WorldWideScience

Sample records for mv medical linac

  1. MCNP5 evaluation of photoneutron production from the Alexandria University 15 MV Elekta Precise medical LINAC.

    Science.gov (United States)

    Abou-Taleb, W M; Hassan, M H; El Mallah, E A; Kotb, S M

    2018-05-01

    Photoneutron production, and the dose equivalent, in the head assembly of the 15 MV Elekta Precise medical linac; operating in the faculty of Medicine at Alexandria University were estimated with the MCNP5 code. Photoneutron spectra were calculated in air and inside a water phantom to different depths as a function of the radiation field sizes. The maximum neutron fluence is 3.346×10 -9 n/cm 2 -e for a 30×30 cm 2 field size to 2-4 cm-depth in the phantom. The dose equivalent due to fast neutron increases as the field size increases, being a maximum of 0.912 ± 0.05 mSv/Gy at depth between 2 and 4 cm in the water phantom for 40×40 cm 2 field size. Photoneutron fluence and dose equivalent are larger to 100 cm from the isocenter than to 35 cm from the treatment room wall. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Electro neutrons around a 12 MV Linac

    International Nuclear Information System (INIS)

    Vega C, H. R.; Perez L, L. H.

    2012-10-01

    Neutron contamination around Linacs for radiotherapy is a source of undesirable doses for the patient. The main source of these neutrons is the photonuclear reactions occurring in the Linac head and the patient body. Electrons also produce neutrons through (e, en) reactions. This reaction is known as electro disintegration and is carried out by the electron scattering that produce a virtual photon that is absorbed by the scattering nucleus producing the reaction e + A → (A-1) + n + e'. In this work the electron-neutron spectrum to 100 cm from the isocenter of a 12 MV Linac has been measured using a passive Bonner spheres spectrometer in a novel procedure named Planetary mode. (Author)

  3. Measurementof photo-neutron dose from an 18-MV medical linac using a foil activation method in view of radiation protection of patients

    International Nuclear Information System (INIS)

    Yuecel, Haluk; Kolbasi, Asuman; Yueksel, Alptug Oezer; Cobanbas, Ibrahim; Kaya, Vildan

    2016-01-01

    High-energy linear accelerators are increasingly used in the medical field. However, the unwanted photo-neutrons can also be contributed to the dose delivered to the patients during their treatments. In this study, neutron fluxes were measured in a solid water phantom placed at the isocenter 1-m distance from the head of an 18-MV linac using the foil activation method. The produced activities were measured with a calibrated well-type Ge detector. From the measured fluxes, the total neutron fluence was found to be (1.17 ± 0.06) X 10 7 n/cm 2 per Gy at the phantom surface in a 20 X 20 cm 2 X-ray field size. The maximum photo-neutron dose was measured to be 0.67 ± 0.04 mSv/Gy at d max = 5 cm depth in the phantom at isocenter. The present results are compared with those obtained for different field sizes of 10 X 10cm 2 , 15 X 15cm 2 , and 20 X 20cm 2 from 10-, 15-, and 18-MV linacs. Additionally, ambient neutron dose equivalents were determined at different locations in the room and they were found to be negligibly low. The results indicate that the photo-neutron dose at the patient position is not a negligible fraction of the therapeutic photon dose. Thus, there is a need for reduction of the contaminated neutron dose by taking some additional measures, for instance, neutron absorbing-protective materials might be used as aprons during the treatment

  4. SU-E-T-409: Evaluation of Tissue Composition Effect On Dose Distribution in Radiotherapy with 6 MV Photon Beam of a Medical Linac

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani, M; Tabatabaei, Z; Noghreiyan, A Vejdani [Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Meigooni, A Soleimani [Comprehensive Cancer Center of Nevada, Las Vegas, NV (United States)

    2015-06-15

    Purpose: The aim of this study is to evaluate soft tissue composition effect on dose distribution for various soft tissues and various depths in radiotherapy with 6 MV photon beam of a medical linac. Methods: A phantom and Siemens Primus linear accelerator were simulated using MCNPX Monte Carlo code. In a homogeneous cubic phantom, six types of soft tissue and three types of tissue-equivalent materials were defined separately. The soft tissues were muscle (skeletal), adipose tissue, blood (whole), breast tissue, soft tissue (9-component) and soft tissue (4-component). The tissue-equivalent materials included: water, A-150 tissue-equivalent plastic and perspex. Photon dose relative to dose in 9-component soft tissue at various depths on the beam’s central axis was determined for the 6 MV photon beam. The relative dose was also calculated and compared for various MCNPX tallies including,F8, F6 and,F4. Results: The results of the relative photon dose in various materials relative to dose in 9-component soft tissue and using different tallies are reported in the form of tabulated data. Minor differences between dose distributions in various soft tissues and tissue-equivalent materials were observed. The results from F6 and F4 were practically the same but different with,F8 tally. Conclusion: Based on the calculations performed, the differences in dose distributions in various soft tissues and tissue-equivalent materials are minor but they could be corrected in radiotherapy calculations to upgrade the accuracy of the dosimetric calculations.

  5. Neutron H*(10) estimation and measurements around 18MV linac.

    Science.gov (United States)

    Cerón Ramírez, Pablo Víctor; Díaz Góngora, José Antonio Irán; Paredes Gutiérrez, Lydia Concepción; Rivera Montalvo, Teodoro; Vega Carrillo, Héctor René

    2016-11-01

    Thermoluminescent dosimetry, analytical techniques and Monte Carlo calculations were used to estimate the dose of neutron radiation in a treatment room with a linear electron accelerator of 18MV. Measurements were carried out through neutron ambient dose monitors which include pairs of thermoluminescent dosimeters TLD 600 ( 6 LiF: Mg, Ti) and TLD 700 ( 7 LiF: Mg, Ti), which were placed inside a paraffin spheres. The measurements has allowed to use NCRP 151 equations, these expressions are useful to find relevant dosimetric quantities. In addition, photoneutrons produced by linac head were calculated through MCNPX code taking into account the geometry and composition of the linac head principal parts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Design of a treatment room for an 18 MV Linac

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez A, L.; Contreras S, H.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Perez L, L. H., E-mail: dameluis@hotmail.co [Instituto Zacatecano del Tumor, Apdo. Postal 294, 98000 Zacatecas (Mexico)

    2010-10-15

    In this work it has been calculated the treatment room for an 18 MV Linac. The walls thickness, the door and the maze were designed according to the NCRP Report 151 recommendations. The results of this work are contrasted with the Monte Carlo calculations performed with the MCNP5 code where dose equivalent due to neutrons and neutron spectra are estimated at different points inside and outside of the radiotherapy room, verify the shielding thickness obtained are enough to reduce the dose level allowed by the Mexican regulation. (Author)

  7. Linacs for medical isotope production

    International Nuclear Information System (INIS)

    Pramudita, A.

    2012-01-01

    This paper reviews efforts on using high energy (25-30 MeV) and high power (10-20 kW) electron linacs and lower energy (7 MeV) proton linacs for medical radioisotope production. Using high energy x-rays from the electron linacs, PET (Positron Emission Tomography) radioisotopes are produced through photonuclear reactions such as 19 F(γ,n) 18 F, which also allow production of other PET radionuclides 11 C, 13 N, and 15 O. Other mostly used medical radionuclides 99m Tc can also be obtained by using the electron linacs, through photofission or photonuclear reactions. Proton linacs for PET have also been recently developed and the product has been available in the market since 2005. The linacs have been tested for 18 F production. As a proton accelerator, the target systems and nuclear reactions are similar to the ones used in PET cyclotrons. (author)

  8. Radiological safety around a Linac of 18 MV

    International Nuclear Information System (INIS)

    Ceron R, P.; Rivera M, T.; Paredes G, L.; Azorin N, J.; Sanchez, A.; Vega C, H. R.

    2014-10-01

    There are now several neutron detection systems, such as proportional counters based on BF 3 , He 3 and Bonner sphere spectrometers. However, the cost and complexity of the implementation of such systems makes them inaccessible for dosimetry purposes in radiotherapy rooms (Rt) and other facilities with this type of radiation fields. For these reasons the use of a neutron detection system is proposed composed by a paraffin moderator media forming an array 4π (spheres) and several pairs of thermoluminescent dosimeters TLD 600/TLD 700 inside, in order to make useful measurements for radiation protection around high-energy lineal accelerators (Linacs). In the first part of this work the system response when irradiated with a source of Pu Be and their corresponding calibration factor is displayed. In the second part are presented the ambient dose equivalent (H(10)) due to neutrons at various points of a living of Rt with a Linac of 18 MV, which are in the order mSv/Gy by X-ray treatment. The measurements made are similar to those taken in the memories of the accelerator and in previous work for this type of facility. (Author)

  9. Radiological safety around a Linac of 18 MV; Seguridad radiologica alrededor de un LINAC de 18 MV

    Energy Technology Data Exchange (ETDEWEB)

    Ceron R, P.; Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Calz. Legaria No. 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Paredes G, L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Azorin N, J. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Sanchez, A. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Edif. 9, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Vega C, H. R., E-mail: victceronr@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 09868 Zacatecas (Mexico)

    2014-10-15

    There are now several neutron detection systems, such as proportional counters based on BF{sub 3}, He{sub 3} and Bonner sphere spectrometers. However, the cost and complexity of the implementation of such systems makes them inaccessible for dosimetry purposes in radiotherapy rooms (Rt) and other facilities with this type of radiation fields. For these reasons the use of a neutron detection system is proposed composed by a paraffin moderator media forming an array 4π (spheres) and several pairs of thermoluminescent dosimeters TLD 600/TLD 700 inside, in order to make useful measurements for radiation protection around high-energy lineal accelerators (Linacs). In the first part of this work the system response when irradiated with a source of Pu Be and their corresponding calibration factor is displayed. In the second part are presented the ambient dose equivalent (H(10)) due to neutrons at various points of a living of Rt with a Linac of 18 MV, which are in the order mSv/Gy by X-ray treatment. The measurements made are similar to those taken in the memories of the accelerator and in previous work for this type of facility. (Author)

  10. Photons and photoneutrons spectra of a Linac of 15 MV

    International Nuclear Information System (INIS)

    Benites R, J. L.; Carrillo C, A.; Vega C, H. R.; Velazquez F, J. B.

    2011-10-01

    Using the Monte Carlo code MCNP-5, the photons and photoneutrons spectra generated in the head stock of the lineal accelerator (Linac) Varian of 15 MV of the Cancerology State of Nayarit were determined. For the calculations a heterogeneous head stock was modeled, more compatible with the work conditions. In the center of the head stock a tungsten target was located on a copper support, followed by the flattened filter. The photons and photoneutrons spectra were obtained accelerating electrons and making them collide against the target to produce photons by Bremsstrahlung, these photons were transported inside the head stock and the photons and photoneutrons spectra were calculated in a punctual detector located under the flattened filter and in the isocenter. The spectra were evaluated in punctual detectors that were located in the plane from the isocenter to the long of the X and Y axes each 20 cm, in an equidistant way, up to 2 m, so much in the longitudinal and transversal axes. In the calculations were used histories 5E(6) with the purpose of obtaining smaller uncertainties to 1%. It was found that the photons spectrum in the punctual detector inside the head stock presents a pick of 1.25 MeV in the energy interval of 0.5 and 1.5 MeV, later suffers a filtration and diminishes in asymptote form. This spectrum modifies when the beam reaches the isocenter, diminishing the low energy photons. Inside the head stock the photoneutrons spectrum shows a structure with two picks, one before 1 MeV and other after 1 MeV; this is for effect of the collimators geometry and the distance. Finally an increment of the total neutrons flow to 60 cm of distance of the isocenter on the Y axis was observed, due to the design geometry of the modeling heterogeneous head stock. (Author)

  11. Beam Characterization of 10-MV Photon Beam from Medical Linear Accelerator without Flattening Filter.

    Science.gov (United States)

    Shimozato, Tomohiro; Aoyama, Yuichi; Matsunaga, Takuma; Tabushi, Katsuyoshi

    2017-01-01

    This work investigated the dosimetric properties of a 10-MV photon beam emitted from a medical linear accelerator (linac) with no flattening filter (FF). The aim of this study is to analyze the radiation fluence and energy emitted from the flattening filter free (FFF) linac using Monte Carlo (MC) simulations. The FFF linac was created by removing the FF from a linac in clinical use. Measurements of the depth dose (DD) and the off-axis profile were performed using a three-dimensional water phantom with an ionization chamber. A MC simulation for a 10-MV photon beam from this FFF linac was performed using the BEAMnrc code. The off-axis profiles for the FFF linac exhibited a chevron-like distribution, and the dose outside the irradiation field was found to be lower for the FFF linac than for a linac with an FF (FF linac). The DD curves for the FFF linac included many contaminant electrons in the build-up region. Therefore, for clinical use, a metal filter is additionally required to reduce the effects of the electron contamination. The mean energy of the FFF linac was found to be lower than that of the FF linac owing to the absence of beam hardening caused by the FF.

  12. Light ion linacs for medical applications

    International Nuclear Information System (INIS)

    Bradbury, J.N.; Knapp, E.A.; Nagle, D.E.

    1975-01-01

    Recent advances in linear accelerator technology point to the feasibility of designing and developing practical medical linacs for producing protons, neutrons, or π mesons for the radiation therapy of cancer. Additional uses of such linacs could include radioisotope production and charged particle radiography. For widespread utilization medical linacs must exhibit reasonable cost, compactness, reliability, and simplicity of operation. Possible extensions of current accelerator technology which might provide these characteristics are discussed in connection with linac design, fabrication techniques, materials, power sources, injectors, and particle collection and delivery systems. Parameters for a medical proton linac for producing pions are listed. (U.S.)

  13. Characterization of the Photon Energy Spectrum of a 6 MV Linac

    International Nuclear Information System (INIS)

    Hernandez Bojorquez, M.; Larraga, J. M.; Garcia, A.; Celis, M. A.; Martinez-Davalos, A.; Rodriguez-Villafuerte, M.

    2006-01-01

    In this work we study the influence of the purity of the materials used in experimental transmission measurements to obtain data to reconstruct the photon energy spectrum of a 6 MV Linac. We also evaluate the contribution to PDDs due to electron contamination in the reconstructed spectrum

  14. Integrating techniques for neutron dosimetry in Linac 18 MV

    International Nuclear Information System (INIS)

    Ceron R, P. V.; Diaz G, J. A. I.; Rivera M, T.; Paredes G, L. C.; Vega C, H. R.

    2015-10-01

    In this paper thermoluminescent dosimetry, analytical techniques and Monte Carlo calculations were used to estimate the neutron dose equivalent in a radiotherapy room with a linear electron accelerator of 18 MV. The equivalent dose was measured at isocenter to 1.42 m of target and at the entrance of the labyrinth of the room of a Novalis Tx. The neutron detectors were constructed with pairs of thermoluminescent dosimeters TLD 600 ( 6 LiF: Mg, Ti) and TLD 700 ( 7 LiF: Mg, Ti) which are placed inside a paraffin sphere of 20 cm in diameter. These measurements enabled the calculation of equivalent dose in the gate and the source term, using the relationships contained in the NCRP-151. Through the models carried out with the code MCNPX the absorbed dose distribution with regard to depth in a paraffin phantom are included and the neutron spectrum produced by the head, taking into account the geometry and component materials. The results are in the order of neutron milli sievert by gray of X-rays (mSv/Gy x) which are in the same order as those found in other reports for different accelerators. (Author)

  15. Linacs for medical and industrial applications

    International Nuclear Information System (INIS)

    Hamm, R.W.

    1986-01-01

    Linear accelerators for medical and industrial applications have become an important commercial business. Microwave electron linacs for cancer radiation therapy and high-energy industrial radiography form the bulk of this market, but these, as well as induction linacs, are now being offered for radiation processing applications such as sterilization of disposable medical products, food preservation and material modifications. The radio frequency quadrupole (RFQ) linac has now made the ion linac also practical for commercial applications in medicine and industry, including radiation therapy, isotope production, neutron production, materials modification, and energy transfer processes. Ion linacs for several of these applications will soon be commercially available. The market for both ion and electron linacs is expected to significantly grow in several exciting and important areas

  16. Shielding provision in an old 6MV bunker for a new 18MV linac

    International Nuclear Information System (INIS)

    Howlett, S.J.; Ebert, M.A.; Kenny, W.

    2004-01-01

    Full text: In October 2003 the Newcastle Mater Hospital commenced clinical use of a new Varian 21EX which replaced it's 14 year old Varian Clinac l800. The 1800 had only been enabled for 6MV X-ray beam for most of its clinical use but was enabled for 18MV for a period in 2000. This was to make up for the loss of an 18MV beam from another Clinac 1800 which was being replaced in a bunker designed for that higher energy. The new 21EX would provide both 6MV and 18MV beams for routine clinical use. The original bunker had been designed for the lower energy and hence additional shielding was required to meet radiation dose limits recommended in ICRP 60 and adopted in ARPANSA RPS6. A general radiation survey was conducted around the bunker area when the 18MV beam was available on the older linear accelerator. This rather unique situation provided data which would normally be impossible to obtain. Photon activation in the neutron door was a source of increased dose levels in the control area. Commercial design was contracted for the additional barrier calculations and supply. Additional shielding was required on one primary barrier and the neutron door. Post installation surveys were conducted and the R and V system was used for usage figures. Using dose constraints for public and occupational exposure, various survey points were measured around the bunker. This data was assessed in terms of calculated requirements, actual requirements and the ALARA principle for radiation shielding design. Review of staff dose histories was also performed. The final survey calculations showed the additional shielding more than adequate for the usage of 18MV and 6MV photon beams. The availability of the R and V data gives supporting evidence for design of barriers to be adjusted on usage values as has been reported in an earlier work at this centre. The issue of occupancy arises in this work as dose histories indicate. Typically barrier design is always conservative and survey results on

  17. H(10) due to radiation scattered in a 6 MV Linac for tomotherapy; H*(10) debida a la radiacion dispersada en un LINAC de 6 MV para tomoterapia

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Esparza H, A. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico); Garcia R, M. G. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Campus Zacatecas, Calz. Pedro Coronel 16, Dependencias Federales, 98600 Guadalupe, Zacatecas (Mexico); Reyes R, E. [Universidad de Guanajuato, Campus Leon, Division de Ciencias e Ingenierias, Loma del Bosque 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Hernandez A, L. [Consejo Nacional de Ciencia y Tecnologia, CIBNOR, Mar Bermejo 195, Col. Playa Palo de Santa Rita, 23090 La Paz, Baja California Sur (Mexico); Rivera, T., E-mail: fermineutron@yahoo.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Calz. Legaria 694, Col. Irrigacion, 11500 Ciudad de Mexico (Mexico)

    2017-10-15

    In order to determine the environmental equivalent dose (H(10)), due to the radiation that is dispersed over the body of a patient, 100 thermoluminescent dosimeters (TLD) around 6 MV TomoLINAC were used. The characteristics of the tomotherapy have the disadvantage that the shielding of the bunker increases considerably and for its design validated parameters are used for the conventional Linacs. In order to determine H(10) due to scattered radiation, measurements were made in the vicinity of the isocenter, while the 6 MeV photon beam was applied on a phantom. Also, TLDs were placed on the walls of the bunker that remained for 7 days, where approximately 50 patients were treated per day. At points close to the isocenter, the H(10) has an angular distribution caused by the phantom shape. In the bunker walls the highest H(10) was observed in the primary barriers. In the labyrinth, the impact of the scattered radiation was observed when measuring a greater value of the environmental equivalent dose in the wall furthest from the isocenter compared to the point located closest to it. (Author)

  18. FEM design and simulation of a short, 10 MV, S-band Linac with Monte Carlo dose simulations

    International Nuclear Information System (INIS)

    Baillie, Devin; Aubin, J. St.; Steciw, S.; Fallone, B. G.

    2015-01-01

    Purpose: Current commercial 10 MV Linac waveguides are 1.5 m. The authors’ current 6 MV linear accelerator–magnetic resonance imager (Linac–MR) system fits in typical radiotherapy vaults. To allow 10 MV treatments with the Linac–MR and still fit within typical vaults, the authors design a 10 MV Linac with an accelerator waveguide of the same length (27.5 cm) as current 6 MV Linacs. Methods: The first design stage is to design a cavity such that a specific experimental measurement for breakdown is applicable to the cavity. This is accomplished through the use of finite element method (FEM) simulations to match published shunt impedance, Q factor, and ratio of peak to mean-axial electric field strength from an electric breakdown study. A full waveguide is then designed and tuned in FEM simulations based on this cavity design. Electron trajectories are computed through the resulting radio frequency fields, and the waveguide geometry is modified by shifting the first coupling cavity in order to optimize the electron beam properties until the energy spread and mean energy closely match values published for an emulated 10 MV Linac. Finally, Monte Carlo dose simulations are used to compare the resulting photon beam depth dose profile and penumbra with that produced by the emulated 10 MV Linac. Results: The shunt impedance, Q factor, and ratio of peak to mean-axial electric field strength are all matched to within 0.1%. A first coupling cavity shift of 1.45 mm produces an energy spectrum width of 0.347 MeV, very close to the published value for the emulated 10 MV of 0.315 MeV, and a mean energy of 10.53 MeV, nearly identical to the published 10.5 MeV for the emulated 10 MV Linac. The depth dose profile produced by their new Linac is within 1% of that produced by the emulated 10 MV spectrum for all depths greater than 1.5 cm. The penumbra produced is 11% narrower, as measured from 80% to 20% of the central axis dose. Conclusions: The authors have successfully

  19. Effect of transverse magnetic fields on a simulated in-line 6 MV linac

    International Nuclear Information System (INIS)

    St Aubin, J; Fallone, B G; Steciw, S

    2010-01-01

    The effects of a transverse magnetic field on an in-line side-coupled 6 MV linear accelerator are given. The results are directly applicable to a linac-MR system used for real-time image guided adaptive radiotherapy. Our previously designed end-to-end linac simulation incorporated the results from the axisymmetric 2D electron gun program EGN2w. However, since the magnetic fields being investigated are non-axisymmetric in nature for the work presented here, the electron gun simulation was performed using OPERA-3d/SCALA. The simulation results from OPERA-3d/SCALA showed excellent agreement with previous results. Upon the addition of external magnetic fields to our fully 3D linac simulation, it was found that a transverse magnetic field of 6 G resulted in a 45 ± 1% beam loss, and by 14 G, no electrons were incident on the target. Transverse magnetic fields on the linac simulation produced a highly asymmetric focal spot at the target, which translated into a 13% profile asymmetry at 6 G. Upon translating the focal spot with respect to the target coordinates, profile symmetry was regained at the expense of a lateral shift in the dose profiles. It was found that all points in the penumbra failed a 1%/1 mm acceptance criterion for fields between 4 and 6 G. However, it was also found that the lateral profile shifts were corrected by adjusting the jaw positions asymmetrically.

  20. Effect of transverse magnetic fields on a simulated in-line 6 MV linac

    Science.gov (United States)

    St. Aubin, J.; Steciw, S.; Fallone, B. G.

    2010-08-01

    The effects of a transverse magnetic field on an in-line side-coupled 6 MV linear accelerator are given. The results are directly applicable to a linac-MR system used for real-time image guided adaptive radiotherapy. Our previously designed end-to-end linac simulation incorporated the results from the axisymmetric 2D electron gun program EGN2w. However, since the magnetic fields being investigated are non-axisymmetric in nature for the work presented here, the electron gun simulation was performed using OPERA-3d/SCALA. The simulation results from OPERA-3d/SCALA showed excellent agreement with previous results. Upon the addition of external magnetic fields to our fully 3D linac simulation, it was found that a transverse magnetic field of 6 G resulted in a 45 ± 1% beam loss, and by 14 G, no electrons were incident on the target. Transverse magnetic fields on the linac simulation produced a highly asymmetric focal spot at the target, which translated into a 13% profile asymmetry at 6 G. Upon translating the focal spot with respect to the target coordinates, profile symmetry was regained at the expense of a lateral shift in the dose profiles. It was found that all points in the penumbra failed a 1%/1 mm acceptance criterion for fields between 4 and 6 G. However, it was also found that the lateral profile shifts were corrected by adjusting the jaw positions asymmetrically.

  1. Comparison of the radiochromic EBT2 responses for 4MV LINACs in calibration processes

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sabrina D.; Castro, André L.S.; Mendes, Thais M.; Campos, Tarcisio P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Energia Nuclear; Nogueira, Luciana B., E-mail: sadonatosilva@hotmail.com, E-mail: radioterapia.andre@gmail.com, E-mail: thaismelomendes@yahoo.com.br, E-mail: tprcampos@yahoo.com.br, E-mail: Lucibn19@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Anatomia e Imagem

    2017-07-01

    Background: Actually, cancer has gained a larger dimension and become a global public health problem. Radiotherapy (RT) is a neoplasia treatment and RT linear accelerators must undergo a strict dose quality control. Pure liquid water or solid water phantoms can be used with this intuit. In recent years, radiochromic films with equivalent tissue composition have been widely used as dosimeters in the medical field. Objective: the proposal was to analyze two distinct radiochromic film responses in water and solid water phantoms, in a distinct LINAC spectra of 4MV beam. Methods: Solid water phantom and EBT2 Radiochromic films were set. Films were exposed to a set of absorbed doses established by distinct monitor units (MU) specified in each RT-center. Mathematical relations between the degree of red-intensity from digitized films and the absorbed dose for both spectra were established. The coefficients of the polynomial function of the calibration curve were determined from the Origin software. The uncertainty of both processes was analyzed. The efficiency of the two calibration processes was set up. Results: The adjustment of the calibration curve provided the coefficients of the second-order equation that relates the dose absorbed with the optical density of the film. The uncertainty regarding the calibration performed in water and solid water and the dose-error accuracy are in agreement with the literature. Conclusion: Both water or solid water were effective in calibration and can be used in routines of quality-control measurements. The results show that EBT2-radiochromic films is suitable to for dose-calibration in RT. (author)

  2. Verification of Radiation Isocenter on Linac Beam 6 MV using Computed Radiography

    Science.gov (United States)

    Irsal, Muhammad; Hidayanto, Eko; Sutanto, Heri

    2017-06-01

    Radiation isocenter is more important part of quality assurance for the linear accelerator (Linac) due to radiation isocenter is a main location in irradiation radiotherapy, isocenter can shift when the gantry and collimator rotation. In general, the radiation isocenter verification using a special film. This research was conducted radiation isocenter verification using computed radiography with digital image processing techniques. Image acquisition was done using the modalities of Linac 6 MV with star shot method is star-shaped beam due to rotation of the collimator, gantry and couch. Then do the delineation on each beam to determine the centroid and beam diameter. By the results of verification of radiation isocenter performed on collimator and the couch, it shows that the size diameter for rotational collimator is 0.632 mm and 0.458 mm for the couch. Based on AAPM report 40 about the size of the Linac radiation isocenter diameter used in this study is still in good condition and worth to be operated because the value of the radiation isocenter diameter is below 2 mm.

  3. Verification of Radiation Isocenter on Linac Beam 6 MV using Computed Radiography

    International Nuclear Information System (INIS)

    Irsal, Muhammad; Hidayanto, Eko; Sutanto, Heri

    2017-01-01

    Radiation isocenter is more important part of quality assurance for the linear accelerator (Linac) due to radiation isocenter is a main location in irradiation radiotherapy, isocenter can shift when the gantry and collimator rotation. In general, the radiation isocenter verification using a special film. This research was conducted radiation isocenter verification using computed radiography with digital image processing techniques. Image acquisition was done using the modalities of Linac 6 MV with star shot method is star-shaped beam due to rotation of the collimator, gantry and couch. Then do the delineation on each beam to determine the centroid and beam diameter. By the results of verification of radiation isocenter performed on collimator and the couch, it shows that the size diameter for rotational collimator is 0.632 mm and 0.458 mm for the couch. Based on AAPM report 40 about the size of the Linac radiation isocenter diameter used in this study is still in good condition and worth to be operated because the value of the radiation isocenter diameter is below 2 mm. (paper)

  4. Photons and photoneutrons spectra of a Linac of 15 MV; Espectros de fotones y fotoneutrones de un LINAC de 15 MV

    Energy Technology Data Exchange (ETDEWEB)

    Benites R, J. L.; Carrillo C, A. [Centro Estatal de Cancerologia de Nayarit, Av. Enfermeria, Fracc. Fray Junipero Serra, 63000 Tepic, Nayarit (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Velazquez F, J. B., E-mail: jlbenitesr@prodigy.net.mx [Universidad Autonoma de Nayarit, Posgrado CBAP, Carretera Tepic Compostela Km. 9, Xalisco, Nayarit (Mexico)

    2011-10-15

    Using the Monte Carlo code MCNP-5, the photons and photoneutrons spectra generated in the head stock of the lineal accelerator (Linac) Varian of 15 MV of the Cancerology State of Nayarit were determined. For the calculations a heterogeneous head stock was modeled, more compatible with the work conditions. In the center of the head stock a tungsten target was located on a copper support, followed by the flattened filter. The photons and photoneutrons spectra were obtained accelerating electrons and making them collide against the target to produce photons by Bremsstrahlung, these photons were transported inside the head stock and the photons and photoneutrons spectra were calculated in a punctual detector located under the flattened filter and in the isocenter. The spectra were evaluated in punctual detectors that were located in the plane from the isocenter to the long of the X and Y axes each 20 cm, in an equidistant way, up to 2 m, so much in the longitudinal and transversal axes. In the calculations were used histories 5E(6) with the purpose of obtaining smaller uncertainties to 1%. It was found that the photons spectrum in the punctual detector inside the head stock presents a pick of 1.25 MeV in the energy interval of 0.5 and 1.5 MeV, later suffers a filtration and diminishes in asymptote form. This spectrum modifies when the beam reaches the isocenter, diminishing the low energy photons. Inside the head stock the photoneutrons spectrum shows a structure with two picks, one before 1 MeV and other after 1 MeV; this is for effect of the collimators geometry and the distance. Finally an increment of the total neutrons flow to 60 cm of distance of the isocenter on the Y axis was observed, due to the design geometry of the modeling heterogeneous head stock. (Author)

  5. H(10) due to radiation scattered in a 6 MV Linac for tomotherapy

    International Nuclear Information System (INIS)

    Vega C, H. R.; Esparza H, A.; Garcia R, M. G.; Reyes R, E.; Hernandez A, L.; Rivera, T.

    2017-10-01

    In order to determine the environmental equivalent dose (H(10)), due to the radiation that is dispersed over the body of a patient, 100 thermoluminescent dosimeters (TLD) around 6 MV TomoLINAC were used. The characteristics of the tomotherapy have the disadvantage that the shielding of the bunker increases considerably and for its design validated parameters are used for the conventional Linacs. In order to determine H(10) due to scattered radiation, measurements were made in the vicinity of the isocenter, while the 6 MeV photon beam was applied on a phantom. Also, TLDs were placed on the walls of the bunker that remained for 7 days, where approximately 50 patients were treated per day. At points close to the isocenter, the H(10) has an angular distribution caused by the phantom shape. In the bunker walls the highest H(10) was observed in the primary barriers. In the labyrinth, the impact of the scattered radiation was observed when measuring a greater value of the environmental equivalent dose in the wall furthest from the isocenter compared to the point located closest to it. (Author)

  6. Experimental dosimetric evaluation in pelvis phantom, subjected to prostate radiation therapy protocol at 15 MV Linac

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Andrea Silva Dias de; Campos, Tarcisio P.R., E-mail: campos@nuclear.ufmg.b [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Dias, Humberto Galvao [Centro de Radioterapia Hospital Luxemburgo, Belo Horizonte, MG (Brazil)

    2011-07-01

    Among the existing malignant neoplasia, the prostate cancer is most common among male population. Due to its high incidence and morbidity, there is a need for investment in advanced technology for better treatment associated with research and social mobilization to prevent the disease. As an efficient method of treatment for such tumor, radiation teletherapy brings favorable results for the patient, particularly when the cancer is diagnosed early. There are, however, the needs to assess the absorbed doses that reach the prostate in the radiation protocols in order to certify the treatment efficacy. The present research goal is to obtain the profile of absorbed dose distributed in a synthetic prostate on male pelvis phantom following a standard radiation therapy protocol. The methodology makes use of a NRI made phantom and a 15MV Linac accelerator. This phantom has anthropomorphic and anthropometric features containing the major internal organs, including bone, prostate, intestine, and bladder. The exposition was made in a 15 MV linear accelerator taken the isocenter in four fields as a 'BOX' of opposing beams. The dosimetry was prepared using GafChromic EBT type 2 radiochromic film and calibration in a solid water phantom. The radiochromic films were digitized on the Microtek Scan Maker 6900XL model scanner operating in the transmission mode and optical density readings based on RGB mode in the computer program Imagedig. The absorbance readings were performed in the spectrophotometer SP-220 mark BIOSPECTRO obtaining calibration curves generated by the collected data. The results reproduce the dose distribution generated in two orthogonal radiochromic films positioned onto the synthetic prostate. Discussions regarding the characteristics of the phantom and methods of irradiation in relation to the achieved dose profile will be addressed. (author)

  7. Experimental dosimetric evaluation in pelvis phantom, subjected to prostate radiation therapy protocol at 15 MV Linac

    International Nuclear Information System (INIS)

    Matos, Andrea Silva Dias de; Campos, Tarcisio P.R.

    2011-01-01

    Among the existing malignant neoplasia, the prostate cancer is most common among male population. Due to its high incidence and morbidity, there is a need for investment in advanced technology for better treatment associated with research and social mobilization to prevent the disease. As an efficient method of treatment for such tumor, radiation teletherapy brings favorable results for the patient, particularly when the cancer is diagnosed early. There are, however, the needs to assess the absorbed doses that reach the prostate in the radiation protocols in order to certify the treatment efficacy. The present research goal is to obtain the profile of absorbed dose distributed in a synthetic prostate on male pelvis phantom following a standard radiation therapy protocol. The methodology makes use of a NRI made phantom and a 15MV Linac accelerator. This phantom has anthropomorphic and anthropometric features containing the major internal organs, including bone, prostate, intestine, and bladder. The exposition was made in a 15 MV linear accelerator taken the isocenter in four fields as a 'BOX' of opposing beams. The dosimetry was prepared using GafChromic EBT type 2 radiochromic film and calibration in a solid water phantom. The radiochromic films were digitized on the Microtek Scan Maker 6900XL model scanner operating in the transmission mode and optical density readings based on RGB mode in the computer program Imagedig. The absorbance readings were performed in the spectrophotometer SP-220 mark BIOSPECTRO obtaining calibration curves generated by the collected data. The results reproduce the dose distribution generated in two orthogonal radiochromic films positioned onto the synthetic prostate. Discussions regarding the characteristics of the phantom and methods of irradiation in relation to the achieved dose profile will be addressed. (author)

  8. Production of Medical Isotopes with Electron Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Rotsch, D A; Alford, K.; Bailey, J. L.; Bowers, D. L.; Brossard, T.; Brown, M. A.; Chemerisov, S. D.; Ehst, D.; Greene, J.; Gromov, R. G.; Grudzinski, J.J.; Hafenrichter, L.; Hebden, A. S.; Henning, W.; Heltemes, T. A.; Jerden, J.; Jonah, C. D.; Kalensky, M.; Krebs, J. F.; Makarashvili, V.; Micklich, B.; Nolen, J.; Quigley, K. J.; Schneider, J. F.; Smith, N. A.; Stepinski, D. C.; Sun, Z.; Tkac, P.; Vandegrift, G. F.; Virgo, M J; Wesolowski, K. A.; Youker, A. J.

    2017-06-01

    Radioisotopes play important roles in numerous areas ranging from medical treatments to national security and basic research. Radionuclide production technology for medical applications has been pursued since the early 1900s both commercially and in nuclear science centers. Many medical isotopes are now in routine production and are used in day-to-day medical procedures. Despite these advancements, research is accelerating around the world to improve the existing production methodologies as well as to develop novel radionuclides for new medical appli-cations. Electron linear accelerators (linacs) represent a unique method for the production of radioisotopes. Even though the basic technology has been around for decades, only recently have electron linacs capable of producing photons with sufficient energy and flux for radioisotope production become available. Housed in Argonne Nation-al Laboratory’s Low Energy Accelerator Facility (LEAF) is a newly upgraded 55 MeV/25-kW electron linear ac-celerator, capable of producing a wide range of radioiso-topes. This talk will focus on the work being performed for the production of the medical isotopes 99Mo (99Mo/99mTc generator), 67Cu, and 47Sc.

  9. Monte Carlo simulation of Varian Linac for 6 MV photon beam with BEAMnrc code

    Science.gov (United States)

    Mohammed, Maged; El Bardouni, T.; Chakir, E.; Boukhal, H.; Saeed, M.; Ahmed, Abdul-Aziz

    2018-03-01

    The purpose of this study is to investigate the effects of the initial electron beam parameters on the absorbed dose distribution calculated with EGSnrc Monte Carlo code, for 6 MV photon beam. A proposed methodology for benchmarking the BEAMnrc model of Varian Linac has been used. Also, a new photon cross section data based on ENDF/B-VII release 8 evaluation has been employed. The parameters tested include mean energy, radial intensity distribution and angular spread of the initial electron beam. Mean energy and angular spread were tested for a square irradiation field 10 × 10 cm2, whereas beam width of the electron beam was studied for 10 × 10 cm2 at different depths and 30 × 30 cm2 at depth of 10 cm. The results obtained are compared with measurement data to select the optimal electron beam parameters. The differences between MC calculation and measurements data are analyzed using gamma index criteria which fixed within 1% -1 mm accuracy. The obtained results indicated that the depth-dose and dose-profile curves were considerably influenced by the mean energy of the electron beam. The depth-dose curves were unaffected by the beam width of the electron beam, for both irradiation fields. On the contrary, lateral dose-profile curves were affected by the beam width of initial electron beam. Both dose-profile and depth-dose curves were unaffected to the angular spread of the electron beam. A deep depth of 10 × 10 cm2 is very accurate to tune the beam width. Mean energy and beam width must be tuned precisely, to get the MC does distribution with acceptable accuracy.

  10. Neutron spectra and H*(10) around and 18 MV Linac by Ann's

    Energy Technology Data Exchange (ETDEWEB)

    Banuelos F, A.; Valero L, C.; Borja H, C. G.; Hernandez D, V. M.; Vega C, H. R., E-mail: alanb535@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2011-10-15

    Neutron spectra and ambient dose equivalent H*(10) were calculated for a radiotherapy room in 16 point-like detectors, 15 located inside the vault room and 1 located outside the bunker. The calculation was carried out using Monte Carlo Methods with the MCNP5 code for a generic radiotherapy room model operating with a 18 MV Linac, obtaining 16 neutron spectra with 47 energy bins, the H*(10) values were calculated from the neutron spectra by the use of the fluence-dose conversion factors. An artificial neural network were designed and trained to determine the neutron H*(10) in 15 different locations inside the vault room from the H*(10) dose calculated for the detector located outside the room, using the calculated dose values as training set, using the scaled conjugated gradient training algorithm. The mean squared error set for the network training was 1E(-14), adjusting the data in 99.992 %. In the treatment hall, as the distance respect to the isocenter is increased, the amount of neutrons and the H*(10) are reduced, neutrons in the high-energy region are shifted to lower region peaking around 0.1 MeV, however the epithermal and thermal neutrons remain constant due to the room-return effect. In the maze the spectra are dominated by epithermal and thermal neutrons that contributes to produce activation and the production of prompt gamma-rays. The results shows the using this artificial intelligence technic as a useful tool for the neutron spectrometry and dosimetry by the simplification on the neutronic fields characterization inside radiotherapy rooms avoiding the use of traditional spectrometric systems. And once the H*(10) doses have been calculated, to take the appropriated actions to reduce or prevent the patient and working staff exposure to this undesirable neutron radiation. (Author)

  11. Neutron spectra and H*(10) around and 18 MV Linac by Ann's

    International Nuclear Information System (INIS)

    Banuelos F, A.; Valero L, C.; Borja H, C. G.; Hernandez D, V. M.; Vega C, H. R.

    2011-10-01

    Neutron spectra and ambient dose equivalent H*(10) were calculated for a radiotherapy room in 16 point-like detectors, 15 located inside the vault room and 1 located outside the bunker. The calculation was carried out using Monte Carlo Methods with the MCNP5 code for a generic radiotherapy room model operating with a 18 MV Linac, obtaining 16 neutron spectra with 47 energy bins, the H*(10) values were calculated from the neutron spectra by the use of the fluence-dose conversion factors. An artificial neural network were designed and trained to determine the neutron H*(10) in 15 different locations inside the vault room from the H*(10) dose calculated for the detector located outside the room, using the calculated dose values as training set, using the scaled conjugated gradient training algorithm. The mean squared error set for the network training was 1E(-14), adjusting the data in 99.992 %. In the treatment hall, as the distance respect to the isocenter is increased, the amount of neutrons and the H*(10) are reduced, neutrons in the high-energy region are shifted to lower region peaking around 0.1 MeV, however the epithermal and thermal neutrons remain constant due to the room-return effect. In the maze the spectra are dominated by epithermal and thermal neutrons that contributes to produce activation and the production of prompt gamma-rays. The results shows the using this artificial intelligence technic as a useful tool for the neutron spectrometry and dosimetry by the simplification on the neutronic fields characterization inside radiotherapy rooms avoiding the use of traditional spectrometric systems. And once the H*(10) doses have been calculated, to take the appropriated actions to reduce or prevent the patient and working staff exposure to this undesirable neutron radiation. (Author)

  12. Spectra and absorbed dose by photo-neutrons in a solid water mannequin exposed to a Linac of 15 MV; Espectros y dosis absorbida por fotoneutrones en un maniqui de agua solida expuesta a una Linac de 15 MV

    Energy Technology Data Exchange (ETDEWEB)

    Benites R, J. [Centro Estatal de Cancerologia de Nayarit, Servicio de Seguridad Radiologica, Calz. de la Cruz 118 Sur, 63000 Tepic, Nayarit (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Apdo. Postal 336, 98000 Zacatecas (Mexico); Velazquez F, J., E-mail: jlbenitesr@prodigy.net.mx [Universidad Autonoma de Nayarit, Posgrado en Ciencias Biologico Agropecuarias, Carretera Tepic-Compostela Km 9, 63780 Jalisco-Nayarit (Mexico)

    2012-10-15

    Using Monte Carlo methods was modeled a solid water mannequin; according to the ICRU 44 (1989), Tissue substitutes in radiation dosimetry and measurements, of the International Commission on Radiation Units and Measurements; Report 44. This material Wt 1 is made of H (8.1%), C (67.2%), N (2.4%), O (19.9%), Cl (0.1%), Ca (2.3%) and its density is of 1.02 gr/cm{sup 3}. The mannequin was put instead of the patient, inside the treatment room and the spectra and absorbed dose were determined by photo-neutrons exposed to a Linac of 15 MV. (Author)

  13. Spectra and absorbed dose by photo-neutrons in a solid water mannequin exposed to a Linac of 15 MV

    International Nuclear Information System (INIS)

    Benites R, J.; Vega C, H. R.; Velazquez F, J.

    2012-10-01

    Using Monte Carlo methods was modeled a solid water mannequin; according to the ICRU 44 (1989), Tissue substitutes in radiation dosimetry and measurements, of the International Commission on Radiation Units and Measurements; Report 44. This material Wt 1 is made of H (8.1%), C (67.2%), N (2.4%), O (19.9%), Cl (0.1%), Ca (2.3%) and its density is of 1.02 gr/cm 3 . The mannequin was put instead of the patient, inside the treatment room and the spectra and absorbed dose were determined by photo-neutrons exposed to a Linac of 15 MV. (Author)

  14. Integrating techniques for neutron dosimetry in Linac 18 MV; Integrando tecnicas para dosimetria de neutrones en un Linac de 18 MV

    Energy Technology Data Exchange (ETDEWEB)

    Ceron R, P. V.; Diaz G, J. A. I.; Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, 11500 Mexico D. F. (Mexico); Paredes G, L. C. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2015-10-15

    In this paper thermoluminescent dosimetry, analytical techniques and Monte Carlo calculations were used to estimate the neutron dose equivalent in a radiotherapy room with a linear electron accelerator of 18 MV. The equivalent dose was measured at isocenter to 1.42 m of target and at the entrance of the labyrinth of the room of a Novalis Tx. The neutron detectors were constructed with pairs of thermoluminescent dosimeters TLD 600 ({sup 6}LiF: Mg, Ti) and TLD 700 ({sup 7}LiF: Mg, Ti) which are placed inside a paraffin sphere of 20 cm in diameter. These measurements enabled the calculation of equivalent dose in the gate and the source term, using the relationships contained in the NCRP-151. Through the models carried out with the code MCNPX the absorbed dose distribution with regard to depth in a paraffin phantom are included and the neutron spectrum produced by the head, taking into account the geometry and component materials. The results are in the order of neutron milli sievert by gray of X-rays (mSv/Gy x) which are in the same order as those found in other reports for different accelerators. (Author)

  15. SU-E-T-270: Optimized Shielding Calculations for Medical Linear Accelerators (LINACs).

    Science.gov (United States)

    Muhammad, W; Lee, S; Hussain, A

    2012-06-01

    The purpose of radiation shielding is to reduce the effective equivalent dose from a medical linear accelerator (LINAC) to a point outside the room to a level determined by individual state/international regulations. The study was performed to design LINAC's room for newly planned radiotherapy centers. Optimized shielding calculations were performed for LINACs having maximum photon energy of 20 MV based on NCRP 151. The maximum permissible dose limits were kept 0.04 mSv/week and 0.002 mSv/week for controlled and uncontrolled areas respectively by following ALARA principle. The planned LINAC's room was compared to the already constructed (non-optimized) LINAC's room to evaluate the shielding costs and the other facilities those are directly related to the room design. In the evaluation process it was noted that the non-optimized room size (i.e., 610 × 610 cm 2 or 20 feet × 20 feet) is not suitable for total body irradiation (TBI) although the machine installed inside was having not only the facility of TBI but the license was acquired. By keeping this point in view, the optimized INAC's room size was kept 762 × 762 cm 2. Although, the area of the optimized rooms was greater than the non-planned room (i.e., 762 × 762 cm 2 instead of 610 × 610 cm 2), the shielding cost for the optimized LINAC's rooms was reduced by 15%. When optimized shielding calculations were re-performed for non-optimized shielding room (i.e., keeping room size, occupancy factors, workload etc. same), it was found that the shielding cost may be lower to 41 %. In conclusion, non- optimized LINAC's room can not only put extra financial burden on the hospital but also can cause of some serious issues related to providing health care facilities for patients. © 2012 American Association of Physicists in Medicine.

  16. MCMEG: Simulations of both PDD and TPR for 6 MV LINAC photon beam using different MC codes

    International Nuclear Information System (INIS)

    Fonseca, T.C.F.; Mendes, B.M.; Lacerda, M.A.S.; Silva, L.A.C.; Paixão, L.

    2017-01-01

    The Monte Carlo Modelling Expert Group (MCMEG) is an expert network specializing in Monte Carlo radiation transport and the modelling and simulation applied to the radiation protection and dosimetry research field. For the first inter-comparison task the group launched an exercise to model and simulate a 6 MV LINAC photon beam using the Monte Carlo codes available within their laboratories and validate their simulated results by comparing them with experimental measurements carried out in the National Cancer Institute (INCA) in Rio de Janeiro, Brazil. The experimental measurements were performed using an ionization chamber with calibration traceable to a Secondary Standard Dosimetry Laboratory (SSDL). The detector was immersed in a water phantom at different depths and was irradiated with a radiation field size of 10×10 cm 2 . This exposure setup was used to determine the dosimetric parameters Percentage Depth Dose (PDD) and Tissue Phantom Ratio (TPR). The validation process compares the MC calculated results to the experimental measured PDD20,10 and TPR20,10. Simulations were performed reproducing the experimental TPR20,10 quality index which provides a satisfactory description of both the PDD curve and the transverse profiles at the two depths measured. This paper reports in detail the modelling process using MCNPx, MCNP6, EGSnrc and Penelope Monte Carlo codes, the source and tally descriptions, the validation processes and the results. - Highlights: • MCMEG is an expert network specializing in Monte Carlo radiation transport. • MCNPx, MCNP6, EGSnrc and Penelope Monte Carlo codes are used. • Exercise to model and simulate a 6 MV LINAC photon beam using the Monte Carlo codes. • The PDD 20,10 and TPR 20,10 dosimetric parameters were compared with real data. • The paper reports in the modelling process using different Monte Carlo codes.

  17. Artificial neural network for the determination of neutron spectra in the bunker of a Linac of 18 MV

    International Nuclear Information System (INIS)

    Banuelos F, A.; Borja H, C. G.; Valero L, C.; Guzman G, K. A.; Hernandez D, V. M.; Vega C, H. R.

    2011-11-01

    The neutron spectrum and equivalent of environmental dose H(10) were calculated for a radiotherapy room in 16 punctual detectors, 15 inside of and 1 outside of the same one. The calculations were carried out with the Monte Carlo method and with the code MCNP5 for a generic room model with a Linac of 18 MV, obtaining this way 16 spectra with 47 intervals of energy class, starting from these spectra the values of H(10) were calculated. On the other hand, an artificial neural network was designed and trained to determine the spectra by neutrons in 15 different locations inside the radiotherapy room starting from the value of H(10) in the detector 16 located in the exterior of the room, using as training data the spectra and calculated dose by neutrons, of which a medium quadratic error was obtained (m se) in the adjustment between the objective data and the exit data of m se=1E(-8). The results demonstrate that the use of the artificial intelligence as technique is an useful tool in the spectrometry and dosimetry of neutrons, since it simplifies the characterization process of neutron fields in radiotherapy rooms without the use of spectrometry systems, and that once the energy distribution of the neutrons produced by the Linac is known and the corresponding doses be calculated H(10), they can take the appropriate cautions for the security patient in treatment as well as for the personnel in the room. (Author)

  18. Indigenous development of integrated medical Linac system for cancer therapy - Jai Vigyan programme

    International Nuclear Information System (INIS)

    Singh, G.S.; Sehgal, Vijay

    2012-01-01

    6 MV integrated medical LINAC system was developed for cancer therapy jointly by CSIR-CSIO Chandigarh and SAMEER Mumbai under the Jai Vigyan Programme of the Government of India. Six machines were originally planned to be commissioned in six cancer hospitals in the country. Two machines, namely SIDDARTH I and SIDDARTH II, have already been developed and deployed at MGIMS, Sevagram, Wardha (Maharashtra) and at Cancer Institute (WIA), Adyar, Chennai. These machines are working satisfactorily since their installation. Four more machines namely SIDDARTH III-IV, are underway which will be commissioned in four national cancer institutes by the end of next year. This paper describes in brief the scientific principles of LINAC machines and technological challenges involved in the design and development of such a system of multi-disciplinary activities. (author)

  19. Medical application and its promotion of X-band linacs

    International Nuclear Information System (INIS)

    Uesaka, Mitsuru; Dobashi, Katsuhiro; Kaneyasu, Tatsuo

    2005-01-01

    This article presents the current status of the development of the monochromatic tunable hard X-ray source by the X-band linac and YAG leasers. New medical applications such as 2 colors CT and Drug Delivery System (DDS) are planned. Finally, the virtual laboratory for the distribution of the system to the society is discussed. (author)

  20. A neutron survey of a 25 MV x-ray clinical linac treatment room

    International Nuclear Information System (INIS)

    Price, Kenneth W.; Holeman, George R.; Nath, Ravinder

    1978-01-01

    Neutron production in high energy x-ray radiotherapy machines results in unnecessary dose to patients and has been of recent interest to private and Federal agencies. An activation technique has been used to measure fast and thermal neutron fluxes in the high energy x-ray beam, and at radial distances of 1 and 2 meters from the beam axis of the 25 MV Sagittaire Linear Accelerator located at the Yale-New Haven Hospital's Cancer Therapy Center. Phosphorous pentoxide activation detectors were used to monitor the thermal flux and the fast neutron flux above 0.7 MeV neutron energy. Unlike other techniques for measuring neutrons, this detector has been shown to be insensitive to high energy photon interference at the photon dose rates present in the beam. Neutron spectra at various distances from the accelerator target were computed for the treatment room geometry using the Morse Monte Carlo Code (R.C. McCall, SLAC, Personal Communication). Normalization of these spectra provided the means by which the activation products measured in the phosphorous were converted to fast neutron fluxes. Dose equivalent conversion factors were applied to each energy of the calculated neutron spectra and integrated, resulting in fast neutron flux to dose equivalent conversion factors at various locations in the treatment room. Fast neutron dose equivalent was found to maximize in the photon beam, (0.005 - .007 neutron Rem/photon Rad) and decrease with distance thereafter. Thermal neutron dose equivalent was found to be essentially constant through- out the treatment room (∼ 3.35x10 -5 neutron Rem/ photon Rad). (author)

  1. MCMEG: Simulations of both PDD and TPR for 6 MV LINAC photon beam using different MC codes

    Science.gov (United States)

    Fonseca, T. C. F.; Mendes, B. M.; Lacerda, M. A. S.; Silva, L. A. C.; Paixão, L.; Bastos, F. M.; Ramirez, J. V.; Junior, J. P. R.

    2017-11-01

    The Monte Carlo Modelling Expert Group (MCMEG) is an expert network specializing in Monte Carlo radiation transport and the modelling and simulation applied to the radiation protection and dosimetry research field. For the first inter-comparison task the group launched an exercise to model and simulate a 6 MV LINAC photon beam using the Monte Carlo codes available within their laboratories and validate their simulated results by comparing them with experimental measurements carried out in the National Cancer Institute (INCA) in Rio de Janeiro, Brazil. The experimental measurements were performed using an ionization chamber with calibration traceable to a Secondary Standard Dosimetry Laboratory (SSDL). The detector was immersed in a water phantom at different depths and was irradiated with a radiation field size of 10×10 cm2. This exposure setup was used to determine the dosimetric parameters Percentage Depth Dose (PDD) and Tissue Phantom Ratio (TPR). The validation process compares the MC calculated results to the experimental measured PDD20,10 and TPR20,10. Simulations were performed reproducing the experimental TPR20,10 quality index which provides a satisfactory description of both the PDD curve and the transverse profiles at the two depths measured. This paper reports in detail the modelling process using MCNPx, MCNP6, EGSnrc and Penelope Monte Carlo codes, the source and tally descriptions, the validation processes and the results.

  2. Photo neutron dose equivalent rate in 15 MV X-ray beam from a Siemens Primus Linac

    Directory of Open Access Journals (Sweden)

    A Ghasemi

    2015-01-01

    Full Text Available Fast and thermal neutron fluence rates from a 15 MV X-ray beams of a Siemens Primus Linac were measured using bare and moderated BF 3 proportional counter inside the treatment room at different locations. Fluence rate values were converted to dose equivalent rate (DER utilizing conversion factors of American Association of Physicist in Medicine′s (AAPM report number 19. For thermal neutrons, maximum and minimum DERs were 3.46 × 10 -6 (3 m from isocenter in +Y direction, 0 × 0 field size and 8.36 × 10 -8 Sv/min (in maze, 40 × 40 field size, respectively. For fast neutrons, maximum DERs using 9" and 3" moderators were 1.6 × 10 -5 and 1.74 × 10 -5 Sv/min (2 m from isocenter in +Y direction, 0 × 0 field size, respectively. By changing the field size, the variation in thermal neutron DER was more than the fast neutron DER and the changes in fast neutron DER were not significant in the bunker except inside the radiation field. This study showed that at all points and distances, by decreasing field size of the beam, thermal and fast neutron DER increases and the number of thermal neutrons is more than fast neutrons.

  3. Calculation of Nuclear Particles Production at High-Energy Photon Beams from a Linac Operating at 6, 10 and 15 MV.

    Science.gov (United States)

    Marchesini, Renato; Bettega, Daniela; Calzolari, Paola; Pignoli, Emanuele

    2017-05-01

    Production of photonuclear particles in a tissue-equivalent medium has been calculated for linacs at 6, 10 and 15 MV from Varian TrueBeam. Based on the knowledge of bremsstrahlung fluence spectra and linac photon beam parameters, numerical integration was performed on the cross sections for photoparticle production of the constituent elements of tissue (2H,12C,13C,16O,17O,18O,14N,15N). At 15 MV, at the depth of photon maximum dose, the total absorbed dose due to neutrons, protons, alphas and residual nuclei from photon reactions in tissue (5.5E-05 Gy per Gy of photons) is comparable to that due to neutrons from accelerator head. Results reasonably agree with data reported in the literature using Monte Carlo models simulating linac head components. This work suggests a simple method to estimate the dose contributed by the photon-induced nuclear particles for high-energy photon beams produced by linacs in use, as it might be relevant for late stochastic effects. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Failure analysis of medical Linac (LMR-15)

    International Nuclear Information System (INIS)

    Kato, Kiyotaka; Nakamura, Katsumi; Ogihara, Kiyoshi; Takahashi, Katsuhiko; Sato, Kazuhisa.

    1994-01-01

    In August 1978, Linac (LMR-15, Z4 Toshiba) was installed at our hospital and in use for 12 years up to September 1990. Recently, we completed working and failure records on this apparatus during the 12-year period, for the purpose of their analysis in the basis of reliability engineering. The results revealed operation rate of 97.85% on the average, mean time between failures (MTBF) from 40-70 hours about the beginning of its working to 280 hours for 2 years before renewal and practically satisfactory values of mean life of parts of life such as magnetron, thyratron and electron gun; the above respective values proved to be above those reported by other literature. On the other hand, we classified, by occurring system, the contents of failures in the apparatus and determined the number of failures and the temperature and humidities in case of failures to examine the correlation between the working environment and failure. The results indicated a change in humidity to gain control of failures in the dosimetric system, especially the monitoring chamber and we could back up the strength of the above correlation from a coefficient of correlation value of 0.84. (author)

  5. SU-E-T-267: Construction and Evaluation of a Neutron Wall to Shield a 15 MV Linac in a Low-Energy Vault.

    Science.gov (United States)

    Speiser, M; Hager, F; Foster, R; Solberg, T

    2012-06-01

    To design and quantify the shielding efficacy of an inner Borated Polyethylene (BPE)wall for a 15 MV linac in a low energy vault. A Varian TrueBeam linac with a maximum photon energy of 15 MV was installed in asmaller, preexisting vault. This vault originally housed a low-energy machine and did not havesufficient maze length recommended for neutron attenuation. Effective dose rate calculationswere performed using the Modified Kersey's Method as detailed in NCRP Report No. 151 andfound to be unacceptably high. An initial survey following the machine installation confirmedthese calculations. Rather than restrict the linac beam energy to 10 MV, BPE was investigatedas a neutron moderating addition. An inner wall and door were planned and constructed using4'×8'×1″ thick 5% BPE sheets. The resulting door and wall had 2″ of BPE; conduits and ductwork were also redesigned and shielded. A survey was conducted following construction of thewall. The vault modification reduced the expected effective dose at the vault door from 36.23to 0.010 mSv/week. As specific guidelines for vault modification are lacking, this project quantitativelydemonstrates the potential use of BPE for vault modification. Such modifications may provide alow-cost shielding solution to allow for the use of high energy modes in smaller treatment vaults. © 2012 American Association of Physicists in Medicine.

  6. SU-E-I-72: First Experimental Study of On-Board CBCT Imaging Using 2.5MV Beam On a Radiotherapy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Institute of Image Processing and Pattern Recognition, Xi' an Jiaotong University, Xi' an (China); Li, R; Yang, Y; Xing, L [Department of Radiation Oncology, Stanford University, Stanford, CA (United States)

    2014-06-01

    Purpose: Varian TrueBeam version 2.0 comes with a new inline 2.5MV beam modality for image guided patient setup. In this work we develop an iterative volumetric image reconstruction technique specific to the beam and investigate the possibility of obtaining metal artifact free CBCT images using the new imaging modality. Methods: An iterative reconstruction algorithm with a sparse representation constraint based on dictionary learning is developed, in which both sparse projection and low dose rate (10 MU/min) are considered. Two CBCT experiments were conducted using the newly available 2.5MV beam on a Varian TrueBeam linac. First, a Rando anthropomorphic head phantom with and without a copper bar inserted in the center was scanned using both 2.5MV and kV (100kVp) beams. In a second experiment, an MRI phantom with many coils was scanned using 2.5MV, 6MV, and kV (100kVp) beams. Imaging dose and the resultant image quality is studied. Results: Qualitative assessment suggests that there were no visually detectable metal artifacts in MV CBCT images, compared with significant metal artifacts in kV CBCT images, especially in the MRI phantom. For a region near the metal object in the head phantom, the 2.5MV CBCT gave a more accurate quantification of the electron density compared with kV CBCT, with a ∼50% reduction in mean HU error. As expected, the contrast between bone and soft-tissue in 2.5MV CBCT decreased compared with kV CBCT. Conclusion: On-board CBCT imaging with the new 2.5MV beam can effectively reduce metal artifacts, although with a reduced softtissue contrast. Combination of kV and MV scanning may lead to metal artifact free CBCT images with uncompromised soft-tissue contrast.

  7. Spectra and neutron dose of an 18 MV Linac using two geometric models of the head

    International Nuclear Information System (INIS)

    Barrera, M. T.; Pino, F.; Barros, H.; Sajo-Bohus, L.; Davila, J.; Salcedo, E.; Vega C, H. R.; Benites R, J. L.

    2015-10-01

    Full text: Using the Monte Carlo method, by MCNP5 code, simulations were performed with different source terms and 2 geometric models of the head to obtain spectra in energy, flow and doses of photo-neutrons at different positions on the stretcher and in the radiotherapy room. The simplest model was a spherical shell of tungsten; the second was the complete model of a heterogeneous head of an accelerator Varian ix. In both models Tosi function was used as a source term. In addition, for the second model Sheikh-Bagheri distribution was used for photons and photo-neutrons were generated. Also in both models the radiotherapy room of Gurve group of the Teaching Medical Center La Trinidad was included, which is equipped with an accelerator Varian Clinic 2100. In this Center passive detectors PADC (Cr-39) were irradiated with neutron converters, with 18 MeV photons radiation. The measured neutron flow was compared with that obtained with Monte Carlo calculations. The Monte Carlo flows are similar to those measured at the isocenter. The simplest model underestimates the neutron flow compared with the calculated flows with the heterogeneous model of the head. (Author)

  8. SU-F-T-656: Monte Carlo Study On Air Activation Around a Medical Electron Linac

    International Nuclear Information System (INIS)

    Horst, F; Fehrenbacher, G; Zink, K

    2016-01-01

    Purpose: In high energy photon therapy, several radiation protection issues result from photonuclear reactions. The activation of air - directly by photonuclear reactions as well as indirectly by capture of photoneutrons generated inside the linac head - is a major point of concern for the medical staff. The purpose of this study was to estimate the annual effective dose to medical workers due to activated air around a medical high energy electron linac by means of Monte Carlo simulations. Methods: The treatment head of a Varian Clinac in 18 MV-X mode as well as the surrounding concrete bunker were modeled and the radiation transport was simulated using the Monte Carlo code FLUKA, starting from the primary electron striking the bremsstrahlung target. The activation yields in air from photo-disintegration of O-16 and N-14 nuclei as well as from neutron capture on Ar-40 nuclei were obtained from the simulations. The activation build-up, radioactive decay and air ventilation were studied using a mathematical model. The annual effective dose to workers was estimated by using published isotope specific conversion factors. Results: The oxygen and nitrogen activation yields were in contrast to the argon activation yield found to be field size dependent. The impact of the treatment room ventilation on the different air activation products was investigated and quantified. An estimate with very conservative assumptions gave an annual effective dose to workers of < 1 mSv/a. Conclusion: From the results of this study it can be concluded that the contribution of air activation to the radiation exposure to medical workers should be negligible in modern photon therapy, especially when it is compared to the dose due to prompt neutrons and the activation of heavy solid materials such as the jaws and the collimators inside the linac head.

  9. SU-F-T-656: Monte Carlo Study On Air Activation Around a Medical Electron Linac

    Energy Technology Data Exchange (ETDEWEB)

    Horst, F [Institute of Medical Physics and Radiation Protection, University of Applied Sciences, Giessen (Germany); GSI Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany); Fehrenbacher, G [GSI Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany); Zink, K [Institute of Medical Physics and Radiation Protection, University of Applied Sciences, Giessen (Germany); University Hospital Giessen-Marburg, Marburg (Germany)

    2016-06-15

    Purpose: In high energy photon therapy, several radiation protection issues result from photonuclear reactions. The activation of air - directly by photonuclear reactions as well as indirectly by capture of photoneutrons generated inside the linac head - is a major point of concern for the medical staff. The purpose of this study was to estimate the annual effective dose to medical workers due to activated air around a medical high energy electron linac by means of Monte Carlo simulations. Methods: The treatment head of a Varian Clinac in 18 MV-X mode as well as the surrounding concrete bunker were modeled and the radiation transport was simulated using the Monte Carlo code FLUKA, starting from the primary electron striking the bremsstrahlung target. The activation yields in air from photo-disintegration of O-16 and N-14 nuclei as well as from neutron capture on Ar-40 nuclei were obtained from the simulations. The activation build-up, radioactive decay and air ventilation were studied using a mathematical model. The annual effective dose to workers was estimated by using published isotope specific conversion factors. Results: The oxygen and nitrogen activation yields were in contrast to the argon activation yield found to be field size dependent. The impact of the treatment room ventilation on the different air activation products was investigated and quantified. An estimate with very conservative assumptions gave an annual effective dose to workers of < 1 mSv/a. Conclusion: From the results of this study it can be concluded that the contribution of air activation to the radiation exposure to medical workers should be negligible in modern photon therapy, especially when it is compared to the dose due to prompt neutrons and the activation of heavy solid materials such as the jaws and the collimators inside the linac head.

  10. A medical facility proposal to use the SSC linac

    International Nuclear Information System (INIS)

    Funk, L.W.

    1994-01-01

    A consortium organized by the Texas National Research Laboratory Commission under a Department of Energy grant proposes to build and operate a Regional Medical Technology Center to function as a combined medical radioisotope production complex and proton cancer therapy facility using the Linear Accelerator (Linac) assets of the Superconducting Super Collider (SSC). The radioisotope production complex will serve as a domestic source of radioisotopes critically needed by the U.S. pharmaceutical industry and nuclear medicine facilities throughout North America. Presently, more than 70 percent of radioisotopes used in U.S. nuclear medicine procedures are produced outside the country. The Center's state-of-the-art proton cancer therapy facility will serve the Central United States, providing advanced capabilities and augmenting facilities in California and Massachusetts. Long-term, it is anticipated that the RMTC also will stimulate nuclear medicine research, advance medical diagnostic technologies, and generate new industrial applications for linear accelerator technology

  11. A medical facility proposal to use the SSC linac

    International Nuclear Information System (INIS)

    Funk, L.W.

    1995-01-01

    A consortium organized by the Texas National Research Laboratory Commission (TNRLC) under a Department of Energy (DOE) grant proposes to build and operate a Regional Medical Technology Center (RMTC) to function as a combined medical radioisotope production complex and proton cancer therapy facility using the linear accelerator (linac) assets of the cancelled Superconducting Super Collider (SSC). The radioisotope production complex will serve as a domestic source of radioisotopes critically needed by the U.S. pharmaceutical industry and nuclear medicine facilities throughout North America. Presently, more than 70 percent of radioisotopes used in U.S. nuclear medicine procedures are produced outside the country. The Center's state-of-the-art proton cancer therapy facility will serve the Central United States, providing advanced capabilities and augmenting facilities in California and Massachusetts. Long-term, it is anticipated that the RMTC also will stimulate nuclear medicine research, advance medical diagnostic technologies, and generate new industrial applications of linear accelerator technology. (orig.)

  12. A medical facility proposal to use the SSC linac

    Science.gov (United States)

    Warren Funk, L.

    1995-05-01

    A consortium organized by the Texas National Research Laboratory Commission (TNRLC) under a Department of Energy (DOE) grant proposes to build and operate a Regional Medical Technology Center (RMTC) to function as a combined medical radioisotope production complex and proton cancer therapy facility using the linear accelerator (linac) assets of the cancelled Superconducting Super Collider (SSC). The radioisotope production complex will serve as a domestic source of radioisotopes critically needed by the U.S. pharmaceutical industry and nuclear medicine facilities throughout North America. Presently, more than 70 percent of radioisotopes used in U.S. nuclear medicine procedures are produced outside the country. The Center's state-of-the-art proton cancer therapy facility will serve the Central United States, providing advanced capabilities and augmenting facilities in California and Massachusetts. Long-term, it is anticipated that the RMTC also will stimulate nuclear medicine research, advance medical diagnostic technologies, and generate new industrial applications of linear accelerator technology.

  13. Activation products in a treatment room of a 15 MV linear accelerator for medical use

    International Nuclear Information System (INIS)

    De Leon M, H. A.; Soto B, T. G.; Rivera P, E.; Hernandez D, V. M.; Vega C, H. R.

    2012-10-01

    Linacs working above 8 MV produce an undesirable neutron field mainly through (γ, n) nuclear reactions. Due to room-return effect inside the vault there is a thermal neutron flux that is constant regarded the distance to the isocenter. When thermal neutrons collide with the bunker walls and the Linac head some radioisotopes are induced in the concrete, wedges and collimators due to neutron and photon activation. The aim of this work is to study the induced radioisotopes in concrete samples and a wedge, which emits gamma-ray during its decay, the presence of this protons will represent a radiological risk for the patient. Induced radioisotopes were studied with a 15 MV Linac, and a gamma-ray spectrometer with a Nal(Tl) scintillator where 846.8, 1368.6 and 1778.8 keV gamma-rays were observed, these photons are produced during the decay of 54 Mn, 24 Na and 28 Al respectively, being in agreement with radionuclides reported in the literature. (Author)

  14. SU-F-E-17: A Dedicated Teaching and Research Linac as a Stepping Stone to Introduce Medical Physics to Students

    International Nuclear Information System (INIS)

    Beaulieu, L; Archambault, L; Gingras, L; Bergeron, M

    2016-01-01

    Purpose: This work describes how a non-clinical, research and teaching Linac is used as an extremely motivating and exciting way to introduce students to medical physics. Methods: The dedicated facility was inaugurated in 2014. The facility is composed of a fully equipped and functional state-of-the-art Varian TrueBeam Linac and a complete set of physics instruments and QA phantoms for the Linac and onboard imaging. The Linac bunker and treatment console are oversized such that a class of 12–15 can comfortably fit, seated if needed for longer sessions. A 3cr undergraduate laboratory course that includes medical imaging, x-ray source characterization (mAs, kVp, and filtering) and many others including an introductory Linac laboratory was created. The latter is composed of one general 4-hours session and a weekly 4-hours session for teams of two students. The general session includes a hands-on presentation of the Linac, its environment and a formal safety and radiation protection course (with an exam). Results: Since the winter of 2015, senior undergraduate (total of 15) pursuing either the medical physics or the biomedical engineering tracks can register. At the Linac, the students are allowed full control of the experiments, including set-up and irradiation. Supervisor intervention is limited to safety concerns for students or equipment. Measurements of output factors using two chambers (regular and small field) for various field sizes (1×1 to 30×30 cm 2 ) and of detailed depth-dose curves for 6 MV, 6 and 12 MeV beams are to be performed and discussed in a formal report. Conclusion: Full access to, and control of, a Linac is the high point of this course. It provides a glimpse of medical physics and generates an experimental background for those continuing to CAMPEP programs. This dedicated, non-clinical facility further enable enhance CAMPEP graduate teaching and research activities not possible with a clinical device.

  15. Monte Carlo computation of Bremsstrahlung intensity and energy spectrum from a 15 MV linear electron accelerator tungsten target to optimise LINAC head shielding

    International Nuclear Information System (INIS)

    Biju, K.; Sharma, Amiya; Yadav, R.K.; Kannan, R.; Bhatt, B.C.

    2003-01-01

    The knowledge of exact photon intensity and energy distributions from the target of an electron target is necessary while designing the shielding for the accelerator head from radiation safety point of view. The computations were carried out for the intensity and energy distribution of photon spectrum from a 0.4 cm thick tungsten target in different angular directions for 15 MeV electrons using a validated Monte Carlo code MCNP4A. Similar results were computed for 30 MeV electrons and found agreeing with the data available in literature. These graphs and the TVT values in lead help to suggest an optimum shielding thickness for 15 MV Linac head. (author)

  16. Computational intercomparison of the mathematical model of a clinical accelerator LINAC 6MV using two different Monte Carlo codes: MCNPx and EGSnrc; Intercomparacao computacional do modelo matematico de um acelerador clinico LINAC 6MV utilizando dois codigos de Monte Carlo diferentes: MCNPx e EGSnrc

    Energy Technology Data Exchange (ETDEWEB)

    Castelo e Silva, L.A., E-mail: castelo@ifsp.edu.br [Instituto Federal de Sao Paulo (IFSP), SP (Brazil); Mendes, M.B.; Goncalves, B.R.; Santos, D.M.M.; Vieira, M.V.; Fonseca, R.L.M.; Zenobio, M.A.F.; Fonseca, T.C.F. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Paixao, L. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2016-07-01

    The main goal of this work is to publish the results of an inter-comparison simulation exercise of a clinical 10 x 10 cm{sup 2} beam model of a 6 MV LINAC using two different Monte Carlo codes: the MCNPX and EGSnrc. Results obtained for the dosimetric parameters PDD{sub 20,10} and TPR{sub 20,10} were compared with experimental data obtained in Radiotherapy and Megavoltage Institute of Minas Gerais. The main challenges on the computational modeling of this system are reported and discussed for didactic purposes in the area of modeling and simulation. (author)

  17. SU-E-T-53: Benchmarking a Monte Carlo Model for Patient Plane Leakage Calculations of Low Energy 6MV Unique Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, M; Sawkey, D; Johnsen, S; Hsu, H [Varian Medical Systems, Palo Alto, CA (United States)

    2014-06-01

    Purpose: To validate the physics parameters of a Monte Carlo model for patient plane leakage calculations on the 6MV Unique linac by comparing the simulations against IEC patient plane leakage measurements. The benchmarked model can further be used for shielding design optimization, to predict leakage in the proximity of intended treatment fields, reduce the system weight and cost, and improve components reliability. Methods: The treatment head geometry of the Unique linac was simulated in Geant4 (v9.4.p02 with “Opt3” standard electromagnetic physics list) based on CAD drawings of all collimation and shielding components projected from the target to the area within 2m from isocenter. A 4×4m2 scorer was inserted 1m from the target in the patient plane and multiple phase space files were recorded by performing a 40-node computing cluster simulation on the EC2 cloud. The photon energy fluence was calculated relative to the value at isocenter for a 10×10cm2 field using 10×10mm2 bins. Tungsten blocks were parked accordingly to represent MLC120. The secondary particle contamination to patient plane was eliminated by “killing” those particles prior to the primary collimator entrance using a “kill-plane”, which represented the upper head shielding components not being modeled. Both IEC patient-plane leakage and X/Y-jaws transmission were simulated. Results: The contribution of photons to energy fluence was 0.064% on average, in excellent agreement with the experimental data available at 0.5, 1.0, and 1.5m from isocenter, characterized by an average leakage of 0.045% and a maximum leakage of 0.085%. X- and Y-jaws transmissions of 0.43% and 0.44% were found in good agreement with measurements of 0.48% and 0.43%, respectively. Conclusion: A Geant4 model based on energy fluence calculations for the 6MV Unique linac was created and validated using IEC patient plane leakage measurements. The “kill-plane” has effectively eliminated electron contamination to

  18. Spectra and neutron dose of an 18 MV Linac using two geometric models of the head; Espectros y dosis por neutrones de un Linac de 18 MV usando dos modelos geometricos del cabezal

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, M. T.; Pino, F.; Barros, H.; Sajo-Bohus, L. [Universidad Simon Bolivar, Laboratorio de Fisica Nuclear, Sartenejas, Baruta 1080-A, Caracas (Venezuela, Bolivarian Republic of); Davila, J. [Fisica Medica C. A., Av. Francisco de Miranda s/n, Los Palos Grandes, 1060 Miranda (Venezuela, Bolivarian Republic of); Salcedo, E. [Centro Medico Docente La Trinidad, Av. de El Haltillo, Caracas (Venezuela, Bolivarian Republic of); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Benites R, J. L., E-mail: mariate9590@gmail.com [Centro de Cancerologia de Nayarit, Servicio de Seguridad Radiologica, Calz. de la Cruz 118 Sur, 63000 Tepic, Nayarit (Mexico)

    2015-10-15

    Full text: Using the Monte Carlo method, by MCNP5 code, simulations were performed with different source terms and 2 geometric models of the head to obtain spectra in energy, flow and doses of photo-neutrons at different positions on the stretcher and in the radiotherapy room. The simplest model was a spherical shell of tungsten; the second was the complete model of a heterogeneous head of an accelerator Varian ix. In both models Tosi function was used as a source term. In addition, for the second model Sheikh-Bagheri distribution was used for photons and photo-neutrons were generated. Also in both models the radiotherapy room of Gurve group of the Teaching Medical Center La Trinidad was included, which is equipped with an accelerator Varian Clinic 2100. In this Center passive detectors PADC (Cr-39) were irradiated with neutron converters, with 18 MeV photons radiation. The measured neutron flow was compared with that obtained with Monte Carlo calculations. The Monte Carlo flows are similar to those measured at the isocenter. The simplest model underestimates the neutron flow compared with the calculated flows with the heterogeneous model of the head. (Author)

  19. SU-F-E-17: A Dedicated Teaching and Research Linac as a Stepping Stone to Introduce Medical Physics to Students

    Energy Technology Data Exchange (ETDEWEB)

    Beaulieu, L; Archambault, L [CHU de Quebec - Universite Laval, Quebec, Quebec (Canada); Universite Laval, Quebec, Quebec (Canada); Gingras, L [CHU de Quebec - Universite Laval, Quebec, Quebec (Canada); Bergeron, M [CEGEP de Ste-Foy, Quebec, Quebec (Canada)

    2016-06-15

    Purpose: This work describes how a non-clinical, research and teaching Linac is used as an extremely motivating and exciting way to introduce students to medical physics. Methods: The dedicated facility was inaugurated in 2014. The facility is composed of a fully equipped and functional state-of-the-art Varian TrueBeam Linac and a complete set of physics instruments and QA phantoms for the Linac and onboard imaging. The Linac bunker and treatment console are oversized such that a class of 12–15 can comfortably fit, seated if needed for longer sessions. A 3cr undergraduate laboratory course that includes medical imaging, x-ray source characterization (mAs, kVp, and filtering) and many others including an introductory Linac laboratory was created. The latter is composed of one general 4-hours session and a weekly 4-hours session for teams of two students. The general session includes a hands-on presentation of the Linac, its environment and a formal safety and radiation protection course (with an exam). Results: Since the winter of 2015, senior undergraduate (total of 15) pursuing either the medical physics or the biomedical engineering tracks can register. At the Linac, the students are allowed full control of the experiments, including set-up and irradiation. Supervisor intervention is limited to safety concerns for students or equipment. Measurements of output factors using two chambers (regular and small field) for various field sizes (1×1 to 30×30 cm{sup 2}) and of detailed depth-dose curves for 6 MV, 6 and 12 MeV beams are to be performed and discussed in a formal report. Conclusion: Full access to, and control of, a Linac is the high point of this course. It provides a glimpse of medical physics and generates an experimental background for those continuing to CAMPEP programs. This dedicated, non-clinical facility further enable enhance CAMPEP graduate teaching and research activities not possible with a clinical device.

  20. Estimation of neutron production from accelerator head assembly of 15 MV medical LINAC using FLUKA simulations

    Energy Technology Data Exchange (ETDEWEB)

    Patil, B.J., E-mail: bjp@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India); Chavan, S.T., E-mail: sharad@sameer.gov.in [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Pethe, S.N., E-mail: sanjay@sameer.gov.in [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Krishnan, R., E-mail: krishnan@sameer.gov.in [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Bhoraskar, V.N., E-mail: vnb@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India)

    2011-12-15

    For the production of a clinical 15 MeV photon beam, the design of accelerator head assembly has been optimized using Monte Carlo based FLUKA code. The accelerator head assembly consists of e-{gamma} target, flattening filter, primary collimator and an adjustable rectangular secondary collimator. The accelerators used for radiation therapy generate continuous energy gamma rays called Bremsstrahlung (BR) by impinging high energy electrons on high Z materials. The electron accelerators operating above 10 MeV can result in the production of neutrons, mainly due to photo nuclear reaction ({gamma}, n) induced by high energy photons in the accelerator head materials. These neutrons contaminate the therapeutic beam and give a non-negligible contribution to patient dose. The gamma dose and neutron dose equivalent at the patient plane (SSD = 100 cm) were obtained at different field sizes of 0 Multiplication-Sign 0, 10 Multiplication-Sign 10, 20 Multiplication-Sign 20, 30 Multiplication-Sign 30 and 40 Multiplication-Sign 40 cm{sup 2}, respectively. The maximum neutron dose equivalent is observed near the central axis of 30 Multiplication-Sign 30 cm{sup 2} field size. This is 0.71% of the central axis photon dose rate of 0.34 Gy/min at 1 {mu}A electron beam current.

  1. Design study of a medical proton linac for neutron therapy

    International Nuclear Information System (INIS)

    Machida, S.; Raparia, D.

    1988-01-01

    This paper describes a design study which establishes the physical parameters of the low energy beam transport, radiofrequency quadrupole, and linac, using computer programs available at Fermilab. Beam dynamics studies verify that the desired beam parameters can be achieved. The machine described here meets the aforementioned requirements and can be built using existing technology. Also discussed are other technically feasible options which could be attractive to clinicians, though they would complicate the design of the machine and increase construction costs. One of these options would allow the machine to deliver 2.3 MeV protons to produce epithermal neutrons for treating brain tumors. A second option would provide 15 MeV protons for isotope production. 21 refs., 33 figs

  2. Validation of a virtual source model of medical linac for Monte Carlo dose calculation using multi-threaded Geant4

    Science.gov (United States)

    Aboulbanine, Zakaria; El Khayati, Naïma

    2018-04-01

    The use of phase space in medical linear accelerator Monte Carlo (MC) simulations significantly improves the execution time and leads to results comparable to those obtained from full calculations. The classical representation of phase space stores directly the information of millions of particles, producing bulky files. This paper presents a virtual source model (VSM) based on a reconstruction algorithm, taking as input a compressed file of roughly 800 kb derived from phase space data freely available in the International Atomic Energy Agency (IAEA) database. This VSM includes two main components; primary and scattered particle sources, with a specific reconstruction method developed for each. Energy spectra and other relevant variables were extracted from IAEA phase space and stored in the input description data file for both sources. The VSM was validated for three photon beams: Elekta Precise 6 MV/10 MV and a Varian TrueBeam 6 MV. Extensive calculations in water and comparisons between dose distributions of the VSM and IAEA phase space were performed to estimate the VSM precision. The Geant4 MC toolkit in multi-threaded mode (Geant4-[mt]) was used for fast dose calculations and optimized memory use. Four field configurations were chosen for dose calculation validation to test field size and symmetry effects, , , and for squared fields, and for an asymmetric rectangular field. Good agreement in terms of formalism, for 3%/3 mm and 2%/3 mm criteria, for each evaluated radiation field and photon beam was obtained within a computation time of 60 h on a single WorkStation for a 3 mm voxel matrix. Analyzing the VSM’s precision in high dose gradient regions, using the distance to agreement concept (DTA), showed also satisfactory results. In all investigated cases, the mean DTA was less than 1 mm in build-up and penumbra regions. In regards to calculation efficiency, the event processing speed is six times faster using Geant4-[mt] compared to sequential

  3. WE-G-17A-09: Novel Magnetic Shielding Design for Inline and Perpendicular Integrated 6 MV Linac and 1.0 T MRI Systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, X; Ma, B; Kuang, Y [University of Nevada, Las Vegas, Las Vegas, NV (United States); Diao, X [Shenzhen University, Shenzhen, Guangdong (China)

    2014-06-15

    Purpose: The influence of fringe magnetic fields delivered by magnetic resonance imaging (MRI) on the beam generation and transportation in Linac is still a major challenge for the integration of linear accelerator and MRI (Linac-MRI). In this study, we investigated an optimal magnetic shielding design for Linac-MRI and further characterized the beam trajectory in electron gun. Methods: Both inline and perpendicular configurations were analyzed in this study. The configurations, comprising a Linac-MRI with a 100cm SAD and an open 1.0 T superconductive magnet, were simulated by the 3D finite element method (FEM). The steel shielding around the Linac was included in the 3D model, the thickness of which was varied from 1mm to 20mm, and magnetic field maps were acquired with and without additional shielding. The treatment beam trajectory in electron gun was evaluated using OPERA 3d SCALA with and without shielding cases. Results: When Linac was not shielded, the uniformity of diameter sphere volume (DSV) (30cm) was about 5 parts per million (ppm) and the fringe magnetic fields in electron gun were more than 0.3 T. With shielding, the magnetic fields in electron gun were reduced to less than 0.01 T. For the inline configuration, the radial magnetic fields in the Linac were about 0.02T. A cylinder steel shield used (5mm thick) altered the uniformity of DSV to 1000 ppm. For the perpendicular configuration, the Linac transverse magnetic fields were more than 0.3T, which altered the beam trajectory significantly. A 8mm-thick cylinder steel shield surrounding the Linac was used to compensate the output losses of Linac, which shifted the magnetic fields' uniformity of DSV to 400 ppm. Conclusion: For both configurations, the Linac shielding was used to ensure normal operation of the Linac. The effect of magnetic fields on the uniformity of DSV could be modulated by the shimming technique of the MRI magnet. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant

  4. WE-G-17A-09: Novel Magnetic Shielding Design for Inline and Perpendicular Integrated 6 MV Linac and 1.0 T MRI Systems

    International Nuclear Information System (INIS)

    Li, X; Ma, B; Kuang, Y; Diao, X

    2014-01-01

    Purpose: The influence of fringe magnetic fields delivered by magnetic resonance imaging (MRI) on the beam generation and transportation in Linac is still a major challenge for the integration of linear accelerator and MRI (Linac-MRI). In this study, we investigated an optimal magnetic shielding design for Linac-MRI and further characterized the beam trajectory in electron gun. Methods: Both inline and perpendicular configurations were analyzed in this study. The configurations, comprising a Linac-MRI with a 100cm SAD and an open 1.0 T superconductive magnet, were simulated by the 3D finite element method (FEM). The steel shielding around the Linac was included in the 3D model, the thickness of which was varied from 1mm to 20mm, and magnetic field maps were acquired with and without additional shielding. The treatment beam trajectory in electron gun was evaluated using OPERA 3d SCALA with and without shielding cases. Results: When Linac was not shielded, the uniformity of diameter sphere volume (DSV) (30cm) was about 5 parts per million (ppm) and the fringe magnetic fields in electron gun were more than 0.3 T. With shielding, the magnetic fields in electron gun were reduced to less than 0.01 T. For the inline configuration, the radial magnetic fields in the Linac were about 0.02T. A cylinder steel shield used (5mm thick) altered the uniformity of DSV to 1000 ppm. For the perpendicular configuration, the Linac transverse magnetic fields were more than 0.3T, which altered the beam trajectory significantly. A 8mm-thick cylinder steel shield surrounding the Linac was used to compensate the output losses of Linac, which shifted the magnetic fields' uniformity of DSV to 400 ppm. Conclusion: For both configurations, the Linac shielding was used to ensure normal operation of the Linac. The effect of magnetic fields on the uniformity of DSV could be modulated by the shimming technique of the MRI magnet. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant

  5. Electron linacs

    Energy Technology Data Exchange (ETDEWEB)

    Loew, G A; Schriber, S O [ed.

    1976-11-01

    A study was made of the present status of the thousand or so electron linacs in the world, and future trends in the field. These machines were classified according to their use: medical, industrial, and nuclear physics. In the medical category, two types of electron linacs are discussed: the conventional ones which are used for x-ray and electron therapy, and those which may in the future be used for negative pion therapy. Industrial machines discussed include linacs for radiographic and other specialized applications. In the nuclear physics category, the status of conventional low- and medium-energy as well as high duty cycle linacs is reviewed. The question of how one might obtain a c-w, 1 GeV, 100..mu..A electron linac is raised, and various options using recirculation and stretchers are examined. In this connection, the status of rf superconductivity is summarized. A review is given of linacs for injectors into synchrotrons and e/sup +-/ storage rings, and recent work done to upgrade the only multi-GeV linac, namely SLAC, is described.

  6. Electron linacs

    International Nuclear Information System (INIS)

    Loew, G.A.

    1976-01-01

    To study the present status of the thousand or so electron linacs in the world, and future trends in the field, we have classified these machines according to their use: medical, industrial, and nuclear physics. In the medical category, two types of electron linacs are discussed: the conventional ones which are used for X-ray and electron therapy, and those which may in the future be used for negative pion therapy. The section on industrial machines includes linacs for radiographic and other specialized applications. In the nuclear physics category, the status of conventional low- and medium-energy as well as high duty cycle linacs is reviewed. The question of how one might obtain a C.W., 1 GeV, 100 μA electron linac is raised and various options using recirculation and stretchers are examined. In this connection, the status of RF superconductivity is summarized. Following, there is a review of linacs for injectors into synchrotrons and e +- storage rings. The paper ends with a description of recent work done to upgrade the only multi-GeV linac, namely SLAC. (author)

  7. Report on recent over-exposure accidents with a medical linac in Japan

    International Nuclear Information System (INIS)

    Kudoh, Hisaaki

    2003-01-01

    On December 21, 2001, at a hospital in Tokyo, an engineer setting a medical-linac was over-exposed by the equipment due to lack of communication between workers. The exposed dose was initially reported as 1000 mSv (1 Sv), but later revised to 200 mSv at most. The outline of the accident and the statistical data on radiation exposure accidents in Japan and the world are briefly overlooked. (author)

  8. Microwave matching and tuning on the 20-MeV medical electron linac with feedback of rf power

    International Nuclear Information System (INIS)

    Yuan-ling, Wang

    1983-01-01

    This article describes the 20 Mev medical electron linac at Jiangsu Tumour Hospital. In the linac, feedback of rf power is used. In the linac with feedback (or with the resonator) the reflection affects the energy gain of the electron and the performance of the accelerator. By means of the theory of the traveling wave resonator, the field multiplication factor and the reflection coefficients inside and outside the feedback ring are calculated. The bands of the linacs without and with feedback are measured. In order to achieve a desirable band in front of the load (i.e. outside the feedback ring) a matching iris is added. After the linac with feedback has been matched, the band is given

  9. Solid-state pulse modulator using Marx generator for a medical linac electron-gun

    Science.gov (United States)

    Lim, Heuijin; Hyeok Jeong, Dong; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae

    2016-04-01

    A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun.

  10. Solid-state pulse modulator using Marx generator for a medical linac electron-gun

    International Nuclear Information System (INIS)

    Lim, Heuijin; Jeong, Dong Hyeok; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae

    2016-01-01

    A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun

  11. Effects of Field Distortions in IH-APF Linac for a Compact Medical Accelerator

    CERN Document Server

    Kapin, Valery; Yamada, Satoru

    2004-01-01

    The project on developing compact medical accelerators for the tumor therapy using carbon ions has been started at the National Institute of Radiological Sciences (NIRS). Alternating-phase-focused (APF) linac using an interdigital H-mode (IH) cavity has been proposed for the injector linac. The IH-cavity is a doubly ridged circular resonator loaded by the drift-tubes mounted on ridges with supporting stems. The effects of intrinsic and random field distortions in a practical design of the 4-Mev/u 200-MHz IH-APF linac are considered. The intrinsic field distortions in the IH-cavity are caused by an asymmetry of the gap fields due to presence of the stems and pair of ridges. The random field distortions are caused by drift-tube misalignments and non-regular deviations of the gap voltages from programmed values. The RF fields in the IH-cavity have been calculated using Microwave Studio (MWS) code. The effects of field distortions on beam dynamics have been simulated numerically. The intrinsic field distortions a...

  12. Photonuclear and Radiation Effects Testing with a Refurbished 20 MeV Medical Electron Linac

    CERN Document Server

    Webb, Timothy; Beezhold, Wendland; De Veaux, Linda C; Harmon, Frank; Petrisko, Jill E; Spaulding, Randy

    2005-01-01

    An S-band 20 MeV electron linear accelerator formerly used for medical applications has been recommissioned to provide a wide range of photonuclear activation studies as well as various radiation effects on biological and microelectronic systems. Four radiation effect applications involving the electron/photon beams are described. Photonuclear activation of a stable isotope of oxygen provides an active means of characterizing polymer degradation. Biological irradiations of microorganisms including bacteria were used to study total dose and dose rate effects on survivability and the adaptation of these organisms to repeated exposures. Microelectronic devices including bipolar junction transistors (BJTs) and diodes were irradiated to study photocurrent from these devices as a function of peak dose rate with comparisons to computer modeling results. In addition, the 20 MeV linac may easily be converted to a medium energy neutron source which has been used to study neutron damage effects on transistors.

  13. Electron linac for medical isotope production with improved energy efficiency and isotope recovery

    Science.gov (United States)

    Noonan, John; Walters, Dean; Virgo, Matt; Lewellen, John

    2015-09-08

    A method and isotope linac system are provided for producing radio-isotopes and for recovering isotopes. The isotope linac is an energy recovery linac (ERL) with an electron beam being transmitted through an isotope-producing target. The electron beam energy is recollected and re-injected into an accelerating structure. The ERL provides improved efficiency with reduced power requirements and provides improved thermal management of an isotope target and an electron-to-x-ray converter.

  14. X-band RF gun and linac for medical Compton scattering X-ray source

    Science.gov (United States)

    Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi

    2004-12-01

    Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year.

  15. X-band RF gun and linac for medical Compton scattering X-ray source

    International Nuclear Information System (INIS)

    Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi

    2004-01-01

    Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year

  16. Is medical linac suitable for high-precision stereotactic irradiation? Investigations in geometrical accuracies of gantry and couch

    International Nuclear Information System (INIS)

    Kunieda, Etsuo; Kitamura, Masayuki; Kawaguchi, Osamu; Shigematsu, Naoyuki; Ando, Yutaka; Kubo, Atsushi; Ohira, Takayuki; Tonai, Takenori; Kawase, Takeshi.

    1998-01-01

    Linac-based radiosurgery has many advantages over the gamma knife, including low initial cost and no need of source replacement. On the other hand, most of the medical linacs currently in use were not originally designed to be applied for radiosurgery, and, therefore, careful quality assurance programs are required. In the gantry-head of a linac, a small CCD video camera is mounted in a position optically identical to that of the x-ray source. The video signal from the camera was digitalized to be evaluated for geometrical errors. A metal ball fixed to the stereotactic base frame via XYZ-sliding rods was used as a simulated target. Displacements of the target from the isocenter were measured during rotation of the gantry. Displacements in the gantry-rotation plane were satisfactorily small, while those perpendicular to it were maximal at gantry position angles of 0deg and 180deg. This error might be caused by gravitational vending of the heavy gantry head. Although other major errors of the linac were within one millimeter, the center of coach rotation around the isocenter did not coincide with the center of gantry rotation, probably owing to gravitational vending. Special care should be taken when very small collimators are employed. (author)

  17. Use of a newly developed active thermal neutron detector for in-phantom measurements in a medical LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Bodogni, R.; Sanchez-Doblado, F.; Pola, A.; Gentile, A.; Esposito, A.; Gomez-ros, J. M.; Pressello, M. C.; Lagares, J. I.; Terron, J. A.; Gomez, F.

    2013-07-01

    In this work a newly developed active thermal neutron detector, based on a solid state analog device, was used to determine the thermal neutron fluence in selected positions of a simplified human phantom undergoing radiotherapy with a 15 MV LINAC. The results are compared with TLD, the predictions from a Monte Carlo simulation and with measurements indirectly performed with a digital device, located far from the phantom, inside the treatment room. In this work only TLD comparison is presented. Since active neutron instruments are usually affected by systematic deviations when used in a pulsed field with large photon background, the new detector offered in this work may represent an innovative and useful tool for neutron evaluations in accelerator-based radiotherapy. (Author)

  18. Structural shielding design of a 6 MV flattening filter free linear accelerator: Indian scenario

    Directory of Open Access Journals (Sweden)

    Bibekananda Mishra

    2017-01-01

    Full Text Available Detailed structural shielding of primary and secondary barriers for a 6 MV medical linear accelerator (LINAC operated with flattening filter (FF and flattening filter free (FFF modes are calculated. The calculations have been carried out by two methods, one using the approach given in National Council on Radiation Protection (NCRP Report No. 151 and the other based on the monitor units (MUs delivered in clinical practice. Radiation survey of the installations was also carried out. NCRP approach suggests that the primary and secondary barrier thicknesses are higher by 24% and 26%. respectively, for a LINAC operated in FF mode to that of a LINAC operated in both FF and FFF modes with an assumption that only 20% of the workload is shared in FFF mode. Primary and secondary barrier thicknesses calculated from MUs delivered on clinical practice method also show the same trend and are higher by 20% and 19%, respectively, for a LINAC operated in FF mode to that of a LINAC operated in both FF and FFF modes. Overall, the barrier thickness for a LINAC operated in FF mode is higher about 20% to that of a LINAC operated in both FF and FFF modes.

  19. Structural Shielding Design of a 6 MV Flattening Filter Free Linear Accelerator: Indian Scenario.

    Science.gov (United States)

    Mishra, Bibekananda; Selvam, T Palani; Sharma, P K Dash

    2017-01-01

    Detailed structural shielding of primary and secondary barriers for a 6 MV medical linear accelerator (LINAC) operated with flattening filter (FF) and flattening filter free (FFF) modes are calculated. The calculations have been carried out by two methods, one using the approach given in National Council on Radiation Protection (NCRP) Report No. 151 and the other based on the monitor units (MUs) delivered in clinical practice. Radiation survey of the installations was also carried out. NCRP approach suggests that the primary and secondary barrier thicknesses are higher by 24% and 26%. respectively, for a LINAC operated in FF mode to that of a LINAC operated in both FF and FFF modes with an assumption that only 20% of the workload is shared in FFF mode. Primary and secondary barrier thicknesses calculated from MUs delivered on clinical practice method also show the same trend and are higher by 20% and 19%, respectively, for a LINAC operated in FF mode to that of a LINAC operated in both FF and FFF modes. Overall, the barrier thickness for a LINAC operated in FF mode is higher about 20% to that of a LINAC operated in both FF and FFF modes.

  20. Low-charge-state linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kim, J.W.

    1995-08-01

    A design is being developed for a low-charge-state linac suitable for injecting ATLAS with a low-charge-state, radioactive beam. Initial work indicates that the existing ATLAS interdigital superconducting accelerating structures, together with the superconducting quadrupole transverse focussing element discussed above, provides a basis for a high-performance low-charge-state linac. The initial 2 or 3 MV of such a linac could be based on a normally-conducting, low-frequency RFQ, possibly combined with 24-MHz superconducting interdigital structures. Beam dynamics studies of the whole low-charge-state post-accelerator section were carried out in early FY 1995.

  1. Structural Shielding Design of a 6 MV Flattening Filter Free Linear Accelerator: Indian Scenario

    OpenAIRE

    Mishra, Bibekananda; Selvam, T. Palani; Sharma, P. K. Dash

    2017-01-01

    Detailed structural shielding of primary and secondary barriers for a 6 MV medical linear accelerator (LINAC) operated with flattening filter (FF) and flattening filter free (FFF) modes are calculated. The calculations have been carried out by two methods, one using the approach given in National Council on Radiation Protection (NCRP) Report No. 151 and the other based on the monitor units (MUs) delivered in clinical practice. Radiation survey of the installations was also carried out. NCRP a...

  2. SU-E-T-781: Using An Electronic Portal Imaging Device (EPID) for Correlating Linac Photon Beam Energies

    Energy Technology Data Exchange (ETDEWEB)

    Yaddanapudi, S; Cai, B; Sun, B; Noel, C; Goddu, S; Mutic, S [Washington University School of Medicine, Saint Louis, MO (United States)

    2015-06-15

    Purpose: Electronic portal imaging devices (EPIDs) have proven to be useful for measuring several parameters of interest in linear accelerator (linac) quality assurance (QA). The purpose of this project was to evaluate the feasibility of using EPIDs for determining linac photon beam energies. Methods: Two non-clinical Varian TrueBeam linacs (Varian Medical Systems, Palo Alto, CA) with 6MV and 10MV photon beams were used to perform the measurements. The linacs were equipped with an amorphous silicon based EPIDs (aSi1000) that were used for the measurements. We compared the use of flatness versus percent depth dose (PDD) for predicting changes in linac photon beam energy. PDD was measured in 1D water tank (Sun Nuclear Corporation, Melbourne FL) and the profiles were measured using 2D ion-chamber array (IC-Profiler, Sun Nuclear) and the EPID. Energy changes were accomplished by varying the bending magnet current (BMC). The evaluated energies conformed with the AAPM TG142 tolerance of ±1% change in PDD. Results: BMC changes correlating with a ±1% change in PDD corresponded with a change in flatness of ∼1% to 2% from baseline values on the EPID. IC Profiler flatness values had the same correlation. We observed a similar trend for the 10MV beam energy changes. Our measurements indicated a strong correlation between changes in linac photon beam energy and changes in flatness. For all machines and energies, beam energy changes produced change in the uniformity (AAPM TG-142), varying from ∼1% to 2.5%. Conclusions: EPID image analysis of beam profiles can be used to determine linac photon beam energy changes. Flatness-based metrics or uniformity as defined by AAPM TG-142 were found to be more sensitive to linac photon beam energy changes than PDD. Research funding provided by Varian Medical Systems. Dr. Sasa Mutic receives compensation for providing patient safety training services from Varian Medical Systems, the sponsor of this study.

  3. Calibration of PADC-based neutron area dosemeters in the neutron field produced in the treatment room of a medical LINAC

    International Nuclear Information System (INIS)

    Bedogni, R.; Domingo, C.; Esposito, A.; Gentile, A.; García-Fusté, M.J.; San-Pedro, M. de; Tana, L.; D’Errico, F.; Ciolini, R.; Di Fulvio, A.

    2013-01-01

    PADC-based nuclear track detectors have been widely used as convenient ambient dosemeters in many working places. However, due to the large energy dependence of their response in terms of ambient dose equivalent (H ∗ (10)) and to the diversity of workplace fields in terms of energy distribution, the appropriate calibration of these dosemeters is a delicate task. These are among the reasons why ISO has introduced the 12789 Series of Standards, where the simulated workplace neutron fields are introduced and their use to calibrate neutron dosemeters is recommended. This approach was applied in the present work to the UAB PADC-based nuclear track detectors. As a suitable workplace, the treatment room of a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa), was chosen. Here the neutron spectra in two points of tests (1.5 m and 2 m from the isocenter) were determined with the INFN-LNF Bonner Sphere Spectrometer equipped with Dysprosium activation foils (Dy-BSS), and the values of H ∗ (10) were derived on this basis. The PADC dosemeters were exposed in these points. Their workplace specific H*(10) responses were determined and compared with those previously obtained in different simulated workplace or reference (ISO 8529) neutron fields. - Highlights: ► The neutron field of a medical LINAC was used to calibrate PADC neutron dosemeters. ► The neutron spectra were derived with a Dy-foil based Bonner Sphere Spectrometer. ► Workplace specific calibration factor were derived for the PADC dosemeters. ► These factors were compared with those obtained in reference neutron fields

  4. An investigation of the efficiency in simulating 6 MV medical accelerator using OMEGA/BEAM

    International Nuclear Information System (INIS)

    Dai Zhenhui; Wang Xuetao; Zhu Lin; Zhang Yu; Liu Xiaowei

    2013-01-01

    Background: Monte Carlo simulation techniques are presently considered to be the most reliable method for radiation therapy treatment planning. However, long simulation times involved when using the general-purpose Monte Carlo code systems have led to the development of special-purpose Monte Carlo programs. Purpose: This paper attempts to improve computing efficiency for dose calculation in the EGSnrc modeling of clinical linear accelerator by selecting proper parameters. Methods: Several variance reduction techniques including uniform bremsstrahlung splitting, selective bremsstrahlung splitting, directional bremsstrahlung splitting are applied in BEAMnrc simulating medical accelerator treatment head to generate phase-space file which is selected as a source for DOSXYZnrc simulation, both photon splitting and particle recycling are used to improve the efficiency in the calculation of dose profile in water phantom. Results: The splitting number for maximum efficiency in directional bremsstrahlung splitting (no electron splitting) is 2500 in the BEAMnrc simulation. The highest efficiency of DOSXYZnrc simulation is given when photon splitting number is set to 40. Conclusions: Efficiency can be significantly improved by setting appropriate bremsstrahlung splitting and optimized photon splitting number and particle recycling number. (authors)

  5. Scatter and leakage contributions to the out-of-field absorbed dose distribution in water phantom around the medical LINAC radiation beams

    International Nuclear Information System (INIS)

    Bordy, J.M.; Bessiere, I.; Ostrowsky, A.; Poumarede, B.; Sorel, S.; Vermesse, D.

    2013-01-01

    This work is carried out within the framework of EURADOS Working Group 9 (WG9) whose general objective is 'to assess non-target organ doses in radiotherapy and the related risks of second cancers, with the emphasis on dosimetry'. The objective of the present work is to provide reference values (i) to evaluate the current methods of deriving three-dimensional dose distributions in and around the target volume using passive dosimeters, (ii) to derive the leakage dose from the head of the medical linear accelerator (LINAC) and the doses due to scattered radiation from the collimator edges and the body (phantom) itself. Radiation qualities of 6, 12 and 20 MV are used with standard calibration conditions described in IAEA TRS 398 and nonstandard conditions at a reference facility at the Laboratoire National Henri Becquerel (CEA LIST/LNE LNHB). An ionisation chamber is used to measure profile and depth dose in especially design water phantom built to enable investigation of doses up to 60 cm from the beam axis. A first set of experiments is carried out with the beam passing through the tank. From this first experiment, penumbra and out-of-field dose profiles including water and collimator scatter and leakage are found over three orders of magnitude. Two further sets of experiments using the same experimental arrangement with the beam outside the tank, to avoid water scatter, are designed to measure collimator scatter and leakage by closing the jaws of the collimator. It is shown that the ratios between water scatter, collimator scatter and leakage depend on the photon energy. Depending on the energy, typical leakage and collimator scatter represents 10-40% and 30-50% of the total out-of-field doses respectively. Water scatter decreases with energy while leakage increases with energy, and collimator scatter varies only slowly with energy. (authors)

  6. Compendium of Scientific Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Clendenin, James E

    2003-05-16

    The International Committee supported the proposal of the Chairman of the XVIII International Linac Conference to issue a new Compendium of linear accelerators. The last one was published in 1976. The Local Organizing Committee of Linac96 decided to set up a sub-committee for this purpose. Contrary to the catalogues of the High Energy Accelerators which compile accelerators with energies above 1 GeV, we have not defined a specific limit in energy. Microtrons and cyclotrons are not in this compendium. Also data from thousands of medical and industrial linacs has not been collected. Therefore, only scientific linacs are listed in the present compendium. Each linac found in this research and involved in a physics context was considered. It could be used, for example, either as an injector for high energy accelerators, or in nuclear physics, materials physics, free electron lasers or synchrotron light machines. Linear accelerators are developed in three continents only: America, Asia, and Europe. This geographical distribution is kept as a basis. The compendium contains the parameters and status of scientific linacs. Most of these linacs are operational. However, many facilities under construction or design studies are also included. A special mention has been made at the end for the studies of future linear colliders.

  7. The superconducting linac booster at the ANU

    International Nuclear Information System (INIS)

    Weisser, D.C.

    1995-02-01

    This report outlines the progress of the installation of the superconducting Linac booster at the Australian National University. The Linac is based upon four modules, three of which contain three split-loop resonators. The fourth cryostat was intended to be a superbuncher and so houses only one resonator. The first stage of Linac operation will employ only three modules with 2 MV/m from each resonator. It is expected that the implementation of all nine modules, in subsequent stages, would boost beams by 18 MV/q. The project has fostered productive international collaboration between UK and Australian scientists. 1 tab., 6 figs

  8. Study on the photoneutrons produced in 15 MV medical linear accelerators : Comparison of three dimensional conformal radiotherapy and intensity modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Oh Nam [Gangneung Asan Hospital, Gangneung (Korea, Republic of); Yang, Oh Nam; Lim, Cheong Hwan [Hanseo Univ., Seosan (Korea, Republic of)

    2012-12-15

    Intensity-modulated radiotherapy(IMRT) have the ability to provide better dose conformity and sparing of critical normal tissues than three-dimensional radiotherapy(3DCRT). Especially, with the benefit of health insurance in 2011, its use now increasingly in many modern radiotherapy departments. Also the use of linear accelerator with high-energy photon beams over 10 MV is increasing. As is well known, these linacs have the capacity to produce photoneutrons due to photonuclear reactions in materials with a large atomic number such as the target, flattening filters, collimators, and multi-leaf collimators(MLC). MLC-based IMRT treatments increase the monitor units and the probability of production of photoneutrons from photon-induced nuclear reactions. The purpose of this study is to quantitatively evaluate the dose of photoneutrons produced from 3DCRT and IMRT technique for Rando phantom in cervical cancer. We performed the treatment plans with 3DCRT and IMRT technique using Rando phantom for treatment of cervical cancer. An Rando phantom placed on the couch in the supine position was irradiated using 15 MV photon beams. Optically stimulated luminescence dosimeters(OSLD) were attached to 4 different locations (abdomen, chest, head and neck, eyes) and from center of field size and measured 5 times each of locations. Measured neutron dose from IMRT technique increased by 9.0, 8.6, 8.8, and 14 times than 3DCRT technique for abdomen, chest, head and neck, and eyes, respectively. When using IMRT with 15 MV photon beams, the photoneutrons contributed a significant portion on out-of-field. It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, it is need to provide the additional safe shielding on a linear accelerator and should therefore reduce the out-of-field dose.

  9. Study on the photoneutrons produced in 15 MV medical linear accelerators : Comparison of three dimensional conformal radiotherapy and intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Yang, Oh Nam; Yang, Oh Nam; Lim, Cheong Hwan

    2012-01-01

    Intensity-modulated radiotherapy(IMRT) have the ability to provide better dose conformity and sparing of critical normal tissues than three-dimensional radiotherapy(3DCRT). Especially, with the benefit of health insurance in 2011, its use now increasingly in many modern radiotherapy departments. Also the use of linear accelerator with high-energy photon beams over 10 MV is increasing. As is well known, these linacs have the capacity to produce photoneutrons due to photonuclear reactions in materials with a large atomic number such as the target, flattening filters, collimators, and multi-leaf collimators(MLC). MLC-based IMRT treatments increase the monitor units and the probability of production of photoneutrons from photon-induced nuclear reactions. The purpose of this study is to quantitatively evaluate the dose of photoneutrons produced from 3DCRT and IMRT technique for Rando phantom in cervical cancer. We performed the treatment plans with 3DCRT and IMRT technique using Rando phantom for treatment of cervical cancer. An Rando phantom placed on the couch in the supine position was irradiated using 15 MV photon beams. Optically stimulated luminescence dosimeters(OSLD) were attached to 4 different locations (abdomen, chest, head and neck, eyes) and from center of field size and measured 5 times each of locations. Measured neutron dose from IMRT technique increased by 9.0, 8.6, 8.8, and 14 times than 3DCRT technique for abdomen, chest, head and neck, and eyes, respectively. When using IMRT with 15 MV photon beams, the photoneutrons contributed a significant portion on out-of-field. It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, It is difficult to prevent high energy photon beams to produce the photoneutrons due to physical properties, if necessary, it is need to provide the additional safe shielding on a linear accelerator and should therefore reduce the out-of-field dose

  10. Induction linacs

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    The principle of linear induction acceleration is described, and examples are given of practical configurations for induction linacs. These examples include the Advanced Technology Accelerator, Long Pulse Induction Linac, Radial Line Accelerator (RADLAC), and Magnetically-Insulated Electron-Focussed Ion Linac. A related concept, the auto accelerator, is described in which the high-current electron-beam technology in the sub-10 MeV region is exploited to produce electron beams at energies perhaps as high as the 100 to 1000 MeV range. Induction linacs for ions are also discussed. The efficiency of induction linear acceleration is analyzed

  11. Superconducting heavy-ion linac at Argonne

    International Nuclear Information System (INIS)

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.G.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Pardo, R.C.; Shepard, K.W.

    1981-01-01

    The design, status, and performance of the first operating superconducting heavy-ion accelerator, a linac used to boost the energies of beams from a 9-MV tandem, is summarized. When completed in 1981, the linac will consist of 24 independently-phased split-ring niobium resonators operating at 97 MHz. This linac is designed to provide 29 MV of acceleration. Because of the modular character of the system, the linac has been operable and useful since mid-1978, when a beam was accelerated through 2 units and the first nuclear-physics experiments were preformed. Now, 16 resonators are in use, and a beam has been accelerated for approx. 6000 h. Resonator performance has been remarkably stable, in spite of vacuum accidents, and the linac as a whole operates reliably without operators in attendance during nights and weekends. The ease and speed with which the beam energy can be changed is proving to be unexpectedly valuable to users

  12. TOP LINAC design; Progetto del TOP LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Picardi, L; Ronsivalle, C; Vignati, A [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione

    1997-11-01

    The report describes a linear accelerator for protons named TOP LINAC designed for the TOP (Terapia Oncologica con Protoni, Oncological Protontherapy) project launched by the Italian National Institute of Health (Istituto Superiore di Sanita`, ISS) to explore in collaboration with the biggest Oncological Hospital in Rome (Istituto Regina Elena, IRE) the potentialities of the therapy with accelerated protons and establish guide lines for the application of this new type of radiotherapy in comparison with the more traditional electron and x-rays radiotherapy. The concept of a compact accelerator for protontherapy applications bore within the Italian Hadrontherapy Collaboration (TERA Collaboration) with the aim to diffuse the protontherapy on the National territory. The ISS program plans to use the TOP linac proton beam also for production of PET (Positron Emission Tomography) radioisotopes and radiobiology studies. Official agreements are in course between ISS and ENEA which provides its experience in the industrial and medical accelerators for the design and the construction of the TOP linac. The accelerator that will be the first 3 GHz proton linac in the world, will be composed of a 428.3 MHz 7 Me V RFQ + DTL injector followed by a 7-65 Me V section of a 3 GHz SCDTL structure and a 65 - 200 Me V variable energy SCL 3 GHz structure. In particular the SCDTL section uses a highly innovative accelerating structure patented by ENEA. In this report the clinical and physical requests are discussed and a preliminary design of the whole machine is given.

  13. Superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.

    1978-01-01

    This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures

  14. Probabilistic safety assessment (PSA) of the radiotherapy treatment process with an Electron Linear Accelerator (LINAC) for medical uses

    International Nuclear Information System (INIS)

    Vilaragut Llanes, J.J.; Ferro Fernandez, R.; Rodriguez Marti, M.; Ramirez, M.L.; Perez Mulas, A.; Barrientos Montero, M.; Ortiz Lopez, P.; Somoano, F.; Delgado Rodriguez, J.M.; Papadopulos, S.B.; Pereira, P.P. Jr.; Lopez Morones, R.; Larrinaga Cortinai, E.; Rivero Oliva, J.J.; Alemany, J.

    2008-01-01

    This paper presents the results of the Probabilistic Safety Assessment (PSA) to the radiotherapy treatment process with an Electron Linear Accelerator (LINAC) for Medical Uses, which was conducted in the framework of the Extra budgetary Programme on Nuclear and Radiological Safety in Iberian-America. The PSA tools were used to evaluate occupational, public and medical exposures during treatment. The study focused on the radiological protection of patients. Equipment Failure Modes and Human Errors were evaluated for each system and treatment phase by FMEA. It was aimed at obtaining an exhaustive list of deviations with a reasonable probability of occurrence and which might produce significant adverse outcomes. Separate events trees were constructed for each initiating event group. Each event tree had a different structure since the initiating events were grouped according to mitigation requirements. Fault tree models were constructed for each top event. The fault trees were developed up to the level of components. In addition to hardware faults, the fault trees included human errors associated with the response to accidents, and human errors associated with the treatment. Each accident sequence was quantified. The combination of the initiating event and top events through one fault tree was the method used to analyse the accident sequences. After combining the appropriate models, a Boolean reduction was conducted by computer software to produce sequence cut sets. Several findings were analysed concerning the treatment process and the study proposed safety recommendations to avoid them. (author)

  15. University of Washington superconducting booster linac

    International Nuclear Information System (INIS)

    Storm, D.W.; Amsbaugh, J.F.; Cramer, J.G.; Swanson, H.E.; Trainor, T.A.; Vandenbosch, R.; Weitkamp, W.G.; Will, D.I.

    1985-01-01

    We have begun construction of a superconducting linac designed to accelerate ions from protons through about mass 60. Injected by our 9 MV-terminal tandem van de Graaff accelerator, the linac is expected to double the proton energy and quadruple the energies of heavier ions. The resonators are lead plated copper quarter wave structures. The overall layout and expected performance of the accelerator will be presented, along with a brief status report. 3 refs., 3 figs

  16. Ambient neutron dose equivalent outside concrete vault rooms for 15 and 18 MV radiotherapy accelerators

    International Nuclear Information System (INIS)

    Martinez-ovalle, S. A.; Barquero, R.; Gomez-ros, J. M.; Lallena, A. M.

    2012-01-01

    In this work, the ambient dose equivalent, H*(10), due to neutrons outside three bunkers that house a 15- and a 18-MV Varian Clinac 2100C/D and a 15-MV Elekta Inor clinical linacs, has been calculated. The Monte Carlo code MCNPX (v. 2.5) has been used to simulate the neutron production and transport. The complete geometries including linacs and full installations have been built up according to the specifications of the manufacturers and the planes provided by the corresponding medical physical services of the hospitals where the three linacs operate. Two of these installations, those lodging the Varian linacs, have an entrance door to the bunker while the other one does not, although it has a maze with two bends. Various treatment orientations were simulated in order to establish plausible annual equivalent doses. Specifically anterior-posterior, posterior-anterior, left lateral, right lateral orientations and an additional one with the gantry rotated 30 deg. have been studied. Significant dose rates have been found only behind the walls and the door of the bunker, near the entrance and the console, with a maximum of 12 μSv h -1 . Dose rates per year have been calculated assuming a conservative workload for the three facilities. The higher dose rates in the corresponding control areas were 799 μSv y -1 , in the case of the facility which operates the 15-MV Clinac, 159 μSv y -1 , for that with the 15-MV Elekta, and 21 μSv y -1 for the facility housing the 18-MV Varian. A comparison with measurements performed in similar installations has been carried out and a reasonable agreement has been found. The results obtained indicate that the neutron contamination does not increase the doses above the legal limits and does not produce a significant enhancement of the dose equivalent calculated. When doses are below the detection limits provided by the measuring devices available today, MCNPX simulation provides an useful method to evaluate neutron dose equivalents

  17. Photon and photoneutron spectra produced in radiotherapy Linacs

    International Nuclear Information System (INIS)

    Vega C, H. R.; Martinez O, S. A.; Benites R, J. L.; Lallena, A. M.

    2011-10-01

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10 -6 and 1 MeV. Neutron and Bremsstrahlung spectra show the same features regardless of the linac voltage. The amount of photons and neutrons produced by the 15 MV linac is smaller than that found for the 18 MV linac. As expected, Bremsstrahlung spectra ends according to the voltage used to accelerate the electrons. (Author)

  18. Photon and photoneutron spectra produced in radiotherapy Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, Av. Central del Norte Km. 1, Via Paipa Tunja, Boyaca (Colombia); Benites R, J. L. [Universidad Autonoma de Nayarit, Postgrado CBAP, Carretera Tepic Compostela Km. 9, Xalisco, Nayarit (Mexico); Lallena, A. M., E-mail: fermineutron@yahoo.com [Universida de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, E-18071 Granada (Spain)

    2011-10-15

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10{sup -6} and 1 MeV. Neutron and Bremsstrahlung spectra show the same features regardless of the linac voltage. The amount of photons and neutrons produced by the 15 MV linac is smaller than that found for the 18 MV linac. As expected, Bremsstrahlung spectra ends according to the voltage used to accelerate the electrons. (Author)

  19. Overview of the Pelletron Linac facility, Mumbai

    International Nuclear Information System (INIS)

    Pillay, R.G.

    2011-01-01

    The Pelletron LINAC Facility at TIFR, Mumbai, comprising the 14 MV Pelletron and the superconducting LINAC booster caters to a variety of experiments in basic and applied Sciences. The Liquid Helium Refrigeration plant for the LINAC has been upgraded to enhance the refrigeration capacity. New instrumentation and interface for control and monitor of the cryogenic parameters, beam diagnostics and beam transport devices have been developed and installed. Digital implementation of the LLRF control has been demonstrated. All seven beam lines in new user halls have been commissioned and several new experimental setups have been added. (author)

  20. Properties of heavy ion linacs with alternating phase focusing

    International Nuclear Information System (INIS)

    Deitinghoff, H.; Junior, P.; Klein, H.

    1976-01-01

    General aspects for the application of alternating phase focusing are discussed. The results demand necessary linac parameters. The possibility of their accomplishment by already existing or feasible linac structures with acceleration rates of 2 - 3 MV/m will be considered

  1. X-Band Linac Beam-Line for Medical Compton Scattering X-Ray Source

    CERN Document Server

    Dobashi, Katsuhiro; Ebina, Futaro; Fukasawa, Atsushi; Hayano, Hitoshi; Higo, Toshiyasu; Kaneyasu, Tatsuo; Ogino, Haruyuki; Sakamoto, Fumito; Uesaka, Mitsuru; Urakawa, Junji; Yamamoto, Tomohiko

    2005-01-01

    Compton scattering hard X-ray source for 10~80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U. Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard ( 10-80

  2. Estimated Visualization of Dose Calculation with GEANT4 in Medical Linac

    International Nuclear Information System (INIS)

    Kim, Jhin Kee; Kim, Bu Gil; Lee, Jeong Ok; Kang, Jeong Ku; Oh, Young Kee; Jeong, Dong Hyeok; Kim, Jeong Kee

    2011-01-01

    Geant4 is a toolkit used to simulate the pass age of particles through matter. Recently, it has been used in many medical physics applications. In radiotherapy, positron emission tomography, and magnetic resonance tomography, Geant4 has been applied to accurately simulate the propagation of particles and the interaction of particles, not only with medical devices, but also with patient's phantoms.1,2 Many researchers try to use patient's image data to calculate the dose. The use of DICOM images files to simulate is desired. We construct detector with parameterized volume for Geant4 simulations, which can be applied to simulations using DICOM data as the input.We try to apply this code to the patient's DICOM images to simulate the propagation and interaction of the particles. So we can calculate the absorbed dose of the patient. In this study, the used visualization tool is called gMocren. The purpose of the present paper is to verify a volume visualization tool that simultaneously displays both the complex patient data and the simulated dose distribution with real patient's DICOM data. We applied a volume visualization tool for GEANT4 simulation. We developed to create the each voxel's dose tables of the every slices and review the distribution with DICOM file, gMocren is very convenience tool but provide only qualitative analysis. We need more enhanced functions to display contour like RTP and utility program to create dose table in every points.

  3. TOP LINAC design

    International Nuclear Information System (INIS)

    Picardi, L.; Ronsivalle, C.; Vignati, A.

    1997-11-01

    The report describes a linear accelerator for protons named TOP LINAC designed for the TOP (Terapia Oncologica con Protoni, Oncological Protontherapy) project launched by the Italian National Institute of Health (Istituto Superiore di Sanita', ISS) to explore in collaboration with the biggest Oncological Hospital in Rome (Istituto Regina Elena, IRE) the potentialities of the therapy with accelerated protons and establish guide lines for the application of this new type of radiotherapy in comparison with the more traditional electron and x-rays radiotherapy. The concept of a compact accelerator for protontherapy applications bore within the Italian Hadrontherapy Collaboration (TERA Collaboration) with the aim to diffuse the protontherapy on the National territory. The ISS program plans to use the TOP linac proton beam also for production of PET (Positron Emission Tomography) radioisotopes and radiobiology studies. Official agreements are in course between ISS and ENEA which provides its experience in the industrial and medical accelerators for the design and the construction of the TOP linac. The accelerator that will be the first 3 GHz proton linac in the world, will be composed of a 428.3 MHz 7 Me V RFQ + DTL injector followed by a 7-65 Me V section of a 3 GHz SCDTL structure and a 65 - 200 Me V variable energy SCL 3 GHz structure. In particular the SCDTL section uses a highly innovative accelerating structure patented by ENEA. In this report the clinical and physical requests are discussed and a preliminary design of the whole machine is given

  4. Florida State University superconducting linac

    International Nuclear Information System (INIS)

    Myers, E.G.; Fox, J.D.; Frawley, A.D.; Allen, P.; Faragasso, J.; Smith, D.; Wright, L.

    1988-01-01

    As early as the fall of 1977 it was decided that the future research needs of their nuclear structure laboratory required an increase in energy capability to at least 8 MeV per nucleon for the lighter ions, and that these needs could be met by the installation of a 17 MV tandem Van de Graaff accelerator. The chief problem with this proposal was the high cost. It became apparent that a far less expensive option was to construct a linear accelerator to boost the energy from their existing 9 MV tandem. The options open to them among linac boosters were well represented by the room temperature linac at Heidelberg and the superconducting Stony Brook and Argonne systems. By the Spring of 1979 it had been decided that both capital cost and electric power requirements favored a superconducting system. As regards the two superconducting resonator technologies - the Argonne niobium-copper or the Caltech-Stony Brook lead plated copper - the Argonne resonators, though more expensive to construct, had the advantages of more boost per resonator, greater durability of the superconducting surface and less stringent beam bunching requirements. In 1980 pilot funding from the State of Florida enabled the construction of a building addition to house the linac and a new target area, and the setting up of a small, three resonator, test booster. Major funding by the NSF for the laboratory upgrade started in 1984. With these funds they purchased their present helium liquefaction and transfer system and constructed three large cryostats, each housing four Argonne beta = 0.105 resonators and two superconducting solenoids. The last large cryostat was completed and installed on-line early this year and the linac was dedicated on March 20. Nuclear physics experiments using the whole linac began in early June. 4 references, 6 figures, 1 table

  5. Scattered fractions of dose from 18 and 25 MV X-ray radiotherapy linear accelerators

    International Nuclear Information System (INIS)

    Shobe, J.; Rodgers, J.E.; Taylor, P.L.; Jackson, J.; Popescu, G.

    1996-01-01

    Over the years, measurements have been made at a few energies to estimate the scattered fraction of dose from the patient in medical radiotherapy operations. This information has been a useful aid in the determination of shielding requirements for these facilities. With these measurements, known characteriztics of photons, and various other known parameters, Monte Carlo codes are being used to calculate the scattered fractions and hence the shielding requirements for the photons of other energies commonly used in radiotherapeutic applications. The National Institute of Standards and Technology (NIST) acquired a Sagittaire medical linear accelerator (linac) which was previously located at the Yale-New Haven Hospital. This linac provides an X-ray beam of 25 MV photons and electron beams with energies up to 32 MeV. The housing on the gantry was permanently removed from the accelerator during installation. A Varian Clinac 1800 linear accelerator was used to produce the 18 MV photons at the Frederick Memorial Hospital Regional Cancer Therapy Center in Frederick, MD. This paper represents a study of the photon dose scattered from a patient in typical radiation treatment situations as it relates to the dose delivered at the isocenter in water. The results of these measurements will be compared to Monte Carlo calculations. Photon spectral measurements were not made at this time. Neutron spectral measurements were made on this Sagittaire machine in its previous location and that work was not repeated here, although a brief study of the neutron component of the 18 and 25 MV linacs was performed utilizing thermoluminescent dosimetry (TLD) to determine the isotropy of the neutron dose. (author)

  6. Radioisotope production linac

    International Nuclear Information System (INIS)

    Stovall, J.E.; Hansborough, L.D.; O'Brien, H.A.

    1981-01-01

    A 70-MeV proton beam would open a new family of medical radioisotopes (including the important 123 I) to wide application. A 70-MeV, 500-μA linac is described, based on recent innovations in accelerator technology. It would be 27.3 m long, cost approx. $6 million, and the cost of power deposited in the radioisotope-production target is comparable to existing cyclotrons. By operating the rf-power system to its full capability, the same accelerator is capable of producing a 1140-μA beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons. The technology to build such a linac is in a mature stage of developmnt, ready for use by industry

  7. Argonne superconducting heavy-ion linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Benaroya, R.; Clifft, B.E.; Jaffey, A.H.; Johnson, K.W.; Khoe, T.K.; Scheibelhut, C.H.; Shepard, K.W.; Wangler, Y.Z.

    1976-01-01

    A summary is given of the status of a project to develop and build a small superconducting linac to boost the energy of heavy ions from an existing tandem electrostatic accelerator. The design of the system is well advanced, and construction of major components is expected to start in late 1976. The linac will consist of independently-phased resonators of the split-ring type made of niobium and operating at a temperature of 4.2 0 K. The resonance frequency is 97 MHz. Tests on full-scale resonators lead one to expect accelerating fields of approximately 4 MV/m within the resonators. The linac will be long enough to provide a voltage gain of at least 13.5 MV, which will allow ions with A less than or approximately 80 to be accelerated above the Coulomb barrier of any target. The modular nature of the system will make future additions to the length relatively easy. A major design objective is to preserve the good quality of the tandem beam. This requires an exceedingly narrow beam pulse, which is achieved by bunching both before and after the tandem. Focusing by means of superconducting solenoids within the linac limit the radial size of the beam. An accelerating structure some 15 meters downstream from the linac will manipulate the longitudinal phase ellipse so as to provide the experimenter with either very good energy resolution (ΔE/E approximately equal to 2 x 10 -4 ) or very good time resolution

  8. Passive magnetic shielding in MRI-Linac systems

    Science.gov (United States)

    Whelan, Brendan; Kolling, Stefan; Oborn, Brad M.; Keall, Paul

    2018-04-01

    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.

  9. Operation of the tandem-linac accelerator

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The tandem-linac accelerator system is operated as a source of energetic heavy-ion projectiles for research in several areas of nuclear physics and occasionally in other areas of science. The accelerator system consists of a 9-MV tandem electrostatic accelerator and a superconducting-linac energy booster that can provide an additional 20 MV of acceleration. A figure shows the layout of this system, which will be operated in its present form until September 1985, when it will be incorporated into the larger ATLAS system. In both the present and future forms the accelerator is designed to provide the exceptional beam quality and overall versatility required for precision nuclear-structure research

  10. Initial operation of the Argonne superconducting heavy-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1979-01-01

    Initial operation and recent development of the Argonne superconducting heavy-ion linac are discussed. The linac has been developed in order to demonstrate a cost-effective means of extending the performance of electrostatic tandem accelerators. The results of beam acceleration tests which began in June 1978 are described. At present 7 of a planned array of 22 resonators are operating on-line, and the linac system provides an effective accelerating potential of 7.5 MV. Although some technical problems remain, the level of performance and reliability is sufficient that appreciable beam time is becoming available to users.

  11. 10 MeV RF electron linac for industrial applications

    International Nuclear Information System (INIS)

    2017-01-01

    Electron linacs have found numerous applications in the field of radiation processing on an industrial scale. High power RF electron linacs are commonly used for food irradiation, medical sterilization, cross-linking of polymers, etc. For this purpose, the 10 MeV RF linac has been indigenously designed, developed, commissioned and is being used regularly at 3 kW beam power. This paper gives a brief description of the linac and its utilization for various applications. Safety considerations and regulatory aspects of the linac are also discussed

  12. HOM Consideration of 704 MHz and 2.1 GHz Cavities for LEReC Linac

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Binping [RIKEN BNL; Belomestnykh, Sergey [SUNY, Stony Brook; Ben-Zvi, Ilan [RIKEN BNL; Blaskiewicz, Michael [RIKEN BNL; Brennan, Joseph [RIKEN BNL; Brutus, Jean Clifford [RIKEN BNL; Fedotov, Alexei [RIKEN BNL; Hahn, Harald [RIKEN BNL; McIntyre, Gary [RIKEN BNL; Pai, Chien [RIKEN BNL; Smith, Kevin [RIKEN BNL; Tuozzolo, Joseph [RIKEN BNL; Veshcherevich, Vadim [Cornell U., CLASSE; Wu, Qiong [RIKEN BNL; Xin, Tianmu [RIKEN BNL; Xu, Wencan [RIKEN BNL; Zaltsman, Alex [RIKEN BNL

    2016-06-01

    To improve RHIC luminosity for heavy ion beam energies below 10 GeV/nucleon, the Low Energy RHIC electron Cooler (LEReC) is currently under development at BNL. The Linac of LEReC is designed to deliver 2 MV to 5 MV electron beam, with rms dp/p less than 5·10⁻⁴. The HOM in this Linac is carefully studied to ensure this specification.

  13. Dedicated Linac for Radioneurosurgery at the National Institute of Neurology and Neurosurgery of Mexico

    Science.gov (United States)

    Celis-López, Miguel A.; Lárraga-Gutiérrez, José M.

    2003-09-01

    The objective is to present a description and the main clinical applications of this dedicated Linac for benign and malignant tumors in the central nervous system. The Novalis (BrainLab, Germany) is a 6 MV dedicated linac for a single high dose Radiosurgery (RS) and for fractionated doses in Stereotactic Radiotherapy with a high level of precision at the isocenter.

  14. Dedicated Linac for Radioneurosurgery at the National Institute of Neurology and Neurosurgery of Mexico

    International Nuclear Information System (INIS)

    Celis-Lopez, Miguel A.; Larraga-Gutierrez, Jose M.

    2003-01-01

    The objective is to present a description and the main clinical applications of this dedicated Linac for benign and malignant tumors in the central nervous system. The Novalis (BrainLab, Germany) is a 6 MV dedicated linac for a single high dose Radiosurgery (RS) and for fractionated doses in Stereotactic Radiotherapy with a high level of precision at the isocenter

  15. 25 years of Pelletron Linac facility

    International Nuclear Information System (INIS)

    Shrivastava, A.; Palit, R.

    2014-01-01

    The DAE-BRNS International Symposium on Nuclear Physics was held in BARC during 2nd to 6th December 2013. A summary of the highlights of this symposium has recently appeared in Physics News. As a part of the symposium, a special session was held to commemorate 25 years of operation of the Mumbai Pelletron Linac Facility (PLF). PLF, being operated jointly by Bhabha Atomic Research Centre and Tata Institute of Fundamental Research, has been a major centre for heavy-ion accelerator based research in India. The Pelletron accelerator was formally inaugurated on 30th December 1988, and marked an important milestone in nuclear physics research in India. The facility was augmented with the indigenously developed superconducting LINAC booster to enhance the energy of the accelerated beams. The LINAC booster was commissioned in a phased manner and the entire facility was dedicated to the users on the 28th November 2007. The LINAC booster consists of seven liquid helium cryostat modules, each housing four lead coated (2 μm) copper quarter wave resonators (QWR). The cavities are designed to operate at 150 MHz with an optimum acceptance at a velocity corresponding to β=0.1. The performance of the QWRs is found to be excellent with an average energy gain of 0.4 MV/q per cavity corresponding to 80% of the design value. Beam transmission from the entry to the exit of the LINAC was found to be 80% and the beam timing (FWHM) of 600 ps was measured at the target position. Development of the superconducting LINAC is a major milestone in the accelerator technology in our country. Most of the critical components of the LINAC booster, the first superconducting heavy-ion accelerator in India, have been designed, developed and fabricated indigenously

  16. Comparative study of 6 MV and 15 MV treatment plans for large chest wall irradiation

    International Nuclear Information System (INIS)

    Prasana Sarathy, N.; Kothanda Raman, S.; Sen, Dibyendu; Pal, Bipasha

    2007-01-01

    Conventionally, opposed tangential fields are used for the treatment of chest wall irradiation. If the chest wall is treated in the linac, 4 or 6 MV photons will be the energy of choice. It is a welI-established rule that for chest wall separations up to 22 cm, one can use mid-energies, with acceptable volume of hot spots. For larger patient sizes (22 cm and above), mid-energy beams produce hot spots over large volumes. The purpose of this work is to compare plans made with 6 and 15 MV photons, for patients with large chest wall separations. The obvious disadvantage in using high-energy photons for chest wall irradiation is inadequate dose to the skin. But this can be compensated by using a bolus of suitable thickness

  17. Argonne superconducting heavy-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.; Benaroya, R.; Clifft, B.E.; Jaffey, A.H.; Johnson, K.W.; Khoe, T.K.; Scheibelhut, C.H.; Shepard, K.W.; Wangler, Y.Z.

    1976-01-01

    A summary is given of the status of a project to develop and build a small superconducting linac to boost the energy of heavy ions from an existing tandem electrostatic accelerator. The design of the system is well advanced, and construction of major components is expected to start in late 1976. The linac will consist of independently-phased resonators of the split-ring type made of niobium and operating at a temperature of 4.2/sup 0/K. The resonance frequency is 97 MHz. Tests on full-scale resonators lead one to expect accelerating fields of approximately 4 MV/m within the resonators. The linac will be long enough to provide a voltage gain of at least 13.5 MV, which will allow ions with A less than or approximately 80 to be accelerated above the Coulomb barrier of any target. The modular nature of the system will make future additions to the length relatively easy. A major design objective is to preserve the good quality of the tandem beam. This requires an exceedingly narrow beam pulse, which is achieved by bunching both before and after the tandem. Focusing by means of superconducting solenoids within the linac limit the radial size of the beam. An accelerating structure some 15 meters downstream from the linac will manipulate the longitudinal phase ellipse so as to provide the experimenter with either very good energy resolution (..delta..E/E approximately equal to 2 x 10/sup -4/) or very good time resolution (..delta.. t approximately equal to 30 psec).

  18. Status of the Argonne superconducting-linac heavy-ion energy booster

    Energy Technology Data Exchange (ETDEWEB)

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.E.; Henning, W.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Shepard, K.W.

    1979-01-01

    A superconducting linac is being constructed to provide an energy booster for heavy ions from an FN tandem. By late 1980 the linac will consist of 24 independently-phased superconducting resonators, and will provide an effective accelerating potential of more than 25 MV. While the linac is under construction, completed sections are being used to provide useful beam for nuclear physics experiments. In the most recent run with beam (June 1979), an eight resonator array provided an effective accelerating potential of 9.3 MV. Operation of a 12 resonator array is scheduled to begin in October 1979.

  19. Status of the Argonne superconducting-linac heavy-ion energy booster

    International Nuclear Information System (INIS)

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.E.; Henning, W.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Shepard, K.W.

    1979-01-01

    A superconducting linac is being constructed to provide an energy booster for heavy ions from an FN tandem. By late 1980 the linac will consist of 24 independently-phased superconducting resonators, and will provide an effective accelerating potential of more than 25 MV. While the linac is under construction, completed sections are being used to provide useful beam for nuclear physics experiments. In the most recent run with beam (June 1979), an eight resonator array provided an effective accelerating potential of 9.3 MV. Operation of a 12 resonator array is scheduled to begin in October 1979

  20. Design and simulation of a short, variable-energy 4 to 10 MV S-band linear accelerator waveguide.

    Science.gov (United States)

    Baillie, Devin; Fallone, B Gino; Steciw, Stephen

    2017-06-01

    To modify a previously designed, short, 10 MV linac waveguide, so that it can produce any energy from 4 to 10 MV. The modified waveguide is designed to be a drop-in replacement for the 6 MV waveguide used in the author's current linear accelerator-magnetic resonance imager (Linac-MR). Using our group's previously designed short 10 MV linac as a starting point, the port was moved to the fourth cavity, the shift to the first coupling cavity was removed and a tuning cylinder added to the first coupling cavity. Each cavity was retuned using finite element method (FEM) simulations to resonate at the desired frequency. FEM simulations were used to determine the RF field distributions for various tuning cylinder depths, and electron trajectories were computed using a particle-in-cell model to determine the required RF power level and tuning cylinder depth to produce electron energy distributions for 4, 6, 8, and 10 MV photon beams. Monte Carlo simulations were then used to compare the depth dose profiles with those produced by published electron beam characteristics for Varian linacs. For each desired photon energy, the electron beam energy was within 0.5% of the target mean energy, the depth of maximum dose was within 1.5 mm of that produced by the Varian linac, and the ratio of dose at 10 cm depth to 20 cm depth was within 1%. A new 27.5 cm linear accelerator waveguide design capable of producing any photon energy between 4 and 10 MV has been simulated, however coupling port design and the implications of increased electron beam current at 10 MV remain to be investigated. For the specific cases of 4, 6, and 10 MV, this linac produces depth dose profiles similar to those produced by published spectra for Varian linacs. © 2017 American Association of Physicists in Medicine.

  1. Neutron contamination of Varian Clinac iX 10 MV photon beam using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Yani, S; Haryanto, F; Arif, I; Tursinah, R; Rhani, M F; Soh, R C X

    2016-01-01

    High energy medical accelerators are commonly used in radiotherapy to increase the effectiveness of treatments. As we know neutrons can be emitted from a medical accelerator if there is an incident of X-ray that hits any of its materials. This issue becomes a point of view of many researchers. The neutron contamination has caused many problems such as image resolution and radiation protection for patients and radio oncologists. This study concerns the simulation of neutron contamination emitted from Varian Clinac iX 10 MV using Monte Carlo code system. As neutron production process is very complex, Monte Carlo simulation with MCNPX code system was carried out to study this contamination. The design of this medical accelerator was modelled based on the actual materials and geometry. The maximum energy of photons and neutron in the scoring plane was 10.5 and 2.239 MeV, respectively. The number and energy of the particles produced depend on the depth and distance from beam axis. From these results, it is pointed out that the neutron produced by linac 10 MV photon beam in a typical treatment is not negligible. (paper)

  2. Estimation of the contribution by neutrons to the equivalent dose for exposed occupationally personnel and people in medical use facilities: X rays of equal or superior energy to 10 MV; Estimacion de la contribucion por neutrones a la dosis equivalente para personal ocupacionalmente expuesto y publico en instalaciones de uso medico: rayos X de energia igual y/o superior a 10 MV

    Energy Technology Data Exchange (ETDEWEB)

    Ortega J, R.; Reyes S, M. A. [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan 779, Col. Narvarte, 03020 Mexico D. F. (Mexico); Moranchel y R, M., E-mail: rojimenez@cnsns.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Ingenieria Nuclear, Av. Instituto Politecnico Nacional s/n, U. P. Adolfo Lopez Mateos, Edif. 9, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico)

    2013-10-15

    In Mexico the use of electron accelerators for treating cancerous tumors had grown enormously in the last decade. When the treatments are carried out with X-ray beam energy below 10 MV the design of the shielding of the radioactive facility is determined by analyzing the interaction of X-rays, which have a direct impact and dispersion, with materials of the facility. However, when it makes use of X-ray beam energy equal to or greater than 10 MV the neutrons presence is imminent due to their generation by the interaction of the primary beam X-ray with materials head of the accelerator and of the table of treatment, mainly. In these cases, the design and calculation of shielding considers the generation of high-energy neutrons which contribute the equivalent dose that public and occupationally staff exposed (POE) will receive in the areas surrounding the facility radioactive. However, very few measurements have been performed to determine the actual contribution to the neutron dose equivalent received by POE and public during working hours. This paper presents and estimate of the actual contribution of the neutron dose equivalent received by public and POE facilities in various radioactive medical use, considering many factors. To this end, measurements were made of the equivalent dose by using a neutron monitor in areas surrounding different radioactive installations (of Mexico) which used electron accelerators medical use during treatment with X-ray beam energy equal to or greater than 10 MV. The results are presented after a statistical analysis of a wide range of measures in order to estimate more reliability real contribution of the neutron dose equivalent for POE and the public. (author)

  3. Estimation of the contribution of neutrons to the equivalent dose for personnel occupationally exposed and public in medical facilities: X-ray with energy equal or greater than 10MV; Estimacion de la contribucion por neutrones a la dosis equivalente para personal ocupacionalmente expuesto y publico en instalaciones de uso medico: rayos X de energia igual y/o superior a 10MV

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Alfonso Mayer; Jimenez, Roberto Ortega; Sanchez, Mario A. Reyes, E-mail: amgesfm@hotmail.com, E-mail: rojimenez@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS), Mexico, D.F. (Mexico); Moranchel y Mejia, Mario, E-mail: mmoranchel@ipn.mx [Instituto Politecnico Nacional (ESFM/IPN), Mexico, D.F. (Mexico). Escuela Superior de Fisica y Matematicas. Departamento de lngenieria Nuclear

    2013-07-01

    In Mexico the use of electron accelerators for treating cancerous tumors had grown enormously in the last decade. When the treatments are carried out with X-ray beam energy below 10 MV the design of the shielding of the radioactive facility is determined by analyzing the interaction of X-rays, which have a direct impact and dispersion, with materials of the facility. However, when it makes use of X-ray beam energy equal to or greater than 10 MV the neutrons presence is imminent due to their generation by the interaction of the primary beam X-ray with materials head of the accelerator and of the table of treatment, mainly. In these cases, the design and calculation of shielding considers the generation of high-energy neutrons which contribute the equivalent dose that public and Occupationally Staff Exposed (POE) will receive in the areas surrounding the facility radioactive. However, very few measurements have been performed to determine the actual contribution to the neutron dose equivalent received by POE and public during working hours. This paper presents an estimate of the actual contribution of the neutron dose equivalent received by public and POE facilities in various radioactive medical use, considering many factors. To this end, measurements were made of the equivalent dose by using a neutron monitor in areas surrounding different radioactive installations (of Mexico) which used electron accelerators medical use during treatment with X-ray beam energy equal to or greater than 10 MV. The results are presented after a statistical analysis of a wide range of measures in order to estimate more reliability real contribution of the neutron dose equivalent for POE and the public. (author)

  4. BNCT with linac, feasibility study

    International Nuclear Information System (INIS)

    Alfuraih, A.; Ma, A.; Spyrou, N.M.; Awotwi-Pratt, Joseph

    2006-01-01

    High energy photon beams from Medical Linear Accelerators (linacs) which are used in radiotherapy produce undesirable neutrons, beside the clinically useful electron and photon beams. Neutrons are produced from the photonuclear reaction (γ,n) of high energy photons with high Z-materials which compose the accelerator head. In this paper the possible use of these undesirable neutrons for BNCT is investigated, making use of high energy linacs already installed in hospitals, primarily for high energy electron and photon therapy and applying them in the context of BNCT. The photoneutron components emitted by the accelerator is the source for Monte Carlo simulations of the interactions that take place within the head of a voxel-based phantom. The neutron flux across the phantom head is calculated using different moderator arrangements and different techniques in the aim of increasing the thermal neutron flux at the targeted site. Also, we shall test different configurations of the linac head to maximize the exposure of high-Z materials to the photon beam, including the removal of the flattening filter, so as to boost the photoneutron production in the linac head. Experimental work will be conducted in hospitals to validate the Monte Carlo simulations. To make use of linacs for BNCT will be advantageous in the sense that the setting in a hospital department is much more acceptable by the public than a reactor installation. This will mean less complications regarding patient positioning and movement with respect to the beams, additional patient transportation and management will be more cost effective. (author)

  5. Linac 1, inner structure

    CERN Multimedia

    1968-01-01

    This photo shows the inner structure of Linac 1. As injector to the PS, and later to the Booster, Linac 1 accelerated protons to 50 MeV, but it has also accelerated heavier ions. Fitted with a 520 keV RFQ pre-injector (instead of the original Cockcroft-Walton generator), it delivered protons and heavy ions to LEAR, from 1982 to 1992. After 33 years of faithful service, Linac 1 was dismantled in 1992 to make room for Linac 3 (Pb ions).

  6. Construction of SPring-8 LINAC

    International Nuclear Information System (INIS)

    Yokomizo, Hideaki; Yoshikawa, Hiroshi; Suzuki, Shinsuke; Yanagida, Ken-ichi; Mizuno, Akihiko; Hori, Toshihiko; Tamezane, Kenji; Kodera, Masahiko; Sakaki, Hironao; Mashiko, Katsuo

    1993-01-01

    Construction of the linac building has been started in February 1993. The components of the linac are under manufacturing. The preinjector of linac was already constructed and temporarily installed in Tokai Establishment in order to test the beam quality. (author)

  7. Neutron and photon spectra in LINACs

    International Nuclear Information System (INIS)

    Vega-Carrillo, H.R.; Martínez-Ovalle, S.A.; Lallena, A.M.; Mercado, G.A.; Benites-Rengifo, J.L.

    2012-01-01

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10 –6 and 1 MeV. Neutron and the Bremsstrahlung spectra show the same features regardless of the linac voltage. - Highlights: ► With MCNPX code realistic models of two LINACs were built. ► Photon and neutron spectra below the flattening filter and at the isocenter were calculated. ► Neutron spectrum at the flattening filter was compared against the Tosi et al. source-term model. ► Tosi et al. model underestimates the neutron contribution below 1 MeV. ► Photon spectra look alike to those published in literature.

  8. Workshop: Linac90

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyck, Olin

    1990-12-15

    In 1960 the first linear accelerator (linac) conference was organized at Brookhaven by John Blewett. In the few years following, linear accelerator energies jumped from 50 MeV (at Brookhaven and CERN) to 2 GeV at Stanford. With the realization that, at least for electrons, circular accelerators have reached their practical limits, linacs are once more in the spotlight.

  9. Magnet innovations for linacs

    International Nuclear Information System (INIS)

    Halbach, K.

    1986-01-01

    It is possible to produce large magnetic fields at the aperture of permanent magnet quadrupoles, even when the magnetic aperture is very small. That, combined with their compactness, makes permanent magnet quadrupoles very powerful components of small aperture linacs. Results of past and present work on both fixed and variable strength permanent magnets suitable for use in and around linacs are presented

  10. Linac pre-injector

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    New accelerating column of the linac pre-injector, supporting frame and pumping system. This new system uses two mercury diffusion pumps (in the centre) and forms part of the modifications intended to increase the intensity of the linac. View taken during assembly in the workshop.

  11. Magnet innovations for linacs

    International Nuclear Information System (INIS)

    Halbach, K.

    1986-06-01

    It is possible to produce large magnetic fields at the aperture of permanent magnet quadrupoles, even when the magnetic aperture is very small. That, combined with their compactness, makes permanent magnet quadrupoles very powerful components of small aperture linacs. Results will be presented about past and present work on both fixed and variable strength permanent magnets suitable for use in and around linacs

  12. Workshop: Linac90

    International Nuclear Information System (INIS)

    Van Dyck, Olin

    1990-01-01

    In 1960 the first linear accelerator (linac) conference was organized at Brookhaven by John Blewett. In the few years following, linear accelerator energies jumped from 50 MeV (at Brookhaven and CERN) to 2 GeV at Stanford. With the realization that, at least for electrons, circular accelerators have reached their practical limits, linacs are once more in the spotlight

  13. Beam characterisation of the 1.5 T MRI-linac

    Science.gov (United States)

    Woodings, S. J.; Bluemink, J. J.; de Vries, J. H. W.; Niatsetski, Y.; van Veelen, B.; Schillings, J.; Kok, J. G. M.; Wolthaus, J. W. H.; Hackett, S. L.; van Asselen, B.; van Zijp, H. M.; Pencea, S.; Roberts, D. A.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2018-04-01

    As a prerequisite for clinical treatments it was necessary to characterize the Elekta 1.5 T MRI-linac 7 MV FFF radiation beam. Following acceptance testing, beam characterization data were acquired with Semiflex 3D (PTW 31021), microDiamond (PTW 60019), and Farmer-type (PTW 30013 and IBA FC65-G) detectors in an Elekta 3D scanning water phantom and a PTW 1D water phantom. EBT3 Gafchromic film and ion chamber measurements in a buildup cap were also used. Special consideration was given to scan offsets, detector effective points of measurement and avoiding air gaps. Machine performance has been verified and the system satisfied the relevant beam requirements of IEC60976. Beam data were acquired for field sizes between 1  ×  1 and 57  ×  22 cm2. New techniques were developed to measure percentage depth dose (PDD) curves including the electron return effect at beam exit, which exhibits an electron-type practical range of cm. The Lorentz force acting on the secondary charged particles creates an asymmetry in the crossline profiles with an average shift of  +0.24 cm. For a 10  ×  10 cm2 beam, scatter from the cryostat contributes 1% of the dose at isocentre. This affects the relative output factors, scatter factors and beam profiles, both in-field and out-of-field. The average 20%–80% penumbral width measured for small fields with a microDiamond detector at 10 cm depth is 0.50 cm. MRI-linac penumbral widths are very similar to that of the Elekta Agility linac MLC, as is the near-surface dose PDD(0.2 cm)  =  57%. The entrance surface dose is  ∼36% of . Cryostat transmission is quantified for inclusion within the treatment planning system. As a result, the 1.5 T MRI-linac 7 MV FFF beam has been characterised for the first time and is suitable for clinical use. This was a key step towards the first clinical treatments with the MRI-linac, which were delivered at University Medical Center Utrecht in May 2017

  14. Review of superconducting linacs

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1992-01-01

    This paper summarizes the status of the technology of superconducting (SC) linacs designed for the acceleration of ions. The emphasis is on the technical issues involved, with only brief descriptions of the numerous linacs now in operation or under construction. Recent developments of special interest are treated in more detail, and remaining technical challenges are outlined. The technology required for acceleration of ions with velocity β ∼ 1 is not discussed because it is almost the same as for relativistic electrons. That is, this paper is mainly about SC linacs for low-velocity heavy ions. (Author) 5 tabs., 6 figs., 29 refs

  15. Review of induction LINACS

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1981-10-01

    There has been a recent upsurge of activity in the field of induction linacs, with several new machines becoming operational and others in the design stages. The performance levels of electron machines have reached 10's of kiloamps of current and will soon reach 10's of MeV's of energy. Acceleration of ion current has been demonstrated, and the study of a 10 GeV heavy ion induction linac for ICF continues. The operating principles of induction linacs are reviewed with the emphasis on design choices which are important for increasing the maximum beam currents

  16. Review of induction linacs

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1982-01-01

    There has been a recent upsurge of activity in the field of induction linacs, with several new machines becoming operational and others in the design stages. The performance levels of electron machines have reached 10's of kiloamps of current and will soon reach 10's of MeV's of energy. Acceleration of several kiloamps of ion current has been demonstrated, and the study of a 10 GeV heavy ion induction linac for ICF continues. The operating principles of induction linacs are reviewed with the emphasis on design choices which are important for increasing the maximum beam currents

  17. Estimation of the contribution of neutrons to the equivalent dose for personnel occupationally exposed and public in medical facilities: X-ray with energy equal or greater than 10MV

    International Nuclear Information System (INIS)

    Gonzalez, Alfonso Mayer; Jimenez, Roberto Ortega; Sanchez, Mario A. Reyes; Moranchel y Mejia, Mario

    2013-01-01

    In Mexico the use of electron accelerators for treating cancerous tumors had grown enormously in the last decade. When the treatments are carried out with X-ray beam energy below 10 MV the design of the shielding of the radioactive facility is determined by analyzing the interaction of X-rays, which have a direct impact and dispersion, with materials of the facility. However, when it makes use of X-ray beam energy equal to or greater than 10 MV the neutrons presence is imminent due to their generation by the interaction of the primary beam X-ray with materials head of the accelerator and of the table of treatment, mainly. In these cases, the design and calculation of shielding considers the generation of high-energy neutrons which contribute the equivalent dose that public and Occupationally Staff Exposed (POE) will receive in the areas surrounding the facility radioactive. However, very few measurements have been performed to determine the actual contribution to the neutron dose equivalent received by POE and public during working hours. This paper presents an estimate of the actual contribution of the neutron dose equivalent received by public and POE facilities in various radioactive medical use, considering many factors. To this end, measurements were made of the equivalent dose by using a neutron monitor in areas surrounding different radioactive installations (of Mexico) which used electron accelerators medical use during treatment with X-ray beam energy equal to or greater than 10 MV. The results are presented after a statistical analysis of a wide range of measures in order to estimate more reliability real contribution of the neutron dose equivalent for POE and the public. (author)

  18. Superconducting linac booster

    International Nuclear Information System (INIS)

    Srinivasan, B.; Betigeri, M.G.; Pandey, M.K.; Pillay, R.G.; Kurup, M.B.

    1997-01-01

    The report on superconducting LINAC booster, which is a joint project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR), brings out the work accomplished so far towards the development of the technology of superconducting LINAC to boost the energy of ions from the 14UD Pelletron. The LINAC is modular in construction with each module comprising of a helium cryostat housing four lead-plated quarter wave resonators. The resonators are superconducting for temperatures below 7.19K. An energy boost of 2 MeV/q per module is expected to be achieved. The first module and the post-tandem superbuncher have been fabricated and tested on the LINAC beam line. This report gives a summary of the technological achievements and also brings out the difficulties encountered during the R and D phase. (author)

  19. Brookhaven Linac Isotope Producer

    Data.gov (United States)

    Federal Laboratory Consortium — The Brookhaven Linac Isoptope Producer (BLIP)—positioned at the forefront of research into radioisotopes used in cancer treatment and diagnosis—produces commercially...

  20. Electron linac injector developments

    International Nuclear Information System (INIS)

    Fraser, J.S.

    1986-01-01

    There is a continuing demand for improved injectors for electron linacs. Free-electron laser (FEL) oscillators require pulse trains of high brightness and, in some applications, high average power at the same time. Wakefield-accelerator and laser-acceleration experiments require isolated bunches of high peak brightness. Experiments with alkali-halide photoemissive and thermionic electron sources in rf cavities for injector applications are described. For isolated pulses, metal photocathodes (illuminated by intense laser pulses) are being employed. Reduced emittance growth in high-peak-current electron injectors may be achieved by linearizing the cavity electric field's radial component and by using high field strengths at the expense of lower shunt impedance. Harmonically excited cavities have been proposed for enlarging the phase acceptance of linac cavities and thereby reducing the energy spread produced in the acceleration process. Operation of injector linacs at a subharmonic of the main linac frequency is also proposed for enlarging the phase acceptance

  1. RESONANCE CONTROL FOR THE COUPLED CAVITY LINAC AND DRIFT TUBE LINAC STRUCTURES OF THE SPALLATION NEUTRON SOURCE LINAC USING A CLOSED-LOOP WATER COOLING SYSTEM

    International Nuclear Information System (INIS)

    Bernardin, J.D.; Brown, R.L.

    2001-01-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. SNS will generate and use neutrons as a diagnostic tool for medical purposes, material science, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of two room temperature copper structures, the drift tube linac (DTL), and the coupled cavity linac (CCL). Both of these accelerating structures use large amounts of electrical energy to accelerate the protons to an energy of 185 MeV. Approximately 60-80% of the electrical energy is dissipated in the copper structure and must be removed. This is done using specifically designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by specially designed resonance control and water cooling systems

  2. Initial application of a geometric QA tool for integrated MV and kV imaging systems on three image guided radiotherapy systems.

    Science.gov (United States)

    Mao, Weihua; Speiser, Michael; Medin, Paul; Papiez, Lech; Solberg, Timothy; Xing, Lei

    2011-05-01

    Several linacs with integrated kilovoltage (kV) imaging have been developed for delivery of image guided radiation therapy (IGRT). High geometric accuracy and coincidence of kV imaging systems and megavoltage (MV) beam delivery are essential for successful image guidance. A geometric QA tool has been adapted for routine QA for evaluating and characterizing the geometric accuracy of kV and MV cone-beam imaging systems. The purpose of this work is to demonstrate the application of methodology to routine QA across three IGRT-dedicated linac platforms. It has been applied to a Varian Trilogy (Varian Medical Systems, Palo Alto, CA), an Elekta SynergyS (Elekta, Stockholm, Sweden), and a Brainlab Vero (Brainlab AG, Feldkirchen, Germany). Both the Trilogy and SynergyS linacs are equipped with a retractable kV x-ray tube and a flat panel detector. The Vero utilizes a rotating, rigid ring structure integrating a MV x-ray head mounted on orthogonal gimbals, an electronic portal imaging device (EPID), two kV x-ray tubes, and two fixed flat panel detectors. This dual kV imaging system provides orthogonal radiographs, CBCT images, and real-time fluoroscopic monitoring. Two QA phantoms were built to suit different field sizes. Projection images of a QA phantom were acquired using MV and kV imaging systems at a series of gantry angles. Software developed for this study was used to analyze the projection images and calculate nine geometric parameters for each projection. The Trilogy was characterized five times over one year, while the SynergyS was characterized four times and the Vero once. Over 6500 individual projections were acquired and analyzed. Quantitative geometric parameters of both MV and kV imaging systems, as well as the isocenter consistency of the imaging systems, were successfully evaluated. A geometric tool has been successfully implemented for calibration and QA of integrated kV and MV across a variety of radiotherapy platforms. X-ray source angle deviations up to

  3. Development of a very-low-velocity superconducting linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.

    1987-01-01

    Four types of superconducting accelerator structures are being developed for use in a low velocity positive-ion injector linac for the ATLAS heavy-ion accelerator. Prototypes of the first two of these have been tested. The structures are all variants of a quarter-wave line terminated with a four-gap interdigital drift-tube array. The two structure types so far tested operate at 48.5 mHz and have an active length of 10 cm (for the particle velocity - .008c type) and 16.5 cm (for the velocity - .014c type). Effective accelerating fields of 10 MV/m have been achieved with the 10 cm structure, corresponding to an effective accelerating potential of 1 MV. The 16.5 cm structure has been operated at field levels of 6 MV/m, also giving an effective potential of 1 MV. Prototypes of the remaining two resonant geometries are under construction.

  4. Development of a very-low-velocity superconducting linac

    International Nuclear Information System (INIS)

    Shepard, K.W.

    1987-01-01

    Four types of superconducting accelerator structures are being developed for use in a low velocity positive-ion injector linac for the ATLAS heavy-ion accelerator. Prototypes of the first two of these have been tested. The structures are all variants of a quarter-wave line terminated with a four-gap interdigital drift-tube array. The two structure types so far tested operate at 48.5 mHz and have an active length of 10 cm (for the particle velocity - .008c type) and 16.5 cm (for the velocity - .014c type). Effective accelerating fields of 10 MV/m have been achieved with the 10 cm structure, corresponding to an effective accelerating potential of 1 MV. The 16.5 cm structure has been operated at field levels of 6 MV/m, also giving an effective potential of 1 MV. Prototypes of the remaining two resonant geometries are under construction

  5. Variable-energy drift-tube linacs

    International Nuclear Information System (INIS)

    Swenson, D.A.; Boyd, T.J. Jr.; Potter, J.M.; Stovall, J.E.

    1982-01-01

    Practical applications of ion linacs are more viable now than ever before because of the recent development of the radio-frequency quadrupole accelerating structure, as well as other technological advances developed under the Pion Generator for Medical Irradiations program. This report describes a practical technique for varying the energy of drift-tube linacs and thus further broadening the possibilities for linac applications. This technique involves using the post couplers (normally used to flatten and stabilize the electric fields) to create a step in the fields, thus terminating the acceleration process. In the examples given for a 70-MeV accelerator design, when using this technique the energy is continually variable down to 20 MeV, while maintaining a small energy spread

  6. MV controlled spark gap

    International Nuclear Information System (INIS)

    Evdokimovich, V.M.; Evlampiev, S.B.; Korshunov, G.S.; Nikolaev, V.A.; Sviridov, Yu.F.; Khmyrov, V.V.

    1980-01-01

    A megavolt gas-filled trigatron gap with a sectional gas-discharge chamber having a more than three-fold range of operating voltages is described. The discharge chamber consists of ten sections, each 70 mm thick, made of organic glass. The sections are separated one from another by aluminium gradient rings to which ohmic voltage divider is connected. Insulational sections and gradient rings are braced between themselves by means of metal flanges through gaskets made of oil-resistant rubber with the help of fiberglass-laminate pins. The gap has two electrodes 110 mm in diameter. The trigatron ignition assembly uses a dielectric bushing projecting over the main electrode plane. Use has been made of a gas mixture containing 10% of SF 6 and 90% of air making possible to ensure stable gap operation without readjusting in the voltage range from 0.4 to 1.35 MV. The operation time lag in this range is equal to 10 μs at a spread of [ru

  7. Spectral reconstruction for a 6 MV linear accelerator

    International Nuclear Information System (INIS)

    Hernandez-Bojorquez, M.; Martinez-Davalos, A.; Larraga, J. M.

    2004-01-01

    In this work we present the first results of an x-ray spectral reconstruction for a 6 MV Varian LINAC. The shape of the spectrum will be used in Monte Carlo treatment planning in order to improve the quality and accuracy of the calculated dose distributions. We based our simulation method on the formalism proposed by Francois et al. In this method the spectrum is reconstructed from transmission measurements under narrow beam geometry for multiple attenuator thicknesses. These data allowed us to reconstruct the x-ray spectrum through direct solution of matrix systems using spectral algebra formalism

  8. Investigation of the accuracy of MV radiation isocentre calculations in the Elekta cone-beam CT software XVI

    DEFF Research Database (Denmark)

    Lynggaard Riis, Hans; Moltke, Lars N; Zimmermann, S. J.

    2016-01-01

    Accurate determination of the megavoltage (MV) radiation isocentre of a linear accelerator (linac) is an important task in radiotherapy. The localization of the MV radiation isocentre is crucial for correct calibration of the in-room lasers and the cone-beam CT scanner used for patient positioning...... orientation or the phantom asymmetry in the longitudinal direction do not appear to cause the discrepancy. The main cause of the differences could not be clearly identified. However, it is our opinion that the commercial software delivered by the linac manufacturer should be improved to reach better stability...

  9. High field electron linacs

    International Nuclear Information System (INIS)

    Le Duff, J.

    1985-12-01

    High field electron linacs are considered as potential candidates to provide very high energies beyond LEP. Since almost twenty years not much improvement has been made on linac technologies as they have been mostly kept at low and medium energies to be used as injectors for storage rings. Today, both their efficiency and their performances are being reconsidered, and for instance the pulse compression sheme developed at SLAC and introduced to upgrade the energy of that linac is a first step towards a new generation of linear accelerators. However this is not enough in terms of power consumption and more development is needed to improve both the efficiency of accelerating structures and the performances of RF power sources

  10. RF linacs for FELs

    International Nuclear Information System (INIS)

    Schwettman, H.A.

    1992-01-01

    There are twenty rf linac-driven Free Electron Lasers (FELs) existing or under construction throughout the world and proposals for several more. A number of these FELs have recently been established as facilities to produce coherent optical beams for materials and biomedical research. Both short pulse low duty factor and long pulse high duty factor linac-driven FELs will be discussed. Accelerator issues that influence the performance of an FEL as a scientific instrument will be indicated. (Author) 6 refs., 6 figs., 2 tabs

  11. [Expectations, requirements and limitations of future task sharing between the nursing profession and the medical profession: results from the Care-N Study M-V].

    Science.gov (United States)

    Dreier, Adina; Rogalski, Hagen; Homeyer, Sabine; Oppermann, Roman Frank; Hingst, Peter; Hoffmann, Wolfgang

    2015-10-01

    The aging population causes a sustained increase in demand of medical and nursing care services. At the same time health care professionals are aging, too. This leads to a growing number of health care gaps. Therefore, the health care system needs to be reformed. This includes a reallocation of task between some of the health care professions. This article addresses developments, potentials and limitations in the context of the future allocation of tasks between the nursing and the medical profession. Aim is to specify the future task sharing between nurses and physicians regarding expectations, requirements and limitations. We conducted questionnaire based Delphi interviews with an interdisciplinary group of experts. (type aggregation of ideas). In the future, to expert’s point of view, nurses will take over routine tasks in the medical and nursing health care supply. Task sharing by substitution is regarded with skepticism by experts. It requires a long time perspective and an early involvement of all stakeholders. Germany is at the beginning of the process of the future task sharing between nurses and physicians. The realization requires a comprehensive political support and further development of concepts including scientific implementation and evaluation.

  12. Using a tungsten rollbar to characterize the source spot of a megavoltage bremsstrahlung linac

    International Nuclear Information System (INIS)

    Schach von Wittenau, A.E.; Logan, C.M.; Rikard, R.

    2002-01-01

    In photon teletherapy, the size and functional form of the photon source spot affect both the sharpness of the penumbra of treatment fields and the sharpness of portal images. Photon source spot parameters are also used in photon teletherapy dose calculation codes. A simple method for characterizing the source spot would complement the existing, more involved methods that have been described in the medical physics literature. Such a method, using a rollbar made of tungsten or other high-Z metal, is used in industrial radiography. We describe the use of a tungsten rollbar for characterizing the source spot edge spread function (and thereby the source spot size and shape) of a megavoltage bremsstrahlung photon source. We use Monte Carlo simulations to quantify anticipated experimental artifacts of the method, assuming typical spot sizes for circ-function, Gaussian, and Bennett line shapes. We illustrate the use of the rollbar method by characterizing the source spot of a typical 9 MV linac used for industrial radiography. The source spot is analyzed using two approaches: (a) fitting the rollbar image with analytic functions and (b) using Abel inversion to obtain the cylindrically symmetric spot profile consistent with the measured rollbar image. Monte Carlo simulations, based on a 6 MV photon teletherapy accelerator, suggest that aspects of the method are applicable to medical bremsstrahlung sources

  13. Development of the High Energy Linac Systems

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, Hyeok Jung; Kim, Han Sung; Chung, Byung Chul; Jang, Ji Ho; Gao, Changgi; Li, Yingmin; Sun, An; Tang, Yazhe; Zhang, Lipoing; Hwang, Yong Seok

    2008-05-01

    The main purpose of this project is studying the extension plan of the proton engineering frontier project (PEFP) 100-MeV Linac. It includes three categories. One is studying operation plan of the PEFP linac and its extended accelerators, and developing a distribution system of 100-MeV proton beams with a laser striping. Other is designing superconducting RF (SRF) modules and fabricating and testing a copper cavity model. The other is designing a rapid cycling synchrotron (RCS). The operation scheme of the PEFP linac is related to the optimization in the operation of the 100-MeV linac, 200-MeV SRF, and RCS. We studied several operational method to increase the validity of the accelerators. The beam distribution system has two roles. One is supplying proton beams of 100 MeV to the user group. The laser stripping of the negative hydrogen atoms is used in this case. The other beams are directed to the next high energy accelerators. This study contributes to increase the availability of the proton beams. The SRF is one of candidates to extend the PEFP linac system. Since the accelerating gradient of the SRF is much higher than the normal conducting accelerator, a lot of institutes over the world are developing the SRF structure. Main purposes are designing an SRF module, fabricating and testing an copper model which has similar material properties as Nb of the usual SRF cavity material. The RCS is a synchrotron whose injector is the PEFP 100-MeV linac. Main purposes are determining the lattice structure, studying the fast and slow extraction system, simulating beam behavior in the designed synchrotron. The RCS will be used as the spallation neutron source and tools in the basic and applied science including medical application

  14. Treatment vault shielding for a flattening filter-free medical linear accelerator

    Science.gov (United States)

    Kry, Stephen F.; Howell, Rebecca M.; Polf, Jerimy; Mohan, Radhe; Vassiliev, Oleg N.

    2009-03-01

    The requirements for shielding a treatment vault with a Varian Clinac 2100 medical linear accelerator operated both with and without the flattening filter were assessed. Basic shielding parameters, such as primary beam tenth-value layers (TVLs), patient scatter fractions, and wall scatter fractions, were calculated using Monte Carlo simulations of 6, 10 and 18 MV beams. Relative integral target current requirements were determined from treatment planning studies of several disease sites with, and without, the flattening filter. The flattened beam shielding data were compared to data published in NCRP Report No. 151, and the unflattened beam shielding data were presented relative to the NCRP data. Finally, the shielding requirements for a typical treatment vault were determined for a single-energy (6 MV) linac and a dual-energy (6 MV/18 MV) linac. With the exception of large-angle patient scatter fractions and wall scatter fractions, the vault shielding parameters were reduced when the flattening filter was removed. Much of this reduction was consistent with the reduced average energy of the FFF beams. Primary beam TVLs were reduced by 12%, on average, and small-angle scatter fractions were reduced by up to 30%. Head leakage was markedly reduced because less integral target current was required to deliver the target dose. For the treatment vault examined in the current study, removal of the flattening filter reduced the required thickness of the primary and secondary barriers by 10-20%, corresponding to 18 m3 less concrete to shield the single-energy linac and 36 m3 less concrete to shield the dual-energy linac. Thus, a shielding advantage was found when the linac was operated without the flattening filter. This translates into a reduction in occupational exposure and/or the cost and space of shielding.

  15. Treatment vault shielding for a flattening filter-free medical linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kry, Stephen F; Howell, Rebecca M; Polf, Jerimy; Mohan, Radhe; Vassiliev, Oleg N [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)], E-mail: sfkry@mdanderson.org

    2009-03-07

    The requirements for shielding a treatment vault with a Varian Clinac 2100 medical linear accelerator operated both with and without the flattening filter were assessed. Basic shielding parameters, such as primary beam tenth-value layers (TVLs), patient scatter fractions, and wall scatter fractions, were calculated using Monte Carlo simulations of 6, 10 and 18 MV beams. Relative integral target current requirements were determined from treatment planning studies of several disease sites with, and without, the flattening filter. The flattened beam shielding data were compared to data published in NCRP Report No. 151, and the unflattened beam shielding data were presented relative to the NCRP data. Finally, the shielding requirements for a typical treatment vault were determined for a single-energy (6 MV) linac and a dual-energy (6 MV/18 MV) linac. With the exception of large-angle patient scatter fractions and wall scatter fractions, the vault shielding parameters were reduced when the flattening filter was removed. Much of this reduction was consistent with the reduced average energy of the FFF beams. Primary beam TVLs were reduced by 12%, on average, and small-angle scatter fractions were reduced by up to 30%. Head leakage was markedly reduced because less integral target current was required to deliver the target dose. For the treatment vault examined in the current study, removal of the flattening filter reduced the required thickness of the primary and secondary barriers by 10-20%, corresponding to 18 m{sup 3} less concrete to shield the single-energy linac and 36 m{sup 3} less concrete to shield the dual-energy linac. Thus, a shielding advantage was found when the linac was operated without the flattening filter. This translates into a reduction in occupational exposure and/or the cost and space of shielding.

  16. Treatment vault shielding for a flattening filter-free medical linear accelerator

    International Nuclear Information System (INIS)

    Kry, Stephen F; Howell, Rebecca M; Polf, Jerimy; Mohan, Radhe; Vassiliev, Oleg N

    2009-01-01

    The requirements for shielding a treatment vault with a Varian Clinac 2100 medical linear accelerator operated both with and without the flattening filter were assessed. Basic shielding parameters, such as primary beam tenth-value layers (TVLs), patient scatter fractions, and wall scatter fractions, were calculated using Monte Carlo simulations of 6, 10 and 18 MV beams. Relative integral target current requirements were determined from treatment planning studies of several disease sites with, and without, the flattening filter. The flattened beam shielding data were compared to data published in NCRP Report No. 151, and the unflattened beam shielding data were presented relative to the NCRP data. Finally, the shielding requirements for a typical treatment vault were determined for a single-energy (6 MV) linac and a dual-energy (6 MV/18 MV) linac. With the exception of large-angle patient scatter fractions and wall scatter fractions, the vault shielding parameters were reduced when the flattening filter was removed. Much of this reduction was consistent with the reduced average energy of the FFF beams. Primary beam TVLs were reduced by 12%, on average, and small-angle scatter fractions were reduced by up to 30%. Head leakage was markedly reduced because less integral target current was required to deliver the target dose. For the treatment vault examined in the current study, removal of the flattening filter reduced the required thickness of the primary and secondary barriers by 10-20%, corresponding to 18 m 3 less concrete to shield the single-energy linac and 36 m 3 less concrete to shield the dual-energy linac. Thus, a shielding advantage was found when the linac was operated without the flattening filter. This translates into a reduction in occupational exposure and/or the cost and space of shielding.

  17. Fermilab: Linac upgrade

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The Fermilab linear accelerator (Linac) was conceived 20 years ago, produced its first 200 MeV proton beam on 30 November 1970 and has run without major interruption ever since. Demands have steadily increased through the added complexity of the downstream chain of accelerators and by the increased patient load of the Neutron Therapy Facility

  18. Radiation transmission of heavyweight and normal-weight concretes containing colemanite for 6 MV and 18 MV X-rays using linear accelerator

    International Nuclear Information System (INIS)

    Demir, F.; Budak, G.; Sahin, R.; Karabulut, A.; Oltulu, M.; Serifoglu, K.; Un, A.

    2010-01-01

    Accurate measurements have been made to determine radiation transmission of concretes produced with barite, colemanite and normal aggregate by using beam transmission method for 6 and 18 MV X-rays with a linear accelerator (LINAC). Linear attenuation coefficients of thirteen heavy- and four normal-weight concretes were calculated. It was determined that linear attenuation coefficient (μ, cm -1 ) decreased with colemanite concentration and increased with barite concentration in both types of the concretes.

  19. Drift tubes of Linac 2

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    With the advent of the 800 MeV PS Booster in 1972, the original injector of the PS, a 50 MeV Alvarez-type proton linac, had reached its limits, in terms of intensity and stability. In 1973 one therefore decided to build a new linac (Linac 2), also with a drift-tube Alvarez structure and an energy of 50 MeV. It had a new Cockcroft-Walton preinjector with 750 keV, instead of the previous one with 500 keV. Linac 2 was put into service in 1980. The old Linac 1 was then used for the study of, and later operation with, various types of ions. This picture shows Linac 2 drift-tubes, suspended on stems coming from the top, in contrast to Linac 1, where the drift-tubes stood on stems coming from the bottom.

  20. LINAC5 - A Quasi-Alvarez Linac for BioLEIR

    International Nuclear Information System (INIS)

    Garland, J M; Lallement, J-B; Lombardi, A

    2017-01-01

    LINAC5 is a new linac proposed for the acceleration of light ions with Q/A = 1/3 to 1/4 for medical applications within the BioLEIR (Low Energy Ion Ring) design study at CERN. We propose a novel quasi-Alvarez drift-tube linac (DTL) accelerating structure design for LINAC5, which can reduce the length of a more conventional DTL structure, yet allows better beam focussing control and flexibility than the inter-digital H (IH) structures typically used for modern ion acceleration. We present the main sections of the linac with total length ∼12 m, including a 202 MHz radio frequency quadrupole (RFQ) a matching medium energy beam transport (MEBT) and a 405 MHz quasi-Alvarez accelerating section with an output energy of 4.2 MeV/u. Permanent magnet quadrupoles are proposed for use in the quasi-Alvarez structure to improve the compactness of the design and increase the efficiency. Lattice design considerations, multi-particle beam dynamics simulations and RFQ and radio frequency (RF) cavity designs are presented. (paper)

  1. S-band linac-based X-ray source with {pi}/2-mode electron linac

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Abhay, E-mail: abhay@post.kek.jp [Department of Accelerator Science, School of High Energy Accelerator Science, Graduate University for Advanced Studies, Shonan International Village, Hayama, Miura, Kanagawa 240-0193 (Japan); Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Araki, Sakae [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Dixit, Tanuja [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Fukuda, Masafumi [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Krishnan, R; Pethe, Sanjay [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Sakaue, Kazuyuki [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan); Terunuma, Nobuhiro; Urakawa, Junji [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Washio, Masakazu [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2011-05-01

    The activities with the compact X-ray source are attracting more attention, particularly for the applications of the source in medical fields. We propose the fabrication of a compact X-ray source using the SAMEER electron linear accelerator and the KEK laser undulator X-ray source (LUCX) technologies. The linac developed at SAMEER is a standing wave side-coupled S-band linac operating in the {pi}/2 mode. In the proposed system, a photocathode RF gun will inject bunches of electrons in the linac to accelerate and achieve a high-energy, low-emittance beam. This beam will then interact with the laser in the laser cavity to produce X-rays of a type well suited for various applications. The side-coupled structure will make the system more compact, and the {pi}/2 mode of operation will enable a high repetition rate operation, which will help to increase the X-ray yield.

  2. Beam Loss in Linacs

    CERN Document Server

    Plum, M.A.

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  3. Injector linac of SPring-8

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Hori, T.; Suzuki, S.; Yanagida, K.; Itoh, Y.; Mizuno, A.; Taniuchi, T.; Sakaki, H.; Kuba, A.; Fukushima, S.; Kobayashi, T.; Asaka, T.; Yokomizo, H.

    1996-01-01

    The linac that is SPring-8 injector was completed and started operation from August 1. A beam was able to be transported to the final beam dumping at a tail end on August 8. From now on this linac carries out beam adjustment and be scheduled to do a beam injection to a synchrotron in October. The construction and fundamental performance of the linac are described. (author)

  4. Superconducting heavy-ion linacs

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1977-01-01

    A summary is given of plans developed by four different groups for the construction of small superconducting linacs to boost the energy of heavy ions from existing tandem electrostatic accelerators. The projects considered are the linac under construction at Argonne and the design efforts at Karlsruhe, at Stanford, and by a Cal Tech-Stony Brook collaboration. The intended uses of the accelerator systems are stated. Beam dynamics of linacs formed of short independently-phased resonators are reviewed, and the implications for performance are discussed. The main parameters of the four linacs are compared, and a brief analysis of accelerating structures is given

  5. High-beta linac structures

    International Nuclear Information System (INIS)

    Schriber, S.O.

    1979-01-01

    Accelerating structures for high-beta linacs that have been and are in use are reviewed in terms of their performance. Particular emphasis is given to room-temperature structures and the disk-and-washer structure. The disk-and-washer structure has many attractive features that are discussed for pulsed high-gradient linacs, for 100% duty-cycle medium-gradient linacs and for high-current linacs requiring maximal amounts of stored energy in the electric fields available to the beam

  6. CAS CERN Accelerator School: Cyclotrons, linacs and their applications. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1996-01-01

    These proceedings present the lectures given at the eighth specialized course organized by the CERN Accelerator School (CAS), the topic this time being 'Cyclotrons, Linacs and Their Applications'. Following an introductory lecture on linacs, the fundamental features of electron, ion and induction linacs are described together with their RF systems and particle sources. Cyclotrons are then introduced followed by details of their different types, their magnet and RF design, and their injection and extraction systems, with a glance towards exotic and possible future machines. Chapters are then presented on the use of linacs and cyclotrons for medical, fission, fusion and material applications, as well as for isotope production. Finally, descriptions of the design of a radioisotope facility, the matching of accelerators to their task and the computational tools used in their design are included. (orig.)

  7. CAS CERN Accelerator School: Cyclotrons, linacs and their applications. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S [ed.

    1996-03-04

    These proceedings present the lectures given at the eighth specialized course organized by the CERN Accelerator School (CAS), the topic this time being `Cyclotrons, Linacs and Their Applications`. Following an introductory lecture on linacs, the fundamental features of electron, ion and induction linacs are described together with their RF systems and particle sources. Cyclotrons are then introduced followed by details of their different types, their magnet and RF design, and their injection and extraction systems, with a glance towards exotic and possible future machines. Chapters are then presented on the use of linacs and cyclotrons for medical, fission, fusion and material applications, as well as for isotope production. Finally, descriptions of the design of a radioisotope facility, the matching of accelerators to their task and the computational tools used in their design are included. (orig.).

  8. Improved field abutment-wedge design for 6-MV x-rays

    International Nuclear Information System (INIS)

    Nyerick, C.E.; Steadham, R.E.

    1989-01-01

    This paper presents an improved abutment wedge for matching large photon fields. The wedge is used with a 6-MV Linac accelerator and generates a 5-cm pseudopenumbra at the 50% relative dose juncture. The features allow treatment of fields up to 40 cm long in any fractional step of increment, simultaneous generation of two wide penumbrae or one wide and one sharp penumbra, and attachment of the device downstream of standard beam-shaping accessories in any 90 degrees angular orientation

  9. Low-energy linac structure for PIGMI

    International Nuclear Information System (INIS)

    Swenson, D.A.; Stovall, J.E.

    1977-01-01

    The higher radio frequency (450 MHz) and lower injection energy (250 keV) of the PIGMI (Pion Generator for Medical Irradiations) linac design seriously compound the problem of beam containment in the first few meters of the structure. The conventional quadrupole-focused, drift-tube linac represents the best solution for beam energies above 8 MeV, but because of the small space available for quadrupoles in the PIGMI designs, cannot provide the required focusing at lower energies. A satisfactory solution to this focusing problem has been found based on pure alternating phase focusing for the first few MeV, followed by a smooth transition to a pure permanent magnet quadrupole-focused structure at 8 MeV. The structure and its calculated performance are described

  10. High current induction linacs

    International Nuclear Information System (INIS)

    Barletta, W.; Faltens, A.; Henestroza, E.; Lee, E.

    1994-07-01

    Induction linacs are among the most powerful accelerators in existence. They have accelerated electron bunches of several kiloamperes, and are being investigated as drivers for heavy ion driven inertial confinement fusion (HIF), which requires peak beam currents of kiloamperes and average beam powers of some tens of megawatts. The requirement for waste transmutation with an 800 MeV proton or deuteron beam with an average current of 50 mA and an average power of 40 MW lies midway between the electron machines and the heavy ion machines in overall difficulty. Much of the technology and understanding of beam physics carries over from the previous machines to the new requirements. The induction linac allows use of a very large beam aperture, which may turn out to be crucial to reducing beam loss and machine activation from the beam halo. The major issues addressed here are transport of high intensity beams, availability of sources, efficiency of acceleration, and the state of the needed technology for the waste treatment application. Because of the transformer-like action of an induction core and the accompanying magnetizing current, induction linacs make the most economic sense and have the highest efficiencies with large beam currents. Based on present understanding of beam transport limits, induction core magnetizing current requirements, and pulse modulators, the efficiencies could be very high. The study of beam transport at high intensities has been the major activity of the HIF community. Beam transport and sources are limiting at low energies but are not significant constraints at the higher energies. As will be shown, the proton beams will be space-charge-dominated, for which the emittance has only a minor effect on the overall beam diameter but does determine the density falloff at the beam edge

  11. Compact LINAC for deuterons

    International Nuclear Information System (INIS)

    Kurennoy, S.S.; O'Hara, J.F.; Rybarcyk, L.J.

    2008-01-01

    We are developing a compact deuteron-beam accelerator up to the deuteron energy of a few MeV based on room-temperature inter-digital H-mode (IH) accelerating structures with the transverse beam focusing using permanent-magnet quadrupoles (PMQ). Combining electromagnetic 3-D modeling with beam dynamics simulations and thermal-stress analysis, we show that IHPMQ structures provide very efficient and practical accelerators for light-ion beams of considerable currents at the beam velocities around a few percent of the speed of light. IH-structures with PMQ focusing following a short RFQ can also be beneficial in the front end of ion linacs.

  12. CONFERENCE: Linacs at Seeheim

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-07-15

    The 12th Linear Accelerator Conference, organized by GSI Darmstadt, was held from 8-11 May at the Lufthansa Schulungszentrum in Seeheim, West Germany. It was the first of this series of Linac Accelerator Conferences - started in 1961 with 20 participants and 17 contributions at Brookhaven - held outside North America. In Seeheim, 32 invited talks, 11 oral and 98 poster papers were presented to more than 250 participants from the USA, Canada, Europe, Japan, the USSR and China, representing 39 research institutions and 12 industrial laboratories.

  13. CONFERENCE: Linacs at Seeheim

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The 12th Linear Accelerator Conference, organized by GSI Darmstadt, was held from 8-11 May at the Lufthansa Schulungszentrum in Seeheim, West Germany. It was the first of this series of Linac Accelerator Conferences - started in 1961 with 20 participants and 17 contributions at Brookhaven - held outside North America. In Seeheim, 32 invited talks, 11 oral and 98 poster papers were presented to more than 250 participants from the USA, Canada, Europe, Japan, the USSR and China, representing 39 research institutions and 12 industrial laboratories

  14. NPL superconducting Linac control system

    International Nuclear Information System (INIS)

    Swanson, H.E.; Howe, M.A.; Jackson, L.W.; LaCroix, J.M.; Readdy, H.P.; Storm, D.W.; Van Houten, L.P.

    1985-01-01

    The control system for the NPL Linac is based on a Microvax II host computer connected in a star network with 9 satellite computers. These satellites use single board varsions of DEC's PDP 11 processor. The operator's console uses high performance graphics and touch screen technology to display the current linac status and as the means for interactively controlling the operation of the accelerator

  15. The application of statistical process control in linac quality assurance

    International Nuclear Information System (INIS)

    Li Dingyu; Dai Jianrong

    2009-01-01

    Objective: To improving linac quality assurance (QA) program with statistical process control (SPC) method. Methods: SPC is applied to set the control limit of QA data, draw charts and differentiate the random and systematic errors. A SPC quality assurance software named QA M ANAGER has been developed by VB programming for clinical use. Two clinical cases are analyzed with SPC to study daily output QA of a 6MV photon beam. Results: In the clinical case, the SPC is able to identify the systematic errors. Conclusion: The SPC application may be assistant to detect systematic errors in linac quality assurance thus it alarms the abnormal trend to eliminate the systematic errors and improves quality control. (authors)

  16. Linac4 Technical Design Report

    CERN Document Server

    Arnaudon, L; Baylac, M; Bellodi, G; Body, Y; Borburgh, J; Bourquin, P; Broere, J; Brunner, O; Bruno, L; Carli, C; Caspers, Friedhelm; Cousineau, S M; Cuvet, Y; De Almeida Martins, C; Dobers, T; Fowler, T; Garoby, R; Gerigk, F; Goddard, B; Hanke, K; Hori, M; Jones, M; Kahle, K; Kalbreier, Willi; Kroyer, T; Küchler, D; Lombardi, A M; López-Hernandez, L A; Magistris, M; Martini, M; Maury, S; Page, E; Paoluzzi, M; Pasini, M; Raich, U; Rossi, C; Royer, J P; Sargsyan, E; Serrano, J; Scrivens, R; Silari, M; Timmins, M; Venturini-Delsolaro, W; Vretenar, M; Wegner, R; Weterings, W; Zickler, T

    2006-01-01

    Linac4 is an H- linear accelerator, intended to replace Linac2 as injector to the PS Booster (PSB). By delivering to the PSB a beam at 160 MeV energy, Linac4 will provide the conditions to double the brightness and intensity of the beam from the PSB, thus removing the first bottleneck towards higher brightness for the LHC and simplifying operation. Moreover, this new linac constitutes an essential component of any of the envisaged LHC upgrade scenarios and could open the way to future extensions of the CERN accelerator complex towards higher performance. This Technical Design Report presents a detailed technical overview of the Linac4 design as it stands at end 2006.

  17. The FAIR proton linac

    International Nuclear Information System (INIS)

    Kester, O.

    2015-01-01

    FAIR - the Facility for Antiproton and Ion Research in Europe - constructed at GSI in Darmstadt comprises an international centre of heavy ion accelerators that will drive heavy ion and antimatter research. FAIR will provide worldwide unique accelerator and experimental facilities, allowing a large variety of fore-front research in physics and applied science. FAIR will deliver antiproton and ion beams of unprecedented intensities and qualities. The main part of the FAIR facility is a sophisticated accelerator system, which delivers beams to different experiments of the FAIR experimental collaborations - APPA, NuSTAR, CBM and PANDA - in parallel. Modern H-type cavities offer highest shunt impedances of resonant structures of heavy ion linacs at low beam energies < 20 MeV/u and enable the acceleration of intense proton and ion beams. One example is the interdigital H-type structure. The crossed-bar H-cavities extend these properties to high energies even beyond 100 MeV/u. Compared to conventional Alvarez cavities, these crossed-bar (CH) cavities feature much higher shunt impedance at low energies. The design of the proton linac is based on those cavities

  18. Review of superconducting ion linacs

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1992-01-01

    This paper summarizes the status of the technology of superconducting (SC) linacs designed for the acceleration of ions. The emphasis is on the technical issues involved, with only brief descriptions of the numerous linacs now in operation or under construction. Recent developments of special interest are treated in more detail, and remaining technical challenges are outlined. The technology required for the acceleration of ions with velocity β=1 is not discussed because it is almost the same as for relativistic electrons. That is, this paper is mainly about SC linacs for low-velocity heavy ions

  19. Drift tubes of Linac 2

    CERN Multimedia

    Photographic Service

    1977-01-01

    Being redied for installation, those at the right are for tank 1, those on the left for tank 2. Contrary to Linac 1, which had drift-tubes supported on stems, here the tubes are suspended, for better mechanical stability.

  20. Installation of the Gbar LINAC

    CERN Multimedia

    Maximilien, Brice

    2017-01-01

    Installation of the GBAR linac in its shielding bunker. The electrons accelerated to 10 MeV toward a target will produce the positrons that are necessary to form anti hydrogen with the antiprotons coming from the ELENA decelerator.

  1. Commissioning plans for SSC linac

    International Nuclear Information System (INIS)

    Hurd, J.W.; Aprile, R.L.; Chang, C.R.; Crist, C.E.; Cutler, R.I.; Funk, L.W.; Guy, F.W.; Leifeste, G.T.; Raparia, D.; Saadatmand, K.; Sethi, R.C.; Swenson, D.A.; Tooker, J.; Yao, C.G.

    1992-01-01

    Presented are the general description of the SSC linac and the plans for commissioning. Sections of the linac are installed, tested, and beam commissioned in a serial approach. A specialized set of diagnostics is used to characterize the beam through each section. In addition to the standard diagnostic set, plans call for the use of a bunch shape monitor and x-ray spectrometer. Streak camera and digital imaging diagnostics will be developed. The commissioning plan is folded into the general linac project schedule to show the relation between delivery, staging, installation, conditioning, and actual commissioning with beam. These plans form the basis for coordination between the various organizations responsible for different elements of the linac including the technical components, infrastructure, and temporary staging and operation facilities. (Author) 2 figs., 17 refs

  2. Superconducting linacs used with tandems

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1984-01-01

    The main features of superconducting linacs used as post-accelerators of tandems are reviewed. Various aspects of resonators, cryogenics and electronics are discussed, and recent advances in the field are presented. (orig.)

  3. SLAC Linac Preparations for FACET

    International Nuclear Information System (INIS)

    Erickson, Roger

    2011-01-01

    The SLAC 3km linear electron accelerator has been cut at the two-thirds point to provide beams to two independent programs. The last third provides the electron beam for the Linac Coherent Light Source (LCLS), leaving the first two-thirds available for FACET, the new experimental facility for accelerator science and test beams. In this paper, we describe this separation and projects to prepare the linac for the FACET experimental program.

  4. Comparison of LINAC-4 Designs

    CERN Document Server

    Crandall, K; Sargsyan, E; Lallement, J-B; CERN. Geneva. BE Department

    2009-01-01

    We have studied the expected performance of two drift tube linac (DTL) designs proposed for LINAC-4. The two designs use the same cell geometries but are characterized by different phase (φs) and accelerating field (E0) distributions. In addition we have investigated the expected performance of 3 different quadrupole focusing schemes in each design. The expected performance of these 6 variants is compared with respect to their stability and risk of beam loss with alignment errors.

  5. Inner structure of Linac 2

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    With the advent of the 800 MeV Booster in 1972, the original injector of the PS, a 50 MeV Alvarez-type proton linac, had reached its limits, in terms of intensity and stability. In 1973 one therefore decided to build a new linac (Linac 2), also with a drift-tube Alvarez structure and an energy of 50 MeV. It had a new Cockcroft-Walton preinjector with 750 keV, instead of the previous one with 500 keV. Linac 2 was put into service in 1980. The old Linac 1 was then used for the study of, and later operation with, various types of ions. This picture shows the inner structure of Linac 2, with drift-tubes hanging on stems under a rigid support structure, soon to be mounted inside tank 1 (750 keV to 10 MeV, the lowest-energy one of 3). Frank Malthouse is standing in the background.

  6. Testing begins on Linac4

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    On 3 August 2012, the Linac4 radiofrequency quadrupole (RFQ) module was installed at the accelerator test-stand in Building 152. The site will be the module’s home for almost a year, as the linear accelerator enters the assembly and testing stage.   Final module assembly is carried out before installation in Building 152.  Over the next Long Shutdown (LS2), Linac4 will replace the current Linac2 linear accelerator as the first link in CERN’s accelerator chain. It will deliver particles at 160 MeV to the PS Booster, more than triple the energy currently delivered by Linac2. But before the accelerator team can pop the champagne, the various elements of Linac4 will be tested and re-tested in facilities across CERN. “The first Linac4 tests are currently underway, starting with the CERN-built RFQ,” says Carlo Rossi, a physicist in the RF Group of the Beams (BE) Department and the RFQ project coordinator. “It’s an extremely impre...

  7. JAERI 20 MV tandem accelerator

    International Nuclear Information System (INIS)

    Tsukada, Kineo; Harada, Kichinosuke

    1977-01-01

    Accelerators have been developed as the experimental apparatuses for the studies on nuclei and elementary particles. One direction of the development is the acceleration of protons and electrons to more and more high energy, and another direction is the acceleration of heavy ions up to uranium to several MeV up to several hundreds MeV. However recently, accelerators are used as the useful tools for the studies in wider fields. There are electrostatic acceleration and high frequency acceleration in ion acceleration, and at present, super-large accelerators are high frequency acceleration type. In Japan Atomic Energy Research Institute, it was decided in 1975 to construct an electrostatic accelerator of tandem type in order to accelerate heavy ions. In case of the electrostatic acceleration, the construction is relatively simple, the acceleration of heavy ions is easy, the property of the ion beam is very good, and the energy is stable. Especially, the tandem type is convenient for obtaining high energy. The tandem accelerator of 20 MV terminal voltage was ordered from the National Electrostatics Corp., USA, and is expected to be completed in 1978. The significance of heavy ion acceleration in the development and research of atomic energy, tandem van de Graaff accelerators, the JAERI 20MV tandem accelerator, and the research project with this accelerator are described. (Kako, I.)

  8. SU-F-T-371: Development of a Linac Monte Carlo Model to Calculate Surface Dose

    Energy Technology Data Exchange (ETDEWEB)

    Prajapati, S; Yan, Y; Gifford, K [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To generate and validate a linac Monte Carlo (MC) model for surface dose prediction. Methods: BEAMnrc V4-2.4.0 was used to model 6 and 18 MV photon beams for a commercially available linac. DOSXYZnrc V4-2.4.0 calculated 3D dose distributions in water. Percent depth dose (PDD) and beam profiles were extracted for comparison to measured data. Surface dose and at depths in the buildup region was measured with radiochromic film at 100 cm SSD for 4 × 4 cm{sup 2} and 10 × 10 cm{sup 2} collimator settings for open and MLC collimated fields. For the 6 MV beam, films were placed at depths ranging from 0.015 cm to 2 cm and for 18 MV, 0.015 cm to 3.5 cm in Solid Water™. Films were calibrated for both photon energies at their respective dmax. PDDs and profiles were extracted from the film and compared to the MC data. The MC model was adjusted to match measured PDD and profiles. Results: For the 6 MV beam, the mean error(ME) in PDD between film and MC for open fields was 1.9%, whereas it was 2.4% for MLC. For the 18 MV beam, the ME in PDD for open fields was 2% and was 3.5% for MLC. For the 6 MV beam, the average root mean square(RMS) deviation for the central 80% of the beam profile for open fields was 1.5%, whereas it was 1.6% for MLC. For the 18 MV beam, the maximum RMS for open fields was 3%, and was 3.1% for MLC. Conclusion: The MC model of a linac agreed to within 4% of film measurements for depths ranging from the surface to dmax. Therefore, the MC linac model can predict surface dose for clinical applications. Future work will focus on adjusting the linac MC model to reduce RMS error and improve accuracy.

  9. Micro-SHINE Uranyl Sulfate Irradiations at the Linac

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States); Kalensky, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Schneider, John [Argonne National Lab. (ANL), Argonne, IL (United States); Byrnes, James [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-01

    Peroxide formation due to water radiolysis in a uranyl sulfate solution is a concern for the SHINE Medical Technologies process in which Mo-99 is generated from the fission of dissolved low enriched uranium. To investigate the effects of power density and fission on peroxide formation and uranyl-peroxide precipitation, uranyl sulfate solutions were irradiated using a 50-MeV electron linac as part of the micro-SHINE experimental setup. Results are given for uranyl sulfate solutions with both high and low enriched uranium irradiated at different linac powers.

  10. SNS superconducting linac

    International Nuclear Information System (INIS)

    Sundelin, Ronald M.

    2001-01-01

    The Spallation Neutron Source (SNS) decided in early 2000 to use superconducting RF (SRF) in the linac at energies above 185 MeV. Since the SNS duty cycle is 6%, the SRF and normal conducting approaches have capital costs which are about the same, but operating costs and future upgradability are improved by using SRF. The current status of cavity and cryomodule development and procurement, including the basis for decisions made, is discussed. The current plan includes use of 805 MHz, 6-cell cavities with geometrical betas of 0.61 and 0.81. There are 33 medium beta and 60 high beta cavities in 11 and 15 cryomodules, respectively. Each cavity (except the 93rd) is powered by a 550 kW pulsed klystron. Issues addressed include choice of peak surface gradient, optimization of cavity shape, selection of a scaled KEK input power coupler, selection of scaled TESLA higher mode couplers, and control of the effects of higher order modes on the beam. (author)

  11. Collateral patient doses in the Varian 21iX radiotherapy Linac

    International Nuclear Information System (INIS)

    Barquero, R.; Castillo, A. del

    2008-01-01

    Full text: The radiotherapy aim is to irradiate the patient tumor cells while the doses in healthy tissue remains as low as possible. Nevertheless, when high photon energy accelerators are used, collateral undesired photon and neutron doses are always implied during the treatments and became more important with the new accelerators and techniques as IMRT. To assess secondary cancer risk outside the treatment volume as a long-term medical consequence of treatments, the total doses received by each patient outside the primary field during his treatment must be estimated. To achieve this purpose photon and neutron dose equivalents Hp(10) and H*(10) has been measured in a new Varian 21iX with maximum photon energy of 15 MV placed recently in our radiotherapy department. Three devices: 1) a neutron dose rate meter BERTHOLD LB 4111 calibrated recently in the German PTB laboratory, 2) a calibrated environmental pressurized photon ionization chamber (IC) VICTOREEN 450-PI n/s 1020, and 3) a calibrated personal electronic photon dosimeter GAMMACOM 4200M, were placed above the treatment couch outside the primary field while the Varian 21iX reference test were done. In particular the photon and neutron doses in the couch were measured while a water phantom was irradiated during automatic beam data acquisition for a 15 MV beam. A complete set of measurements changing field size are made. These 15 MV results are compared with data measured previously by thermoluminescence and bubble dosimeters in the same facility for an Elekta Precise and a Siemens KDS both with maximum photon energy of 18 MV. From this the benefits in the patient collateral doses of decreasing the maximum treatment photon energy are discussed. The patient doses obtained in the Varian 21iX had values that go from 80 to 800 uSv per treatment Gray. As the Varian 21iX therapy Linac is operated in pulsed mode with short pulse length the discussion of the results includes: 1. The correction of dead time in the GM

  12. Image quality and dose distributions of three linac-based imaging modalities

    Energy Technology Data Exchange (ETDEWEB)

    Dzierma, Yvonne; Ames, Evemarie; Nuesken, Frank; Palm, Jan; Licht, Norbert; Ruebe, Christian [Universitaetsklinikum des Saarlandes, Klinik fuer Strahlentherapie und Radioonkologie, Homburg/Saar (Germany)

    2015-04-01

    Linac-based patient imaging is possible with a variety of techniques using different photon energies. The purpose of this work is to compare three imaging systems operating at 6 MV, flattening free filter (FFF) 1 MV, and 121 kV. The dose distributions of all pretreatment set-up images (over 1,000) were retrospectively calculated on the planning computed tomography (CT) images for all patients with prostate and head-and-neck cancer treated at our institution in 2013. We analyzed the dose distribution and the dose to organs at risk. For head-and-neck cancer patients, the imaging dose from 6-MV cone beam CT (CBCT) reached maximum values at around 8 cGy. The 1-MV CBCT dose was about 63-79 % of the 6-MV CBCT dose for all organs at risk. Planar imaging reduced the imaging dose from CBCT to 30-40 % for both megavoltage modalities. The dose from the kilovoltage CBCT was 4-10 % of the 6-MV CBCT dose. For prostate cancer patients, the maximum dose from 6-MV CBCT reached 13-15 cGy, and was reduced to 66-73 % for 1 MV. Planar imaging reduces the MV CBCT dose to 10-20 %. The kV CBCT dose is 15-20 % of the 6-MV CBCT dose, slightly higher than the dose from MV axes. The dose distributions differ markedly in response to the different beam profiles and dose-depth characteristics. (orig.) [German] Linac-basierte Bildgebung zur Patientenlagerung ist mit einer Vielzahl von Techniken unterschiedlicher Photonenenergien moeglich. Ziel dieser Arbeit ist der Vergleich dreier Bildgebungssysteme mit 6 MV (Megavolt), FFF 1 MV, und 121 kV (Kilovolt). Fuer alle im Jahr 2013 an unserer Klinik behandelten Prostata- und HNO-Patienten wurden retrospektiv die Dosisverteilungen aller Verifikationsaufnahmen (ueber 1000 insgesamt) auf der Planungs-Computertomographie (CT) berechnet. Wir analysierten die Dosisverteilung und die Dosis an den Risikoorganen. Bei HNO-Patienten erreichte die Dosis von 6 MV ''Cone-beam''-CT (CBCT)Maximalwerte um 8 cGy. Mit 1 MV wird die Dosis auf 63

  13. Performance of the 2 × 4-cell superconducting linac module for the THz-FEL facility

    Science.gov (United States)

    Kui, Zhou; Chenglong, Lao; Dai, Wu; Xing, Luo; Jianxin, Wang; Dexin, Xiao; Lijun, Shan; Tianhui, He; Xuming, Shen; Sifen, Lin; Linde, Yang; Hanbin, Wang; Xingfan, Yang; Ming, Li; Xiangyang, Lu

    2018-07-01

    A high average power THz radiation facility has been developed by the China Academy of Engineering Physics. It is the first CW THz user facility based on superconducting accelerator technology in China. The superconducting linac module, which contains two 4-cell 1.3 GHz TESLA-like superconducting radio frequency cavities, is a major component of this facility. The expected electron energy gain is 6-8 MeV with a field gradient of 8-10 MV/m. The design and fabrication of the linac module is complete. This paper discusses its assembly and results from cyromodule tests and beam commissioning. At 2 K, the cryomodule works smoothly and stably. Both cavities have achieved effective field gradients of 10 MV/m. In beam loading experiments, 8 MeV, 5 mA electron beams with an energy spread less than 0.2% have been produced, which satisfies our requirements.

  14. Induced radioisotopes inside the treatment hall with a Linac for radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    De Leon M, H. A. [Instituto Tecnologico de Aguascalientes, Av. Adolfo Lopez Mateos 1801 Ote., Fracc. Bona Gens, 20255 Aguascalientes (Mexico); Rivera P, E.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego, E.; Lorente, A., E-mail: asa_15@hotmail.com [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain)

    2014-08-15

    When Linacs operate above 8 MV an undesirable neutron field is produced whose spectrum has three main components: the direct spectrum due to those neutrons leaking out from the Linac head, the scattered spectrum due to neutrons produced in the head that collides with the nuclei in the head losing energy and the third spectrum due to room-return effect; this last are mainly epithermal and thermal neutrons being constant at any location in the treatment hall. These neutrons induce activation mainly in the concrete walls and the Linac components. Here the induced radioisotopes have been identified in concrete samples located in the hall and in one of the wedges. The identification has been carried out using a gamma-ray spectrometer. (Author)

  15. Conceptual design of compact heavy-ion inertial fusion driver with an r.f. LINAC with high acceleration rate

    International Nuclear Information System (INIS)

    Hattori, T.; Sasa, K.; Okamura, M.; Ito, T.; Tomizawa, H.; Katayose, T.; Hayashizaki, N.; Yoshida, T.; Isokawa, K.; Aoki, M.; Fujita, N.; Okada, M.

    1996-01-01

    The interdigital-H-type (IH) linear accelerator (LINAC) is well known for its high shunt impedance at low and medium particle velocities. Therefore, it can be used to operate efficiently with a high acceleration gradient. The IH LINAC cavity is able to generate 10 MV m -1 (average acceleration gradient) with focusing of the particles by a superconducting solenoid and quadrupole. The LINAC can accelerate particles with a charge to mass ratio (q/A) greater than 1/250 from 0.3 MeV a.m.u. -1 . In a compact heavy-ion inertial fusion driver design, the total effective length of the IH LINAC cavities is about 1250 m. (orig.)

  16. SU-E-T-611: Photon and Neutron Peripheral Dose Ratio for Low (6 MV) and High (15 MV) Energy for Treatment Selection

    Energy Technology Data Exchange (ETDEWEB)

    Irazola, L; Sanchez-Doblado, F [Departamento de Fisiologia Medica y Biofisica, Universidad de Seville (Spain); Servicio de Radiofisica, Hospital Universitario Virgen Macarena, Seville (Spain); Terron, J; Ortiz-Seidel, M [Servicio de Radiofisica, Hospital Universitario Virgen Macarena, Seville (Spain); Departamento de Fisiologia Medica y Biofisica, Universidad de Seville (Spain); Sanchez-Nieto, B [Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago (Chile)

    2015-06-15

    Purpose: Differences between radiotherapy techniques and energies, can offer improvements in tumor coverage and organs at risk preservation. However, a more complete decision should include peripheral doses delivered to the patient. The purpose of this work is the balance of photon and neutron peripheral doses for a prostate case solved with 6 different treatment modalities. Methods: Inverse and Forward IMRT and 3D-CRT in 6 and 15 MV for a Siemens Primus linac, using the same CT data set and contours. The methodology described in [1], was used with the TNRD thermal neutron detector [2] for neutron peripheral dose estimation at 7 relevant organs (colon, esophagus, stomach, liver, lung, thyroid and skin). Photon doses were estimated for these organs by terms of the algorithm proposed in [3]. Plans were optimized with the same restrictions and limited to 30 segments in the Inverse case. Results: A similar photon peripheral dose was found comparing 6 and 15 MV cases with slightly higher values of (1.9 ± 1.6) % in mean, for the 6 MV cases. Neutron presence when using 15 MV, represents an increase in peripheral dose of (18 ± 17) % in average. Due to the higher number of MU used in Inverse IMRT, an increasing of (22 ± 3) % in neutron dose is found related to Forward and 3D-CRT plans. This corresponds to photon doses within 44 and 255 mSv along the organs, for a dose prescription of 68 Gy at the isocenter. Conclusion: Neutron and photon peripheral doses for a prostate treatment planified in 6 different techniques have been analyzed. 6 MV plans are slightly more demanding in terms of photon peripheral doses. Inverse technique in 15 MV has Result to be the most demanding one in terms of total peripheral doses, including neutrons and photons.

  17. Niobium quarter-wave cavity for the New Delhi booster linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Roy, A.; Potukuchi, P.N.

    1997-01-01

    This paper reports the completion of development of a 97 Mhz niobium coaxial quarter-wave cavity to be used in a booster linac for the New Delhi 16UD pellatron electrostatic accelerator. A prototype cavity, which incorporates a niobium-bellows tuning device, has been completed and operated at 4.2 K at accelerating gradients above 4 MV/m for extended periods of time

  18. Niobium quarter-wave cavity for the New Delhi booster linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W. [Argonne National Lab., IL (United States); Roy, A.; Potukuchi, P.N. [Nuclear Science Centre, New Delhi (India)

    1997-09-01

    This paper reports the completion of development of a 97 Mhz niobium coaxial quarter-wave cavity to be used in a booster linac for the New Delhi 16UD pellatron electrostatic accelerator. A prototype cavity, which incorporates a niobium-bellows tuning device, has been completed and operated at 4.2 K at accelerating gradients above 4 MV/m for extended periods of time.

  19. Superconducting LINAC booster for the Mumbai pelletron

    Indian Academy of Sciences (India)

    LINAC), to boost the energy of heavy ion beams from the 14UD Pelletron accelerator, at Tata Institute of Fundamental Research, Mumbai. The accelerating structures in the LINAC are quarter wave resonators (QWR) coated with lead which is ...

  20. PTMC in post-MV repair status

    Directory of Open Access Journals (Sweden)

    Lachikarathman Devegowda

    2016-09-01

    Full Text Available MV repair in the rheumatic population is feasible with acceptable long-term results.1 Incidence of mitral stenosis (MS following mitral valve (MV repair for severe rheumatic mitral regurgitation (MR and usefulness of percutaneous transluminal mitral valvuloplasty (PTMC in these patients is not described in literature. We report a case of successful PTMC in severe MS following MV repair for severe rheumatic MR.

  1. Upgrading the Fermilab Linac local control system

    International Nuclear Information System (INIS)

    McCrory, E.S.; Goodwin, R.W.; Shea, M.F.

    1991-02-01

    A new control system for the Fermilab Linac is being designed, built and implemented. First, the nine-year-old linac control system is being replaced. Second, a control system for the new 805 MHz part of the linac is being built. The two systems are essentially identical, so that when the installations are complete, we will still have a single Linac Control System. 8 refs., 5 figs

  2. Electron Linacs for High Energy Physics

    International Nuclear Information System (INIS)

    Wilson, Perry B.

    2011-01-01

    The purpose of this article is to introduce some of the basic physical principles underlying the operation of electron linear accelerators (electron linacs). Electron linacs have applications ranging from linacs with an energy of a few MeV, such that the electrons are approximately relativistic, to future electron-positron linear colliders having a collision energy in the several-TeV energy range. For the most part, only the main accelerating linac is treated in this article.

  3. Superconducting low-velocity linac for the Argonne positive-ion injector

    International Nuclear Information System (INIS)

    Shepard, K.W.; Markovich, P.K.; Zinkann, G.P.; Clifft, B.; Benaroya, R.

    1989-01-01

    A low-velocity superconducting linac has been developed as part of a positive-ion injector system, which is replacing a 9 MV tandem as the injector for the ATLAS accelerator. The linac consists of an independently phased array of resonators, and is designed to accelerate various ions over a velocity range .008 < v/c < .06. The resonator array is formed of four different types of superconducting interdigital structures. The linac is being constructed in three phases, each of which will cover the full velocity range. Successive phases will increase the total accelerating potential and permit heavier ions to be accelerated. Assembly of the first phase was completed in early 1989. In initial tests with beam, a five-resonator array provided approximately 3.5 MV of accelerating potential and operated without difficulty for several hundred hours. The second phase is scheduled for completion in late 1989, and will increase the accelerating potential to more than 8 MV. 5 refs., 2 figs., 1 tab

  4. Superconducting low-velocity linac for the Argonne positive-ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Markovich, P.K.; Zinkann, G.P.; Clifft, B.; Benaroya, R.

    1989-01-01

    A low-velocity superconducting linac has been developed as part of a positive-ion injector system, which is replacing a 9 MV tandem as the injector for the ATLAS accelerator. The linac consists of an independently phased array of resonators, and is designed to accelerate various ions over a velocity range .008 < v/c < .06. The resonator array is formed of four different types of superconducting interdigital structures. The linac is being constructed in three phases, each of which will cover the full velocity range. Successive phases will increase the total accelerating potential and permit heavier ions to be accelerated. Assembly of the first phase was completed in early 1989. In initial tests with beam, a five-resonator array provided approximately 3.5 MV of accelerating potential and operated without difficulty for several hundred hours. The second phase is scheduled for completion in late 1989, and will increase the accelerating potential to more than 8 MV. 5 refs., 2 figs., 1 tab.

  5. Status and performance of PF injector linac

    International Nuclear Information System (INIS)

    Sato, Isamu

    1994-01-01

    PF injector linac has been improved on a buncher section for accelerating of intense electron beam, and reinforced a focusing system of the positron generator linac for the expansion of phase space. In this presentation, I shall report present status and performance of PF injector linac, and discuss its upgrade program for B-factory project. (author)

  6. Radiotechnical Institute activity in the linac field

    International Nuclear Information System (INIS)

    Murin, B.P.

    1976-01-01

    For many years, the Radiotechnical Institute has been involved in a number of projects aimed at constructing linear accelerators for protons or electrons. This report summarizes the experience gained and covers 1) some problems of developing linacs to serve as meson or neutron generators, 2) results of study of a linac with asymmetric alternating phase focusing, and 3) electron linac projects. (author)

  7. SUPERCONDUCTING LINAC FOR THE SPALLATION NEUTRON SOURCE

    International Nuclear Information System (INIS)

    STOVALL, J.; NATH, S.

    2000-01-01

    The Spallation Neutron Source (SNS) linac is comprised of both normal and superconducting rf (SRF) accelerating structures. The SRF linac accelerates the beam from 186 to 1250 MeV through 117 elliptical, multi-cell niobium cavities. This paper describes the SRF linac architecture, physics design considerations, cavity commissioning, and the expected beam dynamics performance

  8. IMPACT simulation and the SNS linac beam

    International Nuclear Information System (INIS)

    Zhang, Y.; Qiang, J.

    2008-01-01

    Multi-particle tracking simulations for the SNS linac beam dynamics studies are performed with the IMPACT code. Beam measurement results are compared with the computer simulations, including beam longitudinal halo and beam losses in the superconducting linac, transverse beam Courant-Snyder parameters and the longitudinal beam emittance in the linac. In most cases, the simulations show good agreement with the measured results

  9. Radiation processing of food products with 5 MV Bremsstrahlung x-rays

    International Nuclear Information System (INIS)

    Petwal, V.C.; Soni, H.C.

    2004-01-01

    Foods and agricultural products are treated with ionizing radiation to accomplish many different goals. The desired goals may be the reduction of pathogenic bacteria, other microorganisms and parasites that cause food borne diseases; or inactivation of food spoilage organisms, including bacteria, molds, and yeasts; or lengthening the shelf-life of fresh fruits and vegetables by decreasing the normal biological changes associated with growth and maturation processes, such as ripening or sprouting. It has become more important due to mounting concern over food born diseases, and growing international trade in food products that must meet stiff import standards of quality and quarantine. A 10 MeV 10 kW LINAC based multi-product EB radiation processing facility is being established at CAT to meet the processing requirement of various food, agricultural and medical products. The facility will be operated in two modes: (a) Electron: 10 MeV, 10 kW (b) Photon: 5 MeV, 10 kW Treatment with electron beam provides the highest processing rate and lowest unit cost. But the electrons have relatively short range in the solid product, hence the maximum product areal density (density times depth) that can be processed using direct 10 MeV electron beam is limited to about 8.5 gm/cm 2 (double sided irradiation). On the other hand x-rays are more penetrating, hence can be used to process the products having larger areal densities e.g. onions and potatoes packed in gunny bags. In order to address various issues related to food irradiation using 5 MV X-ray beam, a mathematical model is developed on the basis of the analytical calculations and experimental data presented by R.B.Miller, 2003, and J. Meissner et.al, 2000. (author)

  10. Intercomparison of wedge factor for symmetric field and asymmetric field used 6MV linac

    International Nuclear Information System (INIS)

    Ji, Youn Sang; Han, Jae Jin

    1999-01-01

    Therapy equipment have taken progress for Cancer make use of Radiation for the normal tissue system make much of important for shielding. In modern times independent jaw setting to used equipment as possible make use of asymmetric field. Therefore, the asymmetric field be leave out of consideration wedge factor because of with used wedge for the most of part. These experimentation find out have an effect on the dosimetry of out put compared with of the difference between the symmetric field and asymmetric field for the wedge factor

  11. Dosimetric Comparison in Breast Radiotherapy of 4 MV and 6 MV on Physical Chest Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Donato da Silva, Sabrina; Passos Ribeiro Campos, Tarcisio [Nuclear Engineering Department, Federal University of Minas Gerais, Belo Horizonte (Brazil); Batista Nogueira, Luciana [Anatomy and Imaging Department, Federal University of Minas Gerais, Belo Horizonte (Brazil); Lima Souza Castro, Andre [Nuclear Engineering Department, Federal University of Minas Gerais, Belo Horizonte (Brazil); Institute of Radiation San Francisco, Belo Horizonte (Brazil); Alves de oliveira, Marcio; Galvao Dias, Humberto [Cancer Hospital in Uberlandia, Uberlandia (Brazil)

    2015-07-01

    According to the World Health Organization (2014) breast cancer is the main cause of death by cancer in women worldwide. The biggest challenge of radiotherapy in the treatment of cancer is to deposit the entire prescribed dose homogeneously in the breast, sparing the surrounding tissue. In this context, this paper aimed at evaluating and comparing internal dose distribution in the mammary gland based on experimental procedures submitted to two distinct energy spectra produced in breast cancer radiotherapy. The methodology consisted of reproducing opposite parallel fields used in the treatment of breast tumors in a chest phantom. This simulator with synthetic breast, composed of equivalent tissue material (TE), was previously developed by the NRI Research Group (UFMG). The computer tomography (CT) scan of the simulator was obtained antecedently. The radiotherapy planning systems (TPS) in the chest phantom were performed in the ECLIPSE system from Varian Medical Systems and CAT 3D system from MEVIS. The irradiations were reproduced in the Varian linear accelerator, model SL- 20 Precise, 6 MV energy and Varian linear accelerator, 4 MV Clinac 6x SN11 model. Calibrations of the absorbed dose versus optical density from radiochromic films were generated in order to obtain experimental dosimetric distribution at the films positioned within the glandular and skin equivalent tissues of the chest phantom. The spatial dose distribution showed equivalence with the TPS on measurement data performed in the 6 MV spectrum. The average dose found in radiochromic films placed on the skin ranged from 49 to 79%, and from 39 to 49% in the mammary areola, for the prescribed dose. Dosimetric comparisons between the spectra of 4 and 6 MV, keeping the constant geometry of the fields applied in the same phantom, will be presented showing their equivalence in breast radiotherapy, as well as the variations will be discussed. To sum up, the dose distribution has reached the value expected in

  12. Drift Tube Linac Conditioning of Tank1

    CERN Document Server

    Shafqat, N; Toor, W A

    2014-01-01

    Tank1 of the Drift Tube Linac (DTL) of the Linac4 has been conditioned at the Linac4 tunnel. The tank was tuned for resonance at 352.2 MHz, and stable operation has been achieved with 725 µs long RF pulses at a repetition rate of 1 Hz. The maximum RF level that has been reached is 810 kW with a pulse width of 600 µs. Since this was the first RF structure exclusively conditioned in the Linac4 tunnel with the operation and control software of Linac4, some related issues and limitations had to be taken into account.

  13. Heavy-ion superconducting linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs

  14. Heavy-ion superconducting linacs

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs.

  15. Emittance growth in rf linacs

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1979-01-01

    As the space-charge limit is approached, the current that can be accelerated in an rf linac and the output emittance that can be expected are discussed. The role of the envelope equations to estimate limits is outlined. The results of numerical experiments to explore general properties of emittance growth are given

  16. The new Linac moves mountains

    CERN Multimedia

    2008-01-01

    The civil engineering work has started for Linac 4, one of the major renovation projects for the CERN accelerator complex. The work will be completed at the end of 2010 and the new linear accelerator is scheduled to be commissioned in 2013.

  17. Linac boosters for electrostatic machines

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Brookhaven National Lab., Upton, NY

    1990-01-01

    A survey of linacs which are used as boosters to electrostatic accelerators is presented. Machines both operating and under construction, copper and superconducting, are reviewed. The review includes data on the accelerating structures, performance, rf and control, beam optics, budget, vacuum and cryogenics. (orig.)

  18. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/m Range

    CERN Document Server

    Wang, Juwen; Van Pelt, John; Yoneda, Charles; Gudkov, D; Riddone, Germana; Higo, Toshiyasu; Takatomi, Toshikazu

    2010-01-01

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of <5×10-7/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control, tuning and RF characterization will be discussed

  19. SU-E-T-119: Dosimetric and Mechanical Characteristics of Elekta Infinity LINAC with Agility MLC

    International Nuclear Information System (INIS)

    Park, J; Xu, Q; Xue, J; Zhai, Y; An, L; Chen, Y

    2014-01-01

    Purpose: Elekta Infinity is the one of the latest generation LINAC with unique features. Two Infinity LINACs are recently commissioned at our institution. The dosimetric and mechanical characteristics of the machines are presented. Methods: Both Infinity LINACs with Agility MLC (160 leaves with 0.5 cm leaf width) are configured with five electron energies (6, 9, 12, 15, and 18 MeV) and two photon energies (6 and 15 MV). One machine has additional photon energy (10 MV). The commissioning was performed by following the manufacturer's specifications and AAPM TG recommendations. Beam data of both electron and photon beams are measured with scanning ion chambers and linear diode array. Machines are adjusted to have the dosimetrically equivalent characteristics. Results: The commissioning of mechanical and imaging system meets the tolerances by TG recommendations. The PDD 10 of various field sizes for 6 and 15 MV shows < 0.5% difference between two machines. For each electron beams, R 80 matches with < 0.4 mm difference. The symmetry and flatness agree within 0.8% and 0.9% differences for photon beams, respectively. For electron beams, the differences of the symmetry and flatness are within 1.2% and 0.8%, respectively. The mean inline penumbras for 6, 10, and 15 MV are respectively 5.1±0.24, 5.6±0.07, and 5.9±0.10 mm for 10x10 cm at 10 cm depth. The crossline penumbras are larger than inline penumbras by 2.2, 1.4, and 1.0 mm, respectively. The MLC transmission factor with interleaf leakage is 0.5 % for all photon energies. Conclusion: The dosimetric and mechanical characteristics of two Infinity LINACs show good agreements between them. Although the Elekta Infinity has been used in many institutions, the detailed characteristics of the machine have not been reported. This study provides invaluable information to understand the Infinity LINAC and to compare the quality of commissioning data for other LINACs

  20. Progress in design of the SNS linac

    International Nuclear Information System (INIS)

    Hardekopf, R.

    2001-01-01

    The Spallation Neutron Source (SNS) is a six-laboratory collaboration to build an intense pulsed neutron facility at Oak Ridge, TN. The linac design has evolved from the conceptual design presented in 1997 in order to achieve higher initial performance and to incorporate desirable upgrade features. The linac is now designed to produce 2-MW beam power using a combination of radio-frequency quadrupole (RFQ) linac, drift-tube linac (DTL), coupled-cavity linac (CCL), and superconducting-RF (SRF) linac. Designs of each of these elements support he high peak intensity and high quality beam required for injection into the SNS accumulator ring. This paper will trace the evolution of the linac design and the progress made in the R and D program. (author)

  1. First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system

    International Nuclear Information System (INIS)

    Fallone, B. G.; Murray, B.; Rathee, S.; Stanescu, T.; Steciw, S.; Vidakovic, S.; Blosser, E.; Tymofichuk, D.

    2009-01-01

    The authors report the first magnetic resonance (MR) images produced by their prototype MR system integrated with a radiation therapy source. The prototype consists of a 6 MV linac mounted onto the open end of a biplanar 0.2 T permanent MR system which has 27.9 cm pole-to-pole opening with flat gradients (40 mT/m) running under a TMX NRC console. The distance from the magnet isocenter to the linac target is 80 cm. The authors' design has resolved the mutual interferences between the two devices such that the MR magnetic field does not interfere with the trajectory of the electron in the linac waveguide, and the radiofrequency (RF) signals from each system do not interfere with the operation of the other system. Magnetic and RF shielding calculations were performed and confirmed with appropriate measurements. The prototype is currently on a fixed gantry; however, in the very near future, the linac and MR magnet will rotate in unison such that the linac is always aimed through the opening in the biplanar magnet. MR imaging was found to be fully operational during linac irradiation and proven by imaging a phantom with conventional gradient echo sequences. Except for small changes in SNR, MR images produced during irradiation were visually and quantitatively very similar to those taken with the linac turned off. This prototype system provides proof of concept that the design has decreased the mutual interferences sufficiently to allow the development of real-time MR-guided radiotherapy. Low field-strength systems (0.2-0.5 T) have been used clinically as diagnostic tools. The task of the linac-MR system is, however, to provide MR guidance to the radiotherapy beam. Therefore, the 0.2 T field strength would provide adequate image quality for this purpose and, with the addition of fast imaging techniques, has the potential to provide 4D soft-tissue visualization not presently available in image-guided radiotherapy systems. The authors' initial design incorporates a

  2. SU-F-BRE-11: Neutron Measurements Around the Varian TrueBeam Linac

    Energy Technology Data Exchange (ETDEWEB)

    Maglieri, R; Seuntjens, J; Kildea, J [McGill University, Montreal, QC (Canada); Liang, L; DeBlois, F [Jewish General Hospital, Montreal, QC (Canada); Evans, M [Montreal General Hospital, Montreal, QC (Canada); Licea, A [Canadian Nuclear Safety Comission, Ottawa, Ontario (Canada); Dubeau, J; Witharana, S [Detec, Gatineau, QC (Canada)

    2014-06-15

    Purpose: With the emergence of flattening filter free (FFF) photon beams, several authors have noted many advantages to their use. One such advantage is the decrease in neutron production by photonuclear reactions in the linac head. In the present work we investigate the reduction in neutrons from a Varian TrueBeam linac using the Nested Neutron Spectrometer (NNS, Detec). The neutron spectrum, total fluence and source strength were measured and compared for 10 MV with and without flattening filter and the effect of moderation by the room and maze was studied for the 15 MV beam. Methods: The NNS, similar to traditional Bonner sphere detectors but operated in current mode, was used to measure the neutron fluence and spectrum. The NNS was validated for use in high dose rate environments using Monte Carlo simulations and calibrated at NIST and NRC Canada. Measurements were performed at several positions within the treatment room and maze with the linac jaws closed to maximize neutron production. Results: The measurements showed a total fluence reduction between 35-40% in the room and maze when the flattening filter was removed. The neutron source strength Qn was calculated from in-room fluence measurements and was found to be 0.042 × 10{sup 2} n/Gy, 0.026 × 10{sup 2} n/Gy and 0.59 × 101{sup 2} n/Gy for the 10 MV, the 10 MV FFF and 15 MV beams, respectively. We measured ambient equivalent doses of 11 mSv/hr, 7 mSv/hr and 218 mSv/hr for the 10 MV, 10 MV FFF and 15 MV by the head. Conclusion: Our measurements revealed a decrease in total fluence, neutron source strength and equivalent dose of approximately 35-40% across the treatment room for the FFF compared to FF modes. This demonstrates, as expected, that the flattening filter is a major component of the neutron production for the TrueBeam. The authors greatly acknowledge support form the Canadian Nuclear Commission and the Natural Sciences and Engineering Research Council of Canada through the CREATE program. Co

  3. Beam dynamics of alternating-phase-focused linac

    CERN Document Server

    Iwata, Y; Kapin, V

    2004-01-01

    A simple method to find an array of synchronous phases for alternating-phase-focused (APF) linacs is presented. The phase array is described with a smooth function having free parameters. With a set of the parameters, a simulation on the beam dynamics was made and distributions of the six-dimensional phase spaces were calculated for each set of the parameters. The parameters were varied, and numbers of the simulations have been performed. An optimum set of the parameters were determined so that the simulations of the beam dynamics yield large acceptances and small emittances of the extracted beams. Since the APF linac can provide both axial and radial stability of beams just with the rf acceleration-field, no additional focusing element inside of drift tubes are necessary. Comparing with conventional linacs having focusing elements, it has advantage in construction and operation costs as well as its acceleration rate. Therefore, the APF linacs would be suited for an injector of medical synchrotrons. A practic...

  4. Investigation of the accuracy of MV radiation isocentre calculations in the Elekta cone-beam CT software XVI

    DEFF Research Database (Denmark)

    Zimmermann, S. J.; Rowshanfarzad, P.; Ebert, M. A.

    2015-01-01

    ) and the radiation field centre (RFC) is calculated. A software package was developed for accurate calculation of the linac isocentre position. This requires precise determination of the position of the ball bearing and the RFC. Results: Data were acquired for 6 MV, 18 MV and flattening filter free (FFF) 6 MV FFF...... radiation isocentre prior to routine use of the cone-beam CT system. The isocentre determination method used in the XVI software is not available to users. The aim of this work is to perform an independent evaluation of the Elekta XVI 4.5 software for isocentre verification with focus on the robustness...... iView GT software. Two images were acquired at each cardinal gantry angle (-180o, -90o , 0o, 90o) at two opposing collimator angles. The images were exported to the conebeam CT software XVI 4.5 where the difference between the ball bearing position in the XYZ-room coordinates (IEC61217...

  5. Radiation processing with the Messina electron linac

    International Nuclear Information System (INIS)

    Auditore, L.; Barna, R.C.; De Pasquale, D.; Emanuele, U.; Loria, D.; Morgana, E.; Trifiro, A.; Trimarchi, M.

    2008-01-01

    In the last decades radiation processing has been more and more applied in several fields of industrial treatments and scientific research as a safe, reliable and economic technique. In order to improve existing industrial techniques and to develop new applications of this technology, at the Physics Department of Messina University a high power 5 MeV electron linac has been studied and set-up. The main features of the accelerating structure will be described together with the distinctive features of the delivered beam and several results obtained by electron beam irradiations, such as improvement of the characteristics of polymers and polymer composite materials, synthesis of new hydrogels for pharmaceutical and biomedical applications, reclaim of culture ground, sterilization of medical devices, development of new dosimeters for very high doses and dose rates required for monitoring of industrial irradiations

  6. Preliminary design of a 10 MV ion accelerator

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Celata, C.M.; Faltens, A.

    1986-06-01

    At the low energy end of an induction linac HIF driver the beam current is limited by our ability to control space charge by a focusing system. As a consequence, HIF induction accelerator designs feature simultaneous acceleration of many beams in parallel within a single accelerator structure. As the speed of the beams increase, the focusing system changes from electrostatic to magnetic quadrupoles with a corresponding increase in the maximum allowable current. At that point the beams are merged thereby decreasing the cost of the subsequent accelerator structure. The LBL group is developing an experiment to study the physics of merging and of focusing ion beams. In the design, parallel beams of ions (C + , Al + , or Al ++ ) are accelerated to several MV and merged transversely. The merged beams are then further accelerated and the growth in transverse and longitudinal emittance is determined for comparison with theory. The apparatus will then be used to study the problems associated with focusing ion beams to a small spot. Details of the accelerator design and considerations of the physics of combining beams are presented

  7. Dose attenuation by a carbon fiber linac couch and modeling with a treatment planning system

    International Nuclear Information System (INIS)

    Sanchez Galiano, P.; Garcia Sancho, J.M.; Crelgo, D.; Pamos, M.; Fernandez, J.; Vivanco, J.

    2010-01-01

    The purpose of this work is to investigate the attenuation caused by a carbon fiber linac treatment couch and the ability of a commercial radiotherapy treatment planning system to simulate it. The attenuation caused by an Exact treatment couch in a Varian Clinac 2100 C/D was characterized in detail. Both 6 MV and 18 MV photon beams were studied. The treatment couch was modeled and incorporated to Elekta XiO treatment planning system. Measured and computed attenuation values were compared. As a result we found that the attenuation caused by this complex treatment couch is strongly dependent on the incidence angle of the beam. The measured attenuation values reach 16% for 6 MV and 10% for 18 MV. The model incorporated to the treatment planning software allows reducing the differences between measured and calculated data below 2.5% and 2.0% for 6 MV and 18 MV respectively. In conclusion, it is strongly recommended accounting for the perturbation caused by this carbon fiber treatment couch when the beam intersects it. The treatment planning system studied can simulate this treatment couch accurately. Clinical implementation of the described method requires a reliable procedure to reproduce the same patient geometry in the treatment delivery and planning. (Author).

  8. SU-F-T-521: Flattening-Filter-Free Beam Parameters Comparison From Different Linac Machine Types

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, A [King Faisal Specialist Hospital, Riyadh, Saudi Arabia, Arkansas Cancer Institute, Pine Bluff, AR (Saudi Arabia)

    2016-06-15

    Purpose: Novel linac machines, TrueBeam (TB) and Elekta Versa have updated head designing and software control system, include flattening-filter-free (FFF) photon and electron beams. Later on FFF beams were also introduced on C-Series machines. In this work FFF beams for same energy 6MV but from different machine versions were studied with reference to beam data parameters. Methods: The 6MV-FFF percent depth doses, profile symmetry and flatness, dose rate tables, and multi-leaf collimator (MLC) transmission factors were measured during commissioning process of both C-series and Truebeam machines. The scanning and dosimetric data for 6MV-FFF beam from Truebeam and C-Series linacs was compared. A correlation of 6MV-FFF beam from Elekta Versa with that of Varian linacs was also found. Results: The scanning files were plotted for both qualitative and quantitative analysis. The dosimetric leaf gap (DLG) for C-Series 6MV-FFF beam is 1.1 mm. Published values for Truebeam dosimetric leaf gap is 1.16 mm. 6MV MLC transmission factor varies between 1.3 % and 1.4 % in two separate measurements and measured DLG values vary between 1.32 mm and 1.33 mm on C-Series machine. MLC transmission factor from C-Series machine varies between 1.5 % and 1.6 %. Some of the measured data values from C-Series FFF beam are compared with Truebeam representative data. 6MV-FFF beam parameter values like dmax, OP factors, beam symmetry and flatness and additional parameters for C-Series and Truebeam liancs will be presented and compared in graphical form and tabular data form if selected. Conclusion: The 6MV flattening filter (FF) beam data from C-Series & Truebeam and 6MV-FFF beam data from Truebeam has already presented. This particular analysis to compare 6MV-FFF beam from C-Series and Truebeam provides opportunity to better elaborate FFF mode on novel machines. It was found that C-Series and Truebeam 6MV-FFF dosimetric and beam data was quite similar.

  9. first tank of Linac 1

    CERN Multimedia

    This was the first tank of the linear accelerator Linac1, the injection system for the Proton Synchrotron, It ran for 34 years (1958 - 1992). Protons entered at the far end and were accelerated between the copper drift tubes by an oscillating electromagnetic field. The field flipped 200 million times a second (200 MHz) so the protons spent 5 nanoseconds crossing a drift tube and a gap. Moving down the tank, the tubes and gaps had to get longer as the protons gained speed. The tank accelerated protons from 500 KeV to 10 MeV. Linac1 was also used to accelerate deutrons and alpha particles for the Intersecting Storage Rings and oxygen and sulpher ions for the Super Proton Synchrotron heavy ion programme.

  10. Review of induction linac studies

    International Nuclear Information System (INIS)

    Keefe, Denis

    1984-01-01

    The major emphasis of the U.S. program in Heavy Ion Fusion Accelerator Research is on developing and understanding induction-linac systems that employ multiple beams of high-current heavy ions. The culmination of the plan lies in building the High Temperature Experiment (HTE) which will involve an ion induction linac to deliver multiple high current beams, that can be focussed and overlapped on a two-millimeter diameter spot. A sequence of three major experimental activities are as follows. In the Single-Beam Transport Experiment (SBTE), the stability or otherwise transport of a high-current Cs +1 beam over a long distance is tested. In the Multiple-Beam Experiment (MBE), the experiment is designed to simulate on a small scale as many as possible of the features to be encountered in the HTE. (Mori, K.)

  11. The BATES linac control system

    International Nuclear Information System (INIS)

    Russ, T.; Radouch, Z.

    1989-01-01

    The Bates linac control system (LCS), a distributed processing architecture, is described. Due to the historic evolution of the system, a mix of different hardware, operating systems and programming languages are used throughout. However, a standardized interface at the network level enables a smooth system integration. In particular, a multicasting scheme for data transmission over the network permits simultaneous database updates on more than one workstation. This allows for true distribution of data processing power. 3 figs

  12. LFSC - Linac Feedback Simulation Code

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Valentin; /Fermilab

    2008-05-01

    The computer program LFSC (<Linac Feedback Simulation Code>) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output.

  13. Wakefields in SLAC linac collimators

    Directory of Open Access Journals (Sweden)

    A. Novokhatski

    2014-12-01

    Full Text Available When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible for the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. We also present results from experimental measurements that confirm our model.

  14. 400 MeV upgrade for the Fermilab linac

    International Nuclear Information System (INIS)

    MacLachlan, J.A.

    1989-01-01

    Fermilab has plans for a comprehensive accelerator upgrade to open new possibilities for both the fixed target and collider experimental programs. An early step in this program is to increase the energy of the linac from 200 to 400 MeV by replacing the last four of its nine 201 MHz Alvarez tanks with twenty-eight 805 MHz side-coupled cavity chains operating at about 8 MV/m average axial field. The principal purpose is to reduce the incoherent spacecharge tuneshift at injection into the Booster which currently limits both the brightness of the beam, an important determinant of collider luminosity, and total intensity to produce both the antiprotons for the collider and the beams to fixed target experimental areas. Other consequences of higher Booster injection energy expected to contribute to some degree of higher intensity limits and improved operational characteristics include improved quality of the guide field at injection, reduced frequency swing for the rf systems, and smaller emittance for the injected beam. The linac upgrade project has moved from a 1986 study through a development project including structure models and numerical studies to a full-feature module prototyping starting this year

  15. Heavy-ion-linac post-accelerators

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1979-01-01

    The main features of the tandem-linac system for heavy-ion acceleration are reviewed and illustrated in terms of the technology and performance of the superconducting heavy-ion energy booster at Argonne. This technology is compared briefly with the corresponding technologies of the superconducting linac at Stony Brook and the room-temperature linac at Heidelberg. The performance possibilities for the near-term future are illustrated in terms of the proposed extension of the Argonne booster to form ATLAS

  16. Diagnostic expert system in the PF LINAC

    International Nuclear Information System (INIS)

    Abe, Isamu; Nakahara, Kazuo; Kitamura, Masaharu.

    1992-01-01

    A prototype diagnostic expert system (ES) was developed for the Photon Factory 2.5-GeV electron/positron LINAC injector system. The ES has been on-lined with the conventional linac computer network for receiving real data. This project was undertaken in an attempt to reduce the linac operator's mental workload, diagnosis duties, and to explore Artificial Intelligence (AI) technologies. The outlook for ES and its problems, and what has been achieved are outlined in this presentation. (author)

  17. Proton linac for hospital-based fast neutron therapy and radioisotope production

    International Nuclear Information System (INIS)

    Lennox, A.J.; Hendrickson, F.R.; Swenson, D.A.; Winje, R.A.; Young, D.E.

    1989-09-01

    Recent developments in linac technology have led to the design of a hospital-based proton linac for fast neutron therapy. The 180 microamp average current allows beam to be diverted for radioisotope production during treatments while maintaining an acceptable dose rate. During dedicated operation, dose rates greater than 280 neutron rads per minute are achievable at depth, DMAX = 1.6 cm with source to axis distance, SAD = 190 cm. Maximum machine energy is 70 MeV and several intermediate energies are available for optimizing production of isotopes for Positron Emission Tomography and other medical applications. The linac can be used to produce a horizontal or a gantry can be added to the downstream end of the linac for conventional patient positioning. The 70 MeV protons can also be used for proton therapy for ocular melanomas. 17 refs., 1 fig., 1 tab

  18. Commissioning of a medical accelerator photon beam Monte Carlo simulation using wide-field profiles

    International Nuclear Information System (INIS)

    Pena, J; Franco, L; Gomez, F; Iglesias, A; Lobato, R; Mosquera, J; Pazos, A; Pardo, J; Pombar, M; RodrIguez, A; Sendon, J

    2004-01-01

    A method for commissioning an EGSnrc Monte Carlo simulation of medical linac photon beams through wide-field lateral profiles at moderate depth in a water phantom is presented. Although depth-dose profiles are commonly used for nominal energy determination, our study shows that they are quite insensitive to energy changes below 0.3 MeV (0.6 MeV) for a 6 MV (15 MV) photon beam. Also, the depth-dose profile dependence on beam radius adds an additional uncertainty in their use for tuning nominal energy. Simulated 40 cm x 40 cm lateral profiles at 5 cm depth in a water phantom show greater sensitivity to both nominal energy and radius. Beam parameters could be determined by comparing only these curves with measured data

  19. Commissioning of a medical accelerator photon beam Monte Carlo simulation using wide-field profiles

    Energy Technology Data Exchange (ETDEWEB)

    Pena, J [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Franco, L [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Gomez, F [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Iglesias, A [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Lobato, R [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain); Mosquera, J [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain); Pazos, A [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Pardo, J [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Pombar, M [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain); RodrIguez, A [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Sendon, J [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain)

    2004-11-07

    A method for commissioning an EGSnrc Monte Carlo simulation of medical linac photon beams through wide-field lateral profiles at moderate depth in a water phantom is presented. Although depth-dose profiles are commonly used for nominal energy determination, our study shows that they are quite insensitive to energy changes below 0.3 MeV (0.6 MeV) for a 6 MV (15 MV) photon beam. Also, the depth-dose profile dependence on beam radius adds an additional uncertainty in their use for tuning nominal energy. Simulated 40 cm x 40 cm lateral profiles at 5 cm depth in a water phantom show greater sensitivity to both nominal energy and radius. Beam parameters could be determined by comparing only these curves with measured data.

  20. Dose-volume histogram comparison between static 5-field IMRT with 18-MV X-rays and helical tomotherapy with 6-MV X-rays.

    Science.gov (United States)

    Hayashi, Akihiro; Shibamoto, Yuta; Hattori, Yukiko; Tamura, Takeshi; Iwabuchi, Michio; Otsuka, Shinya; Sugie, Chikao; Yanagi, Takeshi

    2015-03-01

    We treated prostate cancer patients with static 5-field intensity-modulated radiation therapy (IMRT) using linac 18-MV X-rays or tomotherapy with 6-MV X-rays. As X-ray energies differ, we hypothesized that 18-MV photon IMRT may be better for large patients and tomotherapy may be more suitable for small patients. Thus, we compared dose-volume parameters for the planning target volume (PTV) and organs at risk (OARs) in 59 patients with T1-3 N0M0 prostate cancer who had been treated using 5-field IMRT. For these same patients, tomotherapy plans were also prepared for comparison. In addition, plans of 18 patients who were actually treated with tomotherapy were analyzed. The evaluated parameters were homogeneity indicies and a conformity index for the PTVs, and D2 (dose received by 2% of the PTV in Gy), D98, Dmean and V10-70 Gy (%) for OARs. To evaluate differences by body size, patients with a known body mass index were grouped by that index ( 25 kg/m(2)). For the PTV, all parameters were higher in the tomotherapy plans compared with the 5-field IMRT plans. For the rectum, V10 Gy and V60 Gy were higher, whereas V20 Gy and V30 Gy were lower in the tomotherapy plans. For the bladder, all parameters were higher in the tomotherapy plans. However, both plans were considered clinically acceptable. Similar trends were observed in 18 patients treated with tomotherapy. Obvious trends were not observed for body size. Tomotherapy provides equivalent dose distributions for PTVs and OARs compared with 18-MV 5-field IMRT. Tomotherapy could be used as a substitute for high-energy photon IMRT for prostate cancer regardless of body size. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  1. TH-CD-BRA-10: Towards Reference Dosimetry of MR-Linacs Using a Clinical Probe-Format Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Renaud, J; Seuntjens, J [McGill University, Montreal, QC (Canada); Sarfehnia, A [McGill University, Montreal, QC (Canada); Sunnybrook Health Sciences Centre, Toronto, ON (Canada); Woodings, S; Kok, J; Asselen, B van; Wolthaus, J; Raaymakers, B [University Medical Center Utrecht, Utrecht (Netherlands)

    2016-06-15

    Purpose: To evaluate the influence of a 1.5 T magnetic field (B-field) on the response of a small-scale graphite calorimeter probe (GPC) developed for use as a novel clinical reference dosimeter. Characterization of the GPC was also assessed in a hybrid MRI-linac (MRL) clinical prototype by performing absolute dosimetry in multiple detector orientations. Methods: B-field influence was characterized using a variable-strength electromagnet system located 280 cm from the source of a clinical linac. The GPC was used to perform a total of 160 absolute dose measurements (6 MV, 920 MU/min) in a water phantom placed between the poles of the electromagnet. The magnitude of the B-field between the poles was varied in the range of 0 – 1.5 T. The relative response of the GPC was determined and compared to that of a thimble type ionization chamber (Exradin A1SL, Standard Imaging). Next, 65 dose measurements were performed using the GPC in a clinical MRL field (7 MV, 620 MU/min) to quantify the rotational dependence of the detector in the presence of a 1.5 T B-field. The GPC was rotated in steps of 90° inside a graphite phantom (SSD 140 cm, depth 2.5 cm) for two detector orientations (parallel and perpendicular to the B field). Results: Relative to the zero B-field condition, the A1SL chamber exhibited an average overresponse of +1.2 % ± 0.03 % at a B-field of 1.5 T, while the GPC under-responded on average by −0.5 % ± 0.9 %. For the MRL measurements, no significant differences were observed between the parallel and perpendicular orientations. In both cases, a rotational dependence of approximately ±1 % was measured. Conclusion: This work suggests that the B-field has minimal influence on the response of the GPC, making it a potentially attractive solution for clinical MRL reference dosimetry. This work has been supported in part by the CREATE Medical Physics Research Training Network NSERC grant RGPIN 432290, as well as NSERC grants RGPIN 298191 & 435608. JR is a

  2. Fault-tolerant superconducting linac design for a 5-MW neutron spallation source

    International Nuclear Information System (INIS)

    Swain, G.R.

    1993-01-01

    An 805-MHz superconducting linac is proposed which could accelerate protons from 0.1 to 2.0 GeV in less than 730 m for a peak surface field in the cavities of 17 MV/m. The linac would furnish 5 MW of beam for a neutron spallation source, plus up to 10 additional MW of beam for other purposes. The design uses 454 elliptical cavities arranged in twelve groups, identical cavities being used within each group. Characterization of elliptical cavities for betas from 0.44 to 0.94 and the steps of the design procedure are presented. The effective peak power fed by each rf coupler would be less than 100 kW for all of the cavities. 6.5 kW of power at 2 deg K would need to be extracted by the cryogenic system. Space charge was found to have a negligible effect on emittance growth. The design is such that one cavity per group could be inoperable, and the gradient in the remaining cavities could be increased to compensate. The longitudinal and transverse acceptances of the linac would not be significantly degraded under such fault conditions. A corresponding 402.5 MHz linac design is being developed

  3. Applications of electron linacs to ADS: one potential path forward

    International Nuclear Information System (INIS)

    Wells, D.P.; Harmon, J.F.

    2011-01-01

    The application of electron linac accelerators to ADS systems offers a number of advantages for ADS applications. We propose a path forward with electron linac-driven ADS that takes advantage of those important ADS applications that are most easily achieved at relatively low cost, and then building on those successes to enable the more difficult applications with larger impact. We argue that the applications that are most easily achieved are medical isotope production, materials irradiation and environmental applications. The accelerator and target demands for each of these applications are essentially the same as for the ADS needs in energy production and the transmutation of waste. The successful demonstration of these important and highly-visible applications will, in turn, lead to greater visibility and funding to further major advances of ADS systems in energy production, nuclear waste transmutation, and applications to the thorium fuel cycle. (author)

  4. Plants for H- acceleration in the AGS Linac

    International Nuclear Information System (INIS)

    Barton, D.S.; Witkover, R.L.

    1979-01-01

    Since its commissioning in 1970, the 200 MeV Linac at the Brookhaven AGS has been capable of producing peak proton beam current of greater than 100 mA with pulse lengths up to 300 μsec at a repetition rate of 10 pulses/second. The linac typically runs at 5 pulses per second, providing a 60 mA pulse of 120 μsec duration every 1.6 to 2.4 seconds for conventional multiturn injection into the AGS. The intervening pulses of length up to 300 μsec are used by the radio-isotope production, chemistry and medical facilities. Preparations are now being made to inject and accelerate H - ions in order to implement charge exchange injection into the AGS. This paper describes the aspects of this work leading to an H - beam at 200 MeV

  5. Induction linacs as radiation processors

    International Nuclear Information System (INIS)

    Birx, D.L.

    1986-01-01

    Experiments at the Lawrence Livermore National Laboratory (LLNL), University of California, in conjunction with the University of California at Davis have shown induction linear accelerators (linacs) to be suitable for radiation processing of food. Here we describe how it might be possible to optimize this technology developded for the Department of Defense to serve in radiation processing. The possible advantages of accelerator-produced radiation over the use of radioisotopes include a tailor-made energy spectrum that can provide much deeper penetration and thereby better dose uniformity

  6. Signal multiplexing scheme for LINAC

    International Nuclear Information System (INIS)

    Sujo, C.I.; Mohan, Shyam; Joshi, Gopal; Singh, S.K.; Karande, Jitendra

    2004-01-01

    For the proper operation of the LINAC some signals, RF (radio frequency) as well as LF (low frequency) have to be available at the Master Control Station (MCS). These signals are needed to control, calibrate and characterize the RF fields in the resonators. This can be achieved by proper multiplexing of various signals locally and then routing the selected signals to the MCS. A multiplexing scheme has been designed and implemented, which will allow the signals from the selected cavity to the MCS. High isolation between channels and low insertion loss for a given signal are important issues while selecting the multiplexing scheme. (author)

  7. Induction linacs and pulsed power

    International Nuclear Information System (INIS)

    Caporaso, G.J.

    1995-01-01

    Progress in electronic power conversion technology is making possible a new class of induction linacs that can operate at extremely high repetition rates. Advances in insulator technology, pulse forming line design and switching may also lead to a new type of high current accelerator with accelerating gradients at least an order of magnitude greater than those attainable today. The evolution of the induction accelerator pulsed power system will be discussed along with some details of these emerging technologies which are at the frontiers of accelerator technology

  8. Evaluation of IsoCal geometric calibration system for Varian linacs equipped with on-board imager and electronic portal imaging device imaging systems.

    Science.gov (United States)

    Gao, Song; Du, Weiliang; Balter, Peter; Munro, Peter; Jeung, Andrew

    2014-05-08

    The purpose of this study is to evaluate the accuracy and reproducibility of the IsoCal geometric calibration system for kilovoltage (kV) and megavoltage (MV) imagers on Varian C-series linear accelerators (linacs). IsoCal calibration starts by imaging a phantom and collimator plate using MV images with different collimator angles, as well as MV and kV images at different gantry angles. The software then identifies objects on the collimator plate and in the phantom to determine the location of the treatment isocenter and its relation to the MV and kV imager centers. It calculates offsets between the positions of the imaging panels and the treatment isocenter as a function of gantry angle and writes a correction file that can be applied to MV and kV systems to correct for those offsets in the position of the panels. We performed IsoCal calibration three times on each of five Varian C-series linacs, each time with an independent setup. We then compared the IsoCal calibrations with a simplified Winston-Lutz (WL)-based system and with a Varian cubic phantom (VC)-based system. The maximum IsoCal corrections ranged from 0.7 mm to 1.5 mm for MV and 0.9 mm to 1.8 mm for kV imagers across the five linacs. The variations in the three calibrations for each linac were less than 0.2 mm. Without IsoCal correction, the WL results showed discrepancies between the treatment isocenter and the imager center of 0.9 mm to 1.6 mm (for the MV imager) and 0.5 mm to 1.1 mm (for the kV imager); with IsoCal corrections applied, the differences were reduced to 0.2 mm to 0.6 mm (MV) and 0.3 mm to 0.6 mm (kV) across the five linacs. The VC system was not as precise as the WL system, but showed similar results, with discrepancies of less than 1.0 mm when the IsoCal corrections were applied. We conclude that IsoCal is an accurate and consistent method for calibration and periodic quality assurance of MV and kV imaging systems.

  9. Study of characteristics of linac with TWRR

    International Nuclear Information System (INIS)

    Wang, Y.L.; Toyama, S.; Emoto, T.; Nomura, M.; Takahashi, N.; Oshita, H.; Hirano, K.; Sato, I.

    1994-01-01

    High power electron linac which is developed by PNC is an electron linac with the TWRR (Traveling Wave Resonant Ring). Some phenomena occurred on our high power test are mentioned. Some important characteristics such as stability and phase characteristic are discussed. (author)

  10. Application of superconductivity to intense proton linacs

    International Nuclear Information System (INIS)

    Heinrichs, H.

    1996-01-01

    Three examples of proposed superconducting linacs for intense particle beams are presented, and in two cases compared to normal conducting counterparts. Advantages and disadvantages of both types are discussed. Suggestions for future developments are presented. Finally a comparison of estimated operational costs of the normal and the superconducting linac for the ESS is given. (R.P.)

  11. Fermilab Linac Upgrade Conceptual Design: Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1989-07-01

    The goal of the Tevatron Collider Upgrade program is to improve the Collider luminosity and the fixed-target intensity. The Linac portion of this project will increase the energy of the existing 200- MeV linac to 400 MeV in order to reduce beam emittance degradation in the Booster.

  12. Present status of the ETL LINAC facility

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Mikado, Tomohisa; Ohgaki, Hideaki

    1993-01-01

    The ETL LINAC has been operated for the beam injection to the storage rings NIJI-II, III, IV, and TERAS, and for the generation of an intense slow positron beam. The status of the ETL LINAC on the operations, the maintenances, and the improvements is described. (author)

  13. Linac design for the European spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Klein, H. [Universitaet Postfach, Frankfurt am Main (Germany)

    1995-10-01

    A study group has started to develop a conceptual design for a European Spallation Source (ESS). This pulsed 5 MW source presently consists of a 1.334 GeV linac and two compressor rings. In the following mainly the high intensity linac part will be discussed, which has some features of interest for accelerators for transmutation of radioactive waste too.

  14. Superconducting linac at Inter-University Accelerator Centre: Operational challenges and solutions

    Directory of Open Access Journals (Sweden)

    S. Ghosh

    2009-04-01

    Full Text Available A superconducting linear accelerator based on niobium quarter wave resonators has recently become operational to boost the energy of the heavy ion beams available from the existing 15 UD (unit doubled Pelletron accelerator. The niobium resonators typically performed at an accelerating field of 3–6  MV/m at 6 watts of input power in the test cryostat. When they were tested in the linac cryostat, the accelerating fields were drastically reduced and a number of other problems were also encountered. At present, all the problems have been diagnosed and solved. Many design modifications, e.g., in power coupler, mechanical tuner, helium cooling system, etc. were incorporated to solve the problems. A novel method of vibration damping was also implemented to reduce the effect of microphonics on the resonators. Finally, the accelerated beam through linac was delivered to conduct experiments.

  15. High gradient linac for proton therapy

    Directory of Open Access Journals (Sweden)

    S. Benedetti

    2017-04-01

    Full Text Available Proposed for the first time almost 30 years ago, the research on radio frequency linacs for hadron therapy experienced a sparkling interest in the past decade. The different projects found a common ground on a relatively high rf operating frequency of 3 GHz, taking advantage of the availability of affordable and reliable commercial klystrons at this frequency. This article presents for the first time the design of a proton therapy linac, called TULIP all-linac, from the source up to 230 MeV. In the first part, we will review the rationale of linacs for hadron therapy. We then divided this paper in two main sections: first, we will discuss the rf design of the different accelerating structures that compose TULIP; second, we will present the beam dynamics design of the different linac sections.

  16. The Superconducting Super Collider (SSC) linac

    International Nuclear Information System (INIS)

    Watson, J.M.

    1990-09-01

    The preliminary design of the 600 MeV H - linac for the Superconducting Super Collider injector is described. The linac must provide a 25 mA beam during 7--35 μs macropulses at Hz within injection bursts. Normalized transverse emittances of less than 0.5 π mm-mrad (rms) are required for injection into the Low Energy Booster synchrotron. Cost, ease of commissioning, and operational reliability are important considerations. The linac will consists of an H - source with electrostatic LEBT, 2.5 MeV radiofrequency quadrupole accelerator, a 70 MeV drift-tube linac, and 530 MeV and the side-coupled linac operates at 1284 MHz. A modest total length of 150 m results from the tradeoff between cost optimization and reliability. The expected performance from beam dynamics simulations and the status of the project are described. 11 refs., 1 fig., 6 tabs

  17. LFSC - Linac Feedback Simulation Code

    International Nuclear Information System (INIS)

    Ivanov, Valentin; Fermilab

    2008-01-01

    The computer program LFSC ( ) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output

  18. 25 MV tandem accelerator at Oak Ridge

    International Nuclear Information System (INIS)

    Jones, C.M.

    1980-01-01

    A new heavy-ion accelerator facility is under construction at the Oak Ridge National Laboratory. A brief description of the scope and status of this project is presented with emphasis on the first operational experience with the 25 MV tandem accelerator

  19. Conditional probability on MV-algebras

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Tomáš

    2005-01-01

    Roč. 149, č. 2 (2005), s. 369-381 ISSN 0165-0114 R&D Projects: GA AV ČR IAA2075302 Institutional research plan: CEZ:AV0Z10750506 Keywords : conditional probability * tribe * MV-algebra Subject RIV: BA - General Mathematics Impact factor: 1.039, year: 2005

  20. SU-F-J-149: Beam and Cryostat Scatter Characteristics of the Elekta MR-Linac

    Energy Technology Data Exchange (ETDEWEB)

    Duglio, M; Towe, S; Roberts, D [Elekta Limited, Crawley, West Sussex (United Kingdom)

    2016-06-15

    Purpose: The Elekta MR-Linac combines a digital linear accelerator system with a 1.5T Philips MRI machine. This study aimed to determine key characteristic information regarding the MR-Linac beam and in particular it evaluated the effect of the MR cryostat on the out of field scatter dose. Methods: Tissue phantom ratios, profiles and depth doses were acquired in plastic water with an IC-profiler or with an MR compatible water tank using multiple system configurations (Full (B0= 1.5T), Full (B0=0T) and No cryostat). Additionally, an in-house CAD based Monte Carlo code based on Penelope was used to provide comparative data. Results: With the cryostat in place and B0=0T, the measured TPR for the MR Linac system was 0.702, indicating an energy of around 7MV. Without the cryostat, the measured TPR was 0.669. For the Full (B0=0T) case, out of field dose at a depth of 10 cm in the isocentric plane, 5 cm from the field edge was 0.8%, 3.1% and 5.4% for 3×3 cm{sup 2}, 10×10 cm{sup 2} and 20×20 cm{sup 2} fields respectively.The out of field dose (averaged between 5 cm and 10 cm beyond the field edges) in the “with cryostat” case is 0.78% (absolute difference) higher than without the cryostat for clinically relevant field sizes (i.e. 10×10 cm{sup 2}) and comparable to measured conventional 6MV treatment beams at a depth of 10 cm (within 0.1% between 5 cm and 6 cm from field edge). At dose maximum and at 5 cm from the field edge, the “with cryostat” out of field scatter for a 10×10 cm{sup 2} field is 1.5% higher than “without cryostat', with a modest increase (0.9%) compared to Agility 6MV in the same conditions. Conclusion: The study has presented typical characteristics of the MR-Linac beam and determined that out of field dose is comparable to conventional treatment beams. All authors are employed by Elekta Ltd., who are developing an MR-Linac.

  1. Design and development of R.F. LINAC accelerator components

    International Nuclear Information System (INIS)

    Abhay Kumar; Guha, S.; Balasubramaniam, R.; Jawale, S.B.

    2003-01-01

    Full text: Radio frequency linear accelerator, a high power electron LINAC technology, is being developed at BARC. These accelerators are considered to be the most compact and effective for a given power capacity. Important application areas of this LINAC include medical sterilization, food preservation, pollution control, semiconductor industries, radiation therapy and material science. Center for Design and Manufacture (CDM), BARC has been entrusted with the design, development and manufacturing of various mechanical components of the accelerator. Most critical and precision components out of them are Diagnostic chamber, Faraday cup, Drift tube and R.F. cavities. This paper deals with the design aspects in respect of Ultra high vacuum compatibility and the mechanism of operation. Also this paper discusses the state-of-art technology for machining of intricate contour using specially designed poly crystalline diamond tool and the inspection methodology developed to minimize the measurement errors on the machined contour. Silver brazing technique employed to join the LINAC cavities is also described in detail

  2. Multiple-linac approach for tritium production and other applications

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1995-01-01

    This report describes an approach to tritium production based on the use of multiple proton linear accelerators. Features of a single APTT Linac as proposed by the Los Alamos National Laboratory are presented and discussed. An alternative approach to the attainment of the same total proton beam power of 200 MW with several lower-performance superconducting Linacs is proposed and discussed. Although each of these accelerators are considerable extrapolations of present technology, the latter can nevertheless be built at less technical risk when compared to the single high-current APT Linac, particularly concerning the design and the performance of the low-energy front-end. The use of superconducting cavities is also proposed as a way of optimizing the accelerating gradient, the overall length, and the operational costs. The superconducting technology has already been successfully demonstrated in a number of large-size projects and should be seriously considered for the acceleration of intense low-energy beams of protons. Finally, each linear accelerator would represent an ideal source of very intense beams of protons for a variety of applications, such as: weapons and waste actinide transmutation processes, isotopes for medical application, spallation neutron sources, and the generation of intense beams of neutrinos and muons for nuclear and high-energy physics research. The research community at large has obviously an interest in providing expertise for, and in having access to, the demonstration, the construction, the operation, and the exploitation of these top-performance accelerators

  3. Effects Of Field Distortions In Ih-apf Linac

    CERN Document Server

    Kapin, Valery; Yamada, S

    2004-01-01

    The project on developing compact medical accelera-tors for the tumor therapy using carbon ions has been started at the National Institute of Radiological Sciences (NIRS). Alternating-phase-focused (APF) linac using an interdigital H-mode (IH) cavity has been proposed for the injector linac. The IH-cavity is doubly ridged circular resonator loaded by the drift-tubes mounted on ridges with supporting stems. The effects of intrinsic and random field distortions in a practical design of the 4-MeV/u 200 MHz IH-APF linac are considered. The intrinsic field distortions in IH-cavity are caused by the asymmetry of the gap field due to presence of the drift-tube supporting stems and pair of ridges. The random field distortions are caused by drift-tube misalignments and non-regular deviations of the voltage distribution from programmed law. The RF fields in IH-cavity have been calculated using Microwave Studio (MWS) code. The effects of field distortions on beam dynamics have been simulated numerically.

  4. Sparking limits, cavity loading, and beam breakup instability associated with high-current rf linacs

    International Nuclear Information System (INIS)

    Faehl, R.J.; Lemons, D.S.; Thode, L.E.

    1982-01-01

    The limitations on high-current rf linacs due to gap sparking, cavity loading, and the beam breakup instability are studied. It appears possible to achieve cavity accelerating gradients as high as 35 MV/m without sparking. Furthermore, a linear analysis, as well as self-consistent particle simulations of a multipulsed 10 kA beam, indicated that only a negligible small fraction of energy is radiated into nonfundamental cavity modes. Finally, the beam breakup instability is analyzed and found to be able to magnify initial radial perturbations by a factor of no more than about 20 during the beam transit time through a 1 GeV accelerator

  5. 25th anniversary for Linac-2

    CERN Multimedia

    2003-01-01

    On Friday, 3 October 2003, the Linac team celebrated a quarter century of successful operation of one of its linear accelerators: Linac-2, the proton workhorse of the CERN accelerator complex. Linac-2, CERN's linear proton accelerator, has now been running for 25 years - ample reason for a small celebration. About 30 members of the original team (10 of the initially more than 50 are still working at CERN), and other CERN personnel met on 3 October 2003. Linac-2 is the first link in the accelerator chain Linac-2 - PS Booster - PS - SPS and eventually LHC. Beams from Linac-2 are used after further acceleration in the CERN complex for SPS fixed target physics; for antiproton production for the Antiproton Decelerator (AD); for test beams in the East Experimental Hall and in the PS; for nuclear physics at ISOLDE; for LHC test beams and in the past for both ISR physics and Antiproton production (AA/AC) and test beams in LEAR. Linac-2 was built to obtain higher intensities and better stability than with ...

  6. SU-G-JeP2-09: Minimal Skin Dose Increase in Longitudinal Rotating Biplanar Linac-MR Systems: Examination of Radiation Energy and Flattening Filter Design

    Energy Technology Data Exchange (ETDEWEB)

    Fallone, B; Keyvanloo, A; Burke, B; St Aubin, J; Baillie, D; Wachowicz, K; Warkentin, B; Steciw, S [Cross Cancer Institute, Edmonton, AB (Canada)

    2016-06-15

    Purpose: To quantify increase in entrance skin-dose due to magnetic fields of the Alberta longitudinal linac-MR by examining the effect of radiation energy and flattening filter, using Monte Carlo calculations and accurate 3-D models of the magnetic field. Methods: The 3-D magnetic fields generated by the bi-planar Linac-MR are calculated with FEM using Opera-3D. BEAMnrc simulates the particle phase-space in the presence of the rapidly decaying fringe field of 0.5T MRI assembled with a Varian 600C linac with an isocentre distance of 130 cm for 6 MV and 10 MV beams. Skin doses are calculated at an average depth of 70 µm using DOSXYZnrc with varying SSDs and field sizes. Furthermore, flattening filters are reshaped to compensate for the significant drop in dose rate due to increased SAD of 130 cm and skin-doses are evaluated. Results: The confinement effect of the MRI fringe field on the contaminant electrons is minimal. For SSDs of 100 – 120 cm the increase in skin dose is ∼6% – 19% and ∼1% – 9% for the 6 and 10 MV beams, respectively. For 6MV, skin dose increases from ∼10.5% to 1.5%. for field-size increases of 5×5 cm2 to 20×20 cm2. For 10 MV, skin dose increases by ∼6% for a 5×5 cm2 field, and decreases by ∼1.5% for a 20×20 cm2 field. The reshaped flattening filter increases the dose rate from 355 MU/min to 529 MU/min (6 MV) or 604 MU/min (10 MV), while the skin-dose increases by only an additional ∼2.6% (all percent increases in skin dose are relative to Dmax). Conclusion: There is minimal increase in the entrance skin dose and minimal/no decrease in the dose rate of the Alberta longitudinal linac-MR system. There is even lower skin-dose increase at 10 MV. Funding: Alberta Innovates - Health Solutions (AIHS) Conflict of Interest: Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization)

  7. Study on design of proton linacs

    International Nuclear Information System (INIS)

    Yu Qingchang

    2000-01-01

    Two important directions in the development of proton linacs are high-current proton linacs (mainly applied in nuclear power field) and compact proton linacs (for proton therapy). There are some common characteristics in them: (1) Employment of the novel accelerating structures, which are combination and evolution of the conventional ones; (2) Accelerating beam with small emittance; (3) Requirement for high reliability. The construction of the former is, however, much more difficult because it still needs low beam lose rate and as high power transformation efficiency as possible. Some important problems in the design of these accelerators are discussed and some schemes designed are presented

  8. Wire alignment system for ATF LINAC

    International Nuclear Information System (INIS)

    Hayano, H.; Takeda, S.; Matsumoto, H.; Matsui, T.

    1994-01-01

    A wire based alignment system is adopted to make less than 40μm precision alignment for injector linac of Accelerator Test Facility (ATF). The system consists of two stretched SUS wires, pickup coils and active mover stages. The position of pickup coils in a mount which will be installed into LINAC stages is set to the calculated wire position prior to installation. All of LINAC stages are then moved to keep the calculated position by the active mover. The test results of wire position detection in a long term are described. (author)

  9. Operating experience with the ALS linac

    International Nuclear Information System (INIS)

    Selph, F.; Massoletti, D.

    1991-05-01

    The linac injector for the Advanced Light Source (ALS) at LBL was recently put into operation. Energy is 50 MeV, frequency 3 GHz. The electron gun delivers up to 6nC in a 3.0-ns bunch at 120 kV. A train of bunches is injected into a 1-Hz booster and accelerated to 1.5 GHz for storage ring injection. A magnetic analysis system is used for optimizing the linac. Measured beam properties from the gun and after acceleration in the linac are described. 9 refs., 3 figs

  10. Upgrade of the AGS H- linac

    International Nuclear Information System (INIS)

    Alessi, J.G.; Buxton, W.; Kponou, A.; LoDestro, V.; Mapes, M.; McNerney, A.J.; Raparia, D.

    1994-01-01

    The AGS linac presently accelerates 25 mA of H - to 200 MeV at a 5 Hz rep-rate and 500 μs pulse width. The Booster takes 4 pulses every 3.8 seconds, and the remaining pulses are used for isotope production. The authors are in the process of upgrading the linac to increase the average current delivered for isotope production by more than a factor of two, while at the same time expecting to decrease linac downtime. Various aspects of this upgrade are discussed, including the upgrade of the control system, new high power transmission line, transport line vacuum, and rf power supply system upgrades

  11. Laser-driven grating linac

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1982-01-01

    I would like to consider a 50 TeV on 50 TeV collider. Even a hadron machine with such an energy seems unrealistic with current technology. Magnetic fields higher than 10 Tesla are difficult and at this field the circumference would be 120 km. I conclude that only a high gradient Linac could be practical and that one should aim for 10 GeV/meter so as to keep the total length down to the order ot 10 km. Currently it is only plausible to obtain such fields using the very high energy densities produced by lasers. The luminosity is another issue. I aim for 10 33 to 10 34 but I am conscious that higher luminosities than even these are really desired, especially for an e + e - machine. I tend to assume that the machine is an e + e - machine but it will also accept hadrons

  12. Mechanical considerations in cw linacs

    International Nuclear Information System (INIS)

    King, J.D.

    1985-01-01

    An 80-MHz radio-frequency quadrupole (RFQ) linac has been designed, fabricated and operated at 100% duty factor (cw) for the Fusion Materials Irradiation Test (FMIT) project at Los Alamos. This paper describes the design features, fabrication techniques, and operational problems of the device. The RFQ is an assembly of heavy steel, copper-plated weldments. It measures about 15 ft (4.5 m) long by 5 ft (1.5 m) in diameter and weighs over 12 t. Major components are two pair of diametrically orthogonal vanes mounted in a core cylinder. The core is assembled into a manifold cylinder that couples rf power into the vane quadrants. The design features discussed include assembly of hollow wall, flood-cooled components; high-conductivity rf seals; removable and adjustable vanes; and tuning devices. Fabrication challenges such as close-tolerance weldments, vane-tip-contour machining and large-component plating requirements are covered

  13. Source and LINAC3 studies

    CERN Document Server

    Bellodi, G

    2017-01-01

    In the framework of the LHC Ion Injector Upgrade pro-gramme (LIU), several activities have been carried out in2016 to improve the ion source and Linac3 performance,with the goal to increase the beam current routinely deliv-ered to LEIR. The extraction region of the GTS-LHC ionsource was upgraded with enlarged vacuum chamber aper-tures and the addition of an einzel lens, yielding highertransmission through the rest of the machine. Also, a seriesof experiments have been performed to study the effects ofdouble frequency mixing on the afterglow performance ofthe source after installation of a Travelling Wave Tube Am-plifier (TWTA) as secondary microwave source at variablefrequency. Measurements have been carried out at a dedi-cated oven test stand for better understanding of the ionsource performance. Finally, several MD sessions werededicated to the study and characterization of the strippingfoils, after evidence of degradation in time was discoveredin the 2015 run.

  14. Ambient dose equivalent and personal points due to photoneutrons outside a facility that houses a linear accelerator of 18 MV varian; Equivalente de dosis ambiental y personal debida a fotoneutrones en puntos externos a una instalacion que alberga un acelerador lineal varian de 18 MV

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, S. A.; Barquero, R.; Gomez-Ros, J. M.; Lallena, A. M.; Ponzano, P. E.

    2011-07-01

    The use of linear accelerators (linacs) with energies above 10 MV radiotherapy treatments RT and IMRT, can improve the distribution of the absorbed dose in the treated area, increasing the effectiveness of radiation treatments. However and as shown in the scientific literature, the production of photoneutrons for energies above 10 MeV can contribute to exposure of both patient and occupationally exposed workers and the public in the vicinity of the installation. It is therefore necessary to determine the value of ambient dose equivalent and staff both inside and outside the facilities that house these accelerators, especially for energies of 15 and 18 MV.

  15. Measuring linac photon beam energy through EPID image analysis of physically wedged fields

    Energy Technology Data Exchange (ETDEWEB)

    Dawoud, S. M., E-mail: samir.dawoud@leedsth.nhs.uk; Weston, S. J.; Bond, I.; Ward, G. C.; Rixham, P. A.; Mason, J.; Huckle, A. [Department of Medical Physics and Engineering, St. James Institute of Oncology, St. James University Hospital, Leeds LS9 7TF (United Kingdom); Sykes, J. R. [Institute of Medical Physics, School of Physics, The University of Sydney, New South Wales 2006, Australia and Department of Medical Physics and Engineering, St. James Institute of Oncology, St. James University Hospital, Leeds LS9 7TF (United Kingdom)

    2014-02-15

    Purpose: Electronic portal imaging devices (EPIDs) have proven to be useful tools for measuring several parameters of interest in linac quality assurance (QA). However, a method for measuring linac photon beam energy using EPIDs has not previously been reported. In this report, such a method is devised and tested, based on fitting a second order polynomial to the profiles of physically wedged beams, where the metric of interest is the second order coefficientα. The relationship between α and the beam quality index [percentage depth dose at 10 cm depth (PDD{sub 10})] is examined to produce a suitable calibration curve between these two parameters. Methods: Measurements were taken in a water-tank for beams with a range of energies representative of the local QA tolerances about the nominal value 6 MV. In each case, the beam quality was found in terms of PDD{sub 10} for 100 × 100 mm{sup 2} square fields. EPID images of 200 × 200 mm{sup 2} wedged fields were then taken for each beam and the wedge profile was fitted in MATLAB 2010b (The MathWorks, Inc., Natick, MA). α was then plotted against PDD{sub 10} and fitted with a linear relation to produce the calibration curve. The uncertainty in α was evaluated by taking five repeat EPID images of the wedged field for a beam of 6 MV nominal energy. The consistency of measuring α was found by taking repeat measurements on a single linac over a three month period. The method was also tested at 10 MV by repeating the water-tank crosscalibration for a range of energies centered approximately about a 10 MV nominal value. Finally, the calibration curve from the test linac and that from a separate clinical machine were compared to test consistency of the method across machines in a matched fleet. Results: The relationship betweenα and PDD{sub 10} was found to be strongly linear (R{sup 2} = 0.979) while the uncertainty in α was found to be negligible compared to that associated with measuring PDD{sub 10} in the water-tank (

  16. Heavy ion fusion 2 MV injector

    International Nuclear Information System (INIS)

    Yu, S.; Eylon, S.; Henestroza, E.

    1995-04-01

    A heavy-ion-fusion driver-scale injector has been constructed and operated at Lawrence Berkeley Laboratory. The injector has produced 2.3 MV and 950 mA of K + , 15% above original design goals in energy and current. Normalized edge emittance of less than 1 π mm-mr was measured over a broad range of parameters. The head-to-tail energy flatness is less than ± 0.2% over the 1 micros pulse

  17. A linac for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Jason, A.J.

    1998-01-01

    The Spallation Neutron Source Project (SNS), to be constructed at Oak Ridge National Laboratory, accelerates H - ions to an energy of 1.0 GeV with an average current of 1-mA for injection into an accumulator ring that produces the short intense burst of protons needed for the spallation-neutron source. The linac will be the most intense source of H - ions and as such requires advanced design techniques to meet project technical goals. In particular, low beam loss is stressed for the chopped beam placing strong requirements on the beam dynamics and linac construction. Additionally, the linac is to be upgraded to the 2- and 4-MW beam-power levels with no increase in duty factor. The author gives an overview of the linac design parameters and design choices made

  18. Operational experience with the CERN hadron linacs

    International Nuclear Information System (INIS)

    Charmot, H.; Dutriat, C.; Hill, C.E.; Langbein, K.; Lombardi, A.M.; O'Neil, M.; Tanke, E.; Vretenar, M.

    1996-01-01

    The present CERN proton linac (Linac2) was commissioned in 1978 and since that date has been the primary source of protons to the CERN accelerator complex. During the past 18 years, the machine has had a very good reliability record in spite of the demands made upon it. Modifications have been made with the view of maintaining this reliability with reduced resources and new requirements from the users. Further demands will be made in the future for LHC operation. In 1994, a new linac for heavy ion production was put into service replacing the original CERN proton linac. As this machine was built within an international collaboration, operation had to take into account the novelty of the techniques used and the variety of equipment supplied by outside collaborators. Even so, the new machine has also had very good reliability. (author)

  19. System engineering in the SSC Linac

    International Nuclear Information System (INIS)

    Tooker, J.F.; Chang, C.R.; Cutler, R.I.; Funk, L.W.; Guy, F.W.; Hale, R.; Leifeste, G.T.; Nonte, J.; Prichard, B.; Raparia, D.; Saadatmand, K.; Sethi, R.C.; Yao, C.G.

    1992-01-01

    The design and construction of the SSC Linac involves various departments within the SSCL and many outside vendors. The adaptive incorporation of system engineering principles into the SSC Linac is described. This involves the development of specification trees with the breakdown and flow of functional and physical requirements from the top level system specifications to the lower level component specifications. Interfaces are defined, which specify and control the interconnections between the various components. Review cycles are presented during which the requirements, evolution of the design, and test plans are reviewed, monitored, and finalized. The Linac specification tree, interface definition, and reviews of the Linac are presented, including typical examples. (Author) 2 refs., 3 tabs

  20. The invention that is shaping Linac4

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Accelerator experts are no strangers to innovative optimizations of existing techniques and to the development of novel solutions. Sometimes, they even come up with ideas that have the potential to revolutionize the field. This is the case with the Tolerance Aligned Cantilever Mounting (TACM) system, a completely new way of supporting the drift tubes, one of the core elements of linear accelerators. The new, patent-pending technique will be implemented at Linac4.   Drift tubes in a prototype for Linac4, assembled using the new TACM technology. “Assemble and adjust” – that was the technique used to build drift-tube linacs before the arrival of the TACM. Now, the inventors’ motto has become ‘adjust and assemble’. The inversion of these two words represents a real revolution for people working in the field. “The drift tubes are a critical element of Linac4 and they have to satisfy several requirements: they have to be mechanically ...

  1. New linac technology - for SSC, and beyond

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1983-01-01

    With recent agreement on the high priority of seeking funding for a Superconducting Super Collider (SSC), it is appropriate to consider the injector linac requirements for such a machine. In so doing, the status of established technique and advantages of near-term R and D with relatively clear payoff are established, giving a base line for some speculation about linac possibilities even further in the future

  2. The trajectory control in the SLC linac

    International Nuclear Information System (INIS)

    Hsu, I.C.; Adolphsen, C.E.; Himel, T.M.; Seeman, J.T.

    1991-05-01

    Due to wake field effects, the trajectories of accelerated beams in the Linac should be well maintained to avoid severe beam breakup. In order to maintain a small emittance at the end of the Linac, the tolerance on the trajectory deviations become tighter when the beam intensities increase. The existing two beam trajectory correction method works well when the theoretical model agrees with the real machine lattice. Unknown energy deviations along the linac as well as wake field effects can cause the real lattice to deviate from the model. This makes the trajectory correction difficult. Several automated procedures have been developed to solve these problems. They are: an automated procedure to frequently steer the whole Linac by dividing the Linac into several small regions; an automated procedure to empirically correct the model to fit the real lattice and eight trajectory correcting feedback loops along the linac and steering through the collimator region with restricted corrector strengths and a restricted number of correctors. 6 refs., 2 figs

  3. The LINAC4 Project at CERN

    CERN Document Server

    Arnaudon, L; Bertone, C; Body, Y; Broere, J; Brunner, O; Buzio, M; Carli, C; Caspers, F; Corso, JP; Coupard, J; Dallocchio, A; Dos Santos, N; Garoby, R; Gerigk, F; Hammouti, L; Hanke, K; Jones, M; Kozsar, I; Lettry, J; Lallement, JB; Lombardi, A; Lopez-Hernandez, LA; Maglioni, C; Mathot, S; Maury, S; Mikulec, B; Nisbet, D; Noels, C; Paoluzzi, M; Puccio, B; Raich, U; Ramberger, S; Rossi, C; Schwerg, N; Scrivens, R; Vandoni, G; Weisz, S; Vollaire, J; Vretenar, M; Zickler, T

    2011-01-01

    As the first step of a long-term programme aiming at an increase in the LHC luminosity, CERN is building a new 160 MeV H¯ linear accelerator, Linac4, to replace the ageing 50 MeV Linac2 as injector to the PS Booster (PSB). Linac4 is an 86-m long normal-conducting linac made of an H¯ source, a Radio Frequency Quadrupole (RFQ), a chopping line and a sequence of three accelerating structures: a Drift-Tube Linac (DTL), a Cell-Coupled DTL (CCDTL) and a Pi-Mode Structure (PIMS). The civil engineering has been recently completed, and construction of the main accelerator components has started with the support of a network of international collaborations. The low-energy section up to 3 MeV including a 3-m long 352 MHz RFQ entirely built at CERN is in the final construction phase and is being installed on a dedicated test stand. The present schedule foresees beam commissioning of the accelerator in the new tunnel in 2013/14; the moment of connection of the new linac to the CERN accelerator chain will depend on the L...

  4. A new methodology for inter- and intrafraction plan adaptation for the MR-linac

    NARCIS (Netherlands)

    Kontaxis, C; Bol, G H; Lagendijk, J J W; Raaymakers, B W

    2015-01-01

    The new era of hybrid MRI and linear accelerator machines, including the MR-linac currently being installed in the University Medical Center Utrecht (Utrecht, The Netherlands), will be able to provide the actual anatomy and real-time anatomy changes of the patient's target(s) and organ(s) at risk

  5. Lead/tin resonator development at the Stony Brook heavy-ion linac

    International Nuclear Information System (INIS)

    Sikora, J.; Ben-Zvi, I.; Brennan, J.M.; Cole, M.; Noe, J.W.

    1988-01-01

    The Stony Brook Nuclear Structure Laboratory (NSL) has operated a superconducting heavy-ion booster linac since April 1983. The 40 copper split-loop resonators were developed and fabricated at Cal-Tech and plated with lead at Stony Brook. These original lead surfaces have given stable performance for the last 4 years, at an average accelerating gradient of about 2.5 MV/m in the high-β section. The low-β resonators however have never run reliably on-line much better than 2.0 MV/m, due to excessive vibration of their rather soft loop arms in the working accelerator environment. For the last 2-3 years the efforts of the Stony Brook accelerator development group have been focused on (1) a retrofit of the low-beta section of the linac with new QWRs and (2) the further development of plated superconducting surfaces. In particular a Sn/Pb alloy has been shown to give resonator performance at least comparable to that obtained with pure Pb but with a greatly simplified plating technique, as discussed below. Recently a possible heavy-ion injector based on superconducting RF quadrupole (RFQ) structures has also been studied. 13 references, 3 figures, 1 table

  6. Linac4 H− ion sources

    International Nuclear Information System (INIS)

    Lettry, J.; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; David, N.; Chaudet, E.; Fink, D. A.; Garlasche, M.; Grudiev, A.; Guida, R.; Hansen, J.; Haase, M.; Jones, A.; Koszar, I.; Lallement, J.-B.; Lombardi, A. M.; Machado, C.

    2016-01-01

    CERN’s 160 MeV H − linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 π ⋅ mm ⋅ mrad. The optimum ratio of the co-extracted electron- to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H − source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H − source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described

  7. Ionization chamber correction factors for MR-linacs.

    Science.gov (United States)

    Pojtinger, Stefan; Dohm, Oliver Steffen; Kapsch, Ralf-Peter; Thorwarth, Daniela

    2018-06-07

    Previously, readings of air-filled ionization chambers have been described as being influenced by magnetic fields. To use these chambers for dosimetry in magnetic resonance guided radiotherapy (MRgRT), this effect must be taken into account by introducing a correction factor k B . The purpose of this study is to systematically investigate k B for a typical reference setup for commercially available ionization chambers with different magnetic field strengths. The Monte Carlo simulation tool EGSnrc was used to simulate eight commercially available ionization chambers in magnetic fields whose magnetic flux density was in the range of 0-2.5 T. To validate the simulation, the influence of the magnetic field was experimentally determined for a PTW30013 Farmer-type chamber for magnetic flux densities between 0 and 1.425 T. Changes in the detector response of up to 8% depending on the magnetic flux density, on the chamber geometry and on the chamber orientation were obtained. In the experimental setup, a maximum deviation of less than 2% was observed when comparing measured values with simulated values. Dedicated values for two MR-linac systems (ViewRay MRIdian, ViewRay Inc, Cleveland, United States, 0.35 T/ 6 MV and Elekta Unity, Elekta AB, Stockholm, Sweden, 1.5 T/7 MV) were determined for future use in reference dosimetry. Simulated values for thimble-type chambers are in good agreement with experiments as well as with the results of previous publications. After further experimental validation, the results can be considered for definition of standard protocols for purposes of reference dosimetry in MRgRT.

  8. Ionization chamber correction factors for MR-linacs

    Science.gov (United States)

    Pojtinger, Stefan; Steffen Dohm, Oliver; Kapsch, Ralf-Peter; Thorwarth, Daniela

    2018-06-01

    Previously, readings of air-filled ionization chambers have been described as being influenced by magnetic fields. To use these chambers for dosimetry in magnetic resonance guided radiotherapy (MRgRT), this effect must be taken into account by introducing a correction factor k B. The purpose of this study is to systematically investigate k B for a typical reference setup for commercially available ionization chambers with different magnetic field strengths. The Monte Carlo simulation tool EGSnrc was used to simulate eight commercially available ionization chambers in magnetic fields whose magnetic flux density was in the range of 0–2.5 T. To validate the simulation, the influence of the magnetic field was experimentally determined for a PTW30013 Farmer-type chamber for magnetic flux densities between 0 and 1.425 T. Changes in the detector response of up to 8% depending on the magnetic flux density, on the chamber geometry and on the chamber orientation were obtained. In the experimental setup, a maximum deviation of less than 2% was observed when comparing measured values with simulated values. Dedicated values for two MR-linac systems (ViewRay MRIdian, ViewRay Inc, Cleveland, United States, 0.35 T/ 6 MV and Elekta Unity, Elekta AB, Stockholm, Sweden, 1.5 T/7 MV) were determined for future use in reference dosimetry. Simulated values for thimble-type chambers are in good agreement with experiments as well as with the results of previous publications. After further experimental validation, the results can be considered for definition of standard protocols for purposes of reference dosimetry in MRgRT.

  9. The booster linac of the Sparkle Company 18 MeV Cyclotron: main design elements

    International Nuclear Information System (INIS)

    Picardi, L.; Ronsivalle, C.

    2009-01-01

    The Sparkle Company (Casarano, Le) that is setting up a centre for production and research on radioisotopes for medical use, has requested to the ENEA Accelerator Laboratory a specific design of a linear accelerator for boosting the energy of its commercial cyclotron from 18 to 24 MeV, with the aim of implementing a small proton irradiation facility for radiobiology studies. This is the first case of coupling a cyclotron beam to a linac, that, if successful, can give rise to a new class of accelerators for proton therapy. The linac can accelerate only a very small portion of the cyclotron beam, due to the intrinsic mismatching of the two kind of accelerators both in the vertical and in the longitudinal phase planes. A beam transport line has been studied that besides matching at best the beam to the linac in the transverse plane, is equipped with a chopping system to lower drastically the primary beam power in order to protect the linac structure. The linac is SCDTL type, and operates at 3 GHz. In the following the results of the design are presented. [it

  10. Predictive time-series modeling using artificial neural networks for Linac beam symmetry: an empirical study.

    Science.gov (United States)

    Li, Qiongge; Chan, Maria F

    2017-01-01

    Over half of cancer patients receive radiotherapy (RT) as partial or full cancer treatment. Daily quality assurance (QA) of RT in cancer treatment closely monitors the performance of the medical linear accelerator (Linac) and is critical for continuous improvement of patient safety and quality of care. Cumulative longitudinal QA measurements are valuable for understanding the behavior of the Linac and allow physicists to identify trends in the output and take preventive actions. In this study, artificial neural networks (ANNs) and autoregressive moving average (ARMA) time-series prediction modeling techniques were both applied to 5-year daily Linac QA data. Verification tests and other evaluations were then performed for all models. Preliminary results showed that ANN time-series predictive modeling has more advantages over ARMA techniques for accurate and effective applicability in the dosimetry and QA field. © 2016 New York Academy of Sciences.

  11. 3 MV, Tandetron accelerator at CCCM

    International Nuclear Information System (INIS)

    Raju, V.S.

    2003-01-01

    Surface analysis requires compositional characterisation of thin films such as stoichiometries and the depth distributions of the constituents present in 100 A to a few tens of microns. Complimented by Ultra Trace laboratory and Bulk laboratory of the Centre, for cross validation with other state of art specialized analytical techniques in specific times, this laboratory has been providing the services to different end users around the country. The surface laboratory has three major facilities viz. a 3MV Tandem accelerator dedicated for Ion Beam Analysis, an Analytical Electron Microscope and an indigenously built X-Ray Photoelectron Spectroscopy system

  12. CERN Linac4. The space charge challenge

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Lutz Matthias

    2013-08-06

    In the first phase of the upgrade program of the CERN accelerator complex the proton injector Linac2 will be replaced by a new, normal-conducting H-ion Linac, Linac4, allowing a significant increase of the proton flux intensity along the downstream accelerator complex. In the design of Linac4 three beam transport sections are implemented to match the beam between the different accelerator elements and to model the longitudinal pulse structure. These three beam transport sections, which are the most critical locations in terms of beam quality preservation, are in the focus of this thesis. During the work of this thesis the Low Energy Beam Transport (LEBT), which is required to match the source beam to the radiofrequency quadrupole (RFQ), has been commissioned and its beam dynamics re-constructed. The measurement campaign used to reconstruct the LEBT beam dynamics was performed with the aim to prepare the RFQ commissioning and to maximise the LEBT performance. Downstream of the Linac4 accelerator the beam is transported along a 180 m long transfer line to the Proton Synchrotron Booster (PS-Booster). The transfer line optics was studied, optimised and sections were completely re-designed. The new transfer line optics is characterised by an improved preservation of the beam emittance, higher stability of the optical solution with respect to alignment errors and field jitters of the transfer line magnets and it is matched to each of the PS-Booster injection schemes. In a concluding ''Start-To-End'' simulation based on the measured beam characteristics at the LEBT exit the beam dynamics of the downstream Linac, including the transfer line, was calculated. To minimise particle losses within acceptable emittance preservation the beam optics of the Medium Energy Beam Transport (MEBT) was adapted to the measured beam parameters. This ''Start-To-End'' simulation was performed to identify critical sections of the Linac4 beam dynamics and

  13. Evaluation of IMRT plans for prostate treatment using energies of 6 MV and 15 MV

    International Nuclear Information System (INIS)

    Guimaraes, Lucas Francisco C.; Silva, Murilo C. da; Silveira, Paula J.; Flosi, Adriana A.; Boccaletti, Karina W.

    2013-01-01

    This study aims to evaluate and compare radiotherapy plans with intensity-modulated radiation therapy (IMRT) for prostate cancer treatments optimized for photon energies of 6 MV and 15 MV. We retrospectively evaluated 29 patients with prostate cancer, planned with IMRT technique with prescribed dose of 78 Gy. The initial plan was done for the two photon energies, keeping the same optimization parameters and comparing maximum, minimum and modal PTV doses, conformity and homogeneity indexes, dose gradients, isodoses volumes of 30, 40, 50, 60, and 70 Gy, and the total number of monitor units. It was found that the plans are equivalent regarding higher isodose volumes, conformity and homogeneity indexes, maximum, minimum and modal PTV doses. However, for 6 MV plans there was a considerable increase in both number of monitor units and volume lower isodose volumes, especially the 30 Gy. (author)

  14. Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons

    International Nuclear Information System (INIS)

    Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.

    2015-01-01

    Undoped and dysprosium doped lithium borate glass system with empirical formula (70–x) B 2 O 3 –30 Li 2 O–(x) Dy 2 O 3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5–5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy 2 O 3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD). - Highlights: • TL response of undoped and dysprosium doped lithium borate glass subjected to 6 MV photons irradiation at low dose range. • TL linear response of dysprosium doped lithium borate glass. • The sensitivity of dysprosium doped lithium borate glass is approximately 93 times higher than undoped glass

  15. Beam transport study of kA-class on the induction linac

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Iwao; Zheng, Xiaodong; Maebara, Sunao; Shiho, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kishiro, Jun-ichi; Takayama, Ken [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2000-02-01

    Beam transport of kA-class for GW-class Free Electron Laser (FEL) was carried out through the two induction linacs (JLA). The first 1 MV induction linac was used as an electron beam generator, in which a carbon-cloth impregnated cold cathode was equipped and 1 MV, 160ns pulsed high voltage was immersed. About 1 kA high current electron beam was successfully generated and accelerated more 1 MeV by employing the following second induction linac. For kA-class high current beam generation and transportation, the most serious problem arises from the so strong space charge effect that the investigations to cure this effect both in the beam generation and the transportation are required. High rate beam loss comes from the strong space charge effect because the effect causes the unexpected beam blow up during the transportation. In the electron generator, the generated beam emittance was minimized with the program EGUN by choosing the geometry and shape of the cathode and anode electrode. In the beam transportation, a simulation program which included the space charge effect was developed. The simulation program was used to minimize and optimize the beam envelope oscillation through the beam transport line, and designed the configuration of the solenoid magnet channel. Experimentally, the electron beam of 450 A was extracted. The beam transport efficiency (beam current at outlet of accelerator/at inlet) reached to 90%, under the magnetic field of 1 kG. It was succeeded that the electron beam of 2 MeV - 400 A was transported with the mean beam diameter of 50 mm. (author)

  16. A Monte Carlo Study of the Photon Spectrum due to the Different Materials Used in the Construction of Flattening Filters of LINAC

    Directory of Open Access Journals (Sweden)

    J. S. Estepa Jiménez

    2017-01-01

    Full Text Available Different types the spectrum of photons were studied; they were emitted from the flattening filter of a LINAC Varian 2100 C/D that operates at 15 MV. The simplified geometry of the LINAC head was calculated using the MCNPX code based on the studies of the materials of the flattening filter, namely, SST, W, Pb, Fe, Ta, Al, and Cu. These materials were replaced in the flattening filter to calculate the photon spectra at the output of this device to obtain the spectrum that makes an impact with the patient. The different spectra obtained were analyzed and compared to the emission from the original spectra configuration of the LINAC, which uses material W. In the study, different combinations of materials were considered in order to establish differences between the use of different materials and the original material, with the objective of establishing advantages and disadvantages from a clinical standpoint.

  17. MO-F-CAMPUS-T-04: Implementation of a Standardized Monthly Quality Check for Linac Output Management in a Large Multi-Site Clinic

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H; Yi, B; Prado, K [Univ. of Maryland School Of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: This work is to investigate the feasibility of a standardized monthly quality check (QC) of LINAC output determination in a multi-site, multi-LINAC institution. The QC was developed to determine individual LINAC output using the same optimized measurement setup and a constant calibration factor for all machines across the institution. Methods: The QA data over 4 years of 7 Varian machines over four sites, were analyzed. The monthly output constancy checks were performed using a fixed source-to-chamber-distance (SCD), with no couch position adjustment throughout the measurement cycle for all the photon energies: 6 and 18MV, and electron energies: 6, 9, 12, 16 and 20 MeV. The constant monthly output calibration factor (Nconst) was determined by averaging the machines’ output data, acquired with the same monthly ion chamber. If a different monthly ion chamber was used, Nconst was then re-normalized to consider its different NDW,Co-60. Here, the possible changes of Nconst over 4 years have been tracked, and the precision of output results based on this standardized monthly QA program relative to the TG-51 calibration for each machine was calculated. Any outlier of the group was investigated. Results: The possible changes of Nconst varied between 0–0.9% over 4 years. The normalization of absorbed-dose-to-water calibration factors corrects for up to 3.3% variations of different monthly QA chambers. The LINAC output precision based on this standardized monthly QC relative to the TG-51 output calibration is within 1% for 6MV photon energy and 2% for 18MV and all the electron energies. A human error in one TG-51 report was found through a close scrutiny of outlier data. Conclusion: This standardized QC allows for a reasonably simplified, precise and robust monthly LINAC output constancy check, with the increased sensitivity needed to detect possible human errors and machine problems.

  18. Dispersion and betatron matching into the linac

    International Nuclear Information System (INIS)

    Decker, F.J.; Adolphsen, C.; Corbett, W.J.; Emma, P.; Hsu, I.; Moshammer, H.; Seeman, J.T.; Spence, W.L.

    1991-05-01

    In high energy linear colliders, the low emittance beam from a damping ring has to be preserved all the way to the linac, in the linac and to the interaction point. In particular, the Ring-To-Linac (RTL) section of the SLAC Linear Collider (SLC) should provide an exact betatron and dispersion match from the damping ring to the linac. A beam with a non-zero dispersion shows up immediately as an increased emittance, while with a betatron mismatch the beam filaments in the linac. Experimental tests and tuning procedures have shown that the linearized beta matching algorithms are insufficient if the actual transport line has some unknown errors not included in the model. Also, adjusting quadrupole strengths steers the beam if it is offset in the quadrupole magnets. These and other effects have lead to a lengthy tuning process, which in the end improves the matching, but is not optimal. Different ideas will be discussed which should improve this matching procedure and make it a more reliable, faster and simpler process. 5 refs., 2 figs

  19. SU-E-T-273: Radiation Shielding for a Fixed Horizontal-Beam Linac in a Shipping Container and a Conventional Treatment Vault

    International Nuclear Information System (INIS)

    Hsieh, M; Balter, P; Beadle, B; Chi, P; Stingo, F; Court, L

    2014-01-01

    Purpose: A fixed horizontal-beam linac, where the patient is treated in a seated position, could lower the overall costs of the treatment unit and room shielding substantially. This design also allows the treatment room and control area to be contained within a reduced space, such as a shipping container. The main application is the introduction of low-cost, high-quality radiation therapy to low- and middle-income regions. Here we consider shielding for upright treatments with a fixed-6MV-beam linac in a shipping container and a conventional treatment vault. Methods: Shielding calculations were done for two treatment room layouts using calculation methods in NCRP Report 151: (1) a shipping container (6m × 2.4m with the remaining space occupied by the console area), and (2) the treatment vault in NCRP 151 (7.8m by 5.4m by 3.4m). The shipping container has a fixed gantry that points in one direction at all times. For the treatment vault, various beam directions were evaluated. Results: The shipping container requires a primary barrier of 168cm concrete (4.5 TVL), surrounded by a secondary barrier of 3.6 TVL. The other walls require between 2.8–3.3 TVL. Multiple shielding calculations were done along the side wall. The results show that patient scatter increases in the forward direction and decreases dramatically in the backward direction. Leakage scatter also varies along the wall, depending largely on the distance between the gantry and the wall. For the treatment room, fixed-beam requires a slightly thicker primary barrier than the conventional linac (0.6 TVL), although this barrier is only needed in the center of one wall. The secondary barrier is different only by 0–0.2 TVL. Conclusion: This work shows that (1) the shipping container option is achievable, using indigenous materials for shielding and (2) upright treatments can be performed in a conventional treatment room with minimal additional shielding. Varian Medical Systems

  20. SU-E-T-273: Radiation Shielding for a Fixed Horizontal-Beam Linac in a Shipping Container and a Conventional Treatment Vault

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, M; Balter, P; Beadle, B; Chi, P; Stingo, F; Court, L [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-01

    Purpose: A fixed horizontal-beam linac, where the patient is treated in a seated position, could lower the overall costs of the treatment unit and room shielding substantially. This design also allows the treatment room and control area to be contained within a reduced space, such as a shipping container. The main application is the introduction of low-cost, high-quality radiation therapy to low- and middle-income regions. Here we consider shielding for upright treatments with a fixed-6MV-beam linac in a shipping container and a conventional treatment vault. Methods: Shielding calculations were done for two treatment room layouts using calculation methods in NCRP Report 151: (1) a shipping container (6m × 2.4m with the remaining space occupied by the console area), and (2) the treatment vault in NCRP 151 (7.8m by 5.4m by 3.4m). The shipping container has a fixed gantry that points in one direction at all times. For the treatment vault, various beam directions were evaluated. Results: The shipping container requires a primary barrier of 168cm concrete (4.5 TVL), surrounded by a secondary barrier of 3.6 TVL. The other walls require between 2.8–3.3 TVL. Multiple shielding calculations were done along the side wall. The results show that patient scatter increases in the forward direction and decreases dramatically in the backward direction. Leakage scatter also varies along the wall, depending largely on the distance between the gantry and the wall. For the treatment room, fixed-beam requires a slightly thicker primary barrier than the conventional linac (0.6 TVL), although this barrier is only needed in the center of one wall. The secondary barrier is different only by 0–0.2 TVL. Conclusion: This work shows that (1) the shipping container option is achievable, using indigenous materials for shielding and (2) upright treatments can be performed in a conventional treatment room with minimal additional shielding. Varian Medical Systems.

  1. SU-G-BRB-04: Automated Output Factor Measurements Using Continuous Data Logging for Linac Commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X; Li, S; Zheng, D; Wang, S; Lei, Y; Zhang, M; Ma, R; Fan, Q; Wang, X; Li, X; Verma, V; Enke, C; Zhou, S [University of Nebraska Medical Center, Omaha, NE (United States)

    2016-06-15

    Purpose: Linac commissioning is a time consuming and labor intensive process, the streamline of which is highly desirable. In particular, manual measurement of output factors for a variety of field sizes and energy greatly hinders the commissioning efficiency. In this study, automated measurement of output factors was demonstrated as ‘one-click’ using data logging of an electrometer. Methods: Beams to be measured were created in the recording and verifying (R&V) system and configured for continuous delivery. An electrometer with an automatic data logging feature enabled continuous data collection for all fields without human intervention. The electrometer saved data into a spreadsheet every 0.5 seconds. A Matlab program was developed to analyze the excel data to monitor and check the data quality. Results: For each photon energy, output factors were measured for five configurations, including open field and four wedges. Each configuration includes 72 fields sizes, ranging from 4×4 to 20×30 cm{sup 2}. Using automation, it took 50 minutes to complete the measurement of 72 field sizes, in contrast to 80 minutes when using the manual approach. The automation avoided the necessity of redundant Linac status checks between fields as in the manual approach. In fact, the only limiting factor in such automation is Linac overheating. The data collection beams in the R&V system are reusable, and the simplified process is less error-prone. In addition, our Matlab program extracted the output factors faithfully from data logging, and the discrepancy between the automatic and manual measurement is within ±0.3%. For two separate automated measurements 30 days apart, consistency check shows a discrepancy within ±1% for 6MV photon with a 60 degree wedge. Conclusion: Automated output factor measurements can save time by 40% when compared with conventional manual approach. This work laid ground for further improvement for the automation of Linac commissioning.

  2. SU-G-BRB-04: Automated Output Factor Measurements Using Continuous Data Logging for Linac Commissioning

    International Nuclear Information System (INIS)

    Zhu, X; Li, S; Zheng, D; Wang, S; Lei, Y; Zhang, M; Ma, R; Fan, Q; Wang, X; Li, X; Verma, V; Enke, C; Zhou, S

    2016-01-01

    Purpose: Linac commissioning is a time consuming and labor intensive process, the streamline of which is highly desirable. In particular, manual measurement of output factors for a variety of field sizes and energy greatly hinders the commissioning efficiency. In this study, automated measurement of output factors was demonstrated as ‘one-click’ using data logging of an electrometer. Methods: Beams to be measured were created in the recording and verifying (R&V) system and configured for continuous delivery. An electrometer with an automatic data logging feature enabled continuous data collection for all fields without human intervention. The electrometer saved data into a spreadsheet every 0.5 seconds. A Matlab program was developed to analyze the excel data to monitor and check the data quality. Results: For each photon energy, output factors were measured for five configurations, including open field and four wedges. Each configuration includes 72 fields sizes, ranging from 4×4 to 20×30 cm"2. Using automation, it took 50 minutes to complete the measurement of 72 field sizes, in contrast to 80 minutes when using the manual approach. The automation avoided the necessity of redundant Linac status checks between fields as in the manual approach. In fact, the only limiting factor in such automation is Linac overheating. The data collection beams in the R&V system are reusable, and the simplified process is less error-prone. In addition, our Matlab program extracted the output factors faithfully from data logging, and the discrepancy between the automatic and manual measurement is within ±0.3%. For two separate automated measurements 30 days apart, consistency check shows a discrepancy within ±1% for 6MV photon with a 60 degree wedge. Conclusion: Automated output factor measurements can save time by 40% when compared with conventional manual approach. This work laid ground for further improvement for the automation of Linac commissioning.

  3. Challenges of the ILC Main Linac

    International Nuclear Information System (INIS)

    Ross, Marc

    2007-01-01

    With the completion of the ILC Reference Design Report (RDR), we begin the next phase of the project - development of the Engineering Design. Our strategy and priorities come from the identification, contained in the RDR, of scientific and engineering challenges of the ILC. First among these is the cost of the main linac which, including the associated earthworks and cooling/power systems, amounts to 60% of the ILC total cost. Next is the challenge to reach the highest practical gradient since this R and D has the largest cost leverage of any of the ongoing programs. Finally, we have to understand the beam dynamics and beam tuning processes in the main linac, as we will not have the opportunity to do full (or even large) scale tests of these before the linac is constructed.

  4. Integrated design of the SSC linac injector

    International Nuclear Information System (INIS)

    Evans, D.; Valiecnti, R.; Wood, F.

    1992-01-01

    The Ion Source, Low Energy Beam Transport (LEBT), and Radio Frequency Quadrupole (RFQ) of the Superconducting Super Collider (SSC) Linac act as a unit (referred to as the Linac Injector), the Ion Source and LEBT being cantilevered off of the RFQ. Immediately adjacent to both ends of the RFQ cavity proper are endwall chambers containing beam instrumentation and independently-operated vacuum isolation valves. The Linac Injector delivers 30 mA of H - beam at 2.5 MeV. This paper describes the design constraints imposed on the endwalls, aspects of the integration of the Ion Source and LEBT including attachment to the RFQ, maintainability and interchangeability of LEBTs, vacuum systems for each component, and the design of necessary support structure. (Author) 2 tab

  5. Heavy ion induction linacs for fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Ho, D.D.M.

    1991-01-01

    In 1976 Denis Keefe proposed the heavy ion induction linac as a driver for inertial confinement fusion (ICF) power plants. Subsequent research has established that heavy ion fusion (HIF) is potentially an attractive energy source and has identified the issues that must be resolved to make HIF a reality. The principal accelerator issues are achieving adequately low transverse and longitudinal emittance and acceptable cost. Results from the single and multiple beam experiments at LBL on transverse emittance are encouraging. A predicted high current longitudinal instability that can affect longitudinal emittance is currently being studied. This paper presents an overview of economics and ICF target requirements and their relationship to accelerator design. It also presents a summary of the status of heavy ion induction linac research. It concludes with a discussion of research plans, including plans for the proposed Induction Linac Systems Experiments (ILSE)

  6. Focussing magnets for proton Linac of ADS

    International Nuclear Information System (INIS)

    Malhotra, Sanjay; Mahapatra, U.; Singh, Pitamber; Choudhury, R.K.; Goel, Priyanshu; Verma, Vishnu; Bhattacharya, S.; Srivastava, G.P.; Kailas, S.; Sahni, V.C.

    2009-01-01

    A linear accelerator comprising of Radio frequency quadruple (RFQ) and drift tube linac (DTL) is being developed by BARC. The Alvarez type post-coupled cw DTL accelerates protons from an energy of 3 MeV to 20 MeV. The drift tube linac is excited in TM010 mode, wherein the particles are accelerated by longitudinal electric fields at the gap crossings between drift tubes. The particles are subjected to transverse RF defocusing forces at the gap crossings due to the increasing electric fields in the gap. The transverse defocusing is corrected by housing magnetic quadrupole focussing lenses inside the drift tubes. The permanent magnet quadrupoles (PMQs) are placed inside the hermetically sealed drift tubes and provide a constant magnetic field gradient in the beam aperture. This paper discusses various aspects of magnetic design, selection of magnetic materials and the engineering development involved in the prototype development of these drift tubes for proton Linac. (author)

  7. ARIEL e-LINAC: Commissioning and Development

    Science.gov (United States)

    Laxdal, R. E.; Zvyagintsev, V.

    2016-09-01

    A superconducting electron Linac (e-Linac) will be a part of the ARIEL facility for the production of radioactive ion beams (RIB) at TRIUMF. The e-Linac will consist of five 1.3GHz 9-cell cavities in three cryomodules delivering a 50MeV 10mA beam. The baseline operation will be single pass but a re-circulating ring is planned to allow either energy boost or energy recovery operation. The first stage of the accelerator which consists of two cryomodules has been successfully commissioned in 2014. The paper will discuss the superconducting radio-frequency (SRF) challenges of the accelerator. Cavities, crymodules and RF system design, preparation, and performance will be presented.

  8. LINAC4 low energy beam measurements

    CERN Document Server

    Hein, L M; Lallement, J B; Lombardi, A M; Midttun, O; Posocco, P; Scrivens, R

    2012-01-01

    Linac4 is a 160 MeV normal-conducting linear accelerator for negative Hydrogen ions (H−), which will replace the 50 MeV proton Linac (Linac2) as linear injector for the CERN accelerators. The low energy part, comprising a 45 keV Low Energy Beam Transport system (LEBT), a 3 MeV Radiofrequency Quadrupole (RFQ) and a Medium Energy Beam Transport (MEBT) is being assembled in a dedicated test stand for pre-commissioning with a proton beam. During 2011 extensive measurements were done after the source and after the LEBT with the aim of preparing the RFQ commissioning and validating the simulation tools, indispensable for future source upgrades. The measurements have been thoroughly simulated with a multi-particle code, including 2D magnetic field maps, error studies, steering studies and the generation of beam distribution from measurements. Emittance, acceptance and transmission measurements will be presented and compared to the results of the simulations.

  9. ARIEL e-LINAC: Commissioning and Development

    International Nuclear Information System (INIS)

    Laxdal, R.E.; Zvyagintsev, V.

    2016-01-01

    A superconducting electron Linac (e-Linac) will be a part of the ARIEL facility for the production of radioactive ion beams (RIB) at TRIUMF. The e-Linac will consist of five 1.3GHz 9-cell cavities in three cryomodules delivering a 50MeV 10mA beam. The baseline operation will be single pass but a re-circulating ring is planned to allow either energy boost or energy recovery operation. The first stage of the accelerator which consists of two cryomodules has been successfully commissioned in 2014. The paper will discuss the superconducting radio-frequency (SRF) challenges of the accelerator. Cavities, crymodules and RF system design, preparation, and performance will be presented. (paper)

  10. Magnetron based high energy S-band linac system

    International Nuclear Information System (INIS)

    Tiwari, T.; Krishnan, R.; Phatangare, Manoj

    2012-01-01

    This paper deals with the study of magnetron based high energy S-band linear accelerator (linac) system operating at spot frequency 2.998 GHz. The energy and dose are two important parameters of linac system which depend on input power of microwave source and length of linac tube. Here the author has studied how these parameters can be improved for side coupled standing wave S-band linac system

  11. Proton induction linacs as high-intensity neutron sources

    International Nuclear Information System (INIS)

    Keefe, D.; Hoyer, E.

    1981-01-01

    Proton induction linacs are explored as high intensity neutron sources. The induction linac - concept, properties, experience with electrons, and possibilities - and its limitations for accelerating ions are reviewed. A number of proton induction linac designs are examined with the LIACEP program and general conclusions are given. Results suggest that a proton induction accelerator of the lowest voltage, consistent with good neutron flux, is preferred and could well be cost competitive with the usual rf linac/storage ring designs. (orig.)

  12. Application of RF Superconductivity to High-Current Linac

    International Nuclear Information System (INIS)

    Chan, K.C.D.

    1998-01-01

    In 1997, the authors initiated a development program in Los Alamos for high-current superconducting proton-linac technology to build prototypes components of this linac to demonstrate the feasibility. The authors are building 700-MHz niobium cavities with elliptical shapes, as well as power couplers to transfer high RF power to these cavities. The cavities and power couplers will be integrated in cryostats as linac cryomodules. In this paper, they describe the linac design and the status of the development program

  13. Development of the Medium Energy Linac Systems

    International Nuclear Information System (INIS)

    Jang, Ji Ho; Kwon, Hyeok Jung; Kim, Dae Il; Kim, Han Sung; Park, Bum Sik; Seol, Kyung Tae; Song, Young Gi; Yun, Sang Pil; Cho, Yong Sub; Hong, In Seok

    2008-05-01

    The main purpose of this project is developing 100-MeV proton linear accelerator (linac) for proton engineering frontier project (PEFP). In the first phase of the PEFP, the development of the 20-MeV linac has successfully finished. Hence the work scope of this project is designing the linac to accelerate proton beams from 20-MeV up to 100-MeV, fabricating the linac up to 45 MeV, fabricating one set of the medium energy beam transport (MEBT) tank, and developing the low level radio frequency (LLRF) system and the control system. The basic role of the new proton accelerator is accelerating 20-mA proton beams from 20 MeV up to 100 MeV. The first step of the design procedure is optimizing and determining the accelerator parameters. The beam loss is also main concern in the design stage. The drift tube (DT) and the quadrupole magnets are designed to be optimized to the new linac design. The other purpose is confirming the new design by fabricating and tuning the drift tube linac (DTL). The 20MeV proton beam divided into two directions. One is supplying the beams to user group by turning on the 45-degree bending magnet. The other is guided into the 100-MeV DTL by tuning off the dipole magnet. That is why the PEFP MEBT located after 20-MeV DTL. The MEBT is realized as two small DTL tanks with three cells and a 45-degree bending magnet. The fabrication of one MEBT tank is another purpose of this project. The other purposes of this project is developing the LLRF system to control the RF signal and control system to monitor and control the vacuum system, magnet power supply, etc

  14. 1 MV low-induction pulse generator

    International Nuclear Information System (INIS)

    Koba, G.I.; Koba, Yu.V.; Slivkov, I.N.; Sukhov, A.D.; Tarumov, Eh.Z.

    1980-01-01

    A high-voltage pulse generator is described. The generator Uses the Arkadiev-Marx circuit at 1 MV voltage and 12 kJ energy; the inductance of the discharge circuit is 1.3 μN. Low inductance of the generator has been obtained due to the use of low-inductance capacitors and employment of bifilar buses with oil barrier insulation. To provide reliable generator triggering, an ignition circuit has been developed with a resistive coupling between generator steps, based on controlled three-electrode sparkgaps with a distorted field. The generator switching time is slightly dependent on pressure and constitutes 200-300 ns. The generator efficiency is 83%

  15. The 16-MV pelletron accelerator at NSC

    International Nuclear Information System (INIS)

    Narayanan, M.M.; Chopra, S.; Kanjilal, D.

    1994-01-01

    A 15-UD 16-MV Pelletron accelerator was commissioned at Nuclear Science Centre (NSC) in July 1991. It is a large tandem Van de Graaff type electrostatic accelerator capable of accelerating almost any ion beam from hydrogen to uranium to energies from a few tens of MeV (Million electron Volts) to hundreds of MeV. The availability of the various beams having widely variable energy, good energy resolution and excellent quality makes this accelerator an extremely versatile machine. This gives rise to the possibilities of basic and applied research in various disciplines of science. The principle of operation of a tandem accelerator and the salient features of the accelerator system at NSC are described. (author). 2 refs., 4 figs

  16. A 3 MV pelletron at Fudan University

    International Nuclear Information System (INIS)

    Sun Chuanchen; Lu Chengrong; Fe Zhiyu; Yuan Daosheng

    1989-01-01

    A 3 MV Pelletron tandem, model 9SDH-2, the fourth machine manufactured by NEC was installed and has been operating at Fudan University since 1987. The operating experiences obtained during the past year are described. Three beam lines have been established: one is for Auger-ESCA and RBS in an ultrahigh-vacuum chamber in which Al(100) clean surfaces have been studied; the second beam line is used as a microbeam analysis system using a 2 μm proton beam for resonant prefitting studies. The third is a general purpose beam line, for studies of the effect of nuclear resonance on K X-ray yield. At present, the third beam line is also used for ion beam analysis studies of 8.8 MeV He 2+ non-Rutherford scattering on high T c superconductors. (orig.)

  17. Linac design algorithm with symmetric segments

    International Nuclear Information System (INIS)

    Takeda, Harunori; Young, L.M.; Nath, S.; Billen, J.H.; Stovall, J.E.

    1996-01-01

    The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells and individual cells symmetric in both the CCDTL AND CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. We have implemented a design algorithm in the PARMILA code in which cells and multi-cavity segments are made symmetric, significantly reducing the number of unique components. Using the symmetric algorithm, a sample linac design was generated and its performance compared with a similar one of conventional design

  18. BARC-TIFR Pelletron Linac facility

    International Nuclear Information System (INIS)

    Gore, J.A.; Gupta, A.K.; Saxena, A.

    2017-01-01

    The Pelletron Accelerator, set up as a collaborative project between the Bhabha Atomic Research Centre and the Tata Institute of Fundamental Research, has been serving as the workhorse for the heavy ion accelerator based research in India since its commissioning in December 30, 1988. The facility was augmented with an indigenously developed superconducting Linac booster to enhance the energy of the Pelletron accelerated beams and was fully commissioned on November 28, 2007. The augmented facility is renamed as Pelletron Linac facility (PLF). While the PLF is predominantly utilized by the experimental users from BARC and TIFR, the users include researchers from other research institutions and universities within India and abroad

  19. EG and G electron linac modifications

    International Nuclear Information System (INIS)

    Norris, N.J.; Detch, J.L.; Kocimski, S.M.; Sawyer, C.R.; Hudson, C.L.

    1986-01-01

    A three-year modification of the EG and G electron linac has been performed to replace obsolete equipment and bring all subsystems up to the current state of the art. Components and subsystems were designed, constructed, and tested off-line to minimize interruption of experiments. The configuration of the modified linac is shown schematically, and performance characteristics are give. Each subsystem is described, including: the electron gun; solenoid focusing system; subharmonic bunchers; accelerating system; RF system; klystron modulators and power supplies; control system; beam handling system; vacuum system; and beam current monitors. 7 refs., 4 figs., 2 tabs

  20. Proton linacs for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Lennox, A.J.

    1993-08-01

    Recent advances in the ability to deliver boron-containing drugs to brain tumors have generated interest in ∼4 MeV linacs as sources of epithermal neutrons for radiation therapy. In addition, fast neutron therapy facilities have been studying methods to moderate their beams to take advantage of the high cross section for epithermal neutrons on boron-10. This paper describes the technical issues involved in each approach and presents the motivation for undertaking such studies using the Fermilab linac. the problems which must be solved before therapy can begin are outlined. Status of preparatory work and results of preliminary measurements are presented

  1. 4-rod RFQ linac for ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Hiroshi; Hamamoto, Nariaki; Inouchi, Yutaka [Nisshin Electric Co. Ltd., Kyoto (Japan)

    1997-03-01

    A 34 MHz 4-rod RFQ linac system has been upgraded in both its rf power efficiency and beam intensity. The linac is able to accelerate in cw operation 0.83 mA of a B{sup +} ion beam from 0.03 to 0.91 MeV with transmission of 61 %. The rf power fed to the RFQ is 29 kW. The unloaded Q-value of the RFQ has been improved approximately 61 % to 5400 by copper-plating stainless steel cooling pipes in the RFQ cavity. (author)

  2. Preinjector for Linac 1, accelerating column

    CERN Multimedia

    1974-01-01

    For a description of the Linac 1 preinjector, please see first 7403070X. High up on the wall of the Faraday cage (7403073X) is this drum-shaped container of the ion source (7403083X). It is mounted at the HV end of the accelerating column through which the ions (usually protons; many other types of ions in the course of its long history) proceed through the Faraday cage wall to the low-energy end (at ground potential) of Linac 1. The 520 kV accelerating voltage was supplied by a SAMES generator (7403074X).

  3. A fiducial detection algorithm for real-time image guided IMRT based on simultaneous MV and kV imaging.

    Science.gov (United States)

    Mao, Weihua; Riaz, Nadeem; Lee, Louis; Wiersma, Rodney; Xing, Lei

    2008-08-01

    The advantage of highly conformal dose techniques such as 3DCRT and IMRT is limited by intrafraction organ motion. A new approach to gain near real-time 3D positions of internally implanted fiducial markers is to analyze simultaneous onboard kV beam and treatment MV beam images (from fluoroscopic or electronic portal image devices). Before we can use this real-time image guidance for clinical 3DCRT and IMRT treatments, four outstanding issues need to be addressed. (1) How will fiducial motion blur the image and hinder tracking fiducials? kV and MV images are acquired while the tumor is moving at various speeds. We find that a fiducial can be successfully detected at a maximum linear speed of 1.6 cm/s. (2) How does MV beam scattering affect kV imaging? We investigate this by varying MV field size and kV source to imager distance, and find that common treatment MV beams do not hinder fiducial detection in simultaneous kV images. (3) How can one detect fiducials on images from 3DCRT and IMRT treatment beams when the MV fields are modified by a multileaf collimator (MLC)? The presented analysis is capable of segmenting a MV field from the blocking MLC and detecting visible fiducials. This enables the calculation of nearly real-time 3D positions of markers during a real treatment. (4) Is the analysis fast enough to track fiducials in nearly real time? Multiple methods are adopted to predict marker positions and reduce search regions. The average detection time per frame for three markers in a 1024 x 768 image was reduced to 0.1 s or less. Solving these four issues paves the way to tracking moving fiducial markers throughout a 3DCRT or IMRT treatment. Altogether, these four studies demonstrate that our algorithm can track fiducials in real time, on degraded kV images (MV scatter), in rapidly moving tumors (fiducial blurring), and even provide useful information in the case when some fiducials are blocked from view by the MLC. This technique can provide a gating signal or

  4. Neutron dose measurements of Varian and Elekta linacs by TLD600 and TLD700 dosimeters and comparison with MCNP calculations.

    Science.gov (United States)

    Nedaie, Hassan Ali; Darestani, Hoda; Banaee, Nooshin; Shagholi, Negin; Mohammadi, Kheirollah; Shahvar, Arjang; Bayat, Esmaeel

    2014-01-01

    High-energy linacs produce secondary particles such as neutrons (photoneutron production). The neutrons have the important role during treatment with high energy photons in terms of protection and dose escalation. In this work, neutron dose equivalents of 18 MV Varian and Elekta accelerators are measured by thermoluminescent dosimeter (TLD) 600 and TLD700 detectors and compared with the Monte Carlo calculations. For neutron and photon dose discrimination, first TLDs were calibrated separately by gamma and neutron doses. Gamma calibration was carried out in two procedures; by standard 60Co source and by 18 MV linac photon beam. For neutron calibration by (241)Am-Be source, irradiations were performed in several different time intervals. The Varian and Elekta linac heads and the phantom were simulated by the MCNPX code (v. 2.5). Neutron dose equivalent was calculated in the central axis, on the phantom surface and depths of 1, 2, 3.3, 4, 5, and 6 cm. The maximum photoneutron dose equivalents which calculated by the MCNPX code were 7.06 and 2.37 mSv.Gy(-1) for Varian and Elekta accelerators, respectively, in comparison with 50 and 44 mSv.Gy(-1) achieved by TLDs. All the results showed more photoneutron production in Varian accelerator compared to Elekta. According to the results, it seems that TLD600 and TLD700 pairs are not suitable dosimeters for neutron dosimetry inside the linac field due to high photon flux, while MCNPX code is an appropriate alternative for studying photoneutron production.

  5. SU-E-T-468: Implementation of the TG-142 QA Process for Seven Linacs with Enhanced Beam Conformance

    Energy Technology Data Exchange (ETDEWEB)

    Woollard, J; Ayan, A; DiCostanzo, D; Grzetic, S; Hessler, J; Gupta, N [OH State University, Columbus, OH (United States)

    2015-06-15

    Purpose: To develop a TG-142 compliant QA process for 7 Varian TrueBeam linear accelerators (linacs) with enhanced beam conformance and dosimetrically matched beam models. To ensure consistent performance of all 7 linacs, the QA process should include a common set of baseline values for use in routine QA on all linacs. Methods: The TG 142 report provides recommended tests, tolerances and frequencies for quality assurance of medical accelerators. Based on the guidance provided in the report, measurement tests were developed to evaluate each of the applicable parameters listed for daily, monthly and annual QA. These tests were then performed on each of our 7 new linacs as they came on line at our institution. Results: The tolerance values specified in TG-142 for each QA test are either absolute tolerances (i.e. ±2mm) or require a comparison to a baseline value. The results of our QA tests were first used to ensure that all 7 linacs were operating within the suggested tolerance values provided in TG −142 for those tests with absolute tolerances and that the performance of the linacs was adequately matched. The QA test results were then used to develop a set of common baseline values for those QA tests that require comparison to a baseline value at routine monthly and annual QA. The procedures and baseline values were incorporated into a spreadsheets for use in monthly and annual QA. Conclusion: We have developed a set of procedures for daily, monthly and annual QA of our linacs that are consistent with the TG-142 report. A common set of baseline values was developed for routine QA tests. The use of this common set of baseline values for comparison at monthly and annual QA will ensure consistent performance of all 7 linacs.

  6. SU-E-T-468: Implementation of the TG-142 QA Process for Seven Linacs with Enhanced Beam Conformance

    International Nuclear Information System (INIS)

    Woollard, J; Ayan, A; DiCostanzo, D; Grzetic, S; Hessler, J; Gupta, N

    2015-01-01

    Purpose: To develop a TG-142 compliant QA process for 7 Varian TrueBeam linear accelerators (linacs) with enhanced beam conformance and dosimetrically matched beam models. To ensure consistent performance of all 7 linacs, the QA process should include a common set of baseline values for use in routine QA on all linacs. Methods: The TG 142 report provides recommended tests, tolerances and frequencies for quality assurance of medical accelerators. Based on the guidance provided in the report, measurement tests were developed to evaluate each of the applicable parameters listed for daily, monthly and annual QA. These tests were then performed on each of our 7 new linacs as they came on line at our institution. Results: The tolerance values specified in TG-142 for each QA test are either absolute tolerances (i.e. ±2mm) or require a comparison to a baseline value. The results of our QA tests were first used to ensure that all 7 linacs were operating within the suggested tolerance values provided in TG −142 for those tests with absolute tolerances and that the performance of the linacs was adequately matched. The QA test results were then used to develop a set of common baseline values for those QA tests that require comparison to a baseline value at routine monthly and annual QA. The procedures and baseline values were incorporated into a spreadsheets for use in monthly and annual QA. Conclusion: We have developed a set of procedures for daily, monthly and annual QA of our linacs that are consistent with the TG-142 report. A common set of baseline values was developed for routine QA tests. The use of this common set of baseline values for comparison at monthly and annual QA will ensure consistent performance of all 7 linacs

  7. Microphonic measurements on superconducting linac structures

    International Nuclear Information System (INIS)

    Marzali, A.; Schwettman, H.A.

    1992-01-01

    Microphonics in multi-cell linac structures lead to energy and pointing modulation of the electron beam despite RF stabilization. Evaluation of the microphonic behaviour of a 500 MHz two cell structure is planned in collaboration with Lawrence Berkeley Laboratory and Brookhaven National Laboratory. In this paper we describe a method of evaluation based on accelerometer measurements. (Author) fig., 2 tabs., 5 refs

  8. Preinjector for Linac 1, ion source

    CERN Multimedia

    1974-01-01

    For a description of the Linac 1 preinjector, please see first 7403070X. Inside the drum-shaped container shown in 7403081X, is the ion source with its associated electronics. It sits at the HV end of the accelerating column seen also in 7403081.

  9. Status of the Novosibirsk energy recovery linac

    International Nuclear Information System (INIS)

    Bolotin, V.P.; Vinokurov, N.A.; Gavrilov, N.G.; Kayran, D.A.; Knyazev, B.A.; Kolobanov, E.I.; Kotenkov, V.V.; Kubarev, V.V.; Kulipanov, G.N.; Matveenko, A.N.; Medvedev, L.E.; Miginsky, S.V.; Mironenko, L.A.; Oreshkov, A.D.; Ovchar, V.K.; Popik, V.M.; Salikova, T.V.; Serednyakov, S.S.; Skrinsky, A.N.; Shevchenko, O.A.; Scheglov, M.A.; Tcheskidov, V.G.

    2006-01-01

    The Novosibirsk terahertz free electron laser is based on the energy recovery linac (ERL) with room-temperature radiofrequency system. Some features of the ERL are discussed. The results of emittance measurements and electron optics tests are presented. The second stage of the ERL, which has four orbits, is described briefly

  10. Linac based radiosurgery and stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Mackie, T.R.

    2008-01-01

    The following topics were discussed: Definition of stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT); Stereo market; Indications for SRS/SRT; History of linac-based SRS/SRT; Variety of systems; QA for SRS; Localization; and Imaging. (P.A.)

  11. First beam in Linac4 DTL

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Following the installation of the Linac4 Drift Tube Linac (DTL) earlier this summer (see here), the first DTL tank saw beams at 12 MeV on 5 August.   Transverse emittance measured at 12 MeV after the DTL tank1 using a temporary slit-and-grid emittance device. You never forget your first beam. That was especially true for the Linac4 DTL team, as it followed years of design, construction and vigorous testing. "We performed countless measurements of the geometry, vacuum and magnet polarisation of the DTL tanks while we were in the workshop," says Suitbert Ramberger, project engineer for the Linac4 DTL. "Add that preparation to the excellent RF conditioning that we carried out in the weeks before the beam tests and I was confident that the acceleration with beam would fully meet expectations!" Indeed it did. Beam commissioning tests ran until 21 August and found the DTL operating with nominal transmission. This successful run has confirmed the innovative design ...

  12. Linac technology for free-electron lasers

    International Nuclear Information System (INIS)

    Cooper, R.K.; Morton, P.L.; Wilson, P.B.; Keefe, D.; Faltens, A.

    1983-01-01

    The purpose of this paper is to concentrate on the properties of high-energy electron linear accelerators for use in free-electron lasers operating principally in the Compton regime. To fix our focus somewhat, we shall consider electron energies in the 20- to 200-MeV range and consider requirements for high-power free-electron lasers operating in the 0.5- to 10-μm range. Preliminary remarks are made on high-power free-electron laser amplifiers and oscillators and some desirable characteristics of the linacs that deliver electron beams for these devices. Both the high peak-current requirements of the amplifier and the high pulse-repetition frequency requirements of the oscillator can be met by present-day linac technology, although not necessarily by the same machine. In this papers second and third section, the technology of two rather different types of linear accelerators, the rf linac and the induction linac, is reviewed. In conclusion, applications to the Free Electron Lasers are stated

  13. CEBAF Cryomodule Commissioning in the South Linac

    International Nuclear Information System (INIS)

    M. Drury; H. Lankford; T. Lee; J. Marshall; J. Preble; Q. Saulter; W. Schneider; Michael Spata; Mark Wiseman

    1993-01-01

    When complete, the Continuous Electron Beam Accelerator Facility will house a 4 GeV recirculating linear accelerator containing 42 1/4 cryomodules arrayed in two antiparallel linacs and an injector. Currently, 38 1/4 cryomodules have been installed. Each cryomodule contains eight superconducting niobium 5-cell rf cavities that operate at 1.497 GHz[1]. A cryomodule must provide an energy gain of 20 MeV to the 200 mu-A beam[2]. The resultant dynamic heat load must be less than 45 W. The cavity parameters that are measured during the commissioning process include the external Q's (Q(sub ext)) of the cavity ports, the unloaded Q (Q(sub 0)) of the cavity as a function of accelerating gradient, and the maximum operating gradient of the cavity[3]. Finally, the mechanical tuners are cycled and characterized. A portable test stand allows local control of the rf system and provides automated data acquisition. During the period from April 1993 through September 1993, 16 of the 20 cryomodules installed in the South Linac were commissioned. All cryomodules tested in the South Linac meet or exceed the CEBAF specifications. This paper describes the results of the commissioning of the first 10 cryomodules in the South Linac

  14. Preinjector for Linac 1, SAMES generator

    CERN Multimedia

    1974-01-01

    For a description of the Linac 1 preinjector, please see first 7403070x. When the original 520 kV Cockcroft-Walton generator broke down in 1973, it was replaced by this much smaller 520 kV SAMES generator, seen here sitting on the floor of the Faraday cage.

  15. Upgrade of GUI for linac control

    International Nuclear Information System (INIS)

    Oonuma, Tadahiro; Shibasaki, Yoshinobu

    1993-01-01

    We are now upgrading GUI(Graphical User Interface) of the control system at Tohoku Linac. This system uses Personal Computer (DECpc466D2LP-66MHz) and Visual Basic which makes coding GUI easy and simple. The first results of this system are presented. (author)

  16. On MV-algebras of non-linear functions

    Directory of Open Access Journals (Sweden)

    Antonio Di Nola

    2017-01-01

    Full Text Available In this paper, the main results are:a study of the finitely generated MV-algebras of continuous functions from the n-th power of the unit real interval I to I;a study of Hopfian MV-algebras; anda category-theoretic study of the map sending an MV-algebra as above to the range of its generators (up to a suitable form of homeomorphism.

  17. On MV-algebras of non-linear functions

    Directory of Open Access Journals (Sweden)

    Antonio Di Nola

    2017-01-01

    Full Text Available In this paper, the main results are: a study of the finitely generated MV-algebras of continuous functions from the n-th power of the unit real interval I to I; a study of Hopfian MV-algebras; and a category-theoretic study of the map sending an MV-algebra as above to the range of its generators (up to a suitable form of homeomorphism.

  18. Statistical simulations of machine errors for LINAC4

    CERN Document Server

    Baylac, M.; Froidefond, E.; Sargsyan, E.

    2006-01-01

    LINAC 4 is a normal conducting H- linac proposed at CERN to provide a higher proton flux to the CERN accelerator chain. It should replace the existing LINAC 2 as injector to the Proton Synchrotron Booster and can also operate in the future as the front end of the SPL, a 3.5 GeV Superconductingg Proton Linac. LINAC 4 consists of a Radio-Frequency Quadrupole, a chopper line, a Drift Tube Linac (DTL) and a Cell Coupled DTL all operating at 352 MHz and finally a Side Coupled Linac at 704 MHz. Beam dynamics was studied and optimized performing end-to-end simulations. This paper presents statistical simulations of machine errors which were performed in order to validate the proposed design.

  19. Monte Carlo Investigation of Photon Beam Characteristics and its Variation with Incident Electron Beam Parameters for Indigenous Medical Linear Accelerator.

    Science.gov (United States)

    Mishra, Subhalaxmi; Dixit, P K; Selvam, T Palani; Yavalkar, Sanket S; Deshpande, D D

    2018-01-01

    A Monte Carlo model of a 6 MV medical linear accelerator (linac) unit built indigenously was developed using the BEAMnrc user code of the EGSnrc code system. The model was benchmarked against the measurements. Monte Carlo simulations were carried out for different incident electron beam parameters in the study. Simulation of indigenously developed linac unit has been carried out using the Monte Carlo based BEAMnrc user-code of the EGSnrc code system. Using the model, percentage depth dose (PDD), and lateral dose profiles were studied using the DOSXYZnrc user code. To identify appropriate electron parameters, three different distributions of electron beam intensity were investigated. For each case, the kinetic energy of the incident electron was varied from 6 to 6.5 MeV (0.1 MeV increment). The calculated dose data were compared against the measurements using the PTW, Germany make RFA dosimetric system (water tank MP3-M and 0.125 cm 3 ion chamber). The best fit of incident electron beam parameter was found for the combination of beam energy of 6.2 MeV and circular Gaussian distributed source in X and Y with FWHM of 1.0 mm. PDD and beam profiles (along both X and Y directions) were calculated for the field sizes from 5 cm × 5 cm to 25 cm × 25 cm. The dose difference between the calculated and measured PDD and profile values were under 1%, except for the penumbra region where the maximum deviation was found to be around 2%. A Monte Carlo model of indigenous linac (6 MV) has been developed and benchmarked against the measured data.

  20. Design Study of Control System for Radiation Therapy System Based on 6 MeV X-band LINAC

    International Nuclear Information System (INIS)

    Kim, Sehee; Kim, Jaehyun; Chae, Moonsik; Lee, Byeongno; Oh, Kyeongmin; Lee, Soomin; Ju, Jinsik; Park, Sangjoon; Kim, Hansoo; Jeong, Kyeongmin

    2017-01-01

    Linear accelerator(LINAC) is used in various fields such as industrial, defense, medical, etc because it is easy to control radiation energy or flow rate. KAERI developed a robot-based radiation therapy system that can efficiently irradiate radiation in a short period of time. Unlike the old type which uses a single robot arm, two robot arms are used and the smart bed is linked to track the respiration. This paper discusses the development of system of integrated X-band LINAC modules installed in smart robot therapy machines. In this study, total control program for integrating and controlling the medical LINAC modules was developed and verified. Future research will continue to reduce delays between transmissions and receptions and minimize interference between the modules.

  1. ORNL 25 MV tandem accelerator control system

    International Nuclear Information System (INIS)

    Juras, R.C.; Biggerstaff, J.A.; Hoglund, D.E.

    1985-01-01

    The CAMAC-based control system for the 25 MV tandem electrostatic accelerator of the Holifield Heavy Ion Research Facility at Oak Ridge National Laboratory (ORNL) was specified by ORNL and built by the National Electrostatics Corporation. Two Perkin-Elmer 32-bit minicomputers are used in the system, a message switching computer and a supervisory computer. The message switching computer transmits and receives control information on six serial highways. This computer shares memory with the supervisory computer. Operator consoles are located on a serial highway; control is by means of a console CRT, trackball, and assignable shaft encoders and meters. Two identical consoles operate simultaneously: one is located in the tandem control room; the other is located in the cyclotron control room to facilitate operation during injection of tandem beams into the cyclotron or when beam lines under control of the cyclotron control system are used. The supervisory computer is used for accelerator parameter setup calculations, actual accelerator setup for new beams based on scaled, recorded parameters from previously run beams, and various other functions. Nearly seven years of control system operation and improvements will be discussed

  2. Photoneutrons from medical linear accelerators--radiobiological measurements and risk estimates

    International Nuclear Information System (INIS)

    Hall, Eric J.; Martin, Stewart G.; Amols, Howard; Hei, Tom K.

    1995-01-01

    Purpose: To assess the oncogenic potential of the photoneutrons produced by high energy medical linear accelerators. Methods and Materials: An established line of cells of rodent origin (C 3 H 10T1/2) was used to assess the oncogenic potential of the radiation dose received in the breast of an anthropomorphic 'randoman' phanton, while the cervix received a dose of 70 Gy. Experiments were performed at 6 MV, below the threshold for the production of photoneutrons, and at 20 MV where the dose includes about 0.01 Gy of photoneutrons as well as scattered x-rays. Results: A significantly higher transformation incidence was observed for the 20-MV machine, consistent with the measured neutron dose of about 0.01 Gy and a quality factor of 20. Conclusion: An estimate can be made of the additional deaths from second malignancies that might result from the photoneutrons generated by higher energy linear accelerators (Linacs), which must be offset against the possible improvements in survival that might result from the higher tumor doses made possible by the increased percentage depth doses

  3. Validation of calculated tissue maximum ratio obtained from measured percentage depth dose (PPD) data for high energy photon beam ( 6 MV and 15 MV)

    International Nuclear Information System (INIS)

    Osei, J.E.

    2014-07-01

    During external beam radiotherapy treatments, high doses are delivered to the cancerous cell. Accuracy and precision of dose delivery are primary requirements for effective and efficiency in treatment. This leads to the consideration of treatment parameters such as percentage depth dose (PDD), tissue air ratio (TAR) and tissue phantom ratio (TPR), which show the dose distribution in the patient. Nevertheless, tissue air ratio (TAR) for treatment time calculation, calls for the need to measure in-air-dose rate. For lower energies, measurement is not a problem but for higher energies, in-air measurement is not attainable due to the large build-up material required for the measurement. Tissue maximum ratio (TMR) is the quantity required to replace tissue air ratio (TAR) for high energy photon beam. It is known that tissue maximum ratio (TMR) is an important dosimetric function in radiotherapy treatment. As the calculation methods used to determine tissue maximum ratio (TMR) from percentage depth dose (PDD) were derived by considering the differences between TMR and PDD such as geometry and field size, where phantom scatter or peak scatter factors are used to correct dosimetric variation due to field size difference. The purpose of this study is to examine the accuracy of calculated tissue maximum ratio (TMR) data with measured TMR values for 6 MV and 15 MV photon beam at Sweden Ghana Medical Centre. With the help of the Blue motorize water phantom and the Omni pro-Accept software, Pdd values from which TMRs are calculated were measured at 100 cm source-to-surface distance (SSD) for various square field sizes from 5x5 cm to 40x40 cm and depth of 1.5 cm to 25 cm for 6 MV and 15 MV x-ray beam. With the same field sizes, depths and energies, the TMR values were measured. The validity of the calculated data was determined by making a comparison with values measured experimentally at some selected field sizes and depths. The results show that; the reference depth of maximum

  4. Short-lived radionuclide production capability at the Brookhaven Linac Isotope Producer

    International Nuclear Information System (INIS)

    Mausner, L.F.; Richards, P.

    1985-01-01

    The Brookhaven National Linac Isotope Producer is the first facility to demonstrate the capability of a large linear accelerator for efficient and economical production of difficult-to-make, medically useful radionuclides. The linac provides a beam of 200-MeV protons at an integrated beam current of up to 60 μA. The 200-MeV proton energy is very suitable for isotope production because the spallation process can create radionuclides unavailable at lower energy accelerators or reactors. Several medically important short-lived radionuclides are presently being prepared for on-site and off-site collaborative research programs. These are iodine-123, iron-52, manganese-52m, ruthenium-97, and the rubidium-81-krypton-81m system. The production parameters for these are summarized

  5. Design and simulation of an optimized e-linac based neutron source for BNCT research

    International Nuclear Information System (INIS)

    Durisi, E.; Alikaniotis, K.; Borla, O.; Bragato, F.; Costa, M.; Giannini, G.; Monti, V.; Visca, L.; Vivaldo, G.; Zanini, A.

    2015-01-01

    The paper is focused on the study of a novel photo-neutron source for BNCT preclinical research based on medical electron Linacs. Previous studies by the authors already demonstrated the possibility to obtain a mixed thermal and epithermal neutron flux of the order of 10"7 cm"−"2 s"−"1. This paper investigates possible Linac’s modifications and a new photo-converter design to rise the neutron flux above 5 10"7 cm"−"2 s"−"1, also reducing the gamma contamination. - Highlights: • Proposal of a mixed thermal and epithermal (named hyperthermal) neutron source based on medical high energy electron Linac. • Photo-neutron production via Giant Dipole Resonance on high Z materials. • MCNP4B-GN simulations to design the photo-converter geometry maximizing the hyperthermal neutron flux and minimizing the fast neutron and gamma contaminations. Hyperthermal neutron field suitable for BNCT preclinical research.

  6. A simple self-breaking 2 MV gas switch

    Energy Technology Data Exchange (ETDEWEB)

    Di Capua, M.S.; Freytag, E.K.; Dixon, W.R.; Hawley, R.A.

    1987-06-29

    We describe a simple self-breaking 2 MV gas master switch for the LLNL 2 MV general purpose relativistic electron beam (REB) accelerator. The switch cavity has been hollowed out in a 17.8 cm-thick acrylic slab. The switch gap is 3.55 cm. At 2 MV the maximum field at the cathode is 740 kV cm/sup -1/ and the maximum envelope field is 172 kV cm/sup -1/. The maximum measured switching voltage is 1.90 +- 0.1 MV (10 bar abs). The minimum switching voltage is 1.1 MV (4.3 bar abs). The operating characteristics break away from the 89 kV/(cm atm) dc breakdown strength of SF/sub 6/ at 5 bar abs. Careful electrical and mechanical design as well as strict quality control during assembly and operation have resulted in reliable and reproducible operation.

  7. SU-E-T-163: Thin-Film Organic Photocell (OPV) Properties in MV and KV Beams for Dosimetry Applications.

    Science.gov (United States)

    Ng, S K; Hesser, J; Zhang, H; Gowrisanker, S; Yakushevich, S; Shulhevich, Y; Abkai, C; Wack, L; Zygmanski, P

    2012-06-01

    To characterize dosimetric properties of low-cost thin film organic-based photovoltaic (OPV) cells to kV and MV x-ray beams for their usage as large area dosimeter for QA and patient safety monitoring device. A series of thin film OPV cells of various areas and thicknesses were irradiated with MV beams to evaluate the stability and reproducibility of their response, linearity and sensitivity to absorbed dose. The OPV response to x-rays of various linac energies were also characterized. Furthermore the practical (clinical) sensitivity of the cells was determined using IMRT sweeping gap test generated with various gap sizes. To evaluate their potential usage in the development of low cost kV imaging device, the OPV cells were irradiated with kV beam (60-120 kVp) from a fluoroscopy unit. Photocell response to the absorbed dose was characterized as a function of the organic thin film thickness and size, beam energy and exposure for kV beams as well. In addition, photocell response was determined with and without thin plastic scintillator. Response of the OPV cells to the absorbed dose from kV and MV beams are stable and reproducible. The photocell response was linearly proportional to the size and about slightly decreasing with the thickness of the organic thin film, which agrees with the general performance of the photocells in visible light. The photocell response increases as a linear function of absorbed dose and x-ray energy. The sweeping gap tests performed showed that OPV cells have sufficient practical sensitivity to measured MV x-ray delivery with gap size as small as 1 mm. With proper calibration, the OPV cells could be used for online radiation dose measurement for quality assurance and patient safety purposes. Their response to kV beam show promising potential in development of low cost kV radiation detection devices. © 2012 American Association of Physicists in Medicine.

  8. Current status of femtosecond triplet Linacs 2000

    International Nuclear Information System (INIS)

    Uesaka, M.; Watanabe, T.; Kobayashi, T.

    2000-01-01

    Femtosecond Ultrafast Quantum Phenomenon Research Facility has been commissioned in 2000. It consists the femtosecond linac-laser synchronization system, the 12 TW 50 fs laser system and the analyzing system. Laser photocathode RF gun produced l kA = 7 nC / 7 ps for 250 μJ 267 nm laser irradiation, synchronization of 300 fs (rms) for minutes and l.9 ps (rms) for hours was established. Efforts to avoid such long-term drift are under way. This system is applied to subpico- and picosecond pulseradiolysis for radiation chemistry of water and supercritical water. Laser plasma linac works are under way to generate 20 MeV 10 fs electron bunch and ps ion beam using the 12 TW 50 fs laser. Further, the time-resolved X-ray diffraction is close to dynamic visualization of atomic motions. (author)

  9. Superconducting linac booster for NSC Pelletron

    International Nuclear Information System (INIS)

    Roy, A.; Prakash, P.N.; Ajithkumar, B.P.; Ghosh, S.; Changrani, T.; Mehta, R.; Sarkar, A.; Muralidhar, S.; Dutt, R.N.; Kumar, M.; Shepard, K.W.; and others.

    1996-01-01

    The progress made in the heavy ion superconducting linac booster project for the Nuclear Science Centre Pelletron accelerator is overviewed. Prototypes of the accelerating structure have been fabricated at Argonne National Laboratory and undergone several diagnostic tests. In the first phase heavy ions up to mass 80 will be accelerated to energies above the Coulomb barrier and in the second phase the mass limit would be increased to 120. The subsystems of the project are the basic accelerating structures, the RF instrumentation and control, the cryogenic system and the beam optics. Preliminary designs for the buncher and linac cryostats have been made. Several prototypes of RF electronics and control modules have been fabricated and tested. (R.P.)

  10. The source development lab linac at BNL

    International Nuclear Information System (INIS)

    Graves, W.S.; Johnson, E.D.

    1996-12-01

    A 210 MeV SLAC-type electron linac is currently under construction at BNL as part of the Source Development Laboratory. A 1.6 cell RF photoinjector is employed as the high brightness electron source which is excited by a frequency tripled Titanium:Sapphire laser. This linac will be used for several source development projects including a short bunch storage ring, and a series of FEL experiments based on the 10 m long NISUS undulator. The FEL will be operated as either a SASE or seeded beam device using the Ti:Sapp laser. For the seeded beam experiments; direct amplification, harmonic generation, and chirped pulse amplification modes will be studied, spanning an output wavelength range from 900 nm down to 100 nm. This paper presents the project's design parameters and results of recent modeling using the PARMELA and MAD simulation codes

  11. Electron linac design for pion radiotherapy

    International Nuclear Information System (INIS)

    Loew, G.A.; Brown, K.L.; Miller, R.H.; Walz, D.R.

    1977-03-01

    The electron linac provides a straightforward, state-of-the-art method of producing the primary beam required for a hospital-based multiport pion radiotherapy facility for cancer treatment. The accelerator and associated beam transport system described are capable of generating an electron beam of about 250 kW and delivering it alternately to one of several pion generators and treatment areas. Each pion generator, a prototype of which now exists at the Stanford W. W. Hansen Laboratory, would contain a target for the electron beam and sixty separate superconducting magnet channels which focus the pions in the patient. The considerations which enter the design of a practical linac are presented together with a possible layout of a flexible beam transport system

  12. New high power linacs and beam physics

    International Nuclear Information System (INIS)

    Wangler, T.P.; Gray, E.R.; Nath, S.; Crandall, K.R.; Hasegawa, K.

    1997-01-01

    New high-power proton linacs must be designed to control beam loss, which can lead to radioactivation of the accelerator. The threat of beam loss is increased significantly by the formation of beam halo. Numerical simulation studies have identified the space-charge interactions, especially those that occur in rms mismatched beams, as a major concern for halo growth. The maximum-amplitude predictions of the simulation codes must be subjected to independent tests to confirm the validity of the results. Consequently, the authors compare predictions from the particle-core halo models with computer simulations to test their understanding of the halo mechanisms that are incorporated in the computer codes. They present and discuss scaling laws that provide guidance for high-power linac design

  13. Superconducting RF for energy-recovery linacs

    International Nuclear Information System (INIS)

    Liepe, M.; Knobloch, J.

    2006-01-01

    Since superconducting RF for particle accelerators made its first appearance in the 1970s, it has found highly successful application in a variety of machines. Recent progress in this technology has made so-called Energy-Recovery Linacs (ERLs)-originally proposed in 1965-feasible, and interest in this type of machine has increased enormously. A superconducting linac is the driving heart of ERLs, and emittance preservation and cost efficiency is of utmost importance. The resulting challenges for the superconducting cavity technology and RF field control are manifold. In March 2005 the first international workshop on ERLs was held at Newport News, VA, to explore the potential of ERLs and to discuss machine-physics and technology challenges and their solutions. This paper reviews the state-of-the-art in superconducting RF and RF control for ERLs, and summarizes the discussions of the SRF working group on this technology during the ERL2005 workshop

  14. Induction linacs for heavy ion fusion research

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Avery, R.T.; Brady, V.; Bisognano, J.; Celata, C.; Chupp, W.W.; Faltens, A.; Hartwig, E.C.; Judd, D.L.; Keefe, D.; Kim, C.H.; Laslett, L.J.; Lee, E.P.; Rosenblum, S.S.; Smith, L.; Warwick, A.

    1984-01-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams. (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to proportional70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units. (orig.)

  15. A proposed injector for the LCLS linac

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Bharadwaj, V.K.; Emma, P.; Miller, R.H.; Palmer, D.T.; Woodley, M.D.

    1996-11-01

    The Linac Coherent Light Source (LCLS) will use the last portion of the SLAC accelerator as a driver for a short wavelength FEL. The injector must produce 1-nC, 3-ps rms electron bunches at a repetition rate of up to 120 Hz with a normalized rms emittance of about 1 mm-mrad. The injector design takes advantage of the photocathode rf gun technology developed since its conception in the mid 1980's, in particular the S-band rf gun developed by the SLAC/BNL/UCLA collaboration, and emittance compensation techniques developed in the last decade. The injector beamline has been designed using the SUPERFISH, POISSON, PARMELA, and TRANSPORT codes in a consistent way to simulate the beam from the gun up to the entrance of the main accelerator linac where the beam energy is 150 MeV. PARMELA simulations indicate that at 150 MeV, space charge effects are negligible

  16. Operational experience with the Fermilab Linac

    International Nuclear Information System (INIS)

    Allen, L.J.; Lennox, A.J.; Schmidt, C.W.

    1992-01-01

    The Fermilab 200-MeV Linac has been in operation for nearly 22 years as a proton injector to the Booster synchrotron. It presently accelerates H - ions to 200 MeV for charge-exchange injection into the Booster and to 66 MeV for the production of neutrons at the Neutron Therapy Facility (NTF). The beam intensity is typically 35 mA with pulse widths of 30 μsec for the Booster for high energy physics and 57 μsec for NTF at a maximum of 15 pulses per sec. During a typical physics run of nine to twelve months, beam is available for greater than 98% of the scheduled time. The Linac history, operation, tuning, stability and reliability will be discussed. (Author) 15 refs., 2 tabs

  17. Research on backward traveling wave electron linac

    International Nuclear Information System (INIS)

    Chen Huaibi; Zheng Shuxin; Ding Xiaodong; Lin Yuzheng

    1999-01-01

    Future electron linacs require high gradient acceleration. The studies on the high shunt impedance backward traveling wave electron linac accelerating structure (BTW) are presented. At first, the characteristics of BTW are researched. The option of mode and optimal design methods of accelerating cavity for BTW are studied. A physical design method for BTW accelerators, including longitudinal and transversal particle dynamics, is given. Based on above studies, a 9 MeV BTW accelerating tube at 3π/4 mode with frequency 2856 MHz for inspecting large container as radiation source at customs is designed, and a comparison with disk-loaded waveguide accelerating tube is made. The result of research leads to the conclusion that backward traveling wave accelerating structure is preferable. Because BTW has higher effective shunt impedance, shorter filling time and more stable operation

  18. Induction linacs for heavy ion fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Fessenden, T.J.

    1984-05-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams, (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to approx. 70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units.

  19. Commissioning the Linac Coherent Light Source injector

    Directory of Open Access Journals (Sweden)

    R. Akre

    2008-03-01

    Full Text Available The Linac Coherent Light Source is a SASE x-ray free-electron laser (FEL project presently under construction at SLAC [J. Arthur et al., SLAC-R-593, 2002.]. The injector section, from drive laser and rf photocathode gun through first bunch compressor chicane, was installed in the fall of 2006. The initial system commissioning with an electron beam was completed in August of 2007, with the goal of a 1.2-micron emittance in a 1-nC bunch demonstrated. The second phase of commissioning, including second bunch compressor and full linac, is planned for 2008, with FEL commissioning in 2009. We report experimental results and experience gained in the first phase of commissioning, including the photocathode drive laser, rf gun, photocathode, S-band and X-band rf systems, first bunch compressor, and the various beam diagnostics.

  20. Re-circulating linac vacuum system

    International Nuclear Information System (INIS)

    Wells, Russell P.; Corlett, John N.; Zholents, Alexander A.

    2003-01-01

    The vacuum system for a proposed 2.5 GeV, 10ΜA recirculating linac synchrotron light source [1] is readily achievable with conventional vacuum hardware and established fabrication processes. Some of the difficult technical challenges associated with synchrotron light source storage rings are sidestepped by the relatively low beam current and short beam lifetime requirements of a re-circulating linac. This minimal lifetime requirement leads directly to relatively high limits on the background gas pressure through much of the facility. The 10ΜA average beam current produces very little synchrotron radiation induced gas desorption and thus the need for an ante-chamber in the vacuum chamber is eliminated. In the arc bend magnets, and the insertion devices, the vacuum chamber dimensions can be selected to balance the coherent synchrotron radiation and resistive wall wakefield effects, while maintaining the modest limits on the gas pressure and minimal outgassing

  1. Dosimetric comparison of water phantoms, ion chambers, and data acquisition modes for LINAC characterization

    International Nuclear Information System (INIS)

    Cruz, Wilbert; Narayanasamy, Ganesh; Papanikolaou, Niko; Stathakis, Sotirios

    2015-01-01

    Purpose: In this study a dosimetric comparison utilizing continuous data acquisition and discrete data acquisition is examined using IBA Blue Phantom (IBA Dosimetry, Schwarzenbruck, Germany) and PTW (PTW, Freiberg, Germany) MP3-M water tanks. The tanks were compared according to several factors including set up time, ease of use, and data acquisition times. A tertiary objective is to study the response of several ionization chambers in the two tanks examined. Methods: Measurements made using a Varian 23EX LINAC (Varian Medical Systems, Palo Alto, CA) include PDDs and beam profiles for various field sizes with IBA CC13, PTW Semiflex 31010, PTW Pinpoint N31016, and PTW 31013 ion chambers for photons (6, 18 MV) and electrons (6, 9, 12, 15, and 18 MeV). Radial and transverse profile scans were done at depths of maximum dose, 5 cm, 10 cm, and 20 cm using the same set of tanks and detectors for the photon beams. Radial and transverse profile scans were done at depth of maximum dose for the electron beams on the same tanks and chambers. Data processing and analysis was performed using PTW's MEPHYSTO Navigator software and IBA's OmniPro Accept version 6.6 for the respective water tank systems. Results: PDD values agree to within 1% and dmax to within 1 mm for the PTW MP3-M tank using PTW 31010 and Blue Phantom using IBA CC13 chamber, respectively and larger discrepancy with the PTW PinPoint N31016 chamber at 6 MV. With respect to setup time the PTW MP3-M and IBA Blue phantom tank took about 20 and 40 min, respectively. Scan times were longer by 5–15 min per field size in the PTW MP3-M tank for the square field sizes from 1 cm to 40 cm as compared to the IBA Blue phantom. However, data processing times were higher by 7 min per field size with the IBA system. Conclusions: Tank measurements showed little deviation with the higher energy photons as compared to the lower energy photons with regards to the PDD measurements. Chamber construction as well as tank

  2. Ultra-High Gradient S-band Linac for Laboratory and Industrial Applications

    Science.gov (United States)

    Faillace, L.; Agustsson, R.; Dolgashev, V.; Frigola, P.; Murokh, A.; Rosenzweig, J.; Yakimenko, V.

    2010-11-01

    A strong demand for high gradient structures arises from the limited real estate available for linear accelerators. RadiaBeam Technologies is developing a Doubled Energy Compact Accelerator (DECA) structure: an S-band standing wave electron linac designed to operate at accelerating gradients of up to 50 MV/m. In this paper, we present the radio-frequency design of the DECA S-band accelerating structure, operating at 2.856 GHz in the π-mode. The structure design is heavily influenced by NLC collaboration experience with ultra high gradient X-band structures; S-band, however, is chosen to take advantage of commonly available high power S-band klystrons.

  3. Making electron beams for the SLC linac

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Ecklund, S.D.; James, M.B.; Miller, R.H.; Sheppard, J.C.; Sodja, J.; Truher, J.B.; Minten, A.

    1984-01-01

    A source of high-intensity, single-bunch electron beams has been developed at SLAC for the SLC. The properties of these beams have been studied extensively utilizing the first 100-m of the SLAC linac and the computer-based control system being developed for the SLC. The source is described and the properties of the beams are summarized. 9 references, 2 figures, 1 table

  4. Control system in the technological electron linacs

    International Nuclear Information System (INIS)

    Boriskin, V.N.; Akchurin, Yu.I.; Bahmetev, N.N.; Gurin, V.A.

    1999-01-01

    The special system has been developed for linac control.It controls the electron beam current,the energy and the position,protects the accelerating and scanning systems from the damage caused by the beam;blocks the modulator and the klystron amplifier in the case of intolerable operating modes;regulates the phase and power of the HF signals in the injecting system and also regulates the source power currents in the magnetic system

  5. Beam dynamics in heavy ion induction LINACS

    International Nuclear Information System (INIS)

    Smith, L.

    1981-10-01

    Interest in the use of an induction linac to accelerate heavy ions for the purpose of providing the energy required to initiate an inertially confined fusion reaction has stimulated a theoretical effort to investigate various beam dynamical effects associated with high intensity heavy ion beams. This paper presents a summary of the work that has been done so far; transverse, longitudinal and coupled longitudinal transverse effects are discussed

  6. LINAC for ADS application - accelerator technologies

    International Nuclear Information System (INIS)

    Garnett, Robert W.; Sheffreld, Richard L.

    2009-01-01

    Sifnificant high-current, high-intensity accelerator research and development have been done in the recent past in the US, centered primarily at Los Alamos National Laboratory. These efforts have included designs for the Accelerator Production of Tritium Project, Accelerator Transmutation of Waste, and Accelerator Driven Systems, as well as many others. This past work and some specific design principles that were developed to optimie linac designs for ADS and other high-intensity applications will be discussed briefly.

  7. SU-F-T-461: Dosimetric Evaluation of Indigenous Farmer Type Chamber FAR65- GB for Reference Dosimetry of FFF MV Photon Beam

    Energy Technology Data Exchange (ETDEWEB)

    Patwe, P; Mhatre, V; Dandekar, P [Sir HN RF Hospital, Mumbai, Maharashtra (India)

    2016-06-15

    Purpose: Indigenous Farmer type chamber FAR 65 GB is a reference class 0.6 cc ion chamber. It can be used for dosimetric evaluation of photon and high energy electron beams. We studied dosimetric characteristics of the chamber for 6MV and 10MV Flattening filter free FFF photon beams available on trueBEAM STx Linac. Methods: The study was carried out on trueBEAM STx Linac having 6 and 10 MV FFF photon beam with maximum dose rate 1400 and 2400 MU per min respectively. The dosimetric device to be evaluated is Rosalina Instruments FAR 65-GB Ion Chamber with active volume 0.65 cc, total active length 23.1cm, inner diameter of cylinder 6.2mm, wall thickness 0.4mm, inner electrode diameter 1mm. Inner and outer electrodes are made from Aluminium 2.7 gm per cc and graphite 1.82 gm per cc respectively. The ion chamber was placed along central axis of beam at 10cm depth and irradiated for 10cm × 10cm field size at SAD of 100 cm in plastic phantom. We studied Precision, Dose Linearity, Dose Rate dependence, directional dependence, Recombination effect. Recombination effect was determined using standard two-voltage method. Results: 1. Measurements were reproducible std deviation of 0.0105 and type A uncertainty 0.003265 under same set of reference conditions 2. Chamber exhibit dose linearity over a wider dose range. 3. Chamber shows dose rate independence for all available dose rate range. 4. Response of chamber with the angle of incidence of radiation is constant. 5. Recombination correction factors were 1.01848 and 1.02537 for dose rate 1400 and 2400 MU per min resp. Conclusion: Our study reveals that the chamber is prone to saturation effect at dose rate of 2400 MU per min. FAR 65-GB can be used for reference dosimetry of FFF MV photon beam with proper calculation of recombination effect.

  8. LINAC4 takes a tour of Europe

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    Along the German Autobahnen, a truck carrying 20 tonnes of copper is on its way to Poland. The metal has already made a short tour of Europe, yet the drive across the high-speed highway is only the beginning of its transformation into CERN’s next linear accelerator, LINAC4.   Grzegorz Wrochna (left), director of the Andrzej Soltan Institute for Nuclear Studies (IPJ), and Rolf Heuer (right), CERN DG, sign the framework agreement between the two institutes. By the summer of 2012, the PI-Mode Structures (PIMS) will be constructed and completely installed in the LINAC4 tunnel. The PIMS cavities are the final accelerating structures needed for LINAC4, and have been designed to accelerate protons from 100 to 160MeV. While the first cavity was built entirely at CERN, construction of the remaining cavities has become a larger, multi-national operation. In a 1 million euro framework agreement signed on 11 February by the Director-General, the Andrzej Soltan Institute for Nuclear Studies in Swie...

  9. The RF system for FELI linac

    International Nuclear Information System (INIS)

    Morii, Y.; Abe, S.; Keishi, T.; Tomimasu, T.

    1995-01-01

    FELI (Free Electron Laser Research Institute, Inc.) is constructing a Free Electron Laser facility covering from 20μm (infra red region) to 0.35μm (ultra violet region), using as S-band linac. The linac consists of a thermoionic 0.5ns-pulse triggered gun, a 714-MHz SHB (subharmonic buncher), a 2856-MHz standing wave type buncher, and seven ETL (Electro-technical Laboratory) type accelerating sections. An RF system of the linac for FELs is required of long pulse duration and high stability. Two S-band klystrons (TOSHIBA E3729) are operated in three pulse operation modes (pulse width and peak RF power): 24μs-24MW, 12.5μs-34MW, 0.5μs-70MW. Each klystron modulator has a PFN consisting of 4 parallel networks of 24 capacitors and 24 variable inductors, and it has a line switch of an optical thyristor stack. An S-band klystron and its modulator were combined to test their performance at the works of NISSIN ELECTRIC Co. in December 1993. These equipments were installed at FELI in January 1994. The design and experimental results of the RF system are summarized in this paper. (author)

  10. Experiments and prospects for induction linac drivers

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-05-01

    In the last three years, the US program in Heavy Ion Fusion has concentrated on understanding the induction linac approach to a power-plant driver. In this method it is important that the beam current be maximized throughout the accelerator. Consequently, it is crucial to understand the space-charge limit in the AG transport system in the linac and, also, to achieve current amplification during acceleration to keep pace with the kinematical increase of this limit with energy. Experimental results on both these matters and also on the use of multiple beams (inside the same accelerating structure) will be described. A new examination of the most attractive properties of the induction linac for a fusion driver has clearly pointed to the advantage of using heavy ions with a charge-state greater than unity - perhaps q = 3 may be an optimum. This development places even greater importance on understanding space-charge limits and mechanisms for emittance growth; also, it will require a new emphasis on the development of a suitable ion source

  11. Experiments and prospects for induction linac drivers

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-12-01

    In the last three years, the US program in Heavy Ion Fusion has concentrated on understanding the induction linac approach to a power-plant driver. In this method it is important that the beam current be maximized throughout the accelerator. Consequently, it is crucial to understand the space-charge limit in the AG transport system in the linac and, also, to achieve current amplification during acceleration to keep pace with the kinematical increase of this limit with energy. Experimental results on both these matters and also on the use of multiple beams (inside the same accelerating structure) will be described. A new examination of the most attractive properties of the induction linac for a fusion driver has clearly pointed to the advantage of using heavy ions with a charge-state greater than unity - perhaps q = 3 may be an optimum. This development places even greater importance on understanding space-charge limits and mechanisms for emittance growth; also, it will require a new emphasis on the development of a suitable ion source

  12. Preinjector for Linac 1, Faraday cage

    CERN Multimedia

    1974-01-01

    The 50 MeV Linac 1 started up in 1958 as injector to the 26 GeV PS, with a 520 kV Cockcroft-Walton generator as its preinjector, housed in a vast Faraday cage, visible here. When the Cockcroft-Walton broke down in 1973, it was replaced by a much smaller SAMES generator, of the kind used for electrostatic separators. From 1980 on, Linac 2 took over as injector for the 800 MeV Booster, and Linac 1 continued as injector for LEAR. In 1984, the electrostatic preinjector (i.e. the Faraday cage with its contents, SAMES generator and all) was replaced by a 520 keV RFQ. At the lower left corner we see the HV connectors to the SAMES generator, at the right edge part of the opened electronics-platform. Jean-Luc Vallet sees to it that all parts are properly grounded. See also 7403073X, 7403074X, 7403081X, 7403083X.

  13. All Digital IQ Servo-System for CERN Linacs

    CERN Document Server

    Rohlev, A; Garoby, R

    2003-01-01

    A new VME based system has been developed and built at CERN for the servo loops regulating the field in the linac accelerating structure. It makes use of high speed digital In-phase/Quadrature (IQ) detection, digital processing, and digital IQ modulation. The digital processing and IQ modulation is done in a single PLD. The system incorporates continually variable set points, iterative learning, feed forward as well as extensive diagnostics and other features well suited for digital implementations. Built on a single VME card, it will be first used in the energy ramping RF chain of the CERN Heavy Ion Linac (linac 3) and later for upgrading the present proton linac (linac 2). This system serves also as a prototype for the future Superconducting Proton Linac (SPL). The design principle and the experimental results are described.

  14. Preliminary design of a dedicated proton therapy linac

    International Nuclear Information System (INIS)

    Hamm, R.W.; Crandall, K.R.; Potter, J.M.

    1991-01-01

    The preliminary design has been completed for a low current, compact proton linac dedicated to cancer therapy. A 3 GHz side-coupled structure accelerates the beam from a 70 MeV drift tube linac using commercially available S-band rf power systems and accelerating cavities. This significantly reduces the linac cost and allows incremental energies up to 250 MeV. The short beam pulse width and high repetition rate make the linac similar to the high energy electron linacs now used for cancer therapy, yet produce a proton flux sufficient for treatment of large tumors. The high pulse repetition rate permits raster scanning, and the small output beam size and emittance result in a compact isocentric gantry design. Such a linac will reduce the facility and operating costs for a dedicated cancer therapy system

  15. Portal film charts for a 6 MV linear accelerator

    International Nuclear Information System (INIS)

    Faermann, S.; Regev, E.; Leser, Y.

    1990-01-01

    Localization errors frequently arise in the portal film technique due to over-or underdevelop films, for high energy radiotherapy machines. To guarantee the accuracy and reproducibility of the localization film technique portal film charts were introduced into the routine planning for the Mevatron 6MV linear accelerator of the Beilinson Radiotherapy Dept. Maintaining reproducible film processor conditions, two films were used: medical X-ray film Curix RPI Agfa and localization film X-OMAT TL Kodak, combined with front and rear copper screens of 0.5 mm thickness each. The sensitometric curves for each film-screen combination were obtained (optical density as function of cassette dose). The least square fitted O.D. curve was used to obtain the cassette dose which produces an O.D. of 1.6. A theoretical equation for the calculation of the dose at the cassette positions, beyond a water phantom, as function of field size, SSD, patient thickness and patient to cassette separation, was experimentally checked with a 0.6 cc Farmer ionization chamber coupled to a 2570 Farmer dosimeter. As a result portal film charts (expressed in MU) were constructed as a function of FS, air-gap and patient-thickness, and the best partition dose for the double-exposure technique was also established. The patients dose in the double exposure technique was compared to that delivered in diagnostic radiology procedures. (author)

  16. A 2--4 nm Linac Coherent Light Source (LCLS) using the SLAC linac

    International Nuclear Information System (INIS)

    Winick, H.; Bane, K.; Boyce, R.

    1993-05-01

    We describe the use of the SLAC linac to drive a unique, powerful. short wavelength Linac Coherent Light Source (LCLS). Operating as an FEL, lasing would be achieved in a single pass of a high peak current electron beam through a long undulator by self-amplified spontaneous emission (SASE). The main components are a high-brightness rf photocathode electron gun; pulse compressors; about 1/5 of the SLAC linac; and a long undulator with a FODO quadrupole focussing system. Using electrons below 8 GeV, the system would operate at wavelengths down to about 3 nm, producing ≥10 GW peak power in sub-ps pulses. At a 120 Hz rate the average power is ∼ 1 W

  17. Neutron spectrometry and determination of neutron ambient dose equivalents in different LINAC radiotherapy rooms

    International Nuclear Information System (INIS)

    Domingo, C.; Garcia-Fuste, M.J.; Morales, E.; Amgarou, K.; Terron, J.A.; Rosello, J.; Brualla, L.; Nunez, L.; Colmenares, R.; Gomez, F.; Hartmann, G.H.; Sanchez-Doblado, F.; Fernandez, F.

    2010-01-01

    A project has been set up to study the effect on a radiotherapy patient of the neutrons produced around the LINAC accelerator head by photonuclear reactions induced by photons above ∼8 MeV. These neutrons may reach directly the patient, or they may interact with the surrounding materials until they become thermalised, scattering all over the treatment room and affecting the patient as well, contributing to peripheral dose. Spectrometry was performed with a calibrated and validated set of Bonner spheres at a point located at 50 cm from the isocenter, as well as at the place where a digital device for measuring neutrons, based on the upset of SRAM memories induced by thermal neutrons, is located inside the treatment room. Exposures have taken place in six LINAC accelerators with different energies (from 15 to 23 MV) with the aim of relating the spectrometer measurements with the readings of the digital device under various exposure and room geometry conditions. The final purpose of the project is to be able to relate, under any given treatment condition and room geometry, the readings of this digital device to patient neutron effective dose and peripheral dose in organs of interest. This would allow inferring the probability of developing second malignancies as a consequence of the treatment. Results indicate that unit neutron fluence spectra at 50 cm from the isocenter do not depend on accelerator characteristics, while spectra at the place of the digital device are strongly influenced by the treatment room geometry.

  18. Conceptual Design of the Superconducting Proton Linac Short Cryo-module

    CERN Document Server

    Bourcey, N; Capatina, O; Azevedo, P; Montesinos, E; Parma, V; Renaglia, T; Vande Craen, A; Williams, L R; Weingarten, W; Rousselot, S; Duthil, P; Duchesne, P; Reynet, D; Dambre, P

    2012-01-01

    The Superconducting Proton Linac (SPL) is an R&amp;amp;D effort conducted by CERN in partnership with other international laboratories, aimed at developing key technologies for the construction of a multi-megawatt proton linac based on state-of-the-art Superconducting Radio Frequency technology, which would serve as a driver for new physics facilities such as neutrinos and radioactive ion beams. Amongst the main objectives of this effort, are the development of 704 MHz bulk niobium b=1 elliptical cavities, operating at 2 K and providing an accelerating field of 25 MV/m, and testing of a string of cavities integrated in a machine-type cryo-module. In an initial phase only four out of the eight cavities of an SPL cryo-module will be tested in a ½ length cryo-module developed for this purpose, and therefore called the Short Cryo-module. This paper presents the conceptual design of the SC, highlighting its innovative principles in terms of cavity supporting and alignment, and describes the integratio...

  19. Beam Dynamics Simulation of Photocathode RF Electron Gun at the PBP-CMU Linac Laboratory

    Science.gov (United States)

    Buakor, K.; Rimjaem, S.

    2017-09-01

    Photocathode radio-frequency (RF) electron guns are widely used at many particle accelerator laboratories due to high quality of produced electron beams. By using a short-pulse laser to induce the photoemission process, the electrons are emitted with low energy spread. Moreover, the photocathode RF guns are not suffered from the electron back bombardment effect, which can cause the limited electron current and accelerated energy. In this research, we aim to develop the photocathode RF gun for the linac-based THz radiation source. Its design is based on the existing gun at the PBP-CMU Linac Laboratory. The gun consists of a one and a half cell S-band standing-wave RF cavities with a maximum electric field of about 60 MV/m at the centre of the full cell. We study the beam dynamics of electrons traveling through the electromagnetic field inside the RF gun by using the particle tracking program ASTRA. The laser properties i.e. transverse size and injecting phase are optimized to obtain low transverse emittance. In addition, the solenoid magnet is applied for beam focusing and emittance compensation. The proper solenoid magnetic field is then investigated to find the optimum value for proper emittance conservation condition.

  20. A SUPER-CONDUCTING LINAC DRIVER FOR THE HFBR.

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, J.; Raparia, D.; Ruggiero, A.G.

    2000-08-21

    This paper reports on the feasibility study of a proton Super-Conducting Linac (SCL) as a driver for the High-Flux Breeder Reactor (HFBR) at Brookhaven National Laboratory (BNL). The Linac operates in Continuous Wave (CW) mode to produce an average 10 MW of beam power. The Linac beam energy is 1.0 GeV. The average proton beam intensity in exit is 10 mA.

  1. Wire scanner data analysis for the SSC Linac emittance measurement

    International Nuclear Information System (INIS)

    Yao, C.Y.; Hurd, J.W.; Sage, J.

    1993-07-01

    The wire scanners are designed in the SSC Linac for measurement of beam emittance at various locations. In order to obtain beam parameters from the scan signal, a data analysis program was developed that considers the problems of noise reduction, machine modeling, parameter fitting, and correction. This program is intended as a tool for Linac commissioning and also as part of the Linac control program. Some of the results from commissioning runs are presented

  2. H- ion sources for CERN's Linac4

    Science.gov (United States)

    Lettry, J.; Aguglia, D.; Coutron, Y.; Chaudet, E.; Dallocchio, A.; Gil Flores, J.; Hansen, J.; Mahner, E.; Mathot, S.; Mattei, S.; Midttun, O.; Moyret, P.; Nisbet, D.; O'Neil, M.; Paoluzzi, M.; Pasquino, C.; Pereira, H.; Arias, J. Sanchez; Schmitzer, C.; Scrivens, R.; Steyaert, D.

    2013-02-01

    The specifications set to the Linac4 ion source are: H- ion pulses of 0.5 ms duration, 80 mA intensity and 45 keV energy within a normalized emittance of 0.25 mmmrad RMS at a repetition rate of 2 Hz. In 2010, during the commissioning of a prototype based on H- production from the plasma volume, it was observed that the powerful co-extracted electron beam inherent to this type of ion source could destroy its electron beam dump well before reaching nominal parameters. However, the same source was able to provide 80 mA of protons mixed with a small fraction of H2+ and H3+ molecular ions. The commissioning of the radio frequency quadrupole accelerator (RFQ), beam chopper and H- beam diagnostics of the Linac4 are scheduled for 2012 and its final installation in the underground building is to start in 2013. Therefore, a crash program was launched in 2010 and reviewed in 2011 aiming at keeping the original Linac4 schedule with the following deliverables: Design and production of a volume ion source prototype suitable for 20-30 mA H- and 80 mA proton pulses at 45 keV by mid-2012. This first prototype will be dedicated to the commissioning of the low energy components of the Linac4. Design and production of a second prototype suitable for 40-50 mA H- based on an external RF solenoid plasma heating and cesiated-surface production mechanism in 2013 and a third prototype based on BNL's Magnetron aiming at reliable 2 Hz and 80 mA H- operations in 2014. In order to ease the future maintenance and allow operation with Ion sources based on three different production principles, an ion source "front end" providing alignment features, pulsed gas injection, pumping units, beam tuning capabilities and pulsed bipolar high voltage acceleration was designed and is being produced. This paper describes the progress of the Linac4 ion source program, the design of the Front end and first ion source prototype. Preliminary results of the summer 2012 commissioning are presented. The outlook on

  3. Sci-Sat AM: Brachy - 04: Neutron production around a radiation therapy linac bunker - monte carlo simulations and physical measurements.

    Science.gov (United States)

    Khatchadourian, R; Davis, S; Evans, M; Licea, A; Seuntjens, J; Kildea, J

    2012-07-01

    Photoneutrons are a major component of the equivalent dose in the maze and near the door of linac bunkers. Physical measurements and Monte Carlo (MC) calculations of neutron dose are key for validating bunker design with respect to health regulations. We attempted to use bubble detectors and a 3 He neutron spectrometer to measure neutron equivalent dose and neutron spectra in the maze and near the door of one of our bunkers. We also ran MC simulations with MCNP5 to measure the neutron fluence in the same region. Using a point source of neutrons, a Clinac 1800 linac operating at 10 MV was simulated and the fluence measured at various locations of interest. We describe the challenges faced when measuring dose with bubble detectors in the maze and the complexity of photoneutron spectrometry with linacs operating in pulsed mode. Finally, we report on the development of a userfriendly GUI for shielding calculations based on the NCRP 151 formalism. © 2012 American Association of Physicists in Medicine.

  4. Crossbar H-mode drift-tube linac design with alternative phase focusing for muon linac

    Science.gov (United States)

    Otani, M.; Futatsukawa, K.; Hasegawa, K.; Kitamura, R.; Kondo, Y.; Kurennoy, S.

    2017-07-01

    We have developed a Crossbar H-mode (CH) drift-tube linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The CH-DTL accelerates muons from β = v/c = 0.08 to 0.28 at an operational frequency of 324 MHz. The design and results are described in this paper.

  5. Linac4: the final assembly stage is under way

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    The Linac4 radiofrequency quadrupole (RFQ) module was installed at the accelerator test-stand in Building 152 last August. After an assembly phase and tests that concluded last March with the acceleration of a hydrogen beam to 3 MeV, the module has just been permanently installed in the new Linac4 tunnel (Building 400). The installation of the MEBT (Medium Energy Beam Transport) will begin shortly, followed by the start of the first Linac4 commissioning phase.     To find out more about the Linac4 RFQ module, read the previous Bulletin articles published in Nos. 21-22/2010 and 35-36/2012.

  6. Oxygen ion source and RFQ for Linac 1

    CERN Multimedia

    Photographic Service

    1986-01-01

    As injector to the PS Booster, Linac 1 was replaced by Linac 2 in 1980. It continued to be used for the acceleration of oxygen and sulfur ions. In 1984, its Cockcroft-Walton preinjector was replaced by an RFQ. In the foreground at the right is the oxygen ion source. A 90 deg bending magnet selects O6+ ions which are preaccelerated in an RFQ and enter Linac 1, at the far left. In the background is the proton and negative hydrogen ion source, followed by the 520 keV RFQ-1 and a bending magnet towards the entrance of Linac 1.

  7. Two-pulse acceleration for BEPCII injector linac

    International Nuclear Information System (INIS)

    Pei Shilun; Wang Shuhong; Lu Weibin

    2007-01-01

    In order to double the injection rate of positron beam from the linac to the storage ring of BEPC II, a two-pulse generation and acceleration scheme has been proposed. The two-pulse simulation by programs including LIAR, PARMELA, EGUN and TRANSPORT is described first and the method is applied in the beam dynamics studies of BEPC II linac. The experiment of two-pulse acceleration was performed in BEPC II linac and some preliminary results are obtained, which provides a good reference for further upgrading of BEPC II injector linac. (authors)

  8. Upgrade of the controls for the Brookhaven linac

    International Nuclear Information System (INIS)

    Buxton, W.E.

    1995-01-01

    The control of the magnets, rf system, and other components at the Brookhaven Linac uses a system that was developed at Brookhaven in the late 1960's. This system will be retired in the summer of 1995. The Linac controls are being upgraded using modem VME-based hardware compatible with RHIC generation controls, and an existing serial field bus. The timing for the Linac will also be upgraded and will use components developed for RHIC. The controls in general, the timing for the Linac, and the modules developed will be described

  9. All Digital IQ Servo-System for CERN Linacs

    CERN Document Server

    Broere, J; Garoby, R; Rohlev, A; Serrano, J

    2004-01-01

    A VME based control system has been developed and built at CERN for the servo loops regulating the field in linac accelerating structures. It is an all-digital system built on a single VME card, providing digital detection, processing, and modulation. It is foreseen to be used, in different versions, for the needs of both present and future CERN hadron linacs. The first application will be in the energy ramping RF chain of the CERN Heavy Ion Linac (linac 3). Design principle and the experimental results are described.

  10. A Note on the M/V "Louisa" Case

    DEFF Research Database (Denmark)

    Tanaka, Yoshifumi

    2014-01-01

    In the M/V “Louisa” case of 28 May 2013, the International Tribunal for the Law of the Sea held that it had no jurisdiction, even though it had established prima facie jurisdiction at the provisional measures stage. The M/V “Louisa” case thus gives rise to questions regarding the relationship...... between prima facie jurisdiction and jurisdiction on the merits. Moreover, the M/V “Louisa” Judgment also sheds some light on the applicability of the doctrine of abuse of rights provided in Article 300 of the UN Convention on the Law of the Sea....

  11. Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons

    Science.gov (United States)

    Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.

    2015-07-01

    Undoped and dysprosium doped lithium borate glass system with empirical formula (70-x) B2O3-30 Li2O-(x) Dy2O3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5-5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy2O3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD).

  12. SU-E-J-208: Feasibility Study On Using Small Plastic Phantoms for Auditing Radiation Output of MR-Linac Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Z; Alvarez, P; Ibbott, G [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To study feasibility of using small plastic phantoms designed for conventional linac output auditing to measure the output of MR-Linac systems. Methods: For simulations, the CT scan of an IROC(formerly RPC) acrylic block phantom designed for 8 MV beams was imported in a research version of the treatment planning system (Monaco). Dose delivered to three TLDs in the block was calculated with a Monte Carlo algorithm and a beam model based on an MR-linac prototype with and without a magnetic field (B=1.5T). In a large mathematical water phantom, the same beam was used to calculate dose in full scatter conditions. The block factor (F) was calculated as the ratio of the average dose to the block TLDs to the dose at the reference point in the mathematical phantom. For experimental measurement, four IROC blocks were irradiated with the MR-linac prototype, and data were analyzed by IROC. Results: The F factor without a B field was 1.053. When a B field was applied, it changed the dose distribution in the block, especially on the edges. With a B field parallel to the long axes of the TLD, F was 1.038. However, with a perpendicular B field, F factor increased slightly to 1.075. In the IROC report, the output determined with two blocks parallel to the B field was 2.3% higher than the output by the two blocks perpendicular to the B field. The average of all four blocks was within 2% of machine output measured with an ion chamber. Conclusion: It may be feasible to expand the utility of the acrylic block phantoms for radiation output auditing from conventional linacs to MR-linacs. However, the scatter correction factor can change due to the B field and its orientation to the block. More symmetric phantom designs may be less prone to mistakes. We acknowledge research support from Elekta.

  13. Skin dose in longitudinal and transverse linac-MRIs using Monte Carlo and realistic 3D MRI field models.

    Science.gov (United States)

    Keyvanloo, A; Burke, B; Warkentin, B; Tadic, T; Rathee, S; Kirkby, C; Santos, D M; Fallone, B G

    2012-10-01

    The magnetic fields of linac-MR systems modify the path of contaminant electrons in photon beams, which alters patient skin dose. To accurately quantify the magnitude of changes in skin dose, the authors use Monte Carlo calculations that incorporate realistic 3D magnetic field models of longitudinal and transverse linac-MR systems. Finite element method (FEM) is used to generate complete 3D magnetic field maps for 0.56 T longitudinal and transverse linac-MR magnet assemblies, as well as for representative 0.5 and 1.0 T Helmholtz MRI systems. EGSnrc simulations implementing these 3D magnetic fields are performed. The geometry for the BEAMnrc simulations incorporates the Varian 600C 6 MV linac, magnet poles, the yoke, and the magnetic shields of the linac-MRIs. Resulting phase-space files are used to calculate the central axis percent depth-doses in a water phantom and 2D skin dose distributions for 70 μm entrance and exit layers using DOSXYZnrc. For comparison, skin doses are also calculated in the absence of magnetic field, and using a 1D magnetic field with an unrealistically large fringe field. The effects of photon field size, air gap (longitudinal configuration), and angle of obliquity (transverse configuration) are also investigated. Realistic modeling of the 3D magnetic fields shows that fringe fields decay rapidly and have a very small magnitude at the linac head. As a result, longitudinal linac-MR systems mostly confine contaminant electrons that are generated in the air gap and have an insignificant effect on electrons produced further upstream. The increase in the skin dose for the longitudinal configuration compared to the zero B-field case varies from ∼1% to ∼14% for air gaps of 5-31 cm, respectively. (All dose changes are reported as a % of D(max).) The increase is also field-size dependent, ranging from ∼3% at 20 × 20 cm(2) to ∼11% at 5 × 5 cm(2). The small changes in skin dose are in contrast to significant increases that are

  14. Assessment of Automated Measurement and Verification (M&V) Methods

    Energy Technology Data Exchange (ETDEWEB)

    Granderson, Jessica [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Touzani, Samir [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Custodio, Claudine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sohn, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fernandes, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jump, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-07-01

    This report documents the application of a general statistical methodology to assess the accuracy of baseline energy models, focusing on its application to Measurement and Verification (M&V) of whole-building energy savings.

  15. Accelerator mass spectrometry at the Rossendorf 5 MV tandem accelerator

    International Nuclear Information System (INIS)

    Friedrich, M.; Buerger, W.; Curian, H.; Hartmann, B.; Hentschel, E.; Matthes, H.; Probst, W.; Seidel, M.; Turuc, S.; Hebert, D.; Rothe, T.; Stolz, W.

    1992-01-01

    The Rossendorf electrostatic accelerators (5 MV tandem accelerator and single ended 2 MV van de Graaff accelerator) are already used for ion beam analysis. The existing methods (RBS, PIXE, ERDA, NRA, nuclear microprobe and external beam) will be completed by introduction of Accelerator Mass Spectrometry (AMS). A short description of the Rossendorf AMS system is given and first experimental results are presented. (R.P.) 4 refs.; 6 figs

  16. TU-AB-BRC-10: Modeling of Radiotherapy Linac Source Terms Using ARCHER Monte Carlo Code: Performance Comparison of GPU and MIC Computing Accelerators

    International Nuclear Information System (INIS)

    Liu, T; Lin, H; Xu, X; Su, L; Shi, C; Tang, X; Bednarz, B

    2016-01-01

    Purpose: (1) To perform phase space (PS) based source modeling for Tomotherapy and Varian TrueBeam 6 MV Linacs, (2) to examine the accuracy and performance of the ARCHER Monte Carlo code on a heterogeneous computing platform with Many Integrated Core coprocessors (MIC, aka Xeon Phi) and GPUs, and (3) to explore the software micro-optimization methods. Methods: The patient-specific source of Tomotherapy and Varian TrueBeam Linacs was modeled using the PS approach. For the helical Tomotherapy case, the PS data were calculated in our previous study (Su et al. 2014 41(7) Medical Physics). For the single-view Varian TrueBeam case, we analytically derived them from the raw patient-independent PS data in IAEA’s database, partial geometry information of the jaw and MLC as well as the fluence map. The phantom was generated from DICOM images. The Monte Carlo simulation was performed by ARCHER-MIC and GPU codes, which were benchmarked against a modified parallel DPM code. Software micro-optimization was systematically conducted, and was focused on SIMD vectorization of tight for-loops and data prefetch, with the ultimate goal of increasing 512-bit register utilization and reducing memory access latency. Results: Dose calculation was performed for two clinical cases, a Tomotherapy-based prostate cancer treatment and a TrueBeam-based left breast treatment. ARCHER was verified against the DPM code. The statistical uncertainty of the dose to the PTV was less than 1%. Using double-precision, the total wall time of the multithreaded CPU code on a X5650 CPU was 339 seconds for the Tomotherapy case and 131 seconds for the TrueBeam, while on 3 5110P MICs it was reduced to 79 and 59 seconds, respectively. The single-precision GPU code on a K40 GPU took 45 seconds for the Tomotherapy dose calculation. Conclusion: We have extended ARCHER, the MIC and GPU-based Monte Carlo dose engine to Tomotherapy and Truebeam dose calculations.

  17. TU-AB-BRC-10: Modeling of Radiotherapy Linac Source Terms Using ARCHER Monte Carlo Code: Performance Comparison of GPU and MIC Computing Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T; Lin, H; Xu, X [Rensselaer Polytechnic Institute, Troy, NY (United States); Su, L [John Hopkins University, Baltimore, MD (United States); Shi, C [Saint Vincent Medical Center, Bridgeport, CT (United States); Tang, X [Memorial Sloan Kettering Cancer Center, West Harrison, NY (United States); Bednarz, B [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: (1) To perform phase space (PS) based source modeling for Tomotherapy and Varian TrueBeam 6 MV Linacs, (2) to examine the accuracy and performance of the ARCHER Monte Carlo code on a heterogeneous computing platform with Many Integrated Core coprocessors (MIC, aka Xeon Phi) and GPUs, and (3) to explore the software micro-optimization methods. Methods: The patient-specific source of Tomotherapy and Varian TrueBeam Linacs was modeled using the PS approach. For the helical Tomotherapy case, the PS data were calculated in our previous study (Su et al. 2014 41(7) Medical Physics). For the single-view Varian TrueBeam case, we analytically derived them from the raw patient-independent PS data in IAEA’s database, partial geometry information of the jaw and MLC as well as the fluence map. The phantom was generated from DICOM images. The Monte Carlo simulation was performed by ARCHER-MIC and GPU codes, which were benchmarked against a modified parallel DPM code. Software micro-optimization was systematically conducted, and was focused on SIMD vectorization of tight for-loops and data prefetch, with the ultimate goal of increasing 512-bit register utilization and reducing memory access latency. Results: Dose calculation was performed for two clinical cases, a Tomotherapy-based prostate cancer treatment and a TrueBeam-based left breast treatment. ARCHER was verified against the DPM code. The statistical uncertainty of the dose to the PTV was less than 1%. Using double-precision, the total wall time of the multithreaded CPU code on a X5650 CPU was 339 seconds for the Tomotherapy case and 131 seconds for the TrueBeam, while on 3 5110P MICs it was reduced to 79 and 59 seconds, respectively. The single-precision GPU code on a K40 GPU took 45 seconds for the Tomotherapy dose calculation. Conclusion: We have extended ARCHER, the MIC and GPU-based Monte Carlo dose engine to Tomotherapy and Truebeam dose calculations.

  18. An induction linac injector for scaled experiments

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Faltens, A.; Pike, C.; Brodzik, D.; Johnson, R.M.; Vanecek, D.; Hewett, D.W.

    1991-04-01

    An injector is being developed at LBL that would serve as the front end of a scaled induction linac accelerator technology experiment for heavy ion fusion. The ion mass being used is in the range 10--18. It is a multi-beam device intended to accelerate up to 2 MeV with 500 mA in each beam. The first half of the accelerating column has been built and experiments with one carbon beam are underway at the 1 MeV level. 5 refs., 1 fig

  19. Laser system for a subpicosecond electron linac

    International Nuclear Information System (INIS)

    Crowell, R. A.

    1998-01-01

    At the Argonne Chemistry Division efforts are underway to develop a sub-picosecond electron beam pulse radiolysis facility for chemical studies. The target output of the accelerator is to generate electron pulses that can be adjusted from 3nC in .6ps to 100nC in 45ps. In conjunction with development of the accelerator a state-of-the-art ultrafast laser system is under construction that will drive the linac's photocathode and provide probe pulses that are tunable from the UV to IR spectral regions

  20. A new RFQ linac fabrication technique

    International Nuclear Information System (INIS)

    Schrage, D.; Roybal, P.; Young, L.; Clark, W.; DePaula, R.; Martinez, F.

    1994-01-01

    The use of hydrogen furnace brazing has been applied as a joining technology to the fabrication of a Radio-Frequency-Quadrupole (RFQ) linac for the Los Alamos Accelerator Performance Demonstration Facility (APDF). The design concept provides a monolithic cavity with no longitudinal rf, vacuum, or mechanical joints. A 530 MHz, 0.46 meter long engineering model RFQ has been fabricated and tested at the Los Alamos National Laboratory as a technical demonstration of this concept. It is planned that two funneled RFQ's for the APDF (7 MeV, 350 MHz, 100 mAmp CW, each eight meters in length) will be manufactured by this method

  1. High power CW linac in PNC

    International Nuclear Information System (INIS)

    Toyama, S.; Wang, Y.L.; Emoto, T.

    1994-01-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) is developing a high power electron linac for various applications. The electron beam is accelerated in CW operation to get maximum beam current of 100 mA and energy of 10 MeV. Crucial components such as a high power L-band klystron and a high power traveling wave resonant ring (TWRR) accelerator guides were designed and manufactured and their performance were examined. These design and results from the recent high power RF tests were described in this paper. (author)

  2. Contraband detection technological complex with ion linac

    International Nuclear Information System (INIS)

    Gavrish, Yu.N.; Svistunov, Yu.A.; Sidorov, A.V.

    2004-01-01

    The contraband detection technological complex (CDTC) to detect explosives, fission materials, and vegetable drugs is proposed. Our approach employs the pulsed neutron source. The CDTC employs the rf linac to provide a beam of deuterons of 1 or 3.5 MeV, which impinge upon a target giving birth pulsed neutron flow. Explosives are identified by the matrix detection system with gamma registration under interaction of neutron on N, O, C nuclei. Experimental verification of main principles of matrix detection system is presented

  3. Fermilab linac upgrade. Module conditioning results

    International Nuclear Information System (INIS)

    Kroc, T.; Moretti, A.; Popovic, M.

    1992-01-01

    The 805 MHz side-coupled cavity modules for the Fermilab 400 MeV linac upgrade have been conditioned to accept full power. The sparking rate in the cavities and in the side cells has been reduced to acceptable levels. It required approximately 40 x 10 6 pulses for each module to achieve an adequately low sparking rate. This contribution outlines the commissioning procedure, presents the sparking rate improvements and the radiation level improvements through the commissioning process and discusses the near-on-line commissioning plans for this accelerator. (Author) ref., 4 figs

  4. Fermilab Linac Upgrade: Module conditioning results

    International Nuclear Information System (INIS)

    Kroc, T.; Moretti, A.; Popovic, M.

    1992-12-01

    The 805 MHz Side-coupled cavity modules for the Fermilab 400 MeV linac upgrade have been conditioned to accept full power. The sparking rate in the cavities and in the side-cells has been reduced to acceptable levels. It required approximately 40 x 10 6 pulses for each module to achieve an adequately low sparking rate. This contribution outlines the commissioning procedure, presents the sparking rate improvements and the radiation level improvements through the commissioning process and disc the near-online commissioning plans for this accelerator

  5. High density harp for SSCL linac

    International Nuclear Information System (INIS)

    Fritsche, C.T.; Krogh, M.L.; Crist, C.E.

    1993-01-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities

  6. High density harp for SSCL linac

    International Nuclear Information System (INIS)

    Fritsche, C.T.; Krogh, M.L.

    1993-05-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities

  7. Event Registration System for INR Linac

    International Nuclear Information System (INIS)

    Grekhov, O.V.; Drugakov, A.N.; Kiselev, Yu.V.

    2006-01-01

    The software of the Event registration system for the linear accelerators is described. This system allows receiving of the information on changes of operating modes of the accelerator and supervising of hundreds of key parameters of various systems of the accelerator. The Event registration system consists of the source and listeners of events. The sources of events are subroutines built in existing ACS Linac. The listeners of events are software Supervisor and Client ERS. They are used for warning the operator about change controlled parameter of the accelerator

  8. Superconducting radiofrequency linac development at Fermilab

    International Nuclear Information System (INIS)

    Holmes, Stephen D.

    2009-01-01

    As the Fermilab Tevatron Collider program draws to a close, a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and the study of rare processes. Based on technology shared with the International Linear Collider, Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X also supports development of a Muon Collider as a future facility at the energy frontier.

  9. Model measurements for the switched power linac

    International Nuclear Information System (INIS)

    Aronson, S.; Caspers, F.; Haseroth, H.; Knott, J.; Willis, W.

    1987-01-01

    To study some aspects of the structure of the switched power linac (or wakefield transformer), a scaled-up model with 2.4 m diameter has been built. Measurements were performed with real-time and synthetic pulses with spectral components up to 5 GHz. Results are obtained for the achievable transformer ratio as a function of the spectral composition of the pulses and for the influence of discrete feeding at the circumference of the transformer disk. The effects of asymmetric feeding in space and time were also investigated experimentally as well as the influence of the central geometry

  10. Survey of vibration amplitudes throughout the linac

    International Nuclear Information System (INIS)

    Werner, K.L.

    1984-01-01

    The magnitude of vibrations of the Linac structure due to on site disturbances, such as cooling towers, pumps, generators, Highway 280 overpass traffic, is of interest. CN-263, for example, discusses tolerances of random (i.e., uncorrelated) quad jitter and suggests that amplitudes should not exceed 0.7 microns rms. This note describes the results of a series of measurements carried out in the summer of 1983. In general, the tolerance is not exceeded, but there appears not to be a good safety factor at low frequencies

  11. Adaptive Beamforming for Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund

    This dissertation investigates the application of adaptive beamforming for medical ultrasound imaging. The investigations have been concentrated primarily on the Minimum Variance (MV) beamformer. A broadband implementation of theMV beamformer is described, and simulated data have been used...... to demonstrate the performance. The MV beamformer has been applied to different sets of ultrasound imaging sequences; synthetic aperture ultrasound imaging and plane wave ultrasound imaging. And an approach for applying MV optimized apodization weights on both the transmitting and the receiving apertures...

  12. Induction linac drivers for commercial heavy-ion beam fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1987-11-01

    This paper discusses induction linac drivers necessary to accelerate heavy ions at inertial fusion targets. Topics discussed are: driver configurations, the current-amplifying induction linac, high current beam behavior and emittance growth, new considerations for driver design, the heavy ion fusion systems study, and future studies. 13 refs., 6 figs., 1 tab

  13. Production of slow-positron beams with an electron linac

    International Nuclear Information System (INIS)

    Howell, R.H.; Alvarez, R.A.; Stanek, M.

    1982-01-01

    Intense, pulsed beams of low-energy positrons have been produced by a high-energy beam from an electron linac. The production efficiency for low-energy positrons has been determined for electrons with 60 to 120 MeV energy, low-energy positron beams from a linac can be of much higher intensity than those beams currently derived from radioactive sources

  14. MEIC Proton Beam Formation with a Low Energy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuhong [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    The MEIC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low-energy protons and ions into the booster ring.

  15. Compensated linac beam colliding with a stored beam

    International Nuclear Information System (INIS)

    Csonka, P.L.; Oregon Univ., Eugene

    1981-01-01

    The disruptive effect of a linac beam on a beam circulating in a storage ring can be reduced by compensating for the space charge of the linac beam with a beam which is oppositely charged, may have different bunchlength as well as lower energy, and need not be circulating in a storage ring. (orig.)

  16. Characteristics of short pulse grid pulser for an electron LINAC

    International Nuclear Information System (INIS)

    Wang Guicheng; Fang Zhigao; Hong Jun

    1996-01-01

    An equivalent circuit is used to obtain the output waveform of a short pulse grid pulser for an electron LINAC, and the amplitude of the output pulse is studied as a function of number of switching transistors for some kinds of transistor. Two pulsers were fabricated to fulfill the requirements of the 200 MeV LINAC at NSRL

  17. Development of an Eddy Current Septum for LINAC4

    CERN Document Server

    Barnes, M; Borburgh, J; Fowler, T; Goddard, B; Ueda, A; Weterings, W

    2008-01-01

    A linear accelerator (linac) is the first stage of the CERN accelerator complex. The linac defines the beam quality for subsequent stages of acceleration and the reliability has to be high as a fault of the linac shuts down all other machines. The existing linacs at CERN were designed 30 or more years ago: recent upgrades allowed the linacs to reach LHC requirements but also showed that they are at the limit of their brightness and intensity capabilities. A replacement Superconducting Proton Linac (SPL) has been proposed; the initial part of the SPL is termed LINAC4. The LINAC4 injection bump would be made up of a set of four pulsed dipole magnets; the first of these magnets (BS1) must act as a septum with a thin element dividing the high-field region of the circulating beam from the field-free region through which injected $H^{-}$ beam must pass. The initial specifications for BS1 required; a deflection of 66 mrad at 160 MeV, achieved with a peak field of 628 mT and a length of 250 mm: the field fall time wa...

  18. Design of the SLC damping ring to linac transport lines

    International Nuclear Information System (INIS)

    Fieguth, T.H.; Murray, J.J.

    1983-07-01

    The first and second order optics for the damping ring to linac transport line are designed to preserve the damped transverse emittance while simultaneously compressing the bunch length of the beam to that length required for reinjection into the linac. This design, including provisions for future control of beam polarization, is described

  19. A Pencil Beam for the Linac4 commissioning

    CERN Document Server

    Lallement, JB

    2010-01-01

    In order to characterize the different accelerating structures and transport lines of Linac4 and to proceed to its commissioning, we need to produce a low current, low emittance beam. This note describes the generation of two pencil beams and their dynamic through the Linac.

  20. Dosimetric properties of germanium doped calcium borate glass subjected to 6 MV and 10 MV X-ray irradiations

    Science.gov (United States)

    Tengku Kamarul Bahri, T. N. H.; Wagiran, H.; Hussin, R.; Saeed, M. A.; Hossain, I.; Ali, H.

    2014-10-01

    Germanium doped calcium borate glasses are investigated in term of thermoluminescence properties to seek their possibility to use as glass radiation dosimeter. The samples were exposed to 6 MV, and 10 MV photon beams in a dose range of 0.5-4.0 Gy. There is a single and broad thermoluminescence glow curve that exhibits its maximum intensity at about 300 °C. Linear dose response behavior has been found in this dose range for the both photon energies. Effective atomic number, TL sensitivity, and reproducibility have also been studied. It is found that the sensitivity of germanium doped sample at 6 MV is only 1.28% and it is superior to the sensitivity at 10 MV. The reproducibility of germanium doped sample is good with a percentage of relative error less than 10%. The results indicate that this glass has a potential to be used as a radiation dosimetry, especially for application in radiotherapy.

  1. SU-F-J-144: Scatter and Leakage Survey of An Integrated MR-Linac System

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J; Bosco, G; Darenbourg, B; Ibbott, G [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To assess the scatter and leakage radiation of an integrated 1.5T MRI-Linac system. Methods: A 150cc chamber (model 96020C, Inovision) was used in all the scatter and leakage measurements, after being recalibrated for MV energy by the Accredited Dosimetry Calibration Laboratory at MD Anderson. The scatter radiation was measured by placing a 25 cm stack of solid-water materials at iso-center on the patient couch to simulate patient scatter. Gantry angles were positioned at 0 degree (beam pointing downward) and 270 (beam pointing laterally). Scatter radiation was measured at selective locations inside the RF room. Beam stopper leakage was measured at the exterior panel of the gantry. The head leakage was measured at 1 meter away from the Linac head in the direction which was determined to be the area of maximum leakage by wrapped films test. All measurements were repeated with the 1.5T magnetic field turned off to study the effect of magnetic field. Results: When the magnet was on (B=1.5T), the maximum head leakage at 1 meter was 191.6mR/1000MU. The scatter radiation at 1 meter from the iso-center was 1.091R/1000MU when the radiation beam was pointing downward, 1.296R/1000MU when the beam pointed laterally. The beam stopper leakage was measured as 299.4 mR/1000MU at the exterior panel of the gantry. When magnet was off (B=0), the head leakage was measured as 198.6mR/1000MU. The scatter radiation at 1 meter was 1.153R/1000MU when beam pointed downward, 1.287R/1000MU when beam pointed laterally. The beam stopper leakage was measured as 309.4 mR/1000MU at the exterior panel of the gantry. Conclusion: The measurements indicate that the scatter and leakage radiation from the integrated MR-Linac system are in-line with the expected values. The beam stopper leakage is approximately 300 mR/1000MU. The leakage and scatter difference with the magnetic field ON and OFF was within 5%. The authors received a corporate sponsored grant from Elekta which is the vendor of

  2. SU-E-P-32: Adapting An MMLC to a Conventional Linac to Perform Stereotactic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Emam, I [Ain Shams University, Abbasiah, Cairo (France); Hosini, M [King Saud University Medical City, Riyadh, Riyadh (Saudi Arabia)

    2015-06-15

    Purpose: Micro-MLCs minimizes beam scalloping effects caused by conventional-MLCs and facilitates conformal dynamic treatment delivery. But their effect on dosimetric parameters require careful investigations. Physical and dosimetric parameters and Linac mechanical stability with mMLC (net weight 30 Kg) attached to the gantry are to be investigated. Moreover, output study along with recommended jaws offsets are studied. Adaptation of an mMLC to our 16-years old conventional Linac is investigated in this work Methods: BrainLab mMLC (m3) mounted in a detachable chassis to the Philips SL-15 Linac (30kg). Gantry and collimator spoke shots measurements are made using a calibrated film in a solid phantom and compared with pin-point measurements. Leaf penumbra, transmission, leakage between the leaves, percentage depth dose (PDD) are measured using IBA pin-point ion chamber at 6 and 10 MV. For output measurements (using brass build-up cap), jaws are modified continuously regarding to m3-fields while output factor are compared with fixed jaws situation, while the mMLC leaf configuration is modified for different m3-fields Results: Mean transmission through leaves is 1.9±0.1% and mean leakage between leaves is 2.8±0.15%. Between opposing leaves abutting along the central beam-axis mean transmission is 15±3%, but it is reduced to 4.5±0.6% by moving the abutment position 4.5cm off-axis. The penumbra was sharper for m3 -fields than jaws-fields (maximum difference is 1.51±0.2%). m3-fields PDD show ∼3% variation from those of jaws-fields. m3-fields output factors show large variations (<4%) from Jaws defined fields. Output for m3-rectangular fields show slight variation in case of leaf-end&leaf-side as well as X-jaw&Y-jaw exchange. Circular m3-fields output factors shows close agreement with their corresponding square jaws-defined fields using 2mm Jaws offsets, If jaws are retracted to m3 limits, differences become <5%. Conclusion: BrainLab m3 is successfully adapted to

  3. Error studies for SNS Linac. Part 1: Transverse errors

    International Nuclear Information System (INIS)

    Crandall, K.R.

    1998-01-01

    The SNS linac consist of a radio-frequency quadrupole (RFQ), a drift-tube linac (DTL), a coupled-cavity drift-tube linac (CCDTL) and a coupled-cavity linac (CCL). The RFQ and DTL are operated at 402.5 MHz; the CCDTL and CCL are operated at 805 MHz. Between the RFQ and DTL is a medium-energy beam-transport system (MEBT). This error study is concerned with the DTL, CCDTL and CCL, and each will be analyzed separately. In fact, the CCL is divided into two sections, and each of these will be analyzed separately. The types of errors considered here are those that affect the transverse characteristics of the beam. The errors that cause the beam center to be displaced from the linac axis are quad displacements and quad tilts. The errors that cause mismatches are quad gradient errors and quad rotations (roll)

  4. The Pre-Injector Linac for the Diamond Light Source

    CERN Document Server

    Christou, C

    2004-01-01

    The Diamond Light Source is a new medium-energy high brightness synchrotron light facility which is under construction on the Rutherford Appleton Laboratory site in the U.K. The accelerator facility can be divided into three major components; a 3 GeV 561 m circumference storage ring, a full-energy booster synchrotron and a 100 MeV pre-injector linac. This paper describes the linac design and plans for operation. The linac is supplied by ACCEL Instruments GmbH under a turn-key contract, with Diamond Light Source Ltd. providing linac beam diagnostics, control system hardware and standard vacuum components. Commissioning of the linac will take place in early 2005 and user operation of the facility will commence in 2007.

  5. Linac design for the LCLS project at SLAC

    International Nuclear Information System (INIS)

    Bharadwaj, V.K.; Bane, K.; Clendenin, J.

    1997-05-01

    The Linac Coherent Light Source (LCLS) at SLAC is being designed to produce intense, coherent 0.15-nm x-rays. These x-rays will be produced by a single pass of a 15 GeV bunched electron beam through a long undulator. Nominally, the bunches have a charge of 1 nC, normalized transverse emittances of less than 1.5π mm-mr and an rms bunch length of 20 μm. The electron beam will be produced using the last third of the SLAC 3-km linac in a manner compatible with simultaneous operation of the remainder of the linac for PEP-II. The linac design necessary to produce an electron beam with the required brightness for LCLS is discussed, and the specific linac modifications are described

  6. Stabilization of the RF system at the SPring-8 linac

    CERN Document Server

    Asaka, T; Hori, T; Kobayashi, T; Mizuno, A; Sakaki, H; Suzuki, S; Taniuchi, T; Yanagida, K; Yokomizo, H; Yoshikawa, H

    2002-01-01

    Beam energy variation of the SPring-8 linac was 1% or more at the start of beam commissioning. Depending on fluctuation, beam transmission efficiency from the linac to the booster synchrotron was significantly affected, and beam intensity in the booster synchrotron changed 20-30%. This caused delay of optimization of the various parameters in the booster synchrotron. More problematic, the beam intensities stored in each RF (radio frequency) bucket of the storage ring at SPring-8 were all different from each other. The users utilizing synchrotron radiation requested that the beam intensity in each RF bucket be as uniform as possible. It was thus a pressing necessity to stabilize the beam energy in the linac. Investigation of the cause has clarified that the various apparatuses installed in the linac periodically changed depending on circumstances and utilities such as the air conditioner, cooling water and electric power. After various improvements, beam energy stability in the linac of <0.06% rms was attai...

  7. Range of Possible Beam Current in Linac4

    CERN Document Server

    Lallement, J-B; CERN. Geneva. BE Department

    2009-01-01

    Linac4 is a new accelerator under construction at CERN. It is designed to accelerate H- ions to 160MeV, for injection into the existing Proton Synchrotron Booster (PSB). It is also the front-end of the SPL Linac, a high energy proton driver that will reach the energy of 5GeV. The Linac baseline design has been done for a nominal beam peak current of 70mA but it will certainly have to deal with different currents. 132 out of 155 quadrupoles in the Linac are permanent magnets, this choice of using PMQ having fixed gradient, mainly in the DTL and in the CCDTL may then entail issues concerning the beam transverse matching and quality from current different from the nominal one. In this paper, we present the beam dynamics performances in Linac4 obtained for different currents.

  8. Dosimetric properties of germanium doped calcium borate glass subjected to 6 MV and 10 MV X-ray irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Tengku Kamarul Bahri, T.N.H., E-mail: tnhidayah2@gmail.com [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru (Malaysia); Wagiran, H.; Hussin, R.; Saeed, M.A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru (Malaysia); Hossain, I. [Department of Physics, College of Science and Arts, King Abdul Aziz University, 21911 Rabigh (Saudi Arabia); Ali, H. [Department of Radiotherapy and Oncology, Hospital Sultan Ismail, 81100 Johor Bahru (Malaysia)

    2014-10-01

    Highlights: •The TL properties of 29.9CaO–70B{sub 2}O{sub 3}: 0.1GeO{sub 2} glass has been investigated. •We exposed glass samples to 6 MV and 10 MV in a dose range of 0.5–4.0 Gy. •This glass has a potential material to be used for application in radiotherapy. -- Abstract: Germanium doped calcium borate glasses are investigated in term of thermoluminescence properties to seek their possibility to use as glass radiation dosimeter. The samples were exposed to 6 MV, and 10 MV photon beams in a dose range of 0.5–4.0 Gy. There is a single and broad thermoluminescence glow curve that exhibits its maximum intensity at about 300 °C. Linear dose response behavior has been found in this dose range for the both photon energies. Effective atomic number, TL sensitivity, and reproducibility have also been studied. It is found that the sensitivity of germanium doped sample at 6 MV is only 1.28% and it is superior to the sensitivity at 10 MV. The reproducibility of germanium doped sample is good with a percentage of relative error less than 10%. The results indicate that this glass has a potential to be used as a radiation dosimetry, especially for application in radiotherapy.

  9. Dosimetric properties of germanium doped calcium borate glass subjected to 6 MV and 10 MV X-ray irradiations

    International Nuclear Information System (INIS)

    Tengku Kamarul Bahri, T.N.H.; Wagiran, H.; Hussin, R.; Saeed, M.A.; Hossain, I.; Ali, H.

    2014-01-01

    Highlights: •The TL properties of 29.9CaO–70B 2 O 3 : 0.1GeO 2 glass has been investigated. •We exposed glass samples to 6 MV and 10 MV in a dose range of 0.5–4.0 Gy. •This glass has a potential material to be used for application in radiotherapy. -- Abstract: Germanium doped calcium borate glasses are investigated in term of thermoluminescence properties to seek their possibility to use as glass radiation dosimeter. The samples were exposed to 6 MV, and 10 MV photon beams in a dose range of 0.5–4.0 Gy. There is a single and broad thermoluminescence glow curve that exhibits its maximum intensity at about 300 °C. Linear dose response behavior has been found in this dose range for the both photon energies. Effective atomic number, TL sensitivity, and reproducibility have also been studied. It is found that the sensitivity of germanium doped sample at 6 MV is only 1.28% and it is superior to the sensitivity at 10 MV. The reproducibility of germanium doped sample is good with a percentage of relative error less than 10%. The results indicate that this glass has a potential to be used as a radiation dosimetry, especially for application in radiotherapy

  10. Measurements of longitudinal phase space in the SLC linac

    International Nuclear Information System (INIS)

    Bane, K.; Adolphsen, C.; Lavine, T.L.; Ross, M.; Seeman, J.; Thompson, K.

    1990-05-01

    In the Stanford Linear Collider the beam leaves a damping ring and then enters the Ring-to-Linac (RTL) transfer line. In the RTL it is compressed in length by a factor of 10 by means of an rf section, with which a longitudinally correlated energy variation is induced in the beam, and a following beam line which has non-zero momentum compaction. The compressed beam then enters the linac proper. In this paper we describe three measurements of longitudinal properties of the beam in the SLC linac. We present measurements of single bunch beam loading, of the energy spectrum at the end of the linac, and of the linac bunch length. Since the results of all three measurements depend on the beam's longitudinal charge distribution in the linac they, in turn, also depend on the bunch lengthening that occurs in the damping rings, as well as on the behavior of the compressor. The results of the first two measurements, in addition, depend critically on the strength of the longitudinal wakefields in the linac. The results of these three measurements are compared with simulations. For these calculations, at any given current, the potential well distortion in the damping ring is first computed. The compression process is then simulated to obtain the longitudinal charge distribution in the linac. For the first two measurements this distribution is then convolved with the calculated longitudinal wake function of the SLAC linac in order to obtain the induced voltage. Finally, the induced voltage is combined with the effect of the linac rf wave to give the final energy spectrum. 8 refs., 5 figs

  11. Stereotactic Radiotherapy by 6MV Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Oho, Yoon Kyeong; Kim, Mi Hee; Gil, Hak Jun [Catholic University College of Medicine, Seoul (Korea, Republic of)] (and others)

    1988-12-15

    Eight patients with intracranial tumors or arteriovenous malformation (AVM)s which were less than 3 cm in diameter were treated by a technique of stereotactic radiotherapy during the 4 months period from July 1988 through October 1988 at the Division of Radiation Therapy, Kang-Nam St. Mary's Hospital, Catholic University Medical College. The patients were diagnosed as AVMs in 3 cases, acoustic neurinoma, craniopharyngioma (recurrent), hemangioblastoma, pineocytoma, and pituitary microadenoma in each case. There are several important factors in this procedure, such as localization system, portal, field size, radiation dose, and perioperative supportive care. It is suggested that stereotactic radiotherapy may be performed safely with a radiation dose of 12-30 Gy. So this noninvasive procedure can be used to treat unresectable intracranial tumors or AVMs. Of these, clinical symptoms had been regressed in AVMs in 2 cases at 3 months and 2 months after Stereotactic radiotherapy, one of whom was confirmed slightly regressed on the follow-up angiogram. And also craniopharyngioma and pineocytoma was minimally regressed on 3 month follow-up CT.

  12. Stereotactic Radiotherapy by 6MV Linear Accelerator

    International Nuclear Information System (INIS)

    Oho, Yoon Kyeong; Kim, Mi Hee; Gil, Hak Jun

    1988-01-01

    Eight patients with intracranial tumors or arteriovenous malformation (AVM)s which were less than 3 cm in diameter were treated by a technique of stereotactic radiotherapy during the 4 months period from July 1988 through October 1988 at the Division of Radiation Therapy, Kang-Nam St. Mary's Hospital, Catholic University Medical College. The patients were diagnosed as AVMs in 3 cases, acoustic neurinoma, craniopharyngioma (recurrent), hemangioblastoma, pineocytoma, and pituitary microadenoma in each case. There are several important factors in this procedure, such as localization system, portal, field size, radiation dose, and perioperative supportive care. It is suggested that stereotactic radiotherapy may be performed safely with a radiation dose of 12-30 Gy. So this noninvasive procedure can be used to treat unresectable intracranial tumors or AVMs. Of these, clinical symptoms had been regressed in AVMs in 2 cases at 3 months and 2 months after Stereotactic radiotherapy, one of whom was confirmed slightly regressed on the follow-up angiogram. And also craniopharyngioma and pineocytoma was minimally regressed on 3 month follow-up CT

  13. Linac-driven spallation-neutron source

    International Nuclear Information System (INIS)

    Jason, A.J.

    1995-01-01

    Strong interest has arisen in accelerator-driven spallation-neutron sources that surpass existing facilities (such as ISIS at Rutherford or LANSCE at Los Alamos) by more than an order of magnitude in beam power delivered to the spallation target. The approach chosen by Los Alamos (as well as the European Spallation Source) provides the full beam energy by acceleration in a linac as opposed to primary acceleration in a synchrotron or other circular device. Two modes of neutron production are visualized for the source. A short-pulse mode produces 1 MW of beam power (at 60 pps) in pulses, of length less than 1 ms, by compression of the linac macropulse through multi-turn injection in an accumulator ring. A long-pulse mode produces a similar beam power with 1-ms-long pulses directly applied to a target. This latter mode rivals the performance of existing reactor facilities to very low neutron energies. Combination with the short-pulse mode addresses virtually all applications

  14. Short wavelength FELs using the SLAC linac

    International Nuclear Information System (INIS)

    Winick, H.; Bane, K.; Boyce, R.

    1993-08-01

    Recent technological developments have opened the possibility to construct a device which we call a Linac Coherent Light Source (LCLS); a fourth generation light source, with brightness, coherence, and peak power far exceeding other sources. Operating on the principle of the free electron laser (FEL), the LCLS would extend the range of FEL operation to much aborter wavelength than the 240 mn that has so far been reached. We report the results of studies of the use of the SLAC linac to drive an LCLS at wavelengths from about 3-100 nm initially and possibly even shorter wavelengths in the future. Lasing would be achieved in a single pass of a low emittance, high peak current, high energy electron beam through a long undulator. Most present FELs use an optical cavity to build up the intensity of the light to achieve lasing action in a low gain oscillator configuration. By eliminating the optical cavity, which is difficult to make at short wavelengths, laser action can be extended to shorter wavelengths by Self-Amplified-Spontaneous-Emission (SASE), or by harmonic generation from a longer wavelength seed laser. Short wavelength, single pass lasers have been extensively studied at several laboratories and at recent workshops

  15. Investigation of the mechanical performance of Siemens linacs components during arc: gantry, MLC, and electronic portal imaging device

    Directory of Open Access Journals (Sweden)

    Rowshanfarzad P

    2015-11-01

    Full Text Available Pejman Rowshanfarzad,1 Peter Häring,2 Hans L Riis,3 Sune J Zimmermann,3 Martin A Ebert1,4 1School of Physics, The University of Western Australia, Crawley, WA, Australia; 2German Cancer Research Center (DKFZ, Medical Physics in Radiation Oncology, Heidelberg, Germany; 3Radiofysisk Laboratorium, Odense University Hospital, Odense C, Denmark; 4Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia Background: In radiotherapy treatments, it is crucial to monitor the performance of linac components including gantry, collimation system, and electronic portal imaging device (EPID during arc deliveries. In this study, a simple EPID-based measurement method is suggested in conjunction with an algorithm to investigate the stability of these systems at various gantry angles with the aim of evaluating machine-related errors in treatments. Methods: The EPID sag, gantry sag, changes in source-to-detector distance (SDD, EPID and collimator skewness, EPID tilt, and the sag in leaf bank assembly due to linac rotation were separately investigated by acquisition of 37 EPID images of a simple phantom with five ball bearings at various gantry angles. A fast and robust software package was developed for automated analysis of image data. Three Siemens linacs were investigated. Results: The average EPID sag was within 1 mm for all tested linacs. Two machines showed >1 mm gantry sag. Changes in the SDD values were within 7.5 mm. EPID skewness and tilt values were <1° in all machines. The maximum sag in leaf bank assembly was <1 mm. Conclusion: The method and software developed in this study provide a simple tool for effective investigation of the behavior of Siemens linac components with gantry rotation. Such a comprehensive study has been performed for the first time on Siemens machines. Keywords: linac, Siemens, arc, sag, EPID, gantry

  16. TH-AB-BRA-12: Experimental Results From the First High-Field Inline MRI-Linac

    Energy Technology Data Exchange (ETDEWEB)

    Keall, P [University of Sydney, Camperdown, New South Wales (Australia); Dong, B; Zhang, K; Liney, G [Ingham Institute for Applied Medical Research, Liverpool, New South Wales (Australia); Vial, P; Walker, A; Begg, J; Rai, R [Liverpool Hospital, Sydney, New South Wales (Australia); Holloway, L; Barton, M [Ingham Institute for Applied Medical Research, Liverpool, New South Wales (Australia); Liverpool Hospital, Sydney, New South Wales (Australia); Crozier, S [University of Queensland, Brisbane, Queensland (Australia)

    2016-06-15

    Purpose: The pursuit of real-time image guided radiotherapy using optimal tissue contrast has seen the development of several hybrid MRI-treatment systems, high field and low field, and inline and perpendicular configurations. As part of a new MRI-Linac program, an MRI scanner was integrated with a linear accelerator to enable investigations of a coupled inline MRI-Linac system. This work describes our experimental results from the first high-field inline MRI-Linac. Methods: A 1.5 Tesla magnet (Sonata, Siemens) was located in a purpose built RF cage enabling shielding from and close proximity to a linear accelerator with inline orientation. A portable linear accelerator (Linatron, Varian) was installed together with a multi-leaf collimator (Millennium, Varian) to provide dynamic field collimation and the whole assembly built onto a stainless-steel rail system. A series of MRI-Linac experiments was performed to investigate: (1) image quality with beam on measured using a macropodine (kangaroo) ex vivo phantom; (2) the noise as a function of beam state measured using a 6-channel surface coil array and; (3) electron focusing measured using GafChromic film. Results: (1) The macropodine phantom image quality with the beam on was almost identical to that with the beam off. (2) Noise measured with a surface RF coil produced a 25% elevation of background noise when the radiation beam was on. (3) Film measurements demonstrated electron focusing occurring at the center of the radiation field. Conclusion: The first high-field MRI-Linac has been built and experimentally characterized. This system has allowed us to establish the efficacy of a high field in-line MRI-Linac and study a number of the technical challenges and solutions. Supported by the Australian National Health and Medical Research Council, the Australian Research Council, the Australian Cancer Research Foundation and the Health and Hospitals Fund.

  17. Linac based photofission inspection system employing novel detection concepts

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, John, E-mail: jstevenson@rapiscansystems.com [Rapiscan Laboratories, Inc., 520 Almanor Avenue, Sunnyvale, CA 94085 (United States); Gozani, Tsahi, E-mail: tgozani@rapiscansystems.com [Rapiscan Laboratories, Inc., 520 Almanor Avenue, Sunnyvale, CA 94085 (United States); Elsalim, Mashal; Condron, Cathie; Brown, Craig [Rapiscan Laboratories, Inc., 520 Almanor Avenue, Sunnyvale, CA 94085 (United States)

    2011-10-01

    Rapiscan Systems is developing a LINAC based cargo inspection system for detection of special nuclear material (SNM) in cargo containers. The system, called Photofission Based Alarm Resolution (PBAR) is being developed under a DHD/DNDO Advanced Technology Demonstration (ATD) program. The PBAR system is based on the Rapiscan Eagle P9000 X-ray system, which is a portal system with a commercial 9 MeV LINAC X-ray source. For the purposes of the DNDO ATD program, a conveyor system was installed in the portal to allow scanning and precise positioning of 20 ft ISO cargo containers. The system uses a two step inspection process. In the first step, the basic scan, the container is quickly and completely inspected using two independent radiography arrays: the conventional primary array with high spatial resolution and a lower resolution spectroscopic array employing the novel Z-Spec method. The primary array uses cadmium tungstate (CdWO{sub 4}) detectors with conventional current mode readouts using photodiodes. The Z-Spec array uses small plastic scintillators capable of performing very fast (up to 10{sup 8} cps) gamma-ray spectroscopy. The two radiography arrays are used to locate high-Z objects in the image such as lead, tungsten, uranium, which could be potential shielding materials as well as SNM itself. In the current system, the Z-Spec works by measuring the energy spectrum of transmitted X-rays. For high-Z materials the higher end of the energy spectrum is more attenuated than for low-Z materials and thus has a lower mean energy and a narrower width than low- and medium-Z materials. The second step in the inspection process is the direct scan or alarm clearing scan. In this step, areas of the container image, which were identified as high Z, are re-inspected. This is done by precisely repositioning the container to the location of the high-Z object and performing a stationary irradiation of the area with X-ray beam. Since there are a large number of photons in the 9

  18. Linac based photofission inspection system employing novel detection concepts

    International Nuclear Information System (INIS)

    Stevenson, John; Gozani, Tsahi; Elsalim, Mashal; Condron, Cathie; Brown, Craig

    2011-01-01

    Rapiscan Systems is developing a LINAC based cargo inspection system for detection of special nuclear material (SNM) in cargo containers. The system, called Photofission Based Alarm Resolution (PBAR) is being developed under a DHD/DNDO Advanced Technology Demonstration (ATD) program. The PBAR system is based on the Rapiscan Eagle P9000 X-ray system, which is a portal system with a commercial 9 MeV LINAC X-ray source. For the purposes of the DNDO ATD program, a conveyor system was installed in the portal to allow scanning and precise positioning of 20 ft ISO cargo containers. The system uses a two step inspection process. In the first step, the basic scan, the container is quickly and completely inspected using two independent radiography arrays: the conventional primary array with high spatial resolution and a lower resolution spectroscopic array employing the novel Z-Spec method. The primary array uses cadmium tungstate (CdWO 4 ) detectors with conventional current mode readouts using photodiodes. The Z-Spec array uses small plastic scintillators capable of performing very fast (up to 10 8 cps) gamma-ray spectroscopy. The two radiography arrays are used to locate high-Z objects in the image such as lead, tungsten, uranium, which could be potential shielding materials as well as SNM itself. In the current system, the Z-Spec works by measuring the energy spectrum of transmitted X-rays. For high-Z materials the higher end of the energy spectrum is more attenuated than for low-Z materials and thus has a lower mean energy and a narrower width than low- and medium-Z materials. The second step in the inspection process is the direct scan or alarm clearing scan. In this step, areas of the container image, which were identified as high Z, are re-inspected. This is done by precisely repositioning the container to the location of the high-Z object and performing a stationary irradiation of the area with X-ray beam. Since there are a large number of photons in the 9 MV

  19. SU-D-BRA-07: Applications of Combined KV/MV CBCT Imaging with a High-DQE MV Detector

    International Nuclear Information System (INIS)

    Bazalova-Carter, M; Newson, M; Wang, A; Star-Lack, J; Wu, M; Xing, L; Fahrig, R; Ansbacher, W

    2016-01-01

    Purpose: To investigate whether a high detection quantum efficiency (DQE) MV detector makes combined kV/MV CBCT clinically practical. Methods: Combined kV/MV CBCT was studied for scan time reduction (STR) and metal artifact reduction (MAR). 6MV CBCT data (dose rate = 0.017 MU/degree) were collected using 1) a novel focused pixelated cadmium tungstate (CWO) scintillator (15mm thickness, DQE(0) = 22%, 0.784mm pixel pitch) coupled to a flat panel imager, and 2) a commercial portal imager with a 133mg/cm"2 gadolinium oxysulfide (GOS) screen (DQE(0) = 1.2%). The 100kVp data were acquired using a commercial imager employing a columnar cesium iodide scintillator (DQE(0) = 70%) with a dose rate of 0.0016 cGy/degree. For STR, MV and kV projections spanning 105° were combined to constitute a complete CBCT scan. Total dose was ∼2cGy and acquisition time was 18s. For MAR, only the metalcorrupted pixels in the kV projections were replaced with MV data resulting in a total dose of less than 1cGy for a 360° scan. Image quality was assessed using an 18-cm diameter electron density phantom with nine tissue inserts, some of which were replaced with steel rods for MAR studies. Results: The CWO contrast-to-noise ratio (CNR) was ∼4.0x higher than the GOS CNR and was ∼4.8x lower than the kV CNR when normalized for dose. When CWO MV data were combined with kV data for STR, all contrast inserts were visible, but only two were detectable in the composite kV/GOS image. Metal artifacts were greatly reduced using the kV/MV MAR technique with all contrast inserts clearly visible in the composite kV/CWO image but only two inserts visible in the composite kV/GOS image. Conclusion: We have demonstrated that a high DQE MV detector significantly improves kV/MV CBCT image quality thus enabling scan time reduction and metal artifact reduction without a severe dose penalty. AW and JS-L are employees of Varian, RF is an employee of Siemens.

  20. Monte Carlo simulation of a medical accelerator: application on a heterogeneous phantom

    International Nuclear Information System (INIS)

    Serrano, B.; Franchisseur, E.; Hachem, A.; Herault, J.; Marcie, S.; Bensadoun, R.J.

    2005-01-01

    The objective of this study is to seek an accurate and efficient method to calculate the dose distribution for small fields in high gradient heterogeneity, typical for Intensity Modulated Radiation Therapy (IMRT) technique on head and neck regions. This motivates a Monte Carlo (MC) simulation of the photon beam for the two nominal potential energies of 25 and 6 MV delivered by a medical linear electron accelerator (Linac) used at the Centre Antoine Lacassagne. These investigations were checked by means of an ionization chamber (IC). Some first adjustments on parameters given by the manufacturer for the 25 and the 6 MV data have been applied to optimize the adjustment between the IC and the MC simulation on the depth-dose and the dose profile distributions. The good agreement between the MC calculated and the measured data are only obtained when the mean energies of the electron beams are respectively 15 MeV and 5.2 MeV and the corresponding spot size diameter 2 and 3 mm. Once the validation of the MC simulation of the Linac is overcome, these results permit us in a second part to check the calculation data given by a treatment planning system (TPS) on a heterogeneous phantom. The result shows some discrepancies up to 7% between TPS and MC simulation. Those differences come from a bad approximation of the material density by the TPS. These encouraging results of the MC simulation will permit us afterwards to check the dose deposition given by the TPS on IMRT treatment. (authors)

  1. A Monte Carlo investigation of low-Z target image quality generated in a linear accelerator using Varian's VirtuaLinac

    International Nuclear Information System (INIS)

    Parsons, David; Robar, James L.; Sawkey, Daren

    2014-01-01

    Purpose: The focus of this work was the demonstration and validation of VirtuaLinac with clinical photon beams and to investigate the implementation of low-Z targets in a TrueBeam linear accelerator (Linac) using Monte Carlo modeling. Methods: VirtuaLinac, a cloud based web application utilizing Geant4 Monte Carlo code, was used to model the Linac treatment head components. Particles were propagated through the lower portion of the treatment head using BEAMnrc. Dose distributions and spectral distributions were calculated using DOSXYZnrc and BEAMdp, respectively. For validation, 6 MV flattened and flattening filter free (FFF) photon beams were generated and compared to measurement for square fields, 10 and 40 cm wide and at d max for diagonal profiles. Two low-Z targets were investigated: a 2.35 MeV carbon target and the proposed 2.50 MeV commercial imaging target for the TrueBeam platform. A 2.35 MeV carbon target was also simulated in a 2100EX Clinac using BEAMnrc. Contrast simulations were made by scoring the dose in the phosphor layer of an IDU20 aSi detector after propagating through a 4 or 20 cm thick phantom composed of water and ICRP bone. Results: Measured and modeled depth dose curves for 6 MV flattened and FFF beams agree within 1% for 98.3% of points at depths greater than 0.85 cm. Ninety three percent or greater of points analyzed for the diagonal profiles had a gamma value less than one for the criteria of 1.5 mm and 1.5%. The two low-Z target photon spectra produced in TrueBeam are harder than that from the carbon target in the Clinac. Percent dose at depth 10 cm is greater by 3.6% and 8.9%; the fraction of photons in the diagnostic energy range (25–150 keV) is lower by 10% and 28%; and contrasts are lower by factors of 1.1 and 1.4 (4 cm thick phantom) and 1.03 and 1.4 (20 cm thick phantom), for the TrueBeam 2.35 MV/carbon and commercial imaging beams, respectively. Conclusions: VirtuaLinac is a promising new tool for Monte Carlo modeling of novel

  2. Real-time 2D/3D registration using kV-MV image pairs for tumor motion tracking in image guided radiotherapy.

    Science.gov (United States)

    Furtado, Hugo; Steiner, Elisabeth; Stock, Markus; Georg, Dietmar; Birkfellner, Wolfgang

    2013-10-01

    Intra-fractional respiratory motion during radiotherapy leads to a larger planning target volume (PTV). Real-time tumor motion tracking by two-dimensional (2D)/3D registration using on-board kilo-voltage (kV) imaging can allow for a reduction of the PTV though motion along the imaging beam axis cannot be resolved using only one projection image. We present a retrospective patient study investigating the impact of paired portal mega-voltage (MV) and kV images on registration accuracy. Material and methods. We used data from 10 patients suffering from non-small cell lung cancer (NSCLC) undergoing stereotactic body radiation therapy (SBRT) lung treatment. For each patient we acquired a planning computed tomography (CT) and sequences of kV and MV images during treatment. We compared the accuracy of motion tracking in six degrees-of-freedom (DOF) using the anterior-posterior (AP) kV sequence or the sequence of kV-MV image pairs. Results. Motion along cranial-caudal direction could accurately be extracted when using only the kV sequence but in AP direction we obtained large errors. When using kV-MV pairs, the average error was reduced from 2.9 mm to 1.5 mm and the motion along AP was successfully extracted. Mean registration time was 188 ms. Conclusion. Our evaluation shows that using kV-MV image pairs leads to improved motion extraction in six DOF and is suitable for real-time tumor motion tracking with a conventional LINAC.

  3. SU-F-T-647: Linac-Based Stereotactic Radiosurgery (SRS) in the Treatment of Trigeminal Neuralgia: Detailed Description of SRS Procedural Technique and Reported Clinical Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, D; Sood, S; Badkul, R; Jiang, H; Stepp, T; Camarata, P; Wang, F [University of Kansas Hospital, Kansas City, KS (United States)

    2016-06-15

    Purpose: SRS is an effective non-invasive alternative treatment modality with minimal-toxicity used to treat patients with medically/surgically refractory trigeminal neuralgia root(TNR) or those who may not tolerate surgical intervention. We present our linac-based SRS procedure for TNR treatment and simultaneously report our clinical outcomes. Methods: Twenty-eight TNR-patients treated with frame-based SRS at our institution (2009–2015) with a single-fraction point-dose of 60-80Gy to TNR were included in this IRB-approved study. Experienced neurosurgeon and radiation oncologist delineated the TNR on 1.0mm thin 3D-FIESTA-MRI that was co-registered with 0.7mm thin planning-CT. Treatment plans were generated in iPlan (BrainLAB) with a 4-mm diameter cone using 79 arcs with differential-weighting for Novalis-TX 6MV-SRS(1000MU/min) beam and optimized to minimize brainstem dose. Winston-Lutz test was performed before each treatment delivery with sub-millimeter isocenter accuracy. Quality assurance of frame placement was maintained by helmet-bobble-measurement before simulation-CT and before patient setup at treatment couch. OBI-CBCT scan was performed for patient setup verification without applying shifts. On clinical follow up, treatment response was assessed using Barrow Neurological Institute Pain Intensity Score(BNI-score:I–V). Results: 26/28 TNR-patients (16-males/10-females) who were treated with following single-fraction point-dose to isocenter: 80Gy(n=22),75Gy(n=1),70Gy(n=2) and 60Gy(n=1, re-treatment) were followed up. Median follow-up interval was 8.5-months (ranged:1–48.5months). Median age was 70-yr (ranged:43–93-yr). Right/left TNR ratio was 15/11. Delivered total # of average MUs was 19034±1204. Average beam-on-time: 19.0±1.3min. Brainstem max-dose and dose to 0.5cc were 13.3±2.4Gy (ranged:8.1–16.5Gy) and 3.6±0.4Gy (ranged:3.0–4.9Gy). On average, max-dose to optic-apparatus was ≤1.2Gy. Mean value of max-dose to eyes/lens was 0.26Gy/0.11Gy

  4. Measurements of the relative backscatter contribution to the monitor chamber for modern medical linear accelerators; A multi-center study

    DEFF Research Database (Denmark)

    Sibolt, Patrik; Cronholm, Rickard O.; Beierholm, Anders Ravnsborg

    2015-01-01

    Conversion to absolute dose in Monte Carlo (MC) simulations of MV radiotherapy beams needs correct modeling of backscatter (BS) to the linear accelerator (linac) monitor chamber. For some linacs the BS depends largely on jaw settings. The backscattered fraction (BSF) of radiation can be determined...... BSF measurements were compared with MC simulations performed using the BEAMnrc user code. For flattened beams on the Varian linacs, the measured BSF exhibited a clear linear correlation with square jaw settings (correlation coefficient r > 0.9 with p

  5. Computation of Normal Conducting and Superconducting Linear Accelerator (LINAC) Availabilities

    International Nuclear Information System (INIS)

    Haire, M.J.

    2000-01-01

    A brief study was conducted to roughly estimate the availability of a superconducting (SC) linear accelerator (LINAC) as compared to a normal conducting (NC) one. Potentially, SC radio frequency cavities have substantial reserve capability, which allows them to compensate for failed cavities, thus increasing the availability of the overall LINAC. In the initial SC design, there is a klystron and associated equipment (e.g., power supply) for every cavity of an SC LINAC. On the other hand, a single klystron may service eight cavities in the NC LINAC. This study modeled that portion of the Spallation Neutron Source LINAC (between 200 and 1,000 MeV) that is initially proposed for conversion from NC to SC technology. Equipment common to both designs was not evaluated. Tabular fault-tree calculations and computer-event-driven simulation (EDS) computer computations were performed. The estimated gain in availability when using the SC option ranges from 3 to 13% under certain equipment and conditions and spatial separation requirements. The availability of an NC LINAC is estimated to be 83%. Tabular fault-tree calculations and computer EDS modeling gave the same 83% answer to within one-tenth of a percent for the NC case. Tabular fault-tree calculations of the availability of the SC LINAC (where a klystron and associated equipment drive a single cavity) give 97%, whereas EDS computer calculations give 96%, a disagreement of only 1%. This result may be somewhat fortuitous because of limitations of tabular fault-tree calculations. For example, tabular fault-tree calculations can not handle spatial effects (separation distance between failures), equipment network configurations, and some failure combinations. EDS computer modeling of various equipment configurations were examined. When there is a klystron and associated equipment for every cavity and adjacent cavity, failure can be tolerated and the SC availability was estimated to be 96%. SC availability decreased as

  6. Injection schemes for the TOP Linac; Schemi di iniezione per il TOP Linac

    Energy Technology Data Exchange (ETDEWEB)

    Picardi, L.; Ronsivalle, C. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Dipt. Innovazione; Bartolini, R. [Istituto Superiore di Sanita' , Rome (Italy)

    1999-07-01

    In this report two schemes are studied for the injection in the SCDTL section of the TOP Linac of the proton beam produced by a 7 MeV linear accelerator. The project derives by an agreement between ENEA (National Agency for New Technology, Energy and Environment) and ISS. In these new versions of the design the constraint of a synchronization of the radio frequencies of the two accelerators is suppressed. [Italian] In questo rapporto sono studiati due schemi di iniezione nella sezione accelerante SCDTL a 3 GHz del TOP (terapia oncologica con protoni) linac del fascio di protoni generato da un acceleratore lineare di 7 MeV. L'acceleratore e' frutto di una convenzione tra L'ENEA e l'Istituto Superiore di Sanita'. Rispetto a versioni precedenti del progetto, viene eliminato il vincolo della sincronizzazione delle radiofrequenze dei due acceleratori.

  7. Alignment and Field Error Tolerance in Linac4

    CERN Document Server

    Bellodi, G; Garcia Tudela, M; Hein, L; Lallement, J B; Lanzone, S; Lombardi, A M; Posocco, P; Sargsyan, E

    2011-01-01

    LINAC4 [1] is a linear accelerator for negative Hydrogen ions (H−), which will replace the 50 MeV proton LINAC (LINAC2) as linear injector for the CERN accelerators. The higher output energy (160 MeV) together with charge-exchange injection will allow increasing beam intensity in the following machines. LINAC4 is about 80 m long, normal-conducting, and will be housed in a tunnel 12 m below ground on the CERN Meyrin site. The location has been chosen to allow using LINAC4 as the first stage of acceleration for a Multi-MegaWatt superconducting LINAC (SPL [2]). A 60 m long transfer line brings the beam towards the present LINAC2-to-PS Booster transfer line, which is joined at the position of BHZ20. The new transfer line consists of 17 new quadrupoles, an RF cavity and 4 bending magnets to adjust both the direction and the level for injection into the PS Booster. End-to-end beam dynamics simulations have been carried out in parallel with the codes PATH [3] and TRACEWIN[4]. Following the definition of the layout...

  8. Linac4 crosses the 100 MeV threshold

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    The new linear accelerator, which from 2020 will be the first link in the accelerator chain, has entered a new stage of its commissioning.   Members of the team in charge of the commissioning of Linac4 in the accelerator’s control room. A few hours earlier, Linac4 accelerated a beam to 107 MeV for the first time. We couldn’t have imagined a more appropriate date: on 1 July (1.07), Linac4 reached an energy of 107 MeV. Having crossed the 100 MeV barrier, the linear accelerator is now on the home straight of its commissioning. “This stage was very quick – it took less than two weeks,” says Alessandra Lombardi, deputy project leader of Linac4, in charge of the commissioning. In 2020, Linac4 will replace the existing Linac2 as the first link in the accelerator chain. It will accelerate beams of H- ions (protons surrounded by two electrons) to 160 MeV, compared to 50 MeV with Linac2. The new machine is particularly sophisticated as it comprises...

  9. First Linac4 DTL & CCDTL cavities installed in tunnel

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    On 5 June, the first Drift Tube Linac (DTL) was successfully transported to its forever home in the Linac4 tunnel. Similarly, the first Cell-Coupled Drift Tube Linac (CCDTL) was installed on 6 June. These moves marked the end of years of design and manufacturing by Linac4 teams.   Although it may seem like a relatively routine transport operation, the DTL's move was a landmark event for the entire Linac4 collaboration. "Along with the first four Cell-Coupled DTL modules, which were installed on the following two working days, these are the first accelerating structures after front-end commissioning to be installed in the tunnel," says Frank Gerigk, who is responsible for all Linac4 accelerating structures. "It is a major milestone, because work on all these structures started well over a decade ago." The transport operation was also quite a victory for the Linac4 DTL team, whose journey to a complete DTL structure has been a bit of a wild ride. &qu...

  10. Update of the Linac4-PSB Transfer Line

    CERN Document Server

    HEIN, Lutz

    2010-01-01

    The installation of Linac4 represents the first step of the upgrade plans of the CERN accelerator complex for the future in order to raise the available proton flux to attain amongst others the LHC ultimate luminosity. This linac is capable to accelerate H--ions from 45keV to 160MeV, which will be injected into the Proton Synchrotron Booster (PSB). The increase of energy from 50MeV (Linac2) to 160MeV (Linac4) allows to overcome the space charge limitations at the PSB injection, which is the main bottleneck towards higher beam brightness in the downstream accelerator chain. In order to preserve beam quality from the outlet of Linac4 to PSB injection the design of the transfer line becomes crucial. As the location of Linac4 was chosen in view of upgrade scenarios, the construction of a new transfer line is foreseen, see ref.[1] and ref.[2]. Here part of the Linac2-PSB transfer line will be re-used. In the new part of the transfer line the beam is horizontally and vertically adjusted towards the bending magnet B...

  11. Evaluation of IMRT plans for prostate treatment using energies of 6 MV and 15 MV; Avaliacao de planejamentos de IMRT para tratamento de prostata utilizando energias de 6 MV e 15 MV

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lucas Francisco C.; Silva, Murilo C. da; Silveira, Paula J.; Flosi, Adriana A.; Boccaletti, Karina W., E-mail: mcollete@gmail.com [A. C. Camargo Cancer Center, Sao Paulo, SP (Brazil). Servico de Radioterapia

    2013-08-15

    This study aims to evaluate and compare radiotherapy plans with intensity-modulated radiation therapy (IMRT) for prostate cancer treatments optimized for photon energies of 6 MV and 15 MV. We retrospectively evaluated 29 patients with prostate cancer, planned with IMRT technique with prescribed dose of 78 Gy. The initial plan was done for the two photon energies, keeping the same optimization parameters and comparing maximum, minimum and modal PTV doses, conformity and homogeneity indexes, dose gradients, isodoses volumes of 30, 40, 50, 60, and 70 Gy, and the total number of monitor units. It was found that the plans are equivalent regarding higher isodose volumes, conformity and homogeneity indexes, maximum, minimum and modal PTV doses. However, for 6 MV plans there was a considerable increase in both number of monitor units and volume lower isodose volumes, especially the 30 Gy. (author)

  12. MECHANICAL CAVITY DESIGN FOR 100MV UPGRADE CRYOMODULE

    International Nuclear Information System (INIS)

    K.M. Wilson; G. Ciovati; E. F. Daly; J. Henry; R. Hicks; J. Hogan; D. Machie; P. Kneisel; C. Reece; J. Sekutowicz; T. Whitlatch

    2003-01-01

    To achieve up to 6 GeV, each cryomodule in the CEBAF accelerator currently provides about 30 MV of acceleration. To raise the accelerator energy to 12 GeV, ten additional cryomodules capable of providing over 100 MV of acceleration are required. A prototype of the 100 MV cryomodule has been designed, is presently under construction, and will be completed in 2004. This prototype cryomodule comprises two new cavity designs, four cavities of the low loss design and four cavities of the high gradient design. Although the cavity shapes were designed for their RF properties, the mechanical implications must be considered. In addition to the new cavity shapes, changes have also been made to the cavity end dish assemblies, weld joints, and stiffening rings. This paper will present the results of the stress and vibration analyses used for designing the cryomodule

  13. Simulation studies of the LAMPF proton linac

    International Nuclear Information System (INIS)

    Garnett, R.W.; Gray, E.R.; Rybarcyk, L.J.; Wangler, T.P.

    1995-01-01

    The LAMPF accelerator consists of two 0.75-MeV injectors, one for H + and the other for H - , a separate low-energy beam transport (LEBT) line for each beam species, a 0.75 to 100-MeV drift-tube linac (DTL) operating at 201.25-MHz, a 100-MeV transition region (TR), and a 100 to 800-MeV side-coupled linac (SCL) operating at 805-MHz. Each LEBT line consists of a series of quadrupoles to transport and transversely match the beam. The LEBT also contains a prebuncher, a main buncher, and an electrostatic deflector. The deflector is used to limit the fraction of a macropulse which is seen by the beam diagnostics throughout the linac. The DTL consists of four rf tanks and uses singlet FODO transverse focusing. The focusing period is doubled in the last two tanks by placing a quadrupole only in every other drift-tube. Doublet FDO transverse focusing is used in the SCL. The TR consists of separate transport lines for the H + and H - beams. The pathlengths for the two beams differ, by introducing bends, so as to delay arrival of one beam relative to the other and thereby produce the desired macropulse time structure. Peak beam currents typically range from 12 to 18-mA for varying macropulse lengths which give an average beam current of 1-mA. The number of particles per bunch is of the order 10 8 . The work presented here is an extension of previous work. The authors have attempted to do a more complete simulation by including modeling of the LEBT. No measurements of the longitudinal structure of the beam, except phase-scans, are performed at LAMPF. The authors show that, based on simulation results, the primary causes of beam spill are inefficient longitudinal capture and the lack of longitudinal matching. Measurements to support these claims are not presently made at LAMPF. However, agreement between measurement and simulation for the transverse beam properties and transmissions serve to benchmark the simulations

  14. Development of the low energy linac systems

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, H. J.; Kim, Y. H.

    2005-08-01

    The project 'Development of the Low Energy Linac System' is aiming to develop the 20 MeV proton linac system. This consists of a 50 keV proton injector, a 3 MeV RFQ, and a 20 MeV DTL. We obtained the first beam signal after the 20 MeV linac. The high power switch installed in the ion source supplies the pulsed beam into the following LEBT. The pulse operation was successfully tested. The main role of the LEBT is to match the beam into the 3 MeV RFQ. The total length of the four-vane type RFQ is about 3.26m. For the field stabilization, we used the resonant coupling scheme and dipole stabilizer rods. An 1 MW klystron supplies the RF power into the RFQ. After tuning, the field deviation of the quadrupole mode is less than 2% of the design value and the dipole fraction is less than 5% of the operating mode. The following accelerating structure is DTL which accelerate 20 mA proton beams up to 20 MeV. It consists of 4 tanks and the length of each tank is less than 5 m. The lattice is FFDD type and the integrated fields of the quadrupole magnets are 1.75 T. The inner walls of the tanks are copper-plated by PR plating method. The thickness is 100m with the roughness of 0.3m. Each drift tube consists of 6 parts and assembled by e-beam welding. The tanks and drift tubes are aligned under the installation limit of 50m by using the laser-tracker. The tuning by the slug tuners and post couplers results in the field uniformity of 2% and field sensitivity of 100%/MHz. In order to detect the beam signal, we installed the Faraday cup after the RFQ or the DTL. For the RFQ, we observed the beam of 12 A under the forward RF power of 450 kW. The beam current after DTL is about 0.5 A when RF power of 150 kW was fed into each tank

  15. The Fermilab 400-MeV Linac Upgrade

    International Nuclear Information System (INIS)

    Schmidt, C.W.

    1993-05-01

    The Fermilab Linac Upgrade will increase the linac energy from 201 MeV to 401.5 MeV. Seven accelerating modules, composed of 805-MHz side-coupled cells, will accelerate H - beams from 116.5 to 401.5 MeV. The side-coupled structure (SCS) has been built, tuned, tested to full power, and placed in the linac enclosure along side the operating Linac. All seven accelerating modules, each containing four sections of sixteen cells, have been connected to 12-MW power klystrons and tested to full power for a significant period. The transition section to match the beam from the 201.25-MHz drift-tube linac to the SCS, consisting of a sixteen-cell cavity and a vernier four-cell cavity, has also been tested at full power. A new import line from the Linac to the Booster synchrotron with a new Booster injection girder is to be installed. Removal of the last four Alvarez linac tanks (116.5 to 201 MeV) and beam-line installation of the Upgrade components is to begin in early June 1993 and should take about 12 weeks. Beam commissioning of the project will follow and normal operation is expected in a short period. In preparation for beam commissioning, studies are being done with done operating linac to characterize the beam at transition and prepare for phase, amplitude and energy measurements to commission the new linac. The past, present and future activities of the 400-MeV Upgrade will be reviewed

  16. Major projects for the use of high power linacs

    International Nuclear Information System (INIS)

    Prome, M.

    1996-01-01

    A review of the major projects for high power linacs is given. The field covers the projects aiming at the transmutation of nuclear waste or the production of tritium, as well as the production of neutrons for hybrid reactors or basic research with neutron sources. The technologies which arc common to all the projects are discussed. Comments are made on the technical difficulties encountered by all the projects, and the special problems of the pulsed linacs are mentioned. Elements for a comparison of normal conducting linacs versus superconducting ones are given. Finally the technical developments being made in various laboratories are reviewed. (author)

  17. The Linac4 DTL Prototype: Low and High Power Measurements

    CERN Document Server

    De Michele, G; Marques-Balula, J; Ramberger, S

    2012-01-01

    The prototype of the Linac4 Drift Tube Linac (DTL) has undergone low power measurements in order to verify the RF coupling and to adjust the post-coupler lengths based on bead-pull and spectrum measurements. Following the installation at the test stand, the cavity has been subjected to high power operation at Linac4 and SPL duty cycles. Saturation effects and multipacting have been observed and linked to X-ray emission. Voltage holding is reported in the presence of magnetic fields from permanent magnet quadrupoles (PMQ) installed in the first drift tubes.

  18. Preliminary Characterization of the O4+ Beam in Linac 3

    CERN Document Server

    Dumas, L; Scrivens, R; CERN. Geneva. AB Department

    2007-01-01

    The new GTS-LHC ECR ion source was installed in 2005. An oxygen 4+ beam was delivered to LEIR both for injection line (June 2005) and for the ring commissioning (September to December 2005). During these runs, studies were made of the beam transport in the Linac and towards LEIR. Some of the most significant results concerning the Linac are presented in this report. From 2006 the ECR source and the Linac3 delivered a lead beam for the LEIR commissioning, leaving some questions open for the oxygen beam transport. This report serves as a summary of the status of the investigations on the oxygen beam.

  19. High-Performance Beam Simulator for the LANSCE Linac

    International Nuclear Information System (INIS)

    Pang, Xiaoying; Rybarcyk, Lawrence J.; Baily, Scott A.

    2012-01-01

    A high performance multiparticle tracking simulator is currently under development at Los Alamos. The heart of the simulator is based upon the beam dynamics simulation algorithms of the PARMILA code, but implemented in C++ on Graphics Processing Unit (GPU) hardware using NVIDIA's CUDA platform. Linac operating set points are provided to the simulator via the EPICS control system so that changes of the real time linac parameters are tracked and the simulation results updated automatically. This simulator will provide valuable insight into the beam dynamics along a linac in pseudo real-time, especially where direct measurements of the beam properties do not exist. Details regarding the approach, benefits and performance are presented.

  20. Transverse Matching Progress Of The SNS Superconducting Linac

    International Nuclear Information System (INIS)

    Zhang, Yan; Cousineau, Sarah M.; Liu, Yun

    2011-01-01

    Experience using laser-wire beam profile measurement to perform transverse beam matching in the SNS superconducting linac is discussed. As the SNS beam power is ramped up to 1 MW, transverse beam matching becomes a concern to control beam loss and residual activation in the linac. In our experiments, however, beam loss is not very sensitive to the matching condition. In addition, we have encountered difficulties in performing a satisfactory transverse matching with the envelope model currently available in the XAL software framework. Offline data analysis from multi-particle tracking simulation shows that the accuracy of the current online model may not be sufficient for modeling the SC linac.

  1. A new method for improving beam quality of LINAC

    International Nuclear Information System (INIS)

    Xie Jialin; Li Fengtian; Wang Yanshan; Wang Bosi

    1999-01-01

    The principle of the self-adaptive feed-forward (SAFF) control to improve the beam quality of linac is introduced. the analytical procedure for calculating the control signals, the structure of a practical control system, and applications of SAFF in klystron, RF gun, and linac are presented, especially the application in the thermionic gun whose response is non-linear, time-variant and of large time-delay. The described control system is operational and some primary experimental results have been obtained, including the control of amplitude and phase fluctuations of the klystron output, the microwave field in the gun cavity and linac

  2. History of the JAERI linac facility for 33 years

    International Nuclear Information System (INIS)

    Ohkubo, Makio; Mizumoto, Motoharu; Nakajima, Yutaka; Mashiko, Katsuo

    1994-01-01

    The JAERI electron linear accelerator will be shutdown and disassembled at the end of 1993. At the JAERI, a prototype 20 MeV linac was constructed at 1960, and was used for the neutron time-of-flight experiments and for the isotope productions. An upgraded 120 MeV linac was constructed at 1972, and was used for many fields of research works until 1993. History of the JAERI Linac and the results of the works made using these facilities are reviewed, and also R/D on the accelerator engineering are described briefly. (author)

  3. High power switches for ion induction linacs

    International Nuclear Information System (INIS)

    Humphries, S.; Savage, M.; Saylor, W.B.

    1985-01-01

    The success of linear induction ion accelerators for accelerator inertial fusion (AIF) applications depends largely on innovations in pulsed power technology. There are tight constraints on the accuracy of accelerating voltage waveforms to maintain a low momentum spread. Furthermore, the non-relativistic ion beams may be subject to a klystronlike interaction with the accelerating cavities, leading to enhanced momentum spread. In this paper, we describe a novel high power switch with a demonstrated ability to interrupt 300 A at 20 kV in less than 60 ns. The switch may allow the replacement of pulse modulators in linear induction accelerators with hard tube pulsers. A power system based on a hard tube pulser could solve the longitudinal instability problem while maintaining high energy transfer efficiency. The problem of longitudinal beam control in ion induction linacs is reviewed in Section 2. Section 3 describes the principles of the plasma flow switch. Experimental results are summarized in Section 4

  4. The injector linac for the Mainz microtron

    International Nuclear Information System (INIS)

    Euteneuer, H.; Braun, H.; Herminghaus, H.; Scholer, H.; Weis, T.

    1988-01-01

    The design and setup of a 3.5 MeV, 100μA injector for a cascade of race track microtrons is presented. It replaces a 2.1 MeV Van De Graaff for getting higher reliability, improved beam dynamics in the first RTM by increased and more stable input energy, as well as an easier access and a better vacuum to launch a beam of polarized electrons. In this paper, the considerations which led under given boundary conditions to the final design concept are discussed and its realization with PARMELA is described. Details of the linac setup are given. First operation showed a good longitudinal performance (energy stability ≤ ±2 star 10 -4 , spectrum ≤ 1 star 10 -3 FWHM, bunch length ≤ ± 1.5 degrees) and an excellent reproducibility of machine operation

  5. High power switches for ion induction linacs

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Savage, M.; Saylor, W.B.

    1985-01-01

    The success of linear induction ion accelerators for accelerator inertial fusion (AIF) applications depends largely on innovations in pulsed power technology. There are tight constraints on the accuracy of accelerating voltage waveforms to maintain a low momentum spread. Furthermore, the non-relativistic ion beams may be subject to a klystron-like interaction with the accelerating cavities leading to enhanced momentum spread. In this paper, the author describe a novel high power switch with a demonstrated ability to interrupt 300 A at 20 kV in less than 60 ns. The switch may allow the replacement of pulse modulators in linear induction accelerators with hard tube pulsers. A power system based on a hard tube pulser could solve the longitudinal instability problem while maintaining high energy transfer efficiency. The problem of longitudinal beam control in ion induction linacs is reviewed in Section 2. Section 3 describes the principles of the plasma flow switch. Experimental results are summarized in Section 4

  6. A new trajectory correction technique for linacs

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.; Ruth, R.D.

    1990-06-01

    In this paper, we describe a new trajectory correction technique for high energy linear accelerators. Current correction techniques force the beam trajectory to follow misalignments of the Beam Position Monitors. Since the particle bunch has a finite energy spread and particles with different energies are deflected differently, this causes ''chromatic'' dilution of the transverse beam emittance. The algorithm, which we describe in this paper, reduces the chromatic error by minimizing the energy dependence of the trajectory. To test the method we compare the effectiveness of our algorithm with a standard correction technique in simulations on a design linac for a Next Linear Collider. The simulations indicate that chromatic dilution would be debilitating in a future linear collider because of the very small beam sizes required to achieve the necessary luminosity. Thus, we feel that this technique will prove essential for future linear colliders. 3 refs., 6 figs., 2 tabs

  7. Wall current monitor for SPring-8 linac

    International Nuclear Information System (INIS)

    Yanagida, Kenichi; Yamada, Kouji; Yokoyama, Minoru

    1994-06-01

    A fast rise time, broad band width and wide dynamic range wall current monitor was developed for SPring-8 linac. The performances are a rise time of ∼250ps, an effective impedance of 1.4Ω (output of ∼1.4V/A) and a bandwidth of 18kHz-2GHz. From a result of examination using 40ns electron beam, a significant change of effective impedance was not observed when a peak current was changed up to 12A or when a beam was moved by 8mm in a vacuum pipe. A circuit model that includes a core inductor loop was constructed. Using this model effective impedance and band width were calculated and compared to measured ones. They agreed very well except one part. In consequence the mechanism of wall current monitor can be explained by means of this model. (author)

  8. FRIB driver linac vacuum model and benchmarks

    CERN Document Server

    Durickovic, Bojan; Kersevan, Roberto; Machicoane, Guillaume

    2014-01-01

    The Facility for Rare Isotope Beams (FRIB) is a superconducting heavy-ion linear accelerator that is to produce rare isotopes far from stability for low energy nuclear science. In order to achieve this, its driver linac needs to achieve a very high beam current (up to 400 kW beam power), and this requirement makes vacuum levels of critical importance. Vacuum calculations have been carried out to verify that the vacuum system design meets the requirements. The modeling procedure was benchmarked by comparing models of an existing facility against measurements. In this paper, we present an overview of the methods used for FRIB vacuum calculations and simulation results for some interesting sections of the accelerator. (C) 2013 Elsevier Ltd. All rights reserved.

  9. SU-F-T-490: Separating Effects Influencing Detector Response in Small MV Photon Fields

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, S; Sauer, O [University of Wuerzburg, Wuerzburg (Germany)

    2016-06-15

    Purpose: Different detector properties influence their responses especially in field sizes below the lateral electron range. Due to the finite active volume, the detector density and electron perturbation at other structural parts, the response factor is in general field size dependent. We aimed to visualize and separate the main effects contributing to detector behavior for a variety of detector types. This was achieved in an experimental setup, shielding the field center. Thus, effects caused by scattered radiation could be examined separately. Methods: Signal ratios for field sizes down to 8 mm (SSD 90 cm, water depth 10 cm) of a 6MV beam from a Siemens Primus LINAC were recorded with several detectors: PTW microDiamond and PinPoint ionization chamber, shielded diodes (PTW P-60008, IBA PFD and SNC Edge) and unshielded diodes (PTW E-60012 and IBA SFD). Measurements were carried out in open fields and with an aluminum pole of 4 mm diameter as a central block. The geometric volume effect was calculated from profiles obtained with Gafchromic EBT3 film, evaluated using FilmQA Pro software (Ashland, USA). Results: Volume corrections were 1.7% at maximum. After correction, in small open fields, unshielded diodes showed a lower response than the diamond, i.e. diamond detector over-response seems to be higher than that for unshielded diodes. Beneath the block, this behavior was amplified by a factor of 2. For the shielded diodes, the overresponse for small open fields could be confirmed. However their lateral response behavior was strongly type dependent, e.g. the signal ratio dropped from 1.02 to 0.98 for the P-60008 diode. Conclusion: The lateral detector response was experimentally examined. Detector volume and density alone do not fully account for the field size dependence of detector response. Detector construction details play a major role, especially for shielded diodes.

  10. The use of a virtual reality simulator to explore and understand the impact of Linac mis-calibrations

    Science.gov (United States)

    Beavis, Andrew W.; Ward, James W.

    2014-03-01

    Purpose: In recent years there has been interest in using Computer Simulation within Medical training. The VERT (Virtual Environment for Radiotherapy Training) system is a Flight Simulator for Radiation Oncology professionals, wherein fundamental concepts, techniques and problematic scenarios can be safely investigated. Methods: The system provides detailed simulations of several Linacs and the ability to display DICOM treatment plans. Patients can be mis-positioned with 'set-up errors' which can be explored visually, dosimetrically and using IGRT. Similarly, a variety of Linac calibration and configuration parameters can be altered manually or randomly via controlled errors in the simulated 3D Linac and its component parts. The implication of these can be investigated by following through a treatment scenario or using QC devices available within a Physics software module. Results: One resultant exercise is a systematic mis-calibration of 'lateral laser height' by 2mm. The offset in patient alignment is easily identified using IGRT and once corrected by reference to the 'in-room monitor'. The dosimetric implication is demonstrated to be 0.4% by setting a dosimetry phantom by the lasers (and ignoring TSD information). Finally, the need for recalibration can be shown by the Laser Alignment Phantom or by reference to the front pointer. Conclusions: The VERT system provides a realistic environment for training and enhancing understanding of radiotherapy concepts and techniques. Linac error conditions can be explored in this context and valuable experience gained in a controlled manner in a compressed period of time.

  11. {sup 36}Cl exposure dating with a 3-MV tandem

    Energy Technology Data Exchange (ETDEWEB)

    Steier, Peter, E-mail: peter.steier@univie.ac.a [VERA Laboratory, Fakultaet fuer Physik - Isotopenforschung, Universitaet Wien, Waehringer Strasse 17, A-1090 Wien (Austria); HPK H 31, Institut fuer Teilchenphysik, ETH Zuerich, Schafmattstr. 20 CH-8093 Zuerich (Switzerland); Forstner, Oliver; Golser, Robin; Kutschera, Walter; Martschini, Martin [VERA Laboratory, Fakultaet fuer Physik - Isotopenforschung, Universitaet Wien, Waehringer Strasse 17, A-1090 Wien (Austria); HPK H 31, Institut fuer Teilchenphysik, ETH Zuerich, Schafmattstr. 20 CH-8093 Zuerich (Switzerland); Merchel, Silke [CEREGE, CNRS-IRD-Universite Aix-Marseille, Europole Mediterraneen de L' Arbois, 13545 Aix-en-Provence (France); Forschungszentrum Dresden-Rossendorf, D-01314 Dresden (Germany); HPK H 31, Institut fuer Teilchenphysik, ETH Zuerich, Schafmattstr. 20 CH-8093 Zuerich (Switzerland); Orlowski, Tobias; Priller, Alfred [VERA Laboratory, Fakultaet fuer Physik - Isotopenforschung, Universitaet Wien, Waehringer Strasse 17, A-1090 Wien (Austria); HPK H 31, Institut fuer Teilchenphysik, ETH Zuerich, Schafmattstr. 20 CH-8093 Zuerich (Switzerland); Vockenhuber, Christof [Forschungszentrum Dresden-Rossendorf, D-01314 Dresden (Germany); HPK H 31, Institut fuer Teilchenphysik, ETH Zuerich, Schafmattstr. 20 CH-8093 Zuerich (Switzerland); Wallner, Anton [VERA Laboratory, Fakultaet fuer Physik - Isotopenforschung, Universitaet Wien, Waehringer Strasse 17, A-1090 Wien (Austria); HPK H 31, Institut fuer Teilchenphysik, ETH Zuerich, Schafmattstr. 20 CH-8093 Zuerich (Switzerland)

    2010-04-15

    {sup 36}Cl AMS measurements at natural isotopic concentrations have yet been performed only at tandem accelerators with 5 MV terminal voltage or beyond. We have developed a method to detect {sup 36}Cl at natural terrestrial isotopic concentrations with a 3-MV system, operated above specifications at 3.5 MV. An effective separation was obtained with an optimized split-anode ionization chamber design (adopted from the ETH/PSI Zurich AMS group), providing a suppression factor of up to 30,000 for the interfering isobar {sup 36}S. Despite the good separation, a relatively high sulfur output from the ion source ({sup 36}S{sup -}/{sup 35}Cl{sup -} approx 4 x 10{sup -10} for samples prepared from chemically pure reagents), and a possibly cross contamination resulted in a background corresponding to {sup 36}Cl/Cl approx 3 x 10{sup -14}. The method was applied to samples containing between 10{sup 5} and 10{sup 6} atoms {sup 36}Cl/g rock from sites in Italy and Iran, which were already investigated by other laboratories for surface exposure dating. The {sup 36}Cl/Cl ratios in the range from 2 x 10{sup -13} to 5 x 10{sup -12} show a generally good agreement with the previous results. These first measurements demonstrate that also 3-MV tandems, constituting the majority of dedicated AMS facilities, are capable of {sup 36}Cl exposure dating, which is presently the domain of larger facilities.

  12. Three level MV converter using series connected IGBT's

    DEFF Research Database (Denmark)

    Munk-Nielsen, Stig; Vaerens, M.C.P.; Sundvall, J.

    2009-01-01

    A simple method of serial connecting IGBT's is applied and standard low voltage IGBT modules are used in the MV test inverter to evaluate the method. The dc link voltage is 2.4 kV and the RMS output line to line voltage is 1.7kV. The method works and test experiences are presented in paper....

  13. Technical aspects of 3MV particle accelerator at GGV Bilaspur

    International Nuclear Information System (INIS)

    Mallik, C.

    2013-01-01

    The accelerator at GGV, Bilaspur is a 3 MV pelletron operating is Tandem mode. The talk will describe the technical aspects of the accelerator. It will also discuss the beam aspects of the pelletron and the feasibility options with the accelerator. (author)

  14. A heavy ion linac complex for RI beams

    International Nuclear Information System (INIS)

    Arai, Shigeaki

    1995-01-01

    A heavy ion linac complex for RI-beams has been under construction since fiscal year 1992 at INS. The linac complex comprises following accelerating structures: a 25.5-MHz split coaxial RFQ (SCRFQ), a 51-MHz interdigital-H (IH) linac, and a 25.5-MHz rebuncher cavity. The SCRFQ with modulated vanes accelerates ions with a charge-to-mass ratio (q/A) greater than 1/30 from 2 to 170 keV/u. The IH linac comprises four cavities and three magnetic quadrupole triplets placed between cavities, accelerates ions with q/A≥1/10, and varies the output energy continuously in the range 0.17 ∼1.05 MeV/u. The rebuncher cavity with six accelerating gaps is a double coaxial λ/4 resonator, and the total accelerating voltage is 200 kV. (author)

  15. HOM Dampers or not in Superconducting RF Proton Linacs

    CERN Document Server

    Tückmantel, Joachim

    2009-01-01

    Circular machines are plagued by Coupled Bunch Instabilities, driven by impedance peaks, irrespectively of their frequency relation to machine lines; hence all cavity Higher Order Modes are possible drivers. This is the fundamental reason that all superconducting RF cavities in circular machines are equipped with HOM dampers. This raises the question if HOM damping would not be imperative also in high current proton linacs where a mechanism akin to CBI might exist. To clarify this question we have simulated the longitudinal bunched beam dynamics in linacs, allowing bunch-to-bunch variations in time-of-arrival. Simulations were executed for a generic proton linac with properties close to SNS or the planned SPL at CERN. It was found that for monopole HOMs with high Qext large beam scatter or even beam loss cannot be excluded. Therefore omitting HOM dampers on superconducting RF cavities in high current proton linacs, even pulsed ones, is a very risky decision.

  16. HOM Dampers or not in SUPERCONDUCTING RF Proton Linacs

    CERN Document Server

    Tückmantel, Joachim

    2009-01-01

    Circular machines are plagued by Coupled Bunch Instabilities, driven by impedance peaks, irrespectively of their frequency relation to machine lines; hence all cavity Higher Order Modes are possible drivers. This is the fundamental reason that all superconducting RF cavities in circular machines are equipped with HOM dampers. This raises the question if HOM damping would not be imperative also in high current proton linacs where a mechanism akin to CBI might exist. To clarify this question we have simulated the longitudinal bunched beam dynamics in linacs, allowing bunch-to-bunch variations in time-of-arrival. Simulations were executed for a generic proton linac with properties close to SNS or the planned SPL at CERN. It was found that for monopole HOMs with high Qext large beam scatter or even beam loss cannot be excluded. Therefore omitting HOM dampers on superconducting RF cavities in high current proton linacs, even pulsed ones, is a very risky decision.

  17. RF linac designs with beams in thermal equilibrium

    International Nuclear Information System (INIS)

    Reiser, M.; Brown, N.

    1996-01-01

    Beams in conventional radio-frequency linear accelerators (rf linacs) usually have a transverse temperature which is much larger than the longitudinal temperature. With high currents, space charge forces couple the transverse and longitudinal particle motions, driving the beam toward thermal equilibrium, which leads to emittance growth and halo formation. A design strategy is proposed in which the beam has equal transverse and longitudinal temperatures through the entire linac, avoiding these undesirable effects. For such equipartitioned linac beams, simple analytical relationships can be derived for the bunch size, tune depression, and other parameters as a function of beam intensity, emittance, and external focusing. These relations were used to develop three conceptual designs for a 938 MeV, 100 mA proton linac with different tune depressions, which are presented in this paper. copyright 1996 American Institute of Physics

  18. Reduction of losses in linacs for protons or heavy ions

    International Nuclear Information System (INIS)

    Claus, J.

    1977-01-01

    It is necessary to minimize the beam losses in linacs for high average currents in order to avoid serious problems due to radiation damage, dissipation and radio activation of the accelerator structure. A large part of the losses in existing linacs is due to incomplete bunching of the injected beam. Proposed improvements generally appear to be deficient in one or more respects if applied to linacs with conventional frequencies, injection energies and current densities. By preceding the linac proper with an accelerating structure and an energy analyzer, it becomes possible to separate the particles that remained outside the buckets from those that are inside so that they can be dumped in a controlled manner

  19. Overview of High Intensity Linac Programs in Europe

    CERN Document Server

    Garoby, R

    2004-01-01

    Recent years have seen a boost in the support by the European Union (EU) of accelerator research in Europe. Provided they coordinate their efforts and define common goals and strategies, laboratories and institutions from the member states can receive a financial support reaching 50% of the total project cost. In the field of High Intensity Linacs, the EU has already supported the EURISOL initiative for nuclear physics, which this year is applying for funding of a Design Study, and the development of linacs for Waste Transmutation. More recently, an initiative for high-energy physics has been approved, which includes a programme for the development of pulsed linac technologies. The coordination and synergy imposed by the EU rules increase the benefit of the allocated resources. Combined with the ongoing internal projects in the partner laboratories, these European initiatives represent a strong effort focussed towards the development of linac technologies. This paper summarises the requests from the various E...

  20. Post-accelerator LINAC design for the VECC RIB project

    Indian Academy of Sciences (India)

    acclerator type of RIB facility. The scheme utilises the existing = 130 room temperature variable energy cyclotron machine as the primary accelerator for the production of RIBs and radio frequency quadrupole (RFQ) and LINAC modules for ...

  1. An induction Linac driven heavy-ion fusion systems model

    International Nuclear Information System (INIS)

    Zuckerman, D.S.; Driemeyer, D.E.; Waganer, L.M.; Dudziak, D.J.

    1988-01-01

    A computerized systems model of a heavy-ion fusion (HIF) reactor power plant is presented. The model can be used to analyze the behavior and projected costs of a commercial power plant using an induction linear accelerator (Linac) as a driver. Each major component of the model (targets, reactor cavity, Linac, beam transport, power flow, balance of plant, and costing) is discussed. Various target, reactor cavity, Linac, and beam transport schemes are examined and compared. The preferred operating regime for such a power plant is also examined. The results show that HIF power plants can compete with other advanced energy concepts at the 1000-MW (electric) power level [cost of electricity (COE) -- 50 mill/kW . h] provided that the cost savings predicted for Linacs using higher charge-state ions (+3) can be realized

  2. Finite element thermal study of the Linac4 plasma generator

    International Nuclear Information System (INIS)

    Faircloth, D.; Kronberger, M.; Kuechler, D.; Lettry, J.; Scrivens, R.

    2010-01-01

    The temperature distribution and heat flow at equilibrium of the plasma generator of the rf-powered noncesiated Linac4 H - ion source have been studied with a finite element model. It is shown that the equilibrium temperatures obtained in the Linac4 nominal operation mode (100 kW rf power, 2 Hz repetition rate, and 0.4 ms pulse duration) are within material specifications except for the magnet cage, where a redesign may be necessary. To assess the upgrade of the Linac4 source for operation in the high-power operation mode of the Superconducting Proton Linac (SPL), an extrapolation of the heat load toward 100 kW rf power, 50 Hz repetition rate, and 0.4 ms pulse duration has been performed. The results indicate that a significant improvement of the source cooling is required to allow for operation in the high-power mode of SPL.

  3. Finite element thermal study of the Linac4 plasma generator

    Energy Technology Data Exchange (ETDEWEB)

    Faircloth, D. [STFC, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX (United Kingdom); Kronberger, M.; Kuechler, D.; Lettry, J.; Scrivens, R. [BE-ABP, Hadron Sources and Linacs, CERN, CH-1211 Geneva (Switzerland)

    2010-02-15

    The temperature distribution and heat flow at equilibrium of the plasma generator of the rf-powered noncesiated Linac4 H{sup -} ion source have been studied with a finite element model. It is shown that the equilibrium temperatures obtained in the Linac4 nominal operation mode (100 kW rf power, 2 Hz repetition rate, and 0.4 ms pulse duration) are within material specifications except for the magnet cage, where a redesign may be necessary. To assess the upgrade of the Linac4 source for operation in the high-power operation mode of the Superconducting Proton Linac (SPL), an extrapolation of the heat load toward 100 kW rf power, 50 Hz repetition rate, and 0.4 ms pulse duration has been performed. The results indicate that a significant improvement of the source cooling is required to allow for operation in the high-power mode of SPL.

  4. Present status of the TOHOKU 300 MeV linac

    International Nuclear Information System (INIS)

    Takahashi, Shigenobu; Oyamada, Masayuki; Urasawa, Shigekazu; Nakazato, Toshiharu; Kurihara, Akira; Mutoh, Masakatu; Shibasaki, Yoshinobu; Oonuma, Tadahiro

    1993-01-01

    The TOHOKU linac that was constructed about a quarter century before has been operated without serious trouble recently. This report describes as follows: main trouble, maintenance, present performance of the machine and status of operation. (author)

  5. A high current electron gun for the IEAv linac

    International Nuclear Information System (INIS)

    Muraro, A. Jr.; Stopa, C.R.S.; Romao, B.M.V.; Jorge, A.M.; Takahashi, J.

    2001-01-01

    This work presents the design, construction and characterization of a new electron gun for the linear electron accelerator (linac) which is under construction at the Instituto de Estudos Avancados (IEAv)

  6. 1-GeV Linac Upgrade Study at Fermilab

    International Nuclear Information System (INIS)

    Popovic, M.; Moretti, A.; Noble, R.; Schmidt, C.W.

    1998-09-01

    A linac injector for a new proton source complex at Fermilab is assumed to have a kinetic energy of 1 GeV. This linac would be sized to accelerate 100 mA of H - beam in a 200 microsecond pulse at a 15 Hz repetition rate. This would be adequate to produce ∼10 14 protons per pulse allowing for future improvements of the new proton source complex. An alternate proposal is to add 600 MeV of side coupled cavity linac at 805 MHz to the existing 400 MeV Linac. This addition may either be in a new location or use the present Booster tunnel. A discussion of these possibilities will be given

  7. SU-E-T-11: A Cloud Based CT and LINAC QA Data Management System

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, R; Grelewicz, Z; Belcher, A; Liu, X [The University of Chicago, Chicago, IL (United States)

    2015-06-15

    Purpose: The current status quo of QA data management consists of a mixture of paper-based forms and spreadsheets for recording the results of daily, monthly, and yearly QA tests for both CT scanners and LINACs. Unfortunately, such systems suffer from a host of problems as, (1) records can be easily lost or destroyed, (2) data is difficult to access — one must physically hunt down records, (3) poor or no means of historical data analysis, and (4) no remote monitoring of machine performance off-site. To address these issues, a cloud based QA data management system was developed and implemented. Methods: A responsive tablet interface that optimizes clinic workflow with an easy-to-navigate interface accessible from any web browser was implemented in HTML/javascript/CSS to allow user mobility when entering QA data. Automated image QA was performed using a phantom QA kit developed in Python that is applicable to any phantom and is currently being used with the Gammex ACR, Las Vegas, Leeds, and Catphan phantoms for performing automated CT, MV, kV, and CBCT QAs, respectively. A Python based resource management system was used to distribute and manage intensive CPU tasks such as QA phantom image analysis or LaTeX-to-PDF QA report generation to independent process threads or different servers such that website performance is not affected. Results: To date the cloud QA system has performed approximately 185 QA procedures. Approximately 200 QA parameters are being actively tracked by the system on a monthly basis. Electronic access to historical QA parameter information was successful in proactively identifying a Linac CBCT scanner’s performance degradation. Conclusion: A fully comprehensive cloud based QA data management system was successfully implemented for the first time. Potential machine performance issues were proactively identified that would have been otherwise missed by a paper or spreadsheet based QA system.

  8. Dark currents and their effect on the primary beam in an X-band linac

    Directory of Open Access Journals (Sweden)

    Karl L. F. Bane

    2005-06-01

    Full Text Available We numerically study properties of primary dark currents in an X-band accelerating structure. For the H60VG3 structure considered for the Next Linear Collider (NLC we first perform a fairly complete (with some approximations calculation of dark-current trajectories. These results are used to study properties of the dark current leaving the structure. For example, at accelerating gradient of 65  MV/m, considering two very different assumptions about dark-current emission around the irises, we find that the fraction of emitted current leaving the structure to be a consistent ∼1%. Considering that ∼1  mA outgoing dark current is seen in measurement, this implies that ∼100  mA (or 10 pC per period is emitted within the structure itself. Using the formalism of the Liénard-Wiechert potentials, we then perform a systematic calculation of the transverse kick of dark currents on a primary linac bunch. The result is ∼1   V kick per mA (or per 0.1  pC per period dark current emitted from an iris. For an entire structure we estimate the total kick on a primary bunch to be ∼15   V. For the NLC linac this translates to a ratio of (final vertical beam offset to beam size of about 0.2. However, with the assumptions that needed to be made—particularly the number of emitters and their distribution within a structure—the accuracy of this result may be limited to the order of magnitude.

  9. SU-E-T-11: A Cloud Based CT and LINAC QA Data Management System

    International Nuclear Information System (INIS)

    Wiersma, R; Grelewicz, Z; Belcher, A; Liu, X

    2015-01-01

    Purpose: The current status quo of QA data management consists of a mixture of paper-based forms and spreadsheets for recording the results of daily, monthly, and yearly QA tests for both CT scanners and LINACs. Unfortunately, such systems suffer from a host of problems as, (1) records can be easily lost or destroyed, (2) data is difficult to access — one must physically hunt down records, (3) poor or no means of historical data analysis, and (4) no remote monitoring of machine performance off-site. To address these issues, a cloud based QA data management system was developed and implemented. Methods: A responsive tablet interface that optimizes clinic workflow with an easy-to-navigate interface accessible from any web browser was implemented in HTML/javascript/CSS to allow user mobility when entering QA data. Automated image QA was performed using a phantom QA kit developed in Python that is applicable to any phantom and is currently being used with the Gammex ACR, Las Vegas, Leeds, and Catphan phantoms for performing automated CT, MV, kV, and CBCT QAs, respectively. A Python based resource management system was used to distribute and manage intensive CPU tasks such as QA phantom image analysis or LaTeX-to-PDF QA report generation to independent process threads or different servers such that website performance is not affected. Results: To date the cloud QA system has performed approximately 185 QA procedures. Approximately 200 QA parameters are being actively tracked by the system on a monthly basis. Electronic access to historical QA parameter information was successful in proactively identifying a Linac CBCT scanner’s performance degradation. Conclusion: A fully comprehensive cloud based QA data management system was successfully implemented for the first time. Potential machine performance issues were proactively identified that would have been otherwise missed by a paper or spreadsheet based QA system

  10. Linac 1 in the process of being pulled back

    CERN Multimedia

    Photographic Service; CERN PhotoLab

    1985-01-01

    As injector to the PS Booster, Linac 1 was replaced by Linac 2 in 1980. It continued to be used for the acceleration of oxygen and sulfur ions and, from 1981 to 1996, of protons and negative hydrogen ions for LEAR. In 1984, its Cockcroft-Walton preinjector was replaced by a much smaller RFQ, which allowed it to be moved to a more convenient location.

  11. Effect of cooling water on stability of NLC linac components

    Energy Technology Data Exchange (ETDEWEB)

    F. Le Pimpec et al.

    2003-02-11

    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.

  12. Effect of Cooling Water on Stability of NLC Linac Components

    Energy Technology Data Exchange (ETDEWEB)

    Le Pimpec, Frederic

    2002-11-01

    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.

  13. Nonlinear space charge effect of bunched beam in linac

    International Nuclear Information System (INIS)

    Chen Yinbao

    1992-02-01

    The nonlinear space charge effect due to the nonuniform particle density distribution in bunched beam of a linac is discussed. The formulae of nonlinear space charge effect and nonlinear focusing forces were derived for the bunched beam with Kapchinskij-Vladimirskij (K-V) distribution, waterbag (WB) distribution, parabolic (PA) distribution, and Gauss (GA) distribution in both of the space charge disk model and space charge cylinder model in the waveguide of a linac

  14. Evolution of the 400 MeV linac design

    International Nuclear Information System (INIS)

    MacLachlan, J.A.

    1987-01-01

    The basic premises of the conceptual design for the linac upgrade are pursued to establish lengths, gradients, power dissipation, etc., for the 400 MeV linac and matching section. The discussion is limited to accelerating and focusing components. Wherever values depend on the choice of the accelerating structure, the disk-and-washer structure is emphasized; the results are generally relevant to the side coupled cavity choice also

  15. Vibrational Stability of NLC Linac and Final Focus Components

    Energy Technology Data Exchange (ETDEWEB)

    Le Pimpec, Frederic

    2002-09-25

    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structure and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. Design to properly decouple the structure vibrations from the linac quadrupoles is being pursued.

  16. Induction linac driven relativistic klystron and cyclotron autoresonance maser experiments

    International Nuclear Information System (INIS)

    Goodman, D.L.; Birx, D.L.; Danly, B.G.

    1991-01-01

    In this paper design and experimental results are presented from two high power microwave generation experiments utilizing a high repetition rate induction linac generated electron beam. A relativistic klystron has generated more than 100 MW microwave pulses in X-band for 50 ns without pulse shortening or breakdown. design studies for the first cyclotron autoresonance maser (CARM) amplifier using an induction linac electron beam are also presented

  17. Evolution of the 400 MeV linac design

    Energy Technology Data Exchange (ETDEWEB)

    MacLachlan, J.A.

    1987-11-09

    The basic premises of the conceptual design for the linac upgrade are pursued to establish lengths, gradients, power dissipation, etc., for the 400 MeV linac and matching section. The discussion is limited to accelerating and focusing components. Wherever values depend on the choice of the accelerating structure, the disk-and-washer structure is emphasized; the results are generally relevant to the side coupled cavity choice also.

  18. Dose attenuation by a carbon fiber linac couch and modeling with a treatment planning system; Medida de la atenuacion producida por la mesa de tratamiento de un acelerador lineal y su modelado en un sistema de planificacion

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Galiano, P.; Garcia Sancho, J.M.; Crelgo, D.; Pamos, M.; Fernandez, J.; Vivanco, J.

    2010-07-01

    The purpose of this work is to investigate the attenuation caused by a carbon fiber linac treatment couch and the ability of a commercial radiotherapy treatment planning system to simulate it. The attenuation caused by an Exact{copyright} treatment couch in a Varian{copyright} Clinac{copyright} 2100 C/D was characterized in detail. Both 6 MV and 18 MV photon beams were studied. The treatment couch was modeled and incorporated to Elekta{copyright} XiO{copyright} treatment planning system. Measured and computed attenuation values were compared. As a result we found that the attenuation caused by this complex treatment couch is strongly dependent on the incidence angle of the beam. The measured attenuation values reach 16% for 6 MV and 10% for 18 MV. The model incorporated to the treatment planning software allows reducing the differences between measured and calculated data below 2.5% and 2.0% for 6 MV and 18 MV respectively. In conclusion, it is strongly recommended accounting for the perturbation caused by this carbon fiber treatment couch when the beam intersects it. The treatment planning system studied can simulate this treatment couch accurately. Clinical implementation of the described method requires a reliable procedure to reproduce the same patient geometry in the treatment delivery and planning. (Author).

  19. Physics design of APT linac with normal conducting rf cavities

    International Nuclear Information System (INIS)

    Nath, S.; Billen, J.H.; Stovall, J.E.; Takeda, Harunori; Young, L.M.

    1996-01-01

    The accelerator based production of tritium calls for a high-power, cw proton linac. Previous designs for such a linac use a radiofrequency quadrupole (RFQ), followed by a drift-tube linac (DTL) to an intermediate energy and a coupled-cavity linc (CCL) to the final energy. The Los Alamos design uses a high-energy (6.7 MeV) RFQ followed by the newly developed coupled-cavity drift-tube linac (CCDTL) and a CCL. This design accommodates external electromagnetic quadrupole lenses which provide a strong uniform focusing lattice from the end of the RFQ to the end of the CCL. The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells symmetric in both the CCDTL and CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. At higher energies, there are some advantages of using superconducting rf cavities. Currently, such schemes are under vigorous study. This paper describes the linac design based on normal conducting cavities and presents simulation results

  20. Status and plans for Linac4 installation and commissioning

    CERN Document Server

    Vretenar, M; Arnaudon, L; Baudrenghien, P; Bellodi, G; Broere, J; Brunner, O; Comblin, J F; Coupard, J; Dimov, V A; Fuchs, J F; Funken, A; Gerigk, F; Granemann Souza, E; Hanke, K; Hansen, J; Yarmohammadi Satri, M; Kozsar, I; Lallement, J B; Lenardon, F; Lettry, J; Lombardi, A M; Maglioni, C; Midtun, O; Mikulec, B; Nisbet, D; Paoluzzi, M; Raich, U; Ramberger, S; Roncarolo, F; Rossi, C; Sanchez Alvarez, J L; Scrivens, R; Tan, J; Valerio-Lizarraga, C A; Vollaire, J; Wegner, R; Weisz, S; Zocca, F

    2014-01-01

    Linac4 is a normal conducting 160 MeV Hˉ linear accelerator presently being installed and progressively commissioned at CERN. It will replace the ageing 50 MeV Linac2 as injector of the PS Booster (PSB), increasing at the same time its brightness by a factor of two thanks to the higher injection energy. This will be the first step of a program to increase the beam brightness in the LHC injectors for the needs of the High-Luminosity LHC project. After a series of beam measurements on a dedicated test stand the 3 MeV Linac4 front-end, including ion source, RFQ and a beam chopping line, has been recommissioned at its final position in the Linac4 tunnel. Commissioning of the following section, the Drift Tube Linac, is starting. Beam commissioning will take place in steps of increasing energy, to reach the final 160 MeV in 2015. An extended beam measurement phase including testing of stripping equipment for the PSB and a year-long test run to assess and improve Linac4 reliability will take place in 2016, prior to...