WorldWideScience

Sample records for mutualistic endophytic fungi

  1. Effects of fungicides on endophytic fungi and photosynthesis in seedlings of a tropical tree, guarea guidonia (meliaceae)

    International Nuclear Information System (INIS)

    Gamboa Gaitan, Miguel A; Wen, Shiyun; Fetcher, Ned; Bayman, Paul

    2005-01-01

    Endophytes are microorganisms that live within healthy plant tissues, and include fungi and bacteria. They can be mutualists, comensals or even latent pathogens. Presence of these endosymbionts may affect host physiology, for example by consuming products of photosynthesis (endophytes are heterotrophs) or producing toxic metabolites. In this work two fungicides were used to eliminate fungal endophytes from seedlings of guarea guidonia. light saturated photosynthesis (Amax) was measured in endophytefree plants and compared with control plants. Each fungicide killed different fungal endosymbionts. phomopsis was more susceptible to benomyl while colletotrichum was more susceptible to propiconazole. Although suggestive, values of Amax were not significantly different for each treatment compared with control plants. No prediction can be made at this point about the final outcome of a given plantendophytic fungi interaction

  2. Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi.

    Science.gov (United States)

    Barelli, Larissa; Moonjely, Soumya; Behie, Scott W; Bidochka, Michael J

    2016-04-01

    This review examines the symbiotic, evolutionary, proteomic and genetic basis for a group of fungi that occupy a specialized niche as insect pathogens as well as endophytes. We focus primarily on species in the genera Metarhizium and Beauveria, traditionally recognized as insect pathogenic fungi but are also found as plant symbionts. Phylogenetic evidence suggests that these fungi are more closely related to grass endophytes and diverged from that lineage ca. 100 MYA. We explore how the dual life cycles of these fungi as insect pathogens and endophytes are coupled. We discuss the evolution of insect pathogenesis while maintaining an endophytic lifestyle and provide examples of genes that may be involved in the transition toward insect pathogenicity. That is, some genes for insect pathogenesis may have been co-opted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. We suggest that their evolution as insect pathogens allowed them to effectively barter a specialized nitrogen source (i.e. insects) with host plants for photosynthate. These ubiquitous fungi may play an important role as plant growth promoters and have a potential reservoir of secondary metabolites.

  3. Bioactive Metabolites from Pathogenic and Endophytic Fungi of Forest Trees.

    Science.gov (United States)

    Masi, Marco; Maddau, Lucia; Linaldeddu, Benedetto Teodoro; Scanu, Bruno; Evidente, Antonio; Cimmino, Alessio

    2018-01-01

    Fungi play an important role in terrestrial ecosystems interacting positively or negatively with plants. These interactions are complex and the outcomes are different depending on the fungal lifestyles, saprotrophic, mutualistic or pathogenic. Furthermore, fungi are well known for producing secondary metabolites, originating from different biosynthetic pathways, which possess biological properties of considerable biotechnological interest. Among the terrestrial ecosystems, temperate forests represent an enormous reservoir of fungal diversity. This review will highlight the goldmine of secondary metabolites produced by pathogenic and endophytic fungi of forest trees with focus on their biological activities. A structured search of bibliographic databases for peer-reviewed research literature was undertaken using a research discovery application providing access to a large and authoritative source of references. The papers selected were examined and the main results were reported and discussed. Two hundred forthy-one papers were included in the review, outlined a large number of secondary metabolites produced by pathogenic and endophiltic fungi and their biological activities, including phytotoxic, antifungal, antioomycetes, antibacterial, brine shrimp lethality, mosquito biting deterrence and larvicidal, cytotoxic, antiproliferative and many other bioactivities. The findings of this review confirm the importance of secondary metabolites produced by pathogenic and endophytic fungi from forest plants growing in temperate regions as an excellent prospects to discover compounds with new bioactivities and mode of actions. In addition, the potential of some metabolites as a source of new drugs and biopesticides is underlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Genomic DNA extraction and barcoding of endophytic fungi.

    Science.gov (United States)

    Diaz, Patricia L; Hennell, James R; Sucher, Nikolaus J

    2012-01-01

    Endophytes live inter- and/or intracellularly inside healthy aboveground tissues of plants without causing disease. Endophytic fungi are found in virtually every vascular plant species examined. The origins of this symbiotic relationship between endophytes go back to the emergence of vascular plants. Endophytic fungi receive nutrition and protection from their hosts while the plants benefit from the production of fungal secondary metabolites, which enhance the host plants' resistance to herbivores, pathogens, and various abiotic stresses. Endophytic fungi have attracted increased interest as potential sources of secondary metabolites with agricultural, industrial, and medicinal use. This chapter provides detailed protocols for isolation of genomic DNA from fungal endophytes and its use in polymerase chain reaction-based amplification of the internal transcribed spacer region between the conserved flanking regions of the small and large subunit of ribosomal RNA for barcoding purposes.

  5. Mechanisms Involved in Nematode Control by Endophytic Fungi.

    Science.gov (United States)

    Schouten, Alexander

    2016-08-04

    Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood but most likely multifactorial. This knowledge gap obstructs the progress regarding the development of endophytes or endophyte-derived constituents into biocontrol agents. In part, this may be caused by the fact that endophytic fungi form a rather heterogeneous group. By combining the knowledge of the currently characterized antagonistic endophytic fungi and their effects on nematode behavior and biology with the knowledge of microbial competition and induced plant defenses, the various mechanisms by which this nematode antagonism operates or may operate are discussed. Now that new technologies are becoming available and more accessible, the currently unresolved mechanisms can be studied in greater detail than ever before.

  6. Diversity of endophytic fungi in Glycine max.

    Science.gov (United States)

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  7. Community structure of endophytic fungi of four mangrove species in Southern China

    Directory of Open Access Journals (Sweden)

    Jia-Long Li

    2016-10-01

    Full Text Available Mangrove forests play an important role in subtropical and tropical coastal ecosystems. Endophytic fungi are widely distributed in various ecosystems and have great contribution to global biodiversity. In order to better understand the effects of mangrove species and tissue types on endophytic fungal community, we investigated cultivable endophytic fungi in leaves and twigs of four mangroves Aegiceras corniculatum, Avicennia marina, Bruguiera gymnorrhiza, and Kandelia candel in Guangxi, China. The four tree species had similar overall colonisation rates of endophytic fungi (24–33%. The colonisation rates of endophytic fungi were higher in twigs (30–58% than in leaves (6–25% in the four plant species. A total of 36 endophytic fungal taxa were identified based on morphological characteristics and molecular data, including 35 Ascomycota and 1 Basidiomycota, dominated by Phomopsis, Phyllosticta, Xylaria, Leptosphaerulina, and Pestalotiopsis. The diversity of endophytic fungi was higher in twigs than in leaves in the four plant species. Some endophytic fungi showed host and tissue preference. The endophytic fungal community composition was different among four mangrove species and between leaf and twig tissues.

  8. [Diversity and community structure of endophytic fungi from Taxus chinensis var. mairei].

    Science.gov (United States)

    2014-07-01

    A total of 628 endophytic fungi were isolated from 480 tissue segments of needles and branches of Taxus chinensis var. mairei. According to morphological characteristics and ITS sequences, they represented 43 taxa in 28 genera, of which 10 Hyphomycetes, 20 Coelomycetes, 12 Ascomycetes and 1 unknown fungus. Phomopsis mali was confirmed as the dominant species. In accordance with relative frequency, Alternaria alternata, Aureobasidium pullulans, Colletotrichum boninense, C. gloeosporioides, Epicoccum nigrum , Fungal sp., Fusarium lateritium, Glomerella cingulata, Magnaporthales sp. , Nigrospora oryzae, Pestalotiopsis maculiformans, P. microspora, Peyronellaea glomerata and Xylaria sp. 1 were more common in T. chinensis var. mairei. T. chinensis var. mairei were severely infected by endophytic fungi. Endophytic fungi were found in 81 percent of plant tissues with a high diversity. Distribution ranges of endophytic fungi were influenced by tissue properties. The colonization rate, richness, diversity of endophytic fungi in needles were obviously lower than in branches, and kinds of endophytic fungi between branches were more similar than those in needles, thus endophytic fungi had tissue preference. In addition, tissue age influenced the community structure of endophytic fungi. The elder branch tissues were, the higher colonization rate, richness, diversity of endophytic fungi were. Systematic studying the diversity and community structure of endophytic fungi in T. chinensis var. mairei and clarifying their distribution regularity in plant tissues would offer basic data and scientific basis for their development and utilization. Discussing the presence of fungal pathogens in healthy plant tissues would be of positive significance for source protection of T. chinensis var. mairei.

  9. Endophytic Fungi as Novel Resources of natural Therapeutics

    Directory of Open Access Journals (Sweden)

    Maheshwari Rajamanikyam

    2017-08-01

    Full Text Available ABSTRACT Fungal endophytes constitute a major part of the unexplored fungal diversity. Endophytic fungi (EF are an important source for novel, potential and active metabolites. Plant-endophyte interaction and endophyte -endophyte interactions study provide insights into mutualism and metabolite production by fungi. Bioactive compounds produced by endophytes main function are helping the host plants to resist external biotic and abiotic stress, which benefit the host survival in return. These organisms mainly consist of members of the Ascomycota, Basidiomycota, Zygomycota and Oomycota. Recently, the genome sequencing technology has emerged as one of the most efficient tools that can provide whole information of a genome in a small period of time. Endophytes are fertile ground for drug discovery. EFare considered as the hidden members of the microbial world and represent an underutilized resource for new therapeutics and compounds. Endophytes are rich source of natural products displaying broad spectrum of biological activities like anticancer, antibacterial, antiviral, immunomodulatory, antidiabetic, antioxidant, anti-arthritis and anti-inflammatory.

  10. Biodiversity, Phylogeny, and Antifungal Functions of Endophytic Fungi Associated with Zanthoxylum bungeanum

    Directory of Open Access Journals (Sweden)

    Peiqin Li

    2016-09-01

    Full Text Available This study investigated the biodiversity, phylogeny, and antifungal activity of endophytic fungi isolated from Zanthoxylum bungeanum. A total of 940 isolates obtained were grouped into 93 morphotypes, 43 species, and 23 genera, which were authenticated by molecular identification based on rDNA internal transcribed spacer (ITS sequence analysis. A high diversity of endophytic fungi from Z. bungeanum are observed with high species richness S (43, Margalef index D′ (6.1351, Shannon–Wiener index H′ (3.2743, Simpson diversity index Ds (0.9476, PIE index (0.9486, and evenness Pielou index J (0.8705 but a low dominant index λ (0.0524. Significant tissue specificity of the endophytic fungi was observed in Z. bungeanum, and the highest species richness and diversity indexes were obtained in the stem. Phylogenetic analyses of the 93 endophytic isolates were carried out by the neighbor-joining (NJ method to demonstrate their evolutionary processes. Antifungal activities of endophytic fungi were assayed and eight endophytic isolates showed strong and long-lasting inhibition against host pathogenic fungi Fusarium sambucinum and Pseudocercospora zanthoxyli. Here, for the first time, we systematically demonstrate the biodiversity, phylogeny, and antifungal activity of endophytic fungi associated with Z. bungeanum and reveal the value of sampling different tissues of a given plant to obtain the greatest endophyte species diversity, which might offer a framework for further investigation and utilization of endophytic fungi as aunique source of interesting and useful bioactive compounds.

  11. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity.

    Science.gov (United States)

    Astuti, Puji; Sudarsono, Sudarsono; Nisak, Khoirun; Nugroho, Giri Wisnu

    2014-12-01

    Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatography (TLC) - bioautography was performed to localize the bioactive components within the extract. TLC visualization detection reagents were used to preliminary analyze phytochemical groups of the bioactive compounds. Three endophytic fungi were obtained, two of them showed promising potential. Agar diffusion method showed that endophytic fungi CAL-2 exhibited antimicrobial activity against P. aeruginosa, B. subtilis, S. aureus and S. thypi, whilst CAS-1 inhibited the growth of B. subtilis. TLC bioautography of ethyl acetate extract of CAL-2 revealed at least three bands exhibited antimicrobial activity and at least two bands showed inhibition of B. subtilis growth. Preliminary analysis of the crude extracts suggests that bioactive compounds within CAL-2 extract are terpenoids, phenolics and phenyl propanoid compounds whilst the antimicrobial agents within CAS-1 extract are terpenoids, propylpropanoids, alkaloids or heterocyclic nitrogen compounds. These data suggest the potential of endophytic fungi of C. amboinicus as source for antimicrobial agents.

  12. Mechanisms Involved in Nematode Control by Endophytic Fungi

    NARCIS (Netherlands)

    Schouten, Sander

    2016-01-01

    Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood

  13. Colonization of Onions by Endophytic Fungi and Their Impacts on the Biology of Thrips tabaci

    Science.gov (United States)

    Muvea, Alexander M.; Meyhöfer, Rainer; Subramanian, Sevgan; Poehling, Hans-Michael; Ekesi, Sunday; Maniania, Nguya K.

    2014-01-01

    Endophytic fungi, which live within host plant tissues without causing any visible symptom of infection, are important mutualists that mediate plant–herbivore interactions. Thrips tabaci (Lindeman) is one of the key pests of onion, Allium cepa L., an economically important agricultural crop cultivated worldwide. However, information on endophyte colonization of onions, and their impacts on the biology of thrips feeding on them, is lacking. We tested the colonization of onion plants by selected fungal endophyte isolates using two inoculation methods. The effects of inoculated endophytes on T. tabaci infesting onion were also examined. Seven fungal endophytes used in our study were able to colonize onion plants either by the seed or seedling inoculation methods. Seed inoculation resulted in 1.47 times higher mean percentage post-inoculation recovery of all the endophytes tested as compared to seedling inoculation. Fewer thrips were observed on plants inoculated with Clonostachys rosea ICIPE 707, Trichoderma asperellum M2RT4, Trichoderma atroviride ICIPE 710, Trichoderma harzianum 709, Hypocrea lixii F3ST1 and Fusarium sp. ICIPE 712 isolates as compared to those inoculated with Fusarium sp. ICIPE 717 and the control treatments. Onion plants colonized by C. rosea ICIPE 707, T. asperellum M2RT4, T. atroviride ICIPE 710 and H. lixii F3ST1 had significantly lower feeding punctures as compared to the other treatments. Among the isolates tested, the lowest numbers of eggs were laid by T. tabaci on H. lixii F3ST1 and C. rosea ICIPE 707 inoculated plants. These results extend the knowledge on colonization of onions by fungal endophytes and their effects on Thrips tabaci. PMID:25254657

  14. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Puji Astuti

    2014-12-01

    Full Text Available Purpose: Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Methods: Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatography (TLC - bioautography was performed to localize the bioactive components within the extract. TLC visualization detection reagents were used to preliminary analyze phytochemical groups of the bioactive compounds. Results: Three endophytic fungi were obtained, two of them showed promising potential. Agar diffusion method showed that endophytic fungi CAL-2 exhibited antimicrobial activity against P. aeruginosa, B. subtilis, S. aureus and S. thypi, whilst CAS-1 inhibited the growth of B. subtilis. TLC bioautography of ethyl acetate extract of CAL-2 revealed at least three bands exhibited antimicrobial activity and at least two bands showed inhibition of B. subtilis growth. Preliminary analysis of the crude extracts suggests that bioactive compounds within CAL-2 extract are terpenoids, phenolics and phenyl propanoid compounds whilst the antimicrobial agents within CAS-1 extract are terpenoids, propylpropanoids, alkaloids or heterocyclic nitrogen compounds. Conclusion: These data suggest the potential of endophytic fungi of C. amboinicus as source for antimicrobial agents.

  15. Frequency of endophytic fungi isolated from Dendrobium crumenatum (Pigeon orchid and antimicrobial activity

    Directory of Open Access Journals (Sweden)

    WIBOWO MANGUNWARDOYO

    2012-01-01

    Full Text Available Mangunwardoyo W, Suciatmih, Gandjar I. 2012. Frequency of endophytic fungi isolated from Dendrobium crumenatum (Pigeon orchid and antimicrobial activity. Biodiversitas 13: 34-39. The aims of this research was to isolate and study the frequency of endophytic fungi from roots, bulbous, stems, and leaves of Dendrobium crumenatum Sw. (pigeon orchid collected from Tanah Baru housing area, Bogor Botanical Garden, and Herbarium Bogoriense; and to assess for antimicrobial activity against Candida albicans ATCC 2091, Candida tropicalis LIPIMC 203, Escherichia coli ATCC 25922, Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 25923. Twelve species of endophytic fungi were identified from 60 samples obtained from D. crumenatum. Guignardia endophyllicola (anamorph: Phyllosticta capitalensis were the dominant endophytic fungi. Screening of the anti-microorganism activity of the endophytic fungi revealed that Fusarium nivale inhibited C albicans and C. tropicalis. All specimens did not inhibit B. subtilis, E. coli, and S. aureus.

  16. Multiple mutualist effects on genomewide expression in the tripartite association between Medicago truncatula, nitrogen-fixing bacteria and mycorrhizal fungi.

    Science.gov (United States)

    Afkhami, Michelle E; Stinchcombe, John R

    2016-10-01

    While all species interact with multiple mutualists, the fitness consequences and molecular mechanisms underlying these interactions remain largely unknown. We combined factorial ecological experiments with genomewide expression analyses to examine the phenotypic and transcriptomic responses of model legume Medicago truncatula to rhizobia and mycorrhizal fungi. We found synergistic effects of these mutualists on plant performance and examined unique features of plant gene expression responses to multiple mutualists. There were genomewide signatures of mutualists and multiple mutualists on expression, with partners often affecting unique sets of genes. Mycorrhizal fungi had stronger effects on plant expression than rhizobia, with 70% of differentially expressed genes affected by fungi. Fungal and bacterial mutualists had joint effects on 10% of differentially expressed genes, including unexpected, nonadditive effects on some genes with important functions such as nutrient metabolism. For a subset of genes, interacting with multiple mutualists even led to reversals in the direction of expression (shifts from up to downregulation) compared to interacting with single mutualists. Rhizobia also affected the expression of several mycorrhizal genes, including those involved in nutrient transfer to host plants, indicating that partner species can also impact each other's molecular phenotypes. Collectively, these data illustrate the diverse molecular mechanisms and transcriptional responses associated with the synergistic benefits of multiple mutualists. © 2016 John Wiley & Sons Ltd.

  17. A Friendly Relationship between Endophytic Fungi and Medicinal Plants: A Systematic Review

    Science.gov (United States)

    Jia, Min; Chen, Ling; Xin, Hai-Liang; Zheng, Cheng-Jian; Rahman, Khalid; Han, Ting; Qin, Lu-Ping

    2016-01-01

    Endophytic fungi or endophytes exist widely inside the healthy tissues of living plants, and are important components of plant micro-ecosystems. Over the long period of evolution, some co-existing endophytes and their host plants have established a special relationship with one and another, which can significantly influence the formation of metabolic products in plants, then affect quality and quantity of crude drugs derived from medicinal plants. This paper will focus on the increasing knowledge of relationships between endophytic fungi and medicinal plants through reviewing of published research data obtained from the last 30 years. The analytical results indicate that the distribution and population structure of endophytes can be considerably affected by factors, such as the genetic background, age, and environmental conditions of their hosts. On the other hand, the endophytic fungi can also confer profound impacts on their host plants by enhancing their growth, increasing their fitness, strengthening their tolerances to abiotic and biotic stresses, and promoting their accumulation of secondary metabolites. All the changes are very important for the production of bioactive components in their hosts. Hence, it is essential to understand such relationships between endophytic fungi and their host medicinal plants. Such knowledge can be well exploited and applied for the production of better and more drugs from medicinal plants. PMID:27375610

  18. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity

    OpenAIRE

    Puji Astuti; Sudarsono Sudarsono; Khoirun Nisak; Giri Wisnu Nugroho

    2014-01-01

    Purpose: Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Methods: Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatograp...

  19. Research advance on stable mechanism of endophytic fungi to red wine colour during the aging

    Science.gov (United States)

    Nan, Lijun; Li, Yashan; Cui, Changwei; Ning, Na; Huang, Jing; Xu, Chengdong; Tao, Fang; Zhang, Jinyong

    2018-04-01

    Based on the fact that persistent mutation of vinous color was not conducive to the stabilization of vinous quality during the aging, research advance on the stable mechanism of endophytic fungi to colour of red wine during the aging, including investigative status and developmental dynamic at home and abroad, endophytes and pigment of materials in wine, including effect of endophyte on vinaceous color, and even the application of tracer method in wine was summarized, respectively. The relationship between diversity of community the endophytic fungi and the main pigment material in wine was existent objectively, also included the response mechanism on colony dynamic of endophytic fungi to the various pigment as well as substance related to color, which laid the foundation for exploring the relationships between endophytic fungi and wine color, and the variational mechanism of the color under endophytic fungi during the aging period of wine. Color as an important reference index of wine quality influenced not only the sensory evaluation of consumer, but also the quality of wine because of the self-aggregation or combination of phenolic composition with other substances under the endophytic fungi during the storage. Only steady wine in the color could guarantee the security of quality.

  20. Isolation and characterization of endophytic huperzine A-producing fungi from Huperzia serrata.

    Science.gov (United States)

    Wang, Ya; Zeng, Qing Gui; Zhang, Zhi Bin; Yan, Ri Ming; Wang, Ling Yun; Zhu, Du

    2011-09-01

    Huperzia serrata is a producer of huperzine A (HupA), a cholinesterase inhibitor (ChEI). Over 120 endophytic fungi were recovered from this plant and screened for Hup-A and nine were found. These nine represented seven different fungal genera with the most significant producer being Shiraia sp. A total of 127 endophytic fungi isolates obtained from the root, stem, and leaf segments of H. serrata were grouped into 19 genera based on their morphological traits and sequence analysis of the internal transcribed spacers (ITS1-5.8S-ITS2), indicating endophytic fungi in H. serrata are diverse and abundant. Aspergillus, Podospora, Penicillium, Colletotrichum, and Acremonium were the frequent genera, whereas the remaining genera were infrequent groups. Overall, 39 endophytic fungi isolates showed acetylcholinesterase (AChE) inhibition in vitro. Nine endophytic fungi isolates from seven distinct genera were capable of producing HupA verified by thin-layer chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC). Among the HupA-producing fungi, the yield of HupA produced by the Shiraia sp. Slf14 was 327.8 μg/l in potato dextrose broth, and the fungal HupA was further validated by mass spectrometry (ESI-MS). The present study demonstrated that H. serrata was a fascinating fungal reservoir for producing HupA and other ChEIs.

  1. Enantioselective biotransformation of propranolol to the active metabolite 4-hydroxypropranolol by endophytic fungi

    Directory of Open Access Journals (Sweden)

    Keyller Bastos Borges

    2011-01-01

    Full Text Available The enantioselective biotransformation of propranolol (Prop by the endophytic fungi Phomopsis sp., Glomerella cingulata, Penicillium crustosum, Chaetomium globosum and Aspergillus fumigatus was investigated by studying the kinetics of the aromatic hydroxylation reaction with the formation of 4-hydroxypropranolol (4-OH-Prop. Both Prop enantiomers were consumed by the fungi in the biotransformation process, but the 4-hydroxylation reaction yielded preferentially (--(S-4-OH-Prop. The quantity of metabolites biosynthesized varied slightly among the evaluated endophytic fungi. These results show that all investigated endophytic fungi could be used as biosynthetic tools in biotransformation processes to obtain the enantiomers of 4-OH-Prop.

  2. Antifungal activity and molecular identification of endophytic fungi ...

    African Journals Online (AJOL)

    Antifungal activity and molecular identification of endophytic fungi from the angiosperm Rhodomyrtus tomentosa. Juthatip Jeenkeawpieam, Souwalak Phongpaichit, Vatcharin Rukachaisirikul, Jariya Sakayaroj ...

  3. Distribution and antimicrobial potential of endophytic fungi associated with ethnomedicinal plant Melastoma malabathricum L.

    Science.gov (United States)

    Mishra, Vineet Kumar; Singh, Garima; Passari, Ajit Kumar; Yadav, Mukesh Kumar; Gupta, Vijai Kumar; Singh, Bhim Pratap

    2016-03-01

    Distributions of endophytic fungi associated with ethnomedicinal plant Melastoma malabathricum L. was studied and 91 isolates belonging to 18 genera were recovered. The isolates were distributed to sordariomycetes (62.63%), dothideomycetes (19.78%), eurotiomycetes (7.69%), zygomycetes (4.19%), agaricomycetes (1.09%), and mycelia sterilia (4.39%). Based on colony morphology and examination of spores, the isolates were classified into 18 taxa, of which Colletotrichum, Phomopsis and Phoma were dominant, their relative frequencies were 23.07%, 17.58% and 12.08% respectively. The colonization rate of endophytic fungi was determined and found to be significantly higher in leaf segments (50.76%), followed by root (41.53%) and stem tissues (27.69%). All the isolates were screened for antimicrobial activity and revealed that 26.37% endophytic fungi were active against one or more pathogens. Twenty four isolates showing significant antimicrobial activity were identified by sequencing the ITS1-5.8S-ITS2 region of rRNA gene. Results indicated that endophytic fungi associated with leaf were functionally versatile as they showed antimicrobial activity against most of the tested pathogens. The endophytic fungi Diaporthe phaseolorum var. meridionalis (KF193982) inhibited all the tested bacterial pathogens, whereas, Penicillium chermesinum (KM405640) displayed most significant antifungal activity. This seems to be the first hand report to understand the distribution and antimicrobial ability of endophytic fungi from ethno-medicinal plant M. malabathricum.

  4. Endophytic fungi as models for the stereoselective biotransformation of thioridazine.

    Science.gov (United States)

    Borges, Keyller Bastos; Borges, Warley De Souza; Pupo, Mônica Tallarico; Bonato, Pierina Sueli

    2007-12-01

    The stereoselective kinetic biotransformation of thioridazine, a phenothiazine neuroleptic drug, by endophytic fungi was investigated. In general, the sulfur of lateral chain (position 2) or the sulfur of phenothiazinic ring (position 5) were oxidated yielding the major human metabolites thioridazine-2-sulfoxide and thioridazine-5-sulfoxide. The quantity of metabolites biosynthesized varied among the 12 endophytic fungi evaluated. However, mono-2-sulfoxidation occurred in higher ratio and frequency. Among the 12 fungi evaluated, 4 of them deserve prominence for presenting an evidenced stereoselective biotransformation: Phomopsis sp. (TD2), Glomerella cingulata (VA1), Diaporthe phaseolorum (VR4), and Aspergillus fumigatus (VR12). Both enantiomers of thioridazine were consumed by the fungi; however, the 2-sulfoxidation yielded preferentially the R configuration at the sulfur atom.

  5. Beech cupules share endophytic fungi with leaves and twigs

    OpenAIRE

    Tateno, Osamu; Hirose, Dai; Osono, Takashi; Takeda, Hiroshi

    2015-01-01

    Endophytic mycobiota on leaves, twigs and cupules of Fagus crenata were investigated using a culture-dependent method over a growing season to test the hypothesis that endophytic fungi of cupule (a woody phyllome) share some components of the endophytic fungal assemblages with both leaves and twigs. A total of 14 fungal taxa were isolated, and the most frequent taxon was Phomopsis sp., followed by Xylaria sp., Ascochyta fagi and Geniculosporium sp. The compositions of fungal assemblages of le...

  6. Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench

    Science.gov (United States)

    2012-08-01

    1105 Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench Luiz H...fungal community and micropropagated clones of E. purpurea was re-established after acclimatization to soil and the endophytic fungi produced compounds...Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench 5a. CONTRACT

  7. Genotypic variation in the response of chickpea to arbuscular mycorrhizal fungi and non-mycorrhizal fungal endophytes.

    Science.gov (United States)

    Bazghaleh, Navid; Hamel, Chantal; Gan, Yantai; Tar'an, Bunyamin; Knight, Joan Diane

    2018-04-01

    Plant roots host symbiotic arbuscular mycorrhizal (AM) fungi and other fungal endophytes that can impact plant growth and health. The impact of microbial interactions in roots may depend on the genetic properties of the host plant and its interactions with root-associated fungi. We conducted a controlled condition experiment to investigate the effect of several chickpea (Cicer arietinum L.) genotypes on the efficiency of the symbiosis with AM fungi and non-AM fungal endophytes. Whereas the AM symbiosis increased the biomass of most of the chickpea cultivars, inoculation with non-AM fungal endophytes had a neutral effect. The chickpea cultivars responded differently to co-inoculation with AM fungi and non-AM fungal endophytes. Co-inoculation had additive effects on the biomass of some cultivars (CDC Corrine, CDC Anna, and CDC Cory), but non-AM fungal endophytes reduced the positive effect of AM fungi on Amit and CDC Vanguard. This study demonstrated that the response of plant genotypes to an AM symbiosis can be modified by the simultaneous colonization of the roots by non-AM fungal endophytes. Intraspecific variations in the response of chickpea to AM fungi and non-AM fungal endophytes indicate that the selection of suitable genotypes may improve the ability of crop plants to take advantage of soil ecosystem services.

  8. antibacterial activity of endophytic fungi isolated from conifers needles

    African Journals Online (AJOL)

    Ravnikar, Matjaž

    2015-03-11

    Mar 11, 2015 ... taxonomically place fungi producing ones to determined active metabolites. Seventy three strains of endophytic fungi were isolated ... great number of diverse bioactive compounds (Devaraju and Satish, 2010), which have been ... closed with a glass stopper. The extraction solvents utilized were methanol ...

  9. [Screening and identification of endophytic fungi with growth promoting effect on Dendrobium officinale].

    Science.gov (United States)

    Hou, Xiao-qiang; Guo, Shun-xing

    2014-09-01

    The endophytic fungi with plant growth promoting effects were screened by co-culture of each endophytic fungus and seedlings of Dendrobium officinale. Anatomical features of the inoculated roots were studied by paraffin sectioning. Morphological characteristics and rDNA ITS1-5. 8S-ITS2 sequences were applied for the taxonomy of endophytic fungi. The results showed that 8 strains inoculated to D. officinale seedlings greatly enhanced plant height, stem diameter, new roots number and biomass. According to the anatomical features of the inoculated roots, each fungus could infect the velamina of seedlings. The hyphae or pelotons were existed in the exodermis passage cells and cortex cells. The effective fungi could not infect the endodermis and vascular bundle sheath, but which was exception for other fungi with harmful to seedlings. Combined with classic morphologic classification, 2 effective strains were identified which were subjected to Pestalotiopsis and Eurotium. Six species of fungi without conidiophore belonged to Pyrenochaeta, Coprinellus, Pholiota, Alternaria, Helotiales, which were identified by sequencing the PCR-amplified rDNA ITS1-5. 8S-ITS2 regions. The co-culture technology of effective endophytic fungi and plant can apply to cultivate the seedlings of D. officinale. It is feasible to shorten growth cycle of D. officinale and increase the resource of Chinese herbs.

  10. Diversity and taxonomy of endophytic xylariaceous fungi from medicinal plants of Dendrobium (Orchidaceae).

    Science.gov (United States)

    Chen, Juan; Zhang, Li-Chun; Xing, Yong-Mei; Wang, Yun-Qiang; Xing, Xiao-Ke; Zhang, Da-Wei; Liang, Han-Qiao; Guo, Shun-Xing

    2013-01-01

    Dendrobium spp. are traditional Chinese medicinal plants, and the main effective ingredients (polysaccharides and alkaloids) have pharmacologic effects on gastritis infection, cancer, and anti-aging. Previously, we confirmed endophytic xylariaceous fungi as the dominant fungi in several Dendrobium species of tropical regions from China. In the present study, the diversity, taxonomy, and distribution of culturable endophytic xylariaceous fungi associated with seven medicinal species of Dendrobium (Orchidaceae) were investigated. Among the 961 endophytes newly isolated, 217 xylariaceous fungi (morphotaxa) were identified using morphological and molecular methods. The phylogenetic tree constructed using nuclear ribosomal internal transcribed spacer (ITS), large subunit of ribosomal DNA (LSU), and beta-tubulin sequences divided these anamorphic xylariaceous isolates into at least 18 operational taxonomic units (OTUs). The diversity of the endophytic xylariaceous fungi in these seven Dendrobium species was estimated using Shannon and evenness indices, with the results indicating that the dominant Xylariaceae taxa in each Dendrobium species were greatly different, though common xylariaceous fungi were found in several Dendrobium species. These findings implied that different host plants in the same habitats exhibit a preference and selectivity for their fungal partners. Using culture-dependent approaches, these xylariaceous isolates may be important sources for the future screening of new natural products and drug discovery.

  11. Evaluating Susceptibility to Commercial Fungicide of Endophytic Fungi Isolated from Roses (Rosa hybrida

    Directory of Open Access Journals (Sweden)

    Ingrid Carolina Corredor Perilla

    2007-01-01

    Full Text Available Fungal endophytes have shown their potential as biocontrol agents; however, their application in commercial fields remains limited. Continuously applying fungicides to crops (specifically to roses may have harmful effects on endophyte growth. Endophytic fungi were isolated from R. hybrida and their susceptibility to fungicides regularly used for controlling important pathogens was analysed. This was performed in vitro, mixing several fungicide concentrations with standard medium for fungal endophytes; growth inhibition was then measured. The susceptibility of Botrytis cinerea (3015 strain, one of the most important pathogens affecting roses in Colombia, was also assessed using the same protocols. Active ingredients, such as boscalid, captan, iprodione and pyrimethanyl, showed susceptibility ranging from not sensitive (³73.75% to regularly sensitive (³48.75% - <61.25% for 45.45% of the fungal endophytes assessed. Endophytic fungi were highly susceptible to fungicides such as pyrimethanyl, carboxin plus thiram, fludioxonyl plus ciprodinyl and prochloraz. B. cinerea (3015 strain presented high susceptibility (<23.75% to fungicides such as pyrimethanyl, carboxin and thiram, fludioxonil and ciprodinyl, prochloraz. Although B. cinerea showed the greatest growth in controls, the endophytic fungi being assessed grew better in different media with fungicides. The results revealed some of these fungal endophytes’ potential for integrated pest management (IPM in roses in Colombia (3002, 3003, 3004, 3005 and 3006 strains, taking into account correct application time, application frequency and both fungal endophyte and fungicide dosage which may greatly limit fungal endophyte growth.

  12. Potential biosurfactant producing endophytic and epiphytic fungi ...

    African Journals Online (AJOL)

    Potential biosurfactant producing endophytic and epiphytic fungi, isolated from macrophytes in the Negro River in Manaus, Amazonas, Brazil. ... Solms and Cyperus ligularis L., macrophytes collected from oil-contaminated waters, were studied to assess their potential for producing biosurfactants; the most promising ones ...

  13. [Isolation of endophytic fungi from medicinal plant Brucea javanica and their microbial inhibition activity].

    Science.gov (United States)

    Liang, Zi-Ning; Zhu, Hua; Lai, Kai-Ping; Chen, Long

    2014-04-01

    To isolate and identify endophytic fungi from Brucea javanica, and to detect the antimicrobial activity of these strains. Endophytic fungi were isolated by tissue inoculation culture and identified by conventional morphological characteristic method. Seven kinds of pathogenic fungi and three kinds of bacteria were used as targeting microbes to test microbial inhibition activities by agar plate antagonistic action and modified agar gel diffusion methods, respectively. A total of 83 endophytic fungi strains were isolated from the root, stem, leaf and fruit of Brucea javanica. 34 strains were obtained from the stem, 32 strains were obtained from the leaf, 15 strains were isolated from the root and 2 strains came from the fruit. These 73 strains which had been identified attribute to 5 orders, 6 families and 12 genera. For the isolated strains, 14 strains had antifungal activities against at least one pathogenic fungi, 9 strains showed antibacterial activities against one or more bacteria. Especially, the strain YJ-17 which belonged to Phomopsis genus showed the best inhibitory effect on the targeting microbes. The endophytic fungi from Brucea javanica show diversity and microbial inhibition activity, and are worthy for further study on plant disease controlling.

  14. Endophytic fungi reduce leaf-cutting ant damage to seedlings

    Science.gov (United States)

    Bittleston, L. S.; Brockmann, F.; Wcislo, W.; Van Bael, S. A.

    2011-01-01

    Our study examines how the mutualism between Atta colombica leaf-cutting ants and their cultivated fungus is influenced by the presence of diverse foliar endophytic fungi (endophytes) at high densities in tropical leaf tissues. We conducted laboratory choice trials in which ant colonies chose between Cordia alliodora seedlings with high (Ehigh) or low (Elow) densities of endophytes. The Ehigh seedlings contained 5.5 times higher endophyte content and a greater diversity of fungal morphospecies than the Elow treatment, and endophyte content was not correlated with leaf toughness or thickness. Leaf-cutting ants cut over 2.5 times the leaf area from Elow relative to Ehigh seedlings and had a tendency to recruit more ants to Elow plants. Our findings suggest that leaf-cutting ants may incur costs from cutting and processing leaves with high endophyte loads, which could impact Neotropical forests by causing variable damage rates within plant communities. PMID:20610420

  15. Endophytic Fungi Associated With Turmeric (Curcuma longa L. Can Inhibit Histamine-Forming Bacteria in Fish

    Directory of Open Access Journals (Sweden)

    Eris Septiana

    2017-01-01

    Full Text Available Turmeric (Curcuma longa L. is a medicinal plant that is commonly used as spice and preservative. Many types of endophytic fungi have been reported as being associated with medicinal plants and able to synthesize secondary metabolites. In this study, endophytic fungi were isolated from all plant parts of turmeric plants. Identification of the endophytic fungi was done using morphological characteristics and sequencing of the internal transcribed spacer (ITS region of ribosomal DNA. The dual culture method was used for screening antibacterial activity of the endophytic fungi against Morganella morganii, a common histamine-producing bacteria. The disc diffusion method was used to test the ability of water fractions of selected endophytic fungi to inhibit M. morganii growth. Two-dimensional thin layer chromatography was used to determine the fungal extract inhibition activity on histamine formation. In total, 11 endophytic fungi were successfully isolated and identified as Arthrobotrys foliicola, Cochliobolus kusanoi, Daldinia eschscholzii, Fusarium oxysporum, Fusarium proliferatum, Fusarium solani, Fusarium verticillioides, Phanerochaete chrysosporium, and Phaeosphaeria ammophilae. Five isolates showed inhibition activity against M. morganii in the dual culture tests. Based on the disc diffusion assay, A. foliicola and F. verticillioides inhibited the growth of M. morganii as a histamine-producing bacteria, and inhibiting histamine formation in fish. The best effects in inhibiting growth of the histamine-producing bacteria and histamine formation inhibition in fish were produced with F. verticillioides water fraction at 0°C incubation.

  16. Melanised endophytic fungi may increase stores of organic carbon in soil

    Science.gov (United States)

    McGee, Peter; Mukasa Mugerwa, Tendo

    2013-04-01

    The processes underlying the carbon cycle in soil, especially sequestration of organic carbon (OC), are poorly understood. Hydrolysis and oxidation reduce organic matter. Hydrolysis degrades linear organic molecules in aerobic and anaerobic conditions, though it is slower in anaerobic conditions. Aromatic compounds are only degraded by oxidation. Oxygen is by far the most common electron acceptor in soil. Anaerobic conditions preclude oxidation in soil and will result in the preservation of aromatic compounds so long as the conditions remain anaerobic. We experimentally tested this model using melanised endophytic fungi. Melanin is a polyaromatic compound that can be readily visualised, though is difficult to quantify. An endophytic association provides the fungus with an ongoing source of energy. Fungal hyphae elongate considerable distances in soil where they may colonise aggregates, the core of which may be anaerobic. The hypothesis we tested is that melanised endophytic fungi increase OC in soil. Seedlings of subterranean clover inoculated with single isolates were grown in split pots where the impact of the fungus could be quantified in the hyphal chamber, separated from the roots by a steel mesh. We found that melanised endophytic fungi significantly increased OC and aromatic carbon in a well-aggregated carbon-rich soil. OC increased by up to 17% within 14 weeks. Twenty out of 24 isolates statistically significantly increased and none decreased OC. Increases differed between fungal isolates. Increases in the hyphal chamber were independent of any change in OC associated with the roots of the host plant. The storage of OC in field soils is being explored. Inoculation of plant roots with melanised endophytic fungi offers one means whereby OC may be increased in field soils.

  17. ITS2 sequence-structure phylogeny reveals diverse endophytic Pseudocercospora fungi on poplars.

    Science.gov (United States)

    Yan, Dong-Hui; Gao, Qian; Sun, Xiaoming; Song, Xiaoyu; Li, Hongchang

    2018-04-01

    For matching the new fungal nomenclature to abolish pleomorphic names for a fungus, a genus Pseudocercospora s. str. was suggested to host holomorphic Pseudocercosproa fungi. But the Pseudocercosproa fungi need extra phylogenetic loci to clarify their taxonomy and diversity for their existing and coming species. Internal transcribed spacer 2 (ITS2) secondary structures have been promising in charactering species phylogeny in plants, animals and fungi. In present study, a conserved model of ITS2 secondary structures was confirmed on fungi in Pseudocercospora s. str. genus using RNAshape program. The model has a typical eukaryotic four-helix ITS2 secondary structure. But a single U base occurred in conserved motif of U-U mismatch in Helix 2, and a UG emerged in UGGU motif in Helix 3 to Pseudocercospora fungi. The phylogeny analyses based on the ITS2 sequence-secondary structures with compensatory base change characterizations are able to delimit more species for Pseudocercospora s. str. than phylogenic inferences of traditional multi-loci alignments do. The model was employed to explore the diversity of endophytic Pseudocercospora fungi in poplar trees. The analysis results also showed that endophytic Pseudocercospora fungi were diverse in species and evolved a specific lineage in poplar trees. This work suggested that ITS2 sequence-structures could become as additionally significant loci for species phylogenetic and taxonomic studies on Pseudocerospora fungi, and that Pseudocercospora endophytes could be important roles to Pseudocercospora fungi's evolution and function in ecology.

  18. Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile.

    Science.gov (United States)

    González-Teuber, M; Vilo, C; Bascuñán-Godoy, L

    2017-03-01

    Plant roots can be highly colonized by fungal endophytes. This seems to be of particular importance for the survival of plants inhabiting stressful habitats. This study focused on the Identification of the fungal endophytic community associated with the roots of quinoa plants ( Chenopodium quinoa ) growing near the salt lakes of the Atacama Desert, Chile. One hundred endophytic fungi were isolated from healthy quinoa roots, and the internal transcribed spacer (ITS) region was sequenced for phylogenetic and taxonomic analysis. The isolates were classified into eleven genera and 21 distinct operational taxonomic units (OTUs). Despite a relatively high diversity of root endophytic fungi associated with quinoa plants, the fungal community was dominated by only the Ascomycota phyla. In addition, the most abundant genera were Penicillium , Phoma and Fusarium , which are common endophytes reported in plant roots. This study shows that roots of C . quinoa harbor a diverse group of endophytic fungi. Potential roles of these fungi in plant host tolerance to stressful conditions are discussed.

  19. Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae).

    Science.gov (United States)

    Liang, Hanqiao; Xing, Yongmei; Chen, Juan; Zhang, Dawei; Guo, Shunxing; Wang, Chunlan

    2012-11-28

    Drug resistance in bacteria has become a global concern and the search for new antibacterial agents is urgent and ongoing. Endophytes provide an abundant reservoir of bioactive metabolites for medicinal exploitation, and an increasing number of novel compounds are being isolated from endophytic fungi. Ophiopogon japonicus, containing compounds with antibacterial activity, is a traditional Chinese medicinal plant used for eliminating phlegm, relieving coughs, latent heat in the lungs, and alleviating diabetes mellitus. We investigated the antimicrobial activities of 30 strains of O. japonicus. Fungal endophytes were isolated from roots and stems of O. japonicus collected from Chongqing City, southwestern China. Mycelial extracts (MC) and fermentation broth (FB) were tested for antimicrobial activity using peptide deformylase (PDF) inhibition fluorescence assays and MTT cell proliferation assays. A total of 30 endophytic strains were isolated from O. japonicus; 22 from roots and eight from stems. 53.33% of the mycelial extracts (MC) and 33.33% of the fermentation broths (FB) displayed potent inhibition of PDF. 80% of MC and 33.33% of FB significantly inhibited Staphylococcus aureus. 70% of MC and 36.67% of FB showed strong activities against Cryptococcus neoformans. None showed influence on Escherichia coli. The secondary metabolites of endophytic fungi from O. japonicus are potential antimicrobial agents.

  20. Endophytic fungi from medicinal plant Bauhinia forficata: Diversity and biotechnological potential.

    Science.gov (United States)

    Bezerra, Jadson D P; Nascimento, Carlos C F; Barbosa, Renan do N; da Silva, Dianny C V; Svedese, Virgínia M; Silva-Nogueira, Eliane B; Gomes, Bruno S; Paiva, Laura M; Souza-Motta, Cristina M

    2015-03-01

    Bauhinia forficata is native to South America and used with relative success in the folk medicine in Brazil. The diversity, antibacterial activity, and extracellular hydrolytic enzymes of endophytic fungi associated with this plant were studied. Plant samples, which included leaves, sepals, stems, and seeds, were used. Ninety-five endophytic fungal were isolated (18 from leaves, 22 from sepals, 46 from stems, and nine from seeds), comprising 28 species. The most frequently isolated species were Acremonium curvulum (9.5%), Aspergillus ochraceus (7.37%), Gibberella fujikuroi (10.53%), Myrothecium verrucaria (10.53%) and Trichoderma piluliferum (7.37%). Diversity and species richness were higher in stem tissues, and Sorensen's index of similarity between the tissues was low. Eleven fungi showed antibacterial activity. Aspergillus ochraceus , Gibberella baccata , Penicillium commune , and P. glabrum were those with the greatest antibacterial activity against Staphylococcus aureus and/or Streptococcus pyogenes . Thirteen species showed proteolytic activity, particularly Phoma putaminum . Fourteen species were cellulase positive, particularly the Penicillium species and Myrmecridium schulzeri . All isolates tested were xylanase positive and 10 showed lipolytic activity, especially Penicillium glabrum . It is clear that the endophytic fungi from B. forficata have potential for the production of bioactive compounds and may be a source of new therapeutic agents for the effective treatment of diseases in humans, other animals, and plants. To our knowledge, this is the first study of endophytic fungi from different tissues of B. forficata and their biotechnological potential.

  1. Heavy metal resistant endophytic fungi isolated from Nypa fruticans in Kuching Wetland National Park

    Science.gov (United States)

    Choo, Jenny; Sabri, Nuraini Binti Mohd; Tan, Daniel; Mujahid, Aazani; Müller, Moritz

    2015-06-01

    Heavy metal pollution is an environmental issue globally and the aim of this study was to isolate endophytic fungi from mangrove wetlands of Sarawak to assess and test their ability to grow in the presence of various heavy metals (copper (Cu), zinc (Zn), lead (Pb), and chromium (Cr)). Samples of Nypa fruticans were collected from Kuching Wetland National Park (KWNP) for subsequent endophyte isolation. Ninety-three (93) isolates were obtained and assessed and the most resistant isolates (growing at concentrations up to 1000 ppm) were identified using fungal primers ITS 1 and ITS 4. All of the endophytic fungi were identified to be closely related to Pestalotiopsis sp. and this is to our knowledge the first study reporting the ability of Pestalotiopsis sp. to grow at high concentrations of copper, lead, zinc and chromium. Our results highlight the potential of using endophytic fungi for the treatment of heavy metal pollution, for example as biosorbents.

  2. Endophytic fungi associated with roots of date palm (Phoenix dactylifera) in coastal dunes.

    Science.gov (United States)

    Mohamed Mahmoud, Fadila; Krimi, Zoulikha; Maciá-Vicente, Jose G; Brahim Errahmani, Mohamed; Lopez-Llorca, Luis V

    Symbiotic interactions with fungal endophytes are argued to be responsible for the tolerance of plants to some stresses and for their adaptation to natural conditions. In this study we aimed to examine the endophytic fungal diversity associated with roots of date palms growing in coastal dune systems, and to screen this collection of endophytes for potential use as biocontrol agents, for antagonistic activity and mycoparasitism, and as producers of antifungal compounds with potential efficacy against root diseases of date palm. Roots of nine individual date palms growing in three coastal locations in the South-East of Spain (Guardamar, El Carabassí, and San Juan) were selected to isolate endophytic fungi. Isolates were identified on the basis of morphological and/or molecular characters. Five hundred and fifty two endophytic fungi were isolated and assigned to thirty morphological taxa or molecular operational taxonomic units. Most isolates belonged to Ascomycota, and the dominant order was Hypocreales. Fusarium and Clonostachys were the most frequently isolated genera and were present at all sampling sites. Comparisons of the endophytic diversity with previous studies, and their importance in the management of the date palm crops are discussed. This is the first study on the diversity of endophytic fungi associated with roots of date palm. The isolates obtained might constitute a source of biological control agents and biofertilizers for use in crops of this plant. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Isolation and evaluation of endophytic fungi with antimicrobial ability from Phyllostachys edulis

    Directory of Open Access Journals (Sweden)

    Xiaoye Shen

    2012-12-01

    Full Text Available Endophytic fungi (30 isolates from bamboo branches were categorized into 12 genera, based on the blast analyses of ITS nrDNA sequence in GenBank and microscopic examination. The aim of this work was to investigate the antibacterial and antifungal activities of endophytic fungi. Inhibitory effects against clinical pathogens and phytopathogens have been screened for all the isolates preliminarily and strains tentatively identified as Cladosporium sphaerospermum (PE106, Simplicillium lanosoniveum (PE120, Curvularia sp. (PE127, Didymella sp. (PE128 and Penicillium cf. raistrickii (PE130 presented bioactivity against at least four tested pathogens using the agar diffusion method. Crude extracts of PE106, PE120, PE127 and PE130 displayed broad-spectrum activity against plant pathogenic fungi by mycelial radial growth test. All of the four isolates were found to have high bioactivity against the frequent plant pathogenic fungus Botryotinia fuckeliana, and two of the isolates (PE120 and PE130 also inhibited the growth of phytopathogen Thanatephorus cucumeris noteworthily. This study is the first report on the antimicrobial activity of endophytic fungi associated with branches of Ph. edulis.

  4. Diversity of endophytic fungi of Myricaria laxiflora grown under pre- and post-flooding conditions.

    Science.gov (United States)

    Tian, W; Bi, Y H; Zeng, W; Jiang, W; Xue, Y H; Wang, G X; Liu, S P

    2015-09-09

    Myricaria laxiflora is distributed along the riverbanks of the Yangtze River valley. The Three Gorges Dam has dramatically changed the habitat of M. laxiflora, which has evolved to develop increased resistance to flooding stress. In order to elucidate the relationship between plant endophytic fungi and flooding stress, we isolated and taxonomically characterized the endophytic fungi of M. laxiflora. One hundred and sixty-three fungi were isolated from healthy stems, leaves and roots of M. laxiflora grown under pre- and post-flooding conditions. Culture and isolation were carried out under aerobic and anaerobic conditions. Based on internal transcribed spacer sequence analysis and morphological characteristics, the isolates exhibited abundant biodiversity; they were classified into 5 subphyla, 7 classes, 12 orders, 17 families, and 26 genera. Dominant endophytes varied between pre- and post-flooding plants, among different plant tissues, and between aerobic and anaerobic culture conditions. Aspergillus and Alternaria accounted for more than 55% of all isolates. Although the number of isolates from post-flooding plants was greater, endophytes from pre-flooding plants were more diverse and abundant. Endophytes were distributed preferentially in particular tissues; this affinity was constrained by both the host habitat and the oxygen availability of the host.

  5. Host and geographic structure of endophytic and endolichenic fungi at a continental scale.

    Science.gov (United States)

    U'Ren, Jana M; Lutzoni, François; Miadlikowska, Jolanta; Laetsch, Alexander D; Arnold, A Elizabeth

    2012-05-01

    Endophytic and endolichenic fungi occur in healthy tissues of plants and lichens, respectively, playing potentially important roles in the ecology and evolution of their hosts. However, previous sampling has not comprehensively evaluated the biotic, biogeographic, and abiotic factors that structure their communities. Using molecular data we examined the diversity, composition, and distributions of 4154 endophytic and endolichenic Ascomycota cultured from replicate surveys of ca. 20 plant and lichen species in each of five North American sites (Madrean coniferous forest, Arizona; montane semideciduous forest, North Carolina; scrub forest, Florida; Beringian tundra and forest, western Alaska; subalpine tundra, eastern central Alaska). Endolichenic fungi were more abundant and diverse per host species than endophytes, but communities of endophytes were more diverse overall, reflecting high diversity in mosses and lycophytes. Endophytes of vascular plants were largely distinct from fungal communities that inhabit mosses and lichens. Fungi from closely related hosts from different regions were similar in higher taxonomy, but differed at shallow taxonomic levels. These differences reflected climate factors more strongly than geographic distance alone. Our study provides a first evaluation of endophytic and endolichenic fungal associations with their hosts at a continental scale. Both plants and lichens harbor abundant and diverse fungal communities whose incidence, diversity, and composition reflect the interplay of climatic patterns, geographic separation, host type, and host lineage. Although culture-free methods will inform future work, our study sets the stage for empirical assessments of ecological specificity, metabolic capability, and comparative genomics.

  6. Community composition of root-associated fungi in a Quercus-dominated temperate forest: “codominance” of mycorrhizal and root-endophytic fungi

    Science.gov (United States)

    Toju, Hirokazu; Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S; Gilbert, Gregory S; Kadowaki, Kohmei

    2013-01-01

    In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak-dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal-root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root-associated fungal community was dominated by root-endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root-associated fungal communities of oak-dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities. PMID:23762515

  7. Ecology and Genomic Insights into Plant-Pathogenic and Plant-Nonpathogenic Endophytes.

    Science.gov (United States)

    Brader, Günter; Compant, Stéphane; Vescio, Kathryn; Mitter, Birgit; Trognitz, Friederike; Ma, Li-Jun; Sessitsch, Angela

    2017-08-04

    Plants are colonized on their surfaces and in the rhizosphere and phyllosphere by a multitude of different microorganisms and are inhabited internally by endophytes. Most endophytes act as commensals without any known effect on their plant host, but multiple bacteria and fungi establish a mutualistic relationship with plants, and some act as pathogens. The outcome of these plant-microbe interactions depends on biotic and abiotic environmental factors and on the genotype of the host and the interacting microorganism. In addition, endophytic microbiota and the manifold interactions between members, including pathogens, have a profound influence on the function of the system plant and the development of pathobiomes. In this review, we elaborate on the differences and similarities between nonpathogenic and pathogenic endophytes in terms of host plant response, colonization strategy, and genome content. We furthermore discuss environmental effects and biotic interactions within plant microbiota that influence pathogenesis and the pathobiome.

  8. In Vitro Morphogenesis of Arabidopsis to Search for Novel Endophytic Fungi Modulating Plant Growth.

    Directory of Open Access Journals (Sweden)

    Francesco Dovana

    Full Text Available Fungal endophytes have shown to affect plant growth and to confer stress tolerance to the host; however, effects of endophytes isolated from water plants have been poorly investigated. In this study, fungi isolated from stems (stem-E and roots (root-E of Mentha aquatica L. (water mint were identified, and their morphogenetic properties analysed on in vitro cultured Arabidopsis (L. Heynh., 14 and 21 days after inoculation (DAI. Nineteen fungi were analysed and, based on ITS analysis, 17 isolates showed to be genetically distinct. The overall effect of water mint endophytes on Arabidopsis fresh (FW and dry weight (DW was neutral and positive, respectively, and the increased DW, mainly occurring 14 DAI, was possibly related to plant defence mechanism. Only three fungi increased both FW and DW of Arabidopsis at 14 and 21 DAI, thus behaving as plant growth promoting (PGP fungi. E-treatment caused a reduction of root depth and primary root length in most cases and inhibition-to-promotion of root area and lateral root length, from 14 DAI. Only Phoma macrostoma, among the water mint PGP fungi, increased both root area and depth, 21 DAI. Root depth and area 14 DAI were shown to influence DWs, indicating that the extension of the root system, and thus nutrient uptake, was an important determinant of plant dry biomass. Reduction of Arabidopsis root depth occurred to a great extent when plants where treated with stem-E while root area decreased or increased under the effects of stem-E and root-E, respectively, pointing to an influence of the endophyte origin on root extension. M. aquatica and many other perennial hydrophytes have growing worldwide application in water pollution remediation. The present study provided a model for directed screening of endophytes able to modulate plant growth in the perspective of future field applications of these fungi.

  9. In Vitro Morphogenesis of Arabidopsis to Search for Novel Endophytic Fungi Modulating Plant Growth.

    Science.gov (United States)

    Dovana, Francesco; Mucciarelli, Marco; Mascarello, Maurizio; Fusconi, Anna

    2015-01-01

    Fungal endophytes have shown to affect plant growth and to confer stress tolerance to the host; however, effects of endophytes isolated from water plants have been poorly investigated. In this study, fungi isolated from stems (stem-E) and roots (root-E) of Mentha aquatica L. (water mint) were identified, and their morphogenetic properties analysed on in vitro cultured Arabidopsis (L.) Heynh., 14 and 21 days after inoculation (DAI). Nineteen fungi were analysed and, based on ITS analysis, 17 isolates showed to be genetically distinct. The overall effect of water mint endophytes on Arabidopsis fresh (FW) and dry weight (DW) was neutral and positive, respectively, and the increased DW, mainly occurring 14 DAI, was possibly related to plant defence mechanism. Only three fungi increased both FW and DW of Arabidopsis at 14 and 21 DAI, thus behaving as plant growth promoting (PGP) fungi. E-treatment caused a reduction of root depth and primary root length in most cases and inhibition-to-promotion of root area and lateral root length, from 14 DAI. Only Phoma macrostoma, among the water mint PGP fungi, increased both root area and depth, 21 DAI. Root depth and area 14 DAI were shown to influence DWs, indicating that the extension of the root system, and thus nutrient uptake, was an important determinant of plant dry biomass. Reduction of Arabidopsis root depth occurred to a great extent when plants where treated with stem-E while root area decreased or increased under the effects of stem-E and root-E, respectively, pointing to an influence of the endophyte origin on root extension. M. aquatica and many other perennial hydrophytes have growing worldwide application in water pollution remediation. The present study provided a model for directed screening of endophytes able to modulate plant growth in the perspective of future field applications of these fungi.

  10. Endophytic fungi and soil microbial community characteristics over different years of phytoremediation in a copper tailings dam of Shanxi, China.

    Science.gov (United States)

    Tong, Jia; Miaowen, Cao; Juhui, Jing; Jinxian, Liu; Baofeng, Chai

    2017-01-01

    We conducted a survey of native grass species infected by endophytic fungi in a copper tailings dam over progressive years of phytoremediation. We investigated how endophytic fungi, soil microbial community structure and soil physiochemical properties and enzymatic activity varied in responses to heavy metal pollution over different stages of phytoremediation. endophyte infection frequency increased with years of phytoremediation. Rates of endophyte infection varied among different natural grass species in each sub-dam. Soil carbon content and soil enzymatic activity gradually increased through the years of phytoremediation. endophyte infection rates of Bothriochloa ischaemum and Festuca rubra were positively related to levels of cadmium (Cd) pollution levels, and fungal endophytes associated with Imperata cylindrical and Elymus dahuricus developed tolerance to lead (Pb). The structure and relative abundance of bacterial communities varied little over years of phytoremediation, but there was a pronounced variation in soil fungi types. Leotiomycetes were the dominant class of resident fungi during the initial phytoremediation period, but Pezizomycetes gradually became dominant as the phytoremediation period progressed. Fungal endophytes in native grasses as well as soil fungi and soil bacteria play different ecological roles during phytoremediation processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Endophytic fungi from Myrcia guianensis at the Brazilian Amazon: distribution and bioactivity.

    Science.gov (United States)

    Dos Banhos, Elissandro Fonseca; de Souza, Antonia Queiroz Lima; de Andrade, Juliano Camurça; de Souza, Afonso Duarte Leão; Koolen, Hector Henrique Ferreira; Albuquerque, Patrícia Melchionna

    2014-01-01

    Beneficial interactions between plants and microorganisms have been investigated under different ecological, physiological, biochemical, and genetic aspects. However, the systematic exploration of biomolecules with potential for biotechnological products from this interaction still is relatively scarce. Therefore, this study aimed the evaluation of the diversity and antimicrobial activity of the endophytic fungi obtained from roots, stems and leafs of Myrcia guianensis (Myrtaceae) from the Brazilian Amazon. 156 endophytic fungi were isolated and above 80% were identified by morphological examination as belonging to the genera Pestalotiopsis, Phomopsis, Aspergillus, Xylaria, Nectria, Penicillium and Fusarium. Fermented broth of those fungi were assayed for antimicrobial activity and four inhibited the growth of Staphylococcus aureus, Enterococcus faecalis, Candida albicans and Penicillium avellaneum. As the strain named MgRe2.2.3B (Nectria haematococca) had shown the most promising results against those pathogenic strains, its fermented broth was fractioned and only its two low polar fractions demonstrated to be active. Both fractions exhibited a minimum bactericidal concentration of 50 μg.mL(-1) against S. aureus and a minimum fungicidal concentration of 100 μg.mL(-1) against P. avellaneum. These results demonstrate the diversity of fungal genera in M. guianensis and the potential of these endophytic fungi for the production of new antibiotics.

  12. Diversity and communities of foliar endophytic fungi from different agroecosystems of Coffea arabica L. in two regions of Veracruz, Mexico.

    Science.gov (United States)

    Saucedo-García, Aurora; Anaya, Ana Luisa; Espinosa-García, Francisco J; González, María C

    2014-01-01

    Over the past 20 years, the biodiversity associated with shaded coffee plantations and the role of diverse agroforestry types in biodiversity conservation and environmental services have been topics of debate. Endophytic fungi, which are microorganisms that inhabit plant tissues in an asymptomatic manner, form a part of the biodiversity associated with coffee plants. Studies on the endophytic fungi communities of cultivable host plants have shown variability among farming regions; however, the variability in fungal endophytic communities of coffee plants among different coffee agroforestry systems is still poorly understood. As such, we analyzed the diversity and communities of foliar endophytic fungi inhabiting Coffea arabica plants growing in the rustic plantations and simple polycultures of two regions in the center of Veracruz, Mexico. The endophytic fungi isolates were identified by their morphological traits, and the majority of identified species correspond to species of fungi previously reported as endophytes of coffee leaves. We analyzed and compared the colonization rates, diversity, and communities of endophytes found in the different agroforestry systems and in the different regions. Although the endophytic diversity was not fully recovered, we found differences in the abundance and diversity of endophytes among the coffee regions and differences in richness between the two different agroforestry systems of each region. No consistent pattern of community similarity was found between the coffee agroforestry systems, but we found that rustic plantations shared the highest number of morphospecies. The results suggest that endophyte abundance, richness, diversity, and communities may be influenced predominantly by coffee region, and to a lesser extent, by the agroforestry system. Our results contribute to the knowledge of the relationships between agroforestry systems and biodiversity conservation and provide information regarding some endophytic fungi and

  13. Richness of endophytic fungi isolated from Opuntia ficus-indica Mill. (Cactaceae) and preliminary screening for enzyme production.

    Science.gov (United States)

    Bezerra, J D P; Santos, M G S; Svedese, V M; Lima, D M M; Fernandes, M J S; Paiva, L M; Souza-Motta, C M

    2012-05-01

    Opuntia ficus-indica Mill. (forage cactus) is farmed with relative success in the semi-arid region of the Brazilian northeast for commercial purposes, particularly as forage and food. Endophytic microorganisms are those that can be isolated inside plant tissues and can be a new source to production of enzymes with different potentialities. The objective of this study was to describe the richness of endophytic fungi from O. ficus-indica and to detect the capacity of these species to produce extracellular hydrolytic enzymes. Forty-four endophytic fungi species were isolated. Among them, the most commonly found were Cladosporium cladosporioides (20.43%) and C. sphaerospermum (15.99%). Acremonium terricola, Monodictys castaneae, Penicillium glandicola, Phoma tropica and Tetraploa aristata are being reported for the first time as endophytic fungi for Brazil. The majority of isolated fungi exhibited enzymatic potential. Aspergillus japonicus and P. glandicola presented pectinolytic activity. Xylaria sp. was the most important among the other 14 species with positive cellulase activity. All 24 isolates analysed were xylanase-positive. Protease was best produced by isolate PF103. The results indicate that there is a significant richness of endophytic fungi in O. ficus-indica, and that these isolates indicate promising potential for deployment in biotechnological processes involving production of pectinases, cellulases, xylanases and proteases.

  14. Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp.

    Science.gov (United States)

    Ratnaweera, Pamoda B; de Silva, E Dilip; Williams, David E; Andersen, Raymond J

    2015-07-10

    Opuntia dillenii is an invasive plant well established in the harsh South-Eastern arid zone of Sri Lanka. Evidence suggests it is likely that the endophytic fungal populations of O. dillenii assist the host in overcoming biotic and abiotic stress by producing biologically active metabolites. With this in mind there is potential to discover novel natural products with useful biological activities from this hitherto poorly investigated source. Consequently, an investigation of the antimicrobial activities of the endophytes of O. dillenii, that occupies a unique ecological niche, may well provide useful leads in the discovery of new pharmaceuticals. Endophytic fungi were isolated from the surface sterilized cladodes and flowers of O. dillenii using several nutrient media and the antimicrobial activities were evaluated against three Gram-positive and two Gram-negative bacteria and Candida albicans. The two most bioactive fungi were identified by colony morphology and DNA sequencing. The secondary metabolite of the endophyte Fusarium sp. exhibiting the best activity was isolated via bioassay guided chromatography. The chemical structure was elucidated from the ESIMS and NMR spectroscopic data obtained for the active metabolite. The minimum inhibitory concentrations (MICs) of the active compound were determined. Eight endophytic fungi were isolated from O. dillenii and all except one showed antibacterial activities against at least one of the test bacteria. All extracts were inactive against C. albicans. The most bioactive fungus was identified as Fusarium sp. and the second most active as Aspergillus niger. The structure of the major antibacterial compound of the Fusarium sp. was shown to be the tetramic acid derivative, equisetin. The MIC's for equisetin were 8 μg mL(-1) against Bacillus subtilis, 16 μg mL(-1) against Staphylococcus aureus and Methicillin Resistant Staphylococcus aureus (MRSA). O. dillenii, harbors several endophytic fungi capable of producing

  15. Isolation and antifungal screening of endophytic fungi from Erigeron canadensis

    Directory of Open Access Journals (Sweden)

    Xuelian Bai

    2017-07-01

    Full Text Available Sixteen fungal strains isolated from the Erigeron canadensis, one of traditional Chinese medicines used to treat the pathogenic infection and dysentery, were evaluated for their antifungal activities against one human pathogen Candida albicans, and two phytopathogens, Colletotrichum fructicola and Rhizoctonia cerealis. The bioassay results indicated that the ethyl acetate extract of the fermentation broth of these fungal endophytes had stronger antimicrobial activities. Among these endophytic strains, the ethyl acetate extracts of strains NPR003 and NPR005 showed the strongest inhibitory effects and has potential application in the discovery of new antifungal agents. This was the first report on the isolation of endophytic fungi from E. canadensis and evaluation of their antifungal activities.

  16. Leaf endophytic fungi of chili (Capsicum annuum and their role in the protection against Aphis gossypii (Homoptera: Aphididae

    Directory of Open Access Journals (Sweden)

    HENY HERNAWATI

    2011-10-01

    Full Text Available Hernawati H, Wiyono S, Santoso S (2011 Leaf endophytic fungi of chili (Capsicum annuum and their role in the protection against Aphis gossypii (Homoptera: Aphididae. Biodiversitas 12: 187-191. The objectives of the research were to study the diversity of leaf endophytic fungi of chili, and investigate its potency in protecting host plants against Aphis gossypii Glov. Endophytic fungi were isolated from chili leaves with two categories: aphid infested plants and aphid-free plants, collected from farmer’s field in Bogor, West Java. Abundance of each fungal species from leave samples was determined by calculating frequency of isolation. The isolated fungi were tested on population growth of A. gossypii. The fungal isolates showed suppressing effect in population growth test, was further tested on biology attributes i.e. life cycle, fecundity and body length. Five species of leaf endophytic fungi of chili were found i.e. Aspergillus flavus, Nigrospora sp., Coniothyrium sp., and SH1 (sterile hypha 1, SH2 (sterile hypha 2. Eventhough the number of endophytic fungi species in aphid-free and aphid-infested plant was same, the abundance of each species was different. Nigrospora sp., sterile hyphae 1 and sterile hyphae 2 was more abundant in aphid-free plants, but there was no difference in dominance of Aspergillus flavus and Coniothyrium sp. Nigrospora sp., SH1 and SH2 treatment reduced significantly fecundity of A. gossypii. Only SH2 treatment significantly prolonged life cycle and suppress body length, therefore the fungus had the strongest suppressing effect on population growth among fungi tested. The abundance and dominance of endophytic fungal species has relation with the infestation of A. gossypii in the field.

  17. Endophytic fungi associated with Ziziphus species from mountainous area of Oman and new records

    Directory of Open Access Journals (Sweden)

    SAIFELDIN A.F. EL-NAGERABI

    2013-04-01

    Full Text Available El-Nagerabi SAF, Elshafie AE, AlKhanjari SS. 2013. Endophytic fungi associated with Ziziphus species from mountainous area of Oman and new records. Biodiversitas 14: 10-16. Ziziphus species of the family Rhamnaceae grow extensively in arid and semi-arid regions. It is possible that the endophytic fungi associated with this plant might enhance the host resistance to the environmental impacts. The endophytic fungal population inhabiting the healthy leaves of Z. spina-christi and Z. hajanensis plants were determined from April 2008 to October 2011. The endophytic fungal communities varied between the two species, and 45 fungal species, 18 sterile mycelia and 12 yeasts were isolated from Z. spina-christi, whereas 35 fungi, 11 sterile mycelia and 5 yeasts were recovered from Z. hajanensis indicating tissue and species-specificity and without any seasonal variation among the endophytes. These endophytes are new to Ziziphus plants and 45 species are new to the mycoflora of Oman, whereas 27 species are new to Arabian Peninsula. The genus Alternaria was the most prevalent (19-81% followed by Aspergillus (19-78%, Rhizopus stolonifer (78%, Mycelia sterilia (69%, yeasts (47%, Cladosporium (11-56%, Drechslera (14-53%, Curvularia (8-50%, Fusarium (6-33%, Ulocladium (41-31%, Penicillium (3-22%, Alysidium resine (11%, Trichocladium (6-11%, Anguillospora longissima, Bactrodesmium rahmii, Catenularia (8%, Helminthosporium sorghi (7%, Dendryphiella infuscans (6%, Hansfordia biophila (3-6%, Arthrinium, Dissophora, and Phoma sorghina (3%. The recovery of many fungal isolates, morphologically various sterile mycelia and yeasts suggests the high biodiversity of the endophytes invading these plants with strong evidence for future isolation of numerous fungal species through adopting more advanced molecular and DNA identification methods.

  18. Assessment of endophytic fungi cultural filtrate on soybean seed ...

    African Journals Online (AJOL)

    Soybean seeds have high amount of isoflavones but its germination is often confronted with a variety of environmental problems resulting in low germination rate and growth. To overcome this in eco-friendly manner, we investigated the influence of cultural filtrate (CF) of gibberellins-producing endophytic fungi on soybean ...

  19. Indentification of huperzine A-producing endophytic fungi isolated from Huperzia serrata.

    Science.gov (United States)

    Dong, Li-Hui; Fan, San-Wei; Ling, Qing-Zhi; Huang, Bei-Bei; Wei, Zhao-Jun

    2014-03-01

    This present study was designed to investigate the production of huperzine A (HupA), an acetylcholine inhibitor, which was produced by an endophytic fungi isolated from Huperzia serrata. Screening of 94 endophytic fungal isolates obtained from plant H. serrata was carried out for the production of HupA. Their morphological characteristics were studied and rDNA sequence analysis was carried out. The cultures were grown in liquid culture medium and the extracted metabolites were analyzed by thin layer chromatography and high performance liquid chromatograph for the presence of HupA. The DPPH scavenging ratio and inhibition ratio of acetylcholinesterase (AchE) of the same were determined. 3 out of 94 strains i.e. S29, L44 and S94 showed significant AchE-inhibitory activity and antioxidant activity. Strain L44 which exhibited maximum yield of HupA (37.63 μg/g on dry weight basis) was identified as Trichoderma species by ITS sequence analysis. In conclusion, endophytic fungi from H. serrata can be used as a new resource of HupA.

  20. Establishment of fungal entomopathogens Beauveria bassiana and Bionectria ochroleuca (Ascomycota: Hypocreales) as endophytes on artichoke Cynara scolymus.

    Science.gov (United States)

    Guesmi-Jouini, J; Garrido-Jurado, I; López-Díaz, C; Ben Halima-Kamel, M; Quesada-Moraga, E

    2014-06-01

    Entomopathogenic fungi (EPF) are commonly found in diverse habitats and are known to cause mycoses in many different taxa of arthropods. Various unexpected roles have been recently reported for fungal entomopathogens, including their presence as fungal endophytes, plant disease antagonists, rhizosphere colonizers and plant growth promoting fungi. In Tunisia, a wide range of indigenous EPF isolates from different species, such as Beauveria bassiana and Bionectria ochroleuca, were found to occur in the soil, and to be pathogenic against the artichoke aphid Capitophorus elaeagni (Hemiptera: Aphididae). Since endophytic fungi are recently regarded as plant-defending mutualists and their presence in internal plant tissue has been discussed as an adaptive protection against insects, we were interested on elucidating the possible endophytic behavior of B. bassiana and B. ochroleuca on artichoke, Cynara scolymus, after foliar spraying tehcnique. The leaf spray inoculation method was effective in introducing the inoculated fungi into the plant tissues and showed, then, an endophytic activity on artichoke even 10 days later. According S-N-K test, there was significant differences between the two fungal treatments, B. ochroleuca (84% a) and B. bassiana (78% a), and controls (0% b). Likewise, the inoculated entomopathogenic fungi were also isolated from new leaves even though with significant differences respectively between controls (0% c), B. bassiana (56% b) and B. ochroleuca (78% a). These results reveals significant new data on the interaction of inoculated fungi with artichoke plant as ecological roles that can be exploited for the protection of plants. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Isolation of peat swamp forest foliar endophyte fungi as biofertilizer

    Directory of Open Access Journals (Sweden)

    Safinah Surya Hakim

    2017-01-01

    Full Text Available Peatland restoration activity is facing many obstacles, particularly in planting techniques and poor nutrient in peat soil. Naturally, endophytic fungi are abundant and have great potential as biofertilizer. This research investigates the potential endophytic fungi isolated from leaves of peat swamp tree species for biofertilizer. Research activities include: exploration, in vitro test to examine the phosphate solubilization and identification. Result showed that there were 360 leave segments collected from 4 sampling locations. The colonization percentage of 222 isolates ranged from 52.17% - 60.17%. Fifty seven morphospecies were selected from 222 isolates. Twelve isolates demonstrated ability to produce clear zones and ten isolates were selected for identification. It is concluded that twelve isolated demonstrated potential ability to produce clear zone and Penicillum citrinum isolate P3.10 was identified as an isolate that show the highest potential ability as a biofertilizer

  2. Advances in Genomics of Entomopathogenic Fungi.

    Science.gov (United States)

    Wang, J B; St Leger, R J; Wang, C

    2016-01-01

    Fungi are the commonest pathogens of insects and crucial regulators of insect populations. The rapid advance of genome technologies has revolutionized our understanding of entomopathogenic fungi with multiple Metarhizium spp. sequenced, as well as Beauveria bassiana, Cordyceps militaris, and Ophiocordyceps sinensis among others. Phylogenomic analysis suggests that the ancestors of many of these fungi were plant endophytes or pathogens, with entomopathogenicity being an acquired characteristic. These fungi now occupy a wide range of habitats and hosts, and their genomes have provided a wealth of information on the evolution of virulence-related characteristics, as well as the protein families and genomic structure associated with ecological and econutritional heterogeneity, genome evolution, and host range diversification. In particular, their evolutionary transition from plant pathogens or endophytes to insect pathogens provides a novel perspective on how new functional mechanisms important for host switching and virulence are acquired. Importantly, genomic resources have helped make entomopathogenic fungi ideal model systems for answering basic questions in parasitology, entomology, and speciation. At the same time, identifying the selective forces that act upon entomopathogen fitness traits could underpin both the development of new mycoinsecticides and further our understanding of the natural roles of these fungi in nature. These roles frequently include mutualistic relationships with plants. Genomics has also facilitated the rapid identification of genes encoding biologically useful molecules, with implications for the development of pharmaceuticals and the use of these fungi as bioreactors. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi.

    Science.gov (United States)

    Knapp, Dániel G; Németh, Julianna B; Barry, Kerrie; Hainaut, Matthieu; Henrissat, Bernard; Johnson, Jenifer; Kuo, Alan; Lim, Joanne Hui Ping; Lipzen, Anna; Nolan, Matt; Ohm, Robin A; Tamás, László; Grigoriev, Igor V; Spatafora, Joseph W; Nagy, László G; Kovács, Gábor M

    2018-04-20

    Dark septate endophytes (DSE) are a form-group of root endophytic fungi with elusive functions. Here, the genomes of two common DSE of semiarid areas, Cadophora sp. and Periconia macrospinosa were sequenced and analyzed with another 32 ascomycetes of different lifestyles. Cadophora sp. (Helotiales) and P. macrospinosa (Pleosporales) have genomes of 70.46 Mb and 54.99 Mb with 22,766 and 18,750 gene models, respectively. The majority of DSE-specific protein clusters lack functional annotation with no similarity to characterized proteins, implying that they have evolved unique genetic innovations. Both DSE possess an expanded number of carbohydrate active enzymes (CAZymes), including plant cell wall degrading enzymes (PCWDEs). Those were similar in three other DSE, and contributed a signal for the separation of root endophytes in principal component analyses of CAZymes, indicating shared genomic traits of DSE fungi. Number of secreted proteases and lipases, aquaporins, and genes linked to melanin synthesis were also relatively high in our fungi. In spite of certain similarities between our two DSE, we observed low levels of convergence in their gene family evolution. This suggests that, despite originating from the same habitat, these two fungi evolved along different evolutionary trajectories and display considerable functional differences within the endophytic lifestyle.

  4. Diversity of Endophytic Fungi from Red Ginger (Zingiber officinale Rosc. Plant and Their Inhibitory Effect to Fusarium oxysporum Plant Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    SIHEGIKO KANAYA

    2013-09-01

    Full Text Available Indonesia has been known as a country with high medicinal plant diversity. One of the most common medicinal plant from Indonesia is red ginger (Zingiber officinale Rosc.. Nevertheless, limited studies of endophytic fungi associated with these medicinal plants are hitherto available. The objectives of this research were to study the diversity of endophytic fungi on red ginger and to analyze their potential as a source of antifungal agent. All parts of plant organs such as leaf, rhizome, root, and stem were subjected for isolation. Fungal identification was carried out by using a combination of morphological characteristic and molecular analysis of DNA sequence generated from ITS rDNA region. Thirty endophytic fungi were successfully isolated from leaf, rhizome, root, and stem of red ginger plant. Antagonistic activity was tested against Fusarium oxysporum, a pathogenic fungus on plants, using an antagonistic assay. Based on this approach, the fungi were assigned as Acremonium macroclavatum, Beltraniella sp., Cochliobolus geniculatus and its anamorphic stage Curvularia affinis, Fusarium solani, Glomerella cingulata, and its anamorphic stage Colletotrichum gloeosporoides, Lecanicillium kalimantanense, Myrothecium verrucaria, Neonectria punicea, Periconia macrospinosa, Rhizopycnis vagum, and Talaromyces assiutensis. R. vagum was found specifically on root whereas C. affinis, L. kalimantanense, and M. verrucaria were found on stem of red ginger plant. A. macroclavatum was found specifically in red ginger plant’s organ which located under the ground, whereas C. affinis was found from shoot or organ which located above the ground. The antagonistic activity of isolated endophytic fungi against F. oxysporum varied with the inhibition value range from 1.4 to 68.8%. C. affinis (JMbt7, F. solani (JMd14, and G. cingulata (JMr2 had significantly high antagonistic activity with the value above 65%; and R. vagum (JMa4 and C. geniculatus (JMbt9 had

  5. Diversity of Endophytic Fungi from Red Ginger (Zingiber officinale Rosc. Plant and Their Inhibitory Effect to Fusarium oxysporum Plant Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    ROHANI CINTA BADIA GINTING

    2013-09-01

    Full Text Available Indonesia has been known as a country with high medicinal plant diversity. One of the most common medicinal plant from Indonesia is red ginger (Zingiber officinale Rosc.. Nevertheless, limited studies of endophytic fungi associated with these medicinal plants are hitherto available. The objectives of this research were to study the diversity of endophytic fungi on red ginger and to analyze their potential as a source of antifungal agent. All parts of plant organs such as leaf, rhizome, root, and stem were subjected for isolation. Fungal identification was carried out by using a combination of morphological characteristic and molecular analysis of DNA sequence generated from ITS rDNA region. Thirty endophytic fungi were successfully isolated from leaf, rhizome, root, and stem of red ginger plant. Antagonistic activity was tested against Fusarium oxysporum, a pathogenic fungus on plants, using an antagonistic assay. Based on this approach, the fungi were assigned as Acremonium macroclavatum, Beltraniella sp., Cochliobolus geniculatus and its anamorphic stage Curvularia affinis, Fusarium solani, Glomerella cingulata and its anamorphic stage Colletotrichum gloeosporoides, Lecanicillium kalimantanense, Myrothecium verrucaria, Neonectria punicea, Periconia macrospinosa, Rhizopycnis vagum, and Talaromyces assiutensis. R. vagum was found specifically on root whereas C. affinis, L. kalimantanense, and M. verrucaria were found on stem of red ginger plant. A. macroclavatum was found specifically in red ginger plant's organ which located under the ground, whereas C. affinis was found from shoot or organ which located above the ground. The antagonistic activity of isolated endophytic fungi against F. oxysporum varied with the inhibition value range from 1.4 to 68.8%. C. affinis (JMbt7, F. solani (JMd14, and G. cingulata (JMr2 had significantly high antagonistic activity with the value above 65%; and R. vagum (JMa4 and C. geniculatus (JMbt9 had significantly

  6. Identification of Endophytic Fungi of Medicinal Herbs of Lauraceae and Rutaceae with Antimicrobial Property

    Directory of Open Access Journals (Sweden)

    Min-Yuan Ho

    2012-09-01

    Full Text Available This study was conducted to determine taxonomical features and antimicrobial activities of 156 isolates of endophytic fungi collected from twigs of medicinal plants of Lauraceae (67 isolates and Rutaceae (89 isolates in central and northern Taiwan. The 156 isolates of fungi were classified into 35 genera in 19 families based on morphological characteristics of mycelia and asexual/sexual spores, as well as molecular phylogenetic analysis of rDNA LSU D1/D2 and ITS regions. The most common endophytes were in the taxa of Colletotrichum, Guignardia, Hypoxylon, Nigrospora, Phomopsis and Xylaria, and the most common hosts were Citrus and Zanthoxylum of Rutaceae and Cinnamomum of Lauraceae. Molecular phylogenetic analysis showed that xylariaceous isolates could be separated into Xylaria and Hypoxylon groups based on rDNA of LSU D1/D2 and ITS regions. Four isolates of endophytic fungi including Lasmenia sp. isolate CB10, Ophioceras tenuisporum isolate CI02, Xylaria cubensis isolate LA04 and Cyanodermella sp. isolate TR09 were tested for antimicrobial activities using a dual culture method and Lasmenia sp. isolate CB10 and Cyanodermella sp. isolate TR09 showed better antimicrobial activity against 12 plant pathogens including 9 fungi and 3 bacteria. Spraying Chinese cabbage (Brassica rapa plants with culture filtrates of the endophytic fungus Lasmenia sp. isolate CB10 significantly reduced severity of anthracnose of Chinese cabbage caused by Colletotrichum higginsianum under greenhouse conditions. This study suggests that the Lasmenia sp. isolate CB10 may be of potential for management of anthracnose of Chinese cabbage.

  7. Spatial segregation and aggregation of ectomycorrhizal and root-endophytic fungi in the seedlings of two Quercus species.

    Directory of Open Access Journals (Sweden)

    Satoshi Yamamoto

    Full Text Available Diverse clades of mycorrhizal and endophytic fungi are potentially involved in competitive or facilitative interactions within host-plant roots. We investigated the potential consequences of these ecological interactions on the assembly process of root-associated fungi by examining the co-occurrence of pairs of fungi in host-plant individuals. Based on massively-parallel pyrosequencing, we analyzed the root-associated fungal community composition for each of the 249 Quercus serrata and 188 Quercus glauca seedlings sampled in a warm-temperate secondary forest in Japan. Pairs of fungi that co-occurred more or less often than expected by chance were identified based on randomization tests. The pyrosequencing analysis revealed that not only ectomycorrhizal fungi but also endophytic fungi were common in the root-associated fungal community. Intriguingly, specific pairs of these ectomycorrhizal and endophytic fungi showed spatially aggregated patterns, suggesting the existence of facilitative interactions between fungi in different functional groups. Due to the large number of fungal pairs examined, many of the observed aggregated/segregated patterns with very low P values (e.g., < 0.005 turned non-significant after the application of a multiple comparison method. However, our overall results imply that the community structures of ectomycorrhizal and endophytic fungi could influence each other through interspecific competitive/facilitative interactions in root. To test the potential of host-plants' control of fungus-fungus ecological interactions in roots, we further examined whether the aggregated/segregated patterns could vary depending on the identity of host plant species. Potentially due to the physiological properties shared between the congeneric host plant species, the sign of hosts' control was not detected in the present study. The pyrosequencing-based randomization analyses shown in this study provide a platform of the high

  8. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell (Scrophulariaceae).

    Science.gov (United States)

    Katoch, Meenu; Singh, Gurpreet; Sharma, Sadhna; Gupta, Nidhi; Sangwan, Payare Lal; Saxena, Ajit Kumar

    2014-02-11

    Endophytes, which reside in plant tissues, have the potential to produce novel metabolites with immense benefits for health industry. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell were investigated. Endophytic fungi were isolated from the Bacopa monnieri. Extracts from liquid cultures were tested for cytotoxicity against a number of cancer cell lines using the MTT assay. Antimicrobial activity was determined using the micro dilution method. 22% of the examined extracts showed potent (IC50 of <20 μg/ml) cytotoxic activity against HCT-116 cell line. 5.5%, 11%, 11% of the extracts were found to be cytotoxic for MCF-7, PC-3, and A-549 cell lines respectively. 33% extracts displayed antimicrobial activity against at least one test organism with MIC value 10-100 μg/ml. The isolate B9_Pink showed the most potent cytotoxic activity for all the cell lines examined and maximum antimicrobial activity against the four pathogens examined which was followed by B19. Results indicated the potential for production of bioactive agents from endophytes of Bacopa monnieri.

  9. Diversity and seasonal variation of endophytic fungi isolated from three conifers in mt. Taehwa, Korea.

    Science.gov (United States)

    Kim, Chang-Kyun; Eo, Ju-Kyeong; Eom, Ahn-Heum

    2013-06-01

    The needled leaves of three conifer species were collected in Mt. Taehwa during different seasons of the year. Total 59 isolates and 19 species of endophytic fungi were isolated from the leaves and identified using morphological and molecular characteristics. As a result, Shannon index was different in its host plant; Larix kaempferi had a highest value of species diversity. According to the sampling season, 9 species of 19 species were isolated during fall season. The results suggest that the existing of host plant and sampling season are major factors of distribution of endophytic fungi.

  10. Phylogenetic diversity of culturable endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff), detection of polyketide synthase gene and their antagonistic activity analysis.

    Science.gov (United States)

    Wang, Ya; Gao, Bo Liang; Li, Xi Xi; Zhang, Zhi Bin; Yan, Ri Ming; Yang, Hui Lin; Zhu, Du

    2015-11-01

    The biodiversity of plant endophytic fungi is enormous, numerous competent endophytic fungi are capable of providing different forms of fitness benefits to host plants and also could produce a wide array of bioactive natural products, which make them a largely unexplored source of novel compounds with potential bioactivity. In this study, we provided a first insights into revealing the diversity of culturable endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff.) from China using rDNA-ITS phylogenetic analysis. Here, the potential of fungi in producing bioactive natural products was estimated based on the beta-ketosynthase detected in the polyketide synthase (PKS) gene cluster and on the bioassay of antagonistic activity against two rice phytopathogens Thanatephorus cucumeris and Xanthomonas oryzae. A total of 229 endophytic fungal strains were validated in 19 genera. Among the 24 representative strains, 13 strains displayedantagonistic activity against the phytopathogens. Furthermore, PKS genes were detected in 9 strains, indicating their potential for synthesising PKS compounds. Our study confirms the phylogenetic diversity of endophytic fungi in O. rufipogon G. and highlights that endophytic fungi are not only promising resources of biocontrol agents against phytopathogens of rice plants, but also of bioactive natural products and defensive secondary metabolites. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  11. Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales

    Directory of Open Access Journals (Sweden)

    Rafael de Felício

    Full Text Available Abstract Marine environment is one of the most important sources regarding natural products research. Besides, marine microorganisms have been denominated as a talented natural source for discovery of new leads. Although the association of macroalgae and fungi has been described regarding ecological issues, there is a lack of studies about marine seaweed endophytic fungi. In this context, the goal of this study was to evaluate cytotoxic, antifungal and antibacterial activities of endophytic fungi isolated from the Brazilian marine seaweed Bostrychia tenella (J.V. Lamouroux J. Agardh (Ceramiales, Rhodophyta. Forty-five endophytic microorganism strains were isolated from B. tenella. Crude extracts and organic fractions of ten selected strains were obtained after growth in rice medium. Samples were evaluated for cytotoxicity, antifungal and antibacterial assays. Penicillium strains showed positive results in a diversity of assays, and other five strains were active in at least one test. In addition, cytochalasin D was isolated from Xylaria sp. This alga is composed of a microbiological potential, since its endophytic strains exhibited remarkable biological properties. Moreover, cytochalasin D isolation has confirmed chemical potential of marine endophytic strains. This is the first study in which cultured fungi isolates from the Brazilian macroalga B. tenella were evaluated concerning biological properties. Results corroborated that this species could be a pharmaceutical source from marine environment. Furthermore, Acremonium implicatum is being firstly described as marine endophyte and Xylaria sp., Trichoderma atroviride and Nigrospora oryzae as marine seaweed endophytes. Thus, this work reports the first study relating detailed isolation, cultivation and biological evaluation (cytotoxic, antifungal and antibacterial of endophytes Penicillium decaturense and P. waksmanii from the Brazilian marine red alga B. tenella. We are also reporting the

  12. Species diversity of culturable endophytic fungi from Brazilian mangrove forests.

    Science.gov (United States)

    de Souza Sebastianes, Fernanda Luiza; Romão-Dumaresq, Aline Silva; Lacava, Paulo Teixeira; Harakava, Ricardo; Azevedo, João Lúcio; de Melo, Itamar Soares; Pizzirani-Kleiner, Aline Aparecida

    2013-08-01

    This study aimed to perform a comparative analysis of the diversity of endophytic fungal communities isolated from the leaves and branches of Rhizophora mangle, Avicennia schaueriana and Laguncularia racemosa trees inhabiting two mangroves in the state of São Paulo, Brazil [Cananeia and Bertioga (oil spill-affected and unaffected)] in the summer and winter. Three hundred and forty-three fungi were identified by sequencing the ITS1-5.8S-ITS2 region of rDNA. Differences were observed in the frequencies of fungi isolated from the leaves and branches of these three different plant species sampled from the Bertioga oil spill-affected and the oil-unaffected mangrove sites in the summer and winter; these differences indicate a potential impact on fungal diversity in the study area due to the oil spill. The molecular identification of the fungi showed that the fungal community associated with these mangroves is composed of at least 34 different genera, the most frequent of which were Diaporthe, Colletotrichum, Fusarium, Trichoderma and Xylaria. The Shannon and the Chao1 indices [H'(95 %) = 4.00, H'(97 %) = 4.22, Chao1(95 %) = 204 and Chao1(97 %) = 603] indicated that the mangrove fungal community possesses a vast diversity and richness of endophytic fungi. The data generated in this study revealed a large reservoir of fungal genetic diversity inhabiting these Brazilian mangrove forests and highlighted substantial differences between the fungal communities associated with distinct plant tissues, plant species, impacted sites and sampling seasons.

  13. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists.

    Science.gov (United States)

    Martino, Elena; Morin, Emmanuelle; Grelet, Gwen-Aëlle; Kuo, Alan; Kohler, Annegret; Daghino, Stefania; Barry, Kerrie W; Cichocki, Nicolas; Clum, Alicia; Dockter, Rhyan B; Hainaut, Matthieu; Kuo, Rita C; LaButti, Kurt; Lindahl, Björn D; Lindquist, Erika A; Lipzen, Anna; Khouja, Hassine-Radhouane; Magnuson, Jon; Murat, Claude; Ohm, Robin A; Singer, Steven W; Spatafora, Joseph W; Wang, Mei; Veneault-Fourrey, Claire; Henrissat, Bernard; Grigoriev, Igor V; Martin, Francis M; Perotto, Silvia

    2018-02-01

    Some soil fungi in the Leotiomycetes form ericoid mycorrhizal (ERM) symbioses with Ericaceae. In the harsh habitats in which they occur, ERM plant survival relies on nutrient mobilization from soil organic matter (SOM) by their fungal partners. The characterization of the fungal genetic machinery underpinning both the symbiotic lifestyle and SOM degradation is needed to understand ERM symbiosis functioning and evolution, and its impact on soil carbon (C) turnover. We sequenced the genomes of the ERM fungi Meliniomyces bicolor, M. variabilis, Oidiodendron maius and Rhizoscyphus ericae, and compared their gene repertoires with those of fungi with different lifestyles (ecto- and orchid mycorrhiza, endophytes, saprotrophs, pathogens). We also identified fungal transcripts induced in symbiosis. The ERM fungal gene contents for polysaccharide-degrading enzymes, lipases, proteases and enzymes involved in secondary metabolism are closer to those of saprotrophs and pathogens than to those of ectomycorrhizal symbionts. The fungal genes most highly upregulated in symbiosis are those coding for fungal and plant cell wall-degrading enzymes (CWDEs), lipases, proteases, transporters and mycorrhiza-induced small secreted proteins (MiSSPs). The ERM fungal gene repertoire reveals a capacity for a dual saprotrophic and biotrophic lifestyle. This may reflect an incomplete transition from saprotrophy to the mycorrhizal habit, or a versatile life strategy similar to fungal endophytes. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  14. Fungos endofíticos associados a plantas medicinais Endophytic fungi associated with medicinal plants

    Directory of Open Access Journals (Sweden)

    V Mussi-Dias

    2012-01-01

    Full Text Available Com a utilização de plantas medicinais em infusões, xaropes, tinturas, ungüentos, dentre outras formas, pressupõe-se que fungos endofíticos, presentes no interior das plantas, mas sem causar doença, possam tornar-se um componente destes produtos, principalmente quando utilizados in natura. Além disso, os fungos endofíticos podem também produzir substâncias tóxicas aos usuários ou mesmo alterar o metabolismo vegetal, modificando a composição e as propriedades medicinais, assim como, a qualidade do produto armazenado e comercializado. Neste sentido, objetivou-se isolar e identificar a flora fúngica endofítica de onze espécies medicinais escolhidas ao acaso. Obtiveram-se culturas-puras dos fungos Phomopsis, Colletotrichum, Pestalotia, Trichoderma, Fusarium, Nigrospora e Glomerella ocorrendo endofiticamente em Plectranthus barbatus, Vernonia condensata, Pfaffia paniculata, Foeniculum vulgare, Cymbopogon citratus, Cymbopogon nardus, Cordia curassavica, Maytenus ilicifolia, Punica granatum, Morus nigra e Bauhinia forficata. As espécies vegetais em que se identificaram o maior número de fungos endofíticos foram Vernonia condensata, Punica granatum e Morus nigra. Todos os fungos recuperados neste trabalho apresentaram características estritamente endofíticas, não manifestando patogenicidade nas espécies hospedeiras. Dentre os fungos detectados, especial atenção deve ser dada ao gênero Fusarium, uma vez que inúmeras espécies deste gênero são conhecidas produtoras de micotoxinas e constituem-se em importantes patógenos pós-colheita.With the use of medicinal plants in infusions, syrups, dyes, unguents, among other forms, it is expected that endophytic fungi, present inside the plants but not causing diseases, become components of these products, especially when used in natura. In addition, endophytic fungi can produce toxic substances to the users or even modify the plant metabolism, altering the medicinal composition and

  15. Role of endophytic fungi in the migration of the radionuclides in the vascular plants of the Ukrainian Polesye sphagniopratum

    International Nuclear Information System (INIS)

    Zhdanova, N.N.; Sokolova, E.V.; Kurchenko, I.N.; Orlov, A.A.

    2002-01-01

    It is known that the specific activity of 137 Cs in vegetative phytomass of cranberry and sphagnum in oligotrophic conditions of Ukrainian Polessye forest sphagniopratum amounts 5000 - 10000 Bq/kg of air-dry weight. Roots of cranberry in natural conditions never run up to peat and mainly are located in top layer of the sphagnum top which is sodden by a water, but specific activity of the radionuclide in swamp water is low (2 - 10 Bq/l). It was supposed that mycorrhizal and endophytic micromycetes take an essential part in transferring the mineral substances and 137 Cs from sphagnum mosses to ericoid plants under oligotrophic swamp conditions. Endophytic fungi from vascular plants were not investigated in Ukraine. The article is devoted to the estimation of distribution of endophytic fungi in plants which are dominants of the plant cover of sphagniopratum. 47 species of micromycetes which belong to 27 genera were identified. For moss and ericoid plants five mutual species of endophytic fungi was detected

  16. Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii.

    Directory of Open Access Journals (Sweden)

    Preuttiporn Supaphon

    Full Text Available Endophytic fungi from three commonly found seagrasses in southern Thailand were explored for their ability to produce antimicrobial metabolites. One hundred and sixty endophytic fungi derived from Cymodoceaserrulata (Family Cymodoceaceae, Halophilaovalis and Thalassiahemprichii (Family Hydrocharitaceae were screened for production of antimicrobial compounds by a colorimetric broth microdilution test against ten human pathogenic microorganisms including Staphylococcus aureus ATCC 25923, a clinical isolate of methicillin-resistant S. aureus, Escherichia coli ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 90028 and NCPF 3153, Cryptococcus neoformans ATCC 90112 and ATCC 90113 and clinical isolates of Microsporumgypseum and Penicilliummarneffei. Sixty-nine percent of the isolates exhibited antimicrobial activity against at least one test strain. Antifungal activity was more pronounced than antibacterial activity. Among the active fungi, seven isolates including Hypocreales sp. PSU-ES26 from C. serrulata, Trichoderma spp. PSU-ES8 and PSU-ES38 from H. ovalis, and Penicillium sp. PSU-ES43, Fusarium sp. PSU-ES73, Stephanonectria sp. PSU-ES172 and an unidentified endophyte PSU-ES190 from T. hemprichii exhibited strong antimicrobial activity against human pathogens with minimum inhibitory concentrations (MIC of less than 10 µg/ml. The inhibitory extracts at concentrations of 4 times their MIC destroyed the targeted cells as observed by scanning electron microscopy. These results showed the antimicrobial potential of extracts from endophytic fungi from seagrasses.

  17. Levels of rhizome endophytic fungi fluctuate in Paris polyphylla var. yunnanensis as plants age

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2017-02-01

    Full Text Available Paris polyphylla var. yunnanensis is an important medicinal plant with abundant saponins that are widely used in the pharmaceuticals industry. It is unclear why the levels of active ingredients increase as these plants age. We speculated that the concentrations of those components in the rhizomes are mediated by fungal endophytes. To test this hypothesis, we took both culture-dependent and -independent (metagenomics approaches to analyze the communities of endophytic fungi that inhabit those rhizomes in plants of different age classes (four, six, and eight years old. In all, 147 isolates representing 18 fungal taxa were obtained from 270 segments (90 per age class. Based on morphological and genetic characteristics, Fusarium oxysporum (46.55% frequency of occurrence was the predominant endophyte, followed by Leptodontidium sp. (8.66% and Trichoderma viride (6.81%. Colonization of endophytic fungi was maximized in the eight-year-old rhizomes (33.33% when compared with four-year-old (21.21% and six-year-old (15.15% rhizomes. Certain fungal species were present only at particular ages. For example, Alternaria sp., Cylindrocarpon sp., Chaetomium sp., Paraphaeosphaeria sporulosa, Pyrenochaeta sp., Penicillium swiecickii, T. viride, and Truncatella angustata were found only in the oldest plants. Analysis of (metagenomics community DNA extracted from different-aged samples revealed that, at the class level, the majority of fungi had the highest sequence similarity to members of Sordariomycetes, followed by Eurotiomycetes and Saccharomycetes. These results were mostly in accord with those we obtained using culture methods. Fungal diversity and richness also changed over time. Our investigation is the first to show that the diversity of fungi in rhizomes of P. polyphylla var. yunnanensis is altered as plants age, and our findings provide a foundation for future examinations of useful compounds.

  18. Screening for Endophytic Fungi from Turmeric Plant (Curcuma longa L.) of Sukabumi and Cibinong with Potency as Antioxidant Compounds Producer.

    Science.gov (United States)

    Bustanussalam; Rachman, Fauzy; Septiana, Eris; Lekatompessy, Sylvia J R; Widowati, Tiwit; Sukiman, Harmastini I; Simanjuntak, Partomuan

    2015-01-01

    Potency of medicinal plant is related to microorganisms lived in the plant tissue. Those microorganisms are known as endophytic microbes that live and form colonies in the plant tissue without harming its host. Each plant may contains several endophytic microbes that produce biological compounds or secondary metabolites due to co-evolution or genetic transfer from the host plant to endophytic microbes. Endophytic fungi research done for turmeric plant (Curcuma longa L.) gave 44 isolated fungi as results. Those 44 fungi isolated were fermented in Potato Dextrose Broth (PDB) media, filtered, extracted with ethylacetate and then were analyzed by Thin Layer Chromatography (TLC) method and tested for their antioxidant activity by radical scavenging method. The antioxidant activity of the ethylacetate filtrate extracts either from Sukabumi or Cibinong were higher than the biomass extracts. There were 6 fungi that showed antioxidant activities over 65%, i.e., with code name K.Cl.Sb.R9 (93.58%), K.Cl.Sb.A11 (81.49%), KCl.Sb.B1 (78.81%), KCl.Sb.R11 (71.67%) and K.Cl.Sb.A12 (67.76%) from Sukabumi and K.Cl.Cb.U1 (69.27%) from Cibinong. These results showed that bioproduction by endophytic microbes can gave potential antioxidant compounds.

  19. Diversity of leaf endophytic fungi in mangrove plants of northeast Brazil.

    Science.gov (United States)

    Wanderley Costa, Isabella P M; Maia, Leonor Costa; Cavalcanti, Maria Auxiliadora

    2012-07-01

    With the aim of increasing the knowledge about endophytic fungi, a group of microorganisms with high biotechnological potential and a valuable source of useful metabolites, a survey in leaves of mangrove plants (Avicennia schaueriana, Laguncularia racemosa, and Rhizophora mangle) was performed at the Itamaracá Island, PE, Brazil. Leaves were collected, during two seasons, dry and rainy, superficially sterilized and fragments maintained in Petri dishes with Potato dextrose agar (PDA) at 28(o) ± 2(o) C until isolation of the fungi. Fourty taxa were isolated: 25 species representing 19 genera and 15 morphotypes determined as Mycelia sterilia. Leaves of L. racemosa hosted the highest number of colony forming units (CFU) and taxa. Guignardia sp. and Colletotrichum gloeosporioides were the most frequently isolated, while Glomerella cingulata was the only species found in association with the three host plants. The proportional importance of each fungus differed among hosts. The similarity of fungi species between the two seasons reached only 4.2%, and that between the hosts was also low, with the maximum (A. schaueriana x L. racemosa) reaching 24.2%. Sphaerosporium, as well as Chloridium virescens var. virescens, Microsphaeropsis arundinis, Penicillium pinophilum, Periconia cambrensis, Phoma herbarum, P. diachenii, P. obscurans, Sordaria prolifica and Torula elisii are reported for the first time as endophytic in tropical regions.

  20. Endophytic fungi producing of esterases: evaluation in vitro of the enzymatic activity using pH indicator

    Directory of Open Access Journals (Sweden)

    Helen Cristina Fávero Lisboa

    2013-09-01

    Full Text Available A sensitive and efficient colorimetric method was optimized for detection of esterase enzymes produced by endophytic fungi for development of High-Throughput Screening (HTS. The fungi were isolated and obtained previously from plant species of Cerrado and Atlantic Forest located in areas of environmental preservation in the State of Sao Paulo / Brazil, as part of the project "Chemical and biological prospecting endophytic fungi associated to plant species of Cerrado and Atlantic Forest". The compounds ethyl butyrate, ethyl acetate and methyl propionate were used as standards esters which were hydrolyzed by extracellular enzyme from endophytic fungi (EC. 3.1.1.1 -carboxylesterases for production of carboxylic acids. Thus, the reduction of the pH increases the protonated indicator concentration (bromothymol blue, changing the color of the reaction medium (from blue to yellow, that can be observed and measured by spectrophotometry at 616 nm. The methodology with acid-base indicator was performed on 13 microorganisms, aiming Periconia atropurpurea asapotential source of esterase for biotransformation of short chain esters. The results also evidenced that this methodology showed to be efficient, fast, cheap, having low consumption of reagents and easy development, and can be applied to screen carboxylic-ester hydrolases in a large number of microorganisms.

  1. Spatial Segregation and Aggregation of Ectomycorrhizal and Root-Endophytic Fungi in the Seedlings of Two Quercus Species

    Science.gov (United States)

    Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S.; Hidaka, Amane; Kadowaki, Kohmei; Toju, Hirokazu

    2014-01-01

    Diverse clades of mycorrhizal and endophytic fungi are potentially involved in competitive or facilitative interactions within host-plant roots. We investigated the potential consequences of these ecological interactions on the assembly process of root-associated fungi by examining the co-occurrence of pairs of fungi in host-plant individuals. Based on massively-parallel pyrosequencing, we analyzed the root-associated fungal community composition for each of the 249 Quercus serrata and 188 Quercus glauca seedlings sampled in a warm-temperate secondary forest in Japan. Pairs of fungi that co-occurred more or less often than expected by chance were identified based on randomization tests. The pyrosequencing analysis revealed that not only ectomycorrhizal fungi but also endophytic fungi were common in the root-associated fungal community. Intriguingly, specific pairs of these ectomycorrhizal and endophytic fungi showed spatially aggregated patterns, suggesting the existence of facilitative interactions between fungi in different functional groups. Due to the large number of fungal pairs examined, many of the observed aggregated/segregated patterns with very low P values (e.g., fungi could influence each other through interspecific competitive/facilitative interactions in root. To test the potential of host-plants' control of fungus–fungus ecological interactions in roots, we further examined whether the aggregated/segregated patterns could vary depending on the identity of host plant species. Potentially due to the physiological properties shared between the congeneric host plant species, the sign of hosts' control was not detected in the present study. The pyrosequencing-based randomization analyses shown in this study provide a platform of the high-throughput investigation of fungus–fungus interactions in plant root systems. PMID:24801150

  2. Bezerromycetales and Wiesneriomycetales ord. nov. (class Dothideomycetes), with two novel genera to accommodate endophytic fungi from Brazilian cactus

    NARCIS (Netherlands)

    Bezerra, Jadson D. P.; Oliveira, Rafael J. V.; Paiva, Laura M.; Silva, Gladstone A.; Groenewald, Johannes Z.; Crous, Pedro W.; Souza-Motta, Cristina M.

    During a survey of endophytic fungi from the cactus Tacinga inamoena in a Brazilian tropical dry forest (Caatinga) some undescribed ascomycetous fungi were isolated. These fungi are characterized by superficial and immersed, globose to subglobose, smooth or hairy ascomata, bitunicate asci, and

  3. A New Benzoyl Compound Isolated from the Endophytic Fungi of Kandis Gajah (Garcinia griffithii and Asam Kandis (Garcinia cowa

    Directory of Open Access Journals (Sweden)

    Elfita Elfita

    2016-12-01

    Full Text Available Garcinia griffithii and Garcinia cowa belong to the genus Garcinia. The genus Garcinia has been known to be a rich source of secondary metabolites, such as xanthones, benzophenones, flavonoids, steroids, terpenoids, and other phenolic derivatives. Previous investigations of endophytic fungi from G. griffithii revealed the presence of three compounds not found in the host. In order to the continue the phytochemical work on endophytic fungi of G. griffithii, the constituent of the endophytic fungi of G. griffithii was re-examined. In this study, a benzoyl compound similar to that found in the endophytic fungus of G. cowa was observed. The same benzoyl compound was also isolated from the endophytic fungus Acremonium sp of G. griffithii and Aspergillus sp of G. cowa with cultivation of eight weeks in static conditions at room temperature. The culture medium was partitioned using ethyl acetate and evaporated to obtain the concentrated extract. Isolation of compounds was performed using the chromatography method. The chemical structure was proposed on the basis of spectroscopic data, including ultraviolet (UV, infrared (IR, mass spectrometry (MS, proton nuclear magnetic resonance (1H-NMR, carbon nuclear magnetic resonance (13C-NMR, heteronuclear single-quantum correlation spectroscopy (HSQC, heteronuclear multiple-bond correlation spectroscopy (HMBC, and correlation spectroscopy (COSY.

  4. Molecular phylogeny, diversity and bioprospecting of endophytic fungi associated with wild ethnomedicinal North American plant Echinacea purpurea (Asteraceae)

    Science.gov (United States)

    The endophytic fungal community associated with the wild ethnomedicinal North American plant Echinacea purpurea was investigated as well as its potential for providing antifungal compounds against plant pathogenic fungi. A total of 233 endophytic fungal isolates were obtained and classified into 42 ...

  5. Isolation and primary identification of endophytic fungi from Cephalotaxus mannii trees

    Directory of Open Access Journals (Sweden)

    Pramuan Saithong

    2010-11-01

    Full Text Available Fifty-two isolates of endophytic fungi were collected from the bark of Cephalotaxus mannii (plum-yew trees located in the north of Thailand and the south of China. All isolates were identified based on colony morphology and examination of spores and fruiting bodies using stereo and light microscopes. Thirty-five isolates (67.3% belonging to 13 genera were recorded, viz. Cladosporium sp., Acremonium sp., Trichoderma sp., Monilia sp., Fusarium sp., Spicaria sp., Humicola sp., Rhizoctonia sp., Cephalosporium sp., Botrytis sp., Penicillium sp., Chalaropsis sp. and Geotrichum sp., while 17 strains (32.7% were unidentified. The dominant genera found both in northern Thailand and southern China were Acremonium sp., Monilia sp. and Fusarium sp. Cladosporium sp. and Trichoderma sp. were found only in southern China, whereas Spicaria sp., Humicula sp., Rhizoctonia sp., Botrytis sp., Penicillium sp., Geotrichum sp., Chalaropsis sp. and Cephalosporium sp. were found only in northern Thailand. Thus, there seemed to be a significant difference in the genera of endophytic fungi from Cephalotaxus mannii trees of different sources.

  6. [Effects of different endophytic fungi on seedling growth of Dendrobium devonianum].

    Science.gov (United States)

    Huang, Hui; Shao, Shi-Cheng; Gao, Jiang-Yun

    2016-06-01

    To obtain seedling growth-promoting fungi is a key step in restoration-friendly cultivation of medicinal Dendrobium species, since there are a large number of functionally-unknown endophytic fungi in the roots of Dendrobium plants.In this study, six functionally-unknown endophytic fungal strains were isolated from roots of D.devonianum using single peleton isolation technology, and used in inoculation experiments to test their effectiveness for seedling growth in D.devonianum.After 90 days of inoculation, comparing with the control treatment, FDdS-1, FDdS-2 and FDdS-4 showed strong pathogenic or fatal effects on seedlings; while, FDdS-12, FDdS-9 and FDdS-5 had different effects on seedling growth.FDdS-5 had significant promoting effects on height, fresh and dry weight, stem diameter and root numbers, while FDdS-9 only had significant promoting effect on seedling height, and FDdS-12 had a negative effect on seedling growth.According to the anatomical features of the inoculated roots, FDdS-5 fungi could infect the velamina of seedlings and the existence of symbiosis pelotons in the cortex cells, suggesting that FDdS-5 is a mycorrhiza fungi of D.devonianum.FDdS-5 and FDdS-9 were identified as Sebacina vermifera and Sebacina sp.by molecular technologies.By using FDdS-5 in the restoration-friendly cultivation of D.devonianum, it could effectively promote seedling growth and shorten the seedling growth periods.The results will aid in reintroduction and cultivation of D.devonianum. Copyright© by the Chinese Pharmaceutical Association.

  7. Diversity of leaf endophytic fungi in mangrove plants of northeast Brazil

    Science.gov (United States)

    Wanderley Costa, Isabella P. M.; Maia, Leonor Costa; Cavalcanti, Maria Auxiliadora

    2012-01-01

    With the aim of increasing the knowledge about endophytic fungi, a group of microorganisms with high biotechnological potential and a valuable source of useful metabolites, a survey in leaves of mangrove plants (Avicennia schaueriana, Laguncularia racemosa, and Rhizophora mangle) was performed at the Itamaracá Island, PE, Brazil. Leaves were collected, during two seasons, dry and rainy, superficially sterilized and fragments maintained in Petri dishes with Potato dextrose agar (PDA) at 28o ± 2o C until isolation of the fungi. Fourty taxa were isolated: 25 species representing 19 genera and 15 morphotypes determined as Mycelia sterilia. Leaves of L. racemosa hosted the highest number of colony forming units (CFU) and taxa. Guignardia sp. and Colletotrichum gloeosporioides were the most frequently isolated, while Glomerella cingulata was the only species found in association with the three host plants. The proportional importance of each fungus differed among hosts. The similarity of fungi species between the two seasons reached only 4.2%, and that between the hosts was also low, with the maximum (A. schaueriana x L. racemosa) reaching 24.2%. Sphaerosporium, as well as Chloridium virescens var. virescens, Microsphaeropsis arundinis, Penicillium pinophilum, Periconia cambrensis, Phoma herbarum, P. diachenii, P. obscurans, Sordaria prolifica and Torula elisii are reported for the first time as endophytic in tropical regions. PMID:24031941

  8. Diversity of leaf endophytic fungi in mangrove plants of Northeast Brazil

    Directory of Open Access Journals (Sweden)

    Isabella P. M. Wanderley Costa

    2012-09-01

    Full Text Available With the aim of increasing the knowledge about endophytic fungi, a group of microorganisms with high biotechnological potential and a valuable source of useful metabolites, a survey in leaves of mangrove plants (Avicennia schaueriana, Laguncularia racemosa, and Rhizophora mangle was performed at the Itamaracá Island, PE, Brazil. Leaves were collected, during two seasons, dry and rainy, superficially sterilized and fragments maintained in Petri dishes with Potato dextrose agar (PDA at 28º ± 2º C until isolation of the fungi. Fourty taxa were isolated: 25 species representing 19 genera and 15 morphotypes determined as Mycelia sterilia. Leaves of L. racemosa hosted the highest number of colony forming units (CFU and taxa. Guignardia sp. and Colletotrichum gloeosporioides were the most frequently isolated, while Glomerella cingulata was the only species found in association with the three host plants. The proportional importance of each fungus differed among hosts. The similarity of fungi species between the two seasons reached only 4.2%, and that between the hosts was also low, with the maximum (A. schaueriana x L. racemosa reaching 24.2%. Sphaerosporium, as well as Chloridium virescens var. virescens, Microsphaeropsis arundinis, Penicillium pinophilum, Periconia cambrensis, Phoma herbarum, P. diachenii, P. obscurans, Sordaria prolifica and Torula elisii are reported for the first time as endophytic in tropical regions.

  9. Diversity and antimicrobial activity of culturable endophytic fungi isolated from moso bamboo seeds.

    Directory of Open Access Journals (Sweden)

    Xiao-Ye Shen

    Full Text Available Bamboos, regarded as therapeutic agents in ethnomedicine, have been used to inhibit inflammation and enhance natural immunity for a long time in Asia, and there are many bamboo associated fungi with medical and edible value. In the present study, a total of 350 fungal strains were isolated from the uncommon moso bamboo (Phyllostachys edulis seeds for the first time. The molecular diversity of these endophytic fungi was investigated and bioactive compound producers were screened for the first time. All the fungal endophytes were categorized into 69 morphotypes according to culturable characteristics and their internal transcriber spacer (ITS regions were analyzed by BLAST search with the NCBI database. The fungal isolates showed high diversity and were divided in Ascomycota (98.0% and Basidiomycota (2.0%, including at least 19 genera in nine orders. Four particular genera were considered to be newly recorded bambusicolous fungi, including Leptosphaerulina, Simplicillium, Sebacina and an unknown genus in Basidiomycetes. Furthermore, inhibitory effects against clinical pathogens and phytopathogens were screened preliminarily and strains B09 (Cladosporium sp., B34 (Curvularia sp., B35 (undefined genus 1, B38 (Penicillium sp. and zzz816 (Shiraia sp. displayed broad-spectrum activity against clinical bacteria and yeasts by the agar diffusion method. The crude extracts of isolates B09, B34, B35, B38 and zzz816 under submerged fermentation, also demonstrated various levels of bioactivities against bambusicolous pathogenic fungi. This study is the first report on the antimicrobial activity of endophytic fungi associated with moso bamboo seeds, and the results show that they could be exploited as a potential source of bioactive compounds and plant defense activators. In addition, it is the first time that strains of Shiraia sp. have been isolated and cultured from moso bamboo seeds, and one of them (zzz816 could produce hypocrellin A at high yield, which

  10. Endophytic fungi from the roots of horseradish (Armoracia rusticana) and their interactions with the defensive metabolites of the glucosinolate - myrosinase - isothiocyanate system.

    Science.gov (United States)

    Szűcs, Zsolt; Plaszkó, Tamás; Cziáky, Zoltán; Kiss-Szikszai, Attila; Emri, Tamás; Bertóti, Regina; Sinka, László Tamás; Vasas, Gábor; Gonda, Sándor

    2018-05-09

    The health of plants is heavily influenced by the intensively researched plant microbiome. The microbiome has to cope with the plant's defensive secondary metabolites to survive and develop, but studies that describe this interaction are rare. In the current study, we describe interactions of endophytic fungi with a widely researched chemical defense system, the glucosinolate - myrosinase - isothiocyanate system. The antifungal isothiocyanates are also of special interest because of their beneficial effects on human consumers. Seven endophytic fungi were isolated from horseradish roots (Armoracia rusticana), from the genera Fusarium, Macrophomina, Setophoma, Paraphoma and Oidiodendron. LC-ESI-MS analysis of the horseradish extract incubated with these fungi showed that six of seven strains could decompose different classes of glucosinolates. Aliphatic, aromatic, thiomethylalkyl and indolic glucosinolates were decomposed by different strains at different rates. SPME-GC-MS measurements showed that two strains released significant amounts of allyl isothiocyanate into the surrounding air, but allyl nitrile was not detected. The LC-ESI-MS analysis of many strains' media showed the presence of allyl isothiocyanate - glutathione conjugate during the decomposition of sinigrin. Four endophytic strains also accepted sinigrin as the sole carbon source. Isothiocyanates inhibited the growth of fungi at various concentrations, phenylethyl isothiocyanate was more potent than allyl isothiocyanate (mean IC 50 was 2.30-fold lower). As a control group, ten soil fungi from the same soil were used. They decomposed glucosinolates with lower overall efficiency: six of ten strains had insignificant or weak activities and only three could use sinigrin as a carbon source. The soil fungi also showed lower AITC tolerance in the growth inhibition assay: the median IC 50 values were 0.1925 mM for endophytes and 0.0899 mM for soil fungi. The host's glucosinolates can be used by the tested

  11. Endophytic Fungi of Various Medicinal Plants Collected From Evergreen Forest Baluran National Park and Its Potential as Laboratory Manual for Mycology Course

    OpenAIRE

    Murdiyah, Siti

    2017-01-01

    Endophytic fungi found on a variety of medicinal plants may express particular benefit. These fungi provide an alternative to overcome the progressive microbial resistance and as an effort to combat infectious diseases that became one of the leading causes of mortality. The main objective of this study was to isolate endophytic fungi from leaf samples of five medicinal plants species collected from evergreen forests Baluran National Park and its use as laboratory manual for Micology. Research...

  12. Antimycobacterial and antimalarial activities of endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantea from Brazil.

    Science.gov (United States)

    Ferreira, Mariana C; Cantrell, Charles L; Wedge, David E; Gonçalves, Vívian N; Jacob, Melissa R; Khan, Shabana; Rosa, Carlos A; Rosa, Luiz H

    2017-10-01

    Endophytic fungi, present mainly in the Ascomycota and Basidiomycota phyla, are associated with different plants and represent important producers of bioactive natural products. Brazil has a rich biodiversity of plant species, including those reported as being endemic. Among the endemic Brazilian plant species, Vellozia gigantea (Velloziaceae) is threatened by extinction and is a promising target to recover endophytic fungi. The present study focused on bioprospecting of bioactive compounds of the endophytic fungi associated with V. gigantea, an endemic, ancient, and endangered plant species that occurs only in the rupestrian grasslands of Brazil. The capability of 285 fungal isolates to produce antimicrobial and antimalarial activities was examined. Fungi were grown at solid-state fermentation to recover their crude extracts in dichloromethane. Bioactive extracts were analysed by chromatographic fractionation and NMR and displayed compounds with antimicrobial, antimycobacterial, and antimalarial activities. Five fungi produced antimicrobial and antimalarial compounds. Extracts of Diaporthe miriciae showed antifungal, antibacterial, and antimalarial activities; Trichoderma effusum displayed selective antibacterial activity against methicillin-resistant Staphylococcus aureus and Mycobacterium intracellulare; and three Penicillium species showed antibacterial activity. D. miriciae extract contained highly functionalised secondary metabolites, yielding the compound epoxycytochalasin H with high antimalarial activity against the chloroquine-resistant strain of Plasmodium falciparum, with an IC50 approximately 3.5-fold lower than that with chloroquine. Our results indicate that V. gigantea may represent a microhabitat repository hotspot of potential fungi producers of bioactive compounds and suggest that endophytic fungal communities might be an important biological component contributing to the fitness of the plants living in the rupestrian grassland.

  13. Endophytic Fungi of Various Medicinal Plants Collected From Evergreen Forest Baluran National Park and Its Potential as Laboratory Manual for Mycology Course

    Directory of Open Access Journals (Sweden)

    Siti Murdiyah

    2017-03-01

    Full Text Available Endophytic fungi found on a variety of medicinal plants may express particular benefit. These fungi provide an alternative to overcome the progressive microbial resistance and as an effort to combat infectious diseases that became one of the leading causes of mortality. The main objective of this study was to isolate endophytic fungi from leaf samples of five medicinal plants species collected from evergreen forests Baluran National Park and its use as laboratory manual for Micology. Research findings showed there were 3 isolates of endophytic fungi isolated from 2 medicinal plants namely Kesambi (Schleicera oleosa and Ketapang (Terminalia catappa. All three isolates formed sporangiophores as asexual reproductive structures, while the structure of sexual still undiscovered therefore its classification has not been determined. The validity tests also showed that the lab manual is feasible for use with the percentage achievement 85.37% and 88.56%.

  14. Identifikasi Cendawan Endofit Menggunakan Teknik Polymerase Chain Reaction (Detection of Endophytic Fungi Using Polymerase Chain Reaction Technique

    Directory of Open Access Journals (Sweden)

    Tuti Susanti Legiastuti

    2013-04-01

    Full Text Available Yellow leaf curl disease, caused by a member of Begomovirus (Geminiviridae, is one of important diseases of chilli pepper in Indonesia. Exploration of endophytic fungi was initiated in order to find biological control agents for an alternative control strategies of this disease. Isolates of endophytic fungi were collected from chilli pepper growing area in Sleman, Yogyakarta and further identification using molecular technique involving polymerase chain reaction (PCR and DNA sequencing was performed. DNA fragments of ±500 bp were successfully amplified from 10 fungal isolates by PCR using primer pair ITS1/ITS4, but only 8 DNA sequences was obtained for further genetic analysis. Based on BLASTN analysis the endophytic fungi were identified as having the highest similarity with Pleosporaceae sp. (98% for H1 isolate, Cercospora nicotianae (100% for H5 isolate, ercospora piaropi (98% for H11 isolate, Guignardia mangiferae (99% for H16 isolate, Geomyces pannorum 95% for H17 isolate, Diaporthe phaseoloru (99% for H18 isolate, Dothideomycete sp. (100% for K3 isolate, and Alternaria longissima (99% for K10 isolate. Key words: Begomovirus, chillipepper, DNA sequencing, polymerase chain reaction

  15. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica.

    Directory of Open Access Journals (Sweden)

    Alga Zuccaro

    2011-10-01

    Full Text Available Recent sequencing projects have provided deep insight into fungal lifestyle-associated genomic adaptations. Here we report on the 25 Mb genome of the mutualistic root symbiont Piriformospora indica (Sebacinales, Basidiomycota and provide a global characterization of fungal transcriptional responses associated with the colonization of living and dead barley roots. Extensive comparative analysis of the P. indica genome with other Basidiomycota and Ascomycota fungi that have diverse lifestyle strategies identified features typically associated with both, biotrophism and saprotrophism. The tightly controlled expression of the lifestyle-associated gene sets during the onset of the symbiosis, revealed by microarray analysis, argues for a biphasic root colonization strategy of P. indica. This is supported by a cytological study that shows an early biotrophic growth followed by a cell death-associated phase. About 10% of the fungal genes induced during the biotrophic colonization encoded putative small secreted proteins (SSP, including several lectin-like proteins and members of a P. indica-specific gene family (DELD with a conserved novel seven-amino acids motif at the C-terminus. Similar to effectors found in other filamentous organisms, the occurrence of the DELDs correlated with the presence of transposable elements in gene-poor repeat-rich regions of the genome. This is the first in depth genomic study describing a mutualistic symbiont with a biphasic lifestyle. Our findings provide a significant advance in understanding development of biotrophic plant symbionts and suggest a series of incremental shifts along the continuum from saprotrophy towards biotrophy in the evolution of mycorrhizal association from decomposer fungi.

  16. Isolation and identification of local bacteria endophyte and screening of its antimicrobial property against pathogenic bacteria and fungi

    Science.gov (United States)

    Fikri, Ahmad Syairazie Ibrahim; Rahman, Irman Abdul; Nor, Norefrina Shafinaz Md; Hamzah, Ainon

    2018-04-01

    Endophytes are organisms, often fungi and bacteria that live in living plant cells. These organisms reside in the living tissues of the host plant in a variety of relationships, ranging from symbiotic to slightly pathogenic. The endophytes may produce a plethora of substances that have potential to be used in modern medicine, agriculture and industry. The aims of this study are to isolate, identify and screening antimicrobial activity of bacterial endophytes. The endophytes were isolated using nutrient agar, incubated at 37°C for 48 hours. Identification of the isolates were done based on morphological characteristics, biochemical tests and 16S rDNA molecular analysis. Disk diffusion method was used to screen for antimicrobial activity of metabolites from endophytes against pathogenic bacteria. Screening for antifungal activity of selected endophytes was done using dual culture method againts pathogenic fungi followed by Kirby-Bauer method. Results showed endophytes designated as B2c and B7b have positive antimicrobial activity. The metabolites from isolate B2c showed antimicrobial activity against pathogenic bacteria methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus and Staphylococcus epidermis, while isolate B7b have positive activities againts MRSA, S. aureus and Pseudomonas aeruginosa. Isolates B2c displayed antifungal activity against Fusarium oxysporum, Fusarium solani, Phytophthora palmivora and Colletotrichum gloeosporioides. Identification using biochemical tests and 16S rDNA sequences identified isolate B2c as Pseudomonas resinovorans with 97% homology and isolate B7b as Bacillus subtilis with 98% homology.

  17. Cellulase and Xylanase Production from Three Isolates of Indigenous Endophytic Fungi

    Science.gov (United States)

    Yopi; Tasia, W.; Melliawati, R.

    2017-12-01

    Cellulases and hemicellulases have good potential to be used in energy production, in pulp, paper, textile industries, as well as in animal feed industries. Moreover, its utilization in food industries also cannot be ignored, among others, cellulase and xylanase roles in bakery, wine, and fruit and vegetables juice production. One of the potential enzyme source is endophytic fungi. Object of this study is to explore the potency of endophytic fungi isolated from medicinal plants as source of cellulolytic and xylanolytic enzymes. HL.47F.216 is endophytic fungi isolated from traditional medicinal plants ironwood tree was determined as xylanase producer. HL.51F.235 from pin-flower tree is cellulase producer, while CBN.6F.29 which produces both xylanase and cellulase is originated from Madagascar periwinkle. HL.47F.216 showed 2.5 cm in clear zone diameter and its xylanase activity was 0.262 U/mL with optimum condition pH 7 at 50°C. HL.51F.235 showed 2.4 cm clear zone diameter and 0.239 U/mL of cellulase activity at pH 5 and 70°C. CBN.6F.29 showed 2.8 cm and 0.394 U/mL (pH 5, 40°C) for its cellulase activity, while 2.3 cm and 0.439 U/mL (pH 8, 70°C) for its xylanase activity. Xylanase from HL.47F.216 and CBN.6F.29 showed low molecular masses of 20 kDa and 37-50 kDa, respectively. Molecular masses for cellulases from HL.51F.235 and CBN.6F.29 were 25 and 50 kDa for HL.51F.235 and 100 kDa for CBN.6F.29. Based on macroscopic and microscopic identification, fungal isolate CBN.6F.29 is a member of Class Coelomycetes, while HL.47F.216 was Acremonium sp. and HL.51F.235 was Aspergillus nigri.

  18. Metabolite analysis of endophytic fungi from cultivars of Zingiber officinale Rosc. identifies myriad of bioactive compounds including tyrosol.

    Science.gov (United States)

    Anisha, C; Radhakrishnan, E K

    2017-06-01

    Endophytic fungi associated with rhizomes of four cultivars of Zingiber officinale were identified by molecular and morphological methods and evaluated for their activity against soft rot pathogen Pythium myriotylum and clinical pathogens. The volatile bioactive metabolites produced by these isolates were identified by GC-MS analysis of the fungal crude extracts. Understanding of the metabolites produced by endophytes is also important in the context of raw consumption of ginger as medicine and spice. A total of fifteen isolates were identified from the four varieties studied. The various genera identified were Acremonium sp., Gliocladiopsis sp., Fusarium sp., Colletotrichum sp., Aspergillus sp., Phlebia sp., Earliella sp., and Pseudolagarobasidium sp. The endophytic community was unique to each variety, which could be due to the varying host genotype. Fungi from phylum Basidiomycota were identified for the first time from ginger. Seven isolates showed activity against Pythium, while only two showed antibacterial activity. The bioactive metabolites identified in the fungal crude extracts include tyrosol, benzene acetic acid, ergone, dehydromevalonic lactone, N-aminopyrrolidine, and many bioactive fatty acids and their derivatives which included linoleic acid, oleic acid, myristic acid, n-hexadecanoic acid, palmitic acid methyl ester, and methyl linoleate. The presence of these varying bioactive endophytic fungi may be one of the reasons for the differences in the performance of the different ginger varieties.

  19. Endophytic fungi isolated from wheat (Triticum durum Desf.): evaluation of their antimicrobial activity, antioxidant activity and host growth promotion.

    Science.gov (United States)

    Harzallah, Daoud; Sadrati, Nouari; Zerroug, Amina; Dahamna, Saliha; Bouharati, Saddek

    2012-01-01

    The emergence of antibiotic-resistant micro-organisms calls for inventive research and development strategies. The screening for antimicrobial compounds from endophytes is a promising way to meet the increasing threat of drug-resistant strains of human and plant pathogens. Endophytes may be defined as "microbes that colonize living, internal tissues of plants without causing any immediate, overt negative effects". Endophytes are relatively unstudied as potential sources of novel natural products for exploitation in medicine, agriculture, and industry. The purpose of this study was to evaluate several isolated fungi from wheat (Triticum durum Desf.) Mohamed Ben Bachir variety and to select endophytic fungi for further evaluation of its antimicrobial, antioxidant activities and host growth promotion. A total of 20 endophytic fungi have been isolated. Antimicrobial activity was evaluated for crude ethyl acetate extracts using an agar diffusion assay. All extracts showed inhibitory activity on at least one or more pathogenic microorganism, with an average zone of inhibition varied between 7 mm to 25 mm, a large zone of 23 and 25mm against candida albicans and Escherichia coli respectively. The antioxidant capacity of the extracts was evaluated by beta-carotene/linoleic acid assay. Results showed that 70% of these extracts have antioxidant activity, exhibiting 50, 57% to 78, 96% inhibitions. While 30% from them, their inhibitory activity for oxidation of linoleic acid Were less than 50%. Growth promotion ability of these endophytes was tested on seed germination among ten isolates tested, two isolates showed significant growth promotion effects on wheat seeds. From the present work we can conclude that these microorganisms could be promising source of bioactive compounds, growth promotion and warrant further study.

  20. Can Fertilization of Soil Select Less Mutualistic Mycorrhizae?

    Science.gov (United States)

    Johnson, Nancy Collins

    1993-11-01

    It has been noted previously that nutrient-stressed plants generally release more soluble carbohydrate in root exudates and consequently support more mycorrhizae than plants supplied with ample nutrients. Fertilization may select strains of vesicular-arbuscular mycorrhizal (VAM) fungi that are inferior mutualists if the same characteristics that make a VAM fungus successful in roots with a lowered carbohydrate content also reduce the benefits that the fungus provides a host plant. This two-phase study experimentally tests the hypothesis that fertilizing low-nutrient soil selects VAM fungi that are inferior mutualists. The first phase examines the effects of chemical fertilizers on the species composition of VAM fungal communities in long-term field plots. The second phase measures the effects of VAM fungal assemblages from fertilized and unfertilized plots on big bluestem grass grown in a greenhouse. The field results indicate that 8 yr of fertilization altered the species composition of VAM fungal communities. Relative abundance of Gigaspora gigantea, Gigaspora margarita, Scutellispora calospora, and Glomus occultum decreased while Glomus intraradix increased in response to fertilization. Results from the greenhouse experiment show that big bluestem colonized with VAM fungi from fertilized soil were smaller after 1 mo and produced fewer inflorescences at 3 mo than big bluestem colonized with VAM fungi from unfertilized soil. Fungal structures within big bluestem roots suggest that VAM fungi from fertilized soil exerted a higher net carbon cost on their host than VAM fungi from unfertilized soil. VAM fungi from fertilized soil produced fewer hyphae and arbuscules (and consequently provided their host with less inorganic nutrients from the soil) and produced as many vesicles (and thus provisioned their own storage structures at the same level) as fungi from unfertilized soil. These results support the hypothesis that fertilization selects VAM fungi that are inferior

  1. Antimicrobial activity of saponins produced by two novel endophytic fungi from Panax notoginseng.

    Science.gov (United States)

    Jin, Zhaoxia; Gao, Lin; Zhang, Lin; Liu, Tianyi; Yu, Fang; Zhang, Zongshen; Guo, Qiong; Wang, Biying

    2017-11-01

    Endophytes in plants may be co-producer of the bioactive compounds of their hosts. We conducted a study to bioprospect for saponin-producing endophytic fungi from Panax notoginseng and evaluate the antimicrobial activity of saponins. Two novel fungal endophytes, Fusarium sp. PN8 and Aspergillus sp. PN17, were isolated from traditional Chinese medicinal herb P. notoginseng. After eight days of fermentation, the total saponins produced in the culture broth of PN8 and PN17 were 1.061 and 0.583 mg mL -1 , respectively. The saponin extracts exhibited moderate to high (inhibition zone diameter 15.7-28.4 mm, MIC 1.6-12.5 mg mL -1 ) antimicrobial activity against pathogens tested. Further analysis showed that triterpenoid saponins produced by Fusarium PN8 were Rb 1 , Rd and 20(S)-Rg 3 , while Aspergillus PN17 had the ability to synthesise ginsenoside Re, Rd and 20(S)-Rg 3 . The isolated endophytes may be used as potential sources for microbial production of plant secondary metabolites and for antimicrobial agents.

  2. Plant Bioactive Metabolites and Drugs Produced by Endophytic Fungi of Spermatophyta

    Directory of Open Access Journals (Sweden)

    Rosario Nicoletti

    2015-09-01

    Full Text Available It is known that plant-based ethnomedicine represented the foundation of modern pharmacology and that many pharmaceuticals are derived from compounds occurring in plant extracts. This track still stimulates a worldwide investigational activity aimed at identifying novel bioactive products of plant origin. However, the discovery that endophytic fungi are able to produce many plant-derived drugs has disclosed new horizons for their availability and production on a large scale by the pharmaceutical industry. In fact, following the path traced by the blockbuster drug taxol, an increasing number of valuable compounds originally characterized as secondary metabolites of plant species belonging to the Spermatophyta have been reported as fermentation products of endophytic fungal strains. Aspects concerning sources and bioactive properties of these compounds are reviewed in this paper.

  3. The Role of Endophytic Fungi in the Anticancer Activity of Morinda citrifolia Linn. (Noni

    Directory of Open Access Journals (Sweden)

    Yougen Wu

    2015-01-01

    Full Text Available We hypothesize that the fungal endophytes of noni may possibly play a role in its overall pharmacological repertoire, especially since the perceived efficacy of the fruit in ethnomedicinal use is associated with the fermented juice. The foremost goal of this study is to explore the role of endophyte-derived secondary metabolites in the purported anticancer properties of noni. To that end, culturable endophytic fungi resident within the healthy leaves and fruit of the plant were isolated and identified by molecular sequence analysis of the 5.8S gene and internal transcribed spacers (ITS. Purified organisms were subjected to in vitro fermentation in malt extract broth for 8 weeks under anaerobic conditions at room temperature (25°C, in order to simulate the conditions under which traditional fermented noni juice is prepared. The cytotoxic potential of organic extracts derived from the fermented broths of individual endophytes was then tested against three major cancers that afflict humans. Twelve distinct endophytic fungal species were obtained from the leaves and 3 from the fruit. Three of the leaf endophytes inhibited the growth of human carcinoma cell lines LU-1 (lung, PC-3 (prostate, and MCF-7 (breast with IC50 values of ≤10 μg/mL.

  4. Inhibition of Bacterial Quorum Sensing by Extracts from Aquatic Fungi: First Report from Marine Endophytes

    Directory of Open Access Journals (Sweden)

    Alberto J. Martín-Rodríguez

    2014-11-01

    Full Text Available In our search for quorum-sensing (QS disrupting molecules, 75 fungal isolates were recovered from reef organisms (endophytes, saline lakes and mangrove rhizosphere. Their QS inhibitory activity was evaluated in Chromobacterium violaceum CVO26. Four strains of endophytic fungi stood out for their potent activity at concentrations from 500 to 50 μg mL−1. The molecular characterization, based on the internal transcribed spacer (ITS region sequences (ITS1, 5.8S and ITS2 between the rRNA of 18S and 28S, identified these strains as belonging to four genera: Sarocladium (LAEE06, Fusarium (LAEE13, Epicoccum (LAEE14, and Khuskia (LAEE21. Interestingly, three came from coral species and two of them came from the same organism, the coral Diploria strigosa. Metabolic profiles obtained by Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS suggest that a combination of fungal secondary metabolites and fatty acids could be the responsible for the observed activities. The LC-HRMS analysis also revealed the presence of potentially new secondary metabolites. This is, to the best of our knowledge, the first report of QS inhibition by marine endophytic fungi.

  5. Assessment of functional traits in the assemblage of endophytic fungi of anacardium othonianum rizzini

    International Nuclear Information System (INIS)

    Faria, P. S.; Senabio, J. A.; Soares, M. A.

    2016-01-01

    Plants maintain symbiotic relationships with microorganisms as a strategy to withstand adversities. From this exchange, organisms receive photoassimilates and provide benefits to the plant. Anacardium othonianum Rizzini, locally known as caju-de-arvore-do-cerrado (tree cashew of the cerrado), is a tree species of the family Anacardiaceae nativeto the Midwest region of Brazil. The objective of this study was to characterize the culturable endophytic fungal community, its functional traits and its association with the roots of A. othonianum. The roots of A. othonianum were fragmented (1 cm) and inoculated in medium for the isolation of endophytic microorganisms. The molecular identification of the isolates was performed through the partial sequencing of the internal transcribed spacer (ITS). The endophytic isolates were tested for the synthesis of indole acetic acid (IAA) and phosphate solubilization through the colorimetric method. The root fragments were cleared, stained and examined under a microscope. Structures characteristic of endomycorrhizal and endophytic microorganisms were found on the slides analyzed. A total of 67 fungal strains were isolated and identified in 12 species: Fusarium oxysporum, Bionectria ochroleuca, Periconia macrospinosa, Phomopsis lagerstroemiae, Penicillium kloeckeri, Eupenicillium shearii, Phomopsis asparagi, Penicillium pinophilum, Agaricomycetes sp., Diaporthe sp., Cladosporium cladosporioide sand Paecilomyces lilacinus. All the genera found have been reported in the literature as endophytic species. It can be concluded that A. othonianum maintains associations with endomycorrhizal and endophytic fungi. Twelve endophytic strains were isolated from A. othonianum Rizzini, seven of which have potential for phosphate solubilization and IAA synthesis. (author)

  6. The isolation and characterization of endophytic microorganisms ...

    African Journals Online (AJOL)

    Fungi were identified by distinguishing between reproductive structures using a microculture technique. While observing diaphanized root fragments, we found arbuscular mycorrhizal fungi (AMF) and dark septate endophytic (DSE) fungi in the fine and coarse roots of H. marrubioides. The endophytic CR was more ...

  7. Metabolic response induced by endophytic fungi and bacteria in H. marrubioides Epling in vitro micro plants

    International Nuclear Information System (INIS)

    Vitorino, Luciana Cristina; Silva, Fabiano Guimaraes; Lima, William Cardoso; Soares, Marcos Antonio; Pedroso, Rita Cassia Nascimento; Silva, Maroli Rodrigues; Dias, Herbert Junior; Crotti, Antonio Eduardo Miller; Silva, Marcio Luis Andrade e; Cunha, Wilson Roberto; Pauletti, Patricia Mendonca; Januario, Ana Helena

    2013-01-01

    Hyptis marrubioides Epling is a native plant from Brazilian Cerrado. In this paper, the response of in vitro micro plants of this species to inoculation with bacterial and fungal endophytic isolates is evaluated. HPLC-DAD analysis showed the presence of 3,4-O-(Z)-dicaffeoylquinic acid and quercetin-7-O-glucoside as the main components. GC/MS analysis demonstrated that the sesquiterpenes τ-cadinol and caryophyllene oxide were only produced in micro plants inoculated with endophytic bacteria, while methyl hexadecanoate, methyl heptadecanoate and methyl (Z,Z,Z) 9,12,15-octadecatrienoate and the triterpene methyl 3β-hydroxy-urs-12-en-28-oate were over expressed only when the micro plant was treated with endophytic fungi. (author)

  8. Amylase production by endophytic fungi Cylindrocephalum sp. isolated from medicinal plant Alpinia calcarata (Haw. Roscoe

    Directory of Open Access Journals (Sweden)

    V. H. Sunitha.

    2012-09-01

    Full Text Available Amylases are among the most important enzymes used in modern biotechnology particularly in the process involving starch hydrolysis. Fungal amylase has large applications in food and pharmaceutical industries. Considering these facts, endophytic fungi isolated from the plant Alpinia calcarata (Haw. Roscoe were screened for amylolytic activity on glucose yeast extract peptone agar (GYP medium. Among thirty isolates of endophytic fungi, isolate number seven identified as Cylindrocephalum sp. (Ac-7 showed highest amylolytic activity and was taken for further study. Influence of various physical and chemical factors such as pH, temperature, carbon and nitrogen sources on amylase production in liquid media were studied. The maximal amylase production was found to be at 30ºC and at pH 7.0 of the growth medium. Among the various carbon and nitrogen sources tested, maltose at 1.5% and Sodium nitrate at 0.3% respectively gave optimum amylase production.

  9. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10

    Directory of Open Access Journals (Sweden)

    Khan Abdul

    2012-01-01

    Full Text Available Abstract Background Endophytic fungi are little known for exogenous secretion of phytohormones and mitigation of salinity stress, which is a major limiting factor for agriculture production worldwide. Current study was designed to isolate phytohormone producing endophytic fungus from the roots of cucumber plant and identify its role in plant growth and stress tolerance under saline conditions. Results We isolated nine endophytic fungi from the roots of cucumber plant and screened their culture filtrates (CF on gibberellins (GAs deficient mutant rice cultivar Waito-C and normal GAs biosynthesis rice cultivar Dongjin-byeo. The CF of a fungal isolate CSH-6H significantly increased the growth of Waito-C and Dongjin-byeo seedlings as compared to control. Analysis of the CF showed presence of GAs (GA1, GA3, GA4, GA8, GA9, GA12, GA20 and GA24 and indole acetic acid. The endophyte CSH-6H was identified as a strain of Paecilomyces formosus LHL10 on the basis of phylogenetic analysis of ITS sequence similarity. Under salinity stress, P. formosus inoculation significantly enhanced cucumber shoot length and allied growth characteristics as compared to non-inoculated control plants. The hypha of P. formosus was also observed in the cortical and pericycle regions of the host-plant roots and was successfully re-isolated using PCR techniques. P. formosus association counteracted the adverse effects of salinity by accumulating proline and antioxidants and maintaining plant water potential. Thus the electrolytic leakage and membrane damage to the cucumber plants was reduced in the association of endophyte. Reduced content of stress responsive abscisic acid suggest lesser stress convened to endophyte-associated plants. On contrary, elevated endogenous GAs (GA3, GA4, GA12 and GA20 contents in endophyte-associated cucumber plants evidenced salinity stress modulation. Conclusion The results reveal that mutualistic interactions of phytohormones secreting endophytic

  10. Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants.

    Science.gov (United States)

    Thakur, Abhinay; Kaur, Sanehdeep; Kaur, Amarjeet; Singh, Varinder

    2013-04-01

    Endophytic fungi, which live within host plant tissues without causing any visible symptom of disease, are important mediators of plant-herbivore interactions. These endophytes enhance resistance of host plant against insect herbivores mainly by productions of various alkaloid based defensive compounds in the plant tissue or through alterations of plant nutritional quality. Two endophytic fungi, i.e., Nigrospora sp. and Cladosporium sp., were isolated from Tinospora cordifolia (Thunb.) Miers, a traditional indian medicinal plant. Cauliflower (Brassica oleracea L.) plants were inoculated with these two endophytic fungi. The effect of endophyte infected and uninfected cauliflower plants were measured on the survival and development of Spodoptera litura (Fab.), a polyphagous pest. Endophyte infected cauliflower plants showed resistance to S. litura in the form of significant increase in larval and pupal mortality in both the fungi. Inhibitory effects of endophytic fungi also were observed on adult emergence, longevity, reproductive potential, as well as hatchability of eggs. Thus, it is concluded that antibiosis to S. litura could be imparted by artificial inoculation of endophytes and this could be used to develop alternative ecologically safe control strategies.

  11. Identity, diversity, and molecular phylogeny of the endophytic mycobiota in the roots of rare wild rice (Oryza granulate) from a nature reserve in Yunnan, China.

    Science.gov (United States)

    Yuan, Zhi-Lin; Zhang, Chu-Long; Lin, Fu-Cheng; Kubicek, Christian P

    2010-03-01

    Rice (Oryza sativa L.) is, on a global scale, one of the most important food crops. Although endophytic fungi and bacteria associated with rice have been investigated, little is known about the endophytic fungi of wild rice (Oryza granulate) in China. Here we studied the root endophytic mycobiota residing in roots of O. granulate by the use of an integrated approach consisting of microscopy, cultivation, ecological indices, and direct PCR. Microscopy confirmed the ubiquitousness of dark septate endophytes (DSEs) and sclerotium-like structures in root tissues. Isolations from 204 root segments from 15 wild rice plants yielded 58 isolates, for which 31 internal transcribed spacer (ITS)-based genotypes were recorded. The best BLAST match indicated that 34.5% of all taxa encountered may represent hitherto undescribed species. Most of the fungi were isolated with a very low frequency. Calculation of ecological indices and estimation of taxon accumulation curves indicated a high diversity of fungal species. A culture-independent approach was also performed to analyze the endophytic fungal community. Three individual clone libraries were constructed. Using a threshold of 90% similarity, 35 potentially different sequences (phylotypes) were found among 186 positive clones. Phylogenetic analysis showed that frequently detected clones were classified as Basidiomycota, and 60.2% of total analyzed clones were affiliated with unknown taxa. Exophiala, Cladophialophora, Harpophora, Periconia macrospinosa, and the Ceratobasidium/Rhizoctonia complex may act as potential DSE groups. A comparison of the fungal communities characterized by the two approaches demonstrated distinctive fungal groups, and only a few taxa overlapped. Our findings indicate a complex and rich endophytic fungal consortium in wild rice roots, thus offering a potential bioresource for establishing a novel model of plant-fungal mutualistic interactions.

  12. Novel endophytic lineages of Tolypocladium provide new insights into the ecology and evolution of Cordyceps-like fungi.

    Science.gov (United States)

    Gazis, Romina; Skaltsas, Demetra; Chaverri, Priscila

    2014-01-01

    The objective of this study was to identify a group of unknown endophytic fungal isolates from the living sapwood of wild and planted Hevea (rubber tree) populations. Three novel lineages of Tolypocladium are described based on molecular and morphological data. Findings from this study open a window for novel hypotheses regarding the ecology and role of endophytes within plant communities as well as trait evolution and potential forces driving diversification of Cordyceps-like fungi. This study stresses the importance of integrating asexual and sexual fungal states for a more complete understanding of the natural history of this diverse group. In addition, it highlights the study of fungi in the sapwood of tropical trees as habitat for the discovery of novel fungal lineages and substrate associations. © 2014 by The Mycological Society of America.

  13. Metabolic response induced by endophytic fungi and bacteria in H. marrubioides Epling in vitro micro plants

    Energy Technology Data Exchange (ETDEWEB)

    Vitorino, Luciana Cristina; Silva, Fabiano Guimaraes, E-mail: fabianocefetrv@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia Goiano, Rio Verde, GO (Brazil); Lima, William Cardoso; Soares, Marcos Antonio [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil). Dept. de Botanica e Ecologia; Pedroso, Rita Cassia Nascimento; Silva, Maroli Rodrigues; Dias, Herbert Junior; Crotti, Antonio Eduardo Miller; Silva, Marcio Luis Andrade e; Cunha, Wilson Roberto; Pauletti, Patricia Mendonca; Januario, Ana Helena [Universidade de Franca, SP (Brazil). Nucleo de Pesquisa em Ciencias Exatas e Tecnologicas

    2013-10-01

    Hyptis marrubioides Epling is a native plant from Brazilian Cerrado. In this paper, the response of in vitro micro plants of this species to inoculation with bacterial and fungal endophytic isolates is evaluated. HPLC-DAD analysis showed the presence of 3,4-O-(Z)-dicaffeoylquinic acid and quercetin-7-O-glucoside as the main components. GC/MS analysis demonstrated that the sesquiterpenes Greek-Small-Letter-Tau -cadinol and caryophyllene oxide were only produced in micro plants inoculated with endophytic bacteria, while methyl hexadecanoate, methyl heptadecanoate and methyl (Z,Z,Z) 9,12,15-octadecatrienoate and the triterpene methyl 3{beta}-hydroxy-urs-12-en-28-oate were over expressed only when the micro plant was treated with endophytic fungi. (author)

  14. Bioprospecting of antimicrobial activity of extracts of endophytic fungi from Bauhinia guianensis.

    Science.gov (United States)

    Pinheiro, Eduardo A A; Pina, Jeferson R S; Feitosa, André O; Carvalho, Josiwander M; Borges, Fábio C; Marinho, Patrícia S B; Marinho, Andrey M R

    Antibiotic resistance results in higher medical costs, prolonged hospital stays and increased mortality and is rising to dangerously high levels in all parts of the world. Therefore, this study aims to search for new antimicrobial agents through bioprospecting of extracts of endophytic fungi from Bauhinia guianensis, a typical Amazonian plant used in combating infections. Seventeen (17) fungi were isolated and as result the methanolic extract of the fungus Exserohilum rostratum showed good activity against the bacteria tested. The polyketide monocerin was isolated by the chromatographic technique, identified by NMR and MS, showing broad antimicrobial spectrum. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. [Isolation, idetification and anti-HIV-1 integrase activity of culturable endophytic fungi from Tibetan medicinal plant Phlomis younghusbandii Mukerjee].

    Science.gov (United States)

    Zhang, Da-Wei; Zhao, Ming-Ming; Chen, Juan; Li, Chao; Guo, Shun-Xing

    2013-05-01

    A total of 52 endophytic fungi were isolated from roots and stems of Tibetan medicinal plant Phlomis younghusbandii Mukerjee. These fungal isolates were molecularly identified based on ITS sequnces and 28S sequences distributed to 12 genera, including Phoma, Chaetosphaeronema, Fusarium and Leptosphaeria, etc. Among them, the dominant genus was Phoma. Extracts of all strains were evaluated for anti-HIV-1 integrase activity by using soluable integrase expressed in E. coli BL21 (DE3). The results showed that seven samples from five fungal endophytes PHY-24, PHY-38, PHY-40, PHY-51, PHY-53, which belonged to genus Chaetosphaeronema, inhibited strand transfer reaction catalyzed by HIV-1 integrase with IC50 values, of 6.60, 5.20, 2.86, 7.86, 4.47, 4.56 and 3.23 microg x mL(-1) respectively. In conclusion, the endophytic fungi of Phlomis younghusbandii Mukerjee are valuable for further screening anti-HIV-1 integrase agents.

  16. Fermentation conditions optimization of secondary metabolites of crocus sativus L in endophytic fungi

    Directory of Open Access Journals (Sweden)

    DU Yan

    2012-08-01

    Full Text Available In this paper,Endophytic fungi,isolated from corm of saffron,were selected.Strains Q31 fermentation conditions on production of carotenoids were studied.Three kinds of carbon sources were selected.Study found that sucrose could promote cell growth and carotenoid accumulation,and amount of mycelium had an increase of 50.83% in the experimental group than the control group.Carotenoid yield was 23.15 times of the control group.Select three kinds of nitrogen and crosscombinations between them,found that add ammonium sulfate,Mycelium of experimental group had an increased of 86.43% than the control group and carotenoid yield was 5.91 times of the control group.the optimal conditions was found by orthogonal test:sucrose 40 g/L,ammonium sulfate 1.0 g/L,bottling amout 100 mL/250 mL,Inoculum size 5%.By using LC-MS to analyze secondary metabolites of endophytic fungi Q31 from saffron,we found it could steady metabolize one kind of carotinoid,its peak time was 22.447min,maximum absorption peaks were 414.4 and 438.3nm,MW was 738.

  17. Symbiotic interaction of endophytic bacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Ganoderma boninense.

    Science.gov (United States)

    Sundram, Shamala; Meon, Sariah; Seman, Idris Abu; Othman, Radziah

    2011-08-01

    Endophytic bacteria (Pseudomonas aeruginosa UPMP3 and Burkholderia cepacia UMPB3), isolated from within roots of oil palm (Elaeis guineensis Jacq.) were tested for their presymbiotic effects on two arbuscular mcorrhizal fungi, Glomus intraradices UT126 and Glomus clarum BR152B). These endophytic bacteria were also tested for antagonistic effects on Ganoderma boninense PER 71, a white wood rot fungal pathogen that causes a serious disease in oil palm. Spore germination and hyphal length of each arbuscular mycorrhizal fungal (AMF) pairing with endophytic bacteria was found to be significantly higher than spores plated in the absence of bacteria. Scanning electron microscopy (SEM) showed that the endophytic bacteria were scattered, resting or embedded on the surface hyaline layer or on the degraded walls of AMF spores, possibly feeding on the outer hyaline spore wall. The antagonistic effect of the endophytic bacteria was expressed as severe morphological abnormalities in the hyphal structures of G. boninense PER 71. The effects of the endophytic bacteria on G. boninense PER 71 hyphal structures were observed clearly under SEM. Severe inter-twisting, distortion, lysis and shriveling of the hyphal structures were observed. This study found that the effect of endophytic bacteria on G. intraradices UT126 and G. clarum BR152B resembled that of a mycorrhiza helper bacteria (MHB) association because the association significantly promoted AMF spore germination and hyphal length. However, the endophytic bacteria were extremely damaging to G. boninense PER 71.

  18. Endophytic fungi from selected varieties of soybean (Glycine max L. Merr.) and corn (Zea mays L.) grown in an agricultural area of Argentina.

    Science.gov (United States)

    Russo, María L; Pelizza, Sebastián A; Cabello, Marta N; Stenglein, Sebastián A; Vianna, María F; Scorsetti, Ana C

    2016-01-01

    Endophytic fungi are ubiquitous and live within host plants without causing any noticeable symptoms of disease. Little is known about the diversity and function of fungal endophytes in plants, particularly in economically important species. The aim of this study was to determine the identity and diversity of endophytic fungi in leaves, stems and roots of soybean and corn plants and to determine their infection frequencies. Plants were collected in six areas of the provinces of Buenos Aires and Entre Ríos (Argentina) two areas were selected for sampling corn and four for soybean. Leaf, stem and root samples were surface-sterilized, cut into 1cm(2) pieces using a sterile scalpel and aseptically transferred to plates containing potato dextrose agar plus antibiotics. The species were identified using both morphological and molecular data. Fungal endophyte colonization in soybean plants was influenced by tissue type and varieties whereas in corn plants only by tissue type. A greater number of endophytes were isolated from stem tissues than from leaves and root tissues in both species of plants. The most frequently isolated species in all soybean cultivars was Fusarium graminearum and the least isolated one was Scopulariopsis brevicaulis. Furthermore, the most frequently isolated species in corn plants was Aspergillus terreus whereas the least isolated one was Aspergillus flavus. These results could be relevant in the search for endophytic fungi isolates that could be of interest in the control of agricultural pests. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Directory of Open Access Journals (Sweden)

    Abdul Latif Khan

    Full Text Available Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%, Chaetomiaceae (17.6%, Incertae sadis (29.5%, Aureobasidiaceae (17.6%, Nectriaceae (5.9% and Sporomiaceae (17.6% from the phylloplane (leaf and caulosphere (stem of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33% than the stem (0.262%. The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583 than in the stem (0.416. Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL and cellulases (62.11±1.6 μM-1min-1mL, whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL and phosphatases (3.46±0.31μM-1min-1mL compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways. Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin

  20. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Science.gov (United States)

    Khan, Abdul Latif; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Al-Farsi, Zainab; Al-Mamari, Aza; Waqas, Muhammad; Asaf, Sajjad; Elyassi, Ali; Mabood, Fazal; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL) and cellulases (62.11±1.6 μM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL) and phosphatases (3.46±0.31μM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin could

  1. Enantioselective analysis of propranolol and 4-hydroxypropranolol by CE with application to biotransformation studies employing endophytic fungi.

    Science.gov (United States)

    Borges, Keyller Bastos; Pupo, Mônica Tallarico; Bonato, Pierina Sueli

    2009-11-01

    A CE method is described for the enantioselective analysis of propranolol (Prop) and 4-hydroxypropranolol (4-OH-Prop) in liquid Czapek medium with application in the study of the enantioselective biotransformation of Prop by endophytic fungi. The electrophoretic conditions previously optimized were as follows: an uncoated fused-silica capillary, 4% w/v carboxymethyl-beta-CD in 25 mmol/L triethylamine/phosphoric acid (H(3)PO(4)) buffer at pH 9 as running electrolyte and 17 kV of voltage. UV detection was carried out at 208 nm. Liquid-liquid extraction using diethyl ether: ethyl acetate (1:1 v/v) as extractor solvent was employed for sample preparation. The calibration curves were linear over the concentration range of 0.25-10.0 microg/mL for each 4-OH-Prop enantiomer and 0.10-10.0 microg/mL for each Prop enantiomer (r>or=0.995). Within-day and between-day relative standard deviations and relative errors for precision and accuracy were lower than 15% for all the enantiomers. Finally, the validated method was used to evaluate Prop biotransformation in its mammalian metabolite 4-OH-Prop by some selected endophytic fungi. The screening of five strains of endophytic fungi was performed and all of them could biotransform Prop to some extent. Specifically, Glomerella cingulata (VA1) biotransformed 47.8% of (-)-(S)-Prop to (-)-(S)-4-OH-Prop with no formation of (+)-(R)-4-OH-Prop in 72 h of incubation.

  2. [Effects of endophytic fungi from Dendrobium officinale on host growth and components metabolism of tissue culture seedlings].

    Science.gov (United States)

    Zhu, Bo; Liu, Jing-Jing; Si, Jin-Ping; Qin, Lu-Ping; Han, Ting; Zhao, Li; Wu, Ling-Shang

    2016-05-01

    The paper aims to study the effects of endophytic fungi from D. officinale cultivated on living trees on growth and components metabolism of tissue culture seedlings. Morphological characteristics and agronomic characters of tissue culture seedlings infected and uninfected by endophytic fungus were observed and measured. Polysaccharides and alcohol-soluble extracts contents were determined by phenol-sulfuric acid method and hot-dipmethod, respectively. Monosacchride composition of polysaccharides and alcohol-soluble extracts components were analyzed by pre-column derivatives HPLC and HPLC method, respectively. It showed that effects of turning to purple of stem nodes could be changed by endophytic fungus. Besides, the endophytic fungus could affect the contents and constitutions of polysaccharides and alcohol-soluble extracts. The strains tested, expect DO34, could promote growth and polysaccharides content of tissue culture seedlings. The strains tested, expect DO12, could promote the accumulation of mannose. Furthermore, DO18, DO19 and DO120 could increase alcohol-soluble extracts. On the basis, four superior strains were selected for mechanism research between endophytic fungus and their hosts and microbiology engineering. Copyright© by the Chinese Pharmaceutical Association.

  3. Selection of endophytic fungi from comfrey (Symphytum officinale L.) for in vitro biological control of the phytopathogen Sclerotinia sclerotiorum (Lib.).

    Science.gov (United States)

    Rocha, Rafaeli; da Luz, Daniela Eleutério; Engels, Cibelle; Pileggi, Sônia Alvim Veiga; de Souza Jaccoud Filho, David; Matiello, Rodrigo Rodrigues; Pileggi, Marcos

    2009-01-01

    Biological control consists of using one organism to attack another that may cause economic damage to crops. Integrated Pest Management (IPM) is a very common strategy. The white mold produced by Sclerotinia sclerotiorum (Lib.) causes considerable damage to bean crops. This fungus is a soil inhabitant, the symptoms of which are characterized by water-soaked lesions covered by a white cottony fungal growth on the soil surface and/or the host plant. Possible biological control agents taken from plants are being investigated as phytopathogen inhibitors. These are endophytic microorganisms that inhabit the intercellular spaces of vegetal tissues and are often responsible for antimicrobial production. The objective of the present study was to select endophytic fungi isolated from comfrey (Symphytum officinale L.) leaves with in vitro antagonist potential against the phytopathogenic fungus S. sclerotiorum. Twelve isolates of endophytic fungi and a pathogenic strain of S. sclerotiorum were used in the challenge method. With the aid of this method, four endophytes with the best antagonistic activity against S. sclerotiorum were selected. Pathogen growth inhibition zones were considered indicative of antibiosis. The percentages of pathogenic mycelia growth were measured both with and without the antagonist, resulting in growth reductions of 46.7% to 50.0% for S. sclerotiorum. These analyses were performed by evaluating the endophytic/pathogenic mycelia growth in mm/day over an eight-day period of antagonistic tests.

  4. Existence of entomopathogen fungi, Beauveria bassiana as an endophyte in cacao seedlings

    Directory of Open Access Journals (Sweden)

    Endang Sulistyowati

    2015-12-01

    Full Text Available Beauveria bassiana is one of the entomopathogen fungi which is known as biological control agent of cocoa pod borer and cocoa mirids (Helopeltis spp.. Because of its effectiveness in the fields is still not consistent, so we conduct a research with the objective to know the possibility of Beauveria bassiana to be established as a endophyte. Various fungal entomopathogens have already been reported as endophytes and the various methods used to inoculate the plants with B. bassiana were partially effective. The research has been conducted in laboratory of Plant Protection, Indonesian Coffee and Cocoa Research Institute by inoculating of cocoa seeds and cocoa nursery with B. bassiana suspension.  The trial was arranged  by randomized complete block design with a factorial arrangement. The factor were spore concentration of B. bassiana (0; 2; and 4 g/ 10 l and cocoa varieties (family of ICS 60, TSH858, and hybrid. The trial were use  four replications. The results showed that the fungal entomopathogen B. bassiana was established as an endophyte in cocoa seedling, both from cocoa seeds and nursery application. Percentage of existence of B. bassiana colonies as endophytes one month after seeds application were ICS 60 amounted to 93.3 % both on concentration treatments, while the families of TSH 858 by 80 % and 86.67 % respectively in 2 g and 4 g per 10 l of B. bassiana spores concentration treament.. The lowest percentage was in hybrids, which amounted to 66.67% and 50%. B. bassiana colonies was exixtence as an endophyte in culture from root, stem and leaves of cocoa seedling up to 5 months post inoculation. While the application on nursery by soil drenshing, leaf spraying, and stem injection , it was known that B. bassiana colonies were found in the tissues of leaves, stems, and roots until two months after application. Colonies of B. bassiana as endophytes still exsist until six weeks after nursery was planted in the field. 

  5. Characterization of Antifungal Natural Products Isolated from Endophytic Fungi of Finger Millet (Eleusine coracana).

    Science.gov (United States)

    Mousa, Walaa Kamel; Schwan, Adrian L; Raizada, Manish N

    2016-09-03

    Finger millet is an ancient African-Indian crop that is resistant to many pathogens including the fungus, Fusarium graminearum. We previously reported the first isolation of putative fungal endophytes from finger millet and showed that the crude extracts of four strains had anti-Fusarium activity. However, active compounds were isolated from only one strain. The objectives of this study were to confirm the endophytic lifestyle of the three remaining anti-Fusarium isolates, to identify the major underlying antifungal compounds, and to initially characterize the mode(s) of action of each compound. Results of confocal microscopy and a plant disease assay were consistent with the three fungal strains behaving as endophytes. Using bio-assay guided fractionation and spectroscopic structural elucidation, three anti-Fusarium secondary metabolites were purified and characterized. These molecules were not previously reported to derive from fungi nor have antifungal activity. The purified antifungal compounds were: 5-hydroxy 2(3H)-benzofuranone, dehydrocostus lactone (guaianolide sesquiterpene lactone), and harpagoside (an iridoide glycoside). Light microscopy and vitality staining were used to visualize the in vitro interactions between each compound and Fusarium; the results suggested a mixed fungicidal/fungistatic mode of action. We conclude that finger millet possesses fungal endophytes that can synthesize anti-fungal compounds not previously reported as bio-fungicides against F. graminearum.

  6. Does co-inoculation of Lactuca serriola with endophytic and arbuscular mycorrhizal fungi improve plant growth in a polluted environment?

    Science.gov (United States)

    Ważny, Rafał; Rozpądek, Piotr; Jędrzejczyk, Roman J; Śliwa, Marta; Stojakowska, Anna; Anielska, Teresa; Turnau, Katarzyna

    2018-04-01

    Phytoremediation of polluted sites can be improved by co-inoculation with mycorrhizal and endophytic fungi. In this study, the effects of single- and co-inoculation of Lactuca serriola with an arbuscular mycorrhizal (AM) fungus, Rhizoglomus intraradices, and endophytic fungi, Mucor sp. or Trichoderma asperellum, on plant growth, vitality, toxic metal accumulation, sesquiterpene lactone production and flavonoid concentration in the presence of toxic metals were evaluated. Inoculation with the AM fungus increased biomass yield of the plants grown on non-polluted and polluted substrate. Co-inoculation with the AM fungus and Mucor sp. resulted in increased biomass yield of plants cultivated on the polluted substrate, whereas co-inoculation with T. asperellum and the AM fungus increased plant biomass on the non-polluted substrate. In the presence of Mucor sp., mycorrhizal colonization and arbuscule richness were increased in the non-polluted substrate. Co-inoculation with the AM fungus and Mucor sp. increased Zn concentration in leaves and roots. The concentration of sesquiterpene lactones in plant leaves was decreased by AM fungus inoculation in both substrates. Despite enhanced host plant costs caused by maintaining symbiosis with numerous microorganisms, interaction of wild lettuce with both mycorrhizal and endophytic fungi was more beneficial than that with a single fungus. The study shows the potential of double inoculation in unfavourable environments, including agricultural areas and toxic metal-polluted areas.

  7. Endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis are influenced by soil mercury contamination.

    Science.gov (United States)

    Pietro-Souza, William; Mello, Ivani Souza; Vendruscullo, Suzana Junges; Silva, Gilvan Ferreira da; Cunha, Cátia Nunes da; White, James Francis; Soares, Marcos Antônio

    2017-01-01

    The endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis were examined with respect to soil mercury (Hg) contamination. Plants were collected in places with and without Hg+2 for isolation and identification of their endophytic root fungi. We evaluated frequency of colonization, number of isolates and richness, indices of diversity and similarity, functional traits (hydrolytic enzymes, siderophores, indoleacetic acid, antibiosis and metal tolerance) and growth promotion of Aeschynomene fluminensis inoculated with endophytic fungi on soil with mercury. The frequency of colonization, structure and community function, as well as the abundant distribution of taxa of endophytic fungi were influenced by mercury contamination, with higher endophytic fungi in hosts in soil with mercury. The presence or absence of mercury in the soil changes the profile of the functional characteristics of the endophytic fungal community. On the other hand, tolerance of lineages to multiple metals is not associated with contamination. A. fluminensis depends on its endophytic fungi, since plants free of endophytic fungi grew less than expected due to mercury toxicity. In contrast plants containing certain endophytic fungi showed good growth in soil containing mercury, even exceeding growth of plants cultivated in soil without mercury. The data obtained confirm the hypothesis that soil contamination by mercury alters community structure of root endophytic fungi in terms of composition, abundance and species richness. The inoculation of A. fluminensis with certain strains of stress tolerant endophytic fungi contribute to colonization and establishment of the host and may be used in processes that aim to improve phytoremediation of soils with toxic concentrations of mercury.

  8. [Community composition and diversity of endophytic fungi from roots of Sinopodophyllum hexandrum in forest of Upper-north mountain of Qinghai province].

    Science.gov (United States)

    Ning, Yi; Li, Yan-Ling; Zhou, Guo-Ying; Yang, Lu-Cun; Xu, Wen-Hua

    2016-04-01

    High throughput sequencing technology is also called Next Generation Sequencing (NGS), which can sequence hundreds and thousands sequences in different samples at the same time. In the present study, the culture-independent high throughput sequencing technology was applied to sequence the fungi metagenomic DNA of the fungal internal transcribed spacer 1(ITS 1) in the root of Sinopodophyllum hexandrum. Sequencing data suggested that after the quality control, 22 565 reads were remained. Cluster similarity analysis was done based on 97% sequence similarity, which obtained 517 OTUs for the three samples (LD1, LD2 and LD3). All the fungi which identified from all the reads of OTUs based on 0.8 classification thresholds using the software of RDP classifier were classified as 13 classes, 35 orders, 44 family, 55 genera. Among these genera, the genus of Tetracladium was the dominant genera in all samples(35.49%, 68.55% and 12.96%).The Shannon's diversity indices and the Simpson indices of the endophytic fungi in the samples ranged from 1.75-2.92, 0.11-0.32, respectively.This is the first time for applying high through put sequencing technol-ogyto analyze the community composition and diversity of endophytic fungi in the medicinal plant, and the results showed that there were hyper diver sity and high community composition complexity of endophytic fungi in the root of S. hexandrum. It is also proved that the high through put sequencing technology has great advantage for analyzing ecommunity composition and diversity of endophtye in the plant. Copyright© by the Chinese Pharmaceutical Association.

  9. Glucanase and Chitinase from Some Isolates of Endophytic Fungus Trichoderma spp.

    Science.gov (United States)

    Prasetyawan, Sasangka; Sulistyowati, Lilik; Aulanni'am

    2018-01-01

    Endophytic fungi are those fungi that are able to grow in plant tissue without causing symptoms of disease. It is thought that these fungi may confer on the host plants degree of resistance to parasitic invasion. Endophytic fungi have been isolated from stem tissue and these fungi are known to be antagonistic to pathogenic fungi. These endophytes produce chitinase and β-1,3-glucanase enzymes. Based on the fact that chitin and β-1,3-glucan are the main skeletal polysaccharides of the cell walls of fungal patogen. The aim of this research is to do potential test on some of isolates of Trichoderma’s endophytic (L-1, L-2, Is-1, Is-2 and Is-7) in the chitinase and β-1,3-glucanase activity in effort to determine endophytic which be chossen to be gene resource for the next research. The gene will be transformed to citrus plant japanese citroen in effort to make citrus plant transgenic resistance to phytopatogenic invasion. The result of this research is endofit namely L-1 is the most potential endophytic fungi with chitinase activities is 4,8 10-2 Unit and glucanase 24,2. 1012 Unit. The addition of chitin and cell wall of phytophtora causes chitinase activity significantly increase, and also addition of laminarin and cell wall of phytophtora makes glucanase activity increase.

  10. Characterization of Antifungal Natural Products Isolated from Endophytic Fungi of Finger Millet (Eleusine coracana

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2016-09-01

    Full Text Available Finger millet is an ancient African-Indian crop that is resistant to many pathogens including the fungus, Fusarium graminearum. We previously reported the first isolation of putative fungal endophytes from finger millet and showed that the crude extracts of four strains had anti-Fusarium activity. However, active compounds were isolated from only one strain. The objectives of this study were to confirm the endophytic lifestyle of the three remaining anti-Fusarium isolates, to identify the major underlying antifungal compounds, and to initially characterize the mode(s of action of each compound. Results of confocal microscopy and a plant disease assay were consistent with the three fungal strains behaving as endophytes. Using bio-assay guided fractionation and spectroscopic structural elucidation, three anti-Fusarium secondary metabolites were purified and characterized. These molecules were not previously reported to derive from fungi nor have antifungal activity. The purified antifungal compounds were: 5-hydroxy 2(3H-benzofuranone, dehydrocostus lactone (guaianolide sesquiterpene lactone, and harpagoside (an iridoide glycoside. Light microscopy and vitality staining were used to visualize the in vitro interactions between each compound and Fusarium; the results suggested a mixed fungicidal/fungistatic mode of action. We conclude that finger millet possesses fungal endophytes that can synthesize anti-fungal compounds not previously reported as bio-fungicides against F. graminearum.

  11. Biological activities from extracts of endophytic fungi isolated from Viguiera arenaria and Tithonia diversifolia.

    Science.gov (United States)

    Guimarães, Denise O; Borges, Warley S; Kawano, Cristina Y; Ribeiro, Patrícia H; Goldman, Gustavo H; Nomizo, Auro; Thiemann, Otávio H; Oliva, Glaucius; Lopes, Norberto P; Pupo, Mônica T

    2008-01-01

    A total of 39 endophytic fungi have been isolated from Viguiera arenaria and Tithonia diversifolia, both collected in São Paulo State, Brazil. The isolates were identified based on their ribosomal DNA sequences. The ethyl acetate (EtOAc) extracts of all endophytic fungi were evaluated for their antimicrobial, antiparasitic and antitumoral activity. Antimicrobial screening was conducted using an agar diffusion assay against three pathogenic microorganisms: Staphylococcus aureus, Escherichia coli and Candida albicans. Antiparasitic activity was determined by enzymatic inhibition of gGAPDH of Trypanosoma cruzi and adenine phosphorybosiltransferase (APRT) of Leishmania tarentolae. Antitumoral activity was tested against human T leukemia cells by the Mosmann colorimetric method. All extracts showed activity in at least one assay: 79.5% of the extracts were cytotoxic against leukemia cells, 5.1% of the extracts were active against S. aureus, 25.6% against E. coli and 64.1% against Candida albicans. Only one extract showed promising results in the inhibition of parasitic enzymes gGAPDH (95.0%) and three were found to inhibit APRT activity. The cytotoxic extract produced by the strain VA1 (Glomerella cingulata) was fractionated and yielded nectriapyrone and tyrosol. Nectriapyrone showed relevant cytotoxic activity against both human T leukemia and melanoma tumor cell lines.

  12. Fungal endophytes: diversity and functional roles

    Science.gov (United States)

    Rodriguez, R.J.; White, J.F.; Arnold, A.E.; Redman, R.S.

    2009-01-01

    All plants in natural ecosystems appear to be symbiotic with fungal endophytes. This highly diverse group of fungi can have profound impacts on plant communities through increasing fitness by conferring abiotic and biotic stress tolerance, increasing biomass and decreasing water consumption, or decreasing fitness by altering resource allocation. Despite more than 100 yr of research resulting in thousands of journal articles, the ecological significance of these fungi remains poorly characterized. Historically, two endophytic groups (clavicipitaceous (C) and nonclavicipitaceous (NC)) have been discriminated based on phylogeny and life history traits. Here, we show that NC-endophytes represent three distinct functional groups based on host colonization and transmission, in planta biodiversity and fitness benefits conferred to hosts. Using this framework, we contrast the life histories, interactions with hosts and potential roles in plant ecophysiology of C- and NC-endophytes, and highlight several key questions for future work in endophyte biology.

  13. Fungal Endophytes: Beyond Herbivore Management

    Directory of Open Access Journals (Sweden)

    Bamisope S. Bamisile

    2018-03-01

    Full Text Available The incorporation of entomopathogenic fungi as biocontrol agents into Integrated Pest Management (IPM programs without doubt, has been highly effective. The ability of these fungal pathogens such as Beauveria bassiana and Metarhizium anisopliae to exist as endophytes in plants and protect their colonized host plants against the primary herbivore pests has widely been reported. Aside this sole role of pest management that has been traditionally ascribed to fungal endophytes, recent findings provided evidence of other possible functions as plant yield promoter, soil nutrient distributor, abiotic stress and drought tolerance enhancer in plants. However, reports on these additional important effects of fungal endophytes on the colonized plants remain scanty. In this review, we discussed the various beneficial effects of endophytic fungi on the host plants and their primary herbivore pests; as well as some negative effects that are relatively unknown. We also highlighted the prospects of our findings in further increasing the acceptance of fungal endophytes as an integral part of pest management programs for optimized crop production.

  14. Endophytic fungi associated with Monarda citriodora, an aromatic and medicinal plant and their biocontrol potential.

    Science.gov (United States)

    Katoch, Meenu; Pull, Shipra

    2017-12-01

    The Food and Agriculture Organization has estimated that every year considerable losses of the food crops occur due to plant diseases. Although fungicides are extensively used for management of plant diseases, they are expensive and hazardous to the environment and human health. Alternatively, biological control is the safe way to overcome the effects of plant diseases and to sustain agriculture. Since Monarda citriodora Cerv. ex Lag. (Lamiaceae/Labiatae) is known for its antifungal properties, it was chosen for the study. The isolation of endophytic fungi from M. citriodora and assessing their biocontrol potential. The isolated endophytes were characterized using ITS-5.8 S rDNA sequencing. Their biocontrol potential was assessed using different antagonistic assays against major plant pathogens. Twenty-eight endophytes representing 11 genera were isolated, of which, around 82% endophytes showed biocontrol potential against plant pathogens. MC-2 L (Fusarium oxysporum), MC-14 F (F. oxysporum), MC-22 F (F. oxysporum) and MC-25 F (F. redolens) displayed significant antagonistic activity against all the tested pathogens. Interestingly, MC-10 L (Muscodor yucatanensis) completely inhibited the growth of Sclerotinia sp., Colletotrichum capsici, Aspergillus flavus and A. fumigatus in dual culture assay, whereas MC-8 L (A. oryzae) and MC-9 L (Penicillium commune) completely inhibited the growth of the Sclerotinia sp. in fumigation assay. Endophytes MC-2 L, MC-14 F, MC-22 F and MC-25 F could effectively be used to control broad range of phytopathogens, while MC-10 L, MC-8 L and MC-9 L could be used to control specific pathogens. Secondly, endophytes showing varying degrees of antagonism in different assays represented the chemo-diversity not only as promising biocontrol agents but also as a resource of defensive and bioactive metabolites.

  15. Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease

    Directory of Open Access Journals (Sweden)

    You-Kun Zheng

    2017-07-01

    Conclusion: Our results suggested that P. notoginseng harbors diversified endophytic fungi that would provide a basis for the identification of new bioactive compounds, and for effective biocontrol of notoginseng root rot.

  16. Endophytic fungi occurring in fennel, lettuce, chicory, and celery--commercial crops in southern Italy.

    Science.gov (United States)

    D'Amico, Margherita; Frisullo, Salvatore; Cirulli, Matteo

    2008-01-01

    The occurrence of endophytic fungi in fennel, lettuce, chicory, and celery crops was investigated in southern Italy. A total of 186 symptomless plants was randomly collected and sampled at the stage of commercial ripeness. Fungal species of Acremonium, Alternaria, Fusarium, and Plectosporium were detected in all four crops; Plectosporium tabacinum was the most common in all crop species and surveyed sites. The effect of eight endophytic isolates (five belonging to Plectosporium tabacinum and three to three species of Acremonium) inoculated on lettuce plants grown in gnotobiosis was assessed by recording plant height, root length and dry weight, collar diameter, root necrosis, and leaf yellowing. P. tabacinum and three species of Acremonium, inoculated on gnotobiotically grown lettuce plants, showed pathogenic activity that varied with the fungal isolate. Lettuce plants inoculated with the isolates Ak of Acremonium kiliense, Ac of Acremonium cucurbitacearum, and P35 of P. tabacinum showed an increased root growth, compared to the non-inoculated control. The high frequency of P. tabacinum isolation recorded in lettuce plants collected in Bari and Metaponto, and in fennel plants from Foggia agricultural districts, suggests a relationship not only between a crop species and P. tabacinum, but also between the occurrence of the endophyte and the crop rotation history of the soil.

  17. Cytochalasin produced by Xylaria sp., a endophytic fungi of Piper aduncum (Piperaceae)

    International Nuclear Information System (INIS)

    Silva, Geraldo H.; Oliveira, Camila M. de; Teles, Helder L.; Bolzani, Vanderlan da S.; Araujo, Angela R.; Pfenning, Ludwig H.; Young, Maria Claudia M.; Costa-Neto, Claudio M.; Haddad, Renato; Eberlin, Marcos N.

    2010-01-01

    A chemical study on the EtOAc extract produced by Xylaria sp., an endophytic fungus from Piper aduncum, resulted in the isolation of a new cytochalasin 1, along with five known 19,20-epoxycytochalasin D (2), C (3), N (4), Q (5), and R (6). The 1-6 were evaluated against the fungi C. cladosporioides and C. sphaerospermum and only 5 showed weak activity. The cytotoxicity in vitro against HeLA and CHO cells lines were investigated and the cytochalasins 2-4, and 6 showed a strong activity against HeLA. The DNA damaging activity of 1-6 were also investigated against mutant strains of S. cerevisiae. (author)

  18. Diversity and Seasonal Variation of Endophytic Fungi Isolated from Three Conifers in Mt. Taehwa, Korea

    OpenAIRE

    Kim, Chang-Kyun; Eo, Ju-Kyeong; Eom, Ahn-Heum

    2013-01-01

    The needled leaves of three conifer species were collected in Mt. Taehwa during different seasons of the year. Total 59 isolates and 19 species of endophytic fungi were isolated from the leaves and identified using morphological and molecular characteristics. As a result, Shannon index was different in its host plant; Larix kaempferi had a highest value of species diversity. According to the sampling season, 9 species of 19 species were isolated during fall season. The results suggest that th...

  19. Endophyte Chaetomium globosum D38 Promotes Bioactive Constituents Accumulation and Root Production in Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Xin Zhai

    2018-01-01

    Full Text Available Salvia miltiorrhiza is known for tanshinones and salvianolic acids, which have been shown to have a protective effect against ROS, especially for cardiovascular diseases and other various ailments of human organs. Due to the low yield of tanshinones and their analogs in S. miltiorrhiza, multiple stimulation strategies have been developed to improve tanshinones production in plant tissue cultures. Endophytic fungi have been reported to form different relationships with their host plants, including symbiotic, mutualistic, commensalistic, and parasitic interactions. Thus we take the assumption that endophytic fungi may be a potential microbial tool for secondary metabolism promotion in medicinal plants. We recently isolated Chaetomium globosum D38 from the roots of S. miltiorrhiza and our study aimed to examine the effects of this live endophytic fungus D38 and its elicitor on the accumulation of tanshinones in the hairy root cultures of S. miltiorrhiza. Our results revealed that C. globosum D38 mainly colonized in the intercellular gap of xylem parenchyma cells of S. miltiorrhiza hairy roots during the long term co-existence without any toxicity. Moreover, both of the live fungus and its mycelia extract could increase the production of tanshinones, especially for dihydrotanshinone I and cryptotanshinone. The effect of the mycelia extract was much stronger than that of the live fungus on tanshinones synthesis, which significantly increased the transcriptional activity of those key genes in tanshinone biosynthetic pathway. Furthermore, the live C. globosum D38 could also be made into biotic fertilizer used for S. miltiorrhiza seedlings culture, which not only significantly promoted the growth of the host plant, but also notably enhanced the accumulation of tanshinones and salvianolic acids. We thus speculated that, in the soil environment D38 could form bitrophic and mutual beneficial interactions with the host and enhance the plant growth and its

  20. Genetic compatibility determines endophyte-grass combinations.

    Directory of Open Access Journals (Sweden)

    Kari Saikkonen

    Full Text Available Even highly mutually beneficial microbial-plant interactions, such as mycorrhizal- and rhizobial-plant exchanges, involve selfishness, cheating and power-struggles between the partners, which depending on prevailing selective pressures, lead to a continuum of interactions from antagonistic to mutualistic. Using manipulated grass-endophyte combinations in a five year common garden experiment, we show that grass genotypes and genetic mismatches constrain genetic combinations between the vertically (via host seeds transmitted endophytes and the out-crossing host, thereby reducing infections in established grass populations. Infections were lost in both grass tillers and seedlings in F(1 and F(2 generations, respectively. Experimental plants were collected as seeds from two different environments, i.e., meadows and nearby riverbanks. Endophyte-related benefits to the host included an increased number of inflorescences, but only in meadow plants and not until the last growing season of the experiment. Our results illustrate the importance of genetic host specificity and trans-generational maternal effects on the genetic structure of a host population, which act as destabilizing forces in endophyte-grass symbioses. We propose that (1 genetic mismatches may act as a buffering mechanism against highly competitive endophyte-grass genotype combinations threatening the biodiversity of grassland communities and (2 these mismatches should be acknowledged, particularly in breeding programmes aimed at harnessing systemic and heritable endophytes to improve the agriculturally valuable characteristics of cultivars.

  1. Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle.

    Science.gov (United States)

    Behie, Scott W; Bidochka, Michael J

    2014-03-01

    The study of symbiotic nitrogen transfer in soil has largely focused on nitrogen-fixing bacteria. Vascular plants can lose a substantial amount of their nitrogen through insect herbivory. Previously, we showed that plants were able to reacquire nitrogen from insects through a partnership with the endophytic, insect-pathogenic fungus Metarhizium robertsii. That is, the endophytic capability and insect pathogenicity of M. robertsii are coupled so that the fungus acts as a conduit to provide insect-derived nitrogen to plant hosts. Here, we assess the ubiquity of this nitrogen transfer in five Metarhizium species representing those with broad (M. robertsii, M. brunneum, and M. guizhouense) and narrower insect host ranges (M. acridum and M. flavoviride), as well as the insect-pathogenic fungi Beauveria bassiana and Lecanicillium lecanii. Insects were injected with (15)N-labeled nitrogen, and we tracked the incorporation of (15)N into two dicots, haricot bean (Phaseolus vulgaris) and soybean (Glycine max), and two monocots, switchgrass (Panicum virgatum) and wheat (Triticum aestivum), in the presence of these fungi in soil microcosms. All Metarhizium species and B. bassiana but not L. lecanii showed the capacity to transfer nitrogen to plants, although to various degrees. Endophytic association by these fungi increased overall plant productivity. We also showed that in the field, where microbial competition is potentially high, M. robertsii was able to transfer insect-derived nitrogen to plants. Metarhizium spp. and B. bassiana have a worldwide distribution with high soil abundance and may play an important role in the ecological cycling of insect nitrogen back to plant communities.

  2. Interaction type influences ecological network structure more than local abiotic conditions: evidence from endophytic and endolichenic fungi at a continental scale.

    Science.gov (United States)

    Chagnon, Pierre-Luc; U'Ren, Jana M; Miadlikowska, Jolanta; Lutzoni, François; Arnold, A Elizabeth

    2016-01-01

    Understanding the factors that shape community assembly remains one of the most enduring and important questions in modern ecology. Network theory can reveal rules of community assembly within and across study systems and suggest novel hypotheses regarding the formation and stability of communities. However, such studies generally face the challenge of disentangling the relative influence of factors such as interaction type and environmental conditions on shaping communities and associated networks. Endophytic and endolichenic symbioses, characterized by microbial species that occur within healthy plants and lichen thalli, represent some of the most ubiquitous interactions in nature. Fungi that engage in these symbioses are hyperdiverse, often horizontally transmitted, and functionally beneficial in many cases, and they represent the diversification of multiple phylogenetic groups. We evaluated six measures of ecological network structure for >4100 isolates of endophytic and endolichenic fungi collected systematically from five sites across North America. Our comparison of these co-occurring interactions in biomes ranging from tundra to subtropical forest showed that the type of interactions (i.e., endophytic vs. endolichenic) had a much more pronounced influence on network structure than did environmental conditions. In particular, endophytic networks were less nested, less connected, and more modular than endolichenic networks in all sites. The consistency of the network structure within each interaction type, independent of site, is encouraging for current efforts devoted to gathering metadata on ecological network structure at a global scale. We discuss several mechanisms potentially responsible for such patterns and draw attention to knowledge gaps in our understanding of networks for diverse interaction types.

  3. Arbuscular mycorrhizal fungus inoculation reduces the drought-resistance advantage of endophyte-infected versus endophyte-free Leymus chinensis.

    Science.gov (United States)

    Liu, Hui; Chen, Wei; Wu, Man; Wu, Rihan; Zhou, Yong; Gao, Yubao; Ren, Anzhi

    2017-11-01

    Grasses can be infected simultaneously by endophytic fungi and arbuscular mycorrhizal (AM) fungi. In this study, we tested the hypothesis that endophyte-associated drought resistance of a native grass was affected by an AM fungus. In a greenhouse experiment, we compared the performance of endophyte-infected (EI) and endophyte-free (EF) Leymus chinensis, a dominant species native to the Inner Mongolia steppe, under altered water and AM fungus availability. The results showed that endophyte infection significantly increased drought resistance of the host grass, but the beneficial effects were reduced by AM fungus inoculation. In the mycorrhizal-non-inoculated (MF) treatment, EI plants accumulated significantly more biomass, had greater proline and total phenolic concentration, and lower malondialdehyde concentration than EF plants. In the mycorrhizal-inoculation (MI) treatment, however, no significant difference occurred in either growth or physiological characters measured between EI and EF plants. AM fungus inoculation enhanced drought resistance of EF plants but had no significant effect on drought resistance of EI plants, thus AM fungus inoculation reduced the difference between EI and EF plants. Our findings highlight the importance of interactions among multiple microorganisms for plant performance under drought stress.

  4. Interactions among endophytic bacteria and fungi: effects and ...

    Indian Academy of Sciences (India)

    Madhu

    The colonization of plants by putative endophytes has been visualized by using laser scanning confocal microscope (Coombs and Franco 2003). Endophytes promote the growth of plants in various ways, for example through secretion of plant growth regulators;. e.g. indole-acetic acid (Lee et al 2004), via phosphate-.

  5. A endophytic fungus, Ramichloridium cerophilum, promotes growth ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-06-22

    Jun 22, 2016 ... A fungal endophyte, Ramichloridium cerophilum, was identified as a Class 2 endophytes species ... The mycorrhizal symbiosis between plants and fungi is common and .... growing fungal colony and placed into a sterile plastic pot and .... bacteria associated with the roots of Chinese cabbage (Brassica.

  6. Bioactive endophytes warrant intensified exploration and conservation.

    Science.gov (United States)

    Smith, Stephen A; Tank, David C; Boulanger, Lori-Ann; Bascom-Slack, Carol A; Eisenman, Kaury; Kingery, David; Babbs, Beatrice; Fenn, Kathleen; Greene, Joshua S; Hann, Bradley D; Keehner, Jocelyn; Kelley-Swift, Elizabeth G; Kembaiyan, Vivek; Lee, Sun Jin; Li, Puyao; Light, David Y; Lin, Emily H; Ma, Cong; Moore, Emily; Schorn, Michelle A; Vekhter, Daniel; Nunez, Percy V; Strobel, Gary A; Donoghue, Michael J; Strobel, Scott A

    2008-08-25

    A key argument in favor of conserving biodiversity is that as yet undiscovered biodiversity will yield products of great use to humans. However, the link between undiscovered biodiversity and useful products is largely conjectural. Here we provide direct evidence from bioassays of endophytes isolated from tropical plants and bioinformatic analyses that novel biology will indeed yield novel chemistry of potential value. We isolated and cultured 135 endophytic fungi and bacteria from plants collected in Peru. nrDNAs were compared to samples deposited in GenBank to ascertain the genetic novelty of cultured specimens. Ten endophytes were found to be as much as 15-30% different than any sequence in GenBank. Phylogenetic trees, using the most similar sequences in GenBank, were constructed for each endophyte to measure phylogenetic distance. Assays were also conducted on each cultured endophyte to record bioactivity, of which 65 were found to be bioactive. The novelty of our contribution is that we have combined bioinformatic analyses that document the diversity found in environmental samples with culturing and bioassays. These results highlight the hidden hyperdiversity of endophytic fungi and the urgent need to explore and conserve hidden microbial diversity. This study also showcases how undergraduate students can obtain data of great scientific significance.

  7. Bioactive endophytes warrant intensified exploration and conservation.

    Directory of Open Access Journals (Sweden)

    Stephen A Smith

    2008-08-01

    Full Text Available A key argument in favor of conserving biodiversity is that as yet undiscovered biodiversity will yield products of great use to humans. However, the link between undiscovered biodiversity and useful products is largely conjectural. Here we provide direct evidence from bioassays of endophytes isolated from tropical plants and bioinformatic analyses that novel biology will indeed yield novel chemistry of potential value.We isolated and cultured 135 endophytic fungi and bacteria from plants collected in Peru. nrDNAs were compared to samples deposited in GenBank to ascertain the genetic novelty of cultured specimens. Ten endophytes were found to be as much as 15-30% different than any sequence in GenBank. Phylogenetic trees, using the most similar sequences in GenBank, were constructed for each endophyte to measure phylogenetic distance. Assays were also conducted on each cultured endophyte to record bioactivity, of which 65 were found to be bioactive.The novelty of our contribution is that we have combined bioinformatic analyses that document the diversity found in environmental samples with culturing and bioassays. These results highlight the hidden hyperdiversity of endophytic fungi and the urgent need to explore and conserve hidden microbial diversity. This study also showcases how undergraduate students can obtain data of great scientific significance.

  8. Lethality of cytochalasin B and other compounds isolated from fungus Aspergillus sp. (Trichocomaceae) endophyte of Bauhinia guianensis (Fabaceae).

    Science.gov (United States)

    Feitosa, André de O; Dias, Amanda Cristina S; Ramos, Gisele da C; Bitencourt, Heriberto R; Siqueira, José Edson S; Marinho, Patrícia Santana B; Barison, Andersson; Ocampos, Fernanda M M; Marinho, Andrey Moacir do R

    Endophytic fungi are fungi that colonize internal tissues of plants; several biologically active compounds have been isolated from these fungi. There are few studies of compounds isolated from endophytic fungi of Amazon plants. Thus, this study aimed the isolation and structural identification of ergosterol (1), ergosterol peroxide (2), mevalonolactone (3), cytochalasin B (4) and cytochalasin H (5) from Aspergillus sp. EJC 04, an endophytic fungus from Bauhinia guianensis. The cytochalasin B (4) and the diacetate derivative of cytochalasin B (4a) showed high lethality in the brine shrimp assay. This is the first occurrence of cytochalasins in Amazonian endophytic fungi from B. guianensis. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Physiological and Molecular Characterization of Biosurfactant Producing Endophytic Fungi Xylaria regalis from the Cones of Thuja plicata as a Potent Plant Growth Promoter with Its Potential Application

    Directory of Open Access Journals (Sweden)

    Mohd Adnan

    2018-01-01

    Full Text Available Currently, there is an absolute concern for all nations in agricultural productivity to meet growing demands of human population. In recent time, biosurfactants produced by diverse group of microorganisms are used to achieve such demands as it is known for its ecofriendly use in elimination of plant pathogens and for increasing the bioavailability of nutrients for plants. Endophytic fungi are the important source of secondary metabolites and novel bioactive compounds for different biological applications. In the present study, endophytic fungi Xylaria regalis (X. regalis recovered from the cones of Thuja plicata was evaluated for its biosurfactant producing ability and plant growth-promoting abilities through various screening methods and also via its antagonistic activity against phytopathogens like Fusarium oxysporum and Aspergillus niger. In addition, X. regalis was also tested in vivo for a various range of growth parameters in chilli under greenhouse conditions. Significant increase in shoot and root length, dry matter production of shoot and root, chlorophyll, nitrogen, and phosphorus contents of chilli seedlings was found, which reveals its ability to improve the growth of crop plants. Hence, this study suggests the possibility of biosurfactant producing endophytic fungi X. regalis as a source of novel green biosurfactant for sustainable agriculture to achieve growing demands.

  10. Characterization of endophytic fungi from Acer ginnala Maxim. in an artificial plantation: media effect and tissue-dependent variation.

    Directory of Open Access Journals (Sweden)

    Fenghui Qi

    Full Text Available The community of endophytic fungi associated with Acer ginnala, a common tree in northeastern China, was investigated. Four media, PDA, Czapek's, WA and Sabouraud's, were used to inoculate explants from seeds, annual twigs and perennial twigs (xylem and bark. Media strongly affected the isolated species number, but not colonization frequency (CF or isolation frequency (IF. To investigate media effect further, a Principal Component Analysis (PCA was done. As a result, two components accounted for 86.502% of the total variance were extracted. These two components were named as PDA-determined factor (accounted for 45.139% of the total variance and Czapek's-determined factor (accounted for 41.363% of the total variance, respectively. This result suggested that only two media, PDA and Czapek's, could be used instead of all four media in this study without affecting the isolation results significantly. In total, ten taxa were isolated in this study. Alternaria sp., Phomopsis sp., Neurospora sp. and Phoma sp. were dominant endophytes while Pleosporales Incertae Sedis sp., Cladosporium sp., Trichoderma sp. and Epicoccum sp. were rare taxa. Different tissues/organs had different endophyte assemblages. All tissue/organ pairs had low Bray-Curtis indices (<0.3 except for bark and annual twigs (0.63. Compared to perennial twigs, annual twigs had a lower taxon number, lower isolate number, lower endophyte dominance and diversity indices. Seeds had distinct assemblage, lower similarity and similar low diversity indices to annual twigs. These results suggested that tissue type determines the endophyte assemblage while age determines the diversity.

  11. Characterization of endophytic fungi from Acer ginnala Maxim. in an artificial plantation: media effect and tissue-dependent variation.

    Science.gov (United States)

    Qi, Fenghui; Jing, Tianzhong; Zhan, Yaguang

    2012-01-01

    The community of endophytic fungi associated with Acer ginnala, a common tree in northeastern China, was investigated. Four media, PDA, Czapek's, WA and Sabouraud's, were used to inoculate explants from seeds, annual twigs and perennial twigs (xylem and bark). Media strongly affected the isolated species number, but not colonization frequency (CF) or isolation frequency (IF). To investigate media effect further, a Principal Component Analysis (PCA) was done. As a result, two components accounted for 86.502% of the total variance were extracted. These two components were named as PDA-determined factor (accounted for 45.139% of the total variance) and Czapek's-determined factor (accounted for 41.363% of the total variance), respectively. This result suggested that only two media, PDA and Czapek's, could be used instead of all four media in this study without affecting the isolation results significantly. In total, ten taxa were isolated in this study. Alternaria sp., Phomopsis sp., Neurospora sp. and Phoma sp. were dominant endophytes while Pleosporales Incertae Sedis sp., Cladosporium sp., Trichoderma sp. and Epicoccum sp. were rare taxa. Different tissues/organs had different endophyte assemblages. All tissue/organ pairs had low Bray-Curtis indices (<0.3) except for bark and annual twigs (0.63). Compared to perennial twigs, annual twigs had a lower taxon number, lower isolate number, lower endophyte dominance and diversity indices. Seeds had distinct assemblage, lower similarity and similar low diversity indices to annual twigs. These results suggested that tissue type determines the endophyte assemblage while age determines the diversity.

  12. Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses

    Directory of Open Access Journals (Sweden)

    James Timothy Y

    2009-06-01

    Full Text Available Abstract Background Many fungi are obligate biotrophs of plants, growing in live plant tissues, gaining direct access to recently photosynthesized carbon. Photosynthate within plants is transported from source to sink tissues as sucrose, which is hydrolyzed by plant glycosyl hydrolase family 32 enzymes (GH32 into its constituent monosaccharides to meet plant cellular demands. A number of plant pathogenic fungi also use GH32 enzymes to access plant-derived sucrose, but less is known about the sucrose utilization ability of mutualistic and commensal plant biotrophic fungi, such as mycorrhizal and endophytic fungi. The aim of this study was to explore the distribution and abundance of GH32 genes in fungi to understand how sucrose utilization is structured within and among major ecological guilds and evolutionary lineages. Using bioinformatic and PCR-based analyses, we tested for GH32 gene presence in all available fungal genomes and an additional 149 species representing a broad phylogenetic and ecological range of biotrophic fungi. Results We detected 9 lineages of GH32 genes in fungi, 4 of which we describe for the first time. GH32 gene number in fungal genomes ranged from 0–12. Ancestral state reconstruction of GH32 gene abundance showed a strong correlation with nutritional mode, and gene family expansion was observed in several clades of pathogenic filamentous Ascomycota species. GH32 gene number was negatively correlated with animal pathogenicity and positively correlated with plant biotrophy, with the notable exception of mycorrhizal taxa. Few mycorrhizal species were found to have GH32 genes as compared to other guilds of plant-associated fungi, such as pathogens, endophytes and lichen-forming fungi. GH32 genes were also more prevalent in the Ascomycota than in the Basidiomycota. Conclusion We found a strong signature of both ecological strategy and phylogeny on GH32 gene number in fungi. These data suggest that plant biotrophic fungi

  13. Stereoselective analysis of thioridazine-2-sulfoxide and thioridazine-5-sulfoxide: an investigation of rac-thioridazine biotransformation by some endophytic fungi.

    Science.gov (United States)

    Borges, Keyller Bastos; De Souza Borges, Warley; Pupo, Mônica Tallarico; Bonato, Pierina Sueli

    2008-04-14

    The purpose of this study was to develop a method for the stereoselective analysis of thioridazine-2-sulfoxide (THD-2-SO) and thioridazine-5-sulfoxide (THD-5-SO) in culture medium and to study the biotransformation of rac-thioridazine (THD) by some endophytic fungi. The simultaneous resolution of THD-2-SO and THD-5-SO diastereoisomers was performed on a CHIRALPAK AS column using a mobile phase of hexane:ethanol:methanol (92:6:2, v/v/v)+0.5% diethylamine; UV detection was carried out at 262 nm. Diethyl ether was used as extractor solvent. The validated method was used to evaluate the biotransformation of THD by 12 endophytic fungi isolated from Tithonia diversifolia, Viguiera arenaria and Viguiera robusta. Among the 12 fungi evaluated, 4 of them deserve prominence for presenting an evidenced stereoselective biotransformation potential: Phomopsis sp. (TD2) presented greater mono-2-sulfoxidation to the form (S)-(SE) (12.1%); Glomerella cingulata (VA1) presented greater mono-5-sulfoxidation to the forms (S)-(SE)+(R)-(FE) (10.5%); Diaporthe phaseolorum (VR4) presented greater mono-2-sulfoxidation to the forms (S)-(SE) and (R)-(FE) (84.4% and 82.5%, respectively) and Aspergillus fumigatus (VR12) presented greater mono-2-sulfoxidation to the forms (S)-(SE) and (R)-(SE) (31.5% and 34.4%, respectively).

  14. Isolation of Taxol-Producing Endophytic Fungi from Iranian Yew Through Novel Molecular Approach and Their Effects on Human Breast Cancer Cell Line.

    Science.gov (United States)

    Kasaei, Abdollah; Mobini-Dehkordi, Mohsen; Mahjoubi, Foruzandeh; Saffar, Behnaz

    2017-06-01

    Taxol or paclitaxel, an approved drug by the Food and Drug Administration, is being used for the treatment of human cancers. This study aimed to isolate and determine different species of native endophytic fungi from Iranian Taxus baccata (yew) plants located in the northern forests of Iran. To do so, a novel molecular screening approach was performed for 50 isolated endophytic fungi through amplification of exon No. 1 of taxadine synthase as a key gene in taxol production pathway. We used effective colony-polymerase chain reaction technique for rapid screening of potent taxol-producing fungi instead of genomic DNA extraction. Production of taxol was performed in batch culture by selected fungi individually and produced taxol was assayed quantitatively by high-performance liquid chromatography using standard taxanes. We found that only six fungi could produce taxol and baccatin III. Interestingly, after 7 days of incubation, the highest level of taxol was found to be 129 and that of baccatin 139.2 mg/kg dw for two native isolated Cladosporium sp. named F1 and F3. The fungal taxols could decrease cell viability in MTT assay same as commercial taxol. The fungal taxols semi-quantitatively showed antimitotic effects on MCF-7 cells as human breast cancer cell line. The expression of bcl-2 anti-apoptotic gene, in contrast to bax pro-apoptotic gene, significantly decreased after treatment by standard and fungal taxols. As fungal taxol was produced simpler than other methods and could significantly affect viability and specific genes expression profile, it is recommended that using of taxol-producing fungi from Iranian yew could be a safe and confident procedure to overcome challenges of using other methods.

  15. Observations on the Early Establishment of Foliar Endophytic Fungi in Leaf Discs and Living Leaves of a Model Woody Angiosperm, Populus trichocarpa (Salicaceae

    Directory of Open Access Journals (Sweden)

    Yu-Ling Huang

    2018-05-01

    Full Text Available Fungal endophytes are diverse and widespread symbionts that occur in the living tissues of all lineages of plants without causing evidence of disease. Culture-based and culture-free studies indicate that they often are abundant in the leaves of woody angiosperms, but only a few studies have visualized endophytic fungi in leaf tissues, and the process through which most endophytes colonize leaves has not been studied thoroughly. We inoculated leaf discs and the living leaves of a model woody angiosperm, Populus trichocarpa, which has endophytes that represent three distantly-related genera (Cladosporium, Penicillium, and Trichoderma. We used scanning electron microscopy and light microscopy to evaluate the timeline and processes by which they colonize leaf tissue. Under laboratory conditions with high humidity, conidia germinated on leaf discs to yield hyphae that grew epiphytically and incidentally entered stomata, but did not grow in a directed fashion toward stomatal openings. No cuticular penetration was observed. The endophytes readily colonized the interiors of leaf discs that were detached from living leaves, and could be visualized within discs with light microscopy. Although they were difficult to visualize within the interior of living leaves following in vivo inoculations, standard methods for isolating foliar endophytes confirmed their presence.

  16. Some fungal endophytes from vegetable crops and their anti-oomycete activities against tomato late blight.

    Science.gov (United States)

    Kim, H-Y; Choi, G J; Lee, H B; Lee, S-W; Lim, H K; Jang, K S; Son, S W; Lee, S O; Cho, K Y; Sung, N D; Kim, J-C

    2007-03-01

    To isolate endophytic fungi from vegetable plants and examine their in vivo anti-oomycete activity against Phytophthora infestans in tomato plants. Endophytic fungi were isolated from surface-sterilized plant tissues and anti-oomycete activity was measured by in vivo assay using tomato seedlings. Endophytic fungi showing potent anti-oomycete activity were identified by morphological characteristics and nuclear ribosomal ITS1-5.8S-ITS2 sequence analysis. A total of 152 isolates were obtained from 66 healthy tissue samples of cucumber, red pepper, tomato, pumpkin and Chinese cabbage and the fermentation broths of 23 isolates showed potent in vivo anti-oomycete activity against tomato late blight with control values over 90%. The Fusarium oxysporum strain EF119, which was isolated from roots of red pepper, showed the most potent disease control efficacy against tomato late blight. In dual-culture tests, it inhibited the growth of Pythium ultimum, P. infestans and Phytophthora capsici. Among endophytic fungi isolated from healthy tissues of vegetable plants, F. oxysporum EF119 showed the most potent in vivo anti-oomycete activity against tomato late blight and in vitro anti-oomycete activity against several oomycete pathogens. Endophytic fungi showing anti-oomycete activity in vitro and in vivo may be used as biocontrol agents particularly of tomato late blight.

  17. Interactions between aboveground herbivores and the mycorrhizal mutualists of plants.

    Science.gov (United States)

    Gehring, C A; Whitham, T G

    1994-07-01

    Plant growth, reproduction and survival can be affected both by mycorrhizal fungi and aboveground herbivores, but few studies have examined the interactive effects of these factors on plants. Most of the available data suggest that severe herbivory reduces root colonization by vesicular-arbuscular and ectomycorrhizal fungi. However, the reverse interaction has also been documented - mycorrhizal fungi deter herbivores and interact with fungal endophytes to influence herbivory. Although consistent patterns and mechanistic explanations are yet to emerge, it is likely that aboveground herbivore-mycorrhiza interactions have important implications for plant populations and communities. Copyright © 1994. Published by Elsevier Ltd.

  18. Fungal endophytes which invade insect galls: insect pathogens, benign saprophytes, or fungal inquilines?

    Science.gov (United States)

    Wilson, Dennis

    1995-08-01

    Fungi are frequently found within insect galls. However, the origin of these fungi, whether they are acting as pathogens, saprophytes invading already dead galls, or fungal inquilines which invade the gall but kill the gall maker by indirect means, is rarely investigated. A pathogenic role for these fungi is usually inferred but never tested. I chose the following leaf-galling-insect/host-plant pairs (1) a cynipid which forms two-chambered galls on the veins of Oregon white oak, (2) a cynipid which forms single-chambered galls on California coast live oak, and (3) an aphid which forms galls on narrowleaf cottonwood leaves. All pairs were reported to have fungi associated with dead insects inside the gall. These fungi were cultured and identified. For the two cynipids, all fungi found inside the galls were also present in the leaves as fungal endophytes. The cottonwood leaves examined did not harbor fungal endophytes. For the cynipid on Oregon white oak, the fungal endophyte grows from the leaf into the gall and infects all gall tissue but does not directly kill the gall maker. The insect dies as a result of the gall tissue dying from fungal infection. Therefore, the fungus acts as an inquiline. Approximately 12.5% of these galls die as a result of invasion by the fungal endophyte.

  19. Endophytes as sources of antibiotics.

    Science.gov (United States)

    Martinez-Klimova, Elena; Rodríguez-Peña, Karol; Sánchez, Sergio

    2017-06-15

    Until a viable alternative can be accessible, the emergence of resistance to antimicrobials requires the constant development of new antibiotics. Recent scientific efforts have been aimed at the bioprospecting of microorganisms' secondary metabolites, with special emphasis on the search for antimicrobial natural products derived from endophytes. Endophytes are microorganisms that inhabit the internal tissues of plants without causing apparent harm to the plant. The present review article compiles recent (2006-2016) literature to provide an update on endophyte research aimed at finding metabolites with antibiotic activities. We have included exclusively information on endophytes that produce metabolites capable of inhibiting the growth of bacterial, fungal and protozoan pathogens of humans, animals and plants. Where available, the identified metabolites have been listed. In this review, we have also compiled a list of the bacterial and fungal phyla that have been isolated as endophytes as well as the plant families from which the endophytes were isolated. The majority of endophytes that produce antibiotic metabolites belong to either phylum Ascomycota (kingdom Fungi) or to phylum Actinobacteria (superkingdom Bacteria). Endophytes that produce antibiotic metabolites were predominant, but certainly not exclusively, from the plant families Fabaceae, Lamiaceae, Asteraceae and Araceae, suggesting that endophytes that produce antimicrobial metabolites are not restricted to a reduced number of plant families. The locations where plants (and inhabiting endophytes) were collected from, according to the literature, have been mapped, showing that endophytes that produce bioactive compounds have been collected globally. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Biological control of phytopathogenic fungi by endophytic actinomycetes isolated from maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Francisco Gheler Costa

    2013-12-01

    Full Text Available This work aimed a survey on the biodiversity of maize endophytic actinomycete, and an evaluation of their potential to control the phytopathogenic fungi. From several regions of São Paulo state, 40 strains were isolated from the healthy maize plants. The identification of these strains, based on morphological properties and fatty acid methyl ester (FAME profile showed that most of them belonged to the Streptomyces genus. These isolates were first screened for the growth inhibition of phytopathogenic fungi and results showed that all the isolate were able to inhibit the development of at least one tested pathogen. Two selected isolates were then evaluated for the control of P. aphanidermatum in cucumber (Cucumis sativa L. under greenhouse conditions. Isolate 16R3B was able to reduce up to 71% damping-off incidence whereas isolate 14F1D/2 reduced the disease incidence by 36%. Damping- off control in cucumber, mainly for the isolate 16R3B, suggested for its use in greenhouse cucumber producing fields and to be tested in field trials.

  1. Fungal endophytes: modifiers of plant disease.

    Science.gov (United States)

    Busby, Posy E; Ridout, Mary; Newcombe, George

    2016-04-01

    Many recent studies have demonstrated that non-pathogenic fungi within plant microbiomes, i.e., endophytes ("endo" = within, "phyte" = plant), can significantly modify the expression of host plant disease. The rapid pace of advancement in endophyte ecology warrants a pause to synthesize our understanding of endophyte disease modification and to discuss future research directions. We reviewed recent literature on fungal endophyte disease modification, and here report on several emergent themes: (1) Fungal endophyte effects on plant disease span the full spectrum from pathogen antagonism to pathogen facilitation, with pathogen antagonism most commonly reported. (2) Agricultural plant pathosystems are the focus of research on endophyte disease modification. (3) A taxonomically diverse group of fungal endophytes can influence plant disease severity. And (4) Fungal endophyte effects on plant disease severity are context-dependent. Our review highlights the importance of fungal endophytes for plant disease across a broad range of plant pathosystems, yet simultaneously reveals that complexity within plant microbiomes presents a significant challenge to disentangling the biotic environmental factors affecting plant disease severity. Manipulative studies integrating eco-evolutionary approaches with emerging molecular tools will be poised to elucidate the functional importance of endophytes in natural plant pathosystems that are fundamental to biodiversity and conservation.

  2. Differential methods of localisation of fungal endophytes in the seagrasses

    Directory of Open Access Journals (Sweden)

    S. Raja

    2016-07-01

    Full Text Available Sections of three seagrass species (Halophila ovalis, Cymodocea serrulata and Halodule pinifolia were assessed for endophytes based on differential staining using light and fluorescence microscopy method. Acridine orange and aniline blue detected endophytic fungi in 20% and 10% of the segments, respectively, whereas lactophenol cotton blue was more sensitive to detect the fungal hyphae in 70% of the segments. Hyphae were the principal fungal structures generally observed under the cuticle, within the epidermal cells, mesophyll (Parenchyma cells and occasionally within the vascular tissue that varied in type, size and location within the leaf tissue. Present study also recorded the sporulation for the first time from the seagrass endophytes. Successfully amplified products of the ITS region of endophytic fungal DNA, directly from seagrass tissue and also from culture-dependent fungal DNA clearly depicted the presence of endophytic fungi in H. ovalis with two banding patterns (903 and 1381 bp confirming the presence of two dominant fungal genera. The fingerprinting of endophytic fungal community within the seagrass tissue was assessed using denaturing gradient gel electrophoresis (DGGE that derived with multiple bands that clarified the presence of more than one taxon within the seagrass tissue.

  3. Fungal endophytes for sustainable crop production.

    Science.gov (United States)

    Lugtenberg, Ben J J; Caradus, John R; Johnson, Linda J

    2016-12-01

    This minireview highlights the importance of endophytic fungi for sustainable agriculture and horticulture production. Fungal endophytes play a key role in habitat adaptation of plants resulting in improved plant performance and plant protection against biotic and abiotic stresses. They encode a vast variety of novel secondary metabolites including volatile organic compounds. In addition to protecting plants against pathogens and pests, selected fungal endophytes have been used to remove animal toxicities associated with fungal endophytes in temperate grasses, to create corn and rice plants that are tolerant to a range of biotic and abiotic stresses, and for improved management of post-harvest control. We argue that practices used in plant breeding, seed treatments and agriculture, often caused by poor knowledge of the importance of fungal endophytes, are among the reasons for the loss of fungal endophyte diversity in domesticated plants and also accounts for the reduced effectiveness of some endophyte strains to confer plant benefits. We provide recommendations on how to mitigate against these negative impacts in modern agriculture. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Antifungal and antibacterial activity of endophytic penicillium species isolated from salvadora species

    International Nuclear Information System (INIS)

    Korejo, F.; Shafique, H.A.; Haque, S.E.; Ali, S.A.

    2014-01-01

    Salvadora persica and S. S.oleoides are facultative holophytic plants, well known as miswak, are traditionally used to ensure oral hygiene among Muslim people in Asian and African counties. Species of Salvadora have a number of proven pharmacological importance. Besides, terrestrial fungi endophytic fungi are also gaining importance for the isolation of bioactive compounds. In this study 74 samples (root, shoot and leaves) from S. persica and S. oleoides were examined for endophytic fungi, 22 samples showed presence of Penicillium spp., 48 were found positive for aspergilli, whereas 10 samples showed infection of Fusarium solani, 4 were found infected with Macrophomina phaseolina and one with Rhizoctonia solani. Most of the Penicillium isolated were identified as P. restrictum, P. citrinum and P. canescens. In dual culture plate assay out of four Penicillium isolates tested, P. citrinum and one isolate of P. restrictum caused growth inhibition of all four test root rotting fungi, Fusarium solani, F. oxysporum, Macrophomina phaseolina and Rhizoctonia solani. Culture filtrates of Penicillium spp., were also evaluated against four common laboratory bacteria namely Bacillus subtilis, Staphylococcus aureus, Salmonella typhimurium and Escherichia coli and above mentioned root rotting fungi. Culture filtrates of endophytic Penicillium spp., also showed significant antibacterial and antifungal activity. Secondary metabolites of endophytic Penicillium spp., offer an exciting area of research for the discovery of novel antimicrobial compounds. (author)

  5. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na + /K + homeostasis under salt stress conditions

    KAUST Repository

    Abdelaziz, Mohamed Ewis; Kim, Dongjin; Ali, Shawkat; Fedoroff, Nina V.; Al-Babili, Salim

    2017-01-01

    The mutualistic, endophytic fungus Piriformospora indica has been shown to confer biotic and abiotic stress tolerance to host plants. In this study, we investigated the impact of P. indica on the growth of Arabidopsis plants under normal and salt

  6. Genetic Diversity of Colletotrichum spp. an Endophytic Fungi in a Medicinal Plant, Brazilian Pepper Tree

    Science.gov (United States)

    Lima, J. S.; Figueiredo, J. G.; Gomes, R. G.; Stringari, D.; Goulin, E. H.; Adamoski, D.; Kava-Cordeiro, V.; Galli-Terasawa, L. V.; Glienke, C.

    2012-01-01

    In this study, we reported thirty-nine endophytic fungi identified as Colletotrichum spp. associated with Brazilian pepper tree or aroeira (Schinus terebinthifolius Raddi. Anacardiaceae) in Paraná state, Brazil. These endophytes were identified by morphological and molecular methods, using PCR taxon-specific with CaInt/ITS4, CgInt/ITS4, and Col1/ITS4 primers, which amplify specific bands in C. acutatum, C. gloeosporioides lato sensu, and Colletotrichum boninensis, respectively, and by DNA sequence analysis of the nrDNA internal transcribed spacer region (ITS1, 5.8S, ITS2). We also assayed the presence of dsRNA particles in Colletotrichum spp. isolates. Combining both morphological characters and molecular data, we identified the species C. gloeosporioides, C. boninense, and C. simmondsii. However, we found a high genetic variability intraspecific in C. gloeosporioides which suggests the existence of several other species. Bands of double-stranded RNA (dsRNA) were detected in three of thirty-nine isolates. Identity of these bands was confirmed by RNAse, DNAse, and S1 nuclease treatments for the isolates LGMF633, LGMF726, and LGMF729. This is the first study reporting these particles of dsRNA in C. gloeosporioides. PMID:23724319

  7. Dynamic preferential allocation to arbuscular mycorrhizal fungi explains fungal succession and coexistence.

    Science.gov (United States)

    Bachelot, Benedicte; Lee, Charlotte T

    2018-02-01

    Evidence accumulates about the role of arbuscular mycorrhizal (AM) fungi in shaping plant communities, but little is known about the factors determining the biomass and coexistence of several types of AM fungi in a plant community. Here, using a consumer-resource framework that treats the relationship between plants and fungi as simultaneous, reciprocal exploitation, we investigated what patterns of dynamic preferential plant carbon allocation to empirically-defined fungal types (on-going partner choice) would be optimal for plants, and how these patterns depend on successional dynamics. We found that ruderal AM fungi can dominate under low steady-state nutrient availability, and competitor AM fungi can dominate at higher steady-state nutrient availability; these are conditions characteristic of early and late succession, respectively. We also found that dynamic preferential allocation alone can maintain a diversity of mutualists, suggesting that on-going partner choice is a new coexistence mechanism for mutualists. Our model can therefore explain both mutualist coexistence and successional strategy, providing a powerful tool to derive testable predictions. © 2017 by the Ecological Society of America.

  8. Influence of Culturing Conditions on Bioprospecting and the Antimicrobial Potential of Endophytic Fungi from Schinus terebinthifolius.

    Science.gov (United States)

    Tonial, Fabiana; Maia, Beatriz H L N S; Gomes-Figueiredo, Josiane A; Sobottka, Andrea M; Bertol, Charise D; Nepel, Angelita; Savi, Daiani C; Vicente, Vânia A; Gomes, Renata R; Glienke, Chirlei

    2016-02-01

    In this study, we analyzed the antimicrobial activity of extracts harvested from 17 endophytic fungi isolated from the medicinal plant Schinus terebinthifolius. Morphological and molecular analyses indicated that these fungal species belonged to the genera Alternaria, Bjerkandera, Colletotrichum, Diaporthe, Penicillium, and Xylaria. Of the endophytes analyzed, 64.7 % produced antimicrobial compounds under at least one of the fermentation conditions tested. Nine isolates produced compounds that inhibited growth of Staphylococcus aureus, four produced compounds that inhibited Candida albicans, and two that inhibited Pseudomonas aeruginosa. The fermentation conditions of the following endophytes were optimized: Alternaria sp. Sect. Alternata-LGMF626, Xylaria sp.-LGMF673, and Bjerkandera sp.-LGMF713. Specifically, the carbon and nitrogen sources, initial pH, temperature, and length of incubation were varied. In general, production of antimicrobial compounds was greatest when galactose was used as a carbon source, and acidification of the growth medium enhanced the production of compounds that inhibited C. albicans. Upon large-scale fermentation, Alternaria sp. Sect. Alternata-LGMF626 produced an extract containing two fractions that were active against methicillin-resistant S. aureus. One of the extracts exhibited high activity (minimum inhibitory concentration of 18.52 µg/mL), and the other exhibited moderate activity (minimum inhibitory concentration of 55.55 µg/mL). The compounds E-2-hexyl-cinnamaldehyde and two compounds of the pyrrolopyrazine alkaloids class were identified in the active fractions by gas chromatography-mass spectrometry.

  9. Isolation and Molecular Identification of Endophytic Bacteria From Rambutan Fruits (Nephelium lappaceum L. Cultivar Binjai

    Directory of Open Access Journals (Sweden)

    Sony Suhandono

    2016-01-01

    Full Text Available Interactions between plants and endophytic bacteria are mutualistic. Plant provides nutrient for bacteria, and bacteria will protect the plant from pathogen, help the phytohormone synthesis and nitrogen fixation, and also increase absorption of minerals. These bacteria called plant growth-promoting bacteria. The aim for this study is to identify endophytic bacteria on rambutan (Nephelium lappaceum L. cultivar Binjai with 16S rRNA. Sequencing results showed that the bacteria is derived from genus Corynebacterium, Bacillus, Chryseobacterium, Staphylococcus and Curtobacterium, which suspected play a role as plant growth-promoting bacteria.

  10. Exploitation of endophytic fungus as a potential source of biofuel

    Directory of Open Access Journals (Sweden)

    Nawed Anjum

    2016-06-01

    Full Text Available Biofuel demand is unquestionable in order to reduce greenhouse gaseous emission which can lead to climatic changes and global warming effect. Finding sufficient supply of clean energy for the upcoming is one of the society’s most daunting challenges and is directly linked with global stability, economic prosperity and quality of life. Endophytic microbes reside in the healthy part of the plant without causing any symptoms of disease. It is well known that the endophytic microbes produces wide variety of bioactive compound having, antibacterial, antifungal, antiviral, antitumor, antioxidant, antiinflammatory, immunosuppressive drugs, and volatile organic compounds having similarity with conventional diesel fuel. Now the endophytic fungi, have also been known to possess a suitable lipid matrix at high concentrations and volatile organic compounds having similarity with conventional diesel fuel that make them promising sources for next generation biofuels. This would be more efficient and having lesser number of biosynthetic steps in production, can be brought to immediate use in the existing internal combustion engines without taking about any major modification in automobile design. The present article therefore aims to review the current status of research in the field of alternative source of energy emphasizing endophytic fungi as a source of biofuel precursor, in order to encourage and generate interest among research groups across India and the world for initiating and undertaking more enthusiastic and intensive research activity on endophytic fungi from the Indian subcontinent having the potential to make fuel-related hydrocarbons.

  11. Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants.

    Directory of Open Access Journals (Sweden)

    Sarah J Higginbotham

    Full Text Available Fungal endophytes--fungi that grow within plant tissues without causing immediate signs of disease--are abundant and diverse producers of bioactive secondary metabolites. Endophytes associated with leaves of tropical plants are an especially exciting and relatively untapped source of novel compounds. However, one major challenge in drug discovery lies in developing strategies to efficiently recover highly bioactive strains. As part of a 15-year drug discovery project, foliar endophytes were isolated from 3198 plant samples (51 orders, 105 families and at least 232 genera of angiosperms and ferns collected in nine geographically distinct regions of Panama. Extracts from culture supernatants of >2700 isolates were tested for bioactivity (in vitro percent inhibition of growth, % IG against a human breast cancer cell line (MCF-7 and the causative agents of malaria, leishmaniasis, and Chagas' disease. Overall, 32.7% of endophyte isolates were highly active in at least one bioassay, including representatives of diverse fungal lineages, host lineages, and collection sites. Up to 17% of isolates tested per assay were highly active. Most bioactive strains were active in only one assay. Fungal lineages differed in the incidence and degree of bioactivity, as did fungi from particular plant taxa, and greater bioactivity was observed in endophytes isolated from plants in cloud forests vs. lowland forests. Our results suggest that using host taxonomy and forest type to tailor plant collections, and selecting endophytes from specific orders or families for cultivation, will markedly increase the efficiency and efficacy of discovering bioactive metabolites for particular pharmaceutical targets.

  12. Rapid Discovery and Functional Characterization of Terpene Synthases from Four Endophytic Xylariaceae.

    Directory of Open Access Journals (Sweden)

    Weihua Wu

    Full Text Available Endophytic fungi are ubiquitous plant endosymbionts that establish complex and poorly understood relationships with their host organisms. Many endophytic fungi are known to produce a wide spectrum of volatile organic compounds (VOCs with potential energy applications, which have been described as "mycodiesel". Many of these mycodiesel hydrocarbons are terpenes, a chemically diverse class of compounds produced by many plants, fungi, and bacteria. Due to their high energy densities, terpenes, such as pinene and bisabolene, are actively being investigated as potential "drop-in" biofuels for replacing diesel and aviation fuel. In this study, we rapidly discovered and characterized 26 terpene synthases (TPSs derived from four endophytic fungi known to produce mycodiesel hydrocarbons. The TPS genes were expressed in an E. coli strain harboring a heterologous mevalonate pathway designed to enhance terpene production, and their product profiles were determined using Solid Phase Micro-Extraction (SPME and GC-MS. Out of the 26 TPS's profiled, 12 TPS's were functional, with the majority of them exhibiting both monoterpene and sesquiterpene synthase activity.

  13. Mutualistic fungi control crop diversity in fungus-growing ants

    DEFF Research Database (Denmark)

    Poulsen, Michael; Boomsma, Jacobus J

    2005-01-01

    Leaf-cutting ants rear clonal fungi for food and transmit the fungi from mother to daughter colonies so that symbiont mixing and conflict, which result from competition between genetically different clones, are avoided. Here we show that despite millions of years of predominantly vertical...... transmission, the domesticated fungi actively reject mycelial fragments from neighboring colonies, and that the strength of these reactions are in proportion to the overall genetic difference between these symbionts. Fungal incompatibility compounds remain intact during ant digestion, so that fecal droplets...

  14. Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw

    Directory of Open Access Journals (Sweden)

    Ravely Casarotti Orlandelli

    2015-06-01

    Full Text Available Endophytes are being considered for use in biological control, and the enzymes they secrete might facilitate their initial colonization of internal plant tissues and direct interactions with microbial pathogens. Microbial proteases are also biotechnologically important products employed in bioremediation processes, cosmetics, and the pharmaceutical, photographic and food industries. In the present study, we evaluated antagonism and competitive interactions between 98 fungal endophytes and Alternaria alternata, Colletotrichum sp., Phyllosticta citricarpa and Moniliophthora perniciosa. We also examined the proteolytic activities of endophytes grown in liquid medium and conducted cup plate assays. The results showed that certain strains in the assemblage of P. hispidum endophytes are important sources of antifungal properties, primarily Lasiodiplodia theobromae JF766989, which reduced phytopathogen growth by approximately 54 to 65%. We detected 28 endophytes producing enzymatic halos of up to 16.40 mm in diameter. The results obtained in the present study highlight the proteolytic activity of the endophytes Phoma herbarum JF766995 and Schizophyllum commune JF766994, which presented the highest enzymatic halo diameters under at least one culture condition tested. The increased activities of certain isolates in the presence of rice or soy flour as a substrate (with halos up to 17.67 mm in diameter suggests that these endophytes have the potential to produce enzymes using agricultural wastes.

  15. Specificity of the mutualistic association between actinomycete bacteria and two sympatric species of Acromyrmex leaf-cutting ants

    DEFF Research Database (Denmark)

    Poulsen, M; Cafaro, M; Boomsma, J J

    2005-01-01

    Acromyrmex leaf-cutting ants maintain two highly specialized, vertically transmitted mutualistic ectosymbionts: basidiomycete fungi that are cultivated for food in underground gardens and actinomycete Pseudonocardia bacteria that are reared on the cuticle to produce antibiotics that suppress...

  16. Antagonistic Bioactivity of Endophytic Actinomycetes Isolated from Medicinal Plants

    Directory of Open Access Journals (Sweden)

    M. Gangwar

    2011-10-01

    Full Text Available Endophytic actinomycetes are promising biocontrol agents for use in agriculture and have been isolated from various plant species. In the present study, 40 endophytic actinomycetes were isolated from roots, stems and leaves of three medicinal plants viz. Aloe vera, Mentha arvensis and Ocimum sanctum. The identification revealed that the majority of the isolates were Streptomyces spp. and the rest were identified as Saccharopolyspora spp., Micromonospora spp. and Actinopolyspora spp. The dual tests revealed that nine endophytic actinomycete isolates displayed a wide spectrum activity against nine fungal phytopathogens. Out of 8 isolates, 90% inhibited the growth of at least one or more phytopathogenic fungi and Saccharopolyspora 0-9 (Out of 8 isolates, 90% inhibited the growth of at least one or more phytopathogenic fungi and Saccharopolyspora 0-9 exhibited antagonistic activity against Aspergillus niger, Aspergillus flavus, Alternaria brassicicola, Botrytis cinerea, Penicillium digitatum, Fusarium oxysporum, Penicillium pinophilum, Phytophthora dresclea and Colletotrichum falcatum.

  17. Phytohormones in plant-endophyte interactions: investigating the role of these compounds in the recruitment of tomato root fungal endophytes

    DEFF Research Database (Denmark)

    Manzotti, Andrea; Jørgensen, Hans Jørgen Lyngs; Collinge, David B.

    in this interaction, but little is known about the specific way by which they influence the recruitment and the colonization of the host tissues. The aim of the current project is to go deeper into the role of these signalling compounds in plant-endophyte interactions. The isolation of endophytic fungi from tomato......-colonization frequency appears to be influenced by the presence/absence of specific phytohormones. In order to obtain a deeper understanding of the role of these compounds in the plant-endophyte interaction, the selected isolates are currently being screened using confocal microscopy and qPCR in order to find candidates...... whose colonization rate is critically affected by the phytohormones of interest. A transcriptomic analysis of tomato plants inoculated with the isolates selected from the screening will provide further clues as to which physiological mechanisms, associated with endophyte recruitment, are influenced...

  18. Production of destruxins from Metarhizium spp. fungi in artificial medium and in endophytically colonized cowpea plants.

    Directory of Open Access Journals (Sweden)

    Patrícia S Golo

    Full Text Available Destruxins (DTXs are cyclic depsipeptides produced by many Metarhizium isolates that have long been assumed to contribute to virulence of these entomopathogenic fungi. We evaluated the virulence of 20 Metarhizium isolates against insect larvae and measured the concentration of DTXs A, B, and E produced by these same isolates in submerged (shaken cultures. Eight of the isolates (ARSEF 324, 724, 760, 1448, 1882, 1883, 3479, and 3918 did not produce DTXs A, B, or E during the five days of submerged culture. DTXs were first detected in culture medium at 2-3 days in submerged culture. Galleria mellonella and Tenebrio molitor showed considerable variation in their susceptibility to the Metarhizium isolates. The concentration of DTXs produced in vitro did not correlate with percent or speed of insect kill. We established endophytic associations of M. robertsii and M. acridum isolates in Vigna unguiculata (cowpeas and Cucumis sativus (cucumber plants. DTXs were detected in cowpeas colonized by M. robertsii ARSEF 2575 12 days after fungal inoculation, but DTXs were not detected in cucumber. This is the first instance of DTXs detected in plants endophytically colonized by M. robertsii. This finding has implications for new approaches to fungus-based biological control of pest arthropods.

  19. Ethanol and methanol can improve huperzine A production from endophytic Colletotrichum gloeosporioides ES026.

    Science.gov (United States)

    Zhao, Xin-Mei; Wang, Zhang-Qian; Shu, Shao-Hua; Wang, Wen-Juan; Xu, Hai-Jie; Ahn, Young-Joon; Wang, Mo; Hu, Xuebo

    2013-01-01

    Huperzine A (HupA) is a plant alkaloid that is of great interest as a therapeutic candidate for the treatment of Alzheimer's disease. However, the current production of HupA from plants in large quantity is unsustainable because the plant resource is scarce and the content of HupA in plants is extremely low. Surprisingly, this compound was recently found to be produced by various endophytic fungi, which are much more controllable than the plants due to simpler genetics and ease of manipulation. However, it might be due to the innate properties of endophytic symbiosis, that production of this chemical in large quantity from endophytes has not yet been put into practice. Endophytic Colletotrichum gloeosporioides ES026 was previously isolated from a HupA producing plant and the fungi also proved to produce HupA. In this study, various fermentation conditions were tried to optimize the production of HupA from C. gloeosporioides ES026. Optimization of these parameters resulted in a 25.58% increase in HupA yield. Potato extracts supplemented with glucose or sucrose but not maltose facilitated HupA producing from the fungi. A final concentration of 0.5-2% ethanol stimulated the growth of fungi while methanol with the same treatment slightly inhibited the growth. However, both methanol and ethanol greatly increased the HupA production with the highest yield of HupA (51.89% increment) coming from ethanol treatment. Further analysis showed that both ethanol and methanol were strong inducers of HupA production, while ethanol was partially used as a carbon source during fermentation. It was noticed that the color of that ethanol treated mycelia gradually became dark while methanol treated ones stayed grey during fermentation. The present study sheds light on the importance of optimizing the fermentation process, which, combined with effective inducers, maximizes production of chemicals of important economic interest from endophytic fungi.

  20. Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology.

    Science.gov (United States)

    Kusari, Souvik; Singh, Satpal; Jayabaskaran, Chelliah

    2014-06-01

    Taxol® (generic name paclitaxel) represents one of the most clinically valuable natural products known to mankind in the recent past. More than two decades have elapsed since the notable discovery of the first Taxol®-producing endophytic fungus, which was followed by a plethora of reports on other endophytes possessing similar biosynthetic potential. However, industrial-scale Taxol® production using fungal endophytes, although seemingly promising, has not seen the light of the day. In this opinion article, we embark on the current state of knowledge on Taxol® biosynthesis focusing on the chemical ecology of its producers, and ask whether it is actually possible to produce Taxol® using endophyte biotechnology. The key problems that have prevented the exploitation of potent endophytic fungi by industrial bioprocesses for sustained production of Taxol® are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. and Antioxidant Activity of Endophytic Fungi from Mahogoni Plant (Swietenia macrophylla King

    Directory of Open Access Journals (Sweden)

    Edward J Dompeipen

    2015-06-01

    Full Text Available Diabetes mellitus is a degenerative disease characterized by hyperglycemia due to insulin insulin deficiency either absoluteor relative. This study was conducted to isolate endophytic fungi from plant twigs mahogany (Swietenia macrophylla King which active as antidiabetic and antioxidant. Antidiabetic activity conducted by using the α-glucosidase inhibitory and antioxidant activity using free radical reduction method with reagent 2.2-diphenyl-1-picrylhydrazyl (DPPH. Isolation of microbes conducted in the media Corn Meal Malt Agar (CMMA and Potato Dextrose Agar (PDA which 7 isolates of fungus in total. Inhibitory activity against α-glucosidase to extract the filtrate and biomass of the isolates A.Sm.2F (72.59 and 92.22%, A.Sm.3F (81.87 and 79.37%, B.Sm.1F (63.40 and 98.84%, B.Sm.2F (65.60 and 62.72%, B.Sm.3F (93.91 and 51.48%, B.Sm.4F (87.48 and 74.64% thus has potential as an antidiabetic activity. B.Sm.1F was the only isolates active as antioxidants with IC50 of 84.41.

  2. Distribution of the endophytic fungi community in leaves of Bauhinia brevipes (Fabaceae Distribuição da comunidade de fungos endofíticos em folhas de Bauhinia brevipes (Fabaceae

    Directory of Open Access Journals (Sweden)

    Mariana Patrícia Amorim Hilarino

    2011-12-01

    Full Text Available Endophytic fungi represent large, yet unexplored components of biodiversity. This work evaluated the richness and the distribution of endophytes in the leaves of Bauhinia brevipes (Fabaceae. A total of 1110 colonies were recovered from the samples and grouped by their morphological traits into 126 taxa. The total number of taxa according to leaf development was: 102 in mature leaves, 93 in recently expanded leaves and 79 for unfolded leaves. The major endophyte genera were Phomopsis, followed by Dothiorella, Pestalotiopsis and Acremonium. The richness and the isolate numbers of endophytes were not statistically affected by leaf region. However, some taxa were leaf-age specific; six were isolated only from unfolded leaves, nine from recently expanded leaves and 17 were exclusively found in mature leaves. The composition of endophytes varied with leaf region; the similarities (Jaccard's Index among the leaf regions of different leaf ages ranged from 0.36 to 0.46, indicating a high spatial variation in the community of endophytic fungi inside the leaves. The high richness of endophytes in this host plant highlights a significant contribution of fungi to tropical biodiversity and the need for further research in this area.Fungos endofíticos representam um grande e ainda pouco explorado componente da biodiversidade. O trabalho avaliou a riqueza e a distribuição endofítica nas folhas de Bauhinia brevipes (Fabaceae. Foram obtidas 1110 colônias que foram agrupadas, por suas características morfológicas em 126 táxons. O número total de táxons por estágio foliar foi: 102 em folhas maduras, 93 em folhas recém-expandidas e 79 em não expandidas. O principal gênero de endofítico encontrado foi Phomopsis, seguido por Dothiorella, Pestalotiopsis e Acremonium. A riqueza e o número de isolados não foram estatisticamente influenciadas pela região foliar. Contudo, alguns táxons foram específicas de um estágio foliar; seis foram isoladas apenas

  3. Impacts of farm management upon arbuscular mycorrhizal fungi and production and utilization of inoculum

    Science.gov (United States)

    Arbuscular mycorrhizal [AM] fungi are naturally-occurring soil fungi that form a mutualistic symbiosis with the roots of most crop plants. The plant benefits through increased: nutrient uptake from the soil, disease resistance, and water stress resistance. Optimal utilization of AM fungi is essen...

  4. Endophytic l-asparaginase-producing fungi from plants associated with anticancer properties

    Directory of Open Access Journals (Sweden)

    YiingYng Chow

    2015-11-01

    Full Text Available Endophytes are novel sources of natural bioactive compounds. This study seeks endophytes that produce the anticancer enzyme l-asparaginase, to harness their potential for mass production. Four plants with anticancer properties; Cymbopogon citratus, Murraya koenigii, Oldenlandia diffusa and Pereskia bleo, were selected as host plants. l-Asparaginase-producing endophytes were detected by the formation of pink zones on agar, a result of hydrolyzes of asparagine into aspartic acid and ammonia that converts the phenol red dye indicator from yellow (acidic condition to pink (alkaline condition. The anticancer enzyme asparaginase was further quantified via Nesslerization. Results revealed that a total of 89 morphotypes were isolated; mostly from P. bleo (40, followed by O. diffusa (25, C. citratus (14 and M. koenigii (10. Only 25 of these morphotypes produced l-asparaginase, mostly from P. bleo and their asparaginase activities were between 0.0069 and 0.025 μM mL−1 min−1. l-Asparaginase producing isolates were identified as probable species of the genus Colletotrichum, Fusarium, Phoma and Penicillium. Studies here revealed that endophytes are good alternative sources for l-asparaginase production and they can be sourced from anticancer plants, particularly P. bleo.

  5. EVALUATION OF THE DEVELOPMENT OF MAIZE PLANTS (Zea mays L.) AFTER COLONIZATION BY ENDOPHYTE FUNGUS Fusarium verticillioides

    OpenAIRE

    Gomes, Ulisses de Deus; Orlandelli, Ravely Casarotti; Santos, Mariana Sanches; Polonio, Julio Cesar; Pamphile, João Alencar; Rubin Filho, Celso João

    2013-01-01

    Endophyte fungi inhabit the inside of plants without causing any damage. Benefits from endophyte-plant interactivities include vegetal growth and the plant´s defense against insects and other pathogens. Some endophytes, however, may act as latent pathogens which cause physiological changes and disease symptoms in the host. Current analysis evaluates the development of maize plants colonizer (treatment) and non-colonized (control) with the frequently found endophyte Fusarium verticillioides an...

  6. Aboveground endophyte affects root volatile emission and host plant selection of a belowground insect.

    Science.gov (United States)

    Rostás, Michael; Cripps, Michael G; Silcock, Patrick

    2015-02-01

    Plants emit specific blends of volatile organic compounds (VOCs) that serve as multitrophic, multifunctional signals. Fungi colonizing aboveground (AG) or belowground (BG) plant structures can modify VOC patterns, thereby altering the information content for AG insects. Whether AG microbes affect the emission of root volatiles and thus influence soil insect behaviour is unknown. The endophytic fungus Neotyphodium uncinatum colonizes the aerial parts of the grass hybrid Festuca pratensis × Lolium perenne and is responsible for the presence of insect-toxic loline alkaloids in shoots and roots. We investigated whether endophyte symbiosis had an effect on the volatile emission of grass roots and if the root herbivore Costelytra zealandica was able to recognize endophyte-infected plants by olfaction. In BG olfactometer assays, larvae of C. zealandica were more strongly attracted to roots of uninfected than endophyte-harbouring grasses. Combined gas chromatography-mass spectrometry and proton transfer reaction-mass spectrometry revealed that endophyte-infected roots emitted less VOCs and more CO2. Our results demonstrate that symbiotic fungi in plants may influence soil insect distribution by changing their behaviour towards root volatiles. The well-known defensive mutualism between grasses and Neotyphodium endophytes could thus go beyond bioactive alkaloids and also confer protection by being chemically less apparent for soil herbivores.

  7. Ethanol and methanol can improve huperzine A production from endophytic Colletotrichum gloeosporioides ES026.

    Directory of Open Access Journals (Sweden)

    Xin-Mei Zhao

    Full Text Available Huperzine A (HupA is a plant alkaloid that is of great interest as a therapeutic candidate for the treatment of Alzheimer's disease. However, the current production of HupA from plants in large quantity is unsustainable because the plant resource is scarce and the content of HupA in plants is extremely low. Surprisingly, this compound was recently found to be produced by various endophytic fungi, which are much more controllable than the plants due to simpler genetics and ease of manipulation. However, it might be due to the innate properties of endophytic symbiosis, that production of this chemical in large quantity from endophytes has not yet been put into practice. Endophytic Colletotrichum gloeosporioides ES026 was previously isolated from a HupA producing plant and the fungi also proved to produce HupA. In this study, various fermentation conditions were tried to optimize the production of HupA from C. gloeosporioides ES026. Optimization of these parameters resulted in a 25.58% increase in HupA yield. Potato extracts supplemented with glucose or sucrose but not maltose facilitated HupA producing from the fungi. A final concentration of 0.5-2% ethanol stimulated the growth of fungi while methanol with the same treatment slightly inhibited the growth. However, both methanol and ethanol greatly increased the HupA production with the highest yield of HupA (51.89% increment coming from ethanol treatment. Further analysis showed that both ethanol and methanol were strong inducers of HupA production, while ethanol was partially used as a carbon source during fermentation. It was noticed that the color of that ethanol treated mycelia gradually became dark while methanol treated ones stayed grey during fermentation. The present study sheds light on the importance of optimizing the fermentation process, which, combined with effective inducers, maximizes production of chemicals of important economic interest from endophytic fungi.

  8. Ant-plants and fungi: a new threeway symbiosis.

    Science.gov (United States)

    Defossez, Emmanuel; Selosse, Marc-André; Dubois, Marie-Pierre; Mondolot, Laurence; Faccio, Antonella; Djieto-Lordon, Champlain; McKey, Doyle; Blatrix, Rumsaïs

    2009-06-01

    Symbioses between plants and fungi, fungi and ants, and ants and plants all play important roles in ecosystems. Symbioses involving all three partners appear to be rare. Here, we describe a novel tripartite symbiosis in which ants and a fungus inhabit domatia of an ant-plant, and present evidence that such interactions are widespread. We investigated 139 individuals of the African ant-plant Leonardoxa africana for occurrence of fungus. Behaviour of mutualist ants toward the fungus within domatia was observed using a video camera fitted with an endoscope. Fungi were identified by sequencing a fragment of their ribosomal DNA. Fungi were always present in domatia occupied by mutualist ants but never in domatia occupied by opportunistic or parasitic ants. Ants appear to favour the propagation, removal and maintenance of the fungus. Similar fungi were associated with other ant-plants in Cameroon. All belong to the ascomycete order Chaetothyriales; those from L. africana formed a monophyletic clade. These new plant-ant-fungus associations seem to be specific, as demonstrated within Leonardoxa and as suggested by fungal phyletic identities. Such tripartite associations are widespread in African ant-plants but have long been overlooked. Taking fungal partners into account will greatly enhance our understanding of symbiotic ant-plant mutualisms.

  9. Fungal endophytes from Acer ginnala Maxim: isolation, identification and their yield of gallic acid.

    Science.gov (United States)

    Qi, F-H; Jing, T-Z; Wang, Z-X; Zhan, Y-G

    2009-07-01

    The aim of the study was to isolate the endophytic fungi from Acer ginnala and screen isolates rich in gallic acid. After epiphytic sterilization, 145 fungal endophytes were isolated from the stem, annual twig and seed of Acer ginnala. The endophytes were grouped into ten different taxa, Phomopsis sp., Neurospora sp., Phoma sp., Epicoccum sp., Penicillium sp., Alternaria sp., Fusarium sp., Trichoderma sp., Cladosporium sp. and a species of Pleosporales Incertae Sedis, by their morphological traits and ITS-rDNA sequence analysis. The content and yield of gallic acid of 141 isolates were determined by HPLC. On average, the species of Pleosporales Incertae Sedis had the highest content and yield of gallic acid (13.28 mg g(-1) DW; 119.62 mg l(-1)), while Alternaria sp. had the lowest. Of 141 fungal endophytes from A. ginnala, Phomopsis sp. isolate SX10 showed both the highest content and the highest yield of gallic acid (29.25 mg g(-1) DW; 200.47 mg l(-1)). Endophytic fungi isolated from A. ginnala may be used as potential producers of gallic acid and other compounds with biological activities, or functioned as elicitors to produce natural compounds.

  10. Evolutionary origins and diversification of proteobacterial mutualists.

    Science.gov (United States)

    Sachs, Joel L; Skophammer, Ryan G; Bansal, Nidhanjali; Stajich, Jason E

    2014-01-22

    Mutualistic bacteria infect most eukaryotic species in nearly every biome. Nonetheless, two dilemmas remain unresolved about bacterial-eukaryote mutualisms: how do mutualist phenotypes originate in bacterial lineages and to what degree do mutualists traits drive or hinder bacterial diversification? Here, we reconstructed the phylogeny of the hyperdiverse phylum Proteobacteria to investigate the origins and evolutionary diversification of mutualistic bacterial phenotypes. Our ancestral state reconstructions (ASRs) inferred a range of 34-39 independent origins of mutualist phenotypes in Proteobacteria, revealing the surprising frequency with which host-beneficial traits have evolved in this phylum. We found proteobacterial mutualists to be more often derived from parasitic than from free-living ancestors, consistent with the untested paradigm that bacterial mutualists most often evolve from pathogens. Strikingly, we inferred that mutualists exhibit a negative net diversification rate (speciation minus extinction), which suggests that mutualism evolves primarily via transitions from other states rather than diversification within mutualist taxa. Moreover, our ASRs infer that proteobacterial mutualist lineages exhibit a paucity of reversals to parasitism or to free-living status. This evolutionary conservatism of mutualism is contrary to long-standing theory, which predicts that selection should often favour mutants in microbial mutualist populations that exploit or abandon more slowly evolving eukaryotic hosts.

  11. Diversity and antifungal activity of the endophytic fungi associated with the native medicinal cactus Opuntia humifusa (Cactaceae) from the United States.

    Science.gov (United States)

    Silva-Hughes, Alice F; Wedge, David E; Cantrell, Charles L; Carvalho, Camila R; Pan, Zhiqiang; Moraes, Rita M; Madoxx, Victor L; Rosa, Luiz H

    2015-06-01

    The endophytic fungal community associated with the native cactus Opuntia humifusa in the United States was investigated and its potential for providing antifungal compounds. A hundred-eight endophytic fungal isolates were obtained and identified by molecular methods into 17 different taxa of the genera Alternaria, Aureobasidium, Biscogniauxia, Cladosporium, Cryptococcus, Curvularia, Diaporthe, Epicoccum, Paraconiothyrium, Pestalotiopsis and Phoma. The most frequent species associated with O. humifusa were Alternaria sp. 3, Aureobasidium pullulans and Diaporthe sp. The fungal community of O. humifusa had a high richness and diversity; additionally, the species richness obtained indicates that the sample effort was enough to recover the diversity pattern obtained. Six extracts of endophytes showed antifungal properties and (1)H NMR analyses of the extracts of Alternaria sp. 5 Ohu 8B2, Alternaria sp. 3 Ohu 30A, Cladosporium funiculosum Ohu 17C1 and Paraconiothyrium sp. Ohu 17A indicated the presence of functional groups associated with unsaturated fatty-acid olefinic protons and fatty acid methylene and methyl protons. GC-FID analysis of these extracts confirmed the presence of a mixture of different fatty acids. The (1)H NMR analyses of Biscogniauxia mediterranea Ohu 19B extracts showed the presence of aromatic compounds. From the extract of B. mediterranea we isolated the compound 5-methylmellein that displayed moderate antifungal activity against the phytopathogenic fungi Phomopsis obscurans. Our results suggest that native medicinal cacti of the United States can live symbiotically with rich and diverse endophytic communities and may be a source of bioactive molecules, including those able to inhibit or control plant disease pathogens. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. The secret world of endophytes in perspective

    Science.gov (United States)

    This work in Fungal Ecology is focused on the group of plant symbionts that have been termed collectively ‘microbial endophytes’. Broadly, microbial endophytes are commonly considered to be any of a diverse group of bacteria, cyanobacteria, or fungi that colonize internal tissues of plants. After ...

  13. Banana Musa tissue culture plants enhanced by endophytic fungi

    African Journals Online (AJOL)

    Mo

    Merging biotechnology with biological control: Banana Musa tissue culture plants enhanced by endophytic .... While working in the laminar flow cabinet, sterile filter papers were placed in ..... University of Bonn, Bonn, Germany. Niere, B., 2001.

  14. Endophytic Fungal Diversity in Medicinal Plants of Western Ghats, India

    Directory of Open Access Journals (Sweden)

    Monnanda Somaiah Nalini

    2014-01-01

    Full Text Available Endophytes constitute an important component of microbial diversity, and in the present investigation, seven plant species with rich ethnobotanical uses representing six families were analyzed for the presence of endophytic fungi from their natural habitats during monsoon (May/June and winter (November/December seasons of 2007. Fungal endophytes were isolated from healthy plant parts such as stem, root, rhizome, and inflorescence employing standard isolation methods. One thousand five hundred and twenty-nine fungal isolates were obtained from 5200 fragments. Stem fragments harbored more endophytes (80.37% than roots (19.22%. 31 fungal taxa comprised of coelomycetes (65%, hyphomycetes (32%, and ascomycetes (3%. Fusarium, Acremonium, Colletotrichum, Chaetomium, Myrothecium, Phomopsis, and Pestalotiopsis spp. were commonly isolated. Diversity indices differed significantly between the seasons (P<0.001. Species richness was greater for monsoon isolations than winter. Host specificity was observed for few fungal endophytes. UPGMA cluster analysis grouped the endophytes into distinct clusters on the basis of genetic distance. This study is the first report on the diversity and host-specificity of endophytic fungal taxa were from the semi evergreen forest type in Talacauvery subcluster of Western Ghats.

  15. A New Eudesmane Sesquiterpene from Nigrospora oryzae, an Endophytic Fungus of Aquilaria sinensis

    Directory of Open Access Journals (Sweden)

    Dongli Li

    2014-07-01

    Full Text Available A new eudesmane-type sesquiterpene, 11 -hydroxy capitulatin B (1 , along with a known related sesquiterpene, capitulatin B (2, was isolated from the endophytic fungus Nigrospora oryzae A8 from Aquilaria sinensis, the only plant resource for agarwood production in China. This research demonstrates that the endophytic fungi from A. sinensis might play a role in the formation of agarwood.

  16. Induction of abiotic stress tolerance in plants by endophytic microbes.

    Science.gov (United States)

    Lata, R; Chowdhury, S; Gond, S K; White, J F

    2018-04-01

    Endophytes are micro-organisms including bacteria and fungi that survive within healthy plant tissues and promote plant growth under stress. This review focuses on the potential of endophytic microbes that induce abiotic stress tolerance in plants. How endophytes promote plant growth under stressful conditions, like drought and heat, high salinity and poor nutrient availability will be discussed. The molecular mechanisms for increasing stress tolerance in plants by endophytes include induction of plant stress genes as well as biomolecules like reactive oxygen species scavengers. This review may help in the development of biotechnological applications of endophytic microbes in plant growth promotion and crop improvement under abiotic stress conditions. Increasing human populations demand more crop yield for food security while crop production is adversely affected by abiotic stresses like drought, salinity and high temperature. Development of stress tolerance in plants is a strategy to cope with the negative effects of adverse environmental conditions. Endophytes are well recognized for plant growth promotion and production of natural compounds. The property of endophytes to induce stress tolerance in plants can be applied to increase crop yields. With this review, we intend to promote application of endophytes in biotechnology and genetic engineering for the development of stress-tolerant plants. © 2018 The Society for Applied Microbiology.

  17. Stelliosphaerols A and B, Sesquiterpene-Polyol Conjugates from an Ecuadorian Fungal Endophyte.

    Science.gov (United States)

    Forcina, Giovanni C; Castro, Amaya; Bokesch, Heidi R; Spakowicz, Daniel J; Legaspi, Michelle E; Kucera, Kaury; Villota, Stephany; Narváez-Trujillo, Alexandra; McMahon, James B; Gustafson, Kirk R; Strobel, Scott A

    2015-12-24

    Endophytic fungi are plant tissue-associated fungi that represent a rich resource of unexplored biological and chemical diversity. As part of an ongoing effort to characterize Amazon rainforest-derived endophytes, numerous fungi were isolated and cultured from plants collected in the Yasuní National Park in Ecuador. Of these samples, phylogenetic and morphological data revealed a previously undescribed fungus in the order Pleosporales that was cultured from the tropical tree Duroia hirsuta. Extracts from this fungal isolate displayed activity against Staphylococcus aureus and were thus subjected to detailed chemical studies. Two compounds with modest antibacterial activity were isolated, and their structures were elucidated using a combination of NMR spectroscopic analysis, LC-MS studies, and chemical degradation. These efforts led to the identification of stelliosphaerols A (1) and B (2), new sesquiterpene-polyol conjugates that are responsible, at least in part, for the S. aureus inhibitory activity of the fungal extract.

  18. Effects of pseudo-microgravity on symbiosis between endophyte, Neotyphodium, and its host plant, tall fescue (Festuca arundinacea)

    Science.gov (United States)

    Tomita-Yokotani, K.; Wakabayashi, K.; Hiraishi, K.; Yoshida, S.; Hashimoto, H.; Shinozaki, S.; Yamashita, M.

    Endophyte is a group of microbes that symbiotically live in plant body Endophyte provides host plant its metabolites that protect the plant from insect pests In addition to this host plants are resistive against environmental stress In general endophyte lives in seeds to seeds of the infected plants through multiple generations The infection of fungi has never been observed and their original pathway is still unknown in nature The aim of this study is to examine whether this stable symbiosis between endophytes and its host plant would be modified under pseudo-microgravity or not We also aim to observe the infection under an exotic environment in terms of gravity We found that the internal hyphae of both the incubated plant under pseudo-microgravity and the ground control became indistinct with the number of incubation days A part of the endophyte in the seed under its autolysis was suggested because the amount of fungi in the base of the shoot that was observed with the incubated plant under the ground control was far less than that in the seed before sowing Hyphae began to grow in the germinating seed after a 3-day incubation period However a lot of aggregated fungi still existed in the 3-day incubated seed under pseudo-microgravity Moreover hyphae in the 3-day incubated seed under pseudo-microgravity were more indistinctly than that under the ground control The fungi were observed in the boundary of the seed and the shoot of the 5-day incubated seed under the ground control but not under pseudo-microgravity By this observation it was suggested that

  19. Occurrence of Bacillus amyloliquefaciens as a systemic endophyte of vanilla orchids.

    Science.gov (United States)

    White, James F; Torres, Mónica S; Sullivan, Raymond F; Jabbour, Rabih E; Chen, Qiang; Tadych, Mariusz; Irizarry, Ivelisse; Bergen, Marshall S; Havkin-Frenkel, Daphna; Belanger, Faith C

    2014-11-01

    We report the occurrence of Bacillus amyloliquefaciens in vanilla orchids (Vanilla phaeantha) and cultivated hybrid vanilla (V. planifolia × V. pompona) as a systemic bacterial endophyte. We determined with light microscopy and isolations that tissues of V. phaeantha and the cultivated hybrid were infected by a bacterial endophyte and that shoot meristems and stomatal areas of stems and leaves were densely colonized. We identified the endophyte as B. amyloliquefaciens using DNA sequence data. Since additional endophyte-free plants and seed of this orchid were not available, additional studies were performed on surrogate hosts Amaranthus caudatus, Ipomoea tricolor, and I. purpurea. Plants of A. caudatus inoculated with B. amyloliquefaciens demonstrated intracellular colonization of guard cells and other epidermal cells, confirming the pattern observed in the orchids. Isolations and histological studies suggest that the bacterium may penetrate deeply into developing plant tissues in shoot meristems, forming endospores in maturing tissues. B. amyloliquefaciens produced fungal inhibitors in culture. In controlled experiments using morning glory seedlings we showed that the bacterium promoted seedling growth and reduced seedling necrosis due to pathogens. We detected the gene for phosphopantetheinyl transferase (sfp), an enzyme in the pathway for production of antifungal lipopeptides, and purified the lipopeptide "surfactin" from cultures of the bacterium. We hypothesize that B. amyloliquefaciens is a robust endophyte and defensive mutualist of vanilla orchids. Whether the symbiosis between this bacterium and its hosts can be managed to protect vanilla crops from diseases is a question that should be evaluated in future research. © 2014 Wiley Periodicals, Inc.

  20. Priming effects of the endophytic fungus Phomopsis liquidambari on soil mineral N transformations.

    Science.gov (United States)

    Chen, Yan; Ren, Cheng-Gang; Yang, Bo; Peng, Yao; Dai, Chuan-Chao

    2013-01-01

    Nitrogen (N) is a crucial nutrient for soil biota, and its cycling is determined by the organic carbon decomposing process. Some endophytic fungi are latent saprotrophs that trigger their saprotrophic metabolism to promote litter organic matter cycling as soon as the host tissue senesces or dies. However, the effects of endophytic fungi on litter and soil N dynamics in vitro have rarely been investigated. In this study, we investigated N dynamics (total and mineral N) in both litter and soil in incubations of a pure culture of an endophytic fungus Phomopsis liquidambari with litter and following soil burial of the litter. Soil enzymes and microbial communities participating in the N transformations were also investigated. A pure culture of P. liquidambari released litter NH (4) (+) -N in the initial stages (10 days) of the incubation. However, following soil burial, the presence of both P. liquidambari and soil ammonia-oxidizing bacteria (AOB) resulted in an increase in soil NO (3) (-) -N. These results indicate that the endophytic fungus P. liquidambari in vitro stimulates organic mineralization and promote NH (4) (+) -N release. Such effects triggered soil AOB-driven nitrification process.

  1. Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba.

    Science.gov (United States)

    Macías-Rubalcava, Martha L; Hernández-Bautista, Blanca E; Oropeza, Fabiola; Duarte, Georgina; González, María C; Glenn, Anthony E; Hanlin, Richard T; Anaya, Ana Luisa

    2010-10-01

    Muscodor yucatanensis, an endophytic fungus, was isolated from the leaves of Bursera simaruba (Burseraceae) in a dry, semideciduous tropical forest in the Ecological Reserve El Eden, Quintana Roo, Mexico. We tested the mixture of volatile organic compounds (VOCs) produced by M. yucatanensis for allelochemical effects against other endophytic fungi, phytopathogenic fungi and fungoids, and plants. VOCs were lethal to Guignardia mangifera, Colletotrichum sp., Phomopsis sp., Alternaria solani, Rhizoctonia sp., Phytophthora capsici, and P. parasitica, but had no effect on Fusarium oxysporum, Xylaria sp., the endophytic isolate 120, or M. yucatanensis. VOCs inhibited root elongation in amaranth, tomato, and barnyard grass, particularly those produced during the first 15 days of fungal growth. VOCs were identified by gas chromatography/mass spectrometry and included compounds not previously reported from other Muscodor species and the previously reported compounds octane, 2-methyl butyl acetate, 2-pentyl furan, caryophyllene, and aromadendrene. We also evaluated organic extracts from the culture medium and mycelium of M. yucatanensis on the same endophytes, phytopathogens, and plants. In general, extracts inhibited plants more than endophytic or phytopathogens fungi. G. mangifera was the only organism that was significantly stimulated by both extracts regardless of concentration. Compounds in both organic extracts were identified by gas chromatography/mass spectrometry. We discuss the possible allelopathic role that metabolites of M. yucatanensis play in its ecological interactions with its host plant and other organisms.

  2. Antagonistic bioactivity of endophytic strains isolated from Salvia ...

    African Journals Online (AJOL)

    The antibiotic-producing potential of endophytic populations from medical plant of Salvia miltiorrhiza was examined. A total of 63 isolates was screened against five fungal and three bacterial species for the production of antimicrobial compounds. It showed that more isolates was antagonistic to fungi than to bacteria.

  3. What Is There in Seeds? Vertically Transmitted Endophytic Resources for Sustainable Improvement in Plant Growth

    Directory of Open Access Journals (Sweden)

    Raheem Shahzad

    2018-01-01

    Full Text Available Phytobeneficial microbes, particularly endophytes, such as fungi and bacteria, are concomitant partners of plants throughout its developmental stages, including seed germination, root and stem growth, and fruiting. Endophytic microbes have been identified in plants that grow in a wide array of habitats; however, seed-borne endophytic microbes have not been fully explored yet. Seed-borne endophytes are of great interest because of their vertical transmission; their potential to produce various phytohormones, enzymes, antimicrobial compounds, and other secondary metabolites; and improve plant biomass and yield under biotic and abiotic stresses. This review addresses the current knowledge on endophytes, their ability to produce metabolites, and their influence on plant growth and stress mitigation.

  4. Fungal Endophytes as a Metabolic Fine-Tuning Regulator for Wine Grape.

    Directory of Open Access Journals (Sweden)

    Ming-Zhi Yang

    Full Text Available Endophytes proved to exert multiple effects on host plants, including growth promotion, stress resistance. However, whether endophytes have a role in metabolites shaping of grape has not been fully understood. Eight endophytic fungal strains which originally isolated from grapevines were re-inoculated to field-grown grapevines in this study, and their effects on both leaves and berries of grapevines at maturity stage were assessed, with special focused on secondary metabolites and antioxidant activities. High-density inoculation of all these endophytic fungal strains modified the physio-chemical status of grapevine to different degrees. Fungal inoculations promoted the content of reducing sugar (RS, total flavonoids (TF, total phenols (TPh, trans-resveratrol (Res and activities of phenylalanine ammonia-lyase (PAL, in both leaves and berries of grapevine. Inoculation of endophytic fungal strains, CXB-11 (Nigrospora sp. and CXC-13 (Fusarium sp. conferred greater promotion effects in grape metabolic re-shaping, compared to other used fungal strains. Additionally, inoculation of different strains of fungal endophytes led to establish different metabolites patterns of wine grape. The work implies the possibility of using endophytic fungi as fine-tuning regulator to shape the quality and character of wine grape.

  5. Analysis of cellulase and polyphenol oxidase production by southern pine beetle associated fungi

    Science.gov (United States)

    Abduvali Valiev; Zumrut B. Ogel; Dier D. Klepzig

    2009-01-01

    In this study, the production of extracellular enzymes by fungi associated with southern pine beetle was investigated for the first time. Cellulase and polyphenol oxidase production were analyzed for three beetle associated fungi. Only the mutualistic symbiont Entomocorticium sp. A was found to produce cellulases and polyphenol oxidase....

  6. Secondary metabolites from the endophytic fungus Talaromyces pinophilus.

    Science.gov (United States)

    Vinale, F; Nicoletti, R; Lacatena, F; Marra, R; Sacco, A; Lombardi, N; d'Errico, G; Digilio, M C; Lorito, M; Woo, S L

    2017-08-01

    Endophytic fungi have a great influence on plant health and growth, and are an important source of bioactive natural compounds. Organic extracts obtained from the culture filtrate of an endophytic strain of Talaromyces pinophilus isolated from strawberry tree (Arbutus unedo) were studied. Metabolomic analysis revealed the presence of three bioactive metabolites, the siderophore ferrirubin, the platelet-aggregation inhibitor herquline B and the antibiotic 3-O-methylfunicone. The latter was the major metabolite produced by this strain and displayed toxic effects against the pea aphid Acyrthosiphon pisum (Homoptera Aphidiidae). This toxicity represents an additional indication that the widespread endophytic occurrence of T. pinophilus may be related to a possible role in defensive mutualism. Moreover, the toxic activity on aphids could promote further study on 3-O-methylfunicone, or its derivatives, as an alternative to synthetic chemicals in agriculture.

  7. Inter- and intracellular colonization of Arabidopsis roots by endophytic actinobacteria and the impact of plant hormones on their antimicrobial activity

    NARCIS (Netherlands)

    Meij, van der Anne; Willemse, Joost; Schneijderberg, Martinus A.; Geurts, René; Raaijmakers, Jos M.; Wezel, van Gilles P.

    2018-01-01

    Many actinobacteria live in close association with eukaryotes such as fungi, insects, animals and plants. Plant-associated actinobacteria display (endo)symbiotic, saprophytic or pathogenic life styles, and can make up a substantial part of the endophytic community. Here, we characterised endophytic

  8. Inter- and intracellular colonization of Arabidopsis roots by endophytic actinobacteria and the impact of plant hormones on their antimicrobial activity

    NARCIS (Netherlands)

    Van der Meij, Anne; Willemse, Joost; Schneijderberg, Martinus A.; Geurts, Rene; Raaijmakers, Jos; van Wezel, Gilles

    2018-01-01

    Many actinobacteria live in close association with eukaryotes like fungi, insects, animals and plants. Plant-associated actinobacteria display (endo)symbiotic, saprophytic or pathogenic life styles, and can make up a substantial part of the endophytic community. Here, we characterised endophytic

  9. Identification of New Lactone Derivatives Isolated from Trichoderma sp., An Endophytic Fungus of Brotowali (Tinaspora crispa

    Directory of Open Access Journals (Sweden)

    ELFITA

    2014-03-01

    Full Text Available Endophytic fungi is a rich source of novel organic compounds with interesting biological activities and a high level of structural diversity. As a part of our systematic search for new bioactive lead structures and specific profiles from endophytic fungi, an endophytic fungus was isolated from roots of brotowali (Tinaspora crispa, an important medicinal plant. Colonial morphological trait and microscopic observation revealed that the endophytic fungus was Trichoderma sp. The pure fungal strain was cultivated on 7 L Potatos Dextose Broth (PDB medium under room temperature (no shaking for 8 weeks. The ethyl acetate were added to cultur medium and left overnight to stop cell growth. The culture filtrates were collected and extracted with EtOAc and then taken to evaporation. Two new lactone derivatives, 5-hydroxy-4-hydroxymethyl-2H-pyran-2-one (1 and (5-hydroxy-2-oxo-2H pyran-4-yl methyl acetate (2 were obtained from the EtOAc extracts of Trichoderma sp. Their structures were determined on the basic of spectroscopic methods including UV, IR, 1H-NMR, 13C-NMR, HMQC, and HMBC.

  10. Fungal endophyte (Epichloë festucae alters the nutrient content of Festuca rubra regardless of water availability.

    Directory of Open Access Journals (Sweden)

    Beatriz R Vázquez-de-Aldana

    Full Text Available Festuca rubra plants maintain associations with the vertically transmitted fungal endophyte Epichloë festucae. A high prevalence of infected host plants in semiarid grasslands suggests that this association could be mutualistic. We investigated if the Epichloë-endophyte affects the growth and nutrient content of F. rubra plants subjected to drought. Endophyte-infected (E+ and non-infected (E- plants of two half-sib lines (PEN and RAB were subjected to three water availability treatments. Shoot and root biomass, nutrient content, proline, phenolic compounds and fungal alkaloids were measured after the treatments. The effect of the endophyte on shoot and root biomass and dead leaves depended on the plant line. In the PEN line, E+ plants had a greater S:R ratio than E-, but the opposite occurred in RAB. In both plant lines and all water treatments, endophyte-infected plants had greater concentrations of N, P and Zn in shoots and Ca, Mg and Zn in roots than E- plants. On average, E+ plants contained in their shoots more P (62%, Zn (58% and N (19% than E- plants. While the proline in shoots increased in response to water stress, the endophyte did not affect this response. A multivariate analysis showed that endophyte status and plant line impose stronger differences in the performance of the plants than the water stress treatments. Furthermore, differences between PEN and RAB lines seemed to be greater in E- than in E+ plants, suggesting that E+ plants of both lines are more similar than those of their non-infected version. This is probably due to the endophyte producing a similar effect in both plant lines, such as the increase in N, P and Zn in shoots. The remarkable effect of the endophyte in the nutrient balance of the plants could help to explain the high prevalence of infected plants in natural grasslands.

  11. Seaweed temporal distribution in southeast coast of Peninsular Malaysia and isolation of endophytic fungi

    Science.gov (United States)

    Zainee, Nur Farah Ain; Ismail, Ahmad; Ibrahim, Nazlina; Ismail, Asmida

    2018-04-01

    Temporal study of seaweeds was carried out between on February 2015 and November 2015 at Kampung Jawa Darat and Kampung Sungai Buntu at Pengerang, Johor, Malaysia. The research objectives were to study the diversity of seaweed and to determine the presence of fungal endophyte in the seaweed. The diversity of seaweed in the sampling site was calculated by using quadrat with 25 meter line transect by 3 replication for each site. The specimen were identified and processed in laboratory and kept for reference in the Algae Herbarium, Universiti Kebangsaan Malaysia. The specimen for fungal endophyte isolation was collected randomly by choosing the complete thallus, transferred into sterile zip-lock plastic bag and kept in freezer until used. From this study, a total of 29 species have been successfully identified including 12 species of Chlorophyta, 2 species of Phaeophyta and 14 species of Rhodophyta. From February to November 2015, the number of species highly varied and a significant change in community structure was noted. Kampung Sungai Buntu shows the highest diversity throughout the study compared to Kampung Jawa Darat. Eighteen seaweed species were screened for the presence of fungal endophyte, Sargassum polycystum shows the highest number of fungal endophyte. This study documented the seaweed diversity in two sites at Pengerang, Johor that accommodates fungal endophytes.

  12. Differential endophytic colonization of sorghum plant by eight ...

    African Journals Online (AJOL)

    Virulence of the conidia before and after endophytic growth phases were assessed using Galleria mellonella larvae mortality bioassay in-vitro. All the strains of the fungi colonised the sorghum plant. The strains of I. farinosa and B. bassiana were detected in the roots, the stem and the leaves while M. anisopliae was ...

  13. Habitat destruction in mutualistic metacommunities

    NARCIS (Netherlands)

    Prakash, S.; de Roos, A.M.

    2004-01-01

    We investigate a mutualistic metacommunity where the strength of the mutualistic interaction between species is measured by theextent to which the presence of one species on a patch either reduces the extinction rate of the others present on the same patch orincreases their ability to colonize other

  14. Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions.

    Science.gov (United States)

    Pérez, María Laura; Collavino, Mónica Mariana; Sansberro, Pedro Alfonso; Mroginski, Luis Amado; Galdeano, Ernestina

    2016-04-01

    The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production.

  15. Use of arbuscular mycorrhiza fungi for improved crop production in ...

    African Journals Online (AJOL)

    Arbuscular mycorrhiza fungi (AMF), endophytic fungi reputed for their ability to enhance P uptake can be used to alleviate P deficiencies and improve crop productivity. Although the technology has been used in developed countries, it has not been applied in crop production systems in Africa to any significant level. This is ...

  16. A novel experimental system using the liverwort Marchantia polymorpha and its fungal endophytes reveals diverse and context-dependent effects.

    Science.gov (United States)

    Nelson, Jessica M; Hauser, Duncan A; Hinson, Rosemary; Shaw, A Jonathan

    2018-05-01

    Fungal symbioses are ubiquitous in plants, but their effects have mostly been studied in seed plants. This study aimed to assess the diversity of fungal endophyte effects in a bryophyte and identify factors contributing to the variability of outcomes in these interactions. Fungal endophyte cultures and axenic liverwort clones were isolated from wild populations of the liverwort, Marchantia polymorpha. These collections were combined in a gnotobiotic system to test the effects of fungal isolates on the growth rates of hosts under laboratory conditions. Under the experimental conditions, fungi isolated from M. polymorpha ranged from aggressively pathogenic to strongly growth-promoting, but the majority of isolates caused no detectable change in host growth. Growth promotion by selected fungi depended on nutrient concentrations and was inhibited by coinoculation with multiple fungi. The M. polymorpha endophyte system expands the resources for this model liverwort. The experiments presented here demonstrate a wealth of diversity in fungal interactions even in a host reported to lack standard mycorrhizal symbiosis. In addition, they show that some known pathogens of vascular plants live in M. polymorpha and can confer benefits to this nonvascular host. This highlights the importance of studying endophyte effects across the plant tree of life. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  17. Endophytes in commercial micropropagation - friend or foe?

    Directory of Open Access Journals (Sweden)

    Rödel, Philipp

    2016-07-01

    Full Text Available Medicinal and aromatic plants are superorganisms like all plant species- naturally colonized by bacteria, fungi and protists. Micropropagated plants are facing different challenges under in vitro and ex vitro conditions: Mixotrophic growth under low light conditions on artificial nutrient media, poor gas exchange in small vessels, abiotic stress, bad rooting, transplanting stress, low survival rate during acclimatization in greenhouse. The use of endophytes in micropropagation can improve plant growth, yield, and health and induce tolerance to abiotic and biotic stress. A tool for the use of competent endophytes in micropropagation under in vitro and ex vitro conditions is “biotization” of plantlets with useful bacterial and fungal inocula. Fungal inocula which are used commercially are e.g. arbuscular mycorrhizal fungi in form of spores and extraradical mycelium on different carrier materials like expanded clay, vermiculite, sand or peat. Furthermore representatives of the root fungal genus Trichoderma are applied as spores formulated in powder. Plantgrowth promoting rhizobacteria of the important genera Bacillus, Pseudomonas, Azospirillum and Azotobacter in form of lyophilised endospores/bacterial cells in powder or liquid formulation are also available on the market.

  18. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans

    OpenAIRE

    Castillo, UF; Strobel, GA; Ford, EJ; Hess, WM; Porter, H; Jensen, JB; Albert, H; Robison, R; Condron, MAM; Teplow, DB; Stevens, D; Yaver, D

    2002-01-01

    Munumbicins A, B, C and D are newly described antibiotics with a wide spectrum of activity against many human as well as plant pathogenic fungi and bacteria, and a Plasmodium sp. These compounds were obtained from Streptomyces NRRL 3052, which is endophytic in the medicinal plant snakevine (Kennedia nigriscans), native to the Northern Territory of Australia. This endophyte was cultured, the broth was extracted with an organic solvent and the contents of the residue were purified by bioassay-g...

  19. Use of the Endophytic Fungus Daldinia cf. concentrica and Its Volatiles as Bio-Control Agents.

    Directory of Open Access Journals (Sweden)

    Orna Liarzi

    Full Text Available Endophytic fungi are organisms that spend most of their life cycle within plant tissues without causing any visible damage to the host plant. Many endophytes were found to secrete specialized metabolites and/or emit volatile organic compounds (VOCs, which may be biologically active and assist fungal survival inside the plant as well as benefit their hosts. We report on the isolation and characterization of a VOCs-emitting endophytic fungus, isolated from an olive tree (Olea europaea L. growing in Israel; the isolate was identified as Daldinia cf. concentrica. We found that the emitted VOCs were active against various fungi from diverse phyla. Results from postharvest experiments demonstrated that D. cf. concentrica prevented development of molds on organic dried fruits, and eliminated Aspergillus niger infection in peanuts. Gas chromatography-mass spectrometry analysis of the volatiles led to identification of 27 VOCs. On the basis of these VOCs we prepared two mixtures that displayed a broad spectrum of antifungal activity. In postharvest experiments these mixtures prevented development of molds on wheat grains, and fully eliminated A. niger infection in peanuts. In light of these findings, we suggest use of D. cf. concentrica and/or its volatiles as an alternative approach to controlling phytopathogenic fungi in the food industry and in agriculture.

  20. Monitoring endophyte populations in pine plantations and native oak forests in Northern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Alvarez, P.; Martin-Garcia, J.; Rodriguez-Ceinos, S.; Diez, J. J.

    2012-07-01

    The replacement of native forest with plantations of other species may have important impacts on ecosystems. Some of these impacts have been widely studied, but very little is known about the effects on fungal communities and specifically endo phytic fungi. In this study, endophyte assemblages in pine plantations (Pinus sylvestris, P. nigra and P. pinaster) and native oak forests (Quercus pyrenaica) in the north of the province of Palencia (Spain) were analyzed. For this purpose, samples of needles/leaves and twigs were collected from three trees in each of three plots sampled per host species. The samples were later processed in the laboratory to identify all of the endo phytic species present. In addition, an exhaustive survey was carried out of the twelve sites to collect data on the environmental, crown condition, dendrometric and soil variables that may affect the distribution of the fungi. The endophyte assemblages isolated from P. sylvestris and P. nigra were closely related to each other, but were different from those isolated from P. pinaster. The endophytes isolated from Q. pyrenaica were less closely related to those from the other hosts, and therefore preservation of oak stands is important to prevent the loss of fungal diversity. Finally, the distribution of the endophyte communities was related to some of the environmental variables considered. (Author) 42 refs.

  1. Communities, populations and individuals of arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Rosendahl, Søren

    2008-01-01

    Arbuscular mycorrhizal fungi in the phylum Glomeromycota are found globally in most vegetation types, where they form a mutualistic symbiosis with plant roots. Despite their wide distribution, only relatively few species are described. The taxonomy is based on morphological characters...... of the asexual resting spores, but molecular approaches to community ecology have revealed a considerable unknown diversity from colonized roots. Although the lack of genetic recombination is not unique in the fungal kingdom, arbuscular mycorrhizal fungi are probably ancient asexuals. The long asexual evolution...... of the fungi has resulted in considerable genetic diversity within morphologically recognizable species, and challenges our concepts of individuals and populations. This review critically examines the concepts of species, communities, populations and individuals of arbuscular mycorrhizal fungi....

  2. Microbial conversion of curcumin into colorless hydroderivatives by the endophytic fungus Diaporthe sp. associated with Curcuma longa.

    Science.gov (United States)

    Maehara, Shoji; Ikeda, Michiteru; Haraguchi, Hiroyuki; Kitamura, Chinami; Nagoe, Tetsuro; Ohashi, Kazuyoshi; Shibuya, Hirotaka

    2011-01-01

    We investigated the microbial conversion of curcumin (1) using endophytic fungi associated with the rhizome of Curcuma longa (Zingiberaceae). We found that Diaporthe sp., an endophytic filamentous fungus, converts curcumin (1) into four colorless derivatives, namely (3R,5R)-tetrahydrocurcumin (2), a novel (3R,5S)-hexahydrocurcumin (3) named neohexahydrocurcumin, (3S,5S)-octahydrocurcumin (4) and meso-octahydrocurcumin (5).

  3. Endophytic fungi from leaves of Centella asiatica: occurrence and potential interactions within leaves.

    Science.gov (United States)

    Rakotoniriana, E F; Munaut, F; Decock, C; Randriamampionona, D; Andriambololoniaina, M; Rakotomalala, T; Rakotonirina, E J; Rabemanantsoa, C; Cheuk, K; Ratsimamanga, S U; Mahillon, J; El-Jaziri, M; Quetin-Leclercq, J; Corbisier, A M

    2008-01-01

    Fungal endophytes were isolated from leaves of Centella asiatica (Apiaceae) collected at Mangoro (middle eastern region of Madagascar, 200 km from Antananarivo). Forty- five different taxa were recovered. The overall foliar colonization rate was 78%. The most common endophytes were the non-sporulating species 1 (isolation frequency IF 19.2%) followed by Colletotrichum sp.1 (IF 13.2%), Guignardia sp. (IF 8.5%), Glomerella sp. (IF 7.7%), an unidentified ascomycete (IF 7.2%), the non-sporulating species 2 (IF 3.7%) and Phialophora sp. (IF 3.5%). Using sequences of the ribosomal DNA internal transcribed spacer (ITS) regions, major endophytes (IF > 7%) were identified as xylariaceous taxa or as Colletotrichum higginsianum, Guignardia mangiferae and Glomerella cingulata. Results from in vitro fungal disk experiments showed a strong inhibitory activity of the xylariaceous non-sporulating species 1 against G. mangiferae and C. higginsianum and of C. higginsianum against G. mangiferae. This can be explained by antagonism between dominant taxa.

  4. Antimicrobial fungal endophytes from the botanical medicine goldenseal (Hydrastis canadensis).

    Science.gov (United States)

    Egan, Joseph M; Kaur, Amninder; Raja, Huzefa A; Kellogg, Joshua J; Oberlies, Nicholas H; Cech, Nadja B

    2016-09-01

    The potential of fungal endophytes to alter or contribute to plant chemistry and biology has been the topic of a great deal of recent interest. For plants that are used medicinally, it has been proposed that endophytes might play an important role in biological activity. With this study, we sought to identify antimicrobial fungal endophytes from the medicinal plant goldenseal ( Hydrastis canadensis L., Ranunculaceae), a plant used in traditional medicine to treat infection. A total of 23 fungal cultures were obtained from surface-sterilized samples of H. canadensis roots, leaves and seeds. Eleven secondary metabolites were isolated from these fungal endophytes, five of which had reported antimicrobial activity. Hydrastis canadensis plant material was then analyzed for the presence of fungal metabolites using liquid chromatography coupled to high resolving power mass spectrometry. The antimicrobial compound alternariol monomethyl ether was detected both as a metabolite of the fungal endophyte Alternaria spp. isolated from H. canadensis seeds, and as a component of an extract from the H. canadensis seed material. Notably, fungi of the Alternaria genus were isolated from three separate accessions of H. canadensis plant material collected in a time period spanning 5 years. The concentration of alternariol monomethyl ether (991 mg/kg in dry seed material) was in a similar range to that previously reported for metabolites of ecologically important fungal endophytes. The seed extracts themselves, however, did not possess antimicrobial activity.

  5. Concentration of petroleum-hydrocarbon contamination shapes fungal endophytic community structure in plant roots

    Directory of Open Access Journals (Sweden)

    Guillaume eBourdel

    2016-05-01

    Full Text Available Plant-root inhabiting fungi are a universal phenomenon found in all ecosystems where plants are able to grow, even in harsh environments. Interactions between fungi and plant roots can vary widely from mutualism to parasitism depending on many parameters. The role of fungal endophytes in phytoremediation of polluted sites, and characterization of the endophytic diversity and community assemblages in contaminated areas remain largely unexplored. In this study, we investigated the composition of endophytic fungal communities in the roots of two plant species growing spontaneously in petroleum-contaminated sedimentation basins of a former petro-chemical plant. The three adjacent basins showed a highly heterogeneous patterns of pollutant concentrations. We combined a culture-based isolation approach with the pyrosequencing of fungal ITS ribosomal DNA. We selected two species, Eleocharis erythropoda Steud. and Populus balsamifera L., and sampled three individuals of each species from each of three adjacent basins, each with a different concentration of petroleum hydrocarbons. We found that contamination level significantly shaped endophytic fungal diversity and community composition in E. erythropoda, with only 9.9% of these fungal Operational Taxonomic Units (OTUs retrieved in all three basins. However, fungal community structure associated with P. balsamifera remained unaffected by the contamination level with 28.2% of fungal OTUs shared among all three basins. This could be explained by the smaller differences of pollutant concentrations in the soil around our set of P. balsamifera sampless compared to that around our set of E. erythropoda samples. Our culture-based approach allowed isolation of 11 and 30 fungal endophytic species from surface-sterilized roots of E. erythropoda and P. balsamifera, respectively. These isolates were ribotyped using ITS, and all were found in pyrosequensing datasets. Our results demonstrate that extreme levels of

  6. Fungal endophytes isolated from Protium heptaphyllum and Trattinnickia rhoifolia as antagonists of Fusarium oxysporum.

    Science.gov (United States)

    Fierro-Cruz, Juan E; Jiménez, Pedro; Coy-Barrera, Ericsson

    Control of fungal pathogens is mainly addressed by the use of chemically synthesized fungicides which result in environmental pollution, developing resistance after prolonged use. In this context, endophytes have been recognized as potential biocontrollers, and also as a promising source of antifungal metabolites. Therefore, as part of our research on phytopathogen controllers, 355 fungal endophytes were isolated from Protium heptaphyllum and Trattinnickia rhoifolia (Burseraceae), both ethnobotanically important tree species that produce secondary metabolites of agronomic and industrial interest. Endophytes were tested by in vitro dual culture against Fusarium oxysporum, a phytopathogen of agronomic importance. Five endophytes exerted at least 40% inhibition on F. oxysporum growth. Ethyl acetate (EtOAc) extracts were obtained from the most active antagonistic fungi, after growing them in three different liquid media. The extracts were tested against a conidial suspension of F. oxysporum by direct bioautography. Two extracts derived from fungi identified as Chaetomium globosum, F211_UMNG and Meyerozima sp. F281_UMNG showed inhibition of pathogen growth. Isolate C. globosum, F211_UMNG was selected for a chemical analysis by RP-HPLC-DAD-ESI-MS and antifungal molecules such as cladosporin, chaetoatrosin A and chaetoviridin A were annotated and identified based on their MS data. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Isolation and identification of resveratrol-producing endophytes from wine grape Cabernet Sauvignon.

    Science.gov (United States)

    Liu, Ya; Nan, Lijun; Liu, Junchao; Yan, Haiyan; Zhang, Dianpeng; Han, Xinnian

    2016-01-01

    Obtain endophyte strains with effective resveratrol production from superior grapevine variety Cabernet Sauvignon in Xinjiang and determine related taxonomic position of the strain. Seventy-three strains of endophytes, including 23 strains of bacteria, 14 ones of actinomycetes, 24 fungus and 12 yeasts, were isolated, respectively. The distribution law of endophytes was spring (30.14 %) = summer (30.14 %) < autumn (39.73 %) in different seasons, while the fruit (12.33 %) < leaf (20.55 %) < stem (32.88 %) < root (34.25 %) in different tissues and organs. From the 36 strains of endophytic fungi isolated, seven strains producing polyphenols were screened by ferric chloride-potassium ferricyanide color reaction. C2J6, stable genetic properties producing highly 1.48 mg L(-1) of resveratrol, was identified as Aspergillus niger by 26S rDNA-ITS sequence analysis after thin-layer chromatography sieve analysis, ultra violet wavelength scanning and high performance liquid chromatography, respectively. There were the certain number and kinds of endophytes in the various tissues of Cabernet Sauvignon, which, to a certain extent, reflected the biological diversity of plant endophytes. The fact that the fungus C2J6 producing resveratrol in grape was acquired attested the special ability of the endophytes to produce the same or similar bioactive substances as the host plants.

  8. Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi

    Science.gov (United States)

    Yasmin J. Cardoza; Kier D. Klepzig; Kenneth F. Raffa

    2006-01-01

    1. Colonisation of host trees by an endophytic herbivore, the spruce beetle, Dendroctonus rufipennis , is accompanied by invasion of its galleries by a number of fungal species. Four of these associated species were identified as Leptographium abietinum , Aspergillus fumigatus , Aspergillus nomius , and ...

  9. Cytochalasin produced by Xylaria sp., a endophytic fungi of Piper aduncum (Piperaceae); Citocalasinas produzidas por Xylaria sp., um fungo endofitico de Piper aduncum (Piperaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Geraldo H.; Oliveira, Camila M. de; Teles, Helder L.; Bolzani, Vanderlan da S.; Araujo, Angela R., E-mail: araujoar@iq.unesp.b [Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Inst. de Quimica; Pfenning, Ludwig H. [Universidade Federal de Lavras (UFLA), MG (Brazil). Dept. de Fitopatologia; Young, Maria Claudia M. [Instituto de Botanica, Sao Paulo, SP (Brazil). Secao de Fisiologia e Bioquimica de Plantas; Costa-Neto, Claudio M. [Universidade de Sao Paulo (USP/RP), Ribeirao Preto, SP (Brazil). Fac. de Medicina. Dept. de Bioquimica e Imunologia; Haddad, Renato; Eberlin, Marcos N. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2010-07-01

    A chemical study on the EtOAc extract produced by Xylaria sp., an endophytic fungus from Piper aduncum, resulted in the isolation of a new cytochalasin 1, along with five known 19,20-epoxycytochalasin D (2), C (3), N (4), Q (5), and R (6). The 1-6 were evaluated against the fungi C. cladosporioides and C. sphaerospermum and only 5 showed weak activity. The cytotoxicity in vitro against HeLA and CHO cells lines were investigated and the cytochalasins 2-4, and 6 showed a strong activity against HeLA. The DNA damaging activity of 1-6 were also investigated against mutant strains of S. cerevisiae. (author)

  10. Fungi and bacteria boost resistance to pests and diseases : endophytes a useful addition to pest control

    NARCIS (Netherlands)

    Messelink, G.

    2017-01-01

    More and more research is revealing that endophytes – microorganisms that live in the plant without harming it – can significantly boost a plant’s resistance to pests. These findings prompted researchers to investigate the potential of endophytes in pest control in greenhouse horticulture.

  11. Fungal Endophytes of Wild Barley and their Effects on Diuraphis noxia Population Development

    Science.gov (United States)

    S.L. Clement; A. Dan Wilson; D.G. Lester; C.M. Davitt

    1997-01-01

    Laboratory experiments were conducted to compare the expression of Diuraphis noxia (Mordvilko) (Homoptera: Aphididae) resistance in four plant introduction (PI) lines of wild barley (Hordeum) infected with different species or strains of endophytic fungi (tribe Balansieae, family Clavicipitaceae, Neotyphodium gen. nov. [formerly...

  12. Ranking species in mutualistic networks

    Science.gov (United States)

    Domínguez-García, Virginia; Muñoz, Miguel A.

    2015-02-01

    Understanding the architectural subtleties of ecological networks, believed to confer them enhanced stability and robustness, is a subject of outmost relevance. Mutualistic interactions have been profusely studied and their corresponding bipartite networks, such as plant-pollinator networks, have been reported to exhibit a characteristic ``nested'' structure. Assessing the importance of any given species in mutualistic networks is a key task when evaluating extinction risks and possible cascade effects. Inspired in a recently introduced algorithm -similar in spirit to Google's PageRank but with a built-in non-linearity- here we propose a method which -by exploiting their nested architecture- allows us to derive a sound ranking of species importance in mutualistic networks. This method clearly outperforms other existing ranking schemes and can become very useful for ecosystem management and biodiversity preservation, where decisions on what aspects of ecosystems to explicitly protect need to be made.

  13. Cholinesterase inhibitor (Altenuene) from an endophytic fungus Alternaria alternata: optimization, purification and characterization.

    Science.gov (United States)

    Bhagat, J; Kaur, A; Kaur, R; Yadav, A K; Sharma, V; Chadha, B S

    2016-10-01

    The aim of this study was to screen endophytic fungi isolated from Vinca rosea for their potential to produce acetylcholinesterase (AChE) inhibitors. Endophytic fungi isolated from V. rosea (Catharanthus roseus), were screened for AChE inhibitor production using Ellman's method. Maximum inhibition against AChE (78%) was observed in an isolate VS-10, identified to be Alternaria alternata on morphological and molecular basis. The isolate also inhibited butyrylcholinesterase (73%). Significant increase (1·3 fold) was achieved after optimization of process parameters using one variable at time approach. The inhibitor was purified using chromatographic techniques. The structure elucidation of the inhibitor was carried out using spectroscopic techniques and was identified to be 'altenuene'. The purified inhibitor possessed antioxidant potential as revealed by dot blot assay. The insecticidal potential of purified inhibitor was evaluated by feeding Spodoptora litura on diet amended with inhibitor. It evinced significant larval mortality. Endophytic A. alternata can serve as a source of dual cholinesterase inhibitor 'altenuene' with significant antioxidant and insecticidal activity. This is the first report on acetylcholinestearse inhibitory activity of altenuene. Alternaria alternata has the potential to produce a dual ChE inhibitor with antioxidant activity useful in the treatment of neurodegenerative disorders and in agriculture as biocontrol agent. © 2016 The Society for Applied Microbiology.

  14. Diversity of fungal endophytes in non-native Phragmites australis in the Great Lakes

    Science.gov (United States)

    Clay, Keith; Shearin, Zachery; Bourke, Kimberly; Bickford, Wesley A.; Kowalski, Kurt P.

    2016-01-01

    Plant–microbial interactions may play a key role in plant invasions. One common microbial interaction takes place between plants and fungal endophytes when fungi asymptomatically colonize host plant tissues. The objectives of this study were to isolate and sequence fungal endophytes colonizing non-native Phragmites australis in the Great Lakes region to evaluate variation in endophyte community composition among three host tissue types and three geographical regions. We collected entire ramets from multiple clones and populations, surface sterilized plant tissues, and plated replicate tissue samples from leaves, stems, and rhizomes on corn meal agar plates to culture and isolate fungal endophytes. Isolates were then subjected to Sanger sequencing of the ITS region of the nuclear ribosomal DNA. Sequences were compared to fungal databases to define operational taxonomic units (OTUs) that were analyzed statistically for community composition. In total, we obtained 173 endophyte isolates corresponding to 55 OTUs, 39 of which were isolated only a single time. The most common OTU corresponded most closely to Sarocladium strictum and comprised 25 % of all fungal isolates. More OTUs were found in stem tissues, but endophyte diversity was greatest in rhizome tissues. PERMANOVA analyses indicated significant differences in endophyte communities among tissue types, geographical regions, and the interaction between those factors, but no differences among individual ramets were detected. The functional role of the isolated endophytes is not yet known, but one genus isolated here (Stagonospora) has been reported to enhance Phragmites growth. Understanding the diversity and functions of Phragmites endophytes may provide targets for control measures based on disrupting host plant/endophyte interactions.

  15. Isolation and characterization of antibacterial compound from a mangrove-endophytic fungus, Penicillium chrysogenum MTCC 5108

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Rodrigues, C.; Naik, C.G.; DeSouza, L.

    Microorganisms, especially endophytic fungi that reside in the tissue of living mangrove plants, seem to play a major role in meeting the general demand for new biologically active substances. During the course of screening for biologically active...

  16. Multicomponent Analysis of the Differential Induction of Secondary Metabolite Profiles in Fungal Endophytes

    Directory of Open Access Journals (Sweden)

    Víctor González-Menéndez

    2016-02-01

    Full Text Available Small molecule histone deacetylase (HDAC and DNA methyltransferase (DNMT inhibitors are commonly used to perturb the production of fungal metabolites leading to the induction of the expression of silent biosynthetic pathways. Several reports have described the variable effects observed in natural product profiles in fungi treated with HDAC and DNMT inhibitors, such as enhanced chemical diversity and/or the induction of new molecules previously unknown to be produced by the strain. Fungal endophytes are known to produce a wide variety of secondary metabolites (SMs involved in their adaptation and survival within higher plants. The plant-microbe interaction may influence the expression of some biosynthetic pathways, otherwise cryptic in these fungi when grown in vitro. The aim of this study was to setup a systematic approach to evaluate and identify the possible effects of HDAC and DNMT inhibitors on the metabolic profiles of wild type fungal endophytes, including the chemical identification and characterization of the most significant SMs induced by these epigenetic modifiers.

  17. The mechanism of ethylene signaling induced by endophytic fungus Gilmaniella sp. AL12 mediating sesquiterpenoids biosynthesis in Atractylodes lancea

    Directory of Open Access Journals (Sweden)

    Jie eYuan

    2016-03-01

    Full Text Available Ethylene, the first known gaseous phytohormone, is involved in plant growth, development as well as responses to environmental signals. However, limited information is available on the role of ethylene in endophytic fungi induced secondary metabolites biosynthesis. Atractylodes lancea is a traditional Chinese herb, and its quality depends on the main active compounds sesquiterpenoids. This work showed that the endophytic fungus Gilmaniella sp. AL12 induced ethylene production in Atractylodes lancea. Pre-treatment of plantlets with ethylene inhibiter aminooxyacetic acid (AOA suppressed endophytic fungi induced accumulation of ethylene and sesquiterpenoids. Plantlets were further treated with AOA, salicylic acid (SA biosynthesis inhibitor paclobutrazol (PAC, jasmonic acid inhibitor ibuprofen (IBU, hydrogen peroxide (H2O2 scavenger catalase (CAT, nitric oxide (NO-specific scavenger 2-(4-Carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO. With endophytic fungi inoculation, IBU or PAC did not inhibit ethylene production, and JA and SA generation were suppressed by AOA, showing that ethylene may act as an upstream signal of JA and SA pathway. With endophytic fungi inoculation, CAT or cPTIO suppressed ethylene production, and H2O2 or NO generation was not affected by 1-aminocyclopropane-1-carboxylic acid (ACC, showing that ethylene may act as a downstream signal of H2O2 and NO pathway. Then, plantlets were treated with ethylene donor ACC, JA, SA, H2O2, NO donor sodium nitroprusside (SNP. Exogenous ACC could trigger JA and SA generation, whereas exogenous JA or SA did not affect ethylene production, and the induced sesquiterpenoids accumulation triggered by ACC was partly suppressed by IBU and PAC, showing that ethylene acted as an upstream signal of JA and SA pathway. Exogenous ACC did not affect H2O2 or NO generation, whereas exogenous H2O2 and SNP induced ethylene production, and the induced sesquiterpenoids

  18. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees.

    Science.gov (United States)

    Vincent, J B; Weiblen, G D; May, G

    2016-02-01

    Processes shaping the distribution of foliar fungal endophyte species remain poorly understood. Despite increasing evidence that these cryptic fungal symbionts of plants mediate interactions with pathogens and herbivores, there remain basic questions regarding the extent to which dispersal limitation and host specificity might shape fungal endophyte community composition in rainforests. To assess the relative importance of spatial pattern and host specificity, we isolated fungi from a sample of mapped trees in lowland Papua New Guinea. Sequences of the internal transcribed spacer (ITS) region were obtained for 2079 fungal endophytes from three sites and clustered into molecular operational taxonomic units (MOTUs) at 95% similarity. Multivariate analyses suggest that host affinity plays a significant role in structuring endophyte community composition whereas there was no evidence of endophyte spatial pattern at the scale of tens to hundreds of metres. Differences in endophyte communities between sampled trees were weakly correlated with variation in foliar traits but not with tree species relatedness. The dominance of relatively few generalist endophytes and the presence of a large number of rare MOTUs was a consistent observation at three sites separated by hundreds of kilometres and regional turnover was low. Host specificity appears to play a relatively weak but more important role than dispersal limitation in shaping the distribution of fungal endophyte communities in New Guinea forests. Our results suggest that in the absence of strong ecological gradients and host turnover, beta diversity of endophyte communities could be low in large areas of contiguous forest. © 2015 John Wiley & Sons Ltd.

  19. A new endophytic insect-associated Daldinia species, recognised from a comparison of secondary metabolite profiles and molecular phylogeny

    Czech Academy of Sciences Publication Activity Database

    Pažoutová, Sylvie; Follert, S.; Bitzer, J.; Keck, M.; Surup, F.; Šrůtka, P.; Holuša, J.; Stadler, M.

    2013-01-01

    Roč. 60, č. 1 (2013), s. 107-123 ISSN 1560-2745 Institutional support: RVO:61388971 Keywords : Fungi * Endophytes * Evolution Subject RIV: EE - Microbiology, Virology Impact factor: 6.938, year: 2013

  20. Identification and colonization of endophytic fungi from soybean (Glycine max (L. Merril under different environmental conditions

    Directory of Open Access Journals (Sweden)

    Ida Chapaval Pimentel

    2006-09-01

    Full Text Available A total of 297 endophytic fungi were isolated from 1728 leaf and stem fragments collected about twenty and forty days after germination from soybean (Glycine max (L. Merril plants grown in the field and a greenhouse. The fungi belonged to eight groups, six dematiaceous genera (Alternaria, Cladosporium, Chaetomium, Curvularia, Drechslera and Scopulariopsis and the non-dematiaceous genera Acremonium, Aspergillus, Colletotrichum, Fusarium, Paecilomyces and Penicillium along with some Mycelia sterilia.. There were qualitative and quantitative differences in the type and number of isolates obtained from greenhouse and field-grown plants, with more isolates being obtained from the latter. No difference was found in the number of fungi isolated from leaves and stems irrespective of where the plants was grown. For was field-grown plants, the number of isolates decreased as the plants aged and more fungi were found in tissues near the soil, while for greenhouse-grown plants the number of isolates increased as the plants aged but in this case no more fungi were isolated from those tissues nearer the soil. These results could have biotechnological relevance for the biological control of pests or plant growth promotion.A partir de 1728 fragmentos de hastes e folhas de soja (Glycine max (L. Merril. provenientes de plantas do campo e de casa de vegetação, coletadas cerca de 20 e 40 dias após a germinação das sementes, 297 fungos endofíticos foram isolados. Os gêneros encontrados foram: Alternaria, Cladosporium, Curvularia, Chaetomium, Scopulariopsis, Drechslera (todos dematiáceos além de Colletotrichum, Fusarium, Acremonium, Aspergillus, Penicillium, Paecilomyces e Mycelia sterilia. Foram detectadas diferenças qualitativas e quantitativas entre os isolados, em relação a micobiota de hospedeiros provenientes do campo e de casa de vegetação com maior frequência de fungos isolados de plantas no campo em comparação com as de casa de vegeta

  1. Bioprospecting of South African Plants as a Unique Resource for Bioactive Endophytic Microbes

    Directory of Open Access Journals (Sweden)

    Muna Ali Abdalla

    2018-05-01

    products from endophytic fungi and bacteria in southern Africa.

  2. Entomopathogenic fungi on Hemiberlesia pitysophila.

    Directory of Open Access Journals (Sweden)

    Chengqun Lv

    Full Text Available Hemiberlesia pitysophila Takagi is an extremely harmful exotic insect in forest to Pinus species, including Pinus massoniana. Using both morphological taxonomy and molecular phylogenetics, we identified 15 strains of entomogenous fungi, which belong to 9 genera with high diversities. Surprisingly, we found that five strains that were classified as species of Pestalotiopsis, which has been considered plant pathogens and endophytes, were the dominant entomopathogenic fungus of H. pitysophila. Molecular phylogenetic tree established by analyzing sequences of ribosomal DNA internal transcribed spacer showed that entomopathogenic Pestalotiopsis spp. were similar to plant Pestalotiopsis, but not to other pathogens and endophytes of its host plant P. massoniana. We were the first to isolate entomopathogenic Pestalotiopsis spp. from H. pitysophila. Our findings suggest a potential and promising method of H. pitysophila bio-control.

  3. Entomopathogenic fungi on Hemiberlesia pitysophila.

    Science.gov (United States)

    Lv, Chengqun; Huang, Baoling; Qiao, Mengji; Wei, Jiguang; Ding, Bo

    2011-01-01

    Hemiberlesia pitysophila Takagi is an extremely harmful exotic insect in forest to Pinus species, including Pinus massoniana. Using both morphological taxonomy and molecular phylogenetics, we identified 15 strains of entomogenous fungi, which belong to 9 genera with high diversities. Surprisingly, we found that five strains that were classified as species of Pestalotiopsis, which has been considered plant pathogens and endophytes, were the dominant entomopathogenic fungus of H. pitysophila. Molecular phylogenetic tree established by analyzing sequences of ribosomal DNA internal transcribed spacer showed that entomopathogenic Pestalotiopsis spp. were similar to plant Pestalotiopsis, but not to other pathogens and endophytes of its host plant P. massoniana. We were the first to isolate entomopathogenic Pestalotiopsis spp. from H. pitysophila. Our findings suggest a potential and promising method of H. pitysophila bio-control.

  4. Genes Required for the Anti-Fungal Activity of a Bacterial Endophyte Isolated from a Corn Landrace Grown Continuously by Subsistence Farmers Since 1000 BC

    Directory of Open Access Journals (Sweden)

    Hanan R Shehata

    2016-10-01

    Full Text Available Endophytes are microbes that inhabit internal plant tissues without causing disease. Some endophytes are known to combat pathogens. The corn (maize landrace Chapalote has been grown continuously by subsistence farmers in the Americas since 1000 BC, without the use of fungicides, and the crop remains highly valued by farmers, in part for its natural tolerance to pests. We hypothesized that the pathogen tolerance of Chapalote may, in part, be due to assistance from its endophytes. We previously identified a bacterial endophyte from Chapalote seeds, Burkholderia gladioli strain 3A12, for its ability to combat a diversity of crop pathogens, including Sclerotinia homoeocarpa, the most important fungal disease of creeping bentgrass, a relative of maize used here as a model system. Strain 3A12 represents a unique opportunity to understand the anti-fungal activities of an endophyte associated with a crop variety grown by subsistence farmers since ancient times. Here, microscopy combined with Tn5-mutagenesis demonstrates that the anti-fungal mode of action of 3A12 involves flagella-dependent swarming towards its pathogen target, attachment and biofilm-mediated microcolony formation. The mutant screen revealed that YajQ, a receptor for the secondary messenger c-di-GMP, is a critical signaling system that mediates this endophytic mobility-based defence for its host. Microbes from the traditional seeds of farmers may represent a new frontier in elucidating host-microbe mutualistic interactions.

  5. Symbiont interactions in a tripartite mutualism: exploring the presence and impact of antagonism between two fungus-growing ant mutualists.

    Directory of Open Access Journals (Sweden)

    Michael Poulsen

    Full Text Available Mutualistic associations are shaped by the interplay of cooperation and conflict among the partners involved, and it is becoming increasingly clear that within many mutualisms multiple partners simultaneously engage in beneficial interactions. Consequently, a more complete understanding of the dynamics within multipartite mutualism communities is essential for understanding the origin, specificity, and stability of mutualisms. Fungus-growing ants cultivate fungi for food and maintain antibiotic-producing Pseudonocardia actinobacteria on their cuticle that help defend the cultivar fungus from specialized parasites. Within both ant-fungus and ant-bacterium mutualisms, mixing of genetically distinct strains can lead to antagonistic interactions (i.e., competitive conflict, which may prevent the ants from rearing multiple strains of either of the mutualistic symbionts within individual colonies. The success of different ant-cultivar-bacterium combinations could ultimately be governed by antagonistic interactions between the two mutualists, either as inhibition of the cultivar by Pseudonocardia or vice versa. Here we explore cultivar-Pseudonocardia antagonism by evaluating in vitro interactions between strains of the two mutualists, and find frequent antagonistic interactions both from cultivars towards Pseudonocardia and vice versa. To test whether such in vitro antagonistic interactions affect ant colonies in vivo, we performed sub-colony experiments using species of Acromyrmex leaf-cutting ants. We created novel ant-fungus-bacterium pairings in which there was antagonism from one, both, or neither of the ants' microbial mutualists, and evaluated the effect of directional antagonism on cultivar biomass and Pseudonocardia abundance on the cuticle of workers within sub-colonies. Despite the presence of frequent in vitro growth suppression between cultivars and Pseudonocardia, antagonism from Pseudonocardia towards the cultivar did not reduce sub

  6. Chemical communication between the endophytic fungus Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum.

    Directory of Open Access Journals (Sweden)

    Audrey Combès

    Full Text Available Paraconiothyrium variabile, one of the specific endophytic fungi isolated from the host plant Cephalotaxus harringtonia, possesses the faculty to inhibit the growth of common phytopathogens, thus suggesting a role in its host protection. A strong antagonism between the endophyte P. variabile and Fusarium oxysporum was observed and studied using optic and electronic microscopies. A disorganization of the mycelium of F. oxysporum was thus noticed. Interestingly, the biological effect of the main secondary metabolites isolated from P. variabile against F. oxysporum did not account for this strong antagonism. However, a metabolomic approach of pure fungal strains and confrontation zones using the data analysis tool XCMS were analyzed and pointed out a competition-induced metabolite production by the endophyte in the presence of the phytopathogen. Subsequent MS/MS fragmentations permitted to identify one of the induced metabolites as 13-oxo-9,11-octadecadienoic acid and highlighted a negative modulation of the biosynthesis of beauvericin, one of the most potent mycotoxin of F. oxysporum, during the competition with the endophyte.

  7. A simple method for the quantitative analysis of tyrosol by hplc in liquid Czapek Cultures from endophytic fungi

    International Nuclear Information System (INIS)

    Guimaraes, Denise O.; Pupo, Monica T.; Borges, Keyller B.; Bonato, Pierina S.

    2009-01-01

    Tyrosol is a possible quorum sensing molecule in endophytic fungi. High-performance liquid chromatography (HPLC) coupled with diode array detector (DAD) was used for the analysis of tyrosol in liquid Czapek fungal cultures. The optimized conditions were gradient mobile phase, in linear mode, consisting initially of acetonitrile/water (1:9 v/v) and increasing up to acetonitrile (100%) in 30 minutes at a flow rate of 1 mL min -1 . The column used was a Zorbax ODS (250 x 4.6 mm, 5 μm) at 25 deg C. Liquid-liquid extraction of 0.5 mL medium (pH 7.0) with ethyl acetate and injection of 20 μL after solvent evaporation under air flow gave good results. Some validation parameters obtained were: linearity 0.0125-5.0 μg mL -1 medium (r = 0.9967), quantification limit of 0.0125 μg mL -1 medium, %CV (precision) and %E (accuracy) bellow 15% and recovery around 80%. Therefore, the developed method presented satisfactory validation parameters and it was efficient for the analysis of tyrosol in Czapek medium. (author)

  8. The Biological Diversity and Production of Volatile Organic Compounds by Stem-Inhabiting Endophytic Fungi of Ecuador

    OpenAIRE

    Rundell, Susan; Spakowicz, Daniel; Narváez-Trujillo, Alexandra; Strobel, Scott

    2015-01-01

    Fungal endophytes colonize every major lineage of land plants without causing apparent harm to their hosts. Despite their production of interesting and potentially novel compounds, endophytes—particularly those inhabiting stem tissues—are still a vastly underexplored component of microbial diversity. In this study, we explored the diversity of over 1500 fungal endophyte isolates collected from three Ecuadorian ecosystems: lowland tropical forest, cloud forest, and coastal dry forest. We sough...

  9. Endophytic fungal communities associated with field-grown soybean roots and seeds in the Huang-Huai region of China

    Directory of Open Access Journals (Sweden)

    Hongjun Yang

    2018-04-01

    Full Text Available Plants depend on beneficial interactions between roots and fungal endophytes for growth, disease suppression, and stress tolerance. In this study, we characterized the endophytic fungal communities associated with the roots and corresponding seeds of soybeans grown in the Huang-Huai region of China. For the roots, we identified 105 and 50 genera by culture-independent and culture-dependent (CD methods, respectively, and isolated 136 fungal strains (20 genera from the CD samples. Compared with the 52 soybean endophytic fungal genera reported in other countries, 28 of the genera we found were reported, and 90 were newly discovered. Even though Fusarium was the most abundant genus of fungal endophyte in every sample, soybean root samples from three cities exhibited diverse endophytic fungal communities, and the results between samples of roots and seeds were also significantly different. Together, we identified the major endophytic fungal genera in soybean roots and seeds, and revealed that the diversity of soybean endophytic fungal communities was influenced by geographical effects and tissues. The results will facilitate a better understanding of soybean–endophytic fungi interaction systems and will assist in the screening and utilization of beneficial microorganisms to promote healthy of plants such as soybean.

  10. Survival of Salmonella and E.coli O157:H7 in soil and translocation into leek (allium porrum) as influenced by mycorrhizal fungi

    Science.gov (United States)

    A study was conducted to determine the influence of arbuscular mycorrhizal (AM) fungi on survival of Salmonella and E. coli O157:H7 (EHEC) in soil and translocation into leek roots and shoot. AM fungi are naturally-occurring soil symbionts that form mutualistic relationships with most crop plants. ...

  11. Antibacterial activity of alkaloids produced by endophytic fungus Aspergillus sp. EJC08 isolated from medical plant Bauhinia guianensis.

    Science.gov (United States)

    Pinheiro, Eduardo Antonio A; Carvalho, Josiwander Miranda; dos Santos, Diellem Cristina P; Feitosa, André de Oliveira; Marinho, Patrícia Santana B; Guilhon, Giselle Maria Skelding Pinheiro; de Souza, Afonso Duarte L; da Silva, Felipe Moura A; Marinho, Andrey Moacir do R

    2013-01-01

    Bauhinia guianensis is a typical plant in the Amazon region belonging to the family Leguminosea, used by local populations for the treatment of infectious and renal diseases. Previous work on the plant B. guianensis led to the isolation of substances with anti-inflammatory and analgesic activities. Thus, compounds isolated from B. guianensis with antimicrobial activities had not been identified. Given that there is a possibility of biological activity reported for a given plant being found in the endophytic fungi, we decided to isolate endophytic fungi from B. guianensis and test their antimicrobial activities. The alkaloids known as fumigaclavine C and pseurotin A were isolated by column chromatography and identified by 1D and 2D NMR techniques and mass spectrometry. The alkaloids are first reported as broad-spectrum antibacterial agents with good activity.

  12. Fungal Adaptations to Mutualistic Life with Ants

    DEFF Research Database (Denmark)

    Kooij, Pepijn Wilhelmus

    Fungus-growing ants (Attini) feed off a fungus they cultivate in a mutualistic symbiosis in underground chambers by providing it substrate they collect outside the colony. The tribe of Attine ants ranges from small colonies of the paleo- and basal Attine species with a few hundred workers that fo...... that the fungus evolved some incredible adaptations to a mutualistic life with the ants....

  13. Chemical and molecular characterization of Phomopsis and Cytospora-like endophytes from different host plants in Brazil

    DEFF Research Database (Denmark)

    Abreu, Lucas M.; Costa, Sarah S.; Pfenning, Ludwig H.

    2012-01-01

    affinities. Additional phenotypic characters, such as profiles of secondary metabolites, are needed for practical species recognition. We investigated 36 strains of Phomopsis spp. and Cytospora-like fungi, obtained as endophytes of different host plants in Brazil, using metabolite profiling based on HPLC...

  14. Alkaloid (Meleagrine and Chrysogine) from endophytic fungi (Penicillium sp.) of Annona squamosa L.

    Science.gov (United States)

    Yunianto, Prasetyawan; Rusman, Yudi; Saepudin, Endang; Suwarso, Wahyudi Priyono; Sumaryono, Wahono

    2014-05-01

    Several endophytic fungal strains from Srikaya plants (Annona squamosa L.) have been isolated and one of them was identified as Penicillium sp. Penicillium has been proven as an established source for a wide array of unique bioactive secondary metabolites that exhibit a variety of biological activities. The aim of this study is isolation of secondary metabolite from Penicillium, an endophytic of A. squamosa L. Penicillium sp. from endophytic of A. squamosa L. was fermented in Wicherham media. The whole extract from both liquid media and mycelium was partitioned by ethyl acetate and evaporated to obtain crude ethyl acetate extract. The ethyl acetate extract was then brokedown using column chromatography with silica as stationary phase and mixture of ethyl acetate/methanol (98%:2%) as mobile phase and then was separated by sephadex column. Structure elucidation of isolated compounds were mainly done by analysis of one and two dimensional NMR (Nuclear Magnetic Resonance) data and supported by HPLC (High performance Liquid Chromatography) and MS-TOF (Mass Spectrometer-Time of Flight). Isolated secondary metabolites were tested using in vitro assays for anticancer and antimicrobial activity. For anticancer activity, the metabolites were tested against breast cancer cells (MCF-7) using MTT assay, while for antimicrobial activity was performed using disk diffusion assays. From these physical, chemical and spectral evidences that the secondary metabolites were confirmed as Chrysogine and Meleagrine. Chrysogine and Meleagrine have no activity as anticancer and antimicrobial.

  15. Molecular identification of fungi isolated from bean tissues with anthracnose symptoms

    International Nuclear Information System (INIS)

    Vanegas Berrouet, Katherin M; Gutierrez Sanchez, Pablo A; Marin Montoya, Mauricio A

    2014-01-01

    In this work, endophytic fungi from leaves and pods of bean presenting anthracnose symptoms were isolated from plants collected at different municipalities in the province of Antioquia (Colombia). Isolates were identified by sequencing the RDNA its regions together with the examination of reproductive structures during sporulation in culture media. Colletotrichum lindemuthianum, the causal agent of anthracnose was isolated in all samples showing symptoms of this disease. These results were confirmed by duplex PCR using the specific primers CD1/CD2 and CY1/CY2. Additionally, 17 endophytic fungi were obtained. Fourteen isolates did not sporulate in culture media (Mycelia sterilia) but were identified by phylogenetic analysis of the regions as the Ascomycetes: Leptosphaerulina (3), Diaporthe (3), Gibberella (1), Plectosphaerella (1) and Biscogniauxia (1) and the Mitosporic genera phoma (2), Alternaria (2) and Stemphylium (1) Three isolates were identified combining morphological and molecular analysis as Fusarium (2) and Curvularia lunata (1). This work increases our knowledge of the mycobiota of legume plants and will serve as support of future studies aimed at determining the effect of these fungi on the development of anthracnose as well as other problems affecting the bean crop.

  16. Identifikasi Dan Uji Antagonisme Jamur Endofit Tanaman Tebu (Saccharum Officinarum L.) Terhadap Perkembangan Xanthomonas Albilineans L. Dengan Metode Sterilisasi Autoklaf Dan Membran Filter

    OpenAIRE

    Wahyuni, Siti Hardianti

    2016-01-01

    This research was conducted in a Laboratory of Agricuture Faculty and greenhouse of Agricuture Faculty, North Sumatra University, Medan, from April until December 2014. The research used completely randomized design with three factors and three replications. The first factor were endophytic fungi 1, endophytic fungi 2, endophytic fungi 3, endophytic fungi 4, endophytic fungi 5, endophytic fungi 6, endophytic fungi 7, and endophytic fungi 8. The second factor were dilution 10-1, 10-2, 10-3 da...

  17. 3-Nitropropionic acid production by the endophytic Diaporthe citri: Molecular taxonomy, chemical characterization, and quantification under pH variation.

    Science.gov (United States)

    Polonio, Julio Cesar; Ribeiro, Marcos Alessandro Dos Santos; Rhoden, Sandro Augusto; Sarragiotto, Maria Helena; Azevedo, João Lúcio; Pamphile, João Alencar

    2016-12-01

    3-nitropropionic acid (3-NPA) is a nitrogenated compound produced by plants and fungi and has been associated with poisoning episodes in humans, animals, and to induction of Huntington disease symptoms in rats. The production of 3-NPA by endophytes has been reported, but the function and biosynthesis are not well-defined. The specie of endophytic strain G-01 was confirmed as Diaporthe citri using a multilocus sequence analysis, and was verified different concentrations of 3-NPA produced at different initial pHs by these strain. The chemical analysis indicated that 3-NPA was the majority compound present in the crude extracts. The better extraction condition was at an initial pH of 7.0 for 22 d, yielding about 80 % of 3-NPA per mg of extract. It was observed that the concentration of 3-NPA increased after the initial consumption of reduction sugars, indicating that the compound is produced after the high energetic production phase of the fungus. These and other studies demonstrate the production of this compound by plants and endophytic fungi, indicating that 3-NPA may be involved in defence and nutrition systems of endophytes and host plants, and they also might participate in the biogeochemical nitrogen cycle. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  18. Antioxidative properties of phenolic compounds isolated from the fungal endophytes of Zingiber nimmonii (J.Graham) Dalzell.

    Institute of Scientific and Technical Information of China (English)

    Madhuchhanda Das; Harischandra Sripathy Prakash; Monnanda Somaiah Nalini

    2017-01-01

    BACKGROUND:The microbes living in planta termed ‘endophytes’ is bestowed with the potential to produce bioactive substances.The aim of this investigation was focused on the isolation and molecular identification of the fungal endophytes from Zingiber nimmonii (J.Graham) Dalzell.,an endemic medicinal plant species of the ‘Western ghats’,a hotspot location in southem India and characterization of the secondary metabolites responsible for the antioxidant and DNA protective capacity using chromatography and mass spectrometry techniques.METHODS:Endophytic fungi were isolated and identified by sequencing the Internal Transcribed Spacer (ITS).The secondary metabolites were extracted with ethyl acetate and evaluated for the total phenolic,flavonoid and antioxidant capacities.The isolates with potential antioxidative property were further analyzed for the DNA protection ability and the presence ofbioactive phenolic compounds by High Performance Liquid Chromatography (HPLC) and Electrospray Ionization-Mass Spectroscopy/Mass Spectroscopy (ESI-MS/MS) techniques.RESULTS:Endophytic fungi belonging to 11 different taxa were identified.The total phenolic content of the extracts ranged from 10.8 ± 0.7 to 81.6 ± 6.0 mg gallic acid equivalent/g dry extract.F lavonoid was present in eight extracts in the range of 5.2 ± 0.5 to 24.3 ±0.9 mg catechin equivalents/g dry extract.Bipolaris specifera,Alternaria tenuissima,Aspergillus terreus,Nectria haematococca and Fusarium chlamydosporum extracts exhibited a potentially high antioxidant capacity.Characterization of the extracts revealed an array of phenolic acids and flavonoids.N.haematococca and F.chlamydosporum extracts contained quercetin and showed DNA protection ability.CONCLUSION:This study is the first comprehensive report on the fungal endophytes from Z.nimmonii,as potential sources of antioxidative and DNA protective compounds.The study indicates that Z.nimmonii endophytes are potential sources of antioxidants over the

  19. [Isolation, identification and characterization of ACC deaminase-containing endophytic bacteria from halophyte Suaeda salsa].

    Science.gov (United States)

    Teng, Songshan; Liu, Yanping; Zhao, Lei

    2010-11-01

    We Isolated and characterized 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing endophytic bacteria from halophyte Suaeda salsa to understand the interactions between endophytes and halophyte. ACC deaminase-containing endophytic bacteria were isolated from root, stalk and leaf of Suaeda salsa and were identified based on morphological, physiological-biochemical properties, API and 16S rRNA sequence analysis. Isolates were evaluated for their ACC deaminase, antifungal, protease activity, siderophores and phytohormones, such as indole-3-acetic acid, gibberellic acid and abscisic acid production, as well as atmospheric nitrogen fixation and phosphate solubilization. Four ACC deaminase-containing endophytic bacteria strains named as LP11, SS12, TW1 and TW2 were isolated and identified as Pseudomonas oryzihabitans, Pseudomonas sp., Pantoea agglomerans and Pseudomonas putida respectively. All the strains possessed the phosphate-solubilizing ability and could produce siderophores and phytohormones more or less. None of them could fix atmospheric nitrogen or produce protease. Only strain SS12 showed antagonism against two phytopathogenic fungi viz Fusarium oxysporum f. sp. conglutinans and F. oxysporum f. sp. cucumerinum. ACC deaminase-containing endophytic bacteria of Pseudomonas sp. and Pantoea sp. isolated from halophyte Suaeda salsa have abundant biological characteristics related to plant growth promotion, stress homeostasis regulation and biocontrol activity.

  20. Specialized Fungal Parasites and Opportunistic Fungi in Gardens of Attine Ants

    Directory of Open Access Journals (Sweden)

    Fernando C. Pagnocca

    2012-01-01

    Full Text Available Ants in the tribe Attini (Hymenoptera: Formicidae comprise about 230 described species that share the same characteristic: all coevolved in an ancient mutualism with basidiomycetous fungi cultivated for food. In this paper we focused on fungi other than the mutualistic cultivar and their roles in the attine ant symbiosis. Specialized fungal parasites in the genus Escovopsis negatively impact the fungus gardens. Many fungal parasites may have small impacts on the ants' fungal colony when the colony is balanced, but then may opportunistically shift to having large impacts if the ants' colony becomes unbalanced.

  1. Antiangiogenic, wound healing and antioxidant activity of Cladosporium cladosporioides (Endophytic Fungus isolated from seaweed (Sargassum wightii

    Directory of Open Access Journals (Sweden)

    Manjunath M. Hulikere

    2016-10-01

    Full Text Available Endophytic fungi from marine seaweeds are the less studied group of organisms with vast medical applications. The aim of the present study was to evaluate antioxidant, antiangiogenic as well as wound healing potential of the endophytic fungus isolated from the seaweed Sargassum wightii. The morphological characters and the rDNA internal transcribed spacer sequence analysis (BLAST search in Gen Bank database was used for the identification of endophytic fungus. The antioxidant potential of the ethyl acetate extract of endophytic fungus was assessed by, 1,1-diphenyl-2-picryl-hydrazyl radical scavenging method. The fungal extract was also analysed for reducing power, total phenolic and flavonoid content. Antiangiogenic activity of the fungal extract was studied in vitro by inhibition of wound healing scratch assay and in vivo by Chick chorioallantoic membrane assay. The endophytic fungus was identified as Cladosporium cladosporioides (Gen Bank ID – KT384175. The ethyl acetate extract of C. cladosporioides showed a significant antioxidant and angiosuppressive activity. The ESI-LC-MS analysis of the extract revealed the presence of wide range of secondary metabolites. Results suggest that C. cladosporioides extract could be exploited as a potential source for angiogenic modulators.

  2. Endophytic Paraconiothyrium sp. from Zingiber officinale Rosc. Displays Broad-Spectrum Antimicrobial Activity by Production of Danthron.

    Science.gov (United States)

    Anisha, C; Sachidanandan, P; Radhakrishnan, E K

    2018-03-01

    The bioactivity spectrum of fungal endophytes isolated from Zingiber officinale was analyzed against clinical pathogens and against the phytopathogen Pythium myriotylum, which causes Pythium rot in ginger. One of the isolates GFM13 showed broad bioactivity against various pathogens tested including P. myriotylum. The spore suspension as well as the culture filtrate of the endophytic fungal isolate was found to effectively protect ginger rhizomes from Pythium rot. By molecular identification, the fungal endophyte was identified as Paraconiothyrium sp. The bioactive compound produced by the isolate was separated by bioactivity-guided fractionation and was identified by GC-MS as danthron, an anthraquinone derivative. PCR amplification showed the presence of non-reducing polyketide synthase gene (NR-PKS) in the endophyte GFM13, which is reported to be responsible for the synthesis of anthraquinones in fungi. This is the first report of danthron being produced as the biologically active component of Paraconiothyrium sp. Danthron is reported to have wide pharmaceutical and agronomic applications which include its use as a fungicide in agriculture. The broad-spectrum antimicrobial activity of danthron and the endophytic origin of Paraconiothyrium sp. offer immense applications of the study.

  3. Anticestodal Activity of Endophytic Pestalotiopsis sp. on Protoscoleces of Hydatid Cyst Echinococcus granulosus

    Directory of Open Access Journals (Sweden)

    Vijay C. Verma

    2013-01-01

    Full Text Available Surgery is still the main treatment in hydatidosis caused by Echinococcus, which is a global health problem in human and animals. So, there is need for some natural protoscolicidal agents for instillation to prevent their reoccurrence at therapeutic doses. In this present investigation, anticestodal activity of one of the endophytic fungi Pestalotiopsis sp. from Neem plant was observed on protoscoleces of hydatid cysts of Echinococcus granulosus. Viability of protoscoleces was confirmed by 0.1% aqueous eosin red stain method, where mortality was observed at different concentrations with respect to time. An average anticestodal activity was observed with different endophytic fungal strains, that is, Nigrospora (479 ± 2.9, Colletotrichum (469 ± 25.8, Fusarium (355 ± 14.5, and Chaetomium (332 ± 28.3 showing 64 to 70% protoscolicidal activity, except Pestalotiopsis sp. (581 ± 15.0, which showed promising scolicidal activity up to 97% mortality just within 30 min of incubation. These species showed significant reduction in viability of protoscoleces. This is the first report on the scolicidal activity of endophytic Pestalotiopsis sp. We conclude that ultrastructural changes in protoscoleces were due to endophytic extract suggesting that there may be some bioactive compounds that have selective action on the tegument layer of protoscoleces. As compared with that of standard drug used, endophytic species of Neem plant shows significant anticestodal activity.

  4. Symbiotic lifestyle expression by fungal endophytes and the adaptation of plants to stress: unraveling the complexities of intimacy

    Science.gov (United States)

    Redman, Regina S.; Henson, Joan M.; Rodriguez, Russell J.

    2005-01-01

    The fossil record indicates that fungal symbionts have been associated with plants since the Ordovician period (approximately 400 million years ago), when plants first became established on land (Pirozynski and Malloch, 1975; Redecker et al., 2000; Remy et al., 1994; Simon et al., 1993). Transitioning from aquatic to terrestrial habitats likely presented plants with new stresses, including periods of desiccation. Since symbiotic fungi are known to confer drought tolerance to plants (Bacon, 1993; Read and Camp, 1986), it has been suggested that fungal symbiosis was involved with or responsible for the establishment of land plants (Pirozynski and Malloch, 1975). Symbiosis was first defined by De Bary in 1879, and since that time, all plants in natural ecosystems have been found to be colonized with fungal and bacterial symbionts. It is clear that individual plants represent symbiotic communities with microorganisms associated in or on tissues below- and aboveground.There are two major classes of fungal symbionts associated with internal plant tissues: fungal endophytes that reside entirely within plants and may be associated with roots, stems leaves, or flowers; and mycorrhizal fungi that reside only in roots but extend out into the rhizosphere. In addition, fungal endophytes may be divided into two classes: (1) a relatively small number of fastidious species that are limited to a few monocot hosts (Clay and Schardl, 2002), and (2) a large number of tractable species with broad host ranges, including both monocots and eudicots (Stone et al., 2000). While significant resources and research have been invested in mycorrhizae and class 1 endophytes, comparatively little is known about class 2 endophytes, which may represent the largest group of fungal symbionts. This is partially because the symbiotic functionalities of class 2 endophytes have only recently been elucidated and shown to be responsible for the adaptation of some plants to high-stress environments (Redman

  5. Revisiting the Life Cycle of Dung Fungi, Including Sordaria fimicola.

    Science.gov (United States)

    Newcombe, George; Campbell, Jason; Griffith, David; Baynes, Melissa; Launchbaugh, Karen; Pendleton, Rosemary

    2016-01-01

    Dung fungi, such as Sordaria fimicola, generally reproduce sexually with ascospores discharged from mammalian dung after passage through herbivores. Their life cycle is thought to be obligate to dung, and thus their ascospores in Quaternary sediments have been interpreted as evidence of past mammalian herbivore activity. Reports of dung fungi as endophytes would seem to challenge the view that they are obligate to dung. However, endophyte status is controversial because surface-sterilization protocols could fail to kill dung fungus ascospores stuck to the plant surface. Thus, we first tested the ability of representative isolates of three common genera of dung fungi to affect plant growth and fecundity given that significant effects on plant fitness could not result from ascospores merely stuck to the plant surface. Isolates of S. fimicola, Preussia sp., and Sporormiella sp. reduced growth and fecundity of two of three populations of Bromus tectorum, the host from which they had been isolated. In further work with S. fimicola we showed that inoculations of roots of B. tectorum led to some colonization of aboveground tissues. The same isolate of S. fimicola reproduced sexually on inoculated host plant tissues as well as in dung after passage through sheep, thus demonstrating a facultative rather than an obligate life cycle. Finally, plants inoculated with S. fimicola were not preferred by sheep; preference had been expected if the fungus were obligate to dung. Overall, these findings make us question the assumption that these fungi are obligate to dung.

  6. Biodegradation of Polyester Polyurethane by Endophytic Fungi▿

    Science.gov (United States)

    Russell, Jonathan R.; Huang, Jeffrey; Anand, Pria; Kucera, Kaury; Sandoval, Amanda G.; Dantzler, Kathleen W.; Hickman, DaShawn; Jee, Justin; Kimovec, Farrah M.; Koppstein, David; Marks, Daniel H.; Mittermiller, Paul A.; Núñez, Salvador Joel; Santiago, Marina; Townes, Maria A.; Vishnevetsky, Michael; Williams, Neely E.; Vargas, Mario Percy Núñez; Boulanger, Lori-Ann; Bascom-Slack, Carol; Strobel, Scott A.

    2011-01-01

    Bioremediation is an important approach to waste reduction that relies on biological processes to break down a variety of pollutants. This is made possible by the vast metabolic diversity of the microbial world. To explore this diversity for the breakdown of plastic, we screened several dozen endophytic fungi for their ability to degrade the synthetic polymer polyester polyurethane (PUR). Several organisms demonstrated the ability to efficiently degrade PUR in both solid and liquid suspensions. Particularly robust activity was observed among several isolates in the genus Pestalotiopsis, although it was not a universal feature of this genus. Two Pestalotiopsis microspora isolates were uniquely able to grow on PUR as the sole carbon source under both aerobic and anaerobic conditions. Molecular characterization of this activity suggests that a serine hydrolase is responsible for degradation of PUR. The broad distribution of activity observed and the unprecedented case of anaerobic growth using PUR as the sole carbon source suggest that endophytes are a promising source of biodiversity from which to screen for metabolic properties useful for bioremediation. PMID:21764951

  7. Endophytic Paecilomyces formosus LHL10 Augments Glycine max L. Adaptation to Ni-Contamination through Affecting Endogenous Phytohormones and Oxidative Stress

    OpenAIRE

    Bilal, Saqib; Khan, Abdul L.; Shahzad, Raheem; Asaf, Sajjad; Kang, Sang-Mo; Lee, In-Jung

    2017-01-01

    This study investigated the Ni-removal efficiency of phytohormone-producing endophytic fungi Penicillium janthinellum, Paecilomyces formosus, Exophiala sp., and Preussia sp. Among four different endophytes, P. formosus LHL10 was able to tolerate up to 1 mM Ni in contaminated media as compared to copper and cadmium. P. formosus LHL10 was further assessed for its potential to enhance the phytoremediation of Glycine max (soybean) in response to dose-dependent increases in soil Ni (0.5, 1.0, and ...

  8. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters.

    Science.gov (United States)

    Martínez-Rodríguez, Julia del C; De la Mora-Amutio, Marcela; Plascencia-Correa, Luis A; Audelo-Regalado, Esmeralda; Guardado, Francisco R; Hernández-Sánchez, Elías; Peña-Ramírez, Yuri J; Escalante, Adelfo; Beltrán-García, Miguel J; Ogura, Tetsuya

    2014-01-01

    Agave tequilana Weber var. 'Azul' is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB) by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI). Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost.

  9. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters

    Directory of Open Access Journals (Sweden)

    Julia del C. Martínez-Rodríguez

    2014-12-01

    Full Text Available Agave tequilana Weber var. 'Azul' is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI. Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost.

  10. Direct plantlet inoculation with soil or insect-associated fungi may control cabbage root fly maggots.

    Science.gov (United States)

    Razinger, Jaka; Lutz, Matthias; Schroers, Hans-Josef; Palmisano, Marilena; Wohler, Christian; Urek, Gregor; Grunder, Jürg

    2014-07-01

    A potential Delia radicum biological control strategy involving cauliflower plantlet inoculation with various fungi was investigated in a series of laboratory and glasshouse experiments. In addition to entomopathogenic fungi, fungi with a high rhizosphere competence and fungi with the ability to survive as saprotrophs in soil were tested. The following fungal species were evaluated in the experiments: Trichoderma atroviride, T. koningiopsis, T. gamsii, Beauveria bassiana, Metharhizium anisopliae, M. brunneum and Clonostachys solani. A commercial carbosulfan-based insecticide was used as a positive control. Additionally, two commercial products, one based on B. bassiana (Naturalis) and one on Bacillus thuringiensis (Delfin) were used as reference biocontrol agents. The aims were (i) to assess the pathogenicity of the selected fungal isolates to Delia radicum, (ii) to evaluate the fungal isolates' rhizosphere competence, with the emphasis on the persistence of the original inoculum on the growing roots, (iii) to assess possible endophytic plant tissue colonization, and (iv) to evaluate potential plant growth stimulating effects of the added inoculi. Significant pathogenicity of tested fungi against Delia radicum was confirmed in in vitro and glasshouse experiments. All tested fungi persisted on cauliflower rhizoplane. More importantly, the added fungi were found on thoroughly washed roots outside the original point of inoculation. This provided us with evidence that our tested fungi could be transferred via or grow with the elongating roots. In addition to colonizing the rhizoplane, some fungi were found inside the plant root or stem tissue, thus exhibiting endophytic characteristics. The importance of fungal ecology as a criterion in appropriate biological control agent selection is discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum.

    Directory of Open Access Journals (Sweden)

    María J Ek-Ramos

    Full Text Available Studies of fungi in upland cotton (Gossypium hirsutum cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey

  12. Anti-MRSA activity of oxysporone and xylitol from the endophytic fungus Pestalotia sp. growing on the Sundarbans mangrove plant Heritiera fomes.

    Science.gov (United States)

    Nurunnabi, Tauhidur Rahman; Nahar, Lutfun; Al-Majmaie, Shaymaa; Rahman, S M Mahbubur; Sohrab, Md Hossain; Billah, Md Morsaline; Ismail, Fyaz M D; Rahman, M Mukhlesur; Sharples, George P; Sarker, Satyajit D

    2018-02-01

    Heritiera fomes Buch.-Ham., a mangrove plant from the Sundarbans, has adapted to a unique habitat, muddy saline water, anaerobic soil, brackish tidal activities, and high microbial competition. Endophytic fungal association protects this plant from adverse environmental conditions. This plant is used in Bangladeshi folk medicine, but it has not been extensively studied phytochemically, and there is hardly any report on investigation on endophytic fungi growing on this plant. In this study, endophytic fungi were isolated from the surface sterilized cladodes and leaves of H. fomes. The antimicrobial activities were evaluated against two Gram-positive and two Gram-negative bacteria and the fungal strain, Candida albicans. Extracts of Pestalotia sp. showed activities against all test bacterial strains, except that the ethyl acetate extract was inactive against Escherichia coli. The structures of the purified compounds, oxysporone and xylitol, were elucidated by spectroscopic means. The anti-MRSA potential of the isolated compounds were determined against various MRSA strains, that is, ATCC 25923, SA-1199B, RN4220, XU212, EMRSA-15, and EMRSA-16, with minimum inhibitory concentration values ranging from 32 to 128 μg/ml. This paper, for the first time, reports on the anti-MRSA property of oxysporone and xylitol, isolation of the endophyte Pestalotia sp. from H. fomes, and isolation of xylitol from a Pestalotia sp. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Introduction of Endophytic Pseudomonas rhodesiae and Acinetobacter sp. Effective on Seed Germination and Cucumber Growth Factors Improvement

    Directory of Open Access Journals (Sweden)

    Farkhondeh Amini

    2017-03-01

    Full Text Available Introduction: Some bacteria are capable of entering the plant as endophytes that do not cause harm and could establish a mutualistic association with host plants. Endophytic bacteria are bacteria that live in plant tissues without doing substantive harm. They enter plant tissue primarily through different plant zones. Both Gram-positive and Gram-negative bacteria have been isolated from several tissue types in several plant species. In addition, several different bacterial species have been isolated from a single plant. Variation in endophytic bacteria populations referred to the time of sampling, type of plant tissue, age and environment conditions, as well. In general endophytic bacteria occur at lower population densities than rhizospheric bacteria or bacterial pathogens. Endophytic populations, like rhizospheric populations, are conditioned by biotic and abiotic factors, but endophytic bacteria could be better protected from biotic and abiotic stresses than rhizospheric bacteria. It is clear that the interaction between plants and some endophytic bacteria is associated with beneficial effects such as plant growth promotion and biocontrol potential against plant pathogens. These types of bacteria are often capable of eliciting significant physiological changes that modulate the growth and development of the plant. Most of the time, these beneficial effects of endophytes are greater than those of many rhizosphere-colonizing bacteria. Endophytic bacteria affect bacterial growth by numerous mechanisms directly or indirectly. Some genus of bacteria such as Azosprillium, Enterobacter, Azotobacter and Pseudomonas produces plant growth regulators which lead to plant growth improvement. Microorganism profit from plants due to the enhanced availability of nutrients, whereas plants can receive benefits from bacterial associates by growth enhancement or stress reduction. Therefore, mutualistic interactions between host plants and associated

  14. Community structure of arbuscular mycorrhizal fungi in undisturbed vegetation revealed by analyses of LSU rdna sequences

    DEFF Research Database (Denmark)

    Rosendahl, Søren; Holtgrewe-Stukenbrock, Eva

    2004-01-01

    Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with plant roots and are found in most ecosystems. In this study the community structure of AMF in a clade of the genus Glomus was examined in undisturbed costal grassland using LSU rDNA sequences amplified from roots of Hieracium...

  15. A potent feed preservative candidate produced by Calcarisporium sp., an endophyte residing in stargrass (Cynodon dactylon).

    Science.gov (United States)

    Ji, L L; Song, Y C; Tan, R X

    2004-01-01

    The cultures of an endophytic fungus Calcarisporium sp. were screened for inhibitors on the growth of feed-associated moulds and on the aflatoxin biosynthesis to find a safe and effective feed preservative. Eight test fungi were isolated from the spoiled poultry feed. The endophytic fungus Calcarisporium sp. was separated from the Chinese coastal grass Cynodon dactylon. The antifungal action concerning the endophytic culture extract (ECE) was performed with propionic acid (PPA) as the corresponding reference. The ECE had a similar antifungal efficacy to PPA in a concentration-dependent manner. The susceptibility order of the ECE to the test fungi was found to be Fusarium sp. > Aspergillus spp. > Penicillium spp. Furthermore, the application of the ECE in pelleted-layer duck feed as a preservative was carried out at a humidity of 10, 15 and 20%. It has been discerned that mould growth and aflatoxin biosynthesis could be co-inhibited almost completely by ECE at concentrations higher than 1.0% (w/w). The LD50 of the ECE on mice was shown to be higher than 28 g kg-1. The ECE can be selected as an inhibitor to preserve poultry feed on inhibiting the growth of mould and aflatoxin biosynthesis during feed storage. The ECE may be an effective and biosafe antifungal ingredient for poultry feed and holds a potential market prospect in feed industry.

  16. A novel endophytic Huperzine A-producing fungus, Shiraia sp. Slf14, isolated from Huperzia serrata.

    Science.gov (United States)

    Zhu, D; Wang, J; Zeng, Q; Zhang, Z; Yan, R

    2010-10-01

    To characterize and identify a novel Huperzine A (HupA)-producing fungal strain Slf14 isolated from Huperzia serrata (Thunb. ex Murray) Trev. in China. The isolation, identification and characterization of a novel endophytic fungus producing HupA specifically and consistently from the leaves of H. serrata were investigated. The fungus was identified as Shiraia sp. Slf14 by molecular and morphological methods. The HupA produced by this endophytic fungus was shown to be identical to authentic HupA analysed by thin layer chromatographic, High-performance liquid chromatography (HPLC), LC-MS, (1) H NMR and acetylcholinesterase (AChE) inhibition activity in vitro. The amount of HupA produced by Shiraia sp. Slf14 was quantified to be 327.8 μg l(-1) by HPLC, which was far higher than that of the reported endophytic fungi, Acremonium sp., Blastomyces sp. and Botrytis sp. The production of HupA by endophyte Shiraia sp. Slf14 is an enigmatic observation. It would be interesting to further study the HupA production and regulation by the cultured endophyte in H. serrata and in axenic cultures. Although the current accumulation of HupA by the endophyte is not very high, it could provide a promising alterative approach for large-scale production of HupA. However, further strain improvement and the fermentation process optimization are required to result in the consistent and dependable production. © 2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology.

  17. Recognition of endophytic Trichoderma species by leaf-cutting ants and their potential in a Trojan-horse management strategy

    Science.gov (United States)

    Rocha, Silma L.; Evans, Harry C.; Jorge, Vanessa L.; Cardoso, Lucimar A. O.; Pereira, Fernanda S. T.; Rocha, Fabiano B.; Barreto, Robert W.; Hart, Adam G.

    2017-01-01

    Interactions between leaf-cutting ants, their fungal symbiont (Leucoagaricus) and the endophytic fungi within the vegetation they carry into their colonies are still poorly understood. If endophytes antagonistic to Leucoagaricus were found in plant material being carried by these ants, then this might indicate a potential mechanism for plants to defend themselves from leaf-cutter attack. In addition, it could offer possibilities for the management of these important Neotropical pests. Here, we show that, for Atta sexdens rubropilosa, there was a significantly greater incidence of Trichoderma species in the vegetation removed from the nests—and deposited around the entrances—than in that being transported into the nests. In a no-choice test, Trichoderma-infested rice was taken into the nest, with deleterious effects on both the fungal gardens and ant survival. The endophytic ability of selected strains of Trichoderma was also confirmed, following their inoculation and subsequent reisolation from seedlings of eucalyptus. These results indicate that endophytic fungi which pose a threat to ant fungal gardens through their antagonistic traits, such as Trichoderma, have the potential to act as bodyguards of their plant hosts and thus might be employed in a Trojan-horse strategy to mitigate the negative impact of leaf-cutting ants in both agriculture and silviculture in the Neotropics. We posit that the ants would detect and evict such ‘malign’ endophytes—artificially inoculated into vulnerable crops—during the quality-control process within the nest, and, moreover, that the foraging ants may then be deterred from further harvesting of ‘Trichoderma-enriched’ plants. PMID:28484603

  18. Adaptation to the Host Environment by Plant-Pathogenic Fungi.

    Science.gov (United States)

    van der Does, H Charlotte; Rep, Martijn

    2017-08-04

    Many fungi can live both saprophytically and as endophyte or pathogen inside a living plant. In both environments, complex organic polymers are used as sources of nutrients. Propagation inside a living host also requires the ability to respond to immune responses of the host. We review current knowledge of how plant-pathogenic fungi do this. First, we look at how fungi change their global gene expression upon recognition of the host environment, leading to secretion of effectors, enzymes, and secondary metabolites; changes in metabolism; and defense against toxic compounds. Second, we look at what is known about the various cues that enable fungi to sense the presence of living plant cells. Finally, we review literature on transcription factors that participate in gene expression in planta or are suspected to be involved in that process because they are required for the ability to cause disease.

  19. Revisiting the Life Cycle of Dung Fungi, Including Sordaria fimicola.

    Directory of Open Access Journals (Sweden)

    George Newcombe

    Full Text Available Dung fungi, such as Sordaria fimicola, generally reproduce sexually with ascospores discharged from mammalian dung after passage through herbivores. Their life cycle is thought to be obligate to dung, and thus their ascospores in Quaternary sediments have been interpreted as evidence of past mammalian herbivore activity. Reports of dung fungi as endophytes would seem to challenge the view that they are obligate to dung. However, endophyte status is controversial because surface-sterilization protocols could fail to kill dung fungus ascospores stuck to the plant surface. Thus, we first tested the ability of representative isolates of three common genera of dung fungi to affect plant growth and fecundity given that significant effects on plant fitness could not result from ascospores merely stuck to the plant surface. Isolates of S. fimicola, Preussia sp., and Sporormiella sp. reduced growth and fecundity of two of three populations of Bromus tectorum, the host from which they had been isolated. In further work with S. fimicola we showed that inoculations of roots of B. tectorum led to some colonization of aboveground tissues. The same isolate of S. fimicola reproduced sexually on inoculated host plant tissues as well as in dung after passage through sheep, thus demonstrating a facultative rather than an obligate life cycle. Finally, plants inoculated with S. fimicola were not preferred by sheep; preference had been expected if the fungus were obligate to dung. Overall, these findings make us question the assumption that these fungi are obligate to dung.

  20. Metabolomic Tools to Assess the Chemistry and Bioactivity of Endophytic Aspergillus Strain.

    Science.gov (United States)

    Tawfike, Ahmed F; Tate, Rothwelle; Abbott, Gráinne; Young, Louise; Viegelmann, Christina; Schumacher, Marc; Diederich, Marc; Edrada-Ebel, RuAngelie

    2017-10-01

    Endophytic fungi associated with medicinal plants are a potential source of novel chemistry and biology that may find applications as pharmaceutical and agrochemical drugs. In this study, a combination of metabolomics and bioactivity-guided approaches were employed to isolate secondary metabolites with cytotoxicity against cancer cells from an endophytic Aspergillus aculeatus. The endophyte was isolated from the Egyptian medicinal plant Terminalia laxiflora and identified using molecular biological methods. Metabolomics and dereplication studies were accomplished by utilizing the MZmine software coupled with the universal Dictionary of Natural Products database. Metabolic profiling, with aid of multivariate data analysis, was performed at different stages of the growth curve to choose the optimized method suitable for up-scaling. The optimized culture method yielded a crude extract abundant with biologically-active secondary metabolites. Crude extracts were fractionated using different high-throughput chromatographic techniques. Purified compounds were identified by HR-ESI-MS, 1D- and 2D-NMR. This study introduced a new method of dereplication utilizing both high-resolution mass spectrometry and NMR spectroscopy. The metabolites were putatively identified by applying a chemotaxonomic filter. We also present a short review on the diverse chemistry of terrestrial endophytic strains of Aspergillus, which has become a part of our dereplication work and this will be of wide interest to those working in this field. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  1. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white rot/brown rot paradigm for wood decay fungi

    Science.gov (United States)

    Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade ...

  2. Fungal endophytes of turmeric (Curcuma longa L.) and their biocontrol potential against pathogens Pythium aphanidermatum and Rhizoctonia solani.

    Science.gov (United States)

    Vinayarani, G; Prakash, H S

    2018-03-14

    Endophytic fungi have been isolated from the healthy turmeric (Curcuma longa L.) rhizomes from South India. Thirty-one endophytes were identified based on morphological and ITS-rDNA sequence analysis. The isolated endophytes were screened for antagonistic activity against Pythium aphanidermatum (Edson) Fitzp., and Rhizoctonia solani Kuhn., causing rhizome rot and leaf blight diseases in turmeric respectively. Results revealed that only six endophytes showed > 70% suppression of test pathogens in antagonistic dual culture assays. The endophyte T. harzianum TharDOB-31 showed significant in vitro mycelial growth inhibition of P. aphanidermatum (76.0%) and R. solani (76.9%) when tested by dual culture method. The SEM studies of interaction zone showed morphological abnormalities like parasitism, shriveling, breakage and lysis of hyphae of the pathogens by endophyte TharDOB-31. Selected endophytic isolates recorded multiple plant growth promoting traits in in vitro studies. The rhizome bacterization followed by soil application of endophyte TharDOB-31 showed lowest Percent Disease Incidence of rhizome rot and leaf blight, 13.8 and 11.6% respectively. The treatment of TharDOB-31 exhibited significant increase in plant height (85 cm) and fresh rhizome yield/plant (425 g) in comparison with untreated control under greenhouse condition. The confocal microscopy validates the colonization of the TharDOB-31 in turmeric rhizomes. The secondary metabolites in ethyl acetate extract of TharDOB-31 were found to contain higher number of antifungal compounds by high resolution liquid chromatograph mass spectrometer analysis. Thereby, endophyte T. harzianum isolate can be exploited as a potential biocontrol agent for suppressing rhizome rot and leaf blight diseases in turmeric.

  3. Bioactive Constituents from an Endophytic Fungus, Penicillium polonicum NFW9, Associated with Taxus fauna.

    Science.gov (United States)

    Fatima, Nighat; Sripisut, Tawanun; Youn, Ui J; Ahmed, Safia; Ul-Haq, Ihsan; Munoz-Acuna, Ulyana; Simmons, Charles J; Qazi, Muneer A; Jadoon, Muniba; Tan, Ghee T; de Blanco, Esperanza J C; Chang, Leng C

    2017-01-01

    Endophytic fungi are being recognized as vital and untapped sources of a variety of structurally novel and unique bioactive secondary metabolites in the field of natural products drug discovery. Herein, this study reports the isolation and characterization of secondary metabolites from an endophytic fungus Penicillium polonicum (NFW9) associated with Taxus fuana. The extracts of the endophytic fungus cultured on potato dextrose agar were purified using several chromatographic techniques. Biological evaluation was performed based on their abilities to inhibit tumor necrosis factor-alpha (TNF-α)-induced nuclear factor-kappa B (NF-κB) and cytotoxicity assays. Bioactivity-directed fractionation of the ethyl acetate extract of a fermentation culture of an endophytic fungus, Penicillium polonicum led to the isolation of a dimeric anthraquinone, (R)- 1,1',3,3',5,5'-hexahydroxy-7,7'-dimethyl[2,2'-bianthracene]-9,9',10,10'-tetraone (1), a steroidal furanoid (-)-wortmannolone (2), along with three other compounds (3-4). Moreover, this is the first report on the isolation of compound 1 from an endophytic fungus. All purified metabolites were characterized by NMR and MS data analyses. The stereo structure of compound 1 was determined by the measurement of specific optical rotation and CD spectrum. The relative stereochemistry of 2 was confirmed by single-crystal X-ray diffraction. Compounds 2-3 showed inhibitory activities in the TNF-α-induced NF-κB assay with IC50 values in the range of 0.47-2.11 µM. Compounds 1, 4 and 5 showed moderate inhibition against NF-κB and cancer cell lines. The endophytic fungus Penicillium polonicum of Taxus fuana is capable of producing biologically active natural compounds. Our results provide a scientific rationale for further chemical investigations into endophyte-producing natural products, drug discovery and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Interspecific Competition Underlying Mutualistic Networks

    Science.gov (United States)

    Maeng, Seong Eun; Lee, Jae Woo; Lee, Deok-Sun

    2012-03-01

    Multiple classes of interactions may exist affecting one another in a given system. For the mutualistic networks of plants and pollinating animals, it has been known that the degree distribution is broad but often deviates from power-law form more significantly for plants than animals. To illuminate the origin of such asymmetry, we study a model network in which links are assigned under generalized preferential-selection rules between two groups of nodes and find the sensitive dependence of the resulting connectivity pattern on the model parameters. The nonlinearity of preferential selection can come from interspecific interactions among animals and among plants. The model-based analysis of real-world mutualistic networks suggests that a new animal determines its partners not only by their abundance but also under the competition with existing animal species, which leads to the stretched-exponential degree distributions of plants.

  5. Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota).

    Science.gov (United States)

    U'Ren, Jana M; Miadlikowska, Jolanta; Zimmerman, Naupaka B; Lutzoni, François; Stajich, Jason E; Arnold, A Elizabeth

    2016-05-01

    The Xylariaceae (Sordariomycetes) comprise one of the largest and most diverse families of Ascomycota, with at least 85 accepted genera and ca. 1343 accepted species. In addition to their frequent occurrence as saprotrophs, members of the family often are found as endophytes in living tissues of phylogenetically diverse plants and lichens. Many of these endophytes remain sterile in culture, precluding identification based on morphological characters. Previous studies indicate that endophytes are highly diverse and represent many xylariaceous genera; however, phylogenetic analyses at the family level generally have not included endophytes, such that their contributions to understanding phylogenetic relationships of Xylariaceae are not well known. Here we use a multi-locus, cumulative supermatrix approach to integrate 92 putative species of fungi isolated from plants and lichens into a phylogenetic framework for Xylariaceae. Our collection spans 1933 isolates from living and senescent tissues in five biomes across the continental United States, and here is analyzed in the context of previously published sequence data from described species and additional taxon sampling of type specimens from culture collections. We found that the majority of strains obtained in our surveys can be classified in the hypoxyloid and xylaroid subfamilies, although many also were found outside of these lineages (as currently circumscribed). Many endophytes were placed in lineages previously not known for endophytism. Most endophytes appear to represent novel species, but inferences are limited by potential gaps in public databases. By linking our data, publicly available sequence data, and records of ascomata, we identify many geographically widespread, host-generalist clades capable of symbiotic associations with diverse photosynthetic partners. Concomitant with such cosmopolitan host use and distributions, many xylariaceous endophytes appear to inhabit both living and non-living plant

  6. Consortium Application of Endophytic Bacteria and Fungi Improves Grain Yield and Physiological Attributes in Advanced Lines of Bread Wheat

    Directory of Open Access Journals (Sweden)

    Ghulam Muhae-Ud-Din

    2018-02-01

    Full Text Available Increasing human population places pressure on agriculture. To feed this population, two time increase in the current wheat production is needed. Today agriculture is becoming input intensive with more reliance on synthetic fertilizers and agrochemicals to fulfil the feed demand of the growing numbers. Use of synthetic fertilizer since last few years is impacting the soil quality. In this scenario, the use of beneficial endophytic microbes is an attractive strategy to overcome the use of synthetic products. To investigate the effect of consortium application of endophytic bacteria and fungus on plant growth, grain yield moisture status, a pot experiment was conducted in different wheat lines. It comprised four treatments like control, application of bacterial strain Bacillus sp. MN54, fungal strain Trichoderma sp. MN6, and their consortium (Bacillus sp. MN54 + Trichoderma sp. MN6. The effect of consortium application was more prominent and significantly different from the sole application of bacteria and fungus. The results showed that with a consortium application of endophytic bacteria and fungus, there was 28.6, 4.3, -6.3 and -3.7% increases in flag leaf area, chlorophyll content, relative membrane permeability and water content respectively. Consortia of endophytic microbes also resulted in the yield enhancement through the betterment of various yield attributes like number of spikelet’s, grains per spike and grain yield per plant (32.2, 25.8 and 30.8%, respectively. So, consortia of endophytic microbes can greatly promote the progress of plants in dry land agriculture and increase the yield in an environmentally sustainable way.

  7. Root Fungal Endophytes Enhance Heavy-Metal Stress Tolerance of Clethra barbinervis Growing Naturally at Mining Sites via Growth Enhancement, Promotion of Nutrient Uptake and Decrease of Heavy-Metal Concentration.

    Directory of Open Access Journals (Sweden)

    Keiko Yamaji

    Full Text Available Clethra barbinervis Sieb. et Zucc. is a tree species that grows naturally at several mine sites and seems to be tolerant of high concentrations of heavy metals, such as Cu, Zn, and Pb. The purpose of this study is to clarify the mechanism(s underlying this species' ability to tolerate the sites' severe heavy-metal pollution by considering C. barbinervis interaction with root fungal endophytes. We measured the heavy metal concentrations of root-zone soil, leaves, branches, and fine roots collected from mature C. barbinervis at Hitachi mine. We isolated fungal endophytes from surface-sterilized root segments, and we examined the growth, and heavy metal and nutrient absorption of C. barbinervis seedlings growing in sterilized mine soil with or without root fungal endophytes. Field analyses showed that C. barbinervis contained considerably high amounts of Cu, Zn, and Pb in fine roots and Zn in leaves. The fungi, Phialocephala fortinii, Rhizodermea veluwensis, and Rhizoscyphus sp. were frequently isolated as dominant fungal endophyte species. Inoculation of these root fungal endophytes to C. barbinervis seedlings growing in sterilized mine soil indicated that these fungi significantly enhanced the growth of C. barbinervis seedlings, increased K uptake in shoots and reduced the concentrations of Cu, Ni, Zn, Cd, and Pb in roots. Without root fungal endophytes, C. barbinervis could hardly grow under the heavy-metal contaminated condition, showing chlorosis, a symptom of heavy-metal toxicity. Our results indicate that the tree C. barbinervis can tolerate high heavy-metal concentrations due to the support of root fungal endophytes including P. fortinii, R. veluwensis, and Rhizoscyphus sp. via growth enhancement, K uptake promotion and decrease of heavy metal concentrations.

  8. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning

    Science.gov (United States)

    D. Lee Taylor; Teresa N. Hollingsworth; Jack W. McFarland; Niall J. Lennon; Chad Nusbaum; Roger W. Ruess

    2014-01-01

    Fungi play key roles in ecosystems as mutualists, pathogens, and decomposers. Current estimates of global species richness are highly uncertain, and the importance of stochastic vs. deterministic forces in the assembly of fungal communities is unknown. Molecular studies have so far failed to reach saturated, comprehensive estimates of fungal diversity. To obtain a more...

  9. Diversity of Endophytic Actinomycetes from Wheat and its Potential as Plant Growth Promoting and Biocontrol Agents

    Directory of Open Access Journals (Sweden)

    M. Gangwar

    2012-01-01

    Full Text Available A total of 35 endophytic actinomycetes strains was isolated from the roots, stems and leaves tissues of healthy wheat plants and identified as Streptomyces sp. (24, Actinopolyspora sp. (3, Nocardia sp. (4, Saccharopolyspora sp. (2 Pseudonocardia (1 and Micromonospora sp. (1. Seventeen endophytic actinomycetes isolate showed abilities to solubilize phosphate and produce IAA in the range of 5 to 42mg/100ml and 18-42µg/ml respectively. Nineteen isolates produced catechol-type of siderophore ranging between 1.3-20.32µg/ml. Also, hydroxamate-type siderophore produced by 9 isolates in the range of 13.33-50.66µg/ml. Maximum catechol-type of siderophore production was observed in Streptomyces roseosporus W9 (20.32µg/ml which was also displaying maximum antagonistic activity against ten different pathogenic fungi. The results indicated that internal tissues of healthy wheat plants exhibited endophytic actinomycetes diversity not only in terms of different types of isolates but also in terms of functional diversity.

  10. Resilient networks of ant-plant mutualists in Amazonian forest fragments.

    Science.gov (United States)

    Passmore, Heather A; Bruna, Emilio M; Heredia, Sylvia M; Vasconcelos, Heraldo L

    2012-01-01

    The organization of networks of interacting species, such as plants and animals engaged in mutualisms, strongly influences the ecology and evolution of partner communities. Habitat fragmentation is a globally pervasive form of spatial heterogeneity that could profoundly impact the structure of mutualist networks. This is particularly true for biodiversity-rich tropical ecosystems, where the majority of plant species depend on mutualisms with animals and it is thought that changes in the structure of mutualist networks could lead to cascades of extinctions. We evaluated effects of fragmentation on mutualistic networks by calculating metrics of network structure for ant-plant networks in continuous Amazonian forests with those in forest fragments. We hypothesized that networks in fragments would have fewer species and higher connectance, but equal nestedness and resilience compared to forest networks. Only one of the nine metrics we compared differed between continuous forest and forest fragments, indicating that networks were resistant to the biotic and abiotic changes that accompany fragmentation. This is partially the result of the loss of only specialist species with one connection that were lost in forest fragments. We found that the networks of ant-plant mutualists in twenty-five year old fragments are similar to those in continuous forest, suggesting these interactions are resistant to the detrimental changes associated with habitat fragmentation, at least in landscapes that are a mosaic of fragments, regenerating forests, and pastures. However, ant-plant mutualistic networks may have several properties that may promote their persistence in fragmented landscapes. Proactive identification of key mutualist partners may be necessary to focus conservation efforts on the interactions that insure the integrity of network structure and the ecosystems services networks provide.

  11. Resilient networks of ant-plant mutualists in Amazonian forest fragments.

    Directory of Open Access Journals (Sweden)

    Heather A Passmore

    Full Text Available The organization of networks of interacting species, such as plants and animals engaged in mutualisms, strongly influences the ecology and evolution of partner communities. Habitat fragmentation is a globally pervasive form of spatial heterogeneity that could profoundly impact the structure of mutualist networks. This is particularly true for biodiversity-rich tropical ecosystems, where the majority of plant species depend on mutualisms with animals and it is thought that changes in the structure of mutualist networks could lead to cascades of extinctions.We evaluated effects of fragmentation on mutualistic networks by calculating metrics of network structure for ant-plant networks in continuous Amazonian forests with those in forest fragments. We hypothesized that networks in fragments would have fewer species and higher connectance, but equal nestedness and resilience compared to forest networks. Only one of the nine metrics we compared differed between continuous forest and forest fragments, indicating that networks were resistant to the biotic and abiotic changes that accompany fragmentation. This is partially the result of the loss of only specialist species with one connection that were lost in forest fragments.We found that the networks of ant-plant mutualists in twenty-five year old fragments are similar to those in continuous forest, suggesting these interactions are resistant to the detrimental changes associated with habitat fragmentation, at least in landscapes that are a mosaic of fragments, regenerating forests, and pastures. However, ant-plant mutualistic networks may have several properties that may promote their persistence in fragmented landscapes. Proactive identification of key mutualist partners may be necessary to focus conservation efforts on the interactions that insure the integrity of network structure and the ecosystems services networks provide.

  12. Networks Depicting the Fine-Scale Co-Occurrences of Fungi in Soil Horizons.

    Science.gov (United States)

    Toju, Hirokazu; Kishida, Osamu; Katayama, Noboru; Takagi, Kentaro

    2016-01-01

    Fungi in soil play pivotal roles in nutrient cycling, pest controls, and plant community succession in terrestrial ecosystems. Despite the ecosystem functions provided by soil fungi, our knowledge of the assembly processes of belowground fungi has been limited. In particular, we still have limited knowledge of how diverse functional groups of fungi interact with each other in facilitative and competitive ways in soil. Based on the high-throughput sequencing data of fungi in a cool-temperate forest in northern Japan, we analyzed how taxonomically and functionally diverse fungi showed correlated fine-scale distributions in soil. By uncovering pairs of fungi that frequently co-occurred in the same soil samples, networks depicting fine-scale co-occurrences of fungi were inferred at the O (organic matter) and A (surface soil) horizons. The results then led to the working hypothesis that mycorrhizal, endophytic, saprotrophic, and pathogenic fungi could form compartmentalized (modular) networks of facilitative, antagonistic, and/or competitive interactions in belowground ecosystems. Overall, this study provides a research basis for further understanding how interspecific interactions, along with sharing of niches among fungi, drive the dynamics of poorly explored biospheres in soil.

  13. Morphological, Physiological, and Taxonomic Characterization of Actinobacterial Isolates Living as Endophytes of Cacao Pods and Cacao Seeds.

    Science.gov (United States)

    Tchinda, Romaric Armel Mouafo; Boudjeko, Thaddée; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Tsala, Éric; Monga, Ernest; Beaulieu, Carole

    2016-01-01

    Vascular plants are commonly colonized by endophytic actinobacteria. However, very little is known about the relationship between these microorganisms and cacao fruits. In order to determine the physiological and taxonomic relationships between the members of this community, actinobacteria were isolated from cacao fruits and seeds. Among the 49 isolates recovered, 11 morphologically distinct isolates were selected for further characterization. Sequencing of the 16S rRNA gene allowed the partition of the selected isolates into three phylogenetic clades. Most of the selected endophytic isolates belonged to the Streptomyces violaceusniger clade. Physiological characterization was carried out and a similarity index was used to cluster the isolates. However, clustering based on physiological properties did not match phylogenetic lineages. Isolates were also characterized for traits commonly associated with plant growth-promoting bacteria, including antibiosis and auxin biosynthesis. All isolates exhibited resistance to geldanamycin, whereas only two isolates were shown to produce this antibiotic. Endophytes were inoculated on radish seedlings and most isolates were found to possess plant growth-promoting abilities. These endophytic actinobacteria inhibited the growth of various plant pathogenic fungi and/or bacteria. The present study showed that S. violaceusniger clade members represent a significant part of the actinobacterial community living as endophytes in cacao fruits and seeds. While several members of this clade are known to be geldanamycin producers and efficient biocontrol agents of plant diseases, we herein established the endophytic lifestyle of some of these microorganisms, demonstrating their potential as plant health agents.

  14. Diversity and antifungal activity of the endophytic fungi associated with the native medicinal cactus Opuntia humifusa (Cactaceae) from the United States

    Science.gov (United States)

    The endophytic fungal community associated with the native cactus Opuntia humifusa in the United States was investigated and its potential for providing antifungal compounds. A total of 108 endophytic fungal isolates were obtained and identified by molecular methods into 17 different taxa of the gen...

  15. Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters

    Directory of Open Access Journals (Sweden)

    Longfei Zhao

    2015-12-01

    Full Text Available Abstract A total of 48 endophytic bacteria were isolated from surface-sterilized tissues of the medicinal plant Lonicera japonica, which is grown in eastern China; six strains were selected for further study based on their potential ability to promote plant growth in vitro (siderophore and indoleacetic acid production. The bacteria were characterized by phylogenetically analyzing their 16S rRNA gene similarity, by examining their effect on the mycelial development of pathogenic fungi, by testing their potential plant growth-promoting characteristics, and by measuring wheat growth parameters after inoculation. Results showed that the number of endophytic bacteria in L. japonica varied among different tissues, but it remained relatively stable in the same tissues from four different plantation locations. Among the three endophytic strains, strains 122 and 124 both had high siderophore production, with the latter showing the highest phosphate solubilization activity (45.6 mg/L and aminocyclopropane-1-carboxylic acid deaminase activity (47.3 nmol/mg/h. Strain 170 had the highest indoleacetic acid (IAA production (49.2 mg/L and cellulase and pectinase activities. After inoculation, most of the six selected isolates showed a strong capacity to promote wheat growth. Compared with the controls, the increase in the shoot length, root length, fresh weight, dry weight, and chlorophyll content was most remarkable in wheat seedlings inoculated with strain 130. The positive correlation between enzyme (cellulose and pectinase activity and inhibition rate on Fusarium oxysporum, the IAA production, and the root length of wheat seedlings inoculated with each tested endophytic strain was significant in regression analysis. Deformity of pathogenic fungal mycelia was observed under a microscope after the interaction with the endophytic isolates. Such deformity may be directly related to the production of hydrolytic bacterial enzymes (cellulose and pectinase. The six

  16. Genetic variability in the endophytic fungus Guignardia citricarpa isolated from citrus plants

    Directory of Open Access Journals (Sweden)

    Chirlei Glienke-Blanco

    2002-01-01

    Full Text Available During some phases of of their life-cycle endophytic fungi colonize plants asymptomatically being found most frequently inside the aerial part of plant tissues. After surface disinfection of apparently healthy leaves from three varieties of mandarin orange and one tangor, and after incubation on appropriate culture medium, 407 fungal isolates were obtained, giving a total infection frequency of 81%. No fungal growth was observed from disinfected seeds, indicating that fungi are probably not transmitted via seeds. Of the fungal isolates, 27% belonged to the genus Guignardia, with 12 isolates being identified as Guignardia citricarpa Kiely, which is described as a citrus pathogen. The isolates were variable in respect to the presence of sexual structures and growth rates. Most of the isolates produces mature asci, supporting the hypothesis that they are nonpathogenic endophytes, which recently were identified as G. mangiferae. High intraspecific genetic variability (an average similarity coefficient of 0.6 was detected using random amplified polymorphic DNA (RAPD markers generated by seven different primers. The highest similarity coefficient (0.9 was between isolates P15 and M86 and the smallest (0.22 between isolates P15 and C145. These results did not allow us to establish an association between genetic similarity of the fungal isolates and the citrus varieties from which they were obtained.

  17. Phylogenetic reconstruction of endophytic fungal isolates using internal transcribed spacer 2 (ITS2) region.

    Science.gov (United States)

    GokulRaj, Kathamuthu; Sundaresan, Natesan; Ganeshan, Enthai Jagan; Rajapriya, Pandi; Muthumary, Johnpaul; Sridhar, Jayavel; Pandi, Mohan

    2014-01-01

    Endophytic fungi are inhabitants of plants, living most part of their lifecycle asymptomatically which mainly confer protection and ecological advantages to the host plant. In this present study, 48 endophytic fungi were isolated from the leaves of three medicinal plants and characterized based on ITS2 sequence - secondary structure analysis. ITS2 secondary structures were elucidated with minimum free energy method (MFOLD version 3.1) and consensus structure of each genus was generated by 4SALE. ProfDistS was used to generate ITS2 sequence structure based phylogenetic tree respectively. Our elucidated isolates were belonging to Ascomycetes family, representing 5 orders and 6 genera. Colletotrichum/Glomerella spp., Diaporthae/Phomopsis spp., and Alternaria spp., were predominantly observed while Cochliobolus sp., Cladosporium sp., and Emericella sp., were represented by singletons. The constructed phylogenetic tree has well resolved monophyletic groups with >50% bootstrap value support. Secondary structures based fungal systematics improves not only the stability; it also increases the precision of phylogenetic inference. Above ITS2 based phylogenetic analysis was performed for our 48 isolates along with sequences of known ex-types taken from GenBank which confirms the efficiency of the proposed method. Further, we propose it as superlative marker for reconstructing phylogenetic relationships at different taxonomic levels due to their lesser length.

  18. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi

    Science.gov (United States)

    Robert Riley; Asaf A. Salamov; Daren W. Brown; Laszlo G. Nagy; Dimitrios Floudas; Benjamin W. Held; Anthony Levasseur; Vincent Lombard; Emmanuelle Morin; Robert Otillar; Erika A. Lindquist; Hui Sun; Kurt M. LaButti; Jeremy Schmutz; Dina Jabbour; Hong Luo; Scott E. Baker; Antonio G. Pisabarro; Jonathan D. Walton; Robert A. Blanchette; Bernard Henrissat; Francis Martin; Daniel Cullen; David S. Hibbett; Igor V. Grigoriev

    2014-01-01

    Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic...

  19. Application endophytic microorganisms in agriculture and production of substances of economic interest Aplicação de microrganismos endofíticos na agricultura e na produção de substâncias de interesse econômico

    Directory of Open Access Journals (Sweden)

    Taides Tavares dos Santos

    2011-12-01

    Full Text Available Endophytic microorganisms are mainly fungi and bacteria that live inside plants, generally inhabiting aerial parts such as leaves and stems, without causing any apparent damage to their hosts. In addition to many important functions for the host, the endophytic microorganisms are potentially useful in agriculture and industry, especially in pharmaceuticals and agrochemicals. By forming themselves into substitutes for chemicals by exercising stock biocontrol and/or promotion of plant growth, favoring theenvironmental preservation, has been appointed as a viable alternative agricultural production systems for environmentally and economically sustainable. Obtaining substances of economic interest, such as enzymes, antibiotics and other drugs from endophytic microorganisms has often been reported in the scientific literature. One example is taxol, a powerful anti-cancer substance that was previously obtained only from the exploitation of the plant Taxus brevifolia, and can now be obtained from different genera of endophytic fungi. Advances like this reinforce the great biotechnological potential of such microorganisms. This study presents an overview of potential applications of endophyticmicroorganisms in agriculture and production of substances of economic interest.

  20. Huperzine A production by Paecilomyces tenuis YS-13, an endophytic fungus isolated from Huperzia serrata.

    Science.gov (United States)

    Su, Jingqian; Yang, Minhe

    2015-01-01

    Huperzine A (HupA), a naturally occurring alkaloid in the plant family Huperziaceae, has drawn great interest for its potential application in Alzheimer disease therapy. Our primary objective was to identify alkaloid- and HupA-producing fungi from the Chinese folk herb, Huperzia serrata. We established a rapid and efficient model for screening HupA-producing endophytic fungal strains. The presence of HupA in Paecilomyces tenuis YS-13 was analysed by thin-layer chromatography, high-performance liquid chromatography and mass spectrometry. The fermentation yield of HupA was 21.0 μg/L, and the IC50 of the crude extract of YS-13 fermentation broth was 1.27 ± 0.04 mg/mL. This is the first report of P. tenuis as a HupA-producing endophyte isolated from Huperziaceae.

  1. Adaptation of flower and fruit colours to multiple, distinct mutualists.

    Science.gov (United States)

    Renoult, Julien P; Valido, Alfredo; Jordano, Pedro; Schaefer, H Martin

    2014-01-01

    Communication in plant-animal mutualisms frequently involves multiple perceivers. A fundamental uncertainty is whether and how species adapt to communicate with groups of mutualists having distinct sensory abilities. We quantified the colour conspicuousness of flowers and fruits originating from one European and two South American plant communities, using visual models of pollinators (bee and fly) and seed dispersers (bird, primate and marten). We show that flowers are more conspicuous than fruits to pollinators, and the reverse to seed dispersers. In addition, flowers are more conspicuous to pollinators than to seed dispersers and the reverse for fruits. Thus, despite marked differences in the visual systems of mutualists, flower and fruit colours have evolved to attract multiple, distinct mutualists but not unintended perceivers. We show that this adaptation is facilitated by a limited correlation between flower and fruit colours, and by the fact that colour signals as coded at the photoreceptor level are more similar within than between functional groups (pollinators and seed dispersers). Overall, these results provide the first quantitative demonstration that flower and fruit colours are adaptations allowing plants to communicate simultaneously with distinct groups of mutualists. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  2. Cytochalasins produced by Xylaria sp., an endophytic fungus from Piper aduncum

    OpenAIRE

    Silva, Geraldo H.; Oliveira, Camila M. de; Teles, Helder L.; Bolzani, Vanderlan da S.; Araujo, Angela R.; Pfenning, Ludwig H.; Young, Maria Claudia M.; Costa-Neto, Claudio M.; Haddad, Renato; Eberlin, Marcos N.

    2010-01-01

    A chemical study on the EtOAc extract produced by Xylaria sp., an endophytic fungus from Piper aduncum, resulted in the isolation of a new cytochalasin 1, along with five known 19,20-epoxycytochalasin D (2), C (3), N (4), Q (5), and R (6). The 1-6 were evaluated against the fungi C. cladosporioides and C. sphaerospermum and only 5 showed weak activity. The cytotoxicity in vitro against HeLA and CHO cells lines were investigated and the cytochalasins 2-4, and 6 showed a strong activity against...

  3. Diversity and classification of mycorrhizal associations.

    Science.gov (United States)

    Brundrett, Mark

    2004-08-01

    Most mycorrhizas are 'balanced' mutualistic associations in which the fungus and plant exchange commodities required for their growth and survival. Myco-heterotrophic plants have 'exploitative' mycorrhizas where transfer processes apparently benefit only plants. Exploitative associations are symbiotic (in the broad sense), but are not mutualistic. A new definition of mycorrhizas that encompasses all types of these associations while excluding other plant-fungus interactions is provided. This definition recognises the importance of nutrient transfer at an interface resulting from synchronised plant-fungus development. The diversity of interactions between mycorrhizal fungi and plants is considered. Mycorrhizal fungi also function as endophytes, necrotrophs and antagonists of host or non-host plants, with roles that vary during the lifespan of their associations. It is recommended that mycorrhizal associations are defined and classified primarily by anatomical criteria regulated by the host plant. A revised classification scheme for types and categories of mycorrhizal associations defined by these criteria is proposed. The main categories of vesicular-arbuscular mycorrhizal associations (VAM) are 'linear' or 'coiling', and of ectomycorrhizal associations (ECM) are 'epidermal' or 'cortical'. Subcategories of coiling VAM and epidermal ECM occur in certain host plants. Fungus-controlled features result in 'morphotypes' within categories of VAM and ECM. Arbutoid and monotropoid associations should be considered subcategories of epidermal ECM and ectendomycorrhizas should be relegated to an ECM morphotype. Both arbuscules and vesicles define mycorrhizas formed by glomeromycotan fungi. A new classification scheme for categories, subcategories and morphotypes of mycorrhizal associations is provided.

  4. Cytotoxic and antibacterial naphthoquinones from an endophytic fungus, Cladosporium sp.

    Directory of Open Access Journals (Sweden)

    Md. Imdadul Huque Khan

    Full Text Available Objective: Endophytes have the potential to synthesize various bioactive secondary metabolites. The aim of the study was to find new cytotoxic and antibacterial metabolites from endophytic fungus, Cladosporium sp. isolated from the leaves of Rauwolfia serpentina (L. Benth. ex Kurz. (Fam: Apocyanaceae. Materials and methods: The endophytic fungus was grown on potato dextrose agar medium and extracted using ethyl acetate. Secondary metabolites were isolated by chromatographic separation and re-crystallization, and structures were confirmed by 1H NMR, 13C NMR and mass spectroscopic data. The cytotoxicity was determined by WST-1 assay and brine shrimp lethality bioassay, while antibacterial activity was assessed by disc diffusion method. Results: Two naphthoquinones, namely anhydrofusarubin (1 and methyl ether of fusarubin (2, were isolated from Cladosporium sp. The isolated compounds 1 and 2, by WST-1 assay against human leukemia cells (K-562 showed potential cytotoxicity with IC50 values of 3.97 μg/mL and 3.58 μg/mL, respectively. Initial screening of crude ethyl acetate extract and column fractions F-8 and F-10 exhibited noticeable cytotoxicity to brine shimp nauplii with LC50 values of 42.8, 1.2 and 2.1 μg/mL, respectively. Moreover, the isolated compound 2 (40 μg/disc showed prominent activities against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus megaterium with an average zone of inhibition of 27 mm, 25 mm, 24 mm and 22 mm, respectively and the activities were compared with kanamycin (30 μg/disc. Conclusion: Our findings indicate that anhydrofusarubin (1 and methyl ether of fusarubin (2 might be useful lead compounds to develop potential cytotoxic and antimicrobial drugs. Keywords: Endophytic fungi, Cladosporium species, Fusarubin, Cytoxicity, Antibacterial activity

  5. Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata

    Directory of Open Access Journals (Sweden)

    Vânia Specian

    2012-09-01

    Full Text Available Endophytic microorganisms, defined as fungi or bacteria that colonize the interior of plants without causing any immediate negative effects or damages, have reciprocal relationships with host plants. In some cases their presence is beneficial to the host due to the synthesis of bioactive compounds, among which several alcohols, esters, ketones and others that may react with other compounds and may be lethal to pathogenic microorganisms. Diaporthe helianthi (Phomopsis helianthi in its anamorphic phase is available worldwide, especially in Europe, Asia and America. Isolated in Europe as an agent of the sunflower stem cancer, it has also been endophytically isolated from tropical and temperate plants. A D. helianthi strain isolated from Luehea divaricata has been employed in current research. An investigation of the secondary metabolite from D. helianthi by CC and NMR of ¹H and 13C yielded the separation of 10 fractions and the identification of the phenolic compound 2(-4 hydroxyphenyl-ethanol (Tyrosol. Its antimicrobial reaction was tested and the ensuing antagonistic effects on the human pathogenic bacteria Enterococcus hirae, Escherichia coli, Micrococcus luteus, Salmonella typhi, Staphylococcus aureus, phytopathogenic Xanthomonas asc. phaseoli and phytopathogenic fungi were demonstrated. Results show that bioactive compounds and Tyrosol produced by D. helianthi have a biotechnological potential.

  6. Gene Clusters for Insecticidal Loline Alkaloids in the Grass-Endophytic Fungus Neotyphodium uncinatum

    OpenAIRE

    Spiering, Martin J.; Moon, Christina D.; Wilkinson, Heather H.; Schardl, Christopher L.

    2005-01-01

    Loline alkaloids are produced by mutualistic fungi symbiotic with grasses, and they protect the host plants from insects. Here we identify in the fungal symbiont, Neotyphodium uncinatum, two homologous gene clusters (LOL-1 and LOL-2) associated with loline-alkaloid production. Nine genes were identified in a 25-kb region of LOL-1 and designated (in order) lolF-1, lolC-1, lolD-1, lolO-1, lolA-1, lolU-1, lolP-1, lolT-1, and lolE-1. LOL-2 contained the homologs lolC-2 through lolE-2 in the same ...

  7. Standing genetic variation in host preference for mutualist microbial symbionts.

    Science.gov (United States)

    Simonsen, Anna K; Stinchcombe, John R

    2014-12-22

    Many models of mutualisms show that mutualisms are unstable if hosts lack mechanisms enabling preferential associations with mutualistic symbiotic partners over exploitative partners. Despite the theoretical importance of mutualism-stabilizing mechanisms, we have little empirical evidence to infer their evolutionary dynamics in response to exploitation by non-beneficial partners. Using a model mutualism-the interaction between legumes and nitrogen-fixing soil symbionts-we tested for quantitative genetic variation in plant responses to mutualistic and exploitative symbiotic rhizobia in controlled greenhouse conditions. We found significant broad-sense heritability in a legume host's preferential association with mutualistic over exploitative symbionts and selection to reduce frequency of associations with exploitative partners. We failed to detect evidence that selection will favour the loss of mutualism-stabilizing mechanisms in the absence of exploitation, as we found no evidence for a fitness cost to the host trait or indirect selection on genetically correlated traits. Our results show that genetic variation in the ability to preferentially reduce associations with an exploitative partner exists within mutualisms and is under selection, indicating that micro-evolutionary responses in mutualism-stabilizing traits in the face of rapidly evolving mutualistic and exploitative symbiotic bacteria can occur in natural host populations. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Identification of a New Uncompetitive Inhibitor of Adenosine Deaminase from Endophyte Aspergillus niger sp.

    Science.gov (United States)

    Zhang, Xin-Guo; Liu, Jin-Wen; Tang, Peng; Liu, Zi-Yu; Guo, Guang-Jun; Sun, Qiao-Yun; Yin, Jian-Jun

    2018-05-01

    Adenosine deaminase (ADA) is an enzyme widely distributed from bacteria to humans. ADA is known as a potential therapeutic target for the treatment of lymphoproliferative disorders and cancer. Endophytes are endosymbionts, often bacteria or fungi, which live within plant tissues and internal organs or intercellular space. Endophytes have a broad variety of bioactive metabolites that are used for the identification of novel natural compounds. Here, 54 morphologically distinct endophyte strains were isolated from six plants such as Peganum harmala Linn., Rheum officinale Baill., Gentiana macrophylla Pall., Radix stephaniae tetrandrae, Myrrha, and Equisetum hyemale Linn. The isolated strains were used for the search of ADA inhibitors that resulted in the identification of the strain with the highest inhibition activity, Aspergillus niger sp. Four compounds were isolated from this strain using three-step chromatography procedure, and compound 2 was determined as the compound with the highest inhibition activity of ADA. Based on the results of 1 H and 13 C NMR spectroscopies, compound 2 was identified as 3-(4-nitrophenyl)-5-phenyl isoxazole. We showed that compound 2 was a new uncompetitive inhibitor of ADA with high cytotoxic effect on HepG2 and SMCC-7721 cells (the IC 50 values were 0.347 and 0.380 mM, respectively). These results suggest that endophyte strains serve as promising sources for the identification of ADA inhibitors, and compound 2 could be an effective drug in the cancer treatment.

  9. Molecular phylogenetics and anti-Pythium activity of endophytes from rhizomes of wild ginger congener, Zingiber zerumbet Smith.

    Science.gov (United States)

    Keerthi, D; Aswati Nair, R; Prasath, D

    2016-03-01

    Zingiber zerumbet, a perennial rhizomatous herb exhibits remarkable disease resistance as well as a wide range of pharmacological activities. Towards characterizing the endophytic population of Z. zerumbet rhizomes, experiments were carried out during two different growing seasons viz., early-June of 2013 and late-July of 2014. A total of 34 endophytes were isolated and categorized into 11 morphologically distinct groups. Fungi were observed to predominate bacterial species with colonization frequency values ranging from 12.5 to 50%. Among the 11 endophyte groups isolated, molecular analyses based on ITS/16S rRNA gene sequences identified seven isolate groups as Fusarium solani, two as F. oxysporum and one as the bacterium Rhizobium spp. Phylogenetic tree clustered the ITS sequences from Z. zerumbet endophytes into distinct clades consistent with morphological and sequence analysis. Dual culture assays were carried out to determine antagonistic activity of the isolated endophytes against Pythium myriotylum, an economically significant soil-borne phytopathogen of cultivated ginger. Experiments revealed significant P. myriotylum growth inhibition by F. solani and F. oxysporum isolates with percentage of inhibition (PoI) ranging from 45.17 ± 0.29 to 62.2 ± 2.58 with F. oxysporum exhibiting higher PoI values against P. myriotylum. Using ZzEF8 metabolite extract, concentration-dependent P. myriotylum hyphal growth inhibition was observed following radial diffusion assays. These observations were confirmed by scanning electron microscopy analysis wherein exposure to ZzEF8 metabolite extract induced hyphal deformities. Results indicate Z. zerumbet endophytes as promising resources for biologically active compounds and as biocontrol agents for soft rot disease management caused by Pythium spp.

  10. Changes in Population Dynamics in Mutualistic versus Pathogenic Viruses

    Directory of Open Access Journals (Sweden)

    Marilyn J. Roossinck

    2011-01-01

    Full Text Available Although generally regarded as pathogens, viruses can also be mutualists. A number of examples of extreme mutualism (i.e., symbiogenesis have been well studied. Other examples of mutualism are less common, but this is likely because viruses have rarely been thought of as having any beneficial effects on their hosts. The effect of mutualism on the population dynamics of viruses is a topic that has not been addressed experimentally. However, the potential for understanding mutualism and how a virus might become a mutualist may be elucidated by understanding these dynamics.

  11. Antagonistic Activity Of Endophytic Bacteria Isolated From Mentha Rotundifolia L.

    Directory of Open Access Journals (Sweden)

    Elhartiti Abla

    2015-08-01

    Full Text Available Abstract This study is implemented for the isolation purification and identification of endophytic bacteria which produces antifungal substances from the roots of Mentha rotundifolia L. The 59 obtained bacterial isolates were tested for their antagonistic activity by the dual confrontation against the phytopathogenic fungi Fusarium oxysporum Aspergillus Niger and Botrytis cinerea. Eight bacterial strains were selected for their strong antifungal activity. These are strains M21 M23 M3a M4 M14d and M3c which belong to the family Bacillaceae M12 and M3b which belongs to the family of Pseudomonadaceae. Among these three bacterial strains namely M21 M23 and M12 induce 70 of inhibition of mycelial growth of phytopathogenic fungi Fusarium oxysporum and Aspergillus Niger while the five bacterial strains M3a M3c M3b M4 and M14d have proved to be effective in inhibiting more than 60 of mycelial growth of Botrytis cinerea.

  12. Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice.

    Directory of Open Access Journals (Sweden)

    Derrick E Fouts

    2008-07-01

    Full Text Available We report here the sequencing and analysis of the genome of the nitrogen-fixing endophyte, Klebsiella pneumoniae 342. Although K. pneumoniae 342 is a member of the enteric bacteria, it serves as a model for studies of endophytic, plant-bacterial associations due to its efficient colonization of plant tissues (including maize and wheat, two of the most important crops in the world, while maintaining a mutualistic relationship that encompasses supplying organic nitrogen to the host plant. Genomic analysis examined K. pneumoniae 342 for the presence of previously identified genes from other bacteria involved in colonization of, or growth in, plants. From this set, approximately one-third were identified in K. pneumoniae 342, suggesting additional factors most likely contribute to its endophytic lifestyle. Comparative genome analyses were used to provide new insights into this question. Results included the identification of metabolic pathways and other features devoted to processing plant-derived cellulosic and aromatic compounds, and a robust complement of transport genes (15.4%, one of the highest percentages in bacterial genomes sequenced. Although virulence and antibiotic resistance genes were predicted, experiments conducted using mouse models showed pathogenicity to be attenuated in this strain. Comparative genomic analyses with the presumed human pathogen K. pneumoniae MGH78578 revealed that MGH78578 apparently cannot fix nitrogen, and the distribution of genes essential to surface attachment, secretion, transport, and regulation and signaling varied between each genome, which may indicate critical divergences between the strains that influence their preferred host ranges and lifestyles (endophytic plant associations for K. pneumoniae 342 and presumably human pathogenesis for MGH78578. Little genome information is available concerning endophytic bacteria. The K. pneumoniae 342 genome will drive new research into this less-understood, but

  13. How arbuscular mycorrhizal fungi influence the defense system of sunflower during different abiotic stresses.

    Science.gov (United States)

    Mayer, Zoltán; Duc, Nguyen Hong; Sasvári, Zita; Posta, Katalin

    2017-12-01

    The association between terrestrial plants and arbuscular mycorrhizal (AM) fungi is one of the most common and widespread mutualistic plant-fungi interaction. AM fungi are of beneficial effects on the water and nutrient uptake of plants and increase plant defense mechanisms to alleviate different stresses. The aim of this study was to determine the level of polyphenol oxidase (PPO), guaiacol peroxidase (POX) and glutathione S-transferase (GST) enzyme activities and to track the expression of glutathione S-transferase (GST) gene in plant-arbuscular mycorrhizal system under temperature- and mechanical stress conditions. Our results suggest that induced tolerance of mycorrhizal sunflower to high temperature may be attributed to the induction of GST, POX and PPO enzyme activities as well as to the elevated expression of GST. However, the degree of tolerance of the plant is significantly influenced by the age which is probably justified by the energy considerations.

  14. Beauveria bassiana as an endophyte

    DEFF Research Database (Denmark)

    McKinnon, Aimee C.; Saari, Susanna Talvikki; Moran-Diez, Maria E.

    2017-01-01

    In the last decade there has been increased focus on the potential of endophytic Beauveria bassiana for the biocontrol of insect herbivores. Generally, detection of endophytes is acknowledged to be problematic and recovery method-dependent. Herein, we critically analyse the methodology reported...... for the detection of B. bassiana as endophytes following experimental inoculation. In light of the methodology, we further review the effects of endophytic B. bassiana on insect herbivores. Our review indicated the need for stringent protocols for surface sterilisation including thorough experimental controls....... For molecular detection protocols by PCR, residual DNA from surface inocula must also be considered. The biocontrol potential of B. bassiana endophytes appears promising although both negative and neutral effects on insect herbivores were reported and there remains ambiguity with respect to the location...

  15. Fungos endofíticos associados a acículas de Pinus taeda Endophytic fungi associated to Pinus taeda needles

    Directory of Open Access Journals (Sweden)

    Ida Chapaval Pimentel

    2010-03-01

    Full Text Available O presente trabalho objetivou estudar os fungos endofíticos em acículas de árvores jovens de Pinus taeda L. e avaliar o efeito da posição de coleta na árvore. As amostras foram coletadas em duas alturas (30-50 cm e 100-130 cm acima do solo e nas quatro posições cardeais (norte, sul, leste e oeste, em plantas com 18 meses de idade, localizadas em Colombo, PR, Brasil. As acículas foram submetidas a assepsia e fragmentos com 10 mm de comprimento foram plaqueados em meio BDA e incubados a 28 °C, sob fotofase de 12 h, por 15 dias. Para a identificação, as estruturas reprodutivas dos fungos foram produzidas pelo método do microcultivo. Foram isolados e identificados dezessete gêneros: Alternaria, Aspergillus, Cladosporium, Colletotrichum, Coniothyrium, Diplodia, Drechslera, Hansfordia, Monocillium, Nodulisporium, Panidio, Papulaspora, Pestalotiopsis, Phialophora, Pithomyces, Rhizoctonia e Xylaria Alguns morfotipos sem identificação foram Mycelia sterilia e fungos demaciáceos. O número de isolados da altura 30-50 cm foi significativamente maior que na outra altura. Não foi observada diferença significativa no número de isolados entre as posições cardeais de uma mesma altura. Diferenças significativas foram observadas entre os gêneros isolados e Xylaria foi o gênero mais frequente.The present work aimed to study the endophytic fungi in Pinus taeda needles and to evaluate the effect of sample points in the tree. Samples were collectd in two different heights (30-50 cm and 100-130 cm over ground and cardinal positions (North, South, East and West in plants with 18 months old, located at Colombo, PR, Brazil. The needles were sucessively washed in sterile destilled water, 70 % ethanol, NaHClO 3 %, 70 % ethanol and sterile destilled water. Needle fragments of 10 mm of lenth were plated in PDA medium, incubated at 28 °C, fotophase 12h to 15 days. The reproductive structures of fungi were produced by microculture technique. Seventeen

  16. MycoDB, a global database of plant response to mycorrhizal fungi

    Science.gov (United States)

    Chaudhary, V. Bala; Rúa, Megan A.; Antoninka, Anita; Bever, James D.; Cannon, Jeffery; Craig, Ashley; Duchicela, Jessica; Frame, Alicia; Gardes, Monique; Gehring, Catherine; Ha, Michelle; Hart, Miranda; Hopkins, Jacob; Ji, Baoming; Johnson, Nancy Collins; Kaonongbua, Wittaya; Karst, Justine; Koide, Roger T.; Lamit, Louis J.; Meadow, James; Milligan, Brook G.; Moore, John C.; Pendergast, Thomas H., IV; Piculell, Bridget; Ramsby, Blake; Simard, Suzanne; Shrestha, Shubha; Umbanhowar, James; Viechtbauer, Wolfgang; Walters, Lawrence; Wilson, Gail W. T.; Zee, Peter C.; Hoeksema, Jason D.

    2016-05-01

    Plants form belowground associations with mycorrhizal fungi in one of the most common symbioses on Earth. However, few large-scale generalizations exist for the structure and function of mycorrhizal symbioses, as the nature of this relationship varies from mutualistic to parasitic and is largely context-dependent. We announce the public release of MycoDB, a database of 4,010 studies (from 438 unique publications) to aid in multi-factor meta-analyses elucidating the ecological and evolutionary context in which mycorrhizal fungi alter plant productivity. Over 10 years with nearly 80 collaborators, we compiled data on the response of plant biomass to mycorrhizal fungal inoculation, including meta-analysis metrics and 24 additional explanatory variables that describe the biotic and abiotic context of each study. We also include phylogenetic trees for all plants and fungi in the database. To our knowledge, MycoDB is the largest ecological meta-analysis database. We aim to share these data to highlight significant gaps in mycorrhizal research and encourage synthesis to explore the ecological and evolutionary generalities that govern mycorrhizal functioning in ecosystems.

  17. Identification and Characterization of Pathogenic and Endophytic Fungal Species Associated with Pokkah Boeng Disease of Sugarcane

    Directory of Open Access Journals (Sweden)

    Angelyn Hilton

    2017-06-01

    Full Text Available Pokkah Boeng is a serious disease of sugarcane, which can lead to devastating yield losses in crop-producing regions, including southern China. However, there is still uncertainty about the causal agent of the disease. Our aim was to isolate and characterize the pathogen through morphological, physiological, and molecular analyses. We isolated sugarcane-colonizing fungi in Fujian, China. Isolated fungi were first assessed for their cell wall degrading enzyme capabilities, and five isolates were identified for further analysis. Internal transcribed spacer sequencing revealed that these five strains are Fusarium, Alternaria, Phoma, Phomopsis, and Epicoccum. The Fusarium isolate was further identified as F. verticillioides after Calmodulin and EF-1α gene sequencing and microscopic morphology study. Pathogenicity assay confirmed that F. verticillioides was directly responsible for disease on sugarcane. Co-inoculation of F. verticillioides with other isolated fungi did not lead to a significant difference in disease severity, refuting the idea that other cellulolytic fungi can increase disease severity as an endophyte. This is the first report characterizing pathogenic F. verticillioides on sugarcane in southern China.

  18. Diversity of Cultivated Fungi Associated with Conventional and Transgenic Sugarcane and the Interaction between Endophytic Trichoderma virens and the Host Plant

    Science.gov (United States)

    Romão-Dumaresq, Aline Silva; Dourado, Manuella Nóbrega; Fávaro, Léia Cecilia de Lima; Mendes, Rodrigo; Ferreira, Anderson; Araújo, Welington Luiz

    2016-01-01

    Plant-associated fungi are considered a vast source for biotechnological processes whose potential has been poorly explored. The interactions and diversity of sugarcane, one of the most important crops in Brazil, have been rarely studied, mainly concerning fungal communities and their interactions with transgenic plants. Taking this into consideration, the purpose of this study was, based on culture dependent strategy, to determine the structure and diversity of the fungal community (root endophytes and rhizosphere) associated with two varieties of sugarcane, a non-genetically modified (SP80-1842) variety and its genetically modified counterpart (IMI-1, expressing imazapyr herbicide resistance). For this, the sugarcane varieties were evaluated in three sampling times (3, 10 and 17 months after planting) under two crop management (weeding and herbicide treatments). In addition, a strain of Trichoderma virens, an endophyte isolated from sugarcane with great potential as a biological control, growth promotion and enzyme production agent, was selected for the fungal-plant interaction assays. The results of the isolation, characterization and evaluation of fungal community changes showed that the sugarcane fungal community is composed of at least 35 different genera, mostly in the phylum Ascomycota. Many genera are observed at very low frequencies among a few most abundant genera, some of which were isolated from specific plant sites (e.g., the roots or the rhizosphere). An assessment of the possible effects upon the fungal community showed that the plant growth stage was the only factor that significantly affected the community’s structure. Moreover, if transgenic effects are present, they may be minor compared to other natural sources of variation. The results of interaction studies using the Green fluorescent protein (GFP)-expressing T. virens strain T.v.223 revealed that this fungus did not promote any phenotypic changes in the host plant and was found mostly in

  19. Bacterial Endophyte Colonization and Distribution within Plants

    Directory of Open Access Journals (Sweden)

    Shyam L. Kandel

    2017-11-01

    Full Text Available The plant endosphere contains a diverse group of microbial communities. There is general consensus that these microbial communities make significant contributions to plant health. Both recently adopted genomic approaches and classical microbiology techniques continue to develop the science of plant-microbe interactions. Endophytes are microbial symbionts residing within the plant for the majority of their life cycle without any detrimental impact to the host plant. The use of these natural symbionts offers an opportunity to maximize crop productivity while reducing the environmental impacts of agriculture. Endophytes promote plant growth through nitrogen fixation, phytohormone production, nutrient acquisition, and by conferring tolerance to abiotic and biotic stresses. Colonization by endophytes is crucial for providing these benefits to the host plant. Endophytic colonization refers to the entry, growth and multiplication of endophyte populations within the host plant. Lately, plant microbiome research has gained considerable attention but the mechanism allowing plants to recruit endophytes is largely unknown. This review summarizes currently available knowledge about endophytic colonization by bacteria in various plant species, and specifically discusses the colonization of maize plants by Populus endophytes.

  20. Comparative study of endophytic and endophytic diazotrophic bacterial communities across rice landraces grown in the highlands of northern Thailand.

    Science.gov (United States)

    Rangjaroen, Chakrapong; Rerkasem, Benjavan; Teaumroong, Neung; Sungthong, Rungroch; Lumyong, Saisamorn

    2014-01-01

    Communities of bacterial endophytes within the rice landraces cultivated in the highlands of northern Thailand were studied using fingerprinting data of 16S rRNA and nifH genes profiling by polymerase chain reaction-denaturing gradient gel electrophoresis. The bacterial communities' richness, diversity index, evenness, and stability were varied depending on the plant tissues, stages of growth, and rice cultivars. These indices for the endophytic diazotrophic bacteria within the landrace rice Bue Wah Bo were significantly the lowest. The endophytic bacteria revealed greater diversity by cluster analysis with seven clusters compared to the endophytic diazotrophic bacteria (three clusters). Principal component analysis suggested that the endophytic bacteria showed that the community structures across the rice landraces had a higher stability than those of the endophytic diazotrophic bacteria. Uncultured bacteria were found dominantly in both bacterial communities, while higher generic varieties were observed in the endophytic diazotrophic bacterial community. These differences in bacterial communities might be influenced either by genetic variation in the rice landraces or the rice cultivation system, where the nitrogen input affects the endophytic diazotrophic bacterial community.

  1. Cytotoxic and Antifungal Constituents Isolated from the Metabolites of Endophytic Fungus DO14 from Dendrobium officinale

    Directory of Open Access Journals (Sweden)

    Ling-Shang Wu

    2015-12-01

    Full Text Available Two novel cytotoxic and antifungal constituents, (4S,6S-6-[(1S,2R-1, 2-dihydroxybutyl]-4-hydroxy-4-methoxytetrahydro-2H-pyran-2-one (1, (6S,2E-6-hydroxy-3-methoxy-5-oxodec-2-enoic acid (2, together with three known compounds, LL-P880γ (3, LL-P880α (4, and Ergosta-5,7,22-trien-3b-ol (5 were isolated from the metabolites of endophytic fungi from Dendrobium officinale. The chemical structures were determined based on spectroscopic methods. All the isolated compounds 1–5 were evaluated by cytotoxicity and antifungal effects. Our present results indicated that compounds 1–4 showed notable anti-fungal activities (minimal inhibitory concentration (MIC ≤ 50 μg/mL for all the tested pathogens including Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, Aspergillus fumigatus. In addition, compounds 1–4 possessed notable cytotoxcities against human cancer cell lines of HL-60 cells with the IC50 values of below 100 μM. Besides, compounds 1, 2, 4 and 5 showed strong cytotoxities on the LOVO cell line with the IC50 values were lower than 100 μM. In conclusion, our study suggested that endophytic fungi of D. officinale are great potential resources to discover novel agents for preventing or treating pathogens and tumors.

  2. Cytotoxic and Antifungal Constituents Isolated from the Metabolites of Endophytic Fungus DO14 from Dendrobium officinale.

    Science.gov (United States)

    Wu, Ling-Shang; Jia, Min; Chen, Ling; Zhu, Bo; Dong, Hong-Xiu; Si, Jin-Ping; Peng, Wei; Han, Ting

    2015-12-22

    Two novel cytotoxic and antifungal constituents, (4S,6S)-6-[(1S,2R)-1, 2-dihydroxybutyl]-4-hydroxy-4-methoxytetrahydro-2H-pyran-2-one (1), (6S,2E)-6-hydroxy-3-methoxy-5-oxodec-2-enoic acid (2), together with three known compounds, LL-P880γ (3), LL-P880α (4), and Ergosta-5,7,22-trien-3b-ol (5) were isolated from the metabolites of endophytic fungi from Dendrobium officinale. The chemical structures were determined based on spectroscopic methods. All the isolated compounds 1-5 were evaluated by cytotoxicity and antifungal effects. Our present results indicated that compounds 1-4 showed notable anti-fungal activities (minimal inhibitory concentration (MIC) ≤ 50 μg/mL) for all the tested pathogens including Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, Aspergillus fumigatus. In addition, compounds 1-4 possessed notable cytotoxcities against human cancer cell lines of HL-60 cells with the IC50 values of below 100 μM. Besides, compounds 1, 2, 4 and 5 showed strong cytotoxities on the LOVO cell line with the IC50 values were lower than 100 μM. In conclusion, our study suggested that endophytic fungi of D. officinale are great potential resources to discover novel agents for preventing or treating pathogens and tumors.

  3. Are common symbiosis genes required for endophytic rice-rhizobial interactions?

    Science.gov (United States)

    Chen, Caiyan; Zhu, Hongyan

    2013-09-01

    Legume plants are able to establish root nodule symbioses with nitrogen-fixing bacteria, called rhizobia. Recent studies revealed that the root nodule symbiosis has co-opted the signaling pathway that mediates the ancestral mycorrhizal symbiosis that occurs in most land plants. Despite being unable to induce nodulation, rhizobia have been shown to be able to infect and colonize the roots of non-legumes such as rice. One fascinating question is whether establishment of such associations requires the common symbiosis (Sym) genes that are essential for infection of plant cells by mycorrhizal fungi and rhizobia in legumes. Here, we demonstrated that the common Sym genes are not required for endophytic colonization of rice roots by nitrogen-fixing rhizobia.

  4. Studies on some active components and antimicrobial activities of ...

    African Journals Online (AJOL)

    Research into plant-derived endophytic fungi has grown in recent decades. Endophytic fungi still have enormous potential to inspire and influence modern agriculture. In this study, the endophytic fungi DZY16 isolated from Eucommia ulmoides Oliv. was tested for its bioactive components and antimicrobial activities using ...

  5. Root signals that mediate mutualistic interactions in the rhizosphere.

    Science.gov (United States)

    Rasmann, Sergio; Turlings, Ted Cj

    2016-08-01

    A recent boom in research on belowground ecology is rapidly revealing a multitude of fascinating interactions, in particular in the rhizosphere. Many of these interactions are mediated by photo-assimilates that are excreted by plant roots. Root exudates are not mere waste products, but serve numerous functions to control abiotic and biotic processes. These functions range from changing the chemical and physical properties of the soil, inhibiting the growth of competing plants, combatting herbivores, and regulating the microbial community. Particularly intriguing are root-released compounds that have evolved to serve mutualistic interactions with soil-dwelling organisms. These mutually beneficial plant-mediated signals are not only of fundamental ecological interest, but also exceedingly important from an agronomical perspective. Here, we attempt to provide an overview of the plant-produced compounds that have so far been implicated in mutualistic interactions. We propose that these mutualistic signals may have evolved from chemical defenses and we point out that they can be (mis)used by specialized pathogens and herbivores. We speculate that many more signals and interactions remain to be uncovered and that a good understanding of the mechanisms and ecological implications can be the basis for exploitation and manipulation of the signals for crop improvement and protection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Exotic mammals disperse exotic fungi that promote invasion by exotic trees.

    Science.gov (United States)

    Nuñez, Martin A; Hayward, Jeremy; Horton, Thomas R; Amico, Guillermo C; Dimarco, Romina D; Barrios-Garcia, M Noelia; Simberloff, Daniel

    2013-01-01

    Biological invasions are often complex phenomena because many factors influence their outcome. One key aspect is how non-natives interact with the local biota. Interaction with local species may be especially important for exotic species that require an obligatory mutualist, such as Pinaceae species that need ectomycorrhizal (EM) fungi. EM fungi and seeds of Pinaceae disperse independently, so they may use different vectors. We studied the role of exotic mammals as dispersal agents of EM fungi on Isla Victoria, Argentina, where many Pinaceae species have been introduced. Only a few of these tree species have become invasive, and they are found in high densities only near plantations, partly because these Pinaceae trees lack proper EM fungi when their seeds land far from plantations. Native mammals (a dwarf deer and rodents) are rare around plantations and do not appear to play a role in these invasions. With greenhouse experiments using animal feces as inoculum, plus observational and molecular studies, we found that wild boar and deer, both non-native, are dispersing EM fungi. Approximately 30% of the Pinaceae seedlings growing with feces of wild boar and 15% of the seedlings growing with deer feces were colonized by non-native EM fungi. Seedlings growing in control pots were not colonized by EM fungi. We found a low diversity of fungi colonizing the seedlings, with the hypogeous Rhizopogon as the most abundant genus. Wild boar, a recent introduction to the island, appear to be the main animal dispersing the fungi and may be playing a key role in facilitating the invasion of pine trees and even triggering their spread. These results show that interactions among non-natives help explain pine invasions in our study area.

  7. Diversity and antimicrobial activity of culturable fungi from fishscale bamboo (Phyllostachys heteroclada) in China.

    Science.gov (United States)

    Zhou, Ying-Ke; Shen, Xiao-Ye; Hou, Cheng-Lin

    2017-06-01

    An important and useful bamboo species, fishscale bamboo (Phyllostachys heteroclada Oliver), is broadly distributed in Southeast China and has multiple purposes, including uses in cuisine, weaving, Chinese medicine and ecological protection. However, no previous studies have focused on the endophytes of this plant. In our article, a total of 127 fungal strains were first isolated from the healthy branches and leaves of common P. heteroclada. These endophytic fungi could be directly categorized into 50 morphotypes according to their culture characteristics, and their internal transcribed spacer (ITS) regions were analyzed for molecular identification. Using the BLAST search tool of the NCBI database and phylogenetic tree analysis, these isolates were divided into two phyla, Ascomycota (95.28%) and Basidiomycota (4.72%), including at least six orders (Xylariales, Capnodiales, Pleosporales, Hypocreales, Chaetothyriales and Polyporales) and fourteen genera (Arthrinium, Pestalotiopsis, Epicoccum, Cladosporium, Nigrospora, Setophoma, Didymella, Calcarisporium, Preussia, Nemania, Creosphaeria, Ophiobolus, Phialophora and Perenniporia). It is fascinating that four genera, Calcarisporium, Preussia, Creosphaeria and Phialophora were isolated from bamboos for the first time. The inhibitory effects against clinical pathogens were also preliminarily screened, and four isolates FB43 (Calcarisporium arbuscula), FB06 (Preussia minima), FB16 (Setophoma sp.) and FB21 (Perenniporia medulla-pains) among the candidate strains displayed broad-spectrum activities according to the agar diffusion method and the disk diffusion assay. Strain FB16 (Setophoma sp.) especially indicated high bioactivity against both clinical bacteria and yeast. This study is the first report on the diversity and antimicrobial activity of the endophytic fungi associated with P. heteroclada, which could be regarded as a potential source of drug precursors and could be used in biocontrol development.

  8. Bioactive endophytic fungi isolated from Caesalpinia echinata Lam. (Brazilwood and identification of beauvericin as a trypanocidal metabolite from Fusarium sp.

    Directory of Open Access Journals (Sweden)

    Fernanda Fraga Campos

    2015-02-01

    Full Text Available Aiming to identify new sources of bioactive secondary metabolites, we isolated 82 endophytic fungi from stems and barks of the native Brazilian tree Caesalpinia echinata Lam. (Fabaceae. We tested their ethyl acetate extracts in several in vitro assays. The organic extracts from three isolates showed antibacterial activity against Staphylococcus aureus and Escherichia coli [minimal inhibitory concentration (MIC 32-64 μg/mL]. One isolate inhibited the growth of Salmonella typhimurium (MIC 64 μg/mL and two isolates inhibited the growth of Klebsiella oxytoca (MIC 64 μg/mL, Candida albicans and Candida tropicalis (MIC 64-128 μg/mL. Fourteen extracts at a concentration of 20 μg/mL showed antitumour activities against human breast cancer and human renal cancer cells, while two isolates showed anti-tumour activities against human melanoma cancer cells. Six extracts were able to reduce the proliferation of human peripheral blood mononuclear cells, indicating some degree of selective toxicity. Four isolates were able to inhibit Leishmania (Leishmania amazonensis and one isolate inhibited Trypanosoma cruzi by at least 40% at 20 μg/mL. The trypanocidal extract obtained from Fusarium sp. [KF611679] culture was subjected to bioguided fractionation, which revealed beauvericin as the compound responsible for the observed toxicity of Fusarium sp. to T. cruzi. This depsipeptide showed a half maximal inhibitory concentration of 1.9 μg/mL (2.43 μM in a T. cruzi cellular culture assay.

  9. Specialization of mutualistic interaction networks decreases toward tropical latitudes

    DEFF Research Database (Denmark)

    Schleuning, M.; Fründ, J.; Klein, A.-M.

    2012-01-01

    that current conditions have a stronger effect on biotic specialization than historical community stability. Biotic specialization decreased with increasing local and regional plant diversity. This suggests that high specialization of mutualistic interactions is a response of pollinators and seed dispersers......] or differences in plant diversity [10, 11]. Thus, the direction of the latitudinal specialization gradient remains contentious. With an unprecedented global data set, we investigated how biotic specialization between plants and animal pollinators or seed dispersers is associated with latitude, past...... and contemporary climate, and plant diversity. We show that in contrast to expectation, biotic specialization of mutualistic networks is significantly lower at tropical than at temperate latitudes. Specialization was more closely related to contemporary climate than to past climate stability, suggesting...

  10. Caesium inhibits the colonization of Medicago truncatula by arbuscular mycorrhizal fungi

    International Nuclear Information System (INIS)

    Wiesel, Lea; Dubchak, Sergiy; Turnau, Katarzyna; Broadley, Martin R.; White, Philip J.

    2015-01-01

    Contamination of soils with radioisotopes of caesium (Cs) is of concern because of their emissions of harmful β and γ radiation. Radiocaesium enters the food chain through vegetation and the intake of Cs can affect the health of organisms. Arbuscular mycorrhizal (AM) fungi form mutualistic symbioses with plants through colonization of the roots and previous studies on the influence of AM on Cs concentrations in plants have given inconsistent results. These studies did not investigate the influence of Cs on AM fungi and it is therefore not known if Cs has a direct effect on AM colonization. Here, we investigated whether Cs influences AM colonization and if this effect impacts on the influence of Rhizophagus intraradices on Cs accumulation by Medicago truncatula. M. truncatula was grown with or without R. intraradices in pots containing different concentrations of Cs. Here, we present the first evidence that colonization of plants by AM fungi can be negatively affected by increasing Cs concentrations in the soil. Mycorrhizal colonization had little effect on root or shoot Cs concentrations. In conclusion, the colonization by AM fungi is impaired by high Cs concentrations and this direct effect of soil Cs on AM colonization might explain the inconsistent results reported in literature that have shown increased, decreased or unaffected Cs concentrations in AM plants. - Highlights: • Colonization of plants by arbuscular mycorrhizal fungi is negatively affected by increasing soil caesium concentrations. • Shoot caesium concentrations are not influenced by AM fungi at soil caesium concentrations above about 3 μg Cs kg −1 . • The direct effect of caesium on AM fungi might impact on the influence of AM fungi on Cs accumulation in plants. • This might explain the inconsistent results reported in literature on Cs accumulation in AM plants

  11. Effects of dam-induced landscape fragmentation on amazonian ant-plant mutualistic networks.

    Science.gov (United States)

    Emer, Carine; Venticinque, Eduardo Martins; Fonseca, Carlos Roberto

    2013-08-01

    Mutualistic networks are critical to biological diversity maintenance; however, their structures and functionality may be threatened by a swiftly changing world. In the Amazon, the increasing number of dams poses a large threat to biological diversity because they greatly alter and fragment the surrounding landscape. Tight coevolutionary interactions typical of tropical forests, such as the ant-myrmecophyte mutualism, where the myrmecophyte plants provide domatia nesting space to their symbiotic ants, may be jeopardized by the landscape changes caused by dams. We analyzed 31 ant-myrmecophyte mutualistic networks in undisturbed and disturbed sites surrounding Balbina, the largest Central Amazonian dam. We tested how ant-myrmecophyte networks differ among dam-induced islands, lake edges, and undisturbed forests in terms of species richness, composition, structure, and robustness (number of species remaining in the network after partner extinctions). We also tested how landscape configuration in terms of area, isolation, shape, and neighborhood alters the structure of the ant-myrmecophyte networks on islands. Ant-myrmecophytic networks were highly compartmentalized in undisturbed forests, and the compartments had few strongly connected mutualistic partners. In contrast, networks at lake edges and on islands were not compartmentalized and were negatively affected by island area and isolation in terms of species richness, density, and composition. Habitat loss and fragmentation led to coextinction cascades that contributed to the elimination of entire ant-plant compartments. Furthermore, many myrmecophytic plants in disturbed sites lost their mutualistic ant partners or were colonized by opportunistic, nonspecialized ants. Robustness of ant-myrmecophyte networks on islands was lower than robustness near lake edges and in undisturbed forest and was particularly susceptible to the extinction of plants. Beyond the immediate habitat loss caused by the building of large dams

  12. Ecologically Different Fungi Affect Arabidopsis Development: Contribution of Soluble and Volatile Compounds

    Science.gov (United States)

    Casarrubia, Salvatore; Sapienza, Sara; Fritz, Héma; Daghino, Stefania; Rosenkranz, Maaria; Schnitzler, Jörg-Peter; Martin, Francis; Perotto, Silvia

    2016-01-01

    Plant growth and development can be influenced by mutualistic and non-mutualistic microorganisms. We investigated the ability of the ericoid endomycorrhizal fungus Oidiodendron maius to influence growth and development of the non-host plant Arabidopsis thaliana. Different experimental setups (non-compartmented and compartmented co-culture plates) were used to investigate the influence of both soluble and volatile fungal molecules on the plant phenotype. O. maius promoted growth of A. thaliana in all experimental setups. In addition, a peculiar clumped root phenotype, characterized by shortening of the primary root and by an increase of lateral root length and number, was observed in A. thaliana only in the non-compartmented plates, suggesting that soluble diffusible molecules are responsible for this root morphology. Fungal auxin does not seem to be involved in plant growth promotion and in the clumped root phenotype because co-cultivation with O. maius did not change auxin accumulation in plant tissues, as assessed in plants carrying the DR5::GUS reporter construct. In addition, no correlation between the amount of fungal auxin produced and the plant root phenotype was observed in an O. maius mutant unable to induce the clumped root phenotype in A. thaliana. Addition of active charcoal, a VOC absorbant, in the compartmented plates did not modify plant growth promotion, suggesting that VOCs are not involved in this phenomenon. The low VOCs emission measured for O. maius further corroborated this hypothesis. By contrast, the addition of CO2 traps in the compartmented plates drastically reduced plant growth, suggesting involvement of fungal CO2 in plant growth promotion. Other mycorrhizal fungi, as well as a saprotrophic and a pathogenic fungus, were also tested with the same experimental setups. In the non-compartmented plates, most fungi promoted A. thaliana growth and some could induce the clumped root phenotype. In the compartmented plate experiments, a general

  13. Structural Diversity and Biological Activities of the Cyclodipeptides from Fungi

    Directory of Open Access Journals (Sweden)

    Xiaohan Wang

    2017-11-01

    Full Text Available Cyclodipeptides, called 2,5-diketopiperazines (2,5-DKPs, are obtained by the condensation of two amino acids. Fungi have been considered to be a rich source of novel and bioactive cyclodipeptides. This review highlights the occurrence, structures and biological activities of the fungal cyclodipeptides with the literature covered up to July 2017. A total of 635 fungal cyclodipeptides belonging to the groups of tryptophan-proline, tryptophan-tryptophan, tryptophan–Xaa, proline–Xaa, non-tryptophan–non-proline, and thio-analogs have been discussed and reviewed. They were mainly isolated from the genera of Aspergillus and Penicillium. More and more cyclodipeptides have been isolated from marine-derived and plant endophytic fungi. Some of them were screened to have cytotoxic, phytotoxic, antimicrobial, insecticidal, vasodilator, radical scavenging, antioxidant, brine shrimp lethal, antiviral, nematicidal, antituberculosis, and enzyme-inhibitory activities to show their potential applications in agriculture, medicinal, and food industry.

  14. Biotransformation of limonene by an endophytic fungus using synthetic and orange residue-based media.

    Science.gov (United States)

    Bier, Mário Cesar Jucoski; Medeiros, Adriane Bianchi Pedroni; Soccol, Carlos Ricardo

    2017-02-01

    Aroma and fragrances have high commercial value for use in food, cosmetics and perfumes. The biotransformation of terpenes by microorganisms represents an attractive alternative method for production of flavourings. Endophytic fungi offer a great potential for the production of several groups of compounds; however, few studies have evaluated the biotransformation of limonene. Following preliminary studies on the biotransformation of limonene, submerged fermentation was carried out using an endophytic fungus isolated from Pinus taeda and identified as Phomopsis sp. The presence of several biotransformation products was detected and identified by mass spectrometry (GC-MS). The studied strain showed a divergent metabolic behaviour, as compounds of interest such as α-terpineol, carvone, and limoneno-1,2-diol were produced under different conditions. In addition to the minor metabolites terpinen-4-ol, menthol and carveol, this strain also produced major metabolites, including 0.536 g L -1 carvone and 2.08 g L -1 limonene-1,2-diol in synthetic medium and 2.10 g L -1 limonene-1,2-diol in a natural orange extract medium with single fed-batch, while the cyclic fed-batch resulted in concentrations less than 1 g L -1 . Therefore, our study produced a wide variety of limonene derivatives at a high concentration using a natural medium and a newly isolated endophytic fungal strain. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  15. Altertoxins with potent anti-HIV activity from Alternaria tenuissima QUE1Se, a fungal endophyte of Quercus emoryi

    OpenAIRE

    Bashyal, Bharat P.; Wellensiek, Brian P.; Ramakrishnan, Rajesh; Faeth, Stanley H.; Ahmad, Nafees; Leslie Gunatilaka, A. A.

    2014-01-01

    Screening of a small library of natural product extracts derived from endophytic fungi of the Sonoran desert plants in a cell-based anti-HIV assay involving T-cells infected with the HIV-1 virus identified the EtOAc extract of a fermentation broth of Alternaria tenuissima QUE1Se inhabiting the stem tissue of Quercus emoryi as a promising candidate for further investigation. Bioactivity-guided fractionation of this extract led to the isolation and identification of two new metabolites, alterto...

  16. Reaction of mutualistic and granivorous ants to ulex elaiosome chemicals.

    Science.gov (United States)

    Gammans, Nicola; Bullock, James M; Gibbons, Hannah; Schönrogge, Karsten

    2006-09-01

    It has been proposed that chemicals on plant elaiosomes aid seed detection by seed-dispersing ants. We hypothesized that the chemical interaction between ants and elaiosomes is more intimate than a generic attraction, and that elaiosome chemicals will attract mutualistic but not granivorous ant species. We investigated this by using two gorse species, Ulex minor and U. europaeus, and two associated ant species from European heathlands, the mutualist Myrmica ruginodis and the granivore Tetramorium caespitum. Behavioral studies were conducted with laboratory nests and foraging arenas. Both ants will take Ulex seeds, but while M. ruginodis showed increased antennation toward ether extracts of elaiosome surface chemicals compared with controls, T. caespitum showed no response. Elaiosome extracts were separated into seven lipid fractions. M. ruginodis showed increased antennation only toward the diglyceride fractions of both Ulex species, whereas T. caespitum showed no consistent reaction. This indicates that M. ruginodis can detect the elaiosome by responding to its surface chemicals, but T. caespitum is unresponsive to these chemicals. Responses to surface chemicals could increase the rate of seed detection in the field, and so these results suggest that Ulex elaiosomes produce chemicals that facilitate attraction of mutualistic rather than granivorous ant species. This could reduce seed predation and increase Ulex fitness.

  17. Mixed infections may promote diversification of mutualistic symbionts: why are there ineffective rhizobia?

    Science.gov (United States)

    Friesen, M L; Mathias, A

    2010-02-01

    While strategy variation is a key feature of symbiotic mutualisms, little work focuses on the origin of this diversity. Rhizobia strategies range from mutualistic nitrogen fixers to parasitic nonfixers that hoard plant resources to increase their own survival in soil. Host plants reward beneficial rhizobia with higher nodule growth rates, generating a trade-off between reproduction in nodules and subsequent survival in soil. However, hosts might not discriminate between strains in mixed infections, allowing nonfixing strains to escape sanctions. We construct an adaptive dynamics model of symbiotic nitrogen-fixation and find general situations where symbionts undergo adaptive diversification, but in most situations complete nonfixers do not evolve. Social conflict in mixed infections when symbionts face a survival-reproduction trade-off can drive the origin of some coexisting symbiont strategies, where less mutualistic strains exploit benefits generated by better mutualists.

  18. Spatial dynamics of synthetic microbial mutualists and their parasites.

    Directory of Open Access Journals (Sweden)

    Daniel R Amor

    2017-08-01

    Full Text Available A major force contributing to the emergence of novelty in nature is the presence of cooperative interactions, where two or more components of a system act in synergy, sometimes leading to higher-order, emergent phenomena. Within molecular evolution, the so called hypercycle defines the simplest model of an autocatalytic cycle, providing major theoretical insights on the evolution of cooperation in the early biosphere. These closed cooperative loops have also inspired our understanding of how catalytic loops appear in ecological systems. In both cases, hypercycle and ecological cooperative loops, the role played by space seems to be crucial for their stability and resilience against parasites. However, it is difficult to test these ideas in natural ecosystems, where time and spatial scales introduce considerable limitations. Here, we use engineered bacteria as a model system to a variety of environmental scenarios identifying trends that transcend the specific model system, such an enhanced genetic diversity in environments requiring mutualistic interactions. Interestingly, we show that improved environments can slow down mutualistic range expansions as a result of genetic drift effects preceding local resource depletion. Moreover, we show that a parasitic strain is excluded from the population during range expansions (which acknowledges a classical prediction. Nevertheless, environmental deterioration can reshape population interactions, this same strain becoming part of a three-species mutualistic web in scenarios in which the two-strain mutualism becomes non functional. The evolutionary and ecological implications for the design of synthetic ecosystems are outlined.

  19. Unravelling Darwin's entangled bank: architecture and robustness of mutualistic networks with multiple interaction types.

    Science.gov (United States)

    Dáttilo, Wesley; Lara-Rodríguez, Nubia; Jordano, Pedro; Guimarães, Paulo R; Thompson, John N; Marquis, Robert J; Medeiros, Lucas P; Ortiz-Pulido, Raul; Marcos-García, Maria A; Rico-Gray, Victor

    2016-11-30

    Trying to unravel Darwin's entangled bank further, we describe the architecture of a network involving multiple forms of mutualism (pollination by animals, seed dispersal by birds and plant protection by ants) and evaluate whether this multi-network shows evidence of a structure that promotes robustness. We found that species differed strongly in their contributions to the organization of the multi-interaction network, and that only a few species contributed to the structuring of these patterns. Moreover, we observed that the multi-interaction networks did not enhance community robustness compared with each of the three independent mutualistic networks when analysed across a range of simulated scenarios of species extinction. By simulating the removal of highly interacting species, we observed that, overall, these species enhance network nestedness and robustness, but decrease modularity. We discuss how the organization of interlinked mutualistic networks may be essential for the maintenance of ecological communities, and therefore the long-term ecological and evolutionary dynamics of interactive, species-rich communities. We suggest that conserving these keystone mutualists and their interactions is crucial to the persistence of species-rich mutualistic assemblages, mainly because they support other species and shape the network organization. © 2016 The Author(s).

  20. Endophytic Ability of Different Isolates of Entomopathogenic Fungi Beauveria bassiana (Balsamo) Vuillemin in Stem and Leaf Tissues of Maize (Zea mays L.).

    Science.gov (United States)

    Renuka, S; Ramanujam, B; Poornesha, B

    2016-06-01

    The present study was conducted to examine the ability of six promising indigenous isolates of Beauveria bassiana (NBAII-Bb-5a, 7, 14, 19, 23 and 45) as an endophyte in maize stem and leaf tissues. Maize seedlings (var. Nithyashree) were inoculated with conidial suspensions and were examined for endophytic establishment in leaf and stems at different intervals during 15-90 days after treatment. All six isolates showed colonization in stem and leaf tissues with varying abilities of colonization and persistence. The mean percent colonization ranged from 7.41 to 20.37 % in older stem tissues and 3.70 to 21.29 % in young stem tissues and in leaf, it ranged from 6.46 to 27.78 % in older leaf tissues and 11.11 to 26.85 % in young leaf tissues. Among six isolates tested, Bb-23 isolate recorded the maximum mean colonization in older stem (20.37 %), older leaf (27.78 %) and in young stem (21.29 %). Bb-5a isolate showed maximum mean colonization in young leaf tissues (26.85 %). Persistence of inoculated fungal isolates decreased with increase in age of the plant. No physical symptoms of damage were observed in any of the B. bassiana treated plants. No colonization of B. bassiana was observed in the untreated control maize plants. The results obtained in plating and PCR techniques were similar with regard to the confirmation of endophytic establishment of B. bassiana. This study indicated the possibility of using B. bassiana as an endophyte in maize for management of maize stem borer, Chilo partellus.

  1. Fungi in neotropical epiphyte roots.

    Science.gov (United States)

    Bermudes, D; Benzing, D H

    1989-01-01

    Roots of thirty-eight Ecuadoran vascular epiphytes, representing eleven angiosperm families, were examined for the presence of symbiotic microorganisms. Most orchid roots contained fungal endophytes like those that regularly infect terrestrial counterparts. Hyphae were also common in and on nonorchid roots, but assignments of these relationships to known mycorrhizal morphologies was not possible in all cases. Evidence of vesicular-arbuscular mycorrhizae (VAM) existed in a number of subjects while in Ericaceae and Campanulaceae a fungal association similar to the demateaceous surface fungi (DSF) described for alpine and prarie plants was usually present. Some associations were characterized by multicellular propagules on root surfaces. The significance of these findings and the factors likely to influence occurrence and consequences of root-fungus mutualisms in tropical forest canopies are discussed. Facts and considerations that could aid future inquiry on these systems are provided.

  2. Unraveling the role of fungal symbionts in plant abiotic stress tolerance

    Science.gov (United States)

    Singh, Lamabam Peter

    2011-01-01

    Fungal symbionts have been found to be associated with every plant studied in the natural ecosystem, where they colonize and reside entirely or partially in the internal tissues of their host plant. Fungal endophytes can express/form a range of different lifestyle/relationships with different host including symbiotic, mutualistic, commensalistic and parasitic in response to host genotype and environmental factors. In mutualistic association fungal endophyte can enhance growth, increase reproductive success and confer biotic and abiotic stress tolerance to its host plant. Since abiotic stress such as, drought, high soil salinity, heat, cold, oxidative stress and heavy metal toxicity is the common adverse environmental conditions that affect and limit crop productivity worldwide. It may be a promising alternative strategy to exploit fungal endophytes to overcome the limitations to crop production brought by abiotic stress. There is an increasing interest in developing the potential biotechnological applications of fungal endophytes for improving plant stress tolerance and sustainable production of food crops. Here we have described the fungal symbioses, fungal symbionts and their role in abiotic stress tolerance. A putative mechanism of stress tolerance by symbionts has also been covered. PMID:21512319

  3. Traps of carnivorous pitcher plants as a habitat: composition of the fluid, biodiversity and mutualistic activities.

    Science.gov (United States)

    Adlassnig, Wolfram; Peroutka, Marianne; Lendl, Thomas

    2011-02-01

    Carnivorous pitcher plants (CPPs) use cone-shaped leaves to trap animals for nutrient supply but are not able to kill all intruders of their traps. Numerous species, ranging from bacteria to vertrebrates, survive and propagate in the otherwise deadly traps. This paper reviews the literature on phytotelmata of CPPs. Fluid as a Habitat The volumes of pitchers range from 0·2 mL to 1·5 L. In Nepenthes and Cephalotus, the fluid is secreted by the trap; the other genera collect rain water. The fluid is usually acidic, rich in O(2) and contains digestive enzymes. In some taxa, toxins or detergents are found, or the fluid is extremely viscous. In Heliamphora or Sarracenia, the fluid differs little from pure water. Diversity Pitcher inquilines comprise bacteria, protozoa, algae, fungi, rotifers, crustaceans, arachnids, insects and amphibia. The dominant groups are protists and Dipteran larvae. The various species of CPPs host different sets of inquilines. Sarracenia purpurea hosts up to 165 species of inquilines, followed by Nepenthes ampullaria with 59 species, compared with only three species from Brocchinia reducta. Reasons for these differences include size, the life span of the pitcher as well as its fluid. MUTUALISTIC: Activities Inquilines closely interact with their host. Some live as parasites, but the vast majority are mutualists. Beneficial activities include secretion of enzymes, feeding on the plant's prey and successive excretion of inorganic nutrients, mechanical break up of the prey, removal of excessive prey and assimilation of atmospheric N(2). There is strong evidence that CPPs influence their phytotelm. Two strategies can be distinguished: (1) Nepenthes and Cephalotus produce acidic, toxic or digestive fluids and host a limited diversity of inquilines. (2) Genera without efficient enzymes such as Sarracenia or Heliamphora host diverse organisms and depend to a large extent on their symbionts for prey utilization.

  4. Plant growth promotion of Miscanthus × giganteus by endophytic bacteria and fungi on non-polluted and polluted soils

    Czech Academy of Sciences Publication Activity Database

    Schmidt, Christoph Stephan; Mrnka, Libor; Frantík, Tomáš; Lovecká, P.; Vosátka, M.

    2018-01-01

    Roč. 34, č. 3 (2018), s. 1-20, č. článku 48. ISSN 0959-3993 R&D Projects: GA TA ČR TA03011184 Institutional support: RVO:67985939 Keywords : antioxidative activity * heavy metal * endophytes Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.658, year: 2016

  5. Endophytes: exploitation as a tool in plant protection

    Directory of Open Access Journals (Sweden)

    Devanushi Dutta

    2014-10-01

    Full Text Available Endophytes are symptomless fungal or bacterial microorganisms found in almost all living plant species reported so far. They are the plant-associated microbes that form symbiotic association with their host plants by colonizing the internal tissues, which has made them valuable for agriculture as a tool in improving crop performance. Many fungal endophytes produce secondary metabolites such as auxin, gibberellin etc that helps in growth and development of the host plant. Some of these compounds are antibiotics having antifungal, antibacterial and insecticidal properties, which strongly inhibit the growth of other microorganisms, including plant pathogens. This article reviews the endophyte isolated from different plants, mode of endophytic infection and benefits derived by the host plant as a result of endophytism.

  6. Expression and functional analysis of the lysine decarboxylase and copper amine oxidase genes from the endophytic fungus Colletotrichum gloeosporioides ES026

    OpenAIRE

    Zhang, Xiangmei; Wang, Zhangqian; Jan, Saad; Yang, Qian; Wang, Mo

    2017-01-01

    Huperzine A (HupA) isolated from Huperzia serrata is an important compound used to treat Alzheimer?s disease (AD). Recently, HupA was reported in various endophytic fungi, with Colletotrichum gloeosporioides ES026 previously isolated from H. serrata shown to produce HupA. In this study, we performed next-generation sequencing and de novo RNA sequencing of C. gloeosporioides ES026 to elucidate the molecular functions, biological processes, and biochemical pathways of these unique sequences. Ge...

  7. Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD-GC-MS analysis.

    Directory of Open Access Journals (Sweden)

    Vineet Kumar Mishra

    Full Text Available Endophytic fungi associated with medicinal plants are reported as potent producers of diverse classes of secondary metabolites. In the present study, an endophytic fungi, Aspergillus clavatonanicus strain MJ31, exhibiting significant antimicrobial activity was isolated from roots of Mirabilis jalapa L., was identified by sequencing three nuclear genes i.e. internal transcribed spacers ribosomal RNA (ITS rRNA, 28S ribosomal RNA (28S rRNA and translation elongation factor 1- alpha (EF 1α. Ethyl acetate extract of strain MJ31displayed significant antimicrobial potential against Bacillus subtilis, followed by Micrococccus luteus and Staphylococcus aureus with minimum inhibitory concentrations (MIC of 0.078, 0.156 and 0.312 mg/ml respectively. In addition, the strain was evaluated for its ability to synthesize bioactive compounds by the amplification of polyketide synthase (PKS and non ribosomal peptide synthetase (NRPS genes. Further, seven antibiotics (miconazole, ketoconazole, fluconazole, ampicillin, streptomycin, chloramphenicol, and rifampicin were detected and quantified using UPLC-ESI-MS/MS. Additionally, thermal desorption-gas chromatography mass spectrometry (TD-GC-MS analysis of strain MJ31 showed the presence of 28 volatile compounds. This is the first report on A. clavatonanicus as an endophyte obtained from M. jalapa. We conclude that A. clavatonanicus strain MJ31 has prolific antimicrobial potential against both plant and human pathogens and can be exploited for the discovery of new antimicrobial compounds and could be an alternate source for the production of secondary metabolites.

  8. Potensi Cendawan Asal Tanah Perakaran Bambu Sebagai Endofit dan Agen Biokontrol Penyakit Akar Gada Pada Tanaman Brokoli

    Directory of Open Access Journals (Sweden)

    . Asniah

    2014-03-01

    Full Text Available The potential of fungi from bamboo rhizosphic soils as endophytic and biocontrol agents of  clubroot disease (Plasmodiophora brassicae on Brocoli. Clubroot, caused by Plasmodiophora brassicae is a serious soilborne disease of plants worldwide, capable of severe infection on broccoli, cabbage and cauliflower. Clubroot is the most destructive diseases on cruciferae in Indonesia.  The existing control measures, including biological control do not provide satisfactory result.  The objective of the study was to explore fungi from bamboo rhizospheric soils as endophytic that can suppress clubroot disease in broccoli.  There were two steps in this study: (1 exploration and identification of fungi from bamboo rhizospheric soils. (2 Effectiveness test of the fungi in suppressing clubroot disease.  There were four species of fungi as endophytes in brocoli in this study, e.g Aspergillus sp., Mortierella sp., Paecilomyces sp., and Chaetomium globosum. They had colonized broccoli root endophytically and suppressing clubroot disease.  Paecilomyces sp. of endophytic fungi can suppress clubroot diseases incidence for 18.75%.

  9. Root-Associated Fungi Shared Between Arbuscular Mycorrhizal and Ectomycorrhizal Conifers in a Temperate Forest.

    Science.gov (United States)

    Toju, Hirokazu; Sato, Hirotoshi

    2018-01-01

    Arbuscular mycorrhizal and ectomycorrhizal symbioses are among the most important drivers of terrestrial ecosystem dynamics. Historically, the two types of symbioses have been investigated separately because arbuscular mycorrhizal and ectomycorrhizal plant species are considered to host discrete sets of fungal symbionts (i.e., arbuscular mycorrhizal and ectomycorrhizal fungi, respectively). Nonetheless, recent studies based on high-throughput DNA sequencing technologies have suggested that diverse non-mycorrhizal fungi (e.g., endophytic fungi) with broad host ranges play roles in relationships between arbuscular mycorrhizal and ectomycorrhizal plant species in forest ecosystems. By analyzing an Illumina sequencing dataset of root-associated fungi in a temperate forest in Japan, we statistically examined whether co-occurring arbuscular mycorrhizal ( Chamaecyparis obtusa ) and ectomycorrhizal ( Pinus densiflora ) plant species could share non-mycorrhizal fungal communities. Among the 919 fungal operational taxonomic units (OTUs) detected, OTUs in various taxonomic lineages were statistically designated as "generalists," which associated commonly with both coniferous species. The list of the generalists included fungi in the genera Meliniomyces, Oidiodendron, Cladophialophora, Rhizodermea, Penicillium , and Mortierella . Meanwhile, our statistical analysis also detected fungi preferentially associated with Chamaecyparis (e.g., Pezicula ) or Pinus (e.g., Neolecta ). Overall, this study provides a basis for future studies on how arbuscular mycorrhizal and ectomycorrhizal plant species interactively drive community- or ecosystem-scale processes. The physiological functions of the fungi highlighted in our host-preference analysis deserve intensive investigations for understanding their roles in plant endosphere and rhizosphere.

  10. Endophytic actinobacteria of medicinal plants: diversity and bioactivity.

    Science.gov (United States)

    Golinska, Patrycja; Wypij, Magdalena; Agarkar, Gauravi; Rathod, Dnyaneshwar; Dahm, Hanna; Rai, Mahendra

    2015-08-01

    Endophytes are the microorganisms that exist inside the plant tissues without having any negative impact on the host plant. Medicinal plants constitute the huge diversity of endophytic actinobacteria of economical importance. These microbes have huge potential to synthesis of numerous novel compounds that can be exploited in pharmaceutical, agricultural and other industries. It is of prime importance to focus the present research on practical utilization of this microbial group in order to find out the solutions to the problems related to health, environment and agriculture. An extensive characterization of diverse population of endophytic actinobacteria associated with medicinal plants can provide a greater insight into the plant-endophyte interactions and evolution of mutualism. In the present review, we have discussed the diversity of endophytic actinobacteria of from medicinal plants their multiple bioactivities.

  11. Pengaruh cendawan endofit terhadap biologi dan statistik demografi wereng batang cokelat Nilaparvata lugens Stál (Hemiptera: Delphacidae

    Directory of Open Access Journals (Sweden)

    Amanda Mawan

    2015-09-01

    Full Text Available Endophytic fungi is an endosymbiont that lives within host plant tissues and does not necessary cause any harm to plants. This type of fungus are important as mediators in plant-herbivore interactions. One of the endophytic fungi in rice is Nigrospora sp. The effects of Nigrospora sp. on the biology and demographic statistic of Nilaparvata lugens Stál (Hemiptera: Delphacidae were studied in the laboratory. We used Nigrospora sp. culture powder was used to inoculate the fungi to rice seeds by mixing 10 g of flour endophytic per 1 kg rice seeds. The mixture was then stored in damp and dark storage. Results showed that the rice seeds treated with endophytic fungi showed some resistance to N. lugens. Eggs and early stages of nymph mortality was increased, higher than the control. Endophytic fungi also affect the nymphs growth rates by slowing it down, prolonging N. lugens life cycle, preoviposition period as well as delayed the age at first reproduction. N. lugens population growth is effected by Nigrospora sp. in laboratory scale. Thus, it has the potential as an alternative way to control N. lugens population. In addition, inoculation of endophytic fungi could be a useful method for protecting rice plants from N. lugens.

  12. Bioactive metabolites produced by Penicillium sp. 1 and sp. 2, two endophytes associated with Alibertia macrophylla (Rubiaceae).

    Science.gov (United States)

    Oliveira, Camila M; Silva, Geraldo H; Regasini, Luis O; Zanardi, Lisinéia M; Evangelista, Alana H; Young, Maria C M; Bolzani, Vanderlan S; Araujo, Angela R

    2009-01-01

    In the course of our continuous search for bioactive metabolites from endophytic fungi living in plants from the Brazilian flora, leaves of Alibertia macrophylla (Rubiaceae) were submitted to isolation of endophytes, and two species of Penicillium were isolated. The acetonitrile fraction obtained in corn from a culture of Penicillium sp. 1 afforded orcinol (1). On the other hand, Penicillium sp. 1 cultivated in potato-dextrose-broth furnished two different compounds, cyclo-(L-Pro-L-Val) (2) and uracil (3). The chromatographic fractionation of the acetonitrile fraction obtained from Penicillium sp. 2 led to three dihydroisocoumarins, 4-hydroxymellein (4), 8-methoxymellein (5) and 5-hydroxymellein (6). Compounds 5 and 6 were obtained from the Penicillium genus for the first time. Additionally, metabolites 1-6 were evaluated for their antifungal and acetylcholinesterase (AChE) inhibitory activities. The most active compounds 1 and 4 exhibited detection limits of 5.00 and 10.0 microg against Cladosporium cladosporioides and C. sphaerospermum, respectively. Compound 2 showed a detection limit of 10.0 microg, displaying potent AChE inhibitory activity.

  13. Diversity of some endophytic fungi associated with rice black bug Paraeucosmetus pallicornis on rice plant

    OpenAIRE

    Nur, Amin; La Daha; Nurariaty, Agus; Ade, Rosmana; Muh., Fadlan

    2015-01-01

    A new rice insect pest was sighted in some rice producing areas of South Sulawesi Province, Indonesia. This pest is rice black bugs Paraeucosmetus pallicornis. The research aimed to isolation of fungi associated with rice black bugs Paraeucosmetus pallicornis, so as to know the cause of a bitter taste to the rice. The isolation of the fungi consist of three kinds of treatment, namely rice black bugs without sterilization, with sterilization and rice black bugs cut and sterilized. The resul...

  14. igh Symbiont Relatedness Stabilizes Mutualistic Cooperation in Fungus-Growing Termites

    NARCIS (Netherlands)

    Aanen, D.K.; Fine Licht, De H.H.; Debets, A.J.M.; Kerstes, N.A.G.; Hoekstra, R.F.; Boomsma, J.J.

    2009-01-01

    It is unclear how mutualistic relationships can be stable when partners disperse freely and have the possibility of forming associations with many alternative genotypes. Theory predicts that high symbiont relatedness should resolve this problem, but the mechanisms to enforce this have rarely been

  15. Aplikasi Cendawan Endofit terhadap Perkembangan Populasi Nematoda Radopholus similis pada Pisang Barangan

    Directory of Open Access Journals (Sweden)

    Lisnawita Lisnawita

    2014-09-01

    Full Text Available Radopholus similis is a major constraint to banana production in the world including Indonesia and growers have relied on nematicides to manage yield losses. The use of endophytic fungi is one method that may reduce the need for nematicides, however little is known on the effective application method of endophytic fungi to control R. similis. The aim of this research was to find out an effective application method of endophytic fungi to reduce R.similispopulation on banana. Fifteen isolates of endophytic fungi originated from banana corm and root collected from banana plantation in North Sumatera were applied to Barangan cultivar by sowing and deeping methods. The isolates was contained of 11 isolates of Fusarium sp. (2BSTMHMM, 3ASTMHP, 5ASP, 1ASU, 4BSP, 4BJP, 5BKJP, 4BSU, 1BJP, 2 BSP, and 4BKJP and 4 isolates ofTrichoderma sp. (2BSTMHP, 4BSTMHP, 2BSPH, and 2BSTMHH. All of these endophytic fungi were able to suppress the population of R. similis and they had potential to promote plant growth.

  16. Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants.

    Science.gov (United States)

    Afzal, Muhammad; Khan, Qaiser M; Sessitsch, Angela

    2014-12-01

    Recently, there has been an increased effort to enhance the efficacy of phytoremediation of contaminated environments by exploiting plant-microbe interactions. The combined use of plants and endophytic bacteria is an emerging approach for the clean-up of soil and water polluted with organic compounds. In plant-endophyte partnerships, plants provide the habitat as well as nutrients to their associated endophytic bacteria. In response, endophytic bacteria with appropriate degradation pathways and metabolic activities enhance degradation of organic pollutants, and diminish phytotoxicity and evapotranspiration of organic pollutants. Moreover, endophytic bacteria possessing plant growth-promoting activities enhance the plant's adaptation and growth in soil and water contaminated with organic pollutants. Overall, the application of endophytic bacteria gives new insights into novel protocols to improve phytoremediation efficiency. However, successful application of plant-endophyte partnerships for the clean-up of an environment contaminated with organic compounds depends on the abundance and activity of the degrading endophyte in different plant compartments. Although many endophytic bacteria have the potential to degrade organic pollutants and improve plant growth, their contribution to enhance phytoremediation efficiency is still underestimated. A better knowledge of plant-endophyte interactions could be utilized to increase the remediation of polluted soil environments and to protect the foodstuff by decreasing agrochemical residues in food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Et tu, Brute? Not Even Intracellular Mutualistic Symbionts Escape Horizontal Gene Transfer

    Directory of Open Access Journals (Sweden)

    Sergio López-Madrigal

    2017-09-01

    Full Text Available Many insect species maintain mutualistic relationships with endosymbiotic bacteria. In contrast to their free-living relatives, horizontal gene transfer (HGT has traditionally been considered rare in long-term endosymbionts. Nevertheless, meta-omics exploration of certain symbiotic models has unveiled an increasing number of bacteria-bacteria and bacteria-host genetic transfers. The abundance and function of transferred loci suggest that HGT might play a major role in the evolution of the corresponding consortia, enhancing their adaptive value or buffering detrimental effects derived from the reductive evolution of endosymbionts’ genomes. Here, we comprehensively review the HGT cases recorded to date in insect-bacteria mutualistic consortia, and discuss their impact on the evolutionary success of these associations.

  18. Leaf endophyte load influences fungal garden development in leaf-cutting ants

    Directory of Open Access Journals (Sweden)

    Van Bael Sunshine A

    2012-11-01

    Full Text Available Abstract Background Previous work has shown that leaf-cutting ants prefer to cut leaf material with relatively low fungal endophyte content. This preference suggests that fungal endophytes exact a cost on the ants or on the development of their colonies. We hypothesized that endophytes may play a role in their host plants’ defense against leaf-cutting ants. To measure the long-term cost to the ant colony of fungal endophytes in their forage material, we conducted a 20-week laboratory experiment to measure fungal garden development for colonies that foraged on leaves with low or high endophyte content. Results Colony mass and the fungal garden dry mass did not differ significantly between the low and high endophyte feeding treatments. There was, however, a marginally significant trend toward greater mass of fungal garden per ant worker in the low relative to the high endophyte treatment. This trend was driven by differences in the fungal garden mass per worker from the earliest samples, when leaf-cutting ants had been foraging on low or high endophyte leaf material for only 2 weeks. At two weeks of foraging, the mean fungal garden mass per worker was 77% greater for colonies foraging on leaves with low relative to high endophyte loads. Conclusions Our data suggest that the cost of endophyte presence in ant forage material may be greatest to fungal colony development in its earliest stages, when there are few workers available to forage and to clean leaf material. This coincides with a period of high mortality for incipient colonies in the field. We discuss how the endophyte-leaf-cutter ant interaction may parallel constitutive defenses in plants, whereby endophytes reduce the rate of colony development when its risk of mortality is greatest.

  19. Tripartite symbiosis of Sophora tomentosa, rhizobia and arbuscular mycorhizal fungi.

    Science.gov (United States)

    Toma, Maíra Akemi; Soares de Carvalho, Teotonio; Azarias Guimarães, Amanda; Martins da Costa, Elaine; Savana da Silva, Jacqueline; de Souza Moreira, Fatima Maria

    Sophora tomentosa is a pantropical legume species with potential for recovery of areas degraded by salinization, and for stabilization of sand dunes. However, few studies on this species have been carried out, and none regarding its symbiotic relationship with beneficial soil microorganisms. Therefore, this study aimed to evaluate the diversity of nitrogen-fixing bacteria isolated from nodules of Sophora tomentosa, and to analyze the occurrence of colonization of arbuscular mycorrhizal fungi on the roots of this legume in seafront soil. Thus, seeds, root nodules, and soil from the rhizosphere of Sophora tomentosa were collected. From the soil samples, trap cultures with this species were established to extract spores and to evaluate arbuscular mycorhizal fungi colonization in legume roots, as well as to capture rhizobia. Rhizobia strains were isolated from nodules collected in the field or from the trap cultures. Representative isolates of the groups obtained in the similarity dendrogram, based on phenotypic characteristics, had their 16S rRNA genes sequenced. The legume species showed nodules with indeterminate growth, and reddish color, distributed throughout the root. Fifty-one strains of these nodules were isolated, of which 21 were classified in the genus Bacillus, Brevibacillus, Paenibacillus, Rhizobium and especially Sinorhizobium. Strains closely related to Sinorhizobium adhaerens were the predominant bacteria in nodules. The other genera found, with the exception of Rhizobium, are probably endophytic bacteria in the nodules. Arbuscular mycorrhizal fungi was observed colonizing the roots, but arbuscular mycorhizal fungi spores were not found in the trap cultures. Therefore Sophora tomentosa is associated with both arbuscular mycorhizal fungi and nodulating nitrogen-fixing bacteria. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  20. Molecular profiling and bioactive potential of an endophytic fungus Aspergillus sulphureus isolated from Sida acuta: a medicinal plant.

    Science.gov (United States)

    Murali, M; Mahendra, C; Hema, P; Rajashekar, N; Nataraju, A; Sudarshana, M S; Amruthesh, K N

    2017-12-01

    Sida acuta Burm.f. (Malvaceae) extracts are reported to have applications against malaria, diuretic, antipyretic, nervous and urinary diseases. No fungal endophytes of S. acuta are reported. Isolation, identification and evaluation of antibacterial, antioxidant, anticancer and haemolytic potential of fungal endophytes from the ethnomedcinal plant S. acuta. Sida acuta stem segments were placed on PDA medium to isolate endophytic fungi. The fungus was identified by genomic DNA analysis and phylogenetic tree was constructed using ITS sequences (GenBank) to confirm species. The antibacterial efficacy of Aspergillus sulphureus MME12 ethyl acetate extract was tested against Gram-positive and Gram-negative pathogenic bacteria. DPPH free radical scavenging activity, anticancer and DNA fragmentation against EAC cells, and direct haemolytic activity (100-500 μg/mL) using human erythrocytes were determined. The ethyl acetate extract of A. sulphureus (Fresen.) Wehmer (Trichocomaceae) demonstrated significant antibacterial potential against Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Salmonella typhi compared to streptomycin. MIC against test pathogens was in the range of 15.6-62.5 μg/mL. The antioxidant results revealed significant RSA from 12.43% to 62.02% (IC 50  = 350.4 μg/mL, p ≤ 0.05). MME12 offered considerable inhibition of EAC proliferation (23% to 84%, IC 50  = 216.7 μg/mL, p ≤ 0.05) supported by DNA fragmentation studies. The extract also offered insignificant haemolysis (5.6%) compared to Triton X-100. A single endophytic fungus, A. sulphureus MME12 was isolated and identified using molecular profiling. The above-mentioned findings support the pharmacological application of A. sulphureus MME12 extract and demand for purification of the active principle(s).

  1. Response of Sesbania grandiflora to Inoculation of Soil with Vesicular-Arbuscular Mycorrhizal Fungi.

    Science.gov (United States)

    Habte, M; Aziz, T

    1985-09-01

    A greenhouse experiment was conducted to determine the influence of two tropical isolates of Glomus fasciculatum and Glomus mosseae on the nutrient uptake and growth of Sesbania grandiflora. Inoculation of sterile soil with the fungi significantly improved growth and nutrient uptake by S. grandiflora, but the response of the legume was markedly better when the soil was inoculated with G. fasciculatum than when it was inoculated with G. mosseae. Nutrient uptake and growth of S. grandiflora in nonsterile soil was also significantly stimulated by inoculation, but the legume did not respond differently to the two endophytes under this condition.

  2. [Isolation and physiological characteristics of endophytic actinobacteria from medicinal plants].

    Science.gov (United States)

    Du, Huijing; Su, Jing; Yu, Liyan; Zhang, Yuqin

    2013-01-04

    To isolate, incubate and characterize cultivable endophytic antinobacteria from medicinal plants, and analyze the diversity of the endophytic antinobacteria, then explore the novel microbial resources. Ten media were used to isolate endophytic antinobacteria from 37 fresh medicinal plant tissue samples. The optimal cultivation conditions for endophytic antinobacteria were determined by comparison. Based on the morphology of the colonies and cells of the new isolates, we chose 174 isolates to analyze their 16S rRNA gene sequences and the diversity of the medicinal plant endophytic antinobacteria. The physiological characteristics of 27 representative strains were studied using Biolog GEN III MicroPlates, API 50CH and API ZYM kits. In total 940 endophytics affiliated to 47 genera of 30 families were isolated, among which more than 600 actinobacteria belonged to 34 genera and 7 unknown taxa. Good growth of the endophytic antinobacteria on PYG (peptone-yeast-glycerol) medium with pH 7.2 at 28-32 degrees C was observed. Physiological characteristics differences of these isolates related to their phylogenetic relationships. Greater differences were shown among the strains from the same host plants than those from differ,ent plants grown in the same area. There are great diverse endophytic actinobacteria inside the medicinal plants. No direct relationship of the endophytic actinobacteria from medicinal plants with the host plants in the sole carbon source utilization, fermentation of carbon sources to produce acid and the enzyme activities was found, while it seemed that the physiological characteristics of the isolates related to the geographical distribution of their host.

  3. Laparoscopic partial nephrectomy for endophytic hilar tumors

    DEFF Research Database (Denmark)

    Di Pierro, G B; Tartaglia, N; Aresu, L

    2014-01-01

    To analyze feasibility and outcomes of laparoscopic partial nephrectomy (LPN) for endophytic hilar tumors in low-intermediate (ASA I-II) risk patients.......To analyze feasibility and outcomes of laparoscopic partial nephrectomy (LPN) for endophytic hilar tumors in low-intermediate (ASA I-II) risk patients....

  4. Isolation and characterization of beneficial indigenous endophytic ...

    African Journals Online (AJOL)

    Plant-associated bacteria that live inside plant tissues without causing any damage to plants are defined as endophytic bacteria. The present study was carried out to analyze the phenotypic and genotypic diversity of endophytic bacteria associated with Amaranthus hybridus, Solanum lycopersicum and Cucurbita maxima.

  5. Barcoding lichen-forming fungi using 454 pyrosequencing is challenged by artifactual and biological sequence variation.

    Science.gov (United States)

    Mark, Kristiina; Cornejo, Carolina; Keller, Christine; Flück, Daniela; Scheidegger, Christoph

    2016-09-01

    Although lichens (lichen-forming fungi) play an important role in the ecological integrity of many vulnerable landscapes, only a minority of lichen-forming fungi have been barcoded out of the currently accepted ∼18 000 species. Regular Sanger sequencing can be problematic when analyzing lichens since saprophytic, endophytic, and parasitic fungi live intimately admixed, resulting in low-quality sequencing reads. Here, high-throughput, long-read 454 pyrosequencing in a GS FLX+ System was tested to barcode the fungal partner of 100 epiphytic lichen species from Switzerland using fungal-specific primers when amplifying the full internal transcribed spacer region (ITS). The present study shows the potential of DNA barcoding using pyrosequencing, in that the expected lichen fungus was successfully sequenced for all samples except one. Alignment solutions such as BLAST were found to be largely adequate for the generated long reads. In addition, the NCBI nucleotide database-currently the most complete database for lichen-forming fungi-can be used as a reference database when identifying common species, since the majority of analyzed lichens were identified correctly to the species or at least to the genus level. However, several issues were encountered, including a high sequencing error rate, multiple ITS versions in a genome (incomplete concerted evolution), and in some samples the presence of mixed lichen-forming fungi (possible lichen chimeras).

  6. Seasonal variation of bacterial endophytes in urban trees

    Directory of Open Access Journals (Sweden)

    Shu Yi eShen

    2015-05-01

    Full Text Available Bacterial endophytes, non-pathogenic bacteria residing within plants, contribute to the growth and development of plants and their ability to adapt to adverse conditions. In order to fully exploit the capabilities of these bacteria, it is necessary to understand the extent to which endophytic communities vary between species and over time. The endophytes of Acer negundo, Ulmus pumila and Ulmus parvifolia were sampled over three seasons and analyzed using culture dependent and independent methods (culture on two media, terminal restriction fragment length polymorphism, and tagged pyrosequencing of 16S ribosomal amplicons. The majority of culturable endophytes isolated were Actinobacteria, and all the samples harbored Bacillus, Curtobacterium, Frigoribacterium, Methylobacterium, Paenibacilllus and Sphingomonas species. Regardless of culture medium used, only the culturable communities obtained in the winter for A. negundo could be distinguished from those of Ulmus spp.. In contrast, the nonculturable communities were dominated by Proteobacteria and Actinobacteria, particularly Erwinia, Ralstonia and Sanguibacter spp.. The presence and abundance of various bacterial classes and phyla changed with the changing seasons. Multivariate analysis on the culture independent data revealed significant community differences between the endophytic communities of A. negundo and Ulmus spp., but overall season was the main determinant of endophytic community structure. This study suggests investigations of the studies ofendophytic populations of urban trees should expect to find significant seasonal and species-specific community differences and sampling should proceed accordingly.

  7. Molecular dynamics in germinating, endophyte-colonized quinoa seeds

    Science.gov (United States)

    2017-01-01

    Aims The pseudo-cereal quinoa has an outstanding nutritional value. Seed germination is unusually fast, and plant tolerance to salt stress exceptionally high. Seemingly all seeds harbor bacterial endophytes. This work examines mitogen-activated protein kinase (MAPK) activities during early development. It evaluates possible contribution of endophytes to rapid germination and plant robustness. Methods MAPK activities were monitored in water- and NaCl-imbibed seeds over a 4-h-period using an immunoblot-based approach. Cellulolytic and pectinolytic abilities of bacteria were assessed biochemically, and cellular movement, biofilm, elicitor and antimicrobial compound synthesis genes sequenced. GyrA-based, cultivation-independent studies provided first insight into endophyte diversity. Results Quinoa seeds and seedlings exhibit remarkably complex and dynamic MAPK activity profiles. Depending on seed origin, variances exist in MAPK patterns and probably also in endophyte assemblages. Mucilage-degrading activities enable endophytes to colonize seed surfaces of a non-host species, chia, without apparent adverse effects. Conclusions Owing to their motility, cell wall-loosening and elicitor-generating abilities, quinoa endophytes have the potential to drive cell expansion, move across cell walls, generate damage-associated molecular patterns and activate MAPKs in their host. Bacteria may thus facilitate rapid germination and confer a primed state directly upon seed rehydration. Transfer into non-native crops appears both desirable and feasible. PMID:29416180

  8. Identity and specificity of Rhizoctonia-like fungi from different populations of Liparis japonica (Orchidaceae) in Northeast China.

    Science.gov (United States)

    Ding, Rui; Chen, Xu-Hui; Zhang, Li-Jun; Yu, Xiao-Dan; Qu, Bo; Duan, Ru; Xu, Yu-Feng

    2014-01-01

    Mycorrhizal association is known to be important to orchid species, and a complete understanding of the fungi that form mycorrhizas is required for orchid ecology and conservation. Liparis japonica (Orchidaceae) is a widespread terrestrial photosynthetic orchid in Northeast China. Previously, we found the genetic diversity of this species has been reduced recent years due to habitat destruction and fragmentation, but little was known about the relationship between this orchid species and the mycorrhizal fungi. The Rhizoctonia-like fungi are the commonly accepted mycorrhizal fungi associated with orchids. In this study, the distribution, diversity and specificity of culturable Rhizoctonia-like fungi associated with L. japonica species were investigated from seven populations in Northeast China. Among the 201 endophytic fungal isolates obtained, 86 Rhizoctonia-like fungi were identified based on morphological characters and molecular methods, and the ITS sequences and phylogenetic analysis revealed that all these Rhizoctonia-like fungi fell in the same main clade and were closely related to those of Tulasnella calospora species group. These findings indicated the high mycorrhizal specificity existed in L. japonica species regardless of habitats at least in Northeast China. Our results also supported the wide distribution of this fungal partner, and implied that the decline of L. japonica in Northeast China did not result from high mycorrhizal specificity. Using culture-dependent technology, these mycorrhizal fungal isolates might be important sources for the further utilizing in orchids conservation.

  9. Identity and specificity of Rhizoctonia-like fungi from different populations of Liparis japonica (Orchidaceae in Northeast China.

    Directory of Open Access Journals (Sweden)

    Rui Ding

    Full Text Available Mycorrhizal association is known to be important to orchid species, and a complete understanding of the fungi that form mycorrhizas is required for orchid ecology and conservation. Liparis japonica (Orchidaceae is a widespread terrestrial photosynthetic orchid in Northeast China. Previously, we found the genetic diversity of this species has been reduced recent years due to habitat destruction and fragmentation, but little was known about the relationship between this orchid species and the mycorrhizal fungi. The Rhizoctonia-like fungi are the commonly accepted mycorrhizal fungi associated with orchids. In this study, the distribution, diversity and specificity of culturable Rhizoctonia-like fungi associated with L. japonica species were investigated from seven populations in Northeast China. Among the 201 endophytic fungal isolates obtained, 86 Rhizoctonia-like fungi were identified based on morphological characters and molecular methods, and the ITS sequences and phylogenetic analysis revealed that all these Rhizoctonia-like fungi fell in the same main clade and were closely related to those of Tulasnella calospora species group. These findings indicated the high mycorrhizal specificity existed in L. japonica species regardless of habitats at least in Northeast China. Our results also supported the wide distribution of this fungal partner, and implied that the decline of L. japonica in Northeast China did not result from high mycorrhizal specificity. Using culture-dependent technology, these mycorrhizal fungal isolates might be important sources for the further utilizing in orchids conservation.

  10. A simple and rapid method for the determination of taxol produced by fungal endophytes from medicinal plants using high performance thin layer chromatography.

    Science.gov (United States)

    Gangadevi, V; Muthumary, J

    2008-01-01

    Taxol is an important anticancer drug used widely in the clinical field. In this study, some endophytic fungi were isolated from selected medicinal plants, and were screened for their potential in the production of taxol, using a rapid separation technique of high performance thin layer chromatography (HPTLC). Of the 20 screened fungi, only 13 fungal species produced taxol in the artificial culture medium. The results of HPTLC showed that the 13 fungal species had identical ultraviolet (UV) characteristics, positive reactivity with a spray reagent, yielding a blue spot, which turned to dark gray after 24 hours, and had Rf values identical to that of the authentic taxol. The amount of taxol was also quantified by comparing the peak area and the peak height of the fungal samples with those of authentic taxol.

  11. Selection of endophytic fungi from comfrey (Symphytum officinale L. for in vitro biological control of the phytopathogen Sclerotinia sclerotiorum (Lib. Seleção de fungos endofíticos de confrei (Symphytum officinale L., buscando controle biológico in vitro do fitopatógeno Sclerotinia sclerotiorum (Lib.

    Directory of Open Access Journals (Sweden)

    Rafaeli Rocha

    2009-03-01

    Full Text Available Biological control consists of using one organism to attack another that may cause economic damage to crops. Integrated Pest Management (IPM is a very common strategy. The white mold produced by Sclerotiniasclerotiorum (Lib. causes considerable damage to bean crops. This fungus is a soil inhabitant, the symptoms of which are characterized by water-soaked lesions covered by a white cottony fungal growth on the soil surface and/or the host plant. Possible biological control agents taken from plants are being investigated as phytopathogen inhibitors. These are endophytic microorganisms that inhabit the intercellular spaces of vegetal tissues and are often responsible for antimicrobial production. The objective of the present study was to select endophytic fungi isolated from comfrey (Symphytumofficinale L. leaves with in vitro antagonist potential against the phytopathogenic fungus S. sclerotiorum. Twelve isolates of endophytic fungi and a pathogenic strain of S. sclerotiorum were used in the challenge method. With the aid of this method, four endophytes with the best antagonistic activity against S. sclerotiorum were selected. Pathogen growth inhibition zones were considered indicative of antibiosis. The percentages of pathogenic mycelia growth were measured both with and without the antagonist, resulting in growth reductions of 46.7% to 50.0% for S. sclerotiorum. These analyses were performed by evaluating the endophytic/pathogenic mycelia growth in mm/day over an eight-day period of antagonistic tests.O controle biológico consiste no uso de organismos que atacam outros que causam danos a culturas de plantas. Esta é uma estratégia muito utilizada no Controle Integrado de Pragas (CIP. O mofo branco, causado por Sclerotiniasclerotiorum (Lib., causa danos em culturas de feijão. Este fungo é encontrado no solo e seus sintomas são caracterizados por lesões úmidas cobertas por micélios algodonosos, crescidos a partir do solo e/ou da planta

  12. Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria.

    Science.gov (United States)

    Beltran-Garcia, Miguel J; White, James F; Prado, Fernanda M; Prieto, Katia R; Yamaguchi, Lydia F; Torres, Monica S; Kato, Massuo J; Medeiros, Marisa H G; Di Mascio, Paolo

    2014-11-06

    Plants form symbiotic associations with endophytic bacteria within tissues of leaves, stems, and roots. It is unclear whether or how plants obtain nitrogen from these endophytic bacteria. Here we present evidence showing nitrogen flow from endophytic bacteria to plants in a process that appears to involve oxidative degradation of bacteria. In our experiments we employed Agave tequilana and its seed-transmitted endophyte Bacillus tequilensis to elucidate organic nitrogen transfer from (15)N-labeled bacteria to plants. Bacillus tequilensis cells grown in a minimal medium with (15)NH4Cl as the nitrogen source were watered onto plants growing in sand. We traced incorporation of (15)N into tryptophan, deoxynucleosides and pheophytin derived from chlorophyll a. Probes for hydrogen peroxide show its presence during degradation of bacteria in plant tissues, supporting involvement of reactive oxygen in the degradation process. In another experiment to assess nitrogen absorbed as a result of endophytic colonization of plants we demonstrated that endophytic bacteria potentially transfer more nitrogen to plants and stimulate greater biomass in plants than heat-killed bacteria that do not colonize plants but instead degrade in the soil. Findings presented here support the hypothesis that some plants under nutrient limitation may degrade and obtain nitrogen from endophytic microbes.

  13. Isolation and Characterization of “Terrein” an Antimicrobial and Antitumor Compound from Endophytic Fungus Aspergillus terreus (JAS-2) Associated from Achyranthus aspera Varanasi, India

    Science.gov (United States)

    Goutam, Jyoti; Sharma, Gunjan; Tiwari, Vinod K.; Mishra, Amrita; Kharwar, Ravindra N.; Ramaraj, Vijayakumar; Koch, Biplob

    2017-01-01

    The present study aimed at characterizing biological potentials of endophyte Aspergillus terreus JAS-2 isolated from Achyranthus aspera. Crude extracted from endophytic fungus JAS-2 was purified and chemically characterized by chromatographic and spectroscopic studies respectively. Spectral assignment of NMR (nuclear magnetic resonance) data, 1H proton and 13C carbon analysis along with FTIR data elucidated the structure of compound as 4,5-Dihydroxy-3-(1-propenyl)-2-cyclopenten-1-one. After purification and identification a set of experiment was conducted to explore efficacy of compound. Results revealed that on accessing the antifungal activity of compound, growth diameter of tested phytopathogenic fungi was reduced to 50% at higher concentration taken (10 μgμl−1). Compound exhibited in-vitro bacterial cell inhibition at 20 μgml−1 concentration along with moderate antioxidant behavior. Evaluation of anticancer activity against human lung cancer cell line (A-549) exhibited its IC50 value to be 121.9 ± 4.821 μgml−1. Further cell cycle phase distribution were analyzed on the basis of DNA content and evaluated by FACS (Fluorescence Activated Cell Sorting) and it was revealed that at 150 μgml−1 of compound maximum cells were found in sub G1 phase which represents apoptotic dead cells. Terrein (4, 5-Dihydroxy-3-(1-propenyl)-2-cyclopenten-1-one) a multi-potential was isolated from endophytic fungus JAS-2, from well recognized medicinal herb A. aspera. To best of our knowledge, this is the first report of “Terrein” from endophytic derived fungus. This compound had also exhibited anticancer and antifungal activity against human lung cancer cell line A-549 and Bipolaris sorokiniana respectively which is causal organism of many plants disease. Hence endophytes are serving as alternative sources of drug molecules. PMID:28790982

  14. Metabolic Environments and Genomic Features Associated with Pathogenic and Mutualistic Interactions between Bacteria and Plants is accepted for publication in MPMI

    Energy Technology Data Exchange (ETDEWEB)

    Karpinets, Tatiana V [ORNL; Park, Byung H [ORNL; Syed, Mustafa H [ORNL; Klotz, Martin G [University of North Carolina, Charlotte; Uberbacher, Edward C [ORNL

    2014-01-01

    Most bacterial symbionts of plants are phenotypically characterized by their parasitic or matualistic relationship with the host; however, the genomic characteristics that likely discriminate mutualistic symbionts from pathogens of plants are poorly understood. This study comparatively analyzed the genomes of 54 plant-symbiontic bacteria, 27 mutualists and 27 pathogens, to discover genomic determinants of their parasitic and mutualistic nature in terms of protein family domains, KEGG orthologous groups, metabolic pathways and families of carbohydrate-active enzymes (CAZymes). We further used all bacteria with sequenced genomesl, published microarrays and transcriptomics experimental datasets, and literature to validate and to explore results of the comparison. The analysis revealed that genomes of mutualists are larger in size and higher in GC content and encode greater molecular, functional and metabolic diversity than the investigated genomes of pathogens. This enriched molecular and functional enzyme diversity included constructive biosynthetic signatures of CAZymes and metabolic pathways in genomes of mutualists compared with catabolic signatures dominant in the genomes of pathogens. Another discriminative characteristic of mutualists is the co-occurence of gene clusters required for the expression and function of nitrogenase and RuBisCO. Analysis of previously published experimental data indicate that nitrogen-fixing mutualists may employ Rubisco to fix CO2 not in the canonical Calvin-Benson-Basham cycle but in a novel metabolic pathway, here called Rubisco-based glycolysis , to increase efficiency of sugar utilization during the symbiosis with plants. An important discriminative characteristic of plant pathogenic bacteria is two groups of genes likely encoding effector proteins involved in host invasion and a genomic locus encoding a putative secretion system that includes a DUF1525 domain protein conserved in pathogens of plants and of other organisms. The

  15. [Screening endophytic bacteria against plant-parasitic nematodes].

    Science.gov (United States)

    Peng, Shuang; Yan, Shuzhen; Chen, Shuanglin

    2011-03-01

    Plant-parasite nematode is one of the most important pathogens in plant. Our objective is to screen endophytic bacteria against plant-parasitic nematodes from plant. Endophytic bacteria were isolated and screened by testing their metabolite against Bursaphelenchus xylophilus in vitro. Those strains inhibiting B. xylophilus were selected to culture in liquid medium and fermentation conditions were optimized by orthogonal test. The stability of the antinematode substances was evaluated by various. In addition, four strains were identified by 16SrDNA sequence analysis. In total 13 strains of endophytic bacteria secreting antinematode metabolite were isolated from 6 species of plant. The supernatant of the fermentation broth of these endophytic bacteria gave 100% mortality of nematodes after treated as the follows: 1 ml each was mixed with 0.2 ml of the suspension of nematodes (2000 nematodes/ml) then incubated at 250C for 24 h, some of which could led to leakage or dissolution of nematodes. Among them, four strains, BCM2, SZ5, CCM7 and DP1, showed stronger activity than others. The supernatants diluted three times also gave not less than 95% mortality after 24 h treatment, and those from DP1 and SZ5 even gave 100% mortality. The fermentation conditions of the four strains were optimized and the antinematode activity grew up four times after optimization. The antinematode substances of these strains were found stable when treated with protease or heating or stored at 4 degrees C after 100 days, while instable when treated with acid or alkali. DP1 and CCM7 were identified to be Bacillus subtilis, while SZ5 and BCM2 to be Bacillus cereus. Endophytic bacteria secreting antinematode metabolite were found in economic crops. The metabolite of some strains showed strong and stable antinematode activity. Our results indicate the real potential of biocontrol by endophytic bacteria.

  16. Exploitation of endophytes for sustainable agricultural intensification.

    Science.gov (United States)

    Le Cocq, Kate; Gurr, Sarah J; Hirsch, Penny R; Mauchline, Tim H

    2017-04-01

    Intensive agriculture, which depends on unsustainable levels of agrochemical inputs, is environmentally harmful, and the expansion of these practices to meet future needs is not economically feasible. Other options should be considered to meet the global food security challenge. The plant microbiome has been linked to improved plant productivity and, in this microreview, we consider the endosphere - a subdivision of the plant microbiome. We suggest a new definition of microbial endophyte status, the need for synergy between fungal and bacterial endophyte research efforts, as well as potential strategies for endophyte application to agricultural systems. © 2016 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  17. Geographic Variation in Festuca rubra L. Ploidy Levels and Systemic Fungal Endophyte Frequencies.

    Directory of Open Access Journals (Sweden)

    Serdar Dirihan

    Full Text Available Polyploidy and symbiotic Epichloë fungal endophytes are common and heritable characteristics that can facilitate environmental range expansion in grasses. Here we examined geographic patterns of polyploidy and the frequency of fungal endophyte colonized plants in 29 Festuca rubra L. populations from eight geographic sites across latitudes from Spain to northernmost Finland and Greenland. Ploidy seemed to be positively and negatively correlated with latitude and productivity, respectively. However, the correlations were nonlinear; 84% of the plants were hexaploids (2n = 6x = 42, and the positive correlation between ploidy level and latitude is the result of only four populations skewing the data. In the southernmost end of the gradient 86% of the plants were tetraploids (2n = 4x = 28, whereas in the northernmost end of the gradient one population had only octoploid plants (2n = 8x = 56. Endophytes were detected in 22 out of the 29 populations. Endophyte frequencies varied among geographic sites, and populations and habitats within geographic sites irrespective of ploidy, latitude or productivity. The highest overall endophyte frequencies were found in the southernmost end of the gradient, Spain, where 69% of plants harbored endophytes. In northern Finland, endophytes were detected in 30% of grasses but endophyte frequencies varied among populations from 0% to 75%, being higher in meadows compared to riverbanks. The endophytes were detected in 36%, 30% and 27% of the plants in Faroe Islands, Iceland and Switzerland, respectively. Practically all examined plants collected from southern Finland and Greenland were endophyte-free, whereas in other geographic sites endophyte frequencies were highly variable among populations. Common to all populations with high endophyte frequencies is heavy vertebrate grazing. We propose that the detected endophyte frequencies and ploidy levels mirror past distribution history of F. rubra after the last glaciation

  18. Communities of endophytic microorganisms in different developmental stages from a local variety as well as transgenic and conventional isogenic hybrids of maize.

    Science.gov (United States)

    da Silva, Kelly Justin; de Armas, Rafael Dutra; Soares, Cláudio Roberto F S; Ogliari, Juliana Bernardi

    2016-11-01

    The diversity of endophytic microorganisms may change due to the genotype of the host plant and its phenological stage. In this study we evaluated the effect of phenological stage, transgenes and genetic composition of maize on endophytic bacterial and fungal communities. The maize populations were composed of a local variety named Rosado (RS) and three isogenic hybrids. One isogenic hybrid was not genetically modified (NGM). Another hybrid (Hx) contained the transgenes cry1F and pat (T1507 event), which provide resistance to insects of the order Lepidoptera and tolerance to the glufosinate-ammonium herbicide, respectively. The third hybrid (Hxrr) contained the transgene cp4 epsps (NK603 event) combined with the transgenes cry1F and pat (T1507 event), which allow tolerance to the Roundup Ready herbicide, besides the characteristics of Hx. Evaluation of the foliar tissue was done through PCR-DGGE analysis, with specific primers for bacteria and fungi within four phenological stages of maize. The endophytic bacteria were only clustered by phenological stages; the structure of the fungal community was clustered by maize genotypes in each phenological stage. The fungal community from the local variety RS was different from the three hybrids (NGM, Hx and Hxrr) within the four evaluated stages. In the reproductive stage, the fungal community from the two transgenic hybrids (Hx and Hxrr) were separated, and the Hxrr was different from NGM, in the two field experiments. This research study showed that the genetic composition of the maize populations, especially the presence of transgenes, is the determining factor for the changes detected in the endophytic fungal community of maize leaves.

  19. Properties of bacterial endophytes and their proposed role in plant growth

    NARCIS (Netherlands)

    Hardoim, P.R.; Overbeek, van L.S.; Elsas, van J.D.

    2008-01-01

    Bacterial endophytes live inside plants for at least part of their life cycle. Studies of the interaction of endophytes with their host plants and their function within their hosts are important to address the ecological relevance of endophytes. The modulation of ethylene levels in plants by

  20. Effects of toxicosis on bull growth, semen characteristics and breeding soundness evaluation

    Science.gov (United States)

    Tall fescue (Lolium arundinaceum) possesses heat, drought, and pest resistance conferred to the plant by its mutualistic relationship with the ergot alkaloid producing fungal endophyte, Neotyphodium coenophialum. The objective of this study was to evaluate the impact of ergot alkaloid consumption on...

  1. ISOLASI DAN IDENTIFIKASI KAPANG ENDOFIT DARI TANAMAN KUNYIT (Curcuma longa L. SEBAGAI PENGHASIL ANTIOKSIDAN

    Directory of Open Access Journals (Sweden)

    Tiwit Widowati

    2016-06-01

    Full Text Available Endophyte fungi are microbe that living inside the plant tissue without harming the host plant. Endophyte fungi can produce secondary metabolite which can be used as antioxidant, anticancer and antimicobes compound. Endophyte fungi can be found in many plants especially herbs such as turmeric (Curcuma longa L. The aims of this study are to isolate and identify endophyte fungi from stem of C. longa L. which is potential as an antioxidant producer. The endophyte fungi isolated from turmeric stem were 12 isolates. Antioxidant activity was assayed using 1,1-Diphenyl-2-picryl-hydrazyl (DPPH showed that isolate K.Cl.Sb.B1 produced the highest inhibition value (78,81%. Based on molecular identification, the isolate K.Cl.Sb.B1 was Colletotrichum sp.Keywords: Curcuma longa L., endophyte fungi, identification antioxidant ABSTRAKKapang endofit merupakan mikroba yang terdapat di dalam jaringan tanaman tanpa membahayakan tanaman inang. Kapang endofit mampu menghasilkan metabolit sekunder yang dapat dimanfaatkan sebagai senyawa antioksidan, antikanker dan antimikroba. Kapang endofit dapat ditemukan pada berbagai jenis tanaman terutama tanaman obat seperti kunyit (Curcuma longa L. Penelitian ini bertujuan untuk mengisolasi dan mengidentifikasi kapang endofit dari batang tanaman kunyit yang berpotensi sebagai penghasil antioksidan. Kapang endofit yang diisolasi dari batang tanaman kunyit diperoleh 12 isolat. Uji antioksidan menggunakan 1,1-Diphenyl-2-picryl-hydrazyl (DPPH menunjukkan bahwa isolat K.Cl.Sb.B1 menghasilkan nilai inhibisi tertinggi (78,81%. Berdasarkan identifikasi molekuler, isolat K.Cl.Sb.B1 merupakan Colletotrichum sp.Kata kunci: Curcuma longa L., identifikasi antioksidan, kapang endofit

  2. Fungal Production and Manipulation of Plant Hormones.

    Science.gov (United States)

    Fonseca, Sandra; Radhakrishnan, Dhanya; Prasad, Kalika; Chini, Andrea

    2018-01-01

    Living organisms are part of a highly interconnected web of interactions, characterised by species nurturing, competing, parasitizing and preying on one another. Plants have evolved cooperative as well as defensive strategies to interact with neighbour organisms. Among these, the plant-fungus associations are very diverse, ranging from pathogenic to mutualistic. Our current knowledge of plant-fungus interactions suggests a sophisticated coevolution to ensure dynamic plant responses to evolving fungal mutualistic/pathogenic strategies. The plant-fungus communication relies on a rich chemical language. To manipulate the plant defence mechanisms, fungi produce and secrete several classes of biomolecules, whose modeof- action is largely unknown. Upon perception of the fungi, plants produce phytohormones and a battery of secondary metabolites that serve as defence mechanism against invaders or to promote mutualistic associations. These mutualistic chemical signals can be co-opted by pathogenic fungi for their own benefit. Among the plant molecules regulating plant-fungus interaction, phytohormones play a critical role since they modulate various aspects of plant development, defences and stress responses. Intriguingly, fungi can also produce phytohormones, although the actual role of fungalproduced phytohormones in plant-fungus interactions is poorly understood. Here, we discuss the recent advances in fungal production of phytohormone, their putative role as endogenous fungal signals and how fungi manipulate plant hormone balance to their benefits. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Plant growth promoting potential of endophytic bacteria isolated ...

    African Journals Online (AJOL)

    Endophytic microorganisms are able to promote plant growth through various mechanisms, such as production of plant hormones and antimicrobial substances, as well as to provide the soil with nutrients, for instance, inorganic phosphate. This study aimed to evaluate the potential of endophytic bacteria isolated from ...

  4. Exploring the potential of symbiotic fungal endophytes in cereal disease suppression

    DEFF Research Database (Denmark)

    O'Hanlon, Karen; Knorr, Kamilla; Jørgensen, Lise Nistrup

    2012-01-01

    , and environmental and health concerns surrounding the use of chemical treatments. There is currently a demand for new disease control strategies, and one such strategy involves the use of symbiotic fungal endophytes as biological control agents against fungal pathogens in cereals. Despite the fact that biological...... control by symbiotic fungal endophytes has been documented, particularly with respect to clavicipitaceous endophytes in C3 cool-season grasses, this area remains relatively underexplored in cereals. We highlight for the first time the potential in using symbiotic fungal endophytes to control foliar cereal...

  5. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte.

    Directory of Open Access Journals (Sweden)

    Michele T Hoffman

    Full Text Available Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA, often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales, but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales. Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions.

  6. The role of the Oregon State University Endophyte Service Laboratory in diagnosing clinical cases of endophyte toxicoses.

    Science.gov (United States)

    Craig, A Morrie; Blythe, Linda L; Duringer, Jennifer M

    2014-07-30

    The Oregon State University Colleges of Veterinary Medicine and Agricultural Sciences instituted the Endophyte Service Laboratory to aid in diagnosing toxicity problems associated with cool-season grasses in livestock. The endophyte (Neotyphodium coenophalum) present in tall fescue (Festuca arundinacea) produces ergopeptine alkaloids, of which ergovaline is the molecule used to determine exposure and toxicity thresholds for the vasoconstrictive conditions "fescue foot" and "summer slump". Another vasoconstrictive syndrome, "ergotism," is caused by a parasitic fungus, Claviceps purpurea, and its primary toxin, ergotamine. "Ryegrass staggers" is a neurological condition that affects livestock consuming endophyte (Neotyphodium lolii)-infected perennial ryegrass (Lolium perenne) with high levels of lolitrem B. HPLC-fluorescent analytical methods for these mycotoxins are described and were used to determine threshold levels of toxicity for ergovaline and lolitrem B in cattle, sheep, horses, and camels. In addition, six clinical cases in cattle are presented to illustrate diagnosis of these three diseases.

  7. Shifts in soil fungal communities in Tuber melanosporum plantations over a 20-year transition from agriculture fields to oak woodlands

    Energy Technology Data Exchange (ETDEWEB)

    Bing, L.; Fischer, C.R.; Bonet, J.A.; Castaño, C.; Colinas, C.

    2016-07-01

    Aim of study: To explore the diversity of soil fungi found in black truffle (Tuber melanosporum) plantations following the introduction of the mycorrhizal-colonized host tree, (Quercus ilex), through the development of the brûlé and production of mature sporocarps. Area of study: This research was carried out province of Teruel, Aragon (central eastern Spain). Material and Methods: Soil samples from 6 plantations were collected beneath Q. ilex trees inoculated with T. melanosporum, of 3, 5, 7, 10, 14 and 20 years after out planting in truffle plantations. Soil DNA was extracted, PCR-amplified and sequenced to compare soil fungi present at different ages. Main results: As tree age increased, we observed an increased frequency of T. melanosporum (from 8% to 71% of sequenced colonies) and concomitant decrease in the combined frequency of Fusarium spp. and Phoma spp. (from 64% to 3%). Research highlights: There are important shifts in species richness and in functional groups in the soil fungal communities in maturing black truffle-oak woodland plantations. The observed inverse relationship between the frequency of soil endophytic and/or pathogenic fungi and that of the mycorrhizal mutualist T. melanosporum provides support to continue a deeper analysis of shifts in fungal communities and functional groups where there is a transition from agriculture fields to woodlands. (Author)

  8. Diversity and distribution patterns of root-associated fungi on herbaceous plants in alpine meadows of southwestern China.

    Science.gov (United States)

    Gao, Qian; Yang, Zhu L

    2016-01-01

    The diversity of root-associated fungi associated with four ectomycorrhizal herbaceous species, Kobresia capillifolia, Carex parva, Polygonum macrophyllum and Potentilla fallens, collected in three sites of alpine meadows in southwestern China, was estimated based on internal transcribed spacer (ITS) rDNA sequence analysis of root tips. Three hundred seventy-seven fungal sequences sorted to 154 operational taxonomical units (sequence similarity of ≥ 97% across the ITS) were obtained from the four plant species across all three sites. Similar taxa (in GenBank with ≥ 97% similarity) were not found in GenBank and/or UNITE for most of the OTUs. Ectomycorrhiz a made up 64% of the fungi operational taxonomic units (OTUs), endophytes constituted 4% and the other 33% were unidentified root-associated fungi. Fungal OTUs were represented by 57% basidiomycetes and 43% ascomycetes. Inocybe, Tomentella/Thelophora, Sebacina, Hebeloma, Pezizomycotina, Cenococcum geophilum complex, Cortinarius, Lactarius and Helotiales were OTU-rich fungal lineages. Across the sites and host species the root-associated fungal communities generally exhibited low host and site specificity but high host and sampling site preference. Collectively our study revealed noteworthy diversity and endemism of root-associated fungi of alpine plants in this global biodiversity hotspot. © 2016 by The Mycological Society of America.

  9. EKSPLORASI CENDAWAN ENDOFIT DARI TANAMAN PADI SEBAGAI AGENS PEMACU PERTUMBUHAN TANAMAN (The Exploration of Endophytic Fungi from Oryza sativa as Plant Growth Promoting Agents)

    OpenAIRE

    Wilia, Weni; Hayati, Islah; Ristyadi, Dwi

    2013-01-01

    Endophityc fungi have been successfully isolated from Oryza sativa atLaboratory of Plant Disease, Agriculture Faculty University of Jambi. Theaim of this research was to get endophityc fungi from Oryza sativa. Therewere three (3) candidates of endophityc fungi that have been successfullyisolated. Pathogenosity test which was done showed that all of fungi wereendophityc fungi. Those fungi were identified as endophityc fungi due to theseed of paddy could growth normally in pure culture of endop...

  10. [Molecular cloning, expression and characterization of lysine decarboxylase gene of endophytic fungus Shiraia sp. Slf14 from Huperzia serrata].

    Science.gov (United States)

    Peng, Silu; Yang, Huilin; Zhu, Du; Zhang, Zhibin; Yan, Riming; Wang, Ya

    2016-04-14

    Huperzine A (HupA) was approved as a drug for the treatment of Alzheimer's disease. The HupA biosynthetic pathway was started from lysine decarboxylase (LDC), which catalyzes lysine to cadaverine. In this study, we cloned and expressed an LDC gene from a HupA-producing endophytic fungus, and tested LDC activities. An endophytic fungus Shiraia sp. Slf14 from Huperzia serrata was used. LDC gene was obtained by RT-PCR, and cloned into pET-22b(+) and pET-32a(+) vectors to construct recombinant plasmids pET- 22b-LDC and pET-32a-LDC. These two recombinant plasmids were transformed into E. coli BL21, cultured for 8 h at 24 °C, 200 r/min with 1×10–3 mol/L IPTG into medium to express the LDC proteins, respectively. LDC proteins were purified by Ni2+ affinity chromatography. Catalytic activities were measured by Thin Layer Chromatography. At last, the physicochemical properties and structures of these two LDCs were obtained by bioinformatics software. LDC and Trx-LDC were expressed in E. coli BL21 successfully. SDS-PAGE analysis shows that the molecular weight of LDC and Trx-LDC were 24.4 kDa and 42.7 kDa respectively, which are consistent with bioinformatics analysis. In addition, TLC analysis reveals that both LDC and Trx-LDC had catalytic abilities. This work can provide fundamental data for enriching LDC molecular information and reveal the HupA biosynthetic pathway in endophytic fungi.

  11. Symptomless endophytic fungi suppress endogenous levels of salicylic acid and interact with the jasmonate-dependent indirect defense traits of their host, lima bean (Phaseolus lunatus).

    Science.gov (United States)

    Navarro-Meléndez, Ariana L; Heil, Martin

    2014-07-01

    Symptomless ‘type II’ fungal endophytes colonize their plant host horizontally and exert diverse effects on its resistance phenotype. Here, we used wild Lima bean (Phaseolus lunatus) plants that were experimentally colonized with one of three strains of natural endophytes (Bartalinia pondoensis, Fusarium sp., or Cochliobolus lunatus) to investigate the effects of fungal colonization on the endogenous levels of salicylic acid (SA) and jasmonic acid (JA) and on two JA-dependent indirect defense traits. Colonization with Fusarium sp. enhanced JA levels in intact leaves, whereas B. pondoensis suppressed the induction of endogenous JA in mechanically damaged leaves. Endogenous SA levels in intact leaves were significantly decreased by all strains and B. pondoensis and Fusarium sp. decreased SA levels after mechanical damage. Colonization with Fusarium sp. or C. lunatus enhanced the number of detectable volatile organic compounds (VOCs) emitted from intact leaves, and all three strains enhanced the relative amount of several VOCs emitted from intact leaves as well as the number of detectable VOCs emitted from slightly damaged leaves. All three strains completely suppressed the induced secretion of extrafloral nectar (EFN) after the exogenous application of JA. Symptomless endophytes interact in complex and strain-specific ways with the endogenous levels of SA and JA and with the defense traits that are controlled by these hormones. These interactions can occur both upstream and downstream of the defense hormones.

  12. Consumption of Endophyte Infected Fescue During Gestation in Beef Cows

    OpenAIRE

    Oliver, Katherine Rene

    2016-01-01

    Tall fescue is a widely grown, cool season grass prevalent in the eastern United States that is known for its resistance to abiotic and biotic stresses. A main reason for tall fescue's resistance to these stresses is attributed to the presence of a fungal endophyte. Unfortunately, this endophyte also adversely affects cattle production. Cows consuming the ergot alkaloids produced by these endophytes can exhibit decreased feed intake, growth performance, organ vasoconstriction, and increased...

  13. Antagonistic bioactivity of an endophytic bacterium isolated from ...

    African Journals Online (AJOL)

    Antagonistic bioactivity of an endophytic bacterium isolated from Epimedium brevicornu Maxim. R He, G Wang, X Liu, C Zhang, F Lin. Abstract. Endophytic bacteria are one of the most potential biological control agents in plant disease protection. The aim of this work was to evaluate the antimicrobial activities of a strain of ...

  14. Endophytic bacteria with potential for bioremediation of petroleum ...

    African Journals Online (AJOL)

    Endophytic microorganisms live inside plants and show no apparent damage for the host. They often assist in plants' survival and facilitate their growth, or they can metabolize organic contaminants. This study aimed to isolate and identify the endophytic bacteria of plants present in impacted areas, as well as to test their ...

  15. Anti-rheumatoid Activity of Secondary Metabolites Produced by Endophytic Chaetomium globosum

    Science.gov (United States)

    Abdel-Azeem, Ahmed M.; Zaki, Sherif M.; Khalil, Waleed F.; Makhlouf, Noha A.; Farghaly, Lamiaa M.

    2016-01-01

    The aim of the present study was to investigate the anti-rheumatoid activity of secondary metabolites produced by endophytic mycobiota in Egypt. A total of 27 endophytic fungi were isolated from 10 dominant medicinal plant host species in Wadi Tala, Saint Katherine Protectorate, arid Sinai, Egypt. Of those taxa, seven isolates of Chaetomium globosum (CG1–CG7), being the most frequent taxon, were recovered from seven different host plants and screened for production of active anti-inflammatory metabolites. Isolates were cultivated on half – strength potato dextrose broth for 21 days at 28°C on a rotatory shaker at 180 rpm, and extracted in ethyl acetate and methanol, respectively. The probable inhibitory effects of both extracts against an adjuvant induced arthritis (AIA) rat model were examined and compared with the effects of methotrexate (MTX) as a standard disease-modifying anti-rheumatoid drug. Disease activity and mobility scoring of AIA, histopathology and transmission electron microscopy (TEM) were used to evaluate probable inhibitory roles. A significant reduction (P < 0.05) in the severity of arthritis was observed in both the methanolic extract of CG6 (MCG6) and MTX treatment groups 6 days after treatment commenced. The average arthritis score of the MCG6 treatment group was (10.7 ± 0.82) compared to (13.8 ± 0.98) in the positive control group. The mobility score of the MCG6 treatment group (1.50 ± 0.55) was significantly lower than that of the positive control group (3.33 ± 0.82). In contrast, the ethyl acetate extract of CG6 (EACG6) treatment group showed no improvements in arthritis and mobility scores in AIA model rats. Histopathology and TEM findings confirmed the observation. Isolate CG6 was subjected to sequencing for confirmation of phenotypic identification. The internal transcribed spacer (ITS) 1–5.8 s – ITS2 rDNA sequences obtained were compared with those deposited in the GenBank Database and registered with accession number KC

  16. Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat induced point mutations

    NARCIS (Netherlands)

    Rouxel, T.; Grandaubert, J.; Hane, J.K.; Hoede, C.; Wouw, A.; Couloux, A.; Dominguez, V.; Anthouard, V.; Bally, P.; Bourras, S.; Cozijnsen, A.J.; Ciuffetti, L.M.; Degrave, A.; Dilmaghani, A.; Duret, L.; Fudal, L.; Goodwin, S.B.; Gout, L.; Glaser, N.; Linglin, J.; Kema, G.H.J.; Lapalu, N.; Lawrence, C.B.; May, K.; Meyer, M.; Ollivier, B.; Poulain, J.; Schoch, C.L.; Simon, A.; Spatafora, J.W.; Stachowiak, A.; Turgeon, B.G.; Tyler, B.M.; Vincent, D.; Weissenbach, J.; Amselem, J.; Quesneville, H.; Oliver, R.P.; Wincker, P.; Balesdent, M.H.; Howlett, B.J.

    2011-01-01

    Fungi are of primary ecological, biotechnological and economic importance. Many fundamental biological processes that are shared by animals and fungi are studied in fungi due to their experimental tractability. Many fungi are pathogens or mutualists and are model systems to analyse effector genes

  17. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots?

    Science.gov (United States)

    Arnold, A Elizabeth; Lutzoni, F

    2007-03-01

    Fungal endophytes are found in asymptomatic photosynthetic tissues of all major lineages of land plants. The ubiquity of these cryptic symbionts is clear, but the scale of their diversity, host range, and geographic distributions are unknown. To explore the putative hyperdiversity of tropical leaf endophytes, we compared endophyte communities along a broad latitudinal gradient from the Canadian arctic to the lowland tropical forest of central Panama. Here, we use molecular sequence data from 1403 endophyte strains to show that endophytes increase in incidence, diversity, and host breadth from arctic to tropical sites. Endophyte communities from higher latitudes are characterized by relatively few species from many different classes of Ascomycota, whereas tropical endophyte assemblages are dominated by a small number of classes with a very large number of endophytic species. The most easily cultivated endophytes from tropical plants have wide host ranges, but communities are dominated by a large number of rare species whose host range is unclear. Even when only the most easily cultured species are considered, leaves of tropical trees represent hotspots of fungal species diversity, containing numerous species not yet recovered from other biomes. The challenge remains to recover and identify those elusive and rarely cultured taxa with narrower host ranges, and to elucidate the ecological roles of these little-known symbionts in tropical forests.

  18. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    Science.gov (United States)

    Khalaf, Eman M.; Raizada, Manish N.

    2018-01-01

    The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays) against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanideratum). The endophytes were also assayed in planta (leaf disk and detached leaf bioassays) for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs) known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR) proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169) exhibited antagonism to the five phytopathogens, of which 68% (50/73) of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169) of endophytes emitted host defense inducing VOCs (acetoin/diacetyl) and 62% (104/169) secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated cucurbits

  19. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    Directory of Open Access Journals (Sweden)

    Eman M. Khalaf

    2018-02-01

    Full Text Available The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanideratum. The endophytes were also assayed in planta (leaf disk and detached leaf bioassays for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169 exhibited antagonism to the five phytopathogens, of which 68% (50/73 of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169 of endophytes emitted host defense inducing VOCs (acetoin/diacetyl and 62% (104/169 secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated

  20. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    Directory of Open Access Journals (Sweden)

    Eman M. Khalaf

    2018-02-01

    Full Text Available The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanidermatum. The endophytes were also assayed in planta (leaf disk and detached leaf bioassays for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169 exhibited antagonism to the five phytopathogens, of which 68% (50/73 of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169 of endophytes emitted host defense inducing VOCs (acetoin/diacetyl and 62% (104/169 secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated

  1. Salicaceae Endophytes Modulate Stomatal Behavior and Increase Water Use Efficiency in Rice

    Directory of Open Access Journals (Sweden)

    Hyungmin Rho

    2018-03-01

    Full Text Available Bacterial and yeast endophytes isolated from the Salicaceae family have been shown to promote growth and alleviate stress in plants from different taxa. To determine the physiological pathways through which endophytes affect plant water relations, we investigated leaf water potential, whole-plant water use, and stomatal responses of rice plants to Salicaceae endophyte inoculation under CO2 enrichment and water deficit. Daytime stomatal conductance and stomatal density were lower in inoculated plants compared to controls. Leaf ABA concentrations increased with endophyte inoculation. As a result, transpirational water use decreased significantly with endophyte inoculation while biomass did not change or slightly increased. This response led to a significant increase in cumulative water use efficiency at harvest. Different endophyte strains produced the same results in host plant water relations and stomatal responses. These stomatal responses were also observed under elevated CO2 conditions, and the increase in water use efficiency was more pronounced under water deficit conditions. The effect on water use efficiency was positively correlated with daily light integrals across different experiments. Our results provide insights on the physiological mechanisms of plant-endophyte interactions involving plant water relations and stomatal functions.

  2. Two closely related Rho GTPases, Cdc42 and RacA, of the en-dophytic fungus Epichloë festucae have contrasting roles for ROS production and symbiotic infection synchronized with the host plant.

    Science.gov (United States)

    Kayano, Yuka; Tanaka, Aiko; Takemoto, Daigo

    2018-01-01

    Epichloë festucae is an endophytic fungus which systemically colonizes temperate grasses to establish symbiotic associations. Maintaining symptomless infection is a key requirement for endophytes, a feature that distinguishes them from pathogenic fungi. While pathogenic fungi extend their hyphae by tip growth, hyphae of E. festucae systemically colonize the intercellular space of expanding host leaves via a unique mechanism of hyphal intercalary growth. This study reports that two homologous Rho GTPases, Cdc42 and RacA, have distinctive roles in the regulation of E. festucae growth in planta. Here we highlight the vital role of Cdc42 for intercalary hyphal growth, as well as involvement of RacA in regulation of hyphal network formation, and demonstrate the consequences of mutations in these genes on plant tissue infection. Functions of Cdc42 and RacA are mediated via interactions with BemA and NoxR respectively, which are expected components of the ROS producing NOX complex. Symbiotic defects found in the racA mutant were rescued by introduction of a Cdc42 with key amino acids substitutions crucial for RacA function, highlighting the significance of the specific interactions of these GTPases with BemA and NoxR for their functional differentiation in symbiotic infection.

  3. Use of Endophytic and Rhizosphere Actinobacteria from Grapevine Plants To Reduce Nursery Fungal Graft Infections That Lead to Young Grapevine Decline.

    Science.gov (United States)

    Álvarez-Pérez, José Manuel; González-García, Sandra; Cobos, Rebeca; Olego, Miguel Ángel; Ibañez, Ana; Díez-Galán, Alba; Garzón-Jimeno, Enrique; Coque, Juan José R

    2017-12-15

    Endophytic and rhizosphere actinobacteria isolated from the root system of 1-year-old grafted Vitis vinifera plants were evaluated for their activities against fungi that cause grapevine trunk diseases. A total of 58 endophytic and 94 rhizosphere isolates were tested. Based on an in vitro bioassay, 15.5% of the endophytic isolates and 30.8% of the rhizosphere isolates exhibited antifungal activity against the fungal pathogen Diplodia seriata , whereas 13.8% of the endophytic isolates and 16.0% of the rhizosphere isolates showed antifungal activity against Dactylonectria macrodidyma (formerly Ilyonectria macrodidyma ). The strains which showed the greatest in vitro efficacy against both pathogens were further analyzed for their ability to inhibit the growth of Phaeomoniella chlamydospora and Phaeoacremonium minimum (formerly Phaeoacremonium aleophilum ). Based on their antifungal activity, three rhizosphere isolates and three endophytic isolates were applied on grafts in an open-root field nursery in a 3-year trial. The field trial led to the identification of one endophytic strain, Streptomyces sp. VV/E1, and two rhizosphere isolates, Streptomyces sp. VV/R1 and Streptomyces sp. VV/R4, which significantly reduced the infection rates produced by the fungal pathogens Dactylonectria sp., Ilyonectria sp., P. chlamydospora , and P. minimum , all of which cause young grapevine decline. The VV/R1 and VV/R4 isolates also significantly reduced the mortality level of grafted plants in the nursery. This study shows that certain actinobacteria could represent a promising new tool for controlling fungal trunk pathogens that infect grapevine plants through the root system in nurseries. IMPORTANCE Grapevine trunk diseases are a major threat to the wine and grape industry worldwide. They cause a significant reduction in yields as well as in grape quality, and they can even cause plant death. Trunk diseases are caused by fungal pathogens that enter through pruning wounds and/or the

  4. Non Standard Finite Difference Scheme for Mutualistic Interaction Description

    OpenAIRE

    Gabbriellini, Gianluca

    2012-01-01

    One of the more interesting themes of the mathematical ecology is the description of the mutualistic interaction between two interacting species. Based on continuous-time model developed by Holland and DeAngelis 2009 for consumer-resource mutualism description, this work deals with the application of the Mickens Non Standard Finite Difference method to transform the continuous-time scheme into a discrete-time one. It has been proved that the Mickens scheme is dynamically consistent with the o...

  5. Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci.

    Directory of Open Access Journals (Sweden)

    Christopher L Schardl

    Full Text Available The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species, which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some-including the infamous ergot alkaloids-have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne, and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species, a morning-glory symbiont (Periglandula ipomoeae, and a bamboo pathogen (Aciculosporium take, and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories

  6. Journal entries facilitating preprofessional scientific literacy and mutualistic symbiotic relationships

    Science.gov (United States)

    Vander Vliet, Valerie J.

    This study explored journal writing as an alternative assessment to promote the development of pre-professional scientific literacy and mutualistic symbiotic relationships between teaching and learning, instruction and assessment, and students and teachers. The larger context of this study is an action reaction project of the attempted transformation of a traditional first year undergraduate pre-professional biology class to sociocultural constructivist principles. The participants were commuter and residential, full and part-time students ranging in age from 18 to 27 and 18/21 were female. The backgrounds of the students varied considerably, ranging from low to upper middle income, including students of Black and Asian heritage. The setting was a medium-sized Midwestern university. The instructor has twenty years of experience teaching Biology at the college level. The data were analyzed using the constant comparative method and the development of grounded theory. The journal entries were analyzed as to their function and form in relationship to the development of multiple aspects of pre-professional scientific literacy. The perceptions of the students as to the significance of the use of journal entries were also determined through the analysis of their use of journal entries in their portfolios and statements in surveys and portfolios. The analysis revealed that journal entries promoted multiple aspects of pre-professional scientific literacy in both students and the instructor and facilitated the development of mutualistic symbiotic relationships between teaching and learning, instruction and assessment, and students and teachers. The function analysis revealed that the journal entries fulfilled the functions intended for the development of multiple aspects of pre-professional scientific literacy. The complexity of journal writing emerged from the form analysis, which revealed the multiple form elements inherent in journal entries. Students perceived journal

  7. Comparative study of endophytic and endophytic diazotrophic bacterial communities across rice landraces grown in the highlands of northern Thailand

    OpenAIRE

    Rangjaroen, C.; Rerkasem, B.; Teaumroong, N.; Sungthong, R.; Lumyong, S.

    2014-01-01

    Communities of bacterial endophytes within the rice landraces cultivated in the highlands of northern Thailand were studied using fingerprinting data of 16S rRNA and nifH genes profiling by polymerase chain reaction-denaturing gradient gel electrophoresis. The bacterial communities' richness, diversity index, evenness, and stability were varied depending on the plant tissues, stages of growth, and rice cultivars. These indices for the endophytic diazotrophic bacteria within the landrace rice ...

  8. Ants use partner specific odors to learn to recognize a mutualistic partner.

    Directory of Open Access Journals (Sweden)

    Masaru K Hojo

    Full Text Available Regulation via interspecific communication is an important for the maintenance of many mutualisms. However, mechanisms underlying the evolution of partner communication are poorly understood for many mutualisms. Here we show, in an ant-lycaenid butterfly mutualism, that attendant ants selectively learn to recognize and interact cooperatively with a partner. Workers of the ant Pristomyrmex punctatus learn to associate cuticular hydrocarbons of mutualistic Narathura japonica caterpillars with food rewards and, as a result, are more likely to tend the caterpillars. However, the workers do not learn to associate the cuticular hydrocarbons of caterpillars of a non-ant-associated lycaenid, Lycaena phlaeas, with artificial food rewards. Chemical analysis revealed cuticular hydrocarbon profiles of the mutualistic caterpillars were complex compared with those of non-ant-associated caterpillars. Our results suggest that partner-recognition based on partner-specific chemical signals and cognitive abilities of workers are important mechanisms underlying the evolution and maintenance of mutualism with ants.

  9. Bears benefit plants via a cascade with both antagonistic and mutualistic interactions.

    Science.gov (United States)

    Grinath, Joshua B; Inouye, Brian D; Underwood, Nora

    2015-02-01

    Predators can influence primary producers by generating cascades of effects in ecological webs. These effects are often non-intuitive, going undetected because they involve many links and different types of species interactions. Particularly, little is understood about how antagonistic (negative) and mutualistic (positive) interactions combine to create cascades. Here, we show that black bears can benefit plants by consuming ants. The ants are mutualists of herbivores and protect herbivores from other arthropod predators. We found that plants near bear-damaged ant nests had greater reproduction than those near undamaged nests, due to weaker ant protection for herbivores, which allowed herbivore suppression by arthropod predators. Our results highlight the need to integrate mutualisms into trophic cascade theory, which is based primarily on antagonistic relationships. Predators are often conservation targets, and our results suggest that bears and other predators should be managed with the understanding that they can influence primary producers through many paths. © 2014 John Wiley & Sons Ltd/CNRS.

  10. Recipient-Biased Competition for an Intracellularly Generated Cross-Fed Nutrient Is Required for Coexistence of Microbial Mutualists.

    Science.gov (United States)

    McCully, Alexandra L; LaSarre, Breah; McKinlay, James B

    2017-11-28

    Many mutualistic microbial relationships are based on nutrient cross-feeding. Traditionally, cross-feeding is viewed as being unidirectional, from the producer to the recipient. This is likely true when a producer's waste, such as a fermentation product, has value only for a recipient. However, in some cases the cross-fed nutrient holds value for both the producer and the recipient. In such cases, there is potential for nutrient reacquisition by producer cells in a population, leading to competition against recipients. Here, we investigated the consequences of interpartner competition for cross-fed nutrients on mutualism dynamics by using an anaerobic coculture pairing fermentative Escherichia coli and phototrophic Rhodopseudomonas palustris In this coculture, E. coli excretes waste organic acids that provide a carbon source for R. palustris In return, R. palustris cross-feeds E. coli ammonium (NH 4 + ), a compound that both species value. To explore the potential for interpartner competition, we first used a kinetic model to simulate cocultures with varied affinities for NH 4 + in each species. The model predicted that interpartner competition for NH 4 + could profoundly impact population dynamics. We then experimentally tested the predictions by culturing mutants lacking NH 4 + transporters in both NH 4 + competition assays and mutualistic cocultures. Both theoretical and experimental results indicated that the recipient must have a competitive advantage in acquiring cross-fed NH 4 + to sustain the mutualism. This recipient-biased competitive advantage is predicted to be crucial, particularly when the communally valuable nutrient is generated intracellularly. Thus, the very metabolites that form the basis for mutualistic cross-feeding can also be subject to competition between mutualistic partners. IMPORTANCE Mutualistic relationships, particularly those based on nutrient cross-feeding, promote stability of diverse ecosystems and drive global biogeochemical

  11. SymB and SymC, two membrane associated proteins, are required for Epichloë festucae hyphal cell-cell fusion and maintenance of a mutualistic interaction with Lolium perenne.

    Science.gov (United States)

    Green, Kimberly A; Becker, Yvonne; Tanaka, Aiko; Takemoto, Daigo; Fitzsimons, Helen L; Seiler, Stephan; Lalucque, Hervé; Silar, Philippe; Scott, Barry

    2017-02-01

    Cell-cell fusion in fungi is required for colony formation, nutrient transfer and signal transduction. Disruption of genes required for hyphal fusion in Epichloë festucae, a mutualistic symbiont of Lolium grasses, severely disrupts the host interaction phenotype. They examined whether symB and symC, the E. festucae homologs of Podospora anserina self-signaling genes IDC2 and IDC3, are required for E. festucae hyphal fusion and host symbiosis. Deletion mutants of these genes were defective in hyphal cell fusion, formed intra-hyphal hyphae, and had enhanced conidiation. SymB-GFP and SymC-mRFP1 localize to plasma membrane, septa and points of hyphal cell fusion. Plants infected with ΔsymB and ΔsymC strains were severely stunted. Hyphae of the mutants colonized vascular bundles, were more abundant than wild type in the intercellular spaces and formed intra-hyphal hyphae. Although these phenotypes are identical to those previously observed for cell wall integrity MAP kinase mutants no difference was observed in the basal level of MpkA phosphorylation or its cellular localization in the mutant backgrounds. Both genes contain binding sites for the transcription factor ProA. Collectively these results show that SymB and SymC are key components of a conserved signaling network for E. festucae to maintain a mutualistic symbiotic interaction within L. perenne. © 2016 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  12. Linking Bacterial Endophytic Communities to Essential Oils: Clues from Lavandula angustifolia Mill

    Science.gov (United States)

    Emiliani, Giovanni; Maida, Isabel; Perrin, Elena; Chiellini, Carolina; Fondi, Marco; Gallo, Eugenia; Gori, Luigi; Maggini, Valentina; Vannacci, Alfredo; Biffi, Sauro; Firenzuoli, Fabio; Fani, Renato

    2014-01-01

    Endophytic bacteria play a crucial role in plant life and are also drawing much attention for their capacity to produce bioactive compounds of relevant biotechnological interest. Here we present the characterisation of the cultivable endophytic bacteria of Lavandula angustifolia Mill.—a species used since antiquity for its therapeutic properties—since the production of bioactive metabolites from medical plants may reside also in the activity of bacterial endophytes through their direct production, PGPR activity on host, and/or elicitation of plant metabolism. Lavender tissues are inhabited by a tissue specific endophytic community dominated by Proteobacteria, highlighting also their difference from the rhizosphere environment where Actinobacteria and Firmicutes are also found. Leaves' endophytic community resulted as the most diverse from the other ecological niches. Overall, the findings reported here suggest: (i) the existence of different entry points for the endophytic community, (ii) its differentiation on the basis of the ecological niche variability, and (iii) a two-step colonization process for roots endophytes. Lastly, many isolates showed a strong inhibition potential against human pathogens and the molecular characterization demonstrated also the presence of not previously described isolates that may constitute a reservoir of bioactive compounds relevant in the field of pathogen control, phytoremediation, and human health. PMID:24971151

  13. Sesquiterpenes produced by endophytic fungus Phomopsis cassiae with antifungal and acetylcholinesterase inhibition activities; Sesquiterpenos produzidos pelo fungo endofitico Phomopsis cassiae com atividade antifungica e inibidora de acetilcolinesterase

    Energy Technology Data Exchange (ETDEWEB)

    Zanardi, Lisineia M.; Bolzani, Vanderlan da S.; Cavalheiro, Alberto J.; Silva, Dulce H. Siqueira; Trevisan, Henrique C.; Araujo, Angela R. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica; Silva, Geraldo H. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil). Centro de Ciencias Exatas e Tecnologia; Teles, Helder L. [Universidade Federal do Mato Grosso (UFMT), Rondonopolis, MT (Brazil). Dept. de Ciencias Biologicas; Young, Maria Claudia M., E-mail: araujoar@iq.unesp.br [Instituto de Botanica, Sao Paulo, SP (Brazil). Seccao de Fisiologia e Bioquimica de Plantas

    2012-07-01

    Two new diastereoisomeric cadinanes sesquiterpenes 3,9-dihydroxycalamenene (1-2), along with the known 3-hydroxycalamen-8-one (3) and aristelegone-A (4), were isolated from ethyl acetate extract of Phomopsis cassiae, an endophytic fungus in Cassia spectabilis. Their structures, including relative stereochemistry, were determined on the basis of detailed interpretation of 2D NMR spectra and comparison with related known compounds. Compounds 1-4 displayed antifungal activity against the phytopathogenic fungi Cladosporium cladosporioides and C. sphaerospermum, as well as inhibition of acetylcholinesterase. (author)

  14. Ion Torrent PGM as tool for fungal community analysis: a case study of endophytes in Eucalyptus grandis reveals high taxonomic diversity.

    Directory of Open Access Journals (Sweden)

    Martin Kemler

    Full Text Available The Kingdom Fungi adds substantially to the diversity of life, but due to their cryptic morphology and lifestyle, tremendous diversity, paucity of formally described specimens, and the difficulty in isolating environmental strains into culture, fungal communities are difficult to characterize. This is especially true for endophytic communities of fungi living in healthy plant tissue. The developments in next generation sequencing technologies are, however, starting to reveal the true extent of fungal diversity. One of the promising new technologies, namely semiconductor sequencing, has thus far not been used in fungal diversity assessments. In this study we sequenced the internal transcribed spacer 1 (ITS1 nuclear encoded ribosomal RNA of the endophytic community of the economically important tree, Eucalyptus grandis, from South Africa using the Ion Torrent Personal Genome Machine (PGM. We determined the impact of various analysis parameters on the interpretation of the results, namely different sequence quality parameter settings, different sequence similarity cutoffs for clustering and filtering of databases for removal of sequences with incomplete taxonomy. Sequence similarity cutoff values only had a marginal effect on the identified family numbers, whereas different sequence quality filters had a large effect (89 vs. 48 families between least and most stringent filters. Database filtering had a small, but statistically significant, effect on the assignment of sequences to reference sequences. The community was dominated by Ascomycota, and particularly by families in the Dothidiomycetes that harbor well-known plant pathogens. The study demonstrates that semiconductor sequencing is an ideal strategy for environmental sequencing of fungal communities. It also highlights some potential pitfalls in subsequent data analyses when using a technology with relatively short read lengths.

  15. Endophytic colonization of plant roots by nitrogen-fixing bacteria

    International Nuclear Information System (INIS)

    Cocking, Edward C.

    2001-01-01

    Nitrogen-fixing bacteria are able to enter into roots from the rhizosphere, particularly at the base of emerging lateral roots, between epidermal cells and through root hairs. In the rhizosphere growing root hairs play an important role in symbiotic recognition in legume crops. Nodulated legumes in endosymbiosis with rhizobia are amongst the most prominent nitrogen-fixing systems in agriculture. The inoculation of non-legumes, especially cereals, with various non-rhizobial diazotrophic bacteria has been undertaken with the expectation that they would establish themselves intercellularly within the root system, fixing nitrogen endophytic ally and providing combined nitrogen for enhanced crop production. However, in most instances bacteria colonize only the surface of the roots and remain vulnerable to competition from other rhizosphere micro-organisms, even when the nitrogen-fixing bacteria are endophytic, benefits to the plant may result from better uptake of soil nutrients rather than from endophytic nitrogen fixation. Azorhizobium caulinodans is known to enter the root system of cereals, other nonlegume crops and Arabidopsis, by intercellular invasion between epidermal cells and to internally colonize the plant intercellularly, including the xylem. This raises the possibility that xylem colonization might provide a nonnodular niche for endosymbiotic nitrogen fixation in rice, wheat, maize, sorghum and other non-legume crops. A particularly interesting, naturally occurring, non-qodular xylem colonising endophytic diazotrophic interaction with evidence for endophytic nitrogen fixation is that of Gluconacetobacter diazotrophicus in sugarcane. Could this beneficial endophytic colonization of sugarcane by G. diazotrophicus be extended to other members of the Gramineae, including the major cereals, and to other major non-legume crops of the World? (author)

  16. Resources and testing of endophyte-infected germplasm in national grass repository collections

    Science.gov (United States)

    A. D. Wilson

    1996-01-01

    Clavicipitaceous endophytes have been known to exist in grasses since the discovery of an endophyte in seeds of damel (Lolium temulentum L.) by Vogl in 1898 (26). The oldest known specimens of damel with endophytic mycelium were seeds retrieved from a pharoah's tomb in an Egyptian pyramid dating back to 3400 B.C. (16). Subsequent work by...

  17. Molecular cloning, expression, and functional analysis of the copper amine oxidase gene in the endophytic fungus Shiraia sp. Slf14 from Huperzia serrata.

    Science.gov (United States)

    Yang, Huilin; Peng, Silu; Zhang, Zhibin; Yan, Riming; Wang, Ya; Zhan, Jixun; Zhu, Du

    2016-12-01

    Huperzine A (HupA) is a drug used for the treatment of Alzheimer's disease. However, the biosynthesis of this medicinally important compound is not well understood. The HupA biosynthetic pathway is thought to be initiated by the decarboxylation of lysine to form cadaverine, which is then converted to 5-aminopentanal by copper amine oxidase (CAO). In this study, we cloned and expressed an SsCAO gene from a HupA-producing endophytic fungus, Shiraia sp. Slf14. Analysis of the deduced protein amino acid sequence showed that it contained the Asp catalytic base, conserved motif Asn-Tyr-Asp/Glu, and three copper-binding histidines. The cDNA of SsCAO was amplified and expressed in Escherichia coli BL21(DE3), from which a 76 kDa protein was obtained. The activity of this enzyme was tested, which provided more information about the SsCAO gene in the endophytic fungus. Gas Chromatograph-Mass Spectrometry (GC-MS) revealed that this SsCAO could accept cadaverine as a substrate to produce 5-aminopentanal, the precursor of HupA. Phylogenetic tree analysis indicated that the SsCAO from Shiraia sp. Slf14 was closely related to Stemphylium lycopersici CAO. This is the first report on the cloning and expression of a CAO gene from HupA-producing endophytic fungi. Functional characterization of this enzyme provides new insights into the biosynthesis of the HupA an anti-Alzheimer's drug. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Ranking of critical species to preserve the functionality of mutualistic networks using the k-core decomposition.

    Science.gov (United States)

    García-Algarra, Javier; Pastor, Juan Manuel; Iriondo, José María; Galeano, Javier

    2017-01-01

    Network analysis has become a relevant approach to analyze cascading species extinctions resulting from perturbations on mutualistic interactions as a result of environmental change. In this context, it is essential to be able to point out key species, whose stability would prevent cascading extinctions, and the consequent loss of ecosystem function. In this study, we aim to explain how the k -core decomposition sheds light on the understanding the robustness of bipartite mutualistic networks. We defined three k -magnitudes based on the k -core decomposition: k -radius, k -degree, and k -risk. The first one, k -radius, quantifies the distance from a node to the innermost shell of the partner guild, while k -degree provides a measure of centrality in the k -shell based decomposition. k -risk is a way to measure the vulnerability of a network to the loss of a particular species. Using these magnitudes we analyzed 89 mutualistic networks involving plant pollinators or seed dispersers. Two static extinction procedures were implemented in which k -degree and k -risk were compared against other commonly used ranking indexes, as for example MusRank, explained in detail in Material and Methods. When extinctions take place in both guilds, k -risk is the best ranking index if the goal is to identify the key species to preserve the giant component. When species are removed only in the primary class and cascading extinctions are measured in the secondary class, the most effective ranking index to identify the key species to preserve the giant component is k -degree. However, MusRank index was more effective when the goal is to identify the key species to preserve the greatest species richness in the second class. The k -core decomposition offers a new topological view of the structure of mutualistic networks. The new k -radius, k -degree and k -risk magnitudes take advantage of its properties and provide new insight into the structure of mutualistic networks. The k -risk and k

  19. Ranking of critical species to preserve the functionality of mutualistic networks using the k-core decomposition

    Directory of Open Access Journals (Sweden)

    Javier García-Algarra

    2017-05-01

    Full Text Available Background Network analysis has become a relevant approach to analyze cascading species extinctions resulting from perturbations on mutualistic interactions as a result of environmental change. In this context, it is essential to be able to point out key species, whose stability would prevent cascading extinctions, and the consequent loss of ecosystem function. In this study, we aim to explain how the k-core decomposition sheds light on the understanding the robustness of bipartite mutualistic networks. Methods We defined three k-magnitudes based on the k-core decomposition: k-radius, k-degree, and k-risk. The first one, k-radius, quantifies the distance from a node to the innermost shell of the partner guild, while k-degree provides a measure of centrality in the k-shell based decomposition. k-risk is a way to measure the vulnerability of a network to the loss of a particular species. Using these magnitudes we analyzed 89 mutualistic networks involving plant pollinators or seed dispersers. Two static extinction procedures were implemented in which k-degree and k-risk were compared against other commonly used ranking indexes, as for example MusRank, explained in detail in Material and Methods. Results When extinctions take place in both guilds, k-risk is the best ranking index if the goal is to identify the key species to preserve the giant component. When species are removed only in the primary class and cascading extinctions are measured in the secondary class, the most effective ranking index to identify the key species to preserve the giant component is k-degree. However, MusRank index was more effective when the goal is to identify the key species to preserve the greatest species richness in the second class. Discussion The k-core decomposition offers a new topological view of the structure of mutualistic networks. The new k-radius, k-degree and k-risk magnitudes take advantage of its properties and provide new insight into the structure of

  20. Rethinking the logistic approach for population dynamics of mutualistic interactions.

    Science.gov (United States)

    García-Algarra, Javier; Galeano, Javier; Pastor, Juan Manuel; Iriondo, José María; Ramasco, José J

    2014-12-21

    Mutualistic communities have an internal structure that makes them resilient to external perturbations. Late research has focused on their stability and the topology of the relations between the different organisms to explain the reasons of the system robustness. Much less attention has been invested in analyzing the systems dynamics. The main population models in use are modifications of the r-K formulation of logistic equation with additional terms to account for the benefits produced by the interspecific interactions. These models have shortcomings as the so-called r-K formulation diverges under some conditions. In this work, we introduce a model for population dynamics under mutualism that preserves the original logistic formulation. It is mathematically simpler than the widely used type II models, although it shows similar complexity in terms of fixed points and stability of the dynamics. We perform an analytical stability analysis and numerical simulations to study the model behavior in general interaction scenarios including tests of the resilience of its dynamics under external perturbations. Despite its simplicity, our results indicate that the model dynamics shows an important richness that can be used to gain further insights in the dynamics of mutualistic communities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Diversity of indigenous endophytic bacteria associated with the roots of Chinese cabbage (Brassica campestris L.) cultivars and their antagonism towards pathogens.

    Science.gov (United States)

    Haque, Md Azizul; Yun, Han Dae; Cho, Kye Man

    2016-05-01

    The study aimed to reveal the diversity of endophytic bacteria in the roots of Chinese cabbage (CC) cultivated in two areas in Korea, namely, Seosang-gun (SS) and Haenam-gun (HN), and also in a transgenic plant (TP) from the laboratory. A total of 653 colonies were isolated from the interior of CC roots, comprising 118, 302, and 233 isolates from SS, HN, and TP samples, respectively. Based on 16S rRNA gene sequence analysis, the isolates belonged to four major phylogenetic groups: high-G+C Gram-positive bacteria (HGC-GPB), low-G+C Gram-positive bacteria (LGC-GPB), Proteobacteria, and Bacteriodetes. The most dominant groups in the roots of the SS, HN, and TP cultivars were LGC-GPB (48.3%), Proteobacteria (50.2%), and HGC-GPB (38.2%), respectively. Importantly, most of the isolates that produced cell-walldegrading enzymes belonged to the genus Bacillus. Bacillus sp. (HNR03, TPR06), Bacillus pumilus (SSR07, HNR11, TPR07), and Bacillus subtilis (TPR03) showed high antagonism against the tested food-borne pathogenic bacteria. In addition, Bacillus sp. (HNR03, TPR06), Bacillus pumilus (SSR07, HNR11, HNR17, TPR11), Microbacterium oxidans (SSR09, TPR04), Bacillus cereus HNR10, Pseudomonas sp. HNR13, and Bacillus subtilis (TPR02, TPR03) showed strong antagonistic activity against the fungi Phythium ultimum, Phytophthora capsici, Fusarium oxysporum, and Rhizoctonia solani. The endophytes isolated from the TP cultivar showed the strongest antagonistic reactions against pathogens. This study is the first report on endophytic bacteria from Chinese cabbage roots.

  2. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans.

    Science.gov (United States)

    Castillo, Uvidelio F; Strobel, Gary A; Ford, Eugene J; Hess, Wilford M; Porter, Heidi; Jensen, James B; Albert, Heather; Robison, Richard; Condron, Margret A M; Teplow, David B; Stevens, Dennis; Yaver, Debbie

    2002-09-01

    Munumbicins A, B, C and D are newly described antibiotics with a wide spectrum of activity against many human as well as plant pathogenic fungi and bacteria, and a Plasmodium sp. These compounds were obtained from Streptomyces NRRL 3052, which is endophytic in the medicinal plant snakevine (Kennedia nigriscans), native to the Northern Territory of Australia. This endophyte was cultured, the broth was extracted with an organic solvent and the contents of the residue were purified by bioassay-guided HPLC. The major components were four functionalized peptides with masses of 1269.6, 1298.5, 1312.5 and 1326.5 Da. Numerous other related compounds possessing bioactivity, with differing masses, were also present in the culture broth extract in lower quantities. With few exceptions, the peptide portion of each component contained only the common amino acids threonine, aspartic acid (or asparagine), glutamic acid (or glutamine), valine and proline, in varying ratios. The munumbicins possessed widely differing biological activities depending upon the target organism. For instance, munumbicin B had an MIC of 2.5 microg x ml(-1) against a methicillin-resistant strain of Staphylococcus aureus, whereas munumbicin A was not active against this organism. In general, the munumbicins demonstrated activity against Gram-positive bacteria such as Bacillus anthracis and multidrug-resistant Mycobacterium tuberculosis. However, the most impressive biological activity of any of the munumbicins was that of munumbicin D against the malarial parasite Plasmodium falciparum, having an IC(50) of 4.5+/-0.07 ng x ml(-1). This report also describes the potential of the munumbicins in medicine and agriculture.

  3. Screening mycotoxins for quorum inhibition in a biocontrol bacterial endophyte

    Science.gov (United States)

    Bacterial endophytes are used as biocontrol organisms for plant pathogens such as the maize endophyte Fusarium verticillioides and its production of fumonisin mycotoxins. However, such applications are not always predictable and efficient. Bacteria communicate via cell-dependent signals, which are r...

  4. Muscodor albus Volatiles Control Toxigenic Fungi under Controlled Atmosphere (CA Storage Conditions

    Directory of Open Access Journals (Sweden)

    Gordon Braun

    2012-11-01

    Full Text Available Muscodor albus, a biofumigant fungus, has the potential to control post-harvest pathogens in storage. It has been shown to produce over 20 volatile compounds with fungicidal, bactericidal and insecticidal properties. However, M. albus is a warm climate endophyte, and its biofumigant activity is significantly inhibited at temperatures below 5 °C. Conidia of seven mycotoxin producing fungi, Aspergillus carbonarius, A. flavus, A. niger, A. ochraceus, Penicillium verrucosum, Fusarium culmorum and F. graminearum, were killed or prevented from germinating by exposure to volatiles from 2 g M. albus-colonized rye grain per L of headspace in sealed glass jars for 24 h at 20 °C. Two major volatiles of M. albus, isobutyric acid (IBA and 2-methyl-1-butanol (2MB at 50 µL/L and 100 µL/L, respectively, gave differential control of the seven fungi when applied individually at 20 °C. When the fungi were exposed to both IBA and 2MB together, an average of 94% of the conidia were killed or suppressed. In a factorial experiment with controlled atmosphere storage (CA at 3 °C and 72 h exposure to four concentrations of IBA and 2MB combinations, 50 µL/L IBA plus 100 µL/L 2MB killed or suppressed germination of the conidia of all seven fungi. Controlled atmosphere had no significant effect on conidial viability or volatile efficacy. Major volatiles of M. albus may have significant potential to control plant pathogens in either ambient air or CA storage at temperatures below 5 °C. However, combinations of volatiles may be required to provide a broader spectrum of control than individual volatiles.

  5. Endophytic microorganisms--promising applications in bioremediation of greenhouse gases.

    Science.gov (United States)

    Stępniewska, Z; Kuźniar, A

    2013-11-01

    Bioremediation is a technique that uses microbial metabolism to remove pollutants. Various techniques and strategies of bioremediation (e.g., phytoremediation enhanced by endophytic microorganisms, rhizoremediation) can mainly be used to remove hazardous waste from the biosphere. During the last decade, this specific technique has emerged as a potential cleanup tool only for metal pollutants. This situation has changed recently as a possibility has appeared for bioremediation of other pollutants, for instance, volatile organic compounds, crude oils, and radionuclides. The mechanisms of bioremediation depend on the mobility, solubility, degradability, and bioavailability of contaminants. Biodegradation of pollutions is associated with microbial growth and metabolism, i.e., factors that have an impact on the process. Moreover, these factors have a great influence on degradation. As a result, recognition of natural microbial processes is indispensable for understanding the mechanisms of effective bioremediation. In this review, we have emphasized the occurrence of endophytic microorganisms and colonization of plants by endophytes. In addition, the role of enhanced bioremediation by endophytic bacteria and especially of phytoremediation is presented.

  6. Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum.

    Science.gov (United States)

    Spiering, Martin J; Moon, Christina D; Wilkinson, Heather H; Schardl, Christopher L

    2005-03-01

    Loline alkaloids are produced by mutualistic fungi symbiotic with grasses, and they protect the host plants from insects. Here we identify in the fungal symbiont, Neotyphodium uncinatum, two homologous gene clusters (LOL-1 and LOL-2) associated with loline-alkaloid production. Nine genes were identified in a 25-kb region of LOL-1 and designated (in order) lolF-1, lolC-1, lolD-1, lolO-1, lolA-1, lolU-1, lolP-1, lolT-1, and lolE-1. LOL-2 contained the homologs lolC-2 through lolE-2 in the same order and orientation. Also identified was lolF-2, but its possible linkage with either cluster was undetermined. Most lol genes were regulated in N. uncinatum and N. coenophialum, and all were expressed concomitantly with loline-alkaloid biosynthesis. A lolC-2 RNA-interference (RNAi) construct was introduced into N. uncinatum, and in two independent transformants, RNAi significantly decreased lolC expression (P lol-gene products indicate that the pathway has evolved from various different primary and secondary biosynthesis pathways.

  7. A Legume Genetic Framework Controls Infection of Nodules by Symbiotic and Endophytic Bacteria

    Science.gov (United States)

    Zgadzaj, Rafal; James, Euan K.; Kelly, Simon; Kawaharada, Yasuyuki; de Jonge, Nadieh; Jensen, Dorthe B.; Madsen, Lene H.; Radutoiu, Simona

    2015-01-01

    Legumes have an intrinsic capacity to accommodate both symbiotic and endophytic bacteria within root nodules. For the symbionts, a complex genetic mechanism that allows mutual recognition and plant infection has emerged from genetic studies under axenic conditions. In contrast, little is known about the mechanisms controlling the endophytic infection. Here we investigate the contribution of both the host and the symbiotic microbe to endophyte infection and development of mixed colonised nodules in Lotus japonicus. We found that infection threads initiated by Mesorhizobium loti, the natural symbiont of Lotus, can selectively guide endophytic bacteria towards nodule primordia, where competent strains multiply and colonise the nodule together with the nitrogen-fixing symbiotic partner. Further co-inoculation studies with the competent coloniser, Rhizobium mesosinicum strain KAW12, show that endophytic nodule infection depends on functional and efficient M. loti-driven Nod factor signalling. KAW12 exopolysaccharide (EPS) enabled endophyte nodule infection whilst compatible M. loti EPS restricted it. Analysis of plant mutants that control different stages of the symbiotic infection showed that both symbiont and endophyte accommodation within nodules is under host genetic control. This demonstrates that when legume plants are exposed to complex communities they selectively regulate access and accommodation of bacteria occupying this specialized environmental niche, the root nodule. PMID:26042417

  8. A conceptual framework for studying the strength of plant-animal mutualistic interactions.

    Science.gov (United States)

    Vázquez, Diego P; Ramos-Jiliberto, Rodrigo; Urbani, Pasquinell; Valdovinos, Fernanda S

    2015-04-01

    The strength of species interactions influences strongly the structure and dynamics of ecological systems. Thus, quantifying such strength is crucial to understand how species interactions shape communities and ecosystems. Although the concepts and measurement of interaction strength in food webs have received much attention, there has been comparatively little progress in the context of mutualism. We propose a conceptual scheme for studying the strength of plant-animal mutualistic interactions. We first review the interaction strength concepts developed for food webs, and explore how these concepts have been applied to mutualistic interactions. We then outline and explain a conceptual framework for defining ecological effects in plant-animal mutualisms. We give recommendations for measuring interaction strength from data collected in field studies based on a proposed approach for the assessment of interaction strength in plant-animal mutualisms. This approach is conceptually integrative and methodologically feasible, as it focuses on two key variables usually measured in field studies: the frequency of interactions and the fitness components influenced by the interactions. © 2015 John Wiley & Sons Ltd/CNRS.

  9. [Effects of different fungi on symbiotic seed germination of two Dendrobium species].

    Science.gov (United States)

    Zi, Xiao-meng; Gao, Jiang-yun

    2014-09-01

    The epiphytic orchid, Dendrobium aphyllum and D. devonianum are used as traditional Chinese medicine, and became locally endangered in recent years because of over-collection. We test the effect of inoculations of endophytic fungi FDaI7 (Tulasnella sp.), FDd1 (Epulorhiza sp. ) and FCb4 (Epulorhiza sp.), which isolated from D. aphyllum, D. denonianum and Cymbidium mannii, respectively, on artificial substrate in these two Dendrobium species. In the symbiotic germination experiment, FDaI7 and FDd1 were effective for protocorm formation and seedling development of D. aphyllum and D. denonianum separately. After 60 days, 14.46% of the D. aphyllum seeds grown to protocorms and 12.07% developed to seedlings inoculated only with FDaI7, while contrasted with 0 when inoculated the other two isolates and non-inoculation treatment. However, in D. denonianum, seeds only grown to protocorms and developed to seedlings when inoculated with FDd1, the percentages were 44.36% and 42.91% distinguishingly. High specificity was shown in symbiotic germination on artificial substrate of Dendrobium. Protocorms could further develop to seedlings within or without light when inoculated the compatible fungi. However, light condition (12/12 h Light/Dark) produced the normal seedlings, while dark condition (0/24 h L/D) produced the abnormal seedlings. These may suggest that the development of young seedlings require light based on the effective symbiotic fungi. These findings will aid in seedling production of simulation-forestry ecology cultivation, conservation and reintroduction of Dendrobium.

  10. From Concept to Commerce: Developing a Successful Fungal Endophyte Inoculant for Agricultural Crops.

    Science.gov (United States)

    Murphy, Brian R; Doohan, Fiona M; Hodkinson, Trevor R

    2018-02-11

    The development of endophyte inoculants for agricultural crops has been bedevilled by the twin problems of a lack of reliability and consistency, with a consequent lack of belief among end users in the efficacy of such treatments. We have developed a successful research pipeline for the production of a reliable, consistent and environmentally targeted fungal endophyte seed-delivered inoculant for barley cultivars. Our approach was developed de novo from an initial concept to source candidate endophyte inoculants from a wild relative of barley, Hordeum murinum (wall barley). A careful screening and selection procedure and extensive controlled environment testing of fungal endophyte strains, followed by multi-year field trials has resulted in the validation of an endophyte consortium suitable for barley crops grown on relatively dry sites. Our approach can be adapted for any crop or environment, provided that the set of first principles we have developed is followed. Here, we report how we developed the successful pipeline for the production of an economically viable fungal endophyte inoculant for barley cultivars.

  11. Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice

    OpenAIRE

    Deivanai, Subramanian; Bindusara, Amitraghata Santhanam; Prabhakaran, Guruswamy; Bhore, Subhash Janardhan

    2014-01-01

    Background: Endophytic bacteria do have several potential applications in medicine and in other various sectors of biotechnology including agriculture. Bacterial endophytes need to be explored for their potential applications in agricultural biotechnology. One of the potential applications of bacterial endophytes in agricultural is to enhance the growth of the agricultural crops. Hence, this study was undertaken to explore the plant growth promoting potential application of bacterial endophyt...

  12. Chemical camouflage: a key process in shaping an ant-treehopper and fig-fig wasp mutualistic network.

    Science.gov (United States)

    Wang, Bo; Lu, Min; Cook, James M; Yang, Da-Rong; Dunn, Derek W; Wang, Rui-Wu

    2018-01-30

    Different types of mutualisms may interact, co-evolve and form complex networks of interdependences, but how species interact in networks of a mutualistic community and maintain its stability remains unclear. In a mutualistic network between treehoppers-weaver ants and fig-pollinating wasps, we found that the cuticular hydrocarbons of the treehoppers are more similar to the surface chemical profiles of fig inflorescence branches (FIB) than the cuticular hydrocarbons of the fig wasps. Behavioral assays showed that the cuticular hydrocarbons from both treehoppers and FIBs reduce the propensity of weaver ants to attack treehoppers even in the absence of honeydew rewards, suggesting that chemical camouflage helps enforce the mutualism between weaver ants and treehoppers. High levels of weaver ant and treehopper abundances help maintain the dominance of pollinating fig wasps in the fig wasp community and also increase fig seed production, as a result of discriminative predation and disturbance by weaver ants of ovipositing non-pollinating fig wasps (NPFWs). Ants therefore help preserve this fig-pollinating wasp mutualism from over exploitation by NPFWs. Our results imply that in this mutualistic network chemical camouflage plays a decisive role in regulating the behavior of a key species and indirectly shaping the architecture of complex arthropod-plant interactions.

  13. Endophytic colonization and in planta nitrogen fixation by a diazotrophic Serratia sp. in rice.

    Science.gov (United States)

    Sandhiya, G S; Sugitha, T C K; Balachandar, D; Kumar, K

    2005-09-01

    Nitrogen fixing endophytic Serratia sp. was isolated from rice and characterized. Re-colonization ability of Serratia sp. in the rice seedlings as endophyte was studied under laboratory condition. For detecting the re-colonization potential in the rice seedlings, Serratia sp. was marked with reporter genes (egfp and Kmr) using transposon mutagenesis. The conjugants were screened for re-colonization ability and presence of nif genes using PCR. Further, the influence of flavonoids and growth hormones on the endophytic colonization and in planta nitrogen fixation of Serratia was also investigated. The flavonoids, quercetin (3 microg/ml) and diadzein (2 microg/ml) significantly increased the re-colonization ability of the endophytic Serratia, whereas the growth hormones like IAA and NAA (5 microg/ml) reduced the endophytic colonization ability of Serratia sp. Similarly, the in planta nitrogen fixation by Serratia sp. in rice was significantly increased due to flavonoids. The inoculation of endophytic diazotrophs increased the plant biomass and biochemical constituents.

  14. Production of destruxins from metarhizium spp. fungi in artificial medium and in endophytically colonized cowpea plants

    Science.gov (United States)

    Destruxins (DTXs) are cyclic depsipeptides produced by many Metarhizium isolates that have long been assumed to contribute to virulence of these entomopathogenic fungi. We evaluated the virulence of 20 Metarhizium isolates against insect larvae and measured the concentration of DTXs A, B, and E prod...

  15. Shifts in soil fungal communities in Tuber melanosporum plantations over a 20-year transition from agriculture fields to oak woodlands

    Directory of Open Access Journals (Sweden)

    Liu Bing

    2016-04-01

    Full Text Available Aim of study: To explore the diversity of soil fungi found in black truffle (Tuber melanosporum plantations following the introduction of the mycorrhizal-colonized host tree, (Quercus ilex, through the development of the brûlé and production of mature sporocarps.Area of study: This research was carried out province of Teruel, Aragon (central eastern Spain.Material and Methods: Soil samples from 6 plantations were collected beneath Q. ilex trees inoculated with T. melanosporum, of 3, 5, 7, 10, 14 and 20 years after out planting in truffle plantations. Soil DNA was extracted, PCR-amplified and sequenced to compare soil fungi present at different ages.Main results: As tree age increased, we observed an increased frequency of T. melanosporum (from 8% to 71% of sequenced colonies and concomitant decrease in the combined frequency of Fusarium spp. and Phoma spp. (from 64% to 3%.Research highlights: There are important shifts in species richness and in functional groups in the soil fungal communities in maturing black truffle-oak woodland plantations. The observed inverse relationship between the frequency of soil endophytic and/or pathogenic fungi and that of the mycorrhizal mutualist T. melanosporum provides support to continue a deeper analysis of shifts in fungal communities and functional groups where there is a transition from agriculture fields to woodlands.Abbreviations used: Ectomycorrhiza (ECM fungus; Vesicular arbuscular mycorrhiza (VAM; Operational taxonomic unit (OTU.

  16. Does hybridization of endophytic symbionts in a native grass increase fitness in resource-limited environments?

    DEFF Research Database (Denmark)

    Faeth, Stanley H.; Oberhofer, Martina; Saari, Susanna Talvikki

    2017-01-01

    to their grass hosts, especially in stressful environments. We tested the hybrid fitness hypothesis (HFH) that hybrid endophytes enhance fitness in stressful environments relative to non-hybrid endophytes. In a long-term field experiment, we monitored growth and reproduction of hybrid-infected (H+), non......-hybrid infected (NH+), naturally endophyte free (E-) plants and those plants from which the endophyte had been experimentally removed (H- and NH-) in resource-rich and resource-poor environments. Infection by both endophyte species enhanced growth and reproduction. H+ plants outperformed NH+ plants in terms...... of growth by the end of the experiment, supporting HFH. However, H+ plants only outperformed NH+ plants in the resource-rich treatment, contrary to HFH. Plant genotypes associated with each endophyte species had strong effects on growth and reproduction. Our results provide some support the HFH hypothesis...

  17. A procedure to evaluate the efficiency of surface sterilization methods in culture-independent fungal endophyte studies

    Directory of Open Access Journals (Sweden)

    R.J. Burgdorf

    2014-09-01

    Full Text Available Extraneous DNA interferes with PCR studies of endophytic fungi. A procedure was developed with which to evaluate the removal of extraneous DNA. Wheat (Triticum aestivum leaves were sprayed with Saccharomyces cerevisiae and then subjected to physical and chemical surface treatments. The fungal ITS1 products were amplified from whole tissue DNA extractions. ANOVA was performed on the DNA bands representing S. cerevisiae on the agarose gel. Band profile comparisons using permutational multivariate ANOVA (PERMANOVA and non-metric multidimensional scaling (NMDS were performed on DGGE gel data, and band numbers were compared between treatments. Leaf surfaces were viewed under variable pressure scanning electron microscopy (VPSEM. Yeast band analysis of the agarose gel showed that there was no significant difference in the mean band DNA quantity after physical and chemical treatments, but they both differed significantly (p < 0.05 from the untreated control. PERMANOVA revealed a significant difference between all treatments (p < 0.05. The mean similarity matrix showed that the physical treatment results were more reproducible than those from the chemical treatment results. The NMDS showed that the physical treatment was the most consistent. VPSEM indicated that the physical treatment was the most effective treatment to remove surface microbes and debris. The use of molecular and microscopy methods for the post-treatment detection of yeast inoculated onto wheat leaf surfaces demonstrated the effectiveness of the surface treatment employed, and this can assist researchers in optimizing their surface sterilization techniques in DNA-based fungal endophyte studies.

  18. A procedure to evaluate the efficiency of surface sterilization methods in culture-independent fungal endophyte studies.

    Science.gov (United States)

    Burgdorf, R J; Laing, M D; Morris, C D; Jamal-Ally, S F

    2014-01-01

    Extraneous DNA interferes with PCR studies of endophytic fungi. A procedure was developed with which to evaluate the removal of extraneous DNA. Wheat (Triticum aestivum) leaves were sprayed with Saccharomyces cerevisiae and then subjected to physical and chemical surface treatments. The fungal ITS1 products were amplified from whole tissue DNA extractions. ANOVA was performed on the DNA bands representing S. cerevisiae on the agarose gel. Band profile comparisons using permutational multivariate ANOVA (PERMANOVA) and non-metric multidimensional scaling (NMDS) were performed on DGGE gel data, and band numbers were compared between treatments. Leaf surfaces were viewed under variable pressure scanning electron microscopy (VPSEM). Yeast band analysis of the agarose gel showed that there was no significant difference in the mean band DNA quantity after physical and chemical treatments, but they both differed significantly (p PERMANOVA revealed a significant difference between all treatments (p < 0.05). The mean similarity matrix showed that the physical treatment results were more reproducible than those from the chemical treatment results. The NMDS showed that the physical treatment was the most consistent. VPSEM indicated that the physical treatment was the most effective treatment to remove surface microbes and debris. The use of molecular and microscopy methods for the post-treatment detection of yeast inoculated onto wheat leaf surfaces demonstrated the effectiveness of the surface treatment employed, and this can assist researchers in optimizing their surface sterilization techniques in DNA-based fungal endophyte studies.

  19. Seed-vectored endophytic bacteria modulate development of rice seedlings.

    Science.gov (United States)

    Verma, S K; Kingsley, K; Irizarry, I; Bergen, M; Kharwar, R N; White, J F

    2017-06-01

    The aim of the present study was to evaluate the effects of the removal of indigenous bacteria from rice seeds on seedling growth and development. Here we report the presence of three indigenous endophytic bacteria in rice seeds that play important roles in modulating seedling development (shoot and root lengths, and formation of root hairs and secondary roots) and defence against pathogens. Seed-associated bacteria were removed using surface sterilization with NaOCl (bleach) followed by antibiotic treatment. When bacteria were absent, growth of seedlings in terms of root hair development and overall seedling size was less than that of seedlings that contained bacteria. Reactive oxygen staining of seedlings showed that endophytic bacteria became intracellular in root parenchyma cells and root hairs. Roots containing endophytic bacteria were seen to stain densely for reactive oxygen, while roots free of bacteria stained lightly for reactive oxygen. Bacteria were isolated and identified as Enterobacter asburiae (VWB1), Pantoea dispersa (VWB2) and Pseudomonas putida (VWB3) by 16S rDNA sequencing. Bacteria were found to produce indole acetic acid (auxins), inhibited the pathogen Fusarium oxysporum and solubilized phosphate. Reinoculation of bacteria onto seedlings derived from surface-disinfected rice and Bermuda grass seeds significantly restored seedling growth and development. Rice seeds harbour indigenous bacterial endophytes that greatly influence seedling growth and development, including root and shoot lengths, root hair formation and disease susceptibility of rice seedlings. This study shows that seeds of rice naturally harbour bacterial endophytes that play key roles in modulation of seedling development. © 2017 The Society for Applied Microbiology.

  20. Molecular detection of TasA gene in endophytic Bacillus species ...

    African Journals Online (AJOL)

    hope&shola

    2012-03-20

    Mar 20, 2012 ... formation in Bacillus species was detected in the endophytic bacteria by polymerase chain reaction. (PCR) amplification. In ten endophytic ... confer a competitive advantage to the spore from the onset of sporulation and later, ... possessing TasA gene (Chen et al., 2007; Gioia et al.,. 2007; Kunst et al., 1997; ...

  1. Natural Medium for Growing of Endophytic Bacteria from Solanaceae in Malang-Indonesia

    Directory of Open Access Journals (Sweden)

    Purnawati Arika

    2016-01-01

    Full Text Available Endophytic bacteria are important microorganisms having potential as biocontrol agents for many pathogens. Until now, the growth of it always uses semi-synthetic or synthetic medium so it was difficult to be used by farmers in the field and it was expensive to have its propagation as biocontrol agents. Based on the problem, this research will study the natural medium as propagation medium of Endophytic bacteria. It had natural ingredients such as soybean, chicken broth, egg, worms, snail, sorghum and they were easy to get by farmers. This study used endophytic bacteria from Solanaceae in Malang- Indonesia. Four isolates of endophytic bacteria were grown in agar and liquid medium with ingredients of corn flour, soybean flour, sorghum flour, snail flour, and worm flour. There is no difference in the incubation period, color, shape, and surface colony. The population in medium with snail flour ingredients at a concentration of 107 cfu/ml is the highest and snail flour is the best medium for growing endophytic bacteria.

  2. Bacterial endophytes enhance competition by invasive plants.

    Science.gov (United States)

    Rout, Marnie E; Chrzanowski, Thomas H; Westlie, Tara K; DeLuca, Thomas H; Callaway, Ragan M; Holben, William E

    2013-09-01

    Invasive plants can alter soil microbial communities and profoundly alter ecosystem processes. In the invasive grass Sorghum halepense, these disruptions are consequences of rhizome-associated bacterial endophytes. We describe the effects of N2-fixing bacterial strains from S. halepense (Rout and Chrzanowski, 2009) on plant growth and show that bacteria interact with the plant to alter soil nutrient cycles, enabling persistence of the invasive. • We assessed fluxes in soil nutrients for ∼4 yr across a site invaded by S. halepense. We assayed the N2-fixing bacteria in vitro for phosphate solubilization, iron chelation, and production of the plant-growth hormone indole-3-acetic acid (IAA). We assessed the plant's ability to recruit bacterial partners from substrates and vertically transmit endophytes to seeds and used an antibiotic approach to inhibit bacterial activity in planta and assess microbial contributions to plant growth. • We found persistent alterations to eight biogeochemical cycles (including nitrogen, phosphorus, and iron) in soils invaded by S. halepense. In this context, three bacterial isolates solubilized phosphate, and all produced iron siderophores and IAA in vitro. In growth chamber experiments, bacteria were transmitted vertically, and molecular analysis of bacterial community fingerprints from rhizomes indicated that endophytes are also horizontally recruited. Inhibiting bacterial activity with antibiotics resulted in significant declines in plant growth rate and biomass, with pronounced rhizome reductions. • This work suggests a major role of endophytes on growth and resource allocation of an invasive plant. Indeed, bacterial isolate physiology is correlated with invader effects on biogeochemical cycles of nitrogen, phosphate, and iron.

  3. Effects of natural hybrid and non-hybrid Epichloë endophytes on the response of Hordelymus europaeus to drought stress.

    Science.gov (United States)

    Oberhofer, Martina; Güsewell, Sabine; Leuchtmann, Adrian

    2014-01-01

    Interspecific hybrid endophytes of the genus Epichloë (Ascomycota, Clavicipitaceae) are prevalent in wild grass populations, possibly because of their larger gene variation, resulting in increased fitness benefits for host plants; however, the reasons are not yet known. We tested hypotheses regarding niche expansion mediated by hybrid endophytes, population-dependent interactions and local co-adaptation in the woodland grass Hordelymus europaeus, which naturally hosts both hybrid and non-hybrid endophyte taxa. Seedlings derived from seeds of four grass populations made endophyte free were re-inoculated with hybrid or non-hybrid endophyte strains, or left endophyte free. Plants were grown in the glasshouse with or without drought treatment. Endophyte infection increased plant biomass and tiller production by 10-15% in both treatments. Endophyte types had similar effects on growth, but opposite effects on reproduction: non-hybrid endophytes increased seed production, whereas hybrid endophytes reduced or prevented it completely. The results are consistent with the observation that non-hybrid endophytes in H. europaeus prevail at dry sites, but cannot explain the prevalence of hybrid endophytes. Thus, our results do not support the hypothesis of niche expansion of hybrid-infected plants. Moreover, plants inoculated with native relative to foreign endophytes yielded higher infections, but both showed similar growth and survival, suggesting weak co-adaptation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  4. Fungal endophytes characterization from four species of Diplazium Swartz

    Science.gov (United States)

    Affina-Eliya, A. A.; Noraini, T.; Nazlina, I.; Ruzi, A. R.

    2014-09-01

    Four species on genus Diplazium namely Diplazium tomentosum, D. sorzogonense, D. asperum and D. accedens of Peninsular Malaysia were studied for presence of fungal endophyte. The objective of this study is to characterize fungal endophytes in the rhizome of four Diplazium species. The rhizome was surface sterilized and incubated to isolate fungal endophytes. Characterization of the colonies was performed by macroscopic morphological, microscopic identification, types of hyphae and mycelium, and spore structure. For isolation that produces spores, the structure of conidiophores and conidia were identified. From this study, four fungal have been isolated and determined as Aspergillus sp. (isolates AE 1), Aspergillus fumigatus (isolates AE 2), Aspergillus versicolor (isolates AE 3) and Verticillium sp. (isolates AE 4). The fungal isolates from this study were classified from the same family Moniliaceae.

  5. Identification of genetic components involved in Lotus-endophyte interactions

    DEFF Research Database (Denmark)

    Zgadzaj, Rafal Lukasz

    of growth hormones or nitrogen fixation. However, the genes involved in plant-endophyte interactions and bacterial accomodation within plant tissues are not known. In order to shed some light on such processes, an approach “one host-one endophyte” was chosen. The focus on a single plant species and a single......Endophytes are microorganisms capable of colonising plant tissues without inducing host defense responses. They have a large impact on plants, since they can modulate plant responses to pathogens, herbivores and environmental stress. They can also induce plant growth promotion through synthesis...... bacterial strain aimed at obtaining a reliable and easy to handle system for plant-microsymbiont interaction research. Two different methods were tested for their usefulness in identification of genetic components involved in plant-endophyte interactions. The first method was based on measuring growth...

  6. Comparação de métodos para a observação de fungos micorrízicos arbusculares e endofíticos do tipo dark septate em espécies nativas de Cerrado Comparision of methods to visualise arbuscular mycorrhizal and dark septate endophytic fungi in native Cerrado species

    Directory of Open Access Journals (Sweden)

    Kelly da Silva Coutinho Detmann

    2008-10-01

    Full Text Available As espécies vegetais de Cerrado sensu stricto apresentam estratégias adaptativas às condições edáficas e climáticas de altos investimentos em fotoassimilados, nutrientes e água para sua estruturação. A simbiose entre fungos e raízes de plantas é uma importante adaptação radicular que auxilia as plantas na absorção de nutrientes e água do solo, sendo determinantes para a sobrevivência no Cerrado. Com o objetivo de estudar fungos micorrízicos arbusculares (FMAs e fungos endofíticos do tipo dark septate (DSEFs nas raízes de algumas espécies arbóreas e herbáceas, nativas do Cerrado sensu stricto, foram testados diferentes métodos para melhor observação das estruturas fúngicas em simbiose. O melhor método de clarificação foi observado quando as raízes foram autoclavadas a 121 °C em KOH 2 %, por 20 min, e com a subseqüente transferência para solução nova de KOH 2 %, por 24 h, em temperatura ambiente. Este procedimento foi repetido e, em seguida, essas amostras foram imersas em H2O2 2 % por 2 h. Os arbúsculos foram observados com maiores detalhes após a inclusão em resina, seccionamento e coloração com azul-de-toluidina. Todas as espécies avaliadas encontravam-se colonizadas por FMAs, e apenas em Xylopia aromatica não se observaram os DSEFs. As espécies herbáceas apresentaram maiores freqüências de colonização micorrízica do que as arbóreas. O caráter generalista dos FMAs e DSEFs observado nas espécies vegetais do Cerrado sensu stricto sugere a importância dessas simbioses como mecanismo adaptativo às condições de Cerrado.Plant species in sensu stricto Cerrado have adaptive strategies to soil and climatic adversities that require high investment of nutrients, water and photoassimilates. The mutualistic fungi - plant root symbiosis is an important adaptation by which plants can improve soil nutrients and water acquisition and it can be determinant for plant survival in Cerrado conditions. The aim

  7. Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History.

    Science.gov (United States)

    Correa-Galeote, David; Bedmar, Eulogio J; Arone, Gregorio J

    2018-01-01

    The bacterial endophytic communities residing within roots of maize ( Zea mays L.) plants cultivated by a sustainable management in soils from the Quechua maize belt (Peruvian Andes) were examined using tags pyrosequencing spanning the V4 and V5 hypervariable regions of the 16S rRNA. Across four replicate libraries, two corresponding to sequences of endophytic bacteria from long time maize-cultivated soils and the other two obtained from fallow soils, 793 bacterial sequences were found that grouped into 188 bacterial operational taxonomic units (OTUs, 97% genetic similarity). The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from fallow soils. A mean of 30 genera were found in the fallow soil libraries and 47 were in those from the maize-cultivated soils. Both alpha and beta diversity indexes showed clear differences between bacterial endophytic populations from plants with different soil cultivation history and that the soils cultivated for long time requires a higher diversity of endophytes. The number of sequences corresponding to main genera Sphingomonas, Herbaspirillum, Bradyrhizobium and Methylophilus in the maize-cultivated libraries were statistically more abundant than those from the fallow soils. Sequences of genera Dyella and Sreptococcus were significantly more abundant in the libraries from the fallow soils. Relative abundance of genera Burkholderia, candidatus Glomeribacter, Staphylococcus, Variovorax, Bacillus and Chitinophaga were similar among libraries. A canonical correspondence analysis of the relative abundance of the main genera showed that the four libraries distributed in two clearly separated groups. Our results suggest that cultivation history is an important driver of endophytic colonization of maize and that after a long time of cultivation of the soil the maize plants need to increase the richness of the bacterial endophytes communities.

  8. EFFICACY OF ENDOPHYTIC BACTERIA IN REDUCING PLANT PARASITIC NEMATODE Pratylenchus brachyurus

    Directory of Open Access Journals (Sweden)

    Rita Harni

    2014-04-01

    Full Text Available Pratylenchus brachyurus is a major parasitic nematode on patchouli that reduces plant production up to 85%. The use of endophytic bacteria is promising for controlling nematode and promoting plant growth through production of phytohormones and enhancing the availability of soil nutrients. The objective of the study was to evaluate the efficacy of endophytic bacteria to control P. brachyurus on patchouli plant and its influence on plant productions (plant fresh weight and patchouli oil. The study was conducted at Cimanggu Experimental Garden and Laboratory of the Indonesian Spice and Medicinal Crops Research Institute (ISMECRI, Bogor, West Java. The experi-ment was designed in a randomized block with seven treatments and eight replications; each replication consisted of 10 plants. The treatments evaluated were five isolates of endophytic bacteria (Achromobacter xylosoxidans TT2, Alcaligenes faecalis NJ16, Pseudomonas putida EH11, Bacillus cereus MSK and Bacillus subtilis NJ57, synthetic nematicide as a reference, and non-treated plant as a control.  Four-week old patchouli plants of cv. Sidikalang were treated by soaking the roots in suspension of endophytic bacteria (109 cfu  ml-1 for one hour before trans-planting to the field. At one month after planting, the plants were drenched with the bacterial suspension as much as 100 ml per plant. The results showed that applications of the endophytic bacteria could suppress the nematode populations (52.8-80% and increased plant weight (23.62-57.48% compared to the control. The isolate of endophytic bacterium Achromobacter xylosoxidans TT2 was the best and comparable with carbofuran.

  9. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Wild maize (teosinte has been reported to be less susceptible to pests than their modern maize (corn relatives. Endophytes, defined as microbes that inhabit plants without causing disease, are known for their ability to antagonize plant pests and pathogens. We hypothesized that the wild relatives of modern maize may host endophytes that combat pathogens. Fusarium graminearum is the fungus that causes Gibberella Ear Rot (GER in modern maize and produces the mycotoxin, deoxynivalenol (DON. In this study, 215 bacterial endophytes, previously isolated from diverse maize genotypes including wild teosintes, traditional landraces and modern varieties, were tested for their ability to antagonize F. graminearum in vitro. Candidate endophytes were then tested for their ability to suppress GER in modern maize in independent greenhouse trials. The results revealed that three candidate endophytes derived from wild teosintes were most potent in suppressing F. graminearum in vitro and GER in a modern maize hybrid. These wild teosinte endophytes could suppress a broad spectrum of fungal pathogens of modern crops in vitro. The teosinte endophytes also suppressed DON mycotoxin during storage to below acceptable safety threshold levels. A fourth, less robust anti-fungal strain was isolated from a modern maize hybrid. Three of the anti-fungal endophytes were predicted to be Paenibacillus polymyxa, along with one strain of Citrobacter. Microscopy studies suggested a fungicidal mode of action by all four strains. Molecular and biochemical studies showed that the P. polymyxa strains produced the previously characterized anti-Fusarium compound, fusaricidin. Our results suggest that the wild relatives of modern crops may serve as a valuable reservoir for endophytes in the ongoing fight against serious threats to modern agriculture. We discuss the possible impact of crop evolution and domestication on endophytes in the context of plant defense.

  10. Delay-Induced Oscillations in a Competitor-Competitor-Mutualist Lotka-Volterra Model

    Directory of Open Access Journals (Sweden)

    Changjin Xu

    2017-01-01

    Full Text Available This paper deals with a competitor-competitor-mutualist Lotka-Volterra model. A series of sufficient criteria guaranteeing the stability and the occurrence of Hopf bifurcation for the model are obtained. Several concrete formulae determine the properties of bifurcating periodic solutions by applying the normal form theory and the center manifold principle. Computer simulations are given to support the theoretical predictions. At last, biological meaning and a conclusion are presented.

  11. Endophytes: a treasure house of bioactive compounds of medicinal importance

    Directory of Open Access Journals (Sweden)

    Sushanto Gouda

    2016-09-01

    Full Text Available Endophytes are an endosymbiotic group of microorganisms that colonize in plants and microbes that can be readily isolated from any microbial or plant growth medium. They act as reservoirs of novel bioactive secondary metabolites, such as alkaloids, phenolic acids, quinones, steroids, saponins, tannins, and terpenoids that serve as a potential candidate for antimicrobial, anti-insect, anticancer and many more properties. While plant sources are being extensively explored for new chemical entities for therapeutic purposes, endophytic microbes also constitute an important source for drug discovery. This review aims to comprehend the contribution and uses of endophytes as an impending source of drugs against various forms of diseases and other possible medicinal use.

  12. Arbuscular mycorrhizal fungi associations of vascular plants confined to river valleys: towards understanding the river corridor plant distribution.

    Science.gov (United States)

    Nobis, Agnieszka; Błaszkowski, Janusz; Zubek, Szymon

    2015-01-01

    The group of river corridor plants (RCP) includes vascular plant species which grow mainly or exclusively in the valleys of large rivers. Despite the long recognized fact that some plant species display a corridor-like distribution pattern in Central Europe, there is still no exhaustive explanation of the mechanisms generating this peculiar distribution. The main goal of this study was therefore to investigate whether arbuscular mycorrhizal fungi (AMF) and fungal root endophytes influence the RCP distribution. Arbuscular mycorrhizae (AM) were observed in 19 out of 33 studied RCP. Dark septate endophytes (DSE) and Olpidium spp. were recorded with low abundance in 15 and 10 plant species, respectively. The spores of AMF were found only in 32% of trap cultures established from the soils collected in the river corridor habitats. In total, six widespread AMF species were identified. Because the percentage of non-mycorrhizal species in the group of RCP is significant and the sites in river corridors are characterized by low AMF species diversity, RCP can be outcompeted outside river valleys by the widespread species that are able to benefit from AM associations in more stable plant-AMF communities in non-river habitats.

  13. The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants

    Science.gov (United States)

    Azevedo, João Lúcio; Araújo, Welington Luiz; Lacava, Paulo Teixeira

    2016-01-01

    Abstract The bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC) and has been associated with important losses in commercial orchards of all sweet orange [Citrus sinensis (L.)] cultivars. The development of this disease depends on the environmental conditions, including the endophytic microbial community associated with the host plant. Previous studies have shown that X. fastidiosa interacts with the endophytic community in xylem vessels as well as in the insect vector, resulting in a lower bacterial population and reduced CVC symptoms. The citrus endophytic bacterium Methylobacterium mesophilicum can trigger X. fastidiosa response in vitro, which results in reduced growth and induction of genes associated with energy production, stress, transport, and motility, indicating that X. fastidiosa has an adaptive response to M. mesophilicum. Although this response may result in reduced CVC symptoms, the colonization rate of the endophytic bacteria should be considered in studies that intend to use this endophyte to suppress CVC disease. Symbiotic control is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace pathogens. Candidate endophytes for symbiotic control of CVC must occupy the xylem of host plants and attach to the precibarium of sharpshooter insects to access the pathogen. In the present review, we focus on interactions between endophytic bacteria from sweet orange plants and X. fastidiosa, especially those that may be candidates for control of CVC. PMID:27727362

  14. Detrimental and Neutral Effects of a Wild Grass-Fungal Endophyte Symbiotum on Insect Preference and Performance

    OpenAIRE

    Clement, Stephen L.; Hu, Jinguo; Stewart, Alan V.; Wang, Bingrui; Elberson, Leslie R.

    2011-01-01

    Seed-borne Epichloë/Neotyphodium Glenn, Bacon, Hanlin (Ascomycota: Hypocreales: Clavicipitaceae) fungal endophytes in temperate grasses can provide protection against insect attack with the degree of host resistance related to the grass—endophyte symbiotum and the insect species involved in an interaction. Few experimental studies with wild grass—endophyte symbiota, compared to endophyte-infected agricultural grasses, have tested for anti-insect benefits, let alone for resistance against more...

  15. The effect of consumers and mutualists of Vaccinium membranaceum at Mount St. Helens: dependence on successional context.

    Directory of Open Access Journals (Sweden)

    Suann Yang

    Full Text Available In contrast to secondary succession, studies of terrestrial primary succession largely ignore the role of biotic interactions, other than plant facilitation and competition, despite the expectation that simplified interaction webs and propagule-dependent demographics may amplify the effects of consumers and mutualists. We investigated whether successional context determined the impact of consumers and mutualists by quantifying their effects on reproduction by the shrub Vaccinium membranaceum in primary and secondary successional sites at Mount St. Helens (Washington, USA, and used simulations to explore the effects of these interactions on colonization. Species interactions differed substantially between sites, and the combined effect of consumers and mutualists was much more strongly negative for primary successional plants. Because greater local control of propagule pressure is expected to increase successional rates, we evaluated the role of dispersal in the context of these interactions. Our simulations showed that even a small local seed source greatly increases population growth rates, thereby balancing strong consumer pressure. The prevalence of strong negative interactions in the primary successional site is a reminder that successional communities will not exhibit the distribution of interaction strengths characteristic of stable communities, and suggests the potential utility of modeling succession as the consequence of interaction strengths.

  16. Identification of lead-resistant endophytic bacteria isolated from rice

    International Nuclear Information System (INIS)

    Perez-Cordero, Alexander; Barraza-Roman, Zafiro; Martinez-Pacheco, Dalila

    2015-01-01

    Resistance of endophytic bacteria in vitro was evaluated at different lead concentrations. The tissue samples of commercial rice varieties at tillering stage were collected during the first half of 2013, in Monteria, Cordoba, Colombia. Each tissue was subjected to surface cleaning. Endophytic bacteria were isolated in agar R_2A medium. The population density (CFU/g tissue) was determined from each tissue by direct counting of R_2A medium surface. Morphotypes were classified by shape, color, size and appearance. A total of 168 morphotypes were isolated from root, tillers and leaf of different commercial varieties of rice. The lead resistance test is performed in vitro, The lead resistance test was performed in vitro, by the suspensions of endophytic bacteria in log phase and inoculation in minimal medium with five concentrations of lead as Pb (NO_3)_2. The experiment was incubated at 32 degrees celsius and agitated at 150 rpm for five days. The measure of turbidimetry at 600 nm was conduced every hour afterstarting the test. Endophytic bacteria showed the ability to grow at concentrations of 100% of Pb as Pb (NO_3) _2. The presence of Burkholderia cepacia and Pseudomonas putida, which showed resistance to differents lead concentration was confirmed as result of the identification with kit API20E. (author) [es

  17. Mycorrhizal compatibility and symbiotic seed germination of orchids from the Coastal Range and Andes in south central Chile.

    Science.gov (United States)

    Herrera, Hector; Valadares, Rafael; Contreras, Domingo; Bashan, Yoav; Arriagada, Cesar

    2017-04-01

    Little is known about Orchidaceae plants in Chile and their mycorrhizal associations, a key issue for designing protective actions for endangered species. We investigated root fungi from seven terrestrial orchid species to identify potential mycorrhizal fungi. The main characteristics of Rhizoctonia-like fungi were observed under light microscopy, and isolates were identified through PCR-ITS sequencing. Molecular identification of fungal sequences showed a high diversity of fungi colonizing roots. Fungal ability to germinate seeds of different orchids was determined in symbiotic germination tests; 24 fungal groups were isolated, belonging to the genera Tulasnella, Ceratobasidium, and Thanatephorus. Furthermore, dark septate and other endophytic fungi were identified. The high number of Rhizoctonia-like fungi obtained from adult orchids from the Coastal mountain range suggests that, after germination, these orchids may complement their nutritional demands through mycoheterotrophy. Nonetheless, beneficial associations with other endophytic fungi may also co-exist. In this study, isolated mycorrhizal fungi had the ability to induce seed germination at different efficiencies and with low specificity. Germin ation rates were low, but protocorms continued to develop for 60 days. A Tulasnella sp. isolated from Chloraea gavilu was most effective to induce seed germination of different species. The dark septate endophytic (DSE) fungi did not show any effect on seed development; however, their widespread occurrence in some orchids suggests a putative role in plant establishment.

  18. High Symbiont Relatedness Stabilizes Mutualistic Cooperation in Fungus-Growing Termites

    DEFF Research Database (Denmark)

    Aanen, Duur K; de Fine Licht, Henrik H; Debets, Alfons J M

    2009-01-01

    It is unclear how mutualistic relationships can be stable when partners disperse freely and have the possibility of forming associations with many alternative genotypes. Theory predicts that high symbiont relatedness should resolve this problem, but the mechanisms to enforce this have rarely been...... of spore production in proportion to strain frequency. This positive reinforcement results in an exclusive lifetime association of each host colony with a single fungal symbiont and hinders the evolution of cheating. Our findings explain why vertical symbiont transmission in fungus-growing termites is rare...

  19. Citocalasinas produzidas por Xylaria sp., um fungo endofítico de Piper aduncum (piperaceae Cytochalasins produced by Xylaria sp., an endophytic fungus from Piper aduncum

    Directory of Open Access Journals (Sweden)

    Geraldo H. Silva

    2010-01-01

    Full Text Available A chemical study on the EtOAc extract produced by Xylaria sp., an endophytic fungus from Piper aduncum, resulted in the isolation of a new cytochalasin 1, along with five known 19,20-epoxycytochalasin D (2, C (3, N (4, Q (5, and R (6. The 1-6 were evaluated against the fungi C. cladosporioides and C. sphaerospermum and only 5 showed weak activity. The cytotoxicity in vitro against HeLA and CHO cells lines were investigated and the cytochalasins 2-4, and 6 showed a strong activity against HeLA. The DNAdamaging activity of 1-6 were also investigated against mutant strains of S. cerevisiae.

  20. Effect of garlic mustard invasion on ectomycorrhizae in mature pine trees and pine seedlings

    Science.gov (United States)

    Lauren A. Carlson; Kelly D. McConnaughay; Sherri J. Morris

    2014-01-01

    Ectomycorrhizal fungi are mutualistic fungi that colonize the roots of many terrestrial plants. These fungi increase plant vigor by acquiring nutrients from the soil for their hosts in exchange for photosynthates. We studied the effect of garlic mustard (Alliaria petiolata) invasion on the density of ectomycorrhizal symbionts using two approaches. We...

  1. The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants

    Directory of Open Access Journals (Sweden)

    João Lúcio Azevedo

    Full Text Available Abstract The bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC and has been associated with important losses in commercial orchards of all sweet orange [Citrus sinensis (L.] cultivars. The development of this disease depends on the environmental conditions, including the endophytic microbial community associated with the host plant. Previous studies have shown that X. fastidiosa interacts with the endophytic community in xylem vessels as well as in the insect vector, resulting in a lower bacterial population and reduced CVC symptoms. The citrus endophytic bacterium Methylobacterium mesophilicum can trigger X. fastidiosa response in vitro, which results in reduced growth and induction of genes associated with energy production, stress, transport, and motility, indicating that X. fastidiosa has an adaptive response to M. mesophilicum. Although this response may result in reduced CVC symptoms, the colonization rate of the endophytic bacteria should be considered in studies that intend to use this endophyte to suppress CVC disease. Symbiotic control is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace pathogens. Candidate endophytes for symbiotic control of CVC must occupy the xylem of host plants and attach to the precibarium of sharpshooter insects to access the pathogen. In the present review, we focus on interactions between endophytic bacteria from sweet orange plants and X. fastidiosa, especially those that may be candidates for control of CVC.

  2. Endophytic colonization of tomato plants by the biological control agent Clonostachys rosea

    DEFF Research Database (Denmark)

    Høyer, Anna Kaja; Jørgensen, Hans Jørgen Lyngs; Amby, Daniel Buchvaldt

    Fungal endophytes live naturally inside plants without causing symptoms. On the contrary, they can promote plant growth and increase tolerance to abiotic and biotic stress. These beneficial effects have increased the agricultural interest for exploitation of fungal isolates with an endophytic life...... controls seed- and soil-borne diseases and can furthermore promote plant growth. However, it is not known whether IK726 can colonize plants internally and therefore, the objective of the present study was to examine the possibility of an endophytic life-style of IK726 in tomato. Tomato seeds were sown...

  3. Eksplorasi Bakteri Endofit dari Akar Tanaman Adam Hawa dan Potensinya sebagai Agens Hayati dan Pemacu Pertumbuhan Tanaman Padi

    Directory of Open Access Journals (Sweden)

    Ankardiansyah Pandu Pradana

    2015-06-01

    Full Text Available Rhoeo discolor has been known to have a good adaptation to various environmental conditions. This character might be due to mutualistic association with endophytic bacteria. The objective of this study was to isolate endophytic bacteria from roots of R. discolor and to evaluate their potency as biocontrol agents and plant growth promoters. The methods to isolate endophytic bacteria involved the following methods, sterilization of root surface, grinding of root tissues, dilution, and plating in the medium tryptone soya agar (TSA. A total of 21 isolates of endophytic bacteria were isolated from the roots of R. discolor. Based on hypersensitivity test on tobacco leaves, 19 isolates showed negative reaction (no necrosis symptom and only 2 isolates showed positive reaction (necrosis was developed. The results on biocontrol and growth promoters assay showed that 7 isolates were able to inhibit the growth of Fusarium oxysporum under in vitro test and 12 isolates were able to increase the growth of rice seedlings.

  4. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata.

    Science.gov (United States)

    Xu, Jia-Yi; Han, Yong-He; Chen, Yanshan; Zhu, Ling-Jia; Ma, Lena Q

    2016-02-01

    The ability of As-resistant endophytic bacteria in As transformation and plant growth promotion was determined. The endophytes were isolated from As-hyperaccumulator Pteris vittata (PV) after growing for 60 d in a soil containing 200 mg kg(-1) arsenate (AsV). They were isolated in presence of 10 mM AsV from PV roots, stems, and leaflets, representing 4 phyla and 17 genera. All endophytes showed at least one plant growth promoting characteristics including IAA synthesis, siderophore production and P solubilization. The root endophytes had higher P solubilization ability than the leaflet (60.0 vs. 18.3 mg L(-1)). In presence of 10 mM AsV, 6 endophytes had greater growth than the control, suggesting As-stimulated growth. Furthermore, root endophytes were more resistant to AsV while the leaflet endophytes were more tolerant to arsenite (AsIII), which corresponded to the dominant As species in PV tissues. Bacterial As resistance was positively correlated to their ability in AsV reduction but not AsIII oxidation. The roles of those endophytes in promoting plant growth and As resistance in P. vittata warrant further investigation. Published by Elsevier Ltd.

  5. The Effects of Arbuscular Mycorrhiza Fungi on Dry Matter and Concentrations of Nitrogen, Phosphorus and Potassium in Berseem Clover, by Cadmium stress

    Directory of Open Access Journals (Sweden)

    hashem aram

    2016-02-01

    Full Text Available Introduction: Soil contaminations with heavy metals represent a potential risk to the biosphere and leads to increased concentration in ground and surface water. Therefore metals mobility in soil has been extensively studied in the last decades. Use of agrochemicals such as synthetic fertilizers and pesticides has resulted in soil and water pollution, and loss of biodiversity. Cadmium is a heavy metal with a strong effect on crop quality. Moreover, it is a very mobile element in the environment. Plants can easily uptake cadmium and transfer it to other organs. Experiments on the effects of cadmium on the contents of macro elements in plants are scarce and therefore the mechanism of its effect has not yet been fully explained. Contaminated soil can be remediated by chemical, physical or biological techniques. Mycorrhiza is the mutualistic symbiosis (non-pathogenic association between soil-borne fungi with the roots of higher plants. Arbuscular mycorrhizal fungi (AMF are obligate biotrophs, which can form mutualistic symbioses with the roots of around 80% of plant species. Arbuscular mycorrhiza have been observed to play a vital role in metal tolerance and accumulation. Many workers have reported enhancement of phosphate uptake and growth of leguminous plants by vesicular arbuscular mycorhizal fungi (AMF. Materials and Methods: One study performed the factorial experiment based on completely randomized design (CRD with three replications in the greenhouse of Agriculture Faculty of Zanjan University. The examined factors include different levels of arbuscular mycorrhizal fungi inoculation (Glomus mosseae (with and without inoculation, and different levels of soil contamination by cadmium (0, 5, 10, 20, 40 and 80 ppm. In this study, arbuscular mycorrhizal fungi Glomus mosseae species were used. These fungi were prepared by the Plant Protection Clinic in Iran – Hamedan. The soil was prepared of arable land of depth of 0-20 cm at the University of

  6. An endophytic fungus isolated from finger millet (Eleucine coracona produces anti-fungal natural products

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes that contribute to the antifungal activity. Here we report the first isolation of endophyte(s from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp. was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation.

  7. An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products.

    Science.gov (United States)

    Mousa, Walaa K; Schwan, Adrian; Davidson, Jeffrey; Strange, Philip; Liu, Huaizhi; Zhou, Ting; Auzanneau, France-Isabelle; Raizada, Manish N

    2015-01-01

    Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes) that contribute to the antifungal activity. Here we report the first isolation of endophyte(s) from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp.) was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol, and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation.

  8. Culturable endophytic bacterial communities associated with field-grown soybean.

    Science.gov (United States)

    de Almeida Lopes, K B; Carpentieri-Pipolo, V; Oro, T H; Stefani Pagliosa, E; Degrassi, G

    2016-03-01

    Assess the diversity of the culturable endophytic bacterial population associated with transgenic and nontransgenic soybean grown in field trial sites in Brazil and characterize them phenotypically and genotypically focusing on characteristics related to plant growth promotion. Endophytic bacteria were isolated from roots, stems and leaves of soybean cultivars (nontransgenic (C) and glyphosate-resistant (GR) transgenic soybean), including the isogenic BRS133 and BRS245RR. Significant differences were observed in bacterial densities in relation to genotype and tissue from which the isolates were obtained. The highest number of bacteria was observed in roots and in GR soybean. Based on characteristics related to plant growth promotion, 54 strains were identified by partial 16S rRNA sequence analysis, with most of the isolates belonging to the species Enterobacter ludwigii and Variovorax paradoxus. Among the isolates, 44·4% were able to either produce indoleacetic acid (IAA) or solubilize phosphates, and 9·2% (all from GR soybean) presented both plant growth-promoting activities. The results from this study indicate that the abundance of endophytic bacterial communities of soybean differs between cultivars and in general it was higher in the transgenic cultivars than in nontransgenic cultivars. BRS 245 RR exhibited no significant difference in abundance compared to nontransgenic BRS133. This suggests that the impact of the management used in the GR soybean fields was comparable with the impacts of some enviromental factors. However, the bacterial endophytes associated to GR and nontransgenic soybean were different. The soybean-associated bacteria showing characteristics related to plant growth promotion were identified as belonging to the species Pantoea agglomerans and Variovorax paradoxus. Our study demonstrated differences concerning compostion of culturable endophytic bacterial population in nontransgenic and transgenic soybean. © 2016 The Society for Applied

  9. Biodegradation of Mixed PAHs by PAH-Degrading Endophytic Bacteria

    Directory of Open Access Journals (Sweden)

    Xuezhu Zhu

    2016-08-01

    Full Text Available Endophytic bacteria can promote plant growth, induce plant defence mechanisms, and increase plant resistance to organic contaminants. The aims of the present study were to isolate highly PAH-degrading endophytic bacteria from plants growing at PAH-contaminated sites and to evaluate the capabilities of these bacteria to degrade polycyclic aromatic hydrocarbons (PAHs in vitro, which will be beneficial for re-colonizing target plants and reducing plant PAH residues through the inoculation of plants with endophytic bacteria. Two endophytic bacterial strains P1 (Stenotrophomonas sp. and P3 (Pseudomonas sp., which degraded more than 90% of phenanthrene (PHE within 7 days, were isolated from Conyza canadensis and Trifolium pretense L., respectively. Both strains could use naphthalene (NAP, PHE, fluorene (FLR, pyrene (PYR, and benzo(apyrene (B(aP as the sole sources of carbon and energy. Moreover, these bacteria reduced the contamination of mixed PAHs at high levels after inoculation for 7 days; strain P1 degraded 98.0% NAP, 83.1% FLR, 87.8% PHE, 14.4% PYR, and 1.6% B(aP, and strain P3 degraded 95.3% NAP, 87.9% FLR, 90.4% PHE, 6.9% PYR, and negligible B(aP. Notably, the biodegradation of PAHs could be promoted through additional carbon and nitrogen nutrients; therein, beef extract was suggested as the optimal co-substrate for the degradation of PAHs by these two strains (99.1% PHE was degraded within 7 days. Compared with strain P1, strain P3 has more potential for the use in the removal of PAHs from plant tissues. These results provide a novel perspective in the reduction of plant PAH residues in PAH-contaminated sites through inoculating plants with highly PAH-degrading endophytic bacteria.

  10. The pathogenicity of Beauveria bassiana: what happens after an endophytic phase in plants?

    Science.gov (United States)

    Akello, J; Dubois, T; Coyne, D; Kyamanywa, S

    2010-01-01

    The banana weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) is a serious constraint to banana (Musa spp.) production throughout the world. The entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) offers a potential weevil management option, but conventional delivery mechanisms have limited its success. As an endophyte, however, B. bassiana can be efficiently delivered to banana planting materials for the potential management of C. sordidus. However, entomopathogens can change morphology and efficacy against their target host when successively sub-cultured on artificial media or when exposed to certain physical and chemical environmental conditions. Whether such changes occur in B. bassiana after an endophytic phase inside a banana plant remains unknown. The primary aim of our study was to evaluate the viability, growth, sporulation and pathogenicity of endophytic B. bassiana. To attain this, two sets of experiments, namely morphological characterization and larval bioassays, were conducted under laboratory conditions. In these experiments, growth and pathogenicity of the wild-type B. bassiana strain G41, obtained originally from banana farms, was compared with the endophytic B. bassiana strain G41, re-isolated from the rhizome of B. bassiana-inoculated banana plants at one month post-inoculation. Morphological characterization, conidial germination, colony growth and sporulation rate was assessed on SDAY media while pathogenicity was determined 15 days after immersing the larvae of C. sordidus in different conidial doses. No differences were observed in colony appearance and growth rate between the endophytic and wild-type strain. Percentage conidial germination for the endophytic strain (91.4-94.0%) was higher than for the wild-type (86.6-89.7%). LD50 equated 1.76 x 10(5) and 0.71 x 10(5) conidia/ml for the wild-type and endophytic B. bassiana strains, respectively, but did not differ between strains. Our study

  11. High-yielding Wheat Varieties Harbour Superior Plant Growth Promoting-Bacterial Endophytes

    Directory of Open Access Journals (Sweden)

    Mehwish Yousaf

    2017-06-01

    Full Text Available Background and Objective: The purpose of this study was to compare the endophytic microbial flora of different wheat varieties to check whether a better yielding variety also harbours superior plant growth promoting bacteria. Such bacteria are helpful in food biotechnology as their application can enhance the yield of the crop.Material and Methods: Three wheat varieties (Seher, Faisalabad and Lasani were selected, Seher being the most superior variety. endophytic bacteria were isolated from the histosphere of the leaves and roots at different growth phases of the plants. The isolates were analyzed for plant growth promoting activities. Isolates giving best results were identified through 16S rRNA gene sequencing. Statistical analysis was done using Microsoft Excel 2013. All the experiments were conducted in triplicates.Results and Conclusion: The endophytes of Seher variety showed maximum plant growth promoting abilities. Among the shoot endophytes, the highest auxin production was shown by Seher isolate SHHP1-3 up to 51.9μg ml-1, whereas in the case of root endophytes, the highest auxin was produced by SHHR1-5 up to 36 μg ml-1. The bacteria showing significant plant growth promoting abilities were identified by 16S rRNA sequencing. Bacillus, Proteobacteria and Actinobacteria species were the dominant bacteria showing all the traits of plant growth promotion. It can be concluded that Seher variety harbours superior plant growth promoting endophytes that must be one of the reasons for its better growth and yield as compared to the other two varieties. The investigated results support possible utilization of the selected isolates in wheat growth promotion with respect to increase in agro-productivity. The application of such bacteria could be useful to enhance wheat yield and can help in food biotechnology.Conflict of interest: The authors declare no conflict of interest.

  12. Epicoccum nigrum P16, a Sugarcane Endophyte, Produces Antifungal Compounds and Induces Root Growth

    Science.gov (United States)

    Fávaro, Léia Cecilia de Lima; Sebastianes, Fernanda Luiza de Souza; Araújo, Welington Luiz

    2012-01-01

    Background Sugarcane is one of the most important crops in Brazil, mainly because of its use in biofuel production. Recent studies have sought to determine the role of sugarcane endophytic microbial diversity in microorganism-plant interactions, and their biotechnological potential. Epicoccum nigrum is an important sugarcane endophytic fungus that has been associated with the biological control of phytopathogens, and the production of secondary metabolites. In spite of several studies carried out to define the better conditions to use E. nigrum in different crops, little is known about the establishment of an endophytic interaction, and its potential effects on plant physiology. Methodology/Principal Findings We report an approach based on inoculation followed by re-isolation, molecular monitoring, microscopic analysis, plant growth responses to fungal colonization, and antimicrobial activity tests to study the basic aspects of the E. nigrum endophytic interaction with sugarcane, and the effects of colonization on plant physiology. The results indicate that E. nigrum was capable of increasing the root system biomass and producing compounds that inhibit the in vitro growth of sugarcane pathogens Fusarium verticillioides, Colletotrichum falcatum, Ceratocystis paradoxa, and Xanthomomas albilineans. In addition, E. nigrum preferentially colonizes the sugarcane surface and, occasionally, the endophytic environment. Conclusions/Significance Our work demonstrates that E. nigrum has great potential for sugarcane crop application because it is capable of increasing the root system biomass and controlling pathogens. The study of the basic aspects of the interaction of E. nigrum with sugarcane demonstrated the facultative endophytism of E. nigrum and its preference for the phylloplane environment, which should be considered in future studies of biocontrol using this species. In addition, this work contributes to the knowledge of the interaction of this ubiquitous endophyte

  13. Endophytic Phytoaugmentation: Treating Wastewater and Runoff Through Augmented Phytoremediation

    Science.gov (United States)

    Redfern, Lauren K.

    2016-01-01

    Abstract Limited options exist for efficiently and effectively treating water runoff from agricultural fields and landfills. Traditional treatments include excavation, transport to landfills, incineration, stabilization, and vitrification. In general, treatment options relying on biological methods such as bioremediation have the ability to be applied in situ and offer a sustainable remedial option with a lower environmental impact and reduced long-term operating expenses. These methods are generally considered ecologically friendly, particularly when compared to traditional physicochemical cleanup options. Phytoremediation, which relies on plants to take up and/or transform the contaminant of interest, is another alternative treatment method which has been developed. However, phytoremediation is not widely used, largely due to its low treatment efficiency. Endophytic phytoaugmentation is a variation on phytoremediation that relies on augmenting the phytoremediating plants with exogenous strains to stimulate associated plant-microbe interactions to facilitate and improve remediation efficiency. In this review, we offer a summary of the current knowledge as well as developments in endophytic phytoaugmentation and present some potential future applications for this technology. There has been a limited number of published endophytic phytoaugmentation case studies and much remains to be done to transition lab-scale results to field applications. Future research needs include large-scale endophytic phytoaugmentation experiments as well as the development of more exhaustive tools for monitoring plant-microbe-pollutant interactions. PMID:27158249

  14. Identification of lead- resistant endophytic bacteria isolated from rice.

    Directory of Open Access Journals (Sweden)

    Alexander Pérez-Cordero

    2015-06-01

    Full Text Available   The objective of this study was to evaluate in vitro the endophytic bacteria resistance to different lead concentrations. The sampling was undertaken in the first half of 2013, when tissue samples of commercial varieties of rice at tillering stage were collected in Montería, Cordoba, Colombia. Each tissue was subjected to surface cleaning. Endophytic bacteria in agar R2A medium were isolated. Population density (CFU/g tissue was determined from each tissue, by direct counting of R2A medium surface. morphotypes were classified by shape, color, size, and appearance. A total of 168 morphotypes were isolated from root, tillers, and leaf of different commercial varieties of rice. The lead resistance test was performed in vitro, to do that, suspensions of endophytic bacteria in log phase were prepared and inoculated in minimal medium with five concentrations of lead as Pb(NO32. The experiment was incubated at 32 °C and agitated at 150 rpm, for five days. Every hour afterstarting the test, turbidimetry measuring at 600 nm was conducted. Results showed the ability of endophytic bacteria to grow at concentrations of 100% of Pb as Pb(NO32. The results of the identification with kit API20E confirmed the presence of Burkholderia cepacia and Pseudomonas putida, which showed resistance to different lead concentrations.

  15. Distributions of ectomycorrhizal and foliar endophytic fungal communities associated with Pinus ponderosa along a spatially constrained elevation gradient.

    Science.gov (United States)

    Bowman, Elizabeth A; Arnold, A Elizabeth

    2018-05-13

    Understanding distributions of plant-symbiotic fungi is important for projecting responses to environmental change. Many coniferous trees host ectomycorrhizal fungi (EM) in association with roots and foliar endophytic fungi (FE) in leaves. We examined how EM and FE associated with Pinus ponderosa each vary in abundance, diversity, and community structure over a spatially constrained elevation gradient that traverses four plant communities, 4°C in mean annual temperature, and 15 cm in mean annual precipitation. We sampled 63 individuals of Pinus ponderosa in 10 sites along a 635 m elevation gradient that encompassed a geographic distance of 9.8 km. We used standard methods to characterize each fungal group (amplified and sequenced EM from root tips; isolated and sequenced FE from leaves). Abundance and diversity of EM were similar across sites, but community composition and distributions of the most common EM differed with elevation (i.e., with climate, soil chemistry, and plant communities). Abundance and composition of FE did not differ with elevation, but diversity peaked in mid-to-high elevations. Our results suggest relatively tight linkages between EM and climate, soil chemistry, and plant communities. That FE appear less linked with these factors may speak to limitations of a culture-based approach, but more likely reflects the small spatial scale encompassed by our study. Future work should consider comparable methods for characterizing these functional groups, and additional transects to understand relationships of EM and FE to environmental factors that are likely to shift as a function of climate change. © 2018 Botanical Society of America.

  16. Leishmanicidal Metabolites from Cochliobolus sp., an Endophytic Fungus Isolated from Piptadenia adiantoides (Fabaceae)

    Science.gov (United States)

    Campos, Fernanda Fraga; Rosa, Luiz Henrique; Cota, Betania Barros; Caligiorne, Rachel Basques; Teles Rabello, Ana Lúcia; Alves, Tânia Maria Almeida; Rosa, Carlos Augusto; Zani, Carlos Leomar

    2008-01-01

    Protozoan parasites belonging to genera Leishmania and Trypanosoma are the etiological agents of severe neglected tropical diseases (NTDs) that cause enormous social and economic impact in many countries of tropical and sub-tropical areas of the world. In our screening program for new drug leads from natural sources, we found that the crude extract of the endophytic fungus Cochliobolus sp. (UFMGCB-555) could kill 90% of the amastigote-like forms of Leishmania amazonensis and inhibit by 100% Ellman's reagent reduction in the trypanothione reductase (TryR) assay, when tested at 20 µg mL−1. UFMGCB-555 was isolated from the plant Piptadenia adiantoides J.F. Macbr (Fabaceae) and identified based on the sequence of the internally transcribed spacer (ITS) regions of its ribosomal DNA. The chromatographic fractionation of the extract was guided by the TryR assay and resulted in the isolation of cochlioquinone A and isocochlioquinone A. Both compounds were active in the assay with L. amazonensis, disclosing EC50 values (effective concentrations required to kill 50% of the parasite) of 1.7 µM (95% confidence interval = 1.6 to 1.9 µM) and 4.1 µM (95% confidence interval = 3.6 to 4.7 µM), respectively. These compounds were not active against three human cancer cell lines (MCF-7, TK-10, and UACC-62), indicating some degree of selectivity towards the parasites. These results suggest that cochlioquinones are attractive lead compounds that deserve further investigation aiming at developing new drugs to treat leishmaniasis. The findings also reinforce the role of endophytic fungi as an important source of compounds with potential to enter the pipeline for drug development against NTDs. PMID:19079599

  17. The microbe-free plant: fact or artefact?

    Directory of Open Access Journals (Sweden)

    Laila P. Pamela Partida-Martinez

    2011-12-01

    Full Text Available Plant-microbe interactions are ubiquitous. Plants are often colonized by pathogens but even more commonly engaged in neutral or mutualistic interactions with microbes: below-ground microbial plant associates are mycorrhizal fungi, Rhizobia and rhizosphere bacteria, above-ground plant parts are colonized by bacterial and fungal endophytes and by microbes in the phyllosphere. We emphasize here that a completely microbe-free plant is an exotic exception rather than the biologically relevant rule. The complex interplay of such microbial communities with the host plant affects plant nutrition, growth rate, resistance to biotic and abiotic stress, and plant survival and distribution. The mechanisms involved reach from nutrient acquisition, the production of plant hormones or direct antibiosis to effects on host resistance genes or interactions at higher trophic levels. Plant-associated microbes are heterotrophic and cause costs to their host plant, whereas the benefits depend on the environment. Thus, the outcome of the interaction is highly context-dependent. Considering the microbe-free plant as the ‘normal’ or control stage significantly impairs research into important phenomena such as (1 phenotypic and epigenetic plasticity, (2 the ‘normal’ ecological outcome of a given interaction and (3 the evolution of plants. For the future, we suggest cultivation-independent screening methods using direct PCR from plant tissue of more than one fungal and bacterial gene to collect data on the true microbial diversity in wild plants. The patterns found could be correlated to host species and environmental conditions, in order to formulate testable hypotheses on the biological roles of plant endophytes in nature. Experimental approaches should compare different host-endophyte combinations under various environmental conditions and study at the genetic, transcriptional and physiological level the parameters that shift the interaction along the mutualism

  18. Swainsonine Biosynthesis Genes in Diverse Symbiotic and Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Daniel Cook

    2017-06-01

    Full Text Available Swainsonine—a cytotoxic fungal alkaloid and a potential cancer therapy drug—is produced by the insect pathogen and plant symbiont Metarhizium robertsii, the clover pathogen Slafractonia leguminicola, locoweed symbionts belonging to Alternaria sect. Undifilum, and a recently discovered morning glory symbiont belonging to order Chaetothyriales. Genome sequence analyses revealed that these fungi share orthologous gene clusters, designated “SWN,” which included a multifunctional swnK gene comprising predicted adenylylation and acyltransferase domains with their associated thiolation domains, a β-ketoacyl synthase domain, and two reductase domains. The role of swnK was demonstrated by inactivating it in M. robertsii through homologous gene replacement to give a ∆swnK mutant that produced no detectable swainsonine, then complementing the mutant with the wild-type gene to restore swainsonine biosynthesis. Other SWN cluster genes were predicted to encode two putative hydroxylases and two reductases, as expected to complete biosynthesis of swainsonine from the predicted SwnK product. SWN gene clusters were identified in six out of seven sequenced genomes of Metarhzium species, and in all 15 sequenced genomes of Arthrodermataceae, a family of fungi that cause athlete’s foot and ringworm diseases in humans and other mammals. Representative isolates of all of these species were cultured, and all Metarhizium spp. with SWN clusters, as well as all but one of the Arthrodermataceae, produced swainsonine. These results suggest a new biosynthetic hypothesis for this alkaloid, extending the known taxonomic breadth of swainsonine producers to at least four orders of Ascomycota, and suggest that swainsonine has roles in mutualistic symbioses and diseases of plants and animals.

  19. The Effects of Clinorotation on the Host Plant, Medicago truncatula, and Its Microbial Symbionts

    Energy Technology Data Exchange (ETDEWEB)

    Dauzart, Ariel J. C.; Vandenbrink, Joshua P.; Kiss, John Z., E-mail: jzkiss@olemiss.edu [Department of Biology, Graduate School, University of Mississippi, University, MS (United States)

    2016-02-26

    Understanding the outcome of the plant-microbe symbiosis in reduced or altered is vital to developing life support systems for long-distance space travel and colonization of other planets. Thus, the aim of this research was to understand mutualistic relationships between plants and endophytic microbes under the influence of altered gravity. This project utilized the model tripartite relationship among Medicago truncatula—Sinorhizobium meliloti—Rhizophagus irregularis. Plants were inoculated with rhizobial bacteria (S. meliloti), arbuscular mycorrhizal fungi (R. irregularis), or both microbes, and placed on a rotating clinostat. Vertical and horizontal static controls were also performed. Clinorotation significantly reduced M. truncatula dry mass and fresh mass compared to the static controls. The addition of rhizobia treatments under clinorotation also altered total root length and root-to-shoot fresh mass ratio. Nodule size decreased under rhizobia + clinorotation treatment, and nodule density was significantly decreased compared to the vertical treatment. However, inoculation with arbuscular mycorrhizal fungi was shown to increase biomass accumulation and nodule size. Thus, clinorotation significantly affected M. truncatula and its symbiotic relationships with S. meliloti and R. irregularis. In the long term, the results observed in this clinostat study on the changes of plant-microbe mutualism need to be investigated in spaceflight experiments. Thus, careful consideration of the symbiotic microbes of plants should be included in the design of bioregenerative life support systems needed for space travel.

  20. The Effects of Clinorotation on the Host Plant, Medicago truncatula, and Its Microbial Symbionts

    International Nuclear Information System (INIS)

    Dauzart, Ariel J. C.; Vandenbrink, Joshua P.; Kiss, John Z.

    2016-01-01

    Understanding the outcome of the plant-microbe symbiosis in reduced or altered is vital to developing life support systems for long-distance space travel and colonization of other planets. Thus, the aim of this research was to understand mutualistic relationships between plants and endophytic microbes under the influence of altered gravity. This project utilized the model tripartite relationship among Medicago truncatula—Sinorhizobium meliloti—Rhizophagus irregularis. Plants were inoculated with rhizobial bacteria (S. meliloti), arbuscular mycorrhizal fungi (R. irregularis), or both microbes, and placed on a rotating clinostat. Vertical and horizontal static controls were also performed. Clinorotation significantly reduced M. truncatula dry mass and fresh mass compared to the static controls. The addition of rhizobia treatments under clinorotation also altered total root length and root-to-shoot fresh mass ratio. Nodule size decreased under rhizobia + clinorotation treatment, and nodule density was significantly decreased compared to the vertical treatment. However, inoculation with arbuscular mycorrhizal fungi was shown to increase biomass accumulation and nodule size. Thus, clinorotation significantly affected M. truncatula and its symbiotic relationships with S. meliloti and R. irregularis. In the long term, the results observed in this clinostat study on the changes of plant-microbe mutualism need to be investigated in spaceflight experiments. Thus, careful consideration of the symbiotic microbes of plants should be included in the design of bioregenerative life support systems needed for space travel.

  1. Azoarcus sp. CIB, an anaerobic biodegrader of aromatic compounds shows an endophytic lifestyle.

    Directory of Open Access Journals (Sweden)

    Helga Fernández

    Full Text Available BACKGROUND: Endophytic bacteria that have plant growth promoting traits are of great interest in green biotechnology. The previous thought that the Azoarcus genus comprises bacteria that fit into one of two major eco-physiological groups, either free-living anaerobic biodegraders of aromatic compounds or obligate endophytes unable to degrade aromatics under anaerobic conditions, is revisited here. METHODOLOGY/PRINCIPAL FINDINGS: Light, confocal and electron microscopy reveal that Azoarcus sp. CIB, a facultative anaerobe β-proteobacterium able to degrade aromatic hydrocarbons under anoxic conditions, is also able to colonize the intercellular spaces of the rice roots. In addition, the strain CIB displays plant growth promoting traits such nitrogen fixation, uptake of insoluble phosphorus and production of indoleacetic acid. Therefore, this work demonstrates by the first time that a free-living bacterium able to degrade aromatic compounds under aerobic and anoxic conditions can share also an endophytic lifestyle. The phylogenetic analyses based on the 16S rDNA and nifH genes confirmed that obligate endophytes of the Azoarcus genus and facultative endophytes, such as Azoarcus sp. CIB, locate into different evolutionary branches. CONCLUSIONS/SIGNIFICANCE: This is the first report of a bacterium, Azoarcus sp. CIB, able to degrade anaerobically a significant number of aromatic compounds, some of them of great environmental concern, and to colonize the rice as a facultative endophyte. Thus, Azoarcus sp. CIB becomes a suitable candidate for a more sustainable agricultural practice and phytoremediation technology.

  2. Screening of endophytic sources of exopolysaccharides: Preliminary characterization of crude exopolysaccharide produced by submerged culture of Diaporthe sp. JF766998 under different cultivation time

    Directory of Open Access Journals (Sweden)

    Ravely Casarotti Orlandelli

    2016-06-01

    Full Text Available Endophytic fungi have been described as producers of important bioactive compounds; however, they remain under-exploited as exopolysaccharides (EPS sources. Therefore, this work reports on EPS production by submerged cultures of eight endophytes isolated from Piper hispidum Sw., belonging to genera Diaporthe, Marasmius, Phlebia, Phoma, Phyllosticta and Schizophyllum. After fermentation for 96 h, four endophytes secreted EPS: Diaporthe sp. JF767000, Diaporthe sp. JF766998, Diaporthe sp. JF767007 and Phoma herbarum JF766995. The EPS from Diaporthe sp. JF766998 differed statistically from the others, with a higher percentage of carbohydrate (91% and lower amount of protein (8%. Subsequently, this fungus was grown under submerged culture for 72, 96 and 168 h (these EPS were designated EPSD1-72, EPSD1-96 and EPSD1-168 and the differences in production, monosaccharide composition and apparent molecular were compared. The EPS yields in mg/100 mL of culture medium were: 3.0 ± 0.4 (EPSD1-72, 15.4 ± 2.2 (EPSD1-96 and 14.8 ± 1.8 (EPSD1-168. The EPSD1-72 had high protein content (28.5% and only 71% of carbohydrate; while EPSD1-96 and EPSD1-168 were composed mainly of carbohydrate (≈95 and 100%, respectively, with low protein content (≈5% detected at 96 h. Galactose was the main monosaccharide component (30% of EPSD1-168. Differently, EPSD1-96 was rich in glucose (51%, with molecular weight of 46.6 kDa. It is an important feature for future investigations, because glucan-rich EPS are reported as effective antitumor agents.

  3. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    Science.gov (United States)

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.

  4. Bacterial endophytes of perennial crops for management of plant disease

    OpenAIRE

    Melnick, Rachel L.; Bailey, B.A.; Backman, Paul A.

    2013-01-01

    Metadata only record Bacterial endophytes, microorganisms which inhabit the internal tissues of plants, can suppress disease and are often used as a biological control in annual crops. Less research, however, has been applied to the use of bacterial endophytes to prevent disease in perennial crops, which presents a more complex challenge. However, exploration of their potential as a biological control in perennial crops has been limited. This chapter assembles current knowledge on the subj...

  5. Safety of Malaysian marine endophytic fungal extract S2 from a brown seaweed Turbinaria conoides

    Directory of Open Access Journals (Sweden)

    Siti Alwani Ariffin

    2014-07-01

    Full Text Available Objective: To evaluate the in vivo acute toxicity and antioxidant activity of the marine endophytic fungus extract S2 isolated from Turbinaria conoides. Methods: Two doses (100 mg/kg and 400 mg/kg of the S2 extract were administered to rats orally for acute toxicity and antioxidant test. The body weight, relative weight of six organs, haematological, biochemical and antioxidant properties were investigated on Day 14. Results: A single oral dose treatment did not cause any mortality or observable adverse effects in rats. No significant variations in the body and organ weights between the control and the treated groups were observed. Heamatological analysis and clinical blood chemistry also did not reveal any toxic effects of the extract. The total white blood cell count and haemoglobin levels were increased. The levels of total serum cholesterol in males treated with 100 and 400 mg/kg were significantly (P<0.05 decreased (1.28 and 1.34 mmol/L respectively compared to control (1.55 mmol/L rats. Pathologically, neither gross abnormalities nor histopathological changes were observed. This study showed strong evidence of the non-toxic effects of S2 extract. Furthermore the extract exhibited significant (P<0.05 antioxidant activity through increased levels of superoxide dismutase and glutathione peroxidase enzymes in serum, liver and kidney. Conclusions: The research findings from the present study showed the potential of marine natural products particularly in Malaysia as a source of bioactive compounds. Marine endophytic fungi as a potential source of anticancer drugs with great potential as they are potent yet safe, thus deserving further extensive investigation.

  6. Expression and functional analysis of the lysine decarboxylase and copper amine oxidase genes from the endophytic fungus Colletotrichum gloeosporioides ES026.

    Science.gov (United States)

    Zhang, Xiangmei; Wang, Zhangqian; Jan, Saad; Yang, Qian; Wang, Mo

    2017-06-05

    Huperzine A (HupA) isolated from Huperzia serrata is an important compound used to treat Alzheimer's disease (AD). Recently, HupA was reported in various endophytic fungi, with Colletotrichum gloeosporioides ES026 previously isolated from H. serrata shown to produce HupA. In this study, we performed next-generation sequencing and de novo RNA sequencing of C. gloeosporioides ES026 to elucidate the molecular functions, biological processes, and biochemical pathways of these unique sequences. Gene ontology and Kyoto Encyclopedia of Genes and Genomes assignments allowed annotation of lysine decarboxylase (LDC) and copper amine oxidase (CAO) for their conversion of L-lysine to 5-aminopentanal during HupA biosynthesis. Additionally, we constructed a stable, high-yielding HupA-expression system resulting from the overexpression of CgLDC and CgCAO from the HupA-producing endophytic fungus C. gloeosporioides ES026 in Escherichia coli. Quantitative reverse transcription polymerase chain reaction analysis confirmed CgLDC and CgCAO expression, and quantitative determination of HupA levels was assessed by liquid chromatography high-resolution mass spectrometry, which revealed that elevated expression of CgLDC and CgCAO produced higher yields of HupA than those derived from C. gloeosporioides ES026. These results revealed CgLDC and CgCAO involvement in HupA biosynthesis and their key role in regulating HupA content in C. gloeosporioides ES026.

  7. Endophytic bacteria in cacti seeds can improve the development of cactus seedlings.

    Science.gov (United States)

    M. Esther Puente; Ching Y. Li; Yoav Bashan

    2009-01-01

    A plant-bacterium association between the giant cardon cactus Pachycereus pringlei and endophytic bacteria help seedlings establish and grow on barren rock, This cactus, together with other desert plants, is responsible for weathering ancient lava flows in the Baja California Peninsula of Mexico.When cardon seeds are inoculated with endophytic...

  8. As you reap, so shall you sow: coupling of harvesting and inoculating stabilizes the mutualism between termites and fungi

    DEFF Research Database (Denmark)

    Aanen, Duur Kornelis

    2006-01-01

    is likely to be in monoculture and (ii) the termites ‘artificially' select for high nodule production, because their fungal food source also provides the inoculum for the next harvest. I also provide a brief comparison of the termite-fungus mutualism with the analogous agricultural mutualism between attine......At present there is no consensus theory explaining the evolutionary stability of mutualistic interactions. However, the question is whether there are general ‘rules', or whether each particular mutualism needs a unique explanation. Here, I address the ultimate evolutionary stability...... of the ‘agricultural' mutualism between fungus-growing termites and Termitomyces fungi, and provide a proximate mechanism for how stability is achieved. The key to the proposed mechanism is the within-nest propagation mode of fungal symbionts by termites. The termites suppress horizontal fungal transmission...

  9. Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng

    Directory of Open Access Journals (Sweden)

    Jin-Lian Chen

    2016-10-01

    Conclusion: The results suggest that the endophytic fungus T. gamsii YIM PH30019 may have a good potential as a biological control agent against notoginseng phytodiseases and can provide a clue to further illuminate the interactions between Trichoderma and phytopathogens.

  10. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Science.gov (United States)

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  11. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Directory of Open Access Journals (Sweden)

    Tao Ding

    Full Text Available Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  12. Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice.

    Science.gov (United States)

    Deivanai, Subramanian; Bindusara, Amitraghata Santhanam; Prabhakaran, Guruswamy; Bhore, Subhash Janardhan

    2014-07-01

    Endophytic bacteria do have several potential applications in medicine and in other various sectors of biotechnology including agriculture. Bacterial endophytes need to be explored for their potential applications in agricultural biotechnology. One of the potential applications of bacterial endophytes in agricultural is to enhance the growth of the agricultural crops. Hence, this study was undertaken to explore the plant growth promoting potential application of bacterial endophytes. The objective of this study was to examine the effect of endophytic bacteria from mangrove tree (Rhizophora apiculata Blume) for their efficacy in promoting seedling growth in rice. Eight endophytic bacterial isolates (EBIs) isolated from twig and petiole tissues of the mangrove were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequence homology. Separately, surface sterilized paddy seeds were treated with cell-free broth and cell suspension of the EBIs. Rice seedlings were analyzed by various bioassays and data was recorded. The gene sequences of the isolates were closely related to two genera namely, Bacillus and Pantoea. Inoculation of EBIs from R. apiculata with rice seeds resulted in accelerated root and shoot growth with significant increase in chlorophyll content. Among the isolates, Pantoea ananatis (1MSE1) and Bacillus amyloliquefaciens (3MPE1) had shown predominance of activity. Endophytic invasion was recognized by the non-host by rapid accumulation of reactive oxygen species (ROS) and was counteracted by the production of hydrogen peroxide (H2O2) and lipid peroxide. The results demonstrated that EBIs from mangrove tree can increase the fitness of the rice seedlings under controlled conditions. These research findings could be useful to enhance the seedling growth and could serve as foundation in further research on enhancing the growth of the rice crop using endophytic bacteria.

  13. Endophytic bacterial effects on seed germination and mobilization of reserves in ammodendron biofolium

    International Nuclear Information System (INIS)

    Zhu, Y.; She, X.P.

    2017-01-01

    The main aim of this study was to analyze the mobilization of storage reserves during seed germination of Ammodendron bifolium by host plant-endophytic bacteria interaction and to determine the contribution of endophytic bacteria in plant establishment. The seeds were inoculated with three different endophytic bacteria from A. bifolium, Staphylococcus sp. AY3, Kocuria sp. AY9 and Bacillus sp. AG18, and they were germinated in the dark. Fresh weight changes and early seedling growth were assessed, and the content of storage compounds was quantified using biochemical assays in all germinated and non-germinated seeds. To understand the mechanism promoting seed germination, the activities of extracellular enzymes of bacterial isolates were also analyzed by the plate assay method. The results showed that treatment with endophytic bacteria accelerated seed germination; promoted further water absorption and radicle growth; and also promoted degradation of sucrose, protein and lipids during the germination process. At the same time, our results also showed that strain AG18 was able to produce protease and amylase, strain AY9 had only amylase activity, and strain AY3 had no extracellular enzyme activity. In summary, our current study showed that (i) endophytic bacteria improved seed germination and post-germination seedling growth of A. bifolium; (ii) inoculation with endophytic bacteria could promote storage reserve mobilization during or following germination; (iii) the degradation of protein, lipids and sucrose could provide essential energy for post-germination growth; and (iv) three bacterial isolates might have different action mechanisms on seed germination. (author)

  14. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes

    Science.gov (United States)

    van Overbeek, Leonard S.; Berg, Gabriele; Pirttilä, Anna Maria; Compant, Stéphane; Campisano, Andrea; Döring, Matthias; Sessitsch, Angela

    2015-01-01

    SUMMARY All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions. PMID:26136581

  15. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes.

    Science.gov (United States)

    Hardoim, Pablo R; van Overbeek, Leonard S; Berg, Gabriele; Pirttilä, Anna Maria; Compant, Stéphane; Campisano, Andrea; Döring, Matthias; Sessitsch, Angela

    2015-09-01

    All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Entomopathogenic Fungi as Dual Control Agents against Both the Pest Myzus persicae and Phytopathogen Botrytis cinerea.

    Science.gov (United States)

    Yun, Hwi-Geon; Kim, Dong-Jun; Gwak, Won-Seok; Shin, Tae-Young; Woo, Soo-Dong

    2017-09-01

    The green peach aphid ( Myzus persicae ), a plant pest, and gray mold disease, caused by Botrytis cinerea , affect vegetables and fruit crops all over the world. To control this aphid and mold, farmers typically rely on the use of chemical insecticides or fungicides. However, intensive use of these chemicals over many years has led to the development of resistance. To overcome this problem, there is a need to develop alternative control methods to suppress populations of this plant pest and pathogen. Recently, potential roles have been demonstrated for entomopathogenic fungi in endophytism, phytopathogen antagonism, plant growth promotion, and rhizosphere colonization. Here, the antifungal activities of selected fungi with high virulence against green peach aphids were tested to explore their potential for the dual control of B. cinerea and M. persicae . Antifungal activities against B. cinerea were evaluated by dual culture assays using both aerial conidia and cultural filtrates of entomopathogenic fungi. Two fungal isolates, Beauveria bassiana SD15 and Metarhizium anisopliae SD3, were identified as having both virulence against aphids and antifungal activity. The virulence of these isolates against aphids was further tested using cultural filtrates, blastospores, and aerial conidia. The most virulence was observed in the simultaneous treatment with blastospores and cultural filtrate. These results suggest that the two fungal isolates selected in this study could be used effectively for the dual control of green peach aphids and gray mold for crop protection.

  17. Isolasi mikroba endofitik dari tanaman obat sambung nyawa (Gynura procumbens dan analisis potensinya sebagai antimikroba

    Directory of Open Access Journals (Sweden)

    Rumella Simarmata

    2012-02-01

    Full Text Available Sambung nyawa (Gynura procumbens has many beneficial effects to human health, such as decreasing blood pressure, maintaining blood sugar level (hypoglycaemic, decreasing cholesterol, a remedy for kidney trouble, antibacterial and lessen the inflamation (antiinflamation. This research was undertaken to discover the potency of endophytic microbes from sambung nyawa as antimicrobial agents. The purpose of this research was to screen the endophytic bacteria and the endophytic fungi having antimicrobial activity, which were isolated from stems, leaves, roots and fruits of medical plants, sambung nyawa. The antimicrobial activity was determined by measuring the growth inhibition of pathogenic microbes i.e Candida albicans, Escherichia coli, Pseudomonas sp. and Bacillus subtilis. A total of 38 isolates of bacteria and 15 isolates of fungi were obtained from sambung nyawa. Analysis demonstrated that, 45% isolates of bacteria and 20% isolates of fungi exhibited inhibitory activity. Antimicrobial activity was found in 21% of the isolates that inhibited the growth of C. albicans, E. coli, Pseudomonas sp., and B. subtilis, whereas 24% of isolates had activity only against B. subtilis. Isolate of endophytic bacteria USN 1.1 and USN 2.3 showed the most significant of inhibition zone. The Inhibition zone of the isolate USN 1.1 to C. albicans, E. coli, Pseudomonas sp, and B. subtilis were 2.318 cm2, 0.969 cm2, 0.796 cm2, and 0.381 cm2, respectively. The Inhibition zone of the isolate USN 2.3 to C. albicans, E. coli, Pseudomonas sp., and B. subtilis were 3.01 cm2, 0.519 cm2, 0.588 cm2 and 0.83 cm2, respectively. These results indicated that endophytic bacteria and endophytic fungi could be a promising source for antimicrobial agents.

  18. Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus.

    Science.gov (United States)

    Mitchell, Angela M; Strobel, Gary A; Moore, Emily; Robison, Richard; Sears, Joe

    2010-01-01

    Muscodor crispans is a recently described novel endophytic fungus of Ananas ananassoides (wild pineapple) growing in the Bolivian Amazon Basin. The fungus produces a mixture of volatile organic compounds (VOCs); some of the major components of this mixture, as determined by GC/MS, are propanoic acid, 2-methyl-, methyl ester; propanoic acid, 2-methyl-; 1-butanol, 3-methyl-;1-butanol, 3-methyl-, acetate; propanoic acid, 2-methyl-, 2-methylbutyl ester; and ethanol. The fungus does not, however, produce naphthalene or azulene derivatives as has been observed with many other members of the genus Muscodor. The mixture of VOCs produced by M. crispans cultures possesses antibiotic properties, as does an artificial mixture of a majority of the components. The VOCs of the fungus are effective against a wide range of plant pathogens, including the fungi Pythium ultimum, Phytophthora cinnamomi, Sclerotinia sclerotiorum and Mycosphaerella fijiensis (the black sigatoka pathogen of bananas), and the serious bacterial pathogen of citrus, Xanthomonas axonopodis pv. citri. In addition, the VOCs of M. crispans killed several human pathogens, including Yersinia pestis, Mycobacterium tuberculosis and Staphylococcus aureus. Artificial mixtures of the fungal VOCs were both inhibitory and lethal to a number of human and plant pathogens, including three drug-resistant strains of Mycobacterium tuberculosis. The gaseous products of Muscodor crispans potentially could prove to be beneficial in the fields of medicine, agriculture, and industry.

  19. Potential Use of Endophytic Bacteria to Control Pratylenchus Brachyurus on Patchouli

    OpenAIRE

    Harni, Rita; Supramana, Supramana; Supriadi, Supriadi

    2012-01-01

    Pratylenchus brachyurus is an important parasitic nematode which significantly decreases quality and quantity of patchouli oil. One potential measure for controlling the nematode is by using endophytic bacteria. These bacteria also induce plant growth. This study aimed to evaluate the potential of endo-phytic bacteria to control P. brachyurus. The experiments were carried out in the Bacteriological Laboratory of the Plant Protection Department, Bogor Agricultural University, and the Laborator...

  20. Phytoremediation of Alberta oil sand tailings using native plants and fungal endophytes

    Science.gov (United States)

    Repas, T.; Germida, J.; Kaminskyj, S.

    2012-04-01

    Fungal endophytes colonize host plants without causing disease. Some endophytes confer plant tolerance to harsh environments. One such endophyte, Trichoderma harzianum strain TSTh20-1, was isolated from a plant growing on Athabasca oil sand tailings. Tailing sands are a high volume waste product from oil sand extraction that the industry is required to remediate. Tailing sands are low in organic carbon and mineral nutrients, and are hydrophobic due to residual polyaromatic hydrocarbons. Typically, tailing sands are remediated by planting young trees in large quantities of mulch plus mineral fertilizer, which is costly and labour intensive. In greenhouse trials, TSTh20-1 supports growth of tomato seedlings on tailing sands without fertilizer. The potential use of TSTh20-1 in combination with native grasses and forbs to remediate under field conditions is being assessed. Twenty-three commercially available plant species are being screened for seed germination and growth on tailing sands in the presence of TSTh20-1. The best candidates from this group will be used in greenhouse and small scale field trials. Potential mechanisms that contribute to endophyte-induced plant growth promotion, such as plant hormone production, stress tolerance, mineral solubilization, and uptake are also being assessed. As well, TSTh20-1 appears to be remarkably frugal in its nutrient requirements and the possibility that this attribute is characteristic of other plant-fungal endophytes from harsh environments is under study.