth ions in optical fiber by metal nanocluster (MNC) in nonresonant indirect pumping. The process is completely different from formal metal enhanced fluorescence phenomenon as the MNCs are too small in size to support localized surface plasmon and the excitation wavelength is far from plasmon resonance frequency. We used an established theory of two coupled oscillators to explain the simultaneous enhancement of Ytterbium (Yb{sup 3+}) and Thulium (Tm{sup 3+}) emission by silver (Ag) NCs under nonresonant pumping in optical fiber. The fiber is pumped with a 980 nm fiber pigtailed laser diode with input power of 20–100 mW to excite the Yb{sup 3+}. Four times enhancement of Yb{sup 3+} emission of 900–1100 nm and Tm{sup 3+} upconversion emission around 474 nm, 650 nm, and 790 nm is observed in the fiber with Ag NCs.

  15. Ring-opening metathesis polymerization based pore-size-selective functionalization of glycidyl methacrylate based monolithic media: access to size-stable nanoparticles for ligand-free metal catalysis.

    Bandari, Rajendar; Höche, Thomas; Prager, Andrea; Dirnberger, Klaus; Buchmeiser, Michael R

    2010-04-19

    Monolithic polymeric supports have been prepared by electron-beam-triggered free-radical polymerization using a mixture of glycidyl methacrylate and trimethylolpropane triacrylate in 2-propanol, 1-dodecanol, and toluene. Under appropriate conditions, phase separation occurred, which resulted in the formation of a porous monolithic matrix that was characterized by large (convective) pores in the 30 μm range as well as pores of 7 nm were hydrolyzed by using poly(styrenesulfonic acid) (Mw = 69,400 g mol(-1), PDI=2.4). The remaining epoxy groups inside pores of nanoparticles 2 nm in diameter were formed. The palladium-nanoparticle-loaded monoliths were used in both Heck- and Suzuki-type coupling reactions achieving turnover numbers of up to 167,000 and 63,000, respectively. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Phase precipitation of Yb 2+ ions in RbCl monocrystals monitored ...

    Optical absorption spectra of RbCl:Yb2+ crystals have been measured at several elevated temperatures up to 300C. Results showed that in hot RbCl:Yb2+ crystals, the Yb2+ ions occupied lattice sites with effective octahedral, O, point symmetry. Values of an energy parameter , which is an approximate measure of the ...

  17. Growth techniques for monolithic YBCO solenoidal magnets

    Scruggs, S.J.; Putman, P.T.; Fang, H.; Alessandrini, M.; Salama, K.

    2006-01-01

    The possibility of growing large single domain YBCO solenoids by the use of a large seed has been investigated. There are two known methods for producing a similar solenoid. This first is a conventional top seeded melt growth process followed by a post processing machining step to create the bore. The second involves using multiple seeds spaced around the magnet bore. The appeal of the new technique lies in decreasing processing time compared to the single seed technique, while avoiding alignment problems found in the multiple seeding technique. By avoiding these problems, larger diameter monoliths can be produced. Large diameter monoliths are beneficial because the maximum magnetic field produced by a trapped field magnet is proportional to the radius of the sample. Furthermore, the availability of trapped field magnets with large diameter could enable their use in applications that traditionally have been considered to require wound electromagnets, such as beam bending magnets for particle accelerators or electric propulsion. A comparison of YBCO solenoids grown by the use of a large seed and grown by the use of two small seeds simulating multiple seeding is made. Trapped field measurements as well as microstructure evaluation were used in characterization of each solenoid. Results indicate that high quality growth occurs only in the vicinity of the seeds for the multiple seeded sample, while the sample with the large seeded exhibited high quality growth throughout the entire sample

  18. Growth techniques for monolithic YBCO solenoidal magnets

    Scruggs, S.J. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States)]. E-mail: Sscruggs2@uh.edu; Putman, P.T. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States); Fang, H. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States); Alessandrini, M. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States); Salama, K. [Texas Center for Superconductivity at University of Houston, 4800 Calhoun, Houston, TX 77204 (United States)

    2006-10-01

    The possibility of growing large single domain YBCO solenoids by the use of a large seed has been investigated. There are two known methods for producing a similar solenoid. This first is a conventional top seeded melt growth process followed by a post processing machining step to create the bore. The second involves using multiple seeds spaced around the magnet bore. The appeal of the new technique lies in decreasing processing time compared to the single seed technique, while avoiding alignment problems found in the multiple seeding technique. By avoiding these problems, larger diameter monoliths can be produced. Large diameter monoliths are beneficial because the maximum magnetic field produced by a trapped field magnet is proportional to the radius of the sample. Furthermore, the availability of trapped field magnets with large diameter could enable their use in applications that traditionally have been considered to require wound electromagnets, such as beam bending magnets for particle accelerators or electric propulsion. A comparison of YBCO solenoids grown by the use of a large seed and grown by the use of two small seeds simulating multiple seeding is made. Trapped field measurements as well as microstructure evaluation were used in characterization of each solenoid. Results indicate that high quality growth occurs only in the vicinity of the seeds for the multiple seeded sample, while the sample with the large seeded exhibited high quality growth throughout the entire sample.

  19. Yb:YAG Lasers for Space Based Remote Sensing

    Ewing, J.J.; Fan, T. Y.

    1998-01-01

    Diode pumped solid state lasers will play a prominent role in future remote sensing missions because of their intrinsic high efficiency and low mass. Applications including altimetry, cloud and aerosol measurement, wind velocity measurement by both coherent and incoherent methods, and species measurements, with appropriate frequency converters, all will benefit from a diode pumped primary laser. To date the "gold standard" diode pumped Nd laser has been the laser of choice for most of these concepts. This paper discusses an alternate 1 micron laser, the YB:YAG laser, and its potential relevance for lidar applications. Conceptual design analysis and, to the extent possible at the time of the conference, preliminary experimental data on the performance of a bread board YB:YAG oscillator will be presented. The paper centers on application of YB:YAG for altimetry, but extension to other applications will be discussed.

  20. Upconversion dynamics in Yb3+-Ho3+-doped fluoroindate glasses

    Martin, I.R.; Rodriguez, V.D.; Lavin, V.; Rodriguez-Mendoza, U.R.

    1998-01-01

    The mechanisms and dynamics of the upconversion emissions in Yb 3+ -Ho 3+ -doped fluoroindate glasses by exciting at 975 nm have been analysed. The upconversion efficiencies have been measured as a function of temperature in the range from 12 to 295 K. The temporal evolution of the 545- and 650-nm upconversion emissions obtained under flash excitation at 975 nm in codoped samples with 2.25 mol.% of Yb 3+ and 0.75 mol.% of Ho 3+ cannot be described using the energy migration model. This indicates that at this concentration of Yb 3+ the rapid migration regimen between these ions has not been reached. A model is proposed in order to explain the temporal evolution of these emissions taking into account energy migration between donors and backtransfer processes. (orig.)

  1. Electrodynamically trapped Yb+ ions for quantum information processing

    Balzer, Chr.; Braun, A.; Hannemann, T.; Wunderlich, Chr.; Paape, Chr.; Ettler, M.; Neuhauser, W.

    2006-01-01

    Highly efficient, nearly deterministic, and isotope selective generation of Yb + ions by one- and two-color photoionization is demonstrated. State preparation and state selective detection of hyperfine states in 171 Yb + is investigated in order to optimize the purity of the prepared state and to time-optimize the detection process. Linear laser-cooled Yb + ion crystals confined in a Paul trap are demonstrated. Advantageous features of different previous ion trap experiments are combined, while at the same time the number of possible error sources is reduced by using a comparatively simple experimental apparatus. This opens a new path toward quantum state manipulation of individual trapped ions, and in particular, to scalable quantum computing

  2. CW Yb:YAG LASER FOR PORTABLE MEASURING SYSTEMS

    A. M. Ivashko

    2014-01-01

    Full Text Available The theoretical and experimental results of longitudinally continuous-wave diode-pumped Yb:Y3Al5O12 (YAG laser performance for compact field-condition measuring systems were demonstrated. Optimization of laser setup in terms of operation condition in the range of -40 ˚С – +65 ˚С without active thermal stabilization was carried out. Using Yb (10 ат.%:YAG crystal with the length of 3 mm the maximal output power more than 2 W was obtained in the whole of temperature range.

  3. Is YbAs a heavy Fermion system?

    Monnier, R.; Degiorgi, L.; Delley, B.; Koelling, D.D.

    1989-08-01

    Using parameters extracted from a tight binding fit to an ab initio band structure, the specific heat anomaly observed in YbAs around 5 K is computed within the infinite U limit of the degenerate Anderson impurity model. Applying the renormalization procedure derived in variational treatments of the periodic Anderson model, a quasiparticle Fermi surface with strong nesting features and small mass enhancements is obtained. The results suggest that YbAs is not a ''classical'' heavy Fermion system. 28 refs., 3 figs., 1 tab

  4. Time reversal symmetry violation in the YbF molecule

    Sauer, B. E., E-mail: ben.sauer@imperial.ac.uk; Devlin, J. A.; Hudson, J. J.; Kara, D. M.; Smallman, I. J.; Tarbutt, M. R.; Hinds, E. A. [Blackett Laboratory Imperial College London, Centre for Cold Matter (United Kingdom)

    2013-03-15

    We present a summary of the techniques used to test time reversal symmetry by measuring the permanent electric dipole moment of the YbF molecule. The results of a recent measurement (Hudson et al., Nature 473:493, 2011) are reported. We review some systematic effects which might mimic time reversal violation and describe how they are overcome. We then discuss improvements to the sensitivity of the apparatus, including both short term technical enhancements as well as a longer term goal to use laser cooled YbF in the experiment.

  5. Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time

    Hwang, Yoon-Hyung; Kim, SoonKap; Lee, Keh Chien; Chung, Young Soo; Lee, Jeong Hwan; Kim, Jeong-Kook

    2016-01-01

    Plant NUCLEAR FACTOR Y (NF-Y) transcription factors play important roles in plant development and abiotic stress. In Arabidopsis thaliana, two NF-YB (AtNF-YB2 and AtNF-YB3) and five NF-YC (AtNF-YC1, AtNF-YC2, AtNF-YC3, AtNF-YC4, and AtNF-YC9) genes regulate photoperiodic flowering by interacting with other AtNF-Y subunit proteins. Three rice NF-YB (OsNF-YB8, OsNF-YB10, and OsNF-YB11) and five rice OsNF-YC (OsNF-YC1, OsNF-YC2, OsNF-YC4, OsNF-YC6, and OsNF-YC7) genes are clustered with two AtNF-YB and five AtNF-YC genes, respectively. To investigate the functional conservation of these NF-YB and NF-YC genes in rice and Arabidopsis, we analyzed the flowering phenotypes of transgenic plants overexpressing the respective OsNF-YB and OsNF-YC genes in Arabidopsis mutants. Overexpression of OsNF-YB8/10/11 and OsNF-YC2 complemented the late flowering phenotype of Arabidopsis nf-yb2 nf-yb3 and nf-yc3 nf-yc4 nf-yc9 mutants, respectively. The rescued phenotype of 35S::OsNF-YC2 nf-yc3 nf-yc4 nf-yc9 plants was attributed to the upregulation of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). In vitro and in planta protein–protein analyses revealed that OsNF-YB8/10/11 and OsNF-YC1/2/4/6/7 interact with AtNF-YC3/4/9 and AtNF-YB2/3, respectively. Our data indicate that some OsNF-YB and OsNF-YC genes are functional equivalents of AtNF-YB2/3 and AtNF-YC3/4/9 genes, respectively, and suggest functional conservation of Arabidopsis and rice NF-Y genes in the control of flowering time.

  6. Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time

    Hwang, Yoon-Hyung

    2016-01-11

    Plant NUCLEAR FACTOR Y (NF-Y) transcription factors play important roles in plant development and abiotic stress. In Arabidopsis thaliana, two NF-YB (AtNF-YB2 and AtNF-YB3) and five NF-YC (AtNF-YC1, AtNF-YC2, AtNF-YC3, AtNF-YC4, and AtNF-YC9) genes regulate photoperiodic flowering by interacting with other AtNF-Y subunit proteins. Three rice NF-YB (OsNF-YB8, OsNF-YB10, and OsNF-YB11) and five rice OsNF-YC (OsNF-YC1, OsNF-YC2, OsNF-YC4, OsNF-YC6, and OsNF-YC7) genes are clustered with two AtNF-YB and five AtNF-YC genes, respectively. To investigate the functional conservation of these NF-YB and NF-YC genes in rice and Arabidopsis, we analyzed the flowering phenotypes of transgenic plants overexpressing the respective OsNF-YB and OsNF-YC genes in Arabidopsis mutants. Overexpression of OsNF-YB8/10/11 and OsNF-YC2 complemented the late flowering phenotype of Arabidopsis nf-yb2 nf-yb3 and nf-yc3 nf-yc4 nf-yc9 mutants, respectively. The rescued phenotype of 35S::OsNF-YC2 nf-yc3 nf-yc4 nf-yc9 plants was attributed to the upregulation of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). In vitro and in planta protein–protein analyses revealed that OsNF-YB8/10/11 and OsNF-YC1/2/4/6/7 interact with AtNF-YC3/4/9 and AtNF-YB2/3, respectively. Our data indicate that some OsNF-YB and OsNF-YC genes are functional equivalents of AtNF-YB2/3 and AtNF-YC3/4/9 genes, respectively, and suggest functional conservation of Arabidopsis and rice NF-Y genes in the control of flowering time.

  7. 60-MW test using the 30-MW klystrons for the KEKB project

    Fukuda, S.; Michizono, S.; Nakao, K.; Saito, Y.; Anami, S.

    1995-07-01

    The B-Factory is a future plan, requiring an energy upgrade of the KEK linac from 2.5 GeV to 8.0 GeV (KEKB Project). This paper describes the recent development of an S-band high-power pulse klystron to be used as the PF-linac rf-source of the B-Factory. This tube is a modified version of the existing 30-MW tube, which produces 51 MW at a 310 kV beam voltage by optimizing the focusing magnetic field. In order to increase the reliability, the cathode diameter, the gun housing, and the insulation ceramic-seal were enlarged. This tube was redesigned so as to have the same characteristics as the test results of 30-MW tubes at a higher applied voltage without changing the rf interaction region. Four prototype tubes have been manufactured; final test results showed that these new tubes produce an output power of more than 50 MW at 310 kV with an efficiency of 46%. Recently this tube has produced more than 60 MW at a 350 kV beam voltage for a demonstration test. A comparison between the FCI-code prediction and the test results is also given in this paper.

  8. A novel symmetrical microwave power sensor based on GaAs monolithic microwave integrated circuit technology

    Wang, De-bo; Liao, Xiao-ping

    2009-01-01

    A novel symmetrical microwave power sensor based on GaAs monolithic microwave integrated circuit (MMIC) technology is presented in this paper. In this power sensor, the left section inputs the microwave power, while the right section inputs the dc power. Because of the symmetrical structure, this power sensor is created to provide more accurate microwave power measurement capability without mismatch uncertainty and restrain temperature drift. The loss model is built and the loss voltage is 0.8 mV at 20 GHz when the input power is 100 mW. This power sensor is designed and fabricated using GaAs MMIC technology. And it is measured in the frequency range up to 20 GHz with the input power in the −20 dBm to 19 dBm range. Over the 19 dBm dynamic range, the sensitivity can achieve about 0.2 mV mW −1 . The difference between the input powers in the two sections is below 0.1% for equal output voltages. For an amplitude modulation measurement, the carrier frequency is the main factor to influence the measurement results. In short, the key aspect of this power sensor is that the microwave power measurement can be replaced by a dc power measurement with precise wideband

  9. Identification and characterization of NF-YB family genes in tung tree.

    Yang, Susu; Wang, Yangdong; Yin, Hengfu; Guo, Haobo; Gao, Ming; Zhu, Huiping; Chen, Yicun

    2015-12-01

    The NF-YB transcription factor gene family encodes a subunit of the CCAAT box-binding factor (CBF), a highly conserved trimeric activator that strongly binds to the CCAAT box promoter element. Studies on model plants have shown that NF-YB proteins participate in important developmental and physiological processes, but little is known about NF-YB proteins in trees. Here, we identified seven NF-YB transcription factor-encoding genes in Vernicia fordii, an important oilseed tree in China. A phylogenetic analysis separated the genes into two groups; non-LEC1 type (VfNF-YB1, 5, 7, 9, 11, 13) and LEC1-type (VfNF-YB 14). A gene structure analysis showed that VfNF-YB 5 has three introns and the other genes have no introns. The seven VfNF-YB sequences contain highly conserved domains, a disordered region at the N terminus, and two long helix structures at the C terminus. Phylogenetic analyses showed that VfNF-YB family genes are highly homologous to GmNF-YB genes, and many of them are closely related to functionally characterized NF-YBs. In expression analyses of various tissues (root, stem, leaf, and kernel) and the root during pathogen infection, VfNF-YB1, 5, and 11 were dominantly expressed in kernels, and VfNF-YB7 and 9 were expressed only in the root. Different VfNF-YB family genes showed different responses to pathogen infection, suggesting that they play different roles in the pathogen response. Together, these findings represent the first extensive evaluation of the NF-YB family in tung tree and provide a foundation for dissecting the functions of VfNF-YB genes in seed development, stress adaption, fatty acid synthesis, and pathogen response.

  10. Comparing Zeeman qubits to hyperfine qubits in the context of the surface code: +174Yb and +171Yb

    Brown, Natalie C.; Brown, Kenneth R.

    2018-05-01

    Many systems used for quantum computing possess additional states beyond those defining the qubit. Leakage out of the qubit subspace must be considered when designing quantum error correction codes. Here we consider trapped ion qubits manipulated by Raman transitions. Zeeman qubits do not suffer from leakage errors but are sensitive to magnetic fields to first order. Hyperfine qubits can be encoded in clock states that are insensitive to magnetic fields to first order, but spontaneous scattering during the Raman transition can lead to leakage. Here we compare a Zeeman qubit (+174Yb) to a hyperfine qubit (+171Yb) in the context of the surface code. We find that the number of physical qubits required to reach a specific logical qubit error can be reduced by using +174Yb if the magnetic field can be stabilized with fluctuations smaller than 10 μ G .

  11. Properties of the divalent-Yb compound YbAu{sub 2}Si{sub 2} under extreme conditions

    Kaštil, J.; Míšek, M.; Kamarád, J.; Arnold, Z. [Institute of Physics AS CR, v.v.i., Na Slovance 1999/2, 182 21 Prague 8 (Czech Republic); Vlášková, K. [Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlovu 5, 12116 Prague 2 (Czech Republic); Prchal, J., E-mail: prchal@karlov.mff.cuni.cz [Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlovu 5, 12116 Prague 2 (Czech Republic); Diviš, M.; Doležal, P.; Prokleška, J.; Valenta, J.; Fikáček, J.; Rudajevová, A.; Kriegner, D. [Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlovu 5, 12116 Prague 2 (Czech Republic)

    2017-01-15

    Polycrystalline YbAu{sub 2}Si{sub 2} has been prepared by arc melting and a non-standard anisotropic thermal expansion is observed at low temperatures. A non-magnetic Yb{sup 2+} valence state is derived from magnetization, magnetic-susceptibility, heat-capacity and electrical-conductivity measurements in the temperature range from 0.3 to 300 K and at external pressures up to 3.2 GPa. By both experimental and theoretical investigations, YbAu{sub 2}Si{sub 2} is confirmed to be a system with a weak electron-electron correlations and a small electron-phonon interaction. Application of hydrostatic pressure does not reveal any change of state in the range of applied pressures.

  12. Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials

    2016-05-12

    Capt Todd D. Church APPROVED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials C~t) Kraig/[ Vandewalle Date...copyrighted material in the thesis/dissertation manuscript entitled: "Translucency arid Strength of High-Translucency Monolithic Zirconium -Oxide...Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials manufacturers have developed more translucent monolithic zirconium oxide

  13. 12MW: final report; Wind turbines

    Hasager, C.; Pena, A.; Mikkelsen, T.; Gryning, S.-E.; Courtney, M.; Soerensen, Paul B. (DONG energy)

    2009-06-15

    '12MW: final report' is for the project with the full title '12 MW wind turbines: the scientific basis for their operation at 70 to 270 m height offshore' that had the goal to experimentally investigate the wind and turbulence characteristics between 70 and 270 m above sea level and thereby establish the scientific basis relevant for the next generation of huge 12 MW wind turbines operating offshore. The project started 1st October 2005 and ended 31st March 2009. Firstly was conducted a 6-month experiment at the Horns Rev offshore wind farm deploying a lidar and a sodar on the transformer platform. The observed data were successfully compared to offshore mast data and the wind profile was extended 100 m above previous levels observed in this offshore environment. The wind and turbulence was observed up to 160m above mean sea level. A new normalization was introduced to group the wind profiles into stability groups with variable roughness. Secondly two experiments were conducted at Hoevsoere at the North Sea coast in Jutland. Again the wind profile was extended far beyond previous observed levels, up to 300 m above ground. The analysis showed that the profiles extended far beyond the surface layer and therefore surface layer scale alone could not described the profiles well. In addition the boundary layer height has to be used for the scaling. The boundary layer height was observed by an aerosol lidar at Hoevsoere. The results are published widely, please see the list of publications. (au)

  14. Influence of different carbon monolith preparation parameters on pesticide adsorption

    Vukčević Marija

    2013-01-01

    Full Text Available The capacity of carbon monolith for pesticide removal from water, and the mechanism of pesticide interaction with carbon surface were examined. Different carbon monolith samples were obtained by varying the carbonization and activation parameters. In order to examine the role of surface oxygen groups in pesticide adsorption, carbon monolith surface was functionalized by chemical treatment in HNO3, H2O2 and KOH. The surface properties of the obtained samples were investigated by BET surface area, pore size distribution and temperature-programmed desorption. Adsorption of pesticides from aqueous solution onto activated carbon monolith samples was studied by using five pesticides belonging to different chemical groups (acetamiprid, dimethoate, nicosulfuron, carbofuran and atrazine. Presented results show that higher temperature of carbonization and the amount of activating agent allow obtaining microporous carbon monolith with higher amount of surface functional groups. Adsorption properties of the activated carbon monolith were more readily affected by the amount of the surface functional groups than by specific surface area. Results obtained by carbon monolith functionalisation showed that π-π interactions were the main force for adsorption of pesticides with aromatic structure, while acidic groups play an important role in adsorption of pesticides with no aromatic ring in the chemical structure.

  15. Biomimetic small peptide functionalized affinity monoliths for monoclonal antibody purification.

    Wang, Xiangyu; Xia, Donghai; Han, Hai; Peng, Kun; Zhu, Peijie; Crommen, Jacques; Wang, Qiqin; Jiang, Zhengjin

    2018-08-09

    The rapid development of monoclonal antibodies (mAbs) in therapeutic and diagnostic applications has necessitated the advancement of mAbs purification technologies. In this study, a biomimetic small peptide ligand 3,5-di-tert-butyl-4-hydroxybenzoic acid-Arg-Arg-Gly (DAAG) functionalized monolith was fabricated through a metal ion chelation-based multi-step approach. The resulting monolith showed good chromatographic performance. Compared with the Ni 2+ based IMAC monolith, the DAAG functionalized monolith exhibited not only excellent specificity but also higher dynamic binding capacity (DBC). The 10% DBC and 50% DBC for hIgG reached as high values as 26.0 and 34.6 mg/mL, respectively, at a ligand density of 8.8 μmol/mL, due to the high porosity and accessibility of the monolithic matrix. Moreover, the stability of the DAAG functionalized monolith in successive breakthrough experiments indicates that it has a promising potential for long-term use in mAbs purification. Finally, the DAAG functionalized monolith was successfully applied to the purification of trastuzumab or human immunoglobulin G (hIgG) from biological samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. MW-Class Electric Propulsion System Designs

    LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador

    2011-01-01

    Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary

  17. Multilevel converters for 10 MW Wind Turbines

    Ma, Ke; Blaabjerg, Frede

    2011-01-01

    Several promising multi-level converter configurations for 10 MW Wind Turbines both with direct drive and one-stage gear box drive using Permanent Magnet Synchronous Generator (PMSG) are proposed, designed and compared. Reliability is a crucial indicator for large scale wind power converters...... that the three-level and five-level H-bridge converter topologies both have potential to achieve improved thermal performances compared to the three-level Neutral-Point-Clamped converter topology in the wind power application....

  18. 34 GHz, 45 MW pulsed magnicon

    Nezhevenko, Oleg A.; LaPointe, Michael A.; Yakovlev, Vyacheslav P.; Hirshfield, Jay L.; Serdobintsev, Gennady V.; Kuznetsov, Gennady I.; Persov, Boris Z.; Fix, Alexander

    2002-01-01

    A high efficiency, high power magnicon at 34.272 GHz has been designed and built as a microwave source to develop RF technology for a future multi-TeV electron-positron linear collider. The tube is designed to provide a peak output power of ∼45 MW in a 1 microsecond pulse, with a gain of 55 dB, using a 500 kV, 220 A, 1 mm-diameter electron beam. The status of the tube itself as well as the near-term experimental program is presented

  19. A five MW nuclear heating reactor

    Zhang Dafang; Don Duo; Su Quingshan

    1997-01-01

    The 5 MW Nuclear Heating Reactor (NHR-5) developed and designed by the Institute of Nuclear Energy and Technology (INET) and has been operated for four winter seasons since 1989. During the time of commissioning and operation a number of experiments including self-stability, self-regulation and simulation of ATWS etc. were carried out. Some operating experiences such as water chemistry, radiation protection, and environmental impacts and so on, were also obtained at the same time. All of these demonstrate that the design of NHR-5 is successful. (author)

  20. PLC control of 50 MW klystron modulators

    Shang Lei; Liu Gongfa; Chen Liping; Lu Yeming; Hong Jun; Zhang Yi; Zhao Feng

    2004-01-01

    Upgrade project of the 50 MW klystron modulators of Hefei Light Source (HLS) was firstly introduced. PLC control system of modulators was employed to replace the old control and monitor system, which was based on relay logic circuit and manual operation method. the PLC system becomes a sub system of the new EPICS control system of HLS. Constant-current, switch-mode and high voltage power supplies were adopted to replace the old 50 Hz power supplies. The technology of modulators was improved and operation was more reliable. The design method, hardware and software of PLC control of modulators were described and the performance was presented. (authors)

  1. GE will finance 614-MW cogeneration plant

    Anon.

    1990-01-01

    The General Electric Power Funding Corporation, a unit of GE Capital, will provide up to $870 million in construction and permanent financing, and letters of credit to Cogen Technologies of Houston, Texas. The agreement will fund the construction of a 614-megawatt (MW), combined-cycle cogeneration plant to be built in Linden, New Jersey, and for the purchase of gas properties. The plant will be owned by Cogen Technologies. The financing is one of the largest packages ever for a cogeneration plant, GE said

  2. Aeroelastic Optimization of MW Wind Turbines

    Hansen, Morten Hartvig; Zahle, Frederik

    This report contains the results from the Energy Development and Demonstration Project “Aeroelastic Optimization of MW wind turbine” (AeroOpt). The project has had the following five Work Packages: 1. Geometric non-linear, anisotropic beamelement forHAWC2 2. Closed-loop eigenvalue analysis...... of controlled wind turbines 3. Resonant wave excitation of lateral tower bending modes 4. Development of next generation aerodynamic design tools 5. Advanced design and verification of airfoils The purposes of these Work Packages are briefly described in the Preface and a summary of the results are given...

  3. Operating experience with 600 MW steam turbosets

    Tinapp, J.

    1978-01-01

    The turbosets of the 600 MW line are machines with 4 casing, with a single-flow high-pressure turbine, a double-flow MD part, and two double-flow low-pressure turbines. The common design of all BBC turbosets of this size is explained, with a few remarks on the typical constructional features of BBC technology. The plant has a mean availability of 96% and a mean forced shutdown rate of 1.2%. A table gives a survey of the start-up procedure and the operating results so far. (GL) [de

  4. Mass fabrication of homogeneously Yb-doped silica nanoparticles and their spectroscopic properties

    Xiong Liangming; Sekiya, Edson H; Saito, Kazuya

    2009-01-01

    A large number of homogeneously Yb-doped silica nanoparticles were continually fabricated in a vapor synthesis route, in which the Yb doping level can be well controlled by varying either the heating temperature or the carrier gas flow rate of the Yb precursor. The sizes, shapes, and morphologies of the nanoparticles were examined, and no crystallites and no Yb 2 O 3 clusters were observed in the nanoparticles. These nanoparticles exhibit a clear Yb 3+ -derived absorption at around 973-975 nm and a dependence of the emission intensity and decay time on the doping level, much different from that of sintered pellets.

  5. Electron spin resonance in Yb-based Kondo-lattice systems; Elektronenspinresonanz in Yb-basierten Kondogitter-Systemen

    Wykhoff, Jan

    2010-07-07

    The systems Yb{sub 1-w}A{sub 1-w}(Rh{sub 1-x}Co{sub x})(Si{sub 1-y}Ge{sub y}){sub 2} with A=La respectively Lu, as well as YbIr{sub 2}Si{sub 2} are studied. The measurements are presented sortedly for systems, dopings, and external parameters. Beside these external parameters furthermore the orientation of the sample related to the quasistatic magnetic field and the microwave magnetic field was varied.

  6. Sequential growth of sandwiched NaYF{sub 4}:Yb/Er@NaYF{sub 4}:Yb@NaNdF{sub 4}:Yb core–shell–shell nanoparticles for photodynamic therapy

    Peng, Huang-Yong; Ding, Bin-Bin; Ma, Yin-Chu [Department of Medical Materials and Rehabilitation Engineering, School of Medical Engineering, Hefei University of Technology, Hefei 230009 (China); Sun, Shi-Qi [State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu 730046 (China); Tao, Wei [Department of Medical Materials and Rehabilitation Engineering, School of Medical Engineering, Hefei University of Technology, Hefei 230009 (China); Guo, Yan-Chuan [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Guo, Hui-Chen, E-mail: ghch-2004@hotmail.com [State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu 730046 (China); Yang, Xian-Zhu, E-mail: yangxz@hftu.edu.cn [Department of Medical Materials and Rehabilitation Engineering, School of Medical Engineering, Hefei University of Technology, Hefei 230009 (China); Qian, Hai-Sheng, E-mail: shqian@hfut.edu.cn [Department of Medical Materials and Rehabilitation Engineering, School of Medical Engineering, Hefei University of Technology, Hefei 230009 (China)

    2015-12-01

    Graphical abstract: The monodisperse elliptical NaYF{sub 4}:Yb/Er@NaYF{sub 4}:Yb@NaNdF{sub 4}:Yb core–shell–shell nanoparticles have been synthesized successfully by a facile sequential growth process, which can be used as transducer for photodynamic therapy of cancer cells. - Highlights: • The NaYF{sub 4}:Yb/Er@NaYF{sub 4}:Yb@NaNdF{sub 4}:Yb nanoparticles have been fabricated successfully. • The as-prepared nanoparticles show strong fluorescence excited at 980 or 808 nm. • The nanoparticles were transferred into the aqueous phase via a facile process. • Photosensitizers were loaded into the composites for photodynamic therapy. - Abstract: Upconversion (UC) nanostructures have attracted much interest for their extensive biological applications. In this work, we describe a sequential synthetic route to prepare sandwiched NaYF{sub 4}:Yb/Er@NaYF{sub 4}:Yb@NaNdF{sub 4}:Yb core–shell upconversion nanoparticles. The as-prepared products were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM, JEM 2100F), respectively. The as-prepared core–shell nanoparticles of NaYF{sub 4}:Yb/Er@NaYF{sub 4}:Yb@NaNdF{sub 4}:Yb are composed of elliptical nanoparticles with a length of 80 nm and width of 42 nm, which show efficient upconversion fluorescence excited at 808 nm indicating the formation of core–shell–shell sandwiched nanostructures. In addition, the as-prepared sandwiched NaYF{sub 4}:Yb/Er@NaYF{sub 4}:Yb@NaNdF{sub 4}:Yb core–shell upconversion nanoparticles also show strong upconversion fluorescence excited at 980 nm. Amphiphilic mPEG{sub 2k}-b-PEBEP{sub 6K} copolymers (denoted as PPE) were chosen to transfer these hydrophobic UCNPs into the aqueous phase for biological application. In vitro photodynamic therapy of cancer cells show that the viability of cells incubated with the nanoparticles loaded with MC 540 was significantly lower as compared to the nanoparticles without photosensitizers exposed to NIR laser.

  7. Extrapolation of the Dutch 1 MW tunable free electron maser to a 5 MW ECRH source

    Caplan, M.; Nelson, S.; Kamin, G.; Antonsen, T. Levush, B.; Urbanus, W.; Tulupov, A.

    1995-01-01

    A Free Electron Maser (FEM) is now under construction at the FOM Institute (Rijnhuizen) Netherlands with the goal of producing 1 MW long pulse to CW microwave output in the range 130 GHz to 250 GHz with wall plug efficiencies of 50% (Verhoeven, et al EC-9 Conference). An extrapolated version of this device is proposed which by scaling up the beam current, would produce microwave power levels of up to 5 MW CW in order to reduce the cost per watt and increase the power per module, thus providing the fusion community with a practical ECRH source

  8. Determining leach rates of monolithic waste forms

    Gilliam, T.M.; Dole, L.R.

    1986-01-01

    The ANS 16.1 Leach Procedure provides a conservative means of predicting long-term release from monolithic waste forms, offering a simple and relatively quick means of determining effective solid diffusion coefficients. As presented here, these coefficients can be used in a simple model to predict maximum release rates or be used in more complex site-specific models to predict actual site performance. For waste forms that pass the structural integrity test, this model also allows the prediction of EP-Tox leachate concentrations from these coefficients. Thus, the results of the ANS 16.1 Leach Procedure provide a powerful tool that can be used to predict the waste concentration limits in order to comply with the EP-Toxicity criteria for characteristically nonhazardous waste. 12 refs., 3 figs

  9. Silver deposition on chemically treated carbon monolith

    Jovanović Zoran M.

    2009-01-01

    Full Text Available Carbon monolith was treated with HNO3, KOH and H2O2. Effects of these treatments on the surface functional groups and on the amount of silver deposited on the CM surface were studied by temperature programmed desorption (TPD and atomic absorption spectrometry (AAS. As a result of chemical treatment there was an increase in the amount of surface oxygen complexes. The increase in the amount of silver deposit is proportional to the amount of surface groups that produce CO under decomposition. However, the high amount of CO groups, decomposing above 600°C, induces the smaller Ag crystallite size. Therefore, the high temperature CO evolving oxides are, most likely, the initial centers for Ag deposition.

  10. Monolithic microwave integrated circuit water vapor radiometer

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  11. Present status of the MONOLITH project

    Petrukhin, A.A.

    2001-01-01

    MONOLITH is a proposed massive (34 kt) magnetized tracking calorimeter at the Gran Sasso laboratory in Italy, optimized for the detection of atmospheric muon neutrinos. The main goal is to establish (or reject) the neutrino oscillation hypothesis through an explicit observation of the full first oscillation swing. The Δm 2 sensitivity range for this measurement comfortably covers the complete Super-Kamiokande allowed region. Other measurements include studies of matter effects, the NC up/down ratio, ν bar / ν ratio, the study of cosmic ray muons in the multi-TeV range, and auxiliary measurements from the CERN to Gran Sasso neutrino beam. Depending on approval, data taking with the part of the detector could start towards the end of 2004

  12. Monolithic fuel injector and related manufacturing method

    Ziminsky, Willy Steve [Greenville, SC; Johnson, Thomas Edward [Greenville, SC; Lacy, Benjamin [Greenville, SC; York, William David [Greenville, SC; Stevenson, Christian Xavier [Greenville, SC

    2012-05-22

    A monolithic fuel injection head for a fuel nozzle includes a substantially hollow vesicle body formed with an upstream end face, a downstream end face and a peripheral wall extending therebetween, an internal baffle plate extending radially outwardly from a downstream end of the bore, terminating short of the peripheral wall, thereby defining upstream and downstream fuel plenums in the vesicle body, in fluid communication by way of a radial gap between the baffle plate and the peripheral wall. A plurality of integral pre-mix tubes extend axially through the upstream and downstream fuel plenums in the vesicle body and through the baffle plate, with at least one fuel injection hole extending between each of the pre-mix tubes and the upstream fuel plenum, thereby enabling fuel in the upstream plenum to be injected into the plurality of pre-mix tubes. The fuel injection head is formed by direct metal laser sintering.

  13. Bioinspired Synthesis of Monolithic and Layered Aerogels.

    Han, Xiao; Hassan, Khalil T; Harvey, Alan; Kulijer, Dejan; Oila, Adrian; Hunt, Michael R C; Šiller, Lidija

    2018-04-25

    Aerogels are the least dense and most porous materials known to man, with potential applications from lightweight superinsulators to smart energy materials. To date their use has been seriously hampered by their synthesis methods, which are laborious and expensive. Taking inspiration from the life cycle of the damselfly, a novel ambient pressure-drying approach is demonstrated in which instead of employing low-surface-tension organic solvents to prevent pore collapse during drying, sodium bicarbonate solution is used to generate pore-supporting carbon dioxide in situ, significantly reducing energy, time, and cost in aerogel production. The generic applicability of this readily scalable new approach is demonstrated through the production of granules, monoliths, and layered solids with a number of precursor materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Crystal growth, optical properties, and laser operation of Yb3+-doped NYW single crystal

    Cheng, Y.; Xu, X. D.; Yang, X. B.; Xin, Z.; Cao, D. H.; Xu, J.

    2009-11-01

    Laser crystal Yb3+-doped NaY(WO4)2 (Yb:NYW) with excellent quality has been grown by Czochralski technique. The rocking curves from (400) plane of as-grown Yb:NYW crystal was measured and the full-width value at half-maximum was 19.92″. The effective segregation coefficients were measured by the X-ray fluorescence method. The polarized absorption spectra and the fluorescence spectra of Yb:NYW crystal were measured at room temperature. The fluorescence decay lifetime of Yb3+ ion in NYW crystal has been investigated. The spectroscopic parameters of Yb:NYW crystal are calculated and compared with those of Yb:YAG crystal. A continuous wave output power of 3.06 W at 1031 nm was obtained with a slope efficiency of 42% by use of diode pumping.

  15. Luminescence of YbP3O9 upon excitation in the UV-VUV range

    Stryganyuk, G; Trots, D; Berezovskaya, I; Shalapska, T; Voloshinovskii, A; Dotsenko, V; Zimmerer, G

    2007-01-01

    X-ray powder diffraction and luminescence spectral-kinetic studies have been performed for ytterbium metaphosphate (YbP 3 O 9 ) in the 12-290 K temperature range. The diffraction investigation has shown YbP 3 O 9 to be of monoclinic P 2 1 /c structure at T = 12-290 K. Charge transfer luminescence originating from Yb 3+ ion has been revealed. The carrier confinement within the Yb 3+ charge transfer state is pronounced at T = 12 K. A tendency has been revealed for charge carriers in YbP 3 O 9 to be localized in a trapped exciton state at room temperature. The quenching mechanisms for Yb 3+ charge transfer luminescence and processes competing with the formation of the Yb 3+ charge transfer state are discussed

  16. Effects of Yb on the mechanical properties and microstructures of an Al-Mg alloy

    Song Min; Wu Zhenggang; He Yuehui

    2008-01-01

    This paper reported a first study of the effects of Yb on the microstructures and mechanical properties of an extruded Al-Mg alloy. It has been shown that the addition of 0.3 wt.% Yb decreases the mechanical properties of the alloy since Mg- and Yb-containing constituents decrease the concentration of Mg solute atoms in Al matrix, and thus the solution strengthening effect. However, the addition of 1 wt.% Yb substantially improves the mechanical behavior of the alloy because the concentration of Yb solute atoms in Al matrix is high enough to generate solution strengthening effect. The improvement in the mechanical properties is due to the large work-hardening and high dislocation density caused by the interaction between dislocations and Yb and Mg solute atoms. The Yb and Mg atoms inhibit the dynamic recovery and recrystallization of the alloy, thus provide a uniformly distributed dislocation structure with high density

  17. Graphene Q-switched Yb:KYW planar waveguide laser

    Kim, Jun Wan; Choi, Sun Young; Aravazhi, S.; Pollnau, Markus; Griebner, Uwe; Petrov, Valentin; Bae, Sukang; Ahn, Kwang Jun; Yeom, Dong-Il; Rotermund, Fabian

    A diode-pumped Yb:KYW planar waveguide laser, single-mode Q-switched by evanescent-field interaction with graphene, is demonstrated for the first time. Few-layer graphene grown by chemical vapor deposition is transferred onto the top of a guiding layer, which initiates stable Q-switched operation in

  18. Synthesis and characterisation of YbPdSb

    Haines, Charles R.S.; Brown, Philip A.C.; Grosche, Friedrich M. [Department of Physics, Cavendish Laboratory, University of Cambridge (United Kingdom)

    2016-07-01

    The intermetallic compound YbPdSb can form in two structures: the low temperature (LT) half-Heusler phase, in which the Yb atoms form a frustrated fcc structure, and the high temperature (HT) Pnma modification. We have prepared phase pure samples of both structures and report resistivity, magnetisation and heat capacity measurements on both. The LT phase is a Kondo lattice system showing large-moment Curie-Weiss paramagnet behaviour without any phase transition anomalies down to the lowest temperatures measured. The resistivity is rather insensitive to temperature from room temperature down to ∝50 K where it decreases steeply with further cooling. By contrast, in the HT phase the magnetic susceptibility displays weak temperature dependence and the resistivity falls with decreasing temperature in the way expected of a weakly correlated metal. These findings suggest that in contrast to the electronic state in the LT structure, the 4f-shell of Yb is completely filled in the HT structure of YbPdSb, presenting an interesting opportunity to study the interplay between lattice and electronic structure within the same compound.

  19. Moments of inertia in 162Yb at very high spins

    Simon, R.S.; Banaschik, M.V.; Colombani, P.; Soroka, D.P.; Stephens, F.S.; Diamond, R.M.

    1976-01-01

    Two methods have been used to obtain values of the effective moment of inertia of very-high-spin (20h-bar--50h-bar) states populated in heavy-ion compound-nucleus reactions. The 162 Yb nucleus studied has effective moments of inertia smaller than, but approaching, the rigid-body estimate

  20. Spin reorientation behavior in Yb doped YMnO3

    Sharma, Neetika; Das, A.

    2014-01-01

    RMnO 3 with smaller rare-earths ions (R = Ho to Lu and Y) crystallize in the non-centrosymmetric hexagonal space group P6 3 cm. The magnetic structure of RMnO 3 compounds with (R=Er,Yb.Lu) are described by irreducible representations (IR) Γ 2,4 and Γ 1,3 for those with higher ionic radii (R=Ho,Y,Y-Er). Of recent the magnetic structure of YMnO 3 has been found to be better described by Γ 3 + Γ 4 IR. YbMnO 3 is another hexagonal manganite, with almost similar transition temperature, and basically shares all the physical properties of YMnO 3 , except for the magnetic structure. The magnetic structure of YbMnO 3 can be explained by Γ 2 or Γ 4 . The non collinear nature of magnetic ordering in these compounds arises due to the frustration inherent in these compounds. In this study we have probed the effect of a magnetic ion (Yb) on the magnetic structure of these frustrated isostructural compounds

  1. Ultraviolet and near-infrared luminescence of LaBO3:Ce3+,Yb3+

    Wei, Heng-Wei; Shao, Li-Ming; Jiao, Huan; Jing, Xi-Ping

    2018-01-01

    Ce3+ or Yb3+ singly doped LaBO3 and Ce3+-Yb3+ co-doped LaBO3 were prepared by conventional solid state reactions at 1100 °C and their photoluminescence (PL) properties were investigated. The emission spectrum of LaBO3:Ce3+,Yb3+ contains both the Ce3+ ultraviolet (UV) emissions (355 nm and 380 nm) and the Yb3+ near infrared (NIR) emission (975 nm) when excited by the UV light at 270 nm. By using the data of the Ce3+ decay curves and the PL intensities of both Ce3+ and Yb3+, the energy transfer efficiency (η) from Ce3+ to Yb3+, the actual energy transfer efficiency (AE) and the quantum efficiency (Q) of the Yb3+ emission were calculated. In the Ce3+-Yb3+ co-doped LaBO3, Ce3+ can transfer its absorbed energy to Yb3+ efficiently (η can be over 60%), and Yb3+ shows the Q value over 50% when it accepts the energy from Ce3+, which results in the low AE value ∼30%. The energy transfer process from Ce3+ to Yb3+ may be understood by the charge transfer mechanism: Ce3+ + Yb3+ ↔ Ce4+ + Yb2+. Particularly the Ce3+-Yb3+ co-doped LaBO3 phosphor gives the emissions mainly in the UV range and the NIR range with a portion of visible emissions in eye-insensitive range. This unique property may be suitable for applications in anti-counterfeiting techniques and public security affairs.

  2. Genome-wide analysis of the human Alu Yb-lineage

    Carter Anthony B

    2004-03-01

    Full Text Available Abstract The Alu Yb-lineage is a 'young' primarily human-specific group of short interspersed element (SINE subfamilies that have integrated throughout the human genome. In this study, we have computationally screened the draft sequence of the human genome for Alu Yb-lineage subfamily members present on autosomal chromosomes. A total of 1,733 Yb Alu subfamily members have integrated into human autosomes. The average ages of Yb-lineage subfamilies, Yb7, Yb8 and Yb9, are estimated as 4.81, 2.39 and 2.32 million years, respectively. In order to determine the contribution of the Alu Yb-lineage to human genomic diversity, 1,202 loci were analysed using polymerase chain reaction (PCR-based assays, which amplify the genomic regions containing individual Yb-lineage subfamily members. Approximately 20 per cent of the Yb-lineage Alu elements are polymorphic for insertion presence/absence in the human genome. Fewer than 0.5 per cent of the Yb loci also demonstrate insertions at orthologous positions in non-human primate genomes. Genomic sequencing of these unusual loci demonstrates that each of the orthologous loci from non-human primate genomes contains older Y, Sg and Sx Alu family members that have been altered, through various mechanisms, into Yb8 sequences. These data suggest that Alu Yb-lineage subfamily members are largely restricted to the human genome. The high copy number, level of insertion polymorphism and estimated age indicate that members of the Alu Yb elements will be useful in a wide range of genetic analyses.

  3. Catalytic Oxidation of Cyanogen Chloride over a Monolithic Oxidation Catalyst

    Campbell, Jeffrey

    1997-01-01

    The catalytic oxidation of cyanogen chloride was evaluated over a monolithic oxidation catalyst at temperatures between 200 and 300 deg C in air employing feed concentrations between 100 and 10,000 ppm...

  4. Effect of accelerated aging on translucency of monolithic zirconia

    O. Abdelbary

    2016-12-01

    Conclusion: Thickness of zirconia has significant effect on translucency. Aging has significant effect on thinner sections of zirconia. More research is required on zirconia towards making the material more translucent for its potential use as esthetic monolithic restoration.

  5. Microchip-based monolithic column for high performance liquid chromatography

    National Aeronautics and Space Administration — We have developed microchip based monolithic columns that can be used for liquid chromatography of small organic molecules, as well as, macromolecules such as...

  6. Monolithic Perovskite Silicon Tandem Solar Cells with Advanced Optics

    Goldschmidt, Jan C.; Bett, Alexander J.; Bivour, Martin; Blasi, Benedikt; Eisenlohr, Johannes; Kohlstadt, Markus; Lee, Seunghun; Mastroianni, Simone; Mundt, Laura; Mundus, Markus; Ndione, Paul; Reichel, Christian; Schubert, Martin; Schulze, Patricia S.; Tucher, Nico; Veit, Clemens; Veurman, Welmoed; Wienands, Karl; Winkler, Kristina; Wurfel, Uli; Glunz, Stefan W.; Hermle, Martin

    2016-11-14

    For high efficiency monolithic perovskite silicon tandem solar cells, we develop low-temperature processes for the perovskite top cell, rear-side light trapping, optimized perovskite growth, transparent contacts and adapted characterization methods.

  7. Shear bond strength of indirect composite material to monolithic zirconia.

    Sari, Fatih; Secilmis, Asli; Simsek, Irfan; Ozsevik, Semih

    2016-08-01

    This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). Bond strength was significantly lower in untreated specimens than in sandblasted specimens (Pcomposite material and monolithic zirconia.

  8. Reliability Analysis and Optimal Design of Monolithic Vertical Wall Breakwaters

    Sørensen, John Dalsgaard; Burcharth, Hans F.; Christiani, E.

    1994-01-01

    Reliability analysis and reliability-based design of monolithic vertical wall breakwaters are considered. Probabilistic models of the most important failure modes, sliding failure, failure of the foundation and overturning failure are described . Relevant design variables are identified...

  9. Plant oil-based shape memory polymer using acrylic monolith

    T. Tsujimoto

    2015-09-01

    Full Text Available This article deals with the synthesis of a plant oil-based material using acrylic monolith. An acrylic monolith bearing oxirane groups was prepared via simple technique that involved the dissolution of poly(glycidyl methacrylate-comethyl methacrylate (PGMA in ethanolic – aqueous solution by heating and subsequent cooling. The PGMA monolith had topologically porous structure, which was attributed to the phase separation of the polymer solution. The PGMA monolith was impregnated by epoxidized soybean oil (ESO containing thermally-latent catalyst, and the subsequent curing produced a crosslinked material with relatively good transparency. The Young’s modulus and the tensile strength of polyESO/PGMA increased compared with the ESO homopolymer. The strain at break of polyESO/PGMA was larger than that of the ESO homopolymer and crosslinked PGMA. Furthermore, polyESO/PGMA exhibited good shape memory-recovery behavior.

  10. Towards a Technique for Extracting Microservices from Monolithic Enterprise Systems

    Levcovitz, Alessandra; Terra, Ricardo; Valente, Marco Tulio

    2016-01-01

    The idea behind microservices architecture is to develop a single large, complex application as a suite of small, cohesive, independent services. On the other way, monolithic systems get larger over the time, deviating from the intended architecture, and becoming risky and expensive to evolve. This paper describes a technique to identify and define microservices on monolithic enterprise systems. As the major contribution, our evaluation shows that our approach was able to identify relevant ca...

  11. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    2016-05-17

    Zirconium -Oxide Materials presented at/published to the Journal of General Dentistry with MDWI 41-108, and has been assigned local file #16208. 2...Zirconia-Oxide Materials 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide...OBSOLETE 48. DATE Page 3 of 3 Pages Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials

  12. Microwaves integrated circuits: hybrids and monolithics - fabrication technology

    Cunha Pinto, J.K. da

    1983-01-01

    Several types of microwave integrated circuits are presented together with comments about technologies and fabrication processes; advantages and disadvantages in their utilization are analysed. Basic structures, propagation modes, materials used and major steps in the construction of hybrid thin film and monolithic microwave integrated circuits are described. Important technological applications are revised and main activities of the microelectronics lab. of the University of Sao Paulo (Brazil) in the field of hybrid and monolithic microwave integrated circuits are summarized. (C.L.B.) [pt

  13. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jung, H. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-09

    This report describes the results from long-term laboratory leach tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams. Specific objectives of the Cast Stone long-term leach tests described in this report focused on four activities: 1. Extending the leaching times for selected ongoing EPA-1315 tests on monoliths made with LAW simulants beyond the conventional 63-day time period up to 609 days reported herein (with some tests continuing that will be documented later) in an effort to evaluate long-term leaching properties of Cast Stone to support future performance assessment activities. 2. Starting new EPA-1315 leach tests on archived Cast Stone monoliths made with four LAW simulants using two leachants (deionized water [DIW] and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water [VZP]). 3. Evaluating the impacts of varying the iodide loading (starting iodide concentrations) in one LAW simulant (7.8 M Na Hanford Tank Waste Operations Simulator (HTWOS) Average) by manufacturing new Cast Stone monoliths and repeating the EPA-1315 leach tests using DIW and the VZP leachants. 4. Evaluating the impacts of using a non-pertechnetate form of Tc that is present in some Hanford tanks. In this activity one LAW simulant (7.8 M Na HTWOS Average) was spiked with a Tc(I)-tricarbonyl gluconate species and then solidified into Cast Stone monoliths. Cured monoliths were leached using the EPA-1315 leach protocol with DIW and VZP. The leach results for the Tc-Gluconate Cast Stone monoliths were compared to Cast Stone monoliths pertechnetate.

  14. TG 220 MW hydraulic control system diagnostics

    Svabcik, A.

    1996-01-01

    The TG power output control system comprises a hydraulic and an electronic part. TG speed, power output or the main steam header pressure (HPK) depend on the steam flow at the turbine inlet. The steam admission into the turbine is controlled by four control valves and one by-pass valve in case of the HP part and by four capture flap valves in case of the LP part. The task of the SKODA K-220 MW turbine protection and control systems is to provide both the turbine speed and power output control to the setpoint value. Diagnostic measurements were aimed at getting an overview of both technical and functional states of all power output control elements. Principally, it can be stated that some deficiencies of a design nature originating from the manufacturer's factory were revealed and some other deficiencies related to hydraulic control elements functionality were identified more closely by the new method. 5 figs

  15. TG 220 MW hydraulic control system diagnostics

    Svabcik, A [Atomova Elektraren Bohunice, Jaslovske Bohunice (Slovakia)

    1997-12-31

    The TG power output control system comprises a hydraulic and an electronic part. TG speed, power output or the main steam header pressure (HPK) depend on the steam flow at the turbine inlet. The steam admission into the turbine is controlled by four control valves and one by-pass valve in case of the HP part and by four capture flap valves in case of the LP part. The task of the SKODA K-220 MW turbine protection and control systems is to provide both the turbine speed and power output control to the setpoint value. Diagnostic measurements were aimed at getting an overview of both technical and functional states of all power output control elements. Principally, it can be stated that some deficiencies of a design nature originating from the manufacturer`s factory were revealed and some other deficiencies related to hydraulic control elements functionality were identified more closely by the new method. 5 figs.

  16. Maintenance of French 900 MW PWR plants

    Anon.

    1985-01-01

    This paper presents the doctrine and the aims of maintenance of EDF in the next few years. With an average age of 3.5 years, France's 900 MW PWRs, which now total 31, have overcome their growing pains. During the next few years EDF is aiming for a sharp increase in the availability factor of these plants which make up most of its nuclear thermal capacity, a reduction in the number of emergency outages, as great a cut back as possible in the period of programmed outages and the bringing down of the doses received by staff to the lowest possible level. Eventually the idea is to extend the operating life of plants as much as possible, perhaps to 40 or 50 years [fr

  17. Aeroelastic optimization of MW wind turbines

    Hartvig Hansen, M.; Zahle, F.

    2011-12-15

    This report contains the results from the Energy Development and Demonstration Project ''Aeroelastic Optimization of MW wind turbine'' (AeroOpt). The project has had the following five Work Packages: 1. Geometric non-linear, anisotropic beam element for HAWC2. 2. Closed-loop eigenvalue analysis of controlled wind turbines. 3. Resonant wave excitation of lateral tower bending modes. 4. Development of next generation aerodynamic design tools. 5. Advanced design and verification of airfoils. The purposes of these Work Packages are briefly described in the Preface and a summary of the results are given in Section 2. Thereafter, the results from each Work Package are described in eight subsequent chapters. (Author)

  18. Nano-Doped Monolithic Materials for Molecular Separation

    Caleb Acquah

    2017-01-01

    Full Text Available Monoliths are continuous adsorbents that can easily be synthesised to possess tuneable meso-/macropores, convective fluid transport, and a plethora of chemistries for ligand immobilisation. They are grouped into three main classes: organic, inorganic, and hybrid, based on their chemical composition. These classes may also be differentiated by their unique morphological and physicochemical properties which are significantly relevant to their specific separation applications. The potential applications of monoliths for molecular separation have created the need to enhance their characteristic properties including mechanical strength, electrical conductivity, and chemical and thermal stability. An effective approach towards monolith enhancement has been the doping and/or hybridization with miniaturized molecular species of desirable functionalities and characteristics. Nanoparticles are usually preferred as dopants due to their high solid phase dispersion features which are associated with improved intermolecular adsorptive interactions. Examples of such nanomaterials include, but are not limited to, carbon-based, silica-based, gold-based, and alumina nanoparticles. The incorporation of these nanoparticles into monoliths via in situ polymerisation and/or post-modification enhances surface adsorption for activation and ligand immobilisation. Herein, insights into the performance enhancement of monoliths as chromatographic supports by nanoparticles doping are presented. In addition, the potential and characteristics of less common nanoparticle materials such as hydroxyapatite, ceria, hafnia, and germania are discussed. The advantages and challenges of nanoparticle doping of monoliths are also discussed.

  19. Mechanically stable, hierarchically porous Cu3(btc)2 (HKUST-1) monoliths via direct conversion of copper(II) hydroxide-based monoliths.

    Moitra, Nirmalya; Fukumoto, Shotaro; Reboul, Julien; Sumida, Kenji; Zhu, Yang; Nakanishi, Kazuki; Furukawa, Shuhei; Kitagawa, Susumu; Kanamori, Kazuyoshi

    2015-02-28

    The synthesis of highly crystalline macro-meso-microporous monolithic Cu3(btc)2 (HKUST-1; btc(3-) = benzene-1,3,5-tricarboxylate) is demonstrated by direct conversion of Cu(OH)2-based monoliths while preserving the characteristic macroporous structure. The high mechanical strength of the monoliths is promising for possible applications to continuous flow reactors.

  20. Post-adsorption process of Yb phosphate nano-particle formation by Saccharomyces cerevisiae

    Jiang, MingYu; Ohnuki, Toshihiko; Tanaka, Kazuya; Kozai, Naofumi; Kamiishi, Eigo; Utsunomiya, Satoshi

    2012-09-01

    In this study, we have investigated the post-adsorption process of ytterbium (Yb) phosphate nano-particle formation by Saccharomyces cerevisiae (yeast). The yeast grown in P-rich medium were exposed to 1.44 × 10-4 mol/L Yb(III) solution for 2-120 h, and 2 months at 25 ± 1 °C at an initial pH of 3, 4, or 5, respectively. Ytterbium concentrations in solutions decreased as a function of exposure time. Field-emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (FESEM), transmission electron microscopy (TEM), and synchrotron-based extended X-ray absorption fine structure (EXAFS) analyses revealed that nano-sized blocky Yb phosphate with an amorphous phase formed on the yeast cells surfaces in the solutions with Yb. These nano-sized precipitates that formed on the cell surfaces remained stable even after 2 months of exposure at 25 ± 1 °C around neutral pHs. The EXAFS data revealed that the chemical state of the accumulated Yb on the cell surfaces changed from the adsorption on both phosphate and carboxyl sites at 30 min to Yb phosphate precipitates at 5 days, indicating the Yb-phosphate precipitation as a major post-adsorption process. In addition, the precipitation of Yb phosphate occurred on cell surfaces during 7 days of exposure in Yb-free solution after 2 h of exposure (short-term Yb adsorption) in Yb solution. These results suggest that the released P from the inside of yeast cells reacted with adsorbed Yb on cell surfaces, resulting in the formation of Yb precipitates, even though no P was added to the exposure solution. In an abiotic system, the EXAFS data showed that the speciation of sorbed Yb on the reference materials, carboxymethyl cellulose and Ln resin, did not change even when the Yb was exposed to P solution, without forming Yb phosphate precipitates. This result strongly suggests that the cell surface of the yeast plays an important role in the Yb-phosphate precipitation process, not only as a carrier of the

  1. Monolithic CMOS imaging x-ray spectrometers

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  2. Transport, Thermal, and Magnetic Properties of YbNi3X9 (X = Al, Ga): A Newly Synthesized Yb-Based Kondo Lattice System

    Yamashita, Tetsuro; Miyazaki, Ryoichi; Aoki, Yuji; Ohara, Shigeo

    2012-03-01

    We have succeeded in synthesizing a new Yb-based Kondo lattice system, YbNi3X9 (X = Al, Ga). Our study reveals that YbNi3Al9 shows typical features of a heavy-fermion antiferromagnet with a Néel temperature of TN = 3.4 K. All of the properties reflect a competition between the Kondo effect and the crystalline electric field (CEF) effect. The moderate heavy-fermion state leads to an enhanced Sommerfeld coefficient of 100 mJ/(mol\\cdotK2), even if ordered antiferromagnetically. On the other hand, the isostructural gallide YbNi3Ga9 is an intermediate-valence system with a Kondo temperature of TK = 570 K. A large hybridization scale can overcome the CEF splitting energy, and a moderately heavy Fermi-liquid ground state with high local moment degeneracy should form at low temperatures. Note that the quality of single-crystalline YbNi3X9 is extremely high compared with those of other Yb-based Kondo lattice compounds. We conclude that YbNi3X9 is a suitable system for investigating the electronic structure of Yb-based Kondo lattice systems from a heavy-fermion system with an antiferromagnetically ordered ground state to an intermediate-valence system.

  3. Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator

    Dudzik, G.; Sotor, J.; Krzempek, K.; Soboń, G.; Abramski, K. M.

    2014-02-01

    We present a single frequency, stable, narrow linewidth, miniature laser sources operating at 532 nm (or 1064 nm) based on a monolithic resonators. Such resonators utilize birefringent filters formed by YVO4 beam displacer and KTP or YVO4 crystals to force single frequency operation at 532 nm or 1064 nm, respectively. In both configurations Nd:YVO4 gain crystal is used. The resonators dimensions are 1x1x10.5 mm3 and 1x1x8.5 mm3 for green and infrared configurations, respectively. Presented laser devices, with total dimensions of 40x52x120 mm3, are fully equipped with driving electronics, pump diode, optical and mechanical components. The highly integrated (36x15x65 mm3) low noise driving electronics with implemented digital PID controller was designed. It provides pump current and resonator temperature stability of ±30 μA@650 mA and ±0,003ºC, respectively. The laser parameters can be set and monitored via the USB interface by external application. The developed laser construction is universal. Hence, the other wavelengths can be obtained only by replacing the monolithic resonator. The optical output powers in single frequency regime was at the level of 42 mW@532 nm and 0.5 W@1064 nm with the long-term fluctuations of ±0.85 %. The linewidth and the passive frequency stability under the free running conditions were Δν < 100 kHz and 3ṡ10-9@1 s integration time, respectively. The total electrical power supply consumption of laser module was only 4 W. Presented compact, single frequency laser operating at 532 nm and 1064 nm may be used as an excellent source for laser vibrometry, interferometry or seed laser for fiber amplifiers.

  4. YB-1 overexpression promotes a TGF-β1-induced epithelial–mesenchymal transition via Akt activation

    Ha, Bin; Lee, Eun Byul; Cui, Jun; Kim, Yosup; Jang, Ho Hee

    2015-01-01

    The Y-box binding protein-1 (YB-1) is a transcription/translation regulatory protein, and the expression thereof is associated with cancer aggressiveness. In the present study, we explored the regulatory effects of YB-1 during the transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) in lung adenocarcinoma cells. Downregulation of YB-1 increased E-cadherin promoter activity, and upregulation of YB-1 decreased promoter activity, suggesting that the YB-1 level may be correlated with the EMT. TGF-β1 induced YB-1 expression, and TGF-β1 translocated cytosolic YB-1 into the nucleus. YB-1 overexpression promoted TGF-β1-induced downregulation of epithelial markers, upregulation of mesenchymal markers, and cell migration. Moreover, YB-1 overexpression enhanced the expression of E-cadherin transcriptional repressors via TGF-β1-induced Akt activation. Our findings afford new insights into the role played by YB-1 in the TGF-β1 signaling pathway. - Highlights: • YB-1 regulates E-cadherin expression in A549 cells. • TGF-β1 induces upregulating and nuclear localization of YB-1. • YB-1 overexpression accelerates TGF-β1-induced EMT and cell migration. • YB-1 regulates Snail and Slug expression via Akt activation

  5. 50 MW C-band pulse klystron; 50MW C band pulse klystron

    NONE

    1999-03-01

    C-band pulse klystron E3746 with an output of 50 MW class was developed jointly with the High-Energy Accelerator Research Organization in the Ministry of Education as the klystron for a linear accelerator. For a large-sized linear accelerator in the next generation, a klystron with higher operating frequency has been required to obtain a compact and efficient accelerator. In E3746, the problem of power resistance during high-frequency operation was solved by mounting a traveling-wave multi-cell output circuit. Moreover, stable operation in the pulse width of 2.5 {mu}s and the output of 54 MW was performed at the same operation efficiency (44%) as the conventional S-band tube by using the frequency (in a C-band frequency band) that is two times as high as the conventional general accelerator. (translated by NEDO)

  6. Properties of glass-bonded zeolite monoliths

    Lewis, M.A.; Fischer, D.F.; Murphy, C.D.

    1994-01-01

    It has been shown that mineral waste forms can be used to immobilize waste salt generated during the pyrochemical processing of spent fuel from the Integral Fast Reactor (IFR). Solid, leach resistant monoliths were formed by hot-pressing mixtures of salt-occluded zeolite A powders and glass frit at 990 K and 28 MPa. Additional samples have now been fabricated and tested. Normalized release rates for all elements, including iodide and chloride, were less than 1 g/m 2 d in 28-day tests in deionized water and in brine at 363 K (90 degrees C). Preliminary results indicate that these rates fall with time with both leachants and that the zeolite phase in the glass-bonded zeolite does not function as an ion exchanger. Some material properties were measured. The Poisson ratio and Young's modulus were slightly smaller in glass-bonded zeolite than in borosilicate glass. Density depended on zeolite fraction. The glass-bonded zeolite represents a promising mineral waste form for IFR salt

  7. Neutron spectrometry with a monolithic silicon telescope.

    Agosteo, S; D'Angelo, G; Fazzi, A; Para, A Foglio; Pola, A; Zotto, P

    2007-01-01

    A neutron spectrometer was set-up by coupling a polyethylene converter with a monolithic silicon telescope, consisting of a DeltaE and an E stage-detector (about 2 and 500 microm thick, respectively). The detection system was irradiated with monoenergetic neutrons at INFN-Laboratori Nazionali di Legnaro (Legnaro, Italy). The maximum detectable energy, imposed by the thickness of the E stage, is about 8 MeV for the present detector. The scatter plots of the energy deposited in the two stages were acquired using two independent electronic chains. The distributions of the recoil-protons are well-discriminated from those due to secondary electrons for energies above 0.350 MeV. The experimental spectra of the recoil-protons were compared with the results of Monte Carlo simulations using the FLUKA code. An analytical model that takes into account the geometrical structure of the silicon telescope was developed, validated and implemented in an unfolding code. The capability of reproducing continuous neutron spectra was investigated by irradiating the detector with neutrons from a thick beryllium target bombarded with protons. The measured spectra were compared with data taken from the literature. Satisfactory agreement was found.

  8. Parameters of thermoelectric power and electronic structure of Yb-based compounds of YbM2X2(M=Fe,Co,Ni,Cu; X=Si,Ge) type

    Levin, E.M.; Kuzhel', B.S.

    1990-01-01

    Thermoelectric power of Yb-based intermetallic alloys YbM 2 Si 2 (M-Co,Ni,Cu) and YbM 2 Ge 2 (M=Fe,Co,Ni) have been investigated and found to have anomalous low-temperature peaks conditioned by intermediate Yb valency. Calculation of electronic structure parameters performed in frames of the localized Fermi-liquid model using experimental data on the thermoelectric power is in good agreement with results of YbCu 2 Si 2 band structure calculation based on the experimental value of the electronic heat capacity with regard for the (2J+1) - fold Yb 2+ degeneration

  9. Development of a 5 MW reference gearbox for offshore wind turbines: 5 MW reference gearbox

    Nejad, Amir Rasekhi [Norwegian Research Center for Offshore Wind Technology, Norwegian University of Science and Technology, Trondheim Norway; Center for Ships and Ocean Structures, Norwegian University of Science and Technology, Trondheim Norway; Guo, Yi [National Wind Technology Center, National Renewable Energy Laboratory, Golden Colorado USA; Gao, Zhen [Center for Ships and Ocean Structures, Norwegian University of Science and Technology, Trondheim Norway; Moan, Torgeir [Norwegian Research Center for Offshore Wind Technology, Norwegian University of Science and Technology, Trondheim Norway; Center for Ships and Ocean Structures, Norwegian University of Science and Technology, Trondheim Norway

    2015-07-27

    This paper presents detailed descriptions, modeling parameters and technical data of a 5MW high-speed gearbox developed for the National Renewable Energy Laboratory offshore 5MW baseline wind turbine. The main aim of this paper is to support the concept studies and research for large offshore wind turbines by providing a baseline gearbox model with detailed modeling parameters. This baseline gearbox follows the most conventional design types of those used in wind turbines. It is based on the four-point supports: two main bearings and two torque arms. The gearbox consists of three stages: two planetary and one parallel stage gears. The gear ratios among the stages are calculated in a way to obtain the minimum gearbox weight. The gearbox components are designed and selected based on the offshore wind turbine design codes and validated by comparison to the data available from large offshore wind turbine prototypes. All parameters required to establish the dynamic model of the gearbox are then provided. Moreover, a maintenance map indicating components with high to low probability of failure is shown. The 5 MW reference gearbox can be used as a baseline for research on wind turbine gearboxes and comparison studies. It can also be employed in global analysis tools to represent a more realistic model of a gearbox in a coupled analysis.

  10. Yb-fiber-pumped mid-infrared picosecond optical parametric oscillator tunable across 6.2-6.7 µm

    Kumar, S. Chaitanya; Casals, J. Canals; Parsa, S.; Zawilski, K. T.; Schunemann, P. G.; Ebrahim-Zadeh, M.

    2018-06-01

    We report a high-average-power picosecond optical parametric oscillator (OPO) tunable in the mid-infrared (mid-IR) based on CdSiP2 synchronously pumped by an Yb-fiber laser at 80 MHz repetition rate. Successful operation of this high-repetition-rate singly-resonant picosecond OPO has been enabled by the improved CSP crystal quality over a long interaction length. The OPO can be tuned across 1264-1284 nm in the near-IR signal and 6205-6724 nm in the mid-IR idler by temperature tuning the CSP crystal over 39-134 °C. By deploying a 5% output coupler for the resonant signal, we have extracted up to 44 mW of average power in the near-IR and up to 95 mW of non-resonant idler power at 6205 nm at 6.3% total conversion efficiency, with > 50 mW over > 55% of the mid-IR tuning range. We have investigated temperature-tuning characteristics of the OPO and compared the data with the theoretical calculations using the recent Sellmeier and thermo-optic coefficients for CdSiP2. The signal pulses from the OPO exhibit a Gaussian pulse duration of 19 ps centered at 1284 nm. We have also studied the output power stability of the OPO, resulting in a passive stability better than 1.9% rms for the near-IR signal and 2.4% rms for the mid-IR idler, measured over > 17 h, with both beams in high spatial quality.

  11. Luminescence properties and energy transfer processes in YAG:Yb,Er single crystalline films

    Zorenko, Yu.; Gorbenko, V.; Savchyn, V.; Batentschuk, M.; Osvet, A.; Brabec, C.

    2013-01-01

    The paper is dedicated to the study of the optical properties of YAG:Yb,Er single-crystalline films (SCF) grown by liquid phase epitaxy. The absorption, cathodoluminescence and time-resolved photoluminescence spectra and photoluminescence decay curves were measured for the SCFs with different doping levels of Er 3+ (from 0.6 to 4.2 at.%) and Yb 3+ (from 0.1 to 0.6 at.%). The spectra, excited by synchrotron radiation in the fundamental absorption range of the YAG and in the intraionic absorption bands of both dopants, reveal energy transfer from the YAG host to the Er 3+ and Yb 3+ ions and between these ions. -- Highlights: •Growth of YAG:Yb,Er single crystalline films by LPE method. •Peculiarities of luminescence of YAG:Yb,Er films with different Er–Yb content. •Yb–Er energy transfer processes in YAG hosts

  12. Down-conversion luminescence from (Ce, Yb) co-doped oxygen-rich silicon oxides

    Heng, C. L.; Wang, T.; Su, W. Y.; Wu, H. C.; Yin, P. G.; Finstad, T. G.

    2016-01-01

    We have studied down-conversion photoluminescence (PL) from (Ce, Yb) co-doped “oxygen rich” silicon oxide films prepared by sputtering and annealing. The Ce"3"+ ∼510 nm PL is sensitive to the Ce concentration of the films and is much stronger for 3 at. % Ce than for 2 at. % Ce after annealing at 1200 °C. The PL emission and excitation spectroscopy results indicate that the excitation of Yb"3"+ is mainly through an energy transfer from Ce"3"+ to Yb"3"+, oxide defects also play a role in the excitation of Yb"3"+ after lower temperature (∼800 °C) annealing. The Ce"3"+ 510 nm photon excites mostly only one Yb"3"+ 980 nm photon. Temperature-dependent PL measurements suggest that the energy transfer from Ce"3"+ to Yb"3"+ is partly thermally activated.

  13. A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer

    Marciniak, L.; Prorok, K.; Francés-Soriano, L.; Pérez-Prieto, J.; Bednarkiewicz, A.

    2016-02-01

    The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle based optical nano-thermometer under single ~808 nm wavelength photo-excitation from around ΔT = 150 K to over ΔT = 300 K (150-450 K). Such engineered nanocrystals are suitable for remote optical temperature measurements in technology and biotechnology at the sub-micron scale.The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle

  14. Thermoelectric nanocrystalline YbCoSb laser prepared layers

    Jelínek, Miroslav; Zeipl, Radek; Kocourek, Tomáš; Remsa, Jan; Navrátil, Jiří

    2016-01-01

    Roč. 122, č. 3 (2016), s. 1-5, č. článku 155. ISSN 0947-8396 R&D Projects: GA ČR(CZ) GA13-33056S Institutional support: RVO:68378271 ; RVO:61389013 Keywords : nanocrystalline YbCoSb * thermoelectric layers * pulsed laser deposition Subject RIV: BM - Solid Matter Physics ; Magnetism; CA - Inorganic Chemistry (UMCH-V) Impact factor: 1.455, year: 2016

  15. Charge transfer luminescence of Yb3+ ions in LiY1-xYbxP4O12 phosphates

    Stryganyuk, G; Zazubovich, S; Voloshinovskii, A; Pidzyrailo, M; Zimmerer, G; Peters, R; Petermann, K

    2007-01-01

    Spectral-kinetic studies have been performed for LiY 1-x Yb x P 4 O 12 (x = 0; 0.1; 0.9) phosphates at T = 8-320 K using synchrotron radiation for excitation within the 5-17 eV energy range. Mechanisms for the excitation of Yb 3+ charge transfer and f-f luminescence are discussed. The quasimolecular character of Yb 3+ charge transfer luminescence (CTL) is pointed out. The central Yb 2+ ion and hole delocalized over the surrounding ligands are proposed for consideration as a 'charge transfer cluster' (Yb 2+ CT cluster). Possible mechanisms of Yb 3+ CTL quenching are presumed

  16. Spectroscopic properties and quenching processes of Yb3+ in Fluoride single crystals for laser applications

    Bensalah, A.; Ito, M.; Guyot, Y.; Goutaudier, C.; Jouini, A.; Brenier, A.; Sato, H.; Fukuda, T.; Boulon, G.

    2007-01-01

    Spectroscopic characterization is carried out to identify Stark's levels of Yb 3+ transitions in several fluoride crystals grown either by the Czochralski technique or by the laser-heated pedestal growth method. Yb 3+ concentration dependence of the decay time is analyzed in order to understand involved concentration quenching mechanisms. Laser tests under saphire:Ti pumping are presented for all our materials as well as under diode pumping for Yb:CaF 2

  17. Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription

    Rauen, Thomas; Frye, Bjoern C.; Wang, Jialin; Raffetseder, Ute; Alidousty, Christina; En-Nia, Abdelaziz; Floege, Jürgen; Mertens, Peter R.

    2016-01-01

    Hypoxia-dependent gene regulation is largely orchestrated by hypoxia-inducible factors (HIFs), which associate with defined nucleotide sequences of hypoxia-responsive elements (HREs). Comparison of the regulatory HRE within the 3′ enhancer of the human erythropoietin (EPO) gene with known binding motifs for cold shock protein Y-box (YB) protein-1 yielded strong similarities within the Y-box element and 3′ adjacent sequences. DNA binding assays confirmed YB-1 binding to both, single- and double-stranded HRE templates. Under hypoxia, we observed nuclear shuttling of YB-1 and co-immunoprecipitation assays demonstrated that YB-1 and HIF-1α physically interact with each other. Cellular YB-1 depletion using siRNA significantly induced hypoxia-dependent EPO production at both, promoter and mRNA level. Vice versa, overexpressed YB-1 significantly reduced EPO-HRE-dependent gene transcription, whereas this effect was minor under normoxia. HIF-1α overexpression induced hypoxia-dependent gene transcription through the same element and accordingly, co-expression with YB-1 reduced HIF-1α-mediated EPO induction under hypoxic conditions. Taken together, we identified YB-1 as a novel binding factor for HREs that participates in fine-tuning of the hypoxia transcriptome. - Highlights: • Hypoxia drives nuclear translocation of cold shock protein YB-1. • YB-1 physically interacts with hypoxia-inducible factor (HIF)-1α. • YB-1 binds to the hypoxia-responsive element (HRE) within the erythropoietin (EPO) 3′ enhancer. • YB-1 trans-regulates transcription of hypoxia-dependent genes such as EPO and VEGF.

  18. Synthesis and molecular structure of YbI(bipy)(DME)2 complex

    Petrovskaya, T.V.; Fedyushkin, I.L.; Nevodchikov, V.I.; Bochkarev, M.N.; Borodina, N.V.; Eremenko, I.L.; Nefedov, S.E.

    1998-01-01

    The reaction of the ytterbium naphthaline complex [Yb(DME) 2 ] 2 (μ-C 10 H 8 ) with 2,2 ' -bipyridine in DME is found to lead to the formation of the complex with the Yb 2+ atom, YbI(bipy)(DME) 2 (1) containing 2,2 ' -bipyridine radical anion. Complex 1 is characterized by IR and UV spectroscopy, magnetic methods and X-ray analysis [ru

  19. Electronic structure and X-ray spectroscopic properties of YbNi_2P_2

    Shcherba, I.D.; Bekenov, L.V.; Antonov, V.N.; Noga, H.; Uskokovic, D.; Zhak, O.; Kovalska, M.V.

    2016-01-01

    Highlights: • We present new experimental and theoretical data for YbNi_2P_2. • The presence of divalent and trivalent Yb ion found in YbNi_2P_2. • The calculation show good agreement with the experimental measurements. - Abstract: X-ray absorption spectrum at the Yb L_3 edge and X-ray emission spectra of Ni and P at the K and L_2_,_3 edges have been studied experimentally and theoretically in the mixed valent compound YbNi_2P_2 with ThCr_2Si_2 type crystal structure. The electronic structure of YbNi_2P_2 is investigated using the fully relativistic Dirac linear muffin-tin orbital (LMTO) band-structure method. The effect of the spin–orbit (SO) interaction and Coulomb repulsion U on the electronic structure of YbNi_2P_2 is examined in the frame of the LSDA + SO + U method. The core-hole effect in the final states as well as the effect of the electric quadrupole E_2 transitions have been investigated. A good agreement between the theory and the experiment was found. Both the trivalent and the divalent Yb ions in YbNi_2P_2 are reflected in the experimentally measured Yb L_3 X-ray absorption spectrum simultaneously. We found that the best agreement between the experimental spectrum and sum of the theoretically calculated Yb"2"+ and Yb"3"+ spectra is achieved with 73% ytterbium ions in 2+ state and 27% ions in 3+ state.

  20. Leakage experiences with 1 MW steam generator

    Kanamori, A.; Kawara, M.; Sano, A.

    1975-01-01

    An 1 MW steam generator was tested from October, 1971 and completed with the first series of experiments by May, 1972 after 3600 hours of operation. During these tests, unextraordinary heat absorption was experienced in the downcomer region, which led to shortage of heat transfer area to attain the rated steam temperature and to one of the reasons of flow instabilities. The steam generator was disassembled to get test pieces for structure as well as material examinations and then it was reassembled to proceed the second series of tests. Before it was done, a modification was provided to insulate the downcomer region by putting a gas space around the downcomer tube. The gas space was provided by a dual tube and spacers were welded on the inner tube and an end plate was welded on upper parts between the two to seal the gap by means of fillet welding. After the modified steam generator was put into operation, water happened to leak into a sodium side two times through these additional welding spots for the gas insulation. This paper presents operating conditions and behaviors of monitors at the time of the leakages, identifications of leaked spots, an evaluation of causes and a treatment or a precaution for them

  1. Liposomal encapsulated Zn-DTPA for removing intracellular 169Yb

    Blank, M.L.; Cress, E.A.; Byrd, B.L.; Washburn, L.C.; Snyder, F.

    1980-01-01

    Multilamellar liposomes possessing neutral positive or negative charges were tested for their capacity to encapsulate sodium ethylenediaminetetraacetate (EDTA) and for their selectivity in depositing in specific tissues after being injected into rats. Negative-charged liposomes had the greatest trapping efficiency over a wide range of lipid-to-aqueous phase ratios. In contrast, except for lung, liposomal charge had no significant effect on the tissue distribution of encapsulated EDTA; liver and spleen exhibited the highest uptake with all preparations. The proportion of encapsulated EDTA taken up by the liver decreased as the amount of injected liposomes was increased. Free zinc diethylenetriaminepentaacetate (Zn-DTPA) and multilamellar liposomes containing entrapped Zn-DTPA were administered to rats that had been injected with 169 Yb-citrate 24 hr earlier. At doses of 14 mg Zn-DTPA per kg body weight, both free Zn-DPTA and the liposomal-bound Zn-DTPA caused increased removal of 169 Yb from the animals. However, treatment with the liposomal Zn-DTPA caused significantly more of the 169 Yb to be removed than did the free Zn-DTPA treatment by itself. Our data indicate that lipophilic forms of chelators can effectively increase the removal rates of heavy metal contamination in tissues. (author)

  2. Phase stability of AlYB14 sputtered thin films

    Koelpin, Helmut; Music, Denis; Emmerlich, Jens; Schneider, Jochen M; Henkelman, Graeme; Munnik, Frans

    2009-01-01

    AlYB 14 (Imma) thin films were synthesized by magnetron sputtering. On the basis of x-ray diffraction, no phases other than crystalline AlYB 14 could be identified. According to electron probe microanalysis, energy dispersive x-ray analysis and elastic recoil detection analysis, the Al and Y occupancies vary in the range of 0.73-1.0 and 0.29-0.45, respectively. Density functional theory based calculations were carried out to investigate the effect of occupancy on the stability of Al x Y y B 14 (x,y = 0.25, 0.5, 0.75, 1). The mean effective charge per icosahedron and the bulk moduli were also calculated. It is shown that the most stable configuration is Al 0.5 YB 14 , corresponding to a charge transfer of two electrons from the metal atoms to the boron icosahedra. Furthermore, it is found that the stability of a configuration is increased as the charge is homogeneously distributed within the icosahedra. The bulk moduli for all configurations investigated are in the range between 196 and 220 GPa, rather close to those for known hard phases such as α- Al 2 O 3 .

  3. Up-conversion routines of Er{sup 3+}–Yb{sup 3+} doped Y{sub 6}O{sub 5}F{sub 8} and YOF phosphors

    Park, Sangmoon, E-mail: spark@silla.ac.kr [Center for Green Fusion Technology and Department of Engineering in Energy & Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of); Yang, Wonseok; Park, Chu-Young; Noh, Minhee; Choi, Seulki [Center for Green Fusion Technology and Department of Engineering in Energy & Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of); Park, Dahye; Jang, Ho Seong; Cho, So-Hye [Center for Materials Architecturing, Institute of Multidisciplinary Convergence of Materials, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of)

    2015-11-15

    Highlights: • Single-phase optical materials of Y{sub 6}O{sub 5}F{sub 8}:Er and YOF:Er were prepared. • Effective spectral converting properties were observed in Y{sub 6}O{sub 5}F{sub 8}:Er,Yb. • 980 nm diode laser was irradiated for up-converting analysis. • A multi-photon process in the phosphors was investigated. - Abstract: Optical materials composed of a Y{sub 6(1−p−q)}Er{sub 6p}Yb{sub 6q}O{sub 5}F{sub 8} (p = 0.001–0.1, q = 0.005–0.1) solid solution with Y{sub 0.99}Er{sub 0.01}OF were prepared via a solid-state reaction using excess NH{sub 4}F flux at 950 °C for 30 min. X-ray diffraction patterns of Y{sub 6(1−p−q)}Er{sub 6p}Yb{sub 6q}O{sub 5}F{sub 8} and Y{sub 0.99}Er{sub 0.01}OF were compared upon altering the synthesis temperature and the molar ratio of the NH{sub 4}F flux to the Y{sup 3+} (Er{sup 3+}, Yb{sup 3+}) ions. The effective spectral-conversion properties of Er{sup 3+} and Er{sup 3+}–Yb{sup 3+} ions in Y{sub 6}O{sub 5}F{sub 8} phosphors were monitored during excitation with a 980 nm wavelength diode-laser. Selection of appropriate Er{sup 3+} and/or Yb{sup 3+} concentrations in the Y{sub 6}O{sub 5}F{sub 8} structure led to achievement of the desired up-conversion emission, from the green to the red regions of the spectra. Furthermore, the mechanism of up-conversion in the phosphors was described by an energy-level schematic. Up-conversion emission spectra and the dependence of the emission intensity on pump power (between 193 and 310 mW) in the Y{sub 6(0.995−q)}Er{sub 0.03}Yb{sub 6q}O{sub 5}F{sub 8} phosphors were also investigated.

  4. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    Musich, Mark; Swanson, Michael; Dunham, Grant; Stanislowski, Joshua

    2010-10-05

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m{sup 3} (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m{sup 3} (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most

  5. ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS

    Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

    2010-07-31

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine

  6. Laser-cooling effects in few-ion clouds of Yb[sup +

    Edwards, C.S. (National Physical Lab., Teddington (United Kingdom)); Gill, P. (National Physical Lab., Teddington (United Kingdom)); Klein, H.A. (National Physical Lab., Teddington (United Kingdom)); Levick, A.P. (National Physical Lab., Teddington (United Kingdom)); Rowley, W.R.C. (National Physical Lab., Teddington (United Kingdom))

    1994-08-01

    We report some laser-cooling effects in a few [sup 172]Yb[sup +] ions held in a Paul trap. Pronounced cloud-to-crystal phase transitions have been observed as discontinuities in the Yb[sup +] fluorescence spectrum of the 369 nm cooling transition. The first reported two-dimensional images of Yb[sup +] clouds with evidence of crystal structure have been recorded using a photon-counting position-sensitive detector. An ion temperature of 100 mK has been estimated from the size of a single ion image. Stepwise cooling of a re-heated, few-ion Yb[sup +] cloud was also observed. (orig.)

  7. Laser-cooling effects in few-ion clouds of Yb+

    Edwards, C.S.; Gill, P.; Klein, H.A.; Levick, A.P.; Rowley, W.R.C.

    1994-01-01

    We report some laser-cooling effects in a few 172 Yb + ions held in a Paul trap. Pronounced cloud-to-crystal phase transitions have been observed as discontinuities in the Yb + fluorescence spectrum of the 369 nm cooling transition. The first reported two-dimensional images of Yb + clouds with evidence of crystal structure have been recorded using a photon-counting position-sensitive detector. An ion temperature of 100 mK has been estimated from the size of a single ion image. Stepwise cooling of a re-heated, few-ion Yb + cloud was also observed. (orig.)

  8. The Cold Shock Domain of YB-1 Segregates RNA from DNA by Non-Bonded Interactions.

    Vladislav Kljashtorny

    Full Text Available The human YB-1 protein plays multiple cellular roles, of which many are dictated by its binding to RNA and DNA through its Cold Shock Domain (CSD. Using molecular dynamics simulation approaches validated by experimental assays, the YB1 CSD was found to interact with nucleic acids in a sequence-dependent manner and with a higher affinity for RNA than DNA. The binding properties of the YB1 CSD were close to those observed for the related bacterial Cold Shock Proteins (CSP, albeit some differences in sequence specificity. The results provide insights in the molecular mechanisms whereby YB-1 interacts with nucleic acids.

  9. Yb-based heavy fermion compounds and field tuned quantum chemistry

    Mun, Eundeok [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The motivation of this dissertation was to advance the study of Yb-based heavy fermion (HF) compounds especially ones related to quantum phase transitions. One of the topics of this work was the investigation of the interaction between the Kondo and crystalline electric field (CEF) energy scales in Yb-based HF systems by means of thermoelectric power (TEP) measurements. In these systems, the Kondo interaction and CEF excitations generally give rise to large anomalies such as maxima in ρ(T) and as minima in S(T). The TEP data were use to determine the evolution of Kondo and CEF energy scales upon varying transition metals for YbT2Zn20 (T = Fe, Ru, Os, Ir, Rh, and Co) compounds and applying magnetic fields for YbAgGe and YbPtBi. For YbT2Zn20 and YbPtBi, the Kondo and CEF energy scales could not be well separated in S(T), presumably because of small CEF level splittings. A similar effect was observed for the magnetic contribution to the resistivity. For YbAgGe, S(T) has been successfully applied to determine the Kondo and CEF energy scales due to the clear separation between the ground state and thermally excited CEF states. The Kondo temperature, TK, inferred from the local maximum in S(T), remains finite as magnetic field increases up to 140 kOe. In this dissertation we have examined the heavy quasi-particle behavior, found near the field tuned AFM quantum critical point (QCP), with YbAgGe and YbPtBi. Although the observed nFL behaviors in the vicinity of the QCP are different between YbAgGe and YbPtBi, the constructed H-T phase diagram including the two crossovers are similar. For both YbAgGe and YbPtBi, the details of the quantum criticality turn out to be complicated. We expect that YbPtBi will provide an additional example of field tuned quantum criticality, but clearly there are further experimental investigations left and more ideas needed to understand the basic physics of field-induced quantum

  10. Downconversion in Pr3+–Yb3+ co-doped ZBLA fluoride glasses

    Maalej, O.; Boulard, B.; Dieudonné, B.; Ferrari, M.; Dammak, M.; Dammak, M.

    2015-01-01

    Fluorozirconate ZBLA glasses with molar composition 57ZrF 4 –34BaF 2 –5LaF 3 –4AlF 3 –0.5PrF 3 –xYbF 3 (from x=0 to 10) were synthesized to evaluate the rate of the conversion of visible photons into infrared photons. The emission spectra in the near infrared (NIR) at 950–1100 nm and the luminescence decays in the visible and NIR indicate an energy transfer from Pr 3+ to Yb 3+ upon blue excitation of Pr 3+ at 440 nm. The energy transfer efficiency increases with Yb 3+ concentration to reach 86% with 0.5Pr 3+ –10Yb 3+ co-doping (in mol%). However, the quenching of the Yb 3+ emission strongly reduces the efficiency of the downconversion process: the decay time values decrease from 600 µs (x=0.5 mol%) to 85 µs (x=10 mol%). - Highlights: • We synthesized 0.5Pr 3+ –xYb 3+ co-doped ZBLA glasses (from x=0 to 10 mol %). • Photoluminescence of Yb 3+ was observed at 980 nm under blue excitation. • Time resolved measurements have been performed in the visible and near infrared. • Energy transfer efficiency from Pr 3+ to Yb 3+ reaches 86% in 0.5 Pr 3+ –10Yb 3+ glass

  11. Magnetic structure of the YbMn2SbBi compound

    Morozkin, A.V.; Manfrinetti, P.

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → A neutron diffraction investigation in zero applied field of La 2 O 2 S-type YbMn 2 SbBi shows antiferromagnetic ordering below 138(3) K and ferrimagnetic ordering below 112(3) K. → Between 138 and 112 K, the magnetic structure of YbMn 2 SbBi consists of antiferromagnetically coupled ab-plane magnetic moments of the manganese atoms (D 1d magnetic point group). → Below 112(3) K, the magnetic structure of YbMn 2 SbBi becames the sum antiferromagnetic component with D 1d magnetic point group and ferromagnetic one with C 2 magnetic point group. → The magnitude of Yb and Mn magnetic moments in YbMn 2 SbBi at 2 K (M Yb = 3.6(2) μ B , M Mn = 3.5(2) μ B ) correspond to the trivalent state of the Yb ions and tetravalent state of the Mn ions. - Abstract: A neutron diffraction investigation has been carried out on the trigonal La 2 O 2 S-type (hP5, space group P3-bar ml, No. 164; also CaAl 2 Si 2 -type) YbMn 2 SbBi intermetallic compound. The YbMn 2 SbBi presents antiferromagnetic ordering below 138(3) K and ferrimagnetic ordering below 112(3) K. Between 138 and 112 K, the magnetic structure of YbMn 2 SbBi consists of antiferromagnetically coupled ab-plane magnetic moments of the manganese atoms (D 1d magnetic point group). Below 112(3) K, the ferromagnetic components of Yb and Mn begin to develop, and the magnetic structure of YbMn 2 SbBi becames the sum antiferromagnetic component with D 1d magnetic point group and ferromagnetic one with C 2 magnetic point group. The magnitude of Yb and Mn magnetic moments in YbMn 2 SbBi at 2 K (M Yb = 3.6(2) μ B , M Mn = 3.5(2) μ B ) correspond to the trivalent state of the Yb ions and tetravalent state of the Mn ions.

  12. The recombination channels of luminescence excitation in YAG:Yb single crystalline films

    Zakharko, Ya.M.; Luchechko, A.P.; Ubizskii, S.B.; Syvorotka, I.I.; Martynyuk, N.V.; Syvorotka, I.M.

    2007-01-01

    Absorption and emission spectra, luminescence decay kinetics and thermostimulated luminescence of X-ray irradiated YAG:Yb single crystalline films were studied. Two emission bands peaked at 420 and 488 nm have been detected in the investigated films. The strong thermal quenching of luminescence band at 488 nm was observed above 160 K. The influence of growth conditions and annealing in air on the lifetime of Yb 3+ ion excited state in the IR spectral region have been revealed. The recombination mechanisms of the f-f transition at Yb 3+ ion excitation, as well as the mechanism of lifetime shortening for the excited Yb 3+ luminescence have been discussed

  13. Synthesis, properties, and crystal structure of complex Cp2Yb(DAD)

    Trifonov, A.A.; Kirillov, E.N.; Bochkarev, M.N.; Shumani, G.; Myule, S.

    1999-01-01

    Diazadiene complex of trivalent ytterbium Cp 2 Yb(DAD) (1) (DAD = Bu 1 -N CH-CH = N-Bu 1 ) was obtained by three routes: the oxidation of Cp 2 Yb(THF) 2 by diazadiene in tetrahydrofuran (THF), the reaction of Cp 2 YbCl with DAD 2- Na 2 + (2:1), and the reaction of Cp 2 YbCl(THF) with DAD - K + in the 1:1 ratio. Complex 1 was characterized by microanalysis, IR spectroscopy, magnetochemistry, and X-ray structural analysis [ru

  14. Influence of dopant concentration on spectroscopic properties of Sr2CeO4:Yb nanocrystals

    Stefanski, M.; Kędziorski, A.; Hreniak, D.; Strek, W.

    2017-12-01

    Optical properties of Sr2CeO4:Yb nanocrystals synthesized via Pechini's method are reported. The samples were characterized by X-ray diffraction data measurements. The unit cell parameters were determined using Rietveld refinement. It was found that they decreased with increasing amount of Yb ions. The absorption, excitation, emission spectra and luminescence decay profiles of the Sr2CeO4:Yb nanocrystals were investigated. It was observed that optical properties were strongly dependent on Yb concentration. It was found that Yb3+-O2- charge transfer transitions have great influence on the absorption spectra. It can be seen in the emission spectra that in addition to standard bands/lines corresponding to Ce-O metal-to-ligand charge transfer of Sr2CeO4 and f-f transitions of Yb3+, there is emission band centered at 744 nm. Its intensity depends on the concentration of the dopant. Recorded decay times become shorter with increasing dopant concentration due to the Yb3+ concentration quenching. Excitation spectra indicate the energy transfer from Ce-O charge transfer states to Yb3+2F5/2 state. The issue of appearance of down-conversion process in Sr2CeO4:Yb nanocrystals is considered.

  15. Edge chipping and flexural resistance of monolithic ceramics☆

    Zhang, Yu; Lee, James J.-W.; Srikanth, Ramanathan; Lawn, Brian R.

    2014-01-01

    Objective Test the hypothesis that monolithic ceramics can be developed with combined esthetics and superior fracture resistance to circumvent processing and performance drawbacks of traditional all-ceramic crowns and fixed-dental-prostheses consisting of a hard and strong core with an esthetic porcelain veneer. Specifically, to demonstrate that monolithic prostheses can be produced with a much reduced susceptibility to fracture. Methods Protocols were applied for quantifying resistance to chipping as well as resistance to flexural failure in two classes of dental ceramic, microstructurally-modified zirconias and lithium disilicate glass–ceramics. A sharp indenter was used to induce chips near the edges of flat-layer specimens, and the results compared with predictions from a critical load equation. The critical loads required to produce cementation surface failure in monolithic specimens bonded to dentin were computed from established flexural strength relations and the predictions validated with experimental data. Results Monolithic zirconias have superior chipping and flexural fracture resistance relative to their veneered counterparts. While they have superior esthetics, glass–ceramics exhibit lower strength but higher chip fracture resistance relative to porcelain-veneered zirconias. Significance The study suggests a promising future for new and improved monolithic ceramic restorations, with combined durability and acceptable esthetics. PMID:24139756

  16. Preparation of polyhedral oligomeric silsesquioxane based imprinted monolith.

    Li, Fang; Chen, Xiu-Xiu; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-12-18

    Polyhedral oligomeric silsesquioxane (POSS) was successfully applied, for the first time, to prepare imprinted monolithic column with high porosity and good permeability. The imprinted monolithic column was synthesized with a mixture of PSS-(1-Propylmethacrylate)-heptaisobutyl substituted (MA 0702), naproxon (template), 4-vinylpyridine, and ethylene glycol dimethacrylate, in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4). The influence of synthesis parameters on the retention factor and imprinting effect, including the amount of MA 0702, the ratio of template to monomer, and the ratio of monomer to crosslinker, was investigated. The greatest imprinting factor on the imprinted monolithic column prepared with MA 0702 was 22, about 10 times higher than that prepared in absence of POSS. The comparisons between MIP monoliths synthesized with POSS and without POSS were made in terms of permeability, column efficiency, surface morphology and pore size distribution. In addition, thermodynamic and Van Deemter analysis were used to evaluate the POSS-based MIP monolith. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Aspartic acid incorporated monolithic columns for affinity glycoprotein purification.

    Armutcu, Canan; Bereli, Nilay; Bayram, Engin; Uzun, Lokman; Say, Rıdvan; Denizli, Adil

    2014-02-01

    Novel aspartic acid incorporated monolithic columns were prepared to efficiently affinity purify immunoglobulin G (IgG) from human plasma. The monolithic columns were synthesised in a stainless steel HPLC column (20 cm × 5 mm id) by in situ bulk polymerisation of N-methacryloyl-L-aspartic acid (MAAsp), a polymerisable derivative of L-aspartic acid, and 2-hydroxyethyl methacrylate (HEMA). Monolithic columns [poly(2-hydroxyethyl methacrylate-N-methacryloyl-L-aspartic acid) (PHEMAsp)] were characterised by swelling studies, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The monolithic columns were used for IgG adsorption/desorption from aqueous solutions and human plasma. The IgG adsorption depended on the buffer type, and the maximum IgG adsorption from aqueous solution in phosphate buffer was 0.085 mg/g at pH 6.0. The monolithic columns allowed for one-step IgG purification with a negligible capacity decrease after ten adsorption-desorption cycles. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Monolithic View of Galaxy Formation and Evolution

    Cesare Chiosi

    2014-07-01

    Full Text Available We review and critically discuss the current understanding of galaxy formation and evolution limited to Early Type Galaxies (ETGs as inferred from the observational data and briefly contrast the hierarchical and quasi-monolithic paradigms of formation and evolution. Since in Cold Dark Matter (CDM cosmogony small scale structures typically collapse early and form low-mass haloes that subsequently can merge to assembly larger haloes, galaxies formed in the gravitational potential well of a halo are also expected to merge thus assembling their mass hierarchically. Mergers should occur all over the Hubble time and large mass galaxies should be in place only recently. However, recent observations of high redshift galaxies tell a different story: massive ETGs are already in place at high redshift. To this aim, we propose here a revision of the quasi-monolithic scenario as an alternative to the hierarchical one, in which mass assembling should occur in early stages of a galaxy lifetime and present recent models of ETGs made of Dark and Baryonic Matter in a Λ-CDM Universe that obey the latter scheme. The galaxies are followed from the detachment from the linear regime and Hubble flow at z ≥ 20 down to the stage of nearly complete assembly of the stellar content (z ∼ 2 − 1 and beyond.  It is found that the total mass (Mh = MDM + MBM and/or initial over-density of the proto-galaxy drive the subsequent star formation histories (SFH. Massive galaxies (Mh ~ _1012M⊙ experience a single, intense burst of star formation (with rates ≥ 103M⊙/yr at early epochs, consistently with observations, with a weak dependence on the initial over-density; intermediate mass haloes (Mh~_ 1010 − 1011M⊙ have star formation histories that strongly depend on their initial over-density; finally, low mass haloes (Mh ~_ 109M⊙ always have erratic, burst-like star forming histories. The present-day properties (morphology, structure, chemistry and photometry of the

  19. The DIII-D 3 MW, 110 GHz ECH System

    Callis, R.W.; Lohr, J.; Ponce, D.; O'Neill, R.C.; Prater, R.; Luce, T.C.

    1999-01-01

    Three 110 GHz gyrotrons with nominal output power of 1 MW each have been installed and are operational on the DIII-D tokamak. One gyrotron is built by Gycom and has a nominal rating of 1 MW and a 2 s pulse length, with the pulse length being determined by the maximum temperature allowed on the edge cooled Boron Nitride window. The second and third gyrotrons were built by Communications and Power Industries (CPI). The first CPI gyrotron uses a double disc FC-75 cooled sapphire window which has a pulse length rating of 0.8 s at 1 MW, 2s at 0.5 MW and 10s at 0.35 MW. The second CPI gyrotron, utilizes a single disc chemical-vapor-deposition diamond window, that employs water cooling around the edge of the disc. Calculation predict that the diamond window should be capable of full 1 MW cw operation. All gyrotrons are connected to the tokamak by a low-loss-windowless evacuated transmission line using circular corrugated waveguide for propagation in the HEl 1 mode. Each waveguide system incorporates a two mirror launcher which can steer the rf beam poloidally from the center to the outer edge of the plasma. Central current drive experiments with the two gyrotrons with 1.5 MW of injected power drove about 0.17 MA. Results from using the three gyrotron systems will be reported as well as the plans to upgrade the system to 6 MW

  20. Spectral properties of hydrothermally-grown Nd:LuAG, Yb:LuAG, and Yb:Lu{sub 2}O{sub 3} laser materials

    Brown, David C., E-mail: DBrown@snakecreeklasers.com [Snake Creek Lasers LLC, Friendsville, PA 18818 (United States); McMillen, Colin D.; Moore, Cheryl; Kolis, Joseph W. [Department of Chemistry and Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29634-0973 (United States); Envid, Victoria [Snake Creek Lasers LLC, Friendsville, PA 18818 (United States)

    2014-04-15

    We have investigated the hydrothermal growth of, and spectrally characterized, the lutetium based laser materials Nd:LuAG, Yb:LuAG, and Yb:Lu{sub 2}O{sub 3}. Absorption cross-section data are presented for Nd:LuAG at 83, 175, and 295 K. Absorption cross-section data was also obtained for Yb:LuAG at 83, 175, and 295 K; the 295 K data was used to generate emission cross-sections using the method of reciprocity. For Yb:Lu{sub 2}O{sub 3}, we present absorption cross-sections at 295 K as well as emission cross-sections derived using reciprocity. -- Highlights: • We present spectral properties for hydrothermally-grown laser crystals. • Absorption cross-section data are presented for Nd:LuAG and Yb:LuAG at 83, 175, and 295 K. • Emission cross-sections are presented for Yb:LuAG at 295 K derived by reciprocity. • We present absorption cross-sections at 295 K as well as emission cross-sections derived using reciprocity for the laser material Yb:Lu{sub 2}O{sub 3}.

  1. Monolithic Chip-Integrated Absorption Spectrometer from 3-5 microns, Phase I

    National Aeronautics and Space Administration — A monolithically integrated indium phosphide (InP) to silicon-on-sapphire (SoS) platform is being proposed for a monolithic portable or handheld spectrometer between...

  2. Fabrication of an electro-absorption transceiver with a monolithically integrated optical amplifier for fiber transmission of 40–60 GHz radio signals

    Zhang, Andy Zhenzhong; Wang, Qin; Fonjallaz, Pierre-Yves; Almqvist, Susanne; Karlsson, Stefan; Kjebon, Olle; Schatz, Richard; Chacinski, Marek; Thylén, Lars; Berggren, Jesper; Hammar, Mattias; Honecker, Jörg; Steffan, Andreas

    2011-01-01

    We report on the fabrication of a monolithically integrated semiconductor optical amplifier (SOA) and a reflective electro-absorption transceiver (EAT) for 40–60 GHz radio-over-fiber applications. The EAT can either function as a transmitter (reflective modulator) or as a receiver (photodetector) depending on operation mode. The SOA and the EAT sections are based on different InGaAsP multiple quantum-well active layers connected by a butt joint. Benzocyclobutene is used to reduce the capacitance beside the ridge mesa. Devices are designed to have a peaked response at the operating frequency through the design of microwave waveguides on top of the devices. The packaged device exhibits at 0.1 mW optical input power an amplified DC responsivity of 18.5 mA mW −1 and a modulation efficiency of 0.67 mW V −1 . The estimated radio frequency loss at 40 GHz of an optical link consisting of two SOA–EAT devices was 23 dB using an unmodulated optical input carrier to the transmitter of 0.94 mW

  3. CHARACTERIZATION OF MONOLITHIC FUEL FOIL PROPERTIES AND BOND STRENGTH

    D E Burkes; D D Keiser; D M Wachs; J S Larson; M D Chapple

    2007-01-01

    Understanding fuel foil mechanical properties, and fuel/cladding bond quality and strength in monolithic plates is an important area of investigation and quantification. Specifically, what constitutes an acceptable monolithic fuel--cladding bond, how are the properties of the bond measured and determined, and what is the impact of fabrication process or change in parameters on the level of bonding? Currently, non-bond areas are quantified employing ultrasonic determinations that are challenging to interpret and understand in terms of irradiation impact. Thus, determining mechanical properties of the fuel foil and what constitutes fuel/cladding non-bonds is essential to successful qualification of monolithic fuel plates. Capabilities and tests related to determination of these properties have been implemented at the INL and are discussed, along with preliminary results

  4. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    Cheng Chuantong

    2017-07-01

    Full Text Available Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  5. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    Cheng, Chuantong; Huang, Beiju; Mao, Xurui; Zhang, Zanyun; Zhang, Zan; Geng, Zhaoxin; Xue, Ping; Chen, Hongda

    2017-07-01

    Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs) in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  6. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-01-01

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructu...

  7. 'Obligate' anaerobic Salmonella strain YB1 suppresses liver tumor growth and metastasis in nude mice.

    Li, Chang-Xian; Yu, Bin; Shi, Lei; Geng, Wei; Lin, Qiu-Bin; Ling, Chang-Chun; Yang, Mei; Ng, Kevin T P; Huang, Jian-Dong; Man, Kwan

    2017-01-01

    The antitumor properties of bacteria have been demonstrated over the past decades. However, the efficacy is limited and unclear. Furthermore, systemic infection remains a serious concern in bacteria treatment. In this study, the effect of YB1, a rationally designed 'obligate' anaerobic Salmonella typhimurium strain, on liver tumor growth and metastasis in a nude mouse orthotopic liver tumor model was investigated. The orthotopic liver tumor model was established in nude mice using the hepatocellular carcinoma cell line MHCC-97L. Two weeks after orthotopic liver tumor implantation, YB1, SL7207 and saline were respectively administered through the tail vein of the mice. Longitudinal monitoring of tumor growth and metastasis was performed using Xenogen IVIS, and direct measurements of tumor volume were taken 3 weeks after treatment. In vitro , MHCC-97L and PLC cells were incubated with YB1 or SL7207 under anaerobic conditions. YB1 was observed to invade tumor cells and induce tumor cell apoptosis and death. The results revealed that all mice in the YB1 group were alive 3 weeks after YB1 injection while all mice in the SL7207 group died within 11 days of the SL7207 injection. The body weight decreased by ~9% on day 1 after YB1 injection and but subsequently recovered. Liver tumor growth and metastases were significantly inhibited following YB1 treatment. By contrast to the control group, a large number of Gr1-positive cells were detected on days 1 to 21 following YB1 treatment. Furthermore, YB1 also effectively invaded tumor cells and induced tumor cell apoptosis and death. In conclusion, YB1 suppressed liver tumor growth and metastasis in a nude mice liver tumor model. The potential mechanism may be through enhancing innate immune response and inducing tumor cell apoptosis and cell death.

  8. Numerical Simulation of Fluid Dynamics in a Monolithic Column

    Kazuhiro Yamamoto

    2017-01-01

    Full Text Available As for the measurement of polycyclic aromatic hydrocarbons (PAHs, ultra-performance liquid chromatography (UPLC is used for PAH identification and densitometry. However, when a solvent containing a substance to be identified passes through a column of UPLC, a dedicated high-pressure-proof device is required. Recently, a liquid chromatography instrument using a monolithic column technology has been proposed to reduce the pressure of UPLC. The present study tested five types of monolithic columns produced in experiments. To simulate the flow field, the lattice Boltzmann method (LBM was used. The velocity profile was discussed to decrease the pressure drop in the ultra-performance liquid chromatography (UPLC system.

  9. Paladin Enterprises: Monolithic particle physics models global climate.

    2002-01-01

    Paladin Enterprises presents a monolithic particle model of the universe which will be used by them to build an economical fusion energy system. The model is an extension of the work done by James Clerk Maxwell. Essentially, gravity is unified with electro-magnetic forces and shown to be a product of a closed loop current system, i.e. a particle - monolithic or sub atomic. This discovery explains rapid global climate changes which are evident in the geological record and also provides an explanation for recent changes in the global climate.

  10. HPP Boshkov Most - upgrading of the design installed capacity from 45 MW to 70 MW

    Pavleski, Vlatko; Jakimova Filipovska, Nevenka; Ivanova-Davidovicj, Jasna

    2007-01-01

    HPP Boshkov Most location will be near the town of Debar, accessible from Mavrovo-Debar road. This procject involves the tributaries that combine to make up the Mala Reka, the biggest tributary to Radika river. The watershed area is characterized as having high mountains and rich watercourses, without major settlements. The hydro system consists of: The Tresonche reservoir with 44 m high dam, with an intake to head race tunnel, also additional intakes linked by a system siphons, covered channels collect the waters from high mountains and deliver their flow to the head race tunnel. The head race tunnel ends with surge shaft and penstocks to the powerhouse. In this paper will be given differences between the Main Design prepared by HEP - Skopje in 1983, where the installed capacity is 45 MW and feasibility Study prepared by Pall C. Rizzo Ass., where installed capacity is suggested to be 70 MW, thru enlarged nominal discharge - from 14 m 3 /s to 22 m 3 /s. (Author)

  11. The new 6 MW industrial gas turbine from MAN; Die neue 6 MW Industriegasturbine von MAN

    Beukenberg, M.; Wiedermann, A.; Orth, U.; Aschenbruck, E.; Reiss, F. [MAN Diesel und Turbo SE, Oberhausen (Germany)

    2010-07-01

    The development of a completely new series of gas turbines requires significant capital, resources and know-how. MAN Diesel and Turbo strategically decided to create a small gas turbine in the 6 MW-class. The construction of the Gas Turbine has been on the basis of opportunities in current and future markets and the positioning of the competition, this has determined the characteristics and technical parameters which have been optimised in the 6 MW design. The construction uses extremely high precision engineering so that the assembly of sub-components to modules is a smooth flowing process and can guarantee the high standards both quality and performance which MAN Diesel and Turbo are operating to. The individual components must be tested and thoroughly validated many months before actual assembly of the first machine. These include in particular the compressor of the gas turbine and the combustion chamber. The combustion system required special attention, since the emissions are strongly focused to satisfy stringent environmental requirements. The planned tests are a prerequisite for the construction of such a prototype and must be successfully completed before the Gas Turbine will be accepted into service. (orig.)

  12. Stein industrie moisture separator reheaters in 900 MW and 1300 MW PWR units behaviour and feedback

    Guignard, S.; Gabrel, J.; Marceau, J.; Gauchet, J.P.

    1990-01-01

    Various metallurgical investigations were carried out with a view to making technological modifications to the Stein Industrie designed moisture separator reheaters of the 900 MW CP0/CP1 and 1300 MW P4/P'4 plant series. Dismantling and assessment of four reheater bundles from the CP0/CP1 plants revealed tube leaks at the bends and in the straight part of the bundle due chiefly to erosion-corrosion. In addition, thickness losses due to the same phenomenon were observed on the inner walls of the vessels and internal hardware in contact with wet steam. The assessments and inspections carried out in the field on the MSR bundles of the CP0 and CP1 plants confirmed the presence of erosion-corrosion, virtually stabilized to date, and revealed fouling of bends by sequestration of particles in the circuit with presence of some pitting. Fatigue cracking of the last support plate of certain MSRs of the CP0 series was also revealed. Adoption of finned tubes of 18% chrome ferritic stainless steel (Z 2 CT 18) for spare bundles and new MSRs, protection of vessels by austenitic and/or martensitic stainless steel internal hardware, modification of water conditioning in the steam-water circuit, and implementation of some technological modifications should guarantee the longterm resistance of the MSRs [fr

  13. HPP Boshkov Most - upgrading the designed installed capacity from 45 MW to 70 MW

    Pavleski, Vlatko; Jakimova-Filipovska, Nevenka; Ivanova-Davidovikj, Jasna

    2004-01-01

    HPP Boskov Most location will be near the town of Debar, accessible from the Mavrovo-Debar road. This Project involves the tributaries that combine to make tip the Mala Reka, the biggest tributary to Radika river. The watershed area is characterized as having high mountains and rich watercourses, without major settlements. The hydro system consists of: The Tresonce Reservoir with 44 m high dam, with an intake to a head race tunnel, also additional intakes linked by a system of siphons, covered channels collect the waters from high mountains and deliver their flow to the head- race tunnel. The head race tunnel ends with surge shaft and pen stock to the powerhouse. In this paper will be given differences between the Main Design prepared by HEP - Skopje in 1983, where the installed capacity is 45 MW and Feasibility Study prepared by Paul C. Rizzo Ass., where installed capacity is suggested to be 70 MW through enlarged nominal discharge - from 14 m 3 /s to 22 m 3 /s. (Author)

  14. Constitutive Theory Developed for Monolithic Ceramic Materials

    Janosik, Lesley A.

    1998-01-01

    with these service conditions by developing a multiaxial viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (such as creep and stress relaxation) in monolithic structural ceramics. Using continuum principles of engineering mechanics, we derived the complete viscoplastic theory from a scalar dissipative potential function.

  15. Polyurea-Based Aerogel Monoliths and Composites

    Lee, Je Kyun

    2012-01-01

    aerogel insulation material was developed that will provide superior thermal insulation and inherent radiation protection for government and commercial applications. The rubbery polyureabased aerogel exhibits little dustiness, good flexibility and toughness, and durability typical of the parent polyurea polymer, yet with the low density and superior insulation properties associated with aerogels. The thermal conductivity values of polyurea-based aerogels at lower temperature under vacuum pressures are very low and better than that of silica aerogels. Flexible, rubbery polyurea-based aerogels are able to overcome the weak and brittle nature of conventional inorganic and organic aerogels, including polyisocyanurate aerogels, which are generally prepared with the one similar component to polyurethane rubber aerogels. Additionally, with higher content of hydrogen in their structures, the polyurea rubber-based aerogels will also provide inherently better radiation protection than those of inorganic and carbon aerogels. The aerogel materials also demonstrate good hydrophobicity due to their hydrocarbon molecular structure. There are several strategies to overcoming the drawbacks associated with the weakness and brittleness of silica aerogels. Development of the flexible fiber-reinforced silica aerogel composite blanket has proven to be one promising approach, providing a conveniently fielded form factor that is relatively robust in industrial environments compared to silica aerogel monoliths. However, the flexible, silica aerogel composites still have a brittle, dusty character that may be undesirable, or even intolerable, in certain application environments. Although the cross - linked organic aerogels, such as resorcinol- formaldehyde (RF), polyisocyanurate, and cellulose aerogels, show very high impact strength, they are also very brittle with little elongation (i.e., less rubbery). Also, silica and carbon aerogels are less efficient radiation shielding materials due

  16. An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation

    Hung, Shao Hsuan; Hsieh, Hsin-Ta; John Su, Guo-Dung

    2008-01-01

    The design, fabrication and test results of an electromagnetic-actuated micromachined variable optical attenuator (VOA) are reported in this paper. Optical attenuation is achieved by moving a shutter into the light path between a pair of single mode fiber collimators. The shutter, consisting of a 500 µm × 1200 µm vertical micromirror, is monolithically integrated with an actuation flap. The micromirror was made by tetra-methyl ammonium hydroxide (TMAH) anisotropic wet etching with a sharp edge and a smooth reflecting surface. By arranging fiber collimators in different configurations, the reported VOA can be used as either normally-on or normally-off modes due to its relatively large shutter surface. The insertion loss of the VOA is 0.2 dB and 0.4 dB for normally-on and normally-off modes, respectively. Both optical and mechanical simulation models of the device were discussed, and the theoretical calculations based on these models offered an efficient way to predict the performance of the shutter-type VOA. The controllable attenuation range is approximately 40 dB with a driving voltage less than 0.5 V, and the driving power is less than 2 mW. A response time of 5 ms is achieved by applying proper driving waveform

  17. A monolithic constant-fraction discriminator using distributed R-C delay-line shaping

    Simpson, M.L.; Young, G.R.; Xu, M.

    1995-01-01

    A monolithic, CMOS, constant-fraction discriminator (CFD) was fabricated in the Orbit Semiconductor, 1.2 μ N-well process. This circuit uses an on-chip, distributed, R-C delay-line to realize the constant-fraction shaping. The delay-line is constructed from a narrow, 500-μ serpentine layer of polysilicon above a wide, grounded, second layer of polysilicon. This R-C delay-line generates about 1.1 ns of delay for 5 ns risetime signals with a slope degradation of only ≅ 15% and an amplitude reduction of about 6.1%. The CFD also features an automatic walk adjustment. The entire circuit, including the delay line, has a 200 μ pitch and is 950 μ long. The walk for a 5 ns risetime signal was measured as ± 100 ps over the 100:1 dynamic range from -15 mV to -1.5 mV. to -1.5 V. The CFD consumes 15 mW

  18. Construction, completion, and testing of replacement monitoring wells MW 3-2, MW 6-2, MW 7-2, and MW 11-2, Mountain Home Air Force Base, Idaho, February through April 2000

    Parliman, D.J.

    2000-01-01

    In February and March 2000, the U.S. Geological Survey Western Regional Research Drilling Operation constructed replacement monitoring wells MW 3–2, MW 6–2, MW 7–2, and MW 11–2 as part of a regional ground-water monitor- ing network for the Mountain Home Air Force Base, Elmore County, Idaho. Total well depths ranged from 435.5 to 456.5 feet, and initial depth-to-water measurements ranged from about 350 to 375 feet below land surface. After completion, wells were pumped and onsite measurements were made of water temperature, specific conductance, pH, and dissolved oxygen. At each well, natural gamma, spontaneous potential, resistivity, caliper, and temperature logs were obtained from instruments placed in open boreholes. A three- dimensional borehole flow analysis was completed for MW 3–2 and MW 11–2, and a video log was obtained for MW 11–2 to annotate lithology and note wet zones in the borehole above saturated rock.

  19. Optical gain at 1.53 {mu}m in Er{sup 3+}-Yb{sup 3+} co-doped porous silicon waveguides

    Najar, A. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, BP 80518, 22305 Lannion Cedex (France); Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 El Manar, Tunis (Tunisia)], E-mail: najar.adel@laposte.net; Charrier, J. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, BP 80518, 22305 Lannion Cedex (France); Ajlani, H. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 El Manar, Tunis (Tunisia); Lorrain, N.; Haesaert, S. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, BP 80518, 22305 Lannion Cedex (France); Oueslati, M. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 El Manar, Tunis (Tunisia); Haji, L. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, BP 80518, 22305 Lannion Cedex (France)

    2008-01-15

    Erbium-ytterbium (Er-Yb)-co-doped porous silicon planar waveguides were prepared from P{sup +}-type (1 0 0) oriented silicon wafer. Erbium and ytterbium ions were electrochemically introduced into the porous structure of the waveguide core. The doping profiles of erbium and ytterbium ions were determined by EDX analysis performed on sample cross-section. The mean concentration in the guiding layer is of about 1 x 10{sup 20} cm{sup -3}. The refractive indices were measured from co-doped porous silicon and undoped waveguides after the thermal treatments. The photoluminescence (PL) peak of optically activated erbium ions at 1.53 {mu}m was recorded. The PL enhancement is the result of the energy transfer from the excited state of Yb to the state of Er. Optical losses at 1.55 {mu}m were measured on these waveguides and were of about 2 dB/cm. An internal gain at 1.53 {mu}m of 5.8 dB/cm has been measured with a pump power of 65 mW at 980 nm.

  20. Thermal, Spectral and Laser Properties of Er3+:Yb3+:GdMgB₅O10: A New Crystal for 1.5 μm Lasers.

    Huang, Yisheng; Yuan, Feifei; Sun, Shijia; Lin, Zhoubin; Zhang, Lizhen

    2017-12-25

    A novel laser crystal of Er 3+ :Yb 3+ :GdMgB₅O 10 with dimension of 26 × 16 × 12 mm³ was grown successfully from K₂Mo₃O 10 flux by the top seeded solution growth method. The thermal diffusivity and specific heat capacity were measured to calculate the thermal conductivity of the crystal. The absorption and fluorescence properties of the crystal at room temperature were investigated in detail. The Judd-Ofelt method was used to analyze the polarized absorption spectra. The emission cross-section of the ⁴I 13/2 →⁴I 15/2 transition was calculated by the Füchtbauer-Ladenburg formula and the relevant gain cross-sections were estimated. Continuous-wave laser output of 140 mW at 1569 nm with the slope efficiency of 17.8% was demonstrated in a plano-concave resonator. The results reveal that Er 3+ :Yb 3+ :GdMgB₅O 10 crystal is a promising material for 1.5 μm lasers.

  1. Magnetocaloric effect in In doped YbMnO{sub 3}

    Sattibabu, Bhumireddi, E-mail: bsb.satti@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Department of Electronics and Physics, Institute of Science, GITAM University, Visakhapatnam 530045 (India); Bhatnagar, A.K., E-mail: anilb42@gmail.com [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Vinod, K.; Mani, Awadhesh [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2017-06-01

    Magnetic and magnetocaloric (MCE) properties of Yb{sub 0.9}In{sub 0.1}MnO{sub 3} and Yb{sub 0.8}In{sub 0.2}MnO{sub 3} polycrystalline samples are presented in this paper. Isothermal magnetization measurements reveal a field induced magnetic transition. Magnetic entropy change of 2.34±0.35 J/mole-K for Yb{sub 0.9}In{sub 0.1}MnO{sub 3} and 2.64±0.38 J/mole-K for Yb{sub 0.8}In{sub 0.2}MnO{sub 3} field change ΔH =10 KOe is observed around the ferromagnetic ordering temperature of Yb{sup 3+}. Values of relative cooling power for the same field change are found to be 38.03±9 J /mol, and 40.90±10 J/mol for Yb{sub 0.9}In{sub 0.1}MnO{sub 3} and Yb{sub 0.8}In{sub 0.2}MnO{sub 3}, respectively. These values suggest In doped YbMnO{sub 3} may be a potential candidate for magnetic refrigerant at low temperatures.

  2. Enhanced exciton emission from ZnO nano-phosphor induced by Yb3+ ions

    Kabongo, GL

    2014-01-01

    Full Text Available In this work, the sol–gel method was used to prepare Ytterbium (Yb(sup3+)) doped ZnO nano-phosphors with different concentrations of Yb(sup3+) ions. Their structural, morphological, photoluminescence, electronic states and the chemical composition...

  3. Preparation, Biological Evaluation and Dosimetry Studies of 175Yb-Bis-Phosphonates for Palliative Treatment of Bone Pain

    Ashraf Fakhari

    2015-10-01

    Full Text Available Objective: Optimized production and quality control of ytterbium-175 (Yb-175 labeled pamidronate and alendronate complexes as efficient agents for bone pain palliation has been presented. Methods: Yb-175 labeled pamidronate and alendronate (175Yb-PMD and 175Yb-ALN complexes were prepared successfully at optimized conditions with acceptable radiochemical purity, stability and significant hydroxyapatite absorption. The biodistribution of complexes were evaluated up to 48 h, which demonstrated significant bone uptake ratios for 175Yb-PAM at all-time intervals. It was also detected that 175Yb-PAM mostly washed out and excreted through the kidneys. Results: The performance of 175Yb-PAM in an animal model was better or comparable to other 175Yb-bone seeking complexes previously reported. Conclusion: Based on calculations, the total body dose for 175Yb-ALN is 40% higher as compared to 175Yb-PAM (especially kidneys indicating that 175Yb-PAM is probably a safer agent than 175Yb-ALN.

  4. Structural specifics of the condensate prepared by thermal evaporation of alloys of As2S3-Yb systems

    Ehfendiev, Eh.G.; Mamedov, A.I.; Il'yasov, T.M.; Rustamov, P.G.

    1987-01-01

    The problem aimed at preparation of the films of As 2 S 3 -Yb system, at studying their substructure depending on condensation conditions and defining noncrystallinity region of this system in the film state, is formulated. It is shown that in representative samples of As 2 S 3 -Yb system the vitrification region is extended up to 7 at.% Yb, in the films noncrystallinity region is extended up to 30 at.% Yb. With up to 30 at.% increase of ytterbium amount in initial alloys a tendency to crystallization in amorphous condensate structure is noticed. In evaporation of As 2 S 3 + 40 at.% Yb and As 2 S 3 + 50 at.% Yb, unknown in the film state YbAs 2 S 4 , Yb 3 As 4 S 9 and YbAs 4 S 7 phases are prepared, and the latter is formed in case of As 2 S 3 + 50 at.% Yb alloy at small evaporation rates (∼10 A/s). Substructure of As 2 S 3 + 50 at.% Yb alloy prepared condensate is more dependent on evaporation rate than in evaporation of As 2 S 3 + 40 at.% Yb alloy. In this case, evaporation rates being ∼ 100 A/s, the condensate has a polycrystal structure, and at small rates of ∼ 10 A/c, condensate structure is primarily blocked

  5. Structural Optimization of an Innovative 10 MW Wind Turbine Nacelle

    Dabrowski, Dariusz; Natarajan, Anand; Stehouwer, Ewoud

    2015-01-01

    For large wind turbine configurations of 10 MW and higher capacities, direct-drives present a more compact solution over conventional geared drivetrains. Further, if the generator is placed in front of the wind turbine rotor, a compact “king-pin” drive is designed, that allows the generator...... to be directly coupled to the hub. In presented study, the structural re-design of the innovative 10 MW nacelle was made using extreme loads obtained from a 10 MW reference wind turbine. On the basis of extreme loads the ultimate stresses on critical nacelle components were determined to ensure integrity...

  6. Optical waveguide formed in Yb:GdCOB and Yb:YCOB crystals by 3.0MeV O{sup +} implantation

    Jiao, Yang, E-mail: sdujy@163.com [College of Physics and Electronics, Shandong Normal University, Jinan 250014 (China)

    2013-07-15

    Planar optical waveguides were formed in Yb:GdCOB and Yb:YCOB crystals by 3.0 MeV O{sup +} ion implantation at fluence of 2 × 10{sup 15} ions/cm{sup 2} at room temperature, respectively. The prism coupling method was performed to characterize the dark-mode property of the waveguides. The refractive index profiles in the waveguides were reconstructed by reflectivity calculation method (RCM). The results show that after the implantation, a 1.5 μm-wide region with enhanced refractive-index was formed beneath the sample surfaces to act as waveguide structures for both Yb:GdCOB and Yb:YCOB.

  7. Laser-diode pumped 40-W Yb:YAG ceramic laser.

    Hao, Qiang; Li, Wenxue; Pan, Haifeng; Zhang, Xiaoyi; Jiang, Benxue; Pan, Yubai; Zeng, Heping

    2009-09-28

    We demonstrated a high-power continuous-wave (CW) polycrystalline Yb:YAG ceramic laser pumped by fiber-pigtailed laser diode at 968 nm with 400 mum fiber core. The Yb:YAG ceramic laser performance was compared for different Yb(3+) ion concentrations in the ceramics by using a conventional end-pump laser cavity consisting of two flat mirrors with output couplers of different transmissions. A CW laser output of 40 W average power with M(2) factor of 5.8 was obtained with 5 mol% Yb concentration under 120 W incident pump power. This is to the best of our knowledge the highest output power in end-pumped bulk Yb:YAG ceramic laser.

  8. Thermodynamic description of the Al-Cu-Yb ternary system supported by first-principles calculations

    Huang G.

    2016-01-01

    Full Text Available Phase relationships of the ternary Al-Cu-Yb system have been assessed using a combination of CALPHAD method and first principles calculations. A self-consistent thermodynamic parameter was established based on the experimental and theoretical information. Most of the binary intermetallic phases, except Al3Yb, Al2Yb, Cu2Yb and Cu5Yb, were assumed to be zero solubility in the ternary system. Based on the experimental data, eight ternary intermetallic compounds were taken into consideration in this system. Among them, three were treated as line compounds with large homogeneity ranges for Al and Cu. The others were treated as stoichiometric compounds. The calculated phase diagrams were in agreement with available experimental and theoretical data.

  9. Simulation of 4f-5d transitions of Yb2+ in potassium and sodium halides

    Duan Changkui; Tanner, P A

    2008-01-01

    The free ion energy level parameters of Yb 2+ are obtained by fitting the 4f 13 5d Yb 2+ free ion energy levels. A model is proposed for scaling these parameters so that they are appropriate for Yb 2+ in crystals. Treating the scaling factor, the barycenter energy E exc of the 4f 13 5d configuration, and the crystal-field splitting parameter B 4 (dd) as free parameters and adopting the 4f crystal-field parameters of the 4f 13 configuration Yb 3+ ion in other hosts with the same ligands, the absorption spectra of Yb 2+ in MX (M = K, Na; X = F, Cl, Br, I) hosts are well simulated. A model is proposed for taking the effect of charge compensation into account and this shows that the inclusion of charge compensation effects does not significantly alter the calculated electronic absorption spectra but may considerably change the dynamics of the system

  10. Improving the photoluminescence response of Er-Tm: Al2O3 films by Yb codoping

    Xiao Zhisong; Serna, R.; Afonso, C.N.; Cheng Guoan; Vickridge, I.

    2007-01-01

    Amorphous Al 2 O 3 films doped with Er, Tm and Yb have been prepared by pulsed laser deposition. A broadband emission in the range 1400-1700 nm with two peaks around 1540 and 1640 nm has been observed, both in the Er-Tm and Er-Tm-Yb codoped films. The Tm-related photoluminescence (PL) intensity at 1640 nm is enhanced when codoping with Yb thus suggesting the existence of multiple energy transfer processes from Yb to Er and Er to Tm. The Er-Tm-Yb codoped film exhibits a broadband emission with a full-width half-maximum of 184 nm similar to that of the film codoped with Tm and Er but having higher Tm to Er concentration ratio and higher PL lifetime values

  11. Growth and luminescent properties of Yb3+--doped oxide single crystals for scintillator application

    Yoshikawa, A.; Ogino, H.; Shim, J.B.; Nikl, M.; Solovieva, N.; Fukuda, T.

    2004-01-01

    Rod-shaped (Lu 1-x Yb x ) 3 Al 5 O 12 with x=0.05, 0.15, 0.30 and (Y 1-x Yb x )AlO 3 with x=0.05, 0.10, 0.30 single crystals were grown by the micro-pulling-down method. Edge-defined film-fed growth method was used to prepare (Y 0.9 Yb 0.1 )VO 4 crystal, while Ca 8 (La 1.98 Yb 0.02 )(PO 4 ) 6 O 2 crystal was grown by the Czochralski method. Luminescence of these crystals was studied with main attention paid to the charge transfer emission of Yb 3+ . Temperature tuned decay times in the time scale of units--tens of nanosecond was measured as a feature possibly interesting for an application in scintillation detectors in positron emission tomography

  12. Synthesis and Downconversion Emission Property of Yb2O3:Eu3+ Nanosheets and Nanotubes

    Chao Qian

    2013-01-01

    Full Text Available Ytterbium oxide (Yb2O3 nanocrystals with different Eu3+ (1%, 2%, 5%, and 10% doped concentrations were synthesized by a facile hydrothermal method, subsequently by calcination at 700°C. The crystal phase, size, and morphology of prepared samples were characterized by X-ray diffraction (XRD and transmission electron microscopy (TEM. The results show that the as-prepared Yb2O3 nanocrystals with sheet- and tube-like shape have cubic phase structure. The Eu3+ doped Yb2O3 nanocrystals were revealed to have good down conversion (DC property and intensity of the DC luminescence can be modified by Eu3+ contents. In our experiment the 1% Eu3+ doped Yb2O3 nanocrystals showed the strongest DC luminescence among the obtained Yb2O3 nanocrystals.

  13. Spectroscopic properties and energy levels of Yb{sup 3+} ion in huntite structure

    Malakhovskii, A.V. [L.V. Kirensky Institute of Physics, Siberian Branch Russian Academy of Sciences, 660036 Krasnoyarsk (Russian Federation)], E-mail: malakha@iph.krasn.ru; Sukhachev, A.L. [L.V. Kirensky Institute of Physics, Siberian Branch Russian Academy of Sciences, 660036 Krasnoyarsk (Russian Federation); Gnatchenko, S.L.; Kachur, I.S.; Piryatinskaya, V.G. [B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 61103 Kharkov (Ukraine); Temerov, V.L.; Krylov, A.S.; Edelman, I.S. [L.V. Kirensky Institute of Physics, Siberian Branch Russian Academy of Sciences, 660036 Krasnoyarsk (Russian Federation)

    2009-05-12

    Temperature dependence of Yb{sup 3+} optical absorption spectrum has been studied in crystals Yb{sub x}Tm{sub 1-x}Al{sub 3}(BO{sub 3}){sub 4} (x = 0.1, 0.2 and 1) in the temperature range 1.7-293 K. The spectra of the crystals appeared to be practically identical for the studied ytterbium concentrations. Raman scattering spectrum of YbAl{sub 3}(BO{sub 3}){sub 4} crystal has been measured. Group theory analysis of the optical absorption spectra is made, and new energy structure of the ground and excited states of Yb{sup 3+} ion, based on the experimental data obtained, is presented. Transformation of the local environment of Yb{sup 3+} ion depending on temperature has been found out. Spectrum of luminescence has been calculated from the absorption spectrum by reciprocity method with the use of the proposed energy structure.

  14. Development and characterization of methacrylate-based hydrazide monoliths for oriented immobilization of antibodies.

    Brne, P; Lim, Y-P; Podgornik, A; Barut, M; Pihlar, B; Strancar, A

    2009-03-27

    Convective interaction media (CIM; BIA Separations) monoliths are attractive stationary phases for use in affinity chromatography because they enable fast affinity binding, which is a consequence of convectively enhanced mass transport. This work focuses on the development of novel CIM hydrazide (HZ) monoliths for the oriented immobilization of antibodies. Adipic acid dihydrazide (AADH) was covalently bound to CIM epoxy monoliths to gain hydrazide groups on the monolith surface. Two different antibodies were afterwards immobilized to hydrazide functionalized monolithic columns and prepared columns were tested for their selectivity. One column was further tested for the dynamic binding capacity.

  15. Cooperative emission in ion implanted Yb:YAG waveguides

    Vazquez, G V; Desirena, H; De la Rosa, E [Centro de Investigaciones en Optica, Loma del Bosque 115, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Flores-Romero, E; Rickards, J; Trejo-Luna, R [Instituto de Fisica, UNAM, Apartado Postal 20364, 01000 Mexico, D. F. (Mexico); Marquez, H, E-mail: gvvazquez@cio.mx [Departamento de Optica, CICESE, Km 107 Carr. Tijuana-Ensenada, 22860 Ensenada, B. C. (Mexico)

    2011-01-01

    In this work, we report the analysis of spectroscopic properties of waveguides fabricated by ion implantation in YAG doped with Yb{sup 3+} ions. Three emission bands were detected in the blue, green and red regions under 970-nm excitation. The strong blue-green emission can be explained by a cooperative process between ytterbium ion pairs, leading to emission centered at 514 nm. The additional blue bands as well as green and red emission bands are attributed to the presence of Tm{sup 3+} and Er{sup 3+} traces. The results include absorption and emission curves as well as decay time rates.

  16. Cooperative emission in ion implanted Yb:YAG waveguides

    Vazquez, G V; Desirena, H; De la Rosa, E; Flores-Romero, E; Rickards, J; Trejo-Luna, R; Marquez, H

    2011-01-01

    In this work, we report the analysis of spectroscopic properties of waveguides fabricated by ion implantation in YAG doped with Yb 3+ ions. Three emission bands were detected in the blue, green and red regions under 970-nm excitation. The strong blue-green emission can be explained by a cooperative process between ytterbium ion pairs, leading to emission centered at 514 nm. The additional blue bands as well as green and red emission bands are attributed to the presence of Tm 3+ and Er 3+ traces. The results include absorption and emission curves as well as decay time rates.

  17. Comparison of monolithic silica and polymethacrylate capillary columns for LC

    Moravcová, D.; Jandera, P.; Urban, J.; Planeta, Josef

    2004-01-01

    Roč. 27, 10-11 (2004), s. 789-800 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA203/02/0023 Keywords : monolithic column s * capillary HPLC * column testing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.927, year: 2004

  18. Characterization of polymer monolithic stationary phases for capillary HPLC

    Moravcová, D.; Jandera, P.; Urban, J.; Planeta, Josef

    2003-01-01

    Roč. 26, č. 11 (2003), s. 1005-1016 ISSN 1615-9306 R&D Projects: GA ČR GA203/02/0023 Institutional research plan: CEZ:AV0Z4031919; CEZ:MSM 253100002 Keywords : monolithic column s * capillary HPLC * column testing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.108, year: 2003

  19. Integration trends in monolithic power ICs: Application and technology challenges

    Rose, M.; Bergveld, H.J.

    2016-01-01

    This paper highlights the general trend towards further monolithic integration in power applications by enabling power management and interfacing solutions in advanced CMOS nodes. The need to combine high-density digital circuits, power-management circuits, and robust interfaces in a single

  20. High density fuels using dispersion and monolithic fuel

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia; Universidade de São Paulo

    2017-01-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  1. A 60-GHz rectenna for monolithic wireless sensor tags

    Gao, H.; Johannsen, U.; Matters - Kammerer, M.; Milosevic, D.; Smolders, A.B.; Roermund, van A.H.M.; Baltus, P.G.M.

    2013-01-01

    This paper presents the design of a 60-GHz rectenna with an on-chip antenna and rectifier in 65nm CMOS technology. The rectenna is often the bottleneck in realizing a fully-integrated monolithic wireless sensor tag. In this paper, problems of the mm-wave rectifier are discussed, and the

  2. Material Engineering for Monolithic Semiconductor Mode-Locked Lasers

    Kulkova, Irina

    This thesis is devoted to the materials engineering for semiconductor monolithic passively mode-locked lasers (MLLs) as a compact energy-efficient source of ultrashort optical pulses. Up to the present day, the achievement of low-noise sub-picosecond pulse generation has remained a challenge...

  3. High density fuels using dispersion and monolithic fuel

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia, E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br, E-mail: alfredo@ctmsp.mar.mil.br, E-mail: rafael.orm@gmail.com, E-mail: claudia.giovedi@ctmsp.mar.mil.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil). Departamento de Engenharia Naval e Oceânica

    2017-07-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  4. Monolithic microwave integrated circuit with integral array antenna

    Stockton, R.J.; Munson, R.E.

    1984-01-01

    A monolithic microwave integrated circuit including an integral array antenna. The system includes radiating elements, feed network, phasing network, active and/or passive semiconductor devices, digital logic interface circuits and a microcomputer controller simultaneously incorporated on a single substrate by means of a controlled fabrication process sequence

  5. Dopamine-imprinted monolithic column for capillary electrochromatography.

    Aşır, Süleyman; Sarı, Duygu; Derazshamshir, Ali; Yılmaz, Fatma; Şarkaya, Koray; Denizli, Adil

    2017-11-01

    A dopamine-imprinted monolithic column was prepared and used in capillary electrochromatography as stationary phase for the first time. Dopamine was selectively separated from aqueous solution containing the competitor molecule norepinephrine, which is similar in size and shape to the template molecule. Morphology of the dopamine-imprinted column was observed by scanning electron microscopy. The influence of the organic solvent content of mobile phase, applied pressure and pH of the mobile phase on the recognition of dopamine by the imprinted monolithic column has been evaluated, and the imprinting effect in the dopamine-imprinted monolithic polymer was verified. Developed dopamine-imprinted monolithic column resulted in excellent separation of dopamine from structurally related competitor molecule, norepinephrine. Separation was achieved in a short period of 10 min, with the electrophoretic mobility of 5.81 × 10 -5  m 2 V -1 s -1 at pH 5.0 and 500 mbar pressure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Monolithically-Integrated μGC Chemical Sensor System

    Davor Copic

    2011-06-01

    Full Text Available Gas chromatography (GC is used for organic and inorganic gas detection with a range of applications including screening for chemical warfare agents (CWA, breath analysis for diagnostics or law enforcement purposes, and air pollutants/indoor air quality monitoring of homes and commercial buildings. A field-portable, light weight, low power, rapid response, micro-gas chromatography (μGC system is essential for such applications. We describe the design, fabrication and packaging of mGC on monolithically-integrated Si dies, comprised of a preconcentrator (PC, μGC column, detector and coatings for each of these components. An important feature of our system is that the same mechanical micro resonator design is used for the PC and detector. We demonstrate system performance by detecting four different CWA simulants within 2 min. We present theoretical analyses for cost/power comparisons of monolithic versus hybrid μGC systems. We discuss thermal isolation in monolithic systems to improve overall performance. Our monolithically-integrated μGC, relative to its hybrid cousin, will afford equal or slightly lower cost, a footprint that is 1/2 to 1/3 the size and an improved resolution of 4 to 25%.

  7. Environmentally Benign Production of Stretchable and Robust Superhydrophobic Silicone Monoliths.

    Davis, Alexander; Surdo, Salvatore; Caputo, Gianvito; Bayer, Ilker S; Athanassiou, Athanassia

    2018-01-24

    Superhydrophobic materials hold an enormous potential in sectors as important as aerospace, food industries, or biomedicine. Despite this great promise, the lack of environmentally friendly production methods and limited robustness remain the two most pertinent barriers to the scalability, large-area production, and widespread use of superhydrophobic materials. In this work, highly robust superhydrophobic silicone monoliths are produced through a scalable and environmentally friendly emulsion technique. It is first found that stable and surfactantless water-in-polydimethylsiloxane (PDMS) emulsions can be formed through mechanical mixing. Increasing the internal phase fraction of the precursor emulsion is found to increase porosity and microtexture of the final monoliths, rendering them superhydrophobic. Silica nanoparticles can also be dispersed in the aqueous internal phase to create micro/nanotextured monoliths, giving further improvements in superhydrophobicity. Due to the elastomeric nature of PDMS, superhydrophobicity can be maintained even while the material is mechanically strained or compressed. In addition, because of their self-similarity, the monoliths show outstanding robustness to knife-scratch, tape-peel, and finger-wipe tests, as well as rigorous sandpaper abrasion. Superhydrophobicity was also unchanged when exposed to adverse environmental conditions including corrosive solutions, UV light, extreme temperatures, and high-energy droplet impact. Finally, important properties for eventual adoption in real-world applications including self-cleaning, stain-repellence, and blood-repellence are demonstrated.

  8. Study of monolithic prestressed reinforced concrete overhead road.

    Ya.I. Kovalchyk

    2011-12-01

    Full Text Available Results of inspection and testing of monolithic prestressed reinforced concrete road trestle built in Kyiv are considered. The analysis of the gained results has shown that parametres correspond to the requirements of current standards on design of bridges.

  9. Curvas de arranque de unidades de 100 MW // Starting Graphs of generating units of 100 MW.

    J. L. Rodríguez Olivera

    2000-03-01

    Full Text Available Se exponen las principales consideraciones para los arranques de las unidades de 100 MW en función del estado térmico yse establecen modelos de comportamiento de los principales parámetros a partir de cualquier estado térmico inicial. Paraello se parte de los métodos establecidos en las instrucciones de explotación vigentes y de las curvas de arranques delfabricante. Los modelos de variación de los parámetros fundamentales permiten obtener las curvas de arranque de estasunidades para cualquier estado térmico inicial, lo que reporta una disminución en los tiempos de puesta en servicio, ahorrode combustible en los arranques, el control y evaluación de los arranques y una mayor seguridad durante la explotación delas unidades. Se presenta un software para la obtención de estos gráficos y toda la información de los arranques.Palabras claves: Gráficos de arranque, unidades térmicas, turbinas de vapor.____________________________________________________________________________AbstractThe principal considerations for the starting of the 100 MW units are exposed in function of thermal state and behavior modelsare established of principal parameters from any thermal initial state are established.The work is based on the performance instructions of stablished methods and starting graphs supply by the manufacturer. Thevariation models of fundamental parameters allow us to obtain the base curves of these units for any thermal initial state. Alsoallow: a diminution in the set times of put on line, saving fuel, evaluation and control of the starting stage and a great securityduring the service of these generating units. A software that allowed to obtain all the starting information and the suitablegraphs is exposed.Key words: Starting graphs, thermal generating units, steam turbine, power plants.

  10. IHEP S-band 45 MW pulse power klystron development

    Dong Dong; Zhou Zusheng; Zhang Liang; Li Gangying; Tian Shuangmin

    2006-01-01

    S-band 45 MW pulse power klystron has been developed in the Institute of High Energy Physics (IHEP) for the Beijing Electron Positron Collider (BEPC) upgrade projects (BEPC-II). This new klystron has 5 cavities in its RF-beam interaction and single RF output window, and the RF output power is 45 MW at 310 kV, the gain is 50 dB, the efficiency 40%. The manufacturing, training and testing of a prototype klystron has been finished in IHEP and RF power 45 MW at 300 kV has been reached. The testing results show that all the parameters of the 45 MW klystron reach the design goal. (authors)

  11. Changes in 900 MW PWR alarm processing policy

    Pont, M [Electricite de France, Generation and Transmission, Nuclear Power Plant Operations, Paris (France)

    1997-09-01

    Following a brief description of the current 900 MW PWR alarm processing system, this document presents the feasibility study carried out within the scope of the Instrumentation and Control Refurbishment project (R2C). (author). 4 figs, tabs.

  12. Changes in 900 MW PWR alarm processing policy

    Pont, M.

    1997-01-01

    Following a brief description of the current 900 MW PWR alarm processing system, this document presents the feasibility study carried out within the scope of the Instrumentation and Control Refurbishment project (R2C). (author). 4 figs, tabs

  13. Thermal-hydraulic design of the 200 MW NHR

    Li Jincai; Gao Zuying; Xu Baocheng; He Junxiao

    1997-01-01

    The thermal hydraulic design of the 200-MW Nuclear Heating Reactor (NHR), design criteria, design methods, important characteristics and some development results are presented in this paper. (author). 5 refs, 8 figs, 2 tabs

  14. Light Rotor: The 10-MW reference wind turbine

    Bak, Christian; Bitsche, Robert; Yde, Anders

    2012-01-01

    design show a rather well performing wind turbine both in terms of power and loads, but in the further work towards the final design the challenges in the control needs to be solved and the balance between power performance and loads and between structural performance and mass will be investigated......This paper describes the design of a rotor and a wind turbine for an artificial 10-MW wind turbine carried out in the Light Rotor project. The turbine called the Light Rotor 10-MW Reference Wind Turbine (LR10-MW RWT), is designed with existing methods and techniques and serves as a reference...... like the determination of the specific power and upscaling of the turbine. The design of Iteration #2 of the LR10-MW RWT is carried out in a sequence between aerodynamic rotor design, structural design and aero-servo-elastic design. Each of these topics is described. The results from the Iteration #2...

  15. Thermal-hydraulic design of the 200 MW NHR

    Jincai, Li; Zuying, Gao; Baocheng, Xu; Junxiao, He [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The thermal hydraulic design of the 200-MW Nuclear Heating Reactor (NHR), design criteria, design methods, important characteristics and some development results are presented in this paper. (author). 5 refs, 8 figs, 2 tabs.

  16. The 140 GHZ, 1 MW Gyrotron - Status and Recent Results

    Gantenbein, G.; Dammertz, G.; Illy, S.; Kern, S.; Leonhardt, W.; Piosczyk, B.; Schmid, M.; Thumm, M.; Braune, H.; Erckmann, V.; Laqua, H. P.; Michel, G.; Kasparek, W.; Lechte, C.; Legrand, F.; Lievin, C.; Prinz, O.

    2009-04-01

    A 10 MW ECRH system is currently under construction for the stellarator W7-X which will be built up and operated by IPP in Greifswald, Germany. The present status of the complete system is reported in [1]. The RF power will be provided by 10 gyrotrons. A European collaboration has been established to develop and build the 10 gyrotrons each with an output power of 1 MW for continuous wave (CW) operation [2]. Nine gyrotrons are being manufactured by Thales Electron Devices (TED), Vélizy, France, one gyrotron was produced by CPI, Palo Alto, CA and passed the acceptance tests at IPP. The acceptance tests of the TED gyrotrons are performed at the test stand at FZK and on site at IPP. The first series tube yielded a total output power of 0.98 MW, with an efficiency of 31 % (without a single stage depressed collector) in short pulse operation and of 0.92 MW in pulses of 1800 s (efficiency of almost 45 % at a depression voltage of 29 kV) [3], The Gaussian mode output power was 0.91 MW. The RF power, measured in a calorimetric load at the end of a 25 m long quasi-optical transmission line with seven mirrors, was 0.87 MW. In this contribution typical results of the next series gyrotrons will be reported.

  17. Synthesis and characterization of (Ba,Yb doped ceria nanopowders

    Branko Matović

    2011-06-01

    Full Text Available Nanometric size (Ba, Yb doped ceria powders with fluorite-type structure were obtained by applying selfpropagating room temperature methods. Tailored composition was: Ce0.95−xBa0.05YbxO2−δ with fixed amount of Ba − 0.05 and varying Yb content “x” from 0.05 to 0.2. Powder properties such as crystallite and particle size and lattice parameters have been studied. Röntgen diffraction analyses (XRD were used to characterize the samples at room temperature. Also, high temperature treatment (up to 1550°C was used to follow stability of solid solutions. The mean diameters of the nanocrystals are determined from the full width at half maxima (FWHM of the XRD peaks. It was found that average diameter of crystallites is less than 3 nm. WilliamsonHall plots were used to separate the effect of the size and strain in the nanocrystals.

  18. High temperature luminescence of ZnSe:Yb crystals

    Makhniy V. P.

    2016-05-01

    Full Text Available The problem of obtaining of effective edge luminescence with high temperature stability in the zinc selenide crystals is discussed. This task is solved by using as the dopant rare-earth element yttrium, which is introduced into the undoped ZnSe crystal by diffusion method. Doping was carried out in an evacuated to 10 -4 Torr. and a sealed quartz ampoule, in the opposite ends of which is a sample and a mixture of the crushed Yb and Se. It has been found that the diffusion coefficient of yttrium at a temperature of 1400 K is about 5⋅10 -7 cm 2/sec. It is shown that in the luminescence spectra of ZnSe:Yb samples in the temperature range 295-470 K only blue band is observed. Dependencies of parameters of this band from the excitation level are typical for the annihilation of excitons at their inelastic scattering by free carriers. The efficacy of blue radiation at 300 K is about 30% and does not fall more than twice with increasing temperature up to 470 K, indicating its high thermal stability.

  19. Low-temperature phase diagram of YbBiPt

    Movshovich, R.; Lacerda, A.; Canfield, P.C.; Thompson, J.D.; Fisk, Z.

    1994-01-01

    Resistivity measurements are reported on the cubic heavy-fermion compound YbBiPt at ambient and hydrostatic pressures to ∼19 kbar and in magnetic fields to 1 T. The phase transition at T c =0.4 K is identified by a sharp rise in resistivity. That feature is used to build low-temperature H-T and P-T phase diagrams. The phase boundary in the H-T plane follows the weak-coupling BCS expression remarkably well from T c to T c /4, while small hydrostatic pressure of ∼1 kbar suppresses the low-temperature phase entirely. These effects of hydrostatic pressure and magnetic field on the phase transition are consistent with an spin-density-wave (SDW) formation in a very heavy electron band at T=0.4 K. Outside of the SDW phase at low temperature, hydrostatic pressure increases the T 2 coefficient of resistivity, signaling an increase in heavy-fermion correlations with hydrostatic pressure. The residual resistivity decreases with pressure, contrary to trends in other Yb heavy-fermion compounds

  20. GHz Yb:KYW oscillators in time-resolved spectroscopy

    Li, Changxiu; Krauß, Nico; Schäfer, Gerhard; Ebner, Lukas; Kliebisch, Oliver; Schmidt, Johannes; Winnerl, Stephan; Hettich, Mike; Dekorsy, Thomas

    2018-02-01

    A high-speed asynchronous optical sampling system (ASOPS) based on Yb:KYW oscillators with 1-GHz repetition rate is reported. Two frequency-offset-stabilized diode-pumped Yb:KYW oscillators are employed as pump and probe source, respectively. The temporal resolution of this system within 1-ns time window is limited to 500 fs and the noise floor around 10-6 (ΔR/R) close to the shot-noise level is obtained within an acquisition time of a few seconds. Coherent acoustic phonons are investigated by measuring multilayer semiconductor structures with multiple quantum wells and aluminum/silicon membranes in this ASOPS system. A wavepacket-like phonon sequence at 360 GHz range is detected in the semiconductor structures and a decaying sequence of acoustic oscillations up to 200 GHz is obtained in the aluminum/silicon membranes. Coherent acoustic phonons generated from semiconductor structures are further manipulated by a double pump scheme through pump time delay control.

  1. Some results of the 50 MW straight tube steam generator test in the TNO 50 MW SCTF at Hengelo

    Ludwig, P.W.P.H.; Hus, B.M.

    1975-01-01

    A prototype 50 MW straight tube steam generator has been tested during more than 3000 hours under operating conditions. The steady state, transient and stability behaviour were tested. The most remarkable results of the experiments are given. (author)

  2. Some results of the 50 MW straight tube steam generator test in the TNO 50 MW SCTF at Hengelo

    Ludwig, P W.P.H.; Hus, B M

    1975-07-01

    A prototype 50 MW straight tube steam generator has been tested during more than 3000 hours under operating conditions. The steady state, transient and stability behaviour were tested. The most remarkable results of the experiments are given. (author)

  3. Yb-doped aluminophosphosilicate ternary fiber with high efficiency and excellent laser stability

    Li, Yuwei; Peng, Kun; Zhan, Huan; Liu, Shuang; Ni, Li; Wang, Yuying; Yu, Juan; Wang, Xiaolong; Wang, Jianjun; Jing, Feng; Lin, Aoxiang

    2018-03-01

    By using chelate precursor doping technique and traditional modified chemical vapor deposition system, we fabricated Yb-doped aluminophosphosilicate (Al2O3-P2O5-SiO2, ternary Yb-APS) large-mode-area fiber and reported on its laser performance. The fiber preform was doped with Al, P and Yb with concentration of ∼8000 ppm, ∼1700 ppm and ∼400 ppm in molar percent, respectively. Tested with master oscillator power amplifier system, the home-made Yb-APS fiber was found to present 1.02 kW at 1061.1 nm with a high slope efficiency of 81.2% and excellent laser stability with power fluctuation less than ±1.1% for over 10 h. Compared with Yb-doped aluminosilicate (Al2O3-SiO2, binary Yb-AS) fiber, the introduction of P2O5 effectively suppressed photodarkening effect even the P/Al ratio is much less than 1, indicating that Yb-APS fiber is a better candidate for high power fiber lasers.

  4. Yb5Ni4Sn10 and Yb7Ni4Sn13: New polar intermetallics with 3D framework structures

    Lei Xiaowu; Sun Zhongming; Li Longhua; Zhong Guohua; Hu Chunli; Mao Jianggao

    2010-01-01

    The title compounds have been obtained by solid state reactions of the corresponding pure elements at high temperature, and structurally characterized by single-crystal X-ray diffraction studies. Yb 5 Ni 4 Sn 10 adopts the Sc 5 Co 4 Si 10 structure type and crystallizes in the tetragonal space group P4/mbm (No. 127) with cell parameters of a=13.785(4) A, c=4.492 (2) A, V=853.7(5) A 3 , and Z=2. Yb 7 Ni 4 Sn 13 is isostructural with Yb 7 Co 4 InGe 12 and crystallizes in the tetragonal space group P4/m (No. 83) with cell parameters of a=11.1429(6) A, c=4.5318(4) A, V=562.69(7) A 3 , and Z=1. Both structures feature three-dimensional (3D) frameworks based on three different types of one-dimensional (1D) channels, which are occupied by the Yb atoms. Electronic structure calculations based on density functional theory (DFT) indicate that both compounds are metallic. These results are in agreement with those from temperature-dependent resistivity and magnetic susceptibility measurements. - Graphical abstract: Two new ytterbium nickel stannides, namely, Yb 5 Ni 4 Sn 10 and Yb 7 Ni 4 Sn 13 , have been synthesized and structurally characterized by single-crystal X-ray diffraction studies. Both their structures feature three-dimensional (3D) frameworks based on three different types of one-dimensional (1D) channels, which are situated by all the Yb atoms. Electronic structure calculations based on density functional theory (DFT) indicate that both compounds are metallic, which are in accordance with the results from temperature-dependent resistivity and magnetic susceptibility measurements.

  5. Study of the production of {sup 177}Lu through {sup 176}Yb (n, {gamma}) {sup 177}Yb {yields} {sup 177}Lu nuclear reaction

    Silva, Giovana Pasqualini da; Osso Junior, Joao Alberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: gpsilva@ipen.br; jaosso@ipen.br

    2007-07-01

    The beta minus emitter {sup 177}Lu is a promising therapeutic radioisotope for the curative treatment of cancer using labelled proteins. It has a half - life of T{sub 1/2} = 6.71 day and maximum and average {beta}{sup -} energies of 421 and 133 keV, resulting in a short range of radiation in tissue. The decay is accompanied by the emission of low energy {gamma}-radiation with 208.3 keV (11%) and 113 keV (6.4%) suitable for simultaneous imaging, {sup 177}Lu can be produced by two different routes, namely, by irradiation of natural Lu{sub 2}O{sub 3} target ({sup 176}Lu, 2.6%) or enriched (in {sup 176}Lu) Lu{sub 2}O{sub 3} target, as also by irradiation of Yb target (Yb{sub 2}O{sub 3}) followed by radiochemical separation of {sup 177}Lu from Yb isotopes. The objective of this work is to study the production of {sup 177}Lu through the indirect {sup 176}Yb(n,{gamma}){sup 177}Yb {yields} {sup 177}Lu nuclear reaction. The results of the production yield of {sup 177}Lu will be shown and compared with the direct reaction. The method of choice for the chemical separation between Lu and Yb was the ion exchange, using an cation exchange resin in Cl{sup -} form and {alpha}-HIBA as eluent. Preliminary results showed a good separation of {sup 177}Lu from Yb{sub 2}O{sub 3} indirect targets. (author)

  6. Local structure investigation of Ga and Yb dopants in Co4Sb12 skutterudites

    Hu, Yanyun; Chen, Ning; Clancy, J. P.; Salvador, James R.; Kim, Chang-Yong; Shi, Xiaoya; Li, Qiang; Kim, Young-June

    2017-12-01

    We report comprehensive x-ray absorption spectroscopy studies at both the Ga K edge and Yb L2 edge to elucidate the local structure of Ga and Yb dopants in YbxGayCo4Sb12 . Our extended x-ray absorption fine structure (EXAFS) data confirm that Ga atoms occupy two crystallographic sites: one is the 24 g site replacing Sb, and the other is the 2 a site in the off-center void position. We find that the occupancy ratio of these two sites varies significantly as a function of the filling fraction of additional Yb, which exclusively occupies the 2 a on-center site. At low concentrations of Yb, Ga24 g and Ga2 a dopants coexist and they form a charge-compensated compound defect proposed by Qiu et al. [Adv. Funct. Mater. 23, 3194 (2013), 10.1002/adfm.201202571]. The Ga24 g occupancy increases gradually with increasing Yb concentration, and almost all Ga occupies the 24 g site for the highest Yb concentration studied (x =0.4 ). In addition to the local structural evidence provided by our EXAFS data, we also present x-ray absorption near-edge structure (XANES) spectra, which show a small Ga K -edge energy shift as a function of Yb concentration consistent with the change from predominantly Ga2 a to Ga24 g states. Our result suggests that the increased solubility of Yb in Yb-Ga co-doped Co4Sb12 skutterudites is due to the increased Ga24 g electron acceptor, and thus provides an important strategy to optimize the carrier concentration in partially filled skutterudites.

  7. Coulomb-nuclear interference measurements of hexadecapole deformations in 168Yb and 178,180Hf

    Nettles, W.G.; Mississippi Coll., Clinton; Ramayya, A.V.; Hamilton, J.H.

    1988-01-01

    Coulomb-nuclear interference studies of 168 Yb and 178,180 Hf have been carried out with alpha particles from the Pittsburgh tandem. From coupled channel fits to the data at 18 MeV for 168 Yb and 19.5 MeV for 178,180 Hf, β 4 c values of -0.030(20), -0.166(18), and -0.180(6) were obtained, respectively. These data agree with the positive M 04 value from sub-Coulomb studies of 168 Yb but with the large negative M 04 values from sub-Coulomb studies of 178,180 Hf. (author)

  8. Y-box-binding protein-1 (YB-1) promotes cell proliferation, adhesion and drug resistance in diffuse large B-cell lymphoma

    Miao, Xiaobing; Wu, Yaxun [Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu (China); Wang, Yuchan [Department of Pathogen, Medical College, Nantong University, Nantong 226001, Jiangsu (China); Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu (China); Zhu, Xinghua; Yin, Haibing [Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu (China); He, Yunhua [Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu (China); Li, Chunsun; Liu, Yushan; Lu, Xiaoyun; Chen, Yali; Shen, Rong [Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu (China); Xu, Xiaohong, E-mail: xuxiaohongnantong@126.com [Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu (China); He, Song, E-mail: hesongnt@126.com [Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu (China)

    2016-08-15

    YB-1 is a multifunctional protein, which has been shown to correlate with resistance to treatment of various tumor types. This study investigated the expression and biologic function of YB-1 in diffuse large B-cell lymphoma (DLBCL). Immunohistochemical analysis showed that the expression statuses of YB-1 and pYB-1{sup S102} were reversely correlated with the clinical outcomes of DLBCL patients. In addition, we found that YB-1 could promote the proliferation of DLBCL cells by accelerating the G1/S transition. Ectopic expression of YB-1 could markedly increase the expression of cell cycle regulators cyclin D1 and cyclin E. Furthermore, we found that adhesion of DLBCL cells to fibronectin (FN) could increase YB-1 phosphorylation at Ser102 and pYB-1{sup S102} nuclear translocation. In addition, overexpression of YB-1 could increase the adhesion of DLBCL cells to FN. Intriguingly, we found that YB-1 overexpression could confer drug resistance through cell-adhesion dependent and independent mechanisms in DLBCL. Silencing of YB-1 could sensitize DLBCL cells to mitoxantrone and overcome cell adhesion-mediated drug resistance (CAM-DR) phenotype in an AKT-dependent manner. - Highlights: • The expression statuses of YB-1 and pYB-1{sup S102} are reversely correlated with outcomes of DLBCL patients. • YB-1 promotes cell proliferation by accelerating G1/S transition in DLBCL. • YB-1 confers drug resistance to mitoxantrone in DLBCL.

  9. Production and spectroscopy of ultracold YbRb{sup *} molecules

    Nemitz, Nils

    2008-11-15

    This thesis describes the formation of electronically excited but translationally cold molecules formed from rubidium atoms and two isotopes of ytterbium ({sup 176}Yb and {sup 174}Yb) by means of photoassociation. The experiments were performed in a combined MOT with 10{sup 9} rubidium atoms and 2.10{sup 6} ytterbium atoms at temperatures of less than 1 mK. Photoassociation lines were found by trap loss spectroscopy throughout a wavelength range of 2 nm near the 795 nm D1 transition in rubidium. The majority of lines belong to two vibrational series in the excited YbRb{sup *} molecule, converging on a system of a ground state ytterbium atom and an excited rubidium atom. The strong variation of line strength between different vibrational lines is explained through the Franck-Condon principle. An improved version of the Leroy-Bernstein equation was used to extract the leading dispersion coefficient of the potential from the vibrational progression. Most of the observed lines show a resolved rotational structure as expected from a basic quantum mechanical model. The series terminates with the third or forth rotational component due to the ground state centrifugal barrier.The measured rotational constants agree very well with calculations based on the C{sub 6} coefficient. The discovery of a splitting of the rotational components into subcomponents indicates an uncommon angular momentum coupling described by Hund's case. Variations in the depth of the subcomponents indicates a similar splitting in the ground state, with the energies of the substates based on the alignment of the rubidium atom's magnetic dipole moment relative to the angular momentum carried by an approaching ytterbium atom. This creates an additional ground state barrier, partially suppressing some of the subcomponents. Using a rate equation model developed for this purpose, a maximum formation rate of 2.5.10{sup 6} molecules per second was calculated over the volume of the entire trap. The

  10. Production and spectroscopy of ultracold YbRb* molecules

    Nemitz, Nils

    2008-11-01

    This thesis describes the formation of electronically excited but translationally cold molecules formed from rubidium atoms and two isotopes of ytterbium ( 176 Yb and 174 Yb) by means of photoassociation. The experiments were performed in a combined MOT with 10 9 rubidium atoms and 2.10 6 ytterbium atoms at temperatures of less than 1 mK. Photoassociation lines were found by trap loss spectroscopy throughout a wavelength range of 2 nm near the 795 nm D1 transition in rubidium. The majority of lines belong to two vibrational series in the excited YbRb * molecule, converging on a system of a ground state ytterbium atom and an excited rubidium atom. The strong variation of line strength between different vibrational lines is explained through the Franck-Condon principle. An improved version of the Leroy-Bernstein equation was used to extract the leading dispersion coefficient of the potential from the vibrational progression. Most of the observed lines show a resolved rotational structure as expected from a basic quantum mechanical model. The series terminates with the third or forth rotational component due to the ground state centrifugal barrier.The measured rotational constants agree very well with calculations based on the C 6 coefficient. The discovery of a splitting of the rotational components into subcomponents indicates an uncommon angular momentum coupling described by Hund's case. Variations in the depth of the subcomponents indicates a similar splitting in the ground state, with the energies of the substates based on the alignment of the rubidium atom's magnetic dipole moment relative to the angular momentum carried by an approaching ytterbium atom. This creates an additional ground state barrier, partially suppressing some of the subcomponents. Using a rate equation model developed for this purpose, a maximum formation rate of 2.5.10 6 molecules per second was calculated over the volume of the entire trap. The work presented here is an important step on

  11. Latest Results in SLAC 75-MW PPM Klystrons

    Sprehn, D.; Caryotakis, G.; Haase, A.; Jongewaard, E.; Laurent, L.; Pearson, C.; Phillips, R.

    2006-01-01

    75 MW X-band klystrons utilizing Periodic Permanent Magnet (PPM) focusing have been undergoing design, fabrication and testing at the Stanford Linear Accelerator Center (SLAC) for almost nine years. The klystron development has been geared toward realizing the necessary components for the construction of the Next Linear Collider (NLC). The PPM devices built to date which fit this class of operation consist of a variety of 50 MW and 75 MW devices constructed by SLAC, KEK (Tsukuba, Japan) and industry. All these tubes follow from the successful SLAC design of a 50 MW PPM klystron in 1996. In 2004 the latest two klystrons were constructed and tested with preliminary results reported at EPAC2004. The first of these two devices was tested to the full NLC specifications of 75 MW, 1.6 microseconds pulse length, and 120 Hz. This 14.4 kW average power operation came with a tube efficiency >50%. The most recent testing of these last two devices will be presented here. Design and manufacturing issues of the latest klystron, due to be tested by the Fall of 2005, are also discussed

  12. Monolithic millimeter-wave and picosecond electronic technologies

    Talley, W.K.; Luhmann, N.C.

    1996-01-01

    Theoretical and experimental studies into monolithic millimeter-wave and picosecond electronic technologies have been undertaken as a collaborative project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Coherent Millimeter-Wave Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. The work involves the design and fabrication of monolithic frequency multiplier, beam control, and imaging arrays for millimeter-wave imaging and radar, as well as the development of high speed nonlinear transmission lines for ultra-wideband radar imaging, time domain materials characterization and magnetic fusion plasma applications. In addition, the Coherent Millimeter-Wave Group is involved in the fabrication of a state-of-the-art X-band (∼8-11 GHz) RF photoinjector source aimed at producing psec high brightness electron bunches for advanced accelerator and coherent radiation generation studies

  13. Silicon monolithic microchannel-cooled laser diode array

    Skidmore, J. A.; Freitas, B. L.; Crawford, J.; Satariano, J.; Utterback, E.; DiMercurio, L.; Cutter, K.; Sutton, S.

    2000-01-01

    A monolithic microchannel-cooled laser diode array is demonstrated that allows multiple diode-bar mounting with negligible thermal cross talk. The heat sink comprises two main components: a wet-etched Si layer that is anodically bonded to a machined glass block. The continuous wave (cw) thermal resistance of the 10 bar diode array is 0.032 degree sign C/W, which matches the performance of discrete microchannel-cooled arrays. Up to 1.5 kW/cm 2 is achieved cw at an emission wavelength of ∼808 nm. Collimation of a diode array using a monolithic lens frame produced a 7.5 mrad divergence angle by a single active alignment. This diode array offers high average power/brightness in a simple, rugged, scalable architecture that is suitable for large two-dimensional areas. (c) 2000 American Institute of Physics

  14. Porous polyacrylamide monoliths in hydrophilic interaction capillary electrochromatography of oligosaccharides

    Guryča, Vilém; Mechref, Y.; Palm, A. K.; Michálek, Jiří; Pacáková, V.; Novotny, M. V.

    2007-01-01

    Roč. 70, č. 1 (2007), s. 3-13 ISSN 0165-022X R&D Projects: GA MŠk 1M0538 Grant - others:U.S. Department of Health and Human Services(US) GM24349 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyacrylamide monoliths * analytical glycobiology * capillary electrochromatography Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.338, year: 2007

  15. Improved monolithic reinforced concrete construction for nuclear power stations

    Guenther, P.; Fischer, K.

    1983-01-01

    Experience has shown that in applying monolithic reinforced concrete in nuclear power plant construction the following auxiliary means are useful: measuring sheets in assembling, welding gauges for reaching high tolerance accuracies of prefabricated reinforced concrete members, suitable lining materials, formwork anchorage and formwork release agents, concrete workability agents, mechanized procedures for finishing and assembling. These means were successfully tested in constructing the Greifswald nuclear power station

  16. Optical properties of pre-colored dental monolithic zirconia ceramics.

    Kim, Hee-Kyung; Kim, Sung-Hun

    2016-12-01

    The purposes of this study were to evaluate the optical properties of recently marketed pre-colored monolithic zirconia ceramics and to compare with those of veneered zirconia and lithium disilicate glass ceramics. Various shades of pre-colored monolithic zirconia, veneered zirconia, and lithium disilicate glass ceramic specimens were tested (17.0×17.0×1.5mm, n=5). CIELab color coordinates were obtained against white, black, and grey backgrounds with a spectrophotometer. Color differences of the specimen pairs were calculated by using the CIEDE2000 (ΔE 00 ) formula. The translucency parameter (TP) was derived from ΔE 00 of the specimen against a white and a black background. X-ray diffraction was used to determine the crystalline phases of monolithic zirconia specimens. Data were analyzed with 1-way ANOVA, Scheffé post hoc, and Pearson correlation testing (α=0.05). For different shades of the same ceramic brand, there were significant differences in L * , a * , b * , and TP values in most ceramic brands. With the same nominal shade (A2), statistically significant differences were observed in L * , a * , b * , and TP values among different ceramic brands and systems (Pceramics of the corresponding nominal shades ranged beyond the acceptability threshold. Due to the high L * values and low a * and b * values, pre-colored monolithic zirconia ceramics can be used with additional staining to match neighboring restorations or natural teeth. Due to their high value and low chroma, unacceptable color mismatch with adjacent ceramic restorations might be expected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A Symmetric Positive Definite Formulation for Monolithic Fluid Structure Interaction

    2010-08-09

    more likely to converge than simply iterating the partitioned approach to convergence in a simple Gauss - Seidel manner. Our approach allows the use of...conditions in a second step. These approaches can also be iterated within a given time step for increased stability, noting that in the limit if one... converges one obtains a monolithic (albeit expensive) approach. Other approaches construct strongly coupled systems and then solve them in one of several

  18. Thermal measurement a requirement for monolithic microwave integrated circuit design

    Hopper, Richard; Oxley, C. H.

    2008-01-01

    The thermal management of structures such as Monolithic Microwave Integrated Circuits (MMICs) is important, given increased circuit packing densities and RF output powers. The paper will describe the IR measurement technology necessary to obtain accurate temperature profiles on the surface of semiconductor devices. The measurement procedure will be explained, including the device mounting arrangement and emissivity correction technique. The paper will show how the measurement technique has be...

  19. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    1984-01-01

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  20. Monolithic microwave integrated circuit technology for advanced space communication

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  1. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  2. Electroactive monolithic μchip for electrochemically-responsive chromatography

    Power, Aoife

    2013-01-01

    The EMμ project’s focus is ultimately, the development of an electroactive monolith that can be incorporated into a microfluidic system for electroanalytical applications such as sensing and electrochemically-controlled extractions and separations. To date our have made several significant advances to achieving this end goal. Firstly a facile fabrication method which allows for the production of fully disposable, gasket–free thin–layer cells suitable for EMμ was developed. A polydimethylsilox...

  3. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lanigan, David C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jung, H. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-12

    This revision to the original report adds two longer term leach sets of data to the report and provides more discussion and graphics on how to interpret the results from long-term laboratory leach tests. The leach tests were performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams.

  4. Design, synthesis and luminescence properties of Ba2 YB2 O6 Cl- and Ba2 YB2 O6 F-based phosphors.

    Chen, Wanping; Yang, Xin; Liu, Yan; Dai, Xiaoyan

    2015-05-01

    Using a high-temperature solid-state reaction, the chlorine in Ba2 YB2 O6 Cl is gradually replaced by F, and a new compound with the nominal chemical formula Ba2 YB2 O6 F and two phosphors doped with Ce(3+) and Eu(3+) , respectively, are obtained. X-Ray diffraction and photoluminescence spectroscopy are used to characterize the as-synthesized samples. The as-synthesized Ba2 YB2 O6 Cl exhibits bright blue emission in the spectral range ~ 330-410 nm with a maximum around 363 nm under X-ray or UV excitation. Ba2 YB2 O6 F:0.01Ce(3+) exhibits blue emission in the range ~ 340-570 nm with a maximum around 383 nm. Ba2 YB2 O6 F:0.01Eu(3+) exhibits a predominantly (5) D0 -(7)  F2 emission (~610 nm) and the relative intensities of the (5) D0 -(7)  F0,1,2 emissions are tunable under different wavelength UV excitation. The luminescence behaviors of the two phosphors are explained simply in terms of the host composition and site occupancy probability of Ce(3+) and Eu(3+) , respectively. The results indicate that these phosphors have potential application as a blue phosphor or as a red phosphor. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Transition probabilities up to I = 36+ in 160Yb

    Johnson, N.R.; McGowan, F.K.; Winchell, D.F.; Baktash, C.; Garrett, J.D.; Lee, I.Y.; Wells, J.C.; Chaturvedi, L.; Gao, W.B.; Ma, W.C.; Pilotte, S.; Yu, C.H.

    1992-01-01

    During the past dozen years or so, numerous groups have worked on the properties of the ytterbium nuclei and we at Oak Ridge have been actively involved in the study of many of these nuclei. We have concentrated on lifetime measurements of their high-spin states because it is from the lifetime of a state that one can determine Q t , the transition quadrupole moment. The importance of obtaining a Q t value is in that it reflects the intrinsic part of the wave function and, hence, provides an indicator of the collectivity. This paper presents the results from recent Doppler broadened line shape measurements in 16O Yb at very large rotational frequencies of bar Hω∼0.36 - 0.50 MeV (I = 22 + -36 + )

  6. High pressure transport properties of Yb2Cu9

    Spendeler, L.; Jaccard, D.; Sierro, J.; Flouquet, J.

    1992-01-01

    The electrical resistivity (ρ) and the absolute thermopower (S) of high-purity Yb 2 Cu 9 have been measured between 1.2 and 300 K at pressures up to 17 kbar and in magnetic fields up to 6 T. At zero pressure the three measured samples show a Kondo peak in the resistivity at 17 K. Furthermore for one of them the resistivity rises below 5 K. Under pressure, the Kondo peak in ρ slowly moves towards lower temperatures indicating a decrease of the Kondo temperature T K , in good agreement with specific heat results. The increase of ρ below 5 K disappears completely for pressure lower than 1 kbar and the residual resistivity remains high. The thermopower S exhibits similar trends. Magnetic field dependences of both ρ and S are weak. No evidence of magnetic ordering has been detected up to 17.6 kbar

  7. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    Giubilato, P.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Demaria, L.; Ikemoto, Y.; Kloukinas, K.; Mansuy, S.C.; Mattiazzo, S.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Silvestrin, L.; Snoeys, W.

    2013-01-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV 55 Fe double peak at room temperature. To achieve high granularity (10–20 µm pitch pixels) over large detector areas maintaining high readout speed, a completely new compressing architecture has been devised. This architecture departs from the mainstream hybrid pixel sparsification approach, which uses in-pixel logic to reduce data, by using topological compression to minimize pixel area and power consumption

  8. Application of monolithic polycapillary focusing optics in MXRF

    Gao, N.; Ponomarev, I.; Xiao, Q.F.; Gibson, W.M.

    1996-01-01

    A monolithic polycapillary focusing optic, consisting of hundreds of thousands of small tapered glass capillaries, can collect a large solid angle of x rays from a point source and guide them through the capillaries by multiple total reflections to form an intense focused beam. Such a focused beam has many applications in microbeam x-ray fluorescence (MXRF) analysis. Two monolithic polycapillary focusing optics were tested and characterized in a MXRF set-up using a microfocusing x-ray source (50microm x 10microm). For the Cu K α line, the measured focal spot sizes of these optics were 105microm and 43microm Full-Width-Half-Maximum (FWHM), respectively. When the source was operated at 16W, the average Cu K α intensities over the focal spots were measured to be 2.4 x 10 4 photons/s/microm 2 and 8.9 x 10 4 photons/s/microm 2 , respectively. When the authors compared the monolithic optics to straight monocapillary optics (single channel capillary) with approximately the same output beam sizes, intensity gains of 16 and 44 were obtained. The optics were applied to the MXRF set-up to analyze trace elements in various samples and a Minimum Detection Limit (MDL) of about 2 pg was achieved for the transition elements (V, Cr, Mn, and Fe). The optics were also used to map the distributions of trace elements in various samples

  9. Tannin-based monoliths from emulsion-templating

    Szczurek, A.; Martinez de Yuso, A.; Fierro, V.; Pizzi, A.; Celzard, A.

    2015-01-01

    Highlights: • Efficient preparation procedures are presented for new and “green” tannin-based organic polyHIPEs. • Highest homogeneity and strength are obtained at an oil fraction near the close-packing value. • Structural and mechanical properties abruptly change above such critical value. - Abstract: Highly porous monoliths prepared by emulsion-templating, frequently called polymerised High Internal Phase Emulsions (polyHIPEs) in the literature, were prepared from “green” precursors such as Mimosa bark extract, sunflower oil and ethoxylated castor oil. Various oil fractions, ranging from 43 to 80 vol.%, were used and shown to have a dramatic impact on the resultant porous structure. A critical oil fraction around 70 vol.% was found to exist, close to the theoretical values of 64% and 74% for random and compact sphere packing, respectively, at which the properties of both emulsions and derived porous monoliths changed. Such change of behaviour was observed by many different techniques such as viscosity, electron microscopy, mercury intrusion, and mechanical studies. We show and explain why this critical oil fraction is the one leading to the strongest and most homogeneous porous monoliths

  10. Cholesterol-imprinted macroporous monoliths: Preparation and characterization.

    Stepanova, Mariia А; Kinziabulatova, Lilia R; Nikitina, Anna A; Korzhikova-Vlakh, Evgenia G; Tennikova, Tatiana B

    2017-11-01

    The development of sorbents for selective binding of cholesterol, which is a risk factor for cardiovascular disease, has a great importance for analytical science and medicine. In this work, two series of macroporous cholesterol-imprinted monolithic sorbents differing in the composition of functional monomers (methacrylic acid, butyl methacrylate, 2-hydroxyethyl methacrylate and ethylene dimethacrylate), amount of a template (4, 6 and 8 mol%) used for molecular imprinting, as well as mean pore size were synthesized by in situ free-radical process in stainless steel housing of 50 mm × 4.6 mm i.d. All prepared materials were characterized regarding to their hydrodynamic permeability and porous properties, as well as examined by BET and SEM methods. Imprinting factors, apparent dynamic dissociation constants, the maximum binding capacity, the number of theoretical plates and the height equivalent to a theoretical palate of MIP monoliths at different mobile phase flow rates were determined. The separation of a mixture of structural analogues, namely, cholesterol and prednisolone, was demonstrated. Additionally, the possibility of using the developed monoliths for cholesterol solid-phase extraction from simulated biological solution was shown. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    Nafe, Ahmed

    2016-11-17

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  12. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    Nafe, Ahmed A.; Ghaffar, Farhan A.; Farooqui, Muhammad Fahad; Shamim, Atif

    2016-01-01

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  13. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    Giubilato, P; Snoeys, W; Bisello, D; Marchioro, A; Battaglia, M; Demaria, L; Mansuy, S C; Pantano, D; Rousset, J; Mattiazzo, S; Kloukinas, K; Potenza, A; Ikemoto, Y; Rivetti, A; Chalmet, P; Mugnier, H; Silvestrin, L

    2013-01-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV Fe-55 double peak at room temperature. To achieve high granularity (10-20 mu m pitch pixels) over large detector areas maintaining high readout speed, a complet...

  14. A 2 MW, CW, 170 GHz gyrotron for ITER

    Piosczyk, B.; Arnold, A.; Alberti, S.

    2003-01-01

    A 140 GHz gyrotron for CW operation is under development for the stellarator W7-X. With a prototype tube a microwave output power of about 0.9 MW has been obtained in pulses up to 180 s, limited by the capability of the high voltage power supply. The development work on coaxial cavity gyrotrons has demonstrated the feasibility of manufacturing of a 2 MW, CW 170 GHz tube that could be used for ITER. The problems specific to the coaxial arrangement have been investigated and all relevant information needed for an industrial realization of a coaxial gyrotron have been obtained in short pulse experiments (up to 17 ms). The suitability of critical components for a 2 MW, CW coaxial gyrotron has been studied and a first integrated design has been done. (author)

  15. The 1.5 MW wind turbine of tomorrow

    De Wolff, T.J.; Sondergaard, H. [Nordtank Energy Group, Richmond, VA (United States)

    1996-12-31

    The Danish company Nordtank is one of the pioneers within the wind turbine industry. Since 1981 Nordtank has installed worldwide more than 2300 wind turbine generators with a total name plate capacity that is exceeding 350 MW. This paper will describe two major wind turbine technology developments that Nordtank has accomplished during the last year: Site Optimization of Nordtank wind turbines: Nordtank has developed a flexible design concept for its WTGs in the 500/600 kW range, in order to offer the optimal WTG solution for any given site and wind regime. Nordtank`s 1.5 MW wind turbine: In September 1995, Nordtank was the first company to install a commercial 1.5 NM WTG. This paper will document the development process, the design as well as operations of the Nordtank 1.5 MW WTG.

  16. High-average-power diode-pumped Yb: YAG lasers

    Avizonis, P V; Beach, R; Bibeau, C M; Emanuel, M A; Harris, D G; Honea, E C; Monroe, R S; Payne, S A; Skidmore, J A; Sutton, S B

    1999-01-01

    A scaleable diode end-pumping technology for high-average-power slab and rod lasers has been under development for the past several years at Lawrence Livermore National Laboratory (LLNL). This technology has particular application to high average power Yb:YAG lasers that utilize a rod configured gain element. Previously, this rod configured approach has achieved average output powers in a single 5 cm long by 2 mm diameter Yb:YAG rod of 430 W cw and 280 W q-switched. High beam quality (M(sup 2)= 2.4) q-switched operation has also been demonstrated at over 180 W of average output power. More recently, using a dual rod configuration consisting of two, 5 cm long by 2 mm diameter laser rods with birefringence compensation, we have achieved 1080 W of cw output with an M(sup 2) value of 13.5 at an optical-to-optical conversion efficiency of 27.5%. With the same dual rod laser operated in a q-switched mode, we have also demonstrated 532 W of average power with an M(sup 2) and lt; 2.5 at 17% optical-to-optical conversion efficiency. These q-switched results were obtained at a 10 kHz repetition rate and resulted in 77 nsec pulse durations. These improved levels of operational performance have been achieved as a result of technology advancements made in several areas that will be covered in this manuscript. These enhancements to our architecture include: (1) Hollow lens ducts that enable the use of advanced cavity architectures permitting birefringence compensation and the ability to run in large aperture-filling near-diffraction-limited modes. (2) Compound laser rods with flanged-nonabsorbing-endcaps fabricated by diffusion bonding. (3) Techniques for suppressing amplified spontaneous emission (ASE) and parasitics in the polished barrel rods

  17. Synthesis and characterization of Nd3+: Yb3+ co-doped near infrared sensitive fluorapatite nanoparticles as a bioimaging probe

    Karthi, S.; Kumar, G. A.; Sardar, D. K.; Santhosh, C.; Girija, E. K.

    2018-03-01

    Trivalent Nd and Yb co-doped rod shaped hexagonal phase fluorapatite (FAP) nanoparticles of length and width about 32 and 13 nm, respectively were prepared by hydrothermal method and investigated the ability for 980 nm emission via Nd3+ → Yb3+ energy transfer with the objective of utilizing them in biomedical imaging. Nd3+ → Yb3+ energy transfer in FAP was studied as a function of both Nd3+ and Yb3+ concentrations and found that when Yb3+ concentration was 10 mol% the FAP phase has partially turned in to YbPO4 phase. The Yb3+ emission intensity at 980 nm significantly increased up to 5 mol% Yb3+ doping and then reduced drastically for further increase in its concentration. Nd3+ →Yb3+ energy transfer rates were evaluated from the decay curves and found that a transfer rate of 71% for 2 mol% Nd3+ co-doped with 5 mol% Yb3+. The cytocompatibility test with fibroblast like cells using MTT assay revealed that the nanoparticles are compatible with the cells.

  18. YB-1 expression promotes epithelial-to-mesenchymal transition in prostate cancer that is inhibited by a small molecule fisetin

    Khan, Mohammad Imran; Adhami, Vaqar Mustafa; Lall, Rahul Kumar; Sechi, Mario; Joshi, Dinesh C.; Haidar, Omar M.; Syed, Deeba Nadeem; Siddiqui, Imtiaz Ahmad; Chiu, Shing-Yan; Mukhtar, Hasan

    2014-01-01

    Epithelial-to-mesenchymal transition (EMT) plays an important role in prostate cancer (PCa) metastasis. The transcription/translation regulatory Y-box binding protein-1 (YB-1) is known to be associated with cancer metastasis. We observed that YB-1 expression increased with tumor grade and showed an inverse relationship with E-cadherin in a human PCa tissue array. Forced YB-1 expression induced a mesenchymal morphology that was associated with down regulation of epithelial markers. Silencing of YB-1 reversed mesenchymal features and decreased cell proliferation, migration and invasion in PCa cells. YB-1 is activated directly via Akt mediated phosphorylation at Ser102 within the cold shock domain (CSD). We next identified fisetin as an inhibitor of YB-1 activation. Computational docking and molecular dynamics suggested that fisetin binds on the residues from β1 - β4 strands of CSD, hindering Akt's interaction with YB-1. Calculated free binding energy ranged from −11.9845 to −9.6273 kcal/mol. Plasmon Surface Resonance studies showed that fisetin binds to YB-1 with an affinity of approximately 35 μM, with both slow association and dissociation. Fisetin also inhibited EGF induced YB-1 phosphorylation and markers of EMT both in vitro and in vivo. Collectively our data suggest that YB-1 induces EMT in PCa and identify fisetin as an inhibitor of its activation. PMID:24770864

  19. Aero-Elastic Optimization of a 10 MW Wind Turbine

    Zahle, Frederik; Tibaldi, Carlo; Verelst, David Robert

    2015-01-01

    This article describes a multi-disciplinary optimization and analysis tool for wind turbines that is based on the open-source framework OpenMDAO. Interfaces to several simulation codes have been implemented which allows for a wide variety of problem formulations and combinations of models....... In this article concurrent aeroelastic optimization of a 10 MW wind turbine rotor is carried out with respect to material distribution distribution and planform. The optimizations achieve up to 13% mass reduction while maintaining the same power production compared to the baseline DTU 10MW RWT....

  20. Microwave hydrothermal synthesis and upconversion properties of Yb3+/Er3+ doped YVO4 nanoparticles.

    Kshetri, Yuwaraj K; Regmi, Chhabilal; Kim, Hak-Soo; Lee, Soo Wohn; Kim, Tae-Ho

    2018-05-18

    Yb 3+ and Er 3+ doped YVO 4 (Yb 3+ /Er 3+ :YVO 4 ) nanoparticles with highly efficient near-infrared to visible upconversion properties have been synthesized by microwave hydrothermal process. Uniform-sized Yb 3+ /Er 3+ :YVO 4 nanoparticles were synthesized within 1 h at 140 °C which is relatively faster than the conventional hydrothermal process. Under 980 nm laser excitation, strong green and less strong red emissions are observed which are attributed to 2 H 11/2 , 4 S 3/2 to 4 I 15/2 and 4 F 9/2 to 4 I 15/2 transitions of Er 3+ respectively. The emission intensity is found to depend strongly on the concentration of Yb 3+ . The quadratic dependence of upconversion intensity on the excitation power indicates that the upconversion process is governed by two-photon absorption process.

  1. Instability of Yb3+ and Pr3+ low-symmetry luminescence centers in gallium phosphide

    Kasatkin, V.A.

    1985-01-01

    The stability of γb 3+ and Pr 3+ low-symmetry luminescence centers formed in gallium phosphide during quenching were studied in the process of durable storage and annealing. Observation of the Yb 3+ and Pr 3+ centrer states was accomplished by the photoluminescence spectra at 18 K. It has been established that annealing in the dark under normal conditions results in a reduced integral luminescence intensity of all low-symmetry Yb 3+ and Pr 3+ centers. Annealing of quenched GaP and GaP saples at 400 K results in complete disappearance of intracenter luminescence of Pr 3+ and low-symmetry Yb 3+ centers. Decomposition during storage and low anealing temperature point to the instability of low-symmetry centers of Pr 3+ and Yb 3+ luminescence

  2. A mass spectrometric study of the neutral and ionic vapor components of ytterbium chlorides; formation enthalpies of YbCl2 and YbCl3 molecules, and YbCl3- and YbCl4- ions in the gas phase

    Kuznetsov, F.Yh.; Kudin, L.S.; Pogrebnoj, A.M.; Butman, M.F.; Burdukovskaya, G.G.

    1997-01-01

    Ionic and neutral components of saturated vapour over the ytterbium di-and trichloride is studied through the Knudsen effusive method with mass-spectromic registration of evaporated products within the temperature range of 1000-1300 K. It is found that ytterbium trichloride is subjected to thermal decomposition with formation of ytterbium dichloride and molecular chloride. Sublimation enthalpy and enthalpy of YbCl 2 and YbCl 3 molecules formation in a gaseous phase at 298 K, comprising 356±6, 293±8, -425±6 and -667±6 kJ/mole correspondingly, are determined with application of 2 and 3 thermodynamical laws. Enthalpies of YbCl 3 - and YbCl 4 - negative ions formation in a gaseous phase at 298 K equal to -895 and -1211±30 kJ/mole correspondingly are calculated by measured equilibrium constants ion-molecular reaction. 30 refs., 3 figs., 3 tabs

  3. On the valence state of Yb and Ce in transition metal intermetallic compounds

    Boer, F.R. de; Dijkman, W.H.; Mattens, W.C.M.

    1979-01-01

    In the pure state Yb is a divalent metal, similar to Ca; in alloys it can become trivalent like the majority of the rare earth metals. Using a value of 38 kJ (mol Yb) -1 for the energy difference between divalent and trivalent Yb metal and using model calculations for the heat of formation of intermetallic compounds, the authors are able to account for the existing information on the valence state of Yb in transition metal compounds. A similar analysis of compounds of Ce with transition metals shows that a model in which the 4f electron is treated as a core electron, i.e. being absent in the tetravalent modification of Ce and present as a fully localized electron in trivalent Ce, does not apply. (Auth.)

  4. Laser induced broad band anti-Stokes white emission from LiYbF4 nanocrystals

    L. Marciniak; R. Tomala; M. Stefanski; D. Hreniak; W. Strek

    2016-01-01

    Spectroscopic properties of tetragonal LiYbF4 nanocrystals under high dense NIR excitation at vacuum condition were in-vestigated. White, broad band emission covering whole visible part of the spectrum from LiYbF4 nanocrystals was observed. Its in-tensity strongly depended on the excitation power, excitation wavelength and ambient pressure. Temperature of the nanocrystals un-der 975 nm excitation was determined as a function of excitation power. Strong photo-induced current was observed from LiYbF4 pallet. The emission kinetic was analyzed. The mechanism of the anti-Stokes white emission was discussed in terms of the la-ser-induced charge transfer emission from Yb2+ states.

  5. Microwave hydrothermal synthesis and upconversion properties of Yb3+/Er3+ doped YVO4 nanoparticles

    Kshetri, Yuwaraj K.; Regmi, Chhabilal; Kim, Hak-Soo; Wohn Lee, Soo; Kim, Tae-Ho

    2018-05-01

    Yb3+ and Er3+ doped YVO4 (Yb3+/Er3+:YVO4) nanoparticles with highly efficient near-infrared to visible upconversion properties have been synthesized by microwave hydrothermal process. Uniform-sized Yb3+/Er3+:YVO4 nanoparticles were synthesized within 1 h at 140 °C which is relatively faster than the conventional hydrothermal process. Under 980 nm laser excitation, strong green and less strong red emissions are observed which are attributed to 2H11/2, 4S3/2 to 4I15/2 and 4F9/2 to 4I15/2 transitions of Er3+ respectively. The emission intensity is found to depend strongly on the concentration of Yb3+. The quadratic dependence of upconversion intensity on the excitation power indicates that the upconversion process is governed by two-photon absorption process.

  6. High energy single frequency Yb:YAG crystalline fiber waveguide master oscillator power amplifier, Phase I

    National Aeronautics and Space Administration — The overall objective is to demonstrate the concept of Yb:YAG crystalline fiber MOPA laser and investigation the technical feasibility toward 50 mJ single frequency...

  7. Development of high-throughput analysis system using highly-functional organic polymer monoliths

    Umemura, Tomonari; Kojima, Norihisa; Ueki, Yuji

    2008-01-01

    The growing demand for high-throughput analysis in the current competitive life sciences and industries has promoted the development of high-speed HPLC techniques and tools. As one of such tools, monolithic columns have attracted increasing attention and interest in the last decade due to the low flow-resistance and excellent mass transfer, allowing for rapid separations and reactions at high flow rates with minimal loss of column efficiency. Monolithic materials are classified into two main groups: silica- and organic polymer-based monoliths, each with their own advantages and disadvantages. Organic polymer monoliths have several distinct advantages in life-science research, including wide pH stability, less irreversible adsorption, facile preparation and modification. Thus, we have so far tried to develop organic polymer monoliths for various chemical operations, such as separation, extraction, preconcentration, and reaction. In the present paper, recent progress in the development of organic polymer monoliths is discussed. Especially, the procedure for the preparation of methacrylate-based monoliths with various functional groups is described, where the influence of different compositional and processing parameters on the monolithic structure is also addressed. Furthermore, the performance of the produced monoliths is demonstrated through the results for (1) rapid separations of alklybenzenes at high flow rates, (2) flow-through enzymatic digestion of cytochrome c on a trypsin-immobilized monolithic column, and (3) separation of the tryptic digest on a reversed-phase monolithic column. The flexibility and versatility of organic polymer monoliths will be beneficial for further enhancing analytical performance, and will open the way for new applications and opportunities both in scientific and industrial research. (author)

  8. Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices

    Frechet, Jean M. J. [Oakland, CA; Svec, Frantisek [Alameda, CA; Rohr, Thomas [Leiden, NL

    2008-10-07

    A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.

  9. Characterization and Computation of Yb/TiO2 and Its Photocatalytic Degradation with Benzohydroxamic Acid

    Xianping Luo

    2017-11-01

    Full Text Available Yb-doped TiO2 (Yb/TiO2 compositions were synthesized by sol-gel method, and the prepared materials were characterized by X-ray Diffraction (XRD, X-ray photoelectron spectroscopy (XPS, UV-visible diffuse-reflectance spectrum (UV-Vis DRS, transmission electron microscope (TEM and high resolution transmission electron microscope (HRTEM, energy dispersive spectrometer (EDS, and N2 adsorption. A beneficiation reagent of benzohydroxamic acid (BHA was used to test the photocatalytic activity of Yb/TiO2. The characterizations indicate that the doping of Yb could inhibit the crystal growth of TiO2, enhance the specific surface area, increase the binding energy of Ti2p, and also slightly expand the adsorption ranges to visible light. Furthermore, the computation of band structure also indicates that Yb-doped TiO2 could make the forbidden band narrower than pure anatase TiO2, which presents a red shift in the absorption spectrum. As a result of the photodegradation experiment on BHA, Yb/TiO2 (0.50% in mass sintered at 450 °C displayed the highest catalytic activity for BHA when compared with pure TiO2 or other doped Yb/TiO2 compositions, and more than 89.2% of the total organic carbon was removed after 120 min. Almost all anions, including Cl−, HCO3−, NO3−, and SO42−, inhibited the degradation of BHA by Yb/TiO2, and their inhibition effects followed the order of HCO3− > NO3− > SO42− > Cl−. Cations of Na+, K+, Ca2+, and Mg2+ displayed a slight suppressing effect due to the impact of Cl− coexisting in the solution. In addition, Yb/TiO2 maintained a high photocatalytic ability with respect to BHA after four runs. It is hypothesized that ·OH is one of the main species involved in the photodegradation of BHA, and the mutual transformation of Yb3+ and Yb2+ could promote the separation of electron-hole pairs.

  10. The complexity of the CaF2:Yb system: evidence that CaF2:Yb2+ is not an impurity trapped exciton system

    Mackeen, Cameron; Bridges, Frank; Kozina, Michael; Mehta, Apurva; Reid, M. F.; Wells, J.-P. R.; BarandiaráN, Zoila

    Fluorite crystal structures doped with rare-earth elements exhibit an anomalous redshifted luminescence upon UV excitation, generally attributed to the relaxation of impurity trapped excitons (ITE). We find that the intensity of this luminescence decreases as the total concentration of Yb 2+ increases in unexposed samples, which is in conflict with the currently accepted ITE model. Further, using x-ray absorption spectroscopy and UV-vis studies of CaF2:Yb, we find a large (but reversible) Yb valence reduction upon x-ray exposure at 200 K - from mostly 3+ to 2+. This valence reduction is stable for long time periods at low T ITE model; the data appear more consistent with an intervalence charge transfer (IVCT) model. It is likely that many similar ITE systems have also been misidentified.

  11. Optical and magnetic properties of Yb ion-doped cobalt-based ZnO ...

    Administrator

    The X-ray photoelectron spectral peaks for Yb 4f ions ... temperature with high coercivity due to the contribution of both 3d and 4f exchange interaction with the host ... Mn,4,5 Co,6–9 Ni2,10 Fe11–13 and Cu,2,14 and reported to .... water separately under stirring. .... different concentrations of Yb added ZnO : Co, nanopar-.

  12. Electron spin resonance in Yb-based Kondo-lattice systems

    Wykhoff, Jan

    2010-01-01

    The systems Yb 1-w A 1-w (Rh 1-x Co x )(Si 1-y Ge y ) 2 with A=La respectively Lu, as well as YbIr 2 Si 2 are studied. The measurements are presented sortedly for systems, dopings, and external parameters. Beside these external parameters furthermore the orientation of the sample related to the quasistatic magnetic field and the microwave magnetic field was varied.

  13. Yb-doped rod-type photonic crystal fibers for single-mode amplification

    Poli, Frederica; Passaro, Davide; Cucinotta, Annamaria

    2009-01-01

    The competition among the guided modes in rod-type photonic crystal fibers with a low refractive index ring in the Yb-doped core is investigated with an amplifier model to demonstrate the effective higher-order mode suppression.......The competition among the guided modes in rod-type photonic crystal fibers with a low refractive index ring in the Yb-doped core is investigated with an amplifier model to demonstrate the effective higher-order mode suppression....

  14. Guided mode gain competition in Yb-doped rod-type photonic crystal fibers

    Poli, Federica; Passaro, Davide; Cucinotta, Annamaria

    2009-01-01

    The gain competition among the guided modes in Yb-doped rod-type photonic crystal fibers with a low refractive index core is investigated with a spatial model to demonstrate the fiber effective single-mode behaviour.......The gain competition among the guided modes in Yb-doped rod-type photonic crystal fibers with a low refractive index core is investigated with a spatial model to demonstrate the fiber effective single-mode behaviour....

  15. Treatment of Neuroblastoma with an Engineered "Obligate" Anaerobic Salmonella typhimurium Strain YB1.

    Ning, Bo-Tao; Yu, Bin; Chan, Shing; Chan, Jian-Liang; Huang, Jian-Dong; Chan, Godfrey Chi-Fung

    2017-01-01

    Purpose Neuroblastoma is an embryonic solid tumor derived from the progenitors of the sympathetic nervous system. More than half of the patients developed metastatic disease at the time of initial diagnosis and had poor outcome with current therapeutic approaches. In recent years, some obligate and facultative anaerobic bacteria were reported to target the hypoxic and necrotic region of solid tumor models and caused tumor regression. We recently successfully constructed an "obligate" anaerobic Salmonella strain YB1 that was applied in breast cancer nude mice model by us. Here, we report the application of YB1 in neuroblastoma treatment. Methods The anti-cancer effect and side-effects of YB1 was examined in both in vitro and in vivo experiment. Previous established orthotopic neuroblastoma SCID/beige murine model using SK-NLP/luciferase cell line was adopted. Results In vitro , YB1 induced apoptosis for up to 31.4% of the neuroblastoma cells under anaerobic condition, three times more than that under aerobic condition (10.9%). The expression of both Toll like Receptor 4 and 5 (TLR4 and TLR5) in cancer cells were significantly up-regulated ( p anaerobic condition. In mouse model, YB1 preferentially accumulated inside the core of the tumors, rather than in normal tissues as our previous reported. This is suggestive of the hypoxic nature of tumor core. Tumor growth was significantly retarded in YB1 treatment group ( n=6, P<0.01 ). Furthermore, there was no long-term organ damage noted in all the organs examined including heart, lung, liver, spleen and brain in the YB1 treated mice. Conclusion The genetic modified Salmonella strain YB1 is a promising anti-tumor strategy against the tumor bulk for neuroblastoma. Future study can be extended to other common cancer types to verify the relative efficacy on different neoplastic cells.

  16. Treatment of Neuroblastoma with an Engineered “Obligate” Anaerobic Salmonella typhimurium Strain YB1

    Ning, Bo-Tao; Yu, Bin; Chan, Shing; Chan, Jian-liang; Huang, Jian-Dong; Chan, Godfrey Chi-Fung

    2017-01-01

    Purpose Neuroblastoma is an embryonic solid tumor derived from the progenitors of the sympathetic nervous system. More than half of the patients developed metastatic disease at the time of initial diagnosis and had poor outcome with current therapeutic approaches. In recent years, some obligate and facultative anaerobic bacteria were reported to target the hypoxic and necrotic region of solid tumor models and caused tumor regression. We recently successfully constructed an “obligate” anaerobic Salmonella strain YB1 that was applied in breast cancer nude mice model by us. Here, we report the application of YB1 in neuroblastoma treatment. Methods The anti-cancer effect and side-effects of YB1 was examined in both in vitro and in vivo experiment. Previous established orthotopic neuroblastoma SCID/beige murine model using SK-NLP/luciferase cell line was adopted. Results In vitro, YB1 induced apoptosis for up to 31.4% of the neuroblastoma cells under anaerobic condition, three times more than that under aerobic condition (10.9%). The expression of both Toll like Receptor 4 and 5 (TLR4 and TLR5) in cancer cells were significantly up-regulated (panaerobic condition. In mouse model, YB1 preferentially accumulated inside the core of the tumors, rather than in normal tissues as our previous reported. This is suggestive of the hypoxic nature of tumor core. Tumor growth was significantly retarded in YB1 treatment group (n=6, P<0.01). Furthermore, there was no long-term organ damage noted in all the organs examined including heart, lung, liver, spleen and brain in the YB1 treated mice. Conclusion The genetic modified Salmonella strain YB1 is a promising anti-tumor strategy against the tumor bulk for neuroblastoma. Future study can be extended to other common cancer types to verify the relative efficacy on different neoplastic cells. PMID:28775780

  17. BaYb2F8, a new radiation hard Cherenkov radiator for electromagnetic calorimeters

    Aseev, A.A.; Devitsin, E.G.; Komar, A.A.; Kozlov, V.A.; Hovsepyan, Yu.I.; Potashov, S.Yu.; Sokolovsky, K.A.; Uvarova, T.V.; Vasilchenko, V.G.

    1992-01-01

    Radiation hardness and optical properties of a new Cherenkov radiator, heavy fluoride BaYb 2 F 8 doped with various elements, have been studied. The above mentioned crystal has the density of 7 g/cm 3 , the radiation length is 1.28 cm and the Moliere radius 2.44 cm. High radiation hardness has been demonstrated for BaYb 2 F 8 doped with Tm, Pr, Tb. (orig.)

  18. β decays on the rotational levels of the 5/2+[642] 169Yb band

    Dzhelepov, B.S.; Zhukovskij, N.N.; Shestopalova, S.A.

    1993-01-01

    Competing 169 Lu β decays into rotational levels of 5/2 + [642] 169 Yb band are considered. Schemes of resolved β decay into 3 levels of deformed nucleus rotational bands, γ transitions linked with excitation and discharge of 169 Yb 5/2, 7/2, 9/2, 5/2 + [642] levels are presented. Matrix elements of axial-vector decay are determined. Data on 12 γ transitions in 169 Lu are presented

  19. Molecularly Imprinted Porous Monolithic Materials from Melamine-Formaldehyde for Selective Trapping of Phosphopeptides

    Liu, Mingquan; Tran, Tri Minh; Abbas Elhaj, Ahmed Awad

    2017-01-01

    monoliths, chosen based on the combination of meso- and macropores providing optimal percolative flow and accessible surface area, was synthesized in the presence of N-Fmoc and O-Et protected phosphoserine and phosphotyrosine to prepare molecularly imprinted monoliths with surface layers selective...... for phosphopeptides. These imprinted monoliths were characterized alongside nonimprinted monoliths by a variety of techniques and finally evaluated by liquid chromatography-mass spectrometry in the capillary format to assess their abilities to trap and release phosphorylated amino acids and peptides from partly...

  20. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure.

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-10-04

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields.

  1. High performance monolithic power management system with dynamic maximum power point tracking for microbial fuel cells.

    Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum

    2014-12-02

    Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 μW at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level.

  2. A MONOLITHIC PREAMPLIFIER-SHAPER FOR MEASUREMENT LOSS AND TRANSITION RADIATION

    KANDASAMY, A.

    1999-01-01

    A custom monolithic circuit has been developed for the Time Expansion Chamber (TEC) of the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). This detector identifies particles by sampling their ionization energy loss (dE/dx) over a 3 cm drift space and by detecting associated transition radiation (TR) photons. The requirement of being simultaneously sensitive to dE/dx and TR events requires a dual-gain system. We have developed a compact solution featuring an octal preamplifier/shaper (P/S) IC with a split gain stage. The circuit, fabricated in 1.2 microm CMOS process, incorporates a trans-impedance preamplifier and a 70 ns unipolar CR-RC 4 shaper with ion tail compensation and active DC offset cancellation. Digitally selectable gain, peaking time, and tail cancellation as well as channel-by-channel charge injection and disable can be configured in the system via a 3-wire interface. The 3.5 x 5 mm 2 die is packaged in a fine-pitch 64-pin PQFP. Equivalent input noise is less than 1500 rms electrons at a power dissipation of 30 mW per channel. On a sample of 2400 chips, the DC offset was 2.3 ± 3 mV rms without trimming. A chamber-mounted TEC-PS Printed Circuit Board (PCB) houses four PIS chips, on-board calibration circuit, and 64 analog differential line drivers which transmit the shaped pulses to crate-mounted flash ADC's. 7 m apart An RS-422 link provides digital configuration downloading and read back, and supplies the calibration strobe. The 24.6 cm x 9.5 cm board dissipates 8.5 W

  3. A MONOLITHIC PREAMPLIFIER-SHAPER FOR MEASUREMENT LOSS AND TRANSITION RADIATION.

    KANDASAMY,A.

    1999-11-08

    A custom monolithic circuit has been developed for the Time Expansion Chamber (TEC) of the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). This detector identifies particles by sampling their ionization energy loss (dE/dx) over a 3 cm drift space and by detecting associated transition radiation (TR) photons. The requirement of being simultaneously sensitive to dE/dx and TR events requires a dual-gain system. We have developed a compact solution featuring an octal preamplifier/shaper (P/S) IC with a split gain stage. The circuit, fabricated in 1.2 {micro}m CMOS process, incorporates a trans-impedance preamplifier and a 70 ns unipolar CR-RC{sup 4} shaper with ion tail compensation and active DC offset cancellation. Digitally selectable gain, peaking time, and tail cancellation as well as channel-by-channel charge injection and disable can be configured in the system via a 3-wire interface. The 3.5 x 5 mm{sup 2} die is packaged in a fine-pitch 64-pin PQFP. Equivalent input noise is less than 1500 rms electrons at a power dissipation of 30 mW per channel. On a sample of 2400 chips, the DC offset was 2.3 {+-} 3 mV rms without trimming. A chamber-mounted TEC-PS Printed Circuit Board (PCB) houses four PIS chips, on-board calibration circuit, and 64 analog differential line drivers which transmit the shaped pulses to crate-mounted flash ADC's. 7 m apart An RS-422 link provides digital configuration downloading and read back, and supplies the calibration strobe. The 24.6 cm x 9.5 cm board dissipates 8.5 W.

  4. Expression of an enzymatically active Yb3 glutathione S-transferase in Escherichia coli and identification of its natural form in rat brain.

    Abramovitz, M; Ishigaki, S; Felix, A M; Listowsky, I

    1988-11-25

    Glutathione S-transferases containing Yb3 subunits are relatively uncommon forms that are expressed in a tissue-specific manner and have not been identified unequivocally or characterized. A cDNA clone containing the entire coding sequence of Yb3 glutathione S-transferase mRNA was incorporated into a pIN-III expression vector used to transform Escherichia coli. A fusion Yb3-protein containing 14 additional amino acid residues at its N terminus was purified to homogeneity. Recombinant Yb3 was enzymatically active with both 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene as substrates but lacked glutathione peroxidase activity. Substrate specificity patterns of recombinant Yb3 were more limited than those of glutathione S-transferase isoenzymes containing Yb1- or Yb2-type subunits. Peptides corresponding to unique amino acid sequences of Yb3 as well as a peptide from a region of homology with Yb1 and Yb2 subunits were synthesized. These synthetic peptides were used to raise antibodies specific to Yb3 and others that cross-reacted with all Yb forms. Immunoblotting was utilized to identify the natural counterpart of recombinant Yb3 among rat glutathione transferases. Brain and testis glutathione S-transferases were rich in Yb3 subunits, but very little was found in liver or kidney. Physical properties, substrate specificities, and binding patterns of the recombinant protein paralleled properties of the natural isoenzyme isolated from brain.

  5. Characterization of the electronic properties of YB{sub 4} and YB{sub 6} using {sup 11}B NMR and first-principles calculations

    Jaeger, B.; Paluch, S.; Wolf, W.; Herzig, P.; Zogal, O.J.; Shitsevalova, N.; Paderno, Y

    2004-11-30

    Two compounds, tetragonal YB{sub 4} and cubic YB{sub 6}, have been investigated by electric-field gradient (EFG) and Knight shift measurements at the boron sites using the {sup 11}B nuclear magnetic resonance (NMR) technique and by performing first-principles calculations. In YB{sub 6} {sup 11}B (I=3/2) NMR spectra reveal patterns typical for an axially symmetric field gradient with a quadrupole coupling frequency of {nu}{sub Q}=600{+-}15 kHz. In the second boride (YB{sub 4}) three different EFGs were observed corresponding to the three inequivalent crystallographic sites for the boron atoms (4h, 4e, and 8j). They correspond to: {nu}{sub Q}(4h)=700{+-}30 kHz with an asymmetry parameter {eta}=0.02{+-}0.02, {nu}{sub Q}(4e)=515{+-}30 kHz, {eta}=0.00+0.02/-0.00, and {nu}{sub Q}(8j)=515{+-}40 kHz, {eta}=0.46{+-}0.08. The Knight shifts measured by magic-angle spinning (MAS) NMR at room temperature are very small being 0.6{+-}8 and -1{+-}8 ppm for YB{sub 4} and YB{sub 6}, respectively. For the theoretical calculations structure optimizations were performed as a first step. For the obtained structural parameters the EFGs were computed within the local-density approximation. Very satisfactory agreement between experimental and theoretical results is obtained both for the structural parameters and the B EFGs, thus confirming the underlying structural models. In addition to the EFGs, band structures, densities of states, and valence-electron densities are presented and the bonding situation in the two yttrium borides is discussed. The band-structure results are compatible with the very low values for the Knight shifts mentioned above.

  6. Emission properties of hydrothermal Yb3+, Er3+ and Yb3+, Tm3+-codoped Lu2O3 nanorods: upconversion, cathodoluminescence and assessment of waveguide behavior

    Barrera, Elixir William; Pujol, MarIa Cinta; DIaz, Francesc; Choi, Soo Bong; Rotermund, Fabian; Park, Kyung Ho; Jeong, Mun Seok; Cascales, Concepcion

    2011-01-01

    Yb 3+ and Ln 3+ (Ln 3+ = Er 3+ or Tm 3+ ) codoped Lu 2 O 3 nanorods with cubic Ia3-bar symmetry have been prepared by low temperature hydrothermal procedures, and their luminescence properties and waveguide behavior analyzed by means of scanning near-field optical microscopy (SNOM). Room temperature upconversion (UC) under excitation at 980 nm and cathodoluminescence (CL) spectra were studied as a function of the Yb + concentration in the prepared nanorods. UC spectra revealed the strong development of Er 3+4 F 9/2 → 4I 15/2 (red) and Tm 3+1 G 4 → 3 H 6 (blue) bands, which became the pre-eminent and even unique emissions for corresponding nanorods with the higher Yb 3+ concentration. Favored by the presence of large phonons in current nanorods, UC mechanisms that privilege the population of 4 F 9/2 and 1 G 4 emitting levels through phonon-assisted energy transfer and non-radiative relaxations account for these observed UC luminescence features. CL spectra show much more moderate development of the intensity ratio between the Er 3+4 F 9/2 → 4 I 15/2 (red) and 2 H 11/2 , 4 S 3/2 → 4 I 15/2 (green) emissions with the increase in the Yb 3+ content, while for Yb 3+ , Tm 3+ -codoped Lu 2 O 3 nanorods the dominant CL emission is Tm 3+1 D 2 → 3 F 4 (deep-blue). Uniform light emission along Yb 3+ , Er 3+ -codoped Lu 2 O 3 rods has been observed by using SNOM photoluminescence images; however, the rods seem to be too thin for propagation of light.

  7. Recent experiments at Brookhaven: level structure of N = 86 isotones 156Yb and 150Gd

    Sunyar, A.W.

    1980-01-01

    States of the N = 86 isotones 156 Yb and 150 Gd have been studied by means of the 144 Sm( 16 O,4n) 156 Yb, 113 In( 46 Ti,p2n) 156 Yb, and 124 Sn( 30 Si,4n) 150 Gd reactions. Levels have been established to spin 36 h-bar and over 12.5 MeV in excitation in 150 Gd and to beyond spin 25 h-bar in 156 Yb. The systematics of levels in the N = 86 isotones from 150 Gd to 156 Yb are described, and the near-spherical shell model description for states in this region to near spin 30 h-bar is discussed. A T/sub 1/2/ = 6 ns, 72-keV isomeric transition in 156 Yb has been discovered, and an E1 multipolarity is assigned to this transition. The spin-parity of the isomeric state is established as 11 - . 6 figures

  8. Infrared emission properties and energy transfer in ZnO-SiO2:Yb3+ composites

    Xiao, F.; Chen, R.; Shen, Y.Q.; Liu, B.; Gurzadyan, G.G.; Dong, Z.L.; Zhang, Q.Y.; Sun, H.D.

    2011-01-01

    Graphical abstract: Highlights: → ZnO-SiO 2 :Yb 3+ composites have been prepared via a facile sol-gel method. Intense near-infrared emission at around 1 μm has been obtained upon broadband ultraviolet light excitation. → Efficient energy transfer from ZnO quantum dots to Yb 3+ ions has been clarified by the systematic measurements and analysis of static and time resolved photoluminescence spectra. → Codoping with Li + ions leads to about twice enhancement of the near-infrared luminescence intensity around 1 μm at room temperature. - Abstract: Intense near-infrared emission at 1 μm has been obtained in ZnO-SiO 2 :Yb 3+ composites via a facile sol-gel method upon broadband ultraviolet light excitation. Systematic optical measurements including static and time-resolved photoluminescence have been performed to elucidate the energy transfer from ZnO quantum dots to Yb 3+ ions. The dependence of energy transfer efficiency on Yb 3+ concentration has been investigated in detail. Codoping with Li + ions leads to about twice enhancement of the near-infrared luminescence intensity around 1 μm at room temperature. The enhancement in the luminescence intensity could be mostly attributed to the modification of the local symmetry around Yb 3+ ions by codoping with Li + ions.

  9. Sol-Gel Derived Active Material for Yb Thin-Disk Lasers.

    Almeida, Rui M; Ribeiro, Tiago; Santos, Luís F

    2017-09-02

    A ytterbium doped active material for thin-disk laser was developed based on aluminosilicate and phosphosilicate glass matrices containing up to 30 mol% YbO 1.5 . Thick films and bulk samples were prepared by sol-gel processing. The structural nature of the base material was assessed by X-ray diffraction and Raman spectroscopy and the film morphology was evidenced by scanning electron microscopy. The photoluminescence (PL) properties of different compositions, including emission spectra and lifetimes, were also studied. Er 3+ was used as an internal reference to compare the intensities of the Yb 3+ PL peaks at ~ 1020 nm. The Yb 3+ PL lifetimes were found to vary between 1.0 and 0.5 ms when the Yb concentration increased from 3 to 30 mol%. Based on a figure of merit, the best active material selected was the aluminosilicate glass composition 71 SiO₂-14 AlO 1.5 -15 YbO 1.5 (in mol%). An active disk, ~ 36 μm thick, consisting of a Bragg mirror, an aluminosilicate layer doped with 15 mol% Yb and an anti-reflective coating, was fabricated.

  10. Diode-pumped Yb:Sr5(PO4)3F laser performance

    Marshall, C.D.; Payne, S.A.; Smith, L.K.

    1995-01-01

    The performance of the first diode-pumped Yb 3+ -doped Sr 5 (PO 4 ) 3 F (Yb:S-FAP) laser is discussed. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm 2 using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0 x 10 -20 cm 2 that falls within error bars of the previously reported value of 7.3 x 10 -20 cm 2 , obtained from spectroscopic techniques. Up to 1.7 J/cm 3 of stored energy density was achieved in a 6 x 6 x 44 mm Yb:S-FAP amplifier rod. An InGaAs diode array has been fabricated that has suitable specifications for pumping a 3 x 3 x 30 mm Yb:S-FAP rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to ∼0.5 J per 1 ms pulse. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz and 500 μs pulses

  11. Coexistence of metallic and insulating channels in compressed YbB6

    Ying, Jianjun; Tang, Lingyun; Chen, Fei; Chen, Xianhui; Struzhkin, Viktor V.

    2018-03-01

    It remains controversial whether compressed YbB6 material is a topological insulator or a Kondo topological insulator. We performed high-pressure transport, x-ray diffraction (XRD), x-ray absorption spectroscopy, and Raman-scattering measurements on YbB6 samples in search for its topological Kondo phase. Both high-pressure powder XRD and Raman measurements show no trace of structural phase transitions in YbB6 up to 50 GPa. The nonmagnetic Yb2 + gradually change to magnetic Yb3 + above 18 GPa concomitantly with the increase in resistivity. However, the transition to the insulating state occurs only around 30 GPa, accompanied by the increase in the shear stress, and anomalies in the pressure dependence of the Raman T2 g mode and in the B atomic position. The resistivity at high pressures can be described by a model taking into account coexisting insulating and metallic channels with the activation energy for the insulating channel about 30 meV. We argue that YbB6 may become a topological Kondo insulator at high pressures above 35 GPa.

  12. Investigation of Anderson lattice behavior in Yb1-xLuxAl3

    Bauer, E.D.; Booth, C.H.; Lawrence, J.M.; Hundley, M.F.; Sarrao, J.L.; Thompson, J.D.; Riseborough, P.S.; Ebihara, T.

    2003-01-01

    Measurements of magnetic susceptibility χ(T), specific heat C(T), Hall coefficient R H (T), and Yb valence ν = 2 + n f [f-occupation number n f (T) determined from Yb L 3 x-ray absorption measurements] were carried out on single crystals of Yb 1-x Lu x Al 3 . The low temperature anomalies observed in χ(T) and C(T) corresponding to an energy scale T coh ∼ 40 K in the intermediate valence, Kondo lattice compound YbAl 3 are suppressed by Lu concentrations as small as 5% suggesting these low-T anomalies are extremely sensitive to disorder and, therefore, are a true coherence effect. By comparing the temperature dependence of various physical quantities to the predictions of the Anderson Impurity Model, the slow crossover behavior observed in YbAl 3 , in which the data evolve from a low-temperature coherent, Fermi-liquid regime to a high temperature local moment regime more gradually than predicted by the Anderson Impurity Model, appears to evolve to fast crossover behavior at x ∼ 0.7 where the evolution is more rapid than predicted. These two phenomena found in Yb 1-x Lu x Al 3 , i.e., the low-T anomalies and the slow/fast crossover behavior are discussed in relation to recent theories of the Anderson lattice

  13. Improving 200 MW NDHR reactor protection system with GAL devices

    Shi Mingde; Li Duo; Xie Zhengguo

    1999-01-01

    The emergence of General Array Logic (GAL), a fairly new type of logic devices with the characteristics of user-definable logic functions, have led to a revolutionary change in the design of logical circuits. The improvements of the reactor protection system for the 200 MW nuclear district heating reactor (NDHR) using GAL are covered

  14. Lightweight MgB2 superconducting 10 MW wind generator

    Marino, I.; Pujana, A.; Sarmiento, G.; Sanz, S.; Merino, J. M.; Tropeano, M.; Sun, J.; Canosa, T.

    2016-02-01

    The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator's main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator.

  15. Lightweight MgB2 superconducting 10 MW wind generator

    Marino, I; Pujana, A; Sarmiento, G; Sanz, S; Merino, J M; Tropeano, M; Sun, J; Canosa, T

    2016-01-01

    The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB 2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator’s main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator. (paper)

  16. Design of the 1-Mw, 200-Ghz, Fom Fusion Fem

    Urbanus, W. H.; Best, R. W. B.; Bongers, W. A.; Vaningen, A. M.; Manintveld, P.; Sterk, A. B.; Verhoeven, A. G. A.; van der Wiel, M. J.; Caplan, M.; Bratman, V. L.; Denisov, G. G.; Varfolomeev, A. A.; Khlebnikov, A. S.

    1993-01-01

    The FOM Institute for Plasma Physics has obtained funding for the development of a 1 MW, long pulse, 140-250 GHz free-electron maser. The engineering design is presently being performed in an international collaboration. In this paper the main components of the free-electron maser, the electron beam

  17. Monolithic Integration of Sampled Grating DBR with Electroabsorption Modulator by Combining Selective-Area-Growth MOCVD and Quantum-Well Intermixing

    Hong-Bo, Liu; Ling-Juan, Zhao; Jiao-Qing, Pan; Hong-Liang, Zhu; Fan, Zhou; Bao-Jun, Wang; Wei, Wang

    2008-01-01

    We present the monolithic integration of a sampled-grating distributed Bragg reflector (SG-DBR) laser with a quantum-well electroabsorption modulator (QW-EAM) by combining ultra-low-pressure (55mbar) selective-area-growth (SAG) metal-organic chemical vapour deposition (MOCVD) and quantum-well intermixing (QWI) for the first time. The QW-EAM and the gain section can be grown simultaneously by using SAG MOCVD technology. Meanwhile, the QWI technology offers an abrupt band-gap change between two functional sections, which reduces internal absorption loss. The experimental results show that the threshold current Ith = 62 mA, and output power reaches 3.6mW. The wavelength tuning range covers 30nm, and all the corresponding side mode suppression ratios are over 30 dB. The extinction ratios at available wavelength channels can reach more than 14 dB with bias of -5 V

  18. Study of chromites YbMIICr2O5,5 (MII - Mg, Ca, Sr, Ba by X-ray diffraction

    B. Kasenov

    2012-03-01

    Full Text Available Compounds of composition YbMeMnFeO5,5 (Me – Mg, Ca, Sr, Ba are synthesized from Yb2O3, , Cr2O3 and MgCO3, CaCO3, SrCO3, BaCO3 by solid phase method. X-ray powder diffraction showed that the compound YbMgCr2O5,5, YbCaCr2O5,5, YbSrCr2O5,5, YbBaCr2O5,5 crystallizes in the tetragonal crystal system.

  19. Spectroscopic properties and quenching processes of Yb{sup 3+} in Fluoride single crystals for laser applications

    Bensalah, A. [Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon1 University, UMR 5620, CNRS Bat. A. Kastler, 10 rue Ampere, 69622 Villeurbanne (France) and Institute for Multidisciplinary Research of Advanced Materials, Tohoku University, Sendai 980-8577 (Japan)]. E-mail: amina-bensalah@enscp.fr; Ito, M. [Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon1 University, UMR 5620, CNRS Bat. A. Kastler, 10 rue Ampere, 69622 Villeurbanne (France); Guyot, Y. [Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon1 University, UMR 5620, CNRS Bat. A. Kastler, 10 rue Ampere, 69622 Villeurbanne (France); Goutaudier, C. [Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon1 University, UMR 5620, CNRS Bat. A. Kastler, 10 rue Ampere, 69622 Villeurbanne (France); Jouini, A. [Physical Chemistry of Luminescent Materials, Claude Bernard /Lyon1 University, UMR 5620, CNRS Bat. A. Kastler, 10 rue Ampere, 69622 Villeurbanne (France); Institute for Multidisciplinary Research of Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Brenier, A. [Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon1 University, UMR 5620, CNRS Bat. A. Kastler, 10 rue Ampere, 69622 Villeurbanne (France); Sato, H. [Institute for Multidisciplinary Research of Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Fukuda, T. [Institute for Multidisciplinary Research of Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Boulon, G. [Physical Chemistry of Luminescent Materials, Claude Bernard /Lyon1 University, UMR 5620, CNRS Bat. A. Kastler, 10 rue Ampere, 69622 Villeurbanne (France)

    2007-01-15

    Spectroscopic characterization is carried out to identify Stark's levels of Yb{sup 3+} transitions in several fluoride crystals grown either by the Czochralski technique or by the laser-heated pedestal growth method. Yb{sup 3+} concentration dependence of the decay time is analyzed in order to understand involved concentration quenching mechanisms. Laser tests under saphire:Ti pumping are presented for all our materials as well as under diode pumping for Yb:CaF{sub 2}.

  20. Electronic structure and X-ray spectroscopic properties of YbNi{sub 2}P{sub 2}

    Shcherba, I.D., E-mail: ishcherba@gmail.com [Institute of Technology, University of Pedagogy, Podchorazych 2, 30-084 Krakow (Poland); Lviv National University by Ivan Franko, Lviv (Ukraine); Bekenov, L.V.; Antonov, V.N. [Institute for Metal Physics, 36 Vernadsky Street, 03142 Kiev (Ukraine); Noga, H. [Institute of Technology, University of Pedagogy, Podchorazych 2, 30-084 Krakow (Poland); Uskokovic, D. [Institute of Technical Sciences, SASA, Belgrade (Serbia); Zhak, O.; Kovalska, M.V. [Lviv National University by Ivan Franko, Lviv (Ukraine)

    2016-10-15

    Highlights: • We present new experimental and theoretical data for YbNi{sub 2}P{sub 2}. • The presence of divalent and trivalent Yb ion found in YbNi{sub 2}P{sub 2}. • The calculation show good agreement with the experimental measurements. - Abstract: X-ray absorption spectrum at the Yb L{sub 3} edge and X-ray emission spectra of Ni and P at the K and L{sub 2,3} edges have been studied experimentally and theoretically in the mixed valent compound YbNi{sub 2}P{sub 2} with ThCr{sub 2}Si{sub 2} type crystal structure. The electronic structure of YbNi{sub 2}P{sub 2} is investigated using the fully relativistic Dirac linear muffin-tin orbital (LMTO) band-structure method. The effect of the spin–orbit (SO) interaction and Coulomb repulsion U on the electronic structure of YbNi{sub 2}P{sub 2} is examined in the frame of the LSDA + SO + U method. The core-hole effect in the final states as well as the effect of the electric quadrupole E{sub 2} transitions have been investigated. A good agreement between the theory and the experiment was found. Both the trivalent and the divalent Yb ions in YbNi{sub 2}P{sub 2} are reflected in the experimentally measured Yb L{sub 3} X-ray absorption spectrum simultaneously. We found that the best agreement between the experimental spectrum and sum of the theoretically calculated Yb{sup 2+} and Yb{sup 3+} spectra is achieved with 73% ytterbium ions in 2+ state and 27% ions in 3+ state.

  1. HoYbBIG epitaxial thick films used for Faraday rotator in the 1.55μm band

    Zhong, Z.W.; Xu, X.W.; Chong, T.C.; Yuan, S.N.; Li, M.H.; Zhang, G.Y.; Freeman, B.

    2005-01-01

    Ho 3-x-y Yb y Bi x Fe 5 O 12 (HoYbBIG) garnet thick films with Bi content of x=0.9-1.5 were prepared by the liquid phase epitaxy (LPE) method. Optical properties and magneto-optical properties were characterized. The LPE-grown HoYbBIG thick films exhibited large Faraday rotation coefficients up to 1540 o /cm at 1.55μm, and good wavelength and temperature stability

  2. Data quality objectives summary report for the 105-N monolith off-gas issue

    Pisarcik, D.J.

    1997-01-01

    The 105-N Basin hardware waste with radiation exposure rates high enough to make above-water handling and packaging impractical has been designated high exposure rate hardware (HERH) waste. This material, consisting primarily of irradiated reactor components, is packaged underwater for subsequent disposal as a grout-encapsulated solid monolith. The third HERH waste package that was created (Monolith No. 3) was not immediately removed from the basin because of administrative delays. During a routine facility walkdown, Monolith No. 3 was observed to be emitting bubbles. Mass spectroscopic analysis of a gas sample from Monolith No. 3 indicated that the gas was 85.2% hydrogen along with a trace of fission gases (stable isotopes of xenon). Gamma energy analysis of a gas sample from Monolith No. 3 also identified trace quantities of 85 Kr. The monolith off-gas Data Quality Objective (DQO) process concluded the following: Monolith No. 3 and similar monoliths can be safely transported following installation of spacers between the lids of the L3-181 transport cask to vent the hydrogen gas; The 85 Kr does not challenge personnel or environmental safety; Fumaroles in the surface of gassing monoliths renders them incompatible with Hanford Site Solid Waste Acceptance Criteria requirements unless placed in a qualified high integrity container overpack; and Gassing monoliths do meet Environmental Restoration Disposal Facility Waste Acceptance Criteria requirements. This DQO Summary Report is both an account of the Monolith Off-Gas DQO Process and a means of documenting the concurrence of each of the stakeholder organizations

  3. Preparation of organic monolithic columns in polytetrafluoroethylene tubes for reversed-phase liquid chromatography

    Catalá-Icardo, M.; Torres-Cartas, S.; Meseguer-Lloret, S.; Gómez-Benito, C.; Carrasco-Correa, E.; Simó-Alfonso, E.F.; Ramis-Ramos, G.; Herrero-Martínez, J.M.

    2017-01-01

    In this work, a method for the preparation and anchoring of polymeric monoliths in a polytetrafluoroethylene (PTFE) tubing as a column housing for microbore HPLC is described. In order to assure a covalent attachment of the monolith to the inner wall of the PTFE tube, a two-step procedure was developed. Two surface etching reagents, a commercial sodium naphthalene solution (Fluoroetch"®), or mixtures of H_2O_2 and H_2SO_4, were tried and compared. Then, the obtained hydroxyl groups on the PTFE surface were modified by methacryloylation. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and scanning electron microscopy (SEM) confirmed the successful modification of the tubing wall and the stable anchorage of monolith to the wall, respectively. Special emphasis was also put on the reduction of the unwanted effects of shrinking of monolith during polymerization, by using an external proper mold and by selecting the adequate monomers in order to increase the flexibility of the polymer. Poly(glycidyl methacrylate-co-divinylbenzene) monoliths were in situ synthesized by thermal polymerization within the confines of surface-vinylized PTFE tubes. The modified PTFE tubing tightly held the monolith, and the monolithic column exhibited good pressure resistance up to 20 MPa. The column performance was also evaluated via the isocratic separation of a series of alkylbenzenes in the reversed-phase mode. The optimized monolithic columns gave plate heights ranged between 70 and 80 μm. The resulting monoliths were also satisfactorily applied to the separation of proteins. - Highlights: • Successful surface etching of PTFE inner wall tubing was done. • The modified PTFE support was next methacryloylated with GMA. • Organic polymeric monolith was in situ prepared in the functionalized PTFE tube. • The monolithic columns gave suitable pressure resistance and separation of proteins.

  4. Preparation of organic monolithic columns in polytetrafluoroethylene tubes for reversed-phase liquid chromatography

    Catalá-Icardo, M., E-mail: mocaic@qim.upv.es [Research Institute for Integrated Management of Coastal Areas, Universitat Politècnica de València, Paranimf 1, 46730, Grao de Gandía, Valencia (Spain); Torres-Cartas, S.; Meseguer-Lloret, S.; Gómez-Benito, C. [Research Institute for Integrated Management of Coastal Areas, Universitat Politècnica de València, Paranimf 1, 46730, Grao de Gandía, Valencia (Spain); Carrasco-Correa, E.; Simó-Alfonso, E.F.; Ramis-Ramos, G. [Department of Analytical Chemistry, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Valencia (Spain); Herrero-Martínez, J.M., E-mail: jmherrer@uv.es [Department of Analytical Chemistry, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Valencia (Spain)

    2017-04-01

    In this work, a method for the preparation and anchoring of polymeric monoliths in a polytetrafluoroethylene (PTFE) tubing as a column housing for microbore HPLC is described. In order to assure a covalent attachment of the monolith to the inner wall of the PTFE tube, a two-step procedure was developed. Two surface etching reagents, a commercial sodium naphthalene solution (Fluoroetch{sup ®}), or mixtures of H{sub 2}O{sub 2} and H{sub 2}SO{sub 4}, were tried and compared. Then, the obtained hydroxyl groups on the PTFE surface were modified by methacryloylation. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and scanning electron microscopy (SEM) confirmed the successful modification of the tubing wall and the stable anchorage of monolith to the wall, respectively. Special emphasis was also put on the reduction of the unwanted effects of shrinking of monolith during polymerization, by using an external proper mold and by selecting the adequate monomers in order to increase the flexibility of the polymer. Poly(glycidyl methacrylate-co-divinylbenzene) monoliths were in situ synthesized by thermal polymerization within the confines of surface-vinylized PTFE tubes. The modified PTFE tubing tightly held the monolith, and the monolithic column exhibited good pressure resistance up to 20 MPa. The column performance was also evaluated via the isocratic separation of a series of alkylbenzenes in the reversed-phase mode. The optimized monolithic columns gave plate heights ranged between 70 and 80 μm. The resulting monoliths were also satisfactorily applied to the separation of proteins. - Highlights: • Successful surface etching of PTFE inner wall tubing was done. • The modified PTFE support was next methacryloylated with GMA. • Organic polymeric monolith was in situ prepared in the functionalized PTFE tube. • The monolithic columns gave suitable pressure resistance and separation of proteins.

  5. The physical and chemical characteristics of 175Yb-EDTMP labelled compound

    Azmairit Aziz; Marlina; Muhammad Basit Febrian

    2010-01-01

    Bone pain is a common complication for patient with bone metastases from breasts, prostate and lung cancers. The derivative of phosphonate groups, i.e. diphosphonate as well as poly phosphonate ligands e.g. EDTMP have high affinity in bone matrix. The labeled compound of 175 Yb-EDTMP can be used as an alternative radiopharmaceutical for bone pain palliation. The compound of 175 Yb-EDTMP can be produced by labeling of ethylenediamine tetramethylene phosphonic acid (EDTMP) with itterbium-175 ( 175 YbCl 3 ). Before 175 Yb-EDTMP is used for bone pain palliation in nuclear medicine, the compound have to be characterized to full fill the criteria of the good radiopharmaceutical. The physical and chemical characteristics of 175 Yb-EDTMP had been studied. It consists of: pH, solution clearity, the radiochemical purity that was determined by paper chromatography and paper electrophoresis techniques, electricity charge was determined by paper electrophoresis, stability, lipophilicity of 175 Yb-EDTMP was obtained by determination of octanol-water partition and the plasma binding protein was in-vitro investigated with precipitation method using 5% of trichloroacetic acid solution, and the binding to hydroxyapatite. From the experiment, it was obtained that the 175 Yb-EDTMP solution has the pH of 7, clear, the radiochemical purity of 98.66 ± 0.53%, and the negative electric charge. The compound of 175 Yb-EDTMP has lipophilicity (P) of 0.0135 ± 0.003%, the human plasma binding protein of 8.94 ± 0.66%, and the hydroxyapatite binding of 94.78 ± 2.16%. Stability evaluation indicated that 175 Yb-EDTMP solution was still stable for nine days at room temperature with the radiochemical purity more than 95% (98.62 ± 0.83%). This study expects that 175 Yb-EDTMP compound can fulfill the requirement as radiopharmaceutical for use in palliative treatment of painful bone metastases and supports the development of nuclear medicine in Indonesia. (author)

  6. Affinity of 169Yb, 67Ga and 111In for malignant tumor, (1)

    Ando, Itsuko

    1975-01-01

    The tumor affinity of 169 Yb-citrate, 67 Ga-citrate and 111 In-citrate was examined by using Yoshida sarcoma-bearing rats, and the affinity of these compounds for inflammation was also tested using rats with inflammation induced by croton oil injection. In this investigation there was no great difference in uptake by the tumor tissue of these compounds, but a great difference was observed in the retention value of the blood and uptake rate in the bone. 169 Yb-citrate was cleared rapidly from the blood and was taken mostly into the bone. So the retention values in the soft tissues became very small. On the other hand, 111 In-citrate was slowly and only slightly taken into the bone from the blood, so the retention values in the soft tissue remained relatively high. 67 Ga-citrate showed the intermediate value between the bone uptake rate of 169 Yb-citrate and that of 111 In-citrate. In the following experiments, 169 Yb-citrate and 67 Ga-citrate were compared in four strains: Yoshida sarcoma, Walker carcinosarcoma 256, Sarcoma 180, and Ehrlich tumor. The uptake rate of 169 Yb in tumor tissue was much larger than that of 67 Ga in Ehrlich tumor-bearing mice, but the value of 169 Yb was slightly smaller than those of 67 Ga in Yoshida sarcoma-bearing rats, Walker carcinosarcoma 256-bearing rats and Sarcoma 180-bearing mice. Tumor to organ ratios of 169 Yb, which were most important for tumor scanning, were much larger than those of 67 Ga in all four strains except tumor to bone ratios of 169 Yb. From the above-described facts, it was shown that 169 Yb-citrate had a stronger tumor affinity than 67 Ga-citrate and that the tumor affinity of 169 Yb-citrate was similar in these four strains of tumor bearing animals. These three compounds had a relatively strong affinity with the inflammatory tissue. (auth.)

  7. Electronic structure of YbNiX{sub 3} (X =Si, Ge) studied by hard X-ray photoemission spectroscopy

    Sato, Hitoshi; Shimada, Kenya; Namatame, Hirofumi [Hiroshima Synchrotron Radiation Center, Hiroshima University, Kagamiyama 2-313, Higashi-Hiroshima 739-0046 (Japan); Utsumi, Yuki [Max-Planck Institute for Chemical Physics of Solids, 01187 Dresden (Germany); Kodama, Junichi; Nagata, Heisuke [Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan); Avila, Marcos A.; Ribeiro, Raquel A. [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Santo Andre - SP, 09210-580 (Brazil); Umeo, Kazunori [Cryogenics and Instrumental Analysis Division, N-BARD, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Takabatake, Toshiro [Department of Quantum Matter, AdSM, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan); Institute for Advanced Materials Research, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan); Mimura, Kojiro; Motonami, Satoru; Anzai, Hiroaki [Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan); Ueda, Shigenori [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, Hyogo 679-5148 (Japan); Taniguchi, Masaki [Hiroshima Synchrotron Radiation Center, Hiroshima University, Kagamiyama 2-313, Higashi-Hiroshima 739-0046 (Japan); Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan)

    2015-06-15

    lectronic structure of the Kondo lattices YbNiX{sub 3} (X =Si, Ge) has been investigated by means of hard x-ray photoemission spectroscopy (HAXPES) with hν = 5.95 keV. From the Yb 3d HAXPES spectra, the Yb valence in YbNiSi{sub 3} is estimated to be ∝ 2.92, which is almost temperature-independent. On the other hand, the valence in YbNiGe{sub 3} is estimated to be 2.48 at 300 K, showing significant valence fluctuation, and gradually decreases to 2.41 at 20 K on cooling. The Ni 2p{sub 3/2} and Yb{sup 3+} 4f peaks exhibit opposite energy shifts amounting to ∝ 0.6 eV between YbNiSi{sub 3} and YbNiGe{sub 3}. We propose a simple model for the electronic structure of YbNiX{sub 3} based on the HAXPES results. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Radio metal (169Yb) uptake in normal and tumour cells in vitro. Influence of metabolic cell activity and complex structure

    Franke, W.G.; Kampf, G.

    1996-01-01

    Trivalent radio metal tracers have been used for tumour imaging and metastatic pain palliation. For better understanding their tumour accumulation, basic model studies of uptake of different 169 Yb complexes into cultured normal and tumour cells were performed. Whereas the uptake of 169 Yb citrate is strongly dependent on the metabolic activity and is not tumour-cell pacific, the uptake of 169 Yb complexed with amino carbonic acid (NTA, EDTA, DTPA) does not correlate to the metabolic activities. These complexes are taken up to a greater amount by the tumour cells (by a factor of about 2). Uptake of both complex types leads to a stable association to cellular compounds, 169 Yb is not releasable by the strong complexing agent DTPA. Protein binding of the 169 Yb complexes shows great influence on their cellular uptake. The bound proportion is no more available,for cellular uptake. The results indicate that i 0 uptake of 169 Yb citrate is an active cellular transport process which i not tumor-specific, ii) the 169 Yb amino carbonic acid complexes show a weak favouring by the tumour cells, iii) different from earlier acceptions the Yb complexes studied are not taken up by the cells in protein-bound form. The structure of the Yb complex is decisive for its protein binding and cellular uptake. (author). 13 refs., 6 figs

  9. Design analysis of phosphor-free monolithic white light-emitting-diodes with InGaN/ InGaN multiple quantum wells on ternary InGaN substrates

    Yu Kee Ooi

    2015-05-01

    Full Text Available Phosphor-free monolithic white light emitting diodes (LEDs based on InGaN/ InGaN multiple quantum wells (MQWs on ternary InGaN substrates are proposed and analyzed in this study. Simulation studies show that LED devices composed of multi-color-emitting InGaN/ InGaN quantum wells (QWs employing ternary InGaN substrate with engineered active region exhibit stable white color illumination with large output power (∼ 170 mW and high external quantum efficiency (EQE (∼ 50%. The chromaticity coordinate for the investigated monolithic white LED devices are located at (0.30, 0.28 with correlated color temperature (CCT of ∼ 8200 K at J = 50 A/cm2. A reference LED device without any nanostructure engineering exhibits green color emission shows that proper engineered structure is essential to achieve white color illumination. This proof-of-concept study demonstrates that high-efficiency and cost-effective phosphor-free monolithic white LED is feasible by the use of InGaN/ InGaN MQWs on ternary InGaN substrate combined with nanostructure engineering, which would be of great impact for solid state lighting.

  10. Design analysis of phosphor-free monolithic white light-emitting-diodes with InGaN/ InGaN multiple quantum wells on ternary InGaN substrates

    Ooi, Yu Kee, E-mail: Yu.Kee.Ooi@rit.edu; Zhang, Jing, E-mail: Jing.Zhang@rit.edu [Department of Electrical and Microelectronics Engineering, Rochester Institute of Technology, Rochester, New York 14623 (United States)

    2015-05-15

    Phosphor-free monolithic white light emitting diodes (LEDs) based on InGaN/ InGaN multiple quantum wells (MQWs) on ternary InGaN substrates are proposed and analyzed in this study. Simulation studies show that LED devices composed of multi-color-emitting InGaN/ InGaN quantum wells (QWs) employing ternary InGaN substrate with engineered active region exhibit stable white color illumination with large output power (∼ 170 mW) and high external quantum efficiency (EQE) (∼ 50%). The chromaticity coordinate for the investigated monolithic white LED devices are located at (0.30, 0.28) with correlated color temperature (CCT) of ∼ 8200 K at J = 50 A/cm{sup 2}. A reference LED device without any nanostructure engineering exhibits green color emission shows that proper engineered structure is essential to achieve white color illumination. This proof-of-concept study demonstrates that high-efficiency and cost-effective phosphor-free monolithic white LED is feasible by the use of InGaN/ InGaN MQWs on ternary InGaN substrate combined with nanostructure engineering, which would be of great impact for solid state lighting.

  11. 10Gbps monolithic silicon FTTH transceiver for PON

    Zhang, J.; Liow, T. Y.; Lo, G. Q.; Kwong, D. L.

    2010-05-01

    We propose a new passive optical network (PON) configuration and a novel silicon photonic transceiver architecture for optical network unit (ONU), eliminating the need for an internal laser source in ONU. We adopt dual fiber network configuration. The internal light source in each of the ONUs is eliminated. Instead, an extra seed laser source in the optical line termination (OLT) operates in continuous wave mode to serve the ONUs in the PON as a shared and centralized laser source. λ1 from OLT Tx and λ2 from the seed laser are combined by using a WDM combiner and connected to serve the multiple ONUs through the downstream fibers. The ONUs receive the data in λ1. Meanwhile, the ONUs encode and transmit data in λ2, which are sent back to OLT. The monolithic ONU transceiver contains a wavelength-division-multiplexing (WDM) filter component, a silicon modulator and a Ge photo-detector. The WDM in ONU selectively guides λ1 to the Ge-PD where the data in λ1 are detected and converted to electrical signals, and λ2 to the transmitter where the light is modulated by upstream data. The modulated optical signals in λ2 from ONUs are connected back to OLT through upstream fibers. The monolithic ONU transceiver chip size is only 2mm by 4mm. The crosstalk between the Tx and Rx is measured to be less than -20dB. The transceiver chip is integrated on a SFP+ transceiver board. Both Tx and Rx demonstrated data rate capabilities of up to 10Gbps. By implementing this scheme, the ONU transceiver size can be significantly reduced and the assembly processes will be greatly simplified. The results demonstrate the feasibility of mass manufacturing monolithic silicon ONU transceivers via low cost

  12. Fiber-based monolithic columns for liquid chromatography.

    Ladisch, Michael; Zhang, Leyu

    2016-10-01

    Fiber-based monoliths for use in liquid chromatographic separations are defined by columns packed with aligned fibers, woven matrices, or contiguous fiber structures capable of achieving rapid separations of proteins, macromolecules, and low molecular weight components. A common denominator and motivating driver for this approach, first initiated 25 years ago, was reducing the cost of bioseparations in a manner that also reduced residence time of retained components while achieving a high ratio of mass to momentum transfer. This type of medium, when packed into a liquid chromatography column, minimized the fraction of stagnant liquid and resulted in a constant plate height for non-adsorbing species. The uncoupling of dispersion from eluent flow rate enabled the surface chemistry of the stationary phase to be considered separately from fluid transport phenomena and pointed to new ways to apply chemistry for the engineering of rapid bioseparations. This paper addresses developments and current research on fiber-based monoliths and explains how the various forms of this type of chromatographic stationary phase have potential to provide new tools for analytical and preparative scale separations. The different stationary phases are discussed, and a model that captures the observed constant plate height as a function of mobile phase velocity is reviewed. Methods that enable hydrodynamically stable fiber columns to be packed and operated over a range of mobile phase flow rates, together with the development of new fiber chemistries, are shown to provide columns that extend the versatility of liquid chromatography using monoliths, particularly at the preparative scale. Graphical Abstract Schematic representation of a sample mixture being separated by a rolled-stationary phase column, resulting separated peaks shown in the chromatogram.

  13. Temperature Characteristics of Monolithically Integrated Wavelength-Selectable Light Sources

    Han Liang-Shun; Zhu Hong-Liang; Zhang Can; Ma Li; Liang Song; Wang Wei

    2013-01-01

    The temperature characteristics of monolithically integrated wavelength-selectable light sources are experimentally investigated. The wavelength-selectable light sources consist of four distributed feedback (DFB) lasers, a multimode interferometer coupler, and a semiconductor optical amplifier. The oscillating wavelength of the DFB laser could be modulated by adjusting the device operating temperature. A wavelength range covering over 8.0nm is obtained with stable single-mode operation by selecting the appropriate laser and chip temperature. The thermal crosstalk caused by the lateral heat spreading between lasers operating simultaneously is evaluated by oscillating-wavelength shift. The thermal crosstalk approximately decreases exponentially as the increasing distance between lasers

  14. Transverse mode selection in a monolithic microchip laser

    Naidoo, Darryl

    2011-11-01

    Full Text Available selection in a monolithic microchip laser Darryl Naidooa,b, Thomas Godinc, Michael Fromagerc, Emmanuel Cagniotc, Nicolas Passillyd, Andrew Forbesa,b and Kamel A?t-Ameurc1 a:CSIR National Laser Centre, P. O. Box 395, Pretoria 0001, South Africa b.... Lett. 77 (2000) 34-36. [14] W. Zhao, J. Tan and L. Qui, ?Improvement of confocal microscope performance by shaped annular beam and heterodyne confocal techniques,? Optik 116 (2005) 111-117. [15] T. Shiina, K. Yoshida, M. Ito and Y. Okamura, ?Long...

  15. A hybrid FIA/HPLC system incorporating monolithic column chromatography

    Adcock, Jacqui L.; Francis, Paul S.; Agg, Kent M.; Marshall, Graham D.; Barnett, Neil W.

    2007-01-01

    We have combined the generation of solvent gradients using milliGAT pumps, chromatographic separations with monolithic columns and chemiluminescence detection in an instrument manifold that approaches the automation and separation efficiency of HPLC, whilst maintaining the positive attributes of flow injection analysis (FIA), such as manifold versatility, speed of analysis and portability. As preliminary demonstrations of this hybrid FIA/HPLC system, we have determined six opiate alkaloids (morphine, pseudomorphine, codeine, oripavine, ethylmorphine and thebaine) and four biogenic amines (vanilmandelic acid, serotonin, 5-hydroxyindole-3-acetic acid and homovanillic acid) in human urine, using tris(2,2'-bipyridyl)ruthenium(III) and acidic potassium permanganate chemiluminescence detection

  16. Inherent polarization entanglement generated from a monolithic semiconductor chip

    Horn, Rolf T.; Kolenderski, Piotr; Kang, Dongpeng

    2013-01-01

    Creating miniature chip scale implementations of optical quantum information protocols is a dream for many in the quantum optics community. This is largely because of the promise of stability and scalability. Here we present a monolithically integratable chip architecture upon which is built...... a photonic device primitive called a Bragg reflection waveguide (BRW). Implemented in gallium arsenide, we show that, via the process of spontaneous parametric down conversion, the BRW is capable of directly producing polarization entangled photons without additional path difference compensation, spectral...... as a serious contender on which to build large scale implementations of optical quantum processing devices....

  17. On drift fields in CMOS monolithic active pixel sensors

    Deveaux, Michael [Goethe-Universitaet, Frankfurt (Germany); Collaboration: CBM-MVD-Collaboration

    2016-07-01

    CMOS Monolithic Active Pixel Sensors (MAPS) combine an excellent spatial resolution of few μm with a very low material budget of 0.05% X{sub 0}. To extend their radiation tolerance to the level needed for future experiments like e.g. CBM, it is regularly considered to deplete their active volume. We discuss the limits of this strategy accounting for the specific features of the sensing elements of MAPS. Moreover, we introduce an alternative approach to generate the drift fields needed to provoke a faster charge collection by means of doping gradients.

  18. Development of the multiwavelength monolithic integrated fiber optics terminal

    Chubb, C. R.; Bryan, D. A.; Powers, J. K.; Rice, R. R.; Nettle, V. H.; Dalke, E. A.; Reed, W. R.

    1982-01-01

    This paper describes the development of the Multiwavelength Monolithic Integrated Fiber Optic Terminal (MMIFOT) for the NASA Johnson Space Center. The program objective is to utilize guided wave optical technology to develop wavelength-multiplexing and -demultiplexing units, using a single mode optical fiber for transmission between terminals. Intensity modulated injection laser diodes, chirped diffraction gratings and thin film lenses are used to achieve the wavelength-multiplexing and -demultiplexing. The video and audio data transmission test of an integrated optical unit with a Luneburg collimation lens, waveguide diffraction grating and step index condensing lens is described.

  19. TRIGA 14 MW Research Reactor Status and Utilization

    Barbos, D.; Ciocanescu, M.; Paunoiu, C.

    2016-01-01

    Institute for Nuclear Research is the owner of the largest family TRIGA research reactor, TRIGA14 MW research reactor. TRIGA14 MW reactor was designed to be operated with HEU nuclear fuel but now the reactor core was fully converted to LEU nuclear fuel. The full conversion of the core was a necessary step to ensure the continuous operation of the reactor. The core conversion took place gradually, using fuel manufactured in different batches by two qualified suppliers based on the same well qualified technology for TRIGA fuel, including some variability which might lead to a peculiar behaviour under specific conditions of reactor utilization. After the completion of the conversion a modernization program for the reactor systems was initiated in order to achieve two main objectives: safe operation of the reactor and reactor utilization in a competitive environment to satisfy the current and future demands and requirements. The 14 MW TRIGA research reactor operated by the Institute for Nuclear Research in Pitesti, Romania, is a relatively new reactor, commissioned 37 years ago. It is expected to operate for another 15-20 years, sustaining new fuel and testing of materials for future generations of power reactors, supporting radioisotopes production through the development of more efficient new technologies, sustaining research or enhanced safety, extended burn up and verification of new developments concerning nuclear power plants life extension, to sustain neutron application in physics research, thus becoming a centre for instruction and training in the near future. A main objective of the TRIGA14MW research reactor is the testing of nuclear fuel and nuclear material. The TRIGA 14 MW reactor is used for medical and industrial radioisotopes production ( 131 I, 125 I, 192 Ir etc.) and a method for 99 Mo- 99 Tc production from fission is under development. For nuclear materials properties investigation, neutron radiography methods have been developed in the INR. The

  20. The DAN-AERO MW experiments. Final report

    Aagaard Madsen, H.; Bak, C.; Schmidt Paulsen, U.; Gaunaa, M. (Risoe DTU, Roskilde (Denmark)); Fuglsang, P. (LM Glasfiber, Kolding (Denmark)); Romblad, J.; Olesen, N.A. (Vestas Wind Systems, Ringkoebing (Denmark)); Enevoldsen, P.; Laursen, J. (Siemens Wind Power, Ballerup (Denmark)); Jensen, Leo (DONG Energy, Fredericia (Denmark))

    2010-09-15

    This report describes the DAN-AERO MW experiments carried out within a collaborative, three years research project between Risoe DTU and the industrial partners LM Glasfiber, Siemens Wind Power, Vestas Wind Systems A/S and the utility company DONG Energy. The main objective of the project was to establish an experimental data base which can provide new insight into a number of fundamental aerodynamic and aero-acoustic issues, important for the design and operation of MW size turbines. The most important issue is the difference between airfoil characteristics measured under 2D, steady conditions in a wind tunnel and the unsteady 3D flow conditions on a rotor. The different transition characteristics might explain some of the differences between the 2D and 3D airfoil data and the experiments have been set up to provide data on this subject. The overall experimental approach has been to carry out a number of coordinated, innovative measurements on full scale MW size rotors as well as on airfoils for MW size turbines in wind tunnels. Shear and turbulence inflow characteristics were measured on a Siemens 3.6 MW turbine with a five hole pitot tube. Pressure and turbulent inflow characteristics were measured on a 2MW NM80 turbine with an 80 m rotor. One of the LM38.8 m blades on the rotor was replaced with a new LM38.8 m blade where instruments for surface pressure measurements at four radial sections were build into the blade during the blade production process. Additionally, the outmost section on the blade was further instrumented with around 50 microphones for high frequency surface pressure measurements. The surface pressure measurements have been correlated with inflow measurements from four five hole pitot tubes and two sensors for measuring the high frequency (50 Hz to10 kHz) contents of the inflow turbulence. In parallel, 2D wind tunnel measurements on common airfoils for wind turbine applications have been conducted in three different wind tunnels at Delft

  1. Comparison of radiation shielding requirements for HDR brachytherapy using 169Yb and 192Ir sources

    Lymperopoulou, G.; Papagiannis, P.; Sakelliou, L.; Georgiou, E.; Hourdakis, C. J.; Baltas, D.

    2006-01-01

    169 Yb has received a renewed focus lately as an alternative to 192 Ir sources for high dose rate (HDR) brachytherapy. Following the results of a recent work by our group which proved 169 Yb to be a good candidate for HDR prostate brachytherapy, this work seeks to quantify the radiation shielding requirements for 169 Yb HDR brachytherapy applications in comparison to the corresponding requirements for the current 192 Ir HDR brachytherapy standard. Monte Carlo simulation (MC) is used to obtain 169 Yb and 192 Ir broad beam transmission data through lead and concrete. Results are fitted to an analytical equation which can be used to readily calculate the barrier thickness required to achieve a given dose rate reduction. Shielding requirements for a HDR brachytherapy treatment room facility are presented as a function of distance, occupancy, dose limit, and facility workload, using analytical calculations for both 169 Yb and 192 Ir HDR sources. The barrier thickness required for 169 Yb is lower than that for 192 Ir by a factor of 4-5 for lead and 1.5-2 for concrete. Regarding 169 Yb HDR brachytherapy applications, the lead shielding requirements do not exceed 15 mm, even in highly conservative case scenarios. This allows for the construction of a lead door in most cases, thus avoiding the construction of a space consuming, specially designed maze. The effects of source structure, attenuation by the patient, and scatter conditions within an actual treatment room on the above-noted findings are also discussed using corresponding MC simulation results

  2. Evolution of magnetic properties and exchange interactions in Ru doped YbCrO3

    Dalal, Biswajit; Sarkar, Babusona; De, S K; Dev Ashok, Vishal

    2016-01-01

    Magnetic properties of YbCr 1−x Ru x O 3 as a function of temperature and magnetic field have been investigated to explore the intriguing magnetic phenomena in rare-earth orthochromites. A quantitative analysis of x-ray photoelectron spectroscopy confirms the mixed valence state (Yb 3+  and Yb 2+ ) of Yb ions for the highest doped sample. Field-cooled magnetization reveals a broad peak around 75 K and then becomes zero at about 20–24 K, due to the antiparallel coupling between Cr 3+ and Yb 3+ moments. An increase of the Ru 4+ ion concentration leads to a slight increase of compensation temperature T comp from 20 to 24 K, but the Néel temperature remains constant. A larger value of the magnetic moment of Yb ions gives rise to negative magnetization at low temperature. An external magnetic field significantly modifies the temperature dependent magnetization. Simulation of temperature dependent magnetization data, below T N , based on the three (two) magnetic sub-lattice model predicts stronger intra-sublattice exchange interaction than that of inter-sublattice. Thermal hysteresis and Arrot plots suggest first order magnetic phase transition. Random substitution of Ru 4+ ion reduces the magnetic relaxation time. Weak ferromagnetic component in canted antiferromagnetic system and negative internal magnetic field cause zero-field-cooled exchange bias effect. Large magnetocrystalline anisotropy associated with Ru creates high coercivity in the Ru doped sample. A maximum value of magnetocaloric effect is found around the antiferromagnetic ordering of Yb 3+ ions. Antiferromagnetic transition at about 120 K and temperature induced magnetization reversal lead to normal and inverse magnetocaloric effects in the same material. (paper)

  3. Photoluminescence characterization of porous YAG: Yb{sup 3+}–Er{sup 3+} nanoparticles

    Desirena, H., E-mail: hagdes@cio.mx [Centro de Investigaciones en Óptica, A. P. 1-948, León 37150, Guanajuato (Mexico); Diaz-Torres, L.A. [Centro de Investigaciones en Óptica, A. P. 1-948, León 37150, Guanajuato (Mexico); Rodríguez, R.A. [Centro Universitario de Los Lagos, Universidad de Guadalajara, Lagos de Moreno, Jalisco (Mexico); Meza, O. [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Centro Historico 72570, Puebla (Mexico); Salas, P. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Apartado Postal 1-1010, Querétaro 76000, Querétaro México (Mexico); Angeles-Chávez, C. [Instituto Mexicano del Petróleo, Ciudad México, D.F. 07730, México (Mexico); Tobar, E.H.; Castañeda-Contreras, J. [Centro Universitario de Los Lagos, Universidad de Guadalajara, Lagos de Moreno, Jalisco (Mexico); De la Rosa, E., E-mail: elder@cio.mx [Centro de Investigaciones en Óptica, A. P. 1-948, León 37150, Guanajuato (Mexico)

    2014-09-15

    Yb{sup 3+}/Er{sup 3+} codoped yttrium aluminium garnet (YAG) porous nanocrystals were prepared by glycolate method assisted with poly-vinyl alcohol (PVA) and urea. The typical cubic structure for YAG was confirmed from XRD with crystallite average size of ∼40 nm, calculated from Scherrer formula and corroborated by TEM. Strong green and red upconversion emissions are observed readily with the naked eyes, and the color coordinates were obtained from emission spectra. A theoretical model to calculate CIE coordinate as a function of donor (Yb{sup 3+}) and acceptors (Er{sup 3+}) concentration is proposed. The eye-safe near infrared emitted signal and fluorescence lifetime were also measured and results show lifetime as large as 8.5 ms. The maximum energy transfer efficiency from Yb{sup 3+} to Er{sup 3+} was 72% for 20 mol% of Yb{sub 2}O{sub 3}. The proposed mechanisms for signal emitted are explained in terms of direct and energy back transfer processes, and cross relaxation. - Highlights: • Strong upconversion emission were observed in YAG:Er{sup 3+}–Yb{sup 3+} samples. • Color emission can be tuned from green to red by choosing properly the Yb{sup 3+} concentration. • The experimental colour coordinates match very well with the proposed theoretical model. • Cross relaxation and energy back transfer are mainly responsible for the red emission. • Fluorescence lifetime of {sup 4}I{sub 13/2} level increase with the Yb{sup 3+} concentration.

  4. Dependence of upconversion emission intensity on Yb3+ concentration in Er3+/Yb3+ co-doped flake shaped Y2(MoO4)3 phosphors

    Lu Weili; Cheng Lihong; Zhong Haiyang; Sun Jiashi; Wan Jing; Tian Yue; Chen Baojiu

    2010-01-01

    Yttrium molybdate phosphors with fixed Er 3+ and various Yb 3+ concentrations were synthesized via a co-precipitation method. The crystal structure and the morphology of the phosphor were characterized by means of x-ray diffraction and field-emission scanning electron microscopy. Under 980 nm excitation, red and green upconversion emissions centred at 660, 553 and 530 nm were observed. Quantitative analyses on the dependence of upconversion emission intensity on the working current of a laser diode (LD) indicated that two-photon processes are responsible for both red and green upconversion emissions in both cases of low and high Yb 3+ concentrations. The relationship between the emission intensity ratio of 2 H 11/2 → 4 I 15/2 to 4 S 3/2 → 4 I 15/2 and the working current of the LD was studied for the samples doped with low and high Yb 3+ concentrations. Finally, a set of rate equations was established based on the possible upconversion mechanism, and an empirical formula was proposed to describe the Yb 3+ concentration dependence of upconversion emission intensity; the empirical formula fits well with the experimental data.

  5. Preparation of a zeolite-modified polymer monolith for identification of synthetic colorants in lipsticks

    Wang, Huiqi; Li, Zheng [College of Chemistry, Jilin University, Changchun 130012 (China); Niu, Qian [Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062 (China); Ma, Jiutong [College of Chemistry, Jilin University, Changchun 130012 (China); Jia, Qiong, E-mail: jiaqiong@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2015-10-30

    Graphical abstract: Poly(methacrylic acid-ethylene dimethacrylate) monolithic column embedded with zeolites was prepared and employed for the polymer monolith microextraction of colorants combined with HPLC. - Highlights: • Zeolite, as a kind of mesoporous material, was firstly combined with PMME. • Zeolite@poly(MAA-EDMA) monolith columns were prepared for the enrichment of colorants. • Zeolite@poly(MAA-EDMA) monolith columns demonstrated relatively high extraction capacity. - Abstract: A novel zeolite-modified poly(methacrylic acid-ethylenedimethacrylate) (zeolite@poly(MAA-EDMA)) monolithic column was prepared with the in situ polymerization method and employed in polymer monolith microextraction for the separation and preconcentration of synthetic colorants combined with high performance liquid chromatography. The polymer was characterized by scanning electronmicroscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermo-gravimetric analysis. Various parameters affecting the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, we obtained acceptable linearities, low limits of detection, and good intra-day/inter-day relative standard deviations. The method was applied to the determination of synthetic colorants in lipsticks with recoveries ranged from 70.7% to 109.7%. Compared with conventional methacrylic acid-based monoliths, the developed monolith exhibited high enrichment capacity because of the introduction of zeolites into the preparation process. The extraction efficiency followed the order: zeolite@poly(MAA-EDMA) > poly(MAA-EDMA) > direct HPLC analysis.

  6. Development of double chain phosphatidylcholine functionalized polymeric monoliths for immobilized artificial membrane chromatography.

    Wang, Qiqin; Peng, Kun; Chen, Weijia; Cao, Zhen; Zhu, Peijie; Zhao, Yumei; Wang, Yuqiang; Zhou, Haibo; Jiang, Zhengjin

    2017-01-06

    This study described a simple synthetic methodology for preparing biomembrane mimicking monolithic column. The suggested approach not only simplifies the preparation procedure but also improves the stability of double chain phosphatidylcholine (PC) functionalized monolithic column. The physicochemical properties of the optimized monolithic column were characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, and nano-LC. Satisfactory column permeability, efficiency, stability and reproducibility were obtained on this double chain PC functionalized monolithic column. It is worth noting that the resulting polymeric monolith exhibits great potential as a useful alternative of commercial immobilized artificial membrane (IAM) columns for in vitro predication of drug-membrane interactions. Furthermore, the comparative study of both double chain and single chain PC functionalized monoliths indicates that the presence or absence of glycerol backbone and the number of acyl chains are not decisive for the predictive ability of IAM monoliths on drug-membrane interactions. This novel PC functionalized monolithic column also exhibited good selectivity for a protein mixture and a set of pharmaceutical compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Recent advances in the preparation and application of monolithic capillary columns in separation science

    Hong, Tingting; Yang, Xi; Xu, Yujing; Ji, Yibing

    2016-01-01

    Novel column technologies involving various materials and efficient reactions have been investigated for the fabrication of monolithic capillary columns in the field of analytical chemistry. In addition to the development of these miniaturized systems, a variety of microscale separation applications have achieved noteworthy results, providing a stepping stone for new types of chromatographic columns with improved efficiency and selectivity. Three novel strategies for the preparation of capillary monoliths, including ionic liquid-based approaches, nanoparticle-based approaches and “click chemistry”, are highlighted in this review. Furthermore, we present the employment of state-of-the-art capillary monolithic stationary phases for enantioseparation, solid-phase microextraction, mixed-mode separation and immobilized enzyme reactors. The review concludes with recommendations for future studies and improvements in this field of research. - Highlights: • Preparation of novel monolithic capillary columns have shown powerful potential in analytical chemistry field. • Various materials including ionic liquids and nanoparticles involved into capillary monolithic micro-devices are concluded. • Click chemistry strategy applied for preparing monolithic capillary columns is reviewed. • Recent strategies utilized in constructing different capillary monoliths for enantiomeric separation are summarized. • Advancement of capillary monoliths for complex samples analysis is comprehensively described.

  8. Recent advances in the preparation and application of monolithic capillary columns in separation science

    Hong, Tingting; Yang, Xi; Xu, Yujing [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009 (China); Ji, Yibing, E-mail: jiyibing@msn.com [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009 (China)

    2016-08-10

    Novel column technologies involving various materials and efficient reactions have been investigated for the fabrication of monolithic capillary columns in the field of analytical chemistry. In addition to the development of these miniaturized systems, a variety of microscale separation applications have achieved noteworthy results, providing a stepping stone for new types of chromatographic columns with improved efficiency and selectivity. Three novel strategies for the preparation of capillary monoliths, including ionic liquid-based approaches, nanoparticle-based approaches and “click chemistry”, are highlighted in this review. Furthermore, we present the employment of state-of-the-art capillary monolithic stationary phases for enantioseparation, solid-phase microextraction, mixed-mode separation and immobilized enzyme reactors. The review concludes with recommendations for future studies and improvements in this field of research. - Highlights: • Preparation of novel monolithic capillary columns have shown powerful potential in analytical chemistry field. • Various materials including ionic liquids and nanoparticles involved into capillary monolithic micro-devices are concluded. • Click chemistry strategy applied for preparing monolithic capillary columns is reviewed. • Recent strategies utilized in constructing different capillary monoliths for enantiomeric separation are summarized. • Advancement of capillary monoliths for complex samples analysis is comprehensively described.

  9. Monolithic junction field-effect transistor charge preamplifier for calorimetry at high luminosity hadron colliders

    Radeka, V.; Rescia, S.; Rehn, L.A.; Manfredi, P.F.; Speziali, V.

    1991-11-01

    The outstanding noise and radiation hardness characteristics of epitaxial-channel junction field-effect transistors (JFET) suggest that a monolithic preamplifier based upon them may be able to meet the strict specifications for calorimetry at high luminosity colliders. Results obtained so far with a buried layer planar technology, among them an entire monolithic charge-sensitive preamplifier, are described

  10. Design and operating experiences with 50MW steam generator

    Kawara, M.; Yamaki, H.; Kanamori, A.; Tanaka, K.; Takahashi, T.

    1975-01-01

    The main purpose of the 50 MW steam generator is to have experiences of manufacturing and operation with large scale steam generator including necessary research and development works which can be reflected on the design and fabrication of 'Monju' (Japan 300 MWe prototype LMFBR). The detailed design of the 50 MW steam, generator was begun on March, 1972 and succeeded in the demonstration of 72 hours continuous operation with full power on June, 1974. It has been successfully operated since then, the performances of which have been evaluated through various kinds of tests. In this paper, the following items are mainly discussed system design, thermal and hydraulic design, structure and fabrication and some experiences on testing operation including cleaning and sodium flushing of equipment, sodium level control system, the behavior of hydrogen detection system and general outlook of the performance. (author)

  11. Performance of a 150-MW S-band klystron

    Sprehn, D.; Phillips, R.M.; Caryotakis, G.

    1994-09-01

    As part of an international collaboration, the Stanford Linear Accelerator Center (SLAC) klystron group has designed, fabricated, and tested a 60-Hz, 3-μs, 150-MW S-band klystron built for Deutsches Elektronen Synchrotron (DESY). A test diode with a 535-kV, 700-A electron beam was constructed to verify the gun operation. The first klystron was built and successfully met design specifications. The 375-MW electron beam represents a new record for SLAC accelerator klystrons in terms of voltage, current, energy, and ruggedness of design. The rf output power is a 150% increase over the S-band tubes currently used in the two-mile-long linear accelerator at SLAC. This paper discusses design issues and experimental results of the diode and klystron

  12. Development of L-band, 10MW multi beam klystron

    Irikura, M.; Miyake, S.; Yano, A.; Kazakov, S.; Larionov, A.; Teryaev, V.; Chin, Y.H.

    2004-01-01

    A 10-MW, L-band multi beam klystron (MBK) for TESLA linear collider and TESLA XFEL has been under development at Toshiba Electron Tubes and Devices Co., Ltd. (TETD) in collaboration with KEK. The TESLA requires pulsed klystrons capable of 10 MW output power at 1300 MHz with 1.5 ms pulse length and a repetition rate of 10 pps. The MBK with 6 low-perveance beams in parallel enables us to operate at lower cathode voltage with higher efficiency. The design work has been accomplished and the fabrication is under way. We are going to start conditioning and testing of prototype no.0 in the middle of July 2004. The design overview will be presented. (author)

  13. Operation and maintenance of 1MW PUSPATI TRIGA reactor

    Adnan Bokhari; Mohammad Suhaimi Kassim

    2006-01-01

    The Malaysian Research Reactor, Reactor TRIGA PUSPATI (RTP) has been successfully operated for 22 years for various experiments. Since its commissioning in June 1982 until December 2004, the 1MW pool-type reactor has accumulated more than 21143 hours of operation, corresponding to cumulative thermal energy release of about 14083 MW-hours. The reactor is currently in operation and normally operates on demand, which is normally up to 6 hours a day. Presently the reactor core is made up of standard TRIAGA fuel element consists of 8.5 wt%, 12 wt% and 20 wt% types; 20%-enriched and stainless steel clad. Several measures such as routine preventive maintenance and improving the reactor support systems have been taken toward achieving this long successful operation. Besides normal routine utilization like other TRIGA reactors, new strategies are implemented for effective increase in utilization. (author)

  14. 100 GHz, 1 MW, CW gyrotron study program. Final report

    Felch, K.; Bier, R.; Caplan, M.; Jory, H.

    1983-09-01

    The results of a study program to investigate the feasibility of various approaches in designing a 100 GHz, 1 MW CW gyrotron are presented. A summary is given of the possible configurations for a high average power, high frequency gyrotron, including an historical survey of experimental results which are relevant to the various approaches. A set of basic scaling considerations which enable qualitative comparisons between particular gyrotron interaction circuits is presented. These calculations are important in understanding the role of various electron beam and circuit parameters in achieving a viable gyrotron design. Following these scaling exercises, a series of design calculations is presented for a possible approach in achieving 100 GHz, 1 MW CW. These calculations include analyses of the electron gun and interaction circuit parts of the gyrotron, and a general analysis of other aspects of a high average power, high frequency gyrotron. Scalability of important aspects of the design to other frequencies is also discussed, as well as key technology issues

  15. Neutronic performance of a benchmark 1-MW LPSS

    Russell, G.J.; Pitcher, E.J.; Ferguson, P.D.

    1995-01-01

    We used split-target/flux-trap-moderator geometry in our 1-MW LPSS computational benchmark performance calculations because the simulation models were readily available. Also, this target/moderator arrangement is a proven LANSCE design and a good neutronic performer. The model has four moderator viewed surfaces, each with a 13x13 cm field-of-view. For our scoping neutronic-performance calculations, we attempted to get as much engineering realism into the target-system mockup as possible. In our present model, we account for target/reflector dilution by cooling; the D 2 O coolant fractions are adequate for 1 MW of 800-MeV protons (1.25 mA). We have incorporated a proton beam entry window and target canisters into the model, as well as (partial) moderator and vacuum canisters. The model does not account for target and moderator cooling lines and baffles, entire moderator canisters, and structural material in the reflector

  16. 1st DeepWind 5 MW Baseline design

    Schmidt Paulsen, Uwe; Vita, Luca; Aagaard Madsen, Helge

    2012-01-01

    The first 5MW baseline design of the DeepWind concept is presented for a Darrieus type floating wind turbine system for water depths of more than 150 m. This design will be used as design reference to test the next technological improvements of sub-component level, being based as much as possible...... trajectory on the water plane. The generator is placed at the bottom of the platform and uses 5MW direct drive technology.The conceptual design is evaluated with numerical simulations in the time domain using the aero-elastic code HAWC2. In order to investigate the concept, a double-disc blade element....... A site has been chosen for the floating turbine off Norway as representative for external conditions. The structure is verified according to an ultimate strength analysis, including loads from wind, waves and currents. The stability of the platform is investigated, considering the displacements...

  17. 350 MW(t) MHTGR preassembly and modularization

    Venkatesh, M.C.; Jones, G.; Dilling, D.A.; Parker, W.J.

    1991-05-01

    The Modular High Temperature Gas Cooled Reactor (MHTGR) provides a safe and economical nuclear power option for the world's electrical generation needs by the turn of the century. The proposed MHTGR plant is composed of four 350 MW(t) prismatic core reactor modules, coupled to a 2(2 x 1) turbine generator producing a net plant electrical output of 538 MW(e). Each of the four reactor module is located in a below-ground level concrete silo, and consists of a reactor vessel and a steam generator vessel interconnected by a cross duct vessel. The modules, along with the service buildings, are contained within a Nuclear Island (NI). The turbine generators and power generation facilities are in the non-nuclear Energy Conversion Area (ECA). The MHTGR design reduces cost and improves schedule by maximizing shop fabrication, minimizing field fit up of the Reactor Internals components and modularizing the NI ampersand ECA facilities. 3 refs., 6 figs., 2 tabs

  18. CW 100MW microwave power transfer in space

    Takayama, K.; Hiramatsu, S.; Shiho, M.

    1991-01-01

    A linear multistage MFEL has been considered as a possible power source for future linear colliders; however, the single-stage experiment cannot be straightforwardly extrapolated to the multistage MFEL. Nevertheless, extensive theoretical and computational studies have demonstrated the feasibility of multistaging. Based on the authors current understanding of the MFEL, they developed the idea of a circular microwave power station (MPS) driven with a single high current beam where many FEL stages are placed along a circle and the remarkable high power of microwave (mw) is generated at each stage. The total power produced is linearly proportional to the number of FEL stages. This huge mw power can be emitted from a large parabola antenna; propagates in space and can be received by a receiver such as parabola antenna or rectenna

  19. Mw 8.5 BENGKULU EARTHQUAKES FROM CONTINUOUS GPS DATA

    W. A. W. Aris

    2016-09-01

    Full Text Available The Mw 8.5 Bengkulu earthquake of 30 September 2007 and the Mw8.6 28 March 2005 are considered amongst large earthquake ever recorded in Southeast Asia. The impact into tectonic deformation was recorded by a network of Global Positioning System (GPS Continuously Operating Reference Station (CORS within southern of Sumatra and west-coast of Peninsular Malaysia. The GPS data from the GPS CORS network has been deployed to investigate the characteristic of postseismic deformation due to the earthquakes. Analytical logarithmic and exponential function was applied to investigate the deformation decay period of postseismic deformation. This investigation provides a preliminary insight into postseismic cycle along the Sumatra subduction zone in particular and on the dynamics Peninsular Malaysia in general.

  20. Design and operating experiences with 50MW steam generator

    Kawara, M; Yamaki, H; Kanamori, A; Tanaka, K; Takahashi, T

    1975-07-01

    The main purpose of the 50 MW steam generator is to have experiences of manufacturing and operation with large scale steam generator including necessary research and development works which can be reflected on the design and fabrication of 'Monju' (Japan 300 MWe prototype LMFBR). The detailed design of the 50 MW steam, generator was begun on March, 1972 and succeeded in the demonstration of 72 hours continuous operation with full power on June, 1974. It has been successfully operated since then, the performances of which have been evaluated through various kinds of tests. In this paper, the following items are mainly discussed system design, thermal and hydraulic design, structure and fabrication and some experiences on testing operation including cleaning and sodium flushing of equipment, sodium level control system, the behavior of hydrogen detection system and general outlook of the performance. (author)

  1. The jet 10-MW lower hybrid current drive system

    Gormezano, C.; Bosia, G.; Brinkschulte, H.; David, C.; Dobbing, J.A.; Kaye, A.S.; Jacquinot, J.; Lloyd, B.; Knowlton, S.; Moreau, D.

    1987-01-01

    A Lower Hybrid system to control the plasma current profile is being prepared so that a higher central electron temperature can be obtained. The proposed system is designed to launch 10 MW of power at f = 3.7 GHz through a single port in JET, producing between 1 and 2 MA of RF driven current at an average density of 5 x 10 19 m -3 . Current drive efficiency is maximized by using a low value of the parallel wave number spectrum (N// - 1.3 - 2.3). The final launcher will be made of 48 multijunctions fed by 24 klystrons with the proper phasing. Dynamic matching of the launcher will be optimized by moving the launcher in real time during the pulse. A first stage (2 MW) is presently under construction. The full system is being designed to be in operation in 1990

  2. Dual functional NaYF4:Yb3+, Er3+@NaYF4:Yb3+, Nd3+ core-shell nanoparticles for cell temperature sensing and imaging

    Shi, Zengliang; Duan, Yue; Zhu, Xingjun; Wang, Qiwei; Li, DongDong; Hu, Ke; Feng, Wei; Li, Fuyou; Xu, Chunxiang

    2018-03-01

    Lanthanide-doped up-conversion nanoparticles (UCNPs) provide a remote temperature sensing approach to monitoring biological microenvironments. In this research, the UCNPs of NaYF4:Yb3+, Er3+@NaYF4:Yb3+, Nd3+ with hexagonal (β)-phase were synthesized and applied in cell temperature sensing as well as imaging after surface modification with meso-2, 3-dimercaptosuccinic acid. In the core-shell UCNPs, Yb3+ ions were introduced as energy transfer media between sensitizers of Nd3+ and activators of Er3+ to improve Er3+emission and prevent their quenching behavior due to multiple energy levels of Nd3+. Under the excitations of 808 nm and 980 nm lasers, the NaYF4:Yb3+, Er3+@NaYF4:Yb3+, Nd3+ nanoparticles exhibited an efficient green band with two emission peaks at 525 nm and 545 nm, respectively, which originated from the transitions of 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 for Er3+ ions. We demonstrate that an occurrence of good logarithmic linearity exists between the intensity ratio of these two emission peaks and the reciprocal of the inside or outside temperature of NIH-3T3 cells. A better thermal stability is proved through temperature-dependent spectra with a heating-cooling cycle. The obtained viability of NIH-3T3 cells is greater than 90% after incubations of about 12 and 24 (h), and they possess a lower cytotoxicity of UCNPs. This work provides a method for monitoring the cell temperature and its living state from multiple dimensions including temperature response, cell images and visual up-conversion fluorescent color.

  3. A 1500-MW(e) HTGR nuclear generating station

    Stinson, R.C.; Hornbuckle, J.D.; Wilson, W.H.

    1976-01-01

    A conceptual design of a 1500-MW(e) HTGR nuclear generating station is described. The design concept was developed under a three-party arrangement among General Atomic Company as nuclear steam supply system (NSSS) supplier, Bechtel Power Corporation as engineer-constructors of the balance of plant (BOP), and Southern California Edison Company as a potential utility user. A typical site in the lower Mojave Desert in southeastern California was assumed for the purpose of establishing the basic site criteria. Various alternative steam cycles, prestressed concrete reactor vessel (PCRV) and component arrangements, fuel-handling concepts, and BOP layouts were developed and investigated in a programme designed to lead to an economic plant design. The paper describes the NSSS and BOP designs, the general plant arrangement and a description of the site and its unique characteristics. The elements of the design are: the use of four steam generators that are twice the capacity of GA's steam generators for its 770-MW(e) and 1100-MW(e) units; the rearrangement of steam and feedwater piping and support within the PCRV; the elimination of the PCRV star foundation to reduce the overall height of the containment building as well as of the PCRV; a revised fuel-handling concept which permits the use of a simplified, grade-level fuel storage pool; a plant arrangement that permits a substantial reduction in the penetration structure around the containment while still minimizing the lengths of cable and piping runs; and the use of two tandem-compound turbine generators. Plant design bases are discussed, and events leading to the changes in concept from the reference 8-loop PCRV 1500-MW(e) HTGR unit are described. (author)

  4. 10 MW, L-Band Klystron for Accelerators

    Read, Michael [Calabazas Creek Research, Inc., San Mateo, CA (United States); Ives, Robert L. [Calabazas Creek Research, Inc., San Mateo, CA (United States); Ferguson, Patrick [Calabazas Creek Research, Inc., San Mateo, CA (United States)

    2016-03-07

    This program developed a 10 MW, pulsed, Annular Beam Klystron (ABK) for accelerator applications. This is an alternative RF source to multiple beam klystrons MBKs), which are more complex and considerably more expensive. The ABK uses a single, annular cathode and a single beam tunnel with fundamental mode cavities. The operating specifications (voltage, efficiency, power, bndwidth, duty, etc.) are the same as for comparable MBKs.

  5. TITAN - a 9 MW, 179 bar pressurised water rig

    Mogford, D.J.; Lee, D.H.

    1987-02-01

    The report describes the TITAN rig built at Winfrith for thermal hydraulic experiments with water at up to 179 bar pressure. A power supply of 9 MW is available. The report describes three typical experiments that show the versatility of the rig. The first is a 25 rod pressurized water reactor fuel bundle critical heat flux experiment, the second is a parallel channel evaporator test and the third is a model jet pump test. (author)

  6. Wet steam wetness measurement in a 10 MW steam turbine

    Kolovratník Michal

    2014-03-01

    Full Text Available The aim of this paper is to introduce a new design of the extinction probes developed for wet steam wetness measurement in steam turbines. This new generation of small sized extinction probes was developed at CTU in Prague. A data processing technique is presented together with yielded examples of the wetness distribution along the last blade of a 10MW steam turbine. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o.

  7. LBNF 1.2 MW TARGET: CONCEPTUAL DESIGN & FABRICATION

    Crowley, Cory F. [Fermilab; Ammigan, K. [Fermilab; Anderson, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Zwaska, R. [Fermilab

    2015-06-29

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield. Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.

  8. LBNF 1.2 MW Target: Conceptual Design & Fabrication

    Crowley, C. [Fermilab; Ammigan, K. [Fermilab; Anderson, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Zwaska, R. [Fermilab

    2015-06-01

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield. Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.

  9. 12MW Horns Rev experiment[Wind farm

    Hasager, C.B.; Pena, A; Mikkelsen, T.; Courtney, M.; Antoniou, I.; Gryning, S.-E.; Hansen, P. [Risoe National Lab., DTU, Wind Energy Dept. (Denmark); Soerensen, P.B. [DONG Energy (Denmark)

    2007-10-15

    The 12MW project with the full title '12 MW wind turbines: the scientific basis for their operation at 70 to 270 m height offshore' has the goal to experimentally investigate the wind and turbulence characteristics between 70 and 270 m above sea level and thereby establish the scientific basis relevant for the next generation of huge 12 MW wind turbines operating offshore. The report describes the experimental campaign at the Horns Rev offshore wind farm at which observations from Doppler Laser LIDAR and SODAR were collected from 3 May to 24 October 2006. The challenges for mounting and operating the instruments on the transformer platform at Horns Rev were overcome by a close collaboration between DONG energy and Risoe National Laboratory DTU. The site is presented. In particular, three tall offshore meteorological masts, up to 70 m tall, provided a useful source of meteorological data for comparison to the remotely sensed wind and turbulence observations. The comparison showed high correlation. The LIDAR and SODAR wind and turbulence observations were collected far beyond the height of the masts (up to 160 m above sea level) and the extended profiles were compared to the logarithmic wind profile. Further studies on this part of the work are on-going. Technical detail on LIDAR and SODAR are provided as well as theoretical work on turbulence and atmospheric boundary layer flow. Selected results from the experimental campaign are reported. (au)

  10. Main trends of upgrading the 1000 MW steam turbine

    Drahy, J.

    1990-01-01

    Parameters are compared for the 1000 MW steam turbine manufactured by the Skoda Works, Czechoslovakia, and turbines in the same power range by other manufacturers, viz. ABB, Siemens/KWU, GEC and LMZ. The Skoda turbine compares well with the other turbines with respect to all design parameters, and moreover, enables the most extensive heat extraction for district heating purposes. The main trends in upgrading this turbine are outlined; in particular, they include an additional increase in the heat extraction, which is made possible by a new design of the low-pressure section or by using a ''satellite'' turbine. The studies performed also indicate that the output of the full-speed saturated steam turbine can be increased to 1300 MW. An experimental turbine representing one flow of the high-pressure part of the 1000 MW turbine is being built on the 1:1 scale. It will serve to verify the methods of calculation of the wet steam flow and to experimentally test the high-pressure part over a wide span of the parameters. (Z.M.). 1 tab., 3 figs., 7 refs

  11. 1000 MW steam turbine for nuclear power station

    Drahy, J.

    1987-01-01

    Skoda Works started the manufacture of the 1000 MW steam turbine for the Temelin nuclear power plant. The turbine will use saturated steam at 3,000 r.p.m. It will allow steam supply to heat water for district heating, this of an output of 893 MW for a three-stage water heating at a temperature of 150/60 degC or of 570 MW for a two-stage heating at a temperature of 120/60 degC. The turbine features one high-pressure and three identical low-pressure stages. The pressure gradient between the high-pressure and the low-pressure parts was optimized as concerns the thermal efficiency of the cycle and the thermodynamic efficiency of the low-pressure part. A value of 0.79 MPa was selected corresponding to the maximum flow rate of the steam entering the turbine. This is 5,495 t/h, the admission steam parameters are 273.3 degC and 5.8 MPa. The feed water temperature is 220.9 degC. It is expected that throughout the life of the turbine, there will be 300 cold starts, 1,000 starts following shutdown for 55 to 88 hours, and 600 starts following shutdown for 8 hours. (Z.M.). 8 figs., 1 ref

  12. Thermodynamic properties of multiferroic Mg doped YbMnO{sub 3}

    Sattibabu, Bhumireddi, E-mail: bsb.satti@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Bhatnagar, A.K., E-mail: anilb42@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); School of Physics, University of Hyderabad, Hyderabad 500046 (India); Samatham, S. Shanmukharao; Singh, D. [Low Temperature Laboratory, UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, M.P. (India); Rayaprol, S. [UGC-DAE Consortium for Scientific Research, Mumbai Centre, BARC Campus, Mumbai 400085 (India); Das, D. [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Siruguri, V. [UGC-DAE Consortium for Scientific Research, Mumbai Centre, BARC Campus, Mumbai 400085 (India); Ganesan, V. [Low Temperature Laboratory, UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, M.P. (India)

    2015-09-25

    Highlights: • Specific heat data shows that T{sub N} increases for Mg doped YbMnO{sub 3} from 83 K to 86 K. • Yb{sub 1−x}Mg{sub x}MnO{sub 3} (x = 0.0 and 0.05) shows multiple magnetic transitions. • RCP are found to be 26.1 J/mol and 27.2 J/mol for YbMnO{sub 3} and Yb{sub 0.95}Mg{sub 0.05}MnO{sub 3}. - Abstract: Calorimetric studies of polycrystalline samples Yb{sub 1−x}Mg{sub x}MnO{sub 3} with x = 0.0 and 0.05 are reported. It is revealed that the Mg doping raises the antiferromagnetic ordering temperature, T{sub N,} from 83 K for x = 0.0 to 86 K for x = 0.05. A ferromagnetic ordering is also observed around 3 K. The broad feature in the specific heat data just above ferromagnetic ordering, is attributed to the Schottky anomaly. The estimated effective molecular fields from the Schottky analysis are H{sub mf} = 3.0 and 3.5 T for YbMnO{sub 3} and Yb{sub 0.95}Mg{sub 0.05}MnO{sub 3}, respectively. High temperature shift of Schottky anomaly with Mg doping indicates increase in effective molecular field of Mn at the Yb 4b site. The data supports that the idea that although molecular field is mainly responsible for the Schottky anomaly in Yb{sub 1−x}Mg{sub x}MnO{sub 3} and Mn{sup 3+} spin ordering also affects it. Magnetic part of the specific heat is obtained by subtracting the lattice contribution estimated using two Debye temperatures. The magnetic entropy change (ΔS{sub mag}) for pure and doped samples are 2.0 J mol{sup −1} K{sup −1} and 2.1 J mol{sup −1} K{sup −1} respectively, while the relative cooling power (RCP) calculate 26.1 J/mol, 27.2 J/mol for a field change of 10 T.

  13. Seismic waves and earthquakes in a global monolithic model

    Roubíček, Tomáš

    2018-03-01

    The philosophy that a single "monolithic" model can "asymptotically" replace and couple in a simple elegant way several specialized models relevant on various Earth layers is presented and, in special situations, also rigorously justified. In particular, global seismicity and tectonics is coupled to capture, e.g., (here by a simplified model) ruptures of lithospheric faults generating seismic waves which then propagate through the solid-like mantle and inner core both as shear (S) or pressure (P) waves, while S-waves are suppressed in the fluidic outer core and also in the oceans. The "monolithic-type" models have the capacity to describe all the mentioned features globally in a unified way together with corresponding interfacial conditions implicitly involved, only when scaling its parameters appropriately in different Earth's layers. Coupling of seismic waves with seismic sources due to tectonic events is thus an automatic side effect. The global ansatz is here based, rather for an illustration, only on a relatively simple Jeffreys' viscoelastic damageable material at small strains whose various scaling (limits) can lead to Boger's viscoelastic fluid or even to purely elastic (inviscid) fluid. Self-induced gravity field, Coriolis, centrifugal, and tidal forces are counted in our global model, as well. The rigorous mathematical analysis as far as the existence of solutions, convergence of the mentioned scalings, and energy conservation is briefly presented.

  14. Monolithic Active Pixel Matrix with Binary Counters (MAMBO) ASIC

    Khalid, Farah F.; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond J.

    2010-01-01

    Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12 keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC 2 shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using μ-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 (micro)m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

  15. Monolithically integrated Helmholtz coils by 3-dimensional printing

    Li, Longguang [Department of Electrical Engineering, University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Abedini-Nassab, Roozbeh; Yellen, Benjamin B., E-mail: yellen@duke.edu [Department of Electrical Engineering, University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Hudson Hall, Durham, North Carolina 27708 (United States)

    2014-06-23

    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6 A of electrical current and produce magnetic field up to 70 G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  16. Monolithically integrated Helmholtz coils by 3-dimensional printing

    Li, Longguang; Abedini-Nassab, Roozbeh; Yellen, Benjamin B.

    2014-01-01

    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6 A of electrical current and produce magnetic field up to 70 G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  17. Characterization and testing of monolithic RERTR fuel plates

    Keiser, D.D.; Jue, J.F.; Burkes, D.E. [Idaho National Lab., Idaho Falls, ID (United States)

    2007-07-01

    Monolithic fuel plates are being developed as a LEU (low enrichment uranium) fuel for application in research reactors throughout the world. These fuel plates are comprised of a U-Mo alloy foil encased in aluminum alloy cladding. Three different fabrication techniques have been looked at for producing monolithic fuel plates: hot isostatic pressing (HIP), transient liquid phase bonding (TLPB), and friction stir welding (FSW). Of these three techniques, HIP and FSW are currently being emphasized. As part of the development of these fabrication techniques, fuel plates are characterized and tested to determine properties like hardness and the bond strength at the interface between the fuel and cladding. Testing of HIP-made samples indicates that the foil/cladding interaction behavior depends on the Mo content in the UMo foil, the measured hardness values are quite different for the fuel, cladding, and interaction zone phase and Ti, Zr and Nb are the most effective diffusion barriers. For FSW samples, there is a dependence of the bond strength at the foil/cladding interface on the type of tool that is employed for performing the actual FSW process. (authors)

  18. Affinity monolith chromatography: A review of general principles and applications.

    Li, Zhao; Rodriguez, Elliott; Azaria, Shiden; Pekarek, Allegra; Hage, David S

    2017-11-01

    Affinity monolith chromatography, or AMC, is a liquid chromatographic method in which the support is a monolith and the stationary phase is a biological-binding agent or related mimic. AMC has become popular for the isolation of biochemicals, for the measurement of various analytes, and for studying biological interactions. This review will examine the principles and applications of AMC. The materials that have been used to prepare AMC columns will be discussed, which have included various organic polymers, silica, agarose, and cryogels. Immobilization schemes that have been used in AMC will also be considered. Various binding agents and applications that have been reported for AMC will then be described. These applications will include the use of AMC for bioaffinity chromatography, immunoaffinity chromatography, dye-ligand affinity chromatography, and immobilized metal-ion affinity chromatography. The use of AMC with chiral stationary phases and as a tool to characterize biological interactions will also be examined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics

    Shi, Zheng; Gao, Xumin; Yuan, Jialei; Zhang, Shuai; Jiang, Yan; Zhang, Fenghua; Jiang, Yuan; Zhu, Hongbo; Wang, Yongjin

    2017-12-01

    A monolithic III-nitride photonic circuit with integrated functionalities was implemented by integrating multiple components with different functions into a single chip. In particular, the III-nitride-on-silicon platform is used as it integrates a transmitter, a waveguide, and a receiver into a suspended III-nitride membrane via a wafer-level procedure. Here, a 0.8-mm-diameter suspended device architecture is directly transferred from silicon to a foreign substrate by mechanically breaking the support beams. The transferred InGaN/GaN multiple-quantum-well diode (MQW-diode) exhibits a turn-on voltage of 2.8 V with a dominant electroluminescence peak at 453 nm. The transmitter and receiver share an identical InGaN/GaN MQW structure, and the integrated photonic circuit inherently works for on-chip power monitoring and in-plane visible light communication. The wire-bonded monolithic photonic circuit on glass experimentally demonstrates in-plane data transmission at 120 Mb/s, paving the way for diverse applications in intelligent displays, in-plane light communication, flexible optical sensors, and wearable III-nitride optoelectronics.

  20. Monolithic Active Pixel Matrix with Binary Counters (MAMBO) ASIC

    Khalid, Farah F.; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond J.; /Fermilab

    2010-11-01

    Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12 keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC{sup 2} shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using {mu}-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 {micro}m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

  1. Monolithically Integrated Ge-on-Si Active Photonics

    Jifeng Liu

    2014-07-01

    Full Text Available Monolithically integrated, active photonic devices on Si are key components in Si-based large-scale electronic-photonic integration for future generations of high-performance, low-power computation and communication systems. Ge has become an interesting candidate for active photonic devices in Si photonics due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS processing. In this paper, we present a review of the recent progress in Ge-on-Si active photonics materials and devices for photon detection, modulation, and generation. We first discuss the band engineering of Ge using tensile strain, n-type doping, Sn alloying, and separate confinement of Γ vs. L electrons in quantum well (QW structures to transform the material towards a direct band gap semiconductor for enhancing optoelectronic properties. We then give a brief overview of epitaxial Ge-on-Si materials growth, followed by a summary of recent investigations towards low-temperature, direct growth of high crystallinity Ge and GeSn alloys on dielectric layers for 3D photonic integration. Finally, we review the most recent studies on waveguide-integrated Ge-on-Si photodetectors (PDs, electroabsorption modulators (EAMs, and laser diodes (LDs, and suggest possible future research directions for large-scale monolithic electronic-photonic integrated circuits on a Si platform.

  2. Monolithically Integrated Flexible Black Phosphorus Complementary Inverter Circuits.

    Liu, Yuanda; Ang, Kah-Wee

    2017-07-25

    Two-dimensional (2D) inverters are a fundamental building block for flexible logic circuits which have previously been realized by heterogeneously wiring transistors with two discrete channel materials. Here, we demonstrate a monolithically integrated complementary inverter made using a homogeneous black phosphorus (BP) nanosheet on flexible substrates. The digital logic inverter circuit is demonstrated via effective threshold voltage tuning within a single BP material, which offers both electron and hole dominated conducting channels with nearly symmetric pinch-off and current saturation. Controllable electron concentration is achieved by accurately modulating the aluminum (Al) donor doping, which realizes BP n-FET with a room-temperature on/off ratio >10 3 . Simultaneously, work function engineering is employed to obtain a low Schottky barrier contact electrode that facilities hole injection, thus enhancing the current density of the BP p-FET by 9.4 times. The flexible inverter circuit shows a clear digital logic voltage inversion operation along with a larger-than-unity direct current voltage gain, while exhibits alternating current dynamic signal switching at a record high frequency up to 100 kHz and remarkable electrical stability upon mechanical bending with a radii as small as 4 mm. Our study demonstrates a practical monolithic integration strategy for achieving functional logic circuits on one material platform, paving the way for future high-density flexible electronic applications.

  3. Monolithic integration of microfluidic channels and semiconductor lasers

    Cran-McGreehin, Simon J.; Dholakia, Kishan; Krauss, Thomas F.

    2006-08-01

    We present a fabrication method for the monolithic integration of microfluidic channels into semiconductor laser material. Lasers are designed to couple directly into the microfluidic channel, allowing submerged particles pass through the output beams of the lasers. The interaction between particles in the channel and the lasers, operated in either forward or reverse bias, allows for particle detection, and the optical forces can be used to trap and move particles. Both interrogation and manipulation are made more amenable for lab-on-a-chip applications through monolithic integration. The devices are very small, they require no external optical components, have perfect intrinsic alignment, and can be created with virtually any planar configuration of lasers in order to perform a variety of tasks. Their operation requires no optical expertise and only low electrical power, thus making them suitable for computer interfacing and automation. Insulating the pn junctions from the fluid is the key challenge, which is overcome by using photo-definable SU8-2000 polymer.

  4. CMOS monolithic active pixel sensors for high energy physics

    Snoeys, W., E-mail: walter.snoeys@cern.ch

    2014-11-21

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon are only now starting to make their way into high energy physics. Two major requirements are radiation tolerance and low power consumption. For the most extreme radiation levels, signal charge has to be collected by drift from a depletion layer onto a designated collection electrode without losing the signal charge elsewhere in the in-pixel circuit. Low power consumption requires an optimization of Q/C, the ratio of the collected signal charge over the input capacitance [1]. Some solutions to combine sufficient Q/C and collection by drift require exotic fabrication steps. More conventional solutions up to now require a simple in-pixel readout circuit. Both high voltage CMOS technologies and Monolithic Active Pixel Sensors (MAPS) technologies with high resistivity epitaxial layers offer high voltage diodes. The choice between the two is not fundamental but more a question of how much depletion can be reached and also of availability and cost. This paper tries to give an overview.

  5. Development of stable monolithic wide-field Michelson interferometers.

    Wan, Xiaoke; Ge, Jian; Chen, Zhiping

    2011-07-20

    Bulk wide-field Michelson interferometers are very useful for high precision applications in remote sensing and astronomy. A stable monolithic Michelson interferometer is a key element in high precision radial velocity (RV) measurements for extrasolar planets searching and studies. Thermal stress analysis shows that matching coefficients of thermal expansion (CTEs) is a critical requirement for ensuring interferometer stability. This requirement leads to a novel design using BK7 and LAK7 materials, such that the monolithic interferometer is free from thermal distortion. The processes of design, fabrication, and testing of interferometers are described in detail. In performance evaluations, the field angle is typically 23.8° and thermal sensitivity is typically -2.6×10(-6)/°C near 550 nm, which corresponds to ∼800 m/s/°C in the RV scale. Low-cost interferometer products have been commissioned in multiple RV instruments, and they are producing high stability performance over long term operations. © 2011 Optical Society of America

  6. Immobilization of trypsin on sub-micron skeletal polymer monolith

    Yao Chunhe [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Qi Li, E-mail: qili@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hu Wenbin [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Wang Fuyi [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Yang Gengliang [College of Pharmacy, Hebei University, Baoding 071002 (China)

    2011-04-29

    A new kind of immobilized trypsin reactor based on sub-micron skeletal polymer monolith has been developed. Covalent immobilization of trypsin on this support was performed using the epoxide functional groups in either a one- or a multi-step reaction. The proteolytic activity of the immobilized trypsin was measured by monitoring the formation of N-{alpha}-benzoyl-L-arginine (BA) which is the digestion product of a substrate N-{alpha}-benzoyl-L-arginine ethyl ester (BAEE). Results showed that the digestion speed was about 300 times faster than that performed in free solution. The performance of such an enzyme reactor was further demonstrated by digesting protein myoglobin. It has been found that the protein digestion could be achieved in 88 s at 30 deg. C, which is comparable to 24 h digestion in solution at 37 {sup o}C. Furthermore, the immobilized trypsin exhibits increased stability even after continuous use compared to that in free solution. The present monolithic enzyme-reactor provides a promising platform for the proteomic research.

  7. Up-conversion luminescence of Er3+/Yb3+/Nd3+-codoped tellurite glasses

    Lu Longjun; Nie Qiuhua; Xu Tiefeng; Dai Shixun; Shen Xiang; Zhang Xianghua

    2007-01-01

    Up-conversion luminescence and energy transfer (ET) processes in Nd 3+ -Yb 3+ -Er 3+ triply doped TeO 2 -ZnO-Na 2 O glasses have been studied under 800 nm excitation. Intense green up-conversion emissions around 549 nm, which can be attributed to the Er 3+ : 4 S 3/2 →4 I 15/2 transition, are observed in triply doped samples. In contrast, the green emissions are hardly observed in Er 3+ singly doped and Er 3+ -Yb 3+ codoped samples under the same condition. Up-conversion luminescence intensity exhibits dependence of Yb 2 O 3 -concentration and Nd 2 O 3 -concentration. Up-conversion mechanism in the triply doped glasses under 800 nm pump is discussed by analyzing the ET among Nd 3+ , Yb 3+ and Er 3+ . And a possible up-conversion mechanism based on sequential ET from Nd 3+ to Er 3+ through Yb 3+ is proposed for green and red up-conversion emission processes

  8. Characterizations of Pr-doped Yb3Al5O12 single crystals for scintillator applications

    Yoshida, Yasuki; Shinozaki, Kenji; Igashira, Takuya; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-04-01

    Yb3Al5O12 (YbAG) single crystals doped with different concentrations of Pr were synthesized by the Floating Zone (FZ) method. Then, we evaluated their basic optical and scintillation properties. All the samples showed photoluminescence (PL) with two emission bands appeared approximately 300-500 nm and 550-600 nm due to the charge transfer luminescence of Yb3+ and intrinsic luminescence of the garnet structure, respectively. A PL decay profile of each sample was approximated by a sum of two exponential decay functions, and the obtained decay times were 1 ns and 3-4 ns. In the scintillation spectra, we observed emission peaks in the ranges from 300 to 400 nm and from 450 to 550 nm for all the samples. The origins of these emissions were attributed to charge transfer luminescence of Yb3+ and intrinsic luminescence of the garnet structure, respectively. The scintillation decay times became longer with increasing the Pr concentrations. Among the present samples, the 0.1% Pr-doped sample showed the lowest scintillation afterglow level. In addition, pulse height spectrum of 5.5 MeV α-rays was demonstrated using the Pr-doped YbAG, and we confirmed that all the samples showed a full energy deposited peak. Above all, the 0.1% Pr-doped sample showed the highest light yield with a value of 14 ph/MeV under α-rays excitation.

  9. Thermal and electron transport studies on the valence fluctuating compound YbNiAl4

    Falkowski, M.; Kowalczyk, A.

    2018-05-01

    We report the thermoelectric power S and thermal conductivity κ measurements on the valence fluctuating compound YbNiAl4, furthermore taking into account the impact of the applied magnetic field. We discuss our new results with revisiting the magnetic [χ(T)], transport [ρ(T)], and thermodynamic [Cp(T)] properties in order to better understand the phenomenon of thermal and electron transport in this compound. The field dependence of the magnetoresistivity data is also given. The temperature dependence of thermoelectric power S(T) was found to exhibit a similar behaviour as expected for Yb-based compounds with divalent or nearly divalent Yb ions. In addition, the values of total thermal conductivity as a function of temperature κ(T) of YbNiAl4 are fairly low compared to those of pure metals which may be linked to the fact that the conduction band is perturbed by strong hybridization. A deeper analysis of the specific heat revealed the low-T anomaly of the ratio Cp(T)/T3, most likely associated with the localized low-frequency oscillators in this alloy. In addition, the Kadowaki-Woods ratio and the Wilson ratio are discussed with respect to the electronic correlations in YbNiAl4.

  10. Origin of quantum criticality in Yb-Al-Au approximant crystal and quasicrystal

    Watanabe, Shinji; Miyake, Kazumasa

    2016-01-01

    To get insight into the mechanism of emergence of unconventional quantum criticality observed in quasicrystal Yb 15 Al 34 Au 51 , the approximant crystal Yb 14 Al 35 Au 51 is analyzed theoretically. By constructing a minimal model for the approximant crystal, the heavy quasiparticle band is shown to emerge near the Fermi level because of strong correlation of 4f electrons at Yb. We find that charge-transfer mode between 4f electron at Yb on the 3rd shell and 3p electron at Al on the 4th shell in Tsai-type cluster is considerably enhanced with almost flat momentum dependence. The mode-coupling theory shows that magnetic as well as valence susceptibility exhibits χ ∼ T -0.5 for zero-field limit and is expressed as a single scaling function of the ratio of temperature to magnetic field T/B over four decades even in the approximant crystal when some condition is satisfied by varying parameters, e.g., by applying pressure. The key origin is clarified to be due to strong locality of the critical Yb-valence fluctuation and small Brillouin zone reflecting the large unit cell, giving rise to the extremely-small characteristic energy scale. This also gives a natural explanation for the quantum criticality in the quasicrystal corresponding to the infinite limit of the unit-cell size. (author)

  11. Bulk and surface electron transport in topological insulator candidate YbB{sub 6-δ}

    Glushkov, Vladimir V.; Demishev, Sergey V.; Sluchanko, Nikolay E. [Prokhorov General Physics Institute of RAS, Vavilov str. 38, 119991, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Institutskii per. 9, 141700, Dolgoprudny, Moscow Region (Russian Federation); Bozhko, Alexey D.; Bogach, Alexey V.; Semeno, Alexey V.; Voronov, Valeriy V. [Prokhorov General Physics Institute of RAS, Vavilov str. 38, 119991, Moscow (Russian Federation); Dukhnenko, Anatoliy V.; Filipov, Volodimir B.; Shitsevalova, Natalya Yu. [Frantsevich Institute for Problems of Materials Science NAS, Krzhyzhanovsky str. 3, 03680, Kiev (Ukraine); Kondrin, Mikhail V. [Vereshchagin Institute of High Pressure Physics of RAS, 142190, Troitsk, Moscow (Russian Federation); Kuznetsov, Alexey V.; Sannikov, Ilia I. [National Research Nuclear University ' ' MEPhI' ' , Kashirskoe Shosse 31, 115409, Moscow (Russian Federation)

    2016-04-15

    We report the study of transport and magnetic properties of the YbB{sub 6-δ}single crystals grown by inductive zone melting. A strong disparity in the low temperature resistivity, Seebeck and Hall coefficients is established for the samples with the different level of boron deficiency. The effective parameters of the charge transport in YbB{sub 6-δ} are shown to depend on the concentration of intrinsic defects, which is estimated to range from 0.09% to 0.6%. The pronounced variation of Hall mobility μ{sub H} found for bulk holes is induced by the decrease of transport relaxation time from τ ∼ 7.7 fs for YbB{sub 5.994} to τ ∼ 2.2 fs for YbB{sub 5.96}. An extra contribution to conductivity from electrons with μ{sub H}∼ -1000 cm{sup 2} V{sup -1} s{sup -1} and the very low concentration n /n{sub Yb}∼ 10{sup -6} discovered below 20 K for all the single crystals under investigation is suggested to arise from the surface electron states appeared in the inversion layer due to the band bending. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Yb3+:Sr5(VO4)3F: Crystal growth, spectroscopic characterization and laser development

    Bustamante, Andrea Nora Pino

    1999-01-01

    Crystal growth, spectroscopic characterization and laser development of Yb 3+ :SVAP [Sr 5 (VO 4 ) 3 F] was performed to demonstrate for the first time, operation of tunable laser emission centered at 1120 nm. Initially, SVAP crystals were grown with high dopant concentrations, up to 6.0 mol % of Yb 2 O 3 in the melt, in order to investigate the material for potential laser operation at a new laser wavelength. Additional research was performed to alleviate highly doped SVAP crystals of defects previously observed. Basic spectroscopic characterization including absorption and luminescent properties were measured to better understand the behavior of Yb 3+ ions in SVAP. Based upon these studies, discussion of the 1120 nm laser transition is presented as it arises from a ground state vibrational level. Investigations of the charge compensation process and the optical parameters as a function of dopant concentration are also presented. The laser development of Yb 3+ :SVAP included continuous and pulsed modes of operation of the 1044 nm and 1120 nm transitions. Initial laser action of the 1044 nm transition was achieved using a Yi: Saphire laser pump source in order to compare with previously results. Further development of a diode-pumped Yb 3+ :SVAP laser system demonstrated continuously tunable laser operation from 1103 nm for the first time. The laser investigations also proved that this high gain media does provide continuous wave laser action at 1044 nm and 1120 simultaneously without significant gain depletion. (author)

  13. Controllable synthesis and crystal structure determined upconversion luminescence properties of Tm{sup 3+} (Er{sup 3+}) ions doped YbF{sub 3} and NaYbF{sub 4} crystals

    Jiang, Tao [Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China); Qin, Weiping, E-mail: wpqin@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Zhou, Jun [Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China)

    2014-04-01

    Graphical abstract: - Highlights: • The synthesis of YbF{sub 3} and NaYbF{sub 4} crystals was successfully fulfilled by hydrothermal method. • The phase and morphology of products were adjusted by changing the hydrothermal conditions. • Relatively enhanced ultraviolet upconversion emissions were observed in YbF{sub 3} nanocrystals. • The crystalline phase impact on the upconversion luminescence was systematically studied. - Abstract: The synthesis of YbF{sub 3} and NaYbF{sub 4} crystals was successfully fulfilled by a facial hydrothermal method. The phase and morphology of the products were adjusted by changing the surfactant additive and fluorine source and tuning the pH value of the initial solution. The products with various morphologies range from octahedral nanoparticles, corn-like nanobundles, nanospheres, microrods, and hollow microprisms were prepared at different conditions. The growth mechanism of these products has been systematically studied. Impressively, relatively enhanced high order ultraviolet (UV) upconversion (UC) luminescence was observed in Tm{sup 3+} (Er{sup 3+}) ions doped YbF{sub 3} nanocrystals (NCs) compared with NaYbF{sub 4} microcrystals under the excitation of 980 nm infrared laser. The investigation results reveal that the crystal symmetry of matrix has significant effect on the spectra and lifetimes of the doping lanthanide ions. The simply synthesized water soluble YbF{sub 3} NCs with efficient UV UC luminescence may find potential application in biochemistry.

  14. Direct Comparison of Yb.sup.3+./sup.:CaF.sub.2./sub. and heavily doped Yb.sup.3+./sup.:YLF as laser media at room temperature

    Pirri, A.; Alderighi, D.; Toci, G.; Vannini, M.; Nikl, Martin; Sato, H.

    2009-01-01

    Roč. 17, č. 20 (2009), s. 18312-18319 ISSN 1094-4087 Grant - others:AV ČR(CZ) M100100910 Institutional research plan: CEZ:AV0Z10100521 Keywords : Yb 3+ :YLF * Yb 3+ :CaF 2 * solid state laser * diode pumped Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.278, year: 2009

  15. Facile synthesis of NaYF4:Yb, Ln/NaYF4:Yb core/shell upconversion nanoparticles via successive ion layer adsorption and one-pot reaction technique

    Zeng, Q.; Xue, B.; Zhang, Y.; Wang, D.; Liu, X.; Tu, L.; Zhao, H.; Kong, X.; Zhang, H.

    2013-01-01

    The facile one-pot synthesis of NaYF4:Yb, Ln/NaYF4:Yb core/shell (CS) upconversion nanoparticles (UCNPs) was firstly developed through the successive ion layer adsorption and reaction (SILAR) technique, which represents an attractive alternative to conventional synthesis utilizing the chloride of Ln

  16. The contribution of valence unstable ytterbium states into kinetic properties of YbNi{sub 2-x}Ge{sub 2+x} and YbCu{sub 2-x}Si{sub 2+x}

    Kuzhel, B.C. [Department of Physics, Ivan Franko National University of Lviv, 50 Dragomanow Str., 79005, Lviv (Ukraine)]. E-mail: kuzhelb@org.lviv.net; Shcherba, I.D. [Department of Physics, Ivan Franko National University of Lviv, 50 Dragomanow Str., 79005, Lviv (Ukraine); Institute of Techniques, Academy of Pedagogy, Podchorozych 2, 30-084, Krakow (Poland); Kravchenko, I.I. [Department of Physics, University of Florida, P.O. Box 118440, Gainesville, FL 32611 (United States)]. E-mail: kravch@phys.ufl.edu

    2006-11-30

    The intermetalic YbNi{sub 2-x}Ge{sub 2+x} (-0.25>=x>=0.25) and YbCu{sub 2-x}Si{sub 2+x} (-0.20>=x>=0.20) alloy systems (CeGa{sub 2}Al{sub 2} -type crystal structure) were studied by measuring X-ray absorption and diffraction at room temperatures as well as electrical resistivity and thermopower in the 4.2-300K temperature range. The temperature dependence of the contribution of valence unstable Yb ions to the total electrical resistance has been analyzed. The qualitative estimation of this contribution has been performed by utilizing the following equation:{delta}{rho}{sub Yb}(T)={rho}{sub exp}(T)-{rho}{sub YbCu{sub 2}Ge{sub 2}}(T)-{delta}{rho}{sub 4.2K},where {delta}{rho}{sub YbCu{sub 2}Ge{sub 2}}(T) is the temperature dependence of YbCu{sub 2}Ge{sub 2} electrical resistance, {delta}{rho}{sub 4.2}={rho}{sub 4.2}(exp)-{rho}{sub 4.2}(YbCu{sub 2}Ge{sub 2})

  17. The contribution of valence unstable ytterbium states into kinetic properties of YbNi2-xGe2+x and YbCu2-xSi2+x

    Kuzhel, B.C.; Shcherba, I.D.; Kravchenko, I.I.

    2006-01-01

    The intermetalic YbNi 2-x Ge 2+x (-0.25>=x>=0.25) and YbCu 2-x Si 2+x (-0.20>=x>=0.20) alloy systems (CeGa 2 Al 2 -type crystal structure) were studied by measuring X-ray absorption and diffraction at room temperatures as well as electrical resistivity and thermopower in the 4.2-300K temperature range. The temperature dependence of the contribution of valence unstable Yb ions to the total electrical resistance has been analyzed. The qualitative estimation of this contribution has been performed by utilizing the following equation:Δρ Yb (T)=ρ exp (T)-ρ YbCu 2 Ge 2 (T)-Δρ 4.2K ,where Δρ YbCu 2 Ge 2 (T) is the temperature dependence of YbCu 2 Ge 2 electrical resistance, Δρ 4.2 =ρ 4.2 (exp)-ρ 4.2 (YbCu 2 Ge 2 )

  18. The 2009 MW MW 6.1 L'Aquila fault system imaged by 64k earthquake locations

    Valoroso, Luisa

    2016-01-01

    On April 6 2009, a MW 6.1 normal-faulting earthquake struck the axial area of the Abruzzo region in central Italy. We investigate the complex architecture and mechanics of the activated fault system by using 64k high-resolution foreshock and aftershock locations. The fault system is composed by two major SW dipping segments forming an en-echelon NW trending system about 50 km long: the high-angle L’Aquila fault and the listric Campotosto fault, located in the first 10 km depth. From the beginning of 2009, fore shocks activated the deepest portion of the main shock fault. A week before the MW 6.1 event, the largest (MW 4.0) foreshock triggered seismicity migration along a minor off-fault segment. Seismicity jumped back to the main plane a few hours before the main shock. High-precision locations allowed to peer into the fault zone showing complex geological structures from the metre to the kilometre scale, analogous to those observed by field studies and seismic profiles. Also, we were able to investigate important aspects of earthquakes nucleation and propagation through the upper crust in carbonate-bearing rocks such as: the role of fluids in normal-faulting earthquakes; how crustal faults terminate at depths; the key role of fault zone structure in the earthquake rupture evolution processes.

  19. Infrared to near-infrared and visible upconversion mechanisms in LiYF 4: Yb3+, Ho3+

    Martín-Rodríguez, R.; Meijerink, A.|info:eu-repo/dai/nl/075044986

    2014-01-01

    Upconversion materials have regained interest in recent years due to their potential to enhance the efficiency of solar cells. The research has focused on lanthanide based upconverters, especially Er3+- and Yb 3+-doped materials. In this paper we report Ho3+ and Yb3+ upconversion after excitation

  20. Twist and YB-1 gene expression in cervical cancer and precancerous tissue and their correlation with cell invasion

    Qin Tian

    2017-04-01

    Full Text Available Objective: To study the correlation of Twist and YB-1 gene expression in cervical cancer and precancerous tissue with cell invasion. Methods: Cervical cancer tissue, precancerous tissue and normal cervical tissue surgically removed in our hospital between May 2013 and April 2015 were collected; immunohistochemical staining kits were used to detect the positive protein expression rate of Twist and YB-1 gene; fluorescence quantitative PCR kits were used to detect Twist, YB-1 and invasion gene mRNA expression. Results: Twist and YB-1 mRNA expression and positive protein expression rate as well as USP22, Rab11, Rac1 and ANXA5 mRNA expression in cervical cancer tissue and precancerous tissue were significantly higher than those in normal cervical tissue, Twist and YB-1 mRNA expression and positive protein expression rate as well as USP22, Rab11, Rac1 and ANXA5 mRNA expression in cervical cancer tissue were significantly higher than those in precancerous tissue; USP22, Rab11, Rac1 and ANXA5 mRNA expression in cervical cancer tissue and precancerous tissue with positive Twist and YB-1 expression were significantly higher than those in cervical cancer tissue and precancerous tissue with negative Twist and YB-1 expression. Conclusion: Highly expressed Twist and YB-1 in cervical cancer and precancerous tissue can promote cell invasion.

  1. Spectroscopic properties of Er3+ and Yb3+ co-doped glass ceramics containing SrF2 nanocrystals

    Qiao Xvsheng; Fan Xianping; Wang Minquan; Zhang Xianghua

    2009-01-01

    The spectroscopic properties of Er 3+ /Yb 3+ co-doped 50SiO 2 -10Al 2 O 3 -20ZnF 2 -20SrF 2 glass and glass ceramic containing SrF 2 nanocrystals were investigated. The formation of SrF 2 nanocrystals in the glass ceramic was confirmed by XRD. The oscillator strengths for several transitions of the Er 3+ ions in the glass ceramic have been obtained and the Judd-Ofelt parameters were then determined. The XRD result and Judd-Ofelt parameters suggested that Er 3+ and Yb 3+ ions had efficiently enriched in the SrF 2 nanocrystals in the glass ceramic. The lifetime of excited states has been used to reveal the surroundings of luminescent Er 3+ and Yb 3+ and energy transfer (ET) mechanism between Er 3+ and Yb 3+ . Much stronger upconversion luminescence and longer lifetime of the Er 3+ /Yb 3+ co-doped glass ceramic were observed in comparison with the Er 3+ /Yb 3+ co-doped glass, which could be ascribed to more efficient ET from Yb 3+ to Er 3+ due to the enrichment of Yb 3+ and Er 3+ and the shortening of the distance between lanthanide ions in the precipitated SrF 2 nanocrystals.

  2. Optical properties of silica-coated Y2O3:Er,Yb nanoparticles in the presence of polyvinylpyrrolidone

    Fujii, Kunio; Kitamoto, Yoshitaka; Hara, Masahiko; Odawara, Osamu; Wada, Hiroyuki

    2014-01-01

    The optical properties of polyvinylpyrrolidone (PVP)-adsorbed and silica-coated Y 2 O 3 :Er,Yb nanoparticles produced by using PVP were studied for potential bio-applications of upconversion nanoparticles. We utilized PVP to better disperse Y 2 O 3 :Er,Yb nanoparticles in solution and to prepare silica-coated Y 2 O 3 :Er,Yb nanoparticles. The fluorescent intensity of PVP-adsorbed Y 2 O 3 :Er,Yb nanoparticles was 1.25 times higher than non-adsorbed Y 2 O 3 :Er,Yb nanoparticles, which was probably due to surface defects in Y 2 O 3 :Er,Yb nanoparticles being covered by the PVP. However, the fluorescent intensity of silica-coated Y 2 O 3 :Er,Yb nanoparticles decreased as silica layer thickness increased. This could be ascribed to the higher vibrational energy of PVP than that of the silica structure. Therefore, the optimum silica layer thickness is important in bio-applications to avoid deterioration of the optical properties of Y 2 O 3 :Er,Yb nanoparticles. - Highlights: • We prepared the silica-coated upconversion nanoparticles by using PVP. • We showed that PVP played an important role in coating nanoparticles. • PL intensity of silica-coated nanoparticles decreased as silica layer thickness increased

  3. Polarographic reduction of Yb/sup +3/ benzoate and salicylate complexes in aqueous-nonaqueous mixtures at D. M. E

    Zutshi, K; Gupta, K C [Rajasthan Univ., Jaipur (India). Dept. of Chemistry

    1977-01-01

    The reduction of Yb/sup +3/ and Yb/sup +3/-benzoate and salicylate complexes was studied polarographically at constant ionic strength at 25 +- 0.02/sup 0/C in aqueous-nonaqueous mixtures. The reduction was found to be diffusion-controlled, but the electrode process was irreversible in all cases. The kinetic parameters were determined by Koutecky's method.

  4. Cooperative up-conversion processes in SrAl{sub 4}O{sub 7}:Yb and SrAl{sub 4}O{sub 7}:Yb,Tb and their dependence on charge compensation by Na

    Puchalska, M., E-mail: malgorzata.puchalska@chem.uni.wroc.pl [Faculty of Chemistry, University of Wroclaw, 14, F. Joliot-Curie Street, 50-383 Wroclaw (Poland); Zych, E. [Faculty of Chemistry, University of Wroclaw, 14, F. Joliot-Curie Street, 50-383 Wroclaw (Poland); Watras, A. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 2 Okólna Street, 50-422 Wrocław (Poland)

    2017-03-15

    A detailed analysis of the luminescence behaviour of Yb{sup 3+}-doped and Yb{sup 3+}-Tb{sup 3+} co-doped strontium aluminates powders: Sr{sub 1-x}Yb{sub x}Al{sub 4}O{sub 7} (x=0.002–0.07) and Sr{sub 1-x-y}Yb{sub x}Tb{sub y}Al{sub 4}O{sub 7} (x=0.03; y=0.002–0.02) were performed. The studies of singly doped samples show that direct excitation of Yb{sup 3+} by means of {sup 2}F{sub 7/2}-{sup 2}F{sub 5/2} absorption at 900–980 nm leads to Stokes Yb{sup 3+} emission in the range of 970–1130 nm as well as bluish-green Yb{sup 3+} cooperative luminescence (CL) whose energy doubles that of the NIR one. The effect of activator concentration and charge compensation through Na{sup +} co-doping on both Yb{sup 3+} emissions were also studied. It was found that Na{sup +} addition enhanced Stokes Yb{sup 3+} photoluminescence brightness, while the cooperative emission intensity appeared to be lower. In doubly Yb{sup 3+}-Tb{sup 3+} doped materials excitation at 980 nm led to cooperative sensitization of the Tb{sup 3+} {sup 5}D{sub 4} level giving rise to its green {sup 5}D{sub 4}→{sup 7}F{sub J} (J={sup 7}F{sub 6}-{sup 7}F{sub 3}) up-conversion luminescence with the dominant component around 542 nm. The cooperative energy transfer (CET) mechanism was proposed basing on the results obtained from emission and absorption spectra, decay kinetics as well as the dependence of UC luminescence intensity on NIR excitation power.

  5. Continuous-wave diode-pumped Yb 3+:LYSO tunable laser

    Du, Juan; Liang, Xiaoyan; Xu, Yi; Li, Ruxin; Yan, Chengfeng; Zhao, Guangjun; Su, Liangbi; Xu, Jun; Xu, Zhizhan

    2007-01-01

    A new alloyed crystal, Yb:LYSO, has been grown by the Czochralski method in our institute for the first time, and its effective diode-pumped cw tunable laser action was demonstrated. The alloyed crystal retains excellent laser properties of LSO with reduced growth cost, as well as the favorable growth properties of YSO. With a 5-at.% Yb:LYSO sample, we achieved 2.84 W output power at 1085 nm and a slope efficiency of 63.5%. And its laser wavelength could be tuned over a range broader than 80nm, from 1030nm to 1111 nm. This is the broadest tunable range achieved for Yb:LYSO laser, as far as we know.

  6. Investigation of luminescence properties in SiO2: Tb, Yb upconversion inverse opal

    Yang Zhengwen; Yan Dong; Song Zhiguo; Zhou Dacheng; Yu Xue; Yang Yong; Yin Zhaoyi; Yan Lei; Wang Rongfei; Wu Hangjun; Qiu Jianbei

    2012-01-01

    The SiO 2 : Tb, Yb inverse opals with photonic band gap at 465 or 543 nm were prepared, and an effect of photonic band gap on upconversion spontaneous emission from Tb 3+ was investigated. The results show that the photonic band gap has a significant influence on the upconversion emission of the SiO 2 : Tb, Yb inverse opals. The upconversion luminescence of the Tb 3+ ions is suppressed in the inverse opal compared with the luminescence of that of the reference sample. - Highlights: ► Upconversion emission from Tb 3+ was observed in the SiO 2 : Tb, Yb inverse opal. ► UC emission of Tb 3+ was modulated by controlling the structure of inverse opal. ► UC emission of Tb 3+ was depressed in the inverse opal.

  7. Yb:Y2O3 transparent ceramics processed with hot isostatic pressing

    Wang, Jun; Ma, Jie; Zhang, Jian; Liu, Peng; Luo, Dewei; Yin, Danlei; Tang, Dingyuan; Kong, Ling Bing

    2017-09-01

    Highly transparent 5 at.% Yb:Y2O3 ceramics were fabricated by using a combination method of vacuum sintering and hot isostatic pressing (HIP). Co-precipitated Yb:Y2O3 powders, with 1 at.% ZrO2 as the sintering aid, were used as the starting material. The Yb:Y2O3 ceramics, vacuum sintered at 1700 °C for 2 h and HIPed at 1775 °C for 4 h, exhibited small grain size of 1.9 μm and highly dense microstructure. In-line optical transmittance of the ceramics reached 83.4% and 78.9% at 2000 and 600 nm, respectively. As the ceramic slab was pumped by a fiber-coupled laser diode at about 940 nm, a maximum output power of 0.77 W at 1076 nm was achieved, with a corresponding slope efficiency of 10.6%.

  8. Cr and Yb markers determination in animal feces by energy dispersive X-ray fluorescence

    Almeida, Eduardo de; Senicato, Luis A; Nascimento Filho, Virgilio F.; Gomide, Catarina A.

    2007-01-01

    Chromium and Ytterbium elements are utilized in animal nutritional studies as markers. This paper describes an analytical method for Cr and Yb determination in solid buffalo feces sample using standard addition method and energy dispersive X-ray spectrometry (EDXRF) technique. One gram dried sample was pressed manually in an XRF sample cup with Mylar film (6.3 μm thickness) in the bottom. The experimental conditions were: Mo target X-ray tube with Zr filter, operated at 25 kV/10 mA, and 500 s of acquisition time. The limits of detection for Cr and Yb were 16.6 and 11.4 mg/kg, respectively. This methodology has showed appropriated for simultaneous Cr and Yb determination as marker in animal feces. (author)

  9. Cr and Yb markers determination in animal feces by energy dispersive X-ray fluorescence

    Almeida, Eduardo de; Senicato, Luis A; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear (LIN)]. E-mail: edualm@usp.br; Gomide, Catarina A. [Universidade de Sao Paulo (USP), Pirassununga, SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos (FZEA). Dept. de Zootecnia]. E-mail: cbgomide@usp.br

    2007-07-01

    Chromium and Ytterbium elements are utilized in animal nutritional studies as markers. This paper describes an analytical method for Cr and Yb determination in solid buffalo feces sample using standard addition method and energy dispersive X-ray spectrometry (EDXRF) technique. One gram dried sample was pressed manually in an XRF sample cup with Mylar film (6.3 {mu}m thickness) in the bottom. The experimental conditions were: Mo target X-ray tube with Zr filter, operated at 25 kV/10 mA, and 500 s of acquisition time. The limits of detection for Cr and Yb were 16.6 and 11.4 mg/kg, respectively. This methodology has showed appropriated for simultaneous Cr and Yb determination as marker in animal feces. (author)

  10. Fluorescence properties of Yb3+-Er3+ co-doped phosphate glasses containing silver nanoparticles

    Martínez Gámez, Ma A.; Vallejo H, Miguel A.; Kiryanov, A. V.; Licea-Jiménez, L.; Lucio M, J. L.; Pérez-García, S. A.

    2018-04-01

    Er3+-Yb3+ co-doped phosphate glasses containing silver nitrate (SN), were fabricated. Transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) analyses were used to evidence the nucleation and presence of silver nanoparticles (SNP). The basic parameters of the glasses were inspected by means of absorption and fluorescence spectra, and fluorescence lifetimes under excitation at 916 nm (in-band of Yb3+), and at 406 nm (in-band of surface plasmon resonance given by the presence of SNP). The spectra as well as estimates for the basic parameters defining the lasing/amplifying potential of the glasses were studied as a function of SN concentration. The experimental results indicate that by increasing the SN content an enhancement of Er3+/Yb3+ fluorescence takes place.

  11. Optical properties and thermal stability of LaYbO3 ternary oxide for high-k dielectric application

    Su, Wei-tao; Yang, Li; Li, Bin

    2011-01-01

    A new ternary rare oxide dielectric LaYbO3 film had been prepared on silicon wafers and quartz substrates by reactive sputtering method using a La-Yb metal target. A range of analysis techniques was performed to determine the optical band gap, thermal stability, and electrical property of the deposited samples. It was found the band gap of LaYbO3 film was about 5.8 eV. And the crystallization temperature for rapid thermal annealing (20 s) was between 900 and 950 °C. X-ray photoelectron spectroscopy results indicate the formation of the SiO2 and silicate in the interface between silicon wafer and LaYbO3 film. The dielectric constant is about 23 from the calculation of capacitance-voltage curve, which is comparable higher than previously reported La2O3 or Yb2O3 film.

  12. Study of subcellular distribution of /sup 169/Yb and /sup 111/In in tumor and liver

    Ando, A; Takeshita, M; Hiraki, T [Kanazawa Univ. (Japan). School of Paramedicine; Ando, Itsuko; Hisada, Kinichi

    1977-03-01

    Rats were implanted with Yoshida sarcoma and hepatoma AH109A; and mice were implanted with Ehrlich tumor. /sup 169/Yb-citrate and /sup 111/In-citrate were injected into the rats intravenously and into the mice intraperitoneally. Ten minutes to 48 hours after the administration of /sup 169/Yb-citrate and /sup 111/In-citrate, the animals were sacrificed and the tumor tissues and liver were excised. Subcellular fractionation of tumor tissues and liver was carried out according to the method of Hogeboom and Schneider. The /sup 169/Yb and /sup 111/In of each fraction were counted by a well type scintillation counter, and the protein of each fraction was measured according to Lowry's method. In Yoshida sarcoma and Ehrlich tumor, most of the radioactivity was localized in the supernatant fraction, and a small amount of radioactivity was accumulated in the mitochondrial fraction (lysosome is contained in this fraction). But, in the liver, most of the radioactivity was concentrated in the mitochondrial fraction, and the radioactivity of this fraction was increased with the passage of time after administration. Twenty-four hours later, about 50% of the total radioactivity was accumulated in this fraction. In the case of hepatoma AH109A, radioactivity of the mitochondrial fraction was increased with time after administration, and about 30% of total radioactivity was concentrated in this fraction 24 hours after administration. From these results it is concluded that the lysosome does not play an important role in the concentration of /sup 169/Yb and /sup 111/In in the tumor, and that the lysosome plays an important role in the concentration of /sup 169/Yb and /sup 111/In in the liver. In the case of hepatoma AH109A it is presumed that the lysosome plays a very important role in the concentration of /sup 169/Yb and /sup 111/In, in the tumor as hepatoma AH109A retains some nature of liver.

  13. Agglomerated polymer monoliths with bimetallic nano-particles as flow-through micro-reactors

    Floris, P.; Twamley, B.; Nesterenko, P.N.; Paull, B.; Connolly, D.

    2012-01-01

    Polymer monoliths in capillary format have been prepared as solid supports for the immobilisation of platinum/palladium bimetallic nano-flowers. Optimum surface coverage of nano-flowers was realised by photografting the monoliths with vinyl azlactone followed by amination with ethylenediamine prior to nano-particle immobilisation. Field emission SEM imaging was used as a characterisation tool for evaluating nano-particle coverage, together with BET surface area analysis to probe the effect of nano-particle immobilisation upon monolith morphology. Ion exchange chromatography was also used to confirm the nature of the covalent attachment of nano-flowers on the monolithic surface. In addition, EDX and ICP analyses were used to quantify platinum and palladium on modified polymer monoliths. Finally the catalytic properties of immobilised bimetallic Pd/Pt nano-flowers were evaluated in flow-through mode, exploiting the porous interconnected flow-paths present in the prepared monoliths (pore diameter ∼ 1-2 μm). Specifically, the reduction of Fe (III) to Fe (II) and the oxidation of NADH to NAD+ were selected as model redox reactions. The use of a porous polymer monolith as an immobilisation substrate (rather than aminated micro-spheres) eliminated the need for a centrifugation step after the reaction. (author)

  14. Peculiarities of Thermal Treatment of Monolithic Reinforced Concrete Structures

    Kuchin, V. N.; Shilonosova, N. V.

    2017-11-01

    A mathematical program has been developed that allows one to determine the parameters of heat treatment of monolithic structures. One of the quality indicators of monolithic reinforced concrete structures is the level of temperature stresses arising in the process of heat treatment and further operation of structures. In winter at heat treatment the distribution of temperatures along the cross-section of the structure is uneven. A favorable thermo-stressed state in a concrete massif occurs when using the preheating method, providing the concrete temperature in the center of the structure is greater than at the periphery. In this case, after the strength is set and the temperature is later equalized along the cross-section, the central part of the structure tends to decrease its dimensions more but the extreme zones prevent it. Therefore, the center is in a state of tension, and the extreme zones on the periphery are compressed. In compressed concrete there is a lesser chance of cracks or defects. The temperature gradient over the section of the structure, the stress in the concrete and its strength are determined. When calculating the temperature and strength fields, the stress level was determined - a value equal to the ratio of the tensile stresses in the section under consideration to the tensile strength of the concrete in this section at the same time. The nature of the change in stress level is determined by the massive structure and power of the formwork heaters. It is shown that under unfavorable conditions the stress level is close to the critical value. The greatest temperature gradient occurs in the outer layers adjacent to the heating formwork. A technology for concrete conditioning is proposed which makes it possible to reduce the temperature stresses along the cross-section of the structure. The time for concrete conditioning in the formwork is reduced. In its turn, it further reduces labor costs and the cost of concrete work along with the cost of

  15. Two-dimensional thermal analysis of radial heat transfer of monoliths in small-scale steam methane reforming

    Cui, Xiaoti; Kær, Søren Knudsen

    2018-01-01

    Monolithic catalysts have received increasing attention for application in the small-scale steam methane reforming process. The radial heat transfer behaviors of monolith reformers were analyzed by two-dimensional computational fluid dynamic (CFD) modeling. A parameter study was conducted...... by a large number of simulations focusing on the thermal conductivity of the monolith substrate, washcoat layer, wall gap, radiation heat transfer and the geometric parameters (cell density, porosity and diameter of monolith). The effective radial thermal conductivity of the monolith structure, kr......,eff, showed good agreement with predictions made by the pseudo-continuous symmetric model. This influence of the radiation heat transfer is low for highly conductive monoliths. A simplified model has been developed to evaluate the importance of radiation for monolithic reformers under different conditions...

  16. Exploring strategies for the production of ultracold RbYb molecules in conservative traps

    Bruni, Cristian

    2015-07-14

    Within the scope of this thesis, the production of ultracold molecules at a temperature of a few μK with various isotopes of rubidium (Rb) and ytterbium (Yb) was examined by means of photoassociation spectroscopy and magnetic Feshbach resonances in combined conservative traps. The long-term goal of this experiment is the production of ultracold RbYb molecules in the rovibronic ground state. It was possible to produce electronically excited {sup 87}Rb {sup 176}Yb molecules in a novel hybrid trap (HT) at a combined temperature of 1.7 μK by means of 1-photon photoassociation close to the Rb D1 line at 795 nm. This HT takes advantage of the different magnetic properties of Rb and Yb and allows for independent trapping and manipulation of the atomic species. It combines an Ioffe-Pritchard type magnetic trap for Rb and a near-resonant optical dipole trap for Yb. The excited molecular {sup 2}Π{sub 1/2} state could be characterized further extending previous works in a combined MOT and vibrational levels reaching binding energies up to E{sub b}=-h x 2.2 THz could be assigned by trap-loss spectroscopy. Almost every detected vibrational state consists of two resonances that could be assigned to the molecular analogue of the hyperfine structure of {sup 87}Rb. An important experimental observation is a decrease in hyperfine splitting with increasing binding energy of a vibrational level. For the deepest found vibrational state the hyperfine splitting amounts only 70 % of the atomic value (817 MHz) which emphasizes a gradual passage from weakly to tightly bound molecules. Furthermore, detailed attempts were undertaken to induce magnetic Feshbach resonances in {sup 85}Rb and different Yb isotopes, especially {sup 171}Yb in a crossed optical dipole trap at 1064 nm at temperatures of 10 μK. For this purpose, a homogeneous magnetic field was applied and scanned in small steps over the range of 495 G ∼ 640 G. Unfortunately, our efforts were without success. Additionally, well

  17. Statistical γ-ray multiplicity distributions in Dy and Yb nuclei

    Tveter, T.S.; Bergholt, L.; Guttormsen, M.; Rekstad, J.

    1994-03-01

    The statistical γ-ray multiplicity distributions following the reactions 163 Dy( 3 He,αxn) 162-x Dy and 173 Yb( 3 He,αxn) 172-x Yb have been studied. The mean value and standard deviation have been extracted as functions of excitation energy. The method is based on the probability distribution of k-fold events, where an α-particle is observed in coincidence with signals in k γ-ray detectors. Techniques for isolating statistical γ-rays and subtracting random background, cross-talk and neutron contributions are discussed. 22 refs., 10 figs., 3 tabs

  18. Crystal field excitations of YbMn{sub 2}Si{sub 2}

    Mole, R.A. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234 (Australia); School of Physical, Environmental and Mathematical Sciences, The University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600 (Australia); Hofmann, M. [School of Physical, Environmental and Mathematical Sciences, The University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600 (Australia); Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, 85747 Garching (Germany); Adroja, D.T. [ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, OX11 OQX (United Kingdom); Moze, O. [Dipartimento di Fisica, Università degli Studi di Modena e Reggio Emilia, Modena (Italy); Campbell, S.J., E-mail: stewart.campbell@adfa.edu.au [School of Physical, Environmental and Mathematical Sciences, The University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600 (Australia)

    2013-12-15

    The crystal field excitations of the rare earth intermetallic compound YbMn{sub 2}Si{sub 2} have been measured by inelastic neutron scattering over the temperature range 2.5–50 K. The YbMn{sub 2}Si{sub 2} spectra exhibit three low energy excitations (∼3–7 meV) in the antiferromagnetic AFil region above the magnetic phase transition at T{sub N2} = 30(5) K. The crystal field parameters have been determined for YbMn{sub 2}Si{sub 2} in the antiferromagnetic AFil region. A further two inelastic excitations (∼9 meV, 17 meV) are observed below T{sub N2}=30(5) K, the temperature at which the high temperature antiferromagnetic structure is reported to exhibit doubling of the magnetic cell. Energy level diagrams have been determined for Yb{sup 3+} ions in the different sites above (single site) and below the magnetic transition temperature (two sites). The excitation energies for both sites are shown to be temperature independent with the temperature dependences of the transition intensities for the two sites described well by a simple Boltzmann model. The spectra below T{sub N2} cannot be described fully in terms of molecular field models based on either a single Yb{sup 3+} site or two Yb{sup 3+} sites. This indicates that the magnetic behaviour of YbMn{sub 2}Si{sub 2} is more complicated than previously considered. The inability to account fully for excitations below the magnetic phase transition may be due to an, as yet, unresolved structural transition associated with the magnetic transition. - Highlights: • The inelastic neutron scattering from YbMn{sub 2}Si{sub 2} has been investigated over the temperature range 2.5–50 K. • The crystal field splitting has been monitored through the magnetic transition at 30(5) K. • We have determined the crystal field parameters for the antiferromagnetic AFil region. • The transition intensities are described well by Boltzmann occupancy models. • The spectra below the magnetic transition have been analysed by

  19. Creep properties and precipitate evolution in Al-Li alloys microalloyed with Sc and Yb

    Krug, Matthew E. [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208 (United States); Seidman, David N. [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208 (United States); Northwestern Center for Atom Probe Tomography, Northwestern University, 2220 Campus Drive, Evanston, IL 60208 (United States); Dunand, David C., E-mail: dunand@northwestern.edu [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208 (United States)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer We examine the creep behavior of Al-alloys with Li and rare earth element additions. Black-Right-Pointing-Pointer These alloys exhibit threshold stresses below which no measurable creep occurs. Black-Right-Pointing-Pointer Larger precipitate size and lattice parameter mismatch increase creep resistance. Black-Right-Pointing-Pointer A simple parameter describes the threshold stress behavior in ternary Al-Sc-X alloys. Black-Right-Pointing-Pointer The findings are explained by a recent model of dislocation-precipitate interactions. - Abstract: A dilute Al-Sc alloy (Al-0.12 Sc, at.%, Al-Sc), its counterpart with a Li addition (Al-2.9 Li-0.11 Sc, at.%, Al-Li-Sc), as well as a quaternary alloy (Al-5.53 Li-0.048 Sc-0.009 Yb, at.%, Al-Li-Sc-Yb) were isothermally aged at 325 Degree-Sign C, and in some cases isochronally aged to 450 Degree-Sign C. As the {alpha} Prime -Al{sub 3}(Li,Sc) and Al{sub 3}(Li,Sc,Yb) precipitates, with L1{sub 2} structure, coarsen in the two Li-containing alloys, their Li and Yb concentrations decrease and their Sc concentration increases. A significant interfacial excess of Li also segregates at the {alpha}-Al matrix/{alpha} Prime -Al{sub 3}Sc(Li,Sc,Yb) precipitate interface: 5.99 {+-} 0.05 atoms nm{sup -2} in Al-Li-Sc and 13.2 {+-} 0.4 atoms nm{sup -2} in Al-Li-Sc-Yb after aging isochronally to 450 Degree-Sign C. During compression creep at 300 Degree-Sign C, the aged alloys exhibit threshold stresses between 8 and 22 MPa. A recent threshold stress model based on elastic interactions between dislocations and precipitates predicts correctly that Li additions in the Al-Li-Sc alloy reduce the threshold stress, while Yb in the Al-Li-Sc-Yb alloy increases it. The model is also in agreement with the threshold stresses of all Al-Sc-X alloys published to date.

  20. Yb3+ sensitized Tm3+ upconversion in tellurite lead oxide glass.

    Mohanty, Deepak Kumar; Rai, Vineet Kumar; Dwivedi, Y

    2012-04-01

    Triply ionized thulium/thulium--ytterbium doped/codoped TeO2-Pb3O4 (TPO) glasses have been fabricated by classical quenching method. The upconversion emission spectra in the Tm3+/Tm3+-Yb3+ doped/codoped glasses upon excitation with a diode laser lasing at ∼980 nm has been studied. Effect of the addition of the Yb3+ on the upconversion emission intensity in the visible and near infrared regions of the Tm3+ doped in TPO glass has been studied and the processes involved explored. Copyright © 2011 Elsevier B.V. All rights reserved.