WorldWideScience

Sample records for mutations lethal interactions

  1. Lethal mutagenesis: targeting the mutator phenotype in cancer.

    Science.gov (United States)

    Fox, Edward J; Loeb, Lawrence A

    2010-10-01

    The evolution of cancer and RNA viruses share many similarities. Both exploit high levels of genotypic diversity to enable extensive phenotypic plasticity and thereby facilitate rapid adaptation. In order to accumulate large numbers of mutations, we have proposed that cancers express a mutator phenotype. Similar to cancer cells, many viral populations, by replicating their genomes with low fidelity, carry a substantial mutational load. As high levels of mutation are potentially deleterious, the viral mutation frequency is thresholded at a level below which viral populations equilibrate in a traditional mutation-selection balance, and above which the population is no longer viable, i.e., the population undergoes an error catastrophe. Because their mutation frequencies are fine-tuned just below this error threshold, viral populations are susceptible to further increases in mutational load and, recently this phenomenon has been exploited therapeutically by a concept that has been termed lethal mutagenesis. Here we review the application of lethal mutagenesis to the treatment of HIV and discuss how lethal mutagenesis may represent a novel therapeutic approach for the treatment of solid cancers. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Analysis of time of death of prenatally lethal Steeloid mutations

    International Nuclear Information System (INIS)

    Rinchik, E.M.; Cummings, C.C.; Bangham, J.W.; Hunsicker, P.R.; Phipps, E.L.; Stelzner, K.F.

    1987-01-01

    Deletion mutations have been extremely useful in initiating the functional and molecular dissections of regions of the mouse genome. For the d-se and c regions, for example, it was observed that radiation mutations carrying lethal factors separable, by complementation analysis, from the primary d, se, or c mutation itself, could often be associated at both the genetic and molecular levels with multilocus chromosomal deletions. Since many of the Oak Ridge Sld mutations arose in radiation mutagenesis experiments, a substantial number may carry chromosomal deletions that involve the Sl locus in chromosome 10. Because of the great value of deletion mutations for the genetic and molecular analysis of chromosomal regions and complex genetic loci, they have initiated a series of experiments designed to test whether radiation-induced Sld mutations carry other lethal factors, in addition to the lethality caused by severe alleles of the Sl locus itself, as one prescreen for identifying Sld's that are caused by deletions

  3. Revertant mutation releases confined lethal mutation, opening Pandora's box: a novel genetic pathogenesis.

    Directory of Open Access Journals (Sweden)

    Yasushi Ogawa

    2014-05-01

    Full Text Available When two mutations, one dominant pathogenic and the other "confining" nonsense, coexist in the same allele, theoretically, reversion of the latter may elicit a disease, like the opening of Pandora's box. However, cases of this hypothetical pathogenic mechanism have never been reported. We describe a lethal form of keratitis-ichthyosis-deafness (KID syndrome caused by the reversion of the GJB2 nonsense mutation p.Tyr136X that would otherwise have confined the effect of another dominant lethal mutation, p.Gly45Glu, in the same allele. The patient's mother had the identical misssense mutation which was confined by the nonsense mutation. The biological relationship between the parents and the child was confirmed by genotyping of 15 short tandem repeat loci. Haplotype analysis using 40 SNPs spanning the >39 kbp region surrounding the GJB2 gene and an extended SNP microarray analysis spanning 83,483 SNPs throughout chromosome 13 in the family showed that an allelic recombination event involving the maternal allele carrying the mutations generated the pathogenic allele unique to the patient, although the possibility of coincidental accumulation of spontaneous point mutations cannot be completely excluded. Previous reports and our mutation screening support that p.Gly45Glu is in complete linkage disequilibrium with p.Tyr136X in the Japanese population. Estimated from statisitics in the literature, there may be approximately 11,000 p.Gly45Glu carriers in the Japanese population who have this second-site confining mutation, which acts as natural genetic protection from the lethal disease. The reversion-triggered onset of the disesase shown in this study is a previously unreported genetic pathogenesis based on Mendelian inheritance.

  4. Dominant-lethal mutations and heritable translocations in mice

    Energy Technology Data Exchange (ETDEWEB)

    Generoso, W.M.

    1983-01-01

    Chromosome aberrations are a major component of radiation or chemically induced genetic damage in mammalian germ cells. The types of aberration produced are dependent upon the mutagen used and the germ-cell stage treated. For example, in male meiotic and postmeiotic germ cells certain alkylating chemicals induce both dominant-lethal mutations and heritable translocations while others induce primarily dominant-lethal mutations. Production of these two endpoints appears to be determined by the stability of alkylation products with the chromosomes. If the reaction products are intact in the male chromosomes at the time of sperm entry, they may be repaired in fertilized eggs. If repair is not effected and the alkylation products persist to the time of pronuclear chromosome replication, they lead to chromatid-type aberrations and eventually to dominant-lethality. The production of heritable translocations, on the other hand, requires a transformation of unstable alkylation products into suitable intermediate lesions. The process by which these lesions are converted into chromosome exchange within the male genome takes place after sperm enters the egg but prior to the time of pronuclear chromosome replication (i.e., chromosome-type). Thus, dominant-lethal mutations result from both chromatid- and chromosome-type aberrations while heritable translocations result primarily from the latter type. DNA target sites associated with the production of these two endpoints are discussed.

  5. Dominant-lethal mutations and heritable translocations in mice

    International Nuclear Information System (INIS)

    Generoso, W.M.

    1983-01-01

    Chromosome aberrations are a major component of radiation or chemically induced genetic damage in mammalian germ cells. The types of aberration produced are dependent upon the mutagen used and the germ-cell stage treated. For example, in male meiotic and postmeiotic germ cells certain alkylating chemicals induce both dominant-lethal mutations and heritable translocations while others induce primarily dominant-lethal mutations. Production of these two endpoints appears to be determined by the stability of alkylation products with the chromosomes. If the reaction products are intact in the male chromosomes at the time of sperm entry, they may be repaired in fertilized eggs. If repair is not effected and the alkylation products persist to the time of pronuclear chromosome replication, they lead to chromatid-type aberrations and eventually to dominant-lethality. The production of heritable translocations, on the other hand, requires a transformation of unstable alkylation products into suitable intermediate lesions. The process by which these lesions are converted into chromosome exchange within the male genome takes place after sperm enters the egg but prior to the time of pronuclear chromosome replication (i.e., chromosome-type). Thus, dominant-lethal mutations result from both chromatid- and chromosome-type aberrations while heritable translocations result primarily from the latter type. DNA target sites associated with the production of these two endpoints are discussed

  6. Consortium for Osteogenesis Imperfecta Mutations in the Helical Domain of Type I Collagen: Regions Rich in Lethal Mutations Align With Collagen Binding Sites for Integrins and Proteoglycans

    Science.gov (United States)

    Marini, Joan C.; Forlino, Antonella; Cabral, Wayne A.; Barnes, Aileen M.; San Antonio, James D.; Milgrom, Sarah; Hyland, James C.; Körkkö, Jarmo; Prockop, Darwin J.; De Paepe, Anne; Coucke, Paul; Symoens, Sofie; Glorieux, Francis H.; Roughley, Peter J.; Lund, Alan M.; Kuurila-Svahn, Kaija; Hartikka, Heini; Cohn, Daniel H.; Krakow, Deborah; Mottes, Monica; Schwarze, Ulrike; Chen, Diana; Yang, Kathleen; Kuslich, Christine; Troendle, James; Dalgleish, Raymond; Byers, Peter H.

    2014-01-01

    Osteogenesis imperfecta (OI) is a generalized disorder of connective tissue characterized by fragile bones and easy susceptibility to fracture. Most cases of OI are caused by mutations in type I collagen. We have identified and assembled structural mutations in type I collagen genes (COL1A1 and COL1A2, encoding the proα1(I) and proα2(I) chains, respectively) that result in OI. Quantitative defects causing type I OI were not included. Of these 832 independent mutations, 682 result in substitution for glycine residues in the triple helical domain of the encoded protein and 150 alter splice sites. Distinct genotype–phenotype relationships emerge for each chain. One-third of the mutations that result in glycine substitutions in α1(I) are lethal, especially when the substituting residues are charged or have a branched side chain. Substitutions in the first 200 residues are nonlethal and have variable outcome thereafter, unrelated to folding or helix stability domains. Two exclusively lethal regions (helix positions 691–823 and 910–964) align with major ligand binding regions (MLBRs), suggesting crucial interactions of collagen monomers or fibrils with integrins, matrix metalloproteinases (MMPs), fibronectin, and cartilage oligomeric matrix protein (COMP). Mutations in COL1A2 are predominantly nonlethal (80%). Lethal substitutions are located in eight regularly spaced clusters along the chain, supporting a regional model. The lethal regions align with proteoglycan binding sites along the fibril, suggesting a role in fibril–matrix interactions. Recurrences at the same site in α2(I) are generally concordant for outcome, unlike α1(I). Splice site mutations comprise 20% of helical mutations identified in OI patients, and may lead to exon skipping, intron inclusion, or the activation of cryptic splice sites. Splice site mutations in COL1A1 are rarely lethal; they often lead to frameshifts and the mild type I phenotype. In α2(I), lethal exon skipping events are

  7. Theories of Lethal Mutagenesis: From Error Catastrophe to Lethal Defection.

    Science.gov (United States)

    Tejero, Héctor; Montero, Francisco; Nuño, Juan Carlos

    2016-01-01

    RNA viruses get extinct in a process called lethal mutagenesis when subjected to an increase in their mutation rate, for instance, by the action of mutagenic drugs. Several approaches have been proposed to understand this phenomenon. The extinction of RNA viruses by increased mutational pressure was inspired by the concept of the error threshold. The now classic quasispecies model predicts the existence of a limit to the mutation rate beyond which the genetic information of the wild type could not be efficiently transmitted to the next generation. This limit was called the error threshold, and for mutation rates larger than this threshold, the quasispecies was said to enter into error catastrophe. This transition has been assumed to foster the extinction of the whole population. Alternative explanations of lethal mutagenesis have been proposed recently. In the first place, a distinction is made between the error threshold and the extinction threshold, the mutation rate beyond which a population gets extinct. Extinction is explained from the effect the mutation rate has, throughout the mutational load, on the reproductive ability of the whole population. Secondly, lethal defection takes also into account the effect of interactions within mutant spectra, which have been shown to be determinant for the understanding the extinction of RNA virus due to an augmented mutational pressure. Nonetheless, some relevant issues concerning lethal mutagenesis are not completely understood yet, as so survival of the flattest, i.e. the development of resistance to lethal mutagenesis by evolving towards mutationally more robust regions of sequence space, or sublethal mutagenesis, i.e., the increase of the mutation rate below the extinction threshold which may boost the adaptability of RNA virus, increasing their ability to develop resistance to drugs (including mutagens). A better design of antiviral therapies will still require an improvement of our knowledge about lethal

  8. Synthetic Lethal Therapeutic Approaches for ARID1A-Mutated Ovarian Cancer

    Science.gov (United States)

    2017-10-01

    Award Number: W81XWH-16-1-0496 TITLE: Synthetic lethal therapeutic approaches for ARID1A-mutated ovarian cancer PRINCIPAL INVESTIGATOR: Rugang...AND SUBTITLE Synthetic lethal therapeutic approaches for ARID1A-mutated ovarian cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0496 5c...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Epithelial ovarian cancer (EOC) is the leading cause of death among gynecological

  9. Biophysical analysis of a lethal laminin alpha-1 mutation reveals altered self-interaction

    KAUST Repository

    Patel, Trushar R.; Nikodemus, Denise; Besong, Tabot M.D.; Reuten, Raphael; Meier, Markus; Harding, Stephen E.; Winzor, Donald J.; Koch, Manuel; Stetefeld, Jö rg

    2015-01-01

    Laminins are key basement membrane molecules that influence several biological activities and are linked to a number of diseases. They are secreted as heterotrimeric proteins consisting of one α, one β, and one γ chain, followed by their assembly into a polymer-like sheet at the basement membrane. Using sedimentation velocity, dynamic light scattering, and surface plasmon resonance experiments, we studied self-association of three laminin (LM) N-terminal fragments α-1 (hLM α-1 N), α-5 (hLM α-5 N) and β-3 (hLM β-3 N) originating from the short arms of the human laminin αβγ heterotrimer. Corresponding studies of the hLM α-1 N C49S mutant, equivalent to the larval lethal C56S mutant in zebrafish, have shown that this mutation causes enhanced self-association behavior, an observation that provides a plausible explanation for the inability of laminin bearing this mutation to fulfill functional roles in vivo, and hence for the deleterious pathological consequences of the mutation on lens function.

  10. Biophysical analysis of a lethal laminin alpha-1 mutation reveals altered self-interaction

    KAUST Repository

    Patel, Trushar R.

    2015-07-26

    Laminins are key basement membrane molecules that influence several biological activities and are linked to a number of diseases. They are secreted as heterotrimeric proteins consisting of one α, one β, and one γ chain, followed by their assembly into a polymer-like sheet at the basement membrane. Using sedimentation velocity, dynamic light scattering, and surface plasmon resonance experiments, we studied self-association of three laminin (LM) N-terminal fragments α-1 (hLM α-1 N), α-5 (hLM α-5 N) and β-3 (hLM β-3 N) originating from the short arms of the human laminin αβγ heterotrimer. Corresponding studies of the hLM α-1 N C49S mutant, equivalent to the larval lethal C56S mutant in zebrafish, have shown that this mutation causes enhanced self-association behavior, an observation that provides a plausible explanation for the inability of laminin bearing this mutation to fulfill functional roles in vivo, and hence for the deleterious pathological consequences of the mutation on lens function.

  11. Frequencies of aneuploidy and dominant lethal mutations in young female mice induced by low dose γ-rays

    International Nuclear Information System (INIS)

    Yao Suyan; Zhang Chaoyang; Dai Lianlian; Gao Changwen

    1991-01-01

    Relationship between aneuploidy, dominant lethal mutations and doses in young feral mice induced by low dose γ-rays was examined. The results suggest that the frequencies of aneuploidy of embryos increased at 0.15 Gy, but increases at over 0.50 Gy after irradiation in groups. The frequencies of aneuploidy and dominant lethal mutations increased with increasing doses and fitted linear relationship. This dose-response relationship of trisomic was not significant. The frequency of dominant lethal mutations induced by 60 Co γ irradiation is 5.59%. The effect of dominant lethal mutation is higher than that of the aneuploidy

  12. Variability in mutational fitness effects prevents full lethal transitions in large quasispecies populations

    Science.gov (United States)

    Sardanyés, Josep; Simó, Carles; Martínez, Regina; Solé, Ricard V.; Elena, Santiago F.

    2014-04-01

    The distribution of mutational fitness effects (DMFE) is crucial to the evolutionary fate of quasispecies. In this article we analyze the effect of the DMFE on the dynamics of a large quasispecies by means of a phenotypic version of the classic Eigen's model that incorporates beneficial, neutral, deleterious, and lethal mutations. By parameterizing the model with available experimental data on the DMFE of Vesicular stomatitis virus (VSV) and Tobacco etch virus (TEV), we found that increasing mutation does not totally push the entire viral quasispecies towards deleterious or lethal regions of the phenotypic sequence space. The probability of finding regions in the parameter space of the general model that results in a quasispecies only composed by lethal phenotypes is extremely small at equilibrium and in transient times. The implications of our findings can be extended to other scenarios, such as lethal mutagenesis or genomically unstable cancer, where increased mutagenesis has been suggested as a potential therapy.

  13. Interactive lethal and mutagenic effects of ultraviolet light and bleomycin in yeast: synergism or antagonism?

    Science.gov (United States)

    Lillo, O L; Severgnini, A A; Nunes, E M

    1997-11-01

    The mutagenic interactions of ultraviolet light and bleomycin in haploid populations of Saccharomyces cerevisiae were analyzed. Survival and mutation frequency as a function of different bleomycin concentrations after one conditioning dose of UV radiation were determined. Furthermore, corresponding interaction functions and sensitization factors were calculated. A synergistic interaction between UV light and bleomycin was shown for both lethal and mutagenic events when the cells were in nutrient broth during the treatments. Conversely, the interaction between UV light and bleomycin was antagonistic when the cells were in deionized water during the treatment. The magnitude of lethal and mutagenic interactions depends on dose, and thus presumably on the number of lesions. The observed interactions between UV light and bleomycin suggest that the mechanism that is most likely involved is the induction of repair systems with different error probabilities during the delay of cell division.

  14. Induction of dominant lethal mutations by gamma irradiation of Gallus domesticus spermatozoa

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, J; Grom, A; Csuka, J; Kindlova, L [Poultry Research Institute, Ivanka pri Dunaji (Czechoslovakia)

    1977-01-01

    Mixed semen of Gallus domesticus cocks was gamma irradiated in vitro with exposures of 500, 1000, 2000, and 3000 R at the exposure rate of 5.86 Rs/sup -1/. After the irradiation the semen was applied to experimental and control layer hens, the embryonic mortality in F/sub 1/ was observed, the total number of incubated eggs was 3344. Irradiation with 500 R had a favourable influence on embryonic vitality, the exposures 1000, 2000, and 3000 R resulted in increased embryonic mortality, for 2100 R a 50% mortality of offspring was found. Induced dominant lethality was manifest during embryonic and oviduct development. The frequency of induced dominant lethality for exposures used was 19.2, 9.9, 48.3, and 69.1%, the values of mutation rate were 0.087, 0.104, 0.659, and 1.174. The mutation rate had a linear course, the value of the lethal hit per gamete for 1 R was 1.04x10/sup -4/.

  15. Induction of dominant lethal mutations by gamma irradiation of Gallus domesticus spermatozoa

    International Nuclear Information System (INIS)

    Baumgartner, J.; Grom, A.; Csuka, J.; Kindlova, L.

    1977-01-01

    Mixed semen of Gallus domesticus cocks was gamma irradiated in vitro with exposures of 500, 1000, 2000 and 3000 R at the exposure rate of 5.86 Rs -1 . After the irradiation the semen was applied to experimental and control layer hens, the embryonic mortality in F 1 was observed, the total number of incubated eggs was 3344. Irradiation with 500 R had a favourable influence on embryonic vitality, the exposures 1000, 2000 and 3000 R resulted in increased embryonic mortality, for 2100 R a 50% mortality of offspring was found. Induced dominant lethality was manifest during embryonic and oviduct development. The frequency of induced dominant lethality for exposures used was 19.2, 9.9, 48.3, and 69.1%, the values of mutation rate were 0.087, 0.104, 0.659, and 1.174. The mutation rate had linear course, the value of the lethal hit per gamete for 1 R was 1.04x10 -4 . (author)

  16. Dominant lethal mutations in male mice fed γ-irradiated diet

    International Nuclear Information System (INIS)

    Chauhan, P.S.; Aravindakshan, M.; Aiyer, A.S.; Sundaram, K.

    1975-01-01

    Three groups of Swiss male mice were fed a stock ration of an unirradiated or irradiated (2.5 Mrad) test diet for 8 wk. After the feeding period, the males were mated with groups of untreated female mice for 4 consecutive weeks. The females were autopsied at mid-term pregnancy for evaluation of dominant lethal mutations. Numbers of dead implantations, including deciduomas and dead embryos, showed no significant differences among the different groups, thus producing no evidence of any induced post-implantation lethality in mice fed on irradiated diet. Similarly, there was no indication of preimplantation lethality, since implantation rates remained comparable among different groups. Consumption of irradiated diet did not affect the fertility of mice. Total pre- and post-implantation loss, as indicated by the numbers of live implantations remained comparable among all the groups of mice. (author)

  17. Modification of radiation-induced sex-linked recessive lethal mutation frequency by tocopherol

    International Nuclear Information System (INIS)

    Beckman, C.; Roy, R.M.; Sproule, A.

    1982-01-01

    The present study evaluates the effect of supplementing culture medium with α-tocopherol acetate on the yield of sex-linked recessive lethal mutants induced by X-irradiation in mature sperm of Drosophila. Although tocopherol treatment of males had no impact on the yield of mutations, a drastic reduction in mutation frequency was observed when irradiated males were mated to females raised and subsequently maintained on tocopherol-enriched diet. (orig./MG)

  18. Dominant lethal mutations research in mice fed with irradiated black beams

    International Nuclear Information System (INIS)

    Andrade, Z.P.

    1982-01-01

    To evaluate the potential mutagenic effects of irradiated black beans (Phaseolus vulgaris) with conservation purpose, in germ cells of mice, dominant lethal assay were employed. Three groups of albino swiss male mice (S W-55) were fed with a normal ration, or unirradiated or irradiated (0,2; 0,5; 1; 5; 10; 15 e 20 KGy) test diets for eight weeks. After the feeding period the males were mated with groups of untreated females mice for four consecutive weeks. Numbers of pregnancy rates females were observed. The females were autopsied at mid-term pregnancy for evaluation of dominant lethal mutations. (author)

  19. Molecular analysis of two mouse dilute locus deletion mutations: Spontaneous dilute lethal20J and radiation-induced dilute prenatal lethal Aa2 alleles

    International Nuclear Information System (INIS)

    Strobel, M.C.; Seperack, P.K.; Copeland, N.G.; Jenkins, N.A.

    1990-01-01

    The dilute (d) coat color locus of mouse chromosome 9 has been identified by more than 200 spontaneous and mutagen-induced recessive mutations. With the advent of molecular probes for this locus, the molecular lesion associated with different dilute alleles can be recognized and precisely defined. In this study, two dilute mutations, dilute-lethal20J (dl20J) and dilute prenatal lethal Aa2, have been examined. Using a dilute locus genomic probe in Southern blot analysis, we detected unique restriction fragments in dl20J and Aa2 DNA. Subsequent analysis of these fragments showed that they represented deletion breakpoint fusion fragments. DNA sequence analysis of each mutation-associated deletion breakpoint fusion fragment suggests that both genomic deletions were generated by nonhomologous recombination events. The spontaneous dl20J mutation is caused by an interstitial deletion that removes a single coding exon of the dilute gene. The correlation between this discrete deletion and the expression of all dilute-associated phenotypes in dl20J homozygotes defines the dl20J mutation as a functional null allele of the dilute gene. The radiation-induced Aa2 allele is a multilocus deletion that, by complementation analysis, affects both the dilute locus and the proximal prenatal lethal-3 (pl-3) functional unit. Molecular analysis of the Aa2 deletion breakpoint fusion fragment has provided access to a previously undefined gene proximal to d. Initial characterization of this new gene suggests that it may represent the genetically defined pl-3 functional unit

  20. A survey of new temperature-sensitive, embryonic-lethal mutations in C. elegans: 24 alleles of thirteen genes.

    Directory of Open Access Journals (Sweden)

    Sean M O'Rourke

    2011-03-01

    Full Text Available To study essential maternal gene requirements in the early C. elegans embryo, we have screened for temperature-sensitive, embryonic lethal mutations in an effort to bypass essential zygotic requirements for such genes during larval and adult germline development. With conditional alleles, multiple essential requirements can be examined by shifting at different times from the permissive temperature of 15°C to the restrictive temperature of 26°C. Here we describe 24 conditional mutations that affect 13 different loci and report the identity of the gene mutations responsible for the conditional lethality in 22 of the mutants. All but four are mis-sense mutations, with two mutations affecting splice sites, another creating an in-frame deletion, and one creating a premature stop codon. Almost all of the mis-sense mutations affect residues conserved in orthologs, and thus may be useful for engineering conditional mutations in other organisms. We find that 62% of the mutants display additional phenotypes when shifted to the restrictive temperature as L1 larvae, in addition to causing embryonic lethality after L4 upshifts. Remarkably, we also found that 13 out of the 24 mutations appear to be fast-acting, making them particularly useful for careful dissection of multiple essential requirements. Our findings highlight the value of C. elegans for identifying useful temperature-sensitive mutations in essential genes, and provide new insights into the requirements for some of the affected loci.

  1. Lethal mutation of internal irradiation brown planthopper (Nilaparvita lugens Stal)

    International Nuclear Information System (INIS)

    Wahid, R.A.

    1988-01-01

    The moulting IVth of BPH nympha were irradiated internally with radiophosphorous 32-P 1 uCi/ml, 10 uCi/ml, 50 uCi/ml, 100 uCi/ml, and 500 uCi/ml concentrations respectivelly. An observation was carried out to determines heredity of hopper sterilities from the mating groups of R male x N female, R male x R female, and N male x R female. The 32-P concentration below of 50 uCi/ml seemed to be the substerile dose, however, the dominant lethal mutation has been visually shown by R male x R female F1 mating group. The hereditary lines of F1, F2, F3, and F4 of the hopper sterilities wich were indicated by the nympha hatch ability have some significant correlations (r1= -0.77, r2= -0.92, r3= -0.93 and r4= -0.85). Thus, the resesif lethal mutations visually showed by F3 and F4 from all of the 100 uCi/ml and 50 uCi/ml treated groups. (author). 10 refs, 2 figs, 2 tabs

  2. Comparative studies of dose-response curves for recessive lethal mutations induced by ethylnitrosourea in spermatogonia and in spermatozoa of Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, I.; Ayaki, T.; Ohshima, K.

    1984-01-01

    Induction of recessive lethal mutation by N-ethyl-N-nitrosourea (ENU) was studied for the second chromosome of spermatogonia and spermatozoa in Drosophila melanogaster. ENU (0.03, 0.3, and 1.0 mM) was given to flies by dissolving it in feeding sucrose solution. When plotted against absorbed doses of ENU, the observed frequencies to recessive lethals showed a linear relationship for induction in spermatozoa but a sigmoidal relationship for induction in spermatogonia. These results suggest that in spermatogonia ENU-induced mutational damage is more repairable in a lower dose range of ENU. Mosaic lethal mutations were induced by ENU but not in spermatogonia.

  3. Insect radiosensitivity: dose curves and dose-fractionation studies of dominant lethal mutations in the mature sperm of 4 insect species

    International Nuclear Information System (INIS)

    LaChance, L.E.; Graham, C.K.

    1984-01-01

    Males of 4 species of insects: Musca domestica L. (housefly) (Diptera), Oncopeltus fasciatus (Dallas) (milkweed bug) (Hemiptera), Anagasta kuhniella (Zeller) (mealmoth) (Lepidoptera) and Heliothis virescens (Fab.) (tobacco budworm) (Lepidoptera) were irradiated as adults. Dose-response curves for the induction of dominant lethal mutations in the mature sperm were constructed. The curves were analyzed mathematically and compared with theoretical computer simulated curves requiring 1, 2, 4, 8 and 16 'hits' for the induction of a dominant lethal mutation. The 4 species belonging to 3 different orders of insects showed a wide range in radiation sensitivity and vastly different dose-response curves. When the data were analyzed by several mathematical models the authors found that a logistic response curve gave reasonably good fit with vastly different parameters for the 4 species. Dose-fractionation experiments showed no reduction in the frequency of lethal mutations induced in any species when an acute dose was fractionated into 2 equal exposures separated by an 8-h period. (Auth.)

  4. X-ray induced dominant lethal mutations in mature and immature oocytes of guinea-pigs and golden hamsters

    International Nuclear Information System (INIS)

    Cox, B.D.; Lyon, M.F.

    1975-01-01

    The induction of dominant lethal mutations by doses of 100-400 rad X-rays in oocytes of the guinea-pig and golden hamster was studied using criteria of embryonic mortality. For both species higher yields were obtained from mature than from immature oocytes. Data on fertility indicated that in the golden hamster immature oocytes were more sensitive to killing by X-rays than mature oocytes but that the converse was true in the guinea-pig. The dose-response relationship for mutation to dominant lethals in pre-ovulatory oocytes of guinea-pigs and golden hamsters was linear, both when based on pre- and post-implantation loss only. The rate per unit dose was higher for the golden hamster, and the old golden hamsters were possibly slightly more sensitive than young ones

  5. A novel Noonan syndrome RAF1 mutation: lethal course in a preterm infant

    Directory of Open Access Journals (Sweden)

    Ana Ratola

    2015-06-01

    Full Text Available Noonan syndrome is a relatively common and heterogeneous genetic disorder, associated with congenital heart defect in about 50% of the cases. If the defect is not severe, life expectancy is normal. We report a case of Noonan syndrome in a preterm infant with hypertrophic cardiomyopathy and lethal outcome associated to acute respiratory distress syndrome caused by Adenovirus pneumonia. A novel mutation in the RAF1 gene was identified: c.782C>G (p.Pro261Arg in heterozygosity, not described previously in the literature. Consequently, the common clinical course in this mutation and its respective contribution to the early fatal outcome is unknown. No conclusion can be established regarding genotype/phenotype correlation.

  6. Induction of lethal mutations in the x-chromosome of unirradiated Drosophila oocytes after fertilization by irradiated spermatozoa

    International Nuclear Information System (INIS)

    Shaposhnikov, M.V.; Zainullin, V.G.

    2003-01-01

    Full text: In primary study on Drosophila it was found that irradiated male X-chromosomes induce recessive lethals in unirradiated female homologues (Abeleva et al., 1961, Radiobiologya. 1:123-126). The same effects were obtained in Drosophila in some recent investigations. The mechanisms of these effects is unknown. However it may be responsible for low-dose radiation effects as it induce mutations in unirradiated DNA. We assume that this effect may be a result of activation of error prone repair in response to preliminary DNA lesions in irradiated chromosome. In this research we analyse the frequencies of the recessive lethal mutations in the X-chromosome of Drosophila females mated with irradiated Basc males. We used acute irradiation with a dose rate of 10 Gy. For testing our hypothesis we use the mus209 and mei-41 mutant females. Mus209 is a PCNA gene homologue and mei-41 is a homologue of ATM gene. These genes are involved in post-replication DNA repair which may be error prone repair in Drosophila. It was obtained the tendency to decreasing the mutation rate at the mei-41[D5] background and decreasing mutation rate in mus209[B1] background in comparison with wild type strains CS (p<0.05). The obtained results demonstrate the possible role of mus209[B1] and mei-41[D5] genes in the inducing of mutations in the unirradiated X-chromosome in the presence of irradiated homologue

  7. An inhibitor of potentially lethal damage (PLD) repair reduces the frequency of γ-ray mutations in cultured Chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Yokoiyama, A.; Kada, T.; Kuroda, Y.

    1992-01-01

    Cordycepin (3'-deoxyadenosine, 3 - dA) is an RNA antimetabolite and a radiosensitizer in cultured mammalian cells. In the present paper, the effects of 3'-dA on γ-ray-induced lethality and 6-thioguanine (6TG)-resistant mutations in cultured Chinese hamster V79 cells were examined. 3'-dA had the effect of sensitizing the lethality induced by γ-rays. The potentially lethal damage (PLD) repair produced by post-incubation cells in Hanks' solution after γ-irradiation was almost completely suppressed by 5x10 -5 M 3'-dA. When cells were irradiated with 10 Gy γ-rays and incubated with 3'-dA for 5 h, the frequency of 6TG-resistant mutations induced by γ-rays decreased to 1/6 of that of the irradiated cells incubated without 3'-dA. The decrease in the frequency of γ-ray-induced mutations was dependent on the length of incubation time with 3'-dA. It is suggested that the inhibition of PLD repair by 3'-dA may be that of error-prone repair. (author). 26 refs.; 5 figs

  8. Mutations in GLDN, Encoding Gliomedin, a Critical Component of the Nodes of Ranvier, Are Responsible for Lethal Arthrogryposis.

    Science.gov (United States)

    Maluenda, Jérôme; Manso, Constance; Quevarec, Loic; Vivanti, Alexandre; Marguet, Florent; Gonzales, Marie; Guimiot, Fabien; Petit, Florence; Toutain, Annick; Whalen, Sandra; Grigorescu, Romulus; Coeslier, Anne Dieux; Gut, Marta; Gut, Ivo; Laquerrière, Annie; Devaux, Jérôme; Melki, Judith

    2016-10-06

    Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Through linkage analysis, homozygosity mapping, and exome sequencing in four unrelated families affected by lethal AMC, we identified biallelic mutations in GLDN in the affected individuals. GLDN encodes gliomedin, a secreted cell adhesion molecule involved in the formation of the nodes of Ranvier. Transmission electron microscopy of the sciatic nerve from one of the affected individuals showed a marked lengthening defect of the nodes. The GLDN mutations found in the affected individuals abolish the cell surface localization of gliomedin and its interaction with its axonal partner, neurofascin-186 (NF186), in a cell-based assay. The axoglial contact between gliomedin and NF186 is essential for the initial clustering of Na + channels at developing nodes. These results indicate a major role of gliomedin in node formation and the development of the peripheral nervous system in humans. These data indicate that mutations of GLDN or CNTNAP1 (MIM: 616286), encoding essential components of the nodes of Ranvier and paranodes, respectively, lead to inherited nodopathies, a distinct disease entity among peripheral neuropathies. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. Lethal/severe osteogenesis imperfecta in a large family: a novel homozygous LEPRE1 mutation and bone histological findings

    NARCIS (Netherlands)

    van Dijk, Fleur S.; Nikkels, Peter G. J.; den Hollander, Nicolette S.; Nesbitt, Isabel M.; van Rijn, Rick R.; Cobben, Jan M.; Pals, Gerard

    2011-01-01

    We report a large consanguineous Turkish family in which multiple individuals are affected with autosomal recessive lethal or severe osteogenesis imperfecta (OI) due to a novel homozygous LEPRE1 mutation. In one affected individual histological studies of bone tissue were performed, which may

  10. Induction of dominant lethal mutations by alkylating agnets in germ-cells of the silkworm, Bombyx mori

    International Nuclear Information System (INIS)

    Murota, Tetsuo; Murakami, Akio.

    1977-01-01

    The comparison of the intensity of activity was made by measuring radiation equivalent chemical (REC) dose in the experiment of the induction of dominant lethal mutation, using the germ cells of pupae five days before the moths will be hatched. The alkylating agents employed in the experiment are methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), diethyl sulfate (DSC) and mitomycine-C (MC). X-ray irradiation was employed in order to indicate the capability of inducing mutation of the alkylating agents with the radiation equivalent chemical dose (REC dose). The dose-hatchability curves for the alkylating agents showed sigmoidal fashion as observed in X-ray, regardless of germ cells. The REC value at LD (50) was estimated by comparing the relative mutagenic capability of these chemicals. In sperm, EMS and DES with concentration of 1.0 x 10 -7 M/g showed the same lethality as about 2.3 kR and 0.6 kR of X-ray. However, no significant reduction of embryonic lethality after the treatment of pupae with MC (up to 2.1 x 10 -7 M/g) and MMS (up to 1.0 x 10 -6 M/g) was observed. As the results, the order of mutagenic effectiveness was as follows: EMS>DES>MMS approximately equal to MC. When oocytes in the mid-pupae were treated with MMS, EMS and MC with concentration of 1.0 x 10 -7 M/g, MMS and EMS showed the same effects as 12.8 kR and 0.6 kR. Surprisingly, MC showed the same lethality as 232.3 kR. This extremely high sensitivity of oocytes to MC may be ascribed to the inhibiting effect of the drug on the meiotic division. (Iwakiri, K.)

  11. The population genetics of X-autosome synthetic lethals and steriles.

    Science.gov (United States)

    Lachance, Joseph; Johnson, Norman A; True, John R

    2011-11-01

    Epistatic interactions are widespread, and many of these interactions involve combinations of alleles at different loci that are deleterious when present in the same individual. The average genetic environment of sex-linked genes differs from that of autosomal genes, suggesting that the population genetics of interacting X-linked and autosomal alleles may be complex. Using both analytical theory and computer simulations, we analyzed the evolutionary trajectories and mutation-selection balance conditions for X-autosome synthetic lethals and steriles. Allele frequencies follow a set of fundamental trajectories, and incompatible alleles are able to segregate at much higher frequencies than single-locus expectations. Equilibria exist, and they can involve fixation of either autosomal or X-linked alleles. The exact equilibrium depends on whether synthetic alleles are dominant or recessive and whether fitness effects are seen in males, females, or both sexes. When single-locus fitness effects and synthetic incompatibilities are both present, population dynamics depend on the dominance of alleles and historical contingency (i.e., whether X-linked or autosomal mutations occur first). Recessive synthetic lethality can result in high-frequency X-linked alleles, and dominant synthetic lethality can result in high-frequency autosomal alleles. Many X-autosome incompatibilities in natural populations may be cryptic, appearing to be single-locus effects because one locus is fixed. We also discuss the implications of these findings with respect to standing genetic variation and the origins of Haldane's rule.

  12. Manifestation of x-radiation induced sex-linked recessive lethal mutation impairing the development of imaginal disks and gonads in Drosophila Melanogaster

    International Nuclear Information System (INIS)

    Abeleva, Eh.A.; Ivanov, A.I.

    1982-01-01

    A study was made of Drosophila melanogaster mutations impairing the development of imaginal disks. The state of gonads in these mutants was not studied. Using X-radiation a lethal mutation in X chromosome was obtained that induced degeneration of imaginal disks at the 3d stage of larva development. The gonads of the mutants at this stage of development vary in size. The transplantation tests showed that the mutation manifests itself in both the imaginal disks and the gonads

  13. Back to the future: revisiting HIV-1 lethal mutagenesis

    Science.gov (United States)

    Dapp, Michael J.; Patterson, Steven E.; Mansky, Louis M.

    2012-01-01

    The concept of eliminating HIV-1 infectivity by elevating the viral mutation rate was first proposed over a decade ago, even though the general concept had been conceived earlier for RNA viruses. Lethal mutagenesis was originally viewed as a novel chemotherapeutic approach for treating HIV-1 infection in which use of a viral mutagen would over multiple rounds of replication lead to the lethal accumulation of mutations, rendering the virus population non infectious – known as the slow mutation accumulation model. There have been limitations in obtaining good efficacy data with drug leads, leaving some doubt into clinical translation. More recent studies of the APOBEC3 proteins as well as new progress in the use of nucleoside analogs for inducing lethal mutagenesis have helped to refocus attention on rapid induction of HIV-1 lethal mutagenesis in a single or limited number of replication cycles leading to a rapid mutation accumulation model. PMID:23195922

  14. Novel Lethal Form of Congenital Hypopituitarism Associated With the First Recessive LHX4 Mutation

    Science.gov (United States)

    Gregory, L. C.; Humayun, K. N.; Turton, J. P. G.; McCabe, M. J.; Rhodes, S. J.

    2015-01-01

    Background: LHX4 encodes a member of the LIM-homeodomain family of transcription factors that is required for normal development of the pituitary gland. To date, only incompletely penetrant heterozygous mutations in LHX4 have been described in patients with variable combined pituitary hormone deficiencies. Objective/Hypothesis: To report a unique family with a novel recessive variant in LHX4 associated with a lethal form of congenital hypopituitarism that was identified through screening a total of 97 patients. Method: We screened 97 unrelated patients with combined pituitary hormone deficiency, including 65% with an ectopic posterior pituitary, for variants in the LHX4 gene using Sanger sequencing. Control databases (1000 Genomes, dbSNP, Exome Variant Server, ExAC Browser) were consulted upon identification of variants. Results: We identified the first novel homozygous missense variant (c.377C>T, p.T126M) in two deceased male patients of Pakistani origin with severe panhypopituitarism associated with anterior pituitary aplasia and posterior pituitary ectopia. Both were born small for gestational age with a small phallus, undescended testes, and mid-facial hypoplasia. The parents' first-born child was a female with mid-facial hypoplasia (DNA was unavailable). Despite rapid commencement of hydrocortisone and T4 in the brothers, all three children died within the first week of life. The LHX4(p.T126M) variant is located within the LIM2 domain, in a highly conserved location. The absence of homozygosity for the variant in over 65 000 controls suggests that it is likely to be responsible for the phenotype. Conclusion: We report, for the first time to our knowledge, a novel homozygous mutation in LHX4 associated with a lethal phenotype, implying that recessive mutations in LHX4 may be incompatible with life. PMID:25871839

  15. A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype

    Science.gov (United States)

    Woeste, K. E.; Kieber, J. J.; Evans, M. L. (Principal Investigator)

    2000-01-01

    A recessive mutation was identified that constitutively activated the ethylene response pathway in Arabidopsis and resulted in a rosette-lethal phenotype. Positional cloning of the gene corresponding to this mutation revealed that it was allelic to responsive to antagonist1 (ran1), a mutation that causes seedlings to respond in a positive manner to what is normally a competitive inhibitor of ethylene binding. In contrast to the previously identified ran1-1 and ran1-2 alleles that are morphologically indistinguishable from wild-type plants, this ran1-3 allele results in a rosette-lethal phenotype. The predicted protein encoded by the RAN1 gene is similar to the Wilson and Menkes disease proteins and yeast Ccc2 protein, which are integral membrane cation-transporting P-type ATPases involved in copper trafficking. Genetic epistasis analysis indicated that RAN1 acts upstream of mutations in the ethylene receptor gene family. However, the rosette-lethal phenotype of ran1-3 was not suppressed by ethylene-insensitive mutants, suggesting that this mutation also affects a non-ethylene-dependent pathway regulating cell expansion. The phenotype of ran1-3 mutants is similar to loss-of-function ethylene receptor mutants, suggesting that RAN1 may be required to form functional ethylene receptors. Furthermore, these results suggest that copper is required not only for ethylene binding but also for the signaling function of the ethylene receptors.

  16. Human synthetic lethal inference as potential anti-cancer target gene detection

    Directory of Open Access Journals (Sweden)

    Solé Ricard V

    2009-12-01

    Full Text Available Abstract Background Two genes are called synthetic lethal (SL if mutation of either alone is not lethal, but mutation of both leads to death or a significant decrease in organism's fitness. The detection of SL gene pairs constitutes a promising alternative for anti-cancer therapy. As cancer cells exhibit a large number of mutations, the identification of these mutated genes' SL partners may provide specific anti-cancer drug candidates, with minor perturbations to the healthy cells. Since existent SL data is mainly restricted to yeast screenings, the road towards human SL candidates is limited to inference methods. Results In the present work, we use phylogenetic analysis and database manipulation (BioGRID for interactions, Ensembl and NCBI for homology, Gene Ontology for GO attributes in order to reconstruct the phylogenetically-inferred SL gene network for human. In addition, available data on cancer mutated genes (COSMIC and Cancer Gene Census databases as well as on existent approved drugs (DrugBank database supports our selection of cancer-therapy candidates. Conclusions Our work provides a complementary alternative to the current methods for drug discovering and gene target identification in anti-cancer research. Novel SL screening analysis and the use of highly curated databases would contribute to improve the results of this methodology.

  17. Effective lethal mutagenesis of influenza virus by three nucleoside analogs.

    Science.gov (United States)

    Pauly, Matthew D; Lauring, Adam S

    2015-04-01

    Lethal mutagenesis is a broad-spectrum antiviral strategy that exploits the high mutation rate and low mutational tolerance of many RNA viruses. This approach uses mutagenic drugs to increase viral mutation rates and burden viral populations with mutations that reduce the number of infectious progeny. We investigated the effectiveness of lethal mutagenesis as a strategy against influenza virus using three nucleoside analogs, ribavirin, 5-azacytidine, and 5-fluorouracil. All three drugs were active against a panel of seasonal H3N2 and laboratory-adapted H1N1 strains. We found that each drug increased the frequency of mutations in influenza virus populations and decreased the virus' specific infectivity, indicating a mutagenic mode of action. We were able to drive viral populations to extinction by passaging influenza virus in the presence of each drug, indicating that complete lethal mutagenesis of influenza virus populations can be achieved when a sufficient mutational burden is applied. Population-wide resistance to these mutagenic agents did not arise after serial passage of influenza virus populations in sublethal concentrations of drug. Sequencing of these drug-passaged viral populations revealed genome-wide accumulation of mutations at low frequency. The replicative capacity of drug-passaged populations was reduced at higher multiplicities of infection, suggesting the presence of defective interfering particles and a possible barrier to the evolution of resistance. Together, our data suggest that lethal mutagenesis may be a particularly effective therapeutic approach with a high genetic barrier to resistance for influenza virus. Influenza virus is an RNA virus that causes significant morbidity and mortality during annual epidemics. Novel therapies for RNA viruses are needed due to the ease with which these viruses evolve resistance to existing therapeutics. Lethal mutagenesis is a broad-spectrum strategy that exploits the high mutation rate and the low

  18. Ehlers-Danlos syndrome with lethal cardiac valvular dystrophy in males carrying a novel splice mutation in FLNA.

    Science.gov (United States)

    Ritelli, Marco; Morlino, Silvia; Giacopuzzi, Edoardo; Carini, Giulia; Cinquina, Valeria; Chiarelli, Nicola; Majore, Silvia; Colombi, Marina; Castori, Marco

    2017-01-01

    Filamin A is an X-linked, ubiquitous actin-binding protein whose mutations are associated to multiple disorders with limited genotype-phenotype correlations. While gain-of-function mutations cause various bone dysplasias, loss-of-function variants are the most common cause of periventricular nodular heterotopias with variable soft connective tissue involvement, as well as X-linked cardiac valvular dystrophy (XCVD). The term "Ehlers-Danlos syndrome (EDS) with periventricular heterotopias" has been used in females with neurological, cardiovascular, integument and joint manifestations, but this nosology is still a matter of debate. We report the clinical and molecular update of an Italian family with an X-linked recessive soft connective tissue disorder and which was described, in 1975, as the first example of EDS type V of the Berlin nosology. The cutaneous phenotype of the index patient was close to classical EDS and all males died for a lethal cardiac valvular dystrophy. Whole exome sequencing identified the novel c.1829-1G>C splice variation in FLNA in two affected cousins. The nucleotide change was predicted to abolish the canonical splice acceptor site of exon 13 and to activate a cryptic acceptor site 15 bp downstream, leading to in frame deletion of five amino acid residues (p.Phe611_Gly615del). The predicted in frame deletion clusters with all the mutations previously identified in XCVD and falls within the N-terminus rod 1 domain of filamin A. Our findings expand the male-specific phenotype of FLNA mutations that now includes classical-like EDS with lethal cardiac valvular dystrophy, and offer further insights for the genotype-phenotype correlations within this spectrum. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Relationship between chromosomal aberration of germ cells and dominant lethal mutation in male mice after low dosage of X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mingdong, Wang; Baochen, Yang; Yuke, Jin [Bethune (N.) Medical Univ., Changchun, JL (China). Dept. of Gentics

    1989-01-01

    The relationship between chromosomal aberration adn dominant mutation in spermatocytes of late pachytene phase in male mice after a single X-irridiation was reported. It was found that the frequency of aberrant cells was correlative to the rate of fetal death, the latter was being about 2.5 times as high as the former. The frequency of dominant lethal mutation induced by X-irradiation is 2.1995x10{sup -3} gamete {center dot} 10 mGy.

  20. Mutations in GLDN, Encoding Gliomedin, a Critical Component of the Nodes of Ranvier, Are Responsible for Lethal Arthrogryposis

    OpenAIRE

    Maluenda, J?r?me; Manso, Constance; Quevarec, Loic; Vivanti, Alexandre; Marguet, Florent; Gonzales, Marie; Guimiot, Fabien; Petit, Florence; Toutain, Annick; Whalen, Sandra; Grigorescu, Romulus; Coeslier, Anne?Dieux; Gut, Marta; Gut, Ivo; Laquerri?re, Annie

    2016-01-01

    Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Through linkage analysis, homozygosity mapping, and exome sequencing in four unrelated families affected by lethal AMC, we identified biallelic mutations in GLDN in the affected individuals. GLDN encodes gliomedin, a secreted cell adhesion molecule involved in the formation of the nodes of Ranvier. Transmission electron microscopy...

  1. Effect of dose-rate on the frequency of X-linked lethal mutation in the nematode Panagrellus redivivus

    International Nuclear Information System (INIS)

    Ager, D.

    1984-01-01

    A total X-ray dose of 50 Gy was applied to the nematode Panagrellus redivivus using dose-rates ranging from 0.23 Gy/min to 10.49 Gy/min, and the frequency of lethal X-chromosomes was determined. This frequency ranged from approximately 1.6% at the lower dose-rate to 4.3% at the highest dose-rate, indicating a dose-rate dependency of mutation frequency in the spermatogonia and oogonia of this organism. (orig.)

  2. Genetic interaction motif finding by expectation maximization – a novel statistical model for inferring gene modules from synthetic lethality

    Directory of Open Access Journals (Sweden)

    Ye Ping

    2005-12-01

    Full Text Available Abstract Background Synthetic lethality experiments identify pairs of genes with complementary function. More direct functional associations (for example greater probability of membership in a single protein complex may be inferred between genes that share synthetic lethal interaction partners than genes that are directly synthetic lethal. Probabilistic algorithms that identify gene modules based on motif discovery are highly appropriate for the analysis of synthetic lethal genetic interaction data and have great potential in integrative analysis of heterogeneous datasets. Results We have developed Genetic Interaction Motif Finding (GIMF, an algorithm for unsupervised motif discovery from synthetic lethal interaction data. Interaction motifs are characterized by position weight matrices and optimized through expectation maximization. Given a seed gene, GIMF performs a nonlinear transform on the input genetic interaction data and automatically assigns genes to the motif or non-motif category. We demonstrate the capacity to extract known and novel pathways for Saccharomyces cerevisiae (budding yeast. Annotations suggested for several uncharacterized genes are supported by recent experimental evidence. GIMF is efficient in computation, requires no training and automatically down-weights promiscuous genes with high degrees. Conclusion GIMF effectively identifies pathways from synthetic lethality data with several unique features. It is mostly suitable for building gene modules around seed genes. Optimal choice of one single model parameter allows construction of gene networks with different levels of confidence. The impact of hub genes the generic probabilistic framework of GIMF may be used to group other types of biological entities such as proteins based on stochastic motifs. Analysis of the strongest motifs discovered by the algorithm indicates that synthetic lethal interactions are depleted between genes within a motif, suggesting that synthetic

  3. Imaging findings in a distinct lethal inherited arteriopathy syndrome associated with a novel mutation in the FBLN4 gene

    Energy Technology Data Exchange (ETDEWEB)

    Rajeshkannan, Ramiah; Kulkarni, Chinmay; Moorthy, Srikanth [Amrita Institute of Medical Sciences, AIMS, Department of Radiology, Ernakulam (India); Kappanayil, Mahesh [Amrita Institute of Medical Sciences, AIMS, Department of pediatric cardiology, Ernakulam (India); Nampoothiri, Sheela [Amrita Institute of Medical Sciences, AIMS, Department of Pediatric Genetics, Ernakulam (India); Malfait, Fransiska; Paepe, Anne de [Ghent University Hospital, Center for Medical Genetics, Ghent (Belgium)

    2014-08-15

    We present the imaging findings of a newly identified lethal arteriopathy associated with a novel mutation in the gene encoding fibulin-4, occurring in a distinct community from southern India. A total of 31 children from a distinct population subgroup who presented with characteristic arterial dilatation and tortuosity were studied. All children except one belonged to unrelated families from an ethno-religious group (Muslim) from the northern coastal belt of southern India. CT angiography was performed in 30 children and contrast MRA in one. Impressive dilatation and elongation of ascending aorta, arch, descending aorta and main pulmonary arteries with characteristic narrowing of aortic isthmus were seen in all patients. Stenosis of arch branches, abdominal visceral branches and pulmonary artery branches was observed in 21 (68 %), 23 (62.5 %) and 20 (65 %) patients respectively. Genetic studies revealed an identical mutation in exon 7 of the FBLN4 gene. On follow-up, 27 of them had died before the age of 3 years and only two children were alive after the age of 4 years. FBLN4-associated vasculopathy is a highly lethal disease characterized by severe aneurysmal dilatation of thoracic aorta, its branches and pulmonary arteries with stenoses at typical locations. (orig.)

  4. Lethals induced by γ-radiation in drosophila somatic cells

    International Nuclear Information System (INIS)

    Ivanov, A.I.

    1989-01-01

    Exposure of 3-hour drosophila male embryos to γ-radiation during the topographic segregation of the germ anlage nuclei caused recessive sex-linked lethals in somatic cells only. The selectivity of the screening was determined by the ratio of mutation frequencies induced in embryos and adult males. Analysis of lethal mutations shows that a minimal rate of the divergence between germinal and somatic patterns of the cell development is observed in the embryogenesis, the 3d instar larva and prepupa, and maximal in the 1st and 2nd larva and pupa

  5. Ultraviolet-x-ray interaction: mutation and transformation

    International Nuclear Information System (INIS)

    Han, A.; Elkind, M.M.; Suzuki, F.; Dainko, J.L.; Buess, E.

    1981-01-01

    The overall long-range objectives of the proposed research are to: (1) determine whether ionizing and nonionizing radiations interact in the induction of mutation and neoplastic transformation; (2) identify the nature of the interaction; (3) establish the possible relationship between the repair processes and the expression of interactive damage related to mutation and neoplastic transformation. Principal methods were used to assess survival, mutation, and neoplastic transformation of mammalian cells in culture. Cells were exposed to the following radiations: 50-kV x-rays; light from a germicidal lamp, uv-C (254 nm); light from unfiltered sun lamps, uv-B (290 to 345 nm); and light from sun lamps filtered by polystyrene dish covers

  6. Empirical complexities in the genetic foundations of lethal mutagenesis.

    Science.gov (United States)

    Bull, James J; Joyce, Paul; Gladstone, Eric; Molineux, Ian J

    2013-10-01

    From population genetics theory, elevating the mutation rate of a large population should progressively reduce average fitness. If the fitness decline is large enough, the population will go extinct in a process known as lethal mutagenesis. Lethal mutagenesis has been endorsed in the virology literature as a promising approach to viral treatment, and several in vitro studies have forced viral extinction with high doses of mutagenic drugs. Yet only one empirical study has tested the genetic models underlying lethal mutagenesis, and the theory failed on even a qualitative level. Here we provide a new level of analysis of lethal mutagenesis by developing and evaluating models specifically tailored to empirical systems that may be used to test the theory. We first quantify a bias in the estimation of a critical parameter and consider whether that bias underlies the previously observed lack of concordance between theory and experiment. We then consider a seemingly ideal protocol that avoids this bias-mutagenesis of virions-but find that it is hampered by other problems. Finally, results that reveal difficulties in the mere interpretation of mutations assayed from double-strand genomes are derived. Our analyses expose unanticipated complexities in testing the theory. Nevertheless, the previous failure of the theory to predict experimental outcomes appears to reside in evolutionary mechanisms neglected by the theory (e.g., beneficial mutations) rather than from a mismatch between the empirical setup and model assumptions. This interpretation raises the specter that naive attempts at lethal mutagenesis may augment adaptation rather than retard it.

  7. Clinical spectrum of females with HCCS mutation: from no clinical signs to a neonatal lethal form of the microphthalmia with linear skin defects (MLS) syndrome

    NARCIS (Netherlands)

    van Rahden, V.A.; Rau, I.; Fuchs, S.; Kosyna, F.K.; de Almeida, H.L.; Fryssira, H.; Isidor, B.; Jauch, A.; Joubert, M.; Lachmeijer, A.M.A.; Zweier, C.; Moog, U.; Kutsche, K.

    2014-01-01

    Background: Segmental Xp22.2 monosomy or a heterozygous HCCS mutation is associated with the microphthalmia with linear skin defects (MLS) or MIDAS (microphthalmia, dermal aplasia, and sclerocornea) syndrome, an X-linked disorder with male lethality. HCCS encodes the holocytochrome c-type synthase

  8. Development and application of genetic sexing systems for the Mediterranean fruit fly based on a temperature sensitive lethal mutation

    International Nuclear Information System (INIS)

    Franz, G.; Willhoeft, U.; Kerremans, P.; Hendrichs, J.; Rendon, P.

    1997-01-01

    The present status in genetic sexing for the Mediterranean fruit fly is discussed. This includes the selection of the appropriate sexing gene (which determines the feasibility and practical applicability of the sexing system) as well as the selection of the appropriate Y-autosome translocation (which determines the stability of the sexing system). A temperature sensitive lethal mutation is used to eliminate females during the egg stage. This mutation in combination with new Y-autosome translocations allowed the construction of a genetic sexing strain, named VIENNA-42, that is stable enough for large scale mass rearing. Also described are the analysis of this strain under field cage and field conditions and, in preparation for large scale tests in Guatemala, the outcrossing of VIENNA-42 with genetic material from the target area. (author)

  9. Dominant lethal mutations in Drosophila melanogaster natural populations flown on board ISS.

    Science.gov (United States)

    Larina, Olga; Bekker, Anna

    The resistance to mutagenic impacts represents an important issue of manned space missions. However the reasons of its individual variability as well as the factors which could induce mutations in space flight are not fully understood. Drosophila studies accomplished by several research teams at real space flights, revealed pronounced increase of mutations in somatic and reproductive cells, nonetheless, quite an opposite spaceflight effects also occurred, i.e., mei-41 laboratory strain showed postflight mutation rates lower than that in ground control. In order to monitor the influence of space flight on the mutational process, 4 series of space experiment with D. melanogaster wild type populations were performed at International Space Station (ISS). The appliance “Drosophila-2” used for breeding of drosophila in spaceflight conditions, enabled to conduct synchronous studies with two samples of fly populations. First instar drosophila larvae were placed into the experimental appliance 12 hours before the start of transport spacecraft. The duration of experiments was 7.9 through 19.7 days. In 19.7-day experiment, two generations of the flies were raised during the space flight, and then delivered to the earth. The frequency of dominant lethal mutations (DLM) was evaluated as the percentage of embryonic death in the progeny of experimental drosophila samples. DLM tests in VV-09 and Chas-09 natural populations, performed after the exposure to 10.9-day flight, showed the increase of DLM rate in Chas-09 (0.077 in flight series vs. 0.43 in earth-based control) while post-flight DLM value in VV-09 did not diverge from on-earth sample (0.025 and 0.027 correspondingly). The same results for VV-09 were obtained after the 14.7-day and 7.9-day flights with the only exception: 7.9-day flight experiment employed DLM measurements in two VV-09 spaceflight samples, differing by the age of the flies, and the above DLM rates were detected in “younger” VV-09 sample only. DLM

  10. Are Trp53 rescue of Brca1 embryonic lethality and Trp53/Brca1 breast cancer association related?

    International Nuclear Information System (INIS)

    McAllister, Kimberly A; Wiseman, Roger W

    2002-01-01

    Brca1 is involved in multiple biological pathways including DNA damage repair, transcriptional regulation, and cell-cycle progression. A complex pattern of interactions of Brca1 with Trp53 has also emerged. Xu and coworkers found that haploid loss of Trp53 significantly reduces the embryonic lethality observed in mice with a homozygous in-frame deletion of Brca1 exon 11. They report that widespread apoptosis correlates with the embryonic lethality resulting from this homozygous Δ11 Brca1 mutation. A mechanism responsible for Brca1-associated carcinogenesis is proposed. These experiments extend our knowledge of a complex Brca1/Trp53 relationship. However, the precise mechanisms through which Brca1 interacts with Trp53 to suppress mammary tumor formation have yet to be elucidated

  11. Evaluation of freshly irradiated wheat for dominant lethal mutations in Wistar rats

    International Nuclear Information System (INIS)

    Pawan, S.C.; Aravindakshan, M.; Kumar, N.S.; Subba Rao, V.; Aiyar, A.S.; Sundaram, K.

    1977-01-01

    Three independent, serially performed experiments involving acute and chronic feeding of freshly irradiated wheat (75 krad, gamma-irradiation) were carried out in Wistar rats. In the first experiment groups of 10 males were given wheat for 1 week; irradiated wheat was consumed by the animals within 24 h of irradiation. In the other two experiments feeding of males was continued for 6 (10 males per group) and 12 (13 males per group) weeks, respectively, and the irradiated wheat was fed within 7 days of irradiation. At the end of each treatment period each male was paired with 3 females for 7 days and sequentially at weekly intervals for 5 or 8 weeks. Females were killed and examined for live and dead implantations and corpora lutea. There were no differences between groups with regard to fertility nor was there any inter-group difference as regards pre- and post-implantation losses whether the rats were fed irradiated or non-irradiated wheat. This suggested that even feeding of freshly irradiated wheat does not induce any dominant lethal mutations in rats

  12. Evaluation of freshly irradiated wheat for dominant lethal mutations in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Pawan, S C; Aravindakshan, M; Kumar, N S; Subba Rao, V; Aiyar, A S; Sundaram, K [Bhabha Atomic Research Centre, Bombay (India). Bio-medical Group

    1977-01-01

    Three independent, serially performed experiments involving acute and chronic feeding of freshly irradiated wheat (75 krad, gamma-irradiation) were carried out in Wistar rats. In the first experiment groups of 10 males were given wheat for 1 week; irradiated wheat was consumed by the animals within 24 h of irradiation. In the other two experiments feeding of males was continued for 6 (10 males per group) and 12 (13 males per group) weeks, respectively, and the irradiated wheat was fed within 7 days of irradiation. At the end of each treatment period each male was paired with 3 females for 7 days and sequentially at weekly intervals for 5 or 8 weeks. Females were killed and examined for live and dead implantations and corpora lutea. There were no differences between groups with regard to fertility nor was there any inter-group difference as regards pre- and post-implantation losses whether the rats were fed irradiated or non-irradiated wheat. This suggested that even feeding of freshly irradiated wheat does not induce any dominant lethal mutations in rats.

  13. Mutation induction by and mutational interaction between monochromatic wavelength radiations in the near-ultraviolet and visible ranges

    International Nuclear Information System (INIS)

    Tyrrell, R.M.

    1980-01-01

    The induction of mutations (reversion to tryptophan independence) by various UV (254, 313, 334 and 365 nm) and visible (405 and 434 nm) wavelengths was measured in exponential phase populations of Escherichia coli B/r thy trp and B/r thy trp uvr A by assay of irradiated populations on semi-enriched media. No mutations were induced in the repair proficient strain at wavelengths longer than 313 nm. Mutations were induced to the excisionless strain at wavelengths as long as 405 nm but less than expected from the known amount of DNA damage induced. Irradiation at the long wavelenths (434, 405, 365 and 334 nm) suppressed the appearance of 254- or 313 nm-induced mutations in the repair competent strain but not in the excision deficient strain. The relative dose-requirement for mutation suppression was related to the relative efficiency of these wavelengths in inducing growth delay. These results suggest that the growth delay induced by near-UV and visible wavelenghts allows more time for the 'error-free' excision repair process to act on the potentially mutagenic lesions induced by 254- and 313-nm radiations, thereby reducing the mutation frequency observed in the repair-proficient strain. The level of near-UV mutation induced in the excision deficient strain is lower than expected from the DNA damage known to be induced. It is possible that near-UV radiation induces a class of lethal lesions that are not susceptible to error-prone repair. (author)

  14. A new lethal sclerosing bone dysplasia

    International Nuclear Information System (INIS)

    Kingston, H.M.; Freeman, J.S.; Hall, C.M.

    1991-01-01

    A neonate is described with a lethal sclerosing bone dysplasia associated with prenatal fractures and craniofacial abnormalities including microcephaly, exophthalmos, hypoplastic nose and mid-face, small jaw and nodular hyperplasia of the gums. Parental consanguinity suggests that an autosomal recessive mutation is the likely aetiology. (orig.)

  15. Clinical intrafamilial variability in lethal familial neonatal seizure disorder caused by TBC1D24 mutations.

    Science.gov (United States)

    Lozano, Reymundo; Herman, Kristin; Rothfuss, Melanie; Rieger, Hillary; Bayrak-Toydemir, Pinar; Aprile, Davide; Fruscione, Floriana; Zara, Federico; Fassio, Anna

    2016-12-01

    TBC1D24-related disorders include a wide phenotypic ranging from mild to lethal seizure disorders, non-syndromic deafness, and composite syndromes such as DOORS (deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures). The TBC1D24 gene has a role in cerebral cortex development and in presynaptic neurotransmission. Here, we present a familial case of a lethal early-onset epileptic encephalopathy, associated with two novel compound heterozygous missense variants on the TBC1D24 gene, which were detected by exome sequencing. The detailed clinical data of the three siblings is summarized in order to support the variability of the phenotype, severity, and progression of this disorder among these family members. Functional studies demonstrated that the identified novel missense mutations result in a loss of expression of the protein, suggesting a correlation between residual expression, and the disease severity. This indicates that protein expression analysis is important for interpreting genetic results when novel variants are found, as well as for complementing clinical assessment by predicting the functional impact. Further analysis is necessary to delineate the clinical presentation of individuals with TBC1D24 pathogenic variants, as well as to develop markers for diagnosis, prognosis, and potential targeted treatments. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. The distribution of and complementation relationships between spontaneous X-linked recessive lethal mutations recovered from crossing long-term laboratory stocks of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Schalet, A.P.

    1986-01-01

    Drosophila melanogaster males from a wild-type laboratory stock, were mated with virgin females of the M-6 stock, and 149 spontaneous independent non-mosaically transmitted, as well as 8 incidentally detected, mosaically transmitted, X-linked recessive lethal mutations were recovered from 95 704 F 2 cultures. 152 mutations were mapped over the entire length of the X-chromosome by complementation and/or crossover tests. Although there were far too few spontaneous mutations to make a meaningful comparison of relative mutability on a locus-by-locus basis, those loci displaying a relatively higher X-ray mutability, when taken as a group, tend to display a relatively higher spontaneous mutability, and those loci displaying a relatively lower X-ray mutability, when taken as a group, tend to display a relatively lower spontaneous mutability. (Auth.)

  17. Pedigree analyses of yeast cells recovering from DNA damage allow assignment of lethal events to individual post-treatment generations

    International Nuclear Information System (INIS)

    Klein, F.; Karwan, A.; Wintersberger, U.

    1990-01-01

    Haploid cells of Saccharomyces cerevisiae were treated with different DNA damaging agents at various doses. A study of the progeny of individual such cells allowed the assignment of lethal events to distinct post treatment generations. By microscopically inspecting those cells which were not able to form visible colonies the authors could discriminate between cells dying from immediately effective lethal hits and those generating microcolonies probably as a consequence of lethal mutation(s). The experimentally obtained numbers of lethal events were mathematically transformed into mean probabilities of lethal fixations at taking place in cells of certain post treatment generations. Such analyses give detailed insight into the kinetics of lethality as a consequence of different kinds of DNA damage. For example, X-irradiated cells lost viability mainly by lethal hits, only at a higher dose also lethal mutations fixed in the cells that were in direct contact with the mutagen, but not in later generations, occurred. Ethyl methanesulfonate (EMS)-treated cells were hit by 00-fixations in a dose dependent manner. The distribution of all sorts of lethal fixations taken together, which occurred in the EMS-damaged cell families, was not random. For comparison analyses of cells treated with methyl methanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine and nitrous acid are also reported

  18. Mutation dynamics and fitness effects followed in single cells.

    Science.gov (United States)

    Robert, Lydia; Ollion, Jean; Robert, Jerome; Song, Xiaohu; Matic, Ivan; Elez, Marina

    2018-03-16

    Mutations have been investigated for more than a century but remain difficult to observe directly in single cells, which limits the characterization of their dynamics and fitness effects. By combining microfluidics, time-lapse imaging, and a fluorescent tag of the mismatch repair system in Escherichia coli , we visualized the emergence of mutations in single cells, revealing Poissonian dynamics. Concomitantly, we tracked the growth and life span of single cells, accumulating ~20,000 mutations genome-wide over hundreds of generations. This analysis revealed that 1% of mutations were lethal; nonlethal mutations displayed a heavy-tailed distribution of fitness effects and were dominated by quasi-neutral mutations with an average cost of 0.3%. Our approach has enabled the investigation of single-cell individuality in mutation rate, mutation fitness costs, and mutation interactions. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Evidence of heritable lethal mutations in progeny of X-irradiated CHO cells by micronucleus count in clon-cells

    International Nuclear Information System (INIS)

    Hagemann, G.; Kreczik, A.; Treichel, M.

    1996-01-01

    Low doses of ionizing radiation reduce the growth rates of clones following irradiation of the progenitor cells. Such reductions of clone growth have been proven by means of measurements of clone size distributions. The medians of such distributions can be used to quantify the radiation damage. Prolongations of generation times and cell death as result of heritable lethal mutations have been discussed as causes for the reduction of clone growth. The cell number of a clone of hypotetraploid CHO-cells was compared to the frequency of micronucleated binucleated cells in the same clone using the cytokinesis-block-micronucleus method. The dose dependent reduction of clone sizes is measured by the difference of the medians (after log transformation) of the clone size distributions. At cytochalasin-B concentrations of 1 μg/ml and after an incubation time of 16 h a yield of binucleated cells of about 50% was obtained. Median clone size differences as a measure of clonal radiation damage increased linearly with incubation times of 76, 100, 124, and 240 h following irradiation with 3, 5, 7, and 12 Gy. The frequency of binucleated clone cells with micronuclei strongly increased with decreasing clone size by a factor up to 20 following irradiation with 3, 5, and 7 Gy. The frequency of micronucleated binucleated clone cells was found to be independent of incubation time after irradiation. Radiation induced clone size reductions result from cell losses caused by intraclonal expression of micronuclei which have its origin in heritable lethal mutations. Measurements of clone size distributions can be done automatically. They can serve as predictive test for determination of median cell loss rates of surviving cell clones. (orig./MG) [de

  20. A missense mutation in PFAS (phosphoribosylformylglycinamidine synthase) is likely causal for embryonic lethality associated with the MH1 haplotype in Montbéliarde dairy cattle.

    Science.gov (United States)

    Michot, Pauline; Fritz, Sébastien; Barbat, Anne; Boussaha, Mekki; Deloche, Marie-Christine; Grohs, Cécile; Hoze, Chris; Le Berre, Laurène; Le Bourhis, Daniel; Desnoes, Olivier; Salvetti, Pascal; Schibler, Laurent; Boichard, Didier; Capitan, Aurélien

    2017-10-01

    A candidate mutation in the sex hormone binding globulin gene was proposed in 2013 to be responsible for the MH1 recessive embryonic lethal locus segregating in the Montbéliarde breed. In this follow-up study, we excluded this candidate variant because healthy homozygous carriers were observed in large-scale genotyping data generated in the framework of the genomic selection program. We fine mapped the MH1 locus in a 702-kb interval and analyzed genome sequence data from the 1,000 bull genomes project and 54 Montbéliarde bulls (including 14 carriers and 40 noncarriers). We report the identification of a strong candidate mutation in the gene encoding phosphoribosylformylglycinamidine synthase (PFAS), a protein involved in de novo purine synthesis. This mutation, located in a class I glutamine amidotransferase-like domain, results in the substitution of an arginine residue that is entirely conserved among eukaryotes by a cysteine (p.R1205C). No homozygote for the cysteine-encoding allele was observed in a large population of more than 25,000 individuals despite a 6.7% allelic frequency and 122 expected homozygotes under neutrality assumption. Genotyping of 18 embryos collected from heterozygous parents as well as analysis on nonreturn rates suggested that most homozygous carriers died between 7 and 35 d postinsemination. The identification of this strong candidate mutation will enable the accurate testing of the reproducers and the efficient selection against this lethal recessive embryonic defect in the Montbéliarde breed. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Dominant lethal mutations in insects with holokinetic chromosomes: irradiation of pink bollworm sperm

    International Nuclear Information System (INIS)

    Berg, G.J.; LaChance, L.E.

    1976-01-01

    Adult males of the pink bollworm, Pectinophora gosypiella (Saunders), were irradiated with 19 and 30 krad of gamma radiation and mated with virgin, untreated females. Males treated with 19 or 30 krad of gamma radiation, at 2 to 24-h or 48 to 72-h postemergence, respectively, did not show reduced mating frequency compared with the untreated male controls. However, transfer of eupyrene sperm was reduced by treating 2 to 24-h postemergent males with 30 krad. Irradiation with 19 or 30 krad did not cause complete male sterility; 12.7 and 16.8 percent, respectively, of the fertilized eggs hatched. Eggs fertilized with irradiated sperm were examined cytologically and showed a retardation of embryonic development up to the blastoderm stage. From the blastoderm stage onward, development was parallel to those eggs which were fertilized by unirradiated sperm. Of the embryos in the groups treated with 30 and 19 krad, 51.3 to 66.6 percent, respectively, developed into fully differentiated, normal-appearing, prehatch embryos. The radiation-induced dominant lethal mutations were, generally, expressed very late in embryonic development

  2. Sigma virus and mutation in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Paquin, S.L.A.

    1977-01-01

    - The objectives of these experiments have been (1) to verify and evidence more fully the action of sigma in causing recessive lethal mutation on the X chromosome of Drosophila, both in the male and the female germ line; (2) to extend the study of sigma-induced recessive lethal mutation to the Drosophila autosomes; (3) to explore the possibility that this mutagenesis is site-directed; (4) to study the effects of sigma virus in conjunction with radiation in increasing non-disjunction and dominant lethality. The virus increases the rate of radiation-induced nondisjunction by altering meiotic chromosomal behavior. Percentage of non-disjunction with 500 rads of x-rays in the virus-free flies was 0.176, while in sigma-containing lines it was 0.333. With high doses of either x or neutron radiation, the presence of the virus enhances the frequency of dominant lethality. The difference is especially significant with the fast neutrons. The results indicate that sigma, and presumably other viruses, are indeed environmental mutagens and are, therefore, factors in the rate of background or spontaneous mutation

  3. Evolutionary invasion and escape in the presence of deleterious mutations.

    Directory of Open Access Journals (Sweden)

    Claude Loverdo

    Full Text Available Replicators such as parasites invading a new host species, species invading a new ecological niche, or cancer cells invading a new tissue often must mutate to adapt to a new environment. It is often argued that a higher mutation rate will favor evolutionary invasion and escape from extinction. However, most mutations are deleterious, and even lethal. We study the probability that the lineage will survive and invade successfully as a function of the mutation rate when both the initial strain and an adaptive mutant strain are threatened by lethal mutations. We show that mutations are beneficial, i.e. a non-zero mutation rate increases survival compared to the limit of no mutations, if in the no-mutation limit the survival probability of the initial strain is smaller than the average survival probability of the strains which are one mutation away. The mutation rate that maximizes survival depends on the characteristics of both the initial strain and the adaptive mutant, but if one strain is closer to the threshold governing survival then its properties will have greater influence. These conclusions are robust for more realistic or mechanistic depictions of the fitness landscapes such as a more detailed viral life history, or non-lethal deleterious mutations.

  4. Postirradiation expression of lethal mutations in an immortalized human keratinocyte cell line

    International Nuclear Information System (INIS)

    O'Reilly, S.; Mothersill, C.; Seymour, C.B.

    1994-01-01

    The quantification of the extent of delayed cell death and the rate and pattern of its occurrence in relation to the cell division cycle is important in radiotherapy and also in radiation transformation studies related to protection and dose limits. Here the numbers of lethal mutations occurring over 45 population doublings (clonal expansion to about 10 13 cells per cell originally surviving irradiation) was measured in an HPV 16 immortalized human keratinocyte cell lines used for transformation studies. The results showed that when postirradiation (dose range 1-6 Gy) growth curves were constructed, the difference in slopes could be accounted for entirely by correcting for the non-clonogenic fraction in the cell count, excluding a longer cell generation time as an explanation. When the cell loss was examined over the entire growth period of 6 weeks (about 45 doublings of the cell population), it was found to be dose dependent for the first two passages, but then to become more independent of dose. The results allow a time/cell generation dependent factor to be derived for the cell line and used in survival curve equations where effects of radiation are being measured at times distant from the original exposure. (author)

  5. Lethal and mutagenic effects of ion beams and γ-rays in Aspergillus oryzae

    International Nuclear Information System (INIS)

    Toyoshima, Yoshiyuki; Takahashi, Akemi; Tanaka, Hisaki; Watanabe, Jun; Mogi, Yoshinobu; Yamazaki, Tatsuo; Hamada, Ryoko; Iwashita, Kazuhiro; Satoh, Katsuya; Narumi, Issay

    2012-01-01

    Highlights: ► We investigated the effects of different LET radiation in A. oryzae. ► Both γ-rays and ion beams induced base substitutions, frameshifts, deletions. ► Both γ-rays and ion beams induced genome-wide large-scale mutations in A. oryzae. ► Some differences in the types and frequencies of mutations were found. ► Our results provide new basic insights into the mutation breeding of A. oryzae. - Abstract: Aspergillus oryzae is a fungus that is used widely in traditional Japanese fermentation industries. In this study, the lethal and mutagenic effects of different linear energy transfer (LET) radiation in freeze-dried conidia of A. oryzae were investigated. The lethal effect, which was evaluated by a 90% lethal dose, was dependent on the LET value of the ionizing radiation. The most lethal ionizing radiation among that tested was 12 C 5+ ion beams with an LET of 121 keV/μm. The 12 C 5+ ion beams had a 3.6-times higher lethal effect than low-LET (0.2 keV/μm) γ-rays. The mutagenic effect was evaluated by the frequency of selenate resistant mutants. 12 C 6+ ion beams with an LET of 86 keV/μm were the most effective in inducing selenate resistance. The mutant frequency following exposure to 12 C 6+ ion beams increased with an increase in dose and reached 3.47 × 10 −3 at 700 Gy. In the dose range from 0 to 700 Gy, 12 C 5+ ion beams were the second most effective in inducing selenate resistance, the mutant frequency of which reached a maximum peak (1.67 × 10 −3 ) at 400 Gy. To elucidate the characteristics of mutation induced by ionizing radiation, mutations in the sulphate permease gene (sB) and ATP sulfurylase gene (sC) loci, the loss of function of which results in a selenate resistant phenotype, were compared between 12 C 5+ ion beams and γ-rays. We detected all types of transversions and transitions. For frameshifts, the frequency of a +1 frameshift was the highest in all cases. Although the incidence of deletions >2 bp was generally low

  6. Radiation-induced dominant skeletal mutations in mice

    International Nuclear Information System (INIS)

    Selby, P.B.

    1979-01-01

    Skeletons were chosen for the attempt to determine the overall damage by radiation to one body system largely bacause they can be prepared readily for detailed study. Dominant mutations were of special interest because they are the type of mutations that would account for almost all damage induced in the early generations. The male offsprings derived from spermatogonial irradiation were used in the mutation-rate experiment, and the mutation frequency of 1.4% per gamete was found. The general dominant skeletal mutations are 1) the fusions of bones or other changes in individual bones, 2) the gross changes in bone shapes, usually caused by incomplete or too extensive bone growth, or 3) the shifts in the relative positions of bones. The recessive lethality in the period between implantation and birth can be recognized by the expected high death rate of implants in approximately 1/4 of the crosses that are between heterozygotes for a given mutation. The recessive lethal mutations may account for an important fraction of human genetic disorders owing to their dominant deleterious effects which represent only a small fraction, but because of their easy detection, they have been studied more than other dominants. At least 45, or 27%, of 164 dominant visibles in mice, ignoring those concerned with enzyme polymorphisms and immunological traits, appear to be recessive lethals. (Yamashita, S.)

  7. Tuning of the Lethal Response to Multiple Stressors with a Single-Site Mutation during Clinical Infection by Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Krishan Kumar

    2017-10-01

    Full Text Available The agr system of Staphylococcus aureus promotes invasion of host tissues, and as expected, agents that block agr quorum sensing have anti-infective properties. Paradoxically, agr-defective mutants are frequently recovered from patients, especially those persistently infected with S. aureus. We found that an agr deficiency increased survival of cultured bacteria during severe stress, such as treatment with gentamicin, ciprofloxacin, heat, or low pH. With daptomycin, deletion of agr decreased survival. Therefore, agr activity can be either detrimental or protective, depending on the type of lethal stress. Deletion of agr had no effect on the ability of the antimicrobials to block bacterial growth, indicating that agr effects are limited to lethal action. Thus, the effect of an agr deletion is on bacterial tolerance, not resistance. For gentamicin and daptomycin, activity can be altered by agr-regulated secreted factors. For ciprofloxacin, a detrimental function was downregulation of glutathione peroxidase (bsaA, an enzyme responsible for defense against oxidative stress. Deficiencies in agr and bsaA were epistatic for survival, consistent with agr having a destructive role mediated by reactive oxygen species. Enhanced susceptibility to lethal stress by wild-type agr, particularly antimicrobial stress, helps explain why inactivating mutations in S. aureus agr commonly occur in hospitalized patients during infection. Moreover, the agr quorum-sensing system of S. aureus provides a clinically relevant example in which a single-step change in the response to severe stress alters the evolutionary path of a pathogen during infection.

  8. An analysis of lethal and sublethal interactions among type I and type II pyrethroid pesticide mixtures using standard Hyalella azteca water column toxicity tests.

    Science.gov (United States)

    Hoffmann, Krista Callinan; Deanovic, Linda; Werner, Inge; Stillway, Marie; Fong, Stephanie; Teh, Swee

    2016-10-01

    A novel 2-tiered analytical approach was used to characterize and quantify interactions between type I and type II pyrethroids in Hyalella azteca using standardized water column toxicity tests. Bifenthrin, permethrin, cyfluthrin, and lambda-cyhalothrin were tested in all possible binary combinations across 6 experiments. All mixtures were analyzed for 4-d lethality, and 2 of the 6 mixtures (permethrin-bifenthrin and permethrin-cyfluthrin) were tested for subchronic 10-d lethality and sublethal effects on swimming motility and growth. Mixtures were initially analyzed for interactions using regression analyses, and subsequently compared with the additive models of concentration addition and independent action to further characterize mixture responses. Negative interactions (antagonistic) were significant in 2 of the 6 mixtures tested, including cyfluthrin-bifenthrin and cyfluthrin-permethrin, but only on the acute 4-d lethality endpoint. In both cases mixture responses fell between the additive models of concentration addition and independent action. All other mixtures were additive across 4-d lethality, and bifenthrin-permethrin and cyfluthrin-permethrin were also additive in terms of subchronic 10-d lethality and sublethal responses. Environ Toxicol Chem 2016;35:2542-2549. © 2016 SETAC. © 2016 SETAC.

  9. Lethal and mutagenic effects of ion beams and γ-rays in Aspergillus oryzae.

    Science.gov (United States)

    Toyoshima, Yoshiyuki; Takahashi, Akemi; Tanaka, Hisaki; Watanabe, Jun; Mogi, Yoshinobu; Yamazaki, Tatsuo; Hamada, Ryoko; Iwashita, Kazuhiro; Satoh, Katsuya; Narumi, Issay

    2012-12-01

    Aspergillus oryzae is a fungus that is used widely in traditional Japanese fermentation industries. In this study, the lethal and mutagenic effects of different linear energy transfer (LET) radiation in freeze-dried conidia of A. oryzae were investigated. The lethal effect, which was evaluated by a 90% lethal dose, was dependent on the LET value of the ionizing radiation. The most lethal ionizing radiation among that tested was (12)C(5+) ion beams with an LET of 121keV/μm. The (12)C(5+) ion beams had a 3.6-times higher lethal effect than low-LET (0.2keV/μm) γ-rays. The mutagenic effect was evaluated by the frequency of selenate resistant mutants. (12)C(6+) ion beams with an LET of 86keV/μm were the most effective in inducing selenate resistance. The mutant frequency following exposure to (12)C(6+) ion beams increased with an increase in dose and reached 3.47×10(-3) at 700Gy. In the dose range from 0 to 700Gy, (12)C(5+) ion beams were the second most effective in inducing selenate resistance, the mutant frequency of which reached a maximum peak (1.67×10(-3)) at 400Gy. To elucidate the characteristics of mutation induced by ionizing radiation, mutations in the sulphate permease gene (sB) and ATP sulfurylase gene (sC) loci, the loss of function of which results in a selenate resistant phenotype, were compared between (12)C(5+) ion beams and γ-rays. We detected all types of transversions and transitions. For frameshifts, the frequency of a +1 frameshift was the highest in all cases. Although the incidence of deletions >2bp was generally low, deletions >20bp were characteristic for (12)C(5+) ion beams. γ-rays had a tendency to generate mutants carrying a multitude of mutations in the same locus. Both forms of radiation also induced genome-wide large-scale mutations including chromosome rearrangements and large deletions. These results provide new basic insights into the mutation breeding of A. oryzae using ionizing radiation. Crown Copyright © 2012. Published

  10. The Mutational Robustness of Influenza A Virus.

    Directory of Open Access Journals (Sweden)

    Elisa Visher

    2016-08-01

    Full Text Available A virus' mutational robustness is described in terms of the strength and distribution of the mutational fitness effects, or MFE. The distribution of MFE is central to many questions in evolutionary theory and is a key parameter in models of molecular evolution. Here we define the mutational fitness effects in influenza A virus by generating 128 viruses, each with a single nucleotide mutation. In contrast to mutational scanning approaches, this strategy allowed us to unambiguously assign fitness values to individual mutations. The presence of each desired mutation and the absence of additional mutations were verified by next generation sequencing of each stock. A mutation was considered lethal only after we failed to rescue virus in three independent transfections. We measured the fitness of each viable mutant relative to the wild type by quantitative RT-PCR following direct competition on A549 cells. We found that 31.6% of the mutations in the genome-wide dataset were lethal and that the lethal fraction did not differ appreciably between the HA- and NA-encoding segments and the rest of the genome. Of the viable mutants, the fitness mean and standard deviation were 0.80 and 0.22 in the genome-wide dataset and best modeled as a beta distribution. The fitness impact of mutation was marginally lower in the segments coding for HA and NA (0.88 ± 0.16 than in the other 6 segments (0.78 ± 0.24, and their respective beta distributions had slightly different shape parameters. The results for influenza A virus are remarkably similar to our own analysis of CirSeq-derived fitness values from poliovirus and previously published data from other small, single stranded DNA and RNA viruses. These data suggest that genome size, and not nucleic acid type or mode of replication, is the main determinant of viral mutational fitness effects.

  11. Tissue-specific mosaicism for a lethal osteogenesis imperfecta COL1A1 mutation causes mild OI/EDS overlap syndrome.

    Science.gov (United States)

    Symoens, Sofie; Steyaert, Wouter; Demuynck, Lynn; De Paepe, Anne; Diderich, Karin E M; Malfait, Fransiska; Coucke, Paul J

    2017-04-01

    Type I collagen is the predominant protein of connective tissues such as skin and bone. Mutations in the type I collagen genes (COL1A1 and COL1A2) mainly cause osteogenesis imperfecta (OI). We describe a patient with clinical signs of Ehlers-Danlos syndrome (EDS), including fragile skin, easy bruising, recurrent luxations, and fractures resembling mild OI. Biochemical collagen analysis of the patients' dermal fibroblasts showed faint overmodification of the type I collagen bands, a finding specific for structural defects in type I collagen. Bidirectional Sanger sequencing detected an in-frame deletion in exon 44 of COL1A1 (c.3150_3158del), resulting in the deletion of three amino acids (p.Ala1053_Gly1055del) in the collagen triple helix. This COL1A1 mutation was hitherto identified in four probands with lethal OI, and never in EDS patients. As the peaks on the electropherogram corresponding to the mutant allele were decreased in intensity, we performed next generation sequencing of COL1A1 to study mosaicism in skin and blood. While approximately 9% of the reads originating from fibroblast gDNA harbored the COL1A1 deletion, the deletion was not detected in gDNA from blood. Most likely, the mild clinical symptoms observed in our patient can be explained by the mosaic state of the mutation. © 2017 Wiley Periodicals, Inc.

  12. Effect of lethality on the extinction and on the error threshold of quasispecies.

    Science.gov (United States)

    Tejero, Hector; Marín, Arturo; Montero, Francisco

    2010-02-21

    In this paper the effect of lethality on error threshold and extinction has been studied in a population of error-prone self-replicating molecules. For given lethality and a simple fitness landscape, three dynamic regimes can be obtained: quasispecies, error catastrophe, and extinction. Using a simple model in which molecules are classified as master, lethal and non-lethal mutants, it is possible to obtain the mutation rates of the transitions between the three regimes analytically. The numerical resolution of the extended model, in which molecules are classified depending on their Hamming distance to the master sequence, confirms the results obtained in the simple model and shows how an error catastrophe regime changes when lethality is taken in account. (c) 2009 Elsevier Ltd. All rights reserved.

  13. Lethal and mutagenic effects of ion beams and γ-rays in Aspergillus oryzae

    Energy Technology Data Exchange (ETDEWEB)

    Toyoshima, Yoshiyuki, E-mail: toyoshima@yamasa.com [Soy Sauce Laboratory, Yamasa Corporation, 2-10-1 Araoicho, Choshi, Chiba 288-0056 (Japan); Takahashi, Akemi; Tanaka, Hisaki; Watanabe, Jun; Mogi, Yoshinobu; Yamazaki, Tatsuo [Soy Sauce Laboratory, Yamasa Corporation, 2-10-1 Araoicho, Choshi, Chiba 288-0056 (Japan); Hamada, Ryoko; Iwashita, Kazuhiro [Fundamental Research Division, National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima 739-0046 (Japan); Satoh, Katsuya; Narumi, Issay [Ion Beam Mutagenesis Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2012-12-15

    Highlights: ► We investigated the effects of different LET radiation in A. oryzae. ► Both γ-rays and ion beams induced base substitutions, frameshifts, deletions. ► Both γ-rays and ion beams induced genome-wide large-scale mutations in A. oryzae. ► Some differences in the types and frequencies of mutations were found. ► Our results provide new basic insights into the mutation breeding of A. oryzae. - Abstract: Aspergillus oryzae is a fungus that is used widely in traditional Japanese fermentation industries. In this study, the lethal and mutagenic effects of different linear energy transfer (LET) radiation in freeze-dried conidia of A. oryzae were investigated. The lethal effect, which was evaluated by a 90% lethal dose, was dependent on the LET value of the ionizing radiation. The most lethal ionizing radiation among that tested was {sup 12}C{sup 5+} ion beams with an LET of 121 keV/μm. The {sup 12}C{sup 5+} ion beams had a 3.6-times higher lethal effect than low-LET (0.2 keV/μm) γ-rays. The mutagenic effect was evaluated by the frequency of selenate resistant mutants. {sup 12}C{sup 6+} ion beams with an LET of 86 keV/μm were the most effective in inducing selenate resistance. The mutant frequency following exposure to {sup 12}C{sup 6+} ion beams increased with an increase in dose and reached 3.47 × 10{sup −3} at 700 Gy. In the dose range from 0 to 700 Gy, {sup 12}C{sup 5+} ion beams were the second most effective in inducing selenate resistance, the mutant frequency of which reached a maximum peak (1.67 × 10{sup −3}) at 400 Gy. To elucidate the characteristics of mutation induced by ionizing radiation, mutations in the sulphate permease gene (sB) and ATP sulfurylase gene (sC) loci, the loss of function of which results in a selenate resistant phenotype, were compared between {sup 12}C{sup 5+} ion beams and γ-rays. We detected all types of transversions and transitions. For frameshifts, the frequency of a +1 frameshift was the highest in all

  14. Comparison of UV action spectra for lethality and mutation in Salmonella typhimurium using a broad band source and monochromatic radiations

    International Nuclear Information System (INIS)

    Calkins, John; Selby, Christopher; Enoch, H.G.

    1987-01-01

    The UV-B region (280-320 nm) is thought to be primarily responsible for the mutagenic, lethal, and carcinogenic effects of solar radiation. We have conducted UV-B action spectroscopy for mutagenesis and survival of Ames' Salmonella typhimurium strain TA98 (uvrB, pKM101) using both monochromatic radiation from a dye laser and broader bandwidth radiation emitted from FS-20 sunlamps. A series of optical filters having different transmission cut-offs together with the sunlamp source provided bandwidths having successively less short wavelength components from which a ''broad band'' action spectrum was deduced. The two sets of action spectra differed both qualitatively and quantitatively: in comparison to the monochromatic action spectra, the ''broad band'' spectra showed up to a 200-fold reduced efficiency for both mutation induction and lethality by UV-B wavelengths. These results suggest a large protective effect of the background UV-A and/or visible radiations which were present during the broad spectrum irradiations and which are also present in solar radiation. Additional experiments show that to the extent tested this protective effect is not due to photo-reactivation or irradiance (dose rate) effects. (author)

  15. Effects of a chromosome-3 mutator gene on radiation-induced mutability in Drosophila melanogaster females

    Energy Technology Data Exchange (ETDEWEB)

    Sankaranarayanan, K. (Rijksuniversiteit Leiden (Netherlands). Dept. of Radiation Genetics and Chemical Mutagenesis; Cohen (J.A.) Inst. voor Radiopathologie en Stralenbescherming, Leiden (Netherlands))

    1982-01-01

    A series of X-irradiation experiments was carried out using Drosophila melanogaster females homozygous for a third chromosome mutator gene and females which had a similar genetic background except that the mutator-bearing third chromosomes were substituted by normal wild-type chromosomes. In the present work, the sensitivity of the pre-meiotic germ cells of mutator and normal females to the X-ray induction (2000 R) of sex-linked recessive lethals was studied. In addition, experiments were conducted to examine the sensitivity of the immature (stage 7; prophase I of meiosis) oocytes of both kinds of females to the induction of dominant lethals, X-linked recessive lethals and X-chromosome losses. The results show that in pre-meiotic germ cells, the frequencies of radiation-induced recessive lethals are similar in both kinds of females. However, the proportion of these mutations that occur in clusters of size 3 and higher, is higher in mutator than in normal females. In stage-7 oocytes, the frequencies of radiation-induced dominant lethals and sex-linked recessive lethals were similar in both kinds of females. The X-loss frequencies however, were consistently higher in mutator females although statistical significance was obtained only at higher exposures (3000 and 3750 R) and not at lower ones (750-2250 R). Possible reasons for the discrepancy between the present results and those of Gold and Green with respect to pre-meiotic germ cells are discussed.

  16. Loss of ATM kinase activity leads to embryonic lethality in mice

    DEFF Research Database (Denmark)

    Daniel, J.A.; Pellegrini, M.; Filsuf, D.

    2012-01-01

    whether the functions of ATM are mediated solely by its kinase activity, we generated two mouse models containing single, catalytically inactivating point mutations in Atm. In this paper, we show that, in contrast to Atm-null mice, both D2899A and Q2740P mutations cause early embryonic lethality in mice......, without displaying dominant-negative interfering activity. Using conditional deletion, we find that the D2899A mutation in adult mice behaves largely similar to Atm-null cells but shows greater deficiency in homologous recombination (HR) as measured by hypersensitivity to poly (adenosine diphosphate...

  17. Comparative study of different sexis mutability: recessive sex-linked and dominant lethals in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Vatti, K.V.; Dzhaparidze, L.A.; Mamon, L.A.

    1980-01-01

    The frequency of recessive sex-linked lethal mutations (RSLLM) and those realizing in embryogenesis of dominant lethals, which form in oo- and spermatogenesis of Drosophila and fly productivity under the effect of X-rays and N-nitroso-N methylourea (NMU), is studied. In the case of effect of both mutagens RSLLM form in spermatocytes with higher frequency as compared with oocytes. Dominant lethal mutations (DLM) during irradiation are also often registered in spermatocytes. NMU induces DLM in mitotic male cells with a very high frequency but is not effective during the effect on oocytes. When both mutagens affect males and X-rays affect females, the decrease of productivity is mainly conditioned by DLM. As NMU does not induce DLM in females realizing in embryogenesis but reduces productivity, a later lethal realization connected with their different nature is supposed. Differences in mole and female mutability found in the course of X-ray and NMU effect are discussed in connection with peculiarities of their mitotic cells and the nature of effect of mutagens applied [ru

  18. Mutation formation and inactivation of mammalian cells by heavy ions. 3

    International Nuclear Information System (INIS)

    Obaturov, G.M.

    1984-01-01

    Using parameter values of equations for cell inactivation cross-sections, theoretical curves were calculated for cell radiosensitivity (α 1 ) in dependence on LET. There is good agreement between calculated and experimental values of α 1 . The yield of lethal mutations of 1st and 2nd types and their sum in dependence on LET was also calculated. It was shown that for low LET ions cell radiosensitivity is caused by the 2nd type of mutation, independent of LET, proportional to DNA mass and inversely proportional to repair rate. For high LET ions when lethal mutation number per one track is more than one, α 1 is caused by the 1st type of mutation, proportional to cell nuclear cross-section and inversely proportional to LET. For intermediate LET ions α 1 is a complicated function of LET. It is follows from the equations that more than 17% of double strand breaks (DSB) take part in lethal mutation formation. Others are either repaired or formed in the process of experimentally determined DSB yield. (author)

  19. Analysis of recessive sex-linked lethal mutations in genetically different strains of Drosophila melanogaster ms and w irradiated in the five-kilometer zone of the Chernobyl meltdown

    International Nuclear Information System (INIS)

    Aslanyan, M.M.; Kim, A.I.; Magomedova, M.A.; Fatkulbayanova, N.L.

    1994-01-01

    The frequency of induced and spontaneous recessive sex-linked lethal mutations (RSLLM) in Drosophila melanogaster strains w and ms was estimated after their chronic irradiation in the five-kilometer zone of the Chernobyl' meltdown. The mutagenic effect of relatively low radiation doses was analyzed. In an experiment conducted in 1990, a significant increase in the RSLLM frequency was recorded, while, in 1991, no significant difference between the experiment and control was found

  20. A novel mutation in LEPRE1 that eliminates only the KDEL ER- retrieval sequence causes non-lethal osteogenesis imperfecta.

    Directory of Open Access Journals (Sweden)

    Masaki Takagi

    Full Text Available Prolyl 3-hydroxylase 1 (P3H1, encoded by the LEPRE1 gene, forms a molecular complex with cartilage-associated protein (CRTAP and cyclophilin B (encoded by PPIB in the endoplasmic reticulum (ER. This complex is responsible for one step in collagen post-translational modification, the prolyl 3-hydroxylation of specific proline residues, specifically α1(I Pro986. P3H1 provides the enzymatic activity of the complex and has a Lys-Asp-Glu-Leu (KDEL ER-retrieval sequence at the carboxyl terminus. Loss of function mutations in LEPRE1 lead to the Pro986 residue remaining unmodified and lead to slow folding and excessive helical post-translational modification of type I collagen, which is seen in both dominant and recessive osteogenesis imperfecta (OI. Here, we present the case of siblings with non-lethal OI due to novel compound heterozygous mutations in LEPRE1 (c.484delG and c.2155dupC. The results of RNA analysis and real-time PCR suggest that mRNA with c.2155dupC escapes from nonsense-mediated RNA decay. Without the KDEL ER- retrieval sequence, the product of the c.2155dupC variant cannot be retained in the ER. This is the first report of a mutation in LEPRE1 that eliminates only the KDEL ER-retrieval sequence, whereas other functional domains remain intact. Our study shows, for the first time, that the KDEL ER- retrieval sequence is essential for P3H1 functionality and that a defect in KDEL is sufficient for disease onset.

  1. Synergism between caffeine and γ-radiation in the induction of dominant lethal mutations in oocytes and spermatozoa of Musca domestica

    International Nuclear Information System (INIS)

    Targa, H.J.

    1983-01-01

    Caffeine was studied with regard to its synergism with γ-radiation in the induction of dominant lethal mutations in S14 oocytes and mature spermatozoa of M. domestica. In S14 oocytes an increase in the frequency of such a type of mutation was observed only when the exposure to γ-radiation followed a pretreatment with a diet containing 0.2% of caffeine. Negative results were obtained with (a) post-treatment with the same kind of diet, (b) pretreatment with diets containing 0.1 and 0.02% of caffeine and (c) exposure to the radiation 6 h after interruption of the feeding treatment with the diet containing 0.2% of caffeine. Such influence of the conditions under which the treatment is performed and the synergistic effects is probably related to the food intake pattern and the rapid metabolism of the caffeine. When the 0.2% caffeine pretreatment was combined with an exposure of the oocytes to variable doses of γ-radiation, the increments in the mutations observed seemed to be negatively correlated to the radiation doses used. Also, under such conditions, the dose/survival relationship fits well an exponential curve expressed by in y=-0.866chi. With mature spermatozoa, synergism by caffeine was found only when the females, after having been mated with the irradiated males, were fed for 24 h on a diet supplemented with 0.2% of caffeine. (orig.)

  2. Estimation of mutation rates induced by large doses of gamma, proton and neutron irradiation of the X-chromosome of the nematode Panagrellus redivivus

    International Nuclear Information System (INIS)

    Denich, K.T.R.; Samoiloff, M.R.

    1984-01-01

    The radiation-resistant free-living nematode Panagrellus redivivus was used to study mutation rates in oocytes, following gamma, proton and neutron irradiation in the dose range 45-225 grays. γ-Radiation produced approximately 0.001 lethal X-chromosomes per gray over the range tested. Proton or neutron irradiation produced approximately 0.003 lethal X-chromosomes per gray at lower doses, with the mutation rate dropping to 0.001 lethal X-chromosome per gray at the higher doses. These results suggest a dose-dependent mutation-repair system. Cell lethality was also examined. γ-Radiation produced the greatest amount of cell lethality at all doses, while neutron irradiation had no cell lethal effect at any of the doses examined. (orig.)

  3. Mutations blocking side chain assembly, polymerization, or transport of a Wzy-dependent Streptococcus pneumoniae capsule are lethal in the absence of suppressor mutations and can affect polymer transfer to the cell wall.

    Science.gov (United States)

    Xayarath, Bobbi; Yother, Janet

    2007-05-01

    Extracellular polysaccharides of many bacteria are synthesized by the Wzy polymerase-dependent mechanism, where long-chain polymers are assembled from undecaprenyl-phosphate-linked repeat units on the outer face of the cytoplasmic membrane. In gram-positive bacteria, Wzy-dependent capsules remain largely cell associated via membrane and peptidoglycan linkages. Like many Wzy-dependent capsules, the Streptococcus pneumoniae serotype 2 capsule is branched. In this study, we found that deletions of cps2K, cps2J, or cps2H, which encode a UDP-glucose dehydrogenase necessary for side chain synthesis, the putative Wzx transporter (flippase), and the putative Wzy polymerase, respectively, were obtained only in the presence of suppressor mutations. Most of the suppressor mutations were in cps2E, which encodes the initiating glycosyltransferase for capsule synthesis. The cps2K mutants containing the suppressor mutations produced low levels of high-molecular-weight polymer that was detected only in membrane fractions. cps2K-repaired mutants exhibited only modest increases in capsule production due to the effect of the secondary mutation, but capsule was detectable in both membrane and cell wall fractions. Lethality of the cps2K, cps2J, and cps2H mutations was likely due to sequestration of undecaprenyl-phosphate in the capsule pathway and either preclusion of its turnover for utilization in essential pathways or destabilization of the membrane due to an accumulation of lipid-linked intermediates. The results demonstrate that proper polymer assembly requires not only a functional transporter and polymerase but also complete repeat units. A central role for the initiating glycosyltransferase in controlling capsule synthesis is also suggested.

  4. Two microcephaly-associated novel missense mutations in CASK specifically disrupt the CASK-neurexin interaction.

    Science.gov (United States)

    LaConte, Leslie E W; Chavan, Vrushali; Elias, Abdallah F; Hudson, Cynthia; Schwanke, Corbin; Styren, Katie; Shoof, Jonathan; Kok, Fernando; Srivastava, Sarika; Mukherjee, Konark

    2018-03-01

    Deletion and truncation mutations in the X-linked gene CASK are associated with severe intellectual disability (ID), microcephaly and pontine and cerebellar hypoplasia in girls (MICPCH). The molecular origin of CASK-linked MICPCH is presumed to be due to disruption of the CASK-Tbr-1 interaction. This hypothesis, however, has not been directly tested. Missense variants in CASK are typically asymptomatic in girls. We report three severely affected girls with heterozygous CASK missense mutations (M519T (2), G659D (1)) who exhibit ID, microcephaly, and hindbrain hypoplasia. The mutation M519T results in the replacement of an evolutionarily invariant methionine located in the PDZ signaling domain known to be critical for the CASK-neurexin interaction. CASK M519T is incapable of binding to neurexin, suggesting a critically important role for the CASK-neurexin interaction. The mutation G659D is in the SH3 (Src homology 3) domain of CASK, replacing a semi-conserved glycine with aspartate. We demonstrate that the CASK G659D mutation affects the CASK protein in two independent ways: (1) it increases the protein's propensity to aggregate; and (2) it disrupts the interface between CASK's PDZ (PSD95, Dlg, ZO-1) and SH3 domains, inhibiting the CASK-neurexin interaction despite residing outside of the domain deemed critical for neurexin interaction. Since heterozygosity of other aggregation-inducing mutations (e.g., CASK W919R ) does not produce MICPCH, we suggest that the G659D mutation produces microcephaly by disrupting the CASK-neurexin interaction. Our results suggest that disruption of the CASK-neurexin interaction, not the CASK-Tbr-1 interaction, produces microcephaly and cerebellar hypoplasia. These findings underscore the importance of functional validation for variant classification.

  5. Rechecking the Centrality-Lethality Rule in the Scope of Protein Subcellular Localization Interaction Networks.

    Directory of Open Access Journals (Sweden)

    Xiaoqing Peng

    Full Text Available Essential proteins are indispensable for living organisms to maintain life activities and play important roles in the studies of pathology, synthetic biology, and drug design. Therefore, besides experiment methods, many computational methods are proposed to identify essential proteins. Based on the centrality-lethality rule, various centrality methods are employed to predict essential proteins in a Protein-protein Interaction Network (PIN. However, neglecting the temporal and spatial features of protein-protein interactions, the centrality scores calculated by centrality methods are not effective enough for measuring the essentiality of proteins in a PIN. Moreover, many methods, which overfit with the features of essential proteins for one species, may perform poor for other species. In this paper, we demonstrate that the centrality-lethality rule also exists in Protein Subcellular Localization Interaction Networks (PSLINs. To do this, a method based on Localization Specificity for Essential protein Detection (LSED, was proposed, which can be combined with any centrality method for calculating the improved centrality scores by taking into consideration PSLINs in which proteins play their roles. In this study, LSED was combined with eight centrality methods separately to calculate Localization-specific Centrality Scores (LCSs for proteins based on the PSLINs of four species (Saccharomyces cerevisiae, Homo sapiens, Mus musculus and Drosophila melanogaster. Compared to the proteins with high centrality scores measured from the global PINs, more proteins with high LCSs measured from PSLINs are essential. It indicates that proteins with high LCSs measured from PSLINs are more likely to be essential and the performance of centrality methods can be improved by LSED. Furthermore, LSED provides a wide applicable prediction model to identify essential proteins for different species.

  6. Precise estimates of mutation rate and spectrum in yeast

    Science.gov (United States)

    Zhu, Yuan O.; Siegal, Mark L.; Hall, David W.; Petrov, Dmitri A.

    2014-01-01

    Mutation is the ultimate source of genetic variation. The most direct and unbiased method of studying spontaneous mutations is via mutation accumulation (MA) lines. Until recently, MA experiments were limited by the cost of sequencing and thus provided us with small numbers of mutational events and therefore imprecise estimates of rates and patterns of mutation. We used whole-genome sequencing to identify nearly 1,000 spontaneous mutation events accumulated over ∼311,000 generations in 145 diploid MA lines of the budding yeast Saccharomyces cerevisiae. MA experiments are usually assumed to have negligible levels of selection, but even mild selection will remove strongly deleterious events. We take advantage of such patterns of selection and show that mutation classes such as indels and aneuploidies (especially monosomies) are proportionately much more likely to contribute mutations of large effect. We also provide conservative estimates of indel, aneuploidy, environment-dependent dominant lethal, and recessive lethal mutation rates. To our knowledge, for the first time in yeast MA data, we identified a sufficiently large number of single-nucleotide mutations to measure context-dependent mutation rates and were able to (i) confirm strong AT bias of mutation in yeast driven by high rate of mutations from C/G to T/A and (ii) detect a higher rate of mutation at C/G nucleotides in two specific contexts consistent with cytosine methylation in S. cerevisiae. PMID:24847077

  7. Dominant lethal effect of gamma radiation of 60Co in Biomphalaria glabrata (SAY, 1818)

    International Nuclear Information System (INIS)

    Tallarico, Lenita de Freitas

    2003-01-01

    Germ cell mutations are used in ecotoxicological studies as biomarkers of population effects and indicators of ecological changes. Biomphalaria glabrata, a freshwater mollusk, is a good experimental model for biomonitoring studies due to its biological characteristics and the ecological importance of this invertebrate group. The dominant lethal test was established in B. glabrata for the detection of germ cell mutations. Results with chemical mutagens showed that this system is efficient, specific and sensitive in the evaluation of germ cell mutations induced by reference mutagens. In this work, the dominant lethal effects of gamma radiation of 60 Co were studied. A preliminary experiment was done to establish the dose range and to estimate the chronology of spermatogenesis in B. glabrata. This estimate is possible because of the uniformity in response to ionizing radiation between germ cells at homologous stages of spermatogenesis in widely different species. In general, pre-meiotic germ cells are less sensitive to the induction of lethal dominant mutations than post-meiotic cells. This effect can be attributed to: young gametogenic cells - mitotically active - have greater repair ability from sub-lethal DNA damage and there is a selective elimination of the damaged cells. In our system: induction of lethal dominant mutations causes an increase in the frequency of malformations and, cytotoxic effect is displayed as a reduction in the crossing rates. Total duration of spermatogenesis was estimated in approximately 36 days, with the following distribution of stages: 1 to 13 days - spermatogonia, 14 to 20 days - spermatocytes, 21 to 36 days - spermatids and spermatozoa. Based on this chronology, irradiated wild-type snails with 2,5; 10 and 20Gy and crossed with non-irradiated albino snails after 7, 17, 23, 30 and 36 days. The frequencies of malformations in the heterozygous wild-type offspring of the nonirradiated albino snails were used as indicator of germ cell

  8. The Color Mutation Model for soft interaction

    International Nuclear Information System (INIS)

    Hwa, R.C.

    1998-01-01

    A comprehensive model for soft interaction is presented. It overcomes all the shortcomings of the existing models - in particular, the failure of Fritiof and Venus models in predicting the correct multiplicity fluctuations as observed in the intermittency data. The Color Mutation Model incorporates all the main features of hadronic interaction: eikonal formalism, parton model, evolution in color space according to QCD, branching of color neutral clusters, contraction due to confinement forces, dynamical self-similarity, resonance production, and power-law behavior of factorial moments. (author)

  9. Neutron-induced mutation experiments. Comprehensive report, March 1, 1977-August 31, 1980

    International Nuclear Information System (INIS)

    Abrahamson, S.

    1981-02-01

    Neutron-induced X-linked lethal mutations were induced in Drosophila melanogaster oogonia at energies of .43, .66, 2, and 6 MeV. The 37 irradiations were carried out at the RARAF facility at Brookhaven National Laboratory. RBE's (relative to x-ray data similarly collected) were calculated to be .43 MeV to 4.8; .66 MeV to 4.0; 2 MeV to 3.2; and 6 MeV to 2.9. The dose/frequency response curves for all energies best fit a linear rather than a linear-quadratic model following regression analyses. Control data for specific locus mutations (420,000 tests) were gathered. This data, combined with other data (both X-linked lethal and specific locus) has been used to estimate the number of loci on the X-chromosome of Drosophila which can mutate to recessive lethals

  10. Deletion of Indian hedgehog gene causes dominant semi-lethal Creeper trait in chicken

    Science.gov (United States)

    Jin, Sihua; Zhu, Feng; Wang, Yanyun; Yi, Guoqiang; Li, Junying; Lian, Ling; Zheng, Jiangxia; Xu, Guiyun; Jiao, Rengang; Gong, Yu; Hou, Zhuocheng; Yang, Ning

    2016-01-01

    The Creeper trait, a classical monogenic phenotype of chicken, is controlled by a dominant semi-lethal gene. This trait has been widely cited in the genetics and molecular biology textbooks for illustrating autosomal dominant semi-lethal inheritance over decades. However, the genetic basis of the Creeper trait remains unknown. Here we have utilized ultra-deep sequencing and extensive analysis for targeting causative mutation controlling the Creeper trait. Our results indicated that the deletion of Indian hedgehog (IHH) gene was only found in the whole-genome sequencing data of lethal embryos and Creeper chickens. Large scale segregation analysis demonstrated that the deletion of IHH was fully linked with early embryonic death and the Creeper trait. Expression analysis showed a much lower expression of IHH in Creeper than wild-type chickens. We therefore suggest the deletion of IHH to be the causative mutation for the Creeper trait in chicken. Our findings unravel the genetic basis of the longstanding Creeper phenotype mystery in chicken as the same gene also underlies bone dysplasia in human and mouse, and thus highlight the significance of IHH in animal development and human haploinsufficiency disorders. PMID:27439785

  11. Parasites and deleterious mutations: interactions influencing the evolutionary maintenance of sex.

    Science.gov (United States)

    Park, A W; Jokela, J; Michalakis, Y

    2010-05-01

    The restrictive assumptions associated with purely genetic and purely ecological mechanisms suggest that neither of the two forces, in isolation, can offer a general explanation for the evolutionary maintenance of sex. Consequently, attention has turned to pluralistic models (i.e. models that apply both ecological and genetic mechanisms). Existing research has shown that combining mutation accumulation and parasitism allows restrictive assumptions about genetic and parasite parameter values to be relaxed while still predicting the maintenance of sex. However, several empirical studies have shown that deleterious mutations and parasitism can reduce fitness to a greater extent than would be expected if the two acted independently. We show how interactions between these genetic and ecological forces can completely reverse predictions about the evolution of reproductive modes. Moreover, we demonstrate that synergistic interactions between infection and deleterious mutations can render sex evolutionarily stable even when there is antagonistic epistasis among deleterious mutations, thereby widening the conditions for the evolutionary maintenance of sex.

  12. Lethal action of ultraviolet and visible (blue violet) radiations at defined wavelengths on human lymphoblastoid cells; action spectra and interaction sites

    Energy Technology Data Exchange (ETDEWEB)

    Tyrrell, R.M.; Werfelli, P.; Moraes, E.C. (Institut Suisse de Recherches Experimentales sur le Cancer, Lausanne)

    1984-02-01

    The repair proficient human lymphoblastoid line (TK6) has been employed to construct an action spectrum for the lethal action of ultraviolet (UV) radiation in the range 254 to 434 nm and to examine possible interactions between longer (334, 365 and 405 nm) and shorter wavelength (254 and 313 nm) radiations. The action spectrum follows a DNA absorption spectrum fairly closely out to 360 nm. As in previously determined lethal action spectra for procaryotic and eucaryotic cell populations, there is a broad shoulder in the 334 to 405 nm region which could reflect the existence of either (a) a non-DNA chromophore or (b) a unique photochemical reaction in the DNA over this region. Pre-treatment with radiation at 334 or 365 nm causes either a slight sensitivity to (low fluences) or protection from (higher fluences) subsequent exposure to radiation at a shorter wavelength (254 or 313 nm). Pre-irradiation at a visible wavelength (405 nm) at all fluence levels employed sensitizes the populations to treatment with 254 or 313 nm radiations. These interactions will influence the lethal outcome of cellular exposure to broad-band radiation sources.

  13. Lethal action of ultraviolet and visible (blue violet) radiations at defined wavelengths on human lymphoblastoid cells; action spectra and interaction sites

    International Nuclear Information System (INIS)

    Tyrrell, R.M.; Werfelli, P.; Moraes, E.C.

    1984-01-01

    The repair proficient human lymphoblastoid line (TK6) has been employed to construct an action spectrum for the lethal action of ultraviolet (UV) radiation in the range 254 to 434 nm and to examine possible interactions between longer (334, 365 and 405 nm) and shorter wavelength (254 and 313 nm) radiations. The action spectrum follows a DNA absorption spectrum fairly closely out to 360 nm. As in previously determined lethal action spectra for procaryotic and eucaryotic cell populations, there is a broad shoulder in the 334 to 405 nm region which could reflect the existence of either (a) a non-DNA chromophore or (b) a unique photochemical reaction in the DNA over this region. Pre-treatment with radiation at 334 or 365 nm causes either a slight sensitivity to (low fluences) or protection from (higher fluences) subsequent exposure to radiation at a shorter wavelength (254 or 313 nm). Pre-irradiation at a visible wavelength (405 nm) at all fluence levels employed sensitizes the populations to treatment with 254 or 313 nm radiations. These interactions will influence the lethal outcome of cellular exposure to broad-band radiation sources. (author)

  14. A screen for F1 hybrid male rescue reveals no major-effect hybrid lethality loci in the Drosophila melanogaster autosomal genome.

    Science.gov (United States)

    Cuykendall, Tawny N; Satyaki, P; Ji, Shuqing; Clay, Derek M; Edelman, Nathaniel B; Kimchy, Alexandra; Li, Ling-Hei; Nuzzo, Erin A; Parekh, Neil; Park, Suna; Barbash, Daniel A

    2014-10-27

    Hybrid sons between Drosophila melanogaster females and D. simulans males die as 3rd instar larvae. Two genes, D. melanogaster Hybrid male rescue (Hmr) on the X chromosome, and D. simulans Lethal hybrid rescue (Lhr) on chromosome II, interact to cause this lethality. Loss-of-function mutations in either gene suppress lethality, but several pieces of evidence suggest that additional factors are required for hybrid lethality. Here we screen the D. melanogaster autosomal genome by using the Bloomington Stock Center Deficiency kit to search for additional regions that can rescue hybrid male lethality. Our screen is designed to identify putative hybrid incompatibility (HI) genes similar to Hmr and Lhr which, when removed, are dominant suppressors of lethality. After screening 89% of the autosomal genome, we found no regions that rescue males to the adult stage. We did, however, identify several regions that rescue up to 13% of males to the pharate adult stage. This weak rescue suggests the presence of multiple minor-effect HI loci, but we were unable to map these loci to high resolution, presumably because weak rescue can be masked by genetic background effects. We attempted to test one candidate, the dosage compensation gene male specific lethal-3 (msl-3), by using RNA interference with short hairpin microRNA constructs targeted specifically against D. simulans msl-3 but failed to achieve knockdown, in part due to off-target effects. We conclude that the D. melanogaster autosomal genome likely does not contain additional major-effect HI loci. We also show that Hmr is insufficient to fully account for the lethality associated with the D. melanogaster X chromosome, suggesting that additional X-linked genes contribute to hybrid lethality. Copyright © 2014 Cuykendall et al.

  15. Dominant lethal mutations and histological changes produced in mouse oocytes by gamma irradiation

    International Nuclear Information System (INIS)

    Vyglenov, A.; Baev, I.; Rupova, I.; Kusheva, R.

    1976-01-01

    Mouse female were exposed to a total dose of 500 or 1000 rad 137 Cs gamma rays delivered at 0.01 rad/min. Effects were scored at 1, 5, 7, and 10 weeks after cessation of treatment. Histologically, ovaria in the 500 rad group showed a decrease up to 11% in follicle numbers as compared to controls; with the prolongation of the time after exposure, a further fall in follicle numbers is observed. In the 1000 rad group, depopulation of ovaria was complete. With the 500 rad dose, total dominant lethality was found to be increased for any of the time intervals between radiation exposure and conception; postimplantation dominant lethality was comparatively low, with similar scores between the weeks investigated. (author)

  16. The scid mutation does not affect slowly repairing potentially lethal damage that is sensitive to 0.23 M NaCl

    International Nuclear Information System (INIS)

    Kimura, Hiroshi; Ikebuchi, Makoto; Fushiki, Masato; Komatsu, Kenshi.

    1996-01-01

    The repair of slowly repairing potentially lethal damage (PLD) in radiosensitive cells from the severe combined immunodeficient (scid) mouse was compared with that in Balb/c 3T3 cells with ''wild-type'' radiosensitivity and that in RD13B2 cells derived from scid cells whose sensitivity is normal because of the presence of fragments of human chromosome 8. Treatment with 0.23 M NaCl was used for fixation of slowly repairing PLD. The scid cells repaired PLD sensitive to 0.23 M NaCl to a great extent whin 3-4 h, similarly to Balb/c 3T3 and RD13B2 cells. This indicates that the scid mutation hardly affects the repair of PLD sensitive to 0.23 M NaCl. On the other hand, as reported previously, the rapidly repairing PLD that is sensitive to 0.5 M NaCl was repaired only slowly (3-4 h) in scid cells, in contrast to the rapid repair (within 1 h) seen with Balb/c 3T3 and RD13B2. This suggests that scid mutation is responsible for this repair at reduced rate. To confirm the independence of repair of 0.23 M NaCl-sensitive PLD from that of 0.5 M NaCl-sensitive PLD, both treatments with 0.23 M NaCl and 0.5 M NaCl were combined in each line. It is found that the repair of either PLD was not affected by the other treatment. The scid mutation impaired only the repair of 0.5 M NaCl-sensitive PLD. (author)

  17. Coat Protein Mutations That Alter the Flux of Morphogenetic Intermediates through the ϕX174 Early Assembly Pathway.

    Science.gov (United States)

    Blackburn, Brody J; Li, Shuaizhi; Roznowski, Aaron P; Perez, Alexis R; Villarreal, Rodrigo H; Johnson, Curtis J; Hardy, Margaret; Tuckerman, Edward C; Burch, April D; Fane, Bentley A

    2017-12-15

    Two scaffolding proteins orchestrate ϕX174 morphogenesis. The internal scaffolding protein B mediates the formation of pentameric assembly intermediates, whereas the external scaffolding protein D organizes 12 of these intermediates into procapsids. Aromatic amino acid side chains mediate most coat-internal scaffolding protein interactions. One residue in the internal scaffolding protein and three in the coat protein constitute the core of the B protein binding cleft. The three coat gene codons were randomized separately to ascertain the chemical requirements of the encoded amino acids and the morphogenetic consequences of mutation. The resulting mutants exhibited a wide range of recessive phenotypes, which could generally be explained within a structural context. Mutants with phenylalanine, tyrosine, and methionine substitutions were phenotypically indistinguishable from the wild type. However, tryptophan substitutions were detrimental at two sites. Charged residues were poorly tolerated, conferring extreme temperature-sensitive and lethal phenotypes. Eighteen lethal and conditional lethal mutants were genetically and biochemically characterized. The primary defect associated with the missense substitutions ranged from inefficient internal scaffolding protein B binding to faulty procapsid elongation reactions mediated by external scaffolding protein D. Elevating B protein concentrations above wild-type levels via exogenous, cloned-gene expression compensated for inefficient B protein binding, as did suppressing mutations within gene B. Similarly, elevating D protein concentrations above wild-type levels or compensatory mutations within gene D suppressed faulty elongation. Some of the parental mutations were pleiotropic, affecting multiple morphogenetic reactions. This progressively reduced the flux of intermediates through the pathway. Accordingly, multiple mechanisms, which may be unrelated, could restore viability. IMPORTANCE Genetic analyses have been

  18. Intercellular distribution of mutations induced in oopcytes of Drosophila melanogaster by chemical and physical mutagens

    International Nuclear Information System (INIS)

    Traut, H.

    1979-01-01

    When females of Drosophila melanogaster are treated with chemical or physical mutagens, not only in one but also in both of the two homologous X chromosomes of a given oocyte, a recessive sex-linked lethal mutation may be induced. A method is described that discriminates between such single and double mutations. A theory is developed to show how a comparison betweeen the expected and the observer frequency of double mutations yields an indication of the intercellular distribution (random or nonrandom) of recessive lethal mutations induced by mutagenic agents in oocytes and, consequently, of the distribution (homogenous or nonhomogeneous) of those agents. Three agents were tested: FUdR (12.5, 50.0 and 81.0 μg/ml), mitomycin C (130.0 μg/ml) and x rays (2000 R, 150 kV). After FUdR feeding, no increase in the mutation frequency usually observed in D. melanogaster without mutagenic treatment was obtained (u = 0.13%, namely three single mutations among 2332 chromosomes tested). After mitomycin C feeding 104 single and three double mutations were obtained. All of the 50 mutations observed after x irradiation were single mutations. The results obtained in the mitomycin C and radiation experiments favor the assumption of a random intercellular distribution of recessive lethal mutations induced by these two agents in oocytes of D. melanogaster. Reasons are discussed why for other types of mutagenic agents nonrandom distributions may be observed with our technique

  19. Neutron-induced mutation experiments and total radiation-induced genetic damage in entire genomes of Drosophila melanogaster. Final report, November 1, 1967-August 31, 1980

    International Nuclear Information System (INIS)

    Abrahamson, S.

    1981-02-01

    Neutron-induced mutation experiments with Drosophila oogonia were conducted at the University of Wisconsin, with irradiations being carried out at the RARAF facility at Brookhaven National Laboratory. X-linked recessive lethals and specific locus mutations were studied. Using the α value of the weighted linear regression equation for lethal data, RBE's relative to X-rays were calculated for the energies of neutrons studied. They are: 15 MeV to 2.0; 6 MeV to 2.9; 2 MeV to 3.2; .66 MeV to 4.0; .43 MeV to 4.8. The dose/frequency response curves for lethal data of all neutron energies studied was suggestive of a quadratic component. All data best fit a linear hypothesis, however. Control data for specific locus mutations was used to estimate the number of loci on the X-chromosome which are capable of mutating to lethals. Neutron-induced data for specific locus mutation was inconclusive due to the high error inherent in the frequencies obtained

  20. New insights into genotype-phenotype correlation for GLI3 mutations.

    Science.gov (United States)

    Démurger, Florence; Ichkou, Amale; Mougou-Zerelli, Soumaya; Le Merrer, Martine; Goudefroye, Géraldine; Delezoide, Anne-Lise; Quélin, Chloé; Manouvrier, Sylvie; Baujat, Geneviève; Fradin, Mélanie; Pasquier, Laurent; Megarbané, André; Faivre, Laurence; Baumann, Clarisse; Nampoothiri, Sheela; Roume, Joëlle; Isidor, Bertrand; Lacombe, Didier; Delrue, Marie-Ange; Mercier, Sandra; Philip, Nicole; Schaefer, Elise; Holder, Muriel; Krause, Amanda; Laffargue, Fanny; Sinico, Martine; Amram, Daniel; André, Gwenaelle; Liquier, Alain; Rossi, Massimiliano; Amiel, Jeanne; Giuliano, Fabienne; Boute, Odile; Dieux-Coeslier, Anne; Jacquemont, Marie-Line; Afenjar, Alexandra; Van Maldergem, Lionel; Lackmy-Port-Lis, Marylin; Vincent-Delorme, Catherine; Chauvet, Marie-Liesse; Cormier-Daire, Valérie; Devisme, Louise; Geneviève, David; Munnich, Arnold; Viot, Géraldine; Raoul, Odile; Romana, Serge; Gonzales, Marie; Encha-Razavi, Ferechte; Odent, Sylvie; Vekemans, Michel; Attie-Bitach, Tania

    2015-01-01

    The phenotypic spectrum of GLI3 mutations includes autosomal dominant Greig cephalopolysyndactyly syndrome (GCPS) and Pallister-Hall syndrome (PHS). PHS was first described as a lethal condition associating hypothalamic hamartoma, postaxial or central polydactyly, anal atresia and bifid epiglottis. Typical GCPS combines polysyndactyly of hands and feet and craniofacial features. Genotype-phenotype correlations have been found both for the location and the nature of GLI3 mutations, highlighting the bifunctional nature of GLI3 during development. Here we report on the molecular and clinical study of 76 cases from 55 families with either a GLI3 mutation (49 GCPS and 21 PHS), or a large deletion encompassing the GLI3 gene (6 GCPS cases). Most of mutations are novel and consistent with the previously reported genotype-phenotype correlation. Our results also show a correlation between the location of the mutation and abnormal corpus callosum observed in some patients with GCPS. Fetal PHS observations emphasize on the possible lethality of GLI3 mutations and extend the phenotypic spectrum of malformations such as agnathia and reductional limbs defects. GLI3 expression studied by in situ hybridization during human development confirms its early expression in target tissues.

  1. New insights into genotype–phenotype correlation for GLI3 mutations

    Science.gov (United States)

    Démurger, Florence; Ichkou, Amale; Mougou-Zerelli, Soumaya; Le Merrer, Martine; Goudefroye, Géraldine; Delezoide, Anne-Lise; Quélin, Chloé; Manouvrier, Sylvie; Baujat, Geneviève; Fradin, Mélanie; Pasquier, Laurent; Megarbané, André; Faivre, Laurence; Baumann, Clarisse; Nampoothiri, Sheela; Roume, Joëlle; Isidor, Bertrand; Lacombe, Didier; Delrue, Marie-Ange; Mercier, Sandra; Philip, Nicole; Schaefer, Elise; Holder, Muriel; Krause, Amanda; Laffargue, Fanny; Sinico, Martine; Amram, Daniel; André, Gwenaelle; Liquier, Alain; Rossi, Massimiliano; Amiel, Jeanne; Giuliano, Fabienne; Boute, Odile; Dieux-Coeslier, Anne; Jacquemont, Marie-Line; Afenjar, Alexandra; Van Maldergem, Lionel; Lackmy-Port-Lis, Marylin; Vincent- Delorme, Catherine; Chauvet, Marie-Liesse; Cormier-Daire, Valérie; Devisme, Louise; Geneviève, David; Munnich, Arnold; Viot, Géraldine; Raoul, Odile; Romana, Serge; Gonzales, Marie; Encha-Razavi, Ferechte; Odent, Sylvie; Vekemans, Michel; Attie-Bitach, Tania

    2015-01-01

    The phenotypic spectrum of GLI3 mutations includes autosomal dominant Greig cephalopolysyndactyly syndrome (GCPS) and Pallister–Hall syndrome (PHS). PHS was first described as a lethal condition associating hypothalamic hamartoma, postaxial or central polydactyly, anal atresia and bifid epiglottis. Typical GCPS combines polysyndactyly of hands and feet and craniofacial features. Genotype–phenotype correlations have been found both for the location and the nature of GLI3 mutations, highlighting the bifunctional nature of GLI3 during development. Here we report on the molecular and clinical study of 76 cases from 55 families with either a GLI3 mutation (49 GCPS and 21 PHS), or a large deletion encompassing the GLI3 gene (6 GCPS cases). Most of mutations are novel and consistent with the previously reported genotype–phenotype correlation. Our results also show a correlation between the location of the mutation and abnormal corpus callosum observed in some patients with GCPS. Fetal PHS observations emphasize on the possible lethality of GLI3 mutations and extend the phenotypic spectrum of malformations such as agnathia and reductional limbs defects. GLI3 expression studied by in situ hybridization during human development confirms its early expression in target tissues. PMID:24736735

  2. Loss of ATM kinase activity leads to embryonic lethality in mice.

    Science.gov (United States)

    Daniel, Jeremy A; Pellegrini, Manuela; Lee, Baeck-Seung; Guo, Zhi; Filsuf, Darius; Belkina, Natalya V; You, Zhongsheng; Paull, Tanya T; Sleckman, Barry P; Feigenbaum, Lionel; Nussenzweig, André

    2012-08-06

    Ataxia telangiectasia (A-T) mutated (ATM) is a key deoxyribonucleic acid (DNA) damage signaling kinase that regulates DNA repair, cell cycle checkpoints, and apoptosis. The majority of patients with A-T, a cancer-prone neurodegenerative disease, present with null mutations in Atm. To determine whether the functions of ATM are mediated solely by its kinase activity, we generated two mouse models containing single, catalytically inactivating point mutations in Atm. In this paper, we show that, in contrast to Atm-null mice, both D2899A and Q2740P mutations cause early embryonic lethality in mice, without displaying dominant-negative interfering activity. Using conditional deletion, we find that the D2899A mutation in adult mice behaves largely similar to Atm-null cells but shows greater deficiency in homologous recombination (HR) as measured by hypersensitivity to poly (adenosine diphosphate-ribose) polymerase inhibition and increased genomic instability. These results may explain why missense mutations with no detectable kinase activity are rarely found in patients with classical A-T. We propose that ATM kinase-inactive missense mutations, unless otherwise compensated for, interfere with HR during embryogenesis.

  3. Context-dependent interactive effects of non-lethal predation on larvae impact adult longevity and body composition.

    Science.gov (United States)

    Chandrasegaran, Karthikeyan; Kandregula, Samyuktha Rao; Quader, Suhel; Juliano, Steven A

    2018-01-01

    Predation impacts development, behavior and morphology of prey species thereby shaping their abundances, distribution and community structure. Non-lethal threat of predation, specifically, can have a strong influence on prey lifehistory characteristics. While investigations often focus on the impact of predation threat on prey in isolation, tests of its interactive effects with food availability and resource competition on prey survival and fitness can improve understanding of costs, benefits and trade-offs of anti-predator strategies. This study, involving Aedes aegypti mosquitoes as a model organism, investigates both simple and interactive effects of predation threat during the larval stage on survival, size at and time to maturity, stored teneral reserves of glycogen, protein and lipid in adults, and adult longevity. Our results show that development times of mosquito larvae were increased (by 14.84% in males and by 97.63% in females), and size of eclosing adults decreased (by 62.30% in males and by 58.33% in females) when exposed to lowered nutrition and elevated intraspecific competition, but that predation had no detectable effect on these simple traits. Teneral reserves of glycogen, protein and lipid and adult longevity were positively correlated with adult body size. Non-lethal predation threat had significant interactive effects with nutrition and larval competition on teneral reserves in males and adult longevity in males and females. The sexes responded differently to conditions encountered as larvae, with the larval environment affecting development and adult characteristics more acutely for females than for males. The outcome of this study shows how threat of predation on juveniles can have long-lasting effects on adults that are likely to impact mosquito population dynamics and that may impact disease transmission.

  4. Impact of kinase activating and inactivating patient mutations on binary PKA interactions.

    Science.gov (United States)

    Röck, Ruth; Mayrhofer, Johanna E; Bachmann, Verena; Stefan, Eduard

    2015-01-01

    The second messenger molecule cAMP links extracellular signals to intracellular responses. The main cellular cAMP effector is the compartmentalized protein kinase A (PKA). Upon receptor initiated cAMP-mobilization, PKA regulatory subunits (R) bind cAMP thereby triggering dissociation and activation of bound PKA catalytic subunits (PKAc). Mutations in PKAc or RIa subunits manipulate PKA dynamics and activities which contribute to specific disease patterns. Mutations activating cAMP/PKA signaling contribute to carcinogenesis or hormone excess, while inactivating mutations cause hormone deficiency or resistance. Here we extended the application spectrum of a Protein-fragment Complementation Assay based on the Renilla Luciferase to determine binary protein:protein interactions (PPIs) of the PKA network. We compared time- and dose-dependent influences of cAMP-elevation on mutually exclusive PPIs of PKAc with the phosphotransferase inhibiting RIIb and RIa subunits and the protein kinase inhibitor peptide (PKI). We analyzed PKA dynamics following integration of patient mutations into PKAc and RIa. We observed that oncogenic modifications of PKAc(L206R) and RIa(Δ184-236) as well as rare disease mutations in RIa(R368X) affect complex formation of PKA and its responsiveness to cAMP elevation. With the cell-based PKA PPI reporter platform we precisely quantified the mechanistic details how inhibitory PKA interactions and defined patient mutations contribute to PKA functions.

  5. Repair-resistant mutation in Neurospora

    International Nuclear Information System (INIS)

    Stadler, D.; Macleod, H.; Loo, M.

    1987-01-01

    Chronic UV treatment produces severalfold fewer mutations in Neurospora conidia than does the same total dose of acute UV. Experiments were designed to determine the conditions required for chronic UV mutagenesis. Measurement of the coincidence frequency for two independent mutations revealed the existence of a subset of cells which are mutable by chronic UV. Analysis of forward mutation at the mtr locus showed that the genetic alterations produced by chronic UV were virtually all point mutants, even though the assay system could detect alterations or deletions extending into neighboring genes. A significant fraction of the mutants produced by acute UV were multigenic deletions. The size of the dose-rate effect (acute UV mutation frequency divided by chronic UV mutation frequency) was compared for several different mutation assay systems. Forward mutations (recessive lethals and mtr) gave values ranging from four to nine. For events which were restricted to specific molecular sites (specific reversions and nonsense suppressor mutations), there was a wider range of dose-rate ratios. This suggests that chronic UV mutation may be restricted to certain molecular sequences or configurations

  6. PYCR2 Mutations cause a lethal syndrome of microcephaly and failure to thrive.

    Science.gov (United States)

    Zaki, Maha S; Bhat, Gifty; Sultan, Tipu; Issa, Mahmoud; Jung, Hea-Jin; Dikoglu, Esra; Selim, Laila; G Mahmoud, Imam; Abdel-Hamid, Mohamed S; Abdel-Salam, Ghada; Marin-Valencia, Isaac; Gleeson, Joseph G

    2016-07-01

    A study was undertaken to characterize the clinical features of the newly described hypomyelinating leukodystrophy type 10 with microcephaly. This is an autosomal recessive disorder mapped to chromosome 1q42.12 due to mutations in the PYCR2 gene, encoding an enzyme involved in proline synthesis in mitochondria. From several international clinics, 11 consanguineous families were identified with PYCR2 mutations by whole exome or targeted sequencing, with detailed clinical and radiological phenotyping. Selective mutations from patients were tested for effect on protein function. The characteristic clinical presentation of patients with PYCR2 mutations included failure to thrive, microcephaly, craniofacial dysmorphism, progressive psychomotor disability, hyperkinetic movements, and axial hypotonia with variable appendicular spasticity. Patients did not survive beyond the first decade of life. Brain magnetic resonance imaging showed global brain atrophy and white matter T2 hyperintensities. Routine serum metabolic profiles were unremarkable. Both nonsense and missense mutations were identified, which impaired protein multimerization. PYCR2-related syndrome represents a clinically recognizable condition in which PYCR2 mutations lead to protein dysfunction, not detectable on routine biochemical assessments. Mutations predict a poor outcome, probably as a result of impaired mitochondrial function. Ann Neurol 2016;80:59-70. © 2016 American Neurological Association.

  7. Effect of lethal and sub-lethal concentrations of tobacco (Nicotiana ...

    African Journals Online (AJOL)

    Lethal and sub-lethal bioassays on Clarias gariepinus were conducted to evaluate the toxicity of tobacco (Nicotiana tobaccum) leaf dust on weight gain and haematological indices of Clarias gariepinus (mean weight 10.5±0.70g) in glass aquaria with aeration system. The concentrations used during the lethal exposure are: ...

  8. Effects and interactions of myostatin and callipyge mutations: I. Growth and carcass traits

    Science.gov (United States)

    Objectives were to document effects of the Texel myostatin mutation (MSTN) on growth and carcass traits and also test whether or not interactions with the callipyge mutation (CLPG) could be detected. Twelve rams heterozygous at both loci on the two different chromosomes were mated to 215 terminal-si...

  9. Mutations in PPIB (cyclophilin B) delay type I procollagen chain association and result in perinatal lethal to moderate osteogenesis imperfecta phenotypes.

    Science.gov (United States)

    Pyott, Shawna M; Schwarze, Ulrike; Christiansen, Helena E; Pepin, Melanie G; Leistritz, Dru F; Dineen, Richard; Harris, Catharine; Burton, Barbara K; Angle, Brad; Kim, Katherine; Sussman, Michael D; Weis, Maryann; Eyre, David R; Russell, David W; McCarthy, Kevin J; Steiner, Robert D; Byers, Peter H

    2011-04-15

    Recessive mutations in the cartilage-associated protein (CRTAP), leucine proline-enriched proteoglycan 1 (LEPRE1) and peptidyl prolyl cis-trans isomerase B (PPIB) genes result in phenotypes that range from lethal in the perinatal period to severe deforming osteogenesis imperfecta (OI). These genes encode CRTAP (encoded by CRTAP), prolyl 3-hydroxylase 1 (P3H1; encoded by LEPRE1) and cyclophilin B (CYPB; encoded by PPIB), which reside in the rough endoplasmic reticulum (RER) and can form a complex involved in prolyl 3-hydroxylation in type I procollagen. CYPB, a prolyl cis-trans isomerase, has been thought to drive the prolyl-containing peptide bonds to the trans configuration needed for triple helix formation. Here, we describe mutations in PPIB identified in cells from three individuals with OI. Cultured dermal fibroblasts from the most severely affected infant make some overmodified type I procollagen molecules. Proα1(I) chains are slow to assemble into trimers, and abnormal procollagen molecules concentrate in the RER, and bind to protein disulfide isomerase (PDI) and prolyl 4-hydroxylase 1 (P4H1). These findings suggest that although CYPB plays a role in helix formation another effect is on folding of the C-terminal propeptide and trimer formation. The extent of procollagen accumulation and PDI/P4H1 binding differs among cells with mutations in PPIB, CRTAP and LEPRE1 with the greatest amount in PPIB-deficient cells and the least in LEPRE1-deficient cells. These findings suggest that prolyl cis-trans isomerase may be required to effectively fold the proline-rich regions of the C-terminal propeptide to allow proα chain association and suggest an order of action for CRTAP, P3H1 and CYPB in procollagen biosynthesis and pathogenesis of OI.

  10. Efficiency of interaction between various radiation and chemicals

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Song, H. S.; Kim, J. S.; Chun, K. J.; Lee, Y. K.; Lee, B. H.; Shin, H. S.; Lee, K. H.; Petin, Vladislav G.

    2002-01-01

    KAERI and INP (Poland) have been carried out parallel study and joint experiments on the major topics according to MOU about their cooperative project. Major experimental techniques were TSH assay, comet assay, and synergism assay. The research consisted of the following workscopes. 1) Application of TSH bioindicator for studying the biological efficiency of radiation, 2) Relative biological efficiency of californium-252 neutrons in the induction of gene and lethal mutations in TSH cells normal and enriched with boron compound, 3) Effect of pesticide on radiation-induced mutations in TSH cells, 4) Interaction of radiation with pesticide on DNA damage in human peripheral blood lymphocytes, 5) Radiomodifying effect of boron and gadolinium compounds in human peripheral blood lymphocytes, 6) Mathematical description of synergistic interactions, 7) General regularities of synergistic interactions, and 8) Determinant of synergistic interaction between radiation, heat and chemicals in cell killing. Both institutes have established wide variety of research techniques applicable to various radiation research through the cooperation. The results of research can make the role of fundamental basis for the better relationship between Korea and Poland

  11. Immunotherapy with mutated onchocystatin fails to enhance the efficacy of a sub-lethal oxytetracycline regimen against Onchocerca ochengi.

    Science.gov (United States)

    Bah, Germanus S; Tanya, Vincent N; Makepeace, Benjamin L

    2015-08-15

    Human onchocerciasis (river blindness), caused by the filarial nematode Onchocerca volvulus, has been successfully controlled by a single drug, ivermectin, for over 25 years. Ivermectin prevents the disease symptoms of severe itching and visual impairment by killing the microfilarial stage, but does not eliminate the adult parasites, necessitating repeated annual treatments. Mass drug administration with ivermectin does not always break transmission in forest zones and is contraindicated in individuals heavily co-infected with Loa loa, while reports of reduced drug efficacy in Ghana and Cameroon may signal the development of resistance. An alternative treatment for onchocerciasis involves targeting the essential Wolbachia symbiont with tetracycline or its derivatives, which are adulticidal. However, implementation of antibiotic therapy has not occurred on a wide scale due to the prolonged treatment regimen required (several weeks). In the bovine Onchocerca ochengi system, it has been shown previously that prolonged oxytetracycline therapy increases eosinophil counts in intradermal nodules, which kill the adult worms by degranulating on their surface. Here, in an "immunochemotherapeutic" approach, we sought to enhance the efficacy of a short, sub-lethal antibiotic regimen against O. ochengi by prior immunotherapy targeting onchocystatin, an immunomodulatory protein located in the adult female worm cuticle. A key asparagine residue in onchocystatin was mutated to ablate immunomodulatory activity, which has been demonstrated previously to markedly improve the protective efficacy of this vaccine candidate when used as an immunoprophylactic. The immunochemotherapeutic regimen was compared with sub-lethal oxytetracycline therapy alone; onchocystatin immunotherapy alone; a gold-standard prolonged, intermittent oxytetracycline regimen; and no treatment (negative control) in naturally infected Cameroonian cattle. Readouts were collected over one year and comprised adult

  12. Genetic effects of decay of tritium incorporated into cells of yeast Saccharomyces cerevisiae. 5. Lethal and mutagenic effects and the nature of mutations induced by /sup 3/H decay in the 6-th position of thymine

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, E.L.; Korolev, V.G. (AN SSSR, Leningrad. Inst. Yadernoj Fiziki)

    1982-03-01

    Lethal and mutagenous effects as well as nature of mutations induced with /sup 3/H decay in the sixth position of thymine (6-/sup 3/H-T) have been studied. Inactivation probability of haploid yeasts constituted ..cap alpha..=(6.1+-1.0)x10/sup -3/ decay/sup -1/ or ..cap alpha..=(7.6+-1.3)x10/sup -5/ rad/sup -1/, and probability of mutation appearance in genes ade 1, ade -K is (2.8+-1.7)x10/sup -8/ decay/sup -1/ or K=(3.5+-2.1)x10/sup -10/ rad/sup -1/. Lethal and mutageneous effects of 6-/sup 3/H-T don't differ considerably from those for /sup 3/H decay in the fifth position of thymine (5-/sup 3/H-T). From the point of view of frequency of transversions and mutations of read-out frame shift type induced in ade 2 gene, 6-/sup 3/H-T doesn't differ from 5-/sup 3/H-T. However, in comparison with the latter 6-/sup 3/H-T causes appearance of a larger amount of AT ..-->.. GTs transitions. A scheme, according to which 5 methyl barbituric acid (5MBK) is a finite product of /sup 3/H decay in the sixth position of thymine, is suggested. The results obtained point to that fact that 5MBK represents weak mutageneous damage of thymine causing the exchange of AT pair.

  13. Inactivation and mutation induction in Saccharomyces cerevisiae exposed to simulated sunlight: evaluation of action spectra.

    Science.gov (United States)

    Schenk-Meuser, K; Pawlowsky, K; Kiefer, J

    1992-07-15

    The effectiveness of polychromatic light irradiation was investigated for haploid yeast cells. Inactivation and mutation induction were measured in both a RAD-wildtype strain and an excision-repair defective strain. The behaviour of vegetative "wet" cells was compared to that of dehydrated cells. The aim of the study was to assess the interaction of UVC with other wavelengths in cells of different states of humidity. The irradiation procedure was therefore carried out using a solar simulator either with full spectrum or with a UVC-blocking filter (modified sunlight) added. The results were analysed on the basis of separately determined action spectra. The summation of the efficiency of individual wavelengths was compared to the values obtained from polychromatic irradiation. It is shown that the effects caused by the whole-spectrum irradiation in wet cells can be predicted sufficiently from the calculation, while dried wildtype cells exhibit higher mutation rates. Thus it can be assumed that drying-specific damage leads to lethal and mutagenic lesions which are processed in different ways, causing a synergistic behaviour in mutation induction. Irradiation of vegetative cells with modified sunlight (UVC-) results in less inactivation and lower mutation rates than were calculated. From these results it can be concluded that this antagonistic behaviour is caused by the interaction of near-UV photoproducts.

  14. A Color Mutation Hadronic Soft Interaction Model -- Eikonal Formalism and Branching Evolution

    OpenAIRE

    Cao, Zhen

    1998-01-01

    ECOMB is established as a hadronic multiparticle production generator by soft interaction. It incorporates the eikonal formalism, parton model, color mutation, branching, resonance production and decay. A partonic cluster, being color-neutral initially, splits into smaller color-neutral clusters successively due to the color mutation of the quarks. The process stops at hadronic resonance, $q\\bar q$ pair, formation. The model contains self-similar dynamics and exhibits scaling behavior in the ...

  15. Lethality Index 2008-2014: Less shootings, same lethality, more opacity

    Directory of Open Access Journals (Sweden)

    Carlos Silva Forné

    2017-11-01

    Full Text Available This article evaluates the use of lethal force by Mexican federal security forces during shootings with presumed members of organized crime from 2008-2014. The authors use official data and press reports on deaths and wounded in shootings to construct indicators such as the number of dead civilians over the number of dead officials from the federal security forces and the number of dead civilians over the number of wounded civilians. In a context where certain factors that contribute to an excessive use of force become more common, the results of the study show a growing use of lethal force. This raises questions over the possible excessive use of lethal force as a normal or systematic practice. The study also shows a growing context of opacity in the information available to evaluate the use of lethal force and the general lack of a legal framework to regulate the use of lethal force in Mexico.

  16. A ΔdinB mutation that sensitizes Escherichia coli to the lethal effects of UV- and X-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mei-Chong W.; Franco, Magdalena; Vargas, Doris M. [Department of Biological Sciences, San Jose State University, San Jose, CA 95192 (United States); Hudman, Deborah A. [Department of Microbiology and Immunology, A.T. Still University, Kirksville College of Osteopathic Medicine, Kirksville, MO 63501 (United States); White, Steven J. [Department of Biological Sciences, San Jose State University, San Jose, CA 95192 (United States); Fowler, Robert G., E-mail: rfowler@sjsu.edu [Department of Biological Sciences, San Jose State University, San Jose, CA 95192 (United States); Sargentini, Neil J. [Department of Microbiology and Immunology, A.T. Still University, Kirksville College of Osteopathic Medicine, Kirksville, MO 63501 (United States)

    2014-05-15

    B strains to UV radiation, but did not sensitize a ΔrecA strain. A comparison of the DNA sequences of the ΔdinB883 allele with the sequences of the Δ(dinB-yafN)882(::kan) and ΔdinB749 alleles, which do not sensitize cells to UV radiation, revealed ΔdinB883 is likely a “gain-of-function” mutation. The ΔdinB883 allele encodes the first 54 amino acids of wild-type DinB followed by 29 predicted residues resulting from the continuation of the dinB reading frame into an adjacent insertion fragment. The resulting polypeptide is proposed to interfere directly or indirectly with UmuDC function(s) involved in protecting cells against the lethal effects of radiation.

  17. Characterization of two second-site mutations preventing wild type protein aggregation caused by a dominant negative PMA1 mutant.

    Directory of Open Access Journals (Sweden)

    Pilar Eraso

    Full Text Available The correct biogenesis and localization of Pma1 at the plasma membrane is essential for yeast growth. A subset of PMA1 mutations behave as dominant negative because they produce aberrantly folded proteins that form protein aggregates, which in turn provoke the aggregation of the wild type protein. One approach to understand this dominant negative effect is to identify second-site mutations able to suppress the dominant lethal phenotype caused by those mutant alleles. We isolated and characterized two intragenic second-site suppressors of the PMA1-D378T dominant negative mutation. We present here the analysis of these new mutations that are located along the amino-terminal half of the protein and include a missense mutation, L151F, and an in-frame 12bp deletion that eliminates four residues from Cys409 to Ala412. The results show that the suppressor mutations disrupt the interaction between the mutant and wild type enzymes, and this enables the wild type Pma1 to reach the plasma membrane.

  18. Interaction of radiation, Dihydroxyanthraquinone, and Adriamycin on the induction of acute lethality in mice

    International Nuclear Information System (INIS)

    Kimler, B.F.; Cox, G.G.; Reddy, E.K.

    1984-01-01

    The acute lethality induced by combinations of radiation, Dihydroxyanthraquinone (DHAQ), and Adriamycin (ADR) was investigated in mice. Whole-body irradiation produced acute lethality, with an LD-50/30 of approximately 6.5 Gy. ADR and DHAQ produced LD-50/30's of 14 and 4 mg/kg, respectively. When 10 mg/kg doses were fractionated into 5 x 2 mg/kg daily doses, both drugs were equally or more efficient at producing mortality, 90% by day 30. When 4 Gy radiation was combined with 5 mg/kg ADR or 5 mg/kg DHAQ, a response no greater than that produced by drug alone was obtained. However, when 5 mg/kg ADR was administered concomitantly with 5 mg/kg DHAQ, there was a less-than-additive induction of lethality, resulting in only 21% mortality by day 20. ADR and DHAQ (at doses of 5 mg/kg) were combined but with a 1 day interval between drugs, the protective effect was lost and animals died earlier than after either agent alone. At present, no definite explanation is available for this unusual protective effect of ADR against acute lethality induced by DHAQ

  19. A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia

    International Nuclear Information System (INIS)

    Weiss, M.J.; Cole, D.E.C.; Ray, K.; Whyte, M.P.; Lafferty, M.A.; Mulivor, R.A.; Harris, H.

    1988-01-01

    Hypophosphatasia is an inherited disorder characterized by defective bone mineralization and a deficiency of serum and tissue liver/bone/kidney alkaline phosphatase (L/B/K ALP) activity. Clinical severity is variable, ranging from death in utero (due to severe rickets) to pathologic fractures first presenting in adult life. Affected siblings, however, are phenotypically similar. Severe forms of the disease are inherited in an autosomal recessive fashion; heterozygotes often show reduced serum ALP activity. The specific gene defects in hypophosphatasia are unknown but are thought to occur either at the L/B/K ALP locus or within another gene that regulates L/B/K ALP expression. The authors used the polymerase chain reaction to examine L/B/K ALP cDNA from a patient with a perinatal (lethal) form of the disease. They observed a guanine-to-adenine transition in nucleotide 711 of the cDNA that converts alanine-162 of the mature enzyme to threonine. The affected individual, whose parents are second cousins, is homozygous for the mutant allele. Introduction of this mutation into an otherwise normal cDNA by site-directed mutagenesis abolished the expression of active enzyme, demonstrating that a defect in the L/B/K ALP gene results in hypophosphatasia and that the enzyme is, therefore, essential for normal skeletal mineralization

  20. Restorer-of-Fertility Mutations Recovered in Transposon-Active Lines of S Male-Sterile Maize

    Directory of Open Access Journals (Sweden)

    Susan Gabay-Laughnan

    2018-01-01

    Full Text Available Mitochondria execute key pathways of central metabolism and serve as cellular sensing and signaling entities, functions that depend upon interactions between mitochondrial and nuclear genetic systems. This is exemplified in cytoplasmic male sterility type S (CMS-S of Zea mays, where novel mitochondrial open reading frames are associated with a pollen collapse phenotype, but nuclear restorer-of-fertility (restorer mutations rescue pollen function. To better understand these genetic interactions, we screened Activator-Dissociation (Ac-Ds, Enhancer/Suppressor-mutator (En/Spm, and Mutator (Mu transposon-active CMS-S stocks to recover new restorer mutants. The frequency of restorer mutations increased in transposon-active stocks compared to transposon-inactive stocks, but most mutants recovered from Ac-Ds and En/Spm stocks were unstable, reverting upon backcrossing to CMS-S inbred lines. However, 10 independent restorer mutations recovered from CMS-S Mu transposon stocks were stable upon backcrossing. Many restorer mutations condition seed-lethal phenotypes that provide a convenient test for allelism. Eight such mutants recovered in this study included one pair of allelic mutations that were also allelic to the previously described rfl2-1 mutant. Targeted analysis of mitochondrial proteins by immunoblot identified two features that consistently distinguished restored CMS-S pollen from comparably staged, normal-cytoplasm, nonmutant pollen: increased abundance of nuclear-encoded alternative oxidase relative to mitochondria-encoded cytochrome oxidase and decreased abundance of mitochondria-encoded ATP synthase subunit 1 compared to nuclear-encoded ATP synthase subunit 2. CMS-S restorer mutants thus revealed a metabolic plasticity in maize pollen, and further study of these mutants will provide new insights into mitochondrial functions that are critical to pollen and seed development.

  1. Measurement of oxygen enhancement ratio for sub-lethal region using saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Nairy, Rajesha K.; Anjaria, K.B.; Bhat, Nagesh N.; Chaurasia, Rajesh K.; Balakrishnan, Sreedevi; Yerol, Narayana

    2013-01-01

    Oxygen is one of the best known modifiers of radiation sensitivity and the biological effects is greater in the presence of oxygen, and significant modifying effect will be observed only for low LET radiations. The reduced oxygen availability is sensed which trigger homeostatic responses, which impact on virtually all areas of biology and medicine. Failure to achieve complete response following radiotherapy of large tumors is attributed to the presence of radio-resistant hypoxic cells, therefore clarifying the mechanism of the oxygen effect is important. In the present study, a mutant type diploid yeast strain, Saccharomyces cerevisiae D7 was used to study Oxygen Enhancement Ratio (OER) using 60 Co gamma radiation. Cells were washed thrice by centrifugation (2000 g for 5 min) and re-suspended to a cell concentration of 1x108 cells mL-1 in a sterile polypropylene vial for irradiation (sub-lethal dose range, 0-100 Gy). Hypoxic conditions were achieved by incubating the cells in airtight vials at 30℃ for 30 min prior to irradiation. The gene conversion and back mutation analysis were carried out according to the standard protocol. Gene conversion is the radio-sensitive biological endpoint, that can be studied in Saccharomyces cerevisiae D7 yeast cells at trp locus in tryptophan (Trp- medium) deficient medium. The dose response relation at euoxic and hypoxic condition in sub-lethal doses are found to be linear and is represented by Y (Euoxic) = (6.54±0.102) D with R2=0.999 and for hypoxic condition Y(Hypoxic) = (3.346±0.033) D with R2=0.996. The OER can be calculated by dividing the euoxic slope with hypoxic slope, and is 1.95. Back mutation, which is a result of reversion of Isoleucine auxotrophs to prototrophs gives very good information at sub-lethal doses. The dose response relation between back mutated cells and radiation doses at Euoxic and hypoxic condition can be represented as Y(Euoxic) = (2.85±0.126) D with R2= 0.976 and for hypoxic condition Y

  2. The influence of calf thymus DNA and deoxyribonucleosides on the induction of different mutation types in Drosophila

    International Nuclear Information System (INIS)

    Ondrej, M.

    1975-01-01

    The influence of an exogenous DNA on the induction of mutations by X rays was compared with the influence of an equimolar mixture of four deoxyribonucleosides. Pre-treatment and post-treatment with the calf thymus DNA did not influence mutation frequency in the specific loci dp, b, cn and bw as well as Minute mutations induced in the Drosophila sperm by X radiation. Pre-treatment with the equimolar mixture of four deoxyribonucleosides increased the frequency of the Minutes but did not affect mutation frequency in the loci dp, b, cn, bw. The equimolar mixture of nucleosides alone induced a low frequency of Minute mutations in the Drosophila sperm. DNA alone induced a low frequency of recessive lethals. These lethals arose as mosaics of small sectors of the gonads of the F 1 females and were revealed as late as in the F 3 generation. (author)

  3. Mutations in new cell cycle genes that fail to complement a multiply mutant third chromosome of Drosophila.

    Science.gov (United States)

    White-Cooper, H; Carmena, M; Gonzalez, C; Glover, D M

    1996-11-01

    We have simultaneously screened for new alleles and second site mutations that fail to complement five cell cycle mutations of Drosphila carried on a single third chromosome (gnu, polo, mgr, asp, stg). Females that are either transheterozygous for scott of the antartic (scant) and polo, or homozygous for scant produce embryos that show mitotic defects. A maternal effect upon embryonic mitoses is also seen in embryos derived from females transheterozygous with helter skelter (hsk) and either mgr or asp. cleopatra (cleo), fails to complement asp but is not uncovered by a deficiency for asp. The mitotic phenotype of larvae heterozygous for cleo and the multiple mutant chromosome is similar to weak alleles of asp, but there are no defects in male meiosis. Mutations that failed to complement stg fell into two complementation groups corresponding to stg and a new gene noose. Three of the new stg alleles are early zygotic lethals, whereas the fourth is a pharate adult lethal allele that affects both mitosis and meiosis. Mutations in noose fully complement a small deficiency that removes stg, but when placed in trans to certain stg alleles, result in late lethality and mitotic abnormalities in larval brains.

  4. Compound heterozygous loss-of-function mutations in KIF20A are associated with a novel lethal congenital cardiomyopathy in two siblings.

    Directory of Open Access Journals (Sweden)

    Jacoba J Louw

    2018-01-01

    Full Text Available Congenital or neonatal cardiomyopathies are commonly associated with a poor prognosis and have multiple etiologies. In two siblings, a male and female, we identified an undescribed type of lethal congenital restrictive cardiomyopathy affecting the right ventricle. We hypothesized a novel autosomal recessive condition. To identify the cause, we performed genetic, in vitro and in vivo studies. Genome-wide SNP typing and parametric linkage analysis was done in a recessive model to identify candidate regions. Exome sequencing analysis was done in unaffected and affected siblings. In the linkage regions, we selected candidate genes that harbor two rare variants with predicted functional effects in the patients and for which the unaffected sibling is either heterozygous or homozygous reference. We identified two compound heterozygous variants in KIF20A; a maternal missense variant (c.544C>T: p.R182W and a paternal frameshift mutation (c.1905delT: p.S635Tfs*15. Functional studies confirmed that the R182W mutation creates an ATPase defective form of KIF20A which is not able to support efficient transport of Aurora B as part of the chromosomal passenger complex. Due to this, Aurora B remains trapped on chromatin in dividing cells and fails to translocate to the spindle midzone during cytokinesis. Translational blocking of KIF20A in a zebrafish model resulted in a cardiomyopathy phenotype. We identified a novel autosomal recessive congenital restrictive cardiomyopathy, caused by a near complete loss-of-function of KIF20A. This finding further illustrates the relationship of cytokinesis and congenital cardiomyopathy.

  5. The organisational structure of protein networks: revisiting the centrality-lethality hypothesis.

    Science.gov (United States)

    Raman, Karthik; Damaraju, Nandita; Joshi, Govind Krishna

    2014-03-01

    Protein networks, describing physical interactions as well as functional associations between proteins, have been unravelled for many organisms in the recent past. Databases such as the STRING provide excellent resources for the analysis of such networks. In this contribution, we revisit the organisation of protein networks, particularly the centrality-lethality hypothesis, which hypothesises that nodes with higher centrality in a network are more likely to produce lethal phenotypes on removal, compared to nodes with lower centrality. We consider the protein networks of a diverse set of 20 organisms, with essentiality information available in the Database of Essential Genes and assess the relationship between centrality measures and lethality. For each of these organisms, we obtained networks of high-confidence interactions from the STRING database, and computed network parameters such as degree, betweenness centrality, closeness centrality and pairwise disconnectivity indices. We observe that the networks considered here are predominantly disassortative. Further, we observe that essential nodes in a network have a significantly higher average degree and betweenness centrality, compared to the network average. Most previous studies have evaluated the centrality-lethality hypothesis for Saccharomyces cerevisiae and Escherichia coli; we here observe that the centrality-lethality hypothesis hold goods for a large number of organisms, with certain limitations. Betweenness centrality may also be a useful measure to identify essential nodes, but measures like closeness centrality and pairwise disconnectivity are not significantly higher for essential nodes.

  6. Chemical and radiation induced late dominant lethal effects in mice

    International Nuclear Information System (INIS)

    Favor, J.; Crenshaw, J.W. Jr.; Soares, E.R.

    1978-01-01

    Although theoretically expected, experimental data to date have not shown dominant lethal expression to occur throughout the developmental period. Specifically, late post-implantation effects have not been demonstrated. The authors routinely use an experimental technique in which parental females mated to mutagenically treated males are allowed to give birth and wean their litter, and their uterine horns are then inspected for uterine scars indicative of live and dead embryos. In a number of experiments in which males were mutagenically treated with either chemicals or X-irradiation, a discrepancy was observed between the number of live embryos as determined by the scar technique and the number of live observed at birth, suggesting the possibility of embryonic losses at a late stage in development. Initial analyses showed that mutagenic treatment increased the percentage of these late losses. These differences were statistically significant in 2 of 3 analyses. Factors affecting statistical significance and an understanding of dominant lethal mutations are discussed. (Auth.)

  7. Dominant lethals following administration of tritium (THO) to rat males

    International Nuclear Information System (INIS)

    Yagova, A.; Baev, I.; Bajrakova, A.

    1976-01-01

    Adult rat males were given a single intraperitoneal tritium (THO) injection at 0,01 or 0,001 mCi/g body weight (1/100 or 1/1000 of LDsub(50/30), respectively). Twelve days after treatment each male was mated to 3-5 intact females, and the latter were replaced by fresh ones every 12 following days over a 120-day period. Mated females were killed to score conceptions, corpora lutea, and live and dead embryos. Estimations were made of F 1 prenatal death rate (according to Bateman, 1958) and the frequency of induction of dominant lethal mutations (according to Roehrborn, 1970). The results observed indicated paternal exposure to tritium (THO) to produce dominant lethals both in pre- and post-meiotic germ cells in the rat. The extent of the genetic damage studied was found to depend on the amount of activity administered as well as on the time interval between treatment and conception. (author)

  8. Binding of superantigen toxins into the CD28 homodimer interface is essential for induction of cytokine genes that mediate lethal shock.

    Directory of Open Access Journals (Sweden)

    Gila Arad

    2011-09-01

    Full Text Available Bacterial superantigens, a diverse family of toxins, induce an inflammatory cytokine storm that can lead to lethal shock. CD28 is a homodimer expressed on T cells that functions as the principal costimulatory ligand in the immune response through an interaction with its B7 coligands, yet we show here that to elicit inflammatory cytokine gene expression and toxicity, superantigens must bind directly into the dimer interface of CD28. Preventing access of the superantigen to CD28 suffices to block its lethality. Mice were protected from lethal superantigen challenge by short peptide mimetics of the CD28 dimer interface and by peptides selected to compete with the superantigen for its binding site in CD28. Superantigens use a conserved β-strand/hinge/α-helix domain of hitherto unknown function to engage CD28. Mutation of this superantigen domain abolished inflammatory cytokine gene induction and lethality. Structural analysis showed that when a superantigen binds to the T cell receptor on the T cell and major histocompatibility class II molecule on the antigen-presenting cell, CD28 can be accommodated readily as third superantigen receptor in the quaternary complex, with the CD28 dimer interface oriented towards the β-strand/hinge/α-helix domain in the superantigen. Our findings identify the CD28 homodimer interface as a critical receptor target for superantigens. The novel role of CD28 as receptor for a class of microbial pathogens, the superantigen toxins, broadens the scope of pathogen recognition mechanisms.

  9. Histopathological effects of lethal and sub-lethal concentrations of ...

    African Journals Online (AJOL)

    The histopathological effects of lethal and sub-lethal concentrations of glyphosate on African catfish Clarias gariepinus were investigated. C. gariepinus juveniles were assessed in a static renewal bioassay for 96 hours (acute toxicity) and 28 days (chronic toxicity) using varying concentrations (0.0 mg/l 20.0 mg/l, 30.0 mg/l, ...

  10. MVP-Associated Filamin A Mutations Affect FlnA-PTPN12 (PTP-PEST) Interactions.

    Science.gov (United States)

    Duval, Damien; Labbé, Pauline; Bureau, Léa; Le Tourneau, Thierry; Norris, Russell A; Markwald, Roger R; Levine, Robert; Schott, Jean-Jacques; Mérot, Jean

    2015-09-08

    Although the genetic basis of mitral valve prolapse (MVP) has now been clearly established, the molecular and cellular mechanisms involved in the pathological processes associated to a specific mutation often remain to be determined. The FLNA gene (encoding Filamin A; FlnA) was the first gene associated to non-syndromic X-linked myxomatous valvular dystrophy, but the impacts of the mutations on its function remain un-elucidated. Here, using the first repeats (1-8) of FlnA as a bait in a yeast two-hybrid screen, we identified the tyrosine phosphatase PTPN12 (PTP-PEST) as a specific binding partner of this region of FlnA protein. In addition, using yeast two-hybrid trap assay pull down and co-immunoprecipitation experiments, we showed that the MVP-associated FlnA mutations (G288R, P637Q, H743P) abolished FlnA/PTPN12 interactions. PTPN12 is a key regulator of signaling pathways involved in cell-extracellular matrix (ECM) crosstalk, cellular responses to mechanical stress that involve integrins, focal adhesion transduction pathways, and actin cytoskeleton dynamics. Interestingly, we showed that the FlnA mutations impair the activation status of two PTPN12 substrates, the focal adhesion associated kinase Src, and the RhoA specific activating protein p190RhoGAP. Together, these data point to PTPN12/FlnA interaction and its weakening by FlnA mutations as a mechanism potentially involved in the physiopathology of FlnA-associated MVP.

  11. MVP-Associated Filamin A Mutations Affect FlnA-PTPN12 (PTP-PEST Interactions

    Directory of Open Access Journals (Sweden)

    Damien Duval

    2015-09-01

    Full Text Available Although the genetic basis of mitral valve prolapse (MVP has now been clearly established, the molecular and cellular mechanisms involved in the pathological processes associated to a specific mutation often remain to be determined. The FLNA gene (encoding Filamin A; FlnA was the first gene associated to non-syndromic X-linked myxomatous valvular dystrophy, but the impacts of the mutations on its function remain un-elucidated. Here, using the first repeats (1–8 of FlnA as a bait in a yeast two-hybrid screen, we identified the tyrosine phosphatase PTPN12 (PTP-PEST as a specific binding partner of this region of FlnA protein. In addition, using yeast two-hybrid trap assay pull down and co-immunoprecipitation experiments, we showed that the MVP-associated FlnA mutations (G288R, P637Q, H743P abolished FlnA/PTPN12 interactions. PTPN12 is a key regulator of signaling pathways involved in cell-extracellular matrix (ECM crosstalk, cellular responses to mechanical stress that involve integrins, focal adhesion transduction pathways, and actin cytoskeleton dynamics. Interestingly, we showed that the FlnA mutations impair the activation status of two PTPN12 substrates, the focal adhesion associated kinase Src, and the RhoA specific activating protein p190RhoGAP. Together, these data point to PTPN12/FlnA interaction and its weakening by FlnA mutations as a mechanism potentially involved in the physiopathology of FlnA-associated MVP.

  12. New insights into genotype–phenotype correlation for GLI3 mutations

    OpenAIRE

    Démurger, Florence; Ichkou, Amale; Mougou-Zerelli, Soumaya; Le Merrer, Martine; Goudefroye, Géraldine; Delezoide, Anne-Lise; Quélin, Chloé; Manouvrier, Sylvie; Baujat, Geneviève; Fradin, Mélanie; Pasquier, Laurent; Megarbané, André; Faivre, Laurence; Baumann, Clarisse; Nampoothiri, Sheela

    2014-01-01

    The phenotypic spectrum of GLI3 mutations includes autosomal dominant Greig cephalopolysyndactyly syndrome (GCPS) and Pallister–Hall syndrome (PHS). PHS was first described as a lethal condition associating hypothalamic hamartoma, postaxial or central polydactyly, anal atresia and bifid epiglottis. Typical GCPS combines polysyndactyly of hands and feet and craniofacial features. Genotype–phenotype correlations have been found both for the location and the nature of GLI3 mutations, highlightin...

  13. Inactivation of CDK2 is synthetically lethal to MYCN over-expressing cancer cells

    Science.gov (United States)

    Molenaar, Jan J.; Ebus, Marli E.; Geerts, Dirk; Koster, Jan; Lamers, Fieke; Valentijn, Linda J.; Westerhout, Ellen M.; Versteeg, Rogier; Caron, Huib N.

    2009-01-01

    Two genes have a synthetically lethal relationship when the silencing or inhibiting of 1 gene is only lethal in the context of a mutation or activation of the second gene. This situation offers an attractive therapeutic strategy, as inhibition of such a gene will only trigger cell death in tumor cells with an activated second oncogene but spare normal cells without activation of the second oncogene. Here we present evidence that CDK2 is synthetically lethal to neuroblastoma cells with MYCN amplification and over-expression. Neuroblastomas are childhood tumors with an often lethal outcome. Twenty percent of the tumors have MYCN amplification, and these tumors are ultimately refractory to any therapy. Targeted silencing of CDK2 by 3 RNA interference techniques induced apoptosis in MYCN-amplified neuroblastoma cell lines, but not in MYCN single copy cells. Silencing of MYCN abrogated this apoptotic response in MYCN-amplified cells. Inversely, silencing of CDK2 in MYCN single copy cells did not trigger apoptosis, unless a MYCN transgene was activated. The MYCN induced apoptosis after CDK2 silencing was accompanied by nuclear stabilization of P53, and mRNA profiling showed up-regulation of P53 target genes. Silencing of P53 rescued the cells from MYCN-driven apoptosis. The synthetic lethality of CDK2 silencing in MYCN activated neuroblastoma cells can also be triggered by inhibition of CDK2 with a small molecule drug. Treatment of neuroblastoma cells with roscovitine, a CDK inhibitor, at clinically achievable concentrations induced MYCN-dependent apoptosis. The synthetically lethal relationship between CDK2 and MYCN indicates CDK2 inhibitors as potential MYCN-selective cancer therapeutics. PMID:19525400

  14. Induction of mutation and recombination following UV irradiation during meiosis in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, S.L.; Parry, J.M. (University Coll. of Swansea (UK). Dept. of Genetics)

    1983-03-01

    Irradiation of yeast cultures with ultraviolet light at discrete stages during meiosis produces cyclic variations in sensitivity, i.e. cells are more sensitive to the lethal effects of UV light prior to entry into the meiotic DNA synthesis, and this corresponds to a peak of induction of point mutation. Cells become more resistant to both induced point mutation and lethality as they enter meiotic DNA synthesis, but become more sensitive again during spore formation. The induced level of intragenic recombination rises during the period of commitment ot recombination to a level indistinguishable from the full meiotic level of spontaneous intragenic recombination. Induced reciprocal recombination remains above the spontaneous level up to the point of commitment to sporulation.

  15. Identification of a nonsense mutation in CWC15 associated with decreased reproductive efficiency in Jersey cattle.

    Directory of Open Access Journals (Sweden)

    Tad S Sonstegard

    Full Text Available With the recent advent of genomic tools for cattle, several recessive conditions affecting fertility have been identified and selected against, such as deficiency of uridine monophosphate synthase, complex vertebral malformation, and brachyspina. The current report refines the location of a recessive haplotype affecting fertility in Jersey cattle using crossover haplotypes, discovers the causative mutation using whole genome sequencing, and examines the gene's role in embryo loss. In an attempt to identify unknown recessive lethal alleles in the current dairy population, a search using deep Mendelian sampling of 5,288 Jersey cattle was conducted for high-frequency haplotypes that have a deficit of homozygotes at the population level. This search led to the discovery of a putative recessive lethal in Jersey cattle on Bos taurus autosome 15. The haplotype, denoted JH1, was associated with reduced fertility, and further investigation identified one highly-influential Jersey bull as the putative source ancestor. By combining SNP analysis of whole-genome sequences aligned to the JH1 interval and subsequent SNP validation a nonsense mutation in CWC15 was identified as the likely causative mutation underlying the fertility phenotype. No homozygous recessive individuals were found in 749 genotyped animals, whereas all known carriers and carrier haplotypes possessed one copy of the mutant allele. This newly identified lethal has been responsible for a substantial number of spontaneous abortions in Jersey dairy cattle throughout the past half-century. With the mutation identified, selection against the deleterious allele in breeding schemes will aid in reducing the incidence of this defect in the population. These results also show that carrier status can be imputed with high accuracy. Whole-genome resequencing proved to be a powerful strategy to rapidly identify a previously mapped deleterious mutation in a known carrier of a recessive lethal allele.

  16. DPY-17 and MUA-3 Interact for Connective Tissue-Like Tissue Integrity in Caenorhabditis elegans: A Model for Marfan Syndrome.

    Science.gov (United States)

    Fotopoulos, Pauline; Kim, Jeongho; Hyun, Moonjung; Qamari, Waiss; Lee, Inhwan; You, Young-Jai

    2015-04-27

    mua-3 is a Caenorhabditis elegans homolog of the mammalian fibrillin1, a monogenic cause of Marfan syndrome. We identified a new mutation of mua-3 that carries an in-frame deletion of 131 amino acids in the extracellular domain, which allows the mutants to survive in a temperature-dependent manner; at the permissive temperature, the mutants grow normally without obvious phenotypes, but at the nonpermissive temperature, more than 90% die during the L4 molt due to internal organ detachment. Using the temperature-sensitive lethality, we performed unbiased genetic screens to isolate suppressors to find genetic interactors of MUA-3. From two independent screens, we isolated mutations in dpy-17 as a suppressor. RNAi of dpy-17 in mua-3 rescued the lethality, confirming dpy-17 is a suppressor. dpy-17 encodes a collagen known to genetically interact with dpy-31, a BMP-1/Tolloid-like metalloprotease required for TGFβ activation in mammals. Human fibrillin1 mutants fail to sequester TGFβ2 leading to excess TGFβ signaling, which in turn contributes to Marfan syndrome or Marfan-related syndrome. Consistent with that, RNAi of dbl-1, a TGFβ homolog, modestly rescued the lethality of mua-3 mutants, suggesting a potentially conserved interaction between MUA-3 and a TGFβ pathway in C. elegans. Our work provides genetic evidence of the interaction between TGFβ and a fibrillin homolog, and thus provides a simple yet powerful genetic model to study TGFβ function in development of Marfan pathology. Copyright © 2015 Fotopoulos et al.

  17. Caffeine and D2O medium interact in affecting the expression of radiation-induced potentially lethal damage

    International Nuclear Information System (INIS)

    Utsumi, H.; Elkind, M.M.

    1991-01-01

    Earlier work has been extended to compare the killing of long-phase V79 Chinese hamster cells by ionizing radiation when they are treated immediately after irradiation with medium containing either caffeine or 90% D 2 O. The object was to determine if the enhanced killing due to post-treatment with caffeine, or D 2 O, resulted from action on the same sector of potentially lethal damage as appeared to be the case for hypertonic shock and D 2 O medium. The treatments by themselves were not toxic to unirradiated cells. We found that the enhanced expression of potentially lethal damage by post-treatment with caffeine or D 2 O medium is similar. For example, the kinetic of the repair of the potentially lethal damage expressible by either post-treatment was similar, and an additive enhancement of potentially lethal damage occurred when the two treatments were administered sequentially. These findings suggest that caffeine and D 2 O medium affect the same sector of potentially lethal damage. When the two treatments were combined, however, they competed with each other. Thus, although caffeine and D 2 O medium act on the same sector of potentially lethal damage they do so differently, suggesting that more than one pathway of the expression of radiation damage can result in the same phenotypic effect. (author)

  18. On the mutagenicity of methadone hydrochloride. Induced dominant lethal mutation and spermatocyte chromosomal aberrations in treated males.

    Science.gov (United States)

    Badr, F M; Rabouh, S A; Badr, R S

    1979-11-01

    The mutagenicity of methadone hydrochloride was tested in male mice using the dominant lethal mutation technique and the spermatocyte test of treated mice. Male mice of C3H inbred strain received one of the following doses, 1, 2, 4 or 6 mg/kg body weight once a day for 3 consecutive days. Another group of mice served as control and received saline instead. Treated males were then mated to virgin females at 3-day intervals for a period of 45 days. Pregnant females were dissected at mid-term and the corpora lutea and intrauterine contents were recorded. The spermatocytes of treated males were examined 45-50 d after treatments with methadone and abnormal pairing configurations were scored. The methadone treatment was found to increase the rate of preimplantation deaths consistently in all post-meiotic stages with all doses used. In addition, the higher doses, 4 and 6 mg, affected spermatogonia stages. Quantitatively, the dose-response relationship cannot be demonstrated though the spectrum of effect increased with higher doses as more spermatogenesis stages became more sensitive to the treatment. In many cases the frequency of live implants showed a positive correlation with preimplantation deaths in contrast with the frequency of early deaths which showed only sporadic variation. The mutation indices based on total embryonic death indicate that methadone hydrochloride affected several stages of germ-cell maturation namely, spermatozoa (M.I. 14-35), late spermatids (M.I. 15-48), early spermatids (M.I. 14-50), late spermatocytes (M.I. 15-43) and spermatogonial stages (M.I. 12-63). Chromosome analysis at diakinesis-metaphase 1 revealed significant increase in the frequency of sex chromosome and autosome univalents with different doses of methadone. The smallest dose applied was quite effective and the data represent direct dose-response relationship. Of the multivalent configuration, the most frequent type was chain quadrivalents. The frequencies of total translocations

  19. Environmental modulation of somatic mutations: nature of interactions. Final report, 1 June 1974--31 May 1977

    International Nuclear Information System (INIS)

    Mericle, L.W.

    1977-05-01

    Research on this project has had as a major goal a combined ecologic-genetic investigation of somatic mutations in order to evaluate the impacts of certain changing environmental parameters. The ultimate aim, to better understand how such environmental-mutation interactions operate and to assure the information obtained be extrapolatable to conditions and events in nature. Higher plants delineate reproductive tissues late in development from meristematic, somatic tissues. Moreover, the prevailing method of reproduction may be without sexual fusion of gametes and/or wholly asexual (vegetative). Therefore, somatic mutations can have as far-reaching genetic significance for a plant population as when germ cells, themselves, are directly affected. Our data show diurnal temperature differences (DTD) of greater than or equal to 22.2 C-degrees to be very effective mutagenic agents in the Tradescantia somatic mutation system. Further, these ranges of DTD were found to occur often in important seed production areas. A DTD of 22.2 in magnitude can increase mutations 10-fold. And, durations short as 1-day can induce significant increases in mutation rate. Whether interaction of 22.2 DTD with low-level radiation (800 mR/day) is synergistic or attenuative is still debatable. We believe, however, that spontaneous, and 22.2 DTD induced, mutations occur mainly via the genetic mechanism of somatic crossing-over; mutations from acute ionizing radiation (e.g., 30-60 R γ) via chromosome breakage, producing micronuclei. Requirements for maximizing the Discriminatory Response Capability (DRC) in the Tradescantia somatic mutation system are set forth

  20. Mutations in FLNB cause boomerang dysplasia.

    Science.gov (United States)

    Bicknell, L S; Morgan, T; Bonafé, L; Wessels, M W; Bialer, M G; Willems, P J; Cohn, D H; Krakow, D; Robertson, S P

    2005-07-01

    Boomerang dysplasia (BD) is a perinatal lethal osteochondrodysplasia, characterised by absence or underossification of the limb bones and vertebrae. The BD phenotype is similar to a group of disorders including atelosteogenesis I, atelosteogenesis III, and dominantly inherited Larsen syndrome that we have recently shown to be associated with mutations in FLNB, the gene encoding the actin binding cytoskeletal protein, filamin B. We report the identification of mutations in FLNB in two unrelated individuals with boomerang dysplasia. The resultant substitutions, L171R and S235P, lie within the calponin homology 2 region of the actin binding domain of filamin B and occur at sites that are evolutionarily well conserved. These findings expand the phenotypic spectrum resulting from mutations in FLNB and underline the central role this protein plays during skeletogenesis in humans.

  1. A/α-specific effect of the mms3 mutation on ultraviolet mutagenesis in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Martin, P.; Prakash, L.; Prakash, S.

    1981-01-01

    A new gene involved in error-prone repair of ultraviolet (uv) damage has been identified in Saccharomyces cerevisiae by the mms3-1 mutation. Uv-induced reversion is reduced in diploids that are homozygous for mms3-1, only if they are also heterozygous (MATa/MATα) at the mating type locus. The mms3-1 mutation has no effect on uv-induced reversion either in haploids or MATa/MATα or MATα/MATα diploids. The mutation confers sensitivity to uv and methyl methane sulfonate in both haploids and diploids. Even though mutation induction by uv is restored to wild-type levels in MATa/MATa mms3-1/mms3-1 or MATα/MATα mms3-1/mms3-1 diploids, such strains still retain sensitivity to the lethal effects of uv. Survival after uv irradiation in mms3-1 rad double mutant combinations indicates that mms3-1 is epistatic to rad6-1 whereas non-epistatic interactions are observed with rad3 and rad52 mutants. When present in the homozygous state in MATa/MATα his1-1/his1-315 heteroallelic diploids, mms3-1 was found to lower uv-induced mitotic recombination

  2. Timing of the uv mutagenesis in yeast: a pedigree analysis of induced recessive mutation

    International Nuclear Information System (INIS)

    James, A.P.; Kilbey, B.J.

    1977-01-01

    The mechanism of uv-induced mutation in eukaryotes was studied in individual yeast cells by a procedure that combined pedigree analysis and tetrad analysis. The technique involved the induction of recessive lethals and semilethals in G1 diploid cells. Induced frequencies were 25 and 61% at survival levels of 90 and 77%, respectively. No evidence of gross chromosome aberrations was detected. Recessive mutations that affect only one strand or that affect both strands of the DNA molecule are induced much at random among a population of cells, and both types can occur within the same cell. However, the data confirm that two-strand mutations are in the majority after a low level of irradiation. The simplest explanation involves a mechanism whereby most mutations are fixed in both strands prior to the first round of post-irradiation DNA replication. The recessive mutational consequences of irradiation are exhausted at the conclusion of the first post-irradiation cell division, although dominant-lethal sectoring continues at a high level through the second post-irradiation division. It is concluded that pyrimidine dimers that persist to the second round of DNA replication are rare or ineffective

  3. The timing of UV mutagenesis in yeast: a pedigree analysis of induced recessive mutation.

    Science.gov (United States)

    James, A P; Kilbey, B J

    1977-10-01

    The mechanism of UV-induced mutation in eukaryotes was studied in individual yeast cells by a procedure that combined pedigree analysis and tetrad analysis. The technique involved the induction of recessive lethals and semilethals in G1 diploid cells. Induced frequencies were 25 and 61 percent at survival levels of 90 and 77 percent, respectively. No evidence of gross chromosome aberrations was detected. Recessive mutations that affect only one strand or that affect both strands of the DNA molecule are induced much at random among a population of cells, and both types can occur within the same cell. However, the data confirm that two-strand mutations are in the majority after a low level of irradiation. The simplest explanation involves a mechanism whereby most mutations are fixed in both strands prior to the first round of post-irradiation DNA replication. The recessive mutational consequences of irradiation are exhausted at the conclusion of the first post-irradiation cell division, although dominant-lethal sectoring continues at a high level through the second post-irradiation division. It is concluded that pyrimidine dimers that persist to the second round of DNA replication are rare or ineffective.

  4. De novo MECP2 frameshift mutation in a boy with moderate mental retardation, obesity and gynaecomastia.

    NARCIS (Netherlands)

    Kleefstra, T.; Yntema, H.G.; Oudakker, A.R.; Romein, T.; Sistermans, E.A.; Nillessen, W.; Bokhoven, J.H.L.M. van; Vries, L.B.A. de; Hamel, B.C.J.

    2002-01-01

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the MECP2 gene, with apparent lethality in male embryos. However, recent studies indicate that mutations in the MECP2 gene can cause congenital encephalopathy, an Angelman-like phenotype and even nonspecific mental

  5. The induction of mutation and recombination following UV irradiation during meiosis in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kelly, S.L.; Parry, J.M.

    1983-01-01

    Irradiation of yeast cultures with ultraviolet light at discrete stages during meiosis produces cyclic variations in sensitivity, i.e. cells are more sensitive to the lethal effects of UV light prior to entry into the meiotic DNA synthesis, and this corresponds to a peak of induction of point mutation. Cells become more resistant to both induced point mutation and lethality as they enter meiotic DNA synthesis, but become more sensitive again during spore formation. The induced level of intragenic recombination rises during the period of commitment ot recombination to a level indistinguishable from the full meiotic level of spontaneous intragenic recombination. Induced reciprocal recombination remains above the spontaneous level up to the point of commitment to sporulation. (orig.)

  6. The induction of mutation and recombination following UV irradiation during meiosis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kelly, S L; Parry, J M

    1983-03-01

    Irradiation of yeast cultures with ultraviolet light at discrete stages during meiosis produces cyclic variations in sensitivity, i.e. cells are more sensitive to the lethal effects of UV light prior to entry into the meiotic DNA synthesis, and this corresponds to a peak of induction of point mutation. Cells become more resistant to both induced point mutation and lethality as they enter meiotic DNA synthesis, but become more sensitive again during spore formation. The induced level of intragenic recombination rises during the period of commitment to recombination to a level indistinguishable from the full meiotic level of spontaneous intragenic recombination. Induced reciprocal recombination remains above the spontaneous level up to the point of commitment to sporulation.

  7. A novel ICK mutation causes ciliary disruption and lethal endocrine-cerebro-osteodysplasia syndrome.

    Science.gov (United States)

    Oud, Machteld M; Bonnard, Carine; Mans, Dorus A; Altunoglu, Umut; Tohari, Sumanty; Ng, Alvin Yu Jin; Eskin, Ascia; Lee, Hane; Rupar, C Anthony; de Wagenaar, Nathalie P; Wu, Ka Man; Lahiry, Piya; Pazour, Gregory J; Nelson, Stanley F; Hegele, Robert A; Roepman, Ronald; Kayserili, Hülya; Venkatesh, Byrappa; Siu, Victoria M; Reversade, Bruno; Arts, Heleen H

    2016-01-01

    Endocrine-cerebro-osteodysplasia (ECO) syndrome [MIM:612651] caused by a recessive mutation (p.R272Q) in Intestinal cell kinase (ICK) shows significant clinical overlap with ciliary disorders. Similarities are strongest between ECO syndrome, the Majewski and Mohr-Majewski short-rib thoracic dysplasia (SRTD) with polydactyly syndromes, and hydrolethalus syndrome. In this study, we present a novel homozygous ICK mutation in a fetus with ECO syndrome and compare the effect of this mutation with the previously reported ICK variant on ciliogenesis and cilium morphology. Through homozygosity mapping and whole-exome sequencing, we identified a second variant (c.358G > T; p.G120C) in ICK in a Turkish fetus presenting with ECO syndrome. In vitro studies of wild-type and mutant mRFP-ICK (p.G120C and p.R272Q) revealed that, in contrast to the wild-type protein that localizes along the ciliary axoneme and/or is present in the ciliary base, mutant proteins rather enrich in the ciliary tip. In addition, immunocytochemistry revealed a decreased number of cilia in ICK p.R272Q-affected cells. Through identification of a novel ICK mutation, we confirm that disruption of ICK causes ECO syndrome, which clinically overlaps with the spectrum of ciliopathies. Expression of ICK-mutated proteins result in an abnormal ciliary localization compared to wild-type protein. Primary fibroblasts derived from an individual with ECO syndrome display ciliogenesis defects. In aggregate, our findings are consistent with recent reports that show that ICK regulates ciliary biology in vitro and in mice, confirming that ECO syndrome is a severe ciliopathy.

  8. Linkage analysis for the gametic lethal gene of a rice variety 'Koshihikari' and the semi-dwarfing gene induced in 'Koshihikari'

    International Nuclear Information System (INIS)

    Tomita, M.; Tanisaka, T.; Okumoto, Y.; Yamagata, H.

    1990-01-01

    Full text: 'Koshihikari', a Japanese tall variety, is now most widely cultivated in Japan because of its good quality and taste, but is extremely poor in lodging resistance. In order to create a semi-dwarf 'Koshihikari', large scale mutation breeding was carried out at Hokuriku Agricultural Experiment Station, resulting in the production of an excellent semi-dwarf mutant strain 'Hokuriku 100'. It has extensively been used as cross parent. Genetic analyses revealed that the semi-dwarfness of 'Hokuriku 100' is controlled by two mutant genes, a recessive semi-dwarfness gene sd(t) and a non-gametic lethal gene lt m mutated from the genetic lethal gene of 'Koshihikari' lt, which would cause abortion of both male and female gametes when it occurs together with sd(t). Further analyses led to conclude that It is located on chromosome 9, sd(t) on chromosome 10. (author)

  9. Spectrum of PEX6 mutations in Zellweger syndrome spectrum patients

    NARCIS (Netherlands)

    Ebberink, Merel S.; Kofster, Janet; Wanders, Ronald J. A.; Waterham, Hans R.

    2010-01-01

    The autosomal recessive Zellweger syndrome spectrum (ZSS) disorders comprise a main subgroup of the peroxisome biogenesis disorders. The ZSS disorders can be caused by mutations in any of 12 different currently identified PEX genes resulting in severe, often lethal, multi-systemic disorders. Defects

  10. Investigating the Impact of Asp181 Point Mutations on Interactions between PTP1B and Phosphotyrosine Substrate

    Science.gov (United States)

    Liu, Mengyuan; Wang, Lushan; Sun, Xun; Zhao, Xian

    2014-05-01

    Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and leptin signaling, which suggests that it is an attractive therapeutic target in type II diabetes and obesity. The aim of this research is to explore residues which interact with phosphotyrosine substrate can be affected by D181 point mutations and lead to increased substrate binding. To achieve this goal, molecular dynamics simulations were performed on wild type (WT) and two mutated PTP1B/substrate complexes. The cross-correlation and principal component analyses show that point mutations can affect the motions of some residues in the active site of PTP1B. Moreover, the hydrogen bond and energy decomposition analyses indicate that apart from residue 181, point mutations have influence on the interactions of substrate with several residues in the active site of PTP1B.

  11. Addition of molecular methods to mutation studies with Drosophila melanogaster

    International Nuclear Information System (INIS)

    Lee, W.R.

    1989-01-01

    For 80 years, Drosophila melanogaster has been used as a major tool in analyzing Mendelian genetics. By using chromosome inversions that suppress crossing over, geneticists have developed a large number of stocks for mutation analysis. These stocks permit numerous tests for specific locus mutations, lethals at multiple loci on any chromosome, chromosome exchanges, insertions, and deletions. The entire genome can be manipulated for a degree of genetic control not found in other germ-line systems. Recombinant DNA techniques now permit analysis of mutations to the nucleotide level. By combining classical genetic analysis with recombinant DNA techniques, it is possible to analyze mutations that range from chromosome aberrations and multilocus deficiencies to single nucleotide transitions

  12. Phenotypic spectrum of STRA6 mutations: from Matthew-Wood syndrome to non-lethal anophthalmia.

    Science.gov (United States)

    Chassaing, Nicolas; Golzio, Christelle; Odent, Sylvie; Lequeux, Léopoldine; Vigouroux, Adeline; Martinovic-Bouriel, Jelena; Tiziano, Francesco Danilo; Masini, Lucia; Piro, Francesca; Maragliano, Giovanna; Delezoide, Anne-Lise; Attié-Bitach, Tania; Manouvrier-Hanu, Sylvie; Etchevers, Heather C; Calvas, Patrick

    2009-05-01

    Matthew-Wood, Spear, PDAC or MCOPS9 syndrome are alternative names used to refer to combinations of microphthalmia/anophthalmia, malformative cardiac defects, pulmonary dysgenesis, and diaphragmatic hernia. Recently, mutations in STRA6, encoding a membrane receptor for vitamin A-bearing plasma retinol binding protein, have been identified in such patients. We performed STRA6 molecular analysis in three fetuses and one child diagnosed with Matthew-Wood syndrome and in three siblings where two adult living brothers are affected with combinations of clinical anophthalmia, tetralogy of Fallot, and mental retardation. Among these patients, six novel mutations were identified, bringing the current total of known STRA6 mutations to seventeen. We extensively reviewed clinical data pertaining to all twenty-one reported patients with STRA6 mutations (the seven of this report and fourteen described elsewhere) and discuss additional features that may be part of the syndrome. The clinical spectrum associated with STRA6 deficiency is even more variable than initially described. Copyright 2009 Wiley-Liss, Inc.

  13. A population genetic analysis of the potential for a crude oil spill to induce heritable mutations and impact natural populations

    Energy Technology Data Exchange (ETDEWEB)

    Cronin, M.A. [LGL Alaska Research Associates Inc., Anchorage, AK (United States); Bickham, J.W. [Texas A and M University, College Station, TX (United States). Dept. of Wildlife and Fisheries Sciences; LGL Ecological Genetics Inc., Bryan, TX (United States)

    1998-07-01

    The primary environmental impact following an oil spill typically is acute toxicity to fish and wildlife. However, multigenerational effects through toxicant-induced heritable mutations might also occur. Some polycyclic aromatic hydrocarbon (PAH) components of crude oil are potentially mutagenic, although specific components and doses that induce mutations are poorly known. We applied population genetics concepts to assess the extent of mortality and the persistence of deleterious heritable mutations resulting from exposure to potential mutagens, such as crude oil. If lethal mutations are induced, the population will experience some mortality, but the mutations are quickly removed or reduced to low frequency by natural selection. This occurs within one or a few generations when mutations are dominant or partially recessive. Totally recessive alleles persist in low frequency for many generations, but result in relatively little impact on the population, depending on the number of mutated loci. We also applied population genetics concepts to assess the potential for heritable mutations induced by the Exxon Valdez oil spill in Prince William Sound, Alaska, to affect pink salmon populations. We stress that breeding units (e.g., streams with distinct spawning populations of salmon) must be considered individually to assess heritable genetic effects. For several streams impacted by the oil spill, there is inconsistency between observed egg mortality and that expected if lethal heritable mutations had been induced by exposure to crude oil. Observed mortality was either higher or lower than expected depending on the spawning population, year, and cohort considered. Any potential subtle effect of lethal mutations induced by the Exxon Valdez oil spill is overridden by natural environmental variation among spawning areas. We discuss the need to focus on population-level effects in toxicological assessments because fish and wildlife management focuses on populations, not

  14. A family of oculofaciocardiodental syndrome (OFCD) with a novel BCOR mutation and genomic rearrangements involving NHS.

    Science.gov (United States)

    Kondo, Yukiko; Saitsu, Hirotomo; Miyamoto, Toshinobu; Nishiyama, Kiyomi; Tsurusaki, Yoshinori; Doi, Hiroshi; Miyake, Noriko; Ryoo, Na-Kyung; Kim, Jeong Hun; Yu, Young Suk; Matsumoto, Naomichi

    2012-03-01

    Oculofaciocardiodental syndrome (OFCD) is an X-linked dominant disorder associated with male lethality, presenting with congenital cataract, dysmorphic face, dental abnormalities and septal heart defects. Mutations in BCOR (encoding BCL-6-interacting corepressor) cause OFCD. Here, we report on a Korean family with common features of OFCD including bilateral 2nd-3rd toe syndactyly and septal heart defects in three affected females (mother and two daughters). Through the mutation screening and copy number analysis using genomic microarray, we identified a novel heterozygous mutation, c.888delG, in the BCOR gene and two interstitial microduplications at Xp22.2-22.13 and Xp21.3 in all the three affected females. The BCOR mutation may lead to a premature stop codon (p.N297IfsX80). The duplication at Xp22.2-22.13 involved the NHS gene causative for Nance-Horan syndrome, which is an X-linked disorder showing similar clinical features with OFCD in affected males, and in carrier females with milder presentation. Considering the presence of bilateral 2nd-3rd toe syndactyly and septal heart defects, which is unique to OFCD, the mutation in BCOR is likely to be the major determinant for the phenotypes in this family.

  15. Study on the abnormalities in sperm and gene mutation induced by retention of 147Pm in testis

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Lun Mingyue; Yang Shuqin

    1990-05-01

    The purpose of the present study is to ascertain 147 Pm retention in testis and its radiogenotoxicological effects of gene mutation through varying radioactivities of internal exposure. Especially the accumulation of 147 Pm in testis induces the dominant lethal, dominant skeletal mutation and abnormalities in sperm. Studies indicated that the cumulative absorption dose in testis increases as the internal exposure of 147 Pm increases. The internal exposure of 147 Pm can destroy the genetic materials and raise the rates of dominant lethal and dominant mutation of skeletal abnormalities in the offspring. The relationship between the rate of dominant skeletal mutation (B) and accumulated radioactivities of 147 Pm (D) in testis can be described by a linear equation that is B 20.68 + 35.48 D. The relationship between abnormalities of the sperm and the cumulative dose from 147 Pm in testis can be expressed by the following equation: S = 10.8705 D 0.5224 + 3.1768

  16. Caffeine and D sub 2 O medium interact in affecting the expression of radiation-induced potentially lethal damage

    Energy Technology Data Exchange (ETDEWEB)

    Utsumi, H. (Kyoto Univ. (Japan). Radiation Biology Center); Elkind, M.M. (Colorado State Univ., Fort Collins, CO (United States). Dept. of Radiological Health Sciences)

    1991-10-01

    Earlier work has been extended to compare the killing of long-phase V79 Chinese hamster cells by ionizing radiation when they are treated immediately after irradiation with medium containing either caffeine or 90% D{sub 2}O. The object was to determine if the enhanced killing due to post-treatment with caffeine, or D{sub 2}O, resulted from action on the same sector of potentially lethal damage as appeared to be the case for hypertonic shock and D{sub 2}O medium. The treatments by themselves were not toxic to unirradiated cells. We found that the enhanced expression of potentially lethal damage by post-treatment with caffeine or D{sub 2}O medium is similar. For example, the kinetic of the repair of the potentially lethal damage expressible by either post-treatment was similar, and an additive enhancement of potentially lethal damage occurred when the two treatments were administered sequentially. These findings suggest that caffeine and D{sub 2}O medium affect the same sector of potentially lethal damage. When the two treatments were combined, however, they competed with each other. Thus, although caffeine and D{sub 2}O medium act on the same sector of potentially lethal damage they do so differently, suggesting that more than one pathway of the expression of radiation damage can result in the same phenotypic effect. (author).

  17. Genetic interaction analysis of point mutations enables interrogation of gene function at a residue-level resolution

    Science.gov (United States)

    Braberg, Hannes; Moehle, Erica A.; Shales, Michael; Guthrie, Christine; Krogan, Nevan J.

    2014-01-01

    We have achieved a residue-level resolution of genetic interaction mapping – a technique that measures how the function of one gene is affected by the alteration of a second gene – by analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, and outline key applications for the approach, including interrogation of protein interaction interfaces and active sites, and examination of post-translational modifications. Genetic interaction analysis has proven effective for characterizing cellular processes; however, to date, systematic high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which limits the resolution of gene function analysis and poses problems for multifunctional genes. Our point mutant approach addresses these issues, and further provides a tool for in vivo structure-function analysis that complements traditional biophysical methods. We also discuss the potential for genetic interaction mapping of point mutations in human cells and its application to personalized medicine. PMID:24842270

  18. A dominant-negative mutation of mouse Lmx1b causes glaucoma and is semi-lethal via LDB1-mediated dimerization [corrected].

    Directory of Open Access Journals (Sweden)

    Sally H Cross

    2014-05-01

    Full Text Available Mutations in the LIM-homeodomain transcription factor LMX1B cause nail-patella syndrome, an autosomal dominant pleiotrophic human disorder in which nail, patella and elbow dysplasia is associated with other skeletal abnormalities and variably nephropathy and glaucoma. It is thought to be a haploinsufficient disorder. Studies in the mouse have shown that during development Lmx1b controls limb dorsal-ventral patterning and is also required for kidney and eye development, midbrain-hindbrain boundary establishment and the specification of specific neuronal subtypes. Mice completely deficient for Lmx1b die at birth. In contrast to the situation in humans, heterozygous null mice do not have a mutant phenotype. Here we report a novel mouse mutant Icst, an N-ethyl-N-nitrosourea-induced missense substitution, V265D, in the homeodomain of LMX1B that abolishes DNA binding and thereby the ability to transactivate other genes. Although the homozygous phenotypic consequences of Icst and the null allele of Lmx1b are the same, heterozygous Icst elicits a phenotype whilst the null allele does not. Heterozygous Icst causes glaucomatous eye defects and is semi-lethal, probably due to kidney failure. We show that the null phenotype is rescued more effectively by an Lmx1b transgene than is Icst. Co-immunoprecipitation experiments show that both wild-type and Icst LMX1B are found in complexes with LIM domain binding protein 1 (LDB1, resulting in lower levels of functional LMX1B in Icst heterozygotes than null heterozygotes. We conclude that Icst is a dominant-negative allele of Lmx1b. These findings indicate a reassessment of whether nail-patella syndrome is always haploinsufficient. Furthermore, Icst is a rare example of a model of human glaucoma caused by mutation of the same gene in humans and mice.

  19. Suicide Lethality: A Concept Analysis.

    Science.gov (United States)

    DeBastiani, Summer; De Santis, Joseph P

    2018-02-01

    Suicide is a significant health problem internationally. Those who complete suicide may have different behaviors and risk factors than those who attempt a non-fatal suicide. The purpose of this article is to analyze the concept of suicide lethality and propose a clear definition of the concept through the identification of antecedents, attributes, and consequences. A literature search for articles published in the English language between 1970 and 2016 was conducted using MEDLINE, the Cochrane Library, Pubmed, Psychlit, Ovid, PsycINFO, and Proquest. The bibliographies of all included studies were also reviewed to identify additional relevant citations. A concept analysis was conducted on the literature findings using six stages of Walker and Avant's method. The concept analysis differentiated between suicide, lethality, suicidal behavior, and suicide lethality. Presence of a suicide plan or a written suicide note was not found to be associated with the majority of completed suicides included in the definition of suicide lethality. There are a few scales that measure the lethality of a suicide attempt, but none that attempt to measure the concept of suicide lethality as described in this analysis. Clarifying the concept of suicide lethality encourages awareness of the possibility of different suicidal behaviors associated with different suicide outcomes and will inform the development of future nursing interventions. A clearer definition of the concept of suicide lethality will guide clinical practice, research, and policy development aimed at suicide prevention.

  20. A pharmacological screen for compounds that rescue the developmental lethality of a Drosophila ATM mutant.

    Science.gov (United States)

    Rimkus, Stacey A; Wassarman, David A

    2018-01-01

    Ataxia-telangiectasia (A-T) is a neurodegenerative disease caused by mutation of the A-T mutated (ATM) gene. ATM encodes a protein kinase that is activated by DNA damage and phosphorylates many proteins, including those involved in DNA repair, cell cycle control, and apoptosis. Characteristic biological and molecular functions of ATM observed in mammals are conserved in Drosophila melanogaster. As an example, conditional loss-of-function ATM alleles in flies cause progressive neurodegeneration through activation of the innate immune response. However, unlike in mammals, null alleles of ATM in flies cause lethality during development. With the goals of understanding biological and molecular roles of ATM in a whole animal and identifying candidate therapeutics for A-T, we performed a screen of 2400 compounds, including FDA-approved drugs, natural products, and bioactive compounds, for modifiers of the developmental lethality caused by a temperature-sensitive ATM allele (ATM8) that has reduced kinase activity at non-permissive temperatures. Ten compounds reproducibly suppressed the developmental lethality of ATM8 flies, including Ronnel, which is an organophosphate. Ronnel and other suppressor compounds are known to cause mitochondrial dysfunction or to inhibit the enzyme acetylcholinesterase, which controls the levels of the neurotransmitter acetylcholine, suggesting that detrimental consequences of reduced ATM kinase activity can be rescued by inhibiting the function of mitochondria or increasing acetylcholine levels. We carried out further studies of Ronnel because, unlike the other compounds that suppressed the developmental lethality of homozygous ATM8 flies, Ronnel was toxic to the development of heterozygous ATM8 flies. Ronnel did not affect the innate immune response of ATM8 flies, and it further increased the already high levels of DNA damage in brains of ATM8 flies, but its effects were not harmful to the lifespan of rescued ATM8 flies. These results provide

  1. Neutron-induced mutation experiments. Progress report, March 1, 1975--February 29, 1976

    International Nuclear Information System (INIS)

    Abrahamson, S.

    1975-11-01

    The relative mutagenic effectiveness of neutrons of different energies were compared with x radiation in mice and Drosophila oogonia employing X-linked recessive lethal and specific locus mutation tests. The energies and doses used were 0.68 MeV, 2 MeV, and 6 MeV (250 and 500 0 R), and 15 MeV (250, 500, and 1000 0 R). The data thus far collected from the recessive lethal test indicate that 0.68 MeV neutrons have the highest RBE among the energies tested, followed by 6 and 2 MeV. The specific locus mutation data also indicate the highest RBE for 0.68 MeV, followed respectively by 2 and 6 MeV. The 15 MeV data is as of now incompletely analyzed, as are some dose points of 2 and 6 MeV

  2. Mutational robustness of gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Mutational robustness of gene regulatory networks refers to their ability to generate constant biological output upon mutations that change network structure. Such networks contain regulatory interactions (transcription factor-target gene interactions but often also protein-protein interactions between transcription factors. Using computational modeling, we study factors that influence robustness and we infer several network properties governing it. These include the type of mutation, i.e. whether a regulatory interaction or a protein-protein interaction is mutated, and in the case of mutation of a regulatory interaction, the sign of the interaction (activating vs. repressive. In addition, we analyze the effect of combinations of mutations and we compare networks containing monomeric with those containing dimeric transcription factors. Our results are consistent with available data on biological networks, for example based on evolutionary conservation of network features. As a novel and remarkable property, we predict that networks are more robust against mutations in monomer than in dimer transcription factors, a prediction for which analysis of conservation of DNA binding residues in monomeric vs. dimeric transcription factors provides indirect evidence.

  3. Study on the abnormalities in sperm and gene mutation induced by retention of {sup 147}Pm in testis

    Energy Technology Data Exchange (ETDEWEB)

    Shoupeng, Zhu; Mingyue, Lun; Shuqin, Yang [Suzhou Medical Coll., JS (China)

    1990-05-01

    The purpose of the present study is to ascertain {sup 147}Pm retention in testis and its radiogenotoxicological effects of gene mutation through varying radioactivities of internal exposure. Especially the accumulation of {sup 147}Pm in testis induces the dominant lethal, dominant skeletal mutation and abnormalities in sperm. Studies indicated that the cumulative absorption dose in testis increases as the internal exposure of {sup 147}Pm increases. The internal exposure of {sup 147}Pm can destroy the genetic materials and raise the rates of dominant lethal and dominant mutation of skeletal abnormalities in the offspring. The relationship between the rate of dominant skeletal mutation (B) and accumulated radioactivities of {sup 147}Pm (D) in testis can be described by a linear equation that is B 20.68 + 35.48 D. The relationship between abnormalities of the sperm and the cumulative dose from {sup 147}Pm in testis can be expressed by the following equation: S = 10.8705 D{sup 0.5224} + 3.1768.

  4. Synthetic lethality between gene defects affecting a single non-essential molecular pathway with reversible steps.

    Directory of Open Access Journals (Sweden)

    Andrei Zinovyev

    2013-04-01

    Full Text Available Systematic analysis of synthetic lethality (SL constitutes a critical tool for systems biology to decipher molecular pathways. The most accepted mechanistic explanation of SL is that the two genes function in parallel, mutually compensatory pathways, known as between-pathway SL. However, recent genome-wide analyses in yeast identified a significant number of within-pathway negative genetic interactions. The molecular mechanisms leading to within-pathway SL are not fully understood. Here, we propose a novel mechanism leading to within-pathway SL involving two genes functioning in a single non-essential pathway. This type of SL termed within-reversible-pathway SL involves reversible pathway steps, catalyzed by different enzymes in the forward and backward directions, and kinetic trapping of a potentially toxic intermediate. Experimental data with recombinational DNA repair genes validate the concept. Mathematical modeling recapitulates the possibility of kinetic trapping and revealed the potential contributions of synthetic, dosage-lethal interactions in such a genetic system as well as the possibility of within-pathway positive masking interactions. Analysis of yeast gene interaction and pathway data suggests broad applicability of this novel concept. These observations extend the canonical interpretation of synthetic-lethal or synthetic-sick interactions with direct implications to reconstruct molecular pathways and improve therapeutic approaches to diseases such as cancer.

  5. Mutation induction by ion beams in higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2003-04-01

    This review mainly describes study results obtained in the Takasaki ion-beam (IB) irradiation facility (TIARA) on the mutation induction in higher plants. Biological effects like lethality and on budding of IBs (carbon, Ne and Ar) are discussed in relation with their linear energy transfer (LET), relative biological effectiveness and the developmental states in shepherd's-purse and tobacco. Induced mutation by IB are characterized by those findings that the mutation rate by C beam is 1.9 x 10{sup -6}, being 17 times higher than the electron beam, in the shepherd's-purse, that C beam induces larger structural changes than electron beam when examined by molecular mechanism of tt and gl gene mutations, and that mutation spectrum of IB is different from that of {gamma}-ray and is wider. Novel mutants are described on shepherd's-purse (pigment mutants, ultraviolet (UV)-resistant and sensitive ones, and flowering ones), disease-resistant rice, barley and tobacco plants, and flowering plants. IB mutation is possibly useful for solving the problems of environment and foods in future. (N.I.)

  6. Effect of mutations in the A site of 16 S rRNA on aminoglycoside antibiotic-ribosome interaction

    DEFF Research Database (Denmark)

    Recht, M I; Douthwaite, S; Dahlquist, K D

    1999-01-01

    antibiotics, which also interact with this region of rRNA. Mutations of certain nucleotides in rRNA reduce aminoglycoside binding affinity, as previously demonstrated using a model RNA oligonucleotide system. Here, predictions from the oligonucleotide system were tested in the ribosome by mutation...... for the aminoglycoside paromomycin, whereas no discernible reduction in affinity was observed with 1406 mutant ribosomes. These data are consistent with prior NMR structural determination of aminoglycoside interaction with the decoding region, and further our understanding of how aminoglycoside resistance can...

  7. Lethal and mutagenic effects of radiation and chemicals on cultured fish cells derived the erythrophoroma of goldfish (Carassius auratus)

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, H. (Tokyo Univ. (Japan). Inst. of Zoology)

    1983-01-01

    GEM 199 cells derived from an eryhtrophoroma of goldfish (Carassius auratus), which had a high plating efficiency, were used to investigate the lethal and mutational effects of radiations (UV and ..gamma..-rays) and chemicals (4NQO and MNNG). The cells were more resistant to rays than mammalian cells and CAF-MM1 cells derived from the normal fin tissue of goldfish. They were also more resistant to UV-irradiation than CAF-MM1 cells. Photoreactivation after UV-irradiation was present in GEM 199 cells for both survival and mutation. The initial shoulder of the survival curve of UV-irradiated cells was reduced greatly by caffeine, suggesting a high activity of the post-replication repair. The spontaneous mutation frequency to ouabain resistance was 1-5x10/sup -6/ clones per viable cell. MNNG was effective in inducing ouabain-resistant mutation, while 4NQO and ..gamma..-rays did not induce mutation.

  8. Ras1 interacts with multiple new signaling and cytoskeletal loci in Drosophila eggshell patterning and morphogenesis.

    Science.gov (United States)

    Schnorr, J D; Holdcraft, R; Chevalier, B; Berg, C A

    2001-10-01

    Little is known about the genes that interact with Ras signaling pathways to regulate morphogenesis. The synthesis of dorsal eggshell structures in Drosophila melanogaster requires multiple rounds of Ras signaling followed by dramatic epithelial sheet movements. We took advantage of this process to identify genes that link patterning and morphogenesis; we screened lethal mutations on the second chromosome for those that could enhance a weak Ras1 eggshell phenotype. Of 1618 lethal P-element mutations tested, 13 showed significant enhancement, resulting in forked and fused dorsal appendages. Our genetic and molecular analyses together with information from the Berkeley Drosophila Genome Project reveal that 11 of these lines carry mutations in previously characterized genes. Three mutations disrupt the known Ras1 cell signaling components Star, Egfr, and Blistered, while one mutation disrupts Sec61beta, implicated in ligand secretion. Seven lines represent cell signaling and cytoskeletal components that are new to the Ras1 pathway; these are Chickadee (Profilin), Tec29, Dreadlocks, POSH, Peanut, Smt3, and MESK2, a suppressor of dominant-negative Ksr. A twelfth insertion disrupts two genes, Nrk, a "neurospecific" receptor tyrosine kinase, and Tpp, which encodes a neuropeptidase. These results suggest that Ras1 signaling during oogenesis involves novel components that may be intimately associated with additional signaling processes and with the reorganization of the cytoskeleton. To determine whether these Ras1 Enhancers function upstream or downstream of the Egf receptor, four mutations were tested for their ability to suppress an activated Egfr construct (lambdatop) expressed in oogenesis exclusively in the follicle cells. Mutations in Star and l(2)43Bb had no significant effect upon the lambdatop eggshell defect whereas smt3 and dock alleles significantly suppressed the lambdatop phenotype.

  9. Developmental and transcriptional consequences of mutations in Drosophila TAF(II)60.

    Science.gov (United States)

    Aoyagi, N; Wassarman, D A

    2001-10-01

    In vitro, the TAF(II)60 component of the TFIID complex contributes to RNA polymerase II transcription initiation by serving as a coactivator that interacts with specific activator proteins and possibly as a promoter selectivity factor that interacts with the downstream promoter element. In vivo roles for TAF(II)60 in metazoan transcription are not as clear. Here we have investigated the developmental and transcriptional requirements for TAF(II)60 by analyzing four independent Drosophila melanogaster TAF(II)60 mutants. Loss-of-function mutations in Drosophila TAF(II)60 result in lethality, indicating that TAF(II)60 provides a nonredundant function in vivo. Molecular analysis of TAF(II)60 alleles revealed that essential TAF(II)60 functions are provided by two evolutionarily conserved regions located in the N-terminal half of the protein. TAF(II)60 is required at all stages of Drosophila development, in both germ cells and somatic cells. Expression of TAF(II)60 from a transgene rescued the lethality of TAF(II)60 mutants and exposed requirements for TAF(II)60 during imaginal development, spermatogenesis, and oogenesis. Phenotypes of rescued TAF(II)60 mutant flies implicate TAF(II)60 in transcriptional mechanisms that regulate cell growth and cell fate specification and suggest that TAF(II)60 is a limiting component of the machinery that regulates the transcription of dosage-sensitive genes. Finally, TAF(II)60 plays roles in developmental regulation of gene expression that are distinct from those of other TAF(II) proteins.

  10. Experimental Determination and Prediction of the Fitness Effects of Random Point Mutations in the Biosynthetic Enzyme HisA

    Science.gov (United States)

    Lundin, Erik; Tang, Po-Cheng; Guy, Lionel; Näsvall, Joakim; Andersson, Dan I

    2018-01-01

    Abstract The distribution of fitness effects of mutations is a factor of fundamental importance in evolutionary biology. We determined the distribution of fitness effects of 510 mutants that each carried between 1 and 10 mutations (synonymous and nonsynonymous) in the hisA gene, encoding an essential enzyme in the l-histidine biosynthesis pathway of Salmonella enterica. For the full set of mutants, the distribution was bimodal with many apparently neutral mutations and many lethal mutations. For a subset of 81 single, nonsynonymous mutants most mutations appeared neutral at high expression levels, whereas at low expression levels only a few mutations were neutral. Furthermore, we examined how the magnitude of the observed fitness effects was correlated to several measures of biophysical properties and phylogenetic conservation.We conclude that for HisA: (i) The effect of mutations can be masked by high expression levels, such that mutations that are deleterious to the function of the protein can still be neutral with regard to organism fitness if the protein is expressed at a sufficiently high level; (ii) the shape of the fitness distribution is dependent on the extent to which the protein is rate-limiting for growth; (iii) negative epistatic interactions, on an average, amplified the combined effect of nonsynonymous mutations; and (iv) no single sequence-based predictor could confidently predict the fitness effects of mutations in HisA, but a combination of multiple predictors could predict the effect with a SD of 0.04 resulting in 80% of the mutations predicted within 12% of their observed selection coefficients. PMID:29294020

  11. The Effects of Anthrax Lethal Toxin on Host Barrier Function

    Directory of Open Access Journals (Sweden)

    David M. Frucht

    2011-06-01

    Full Text Available The pathological actions of anthrax toxin require the activities of its edema factor (EF and lethal factor (LF enzyme components, which gain intracellular access via its receptor-binding component, protective antigen (PA. LF is a metalloproteinase with specificity for selected mitogen-activated protein kinase kinases (MKKs, but its activity is not directly lethal to many types of primary and transformed cells in vitro. Nevertheless, in vivo treatment of several animal species with the combination of LF and PA (termed lethal toxin or LT leads to morbidity and mortality, suggesting that LT-dependent toxicity is mediated by cellular interactions between host cells. Decades of research have revealed that a central hallmark of this toxicity is the disruption of key cellular barriers required to maintain homeostasis. This review will focus on the current understanding of the effects of LT on barrier function, highlighting recent progress in establishing the molecular mechanisms underlying these effects.

  12. Tyr120Asp mutation alters domain flexibility and dynamics of MeCP2 DNA binding domain leading to impaired DNA interaction: Atomistic characterization of a Rett syndrome causing mutation.

    Science.gov (United States)

    D'Annessa, Ilda; Gandaglia, Anna; Brivio, Elena; Stefanelli, Gilda; Frasca, Angelisa; Landsberger, Nicoletta; Di Marino, Daniele

    2018-05-01

    Mutations in the X-linked MECP2 gene represent the main origin of Rett syndrome, causing a profound intellectual disability in females. MeCP2 is an epigenetic transcriptional regulator containing two main functional domains: a methyl-CpG binding domain (MBD) and a transcription repression domain (TRD). Over 600 pathogenic mutations were reported to affect the whole protein; almost half of missense mutations affect the MBD. Understanding the impact of these mutations on the MBD structure and interaction with DNA will foster the comprehension of their pathogenicity and possibly genotype/phenotype correlation studies. Herein, we use molecular dynamics simulations to obtain a detailed view of the dynamics of WT and mutated MBD in the presence and absence of DNA. The pathogenic mutation Y120D is used as paradigm for our studies. Further, since the Y120 residue was previously found to be a phosphorylation site, we characterize the dynamic profile of the MBD also in the presence of Y120 phosphorylation (pY120). We found that addition of a phosphate group to Y120 or mutation in aspartic acid affect domain mobility that samples an alternative conformational space with respect to the WT, leading to impaired ability to interact with DNA. Experimental assays showing a significant reduction in the binding affinity between the mutated MBD and the DNA confirmed our predictions. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. HAEdb: a novel interactive, locus-specific mutation database for the C1 inhibitor gene.

    Science.gov (United States)

    Kalmár, Lajos; Hegedüs, Tamás; Farkas, Henriette; Nagy, Melinda; Tordai, Attila

    2005-01-01

    Hereditary angioneurotic edema (HAE) is an autosomal dominant disorder characterized by episodic local subcutaneous and submucosal edema and is caused by the deficiency of the activated C1 esterase inhibitor protein (C1-INH or C1INH; approved gene symbol SERPING1). Published C1-INH mutations are represented in large universal databases (e.g., OMIM, HGMD), but these databases update their data rather infrequently, they are not interactive, and they do not allow searches according to different criteria. The HAEdb, a C1-INH gene mutation database (http://hae.biomembrane.hu) was created to contribute to the following expectations: 1) help the comprehensive collection of information on genetic alterations of the C1-INH gene; 2) create a database in which data can be searched and compared according to several flexible criteria; and 3) provide additional help in new mutation identification. The website uses MySQL, an open-source, multithreaded, relational database management system. The user-friendly graphical interface was written in the PHP web programming language. The website consists of two main parts, the freely browsable search function, and the password-protected data deposition function. Mutations of the C1-INH gene are divided in two parts: gross mutations involving DNA fragments >1 kb, and micro mutations encompassing all non-gross mutations. Several attributes (e.g., affected exon, molecular consequence, family history) are collected for each mutation in a standardized form. This database may facilitate future comprehensive analyses of C1-INH mutations and also provide regular help for molecular diagnostic testing of HAE patients in different centers.

  14. Studies on chromosomal aberrations and dominant lethal mutations induced by x irradiation in germ cells of male mice

    International Nuclear Information System (INIS)

    Wang Xianli; Wang Mingdong; Wang Bin; Sun Shuqing

    1992-01-01

    After male mice irradiated by 2 Gy X rays mated to normal virginal females superovulated with PMSG and HCG, pronuclei chromosome spreading of first-cleavage embryos were prepared and chromosomal aberrations of paternal pronuclei were observed. The results showed that the frequency of chromosomal aberrations was highest irradiated at spermatic stage among different stages of spermatogenesis. The sequence of radiosensitivity in spermatogenesis was as follows: spermatids > mature sperm > spermatocyte > spermatogonia and stem spermatogonia. The frequencies of paternal chromosomal aberrations resulted from irradiation at spermatids and mature sperms were significantly higher than that in control. The reciprocal translocations of stem spermatogonia induced by 2 Gy X rays in those male mice were also examined in the preparations of diakinesis-metaphase I. The frequency of reciprocal translocations were 0.0429 per cell and significantly higher than that in control. The proportion of unbalanced gametes, resulting in lethal embryos after fertilization, was 0.02145 to be predicted. At the same time, the dominant lethality induced by X rays in stem spermatogonia was measured, being 0.0371. The frequency of dead fetuses in irradiation group was about twice as in control. The regression analysis was found that the reciprocal translocations was markedly related to the dominant lethality

  15. Lethal genes surviving by mosaicism: a possible explanation for sporadic birth defects involving the skin.

    Science.gov (United States)

    Happle, R

    1987-04-01

    A genetic concept is advanced to explain the origin of several sporadic syndromes characterized by a mosaic distribution of skin defects. It is postulated that these disorders are due to the action of a lethal gene surviving by mosaicism. The presence of the mutation in the zygote will lead to death of the embryo at an early stage of development. Cells bearing the mutation can survive only in a mosaic state, in close proximity with normal cells. The mosaic may arise either from a gametic half chromatid mutation or from an early somatic mutation. This concept of origin is proposed to apply to the Schimmelpenning-Feuerstein-Mims syndrome, the McCune-Albright syndrome, the Klippel-Trenaunay syndrome, the Sturge-Weber syndrome, and neurocutaneous melanosis. Moreover, this etiologic hypothesis may apply to two other birth defects that have recently been delineated, the Proteus syndrome (partial gigantism of hands or feet, hemihypertrophy, macrocephaly, linear papillomatous epidermal nevus, subcutaneous hemangiomas and lipomas, accelerated growth, and visceral anomalies), and the Delleman-Oorthuys syndrome (orbital cyst, porencephaly, periorbital appendages, and focal aplasia of the skin.

  16. Epigenetic Deficiencies and Replicative Stress

    DEFF Research Database (Denmark)

    Shoaib, Muhammad; Sørensen, Claus Storgaard

    2015-01-01

    Cancer cell-specific synthetic lethal interactions entail promising therapeutic possibilities. In this issue of Cancer Cell, Pfister et al. describe a synthetic lethal interaction where cancer cells deficient in H3K36me3 owing to SETD2 loss-of-function mutation are strongly sensitized to inhibiti...

  17. Mutation Induction with UV- and X-radiations in spores and vegetative cells of Bacillus subtilis

    International Nuclear Information System (INIS)

    Tanooka, H.; Munakata, N.; Kitahara, S.

    1978-01-01

    Spores and vegetative cells of Bacillus subtilis strains with various defects in DNA-repair capacities (hcr - , ssp - , hcr - ssp - ) were irradiated with UV radiation or X-rays. Induced mutation frequency was determined from the observed frequency of prototrophic reversion of a suppressible auxotropic mutation. At equal physical dose, after either UV- or X-irradiation, spores were more resistant to mutations as well as to killing than were vegetative cells. However, quantitative comparison revealed that, at equally lethal doses, spores and vegetative cells were almost equally mutable by X-rays whereas spores were considerably less mutable by UV than were vegetative cells. Thus, as judged from their mutagenic efficiency relative to the lethality, X-ray-induced damage in the spore DNA and the vegetative DNA were equally mutagenic, while UV-induced DNA photoproducts in the spore were less mutagenic than those in vegetative cells. Post-treatment of UV-irradiated cells with caffeine decreased the survival and the induced mutation frequency for either spores or vegetative cells for all the strains. In X-irradiated spores however, a similar suppressing effect of caffeine was observed only for mutability of a strain lacking DNA polymerase I activity

  18. Molecular genetic mutation analysis in Menkes-disease with prenatal diagnosis

    DEFF Research Database (Denmark)

    László, Aranka; Endreffy, Emoke; Tümer, Zeynep

    2010-01-01

    Menkes disease (MD) is an X-linked recessive multisystemic lethal, heredodegenerative disorder. Progressive neurodegeneration and connective tissue disturbances with microscopically kinky hair are the main symptoms. Molecular genetic mutation analysis was made at a Hungarian male infant suffering...... from MD and prenatal diagnosis was done in this MD loaded family. METHOD: The 12th exon of ATP7A gene has been analyzed by dideoxy-finger printing (DDF), polymerase chain reaction (PCR), direct sequencing of exon 12. The specific mutation was screened from chorionic villi of the maternal aunt at the 14......th gestational week. RESULTS: In the exon 12th a basic pair substitution with Arg 844 His change was detected leading to very severe fatal missense mutation....

  19. Radiation-induced mutagenicity and lethality in tryptophan-requiring auxotrophs of escherichia coli

    International Nuclear Information System (INIS)

    Xu Rong; Qian Hongwei; Yao Fenying; Gu Shuzhu; Xu Jiaxin; Bi Hekan; Liu Yuying

    1989-01-01

    Mutation and killing caused by X-ray radiation and 60 Co γ-ray radiation were studied in three different tryptophan-requiring auxotrophs (WP2, Wp2A, Cm 891) of Escherichia coli. These testers are sensitive to base pair substitution mutagens. Cm891 carries a R-factor and is more sensitive than WP2 and WP2A to radiation-induced mutation and lethality. The results of the study show that (1) ionizing radiation was mutagenic to E. coli, (2) the order of mutagenic sensitivity among three strains to ionizing radiation was Cm891 > WP2A > WP2, (3) the dose rate of γ-ray influences mutagenicity and lethalty of E. coli strain, (4) the toxicity and mutagenicity of γ-ray were similar to X-ray when Cm891 was tested, however, γ-ray was more toxic and mutagenic than X-ray to WP2A ang WP2

  20. Lethal and mutagenic effects of fast neutrons of different energy on Streptomyces griseus spores

    International Nuclear Information System (INIS)

    Podgorskaya, M.E.; Tulina, G.G.; Serdechnaya, A.I.; Matselyukh, B.P.

    1986-01-01

    A study was made of lethal and mutagenic effects of fast neutrons of different energy on spores of prototrophic and auxotrophic strains of Streptomyces griseus. Relative biological effectiveness of fast neutrons is higher than that of γ-rays and depends on beam energy. Neutrons of 22-50 MeV induce Streptomyces griseus mutations more frequently (by one order of magnitude) than neutrons of 1.4-1.6 MeV do. The obtained mutants can be used in studying Streptomyces griseus genetics

  1. Hyperthermia-induced alteration of yeast susceptibility to mutation

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Morrison, D.P.

    1985-01-01

    Diploid yeast (s. cerevisiae) were examined for alterations in susceptibility to induced mutation following hyperthermia treatment. In cells grown at 23 0 C, a non-lethal heat exposure (38 0 C, 30 min) markedly suppressed mutation induced by a subsequent non-killing dose of MNNG of MNU. Mutation by ENU, 8-MOP + UVA, or γ-rays was not affected. An intermediate level of mutation suppression was observed for mutation by 254nm UV or MMS. Mutation by MNNG was not suppressed by the same heat treatment delivered after the mutagen exposure. In a split dose experiment (two MNNG treatments separated by a heat exposure) no suppression of mutation was observed. Treatment with cycloheximide mimicked the effect of heat treatment. These data suggest that mutation induction by MNNG or MNU is protein synthesis dependent, i.e. an error-prone repair system is induced by exposure to MNNG or MNU but not by ENU, 8-MOP+UVA or γ-irradiation. We propose that hyperthermia treatment, by inducing stress protein synthesis at the expense of normal protein synthesis, precludes induction of this error-prone system. Therefore, in heat treated cells, DNA lesions produced by MNNG or MNU exposure must be resolved by an essentially constitutive system which is less error-prone than the inducible one

  2. DNMT1 mutations found in HSANIE patients affect interaction with UHRF1 and neuronal differentiation.

    Science.gov (United States)

    Smets, Martha; Link, Stephanie; Wolf, Patricia; Schneider, Katrin; Solis, Veronica; Ryan, Joel; Meilinger, Daniela; Qin, Weihua; Leonhardt, Heinrich

    2017-04-15

    DNMT1 is recruited to substrate sites by PCNA and UHRF1 to maintain DNA methylation after replication. The cell cycle dependent recruitment of DNMT1 is mediated by the PCNA-binding domain (PBD) and the targeting sequence (TS) within the N-terminal regulatory domain. The TS domain was found to be mutated in patients suffering from hereditary sensory and autonomic neuropathies with dementia and hearing loss (HSANIE) and autosomal dominant cerebellar ataxia deafness and narcolepsy (ADCA-DN) and is associated with global hypomethylation and site specific hypermethylation. With functional complementation assays in mouse embryonic stem cells, we showed that DNMT1 mutations P496Y and Y500C identified in HSANIE patients not only impair DNMT1 heterochromatin association, but also UHRF1 interaction resulting in hypomethylation. Similar DNA methylation defects were observed when DNMT1 interacting domains in UHRF1, the UBL and the SRA domain, were deleted. With cell-based assays, we could show that HSANIE associated mutations perturb DNMT1 heterochromatin association and catalytic complex formation at methylation sites and decrease protein stability in late S and G2 phase. To investigate the neuronal phenotype of HSANIE mutations, we performed DNMT1 rescue assays and could show that cells expressing mutated DNMT1 were prone to apoptosis and failed to differentiate into neuronal lineage. Our results provide insights into the molecular basis of DNMT1 dysfunction in HSANIE patients and emphasize the importance of the TS domain in the regulation of DNA methylation in pluripotent and differentiating cells. © The Author 2017. Published by Oxford University Press.

  3. Mutations at the flavin binding site of ETF:QO yield a MADD-like severe phenotype in Drosophila.

    Science.gov (United States)

    Alves, Ema; Henriques, Bárbara J; Rodrigues, João V; Prudêncio, Pedro; Rocha, Hugo; Vilarinho, Laura; Martinho, Rui G; Gomes, Cláudio M

    2012-08-01

    Following a screening on EMS-induced Drosophila mutants defective for formation and morphogenesis of epithelial cells, we have identified three lethal mutants defective for the production of embryonic cuticle. The mutants are allelic to the CG12140 gene, the fly homologue of electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO). In humans, inherited defects in this inner membrane protein account for multiple acyl-CoA dehydrogenase deficiency (MADD), a metabolic disease of β-oxidation, with a broad range of clinical phenotypes, varying from embryonic lethal to mild forms. The three mutant alleles carried distinct missense mutations in ETF:QO (G65E, A68V and S104F) and maternal mutant embryos for ETF:QO showed lethal morphogenetic defects and a significant induction of apoptosis following germ-band elongation. This phenotype is accompanied by an embryonic accumulation of short- and medium-chain acylcarnitines (C4, C8 and C12) as well as long-chain acylcarnitines (C14 and C16:1), whose elevation is also found in severe MADD forms in humans under intense metabolic decompensation. In agreement the ETF:QO activity in the mutant embryos is markedly decreased in relation to wild type activity. Amino acid sequence analysis and structural mapping into a molecular model of ETF:QO show that all mutations map at FAD interacting residues, two of which at the nucleotide-binding Rossmann fold. This structural domain is composed by a β-strand connected by a short loop to an α-helix, and its perturbation results in impaired cofactor association via structural destabilisation and consequently enzymatic inactivation. This work thus pinpoints the molecular origins of a severe MADD-like phenotype in the fruit fly and establishes the proof of concept concerning the suitability of this organism as a potential model organism for MADD. © 2012 Elsevier B.V. All rights reserved.

  4. Three novel mutations in Iranian patients with Tay-Sachs disease.

    Science.gov (United States)

    Jamali, Solmaz; Eskandari, Nasim; Aryani, Omid; Salehpour, Shadab; Zaman, Talieh; Kamalidehghan, Behnam; Houshmand, Massoud

    2014-01-01

    Tay-Sachs disease (TSD), or GM2 gangliosidosis, is a lethal autosomal recessive neurodegenerative disorder, which is caused by a deficiency of beta-hexosaminidase A (HEXA), resulting in lysosomal accumulation of GM2 ganglioside. The aim of this study was to identify the TSD-causing mutations in an Iranian population. In this study, we examined 31 patients for TSD-causing mutations using PCR, followed by restriction enzyme digestion. Molecular genetics analysis of DNA from 23 patients of TSD revealed mutations that has been previously reported, including four-base duplications c.1274_1277dupTATC in exon 11 and IVS2+1G>A, deletion TTAGGCAAGGGC in exon 10 as well as a few novel mutations, including C331G, which altered Gln>Glu in HEXB, A>G, T>C, and p.R510X in exon 14, which predicted a termination codon or nonsense mutation. In conclusion, with the discovery of these novel mutations, the genotypic spectrum of Iranian patients with TSD disease has been extended and could facilitate definition of disease-related mutations.

  5. Mutagenesis-mediated virus extinction: virus-dependent effect of viral load on sensitivity to lethal defection.

    Directory of Open Access Journals (Sweden)

    Héctor Moreno

    Full Text Available BACKGROUND: Lethal mutagenesis is a transition towards virus extinction mediated by enhanced mutation rates during viral genome replication, and it is currently under investigation as a potential new antiviral strategy. Viral load and virus fitness are known to influence virus extinction. Here we examine the effect or the multiplicity of infection (MOI on progeny production of several RNA viruses under enhanced mutagenesis. RESULTS: The effect of the mutagenic base analogue 5-fluorouracil (FU on the replication of the arenavirus lymphocytic choriomeningitis virus (LCMV can result either in inhibition of progeny production and virus extinction in infections carried out at low multiplicity of infection (MOI, or in a moderate titer decrease without extinction at high MOI. The effect of the MOI is similar for LCMV and vesicular stomatitis virus (VSV, but minimal or absent for the picornaviruses foot-and-mouth disease virus (FMDV and encephalomyocarditis virus (EMCV. The increase in mutation frequency and Shannon entropy (mutant spectrum complexity as a result of virus passage in the presence of FU was more accentuated at low MOI for LCMV and VSV, and at high MOI for FMDV and EMCV. We present an extension of the lethal defection model that agrees with the experimental results. CONCLUSIONS: (i Low infecting load favoured the extinction of negative strand viruses, LCMV or VSV, with an increase of mutant spectrum complexity. (ii This behaviour is not observed in RNA positive strand viruses, FMDV or EMCV. (iii The accumulation of defector genomes may underlie the MOI-dependent behaviour. (iv LCMV coinfections are allowed but superinfection is strongly restricted in BHK-21 cells. (v The dissimilar effects of the MOI on the efficiency of mutagenic-based extinction of different RNA viruses can have implications for the design of antiviral protocols based on lethal mutagenesis, presently under development.

  6. Most ultraviolet irradiation induced mutations in the nematode Caenorhabditis elegans are chromosomal rearrangements

    International Nuclear Information System (INIS)

    Stewart, H.I.; Rosenbluth, R.E.; Baillie, D.L.

    1991-01-01

    In this study the utility of 254-nm ultraviolet light (UV) as a magnetic tool in C.elegans is determined. It is demonstrated that irradiation of adult hermaphrodites provides a simple method for the induction of heritable chromosomal rearrangements. A screening protocol was employed that identifies either recessive lethal mutations in the 40 map unit region balanced by the translocation eT1(III;V), or unc-36(III) duplications. Mutations were recovered in 3% of the chromosomes screened after a dose of 120 J/m 2 . This rate resembles that for 1500 R γ-ray-induced mutations selected in a similar manner. The mutations were classified either as lethals [mapping to Linkage Group (LG)III or LGV] or as putative unc-36 duplications. In contrast to the majority of UV-induced mutations analysed in micro-organisms, a large fraction of the C.elegans UV-induced mutations were found to be not simple intragenic lesions, but deficiencies for more than one adjacent gene or more complex events. Preliminary evidence for this conclusion came from the high frequency of mutations that had a dominant effect causing reduced numbers of adult progeny. Subsequently 6 out of 9 analysed LGV mutations were found to be deficiencies. Other specific rearrangements also identified were: one translocation, sT5(II;III), and two unc-36 duplications, sDp8 and sDp9. It was concluded that UV irradiation can easily be used as an additional tool for the analysis of C.elegans chromosomes, and that C.elegans should prove to be a useful organism in which to study the mechanisms whereby UV acts as a mutagen in cells of complex eukaryotes. (author). 46 refs.; 5 figs.; 4 tabs

  7. A Mosaic Activating Mutation in AKT1 Associated with the Proteus Syndrome

    NARCIS (Netherlands)

    Lindhurst, Marjorie J.; Sapp, Julie C.; Teer, Jamie K.; Johnston, Jennifer J.; Finn, Erin M.; Peters, Kathryn; Turner, Joyce; Cannons, Jennifer L.; Bick, David; Blakemore, Laurel; Blumhorst, Catherine; Brockmann, Knut; Calder, Peter; Cherman, Natasha; Deardorff, Matthew A.; Everman, David B.; Golas, Gretchen; Greenstein, Robert M.; Kato, B. Maya; Keppler-Noreuil, Kim M.; Kuznetsov, Sergei A.; Miyamoto, Richard T.; Newman, Kurt; Ng, David; O'Brien, Kevin; Rothenberg, Steven; Schwartzentruber, Douglas J.; Singhal, Virender; Tirabosco, Roberto; Upton, Joseph; Wientroub, Shlomo; Zackai, Elaine H.; Hoag, Kimberly; Whitewood-Neal, Tracey; Robey, Pamela G.; Schwartzberg, Pamela L.; Darling, Thomas N.; Tosi, Laura L.; Mullikin, James C.; Biesecker, Leslie G.

    2011-01-01

    BACKGROUND The Proteus syndrome is characterized by the overgrowth of skin, connective tissue, brain, and other tissues. It has been hypothesized that the syndrome is caused by somatic mosaicism for a mutation that is lethal in the nonmosaic state. METHODS We performed exome sequencing of DNA from

  8. Genetic interactions between neurofibromin and endothelin receptor B in mice.

    Directory of Open Access Journals (Sweden)

    Mugdha Deo

    Full Text Available When mutations in two different genes produce the same mutant phenotype, it suggests that the encoded proteins either interact with each other, or act in parallel to fulfill a similar purpose. Haploinsufficiency of Neurofibromin and over-expression of Endothelin 3 both cause increased numbers of melanocytes to populate the dermis during mouse development, and thus we are interested in how these two signaling pathways might intersect. Neurofibromin is mutated in the human genetic disease, neurofibromatosis type 1, which is characterized by the development of Schwann cell based tumors and skin hyper-pigmentation. Neurofibromin is a GTPase activating protein, while the Endothelin 3 ligand activates Endothelin receptor B, a G protein coupled receptor. In order to study the genetic interactions between endothelin and neurofibromin, we defined the deletion breakpoints of the classical Ednrb piebald lethal allele (Ednrb(s-l and crossed these mice to mice with a loss-of-function mutation in neurofibromin, Dark skin 9 (Dsk9. We found that Neurofibromin haploinsufficiency requires Endothelin receptor B to darken the tail dermis. In contrast, Neurofibromin haploinsufficiency increases the area of the coat that is pigmented in Endothelin receptor B null mice. We also found an oncogenic mutation in the G protein alpha subunit, GNAQ, which couples to Endothelin receptor B, in a uveal melanoma from a patient with neurofibromatosis type 1. Thus, this data suggests that there is a complex relationship between Neurofibromin and Endothelin receptor B.

  9. Radiation-induced mutagenicity and lethality in Ames tester strains of Salmonella

    International Nuclear Information System (INIS)

    Isildar, M.; Bakale, G.

    1984-01-01

    Mutation and killing induced by X radiation and 60 Co γ radiation were studied in six different histidine-requiring auxotrophs of Salmonella typhimurium. Strain TA100, which is sensitive to base-pair substitutions, and strains TA2637 and TA98, which are sensitive to frameshifts, carry the pKM101 plasmid and exhibit significantly higher radiation-induced mutations compared to their plasmidless parent strains TA1535, TA1537, and TA1538, respectively. Among the plasmid-containing strains, TA98 and TA2637 are much more sensitive to the mutagenic action of radiation than is TA100 based on a comparison with their respective spontaneous mutation rates; however, no uniformity was observed in the responses of the strains to the lethal action of ionizing radiation. The following conclusions are consistent with these observations: (1) the standard Ames Salmonella assay correctly identifies ionizing radiation as a mutagenic agent; (2) frameshift-sensitive parent strains are more sensitive to the mutagenic effects of ionizing radiation than is the only strain studied that is sensitive to base-pair substitutions; and (3) enhancement of mutagenesis and survival is related to plasmid-mediated repair of DNA damage induced by ionizing radiation and does not involve damage induced by Cerenkov-generated uv radiation which is negligible for our irradiation conditions

  10. Relative autonomy of manifestation of welt mutation in imaginal discs of Drosophila

    International Nuclear Information System (INIS)

    Vikulova, V.K.

    1988-01-01

    Autonomy of manifestation of the temperature-sensitive lethal welt mutation was investigated during transplantation of imaginal discs of mutant larvae into normal recipients and in large clones of cells homozygous for welt induced by γ-irradiation in a dose of 1000 rd in y; fj wt/M(2)S7 T(1;2)sc s 2 heterozygotes. Three temperature regimes were used: 17 degree C, at which the welt mutation is not manifested; 29 degree C, at which it is manifested better; and 25 degree C. It was established that the welt mutation operates autonomously, but in restricted regions of imaginal discs. The possibility is discussed of nonautonomous manifestation of the mutation with direct contact of wt/wt cells with heteroxygous wt/+ tissue

  11. Genetic Allee effects and their interaction with ecological Allee effects.

    Science.gov (United States)

    Wittmann, Meike J; Stuis, Hanna; Metzler, Dirk

    2018-01-01

    It is now widely accepted that genetic processes such as inbreeding depression and loss of genetic variation can increase the extinction risk of small populations. However, it is generally unclear whether extinction risk from genetic causes gradually increases with decreasing population size or whether there is a sharp transition around a specific threshold population size. In the ecological literature, such threshold phenomena are called 'strong Allee effects' and they can arise for example from mate limitation in small populations. In this study, we aim to (i) develop a meaningful notion of a 'strong genetic Allee effect', (ii) explore whether and under what conditions such an effect can arise from inbreeding depression due to recessive deleterious mutations, and (iii) quantify the interaction of potential genetic Allee effects with the well-known mate-finding Allee effect. We define a strong genetic Allee effect as a genetic process that causes a population's survival probability to be a sigmoid function of its initial size. The inflection point of this function defines the critical population size. To characterize survival-probability curves, we develop and analyse simple stochastic models for the ecology and genetics of small populations. Our results indicate that inbreeding depression can indeed cause a strong genetic Allee effect, but only if individuals carry sufficiently many deleterious mutations (lethal equivalents). Populations suffering from a genetic Allee effect often first grow, then decline as inbreeding depression sets in and then potentially recover as deleterious mutations are purged. Critical population sizes of ecological and genetic Allee effects appear to be often additive, but even superadditive interactions are possible. Many published estimates for the number of lethal equivalents in birds and mammals fall in the parameter range where strong genetic Allee effects are expected. Unfortunately, extinction risk due to genetic Allee effects

  12. Induction of mutations in the blue-green alga Plectonema boryanum Gomont

    International Nuclear Information System (INIS)

    Singh, R.N.; Kashyap, A.K.

    1977-01-01

    Mutations to cyanophage and streptomycin resistance were induced in the filamentous blue-gree alga Plectonema boryanum IU 594 after treatment with ultraviolet irradiation, N-methyl-N'-nitro-Nnitrosoguanidine, acriflavine, 2-aminopurine and caffeine. Phage-resistant mutants were obtained with all the mutagens tested. Their efficiencies were in the order: MNNG>UV>acriflavine >2-AP>caffeine. In contrast, the drug-resistant mutants were not induced by base analogues: the efficiencies were: acriflavine>MNNG>UV. Lethal and mutational lesions induced with UV were efficiently repaired under photo-reactivating conditions whereas post-treatment with caffeine resulted in enhanced mutation frequencies especially at low UV doses. Neither survival nor mutagenesis was enhanced by keeping the MNNG-treated population in subdued light

  13. Mutation of a vitelline membrane protein, BmEP80, is responsible for the silkworm "Ming" lethal egg mutant.

    Science.gov (United States)

    Chen, Anli; Gao, Peng; Zhao, Qiaoling; Tang, Shunming; Shen, Xingjia; Zhang, Guozheng; Qiu, Zhiyong; Xia, Dingguo; Huang, Yongping; Xu, Yunmin; He, Ningjia

    2013-02-25

    The egg stage is an important stage in the silkworm (Bombyx mori) life cycle. Normal silkworm eggs are usually short, elliptical, and laterally flattened, with a sometimes hollowed surface on the lateral side. However, the eggs laid by homozygous recessive "Ming" lethal egg mutants (l-e(m)) lose water and become concaved around 1h, ultimately exhibiting a triangular shape on the egg surfaces. We performed positional cloning, and narrowed down the region containing the gene responsible for the l-e(m) mutant to 360 kb on chromosome 10 using 2287 F(2) individuals. Using expression analysis and RNA interference, the best l-e(m) candidate gene was shown to be BmEP80. The results of the inverse polymerase chain reaction showed that an ~1.9 kb region from the 3' untranslated region of BmVMP23 to the forepart of BmEP80 was replaced by a >100 kb DNA fragment in the l-e(m) mutant. Several eggs laid by the normal moths injected with BmEP80 small interfering RNAs were evidently depressed and exhibited a triangular shape on the surface. The phenotype exhibited was consistent with the eggs laid by the l-e(m) mutant. Moreover, two-dimensional gel electrophoresis showed that the BmEP80 protein was expressed in the ovary from the 9th day of the pupa stage to eclosion in the wild-type silkworm, but was absent in the l-e(m) mutant. These results indicate that BmEP80 is responsible for the l-e(m) mutation. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. BAG3 directly interacts with mutated alphaB-crystallin to suppress its aggregation and toxicity.

    Directory of Open Access Journals (Sweden)

    Akinori Hishiya

    Full Text Available A homozygous disruption or genetic mutation of the bag3 gene causes progressive myofibrillar myopathy in mouse and human skeletal and cardiac muscle disorder while mutations in the small heat shock protein αB-crystallin gene (CRYAB are reported to be responsible for myofibrillar myopathy. Here, we demonstrate that BAG3 directly binds to wild-type αB-crystallin and the αB-crystallin mutant R120G, via the intermediate domain of BAG3. Peptides that inhibit this interaction in an in vitro binding assay indicate that two conserved Ile-Pro-Val regions of BAG3 are involved in the interaction with αB-crystallin, which is similar to results showing BAG3 binding to HspB8 and HspB6. BAG3 overexpression increased αB-crystallin R120G solubility and inhibited its intracellular aggregation in HEK293 cells. BAG3 suppressed cell death induced by αB-crystallin R120G overexpression in differentiating C2C12 mouse myoblast cells. Our findings indicate a novel function for BAG3 in inhibiting protein aggregation caused by the genetic mutation of CRYAB responsible for human myofibrillar myopathy.

  15. BAG3 Directly Interacts with Mutated alphaB-Crystallin to Suppress Its Aggregation and Toxicity

    Science.gov (United States)

    Hishiya, Akinori; Salman, Mortada Najem; Carra, Serena; Kampinga, Harm H.; Takayama, Shinichi

    2011-01-01

    A homozygous disruption or genetic mutation of the bag3 gene causes progressive myofibrillar myopathy in mouse and human skeletal and cardiac muscle disorder while mutations in the small heat shock protein αB-crystallin gene (CRYAB) are reported to be responsible for myofibrillar myopathy. Here, we demonstrate that BAG3 directly binds to wild-type αB-crystallin and the αB-crystallin mutant R120G, via the intermediate domain of BAG3. Peptides that inhibit this interaction in an in vitro binding assay indicate that two conserved Ile-Pro-Val regions of BAG3 are involved in the interaction with αB-crystallin, which is similar to results showing BAG3 binding to HspB8 and HspB6. BAG3 overexpression increased αB-crystallin R120G solubility and inhibited its intracellular aggregation in HEK293 cells. BAG3 suppressed cell death induced by αB-crystallin R120G overexpression in differentiating C2C12 mouse myoblast cells. Our findings indicate a novel function for BAG3 in inhibiting protein aggregation caused by the genetic mutation of CRYAB responsible for human myofibrillar myopathy. PMID:21423662

  16. Truncating Mutations of MAGEL2, a Gene within the Prader-Willi Locus, Are Responsible for Severe Arthrogryposis

    Science.gov (United States)

    Mejlachowicz, Dan; Nolent, Flora; Maluenda, Jérome; Ranjatoelina-Randrianaivo, Hanitra; Giuliano, Fabienne; Gut, Ivo; Sternberg, Damien; Laquerrière, Annie; Melki, Judith

    2015-01-01

    Arthrogryposis multiplex congenita (AMC) is characterized by the presence of multiple joint contractures resulting from reduced or absent fetal movement. Here, we report two unrelated families affected by lethal AMC. By genetic mapping and whole-exome sequencing in a multiplex family, a heterozygous truncating MAGEL2 mutation leading to frameshift and a premature stop codon (c.1996delC, p.Gln666Serfs∗36) and inherited from the father was identified in the probands. In another family, a distinct heterozygous truncating mutation leading to frameshift (c.2118delT, p.Leu708Trpfs∗7) and occurring de novo on the paternal allele of MAGEL2 was identified in the affected individual. In both families, RNA analysis identified the mutated paternal MAGEL2 transcripts only in affected individuals. MAGEL2 is one of the paternally expressed genes within the Prader-Willi syndrome (PWS) locus. PWS is associated with, to varying extents, reduced fetal mobility, severe infantile hypotonia, childhood-onset obesity, hypogonadism, and intellectual disability. MAGEL2 mutations have been recently reported in affected individuals with features resembling PWS and called Schaaf-Yang syndrome. Here, we show that paternal MAGEL2 mutations are also responsible for lethal AMC, recapitulating the clinical spectrum of PWS and suggesting that MAGEL2 is a PWS-determining gene. PMID:26365340

  17. Lethal/sublethal responses of Daphnia magna to acute norfloxacin contamination and changes in phytoplankton-zooplankton interactions induced by this antibiotic

    Science.gov (United States)

    Pan, Ying; Yan, Shi-Wei; Li, Ruo-Zhu; Hu, Yi-Wen; Chang, Xue-Xiu

    2017-01-01

    Although the well-known antibiotic norfloxacin (NOR) is recognized as an important environmental pollutant, little is known about its impacts on ecological processes, particularly on species interactions. In this paper, we quantified Daphnia magna (Crustacea, Cladocera) responses in mortality rate at lethal NOR concentrations (0, 25, 50, 100, 200, 300 and 400 mg L-1), and in heartbeat rate, swimming behavior and feeding rate (on the green alga Chlorella pyrenoidosa) at sublethal NOR concentrations (0, 25, 50 and 100 mg L-1) to determine the effects of this antibiotic in plankton systems. In 96-h-long lethal experiment, mortality rates of D. magna increased significantly with increasing NOR concentration and exposure time. In sublethal experiments, heartbeat rate decreased, while time ratio of vertical to horizontal swimming (TVH) and the duration of quiescence increased in D. magna individuals exposed to increasing NOR concentrations after 4 and 12 h of exposure. These collectively led to decreases in both average swimming ability and feeding rate, consistent with the positive relationship between average swimming ability and feeding rate. Overall, results indicate that, by affecting zooplankton heartbeat rate and behavior, NOR decreased feeding efficiency of D. magna even at low doses, therefore, it might seriously compromise ecosystem health and function.

  18. Mitochondrial uncoupler exerts a synthetic lethal effect against β-catenin mutant tumor cells.

    Science.gov (United States)

    Shikata, Yuki; Kiga, Masaki; Futamura, Yushi; Aono, Harumi; Inoue, Hiroyuki; Kawada, Manabu; Osada, Hiroyuki; Imoto, Masaya

    2017-04-01

    The wingless/int-1 (Wnt) signal transduction pathway plays a central role in cell proliferation, survival, differentiation and apoptosis. When β-catenin: a component of the Wnt pathway, is mutated into an active form, cell growth signaling is hyperactive and drives oncogenesis. As β-catenin is mutated in a wide variety of tumors, including up to 10% of all sporadic colon carcinomas and 20% of hepatocellular carcinomas, it has been considered a promising target for therapeutic interventions. Therefore, we screened an in-house natural product library for compounds that exhibited synthetic lethality towards β-catenin mutations and isolated nonactin, an antibiotic mitochondrial uncoupler, as a hit compound. Nonactin, as well as other mitochondrial uncouplers, induced apoptosis selectively in β-catenin mutated tumor cells. Significant tumor regression was observed in the β-catenin mutant HCT 116 xenograft model, but not in the β-catenin wild type A375 xenograft model, in response to daily administration of nonactin in vivo. Furthermore, we found that expression of an active mutant form of β-catenin induced a decrease in the glycolysis rate. Taken together, our results demonstrate that tumor cells with mutated β-catenin depend on mitochondrial oxidative phosphorylation for survival. Therefore, they undergo apoptosis in response to mitochondrial dysfunction following the addition of mitochondrial uncouplers, such as nonactin. These results suggest that targeting mitochondria is a potential chemotherapeutic strategy for tumor cells that harbor β-catenin mutations. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  19. The shapes of the radiation dose-mutation response curves in drosophila: Mechanisms and implications

    International Nuclear Information System (INIS)

    Abrahamson, S.; DeJongh, C.; Meyer, H.U.

    1981-01-01

    This chapter proposes that radiation induced mutations, namely sex-linked recessive lethals in Drosophila and forward mutations at specific loci in Drosophila, mammals and lower eucaryotes, are the result of two sub-lesions or hits, induced by either single ionization tracks or by the interaction of two independent tracks for low LET radiations, when the dose is delivered in an acute fashion. Utilizes the well recognized linear quadratic expression Y=C+αD+βD 2 , where C is the spontaneous frequency of events scored and α and β represent the coefficients of the dose. Concludes that for low LET radiations, X or gamma rays, the linear-quadratic model can be used to predict the genetic response of germ cells and somatic cells to a variety of radiation regimes. Points out that the point of inflection in the curve, α/β value, can be determined specifically by target dimensions which vary with respect to DNA content. Considers the difference in RBE values observed for different species to be a reflection of their different target sizes

  20. Mutations in the evolutionarily highly conserved KEOPS complex genes cause nephrotic syndrome with microcephaly

    Science.gov (United States)

    Braun, Daniela A.; Rao, Jia; Mollet, Geraldine; Schapiro, David; Daugeron, Marie-Claire; Tan, Weizhen; Gribouval, Olivier; Boyer, Olivia; Revy, Patrick; Jobst-Schwan, Tilman; Schmidt, Johanna Magdalena; Lawson, Jennifer A.; Schanze, Denny; Ashraf, Shazia; Boddaert, Nathalie; Collinet, Bruno; Martin, Gaëlle; Liger, Dominique; Lovric, Svjetlana; Furlano, Monica; Guerrera, I. Chiara; Sanchez-Ferras, Oraly; Menten, Björn; Vergult, Sarah; De Rocker, Nina; Airik, Merlin; Hermle, Tobias; Shril, Shirlee; Widmeier, Eugen; Gee, Heon Yung; Choi, Won-Il; Sadowski, Carolin E.; Pabst, Werner L.; Warejko, Jillian; Daga, Ankana; LeBerre, Tamara Basta; Matejas, Verena; Behnam, Babak; Beeson, Brendan; Begtrup, Amber; Bruce, Malcolm; Ch'ng, Gaik-Siew; Lin, Shuan-Pei; Chang, Jui-Hsing; Chen, Chao-Huei; Cho, Megan T.; Gipson, Patrick E.; Hsu, Chyong-Hsin; Kari, Jameela A.; Ke, Yu-Yuan; Kiraly-Borri, Cathy; Lai, Wai-ming; Lemyre, Emmanuelle; Littlejohn, Rebecca Okasha; Masri, Amira; Moghtaderi, Mastaneh; Nakamura, Kazuyuki; Praet, Marleen; Prasad, Chitra; Prytula, Agnieszka; Roeder, Elizabeth; Rump, Patrick; Schnur, Rhonda E.; Shiihara, Takashi; Sinha, Manish; Soliman, Neveen A; Soulami, Kenza; Sweetser, David A.; Tsai, Wen-Hui; Tsai, Jeng-Daw; Vester, Udo; Viskochil, David H.; Vatanavicharn, Nithiwat; Waxler, Jessica L.; Wolf, Matthias T.F.; Wong, Sik-Nin; Poduri, Annapurna; Truglio, Gessica; Mane, Shrikant; Lifton, Richard P.; Bouchard, Maxime; Kannu, Peter; Chitayat, David; Magen, Daniella; Calleweart, Bert; van Tilbeurgh, Herman; Zenker, Martin; Antignac, Corinne; Hildebrandt, Friedhelm

    2018-01-01

    Galloway-Mowat syndrome (GAMOS) is a severe autosomal-recessive disease characterized by the combination of early-onset steroid-resistant nephrotic syndrome (SRNS) and microcephaly with brain anomalies. To date, mutations of WDR73 are the only known monogenic cause of GAMOS and in most affected individuals the molecular diagnosis remains elusive. We here identify recessive mutations of OSGEP, TP53RK, TPRKB, or LAGE3, encoding the 4 subunits of the KEOPS complex in 33 individuals of 30 families with GAMOS. CRISPR/Cas9 knockout in zebrafish and mice recapitulates the human phenotype of microcephaly and results in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibits cell proliferation, which human mutations fail to rescue, and knockdown of either gene activates DNA damage response signaling and induces apoptosis. OSGEP and TP53RK molecularly interact and co-localize with the actin-regulating ARP2/3 complex. Furthermore, knockdown of OSGEP and TP53RK induces defects of the actin cytoskeleton and reduces migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identify 4 novel monogenic causes of GAMOS, describe the first link between KEOPS function and human disease, and delineate potential pathogenic mechanisms. PMID:28805828

  1. Deficiency of CRTAP in non-lethal recessive osteogenesis imperfecta reduces collagen deposition into matrix.

    Science.gov (United States)

    Valli, M; Barnes, A M; Gallanti, A; Cabral, W A; Viglio, S; Weis, M A; Makareeva, E; Eyre, D; Leikin, S; Antoniazzi, F; Marini, J C; Mottes, M

    2012-11-01

    Deficiency of any component of the ER-resident collagen prolyl 3-hydroxylation complex causes recessive osteogenesis imperfecta (OI). The complex modifies the α1(I)Pro986 residue and contains cartilage-associated protein (CRTAP), prolyl 3-hydroxylase 1 (P3H1) and cyclophilin B (CyPB). Fibroblasts normally secrete about 10% of CRTAP. Most CRTAP mutations cause a null allele and lethal type VII OI. We identified a 7-year-old Egyptian boy with non-lethal type VII OI and investigated the effects of his null CRTAP mutation on collagen biochemistry, the prolyl 3-hydroxylation complex, and collagen in extracellular matrix. The proband is homozygous for an insertion/deletion in CRTAP (c.118_133del16insTACCC). His dermal fibroblasts synthesize fully overmodified type I collagen, and 3-hydroxylate only 5% of α1(I)Pro986. CRTAP transcripts are 10% of control. CRTAP protein is absent from proband cells, with residual P3H1 and normal CyPB levels. Dermal collagen fibril diameters are significantly increased. By immunofluorescence of long-term cultures, we identified a severe deficiency (10-15% of control) of collagen deposited in extracellular matrix, with disorganization of the minimal fibrillar network. Quantitative pulse-chase experiments corroborate deficiency of matrix deposition, rather than increased matrix turnover. We conclude that defects of extracellular matrix, as well as intracellular defects in collagen modification, contribute to the pathology of type VII OI. © 2011 John Wiley & Sons A/S.

  2. Patterning and gastrulation defects caused by the tw18 lethal are due to loss of Ppp2r1a

    Directory of Open Access Journals (Sweden)

    Lisette Lange

    2017-06-01

    Full Text Available The mouse t haplotype, a variant 20 cM genomic region on Chromosome 17, harbors 16 embryonic control genes identified by recessive lethal mutations isolated from wild mouse populations. Due to technical constraints so far only one of these, the tw5 lethal, has been cloned and molecularly characterized. Here we report the molecular isolation of the tw18 lethal. Embryos carrying the tw18 lethal die from major gastrulation defects commencing with primitive streak formation at E6.5. We have used transcriptome and marker gene analyses to describe the molecular etiology of the tw18 phenotype. We show that both WNT and Nodal signal transduction are impaired in the mutant epiblast, causing embryonic patterning defects and failure of primitive streak and mesoderm formation. By using a candidate gene approach, gene knockout by homologous recombination and genetic rescue, we have identified the gene causing the tw18 phenotype as Ppp2r1a, encoding the PP2A scaffolding subunit PR65alpha. Our work highlights the importance of phosphatase 2A in embryonic patterning, primitive streak formation, gastrulation, and mesoderm formation downstream of WNT and Nodal signaling.

  3. NDST1 missense mutations in autosomal recessive intellectual disability.

    Science.gov (United States)

    Reuter, Miriam S; Musante, Luciana; Hu, Hao; Diederich, Stefan; Sticht, Heinrich; Ekici, Arif B; Uebe, Steffen; Wienker, Thomas F; Bartsch, Oliver; Zechner, Ulrich; Oppitz, Cornelia; Keleman, Krystyna; Jamra, Rami Abou; Najmabadi, Hossein; Schweiger, Susann; Reis, André; Kahrizi, Kimia

    2014-11-01

    NDST1 was recently proposed as a candidate gene for autosomal recessive intellectual disability in two families. It encodes a bifunctional GlcNAc N-deacetylase/N-sulfotransferase with important functions in heparan sulfate biosynthesis. In mice, Ndst1 is crucial for embryonic development and homozygous null mutations are perinatally lethal. We now report on two additional unrelated families with homozygous missense NDST1 mutations. All mutations described to date predict the substitution of conserved amino acids in the sulfotransferase domain, and mutation modeling predicts drastic alterations in the local protein conformation. Comparing the four families, we noticed significant overlap in the clinical features, including both demonstrated and apparent intellectual disability, muscular hypotonia, epilepsy, and postnatal growth deficiency. Furthermore, in Drosophila, knockdown of sulfateless, the NDST ortholog, impairs long-term memory, highlighting its function in cognition. Our data confirm NDST1 mutations as a cause of autosomal recessive intellectual disability with a distinctive phenotype, and support an important function of NDST1 in human development. © 2014 Wiley Periodicals, Inc.

  4. Mutational analysis of varicella-zoster virus (VZV) immediate early protein (IE62) subdomains and their importance in viral replication

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Mohamed I., E-mail: mkhalil2@stanford.edu [Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA (United States); Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo (Egypt); Che, Xibing; Sung, Phillip; Sommer, Marvin H. [Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA (United States); Hay, John [Department of Microbiology and Immunology, School of Medicine and Biomedical Science, University at Buffalo, Buffalo, NY (United States); Arvin, Ann M. [Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA (United States)

    2016-05-15

    VZV IE62 is an essential, immediate-early, tegument protein and consists of five domains. We generated recombinant viruses carrying mutations in the first three IE62 domains and tested their influence on VZV replication kinetics. The mutations in domain I did not affect replication kinetics while domain II mutations, disrupting the DNA binding and dimerization domain (DBD), were lethal for VZV replication. Mutations in domain III of the nuclear localization signal (NLS) and the two phosphorylation sites S686A/S722A resulted in slower growth in early and late infection respectively and were associated with IE62 accumulation in the cytoplasm and nucleus respectively. This study mapped the functional domains of IE62 in context of viral infection, indicating that DNA binding and dimerization domain is essential for VZV replication. In addition, the correct localization of IE62, whether nuclear or cytoplasmic, at different points in the viral life cycle, is important for normal progression of VZV replication. - Highlights: • Mutation of IE62 domain I did not affect VZV replication in melanoma cells. • IE62 domain II and III are important for VZV replication in melanoma cells. • Mutations of IE62 domain II (DBD) were lethal for virus replication. • Mutations of IE62 NLS and phosphorylation sites inhibited VZV replication. • NLS and S686A/S722A mutations altered localization of IE62 during early and late infection.

  5. Mutational analysis of varicella-zoster virus (VZV) immediate early protein (IE62) subdomains and their importance in viral replication

    International Nuclear Information System (INIS)

    Khalil, Mohamed I.; Che, Xibing; Sung, Phillip; Sommer, Marvin H.; Hay, John; Arvin, Ann M.

    2016-01-01

    VZV IE62 is an essential, immediate-early, tegument protein and consists of five domains. We generated recombinant viruses carrying mutations in the first three IE62 domains and tested their influence on VZV replication kinetics. The mutations in domain I did not affect replication kinetics while domain II mutations, disrupting the DNA binding and dimerization domain (DBD), were lethal for VZV replication. Mutations in domain III of the nuclear localization signal (NLS) and the two phosphorylation sites S686A/S722A resulted in slower growth in early and late infection respectively and were associated with IE62 accumulation in the cytoplasm and nucleus respectively. This study mapped the functional domains of IE62 in context of viral infection, indicating that DNA binding and dimerization domain is essential for VZV replication. In addition, the correct localization of IE62, whether nuclear or cytoplasmic, at different points in the viral life cycle, is important for normal progression of VZV replication. - Highlights: • Mutation of IE62 domain I did not affect VZV replication in melanoma cells. • IE62 domain II and III are important for VZV replication in melanoma cells. • Mutations of IE62 domain II (DBD) were lethal for virus replication. • Mutations of IE62 NLS and phosphorylation sites inhibited VZV replication. • NLS and S686A/S722A mutations altered localization of IE62 during early and late infection.

  6. Structural specificity in the lethal and mutagenic activity of furocoumarins in yeast cells

    International Nuclear Information System (INIS)

    Averbeck, D.; Chandra, P.; Biswas, R.K.; Gesellschaft fuer Strahlen- und Umweltforschung m.b.H., Frankfurt am Main

    1975-01-01

    Using monofunctional (Angelicin) and bifunctional furocoumarins (Psoralen and 8 Methoxypsoralen) plus 365 nm light it is shown that both kinds of damage, the induced monoadducts and/or crosslinks in DNA, provoke lethal and mutagenic effects in haploid and diploid cells of Saccharomyces cerevisiae. Bifunctional furocoumarins are about 20 times more effective in cell killing than Angelicin. Diploid cells are always more resistant than haploid cells. Dark repair (agar holding) increases survival. This effect can be at least in part correlated to the release of bound material from DNA in dark repair conditions. Bifunctional psoralens (10 μg/ml) are at least 10-fold more effective in inducing nuclear gene back mutations (his - to HIS + ) than Angelicin (10 μg/ml) plus 365 nm light or 254 nm ultraviolet light. In contrast cytoplasmic 'petite' (rho-) mutations are about as frequently induced by Angelicin plus 365 nm light as by 254 nm UV light. Bifunctional furocoumarins are less effective. The frequency of cytoplasmic 'petite' mutations per survivors decreases during dark repair conditions more efficiently after Angelicin than after Psoralen plus 365 nm light treatment. (orig.) [de

  7. Exome sequencing for gene discovery in lethal fetal disorders--harnessing the value of extreme phenotypes.

    Science.gov (United States)

    Filges, Isabel; Friedman, Jan M

    2015-10-01

    Massively parallel sequencing has revolutionized our understanding of Mendelian disorders, and many novel genes have been discovered to cause disease phenotypes when mutant. At the same time, next-generation sequencing approaches have enabled non-invasive prenatal testing of free fetal DNA in maternal blood. However, little attention has been paid to using whole exome and genome sequencing strategies for gene identification in fetal disorders that are lethal in utero, because they can appear to be sporadic and Mendelian inheritance may be missed. We present challenges and advantages of applying next-generation sequencing approaches to gene discovery in fetal malformation phenotypes and review recent successful discovery approaches. We discuss the implication and significance of recessive inheritance and cross-species phenotyping in fetal lethal conditions. Whole exome sequencing can be used in individual families with undiagnosed lethal congenital anomaly syndromes to discover causal mutations, provided that prior to data analysis, the fetal phenotype can be correlated to a particular developmental pathway in embryogenesis. Cross-species phenotyping allows providing further evidence for causality of discovered variants in genes involved in those extremely rare phenotypes and will increase our knowledge about normal and abnormal human developmental processes. Ultimately, families will benefit from the option of early prenatal diagnosis. © 2014 John Wiley & Sons, Ltd.

  8. Predictable Phenotypes of Antibiotic Resistance Mutations.

    Science.gov (United States)

    Knopp, M; Andersson, D I

    2018-05-15

    Antibiotic-resistant bacteria represent a major threat to our ability to treat bacterial infections. Two factors that determine the evolutionary success of antibiotic resistance mutations are their impact on resistance level and the fitness cost. Recent studies suggest that resistance mutations commonly show epistatic interactions, which would complicate predictions of their stability in bacterial populations. We analyzed 13 different chromosomal resistance mutations and 10 host strains of Salmonella enterica and Escherichia coli to address two main questions. (i) Are there epistatic interactions between different chromosomal resistance mutations? (ii) How does the strain background and genetic distance influence the effect of chromosomal resistance mutations on resistance and fitness? Our results show that the effects of combined resistance mutations on resistance and fitness are largely predictable and that epistasis remains rare even when up to four mutations were combined. Furthermore, a majority of the mutations, especially target alteration mutations, demonstrate strain-independent phenotypes across different species. This study extends our understanding of epistasis among resistance mutations and shows that interactions between different resistance mutations are often predictable from the characteristics of the individual mutations. IMPORTANCE The spread of antibiotic-resistant bacteria imposes an urgent threat to public health. The ability to forecast the evolutionary success of resistant mutants would help to combat dissemination of antibiotic resistance. Previous studies have shown that the phenotypic effects (fitness and resistance level) of resistance mutations can vary substantially depending on the genetic context in which they occur. We conducted a broad screen using many different resistance mutations and host strains to identify potential epistatic interactions between various types of resistance mutations and to determine the effect of strain

  9. 35S induced dominant lethals in male germ cells of mouse

    International Nuclear Information System (INIS)

    Satyanarayana Reddy, K.; Reddy, P.D.; Reddi, O.S.

    1977-01-01

    (CBA female x C 3 H/He male) F 1 males born to 35 S (20 μCi) treated animals during major organogenesis period were tested for dominant lethal mutations at maturity. The pre-implantation loss showed an increase from 6.88% in the control to 10.92% in 35 S treated animals. Similarly the post-implantation loss has increased from 3.96% (control) to 7.40%. As a result of the increased pre- and post-losses the total loss showed a significant increase (17.51%) in F 1 males born to 35 S treated animals when compared to controls (10.57%). Thus the results clearly show that 35 S is mutagenic in male germ cells of mouse. (author)

  10. Characterization of a method for quantitating food consumption for mutation assays in Drosophila

    International Nuclear Information System (INIS)

    Thompson, E.D.; Reeder, B.A.; Bruce, R.D.

    1991-01-01

    Quantitation of food consumption is necessary when determining mutation responses to multiple chemical exposures in the sex-linked recessive lethal assay in Drosophila. One method proposed for quantitating food consumption by Drosophila is to measure the incorporation of 14C-leucine into the flies during the feeding period. Three sources of variation in the technique of Thompson and Reeder have been identified and characterized. First, the amount of food consumed by individual flies differed by almost 30% in a 24 hr feeding period. Second, the variability from vial to vial (each containing multiple flies) was around 15%. Finally, the amount of food consumed in identical feeding experiments performed over the course of 1 year varied nearly 2-fold. The use of chemical consumption values in place of exposure levels provided a better means of expressing the combined mutagenic response. In addition, the kinetics of food consumption over a 3 day feeding period for exposures to cyclophosphamide which produce lethality were compared to non-lethal exposures. Extensive characterization of lethality induced by exposures to cyclophosphamide demonstrate that the lethality is most likely due to starvation, not chemical toxicity

  11. Novel synthetic lethality screening method identifies TIP60-dependent radiation sensitivity in the absence of BAF180.

    Science.gov (United States)

    Hopkins, Suzanna R; McGregor, Grant A; Murray, Johanne M; Downs, Jessica A; Savic, Velibor

    2016-10-01

    In recent years, research into synthetic lethality and how it can be exploited in cancer treatments has emerged as major focus in cancer research. However, the lack of a simple to use, sensitive and standardised assay to test for synthetic interactions has been slowing the efforts. Here we present a novel approach to synthetic lethality screening based on co-culturing two syngeneic cell lines containing individual fluorescent tags. By associating shRNAs for a target gene or control to individual fluorescence labels, we can easily follow individual cell fates upon siRNA treatment and high content imaging. We have demonstrated that the system can recapitulate the functional defects of the target gene depletion and is capable of discovering novel synthetic interactors and phenotypes. In a trial screen, we show that TIP60 exhibits synthetic lethality interaction with BAF180, and that in the absence of TIP60, there is an increase micronuclei dependent on the level of BAF180 loss, significantly above levels seen with BAF180 present. Moreover, the severity of the interactions correlates with proxy measurements of BAF180 knockdown efficacy, which may expand its usefulness to addressing synthetic interactions through titratable hypomorphic gene expression. Copyright © 2016. Published by Elsevier B.V.

  12. Detection of First-Line Drug Resistance Mutations and Drug-Protein Interaction Dynamics from Tuberculosis Patients in South India.

    Science.gov (United States)

    Nachappa, Somanna Ajjamada; Neelambike, Sumana M; Amruthavalli, Chokkanna; Ramachandra, Nallur B

    2018-05-01

    Diagnosis of drug-resistant tuberculosis predominantly relies on culture-based drug susceptibility testing, which take weeks to produce a result and a more time-efficient alternative method is multiplex allele-specific PCR (MAS-PCR). Also, understanding the role of mutations in causing resistance helps better drug designing. To evaluate the ability of MAS-PCR in the detection of drug resistance and to understand the mechanism of interaction of drugs with mutant proteins in Mycobacterium tuberculosis. Detection of drug-resistant mutations using MAS-PCR and validation through DNA sequencing. MAS-PCR targeted five loci on three genes, katG 315 and inhA -15 for the drug isoniazid (INH), and rpoB 516, 526, and 531 for rifampicin (RIF). Furthermore, the sequence data were analyzed to study the effect on interaction of the anti-TB drug molecule with the target protein using in silico docking. We identified drug-resistant mutations in 8 out of 114 isolates with 2 of them as multidrug-resistant TB using MAS-PCR. DNA sequencing confirmed only six of these, recording a sensitivity of 85.7% and specificity of 99.3% for MAS-PCR. Molecular docking showed estimated free energy of binding (ΔG) being higher for RIF binding with RpoB S531L mutant. Codon 315 in KatG does not directly interact with INH but blocks the drug access to active site. We propose DNA sequencing-based drug resistance detection for TB, which is more accurate than MAS-PCR. Understanding the action of resistant mutations in disrupting the normal drug-protein interaction aids in designing effective drug alternatives.

  13. Narrowing the wingless-2 mutation to a 227 Kb candidate region on chicken chromosome 12

    Science.gov (United States)

    Wingless-2 (wg-2) is autosomal recessive mutation in chicken which results in an embryonic lethal condition with affected individuals exhibiting a multisystem syndrome characterized by absent wings, truncated legs, and craniofacial, kidney, and feather malformations. After many years of breeding the...

  14. The relationship of different somatic mutations induced by neutrons and X rays to loss of reproductive integrity in Tradescantia stamen hairs

    International Nuclear Information System (INIS)

    Underbrink, A.G.; Huczkowski, J.; Woch, B.; Gedlek, E.; Cebulska-Wasilewska, A.; Litwiniszyn, M.; Kasper, E.

    1978-01-01

    It was found that the survival curves derived from X-irradiations and neutrons of two energies are characteristic for those usually found in many other systems. It was also found that the loss of reproductive integrity and two visible cell-type aberrations or mutations follow a 1:1 ratio until higher doses are reached after neutron irradiation. This is also true for X rays, except that lethality was not observed at relatively low doses. The mutant event spectrum was found to change after a certain level of lethality was reached. It was also found that the spectra of mutations in relation to survival may be changed not only by dose but also by radiation quality. (author)

  15. Annotating novel genes by integrating synthetic lethals and genomic information

    Directory of Open Access Journals (Sweden)

    Faty Mahamadou

    2008-01-01

    Full Text Available Abstract Background Large scale screening for synthetic lethality serves as a common tool in yeast genetics to systematically search for genes that play a role in specific biological processes. Often the amounts of data resulting from a single large scale screen far exceed the capacities of experimental characterization of every identified target. Thus, there is need for computational tools that select promising candidate genes in order to reduce the number of follow-up experiments to a manageable size. Results We analyze synthetic lethality data for arp1 and jnm1, two spindle migration genes, in order to identify novel members in this process. To this end, we use an unsupervised statistical method that integrates additional information from biological data sources, such as gene expression, phenotypic profiling, RNA degradation and sequence similarity. Different from existing methods that require large amounts of synthetic lethal data, our method merely relies on synthetic lethality information from two single screens. Using a Multivariate Gaussian Mixture Model, we determine the best subset of features that assign the target genes to two groups. The approach identifies a small group of genes as candidates involved in spindle migration. Experimental testing confirms the majority of our candidates and we present she1 (YBL031W as a novel gene involved in spindle migration. We applied the statistical methodology also to TOR2 signaling as another example. Conclusion We demonstrate the general use of Multivariate Gaussian Mixture Modeling for selecting candidate genes for experimental characterization from synthetic lethality data sets. For the given example, integration of different data sources contributes to the identification of genetic interaction partners of arp1 and jnm1 that play a role in the same biological process.

  16. Factors influencing circadian rhythms in acetaminophen lethality.

    Science.gov (United States)

    Schnell, R C; Bozigian, H P; Davies, M H; Merrick, B A; Park, K S; McMillan, D A

    1984-01-01

    Experiments were conducted to examine the effects of changes in lighting schedules and food consumption on circadian rhythms in acetaminophen lethality and hepatic glutathione levels in male mice. Under a normal lighting schedule (light: 06.00-18.00 h), male mice exhibited a circadian rhythm in acetaminophen lethality (peak: 18.00 h; nadir: 06.00, 10.00 h) and an inverse rhythm in hepatic glutathione concentrations (peak: 06.00, 10.00 h; nadir: 18.00 h). Under a reversed lighting schedule (light: 18.00-06.00 h) the glutathione rhythm was reversed and the rhythm in acetaminophen lethality was altered showing greater sensitivity to the drug. Under continuous light, there was a shift in the acetaminophen lethality and the hepatic glutathione rhythms. Under continuous dark, both rhythms were abolished. Under a normal lighting regimen, hepatic glutathione levels were closely correlated with food consumption; i.e., both were increased during the dark phase and decreased during the light phase. Fasting the mice for 12 h abolished the rhythms in acetaminophen lethality and hepatic glutathione levels; moreover, the lethality was increased and the hepatic glutathione levels were decreased. These experiments show that both lighting schedules and feeding can alter the circadian rhythms in acetaminophen lethality and hepatic glutathione levels in male mice.

  17. Evolution of a G protein-coupled receptor response by mutations in regulatory network interactions

    DEFF Research Database (Denmark)

    Di Roberto, Raphaël B; Chang, Belinda; Trusina, Ala

    2016-01-01

    All cellular functions depend on the concerted action of multiple proteins organized in complex networks. To understand how selection acts on protein networks, we used the yeast mating receptor Ste2, a pheromone-activated G protein-coupled receptor, as a model system. In Saccharomyces cerevisiae......, Ste2 is a hub in a network of interactions controlling both signal transduction and signal suppression. Through laboratory evolution, we obtained 21 mutant receptors sensitive to the pheromone of a related yeast species and investigated the molecular mechanisms behind this newfound sensitivity. While...... demonstrate that a new receptor-ligand pair can evolve through network-altering mutations independently of receptor-ligand binding, and suggest a potential role for such mutations in disease....

  18. Spontaneous mutation rate in Chinese hamster cell clones differing in UV-sensitivity

    International Nuclear Information System (INIS)

    Manuilova, E.S.; Bagrova, A.M.; Moskovskij Gosudarstvennyj Univ.

    1983-01-01

    The spontaneous rate of appearance of mutations to 6-mercaptopurine (6 MP) resistence in the cells of CHR2 and CHs2 clones dofferent in sensitivity to lethal and matagenous effect of UV-rays, is investigated. Increased UV-sensitivity of CHs2 clone is caused by the violation of postreplicative DNA reparation. It is established that the purity of spontaneously occuring mutations in both clones turns out to be similar, i.e. (1.5-1.8)x10 -5 for the cell pergeneration. It is shown that the effect of postreplicative DNA reparation in the cells of chinese hamster is not connected with the increase of spontaneous mutation ability. The problem on the possible role of reparation in the mechanism of appearance of spontaneous and induced mutations in the cells of Chinese hamster with increased UV-sensitivity is discussed

  19. Mapping the epitopes of a neutralizing antibody fragment directed against the lethal factor of Bacillus anthracis and cross-reacting with the homologous edema factor.

    Directory of Open Access Journals (Sweden)

    Philippe Thullier

    Full Text Available The lethal toxin (LT of Bacillus anthracis, composed of the protective antigen (PA and the lethal factor (LF, plays an essential role in anthrax pathogenesis. PA also interacts with the edema factor (EF, 20% identity with LF to form the edema toxin (ET, which has a lesser role in anthrax pathogenesis. The first recombinant antibody fragment directed against LF was scFv 2LF; it neutralizes LT by blocking the interaction between PA and LF. Here, we report that scFv 2LF cross-reacts with EF and cross-neutralizes ET, and we present an in silico method taking advantage of this cross-reactivity to map the epitope of scFv 2LF on both LF and EF. This method identified five epitope candidates on LF, constituted of a total of 32 residues, which were tested experimentally by mutating the residues to alanine. This combined approach precisely identified the epitope of scFv 2LF on LF as five residues (H229, R230, Q234, L235 and Y236, of which three were missed by the consensus epitope candidate identified by pre-existing in silico methods. The homolog of this epitope on EF (H253, R254, E258, L259 and Y260 was experimentally confirmed to constitute the epitope of scFv 2LF on EF. Other inhibitors, including synthetic molecules, could be used to target these epitopes for therapeutic purposes. The in silico method presented here may be of more general interest.

  20. Mutations induced by X-rays and UV radiation during the nuclear cycle in the yeast Schizosarccharomyces pombe

    International Nuclear Information System (INIS)

    Barale, R.; Rusciano, D.; Loprieno, N.

    1982-01-01

    The availability of a cell-division-cycle (cdc) mutant in the fission yeast S. pombe, wee 1-50, has made possible the production of a large population of G 1 nuclear-stage synchronized cells. During their development, yeast cells from the G 1 into the G 2 nuclear stages were treated with X-rays and UV radiation at various doses. The DNA pre-replicative and replicative phases were the most sensitive to both cell lethality and mutant induction with either X-rays or UV radiation. The trends of induced biological effects that were observed suggest that the induction of mutations is dependent on the number of unrepaired DNA lesions that reach the replicating fork or of those that occur at that time. The X-ray-induced mutations were earlier saturated, possibly because of the higher number of lethal lesions so induced. (orig.)

  1. Contribution of the C-terminal region within the catalytic core domain of HIV-1 integrase to yeast lethality, chromatin binding and viral replication

    Directory of Open Access Journals (Sweden)

    Belhumeur Pierre

    2008-11-01

    Full Text Available Abstract Background HIV-1 integrase (IN is a key viral enzymatic molecule required for the integration of the viral cDNA into the genome. Additionally, HIV-1 IN has been shown to play important roles in several other steps during the viral life cycle, including reverse transcription, nuclear import and chromatin targeting. Interestingly, previous studies have demonstrated that the expression of HIV-1 IN induces the lethal phenotype in some strains of Saccharomyces cerevisiae. In this study, we performed mutagenic analyses of the C-terminal region of the catalytic core domain of HIV-1 IN in order to delineate the critical amino acid(s and/or motif(s required for the induction of the lethal phenotype in the yeast strain HP16, and to further elucidate the molecular mechanism which causes this phenotype. Results Our study identified three HIV-1 IN mutants, V165A, A179P and KR186,7AA, located in the C-terminal region of the catalytic core domain of IN that do not induce the lethal phenotype in yeast. Chromatin binding assays in yeast and mammalian cells demonstrated that these IN mutants were impaired for the ability to bind chromatin. Additionally, we determined that while these IN mutants failed to interact with LEDGF/p75, they retained the ability to bind Integrase interactor 1. Furthermore, we observed that VSV-G-pseudotyped HIV-1 containing these IN mutants was unable to replicate in the C8166 T cell line and this defect was partially rescued by complementation with the catalytically inactive D64E IN mutant. Conclusion Overall, this study demonstrates that three mutations located in the C-terminal region of the catalytic core domain of HIV-1 IN inhibit the IN-induced lethal phenotype in yeast by inhibiting the binding of IN to the host chromatin. These results demonstrate that the C-terminal region of the catalytic core domain of HIV-1 IN is important for binding to host chromatin and is crucial for both viral replication and the promotion of

  2. Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors

    DEFF Research Database (Denmark)

    Goriely, Anne; Hansen, Ruth M S; Taylor, Indira B

    2009-01-01

    Genes mutated in congenital malformation syndromes are frequently implicated in oncogenesis, but the causative germline and somatic mutations occur in separate cells at different times of an organism's life. Here we unify these processes to a single cellular event for mutations arising in male germ...... cells that show a paternal age effect. Screening of 30 spermatocytic seminomas for oncogenic mutations in 17 genes identified 2 mutations in FGFR3 (both 1948A>G, encoding K650E, which causes thanatophoric dysplasia in the germline) and 5 mutations in HRAS. Massively parallel sequencing of sperm DNA...... a common 'selfish' pathway supporting proliferation in the testis, leading to diverse phenotypes in the next generation including fetal lethality, congenital syndromes and cancer predisposition....

  3. Electrostatic study of Alanine mutational effects on transcription: application to GATA-3:DNA interaction complex.

    Science.gov (United States)

    El-Assaad, Atlal; Dawy, Zaher; Nemer, Georges

    2015-01-01

    Protein-DNA interaction is of fundamental importance in molecular biology, playing roles in functions as diverse as DNA transcription, DNA structure formation, and DNA repair. Protein-DNA association is also important in medicine; understanding Protein-DNA binding kinetics can assist in identifying disease root causes which can contribute to drug development. In this perspective, this work focuses on the transcription process by the GATA Transcription Factor (TF). GATA TF binds to DNA promoter region represented by `G,A,T,A' nucleotides sequence, and initiates transcription of target genes. When proper regulation fails due to some mutations on the GATA TF protein sequence or on the DNA promoter sequence (weak promoter), deregulation of the target genes might lead to various disorders. In this study, we aim to understand the electrostatic mechanism behind GATA TF and DNA promoter interactions, in order to predict Protein-DNA binding in the presence of mutations, while elaborating on non-covalent binding kinetics. To generate a family of mutants for the GATA:DNA complex, we replaced every charged amino acid, one at a time, with a neutral amino acid like Alanine (Ala). We then applied Poisson-Boltzmann electrostatic calculations feeding into free energy calculations, for each mutation. These calculations delineate the contribution to binding from each Ala-replaced amino acid in the GATA:DNA interaction. After analyzing the obtained data in view of a two-step model, we are able to identify potential key amino acids in binding. Finally, we applied the model to GATA-3:DNA (crystal structure with PDB-ID: 3DFV) binding complex and validated it against experimental results from the literature.

  4. Genomewide Screen for Synthetic Lethal Interactions with Mutant KRAS in Lung Cancer

    Science.gov (United States)

    2017-11-01

    development of lung cancer; one of the important contributing ones is genetic mutations. For example, KRAS mutations account for 22% lung cancer cases...Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author (s) and should not be...5b. GRANT NUMBER W81XWH-16-1-0287 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR (S) Yin-Yuan Mo Betty Diamond 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail

  5. Influence of mutations in some structural genes of heat-shock proteins on radiation resistance of Escherichia coli

    International Nuclear Information System (INIS)

    Verbenko, V.N.; Kuznetsova, L.V.; Bikineeva, E.G.; Kalinin, V.L.

    1992-01-01

    Lethal effects of γ-irradiation were studied in Escherichia coli strains with normal repair genotype and in radiation-resistant Gam r strains, both carrying additional mutations in the structural genes dnaK, grpE, groES or groEL. The null mutation ΔdnaK52::Cm r enhanced radiation sensitivity of wild-type cells and abolished the effect of heat induced rediation-resistance (ETIRR) and elevated radiation resistance of the Gam r strains

  6. Disruption of the Sec24d gene results in early embryonic lethality in the mouse.

    Directory of Open Access Journals (Sweden)

    Andrea C Baines

    Full Text Available Transport of newly synthesized proteins from the endoplasmic reticulum (ER to the Golgi is mediated by the coat protein complex COPII. The inner coat of COPII is assembled from heterodimers of SEC23 and SEC24. Though mice with mutations in one of the four Sec24 paralogs, Sec24b, exhibit a neural tube closure defect, deficiency in humans or mice has not yet been described for any of the other Sec24 paralogs. We now report characterization of mice with targeted disruption of Sec24d. Early embryonic lethality is observed in mice completely deficient in SEC24D, while a hypomorphic Sec24d allele permits survival to mid-embryogenesis. Mice haploinsufficient for Sec24d exhibit no phenotypic abnormality. A BAC transgene containing Sec24d rescues the embryonic lethality observed in Sec24d-null mice. These results demonstrate an absolute requirement for SEC24D expression in early mammalian development that is not compensated by the other three Sec24 paralogs. The early embryonic lethality resulting from loss of SEC24D in mice contrasts with the previously reported mild skeletal phenotype of SEC24D deficiency in zebrafish and restricted neural tube phenotype of SEC24B deficiency in mice. Taken together, these observations suggest that the multiple Sec24 paralogs have developed distinct functions over the course of vertebrate evolution.

  7. Radiation-induced mutagenicity and lethality in Salmonella typhimurium

    International Nuclear Information System (INIS)

    Isildar, M.; Bakale, G.

    1983-01-01

    The mutagenic and lethal effects of ionizing radiation on histidine-deficient auxotrophs of Salmonella typhimurium were studied to improve the understanding of radiation damage to DNA. The auxotrophs were divided into two groups - one which is sensitive to base-pair substitutions and another sensitive to frameshifts. These groups were composed of parent-daughter pairs in which the chemical mutagenicity enhancing plasmid, pKM101, is absent in the parent strain and present in the daughter. Co-60 #betta#-radiation and 250 kV x-rays were used to irradiate the bacteria. Irradiation of the frameshift - sensitive strains which carry the pKm101 plasmid doubled the absolute number of induced revertants whereas irradiation of the base-pair substitution sensitive strain which also carries the pKm101 plasmid produced nearly no change in the number of induced revertants. A nearly negligible effect on the mutation rate was observed for all parent strains

  8. dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants.

    Science.gov (United States)

    Williams, Lindsey N; Marjavaara, Lisette; Knowels, Gary M; Schultz, Eric M; Fox, Edward J; Chabes, Andrei; Herr, Alan J

    2015-05-12

    Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 (dun1Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1Δ) and radiation sensitive (Rad) 9 (rad9Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1Δ but not rad9Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.

  9. Incompatibility between X chromosome factor and pericentric heterochromatic region causes lethality in hybrids between Drosophila melanogaster and its sibling species.

    Science.gov (United States)

    Cattani, M Victoria; Presgraves, Daven C

    2012-06-01

    The Dobzhansky-Muller model posits that postzygotic reproductive isolation results from the evolution of incompatible epistatic interactions between species: alleles that function in the genetic background of one species can cause sterility or lethality in the genetic background of another species. Progress in identifying and characterizing factors involved in postzygotic isolation in Drosophila has remained slow, mainly because Drosophila melanogaster, with all of its genetic tools, forms dead or sterile hybrids when crossed to its sister species, D. simulans, D. sechellia, and D. mauritiana. To circumvent this problem, we used chromosome deletions and duplications from D. melanogaster to map two hybrid incompatibility loci in F(1) hybrids with its sister species. We mapped a recessive factor to the pericentromeric heterochromatin of the X chromosome in D. simulans and D. mauritiana, which we call heterochromatin hybrid lethal (hhl), which causes lethality in F(1) hybrid females with D. melanogaster. As F(1) hybrid males hemizygous for a D. mauritiana (or D. simulans) X chromosome are viable, the lethality of deficiency hybrid females implies that a dominant incompatible partner locus exists on the D. melanogaster X. Using small segments of the D. melanogaster X chromosome duplicated onto the Y chromosome, we mapped a dominant factor that causes hybrid lethality to a small 24-gene region of the D. melanogaster X. We provide evidence suggesting that it interacts with hhl(mau). The location of hhl is consistent with the emerging theme that hybrid incompatibilities in Drosophila involve heterochromatic regions and factors that interact with the heterochromatin.

  10. Doctor of Philosophy Thesis in Military Informatics : Lethal Autonomy of Weapons is Designed and/or Recessive

    OpenAIRE

    Nyagudi, Nyagudi Musandu

    2016-01-01

    p { margin-bottom: 0.1in; line-height: 120%; } My original contribution to knowledge is : Any weapon that exhibits intended and/or untended lethal autonomy in targeting and interdiction – does so by way of design and/or recessive flaw(s) in its systems of control – any such weapon is capable of war-fighting and other battle-space interaction in a manner that its Human Commander does not anticipate. A lethal autonomous weapons is therefore independently capable of ex...

  11. Computational analysis of histidine mutations on the structural stability of human tyrosinases leading to albinism insurgence.

    Science.gov (United States)

    Hassan, Mubashir; Abbas, Qamar; Raza, Hussain; Moustafa, Ahmed A; Seo, Sung-Yum

    2017-07-25

    Misfolding and structural alteration in proteins lead to serious malfunctions and cause various diseases in humans. Mutations at the active binding site in tyrosinase impair structural stability and cause lethal albinism by abolishing copper binding. To evaluate the histidine mutational effect, all mutated structures were built using homology modelling. The protein sequence was retrieved from the UniProt database, and 3D models of original and mutated human tyrosinase sequences were predicted by changing the residual positions within the target sequence separately. Structural and mutational analyses were performed to interpret the significance of mutated residues (N 180 , R 202 , Q 202 , R 211 , Y 363 , R 367 , Y 367 and D 390 ) at the active binding site of tyrosinases. CSpritz analysis depicted that 23.25% residues actively participate in the instability of tyrosinase. The accuracy of predicted models was confirmed through online servers ProSA-web, ERRAT score and VERIFY 3D values. The theoretical pI and GRAVY generated results also showed the accuracy of the predicted models. The CCA negative correlation results depicted that the replacement of mutated residues at His within the active binding site disturbs the structural stability of tyrosinases. The predicted CCA scores of Tyr 367 (-0.079) and Q/R 202 (0.032) revealed that both mutations have more potential to disturb the structural stability. MD simulation analyses of all predicted models justified that Gln 202 , Arg 202 , Tyr 367 and D 390 replacement made the protein structures more susceptible to destabilization. Mutational results showed that the replacement of His with Q/R 202 and Y/R 363 has a lethal effect and may cause melanin associated diseases such as OCA1. Taken together, our computational analysis depicts that the mutated residues such as Q/R 202 and Y/R 363 actively participate in instability and misfolding of tyrosinases, which may govern OCA1 through disturbing the melanin biosynthetic pathway.

  12. Analyses of Dynein Heavy Chain Mutations Reveal Complex Interactions Between Dynein Motor Domains and Cellular Dynein Functions

    Science.gov (United States)

    Sivagurunathan, Senthilkumar; Schnittker, Robert R.; Razafsky, David S.; Nandini, Swaran; Plamann, Michael D.; King, Stephen J.

    2012-01-01

    Cytoplasmic dynein transports cargoes for a variety of crucial cellular functions. However, since dynein is essential in most eukaryotic organisms, the in-depth study of the cellular function of dynein via genetic analysis of dynein mutations has not been practical. Here, we identify and characterize 34 different dynein heavy chain mutations using a genetic screen of the ascomycete fungus Neurospora crassa, in which dynein is nonessential. Interestingly, our studies show that these mutations segregate into five different classes based on the in vivo localization of the mutated dynein motors. Furthermore, we have determined that the different classes of dynein mutations alter vesicle trafficking, microtubule organization, and nuclear distribution in distinct ways and require dynactin to different extents. In addition, biochemical analyses of dynein from one mutant strain show a strong correlation between its in vitro biochemical properties and the aberrant intracellular function of that altered dynein. When the mutations were mapped to the published dynein crystal structure, we found that the three-dimensional structural locations of the heavy chain mutations were linked to particular classes of altered dynein functions observed in cells. Together, our data indicate that the five classes of dynein mutations represent the entrapment of dynein at five separate points in the dynein mechanochemical and transport cycles. We have developed N. crassa as a model system where we can dissect the complexities of dynein structure, function, and interaction with other proteins with genetic, biochemical, and cell biological studies. PMID:22649085

  13. Lethal and sub-lethal effects of five pesticides used in rice farming on the earthworm Eisenia fetida

    NARCIS (Netherlands)

    Rico, Andreu; Sabater, Consuelo; Castillo, María Ángeles

    2016-01-01

    The toxicity of five pesticides typically used in rice farming (trichlorfon, dimethoate, carbendazim, tebuconazole and prochloraz) was evaluated on different lethal and sub-lethal endpoints of the earthworm Eisenia fetida. The evaluated endpoints included: avoidance behaviour after an exposure

  14. Structural analysis of eight novel and 112 previously reported missense mutations in the interactive FXI mutation database reveals new insight on FXI deficiency.

    Science.gov (United States)

    Saunders, Rebecca E; Shiltagh, Nuha; Gomez, Keith; Mellars, Gillian; Cooper, Carolyn; Perry, David J; Tuddenham, Edward G; Perkins, Stephen J

    2009-08-01

    Factor XI (FXI) functions in blood coagulation. FXI is composed of four apple (Ap) domains and a serine protease (SP) domain. Deficiency of FXI leads to an injury-related bleeding disorder, which is remarkable for the lack of correlation between bleeding symptoms and FXI coagulant activity (FXI:C). The number of mutations previously reported in our interactive web database (http://www.FactorXI.org) is now significantly increased to 183 through our new patient studies and from literature surveys. Eight novel missense mutations give a total of 120 throughout the FXI gene (F11). The most abundant defects in FXI are revealed to be those from low-protein plasma levels (Type I: CRM-) that originate from protein misfolding, rather than from functional defects (Type II: CRM+). A total of 70 Ap missense mutations were analysed using a consensus Ap domain structure generated from the FXI dimer crystal structure. This showed that all parts of the Ap domain were affected. The 47 SP missense mutations were also distributed throughout the SP domain structure. The periphery of the Ap beta-sheet structure is sensitive to structural perturbation caused by residue changes throughout the Ap domain, yet this beta-sheet is crucial for FXI dimer formation. Residues located at the Ap4:Ap4 interface in the dimer are much less directly involved. We conclude that the abundance of Type I defects in FXI results from the sensitivity of the Ap domain folding to residue changes within this, and discuss how structural knowledge of the mutations improves our understanding of FXI deficiencies.

  15. Lethal Epistaxis.

    Science.gov (United States)

    Byard, Roger W

    2016-09-01

    Epistaxis or nosebleed refers to bleeding from the nostrils, nasal cavity, or nasopharynx. Occasional cases may present with torrential lethal hemorrhage. Three cases are reported to demonstrate particular features: Case 1: A 51-year-old woman with lethal epistaxis with no obvious bleeding source; Case 2: A 77-year-old man with treated nasopharyngeal carcinoma who died from epistaxis arising from a markedly neovascularized tumor bed; Case 3: A 2-year-old boy with hemophilia B who died from epistaxis with airway obstruction in addition to gastrointestinal bleeding. Epistaxis may be associated with trauma, tumors, vascular malformations, bleeding diatheses, infections, pregnancy, endometriosis, and a variety of different drugs. Careful dissection of the nasal cavity is required to locate the site of hemorrhage and to identify any predisposing conditions. This may be guided by postmortem computerized tomographic angiography (PCTA). Despite careful dissection, however, a source of bleeding may never be identified. © 2016 American Academy of Forensic Sciences.

  16. Two Mutations in Surfactant Protein C Gene Associated with Neonatal Respiratory Distress

    Directory of Open Access Journals (Sweden)

    Anna Tarocco

    2015-01-01

    Full Text Available Multiple mutations of surfactant genes causing surfactant dysfunction have been described. Surfactant protein C (SP-C deficiency is associated with variable clinical manifestations ranging from neonatal respiratory distress syndrome to lethal lung disease. We present an extremely low birth weight male infant with an unusual course of respiratory distress syndrome associated with two mutations in the SFTPC gene: C43-7G>A and 12T>A. He required mechanical ventilation for 26 days and was treated with 5 subsequent doses of surfactant with temporary and short-term efficacy. He was discharged at 37 weeks of postconceptional age without any respiratory support. During the first 16 months of life he developed five respiratory infections that did not require hospitalization. Conclusion. This mild course in our patient with two mutations is peculiar because the outcome in patients with a single SFTPC mutation is usually poor.

  17. The effects of radiation dose-rate and quality on the induction of dominant lethals in mouse spermatids

    International Nuclear Information System (INIS)

    Searle, A.G.; Beechey, G.V.

    1981-01-01

    Hybrid male mice were given 3 Gy (300 rad) doses of X- or γ-irradiation at dose-rates of either 0.6 or 0.002 Gy/min for each radiation. Germ-cells treated as spermatids were tested for dominant lethality. Effects on spermatogonia were evaluated by studying testis-weight, sperm-count and sperm abnormalities. The rate of induction of dominant lethal mutations was 2.1 times as high after acute X-irradiation as after protracted γ-irradiation. Most of this difference resulted from the change in radiation quality, since the relative effectiveness of X- versus γ-irradiation was 1.9 at low and 1.6 at high dose rates. For each radiation, however, fewer dominant lethals were induced at low dose-rates than at high (low/high ratios of 0.8 and 0.9 respectively) although differences did not reach a significant level. There were no statistically significant effects of dose rate on testis-weight of sperm-count in the X-ray series, but there were significantly less severe effects on both with protraction of the γ-irradiation. Evidence for effects of radiation quality on these characters was conflicting. Frequencies of abnormal spermatozoa were markedly increased 7 weeks after irradiation but there were no consistent effects of radiation intensity or quality. (orig.)

  18. Effects of lethal and non-lethal malaria on the mononuclear phagocyte system

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Tosta

    1983-03-01

    Full Text Available The effects ofone non-lethal species ofmalarialparasite, Plasmodium yoelii, and one lethal species, P. berghei, on the mononuclear phagocyte system (MPS of BALB/c mice were studied. P. yoelii caused a greater and more sustained expansion and activation of the MPS, and the two major populations of spleen phagocytic cells-red pulp and marginal zone macrophages - exhibited a greater increase in numbers in this infection. During the course of P. berghei mataria, the spleen was progressively occupied by haematopoietic tissue and, at the terminal stage of infection, an extensive depletion of lymphocytes and macrophages was apparent. The possibility was suggested that the outcome of mataria may be inftuenced by the particular way the parasite interacts with the MPS.Estudou-se o efeito da infecção causada por espécie letal (Plasmodium berghei e não- letal (P. yoelii de plasmódio sobre o sistema de fagócitos mononucleares de camundongo BALB/c. O P. yoelii causou maior e mais prolongada expansão e ativação do sistema de macrófagos. As duas mais importantes populações de fagócitos esplênicos - macrófagos de polpa vermelha e da zona marginal - exibiam maior aumento do número de células nesta infecção. Durante a evolução da malária por P. berghei, o baço foi progressivamente ocupado por tecido hematopoiético e, na fase terminal da infecção, observou-se significativa depleção dos linfócitos e macrófagos esplênicos. Os dados apresentados indicam que a evolução da malária depende do tipo de interação entre o plasmódio e o sistema de fagócitos mononucleares.

  19. Nicotinamide starvation and inhibition of poly(ADP-Ribose) synthesis enhance the induced mutation in Chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Okada, Gensaku; Kaneko, Ichiro; Mitsui, Hideki.

    1987-01-01

    The effects of nicotinamide (NA) deficiency and added NA and 3-aminobenzamide (3AB) on the cytotoxicity and the induction of mutations in Chinese hamster V79-14 cells were investigated. In NA deficiency the addition of NA (up to 4 mM) and 3AB (up to 7.5 mM) was not cytotoxic. The presence of NA prior to exposure to mitomycin C (MMC) or γ-rays produced a dose-dependent increase in the relative cloning ability of DNA-damaged cells. The lethality of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was significantly potentiated by pre-treatment with 5 mM 3AB, but no potentiation by 3AB was observed for MMC, ultraviolet (UV)-B light, or γ-rays. Among cells pre-cultured in NA-free medium there were increased frequencies of mutations at both the hypoxanthineguanine phosphoribosyltransferase (HGPRT) and the adenine phosphoribosyltransferase (APRT) loci following DNA damage. The enhancing effect by NA deficiency was time-dependent. Incubation with NA prior to DNA damage produced a significant reduction in the frequency of mutations. The addition of 3AB to the nicotinamide adenine dinucleotide (NAD + )-depleted cell cultures before or after the DNA damage also strongly increased the frequency of induced mutations, with increasing concentrations of 3AB up to 5 mM, but the frequency was reduced at higher concentrations. The interaction between NA deficiency and the addition of 3AB appears to act synergistically on mutation induction. A correlation was observed between the potential of inhibiting poly (ADP-ribose) polymerase and the enhancement of mutation frequency. (author)

  20. Structure-Activity Relationship in TLR4 Mutations: Atomistic Molecular Dynamics Simulations and Residue Interaction Network Analysis

    Science.gov (United States)

    Anwar, Muhammad Ayaz; Choi, Sangdun

    2017-03-01

    Toll-like receptor 4 (TLR4), a vital innate immune receptor present on cell surfaces, initiates a signaling cascade during danger and bacterial intrusion. TLR4 needs to form a stable hexamer complex, which is necessary to dimerize the cytoplasmic domain. However, D299G and T399I polymorphism may abrogate the stability of the complex, leading to compromised TLR4 signaling. Crystallography provides valuable insights into the structural aspects of the TLR4 ectodomain; however, the dynamic behavior of polymorphic TLR4 is still unclear. Here, we employed molecular dynamics simulations (MDS), as well as principal component and residue network analyses, to decipher the structural aspects and signaling propagation associated with mutations in TLR4. The mutated complexes were less cohesive, displayed local and global variation in the secondary structure, and anomalous decay in rotational correlation function. Principal component analysis indicated that the mutated complexes also exhibited distinct low-frequency motions, which may be correlated to the differential behaviors of these TLR4 variants. Moreover, residue interaction networks (RIN) revealed that the mutated TLR4/myeloid differentiation factor (MD) 2 complex may perpetuate abnormal signaling pathways. Cumulatively, the MDS and RIN analyses elucidated the mutant-specific conformational alterations, which may help in deciphering the mechanism of loss-of-function mutations.

  1. Penetrance of eye defects in mice heterozygous for mutation of Gli3 is enhanced by heterozygous mutation of Pax6

    Directory of Open Access Journals (Sweden)

    Price David J

    2006-10-01

    Full Text Available Abstract Background Knowledge of the consequences of heterozygous mutations of developmentally important genes is important for understanding human genetic disorders. The Gli3 gene encodes a zinc finger transcription factor and homozygous loss-of-function mutations of Gli3 are lethal. Humans heterozygous for mutations in this gene suffer Greig cephalopolysyndactyly or Pallister-Hall syndromes, in which limb defects are prominent, and mice heterozygous for similar mutations have extra digits. Here we examined whether eye development, which is abnormal in mice lacking functional Gli3, is defective in Gli3+/- mice. Results We showed that Gli3 is expressed in the developing eye but that Gli3+/- mice have only very subtle eye defects. We then generated mice compound heterozygous for mutations in both Gli3 and Pax6, which encodes another developmentally important transcription factor known to be crucial for eye development. Pax6+/-; Gli3+/- eyes were compared to the eyes of wild-type, Pax6+/- or Gli3+/- siblings. They exhibited a range of abnormalities of the retina, iris, lens and cornea that was more extensive than in single Gli3+/- or Pax6+/- mutants or than would be predicted by addition of their phenotypes. Conclusion These findings indicate that heterozygous mutations of Gli3 can impact on eye development. The importance of a normal Gli3 gene dosage becomes greater in the absence of a normal Pax6 gene dosage, suggesting that the two genes co-operate during eye morphogenesis.

  2. Characterization of the temperature-sensitive mutations un-7 and png-1 in Neurospora crassa.

    Science.gov (United States)

    Dieterle, Michael G; Wiest, Aric E; Plamann, Mike; McCluskey, Kevin

    2010-05-18

    The model filamentous fungus Neurospora crassa has been studied for over fifty years and many temperature-sensitive mutants have been generated. While most of these have been mapped genetically, many remain anonymous. The mutation in the N. crassa temperature-sensitive lethal mutant un-7 was identified by a complementation based approach as being in the open reading frame designated NCU00651 on linkage group I. Other mutations in this gene have been identified that lead to a temperature-sensitive morphological phenotype called png-1. The mutations underlying un-7 result in a serine to phenylalanine change at position 273 and an isoleucine to valine change at position 390, while the mutation in png-1 was found to result in a serine to leucine change at position 279 although there were other conservative changes in this allele. The overall morphology of the strain carrying the un-7 mutation is compared to strains carrying the png-1 mutation and these mutations are evaluated in the context of other temperature-sensitive mutants in Neurospora.

  3. Lethal congenital contracture syndrome (LCCS) and other lethal arthrogryposes in Finland--an epidemiological study.

    Science.gov (United States)

    Pakkasjärvi, Niklas; Ritvanen, Annukka; Herva, Riitta; Peltonen, Leena; Kestilä, Marjo; Ignatius, Jaakko

    2006-09-01

    Arthrogryposis multiplex congenita is a heterogeneous group of disorders characterized by multiple contractures with an estimated frequency of 1 in 3,000 births. With improving diagnostic methods, increasing numbers of fetuses with arthrogryposis are found. The pathogenetic mechanisms are relatively well known but the epidemiology and genetics of the prenatally lethal forms of arthrogryposis are less well known. In this study we collected all cases of a multiple contractures diagnosed in Finland during 1987-2002 including live born infants, stillbirths, and terminated pregnancies. Ninety-two cases of 214 suffered intrauterine demise (68 selective pregnancy terminations and 24 stillbirths) and 58 died in infancy. In 141 out of these cases the diagnosis could be included within lethal arthrogryposes, with a prevalence of 1 in 6,985 (1.43/10,000) births. Of these, 59 had spinal cord pathology at autopsy and thus were of neurogenic origin. Thirty-nine cases had lethal congenital contracture syndrome (LCCS) clinically characterized by total immobility of the fetus at all ultrasound examinations (12 weeks or later), multiple joint contractures in both upper and lower limbs, hydrops, and fetal death before the 32nd week of pregnancy. LCCS is noted as a unique Finnish disorder with a prevalence of 1 in 25,250 (0.40/10,000) births and is a major cause of lethal arthrogryposis in Finland.

  4. Higher risk of death among MEN1 patients with mutations in the JunD interacting domain: a Groupe d'etude des Tumeurs Endocrines (GTE) cohort study.

    Science.gov (United States)

    Thevenon, Julien; Bourredjem, Abderrahmane; Faivre, Laurence; Cardot-Bauters, Catherine; Calender, Alain; Murat, Arnaud; Giraud, Sophie; Niccoli, Patricia; Odou, Marie-Françoise; Borson-Chazot, Françoise; Barlier, Anne; Lombard-Bohas, Catherine; Clauser, Eric; Tabarin, Antoine; Parfait, Béatrice; Chabre, Olivier; Castermans, Emilie; Beckers, Albert; Ruszniewski, Philippe; Le Bras, Morgane; Delemer, Brigitte; Bouchard, Philippe; Guilhem, Isabelle; Rohmer, Vincent; Goichot, Bernard; Caron, Philippe; Baudin, Eric; Chanson, Philippe; Groussin, Lionel; Du Boullay, Hélène; Weryha, Georges; Lecomte, Pierre; Penfornis, Alfred; Bihan, Hélène; Archambeaud, Françoise; Kerlan, Véronique; Duron, Françoise; Kuhn, Jean-Marc; Vergès, Bruno; Rodier, Michel; Renard, Michel; Sadoul, Jean-Louis; Binquet, Christine; Goudet, Pierre

    2013-05-15

    Multiple endocrine neoplasia syndrome type 1 (MEN1), which is secondary to mutation of the MEN1 gene, is a rare autosomal-dominant disease that predisposes mutation carriers to endocrine tumors. Although genotype-phenotype studies have so far failed to identify any statistical correlations, some families harbor recurrent tumor patterns. The function of MENIN is unclear, but has been described through the discovery of its interacting partners. Mutations in the interacting domains of MENIN functional partners have been shown to directly alter its regulation abilities. We report on a cohort of MEN1 patients from the Groupe d'étude des Tumeurs Endocrines. Patients with a molecular diagnosis and a clinical follow-up, totaling 262 families and 806 patients, were included. Associations between mutation type, location or interacting factors of the MENIN protein and death as well as the occurrence of MEN1-related tumors were tested using a frailty Cox model to adjust for potential heterogeneity across families. Accounting for the heterogeneity across families, the overall risk of death was significantly higher when mutations affected the JunD interacting domain (adjusted HR = 1.88: 95%-CI = 1.15-3.07). Patients had a higher risk of death from cancers of the MEN1 spectrum (HR = 2.34; 95%-CI = 1.23-4.43). This genotype-phenotype correlation study confirmed the lack of direct genotype-phenotype correlations. However, patients with mutations affecting the JunD interacting domain had a higher risk of death secondary to a MEN1 tumor and should thus be considered for surgical indications, genetic counseling and follow-up.

  5. Asymptomatic parental mosaicism for osteogenesis imperfect associated with a new splice site mutation in COL1A2

    DEFF Research Database (Denmark)

    Frederiksen, Anja Lisbeth; Dunø, Morten; Johnsen, Iben Birgit Gade

    2016-01-01

    Recurrent lethal perinatal osteogenesis imperfecta may result from asymptomatic parental mosaicism. A previously unreported mutation in COL1A2 leads to recurrent cases of fetal osteogenesis imperfecta Sillence type IIA, which emphasizes the importance of clinical and genetic evaluation of mosaicism...

  6. The lethal interaction of x ray and penicillin induced lesions following x-irradiation of Escherichia coli B/r in the presence of hypoxic cell sensitizers

    International Nuclear Information System (INIS)

    Gillies, N.E.; Obioha, F.I.

    1982-01-01

    When Escherichia coli B/r were x-irradiated under anoxia in the presence of different electron-affinic sensitizers and then incubated in broth containing penicillin (at a concentration that did not kill unirradiated cells) additional killing of the bacteria occurred provided the sensitizers were of relatively high lipophilicity. The overall effect was to increase the efficiency of these sensitizers. It is concluded that sensitizer-dependent latent radiation lesions(s) are produced in membrane components of the cell envelope that interact with damage caused by penicillin in the peptidoglycan layer and this causes the additional lethality

  7. Herpesvirus telomerase RNA (vTR with a mutated template sequence abrogates herpesvirus-induced lymphomagenesis.

    Directory of Open Access Journals (Sweden)

    Benedikt B Kaufer

    2011-10-01

    Full Text Available Telomerase reverse transcriptase (TERT and telomerase RNA (TR represent the enzymatically active components of telomerase. In the complex, TR provides the template for the addition of telomeric repeats to telomeres, a protective structure at the end of linear chromosomes. Human TR with a mutation in the template region has been previously shown to inhibit proliferation of cancer cells in vitro. In this report, we examined the effects of a mutation in the template of a virus encoded TR (vTR on herpesvirus-induced tumorigenesis in vivo. For this purpose, we used the oncogenic avian herpesvirus Marek's disease virus (MDV as a natural virus-host model for lymphomagenesis. We generated recombinant MDV in which the vTR template sequence was mutated from AATCCCAATC to ATATATATAT (vAU5 by two-step Red-mediated mutagenesis. Recombinant viruses harboring the template mutation replicated with kinetics comparable to parental and revertant viruses in vitro. However, mutation of the vTR template sequence completely abrogated virus-induced tumor formation in vivo, although the virus was able to undergo low-level lytic replication. To confirm that the absence of tumors was dependent on the presence of mutant vTR in the telomerase complex, a second mutation was introduced in vAU5 that targeted the P6.1 stem loop, a conserved region essential for vTR-TERT interaction. Absence of vTR-AU5 from the telomerase complex restored virus-induced lymphoma formation. To test if the attenuated vAU5 could be used as an effective vaccine against MDV, we performed vaccination-challenge studies and determined that vaccination with vAU5 completely protected chickens from lethal challenge with highly virulent MDV. Taken together, our results demonstrate 1 that mutation of the vTR template sequence can completely abrogate virus-induced tumorigenesis, likely by the inhibition of cancer cell proliferation, and 2 that this strategy could be used to generate novel vaccine candidates

  8. Mutation breeding for downy mildew resistance in pearl millet. Nucleo-cytoplasmic interactions in disease-resistant lines

    International Nuclear Information System (INIS)

    Murty, B.R.; Thakur, S.R.; Prakash, N.; Mehta, S.L.; Bhakta, S.T.

    1983-01-01

    Under the need to rescue hybrid pearl millet cultivation in India from devastating damage by downy mildew, a mutation induction project was started in 1971 to make the commonly used male sterile parent Tift 23A resistant to the disease. Simultaneously sources of resistance from West Africa were used in crossbreeding by which climatic adaptation and male sterility had to be transferred. A number of mildew-resistant hybrids were developed, both from induced mutation and introduction. The resistant male sterile lines were further examined as to their common features and differences from susceptible lines. A strong evidence for nuclear-cytoplasmic interaction was obtained by biochemical and ultrastructural investigations. (author)

  9. PPIB mutations cause severe osteogenesis imperfecta.

    Science.gov (United States)

    van Dijk, Fleur S; Nesbitt, Isabel M; Zwikstra, Eline H; Nikkels, Peter G J; Piersma, Sander R; Fratantoni, Silvina A; Jimenez, Connie R; Huizer, Margriet; Morsman, Alice C; Cobben, Jan M; van Roij, Mirjam H H; Elting, Mariet W; Verbeke, Jonathan I M L; Wijnaendts, Liliane C D; Shaw, Nick J; Högler, Wolfgang; McKeown, Carole; Sistermans, Erik A; Dalton, Ann; Meijers-Heijboer, Hanne; Pals, Gerard

    2009-10-01

    Deficiency of cartilage-associated protein (CRTAP) or prolyl 3-hydroxylase 1(P3H1) has been reported in autosomal-recessive lethal or severe osteogenesis imperfecta (OI). CRTAP, P3H1, and cyclophilin B (CyPB) form an intracellular collagen-modifying complex that 3-hydroxylates proline at position 986 (P986) in the alpha1 chains of collagen type I. This 3-prolyl hydroxylation is decreased in patients with CRTAP and P3H1 deficiency. It was suspected that mutations in the PPIB gene encoding CyPB would also cause OI with decreased collagen 3-prolyl hydroxylation. To our knowledge we present the first two families with recessive OI caused by PPIB gene mutations. The clinical phenotype is compatible with OI Sillence type II-B/III as seen with COL1A1/2, CRTAP, and LEPRE1 mutations. The percentage of 3-hydroxylated P986 residues in patients with PPIB mutations is decreased in comparison to normal, but it is higher than in patients with CRTAP and LEPRE1 mutations. This result and the fact that CyPB is demonstrable independent of CRTAP and P3H1, along with reported decreased 3-prolyl hydroxylation due to deficiency of CRTAP lacking the catalytic hydroxylation domain and the known function of CyPB as a cis-trans isomerase, suggest that recessive OI is caused by a dysfunctional P3H1/CRTAP/CyPB complex rather than by the lack of 3-prolyl hydroxylation of a single proline residue in the alpha1 chains of collagen type I.

  10. Mutations in actin used for structural studies partially disrupt β-thymosin/WH2 domains interaction.

    Science.gov (United States)

    Deville, Célia; Girard-Blanc, Christine; Assrir, Nadine; Nhiri, Naïma; Jacquet, Eric; Bontems, François; Renault, Louis; Petres, Stéphane; van Heijenoort, Carine

    2016-10-01

    Understanding the structural basis of actin cytoskeleton remodeling requires stabilization of actin monomers, oligomers, and filaments in complex with partner proteins, using various biochemical strategies. Here, we report a dramatic destabilization of the dynamic interaction with a model β-thymosin/WH2 domain induced by mutations in actin. This result underlines that mutant actins should be used with prudence to characterize interactions with intrinsically disordered partners as destabilization of dynamic interactions, although identifiable by NMR, may be invisible to other structural techniques. It also highlights how both β-thymosin/WH2 domains and actin tune local structure and dynamics in regulatory processes involving intrinsically disordered domains. © 2016 Federation of European Biochemical Societies.

  11. Mutations in a plastid-localized elongation factor G alter early stages of plastid development in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hangarter Roger P

    2007-07-01

    Full Text Available Abstract Background Proper development of plastids in embryo and seedling tissues is critical for plant development. During germination, plastids develop to perform many critical functions that are necessary to establish the seedling for further growth. A growing body of work has demonstrated that components of the plastid transcription and translation machinery must be present and functional to establish the organelle upon germination. Results We have identified Arabidopsis thaliana mutants in a gene that encodes a plastid-targeted elongation factor G (SCO1 that is essential for plastid development during embryogenesis since two T-DNA insertion mutations in the coding sequence (sco1-2 and sco1-3 result in an embryo-lethal phenotype. In addition, a point mutation allele (sco1-1 and an allele with a T-DNA insertion in the promoter (sco1-4 of SCO1 display conditional seedling-lethal phenotypes. Seedlings of these alleles exhibit cotyledon and hypocotyl albinism due to improper chloroplast development, and normally die shortly after germination. However, when germinated on media supplemented with sucrose, the mutant plants can produce photosynthetically-active green leaves from the apical meristem. Conclusion The developmental stage-specific phenotype of the conditional-lethal sco1 alleles reveals differences in chloroplast formation during seedling germination compared to chloroplast differentiation in cells derived from the shoot apical meristem. Our identification of embryo-lethal mutant alleles in the Arabidopsis elongation factor G indicates that SCO1 is essential for plant growth, consistent with its predicted role in chloroplast protein translation.

  12. d-Amino acid mutation of PMI as potent dual peptide inhibitors of p53-MDM2/MDMX interactions.

    Science.gov (United States)

    Li, Xiang; Liu, Chao; Chen, Si; Hu, Honggang; Su, Jiacan; Zou, Yan

    2017-10-15

    According to the previously reported potent dual l-peptide PMI of p53-MDM2/MDMX interactions, a series of d-amino acid mutational PMI analogues, PMI-1-4, with enhanced proteolytic resistence and in vitro tumor cell inhibitory activities were reported, of which Liposome-PMI-1 showed a stronger inhibitory activity against the U87 cell lines than Nutlin-3. This d-amino acid mutation strategy may give a hand for enhancing the potential of peptide drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Clinical and molecular characterization of a Brazilian cohort of campomelic dysplasia patients, and identification of seven new SOX9 mutations

    Directory of Open Access Journals (Sweden)

    Eduardo P. Mattos

    2015-03-01

    Full Text Available Campomelic dysplasia (CD is an autosomal, dominantly inherited, skeletal abnormality belonging to the subgroup of bent bone dysplasias. In addition to bowed lower limbs, CD typically includes the following: disproportionate short stature, flat face, micrognathia, cleft palate, bell-shaped thorax, and club feet. Up to three quarters of 46, XY individuals may be sex-reversed. Radiological signs include scapular and pubic hypoplasia, narrow iliac wings, spaced ischia, and bowed femora and tibiae. Lethal CD is usually due to heterozygous mutations in SOX9, a major regulator of chondrocytic development. We present a detailed clinical and molecular characterization of nine Brazilian CD patients. Infants were either stillborn (n = 2 or died shortly after birth and presented similar phenotypes. Sex-reversal was observed in one of three chromosomally male patients. Sequencing of SOX9 revealed new heterozygous mutations in seven individuals. Six patients had mutations that resulted in premature transcriptional termination, while one infant had a single-nucleotide substitution at the conserved splice-site acceptor of intron 1. No clear genotype-phenotype correlations were observed. This study highlights the diversity of SOX9 mutations leading to lethal CD, and expands the group of known genetic alterations associated with this skeletal dysplasia.

  14. Chronic Exposure of Corals to Fine Sediments: Lethal and Sub-Lethal Impacts

    Science.gov (United States)

    Flores, Florita; Hoogenboom, Mia O.; Smith, Luke D.; Cooper, Timothy F.; Abrego, David; Negri, Andrew P.

    2012-01-01

    Understanding the sedimentation and turbidity thresholds for corals is critical in assessing the potential impacts of dredging projects in tropical marine systems. In this study, we exposed two species of coral sampled from offshore locations to six levels of total suspended solids (TSS) for 16 weeks in the laboratory, including a 4 week recovery period. Dose-response relationships were developed to quantify the lethal and sub-lethal thresholds of sedimentation and turbidity for the corals. The sediment treatments affected the horizontal foliaceous species (Montipora aequituberculata) more than the upright branching species (Acropora millepora). The lowest sediment treatments that caused full colony mortality were 30 mg l−1 TSS (25 mg cm−2 day−1) for M. aequituberculata and 100 mg l−1 TSS (83 mg cm−2 day−1) for A. millepora after 12 weeks. Coral mortality generally took longer than 4 weeks and was closely related to sediment accumulation on the surface of the corals. While measurements of damage to photosystem II in the symbionts and reductions in lipid content and growth indicated sub-lethal responses in surviving corals, the most reliable predictor of coral mortality in this experiment was long-term sediment accumulation on coral tissue. PMID:22662225

  15. Chronic exposure of corals to fine sediments: lethal and sub-lethal impacts.

    Directory of Open Access Journals (Sweden)

    Florita Flores

    Full Text Available Understanding the sedimentation and turbidity thresholds for corals is critical in assessing the potential impacts of dredging projects in tropical marine systems. In this study, we exposed two species of coral sampled from offshore locations to six levels of total suspended solids (TSS for 16 weeks in the laboratory, including a 4 week recovery period. Dose-response relationships were developed to quantify the lethal and sub-lethal thresholds of sedimentation and turbidity for the corals. The sediment treatments affected the horizontal foliaceous species (Montipora aequituberculata more than the upright branching species (Acropora millepora. The lowest sediment treatments that caused full colony mortality were 30 mg l(-1 TSS (25 mg cm(-2 day(-1 for M. aequituberculata and 100 mg l(-1 TSS (83 mg cm(-2 day(-1 for A. millepora after 12 weeks. Coral mortality generally took longer than 4 weeks and was closely related to sediment accumulation on the surface of the corals. While measurements of damage to photosystem II in the symbionts and reductions in lipid content and growth indicated sub-lethal responses in surviving corals, the most reliable predictor of coral mortality in this experiment was long-term sediment accumulation on coral tissue.

  16. Detection of p53 gene mutations in bronchial biopsy samples of patients with lung cancer

    International Nuclear Information System (INIS)

    Irshad, S.; Nawaz, T.

    2008-01-01

    Lung cancer is the malignant transformation and expansion of lung tissue. It is the most lethal of all cancers worldwide, responsible for 1.2 million deaths annually. The goal of this study was to detect the p53 gene mutations in lung cancer, in local population of Lahore, Pakistan. These mutations were screened in the bronchial biopsy lung cancer tissue samples. For this purpose microtomed tissue sections were collected. Following DNA extraction from tissue sections, the p53 mutations were detected by amplifying Exon 7 (145 bp) and Exon 8 (152 bp) of the p53 gene. PCR then followed by single-strand conformation polymorphism analysis for screening the p53 gene mutations. This results of SSCP were visualized of silver staining. The results showed different banding pattern indicating the presence of mutation. Majority of the mutations were found in Exon 7. Exon 7 of p53 gene may be the mutation hotspot in lung cancer. In lung cancer, the most prevalent mutations of p53 gene are G -> T transversions; other types of insertions and deletions are also expected, however, the exact nature of mutations in presented work could be confirmed by direct sequencing. (author)

  17. Mutation breeding in guava (Psidium guajava)

    International Nuclear Information System (INIS)

    Mahishi, D.M.; Reddy, B.G.S.; Shivashankar, G.

    1990-01-01

    Full text: Guava is an important tropical fruit crop, rich in Vitamin C. The pulp of the fruit is very soft and is ideal for canning. However, the presence of a large number of hard seeds is a major disadvantage. Mutation studies have been initiated with a view to induce seed sterility. Large quantities of guava seeds were subjected to treatments with gamma radiation ranging from 10 krad to 25 krad. The lethal dose for 50% reduction in the growth parameters was around 35 krad. Among the irradiated progenies distinct variations with reference to growth habits, leaf size and branching pattern have been observed. (author)

  18. Sensitivity and Frequencies of Dystrophin Gene Mutations in Thai DMD/BMD Patients As Detected by Multiplex PCR

    Directory of Open Access Journals (Sweden)

    Thanyachai Sura

    2008-01-01

    Full Text Available Background: Duchenne muscular dystrophy (DMD, a lethal X-linked disease affecting 1 in 3500 male births, and its more benign variant, Becker muscular dystrophy (BMD, are caused by mutations in the dystrophin gene. Because of its large size, analysing the whole gene is impractical. Methods have been developed to detect the commonest mutations i.e. the deletions of the exons. Although these tests are highly specific, their sensitivity is inherently limited by the prevalence of deletions, which differs among different populations.

  19. X-ray-induced specific-locus mutations in the ad-3 region of two-component heterokaryons of Neurospora crass

    International Nuclear Information System (INIS)

    De Serres, F.J.

    1990-01-01

    More extensive complementation tests than those performed initially on a series of 832 X-ray-induced specific-locus mutations in the adenine-4 (ad-3) region of a two-component heterokaryon (H-12) of Neurospora crassa showed that unexpectedly high frequencies of specific-locus mutations in the ad-3 region have additional, but separate, sites of recessive lethal damage in the immediately adjacent genetic regions. In the present paper, X-ray-induced irreparable ad-3 mutants of the folowing genotypes and numbers (ad-3A ad-3B, ad-3A ad-3B nic-2, and ad-3B nic-2) have also subjected to the same genetic fine structure analysis. These experiments, in the previous and present papers, were designed to determine the extent of the functional inactivation in the ad-3 and immediately adjacent genetic regions in individual mutants classified as presumptive multilocus deletions or multiplelocus mutations. The data in the present paper have shown that in Neurospora crassa most X-ray-induced irreparable mutants of genotype ad-3A ad-3B, ad-3A ad-3B nic-2, and ad-3 nic-2 map as a series of overlapping multilocus deletions. In addition, genetic fine structure analysis has shown that some of the mutants classified, initially, as multilocus deletions, are actually multiple-locus mutations: multilocus deletions with closely linked, and separate, sites of recessive lethal damage with a wide variety of genotyes. Combining data from the present experiments with previously published date, the frequency of multiple-locus mutations among X-ray-induced gene/point mutations and multilocus deletions in the ad-3 region is 6.2%. (author). 27 refs.; 4 figs.; 7 tab

  20. A novel and lethal de novo LQT-3 mutation in a newborn with distinct molecular pharmacology and therapeutic response.

    Directory of Open Access Journals (Sweden)

    John R Bankston

    2007-12-01

    Full Text Available SCN5A encodes the alpha-subunit (Na(v1.5 of the principle Na(+ channel in the human heart. Genetic lesions in SCN5A can cause congenital long QT syndrome (LQTS variant 3 (LQT-3 in adults by disrupting inactivation of the Na(v1.5 channel. Pharmacological targeting of mutation-altered Na(+ channels has proven promising in developing a gene-specific therapeutic strategy to manage specifically this LQTS variant. SCN5A mutations that cause similar channel dysfunction may also contribute to sudden infant death syndrome (SIDS and other arrhythmias in newborns, but the prevalence, impact, and therapeutic management of SCN5A mutations may be distinct in infants compared with adults.Here, in a multidisciplinary approach, we report a de novo SCN5A mutation (F1473C discovered in a newborn presenting with extreme QT prolongation and differential responses to the Na(+ channel blockers flecainide and mexiletine. Our goal was to determine the Na(+ channel phenotype caused by this severe mutation and to determine whether distinct effects of different Na(+ channel blockers on mutant channel activity provide a mechanistic understanding of the distinct therapeutic responsiveness of the mutation carrier. Sequence analysis of the proband revealed the novel missense SCN5A mutation (F1473C and a common variant in KCNH2 (K897T. Patch clamp analysis of HEK 293 cells transiently transfected with wild-type or mutant Na(+ channels revealed significant changes in channel biophysics, all contributing to the proband's phenotype as predicted by in silico modeling. Furthermore, subtle differences in drug action were detected in correcting mutant channel activity that, together with both the known genetic background and age of the patient, contribute to the distinct therapeutic responses observed clinically.The results of our study provide further evidence of the grave vulnerability of newborns to Na(+ channel defects and suggest that both genetic background and age are

  1. Tumor clone dynamics in lethal prostate cancer.

    Science.gov (United States)

    Carreira, Suzanne; Romanel, Alessandro; Goodall, Jane; Grist, Emily; Ferraldeschi, Roberta; Miranda, Susana; Prandi, Davide; Lorente, David; Frenel, Jean-Sebastien; Pezaro, Carmel; Omlin, Aurelius; Rodrigues, Daniel Nava; Flohr, Penelope; Tunariu, Nina; S de Bono, Johann; Demichelis, Francesca; Attard, Gerhardt

    2014-09-17

    It is unclear whether a single clone metastasizes and remains dominant over the course of lethal prostate cancer. We describe the clonal architectural heterogeneity at different stages of disease progression by sequencing serial plasma and tumor samples from 16 ERG-positive patients. By characterizing the clonality of commonly occurring deletions at 21q22, 8p21, and 10q23, we identified multiple independent clones in metastatic disease that are differentially represented in tissue and circulation. To exemplify the clinical utility of our studies, we then showed a temporal association between clinical progression and emergence of androgen receptor (AR) mutations activated by glucocorticoids in about 20% of patients progressing on abiraterone and prednisolone or dexamethasone. Resistant clones showed a complex dynamic with temporal and spatial heterogeneity, suggesting distinct mechanisms of resistance at different sites that emerged and regressed depending on treatment selection pressure. This introduces a management paradigm requiring sequential monitoring of advanced prostate cancer patients with plasma and tumor biopsies to ensure early discontinuation of agents when they become potential disease drivers. Copyright © 2014, American Association for the Advancement of Science.

  2. Cytoplasmic superoxide dismutase and catalase activity and resistance to radiation lethality in murine tumor cells

    International Nuclear Information System (INIS)

    Davy, C.A.; Tesfay, Z.; Jones, J.; Rosenberg, R.C.; McCarthy, C.; Rosenberg, S.O.

    1986-01-01

    Reduced species of molecular oxygen are produced by the interaction of ionizing radiation with aqueous solutions containing molecular oxygen. The enzymes catalase and superoxide dismutase (SOD) are thought to function in vivo as scavengers of metabolically produced peroxide and superoxide respectively. SOD has been shown to protect against the lethal effects of ionizing radiation in vitro and in vivo. The authors have investigated the relationship between the cytosolic SOD catalase content and the sensitivity to radiation lethality of a number of murine cell lines (402AX, EL-4, MB-2T3, MB-4, MEL, P-815, SAI, SP-2, and SV-3T3). K/sub i/(CN - ) for murine Cu-Zn-SOD was determined to be 6.8 x 10 -6 M. No cytosolic Mn-SOD activity was found in any of the cell lines studied. No correlation was found between the cytosolic Cu-Zn-SOD or cytosolic catalase activity and the resistance to radiation lethality or the murine cell lines studied

  3. Direct Measurements of Human Colon Crypt Stem Cell Niche Genetic Fidelity: The Role of Chance in Non-Darwinian Mutation Selection

    Directory of Open Access Journals (Sweden)

    Haeyoun eKang

    2013-10-01

    Full Text Available Perfect human stem cell genetic fidelity would prevent aging and cancer. However, perfection would be difficult to achieve, and aging is universal and cancers common. A hypothesis is that because mutations are inevitable over a human lifetime, downstream mechanisms have evolved to manage the deleterious effects of beneficial and lethal mutations. In the colon, a crypt stem cell architecture reduces the number of mitotic cells at risk for mutation accumulation, and multiple niche stem cells ensure that a lethal mutation within any single stem cell does not lead to crypt death. In addition, the architecture of the colon crypt stem cell niche may harness probability or chance to randomly discard many beneficial mutations that might lead to cancer. An analysis of somatic chromosome copy number alterations (CNAs reveals a lack of perfect fidelity in individual normal human crypts, with age-related increases and higher frequencies in ulcerative colitis, a proliferative, inflammatory disease. The age-related increase in somatic CNAs appears consistent with relatively normal replication error and cell division rates. Surprisingly, and similar to point mutations in cancer genomes, the types of crypt mutations were more consistent with random fixation rather than selection. In theory, a simple non-Darwinian way to nullify selection is to reduce the size of the reproducing population. Fates are more determined by chance rather than selection in very small populations, and therefore selection may be minimized within small crypt niches. The desired effect is that many beneficial mutations that might lead to cancer are randomly lost by drift rather than fixed by selection. The subdivision of the colon into multiple very small stem cell niches may trade Darwinian evolution for non-Darwinian somatic cell evolution, capitulating to aging but reducing cancer risks.

  4. Gene mutations, chromosome aberrations and survival after X-ray irradiation of cultured Chinese hamster cells at cysteamine protection

    International Nuclear Information System (INIS)

    Elisova, I.V.; Feoktistova, I.P.

    1983-01-01

    The culture of Chinese hamster cells (clone 431) has been used to study cysteamine action on mutagenous effect of X-rays, determined by the induction of resistance of gene mutations to 6-thioguanine and chromosomal abberations, as well as on the reproductive form of death of irradiated cells. Dose--- effect curves are obtained under conditions of irradiation with and without protector. The factor of dose alteration is 2.0 for chromosomal aberrations and cell survival, and 2.8 for gene mutations. It is sUpposed that cysteamine affects the general mechanisms, which take part in the realis zation of injuries that bring about gene mutations, chromosomal aberrations and cell lethality

  5. Use of human tissue to assess the oncogenic activity of melanoma-associated mutations.

    Science.gov (United States)

    Chudnovsky, Yakov; Adams, Amy E; Robbins, Paul B; Lin, Qun; Khavari, Paul A

    2005-07-01

    Multiple genetic alterations occur in melanoma, a lethal skin malignancy of increasing incidence. These include mutations that activate Ras and two of its effector cascades, Raf and phosphoinositide 3-kinase (PI3K). Induction of Ras and Raf can be caused by active N-Ras and B-Raf mutants as well as by gene amplification. Activation of PI3K pathway components occurs by PTEN loss and by AKT3 amplification. Melanomas also commonly show impairment of the p16(INK4A)-CDK4-Rb and ARF-HDM2-p53 tumor suppressor pathways. CDKN2A mutations can produce p16(INK4A) and ARF protein loss. Rb bypass can also occur through activating CDK4 mutations as well as by CDK4 amplification. In addition to ARF deletion, p53 pathway disruption can result from dominant negative TP53 mutations. TERT amplification also occurs in melanoma. The extent to which these mutations can induce human melanocytic neoplasia is unknown. Here we characterize pathways sufficient to generate human melanocytic neoplasia and show that genetically altered human tissue facilitates functional analysis of mutations observed in human tumors.

  6. A mutational analysis of Caenorhabditis elegans in space

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Yang [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Lai, Kenneth [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Cheung, Iris [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Youds, Jillian [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Tarailo, Maja [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Tarailo, Sanja [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Rose, Ann [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada)]. E-mail: arose@gene.nce.ubc.ca

    2006-10-10

    The International Caenorhabditis elegans Experiment First Flight (ICE-First) was a project using C. elegans as a model organism to study the biological effects of short duration spaceflight (11 days in the International Space Station). As a member of the ICE-First research team, our group focused on the mutational effects of spaceflight. Several approaches were taken to measure mutational changes that occurred during the spaceflight including measurement of the integrity of poly-G/poly-C tracts, determination of the mutation frequency in the unc-22 gene, analysis of lethal mutations captured by the genetic balancer eT1(III;V), and identification of alterations in telomere length. By comparing the efficiency, sensitivity, and convenience of these methods, we deduced that the eT1 balancer system is well-suited for capturing, maintaining and recovering mutational events that occur over several generations during spaceflight. In the course of this experiment, we have extended the usefulness of the eT1 balancer system by identifying the physical breakpoints of the eT1 translocation and have developed a PCR assay to follow the eT1 chromosomes. C. elegans animals were grown in a defined liquid media during the spaceflight. This is the first analysis of genetic changes in C. elegans grown in the defined media. Although no significant difference in mutation rate was detected between spaceflight and control samples, which is not surprising given the short duration of the spaceflight, we demonstrate here the utility of worms as an integrating biological dosimeter for spaceflight.

  7. A mutational analysis of Caenorhabditis elegans in space

    International Nuclear Information System (INIS)

    Zhao Yang; Lai, Kenneth; Cheung, Iris; Youds, Jillian; Tarailo, Maja; Tarailo, Sanja; Rose, Ann

    2006-01-01

    The International Caenorhabditis elegans Experiment First Flight (ICE-First) was a project using C. elegans as a model organism to study the biological effects of short duration spaceflight (11 days in the International Space Station). As a member of the ICE-First research team, our group focused on the mutational effects of spaceflight. Several approaches were taken to measure mutational changes that occurred during the spaceflight including measurement of the integrity of poly-G/poly-C tracts, determination of the mutation frequency in the unc-22 gene, analysis of lethal mutations captured by the genetic balancer eT1(III;V), and identification of alterations in telomere length. By comparing the efficiency, sensitivity, and convenience of these methods, we deduced that the eT1 balancer system is well-suited for capturing, maintaining and recovering mutational events that occur over several generations during spaceflight. In the course of this experiment, we have extended the usefulness of the eT1 balancer system by identifying the physical breakpoints of the eT1 translocation and have developed a PCR assay to follow the eT1 chromosomes. C. elegans animals were grown in a defined liquid media during the spaceflight. This is the first analysis of genetic changes in C. elegans grown in the defined media. Although no significant difference in mutation rate was detected between spaceflight and control samples, which is not surprising given the short duration of the spaceflight, we demonstrate here the utility of worms as an integrating biological dosimeter for spaceflight

  8. Soluble factor(s) from bone marrow cells can rescue lethally irradiated mice by protecting endogenous hematopoietic stem cells.

    Science.gov (United States)

    Zhao, Yi; Zhan, Yuxia; Burke, Kathleen A; Anderson, W French

    2005-04-01

    Ionizing radiation-induced myeloablation can be rescued via bone marrow transplantation (BMT) or administration of cytokines if given within 2 hours after radiation exposure. There is no evidence for the existence of soluble factors that can rescue an animal after a lethal dose of radiation when administered several hours postradiation. We established a system that could test the possibility for the existence of soluble factors that could be used more than 2 hours postirradiation to rescue animals. Animals with an implanted TheraCyte immunoisolation device (TID) received lethal-dose radiation and then normal bone marrow Lin- cells were loaded into the device (thereby preventing direct interaction between donor and recipient cells). Animal survival was evaluated and stem cell activity was tested with secondary bone marrow transplantation and flow cytometry analysis. Donor cell gene expression of five antiapoptotic cytokines was examined. Bone marrow Lin- cells rescued lethally irradiated animals via soluble factor(s). Bone marrow cells from the rescued animals can rescue and repopulate secondary lethally irradiated animals. Within the first 6 hours post-lethal-dose radiation, there is no significant change of gene expression of the known radioprotective factors TPO, SCF, IL-3, Flt-3 ligand, and SDF-1. Hematopoietic stem cells can be protected in lethally irradiated animals by soluble factors produced by bone marrow Lin- cells.

  9. and in anticancer therapy

    Directory of Open Access Journals (Sweden)

    Monika Toma

    2014-09-01

    Full Text Available Nowadays, cancer and anticancer therapy are increasingly mentioned topics. Groups of researchers keep looking for a tool that will specifically and efficiently eliminate abnormal cells without any harm for the normal ones. Such method entails the reduction of therapy’s side effects, thus also improving patient’s recovery. Discovery of synthetic lethality has become a new hope to create effective, personalized therapy of cancer. Researchers noted that pairs of simultaneously mutated genes can lead to cell death, whereas each gene from that pair mutated individually does not result in cell lethality. Cancer cells accumulate numerous changes in their genetic material. By defining the pairs of genes interacting in cell pathways we are able to identify a potential anticancer therapy. It is believed that such a process has evolved to create cell resistance for a single gene mutation. Proper functioning of a pathway is not dependent on a single gene. Such a solution, however, also led to the evolution of multifactorial diseases such as cancer. Research techniques using iRNA, shRNA or small molecule libraries allow us to find genes that are connected in synthetic lethality interactions. Synthetic lethality may be applied not only as an anticancer therapy but also as a tool for identifying the functions of recently recognized genes. In addition, studying synthetic lethality broadens our understanding of the molecular mechanisms governing cancer cells, which should be helpful in designing highly effective personalized cancer therapies.

  10. An essential role of intestinal cell kinase in lung development is linked to the perinatal lethality of human ECO syndrome

    Science.gov (United States)

    Tong, Yixin; Park, So Hyun; Wu, Di; Xu, Wenhao; Guillot, Stacey J.; Jin, Li; Li, Xudong; Wang, Yalin; Lin, Chyuan-Sheng; Fu, Zheng

    2017-01-01

    Human endocrine-cerebro-osteodysplasia (ECO) syndrome, caused by the loss-of-function mutation R272Q in the ICK (intestinal cell kinase) gene, is a neonatal-lethal developmental disorder. To elucidate the molecular basis of ECO syndrome, we constructed an Ick R272Q knock-in mouse model that recapitulates ECO pathological phenotypes. Newborns bearing Ick R272Q homozygous mutations die at birth due to respiratory distress. Ick mutant lungs exhibit not only impaired branching morphogenesis associated with reduced mesenchymal proliferation, but also significant airspace deficiency in primitive alveoli concomitant with abnormal interstitial mesenchymal differentiation. ICK dysfunction induces elongated primary cilia and perturbs ciliary Hedgehog signaling and autophagy during lung sacculation. Our study identifies an essential role for ICK in lung development and advances the mechanistic understanding of ECO syndrome. PMID:28380258

  11. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes.

    Science.gov (United States)

    Maher, Geoffrey J; McGowan, Simon J; Giannoulatou, Eleni; Verrill, Clare; Goriely, Anne; Wilkie, Andrew O M

    2016-03-01

    De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39-90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones.

  12. Neutron-induced mutation experiments. Progress report, March 1, 1977--February 28, 1978

    International Nuclear Information System (INIS)

    Abrahamson, S.

    1977-11-01

    Experiments have been carried out to study the relative mutagenic effectiveness for Drosophila female germ cells of neutrons of different energies employing X-linked recessive lethal and specific locus mutation tests. The energies and doses employed to date to study X-linked lethals are 0.43 MeV (500, 1000, 1500, 1900 R (in progress)), 0.68 MeV (250, 500, 1000, 1500 R), 2 MeV (250, 500, 1000, 1500, 2000 R), 6 MeV (250, 500, 1500, 3000 R) and 15 MeV (250, 500, 1000, 1500, 3000 R). 0.43-MeV neutrons appear to have an RBE in the range 1.9 to 4.7, 0.68 MeV 2.8 to 4.3, 2 MeV (incomplete data), 6 MeV 1.7 to 3.2, and 15 MeV 1.7 to 2.2. The data for 0.43-MeV and 0.68-MeV neutrons do not yet differentiate between a linear and a quadratic dose/frequency response curve for the doses studied, but suggest a quadratic relationship. The data for 2, 6 and 15 MeV are inconclusive. The specific locus mutation data indicate the highest RBE for 0.68-MeV neutrons, followed by 2 and 6 MeV, respectively

  13. Mutations of PTPN23 in developmental and epileptic encephalopathy

    KAUST Repository

    Sowada, Nadine

    2017-10-31

    Developmental and epileptic encephalopathies (DEE) are a heterogeneous group of neurodevelopmental disorders with poor prognosis. Recent discoveries have greatly expanded the repertoire of genes that are mutated in epileptic encephalopathies and DEE, often in a de novo fashion, but in many patients, the disease remains molecularly uncharacterized. Here, we describe a new form of DEE in patients with likely deleterious biallelic variants in PTPN23. The phenotype is characterized by early onset drug-resistant epilepsy, severe and global developmental delay, microcephaly, and sometimes premature death. PTPN23 encodes a tyrosine phosphatase with strong brain expression, and its knockout in mouse is embryonically lethal. Structural modeling supports a deleterious effect of the identified alleles. Our data suggest that PTPN23 mutations cause a rare severe form of autosomal-recessive DEE in humans, a finding that requires confirmation.

  14. Complementation Studies of Bacteriophage λ O Amber Mutants by Allelic Forms of O Expressed from Plasmid, and O-P Interaction Phenotypes.

    Science.gov (United States)

    Hayes, Sidney; Rajamanickam, Karthic; Hayes, Connie

    2018-04-05

    λ genes O and P are required for replication initiation from the bacteriophage λ origin site, ori λ, located within gene O . Questions have persisted for years about whether O-defects can indeed be complemented in trans . We show the effect of original null mutations in O and the influence of four origin mutations (three are in-frame deletions and one is a point mutation) on complementation. This is the first demonstration that O proteins with internal deletions can complement for O activity, and that expression of the N-terminal portion of gene P can completely prevent O complementation. We show that O-P co-expression can limit the lethal effect of P on cell growth. We explore the influence of the contiguous small RNA OOP on O complementation and P-lethality.

  15. Synergistic interaction of gamma rays and some metallic salts in the induction of chlorophyll mutations in rice

    International Nuclear Information System (INIS)

    Reddy, T.P.; Vaidyanath, K.

    1978-01-01

    In this study the mutagenic activity of 9 metallic salts was tested in comparison and conjunction with gamma rays on rice seed. In M 2 , barium and cadmium produced chlorophyll mutation and mutant frequencies on a par with those of 20 kR gamma rays. Similarly, copper and mercury induced moderately high mutation and mutant frequencies. Salts of strontium, iron and lead showed rather weak mutagenic effects. On the other hand, two metals - manganese anc calcium - failed to provoke chlorophyll mutations in rice seed. Sequential treatments of gamma rays + 5 metals, namely Sr, Cd, Hg, Pb and Cu, produced synergistic yields of chlorophyll mutants in the M 2 generation. Two genetically active metals, Ba and Fe, showed less than additive effects when post-treated after gamma irradiation. Manganese, which failed to induce chlorophyll mutations in independent treatment, potentiated the mutagenic activity of gamma radiation in sequential treatment. On the other hand, sequential treatment with calcium seemed to confer a substantial protection against gamma-ray-induced genetic lesions. The probable mechanisms of synergistic interaction, mutagenic potentiation and protection, observed in sequential treatments, are discussed. (Auth.)

  16. Mining of lethal recessive genetic variation in Danish cattle

    DEFF Research Database (Denmark)

    Das, Ashutosh

    2015-01-01

    in fertility. The primary objective of this PhD projekt was to identify recessive lethal gentic variants in the main Danish dairy cattle breed. Holstein-Friesian utilzing next generation sequencing (NGS) data. This study shows a potential for the use of the NGS-based reverse genetic approach in identifying...... lethal or semi-lethal recessive gentic variation...

  17. How much do we know about spontaneous human mutation rates

    Energy Technology Data Exchange (ETDEWEB)

    Crow, J.F. (Univ. of Wisconsin, Madison, WI (United States))

    1993-01-01

    The much larger number of cell divisions between zygote and sperm than between zygote and egg, the increased age of fathers of children with new dominant mutations, and the greater evolution rate of pseudogenes on the Y chromosome than of those on autosomes all point to a much higher mutation rate in human males than in females, as first pointed out by Haldane in his classical study of X-linked hemophilia. The age of the father is the main factor determining the human spontaneous mutation rate, and probably the total mutation rate. The total mutation rate in Drosophila males of genes causing minor reduction in viability is at least 0.4 per sperm and may be considerably higher. The great mutation load implied by a rate of [approx] 1 per zygote can be greatly ameliorated by quasi-transition selection. Corresponding data are not available for the human population. The evolution rate of pseudogenes in primates suggests some 10[sup 2] new mutations per zygote. Presumably the overwhelming majority of these are neutral, but even the approximate fraction is not known. Statistical evidence in Drosophilia shows that mutations with minor effects cause about the same heterozygous impairment of fitness as those that are lethal when homozygous. The magnitude of heterozygous effect is such that almost all mutant genes are eliminated as heterozygotes before ever becoming homozygous. Although quantitative data in the human species are lacking, anecdotal information supports the conclusion that partial dominance is the rule here as well. This suggests that if the human mutation rate were increased or decreased, the effects would be spread over a period of 50-100 generations. 31 refs., 3 figs., 2 tabs.

  18. Structure–function analysis and genetic interactions of the SmG, SmE, and SmF subunits of the yeast Sm protein ring

    Science.gov (United States)

    Schwer, Beate; Kruchten, Joshua; Shuman, Stewart

    2016-01-01

    A seven-subunit Sm protein ring forms a core scaffold of the U1, U2, U4, and U5 snRNPs that direct pre-mRNA splicing. Using human snRNP structures to guide mutagenesis in Saccharomyces cerevisiae, we gained new insights into structure–function relationships of the SmG, SmE, and SmF subunits. An alanine scan of 19 conserved amino acids of these three proteins, comprising the Sm RNA binding sites or inter-subunit interfaces, revealed that, with the exception of Arg74 in SmF, none are essential for yeast growth. Yet, for SmG, SmE, and SmF, as for many components of the yeast spliceosome, the effects of perturbing protein–RNA and protein–protein interactions are masked by built-in functional redundancies of the splicing machine. For example, tests for genetic interactions with non-Sm splicing factors showed that many benign mutations of SmG, SmE, and SmF (and of SmB and SmD3) were synthetically lethal with null alleles of U2 snRNP subunits Lea1 and Msl1. Tests of pairwise combinations of SmG, SmE, SmF, SmB, and SmD3 alleles highlighted the inherent redundancies within the Sm ring, whereby simultaneous mutations of the RNA binding sites of any two of the Sm subunits are lethal. Our results suggest that six intact RNA binding sites in the Sm ring suffice for function but five sites may not. PMID:27417296

  19. BRCA1/2 mutation analysis in 41 ovarian cell lines reveals only one functionally deleterious BRCA1 mutation.

    LENUS (Irish Health Repository)

    Stordal, Britta

    2013-06-01

    Mutations in BRCA1\\/2 increase the risk of developing breast and ovarian cancer. Germline BRCA1\\/2 mutations occur in 8.6-13.7% of unselected epithelial ovarian cancers, somatic mutations are also frequent. BRCA1\\/2 mutated or dysfunctional cells may be sensitive to PARP inhibition by synthetic lethality. The aim of this study is to comprehensively characterise the BRCA1\\/2 status of a large panel of ovarian cancer cell lines available to the research community to assist in biomarker studies of novel drugs and in particular of PARP inhibitors. The BRCA1\\/2 genes were sequenced in 41 ovarian cell lines, mRNA expression of BRCA1\\/2 and gene methylation status of BRCA1 was also examined. The cytotoxicity of PARP inhibitors olaparib and veliparib was examined in 20 cell lines. The cell line SNU-251 has a deleterious BRCA1 mutation at 5564G > A, and is the only deleterious BRCA1\\/2 mutant in the panel. Two cell lines (UPN-251 and PEO1) had deleterious mutations as well as additional reversion mutations that restored the protein functionality. Heterozygous mutations in BRCA1\\/2 were relatively common, found in 14.6% of cell lines. BRCA1 was methylated in two cell lines (OVCAR8, A1847) and there was a corresponding decrease in gene expression. The BRCA1 methylated cell lines were more sensitive to PARP inhibition than wild-type cells. The SNU-251 deleterious mutant was more sensitive to PARP inhibition, but only in a long-term exposure to correct for its slow growth rate. Cell lines derived from metastatic disease are significantly more resistant to veliparib (2.0 fold p = 0.03) compared to those derived from primary tumours. Resistance to olaparib and veliparib was correlated Pearsons-R 0.5393, p = 0.0311. The incidence of BRCA1\\/2 deleterious mutations 1\\/41 cell lines derived from 33 different patients (3.0%) is much lower than the population incidence. The reversion mutations and high frequency of heterozygous mutations suggest that there is a selective

  20. Qualitative analysis of mouse specific-locus mutations: information on genetic organization, gene expression, and the chromosomal nature of induced lesions

    International Nuclear Information System (INIS)

    Russell, L.B.

    1982-01-01

    Analysis of mouse specific-locus (SL) mutations at three loci has identified over 33 distinct complementation groups - most of which are probably overlapping deficiencies - and 13 to 14 new functional units. The complementation maps that have been generated for the d-se and c regions include numerous vital functions; however, some of the genes in these regions are non-vital. At such loci, hypomorphic mutants must represent intragenic alterations, and some viable nulls could conceivably be intragenic lesions also. Analysis of SL mutations has provided information on genetic expression. Homozygous deficiencies can be completely viable or can kill at any one of a range of developmental stages. Heterozygonus deficiencies of up to 6 cM or more in genetic length have been recovered and propagated. The time of death of homozygous and the degree of inviability of heterozygous deficiencies are related more to specific content of the missing segment than to its length. Combinations of deficiencies with x-autosome translocations that inactivate the homologous region in a mosaic fashion have shown that organismic lethals are not necessarily cell lethal. The spectrum of mutations induced depends on the nature of the mutagen and the type of germ cell exposed. Radiation of spermatogonia produces intragenic as well as null mutations. Spontaneous mutations have an admixture of types not present in populations of mutations induced in germ cells, and this raises doubts concerning the accuracy of doubling-dose calculations in genetic risk estimation. The analysis of SL mutations has yielded genetic tools for the construction of detailed gene-dosage series, cis-trans comparisons, the mapping of known genes and identification of new genes, genetic rescue of various types, and the identification and isolation of DNA sequences

  1. The influence of continuous γ-irradiation at decreasing dose-rate on the survival rote and induction of gene mutations in cultured Chinese hamster cells

    International Nuclear Information System (INIS)

    Feoktistova, T.P.; Elisova, E.V.; Stavrakova, N.M.

    1991-01-01

    Continuous γ-irradiation at decreasing dose-rate was shown to be less effective than acute exposure with regard to the lethal effect and frequency of mutations of resistance to 6-thioguanine in cultured Chinese hamster cells. The cell population subjected to continuons irradiation was d more radioresistant than the intact one. Lethal and genetic effects of continuous irradiation at decreasing dose-rate were mainly determined by the contribution of the radiation dose received during the first 24 h of exposure

  2. Detection of new paternal dystrophin gene mutations in isolated cases of dystrophinopathy in females

    Energy Technology Data Exchange (ETDEWEB)

    Pegoraro, E.; Wessel, H.B.; Schwartz, L.; Hoffman, E.P. (Univ. of Pittsburgh, PA (United States)); Schimke, R.N. (Kansas Univ. Medical Center, Kansas City (United States)); Arahata, Kiichi; Hayashi, Yukiko (National Institute of Neurosciences, Tokyo (Japan)); Stern, H. (Children' s National Medical Center, Washington, DC (United States)); Marks, H. (A.I. duPont Institute, Wilmington (United States)); Glasberg, M.R. (Henry Ford Hospital, Detroit, MI (United States)) (and others)

    1994-06-01

    Duchenne muscular dystrophy is one of the most common lethal monogenic disorders and is caused by dystrophin deficiency. The disease is transmitted as an X-linked recessive trait; however, recent biochemical and clinical studies have shown that many girls and women with a primary myopathy have an underlying dystrophinopathy, despite a negative family history for Duchenne dystrophy. These isolated female dystrophinopathy patients carried ambiguous diagnoses with presumed autosomal recessive inheritance (limb-girdle muscular dystrophy) prior to biochemical detection of dystrophin abnormalities in their muscle biopsy. It has been assumed that these female dystrophinopathy patients are heterozygous carries who show preferential inactivation of the X chromosome harboring the normal dystrophin gene, although this has been shown for only a few X:autosome translocations and for two cases of discordant monozygotic twin female carriers. Here the authors study X-inactivation patterns of 13 female dystrophinopathy patients - 10 isolated cases and 3 cases with a positive family history for Duchenne dystrophy in males. They show that all cases have skewed X-inactivation patterns in peripheral blood DNA. Of the nine isolated cases informative in the assay, eight showed inheritance of the dystrophin gene mutation from the paternal germ line. Only a single case showed maternal inheritance. The 10-fold higher incidence of paternal transmission of dystrophin gene mutations in these cases is at 30-fold variance with Bayesian predictions and gene mutation rates. Thus, the results suggest some mechanistic interaction between new dystrophin gene mutations, paternal inheritance, and skewed X inactivation. The results provide both empirical risk data and a molecular diagnostic test method, which permit genetic counseling and prenatal diagnosis of this new category of patients. 58 refs., 7 figs., 2 tabs.

  3. A molecular nature of mutation in ADE2 gene of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Korolev, V.G.

    1983-01-01

    A study was made on the lethal and mutagenous effects and the spectrum of mutations, induced by the decomposition of 32 P, introduced into DNA of yeast cells in the form of 32 P-desoxyguanosinemonophosphate ( 32 PdGMP) and 32 P-thymidinemonophosphate ( 32 P-TMP). Inactivation probability for one 32 P decomposition was independent on labelled nucleotide, included in DNA. At the same time the probability of mutation occUrrence in ADE1 and ADE2 genes per one 32 P decomposition is 3 times higher for the case of 32 PdGMP inclusion than 32 P-TMP. The data showGC that amount of base pairs in ADE1 and ADE2 genes is a of induced mutations differ with respect to the ratio of GC→AT at and at AT→GC transitions, depending on labelled nucleotide

  4. The Arg233Lys AQP0 mutation disturbs aquaporin0-calmodulin interaction causing polymorphic congenital cataract.

    Directory of Open Access Journals (Sweden)

    Shanshan Hu

    Full Text Available Calmodulin (CaM directly interacts with the aquaporin 0 (AQP0 C-terminus in a calcium dependent manner to regulate the water permeability of AQP0. We previously identified a missense mutation (p.R233K in the putative CaM binding domain of AQP0 C-terminus in a congenital cataract family. This study was aimed at exploring the potential pathogenesis of this mutation causative of cataract and mainly identifying how it influenced the binding of AQP0 to CaM. Wild type and R233K mutant AQP0 with EGFP-tag were transfected separately into Hela cells to determine the expression and subcellular localizations. The co-immunoprecipitation (CoIP assay was used to detect the interaction between AQP0 and CaM. AQP0 C-terminus peptides were synthesized with and without R233K, and the binding abilities of these peptides to CaM were assessed using a fluorescence binding assay. Localizations of wild type and R233K mutant AQP0 were determined from EGFP fluorescence, and the chimeric proteins were both localized abundantly in the plasma membrane. Protein expression levels of the culture cells showed no significant difference between them. The results from CoIP assay implied that R233K mutant presented more weakly in association with CaM than wild type AQP0. The AQP0 C-terminal mutant peptide was found to have 2.5-fold lower binding affinity to CaM than wild type peptide. These results suggested that R233K mutation did not affect the expression, location and trafficking of the protein but did influence the interaction between AQP0 and CaM. The binding affinity of AQP0 C-terminus to CaM was significantly reduced. Due to lack of the modulation of the Ca2+-calmodulin complex, the water permeability of AQP0 was subsequently augmented, which might lead to the development of this cataract.

  5. Lethality of Rendang packaged in multilayer retortable pouch with sterilization process

    Science.gov (United States)

    Praharasti, A. S.; Kusumaningrum, A.; Frediansyah, A.; Nurhikmat, A.; Khasanah, Y.; Suprapedi

    2017-01-01

    Retort Pouch had become a choice to preserve foods nowadays, besides the used of the can. Both had their own advantages, and Retort Pouch became more popular for the reason of cheaper and easier to recycle. General Method usually used to estimate the lethality of commercial heat sterilization process. Lethality value wa s used for evaluating the efficacy of the thermal process. This study aimed to find whether different layers of pouch materials affect the lethality value and to find differences lethality in two types of multilayer retort pouch, PET/Aluminum Foil/Nylon/RCPP and PET/Nylon/Modified Aluminum/CPP. The result showed that the different layer arrangement was resulted different Sterilization Value (SV). PET/Nylon/Modified Aluminum/CPP had better heat penetration, implied by the higher value of lethality. PET/Nylon/Modified Aluminum/CPP had the lethality value of 6,24 minutes, whereas the lethality value of PET/Aluminum Foil/Nylon/RCPP was 3,54 minutes.

  6. Mutation rules and the evolution of sparseness and modularity in biological systems.

    Directory of Open Access Journals (Sweden)

    Tamar Friedlander

    Full Text Available Biological systems exhibit two structural features on many levels of organization: sparseness, in which only a small fraction of possible interactions between components actually occur; and modularity--the near decomposability of the system into modules with distinct functionality. Recent work suggests that modularity can evolve in a variety of circumstances, including goals that vary in time such that they share the same subgoals (modularly varying goals, or when connections are costly. Here, we studied the origin of modularity and sparseness focusing on the nature of the mutation process, rather than on connection cost or variations in the goal. We use simulations of evolution with different mutation rules. We found that commonly used sum-rule mutations, in which interactions are mutated by adding random numbers, do not lead to modularity or sparseness except for in special situations. In contrast, product-rule mutations in which interactions are mutated by multiplying by random numbers--a better model for the effects of biological mutations--led to sparseness naturally. When the goals of evolution are modular, in the sense that specific groups of inputs affect specific groups of outputs, product-rule mutations also lead to modular structure; sum-rule mutations do not. Product-rule mutations generate sparseness and modularity because they tend to reduce interactions, and to keep small interaction terms small.

  7. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion

    International Nuclear Information System (INIS)

    Roehrig, John T.; Butrapet, Siritorn; Liss, Nathan M.; Bennett, Susan L.; Luy, Betty E.; Childers, Thomas; Boroughs, Karen L.; Stovall, Janae L.; Calvert, Amanda E.; Blair, Carol D.; Huang, Claire Y.-H.

    2013-01-01

    Using an infectious cDNA clone we engineered seven mutations in the putative heparan sulfate- and receptor-binding motifs of the envelope protein of dengue virus serotype 2, strain 16681. Four mutant viruses, KK122/123EE, E202K, G304K, and KKK305/307/310EEE, were recovered following transfection of C6/36 cells. A fifth mutant, KK291/295EE, was recovered from C6/36 cells with a compensatory E295V mutation. All mutants grew in and mediated fusion of virus-infected C6/36 cells, but three of the mutants, KK122/123EE, E202K, G304K, did not grow in Vero cells without further modification. Two Vero cell lethal mutants, KK291/295EV and KKK307/307/310EEE, failed to replicate in DC-SIGN-transformed Raji cells and did not react with monoclonal antibodies known to block DENV attachment to Vero cells. Additionally, both mutants were unable to initiate negative-strand vRNA synthesis in Vero cells by 72 h post-infection, suggesting that the replication block occurred prior to virus-mediated membrane fusion. - Highlights: • Heparan sulfate- and receptor-binding motifs of DENV2 envelope protein were mutated. • Four mutant viruses were isolated—all could fuse C6/36 cells. • Two of these mutants were lethal in Vero cells without further modification. • Lethal mutations were KK291/295EV and KKK305/307/310EEE. • Cell attachment was implicated as the replication block for both mutants

  8. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Roehrig, John T., E-mail: jtr1@cdc.gov [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Butrapet, Siritorn; Liss, Nathan M. [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Bennett, Susan L. [Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523 (United States); Luy, Betty E.; Childers, Thomas; Boroughs, Karen L.; Stovall, Janae L.; Calvert, Amanda E. [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Blair, Carol D. [Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523 (United States); Huang, Claire Y.-H. [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States)

    2013-07-05

    Using an infectious cDNA clone we engineered seven mutations in the putative heparan sulfate- and receptor-binding motifs of the envelope protein of dengue virus serotype 2, strain 16681. Four mutant viruses, KK122/123EE, E202K, G304K, and KKK305/307/310EEE, were recovered following transfection of C6/36 cells. A fifth mutant, KK291/295EE, was recovered from C6/36 cells with a compensatory E295V mutation. All mutants grew in and mediated fusion of virus-infected C6/36 cells, but three of the mutants, KK122/123EE, E202K, G304K, did not grow in Vero cells without further modification. Two Vero cell lethal mutants, KK291/295EV and KKK307/307/310EEE, failed to replicate in DC-SIGN-transformed Raji cells and did not react with monoclonal antibodies known to block DENV attachment to Vero cells. Additionally, both mutants were unable to initiate negative-strand vRNA synthesis in Vero cells by 72 h post-infection, suggesting that the replication block occurred prior to virus-mediated membrane fusion. - Highlights: • Heparan sulfate- and receptor-binding motifs of DENV2 envelope protein were mutated. • Four mutant viruses were isolated—all could fuse C6/36 cells. • Two of these mutants were lethal in Vero cells without further modification. • Lethal mutations were KK291/295EV and KKK305/307/310EEE. • Cell attachment was implicated as the replication block for both mutants.

  9. Delineation of the Marfan phenotype associated with mutations in exons 23-32 of the FBN1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Putnam, E.A.; Cho, M.; Milewicz, D.M. [Univ. of Texas-Houston Medical School, Houston, TX (United States)] [and others

    1996-03-29

    Marfan syndrome is a dominantly inherited connective tissue disorder with a wide range of phenotypic severity. The condition is the result of mutations in FBN1, a large gene composed of 65 exons encoding the fibrillin-1 protein. While mutations causing classic manifestations of Marfan syndrome have been identified throughout the FBN1 gene, the six previously characterized mutations resulting in the severe, perinatal lethal form of Marfan syndrome have clustered in exons 24-32 of the gene. We screened 8 patients with either neonatal Marfan syndrome or severe cardiovascular complications of Marfan syndrome for mutations in this region of the gene. Using intron-based exon-specific primers, we amplified exons 23-32 from genomic DNAs, screened these fragments by single-stranded conformational polymorphism analysis, and sequenced indicated exons. This analysis documented mutations in exons 25-27 of the FBN1 mutations in 6 of these patients. These results, taken together with previously published FBN1 mutations in this region, further define the phenotype associated with mutations in exons 24-32 of the FBN1 gene, information important for the development of possible diagnostic tests and genetic counseling. 49 refs., 4 figs., 2 tabs.

  10. Spectrum and frequency of chlorophyll mutations in urdbean (Vigna mungo L. Hepper) induced by EMS and gamma rays

    International Nuclear Information System (INIS)

    Sharma, A.K.; Singh, V.P.; Sarma, M.K.

    2006-01-01

    In mutation breeding experiment, plants with altered characteristics such as chlorophyll changes, sterility, plant lethality etc. could be the marker of the mutability of a variety. In fact, spectrum and frequency of chlorophyll mutations have been studied in the great detail. The chlorophyll mutation is the clear-cut indication of non-directional nature of mutation and possibility of induction of useful mutations. The spectrum and frequency of chlorophyll mutation was estimated by using gamma rays (100, 200, 300 and 400 Gy doses), EMS (0.2, 0.4, 0.6 and 0.8%) and combination of gamma rays (100, 200, 300 400 Gy) with 0.2 % concentration EMS on two cultivars, namely, Pant Urd-19 and Pant Urd-30 of urdbean ( Vigna mungo L. Hepper). Five different types of chlorophyll mutations viz., albina, xantha, viridis, chlorina and maculata were identified in both the cultivars. Almost all the combination treatments produced maximum frequency and wider spectrum of chlorophyll mutations followed by single treatment of gamma rays or EMS. The frequency of chlorophyll mutation increased with higher doses of mutagens but decreased at highest dose. Proc. Nat. Acad. Sci. India. 76(8), I, 2006. 64-68. (author)

  11. [Bladder tumor lethality. Results in the autonomous community of Rioja between 1975-1991].

    Science.gov (United States)

    Fernández Fernández, A; Gil Fabra, J; Fernández Ruíz, M; Angulo Castellanos, M G; Blanco Martín, E; Otero Mauricio, G

    1998-01-01

    Between 1975-1991, a total of 557 cases of bladder carcinoma were identified in the Autonomous Community of La Rioja (CAR) which were followed up to December 1994. The overall lethality was 21.9%. 492 cases with 22.35% lethality were identified in males. In females, however, there was 65 cases with 18.46% lethality. The comparison of males and females lethality resulted in p = 0.525. Lethality between cases diagnosed within each 5-year period analyzed is: 1975-1981: 177 cases, lethality 23.72%. 1982-1986: 168 cases, lethality 30.95%. 1987-1991: 212 cases, lethality 13.20%. Between the first and the second 5-year periods, p = 0.132; between the first and third 5-year periods p = 0.007 and between the second and third 5-year periods p CAR for a 22.35% lethality. Lethality is higher in males that in females but the difference is not statistically significant. In the last 5-year period assessed, 1987-1991, a reduction of lethality from bladder neoplasms has been documented.

  12. DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    NARCIS (Netherlands)

    A. Osorio (Ana); R.L. Milne (Roger); K.B. Kuchenbaecker (Karoline); T. Vaclová (Tereza); G. Pita (Guillermo); R. Alonso (Rosario); P. Peterlongo (Paolo); I. Blanco (Ignacio); M. de La Hoya (Miguel); M. Durán (Mercedes); O. Díez (Orland); T. Ramon Y Cajal; I. Konstantopoulou (I.); C. Martínez-Bouzas (Cristina); R. Andrés Conejero (Raquel); P. Soucy (Penny); L. McGuffog (Lesley); D. Barrowdale (Daniel); A. Lee (Andrew); B. Arver (Brita Wasteson); J. Rantala (Johanna); N. Loman (Niklas); H. Ehrencrona (Hans); O.I. Olopade (Olofunmilayo); M.S. Beattie (Mary); S.M. Domchek (Susan); K.L. Nathanson (Katherine); R. Rebbeck (Timothy); B.K. Arun (Banu); B.Y. Karlan (Beth); C.S. Walsh (Christine); K.J. Lester (Kathryn); E.M. John (Esther); A.S. Whittemore (Alice); M.B. Daly (Mary); M.C. Southey (Melissa); J.L. Hopper (John); M.-B. Terry (Mary-Beth); S.S. Buys (Saundra); R. Janavicius (Ramunas); C.M. Dorfling (Cecilia); E.J. van Rensburg (Elizabeth); L. Steele (Linda); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); T.V.O. Hansen (Thomas); L. Jønson (Lars); B. Ejlertsen (Bent); A-M. Gerdes (Anne-Marie); J. Infante (Jon); B. Herráez (Belén); L.T. Moreno (Leticia Thais); J.N. Weitzel (Jeffrey); J. Herzog (Josef); K. Weeman (Kisa); S. Manoukian (Siranoush); B. Peissel (Bernard); D. Zaffaroni (D.); G. Scuvera (Giulietta); B. Bonnani (Bernardo); F. Mariette (F.); S. Volorio (Sara); A. Viel (Alessandra); L. Varesco (Liliana); L. Papi (Laura); L. Ottini (Laura); M.G. Tibiletti (Maria Grazia); P. Radice (Paolo); D. Yannoukakos (Drakoulis); J. Garber; S.D. Ellis (Steve); D. Frost (Debra); R. Platte (Radka); E. Fineberg (Elena); D.G. Evans (Gareth); F. Lalloo (Fiona); L. Izatt (Louise); R. Eeles (Rosalind); J.W. Adlard (Julian); R. Davidson (Rosemarie); T.J. Cole (Trevor); D. Eccles (Diana); J. Cook (Jackie); S.V. Hodgson (Shirley); C. Brewer (Carole); M. Tischkowitz (Marc); F. Douglas (Fiona); M.E. Porteous (Mary); L. Side (Lucy); L.J. Walker (Lisa); P.J. Morrison (Patrick); A. Donaldson (Alan); J. Kennedy (John); C. Foo (Claire); A.K. Godwin (Andrew); R.K. Schmutzler (Rita); B. Wapenschmidt (Barbara); K. Rhiem (Kerstin); C.W. Engel (Christoph); A. Meindl (Alfons); N. Ditsch (Nina); N. Arnold (Norbert); H. Plendl (Hansjoerg); D. Niederacher (Dieter); C. Sutter (Christian); S. Wang-Gohrke (Shan); D. Steinemann (Doris); S. Preisler-Adams (Sabine); K. Kast (Karin); R. Varon-Mateeva (Raymonda); P.A. Gehrig (Paola A.); D. Stoppa-Lyonnet (Dominique); O. Sinilnikova (Olga); S. Mazoyer (Sylvie); F. Damiola (Francesca); B. Poppe (Bruce); K. Claes (Kathleen); M. Piedmonte (Marion); K. Tucker (Kathryn); F.J. Backes (Floor); P.M. Rodríguez; W. Brewster (Wendy); K. Wakeley (Katie); T. Rutherford (Thomas); T. Caldes (Trinidad); H. Nevanlinna (Heli); K. Aittomäki (Kristiina); M.A. Rookus (Matti); T.A.M. van Os (Theo); L. van der Kolk (Lizet); J.L. de Lange (J.); E.J. Meijers-Heijboer (Hanne); A.H. van der Hout (Annemarie); C.J. van Asperen (Christi); E.B. Gómez García (Encarna); N. Hoogerbrugge (Nicoline); J.M. Collée (Margriet); C.H.M. van Deurzen (Carolien); R.B. van der Luijt (Rob); P. Devilee (Peter); E. Olah (Edith); C. Lazaro (Conxi); A. Teulé (A.); M. Menéndez (Mireia); A. Jakubowska (Anna); C. Cybulski (Cezary); J. Gronwald (Jacek); J. Lubinski (Jan); K. Durda (Katarzyna); K. Jaworska-Bieniek (Katarzyna); O.T. Johannson (Oskar); C. Maugard; M. Montagna (Marco); S. Tognazzo (Silvia); P.J. Teixeira; S. Healey (Sue); C. Olswold (Curtis); L. Guidugli (Lucia); N.M. Lindor (Noralane); S. Slager (Susan); C. Szabo (Csilla); J. Vijai (Joseph); M. Robson (Mark); N. Kauff (Noah); L. Zhang (Lingling); R. Rau-Murthy (Rohini); A. Fink-Retter (Anneliese); C.F. Singer (Christian); C. Rappaport (Christine); D. Geschwantler Kaulich (Daphne); G. Pfeiler (Georg); M.-K. Tea; A. Berger (Annemarie); C. Phelan (Catherine); M.H. Greene (Mark); P.L. Mai (Phuong); F. Lejbkowicz (Flavio); I.L. Andrulis (Irene); A.M. Mulligan (Anna Marie); G. Glendon (Gord); A.E. Toland (Amanda); S.E. Bojesen (Stig); I.S. Pedersen (Inge Sokilde); L. Sunde (Lone); M. Thomassen (Mads); T.A. Kruse (Torben); U.B. Jensen; E. Friedman (Eitan); Y. Laitman (Yael); S.P. Shimon (Shani Paluch); J. Simard (Jacques); D.F. Easton (Douglas); K. Offit (Kenneth); F.J. Couch (Fergus); G. Chenevix-Trench (Georgia); A.C. Antoniou (Antonis); J. Benítez (Javier)

    2014-01-01

    textabstractSingle Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between

  13. Mitotic catastrophe is the mechanism of lethality for mutations that confer mutagen sensitivity in Aspergillus nidulans.

    Science.gov (United States)

    Denison, S H; May, G S

    1994-01-16

    We have examined the consequences of treatment with DNA-damaging agents of uvs mutants and the bimD6 mutant of Aspergillus nidulans. We first established that wild-type Aspergillus undergoes a cell cycle delay following treatment with the DNA-damaging agents methyl methanesulfonate (MMS) or ultraviolet light (UV). We have also determined that strains carrying the bimD6, uvsB110, uvsH77, uvsF201 and the uvsC114 mutations, all of which cause an increased sensitivity to DNA-damaging agents, undergo a cell-cycle delay following DNA damage. These mutations therefore do not represent nonfunctional checkpoints in Aspergillus. However, all of the mutant strains accumulated nuclear defects after a period of delay following mutagen treatment. The nuclear defects in the uvsB110 and bimD6 strains following MMS treatment were shown to be dependent on passage through mitosis after DNA damage, as the defects were prevented with benomyl. Checkpoint controls responding to DNA damage thus only temporarily halt cell-cycle progression in response to DNA damage. The conditional bimD6 mutation also results in a defective mitosis at restrictive temperatures. This mitotic defect is similar to that seen with MMS treatment at temperatures permissive for the mitotic defect. Thus the bimD gene product may perform dual roles, one in DNA repair and the other during the mitotic cell cycle in the absence of damage.

  14. Prediction of sensitivity to gefitinib/erlotinib for EGFR mutations in NSCLC based on structural interaction fingerprints and multilinear principal component analysis.

    Science.gov (United States)

    Zou, Bin; Lee, Victor H F; Yan, Hong

    2018-03-07

    Non-small cell lung cancer (NSCLC) with activating EGFR mutations, especially exon 19 deletions and the L858R point mutation, is particularly responsive to gefitinib and erlotinib. However, the sensitivity varies for less common and rare EGFR mutations. There are various explanations for the low sensitivity of EGFR exon 20 insertions and the exon 20 T790 M point mutation to gefitinib/erlotinib. However, few studies discuss, from a structural perspective, why less common mutations, like G719X and L861Q, have moderate sensitivity to gefitinib/erlotinib. To decode the drug sensitivity/selectivity of EGFR mutants, it is important to analyze the interaction between EGFR mutants and EGFR inhibitors. In this paper, the 30 most common EGFR mutants were selected and the technique of protein-ligand interaction fingerprint (IFP) was applied to analyze and compare the binding modes of EGFR mutant-gefitinib/erlotinib complexes. Molecular dynamics simulations were employed to obtain the dynamic trajectory and a matrix of IFPs for each EGFR mutant-inhibitor complex. Multilinear Principal Component Analysis (MPCA) was applied for dimensionality reduction and feature selection. The selected features were further analyzed for use as a drug sensitivity predictor. The results showed that the accuracy of prediction of drug sensitivity was very high for both gefitinib and erlotinib. Targeted Projection Pursuit (TPP) was used to show that the data points can be easily separated based on their sensitivities to gefetinib/erlotinib. We can conclude that the IFP features of EGFR mutant-TKI complexes and the MPCA-based tensor object feature extraction are useful to predict the drug sensitivity of EGFR mutants. The findings provide new insights for studying and predicting drug resistance/sensitivity of EGFR mutations in NSCLC and can be beneficial to the design of future targeted therapies and innovative drug discovery.

  15. [FANCA gene mutation analysis in Fanconi anemia patients].

    Science.gov (United States)

    Chen, Fei; Peng, Guang-Jie; Zhang, Kejian; Hu, Qun; Zhang, Liu-Qing; Liu, Ai-Guo

    2005-10-01

    To screen the FANCA gene mutation and explore the FANCA protein function in Fanconi anemia (FA) patients. FANCA protein expression and its interaction with FANCF were analyzed using Western blot and immunoprecipitation in 3 cases of FA-A. Genomic DNA was used for MLPA analysis followed by sequencing. FANCA protein was undetectable and FANCA and FANCF protein interaction was impaired in these 3 cases of FA-A. Each case of FA-A contained biallelic pathogenic mutations in FANCA gene. No functional FANCA protein was found in these 3 cases of FA-A, and intragenic deletion, frame shift and splice site mutation were the major pathogenic mutations found in FANCA gene.

  16. Seedling lethality in Nicotiana plumbaginifolia conferred by Ds transposable element insertion into a plant-specific gene.

    Science.gov (United States)

    Majira, Amel; Domin, Monique; Grandjean, Olivier; Gofron, Krystyna; Houba-Hérin, Nicole

    2002-10-01

    A seedling lethal mutant of Nicotiana plumbaginifolia (sdl-1) was isolated by transposon tagging using a maize Dissociation (Ds) element. The insertion mutation was produced by direct co-transformation of protoplasts with two plasmids: one containing Ds and a second with an Ac transposase gene. sdl-1 seedlings exhibit several phenotypes: swollen organs, short hypocotyls in light and dark conditions, and enlarged and multinucleated cells, that altogether suggest cell growth defects. Mutant cells are able to proliferate under in vitro culture conditions. Genomic DNA sequences bordering the transposon were used to recover cDNA from the normal allele. Complementation of the mutant phenotype with the cDNA confirmed that the transposon had caused the mutation. The Ds element was inserted into the first exon of the open reading frame and the homozygous mutant lacked detectable transcript. Phenocopies of the mutant were obtained by an antisense approach. SDL-1 encodes a novel protein found in several plant genomes but apparently missingfrom animal and fungal genomes; the protein is highly conserved and has a potential plastid targeting motif.

  17. Chloroquine Improves Survival and Hematopoietic Recovery After Lethal Low-Dose-Rate Radiation

    International Nuclear Information System (INIS)

    Lim Yiting; Hedayati, Mohammad; Merchant, Akil A.; Zhang Yonggang; Yu, Hsiang-Hsuan M.; Kastan, Michael B.; Matsui, William; DeWeese, Theodore L.

    2012-01-01

    Purpose: We have previously shown that the antimalarial agent chloroquine can abrogate the lethal cellular effects of low-dose-rate (LDR) radiation in vitro, most likely by activating the ataxia-telangiectasia mutated (ATM) protein. Here, we demonstrate that chloroquine treatment also protects against lethal doses of LDR radiation in vivo. Methods and Materials: C57BL/6 mice were irradiated with a total of 12.8 Gy delivered at 9.4 cGy/hour. ATM null mice from the same background were used to determine the influence of ATM. Chloroquine was administered by two intraperitoneal injections of 59.4 μg per 17 g of body weight, 24 hours and 4 hours before irradiation. Bone marrow cells isolated from tibia, fibula, and vertebral bones were transplanted into lethally irradiated CD45 congenic recipient mice by retroorbital injection. Chimerism was assessed by flow cytometry. In vitro methylcellulose colony-forming assay of whole bone marrow cells and fluorescence activated cell sorting analysis of lineage depleted cells were used to assess the effect of chloroquine on progenitor cells. Results: Mice pretreated with chloroquine before radiation exhibited a significantly higher survival rate than did mice treated with radiation alone (80% vs. 31%, p = 0.0026). Chloroquine administration before radiation did not affect the survival of ATM null mice (p = 0.86). Chloroquine also had a significant effect on the early engraftment of bone marrow cells from the irradiated donor mice 6 weeks after transplantation (4.2% vs. 0.4%, p = 0.015). Conclusion: Chloroquine administration before radiation had a significant effect on the survival of normal but not ATM null mice, strongly suggesting that the in vivo effect, like the in vitro effect, is also ATM dependent. Chloroquine improved the early engraftment of bone marrow cells from LDR-irradiated mice, presumably by protecting the progenitor cells from radiation injury. Chloroquine thus could serve as a very useful drug for protection

  18. Humanitarian Algorithms : A Codified Key Safety Switch Protocol for Lethal Autonomy

    OpenAIRE

    Nyagudi, Nyagudi Musandu

    2014-01-01

    With the deployment of lethal autonomous weapons, there is the requirement that any such platform complies with the precepts of International Humanitarian Law. Humanitarian Algorithms[9: p. 9] ensure that lethal autonomous weapon systems perform military/security operations, within the confines of International Humanitarian Law. Unlike other existing techniques of regulating lethal autonomy this scheme advocates for an approach that enables Machine Learning. Lethal autonomous weapons must be ...

  19. Frequency and spectrum of chlorophyll-deficient mutations in rice after treatment with radiation and alkylating agents

    International Nuclear Information System (INIS)

    Bhan, A.K.; Kaul, M.L.H.

    1976-01-01

    Three varieties of rice were treated with gamma rays and two alkylating agents EMS and DES, separately and in combinations, with a view to finding out the frequency and spectrum of chlorophyll mutations in relation to the genotype and the nature of the mutagen. Chlorophyll mutation frequency was enhanced with increasing dose but dropped at very high doses (doses that induced over 90% seeding lethality in M 1 ). The fall was attributed to either the increased mutated sector and diplontic selection after exposure to very high doses or relatively high resistance of some of the seeds. Among chlorophyll mutants in M 2 induced by radiations as well as alkylating agents, the albina type formed the majority class. EMS induced a significantly higher proportion of albinas than did gamma rays

  20. The EGF repeat-specific O-GlcNAc-transferase Eogt interacts with notch signaling and pyrimidine metabolism pathways in Drosophila.

    Directory of Open Access Journals (Sweden)

    Reto Müller

    Full Text Available The O-GlcNAc transferase Eogt modifies EGF repeats in proteins that transit the secretory pathway, including Dumpy and Notch. In this paper, we show that the Notch ligands Delta and Serrate are also substrates of Eogt, that mutation of a putative UDP-GlcNAc binding DXD motif greatly reduces enzyme activity, and that Eogt and the cytoplasmic O-GlcNAc transferase Ogt have distinct substrates in Drosophila larvae. Loss of Eogt is larval lethal and disrupts Dumpy functions, but does not obviously perturb Notch signaling. To identify novel genetic interactions with eogt, we investigated dominant modification of wing blister formation caused by knock-down of eogt. Unexpectedly, heterozygosity for several members of the canonical Notch signaling pathway suppressed wing blister formation. And importantly, extensive genetic interactions with mutants in pyrimidine metabolism were identified. Removal of pyrimidine synthesis alleles suppressed wing blister formation, while removal of uracil catabolism alleles was synthetic lethal with eogt knock-down. Therefore, Eogt may regulate protein functions by O-GlcNAc modification of their EGF repeats, and cellular metabolism by affecting pyrimidine synthesis and catabolism. We propose that eogt knock-down in the wing leads to metabolic and signaling perturbations that increase cytosolic uracil levels, thereby causing wing blister formation.

  1. Mutation in Torenia fournieri Lind. UFO homolog confers loss of TfLFY interaction and results in a petal to sepal transformation.

    Science.gov (United States)

    Sasaki, Katsutomo; Yamaguchi, Hiroyasu; Aida, Ryutaro; Shikata, Masahito; Abe, Tomoko; Ohtsubo, Norihiro

    2012-09-01

    We identified a Torenia fournieri Lind. mutant (no. 252) that exhibited a sepaloid phenotype in which the second whorls were changed to sepal-like organs. This mutant had no stamens, and the floral organs consisted of sepals and carpels. Although the expression of a torenia class B MADS-box gene, GLOBOSA (TfGLO), was abolished in the 252 mutant, no mutation of TfGLO was found. Among torenia homologs such as APETALA1 (AP1), LEAFY (LFY), and UNUSUAL FLORAL ORGANS (UFO), which regulate expression of class B genes in Arabidopsis, only accumulation of the TfUFO transcript was diminished in the 252 mutant. Furthermore, a missense mutation was found in the coding region of the mutant TfUFO. Intact TfUFO complemented the mutant phenotype whereas mutated TfUFO did not; in addition, the transgenic phenotype of TfUFO-knockdown torenias coincided with the mutant phenotype. Yeast two-hybrid analysis revealed that the mutated TfUFO lost its ability to interact with TfLFY protein. In situ hybridization analysis indicated that the transcripts of TfUFO and TfLFY were partially accumulated in the same region. These results clearly demonstrate that the defect in TfUFO caused the sepaloid phenotype in the 252 mutant due to the loss of interaction with TfLFY. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  2. APOBEC3G-induced hypermutation of human immunodeficiency virus type-1 is typically a discrete "all or nothing" phenomenon

    DEFF Research Database (Denmark)

    Armitage, Andrew E; Deforche, Koen; Chang, Chih-Hao

    2012-01-01

    The rapid evolution of Human Immunodeficiency Virus (HIV-1) allows studies of ongoing host-pathogen interactions. One key selective host factor is APOBEC3G (hA3G) that can cause extensive and inactivating Guanosine-to-Adenosine (G-to-A) mutation on HIV plus-strand DNA (termed hypermutation). HIV...... can inhibit this innate anti-viral defense through binding of the viral protein Vif to hA3G, but binding efficiency varies and hypermutation frequencies fluctuate in patients. A pivotal question is whether hA3G-induced G-to-A mutation is always lethal to the virus or if it may occur at sub......-lethal frequencies that could increase viral diversification. We show in vitro that limiting-levels of hA3G-activity (i.e. when only a single hA3G-unit is likely to act on HIV) produce hypermutation frequencies similar to those in patients and demonstrate in silico that potentially non-lethal G-to-A mutation rates...

  3. Non-Lethal Weapons Program

    Science.gov (United States)

    Sheets Frequently Asked Questions Non-Lethal Weapons FAQs Active Denial System FAQs Human Electro -Muscular Incapacitation FAQs Related Links Business Opportunities Contact JNLWD Congressional Engagement , Wednesday, Sept 20, 2017. The Active Denial System, blunt-impact munitions, dazzling lasers, LRAD 100X

  4. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers

    NARCIS (Netherlands)

    Osorio, A.; Milne, R.L.; Kuchenbaecker, K.; Vaclova, T.; Pita, G.; Alonso, R.; Peterlongo, P.; Blanco, I.; Hoya, M. de la; Duran, M.; Diez, O.; Ramon, Y.C.T.; Konstantopoulou, I.; Martinez-Bouzas, C.; Conejero, R. Andres; Soucy, P.; McGuffog, L.; Barrowdale, D.; Lee, A.; Swe, B.; Arver, B.; Rantala, J.; Loman, N.; Ehrencrona, H.; Olopade, O.I.; Beattie, M.S.; Domchek, S.M.; Nathanson, K.; Rebbeck, T.R.; Arun, B.K.; Karlan, B.Y.; Walsh, C.; Lester, J.; John, E.M.; Whittemore, A.S.; Daly, M.B.; Southey, M.; Hopper, J.; Terry, M.B.; Buys, S.S.; Janavicius, R.; Dorfling, C.M.; Rensburg, E.J. van; Steele, L.; Neuhausen, S.L.; Ding, Y.C.; Hansen, T.V.; Jonson, L.; Ejlertsen, B.; Gerdes, A.M.; Infante, M.; Herraez, B.; Moreno, L.T.; Weitzel, J.N.; Herzog, J.; Weeman, K.; Manoukian, S.; Peissel, B.; Zaffaroni, D.; Scuvera, G.; Bonanni, B.; Mariette, F.; Volorio, S.; Viel, A.; Varesco, L.; Papi, L.; Ottini, L.; Tibiletti, M.G.; Radice, P.; Yannoukakos, D.; Garber, J.; Ellis, S.; Frost, D.; Platte, R.; Fineberg, E.; Evans, G.; Lalloo, F.; Izatt, L.; Eeles, R.; Adlard, J.; Davidson, R.; Cole, T.; Eccles, D.; Cook, J; Hodgson, S.; Brewer, C.; Tischkowitz, M.; Douglas, F.; Porteous, M.; Side, L.; Walker, L.; Morrison, P.; Donaldson, A.; Kennedy, J.; Foo, C.; Godwin, A.K.; Schmutzler, R.K.; Wappenschmidt, B.; Rhiem, K.; Engel, C.; Hoogerbrugge-van der Linden, N.; et al.,

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the

  5. Sensitivity of Vibrio cholerae cells to lethal and mutagenic effect of UV-irradiation mediated by plasmids

    International Nuclear Information System (INIS)

    Tiganova, I.G.; Evdokimova, N.M.; Aleshkin, G.I.

    1988-01-01

    The effect of UV-irradiation on Vibrio cholerae cells and its changes mediated by the plasmid R245 have been studied. Vibrio cholerae strains 569B and RV31 have been shown to be considerably more sensitive to lethal effect of UV-irradiation as compared with Escherichia coli and Salmonella typhimurium cells. Highly toxigenic strain 569B and practically atoxigenic strain RV31 have the same UV-sensitivity. Lethla effect of UV-irradiation on Vibrio cholerae cells is incresed when the irradiated cells are plated on enriched media. UV-induction of mutations was not registered in plasmidless strains of Vibrio cholerae. Plasmid R245 increase UV-resistance of vibrio cells and makes them UV-mutable

  6. /sup 35/S induced dominant lethals in immature oocytes in mice

    Energy Technology Data Exchange (ETDEWEB)

    Satyanarayana Reddy, K; Reddy, P P; Reddi, O S [Osmania Univ., Hyderabad (India). Dept. of Genetics

    1977-03-01

    CBA female mice were injected intraperitoneally with a dose of 20..mu..Ci of sulphur-35 on 15.5 day post conception. Another group of pregnant mice injected with normal saline was kept as control. The pregnant females were allowed to litter and the mothers were separated from their offsprings 4 weeks after littering. Eight weeks after treatment i.e. at the age of 22 to 24 weeks, the treated mothers were mated with control C/sub 3/H/He males. The vaginal plugs were checked every morning and those which mated were separated. The pregnant females were killed on the 14th day of gestation. The uterine contents were examined for live and dead embryos and the ovaries for corpora lutea. The pre- and post-implantation losses and total loss were calculated in the treated females and compared with those of controls. Embryonic death was significantly higher among treated animals. The results indicated that /sup 35/S can induced dominant lethal mutations in immature oocytes.

  7. Non-Lethal Weapons: Opportunities for R&D

    Science.gov (United States)

    2004-12-01

    during the Vietnam War. US; emulsifying agents are used in food processing, drilling fluids, cosmetics , pharmaceuticals, heavy- duty cleaners, textile...conducted in a professional manner, with no threat to public safety or the environment. 11 References [1] Fenton , G., (2001). NLW Technology Taxonomy...W.A., Mason, R.L., Collins, K.R., (2000). Non-Lethal Applicants of Slippery Substances. NDIA Non-Lethal Defense IV. [24] Fenton , G., (2000). Overview

  8. Genetic and molecular analyses of UV radiation-induced mutations in the fem-3 gene of Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, P S; De Wilde, D; Dwarakanath, V N [Texas Christian Univ., Fort Worth, TX (United States). Dept. of Biology

    1995-06-01

    The utility of a new target gene (fem-3) is described for investigating the molecular nature of mutagenesis in the nematode Caenorhabditis elegans. As a principal attribute, this system allows for the selection, maintenance and molecular analysis of any type of mutation that disrupts the gene, including deletions. In this study, 86 mutant strains were isolated, of which 79 proved to have mutations in fem-3. Twenty of these originally tested as homozygous inviable. Homozygous inviability was expected, as Stewart and coworkers had previously observed that, unlike in other organisms, most UV radiation-induced mutations in C. elegans are chromosomal rearrangements of deficiencies (Mutat. Res 249, 37-54, 1991). However, additional data, including Southern blot analyses on 49 of the strains, indicated that most of the UV radiation-induced fem-3 mutations were not deficiencies, as originally inferred from their homozygous inviability. Instead, the lethals were most likely ``coincident mutations`` in linked, essential genes that were concomitantly induced. As such, they were lost owing to genetic recombination during stock maintenance. As in mammalian cells, yeast and bacteria, the frequency of coincident mutations was much higher than would be predicted by chance. (Author).

  9. Disruption of lolCDE, Encoding an ATP-Binding Cassette Transporter, Is Lethal for Escherichia coli and Prevents Release of Lipoproteins from the Inner Membrane

    OpenAIRE

    Narita, Shin-ichiro; Tanaka, Kimie; Matsuyama, Shin-ichi; Tokuda, Hajime

    2002-01-01

    ATP-binding cassette transporter LolCDE was previously identified, by using reconstituted proteoliposomes, as an apparatus catalyzing the release of outer membrane-specific lipoproteins from the inner membrane of Escherichia coli. Mutations resulting in defective LolD were previously shown to be lethal for E. coli. The amino acid sequences of LolC and LolE are similar to each other, but the necessity of both proteins for lipoprotein release has not been proved. Moreover, previous reconstituti...

  10. Mutation induction in repair-deficient strains of Drosophila

    International Nuclear Information System (INIS)

    Wuergler, F.E.; Graf, U.

    1980-01-01

    Experimental evidence indicates a polygenic control of mutagenesis in Drosophila melanogaster. In oocytes chromosome aberrations detected as half-translocations or dominant lethals depend on a repair system which in a number of genetically nonrelated strains shows different repair capacities. Sister chromatid exchanges are easily studied as ring chromosome losses. They develop through a genotype controlled mechanism from, premutational lesions. Stocks with particular pairs of third chromosomes were discovered in which increased sensitivity of larvae to the toxic effects of a monofunctional alkylating agent correlates with high frequencies of x-ray induced SCE's. Sex-linked mutagen-sensitive mutants could be shown to control mutation fixation: pronounced maternal effects were found when sperm carrying particular types of premutational lesions were introduced into different types of mutant oocytes. The mutant mus(1)101D1 was found to be unable to process lesions induced by the crosslinking agent nitrogen mustard into point mutations. Alkylation damage leads to increased point mutation frequencies in the excision repair deficient mutant mei-9L1, but to reduced frequencies in the post-replication repair deficient mutant mei-41D5. It became clear that the study of maternal effects on mutagenized sperm represents an efficient tool to analyze the gentic control of mutagenesis in the eukaryotic genome of Drosophila melanogaster

  11. Evaluation of Lama5 as a candidate for the mouse ragged (Ra) mutation

    DEFF Research Database (Denmark)

    Durkin, M E; Albrechtsen, R; Chambers, D M

    1998-01-01

    The laminin alpha5 chain is a component of the basement membranes of many developing and adult tissues. The mouse laminin alpha5 chain gene (Lama5) has been mapped close to the locus of the semidominant ragged (Ra) mutation on distal chromosome 2. The cause of the Ra mutation, which is usually...... lethal in the homozygous state, has not been determined. We have investigated whether a defect in Lama5 is responsible for the ragged mutation, using the RaJ strain. No differences in the level of the laminin alpha5 chain transcript were found in placental RNA from homozygous RaJ mutant embryos compared...... to normal littermates. Antiserum raised against a recombinant laminin alpha5 chain polypeptide stained the basement membranes of both normal and homozygous mutant embryos to a similar extent. More precise mapping of Lama5 on an interspecific Ra backcross indicated that Lama5 is proximal to the Ra locus...

  12. Lethal synergy involving bicyclomycin: an approach for reviving old antibiotics.

    Science.gov (United States)

    Malik, Muhammad; Li, Liping; Zhao, Xilin; Kerns, Robert J; Berger, James M; Drlica, Karl

    2014-12-01

    One way to address the growing problem of antimicrobial resistance is to revive old compounds that may have intrinsic lethal activity that is obscured by protective factors. Bicyclomycin is an old inhibitor of the Rho transcription terminator that by itself shows little rapid lethal activity. However, bicyclomycin participates in bacteriostatic synergy, which raises the possibility that conditions for lethal synergy may exist, perhaps through a suppression of protective factors. Bicyclomycin was combined with bacteriostatic inhibitors of gene expression, and bactericidal activity was measured with several cultured Gram-negative pathogens. When used alone, bicyclomycin failed to rapidly kill growing cultures of Escherichia coli; however, the additional presence of bacteriostatic concentrations of tetracycline, chloramphenicol or rifampicin led to rapid killing. Four other pathogen species, Acinetobacter baumannii, Klebsiella pneumoniae, Salmonella enterica serotype Typhimurium and Shigella dysenteriae, also exhibited enhanced killing when bicyclomycin was combined with tetracycline or rifampicin. This lethal synergy was achieved at low concentrations (slightly above the MIC) for all agents tested in combinations. Follow-up work with E. coli indicated that lethal synergy arose from a blockage of transcription elongation. Moreover, lethal synergy was reduced when bicyclomycin was added 60 min before tetracycline, suggesting that bicyclomycin induces a protective factor. The action of bicyclomycin illustrates the potential present in a largely abandoned antibacterial agent; it exhibits lethal synergy when coadministered with known, bacteriostatic inhibitors of gene expression. The identification of protective factors, which are currently uncharacterized, may reveal new ways to promote the lethal action of some old antibiotics. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved

  13. Evaluation of gamma radiation (60-Co) induced mutation in two Phaseolus vulgaris varieties

    International Nuclear Information System (INIS)

    Silva, R.M.

    1984-01-01

    Two varieties of Phaseolus vulgaris (Jutiapan and San Martin) were irradiated at 0, 8, 15, 20 and 30 kR doses in a 60-cobalt gamma source, to identify mutants and 20% lethality. M 2 plants showing morphogical mutations were selected. Differences in sensitivity to irradiation of the two varieties were noted, using data and physiological effects of M 1 . Selection and analysis for protein content were in M 3 as well as hereditary changes. (M.A.C.) [pt

  14. The heterozygous disproportionate micromelia (dmm) mouse: morphological changes in fetal cartilage precede postnatal dwarfism and compared with lethal homozygotes can explain the mild phenotype.

    Science.gov (United States)

    Seegmiller, Robert E; Bomsta, Brandon D; Bridgewater, Laura C; Niederhauser, Cindy M; Montaño, Carolina; Sudweeks, Sterling; Eyre, David R; Fernandes, Russell J

    2008-11-01

    The disproportionate micromelia (Dmm) mouse has a mutation in the C-propeptide coding region of the Col2a1 gene that causes lethal dwarfism when homozygous (Dmm/Dmm) but causes only mild dwarfism observable approximately 1-week postpartum when heterozygous (Dmm/+). The purpose of this study was 2-fold: first, to analyze and quantify morphological changes that precede the expression of mild dwarfism in Dmm/+ animals, and second, to compare morphological alterations between Dmm/+ and Dmm/Dmm fetal cartilage that may correlate with the marked skeletal differences between mild and lethal dwarfism. Light and electron transmission microscopy were used to visualize structure of chondrocytes and extracellular matrix (ECM) of fetal rib cartilage. Both Dmm/+ and Dmm/Dmm fetal rib cartilage had significantly larger chondrocytes, greater cell density, and less ECM per unit area than +/+ littermates. Quantitative RT-PCR showed a decrease in aggrecan mRNA in Dmm/+ vs +/+ cartilage. Furthermore, the cytoplasm of chondrocytes in Dmm/+ and Dmm/Dmm cartilage was occupied by significantly more distended rough endoplasmic reticulum (RER) compared with wild-type chondrocytes. Fibril diameters and packing densities of +/+ and Dmm/+ cartilage were similar, but Dmm/Dmm cartilage showed thinner, sparsely distributed fibrils. These findings support the prevailing hypothesis that a C-propeptide mutation could interrupt the normal assembly and secretion of Type II procollagen trimers, resulting in a buildup of proalpha1(II) chains in the RER and a reduced rate of matrix synthesis. Thus, intracellular entrapment of proalpha1(II) seems to be primarily responsible for the dominant-negative effect of the Dmm mutation in the expression of dwarfism.

  15. Structure-function analysis and genetic interactions of the SmG, SmE, and SmF subunits of the yeast Sm protein ring.

    Science.gov (United States)

    Schwer, Beate; Kruchten, Joshua; Shuman, Stewart

    2016-09-01

    A seven-subunit Sm protein ring forms a core scaffold of the U1, U2, U4, and U5 snRNPs that direct pre-mRNA splicing. Using human snRNP structures to guide mutagenesis in Saccharomyces cerevisiae, we gained new insights into structure-function relationships of the SmG, SmE, and SmF subunits. An alanine scan of 19 conserved amino acids of these three proteins, comprising the Sm RNA binding sites or inter-subunit interfaces, revealed that, with the exception of Arg74 in SmF, none are essential for yeast growth. Yet, for SmG, SmE, and SmF, as for many components of the yeast spliceosome, the effects of perturbing protein-RNA and protein-protein interactions are masked by built-in functional redundancies of the splicing machine. For example, tests for genetic interactions with non-Sm splicing factors showed that many benign mutations of SmG, SmE, and SmF (and of SmB and SmD3) were synthetically lethal with null alleles of U2 snRNP subunits Lea1 and Msl1. Tests of pairwise combinations of SmG, SmE, SmF, SmB, and SmD3 alleles highlighted the inherent redundancies within the Sm ring, whereby simultaneous mutations of the RNA binding sites of any two of the Sm subunits are lethal. Our results suggest that six intact RNA binding sites in the Sm ring suffice for function but five sites may not. © 2016 Schwer et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site*

    Science.gov (United States)

    Lu, Shaoyong; Banerjee, Avik; Jang, Hyunbum; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2015-01-01

    K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4BWT-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4BWT-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding. PMID:26453300

  17. Disheveled hair and ear (Dhe, a spontaneous mouse Lmna mutation modeling human laminopathies.

    Directory of Open Access Journals (Sweden)

    Paul R Odgren

    Full Text Available BACKGROUND: Investigations of naturally-occurring mutations in animal models provide important insights and valuable disease models. Lamins A and C, along with lamin B, are type V intermediate filament proteins which constitute the proteinaceous boundary of the nucleus. LMNA mutations in humans cause a wide range of phenotypes, collectively termed laminopathies. To identify the mutation and investigate the phenotype of a spontaneous, semi-dominant mutation that we have named Disheveled hair and ear (Dhe, which causes a sparse coat and small external ears in heterozygotes and lethality in homozygotes by postnatal day 10. FINDINGS: Genetic mapping identified a point mutation in the Lmna gene, causing a single amino acid change, L52R, in the coiled coil rod domain of lamin A and C proteins. Cranial sutures in Dhe/+ mice failed to close. Gene expression for collagen types I and III in sutures was deficient. Skulls were small and disproportionate. Skeletons of Dhe/+ mice were hypomineralized and total body fat was deficient in males. In homozygotes, skin and oral mucosae were dysplastic and ulcerated. Nuclear morphometry of cultured cells revealed gene dose-dependent blebbing and wrinkling. CONCLUSION: Dhe mice should provide a useful new model for investigations of the pathogenesis of laminopathies.

  18. Bypass of lethality with mosaic mice generated by Cre-loxP-mediated recombination.

    Science.gov (United States)

    Betz, U A; Vosshenrich, C A; Rajewsky, K; Müller, W

    1996-10-01

    The analysis of gene function based on the generation of mutant mice by homologous recombination in embryonic stem cells is limited if gene disruption results in embryonic lethality. Mosaic mice, which contain a certain proportion of mutant cells in all organs, allow lethality to be circumvented and the potential of mutant cells to contribute to different cell lineages to be analyzed. To generate mosaic animals, we used the bacteriophage P1-derived Cre-loxP recombination system, which allows gene alteration by Cre-mediated deletion of loxP-flanked gene segments. We generated nestin-cre transgenic mouse lines, which expressed the Cre recombinase under the control of the rat nestin promoter and its second intron enhancer. In crosses to animals carrying a loxP-flanked target gene, partial deletion of the loxP-flanked allele occurred before day 10.5 post coitum and was detectable in all adult organs examined, including germ-line cells. Using this approach, we generated mosaic mice containing cells deficient in the gamma-chain of the interleukin-2 receptor (IL-2R gamma); in these animals, the IL-2R gamma-deficient cells were underrepresented in the thymus and spleen. Because mice deficient in DNA polymerase beta die perinatally, we studied the effects of DNA polymerase beta deficiency in mosaic animals. We found that some of the mosaic polymerase beta-deficient animals were viable, but were often reduced in size and weight. The fraction of DNA polymerase beta-deficient cells in mosaic embryos decreased during embryonic development, presumably because wild-type cells had a competitive advantage. The nestin-cre transgenic mice can be used to generate mosaic animals in which target genes are mutated by Cre-mediated recombination of loxP-flanked target genes. By using mosaic animals, embryonic lethality can be bypassed and cell lineages for whose development a given target gene is critical can be identified. In the case of DNA polymerase beta, deficient cells are already

  19. Human cooperation by lethal group competition.

    Science.gov (United States)

    Egas, Martijn; Kats, Ralph; van der Sar, Xander; Reuben, Ernesto; Sabelis, Maurice W

    2013-01-01

    Why humans are prone to cooperate puzzles biologists, psychologists and economists alike. Between-group conflict has been hypothesized to drive within-group cooperation. However, such conflicts did not have lasting effects in laboratory experiments, because they were about luxury goods, not needed for survival ("looting"). Here, we find within-group cooperation to last when between-group conflict is implemented as "all-out war" (eliminating the weakest groups). Human subjects invested in helping group members to avoid having the lowest collective pay-off, whereas they failed to cooperate in control treatments with random group elimination or with no subdivision in groups. When the game was repeated, experience was found to promote helping. Thus, not within-group interactions alone, not random group elimination, but pay-off-dependent group elimination was found to drive within-group cooperation in our experiment. We suggest that some forms of human cooperation are maintained by multi-level selection: reciprocity within groups and lethal competition among groups acting together.

  20. A single mutation in the 15S rRNA gene confers nonsense suppressor activity and interacts with mRF1 the release factor in yeast mitochondria

    Directory of Open Access Journals (Sweden)

    Ali Gargouri

    2015-08-01

    Full Text Available We have determined the nucleotide sequence of the mim3-1 mitochondrial ribosomal suppressor, acting on ochre mitochondrial mutations and one frameshift mutation in Saccharomyces cerevisiae. The 15s rRNA suppressor gene contains a G633 to C transversion. Yeast mitochondrial G633 corresponds to G517 of the E.coli 15S rRNA, which is occupied by an invariant G in all known small rRNA sequences. Interestingly, this mutation has occurred at the same position as the known MSU1 mitochondrial suppressor which changes G633 to A. The suppressor mutation lies in a highly conserved region of the rRNA, known in E.coli as the 530-loop, interacting with the S4, S5 and S12 ribosomal proteins. We also show an interesting interaction between the mitochondrial mim3-1 and the nuclear nam3-1 suppressors, both of which have the same action spectrum on mitochondrial mutations: nam3-1 abolishes the suppressor effect when present with mim3-1 in the same haploid cell. We discuss these results in the light of the nature of Nam3, identified by [1] as the yeast mitochondrial translation release factor. A hypothetical mechanism of suppression by "ribosome shifting" is also discussed in view of the nature of mutations suppressed and not suppressed.

  1. Influence Analysis of Shell Material and Charge on Shrapnel Lethal Power

    Directory of Open Access Journals (Sweden)

    Wang Lin

    2015-01-01

    Full Text Available To compare the shrapnel lethal power with different shell material and charge, LS-DYNA was used to numerically simulate four kinds of shrapnel lethal power. The shell material was 58SiMn, 50SiMnVB or 40Cr, whereas the charge was RL-F. And the shell material was 58SiMn, whereas the charge was TNT. The shell rupture process and lethal power test were analyzed. The results show that, the lethal power of RL-F charge increase by 25%, 45%, 14% compared with the TNT charge, whereas the shell material was 58SiMn, 50SiMnVB, 40Cr. And then the guarantee range and lethal power can be improved by using the high explosive and changing shell material, whereas the projectile shape coefficient is invariable.

  2. Detection of induced male germline mutation: Correlations and comparisons between traditional germline mutation assays, transgenic rodent assays and expanded simple tandem repeat instability assays

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Timothy M. [Mutagenesis Section, Environmental and Occupational Toxicology Division, Safe Environments Programme, 0803A, Health Canada, Ottawa, Ont., K1A 0K9 (Canada); Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., K1S 5B6 (Canada); Lambert, Iain B. [Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., K1S 5B6 (Canada); Williams, Andrew [Biostatistics and Epidemiology Division, Safe Environments Programme, 6604B, Health Canada, Ottawa, Ont., K1A 0K9 (Canada); Douglas, George R. [Mutagenesis Section, Environmental and Occupational Toxicology Division, Safe Environments Programme, 0803A, Health Canada, Ottawa, Ont., K1A 0K9 (Canada); Yauk, Carole L. [Mutagenesis Section, Environmental and Occupational Toxicology Division, Safe Environments Programme, 0803A, Health Canada, Ottawa, Ont., K1A 0K9 (Canada)]. E-mail: carole_yauk@hc-sc.gc.ca

    2006-06-25

    Several rodent assays are capable of monitoring germline mutation. These include traditional assays, such as the dominant lethal (DL) assay, the morphological specific locus (SL) test and the heritable translocation (HT) assay, and two assays that have been developed more recently-the expanded simple tandem repeat (ESTR) and transgenic rodent (TGR) mutation assays. In this paper, we have compiled the limited amount of experimental data that are currently available to make conclusions regarding the comparative ability of the more recently developed assays to detect germline mutations induced by chemical and radiological agents. The data suggest that ESTR and TGR assays are generally comparable with SL in detecting germline mutagenicity induced by alkylating agents and radiation, though TGR offered less sensitivity than ESTR in some cases. The DL and HT assays detect clastogenic events and are most susceptible to mutations arising in post-spermatogonial cells, and they may not provide the best comparisons with TGR and ESTR instability. The measurement of induced ESTR instability represents a relatively sensitive method of identifying agents causing germline mutation in rodents, and may also be useful for bio-monitoring exposed individuals in the human population. Any future use of the TGR and ESTR germline mutation assays in a regulatory testing context will entail more robust and extensive characterization of assay performance. This will require substantially more data, including experiments measuring multiple endpoints, a greatly expanded database of chemical agents and a focus on characterizing stage-specific activity of mutagens in these assays, preferably by sampling epididymal sperm exposed at defined pre-meiotic, meiotic and post-meiotic stages of development.

  3. Detection of induced male germline mutation: Correlations and comparisons between traditional germline mutation assays, transgenic rodent assays and expanded simple tandem repeat instability assays

    International Nuclear Information System (INIS)

    Singer, Timothy M.; Lambert, Iain B.; Williams, Andrew; Douglas, George R.; Yauk, Carole L.

    2006-01-01

    Several rodent assays are capable of monitoring germline mutation. These include traditional assays, such as the dominant lethal (DL) assay, the morphological specific locus (SL) test and the heritable translocation (HT) assay, and two assays that have been developed more recently-the expanded simple tandem repeat (ESTR) and transgenic rodent (TGR) mutation assays. In this paper, we have compiled the limited amount of experimental data that are currently available to make conclusions regarding the comparative ability of the more recently developed assays to detect germline mutations induced by chemical and radiological agents. The data suggest that ESTR and TGR assays are generally comparable with SL in detecting germline mutagenicity induced by alkylating agents and radiation, though TGR offered less sensitivity than ESTR in some cases. The DL and HT assays detect clastogenic events and are most susceptible to mutations arising in post-spermatogonial cells, and they may not provide the best comparisons with TGR and ESTR instability. The measurement of induced ESTR instability represents a relatively sensitive method of identifying agents causing germline mutation in rodents, and may also be useful for bio-monitoring exposed individuals in the human population. Any future use of the TGR and ESTR germline mutation assays in a regulatory testing context will entail more robust and extensive characterization of assay performance. This will require substantially more data, including experiments measuring multiple endpoints, a greatly expanded database of chemical agents and a focus on characterizing stage-specific activity of mutagens in these assays, preferably by sampling epididymal sperm exposed at defined pre-meiotic, meiotic and post-meiotic stages of development

  4. A genetic screen for mutations affecting embryonic development in medaka fish (Oryzias latipes).

    Science.gov (United States)

    Loosli, F; Köster, R W; Carl, M; Kühnlein, R; Henrich, T; Mücke, M; Krone, A; Wittbrodt, J

    2000-10-01

    In a pilot screen, we assayed the efficiency of ethylnitrosourea (ENU) as a chemical mutagen to induce mutations that lead to early embryonic and larval lethal phenotypes in the Japanese medaka fish, Oryzias latipes. ENU acts as a very efficient mutagen inducing mutations at high rates in germ cells. Three repeated treatments of male fish in 3 mM ENU for 1 h results in locus specific mutation rates of 1.1-1.95 x10(-3). Mutagenized males were outcrossed to wild type females and the F1 offspring was used to establish F2 families. F2 siblings were intercrossed and the F3 progeny was scored 24, 48 and 72 h after fertilization for morphological alterations affecting eye development. The presented mutant phenotypes were identified using morphological criteria and occur during early developmental stages of medaka. They are stably inherited in a Mendelian fashion. The high efficiency of ENU to induce mutations in this pilot screen indicates that chemical mutagenesis and screening for morphologically visible phenotypes in medaka fish allows the genetic analysis of specific aspects of vertebrate development complementing the screens performed in other vertebrate model systems.

  5. Inhibitory action of chlorophyllin of autosome recessive lethals induced by irradiation

    International Nuclear Information System (INIS)

    Salceda, V.M.; Pimentel, P.A.E.; Cruces, M.P.

    2006-01-01

    The chlorophyllin is a sodium salt of the chlorophyll that has a strong protective action of the damage induced by different agents so much physical as chemical. In Drosophila there is reported this effect in somatic cells. In contrast, in germinal cells using tests with the sexual chromosomes has not been found such inhibitory action. For this reason, in this occasion we will refer to the effect of the lethality induced in autosome chromosomes, in particular to the chromosome II of this species. For such effect groups of males of the line Canton-S its were pre-treated for 24h with or without 69 mm of CCS and later on treaties with or without 40 Gy of gamma irradiation. The males were then subjected to the technical Cy L / Pm for the detection of recessive lethals. In the third generation the respective counts of the descendant of each one of them to determine the corresponding categories for each extracted chromosome were made. To be mendelian crosses it is expected for a normal chromosome a proportion 2:1 of individuals with genotype Cy L / +: +/+. The absence of individuals +/+ it is indicative of a lethal gene, until 10% of these individuals of each male's total descendant, it is considered that is carrying of a semi lethal gene. The sum of lethal and semi lethals constitutes the category detrimental. The obtained results indicated that the pre-treatment with CCS reduces in a significant way the frequency of induced lethals by 40 Gy of gamma rays. The fact that an effect inhibitor has not been observed in the test of recessive lethal bound to the sex obtained previously, it contrasts with the effect observed in the chromosome II, results of this study and with the one observed in the chromosome III in somatic cells. The above-mentioned shows a differential action of the CCS between sexual chromosomes and autosomal before the effect of the gamma radiation. At the moment we don't have an explanation to these evidences. To evaluate the action of the chlorophyllin

  6. Lethal and Sub-lethal Effects of Four Insecticides on the Aphidophagous Coccinellid Adalia bipunctata (Coleoptera: Coccinellidae).

    Science.gov (United States)

    Depalo, Laura; Lanzoni, Alberto; Masetti, Antonio; Pasqualini, Edison; Burgio, Giovanni

    2017-12-05

    Conventional insecticide assays, which measure the effects of insecticide exposure on short-term mortality, overlook important traits, including persistence of toxicity or sub-lethal effects. Therefore, such approaches are especially inadequate for prediction of the overall impact of insecticides on beneficial arthropods. In this study, the side effects of four modern insecticides (chlorantraniliprole, emamectin benzoate, spinosad, and spirotetramat) on Adalia bipunctata (L.) (Coleoptera: Coccinellidae) were evaluated under laboratory conditions by exposition on treated potted plants. In addition to investigation of acute toxicity and persistence of harmful activity in both larvae and adults of A. bipunctata, demographic parameters were evaluated, to provide a comprehensive picture of the nontarget effects of these products. Field doses of the four insecticides caused detrimental effects to A. bipunctata; but in different ways. Overall, spinosad showed the best toxicological profile among the products tested. Emamectin benzoate could be considered a low-risk insecticide, but had high persistence. Chlorantraniliprole exhibited lethal effects on early instar larvae and adults, along with a long-lasting activity, instead spirotetramat showed a low impact on larval and adult mortality and can be considered a short-lived insecticide. However, demographic analysis demonstrated that chlorantraniliprole and spirotetramat caused sub-lethal effects. Our findings highlight that sole assessment of mortality can lead to underestimation of the full impact of pesticides on nontarget insects. Demographic analysis was demonstrated to be a sensitive method for detection of the sub-lethal effects of insecticides on A. bipunctata, and this approach should be considered for evaluation of insecticide selectivity. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Experiences in therapy for lethal midline granuloma

    International Nuclear Information System (INIS)

    Tosaka, Kaoru; Ishikawa, Takeru

    1982-01-01

    Four cases of the lethal midline granuloma or malignant granuloma of the nose were treated by irradiation and chemotherapy, which are generally prescribed for malignant lymphomas. Clinical, histological and laboratory examination indicated that they were the lethal midline granuloma and clearly differentiated from Wegener's granulomatosis or malignant lymphoma. All of the cases exhibited primary remission. The four cases were observed up to 38, 22, 14, and 10 months since the beginning of the therapy, showing no local or general recurrence. (author)

  8. Alisertib added to rituximab and vincristine is synthetic lethal and potentially curative in mice with aggressive DLBCL co-overexpressing MYC and BCL2.

    Directory of Open Access Journals (Sweden)

    Daruka Mahadevan

    Full Text Available Pearson correlation coefficient for expression analysis of the Lymphoma/Leukemia Molecular Profiling Project (LLMPP demonstrated Aurora A and B are highly correlated with MYC in DLBCL and mantle cell lymphoma (MCL, while both Auroras correlate with BCL2 only in DLBCL. Auroras are up-regulated by MYC dysregulation with associated aneuploidy and resistance to microtubule targeted agents such as vincristine. Myc and Bcl2 are differentially expressed in U-2932, TMD-8, OCI-Ly10 and Granta-519, but only U-2932 cells over-express mutated p53. Alisertib [MLN8237 or M], a highly selective small molecule inhibitor of Aurora A kinase, was synergistic with vincristine [VCR] and rituximab [R] for inhibition of cell proliferation, abrogation of cell cycle checkpoints and enhanced apoptosis versus single agent or doublet therapy. A DLBCL (U-2932 mouse model showed tumor growth inhibition (TGI of ∼ 10-20% (p = 0.001 for M, VCR and M-VCR respectively, while R alone showed ∼ 50% TGI (p = 0.001. M-R and VCR-R led to tumor regression [TR], but relapsed 10 days after discontinuing therapy. In contrast, M-VCR-R demonstrated TR with no relapse >40 days after stopping therapy with a Kaplan-Meier survival of 100%. Genes that are modulated by M-VCR-R (CENP-C, Auroras play a role in centromere-kinetochore function in an attempt to maintain mitosis in the presence of synthetic lethality. Together, our data suggest that the interaction between alisertib plus VCR plus rituximab is synergistic and synthetic lethal in Myc and Bcl-2 co-expressing DLBCL. Alisertib plus vincristine plus rituximab [M-VCR-R] may represent a new strategy for DLBCL therapy.

  9. Alisertib added to rituximab and vincristine is synthetic lethal and potentially curative in mice with aggressive DLBCL co-overexpressing MYC and BCL2.

    Science.gov (United States)

    Mahadevan, Daruka; Morales, Carla; Cooke, Laurence S; Manziello, Ann; Mount, David W; Persky, Daniel O; Fisher, Richard I; Miller, Thomas P; Qi, Wenqing

    2014-01-01

    Pearson correlation coefficient for expression analysis of the Lymphoma/Leukemia Molecular Profiling Project (LLMPP) demonstrated Aurora A and B are highly correlated with MYC in DLBCL and mantle cell lymphoma (MCL), while both Auroras correlate with BCL2 only in DLBCL. Auroras are up-regulated by MYC dysregulation with associated aneuploidy and resistance to microtubule targeted agents such as vincristine. Myc and Bcl2 are differentially expressed in U-2932, TMD-8, OCI-Ly10 and Granta-519, but only U-2932 cells over-express mutated p53. Alisertib [MLN8237 or M], a highly selective small molecule inhibitor of Aurora A kinase, was synergistic with vincristine [VCR] and rituximab [R] for inhibition of cell proliferation, abrogation of cell cycle checkpoints and enhanced apoptosis versus single agent or doublet therapy. A DLBCL (U-2932) mouse model showed tumor growth inhibition (TGI) of ∼ 10-20% (p = 0.001) for M, VCR and M-VCR respectively, while R alone showed ∼ 50% TGI (p = 0.001). M-R and VCR-R led to tumor regression [TR], but relapsed 10 days after discontinuing therapy. In contrast, M-VCR-R demonstrated TR with no relapse >40 days after stopping therapy with a Kaplan-Meier survival of 100%. Genes that are modulated by M-VCR-R (CENP-C, Auroras) play a role in centromere-kinetochore function in an attempt to maintain mitosis in the presence of synthetic lethality. Together, our data suggest that the interaction between alisertib plus VCR plus rituximab is synergistic and synthetic lethal in Myc and Bcl-2 co-expressing DLBCL. Alisertib plus vincristine plus rituximab [M-VCR-R] may represent a new strategy for DLBCL therapy.

  10. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site.

    Science.gov (United States)

    Lu, Shaoyong; Banerjee, Avik; Jang, Hyunbum; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2015-11-27

    K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4B(WT)-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4B(WT)-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Thermodynamics of antibody-antigen interaction revealed by mutation analysis of antibody variable regions.

    Science.gov (United States)

    Akiba, Hiroki; Tsumoto, Kouhei

    2015-07-01

    Antibodies (immunoglobulins) bind specific molecules (i.e. antigens) with high affinity and specificity. In order to understand their mechanisms of recognition, interaction analysis based on thermodynamic and kinetic parameters, as well as structure determination is crucial. In this review, we focus on mutational analysis which gives information about the role of each amino acid residue in antibody-antigen interaction. Taking anti-hen egg lysozyme antibodies and several anti-small molecule antibodies, the energetic contribution of hot-spot and non-hot-spot residues is discussed in terms of thermodynamics. Here, thermodynamics of the contribution from aromatic, charged and hydrogen bond-forming amino acids are discussed, and their different characteristics have been elucidated. The information gives fundamental understanding of the antibody-antigen interaction. Furthermore, the consequences of antibody engineering are analysed from thermodynamic viewpoints: humanization to reduce immunogenicity and rational design to improve affinity. Amino acid residues outside hot-spots in the interface play important roles in these cases, and thus thermodynamic and kinetic parameters give much information about the antigen recognition. Thermodynamic analysis of mutant antibodies thus should lead to advanced strategies to design and select antibodies with high affinity. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  12. Effect of sublethal levels of ionizing radiation on a predator-prey interaction

    International Nuclear Information System (INIS)

    Chee, P.C.

    1976-01-01

    The predator-prey interaction studied was that between the largemouth bass (Micropterus salmoides) and the fathead minnow (Pimephales promelas) in an artificial test environment. Experiments were first conducted to determine the 50% lethal dose at 30 days of the minnow. Three different dose rates were used to test the effect of dose rate on the 50% lethal dose value. After the 50% lethal dose was determined the predator-prey interaction experiment was conducted using 30% of the 50% lethal dose as the highest radiation dose, this dose being considered the upper limit to sublethal radiation levels. A 4 x 4 Latin square design was chosen for the experiment, with four treatment levels (control plus three radiation levels) and four replicates. In each test 10 prey minnow were offered to one predator bass and the number of prey left after 14 days was the parameter of interest. A predator-prey interaction experiment using a single high level of radiation and two types of controls as conducted to ascertain the ability of the test environment to detect changes in the predator-prey interaction. The two types of controls were irradiated prey not exposed to predation and non-irradiated prey exposed to predation. An experiment was also conducted to test the correlation between the physical activity patterns of minnow and different doses of radiation. At a dose rate of 37.8 rad/min the 50% lethal dose at 30 days for minnow was found to be 2650 rad. It was found that dose rate had a strong influence on the 50% lethal dose. In the predator-prey interaction test it was found that the 14-day survival rate of prey was unaffected by sublethal levels of ionizing radiation. No significant correlation was detected between the physical activity patterns of minnow and radiation dose

  13. Effect of hsm mutations enhancing spontaneous mutability on induced mutagenesis and mitotic recombination in Saccharomyces cerevisiae yeast

    International Nuclear Information System (INIS)

    Fedorova, I.V.; Koval'tsova, S.V.; Ivanov, E.L.

    1993-01-01

    The authors have studied the effect of five nonallelic hms1-hms5 mutations on the incidence of direct mutations in loci ADE1 and ADE2, induced by UV-radiation, 6-hydroxyl-aminopurine, and nitrosomethylurea. All hms mutants were found to be insensitive to the lethal action of these mutagens. The frequency of UV-induced mutations to adenine dependence was increased in mutants hsm2-1, hsm3-1, hsm5-1, and particularly in hsm1-1, but remained unchanged in hsm4-1 compared to HSM. Mutagenesis induced by 6-hydroxylaminopurine was increased in all mutants studied, particularly in mutant hsm3-1. The authors did not detect any appreciable effect of hsm mutations on mutagenesis induced by nitrosomethylurea. The frequency of spontaneous mitotic conversion to prototrophy was studied in diploids heteroallelic to gene ADE2 and homo- and heterozygous for hsm mutations. Mutation hsm5-1 considerably increased the frequency of conversion for all heteroalleles studied, mutations hsm1-1 and hsm3-1 also considerably increased the conversion frequency, while mutations hsm1-1 and hsm4-1 had little effect on this process. The study of the properties of hsm mutations revealed joint genetic control of spontaneous and induced mutagenesis and recombination in yeast. The possibility that hsm mutations belong to the class of mutations impairing correction of unpaired DNA bases is discussed. 25 refs., 3 figs., 3 tabs

  14. Perinatal-lethal Gaucher disease presenting as hydrops fetalis.

    Science.gov (United States)

    BenHamida, Emira; Ayadi, Imene; Ouertani, Ines; Chammem, Maroua; Bezzine, Ahlem; BenTmime, Riadh; Attia, Leila; Mrad, Ridha; Marrakchi, Zahra

    2015-01-01

    Perinatal-lethal Gaucher disease is very rare and is considered a variant of type 2 Gaucher disease that occurs in the neonatal period. The most distinct features of perinatal-lethal Gaucher disease are non-immune hydrops fetalis. Less common signs of the disease are hepatosplenomegaly, ichthyosis and arthrogryposis. We report a case of Gaucher's disease (type 2) diagnosed in a newborn who presented with Hydrops Fetalis.

  15. Mutation directional selection sheds light on prion pathogenesis

    International Nuclear Information System (INIS)

    Shen, Liang; Ji, Hong-Fang

    2011-01-01

    Highlights: → Most pathogenic mutations possess strong directional selection, i.e., enhancing hydrophobicity or decreasing negative and increasing positive charge. → Mutation-induced changes may strengthen the interactions between PrP and facilitating factors. → The findings also have significant implications for exploring potential regions involved in the conformational transition from PrP C to PrP Sc . -- Abstract: As mutations in the PRNP gene account for human hereditary prion diseases (PrDs), it is crucial to elucidating how these mutations affect the central pathogenic conformational transition of normal cellular prion protein (PrP C ) to abnormal scrapie isoform (PrP Sc ). Many studies proposed that these pathogenic mutations may make PrP more susceptible to conformational change through altering its structure stability. By evaluating the most recent observations regarding pathogenic mutations, it was found that the pathogenic mutations do not exert a uniform effect on the thermodynamic stability of the human PrP's structure. Through analyzing the reported PrDs-related mutations, we found that 25 out of 27 mutations possess strong directional selection, i.e., enhancing hydrophobicity or decreasing negative and increasing positive charge. Based on the triggering role reported by previous studies of facilitating factors in PrP C conversion, e.g., lipid and polyanion, we proposed that the mutation-induced changes may strengthen the interaction between PrP and facilitating factors, which will accelerate PrP conversion and cause PrDs.

  16. Mutation directional selection sheds light on prion pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Liang [Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Shandong University of Technology, Zibo 255049 (China); Ji, Hong-Fang, E-mail: jhf@sdut.edu.cn [Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Shandong University of Technology, Zibo 255049 (China)

    2011-07-01

    Highlights: {yields} Most pathogenic mutations possess strong directional selection, i.e., enhancing hydrophobicity or decreasing negative and increasing positive charge. {yields} Mutation-induced changes may strengthen the interactions between PrP and facilitating factors. {yields} The findings also have significant implications for exploring potential regions involved in the conformational transition from PrP{sup C} to PrP{sup Sc}. -- Abstract: As mutations in the PRNP gene account for human hereditary prion diseases (PrDs), it is crucial to elucidating how these mutations affect the central pathogenic conformational transition of normal cellular prion protein (PrP{sup C}) to abnormal scrapie isoform (PrP{sup Sc}). Many studies proposed that these pathogenic mutations may make PrP more susceptible to conformational change through altering its structure stability. By evaluating the most recent observations regarding pathogenic mutations, it was found that the pathogenic mutations do not exert a uniform effect on the thermodynamic stability of the human PrP's structure. Through analyzing the reported PrDs-related mutations, we found that 25 out of 27 mutations possess strong directional selection, i.e., enhancing hydrophobicity or decreasing negative and increasing positive charge. Based on the triggering role reported by previous studies of facilitating factors in PrP{sup C} conversion, e.g., lipid and polyanion, we proposed that the mutation-induced changes may strengthen the interaction between PrP and facilitating factors, which will accelerate PrP conversion and cause PrDs.

  17. [Mutants of the yeast Saccharomyces cerevisiae characterized by enhanced induced mutagenesis. III. Effect of the him mutation on the effectiveness and specificity of UF-induced mutagenesis].

    Science.gov (United States)

    Ivanov, E L; Koval'tsova, S V; Korolev, V G

    1987-09-01

    We have studied the influence of him1-1, him2-1, him3-1 and himX mutations on induction frequency and specificity of UV-induced adenine-dependent mutations in the yeast Saccharomyces cerevisiae. Him mutations do not render haploid cells more sensitive to the lethal action of UV-light; however, in him strains adenine-dependent mutations (ade1, ade2) were induced more frequently (1.5--2-fold), as compared to the HIM strain. An analysis of the molecular nature of ade2 mutants revealed that him1-1, him2-1 and himX mutations increase specifically the yield of transitions (AT----GC and GC----AT), whereas in the him3-1 strain the yield of transversions was enhanced as well. We suggest him mutations analysed to affect specific repair pathway for mismatch correction.

  18. Development of a chromosome-plasmid balanced lethal system for Lactobacillus acidophilus with thyA gene as selective marker.

    Science.gov (United States)

    Fu, X; Xu, J G

    2000-01-01

    A chromosome-plasmid balanced lethal gene delivery system for Lactobacillus acidophilus based on the thyA gene was developed. The selected L. acidophilus DOM La strain carries a mutated thyA gene and has an obligate requirement for thymidine. This strain can be used as a host for the constructed shuttle vector pFXL03, lacking antibiotic-resistant markers but having the wild-type thyA gene from L. casei which complements the thyA chromosomal mutation. The vector also contains the replicon region from plasmid pUC19 and that of the Lactococcus plasmid pWV01, which allows the transfer between Escherichia coli, L. casei and L. acidophilus. Eight unique restriction sites (i.e., PstI, HindIII, SphI, SalI, AccI, XbaI, KpnI and SacI) are available for cloning. After 40-time transfers in modified MRS medium, no plasmid loss was observed. The vector pFXL03 is potentially useful as a food-grade vaccine delivery system for L. acidophilus.

  19. MT-CYB mutations in hypertrophic cardiomyopathy

    DEFF Research Database (Denmark)

    Hagen, Christian M; Aidt, Frederik H; Havndrup, Ole

    2013-01-01

    Mitochondrial dysfunction is a characteristic of heart failure. Mutations in mitochondrial DNA, particularly in MT-CYB coding for cytochrome B in complex III (CIII), have been associated with isolated hypertrophic cardiomyopathy (HCM). We hypothesized that MT-CYB mutations might play an important...... and m.15482T>C; p.S246P were identified. Modeling showed that the p.C93Y mutation leads to disruption of the tertiary structure of Cytb by helix displacement, interfering with protein-heme interaction. The p.S246P mutation induces a diproline structure, which alters local secondary structure and induces...... of HCM patients. We propose that further patients with HCM should be examined for mutations in MT-CYB in order to clarify the role of these variants....

  20. Real-time resolution of point mutations that cause phenovariance in mice

    Science.gov (United States)

    Wang, Tao; Zhan, Xiaowei; Bu, Chun-Hui; Lyon, Stephen; Pratt, David; Hildebrand, Sara; Choi, Jin Huk; Zhang, Zhao; Zeng, Ming; Wang, Kuan-wen; Turer, Emre; Chen, Zhe; Zhang, Duanwu; Yue, Tao; Wang, Ying; Shi, Hexin; Wang, Jianhui; Sun, Lei; SoRelle, Jeff; McAlpine, William; Hutchins, Noelle; Zhan, Xiaoming; Fina, Maggy; Gobert, Rochelle; Quan, Jiexia; Kreutzer, McKensie; Arnett, Stephanie; Hawkins, Kimberly; Leach, Ashley; Tate, Christopher; Daniel, Chad; Reyna, Carlos; Prince, Lauren; Davis, Sheila; Purrington, Joel; Bearden, Rick; Weatherly, Jennifer; White, Danielle; Russell, Jamie; Sun, Qihua; Tang, Miao; Li, Xiaohong; Scott, Lindsay; Moresco, Eva Marie Y.; McInerney, Gerald M.; Karlsson Hedestam, Gunilla B.; Xie, Yang; Beutler, Bruce

    2015-01-01

    With the wide availability of massively parallel sequencing technologies, genetic mapping has become the rate limiting step in mammalian forward genetics. Here we introduce a method for real-time identification of N-ethyl-N-nitrosourea-induced mutations that cause phenotypes in mice. All mutations are identified by whole exome G1 progenitor sequencing and their zygosity is established in G2/G3 mice before phenotypic assessment. Quantitative and qualitative traits, including lethal effects, in single or multiple combined pedigrees are then analyzed with Linkage Analyzer, a software program that detects significant linkage between individual mutations and aberrant phenotypic scores and presents processed data as Manhattan plots. As multiple alleles of genes are acquired through mutagenesis, pooled “superpedigrees” are created to analyze the effects. Our method is distinguished from conventional forward genetic methods because it permits (1) unbiased declaration of mappable phenotypes, including those that are incompletely penetrant (2), automated identification of causative mutations concurrent with phenotypic screening, without the need to outcross mutant mice to another strain and backcross them, and (3) exclusion of genes not involved in phenotypes of interest. We validated our approach and Linkage Analyzer for the identification of 47 mutations in 45 previously known genes causative for adaptive immune phenotypes; our analysis also implicated 474 genes not previously associated with immune function. The method described here permits forward genetic analysis in mice, limited only by the rates of mutant production and screening. PMID:25605905

  1. ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6

    DEFF Research Database (Denmark)

    Zariwala, Maimoona A; Gee, Heon Yung; Kurkowiak, Małgorzata

    2013-01-01

    Defects of motile cilia cause primary ciliary dyskinesia (PCD), characterized by recurrent respiratory infections and male infertility. Using whole-exome resequencing and high-throughput mutation analysis, we identified recessive biallelic mutations in ZMYND10 in 14 families and mutations in the ...

  2. A novel germline mutation in the aryl hydrocarbon receptor-interacting protein (AIP) gene in an Italian family with gigantism.

    Science.gov (United States)

    Urbani, C; Russo, D; Raggi, F; Lombardi, M; Sardella, C; Scattina, I; Lupi, I; Manetti, L; Tomisti, L; Marcocci, C; Martino, E; Bogazzi, F

    2014-10-01

    Acromegaly usually occurs as a sporadic disease, but it may be a part of familial pituitary tumor syndromes in rare cases. Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene have been associated with a predisposition to familial isolated pituitary adenoma. The aim of the present study was to evaluate the AIP gene in a patient with gigantism and in her relatives. Direct sequencing of AIP gene was performed in fourteen members of the family, spanning among three generations. The index case was an 18-year-old woman with gigantism due to an invasive GH-secreting pituitary adenoma and a concomitant tall-cell variant of papillary thyroid carcinoma. A novel germline mutation in the AIP gene (c.685C>T, p.Q229X) was identified in the proband and in two members of her family, who did not present clinical features of acromegaly or other pituitary disorders. Eleven subjects had no mutation in the AIP gene. Two members of the family with clinical features of acromegaly refused either the genetic or the biochemical evaluation. The Q229X mutation was predicted to generate a truncated AIP protein, lacking the last two tetratricopeptide repeat domains and the final C-terminal α-7 helix. We identified a new AIP germline mutation predicted to produce a truncated AIP protein, lacking its biological properties due to the disruption of the C-terminus binding sites for both the chaperones and the client proteins of AIP.

  3. Resistance of Micrococcus radiodurans to killing and mutation by agents which damage DNA

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, D M; Moseley, B E.B. [Edinburgh Univ. (UK). School of Agriculture

    1976-02-01

    The resistance of Micrococcus radiodurans to the lethal and mutagenic action of ultraviolet (UV) light, ionising (..gamma..) radiation, mitomycin C (MTC), nitrous acid (NA), hydroxylamine (HA), N-methyl-N'-nitro-N-nitrosoguanidine (NG), ethylmethanesulphonate (EMS) and ..beta..-propiolactone (..beta..PL) has been compared with that of Escherichia coli B/r. M. radiodurans was much more resistant than E. coli B/r to the lethal effects of UV light (by a factor of 33), ..gamma..-radiation (55), NG (15) and NA (62), showed intermediate resistance to MTC (4) and HA (7), but was sensitive to EMS (1) and ..beta..PL (2). M. radiodurans was very resistant to mutagens producing damage which can be repaired by a recombination system, indicating that it possesses an extremely efficient recombination repair mechanism. Both species were equally sensitive to mutation to trimethoprim resistance by NG, but M. radiodurans was more resistant than E. coli B/r to the other mutagens tested, being non-mutable by UV light, ..gamma..-radiation, MTC and HA, and only slightly sensitive to mutation by NA, EMS, and ..beta..PL. The resistance of M. radiodurans to mutation by UV light, ..gamma.. radiation and MTC is consistent with an hypothesis that recombination repair in M. radiodurans is accurate since these mutagens may depend on an 'error-prone' recombination system for their mutagenic effect in E. coli B/r. However, because M. radiodurans is also resistant to mutagens such as HA and EMS, which are mutagenic in E. coli in the absence of an 'error-prone' system, we propose that all the mutagens tested may have a common mode of action in E. coli B/r, but that this mutagenic pathway is missing in M. radiodurans.

  4. A case of boomerang dysplasia with a novel causative mutation in filamin B: identification of typical imaging findings on ultrasonography and 3D-CT imaging.

    Science.gov (United States)

    Tsutsumi, Seiji; Maekawa, Ayako; Obata, Miyuki; Morgan, Timothy; Robertson, Stephen P; Kurachi, Hirohisa

    2012-01-01

    Boomerang dysplasia is a rare lethal osteochondrodysplasia characterized by disorganized mineralization of the skeleton, leading to complete nonossification of some limb bones and vertebral elements, and a boomerang-like aspect to some of the long tubular bones. Like many short-limbed skeletal dysplasias with accompanying thoracic hypoplasia, the potential lethality of the phenotype can be difficult to ascertain prenatally. We report a case of boomerang dysplasia prenatally diagnosed by use of ultrasonography and 3D-CT imaging, and identified a novel mutation in the gene encoding the cytoskeletal protein filamin B (FLNB) postmortem. Findings that aided the radiological diagnosis of this condition in utero included absent ossification of two out of three long bones in each limb and elements of the vertebrae and a boomerang-like shape to the ulnae. The identified mutation is the third described for this disorder and is predicted to lead to amino acid substitution in the actin-binding domain of the filamin B molecule. Copyright © 2012 S. Karger AG, Basel.

  5. Lethal neonatal short-limbed dwarfism

    International Nuclear Information System (INIS)

    Kim, Ok Hwa; Yim, Chung Ik; Bahk, Yong Whee

    1986-01-01

    We have detailed our experiences on 6 cases of neonatal lethal short-limbed dwarfism and reviewed the articles. They include, achondrogenesis, thanatophoric dysplasia, asphyxiating thoracic dysplasia, osteogenesis imperfect a congenita, and hypophosphatasia lethals. Five babies were born alive but died soon after birth and one was a stillbirth. The main cause of failure to thrive was respiratory insufficiency. Each case was having quite characteristic radiologic findings, even if the general appearances were similar to the achondroplasts clinically. Precise diagnosis is very important for genetic counselling of the parents and alarm to them the possibility of bone dysplasias to the next offsprings. For this purpose, the radiologists play major role for the correct diagnosis. We stress that when the baby is born with short-limbed dwarfism, whole body radiogram should be taken including lateral view and postmortem radiogram is also very precious.

  6. Lethal neonatal short-limbed dwarfism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ok Hwa; Yim, Chung Ik; Bahk, Yong Whee [Catholic Medical College, Seoul (Korea, Republic of)

    1986-02-15

    We have detailed our experiences on 6 cases of neonatal lethal short-limbed dwarfism and reviewed the articles. They include, achondrogenesis, thanatophoric dysplasia, asphyxiating thoracic dysplasia, osteogenesis imperfect a congenita, and hypophosphatasia lethals. Five babies were born alive but died soon after birth and one was a stillbirth. The main cause of failure to thrive was respiratory insufficiency. Each case was having quite characteristic radiologic findings, even if the general appearances were similar to the achondroplasts clinically. Precise diagnosis is very important for genetic counselling of the parents and alarm to them the possibility of bone dysplasias to the next offsprings. For this purpose, the radiologists play major role for the correct diagnosis. We stress that when the baby is born with short-limbed dwarfism, whole body radiogram should be taken including lateral view and postmortem radiogram is also very precious.

  7. A founder mutation in LEPRE1 carried by 1.5% of West Africans and 0.4% of African Americans causes lethal recessive osteogenesis imperfecta.

    Science.gov (United States)

    Cabral, Wayne A; Barnes, Aileen M; Adeyemo, Adebowale; Cushing, Kelly; Chitayat, David; Porter, Forbes D; Panny, Susan R; Gulamali-Majid, Fizza; Tishkoff, Sarah A; Rebbeck, Timothy R; Gueye, Serigne M; Bailey-Wilson, Joan E; Brody, Lawrence C; Rotimi, Charles N; Marini, Joan C

    2012-05-01

    Deficiency of prolyl 3-hydroxylase 1, encoded by LEPRE1, causes recessive osteogenesis imperfecta (OI). We previously identified a LEPRE1 mutation exclusively in African Americans and contemporary West Africans. We hypothesized that this allele originated in West Africa and was introduced to the Americas with the Atlantic slave trade. We aimed to determine the frequency of carriers for this mutation among African Americans and West Africans, and the mutation origin and age. Genomic DNA was screened for the mutation using PCR and restriction digestion, and a custom TaqMan genomic single-nucleotide polymorphism assay. The mutation age was estimated using microsatellites and short tandem repeats spanning 4.2 Mb surrounding LEPRE1 in probands and carriers. Approximately 0.4% (95% confidence interval: 0.22-0.68%) of Mid-Atlantic African Americans carry this mutation, estimating recessive OI in 1/260,000 births in this population. In Nigeria and Ghana, 1.48% (95% confidence interval: 0.95-2.30%) of unrelated individuals are heterozygous carriers, predicting that 1/18,260 births will be affected with recessive OI, equal to the incidence of de novo dominant OI. The mutation was not detected in Africans from surrounding countries. All carriers shared a haplotype of 63-770 Kb, consistent with a single founder for this mutation. Using linkage disequilibrium analysis, the mutation was estimated to have originated between 650 and 900 years before present (1100-1350 CE). We identified a West African founder mutation for recessive OI in LEPRE1. Nearly 1.5% of Ghanians and Nigerians are carriers. The estimated age of this allele is consistent with introduction to North America via the Atlantic slave trade (1501-1867 CE).

  8. Artemether resistance in vitro is linked to mutations in PfATP6 that also interact with mutations in PfMDR1 in travellers returning with Plasmodium falciparum infections.

    KAUST Repository

    Pillai, Dylan R; Lau, Rachel; Khairnar, Krishna; Lepore, Rosalba; Via, Allegra; Staines, Henry M; Krishna, Sanjeev

    2012-01-01

    BACKGROUND: Monitoring resistance phenotypes for Plasmodium falciparum, using in vitro growth assays, and relating findings to parasite genotype has proved particularly challenging for the study of resistance to artemisinins. METHODS: Plasmodium falciparum isolates cultured from 28 returning travellers diagnosed with malaria were assessed for sensitivity to artemisinin, artemether, dihydroartemisinin and artesunate and findings related to mutations in pfatp6 and pfmdr1. RESULTS: Resistance to artemether in vitro was significantly associated with a pfatp6 haplotype encoding two amino acid substitutions (pfatp6 A623E and S769N; (mean IC50 (95% CI) values of 8.2 (5.7 - 10.7) for A623/S769 versus 623E/769 N 13.5 (9.8 - 17.3) nM with a mean increase of 65%; p = 0.012). Increased copy number of pfmdr1 was not itself associated with increased IC50 values for artemether, but when interactions between the pfatp6 haplotype and increased copy number of pfmdr1 were examined together, a highly significant association was noted with IC50 values for artemether (mean IC50 (95% CI) values of 8.7 (5.9 - 11.6) versus 16.3 (10.7 - 21.8) nM with a mean increase of 87%; p = 0.0068). Previously described SNPs in pfmdr1 are also associated with differences in sensitivity to some artemisinins. CONCLUSIONS: These findings were further explored in molecular modelling experiments that suggest mutations in pfatp6 are unlikely to affect differential binding of artemisinins at their proposed site, whereas there may be differences in such binding associated with mutations in pfmdr1. Implications for a hypothesis that artemisinin resistance may be exacerbated by interactions between PfATP6 and PfMDR1 and for epidemiological studies to monitor emerging resistance are discussed.

  9. Artemether resistance in vitro is linked to mutations in PfATP6 that also interact with mutations in PfMDR1 in travellers returning with Plasmodium falciparum infections.

    KAUST Repository

    Pillai, Dylan R

    2012-04-27

    BACKGROUND: Monitoring resistance phenotypes for Plasmodium falciparum, using in vitro growth assays, and relating findings to parasite genotype has proved particularly challenging for the study of resistance to artemisinins. METHODS: Plasmodium falciparum isolates cultured from 28 returning travellers diagnosed with malaria were assessed for sensitivity to artemisinin, artemether, dihydroartemisinin and artesunate and findings related to mutations in pfatp6 and pfmdr1. RESULTS: Resistance to artemether in vitro was significantly associated with a pfatp6 haplotype encoding two amino acid substitutions (pfatp6 A623E and S769N; (mean IC50 (95% CI) values of 8.2 (5.7 - 10.7) for A623/S769 versus 623E/769 N 13.5 (9.8 - 17.3) nM with a mean increase of 65%; p = 0.012). Increased copy number of pfmdr1 was not itself associated with increased IC50 values for artemether, but when interactions between the pfatp6 haplotype and increased copy number of pfmdr1 were examined together, a highly significant association was noted with IC50 values for artemether (mean IC50 (95% CI) values of 8.7 (5.9 - 11.6) versus 16.3 (10.7 - 21.8) nM with a mean increase of 87%; p = 0.0068). Previously described SNPs in pfmdr1 are also associated with differences in sensitivity to some artemisinins. CONCLUSIONS: These findings were further explored in molecular modelling experiments that suggest mutations in pfatp6 are unlikely to affect differential binding of artemisinins at their proposed site, whereas there may be differences in such binding associated with mutations in pfmdr1. Implications for a hypothesis that artemisinin resistance may be exacerbated by interactions between PfATP6 and PfMDR1 and for epidemiological studies to monitor emerging resistance are discussed.

  10. Loss-of-Function Mutation in the Dioxygenase-Encoding FTO Gene Causes Severe Growth Retardation and Multiple Malformations

    Science.gov (United States)

    Boissel, Sarah; Reish, Orit; Proulx, Karine; Kawagoe-Takaki, Hiroko; Sedgwick, Barbara; Yeo, Giles S.H.; Meyre, David; Golzio, Christelle; Molinari, Florence; Kadhom, Noman; Etchevers, Heather C.; Saudek, Vladimir; Farooqi, I. Sadaf; Froguel, Philippe; Lindahl, Tomas; O'Rahilly, Stephen; Munnich, Arnold; Colleaux, Laurence

    2009-01-01

    FTO is a nuclear protein belonging to the AlkB-related non-haem iron- and 2-oxoglutarate-dependent dioxygenase family. Although polymorphisms within the first intron of the FTO gene have been associated with obesity, the physiological role of FTO remains unknown. Here we show that a R316Q mutation, inactivating FTO enzymatic activity, is responsible for an autosomal-recessive lethal syndrome. Cultured skin fibroblasts from affected subjects showed impaired proliferation and accelerated senescence. These findings indicate that FTO is essential for normal development of the central nervous and cardiovascular systems in human and establish that a mutation in a human member of the AlkB-related dioxygenase family results in a severe polymalformation syndrome. PMID:19559399

  11. DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    DEFF Research Database (Denmark)

    Osorio, Ana; Milne, Roger L; Kuchenbaecker, Karoline

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of th...

  12. ATM loss leads to synthetic lethality in BRCA1 BRCT mutant mice associated with exacerbated defects in homology-directed repair.

    Science.gov (United States)

    Chen, Chun-Chin; Kass, Elizabeth M; Yen, Wei-Feng; Ludwig, Thomas; Moynahan, Mary Ellen; Chaudhuri, Jayanta; Jasin, Maria

    2017-07-18

    BRCA1 is essential for homology-directed repair (HDR) of DNA double-strand breaks in part through antagonism of the nonhomologous end-joining factor 53BP1. The ATM kinase is involved in various aspects of DNA damage signaling and repair, but how ATM participates in HDR and genetically interacts with BRCA1 in this process is unclear. To investigate this question, we used the Brca1 S1598F mouse model carrying a mutation in the BRCA1 C-terminal domain of BRCA1. Whereas ATM loss leads to a mild HDR defect in adult somatic cells, we find that ATM inhibition leads to severely reduced HDR in Brca1 S1598F cells. Consistent with a critical role for ATM in HDR in this background, loss of ATM leads to synthetic lethality of Brca1 S1598F mice. Whereas both ATM and BRCA1 promote end resection, which can be regulated by 53BP1, 53bp1 deletion does not rescue the HDR defects of Atm mutant cells, in contrast to Brca1 mutant cells. These results demonstrate that ATM has a role in HDR independent of the BRCA1-53BP1 antagonism and that its HDR function can become critical in certain contexts.

  13. Detection of haplotypes associated with prenatal death in dairy cattle and identification of deleterious mutations in GART, SHBG and SLC37A2.

    Science.gov (United States)

    Fritz, Sébastien; Capitan, Aurelien; Djari, Anis; Rodriguez, Sabrina C; Barbat, Anne; Baur, Aurélia; Grohs, Cécile; Weiss, Bernard; Boussaha, Mekki; Esquerré, Diane; Klopp, Christophe; Rocha, Dominique; Boichard, Didier

    2013-01-01

    The regular decrease of female fertility over time is a major concern in modern dairy cattle industry. Only half of this decrease is explained by indirect response to selection on milk production, suggesting the existence of other factors such as embryonic lethal genetic defects. Genomic regions harboring recessive deleterious mutations were detected in three dairy cattle breeds by identifying frequent haplotypes (>1%) showing a deficit in homozygotes among Illumina Bovine 50k Beadchip haplotyping data from the French genomic selection database (47,878 Holstein, 16,833 Montbéliarde, and 11,466 Normande animals). Thirty-four candidate haplotypes (pHH3 in Holstein breed were identified. Haplotype length varied from 1 to 4.8 Mb and frequencies from 1.7 up to 9%. A significant negative effect on calving rate, consistent in heifers and in lactating cows, was observed for 9 of these haplotypes in matings between carrier bulls and daughters of carrier sires, confirming their association with embryonic lethal mutations. Eight regions were further investigated using whole genome sequencing data from heterozygous bull carriers and control animals (45 animals in total). Six strong candidate causative mutations including polymorphisms previously reported in FANCI (Brachyspina), SLC35A3 (CVM), APAF1 (HH1) and three novel mutations with very damaging effect on the protein structure, according to SIFT and Polyphen-2, were detected in GART, SHBG and SLC37A2 genes. In conclusion, this study reveals a yet hidden consequence of the important inbreeding rate observed in intensively selected and specialized cattle breeds. Counter-selection of these mutations and management of matings will have positive consequences on female fertility in dairy cattle.

  14. A mutation in human VAP-B--MSP domain, present in ALS patients, affects the interaction with other cellular proteins.

    Science.gov (United States)

    Mitne-Neto, M; Ramos, C R R; Pimenta, D C; Luz, J S; Nishimura, A L; Gonzales, F A; Oliveira, C C; Zatz, M

    2007-09-01

    Amyotrophic Lateral Sclerosis (ALS) is the most common adult-onset Motor Neuron Disease (MND), characterized by motor neurons death in the cortex, brainstem and spinal cord. Ten loci linked to Familial ALS have been mapped. ALS8 is caused by a substitution of a proline by a serine in the Vesicle-Associated Membrane Protein-Associated protein-B/C (VAP-B/C). VAP-B belongs to a highly conserved family of proteins implicated in Endoplasmic Reticulum-Golgi and intra-Golgi transport and microtubules stabilization. Previous studies demonstrated that the P56S mutation disrupts the subcellular localization of VAP-B and that this position would be essential for Unfolded Protein Response (UPR) induced by VAP-B. In the present work we expressed and purified recombinant wild-type and P56S mutant VAP-B-MSP domain for the analysis of its interactions with other cellular proteins. Our findings suggest that the P56S mutation may lead to a less stable interaction of this endoplasmic reticulum protein with at least two other proteins: tubulin and GAPDH. These two proteins have been previously related to other forms of neurodegenerative diseases and are potential key points to understand ALS8 pathogenesis and other forms of MND. Understanding the role of these protein interactions may help the treatment of this devastating disease in the future.

  15. Lethal interpersonal violence in the Middle Pleistocene.

    Directory of Open Access Journals (Sweden)

    Nohemi Sala

    Full Text Available Evidence of interpersonal violence has been documented previously in Pleistocene members of the genus Homo, but only very rarely has this been posited as the possible manner of death. Here we report the earliest evidence of lethal interpersonal violence in the hominin fossil record. Cranium 17 recovered from the Sima de los Huesos Middle Pleistocene site shows two clear perimortem depression fractures on the frontal bone, interpreted as being produced by two episodes of localized blunt force trauma. The type of injuries, their location, the strong similarity of the fractures in shape and size, and the different orientations and implied trajectories of the two fractures suggest they were produced with the same object in face-to-face interpersonal conflict. Given that either of the two traumatic events was likely lethal, the presence of multiple blows implies an intention to kill. This finding shows that the lethal interpersonal violence is an ancient human behavior and has important implications for the accumulation of bodies at the site, supporting an anthropic origin.

  16. Lethal interpersonal violence in the Middle Pleistocene.

    Science.gov (United States)

    Sala, Nohemi; Arsuaga, Juan Luis; Pantoja-Pérez, Ana; Pablos, Adrián; Martínez, Ignacio; Quam, Rolf M; Gómez-Olivencia, Asier; Bermúdez de Castro, José María; Carbonell, Eudald

    2015-01-01

    Evidence of interpersonal violence has been documented previously in Pleistocene members of the genus Homo, but only very rarely has this been posited as the possible manner of death. Here we report the earliest evidence of lethal interpersonal violence in the hominin fossil record. Cranium 17 recovered from the Sima de los Huesos Middle Pleistocene site shows two clear perimortem depression fractures on the frontal bone, interpreted as being produced by two episodes of localized blunt force trauma. The type of injuries, their location, the strong similarity of the fractures in shape and size, and the different orientations and implied trajectories of the two fractures suggest they were produced with the same object in face-to-face interpersonal conflict. Given that either of the two traumatic events was likely lethal, the presence of multiple blows implies an intention to kill. This finding shows that the lethal interpersonal violence is an ancient human behavior and has important implications for the accumulation of bodies at the site, supporting an anthropic origin.

  17. Lack of mutational hot spots during decitabine-mediated HIV-1 mutagenesis.

    Science.gov (United States)

    Rawson, Jonathan M O; Landman, Sean R; Reilly, Cavan S; Bonnac, Laurent; Patterson, Steven E; Mansky, Louis M

    2015-11-01

    Decitabine has previously been shown to induce lethal mutagenesis of human immunodeficiency virus type 1 (HIV-1). However, the factors that determine the susceptibilities of individual sequence positions in HIV-1 to decitabine have not yet been defined. To investigate this, we performed Illumina high-throughput sequencing of multiple amplicons prepared from proviral DNA that was recovered from decitabine-treated cells infected with HIV-1. We found that decitabine induced an ≈4.1-fold increase in the total mutation frequency of HIV-1, primarily due to a striking ≈155-fold increase in the G-to-C transversion frequency. Intriguingly, decitabine also led to an ≈29-fold increase in the C-to-G transversion frequency. G-to-C frequencies varied substantially (up to ≈80-fold) depending upon sequence position, but surprisingly, mutational hot spots (defined as upper outliers within the mutation frequency distribution) were not observed. We further found that every single guanine position examined was significantly susceptible to the mutagenic effects of decitabine. Taken together, these observations demonstrate for the first time that decitabine-mediated HIV-1 mutagenesis is promiscuous and occurs in the absence of a clear bias for mutational hot spots. These data imply that decitabine-mediated G-to-C mutagenesis is a highly effective antiviral mechanism for extinguishing HIV-1 infectivity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. KRAS mutations and CDKN2A promoter methylation show an interactive adverse effect on survival and predict recurrence of rectal cancer.

    Science.gov (United States)

    Kohonen-Corish, Maija R J; Tseung, Jason; Chan, Charles; Currey, Nicola; Dent, Owen F; Clarke, Stephen; Bokey, Les; Chapuis, Pierre H

    2014-06-15

    Colonic and rectal cancers differ in their clinicopathologic features and treatment strategies. Molecular markers such as gene methylation, microsatellite instability and KRAS mutations, are becoming increasingly important in guiding treatment decisions in colorectal cancer. However, their association with clinicopathologic variables and utility in the management of rectal cancer is still poorly understood. We analyzed CDKN2A gene methylation, CpG island methylator phenotype (CIMP), microsatellite instability and KRAS/BRAF mutations in a cohort of 381 rectal cancers with extensive clinical follow-up data. BRAF mutations (2%), CIMP-high (4%) and microsatellite instability-high (2%) were rare, whereas KRAS mutations (39%), CDKN2A methylation (20%) and CIMP-low (25%) were more common. Only CDKN2A methylation and KRAS mutations showed an association with poor overall survival but these did not remain significant when analyzed with other clinicopathologic factors. In contrast, this prognostic effect was strengthened by the joint presence of CDKN2A methylation and KRAS mutations, which independently predicted recurrence of cancer and was associated with poor overall and cancer-specific survival. This study has identified a subgroup of more aggressive rectal cancers that may arise through the KRAS-p16 pathway. It has been previously shown that an interaction of p16 deficiency and oncogenic KRAS promotes carcinogenesis in the mouse and is characterized by loss of oncogene-induced senescence. These findings may provide avenues for the discovery of new treatments in rectal cancer. © 2013 UICC.

  19. Complementation analyses for 45 mutations encompassing the pink-eyed dilution (p) locus of the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Russell, L.B.; Montgomery, C.S.; Cacheiro, N.L.A.; Johnson, D.K. [Oak Ridge National Lab., TN (United States)

    1995-12-01

    The homozygous and heterozygous phenotypes are described and characterized for 45 new pink-eyed dilution (p) locus mutations, most of them radiation-induced, that affect survival at various stages of mouse development. Cytogenetically detectable aberrations were found in three of the new p mutations (large deletion, inversion, translocation), with band 7C involved in each case. The complementation map developed from the study of 810 types of compound heterozygotes identifies five functional units: jls and jlm (two distinct juvenile-fitness functions, the latter associated with neuromuscular defects), pl-1 and pl-2 (associated with early-postimplantation and preimplantation death, respectively), and nl [neonatal lethality associated with cleft palate (the frequency of rare {open_quotes}escapers{close_quotes} from this defect varied with the genotype)]. Orientation of these units relative to genetic markers is as follows: centromere, Gas-2, pl-1, jls, jlm p, nl (equatable to cp1= Gabrb3); pl-2 probably resides in the c-deletion complex. pl-1 does not mask preimplantation lethals between Gas2 and p; and no genes affecting survival are located between p and cp1. The alleles specifying mottling or darker pigment (generically, p{sup m} and p{sup x}, respectively) probably do not represent deletions of p-coding sequences but could be small rearrangements involving proximal regulatory elements. 43 refs., 5 figs., 7 tabs.

  20. Colorectal cancer mutational profiles correlate with defined microbial communities in the tumor microenvironment.

    Science.gov (United States)

    Burns, Michael B; Montassier, Emmanuel; Abrahante, Juan; Priya, Sambhawa; Niccum, David E; Khoruts, Alexander; Starr, Timothy K; Knights, Dan; Blekhman, Ran

    2018-06-20

    Variation in the gut microbiome has been linked to colorectal cancer (CRC), as well as to host genetic variation. However, we do not know whether, in addition to baseline host genetics, somatic mutational profiles in CRC tumors interact with the surrounding tumor microbiome, and if so, whether these changes can be used to understand microbe-host interactions with potential functional biological relevance. Here, we characterized the association between CRC microbial communities and tumor mutations using microbiome profiling and whole-exome sequencing in 44 pairs of tumors and matched normal tissues. We found statistically significant associations between loss-of-function mutations in tumor genes and shifts in the abundances of specific sets of bacterial taxa, suggestive of potential functional interaction. This correlation allows us to statistically predict interactions between loss-of-function tumor mutations in cancer-related genes and pathways, including MAPK and Wnt signaling, solely based on the composition of the microbiome. In conclusion, our study shows that CRC microbiomes are correlated with tumor mutational profiles, pointing towards possible mechanisms of molecular interaction.

  1. Dose response and mutation induction by ion beam irradiation in buckwheat

    International Nuclear Information System (INIS)

    Morishita, T.; Yamaguchi, H.; Degi, K.; Shikazono, N.; Hase, Y.; Tanaka, A.; Abe, T.

    2003-01-01

    The biological effects of ion beams were investigated to pursue the development of a method for breeding by mutation in buckwheat. Common buckwheat (Botansoba, Bot) and tartary buckwheat (Rotundatiem, Rot) seeds were exposed to various ions in linear energy transfer (LET) at 9-630 keV/μm. The lethal dose 50 (LD 50 ) of ion beams were 10-300 Gy (Bot) and 30-500 Gy (Rot). It was indicated that a penetrating depth in excess of 1.7 mm is necessary to thoroughly saturate the target, and ions with a penetrating depth of less than 2.2 mm were affected by the presence of hulls. The maximum values of the relative biological effectiveness were 17.7 (Rot) and 22.5 (Bot) at 305 keV/μm. The effective cross sections increased with the LET, and the maximum values were 2.7 (Rot) and 3.0 μm 2 (Bot). The mutation induction effects of He and C ions were higher than those of gamma rays

  2. Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly.

    Science.gov (United States)

    Braun, Daniela A; Rao, Jia; Mollet, Geraldine; Schapiro, David; Daugeron, Marie-Claire; Tan, Weizhen; Gribouval, Olivier; Boyer, Olivia; Revy, Patrick; Jobst-Schwan, Tilman; Schmidt, Johanna Magdalena; Lawson, Jennifer A; Schanze, Denny; Ashraf, Shazia; Ullmann, Jeremy F P; Hoogstraten, Charlotte A; Boddaert, Nathalie; Collinet, Bruno; Martin, Gaëlle; Liger, Dominique; Lovric, Svjetlana; Furlano, Monica; Guerrera, I Chiara; Sanchez-Ferras, Oraly; Hu, Jennifer F; Boschat, Anne-Claire; Sanquer, Sylvia; Menten, Björn; Vergult, Sarah; De Rocker, Nina; Airik, Merlin; Hermle, Tobias; Shril, Shirlee; Widmeier, Eugen; Gee, Heon Yung; Choi, Won-Il; Sadowski, Carolin E; Pabst, Werner L; Warejko, Jillian K; Daga, Ankana; Basta, Tamara; Matejas, Verena; Scharmann, Karin; Kienast, Sandra D; Behnam, Babak; Beeson, Brendan; Begtrup, Amber; Bruce, Malcolm; Ch'ng, Gaik-Siew; Lin, Shuan-Pei; Chang, Jui-Hsing; Chen, Chao-Huei; Cho, Megan T; Gaffney, Patrick M; Gipson, Patrick E; Hsu, Chyong-Hsin; Kari, Jameela A; Ke, Yu-Yuan; Kiraly-Borri, Cathy; Lai, Wai-Ming; Lemyre, Emmanuelle; Littlejohn, Rebecca Okashah; Masri, Amira; Moghtaderi, Mastaneh; Nakamura, Kazuyuki; Ozaltin, Fatih; Praet, Marleen; Prasad, Chitra; Prytula, Agnieszka; Roeder, Elizabeth R; Rump, Patrick; Schnur, Rhonda E; Shiihara, Takashi; Sinha, Manish D; Soliman, Neveen A; Soulami, Kenza; Sweetser, David A; Tsai, Wen-Hui; Tsai, Jeng-Daw; Topaloglu, Rezan; Vester, Udo; Viskochil, David H; Vatanavicharn, Nithiwat; Waxler, Jessica L; Wierenga, Klaas J; Wolf, Matthias T F; Wong, Sik-Nin; Leidel, Sebastian A; Truglio, Gessica; Dedon, Peter C; Poduri, Annapurna; Mane, Shrikant; Lifton, Richard P; Bouchard, Maxime; Kannu, Peter; Chitayat, David; Magen, Daniella; Callewaert, Bert; van Tilbeurgh, Herman; Zenker, Martin; Antignac, Corinne; Hildebrandt, Friedhelm

    2017-10-01

    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.

  3. Mutations in plasmalemma vesicle-associated protein cause severe syndromic protein-losing enteropathy.

    Science.gov (United States)

    Broekaert, Ilse Julia; Becker, Kerstin; Gottschalk, Ingo; Körber, Friederike; Dötsch, Jörg; Thiele, Holger; Altmüller, Janine; Nürnberg, Peter; Hünseler, Christoph; Cirak, Sebahattin

    2018-04-16

    Protein-losing enteropathy (PLE) is characterised by gastrointestinal protein leakage due to loss of mucosal integrity or lymphatic abnormalities. PLE can manifest as congenital diarrhoea and should be differentiated from other congenital diarrhoeal disorders. Primary PLEs are genetically heterogeneous and the underlying genetic defects are currently emerging. We report an infant with fatal PLE for whom we aimed to uncover the underlying pathogenic mutation. We performed whole exome sequencing (WES) for the index patient. Variants were classified based on the American College of Medical Genetics and Genomics guidelines. WES results and our detailed clinical description of the patient were compared with the literature. We discovered a novel homozygous stop mutation (c.988C>T, p.Q330*) in the Plasmalemma Vesicle-Associated Protein ( PLVAP ) gene in a newborn with fatal PLE, facial dysmorphism, and renal, ocular and cardiac anomalies. The Q330* mutation is predicted to result in complete loss of PLVAP protein expression leading to deletion of the diaphragms of endothelial fenestrae, resulting in plasma protein extravasation and PLE. Recently, another single homozygous stop mutation in PLVAP causing lethal PLE in an infant was reported. Our findings validate PLVAP mutations as a cause of syndromic PLE. Prenatal anomalies, severe PLE and syndromic features may guide the diagnosis of this rare disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. The resistance of Micrococcus radiodurans to killing and mutation by agents which damage DNA

    International Nuclear Information System (INIS)

    Sweet, D.M.; Moseley, B.E.B.

    1976-01-01

    The resistance of Micrococcus radiodurans to the lethal and mutagenic action of ultraviolet (UV) light, ionising (γ) radiation, mitomycin C (MTC), nitrous acid (NA), hydroxylamine (HA), N-methyl-N'-nitro-N-nitrosoguanidine (NG), ethylmethanesulphonate (EMS) and β-propiolactone (βPL) has been compared with that of Escherichia coli B/r. M. radiodurans was much more resistant than E. coli B/r to the lethal effects of UV light (by a factor of 33), γ-radiation (55), NG (15) and NA (62), showed intermediate resistance to MTC (4) and HA (7), but was sensitive to EMS (1) and βPL (2). M. radiodurans was very resistant to mutagens producing damage which can be repaired by a recombination system, indicating that it possesses an extremely efficient recombination repair mechanism. Both species were equally sensitive to mutation to trimethoprim resistance by NG, but M. radiodurans was more resistant than E. coli B/r to the other mutagens tested, being non-mutable by UV light, γ-radiation, MTC and HA, and only slightly sensitive to mutation by NA, EMS, and βPL. The resistance of M. radiodurans to mutation by UV light, γ-radiation and MTC is consistent with an hypothesis that recombination repair in M. radiodurans is accurate since these mutagens may depend on an 'error-prone' recombination system for their mutagenic effect in E. coli B/r. However, because M. radiodurans is also resistant to mutagens such as HA and EMS, which are mutagenic in E. coli in the absence of an 'error-prone' system, we propose that all the mutagens tested may have a common mode of action in E. coli B/r, but that this mutagenic pathway is missing in M. radiodurans

  5. Transporting Patients with Lethal Contagious Infections

    National Research Council Canada - National Science Library

    Swartz, Colleen

    2002-01-01

    .... The AIT is a unique military medical team capable of worldwide air evacuation and management of a limited number of patients who are potentially exposed to known and unknown lethal communicable...

  6. Lethal digenic mutations in the K+ channels Kir4.1 (KCNJ10) and SLACK (KCNT1) associated with severe-disabling seizures and neurodevelopmental delay.

    Science.gov (United States)

    Hasan, Sonia; Balobaid, Ameera; Grottesi, Alessandro; Dabbagh, Omar; Cenciarini, Marta; Rawashdeh, Rifaat; Al-Sagheir, Afaf; Bove, Cecilia; Macchioni, Lara; Pessia, Mauro; Al-Owain, Mohammed; D'Adamo, Maria Cristina

    2017-10-01

    A 2-yr-old boy presented profound developmental delay, failure to thrive, ataxia, hypotonia, and tonic-clonic seizures that caused the death of the patient. Targeted and whole exome sequencing revealed two heterozygous missense variants: a novel mutation in the KCNJ10 gene that encodes for the inward-rectifying K + channel Kir4.1 and another previously characterized mutation in KCNT1 that encodes for the Na + -activated K + channel known as Slo2.2 or SLACK. The objectives of this study were to perform the clinical and genetic characterization of the proband and his family and to examine the functional consequence of the Kir4.1 mutation. The mutant and wild-type KCNJ10 constructs were generated and heterologously expressed in Xenopus laevis oocytes, and whole cell K + currents were measured using the two-electrode voltage-clamp technique. The KCNJ10 mutation c.652C>T resulted in a p.L218F substitution at a highly conserved residue site. Wild-type KCNJ10 expression yielded robust Kir current, whereas currents from oocytes expressing the mutation were reduced, remarkably. Western Blot analysis revealed reduced protein expression by the mutation. Kir5.1 subunits display selective heteromultimerization with Kir4.1 constituting channels with unique kinetics. The effect of the mutation on Kir4.1/5.1 channel activity was twofold: a reduction in current amplitudes and an increase in the pH-dependent inhibition. We thus report a novel loss-of-function mutation in Kir4.1 found in a patient with a coexisting mutation in SLACK channels that results in a fatal disease. NEW & NOTEWORTHY We present and characterize a novel mutation in KCNJ10 Unlike previously reported EAST/SeSAME patients, our patient was heterozygous, and contrary to previous studies, mimicking the heterozygous state by coexpression resulted in loss of channel function. We report in the same patient co-occurrence of a KCNT1 mutation resulting in a more severe phenotype. This study provides new insights into the

  7. Mutations Phe785Leu and Thr618Met in Na+, K+-ATPase, Associated with Familial Rapid-Onset Dystonia Parkinsonism, Interfere with Na+ Interaction by Distinct Mechanisms

    DEFF Research Database (Denmark)

    Schack, Vivien Rodacker; Toustrup-Jensen, Mads Schak; Vilsen, Bente

    The Na+, K+-ATPase plays key roles in brain function. Recently, missense mutations in the Na+, K+-ATPase were found associated with familial rapid-onset dystonia parkinsonism (FRDP). Here, we have characterized the functional consequences of FRDP mutations Phe785Leu and Thr618Met. Both mutations...... lead to functionally altered, but active, Na+, K+-pumps that display reduced apparent affinity for cytoplasmic Na+, but the underlying mechanism differs between the mutants. In Phe785Leu, the interaction of the E1 form with Na+ is defective, and the E1-E2 equilibrium is not displaced. In Thr618Met......, the Na+ affinity is reduced because of displacement of the conformational equilibrium in favor of the K+-occluded E2(K2) form. In both mutants, K+ interaction at the external activating sites of the E2P phosphoenzyme is normal. The change of cellular Na+ homeostasis is likely a major factor contributing...

  8. Mutations Phe785Leu and Thr618Met in Na+, K+-ATPase, Associated with Familial Rapid-Onset Dystonia Parkinsonism, Interfere with Na+ Interaction by Distinct Mechanisms

    DEFF Research Database (Denmark)

    Schack, Vivien Rodacker; Toustrup-Jensen, Mads Schak; Vilsen, Bente

    The Na+, K+-ATPase plays key roles in brain function. Recently, missense mutations in the Na+, K+-ATPase were found associated with familial rapid-onset dystonia parkinsonism (FRDP). We have characterized the functional consequences of FRDP mutations Phe785Leu and Thr618Met. Both mutations lead...... to functionally altered, but active, Na+, K+-pumps that display reduced apparent affinity for cytoplasmic Na+, but the underlying mechanism differs between the mutants. In Phe785Leu, the interaction of the E1 form with Na+ is defective, and the E1-E2 equilibrium is not displaced. In Thr618Met, the Na+ affinity...... is reduced because of displacement of the conformational equilibrium in favor of the K+-occluded E2(K2) form. In both mutants, K+ interaction at the external activating sites of the E2P phosphoenzyme is normal. The change of cellular Na+ homeostasis is likely a major factor contributing to the development...

  9. A bacterial cocaine esterase protects against cocaine-induced epileptogenic activity and lethality.

    Science.gov (United States)

    Jutkiewicz, Emily M; Baladi, Michelle G; Cooper, Ziva D; Narasimhan, Diwahar; Sunahara, Roger K; Woods, James H

    2009-09-01

    Cocaine toxicity results in cardiovascular complications, seizures, and death and accounts for approximately 20% of drug-related emergency department visits every year. Presently, there are no treatments to eliminate the toxic effects of cocaine. The present study hypothesizes that a bacterial cocaine esterase with high catalytic efficiency would provide rapid and robust protection from cocaine-induced convulsions, epileptogenic activity, and lethality. Cocaine-induced paroxysmal activity and convulsions were evaluated in rats surgically implanted with radiotelemetry devices (N=6 per treatment group). Cocaine esterase was administered 1 minute after a lethal dose of cocaine or after cocaine-induced convulsions to determine the ability of the enzyme to prevent or reverse, respectively, the effects of cocaine. The cocaine esterase prevented all cocaine-induced electroencephalographic changes and lethality. This effect was specific for cocaine because the esterase did not prevent convulsions and death induced by a cocaine analog, (-)-2beta-carbomethoxy-3beta-phenyltropane. The esterase prevented lethality even after cocaine-induced convulsions occurred. In contrast, the short-acting benzodiazepine, midazolam, prevented cocaine-induced convulsions but not the lethal effects of cocaine. The data showed that cocaine esterase successfully degraded circulating cocaine to prevent lethality and that cocaine-induced convulsions alone are not responsible for the lethal effects of cocaine in this model. Therefore, further investigation into the use of cocaine esterase for treating cocaine overdose and its toxic effects is warranted.

  10. The (noneffects of lethal population control on the diet of Australian dingoes.

    Directory of Open Access Journals (Sweden)

    Benjamin L Allen

    Full Text Available Top-predators contribute to ecosystem resilience, yet individuals or populations are often subject to lethal control to protect livestock, managed game or humans from predation. Such management actions sometimes attract concern that lethal control might affect top-predator function in ways ultimately detrimental to biodiversity conservation. The primary function of a predator is predation, which is often investigated by assessing their diet. We therefore use data on prey remains found in 4,298 Australian dingo scats systematically collected from three arid sites over a four year period to experimentally assess the effects of repeated broad-scale poison-baiting programs on dingo diet. Indices of dingo dietary diversity and similarity were either identical or near-identical in baited and adjacent unbaited treatment areas in each case, demonstrating no control-induced change to dingo diets. Associated studies on dingoes' movement behaviour and interactions with sympatric mesopredators were similarly unaffected by poison-baiting. These results indicate that mid-sized top-predators with flexible and generalist diets (such as dingoes may be resilient to ongoing and moderate levels of population control without substantial alteration of their diets and other related aspects of their ecological function.

  11. Functional diversity of non-lethal effects, chemical camouflage, and variation in fish avoidance in colonizing beetles.

    Science.gov (United States)

    Resetarits, William J; Pintar, Matthew R

    2016-12-01

    Predators play an extremely important role in natural communities. In freshwater systems, fish can dominate sorting both at the colonization and post-colonization stage. Specifically, for many colonizing species, fish can have non-lethal, direct effects that exceed the lethal direct effects of predation. Functionally diverse fish species with a range of predatory capabilities have previously been observed to elicit functionally equivalent responses on oviposition in tree frogs. We tested this hypothesis of functional equivalence of non-lethal effects for four predatory fish species, using naturally colonizing populations of aquatic beetles. Among taxa other than mosquitoes, and with the exception of the chemically camouflaged pirate perch, Aphredoderus sayanus, we provide the first evidence of variation in colonization or oviposition responses to different fish species. Focusing on total abundance, Fundulus chrysotus, a gape-limited, surface-feeding fish, elicited unique responses among colonizing Hydrophilidae, with the exception of the smallest and most abundant taxa, Paracymus, while Dytiscidae responded similarly to all avoided fish. Neither family responded to A. sayanus. Analysis of species richness and multivariate characterization of the beetle assemblages for the four fish species and controls revealed additional variation among the three avoided species and confirmed that chemical camouflage in A. sayanus results in assemblages essentially identical to fishless controls. The origin of this variation in beetle responses to different fish is unknown, but may involve variation in cue sensitivity, different behavioral algorithms, or differential responses to species-specific fish cues. The identity of fish species occupying aquatic habitats is crucial to understanding community structure, as varying strengths of lethal and non-lethal effects, as well as their interaction, create complex landscapes of predator effects and challenge the notion of functional

  12. A lethal ovitrap-based mass trapping scheme for dengue control in Australia: I. Public acceptability and performance of lethal ovitraps.

    Science.gov (United States)

    Ritchie, S A; Rapley, L P; Williams, C; Johnson, P H; Larkman, M; Silcock, R M; Long, S A; Russell, R C

    2009-12-01

    We report on the first field evaluation of the public acceptability and performance of two types of lethal ovitrap (LO) in three separate trials in Cairns, Australia. Health workers were able to set standard lethal ovitraps (SLOs) in 75 and 71% of premise yards in the wet and dry season, respectively, and biodegradable lethal ovitraps (BLOs) in 93% of yards. Public acceptance, measured as retention of traps by residents, was high for both trap types, with porous (grass, soil and mulch) versus solid (tiles, concrete, wood and stone) substrates. The SLOs and the BLOs were readily acceptable to ovipositing Aedes aegypti L. (Diptera: Culicidae); the mean number of eggs/trap was 6 and 15, for the dry season and wet season SLO trial, respectively, and 15 for the BLO wet season trial. Indeed, 84-94% of premise yards had egg positive SLOs or BLOs. A high percentage of both wet and dry season SLOs (29 and 70%, respectively) and BLOs (62%) that were dry after 4 weeks were egg positive, indicating the traps had functioned. Lethal strips from SLOs and BLOs that had been exposed for 4 weeks killed 83 and 74%, respectively, of gravid Ae. aegypti in laboratory assays. These results indicate that mass trapping schemes using SLOs and BLOs are not rejected by the public and effectively target gravid Ae. aegypti. The impact of the interventions on mosquito populations is described in a companion paper.

  13. Hemochromatosis C282Y gene mutation as a potential susceptibility ...

    African Journals Online (AJOL)

    G.M. Mokhtar

    2017-08-12

    Aug 12, 2017 ... Background: Hereditary hemochromatosis is the most frequent cause of primary iron overload that is associated with HFE gene's mutation especially the C282Y mutation. The interaction between hemoglo- bin chain synthesis' disorders and the C282Y mutation may worsen the clinical picture of beta-.

  14. Comparative studies on the lethal, mutagenic, and recombinogenic effects of ultraviolet -A, -B, -C, and visible light with and without 8-methoxypsoralen in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Mondon, P.; Shahin, M.M.

    1992-01-01

    Genetic effects of UV-A, UV-B, UV-C and the combination of 8-methoxypsoralen (8-MOP) with UV-A or visible light were studied in the haploid strain XV185-14C and diploid strain D5 of Saccharomyces cerevisiae. The induction of his + , lys + , and hom + reverse mutations was measured in strain XV185-14C. In strain D5 we measured the induction of genetically altered colonies, particularly twin spot colonies arising from a mitotic crossing-over. UV-C and UV-B induced point mutations at the three loci in the haploid strain and mitotic crossing-over and other genetic alterations in the diploid strain. UV-C was more mutagenic and recombinogenic than UV-B. UV-A or visible light alone did not induce genotoxic effects at the doses tested. However, UV-A plus 8-MOP produced lethal and mutagenic effects in the haploid strain XV185-14C, although mutagenic activity was less than that of UV-B. Visible light plus 8-MOP also induced genotoxic effects in strain XV185-14C. In the diploid strain D5, UV-A plus 8-MOP induced a higher frequency of genetic alterations than UV-B at comparative doses. Visible light plus 8-MOP was also genetically active in strain D5. The haploid strain was more sensitive to the lethal effects of UV-C, UV-B, UV-A, and impure visible light plus 8-MOP than the diploid strain. (Author)

  15. Lethal mechanisms in gastric volvulus.

    Science.gov (United States)

    Omond, Kimberley J; Byard, Roger W

    2017-01-01

    A 55-year-old wheelchair-bound woman with severe cerebral palsy was found at autopsy to have marked distention of the stomach due to a volvulus. The stomach was viable, and filled with air and fluid and had pushed the left dome of the diaphragm upwards causing marked compression of the left lung with a mediastinal shift to the right (including the heart). There was no evidence of gastric perforation, ischaemic necrosis or peritonitis. Removal of the organ block revealed marked kyphoscoliosis. Histology confirmed the viability of the stomach and biochemistry showed no dehydration. Death in cases of acute gastric volvulus usually occurs because of compromise of the gastric blood supply resulting in ischaemic necrosis with distention from swallowed air and fluid resulting in perforation with lethal peritonitis. Hypovolaemic shock may also occur. However, the current case demonstrates an alternative lethal mechanism, that of respiratory compromise due to marked thoracic organ compression.

  16. In silico analysis of conformational changes induced by mutation of aromatic binding residues: consequences for drug binding in the hERG K+ channel.

    Directory of Open Access Journals (Sweden)

    Kirsten Knape

    Full Text Available Pharmacological inhibition of cardiac hERG K(+ channels is associated with increased risk of lethal arrhythmias. Many drugs reduce hERG current by directly binding to the channel, thereby blocking ion conduction. Mutation of two aromatic residues (F656 and Y652 substantially decreases the potency of numerous structurally diverse compounds. Nevertheless, some drugs are only weakly affected by mutation Y652A. In this study we utilize molecular dynamics simulations and docking studies to analyze the different effects of mutation Y652A on a selected number of hERG blockers. MD simulations reveal conformational changes in the binding site induced by mutation Y652A. Loss of π-π-stacking between the two aromatic residues induces a conformational change of the F656 side chain from a cavity facing to cavity lining orientation. Docking studies and MD simulations qualitatively reproduce the diverse experimentally observed modulatory effects of mutation Y652A and provide a new structural interpretation for the sensitivity differences.

  17. The lethal injection quandary: how medicine has dismantled the death penalty.

    Science.gov (United States)

    Denno, Deborah W

    2007-10-01

    On February 20, 2006, Michael Morales was hours away from execution in California when two anesthesiologists declined to participate in his lethal injection procedure, thereby halting all state executions. The events brought to the surface the long-running schism between law and medicine, raising the question of whether any beneficial connection between the professions ever existed in the execution context. History shows it seldom did. Decades of botched executions prove it. This Article examines how states ended up with such constitutionally vulnerable lethal injection procedures, suggesting that physician participation in executions, though looked upon with disdain, is more prevalent--and perhaps more necessary--than many would like to believe. The Article also reports the results of this author's unique nationwide study of lethal injection protocols and medical participation. The study demonstrates that states have continued to produce grossly inadequate protocols that severely restrict sufficient understanding of how executions are performed and heighten the likelihood of unconstitutionality. The analysis emphasizes in particular the utter lack of medical or scientific testing of lethal injection despite the early and continuous involvement of doctors but ongoing detachment of medical societies. Lastly, the Article discusses the legal developments that led up to the current rush of lethal injection lawsuits as well as the strong and rapid reverberations that followed, particularly with respect to medical involvement. This Article concludes with two recommendations. First, much like what occurred in this country when the first state switched to electrocution, there should be a nationwide study of proper lethal injection protocols. An independent commission consisting of a diverse group of qualified individuals, including medical personnel, should conduct a thorough assessment of lethal injection, especially the extent of physician participation. Second, this

  18. Site-Specific Instability in DROSOPHILA MELANOGASTER: Evidence for Transposition of Destabilizing Element

    OpenAIRE

    Laverty, Todd R.; Lim, J. K.

    1982-01-01

    In this study, we show that at least one lethal mutation at the 3F–4A region of the X chromosome can generate an array of chromosome rearrangements, all with one chromosome break in the 3F–4A region. The mutation at 3F–4A (secondary mutation) was detected in an X chromosome carrying a reverse mutation of an unstable lethal mutation, which was mapped in the 6F1–2 doublet (primary mutation). The primary lethal mutation at 6F1–2 had occurred in an unstable chromosome (Uc) described previously (L...

  19. BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications.

    Directory of Open Access Journals (Sweden)

    Dora Dias-Santagata

    2011-03-01

    Full Text Available Pleomorphic xanthoastrocytoma (PXA is low-grade glial neoplasm principally affecting children and young adults. Approximately 40% of PXA are reported to recur within 10 years of primary resection. Upon recurrence, patients receive radiation therapy and conventional chemotherapeutics designed for high-grade gliomas. Genetic changes that can be targeted by selective therapeutics have not been extensively evaluated in PXA and ancillary diagnostic tests to help discriminate PXA from other pleomorphic and often more aggressive astrocytic malignancies are limited. In this study, we apply the SNaPshot multiplexed targeted sequencing platform in the analysis of brain tumors to interrogate 60 genetic loci that are frequently mutated in 15 cancer genes. In our analysis we detect BRAF V600E mutations in 12 of 20 (60% WHO grade II PXA, in 1 of 6 (17% PXA with anaplasia and in 1 glioblastoma arising in a PXA. Phospho-ERK was detected in all tumors independent of the BRAF mutation status. BRAF duplication was not detected in any of the PXA cases. BRAF V600E mutations were identified in only 2 of 71 (2.8% glioblastoma (GBM analyzed, including 1 of 9 (11.1% giant cell GBM (gcGBM. The finding that BRAF V600E mutations are common in the majority of PXA has important therapeutic implications and may help in differentiating less aggressive PXAs from lethal gcGBMs and GBMs.

  20. Favipiravir can evoke lethal mutagenesis and extinction of foot-and-mouth disease virus.

    Science.gov (United States)

    de Avila, Ana Isabel; Moreno, Elena; Perales, Celia; Domingo, Esteban

    2017-04-02

    Antiviral agents are increasingly considered an option for veterinary medicine. An understanding of their mechanism of activity is important to plan their administration either as monotherapy or in combination with other agents. Previous studies have shown that the broad spectrum antiviral agent favipiravir (T-705) and its derivatives T-1105 and T-1106 are efficient inhibitors of foot-and-mouth disease virus (FMDV) replication in cell culture and in vivo. However, no mechanism for their activity against FMDV has been proposed. In the present study we show that favipiravir (T-705) can act as a lethal mutagen for FMDV in cell culture. Evidence includes virus extinction associated with increase in mutation frequency in the mutant spectrum of 860 residues of the 3D (polymerase)-coding region, and a decrease of specific infectivity while the consensus nucleotide sequence of the region analyzed remained invariant. The mutational spectrum evoked by favipiravir differs from that observed with other viruses in that no predominant transition type is observed, indicating that a movement towards A,U- or G,C-rich regions of sequence space is not a prerequisite for virus extinction. We discuss prospects for the use of favipiravir to assist in the control of FMDV, and its possible broader use in veterinary medicine as an extension of its current status as antiviral agent for human influenza virus. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Calcium-Sensing Receptor Tumor Expression and Lethal Prostate Cancer Progression.

    Science.gov (United States)

    Ahearn, Thomas U; Tchrakian, Nairi; Wilson, Kathryn M; Lis, Rosina; Nuttall, Elizabeth; Sesso, Howard D; Loda, Massimo; Giovannucci, Edward; Mucci, Lorelei A; Finn, Stephen; Shui, Irene M

    2016-06-01

    Prostate cancer metastases preferentially target bone, and the calcium-sensing receptor (CaSR) may play a role in promoting this metastatic progression. We evaluated the association of prostate tumor CaSR expression with lethal prostate cancer. A validated CaSR immunohistochemistry assay was performed on tumor tissue microarrays. Vitamin D receptor (VDR) expression and phosphatase and tensin homolog tumor status were previously assessed in a subset of cases by immunohistochemistry. Cox proportional hazards models adjusting for age and body mass index at diagnosis, Gleason grade, and pathological tumor node metastasis stage were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association of CaSR expression with lethal prostate cancer. The investigation was conducted in the Health Professionals Follow-up Study and Physicians' Health Study. We studied 1241 incident prostate cancer cases diagnosed between 1983 and 2009. Participants were followed up or cancer-specific mortality or development of metastatic disease. On average, men were followed up 13.6 years, during which there were 83 lethal events. High CaSR expression was associated with lethal prostate cancer independent of clinical and pathological variables (HR 2.0; 95% CI 1.2-3.3). Additionally, there was evidence of effect modification by VDR expression; CaSR was associated with lethal progression among men with low tumor VDR expression (HR 3.2; 95% CI 1.4-7.3) but not in cases with high tumor VDR expression (HR 0.8; 95% CI 0.2-3.0). Tumor CaSR expression is associated with an increased risk of lethal prostate cancer, particularly in tumors with low VDR expression. These results support further investigating the mechanism linking CaSR with metastases.

  2. No evidence of somatic aryl hydrocarbon receptor interacting protein mutations in sporadic endocrine neoplasia

    DEFF Research Database (Denmark)

    Raitila, A; Georgitsi, M; Karhu, A

    2007-01-01

    . Here, we have analyzed 32 pituitary adenomas and 79 other tumors of the endocrine system for somatic AIP mutations by direct sequencing. No somatic mutations were identified. However, two out of nine patients with prolactin-producing adenoma were shown to harbor a Finnish founder mutation (Q14X...... as non-secreting pituitary adenomas have been reported, most mutation-positive patients have had growth hormone-producing adenomas diagnosed at relatively young age. Pituitary adenomas are also component tumors of some familial endocrine neoplasia syndromes such as multiple endocrine neoplasia type 1...... (MEN1) and Carney complex (CNC). Genes underlying MEN1 and CNC are rarely mutated in sporadic pituitary adenomas, but more often in other lesions contributing to these two syndromes. Thus far, the occurrence of somatic AIP mutations has not been studied in endocrine tumors other than pituitary adenomas...

  3. Cutting Edge: cGAS Is Required for Lethal Autoimmune Disease in the Trex1-Deficient Mouse Model of Aicardi-Goutières Syndrome.

    Science.gov (United States)

    Gray, Elizabeth E; Treuting, Piper M; Woodward, Joshua J; Stetson, Daniel B

    2015-09-01

    Detection of intracellular DNA triggers activation of the stimulator of IFN genes-dependent IFN-stimulatory DNA (ISD) pathway, which is essential for antiviral immune responses. However, chronic activation of this pathway is implicated in autoimmunity. Mutations in TREX1, a 3' repair exonuclease that degrades cytosolic DNA, cause Aicardi-Goutières syndrome and chilblain lupus. Trex1 (-/-) mice develop lethal, IFN-driven autoimmune disease that is dependent on activation of the ISD pathway, but the DNA sensors that detect the endogenous DNA that accumulates in Trex1 (-/-) mice have not been defined. Multiple DNA sensors have been proposed to activate the ISD pathway, including cyclic GMP-AMP synthase (cGAS). In this study, we show that Trex1 (-/-) mice lacking cGAS are completely protected from lethality, exhibit dramatically reduced tissue inflammation, and fail to develop autoantibodies. These findings implicate cGAS as a key driver of autoimmune disease and suggest that cGAS inhibitors may be useful therapeutics for Aicardi-Goutières syndrome and related autoimmune diseases. Copyright © 2015 by The American Association of Immunologists, Inc.

  4. Y682 mutation of amyloid precursor protein promotes endo-lysosomal dysfunction by disrupting APP-SorLA interaction

    Directory of Open Access Journals (Sweden)

    Luca Rosario La Rosa

    2015-04-01

    Full Text Available The intracellular transport and localization of amyloid precursor protein (APP are critical determinants of APP processing and β-amyloid peptide production, thus crucially important for the pathophysiology of Alzheimer’s disease (AD. Notably, the C-terminal Y682ENPTY687 domain of APP binds to specific adaptors controlling APP trafficking and sorting in neurons. Mutation on the Y682 residue to glycine (Y682G leads to altered APP sorting in hippocampal neurons that favors its accumulation in intracellular compartments and the release of soluble APPα. Such alterations induce premature aging and learning and cognitive deficits in APP Y682G mutant mice (APPYG/YG. Here, we report that Y682G mutation affects formation of the APP complex with sortilin-related receptor (SorLA, resulting in endo-lysosomal dysfunctions and neuronal degeneration. Moreover, disruption of the APP/SorLA complex changes the trafficking pathway of SorLA, with its consequent increase in secretion outside neurons. Mutations in the SorLA gene are a prognostic factor in AD, and increases in SorLA levels in cerebrospinal fluid are predictive of AD in humans. These results might open new possibilities in comprehending the role played by SorLA in its interaction with APP and in the progression of neuronal degeneration. In addition, they further underline the crucial role played by Y682 residue in controlling APP trafficking in neurons.

  5. Immunobiotic Lactobacillus administered post-exposure averts the lethal sequelae of respiratory virus infection.

    Science.gov (United States)

    Percopo, Caroline M; Rice, Tyler A; Brenner, Todd A; Dyer, Kimberly D; Luo, Janice L; Kanakabandi, Kishore; Sturdevant, Daniel E; Porcella, Stephen F; Domachowske, Joseph B; Keicher, Jesse D; Rosenberg, Helene F

    2015-09-01

    We reported previously that priming of the respiratory tract with immunobiotic Lactobacillus prior to virus challenge protects mice against subsequent lethal infection with pneumonia virus of mice (PVM). We present here the results of gene microarray which document differential expression of proinflammatory mediators in response to PVM infection alone and those suppressed in response to Lactobacillus plantarum. We also demonstrate for the first time that intranasal inoculation with live or heat-inactivated L. plantarum or Lactobacillus reuteri promotes full survival from PVM infection when administered within 24h after virus challenge. Survival in response to L. plantarum administered after virus challenge is associated with suppression of proinflammatory cytokines, limited virus recovery, and diminished neutrophil recruitment to lung tissue and airways. Utilizing this post-virus challenge protocol, we found that protective responses elicited by L. plantarum at the respiratory tract were distinct from those at the gastrointestinal mucosa, as mice devoid of the anti-inflammatory cytokine, interleukin (IL)-10, exhibit survival and inflammatory responses that are indistinguishable from those of their wild-type counterparts. Finally, although L. plantarum interacts specifically with pattern recognition receptors TLR2 and NOD2, the respective gene-deleted mice were fully protected against lethal PVM infection by L. plantarum, as are mice devoid of type I interferon receptors. Taken together, L. plantarum is a versatile and flexible agent that is capable of averting the lethal sequelae of severe respiratory infection both prior to and post-virus challenge via complex and potentially redundant mechanisms. Published by Elsevier B.V.

  6. Drosophila studies support a role for a presynaptic synaptotagmin mutation in a human congenital myasthenic syndrome.

    Directory of Open Access Journals (Sweden)

    Mallory C Shields

    Full Text Available During chemical transmission, the function of synaptic proteins must be coordinated to efficiently release neurotransmitter. Synaptotagmin 2, the Ca2+ sensor for fast, synchronized neurotransmitter release at the human neuromuscular junction, has recently been implicated in a dominantly inherited congenital myasthenic syndrome associated with a non-progressive motor neuropathy. In one family, a proline residue within the C2B Ca2+-binding pocket of synaptotagmin is replaced by a leucine. The functional significance of this residue has not been investigated previously. Here we show that in silico modeling predicts disruption of the C2B Ca2+-binding pocket, and we examine the in vivo effects of the homologous mutation in Drosophila. When expressed in the absence of native synaptotagmin, this mutation is lethal, demonstrating for the first time that this residue plays a critical role in synaptotagmin function. To achieve expression similar to human patients, the mutation is expressed in flies carrying one copy of the wild type synaptotagmin gene. We now show that Drosophila carrying this mutation developed neurological and behavioral manifestations similar to those of human patients and provide insight into the mechanisms underlying these deficits. Our Drosophila studies support a role for this synaptotagmin point mutation in disease etiology.

  7. Identification of conserved amino acids in the herpes simplex virus type 1 UL8 protein required for DNA synthesis and UL52 primase interaction in the virus replisome.

    Science.gov (United States)

    Muylaert, Isabella; Zhao, Zhiyuan; Andersson, Torbjörn; Elias, Per

    2012-09-28

    We have used oriS-dependent transient replication assays to search for species-specific interactions within the herpes simplex virus replisome. Hybrid replisomes derived from herpes simplex virus type 1 (HSV-1) and equine herpesvirus type 1 (EHV-1) failed to support DNA replication in cells. Moreover, the replisomes showed a preference for their cognate origin of replication. The results demonstrate that the herpesvirus replisome behaves as a molecular machine relying on functionally important interactions. We then searched for functional interactions in the replisome context by subjecting HSV-1 UL8 protein to extensive mutagenesis. 52 mutants were made by replacing single or clustered charged amino acids with alanines. Four mutants showed severe replication defects. Mutant A23 exhibited a lethal phenotype, and mutants A49, A52 and A53 had temperature-sensitive phenotypes. Mutants A49 and A53 did not interact with UL52 primase as determined by co-immunoprecipitation experiments. Using GFP-tagged UL8, we demonstrate that all mutants were unable to support formation of ICP8-containing nuclear replication foci. Extended mutagenesis suggested that a highly conserved motif corresponding to mutant A49 serves an important role for establishing a physical contact between UL8 and UL52. The replication-defective mutations affected conserved amino acids, and similar phenotypes were observed when the corresponding mutations were introduced into EHV-1 UL8.

  8. A multivariate model of stakeholder preference for lethal cat management.

    Science.gov (United States)

    Wald, Dara M; Jacobson, Susan K

    2014-01-01

    Identifying stakeholder beliefs and attitudes is critical for resolving management conflicts. Debate over outdoor cat management is often described as a conflict between two groups, environmental advocates and animal welfare advocates, but little is known about the variables predicting differences among these critical stakeholder groups. We administered a mail survey to randomly selected stakeholders representing both of these groups (n=1,596) in Florida, where contention over the management of outdoor cats has been widespread. We used a structural equation model to evaluate stakeholder intention to support non-lethal management. The cognitive hierarchy model predicted that values influenced beliefs, which predicted general and specific attitudes, which in turn, influenced behavioral intentions. We posited that specific attitudes would mediate the effect of general attitudes, beliefs, and values on management support. Model fit statistics suggested that the final model fit the data well (CFI=0.94, RMSEA=0.062). The final model explained 74% of the variance in management support, and positive attitudes toward lethal management (humaneness) had the largest direct effect on management support. Specific attitudes toward lethal management and general attitudes toward outdoor cats mediated the relationship between positive (pstakeholder intention to support non-lethal cat management. Our findings suggest that stakeholders can simultaneously perceive both positive and negative beliefs about outdoor cats, which influence attitudes toward and support for non-lethal management.

  9. Acute and sub-lethal response to mercury in Arctic and boreal calanoid copepods.

    Science.gov (United States)

    Overjordet, Ida Beathe; Altin, Dag; Berg, Torunn; Jenssen, Bjørn Munro; Gabrielsen, Geir Wing; Hansen, Bjørn Henrik

    2014-10-01

    Acute lethal toxicity, expressed as LC50 values, is a widely used parameter in risk assessment of chemicals, and has been proposed as a tool to assess differences in species sensitivities to chemicals between climatic regions. Arctic Calanus glacialis and boreal Calanus finmarchicus were exposed to mercury (Hg(2+)) under natural environmental conditions including sea temperatures of 2° and 10°C, respectively. Acute lethal toxicity (96 h LC50) and sub-lethal molecular response (GST expression; in this article gene expression is used as a synonym of gene transcription, although it is acknowledged that gene expression is also regulated, e.g., at translation and protein stability level) were studied. The acute lethal toxicity was monitored for 96 h using seven different Hg concentrations. The sub-lethal experiment was set up on the basis of nominal LC50 values for each species using concentrations equivalent to 50, 5 and 0.5% of their 96 h LC50 value. No significant differences were found in acute lethal toxicity between the two species. The sub-lethal molecular response revealed large differences both in response time and the fold induction of GST, where the Arctic species responded both faster and with higher mRNA levels of GST after 48 h exposure. Under the natural exposure conditions applied in the present study, the Arctic species C. glacialis may potentially be more susceptible to mercury exposure on the sub-lethal level. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Detection of haplotypes associated with prenatal death in dairy cattle and identification of deleterious mutations in GART, SHBG and SLC37A2.

    Directory of Open Access Journals (Sweden)

    Sébastien Fritz

    Full Text Available The regular decrease of female fertility over time is a major concern in modern dairy cattle industry. Only half of this decrease is explained by indirect response to selection on milk production, suggesting the existence of other factors such as embryonic lethal genetic defects. Genomic regions harboring recessive deleterious mutations were detected in three dairy cattle breeds by identifying frequent haplotypes (>1% showing a deficit in homozygotes among Illumina Bovine 50k Beadchip haplotyping data from the French genomic selection database (47,878 Holstein, 16,833 Montbéliarde, and 11,466 Normande animals. Thirty-four candidate haplotypes (p<10(-4 including previously reported regions associated with Brachyspina, CVM, HH1, and HH3 in Holstein breed were identified. Haplotype length varied from 1 to 4.8 Mb and frequencies from 1.7 up to 9%. A significant negative effect on calving rate, consistent in heifers and in lactating cows, was observed for 9 of these haplotypes in matings between carrier bulls and daughters of carrier sires, confirming their association with embryonic lethal mutations. Eight regions were further investigated using whole genome sequencing data from heterozygous bull carriers and control animals (45 animals in total. Six strong candidate causative mutations including polymorphisms previously reported in FANCI (Brachyspina, SLC35A3 (CVM, APAF1 (HH1 and three novel mutations with very damaging effect on the protein structure, according to SIFT and Polyphen-2, were detected in GART, SHBG and SLC37A2 genes. In conclusion, this study reveals a yet hidden consequence of the important inbreeding rate observed in intensively selected and specialized cattle breeds. Counter-selection of these mutations and management of matings will have positive consequences on female fertility in dairy cattle.

  11. Detection of Haplotypes Associated with Prenatal Death in Dairy Cattle and Identification of Deleterious Mutations in GART, SHBG and SLC37A2

    Science.gov (United States)

    Fritz, Sébastien; Capitan, Aurelien; Djari, Anis; Rodriguez, Sabrina C.; Barbat, Anne; Baur, Aurélia; Grohs, Cécile; Weiss, Bernard; Boussaha, Mekki; Esquerré, Diane; Klopp, Christophe; Rocha, Dominique; Boichard, Didier

    2013-01-01

    The regular decrease of female fertility over time is a major concern in modern dairy cattle industry. Only half of this decrease is explained by indirect response to selection on milk production, suggesting the existence of other factors such as embryonic lethal genetic defects. Genomic regions harboring recessive deleterious mutations were detected in three dairy cattle breeds by identifying frequent haplotypes (>1%) showing a deficit in homozygotes among Illumina Bovine 50k Beadchip haplotyping data from the French genomic selection database (47,878 Holstein, 16,833 Montbéliarde, and 11,466 Normande animals). Thirty-four candidate haplotypes (p<10−4) including previously reported regions associated with Brachyspina, CVM, HH1, and HH3 in Holstein breed were identified. Haplotype length varied from 1 to 4.8 Mb and frequencies from 1.7 up to 9%. A significant negative effect on calving rate, consistent in heifers and in lactating cows, was observed for 9 of these haplotypes in matings between carrier bulls and daughters of carrier sires, confirming their association with embryonic lethal mutations. Eight regions were further investigated using whole genome sequencing data from heterozygous bull carriers and control animals (45 animals in total). Six strong candidate causative mutations including polymorphisms previously reported in FANCI (Brachyspina), SLC35A3 (CVM), APAF1 (HH1) and three novel mutations with very damaging effect on the protein structure, according to SIFT and Polyphen-2, were detected in GART, SHBG and SLC37A2 genes. In conclusion, this study reveals a yet hidden consequence of the important inbreeding rate observed in intensively selected and specialized cattle breeds. Counter-selection of these mutations and management of matings will have positive consequences on female fertility in dairy cattle. PMID:23762392

  12. Recently Identified Mutations in the Ebola Virus-Makona Genome Do Not Alter Pathogenicity in Animal Models

    Directory of Open Access Journals (Sweden)

    Andrea Marzi

    2018-05-01

    Full Text Available Summary: Ebola virus (EBOV, isolate Makona, the causative agent of the West African EBOV epidemic, has been the subject of numerous investigations to determine the genetic diversity and its potential implication for virus biology, pathogenicity, and transmissibility. Despite various mutations that have emerged over time through multiple human-to-human transmission chains, their biological relevance remains questionable. Recently, mutations in the glycoprotein GP and polymerase L, which emerged and stabilized early during the outbreak, have been associated with improved viral fitness in cell culture. Here, we infected mice and rhesus macaques with EBOV-Makona isolates carrying or lacking those mutations. Surprisingly, all isolates behaved very similarly independent of the genotype, causing severe or lethal disease in mice and macaques, respectively. Likewise, we could not detect any evidence for differences in virus shedding. Thus, no specific biological phenotype could be associated with these EBOV-Makona mutations in two animal models. : Marzi et al. demonstrate that recently identified mutations in the EBOV-Makona genome, which appeared during the West African epidemic, do not significantly alter pathogenicity in IFNAR−/− mice and rhesus macaques. Other factors may have been more important for increased case numbers, case fatalities, and human-to-human transmission during this unprecedented epidemic. Keywords: Ebola virus, Ebola Makona, glycoprotein GP, polymerase L, GP mutation A82V, L mutation D759G, West African epidemic, pathogenicity

  13. Suicide Intent and Accurate Expectations of Lethality: Predictors of Medical Lethality of Suicide Attempts

    Science.gov (United States)

    Brown, Gregory K.; Henriques, Gregg R.; Sosdjan, Daniella; Beck, Aaron T.

    2004-01-01

    The degree of intent to commit suicide and the severity of self-injury were examined in individuals (N = 180) who had recently attempted suicide. Although a minimal association was found between the degree of suicide intent and the degree of lethality of the attempt, the accuracy of expectations about the likelihood of dying was found to moderate…

  14. Formaldehyde-induced mutations in Drosophila melanogaster in dependence of the presence of acids

    Energy Technology Data Exchange (ETDEWEB)

    Stumm-Tegethoff, B F.A.

    1969-01-01

    The mutagenic activity of various combinations of formaldehyde, formic acid, acetic acid and hydrochloric acid was investigated by a sex-linked lethal test. All combinations were mutagenic and showed a mutation pattern from which it is concluded that in feeding experiments spermatocytes I are especially sensitive to the pairs of chemicals tested. In vapour experiments all germ cell stages were found to be susceptible. The presence of volatile acids was found to be necessary for the mutagenic activity of formaldehyde in the vapour state. Mutagenic effects were also observed in larval feeding experiments, in which only these acids were added to the medium. Experiments with stabilized pH at 7.5 did not show a significant mutagenic effect of formaldehyde. It is postulated that the tested agents are catalase inhibitors, which promote the formation of peroxides or free radicals which interfere with DNA replication, thus producing mutations.

  15. Fate of induced mutations in higher plants with special emphasis on sexually reproducing species

    International Nuclear Information System (INIS)

    Cornu, Andre

    1978-01-01

    A mutation induced in a plant somatic cell has to overcome quite many difficulties before being isolated and utilized as a marker in a mutated line. If induced in a meristem, three conditions must be fulfilled for the mutation to be transmitted to the subsequent generation: it must be compatible with normal cell multiplication, it must be located in a cell mass that will provide an inflorescence, and it must be in the sporogenetic layer (t2). Under these conditions, or if it is induced in a gamete or in a zygote, the mutation enters a first cycle of sexual reproduction. Meiosis and the subsequent haploid phase constitute severe screening steps for many chromosome aberrations. Studies on Petunia performed by means of marker genes show that male and female gametic viabilities are drastically impaired by deletions. However, a deficient chromosome can be transmitted when the losss of information is compensated for by homologous information as, for example, diploid gametes from tetraploids or disomic gametes resulting from non-disjunction. If partial or complete sterility, whether sporo- or gametophytic, is avoided, then the mutation can be transmitted to the next generation in heterozygous state. When becoming homozygous, the mutation may have effects such that its use can be most difficult. This is the case when this mutation causes rather early lethality or severe sterility. Thus, in higher plants, one faces several cases of powerful and efficient selection against mutations. On the basis of experiments carried out on Petunia, the per locus mutation rate of practical interest ranges between I and 5/10000M 1 plants. Practical conclusions are drawn about which organ should be treated, which mutagen at what dose should be used according to the scope of the research undertaken [fr

  16. Chloroplast mutations induced by 9-aminoacridine hydrochloride are independent of the plastome mutator in Oenothera.

    Science.gov (United States)

    GuhaMajumdar, M; Baldwin, S; Sears, B B

    2004-02-01

    Oenothera plants homozygous for the recessive plastome mutator allele ( pm) show chloroplast DNA (cpDNA) mutation frequencies that are about 1,000-fold higher than spontaneous levels. The pm-encoded gene product has been hypothesized to have a function in cpDNA replication, repair and/or mutation avoidance. Previous chemical mutagenesis experiments with the alkylating agent nitroso-methyl urea (NMU) showed a synergistic effect of NMU on the induction of mutations in the pm line, suggesting an interaction between the pm-encoded gene product and one of the repair systems that corrects alkylation damage. The goal of the experiments described here was to examine whether the pm activity extends to the repair of damage caused by non-alkylating mutagens. To this end, the intercalating mutagen, 9-aminoacridine hydrochloride (9AA) was tested for synergism with the plastome mutator. A statistical analysis of the data reported here indicates that the pm-encoded gene product is not involved in the repair of the 9AA-induced mutations. However, the recovery of chlorotic sectors in plants derived from the mutagenized seeds shows that 9AA can act as a mutagen of the chloroplast genome.

  17. Lethality of patients with rheumatoid arthritis depending on adalimumab administration: imitation modeling

    Directory of Open Access Journals (Sweden)

    D V Goryachev

    2009-01-01

    Full Text Available Lethality of pts with rheumatoid arthritis (RA exceeds mortality values in general population. Possibility of disease modifying anti-rheumatic drugs (DMARD influence on RA pts lethality has been widely discussed lately in scientific works. Objective. To determine possible lethality diminishment in Russian population of RA pts with one of biological drugs TNFα antagonist adalimumab. Material and methods. Model construction is based on the fact of lethality dependence on pt functional state assessed by HAQ. Model simulating progression of functional disability in pts with RA visiting medical institutions of Russia was made (RAISER study. 3 model variants for imitation of consecutive change of DMARDs including adalimumab were done. First consecution assessed DMARD change in the next chain: adalimumab-methotrexate-sulfasalazine-leflunomide-azathioprine-cyclosporine-palliative therapy. Second consecution: adalimumab administration after failure of first 3 DMARDs. Third consecution considered only change of synthetic DMARDs without adalimumab inclusion. Model imitated participation of 3000 pts in every consecution. Prognosis horizon was 12 years. Age of pts and initial HAQ distribution were get from results of epidemiological RAISER study. Calculation was done on the base of elevation of standardized lethality level (SLL in population of RA pts in average from 135% to 300%. SLL values from 80 to 320% were used depending on functional disability degree with converting to Russian values of age-specific lethality coefficient for 1999. Results. Lethality in treatment consecutions including adalimumab was significantly lower. To the end of 12th year in group not using adalimumab, using it at once and using it after 376 DMARDs respectively 65,1%, 71,6% and 71,1% of pts were still alive. Conclusion. Significant decrease of lethality with adalimumab inclusion in consecution of DMARD change during treatment of RA pts was demonstrated with imitation modeling

  18. Conflict Without Casualties: Non-Lethal Weapons in Irregular Warfare

    Science.gov (United States)

    2007-09-01

    the body,” and the Geneva Protocol of 1925, bans the use of chemical and biological weapons .11 On 8 April 1975, President Ford issued Executive...E Funding – PE 63851M) (accessed 15 December 2006). The American Journal of Bioethics . “Medical Ethics and Non-Lethal Weapons .” Bioethics.net...CASUALTIES: NON-LETHAL WEAPONS IN IRREGULAR WARFARE by Richard L. Scott September 2007 Thesis Advisor: Robert McNab Second Reader

  19. Neutron-induced mutation experiments. Progress report, March 1, 1976--February 28, 1977

    International Nuclear Information System (INIS)

    Abrahamson, S.

    1976-11-01

    Results are from studies of experiments in Drosophila on the relative mutagenic effectiveness of neutrons of different energies employing X-linked recessive lethal and specific locus mutation tests. The energies and doses employed to data are .43 MeV (500, 1000, and 1500 R, in progress), .68 MeV (250, 500, 1000, and 1500 R), 2 and 6 MeV (250 and 500 R), and 15 MeV (250, 500, 1000, 1500 and 3000 R). .68 MeV neutrons appear to have an RBE between 3.3 to 4.5, 15 MeV neutrons an RBE between 1.9 to 2.2, and 2 and 6 MeV neutrons RBE's of intermediate values. The data for both .68 and 15 MeV neutrons do not yet differentiate between a linear and quadratic dose/frequency response curve for the doses studied. The specific locus mutation data also indicate the highest RBE for .68 MeV, followed by 2 and 6 MeV respectively

  20. The LRRK2 G2385R variant is a partial loss-of-function mutation that affects synaptic vesicle trafficking through altered protein interactions.

    Science.gov (United States)

    Carrion, Maria Dolores Perez; Marsicano, Silvia; Daniele, Federica; Marte, Antonella; Pischedda, Francesca; Di Cairano, Eliana; Piovesana, Ester; von Zweydorf, Felix; Kremmer, Elisabeth; Gloeckner, Christian Johannes; Onofri, Franco; Perego, Carla; Piccoli, Giovanni

    2017-07-14

    Mutations in the Leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial Parkinson's disease (PD). LRRK2 protein contains several functional domains, including protein-protein interaction domains at its N- and C-termini. In this study, we analyzed the functional features attributed to LRRK2 by its N- and C-terminal domains. We combined TIRF microscopy and synaptopHluorin assay to visualize synaptic vesicle trafficking. We found that N- and C-terminal domains have opposite impact on synaptic vesicle dynamics. Biochemical analysis demonstrated that different proteins are bound at the two extremities, namely β3-Cav2.1 at N-terminus part and β-Actin and Synapsin I at C-terminus domain. A sequence variant (G2385R) harboured within the C-terminal WD40 domain increases the risk for PD. Complementary biochemical and imaging approaches revealed that the G2385R variant alters strength and quality of LRRK2 interactions and increases fusion of synaptic vesicles. Our data suggest that the G2385R variant behaves like a loss-of-function mutation that mimics activity-driven events. Impaired scaffolding capabilities of mutant LRRK2 resulting in perturbed vesicular trafficking may arise as a common pathophysiological denominator through which different LRRK2 pathological mutations cause disease.

  1. Lack of chemically induced mutation in repair-deficient mutants of yeast

    International Nuclear Information System (INIS)

    Prakash, L.

    1974-01-01

    Two genes, rad6 and rad9, that confer radiation sensitivity in the yeast Saccharomyces cerevisiae also greatly reduce the frequency of chemically-induced reversions of a tester mutant cyc1-131, which is a chain initiation mutant in the structural gene determining iso-1-cytochrome c. Mutations induced by ethyl methanesulfonate (EMS), diethyl sulfate (DES), methyl methanesulfonate (MMS), dimethyl sulfate (DMS), nitroquinoline oxide (NQO), nitrosoguanidine (NTG), nitrogen mustard (HN2), β-propiolactone, and tritiated uridine, as well as mutations induced by ultraviolet light (UV) and ionizing radiation were greatly diminished in strains homozygous for either the rad6 or rad9 gene. Nitrous acid and nitrosoimidazolidone (NIL), on the other hand, were highly mutagenic in these repair-deficient mutants, and at low doses, these mutagens acted with about the same efficiency as in the normal RAD strain. At high doses of either nitrous acid or NIL, however, reversion frequencies were significantly reduced in the two rad mutants compared to normal strains. Although both rad mutants are immutable to about the same extent, the rad9 strains tend to be less sensitive to the lethal effect of chemical mutagens than rad6 strains. It is concluded that yeast requires a functional repair system for mutation induction by chemical agents. (auth)

  2. Lack of chemically induced mutation in repair-deficient mutants of yeast.

    Science.gov (United States)

    Prakash, L

    1974-12-01

    Two genes, rad6 and rad9, that confer radiation sensitivity in the yeast Saccharomyces cerevisiae also greatly reduce the frequency of chemically-induced reversions of a tester mutant cyc1-131, which is a chain initiation mutant in the structural gene determining iso-1-cytochrome c. Mutations induced by ethyl methanesulfonate (EMS), diethyl sulfate (DES), methyl methanesulfonate (MMS), dimethyl sulfate (DMS), nitroquinoline oxide (NQO), nitrosoguanidine (NTG), nitrogen mustard (HN2), beta-propiolactone, and tritiated uridine, as well as mutations induced by ultraviolet light (UV) and ionizing radiation were greatly diminished in strains homozygous for either the rad6 or rad9 gene. Nitrous acid and nitrosoimidazolidone (NIL), on the other hand, were highly mutagenic in these repair-deficient mutants, and at low doses, these mutagens acted with about the same efficiency as in the normal RAD strain. At high doses of either nitrous acid or NIL, however, reversion frequencies were significantly reduced in the two rad mutants compared to normal strains. Although both rad mutants are immutable to about the same extent, the rad9 strains tend to be less sensitive to the lethal effect of chemical mutagens than rad6 strains. It is concluded that yeast requires a functional repair system for mutation induction by chemical agents.

  3. Eigen's Error Threshold and Mutational Meltdown in a Quasispecies Model

    OpenAIRE

    Bagnoli, F.; Bezzi, M.

    1998-01-01

    We introduce a toy model for interacting populations connected by mutations and limited by a shared resource. We study the presence of Eigen's error threshold and mutational meltdown. The phase diagram of the system shows that the extinction of the whole population due to mutational meltdown can occur well before an eventual error threshold transition.

  4. Impact of acute alcohol consumption on lethality of suicide methods.

    Science.gov (United States)

    Park, C Hyung Keun; Yoo, Seong Ho; Lee, Jaewon; Cho, Sung Joon; Shin, Min-Sup; Kim, Eun Young; Kim, Se Hyun; Ham, Keunsoo; Ahn, Yong Min

    2017-05-01

    The influence of acute alcohol consumption on the factors related to suicide remains understudied. Thus, the present study investigated the relationship between blood alcohol content (BAC) and the lethality of suicide methods. Autopsy data on 315 South Korean suicide completers with a positive BAC were collected from a nationwide pool between May 2015 and November 2015, and the methods were dichotomised as suicide methods of low lethality (SMLL; drug/chemical overdose and sharp objects, n=67) and suicide methods of high lethality (SMHL; everything else, n=243). BAC at the time of autopsy and various suicide-related factors of these two groups were compared with logistic regression analyses. Compared to suicide completers with a BAC in the lowest range of 0.011-0.049%, suicide completers with a BAC in the range of 0.150-0.199% were more likely to use SMHL (odds ratio [OR]: 3.644, 95% confidence interval [CI]: 1.221-10.874). Additionally, the adoption of SMHL was significantly associated with the absence of a psychiatric illness (OR: 0.433, 95% CI: 0.222-0.843) and a younger age; the OR for high BAC among subjects in their 40s was 0.266 (95% CI: 0.083-0.856); in their 50s, 0.183 (95% CI: 0.055-0.615); and in their 60s, 0.057 (95% CI: 0.015-0.216). The relationship between BAC and suicide method lethality was represented by a bell-shaped pattern in which suicide methods of high lethality were more likely to be used by suicide completers with mid-range BAC levels. The increased impulsivity and impairments in particular executive functions, including planning and organization, associated with acute alcohol use may influence the selection of a particular suicide method based on its lethality. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Early events of lethal action by tobramycin in Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Raulston, J.E.

    1988-01-01

    The immediate activities of the aminoglycoside antibiotic, tobramycin, were investigated in Pseudomonas aeruginosa PAO1. The influence of carbon growth substate and the antibiotic exposure environment in the magnitude of activity were examined. Lethality by 8 μg/ml tobramycin occurred rapidly (1 to 3 minutes). The release of specific cellular components into the supernatant was associated with lethality. This material was initially detected as an increase in UV-absorbance. Magnesium in the reaction mixture provided protection against lethality and leakage, but did not reverse lethal damage after a 3 minute tobramycin treatment. Also, uptake of 3 H-tobramycin was reduced in the presence of magnesium. Cells grown with glucose as a carbon source were more susceptible than organic acid grown cells as was the rapidity and amount of cell damage. Analyses of the leakage material revealed a 2-fold increase of protein in the supernatant after a 1-3 minute treatment which paralleled lethality. A prominent 29 kDa protein was observed by SDS-PAGE in the released material, which has been identified as the periplasmic enzyme, β-lactamase. The immediate activities of tobramycin did not involve (i) release of overall cell protein, (ii) massive loss of total pool amino acids, (iii) cell lysis, (iv) inhibition of proline uptake, (v) release of lipopolysaccharide, or (vi) leakage of ATP. Electron microscopy showed no apparent damage after a 3 minute exposure. 40% inhibition of protein synthesis had occurred by 3 minutes of exposure, while release of UV-absorbing material and lethality were detectable after only 1 minute. Resistant cystic fibrosis isolates of P. aeruginosa did not leak under the same experimental conditions, but one of two susceptible strains examined did show increased UV-absorbance following treatment

  6. Raine Syndrome (OMIM #259775), Caused By FAM20C Mutation, Is Congenital Sclerosing Osteomalacia With Cerebral Calcification (OMIM 259660).

    Science.gov (United States)

    Whyte, Michael P; McAlister, William H; Fallon, Michael D; Pierpont, Mary Ella; Bijanki, Vinieth N; Duan, Shenghui; Otaify, Ghada A; Sly, William S; Mumm, Steven

    2017-04-01

    In 1985, we briefly reported infant sisters with a unique, lethal, autosomal recessive disorder designated congenital sclerosing osteomalacia with cerebral calcification. In 1986, this condition was entered into Mendelian Inheritance In Man (MIM) as osteomalacia, sclerosing, with cerebral calcification (MIM 259660). However, no attestations followed. Instead, in 1989 Raine and colleagues published an affected neonate considering unprecedented the striking clinical and radiographic features. In 1992, "Raine syndrome" entered MIM formally as osteosclerotic bone dysplasia, lethal (MIM #259775). In 2007, the etiology emerged as loss-of-function mutation of FAM20C that encodes family with sequence similarity 20, member C. FAM20C is highly expressed in embryonic calcified tissues and encodes a kinase (dentin matrix protein 4) for most of the secreted phosphoproteome including FGF23, osteopontin, and other regulators of skeletal mineralization. Herein, we detail the clinical, radiological, biochemical, histopathological, and FAM20C findings of our patients. Following premortem tetracycline labeling, the proposita's non-decalcified skeletal histopathology after autopsy indicated no rickets but documented severe osteomalacia. Archival DNA revealed the sisters were compound heterozygotes for a unique missense mutation and a novel deletion in FAM20C. Individuals heterozygous for the missense mutation seemed to prematurely fuse their metopic suture and develop a metopic ridge sometimes including trigonocephaly. Our findings clarify FAM20C's role in hard tissue formation and mineralization, and show that Raine syndrome is congenital sclerosing osteomalacia with cerebral calcification. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  7. Reproductive-phase and interphase lethal cell damage after irradiation and treatment with cytostatics

    International Nuclear Information System (INIS)

    Hagemann, G.

    1979-01-01

    After X-ray irradiation of manual cells, two lethal fractions occur due to reproductive and interphase death under low and high radiation doses. The damage kinetics on which this fact is based is compared with hypothetical tumour frequencies and leucemia induction caused in experiments. The reproductive-lethal damage can be manifested by means of colony size spectrometry, with the median colony size class differences (MCD) serving as measure for the damage found. The simultaneous effects of the cytostatics BLEOMYCIN or ICRF 159 and X-rays on reproductive lethal and interphase-lethal damage are measured by means of MCD and survival fraction, and the additive and intensifying effect' is judged with the help of suitably defined terms. This shows that the clinically used ICRF 159 has an additive effect on interphase-lethal and a sub-additive effect on reproductive-lethal cell damage. Thus, favourable results may be expected for the electivity factor in fractionated irradiation and with regard to delayed damage in healthy tissue. (orig.) 891 MG/orig. 892 RDG [de

  8. Environmental stresses can alleviate the average deleterious effect of mutations

    Directory of Open Access Journals (Sweden)

    Leibler Stanislas

    2003-05-01

    Full Text Available Abstract Background Fundamental questions in evolutionary genetics, including the possible advantage of sexual reproduction, depend critically on the effects of deleterious mutations on fitness. Limited existing experimental evidence suggests that, on average, such effects tend to be aggravated under environmental stresses, consistent with the perception that stress diminishes the organism's ability to tolerate deleterious mutations. Here, we ask whether there are also stresses with the opposite influence, under which the organism becomes more tolerant to mutations. Results We developed a technique, based on bioluminescence, which allows accurate automated measurements of bacterial growth rates at very low cell densities. Using this system, we measured growth rates of Escherichia coli mutants under a diverse set of environmental stresses. In contrast to the perception that stress always reduces the organism's ability to tolerate mutations, our measurements identified stresses that do the opposite – that is, despite decreasing wild-type growth, they alleviate, on average, the effect of deleterious mutations. Conclusions Our results show a qualitative difference between various environmental stresses ranging from alleviation to aggravation of the average effect of mutations. We further show how the existence of stresses that are biased towards alleviation of the effects of mutations may imply the existence of average epistatic interactions between mutations. The results thus offer a connection between the two main factors controlling the effects of deleterious mutations: environmental conditions and epistatic interactions.

  9. Mutations in PIK3CA are infrequent in neuroblastoma

    International Nuclear Information System (INIS)

    Dam, Vincent; Morgan, Brian T; Mazanek, Pavel; Hogarty, Michael D

    2006-01-01

    Neuroblastoma is a frequently lethal pediatric cancer in which MYCN genomic amplification is highly correlated with aggressive disease. Deregulated MYC genes require co-operative lesions to foster tumourigenesis and both direct and indirect evidence support activated Ras signaling for this purpose in many cancers. Yet Ras genes and Braf, while often activated in cancer cells, are infrequent targets for activation in neuroblastoma. Recently, the Ras effector PIK3CA was shown to be activated in diverse human cancers. We therefore assessed PIK3CA for mutation in human neuroblastomas, as well as in neuroblastomas arising in transgenic mice with MYCN overexpressed in neural-crest tissues. In this murine model we additionally surveyed for Ras family and Braf mutations as these have not been previously reported. Sixty-nine human neuroblastomas (42 primary tumors and 27 cell lines) were sequenced for PIK3CA activating mutations within the C2, helical and kinase domain 'hot spots' where 80% of mutations cluster. Constitutional DNA was sequenced in cases with confirmed alterations to assess for germline or somatic acquisition. Additionally, Ras family members (Hras1, Kras2 and Nras) and the downstream effectors Pik3ca and Braf, were sequenced from twenty-five neuroblastomas arising in neuroblastoma-prone transgenic mice. We identified mutations in the PIK3CA gene in 2 of 69 human neuroblastomas (2.9%). Neither mutation (R524M and E982D) has been studied to date for effects on lipid kinase activity. Though both occurred in tumors with MYCN amplification the overall rate of PIK3CA mutations in MYCN amplified and single-copy tumors did not differ appreciably (2 of 31 versus 0 of 38, respectively). Further, no activating mutations were identified in a survey of Ras signal transduction genes (including Hras1, Kras2, Nras, Pik3ca, or Braf genes) in twenty-five neuroblastic tumors arising in the MYCN-initiated transgenic mouse model. These data suggest that activating

  10. Kin Selection - Mutation Balance

    DEFF Research Database (Denmark)

    Dyken, J. David Van; Linksvayer, Timothy Arnold; Wade, Michael J.

    2011-01-01

    selection-mutation balance, which provides an evolutionary null hypothesis for the statics and dynamics of cheating. When social interactions have linear fitness effects and Hamilton´s rule is satisfied, selection is never strong enough to eliminate recurrent cheater mutants from a population, but cheater...

  11. Saccharomyces cerevisiae mutants with enhanced induced mutation and altered mitotic gene conversion.

    Science.gov (United States)

    Ivanov, E L; Kovaltzova, S V; Korolev, V G

    1989-08-01

    We have developed a method to isolate yeast (Saccharomyces cerevisiae) mutants with enhanced induced mutagenesis based on nitrous acid-induced reversion of the ade2-42 allele. Six mutants have been isolated and designated him (high induced mutagenesis), and 4 of them were studied in more detail. The him mutants displayed enhanced reversion of the ade2-42 allele, either spontaneous or induced by nitrous acid, UV light, and the base analog 6-N-hydroxylaminopurine, but not by gamma-irradiation. It is worth noting that the him mutants turned out not to be sensitive to the lethal effects of the mutagens used. The enhancement in mutation induced by nitrous acid, UV light, and 6-N-hydroxylaminopurine has been confirmed in a forward-mutation assay (induction of mutations in the ADE1, ADE2 genes). The latter agent revealed the most apparent differences between the him mutants and the wild-type strain and was, therefore, chosen for the genetic analysis of mutants, him mutations analyzed behaved as a single Mendelian trait; complementation tests indicated 3 complementation groups (HIM1, HIM2, and HIM3), each containing 1 mutant allele. Uracil-DNA glycosylase activity was determined in crude cell extracts, and no significant differences between the wild-type and him strains were detected. Spontaneous mitotic gene conversion at the ADE2 locus is altered in him1 strains, either increased or decreased, depending on the particular heteroallelic combination. Genetic evidence strongly suggests him mutations to be involved in a process of mismatch correction of molecular heteroduplexes.

  12. No interaction between X-ray induced lesions in maternal and paternal chromosomes in inseminated eggs of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Wuergler, F.E.; Graf, U.; Jeanneret, P.

    1978-01-01

    X-ray induced premutational lesions persist in mature gametes of drosophila until fertilization. Repairable lesions in sperm and oocyte chromosomes are repaired exclusively by maternal repair systems in the inseminated egg. Interactions between irradiated genomes in inseminated eggs might result in additional lethality if breaks induced in separate nuclei, which would normally be repaired, could interact to form dicentric chromosomes. Adult drosophila flies were X-irradiated (up to 5 kR), individual females crossed to three or four males, and the dose-response curves for dominant lethals (embryonic lethality) compared. The results indicate thet the potentially lethal damage present in irradiated sperm chromosomes was expressed independently of whether or not the oocyte was also irradiated. There were no (or only very few) interactions between maternal and paternal chromosome complements, and the maternal repair systems acting on radiation-induced chromosome breaks in sperm were resistant to X-rays. (U.K.)

  13. Mutation induction in a mouse lymphoma cell mutant sensitive to 4-nitroquinoline 1-oxide and ultraviolet radiation

    International Nuclear Information System (INIS)

    Sato, K.; Hieda, N.

    1980-01-01

    The mutant mouse lymphoma cell Q31, which is sensitive to 4-nitroquinoline 1-oxide and ultraviolet radiation (UV), was compared with the parental L5178Y cell for the effect of caffeine and mutation induction after UV irradiation. Caffeine potentiated the lethal effect of UV in both cell strains to a similar extent, indicating that the defective process in Q31 cells was caffeine-insensitive. UV-induced mutation to 6-thioguanine resistance was determined in L5178Y and Q31 cells. The maximal yield of mutants was obtained 7 days post-irradiation in L5178Y cells and 14 days in Q31 cells for higher UV doses. It appears that a much longer time is required for the mutant cells than for the parental cells for full expression of the resistance phenotype even at equitoxic UV doses. A substantially higher frequency in induced mutations was observed in Q31 cells than in L5178Y cells at a given dose of UV. A plot of induced mutation frequency as a function of logarithm of surviving fraction again indicates hypermutability of Q31 cells as compared with the parental strain. In contrast, X-rays induced a similar frequency of mutations to 6-thioguanine resistance in L5178Y and Q31 cells. (orig.)

  14. Interaction-based evolution: how natural selection and nonrandom mutation work together

    Science.gov (United States)

    2013-01-01

    Background The modern evolutionary synthesis leaves unresolved some of the most fundamental, long-standing questions in evolutionary biology: What is the role of sex in evolution? How does complex adaptation evolve? How can selection operate effectively on genetic interactions? More recently, the molecular biology and genomics revolutions have raised a host of critical new questions, through empirical findings that the modern synthesis fails to explain: for example, the discovery of de novo genes; the immense constructive role of transposable elements in evolution; genetic variance and biochemical activity that go far beyond what traditional natural selection can maintain; perplexing cases of molecular parallelism; and more. Presentation of the hypothesis Here I address these questions from a unified perspective, by means of a new mechanistic view of evolution that offers a novel connection between selection on the phenotype and genetic evolutionary change (while relying, like the traditional theory, on natural selection as the only source of feedback on the fit between an organism and its environment). I hypothesize that the mutation that is of relevance for the evolution of complex adaptation—while not Lamarckian, or “directed” to increase fitness—is not random, but is instead the outcome of a complex and continually evolving biological process that combines information from multiple loci into one. This allows selection on a fleeting combination of interacting alleles at different loci to have a hereditary effect according to the combination’s fitness. Testing and implications of the hypothesis This proposed mechanism addresses the problem of how beneficial genetic interactions can evolve under selection, and also offers an intuitive explanation for the role of sex in evolution, which focuses on sex as the generator of genetic combinations. Importantly, it also implies that genetic variation that has appeared neutral through the lens of traditional

  15. Growth Hormone Receptor Mutations Related to Individual Dwarfism

    Science.gov (United States)

    Li, Charles; Zhang, Xiquan

    2018-01-01

    Growth hormone (GH) promotes body growth by binding with two GH receptors (GHRs) at the cell surface. GHRs interact with Janus kinase, signal transducers, and transcription activators to stimulate metabolic effects and insulin-like growth factor (IGF) synthesis. However, process dysfunctions in the GH–GHR–IGF-1 axis cause animal dwarfism. If, during the GH process, GHR is not successfully recognized and/or bound, or GHR fails to transmit the GH signal to IGF-1, the GH dysfunction occurs. The goal of this review was to focus on the GHR mutations that lead to failures in the GH–GHR–IGF-1 signal transaction process in the dwarf phenotype. Until now, more than 90 GHR mutations relevant to human short stature (Laron syndrome and idiopathic short stature), including deletions, missense, nonsense, frameshift, and splice site mutations, and four GHR defects associated with chicken dwarfism, have been described. Among the 93 identified mutations of human GHR, 68 occur extracellularly, 13 occur in GHR introns, 10 occur intracellularly, and two occur in the transmembrane. These mutations interfere with the interaction between GH and GHRs, GHR dimerization, downstream signaling, and the expression of GHR. These mutations cause aberrant functioning in the GH-GHR-IGF-1 axis, resulting in defects in the number and diameter of muscle fibers as well as bone development. PMID:29748515

  16. Growth Hormone Receptor Mutations Related to Individual Dwarfism

    Directory of Open Access Journals (Sweden)

    Shudai Lin

    2018-05-01

    Full Text Available Growth hormone (GH promotes body growth by binding with two GH receptors (GHRs at the cell surface. GHRs interact with Janus kinase, signal transducers, and transcription activators to stimulate metabolic effects and insulin‐like growth factor (IGF synthesis. However, process dysfunctions in the GH–GHR–IGF-1 axis cause animal dwarfism. If, during the GH process, GHR is not successfully recognized and/or bound, or GHR fails to transmit the GH signal to IGF-1, the GH dysfunction occurs. The goal of this review was to focus on the GHR mutations that lead to failures in the GH–GHR–IGF-1 signal transaction process in the dwarf phenotype. Until now, more than 90 GHR mutations relevant to human short stature (Laron syndrome and idiopathic short stature, including deletions, missense, nonsense, frameshift, and splice site mutations, and four GHR defects associated with chicken dwarfism, have been described. Among the 93 identified mutations of human GHR, 68 occur extracellularly, 13 occur in GHR introns, 10 occur intracellularly, and two occur in the transmembrane. These mutations interfere with the interaction between GH and GHRs, GHR dimerization, downstream signaling, and the expression of GHR. These mutations cause aberrant functioning in the GH-GHR-IGF-1 axis, resulting in defects in the number and diameter of muscle fibers as well as bone development.

  17. Use of Human Tissue to Assess the Oncogenic Activity of Melanoma-Associated Mutations

    OpenAIRE

    Chudnovsky, Yakov; Adams, Amy E.; Robbins, Paul B.; Lin, Qun; Khavari, Paul A.

    2005-01-01

    Multiple genetic alterations occur in melanoma, a lethal skin malignancy of increasing incidence1,2. These include mutations that activate Ras and two of its effector cascades, Raf and phosphoinositide 3-kinase (PI3K). Ras and Raf induction can occur via active N-Ras and B-Raf mutants as well as by gene amplification3–5. Activation of PI3K pathway components occurs by PTEN loss and by AKT amplification6–8. Melanomas also commonly display impairment of p16INK4A-CDK4-Rb and ARF-HDM2-p53 tumor s...

  18. Photoreactivable sector of lethal damage in ultraviolet-irradiated Escherichia coli cells

    International Nuclear Information System (INIS)

    Balgavy, P.

    1976-01-01

    The photoreactivable sector of lethal damage in Escherichia coli Bsub(s-1), Escherichia coli B/r Hcr - and Escherichia coli B/r Hcr + cells after ultraviolet irradiation at 254 nm is 0.823 +- 0.004, 0.70 +- 0.01 and 0.53 +- 0.06, respectively, at 99% confidence limits. For the low values of the photoreactivable sector in the B/r Hcr - and B/r Hcr + strains are likely to be responsible dark repair processes which eliminate lethal damage, brought about by pyrimidine dimers, preferably in comparison with lethal damage caused by photoproducts of another type. (author)

  19. Mutations in SLC33A1 cause a lethal autosomal-recessive disorder with congenital cataracts, hearing loss, and low serum copper and ceruloplasmin

    DEFF Research Database (Denmark)

    Huppke, Peter; Brendel, Cornelia; Kalscheuer, Vera

    2012-01-01

    or compound heterozygous mutations for all affected subjects in SLC33A1 encoding a highly conserved acetylCoA transporter (AT-1) required for acetylation of multiple gangliosides and glycoproteins. The mutations were found to cause reduced or absent AT-1 expression and abnormal intracellular localization...

  20. Heterochromatin position effects on circularized sex chromosomes cause filicidal embryonic lethality in Drosophila melanogaster.

    Science.gov (United States)

    Ferree, Patrick M; Gomez, Karina; Rominger, Peter; Howard, Dagnie; Kornfeld, Hannah; Barbash, Daniel A

    2014-04-01

    Some circularized X-Y chromosomes in Drosophila melanogaster are mitotically unstable and induce early embryonic lethality, but the genetic basis is unknown. Our experiments suggest that a large region of X-linked satellite DNA causes anaphase bridges and lethality when placed into a new heterochromatic environment within certain circularized X-Y chromosomes. These results reveal that repetitive sequences can be incompatible with one another in cis. The lethal phenotype also bears a remarkable resemblance to a case of interspecific hybrid lethality.

  1. Lethal Nipah virus infection induces rapid overexpression of CXCL10.

    Directory of Open Access Journals (Sweden)

    Cyrille Mathieu

    Full Text Available Nipah virus (NiV is a recently emerged zoonotic Paramyxovirus that causes regular outbreaks in East Asia with mortality rate exceeding 75%. Major cellular targets of NiV infection are endothelial cells and neurons. To better understand virus-host interaction, we analyzed the transcriptome profile of NiV infection in primary human umbilical vein endothelial cells. We further assessed some of the obtained results by in vitro and in vivo methods in a hamster model and in brain samples from NiV-infected patients. We found that NiV infection strongly induces genes involved in interferon response in endothelial cells. Among the top ten upregulated genes, we identified the chemokine CXCL10 (interferon-induced protein 10, IP-10, an important chemoattractant involved in the generation of inflammatory immune response and neurotoxicity. In NiV-infected hamsters, which develop pathology similar to what is seen in humans, expression of CXCL10 mRNA was induced in different organs with kinetics that followed NiV replication. Finally, we showed intense staining for CXCL10 in the brain of patients who succumbed to lethal NiV infection during the outbreak in Malaysia, confirming induction of this chemokine in fatal human infections. This study sheds new light on NiV pathogenesis, indicating the role of CXCL10 during the course of infection and suggests that this chemokine may serve as a potential new marker for lethal NiV encephalitis.

  2. Differential causes of mutation and killing in Escherichia coli after psoralen plus light treatment: monoadducts and cross-links

    Energy Technology Data Exchange (ETDEWEB)

    Seki, T; Nozu, K [Nara Medical Univ., Kashihara (Japan); Kondo, S

    1978-01-01

    On treatment with 8-methoxypsoralen plus near uv light, an excision (uvrB/sup -/) strain of Escherichia coli showed about 3- and 10 times higher sensitivities to killing and mutation, respectively, than its parental strain. On re-irradiation with near uv in the absence of unbound psoralen, the uvrB/sup -/ strain pretreated with psoralen plus near uv showed a decrease in both survival and mutation. After treatment with psoralen plus near uv, re-irradiation of T7DNA in the absence of unbound psoralen caused an increase in the cross-linked fraction with an equivalent decrease in the non-cross-linked fraction. From these and previous results, it is concluded that monoadducts produced by treatment with psoralen plus near uv are converted to cross-links by further irradiation and that, in E.coli, monoadducts are responsible for the mutation induced by psoralen-plus-light whereas cross-links are the major cause of its lethal action.

  3. Mutation in filamin A causes periventricular heterotopia, developmental regression, and West syndrome in males.

    Science.gov (United States)

    Masruha, Marcelo R; Caboclo, Luis O S F; Carrete, Henrique; Cendes, Iscia L; Rodrigues, Murilo G; Garzon, Eliana; Yacubian, Elza M T; Sakamoto, Américo C; Sheen, Volney; Harney, Megan; Neal, Jason; Hill, R Sean; Bodell, Adria; Walsh, Christopher; Vilanova, Luiz C P

    2006-01-01

    Familial periventricular heterotopia (PH) represents a disorder of neuronal migration resulting in multiple gray-matter nodules along the lateral ventricular walls. Prior studies have shown that mutations in the filamin A (FLNA) gene can cause PH through an X-linked dominant pattern. Heterozygotic female patients usually remain asymptomatic until the second or third decade of life, when they may have predominantly focal seizures, whereas hemizygotic male fetuses typically die in utero. Recent studies have also reported mutations in FLNA in male patients with PH who are cognitively normal. We describe PH in three male siblings with PH due to FLNA, severe developmental regression, and West syndrome. The study includes the three affected brothers and their parents. Video-EEG recordings and magnetic resonance image (MRI) scanning were performed on all individuals. Mutations for FLNA were detected by using polymerase chain reaction (PCR) on genomic DNA followed by single-stranded conformational polymorphism (SSCP) analysis or sequencing. Two of the siblings are monozygotic twins, and all had West syndrome with hypsarrhythmia on EEG. MRI of the brain revealed periventricular nodules of cerebral gray-matter intensity, typical for PH. Mutational analyses demonstrated a cytosine-to-thymidine missense mutation (c. C1286T), resulting in a threonine-to-methionine amino acid substitution in exon 9 of the FLNA gene. The association between PH and West syndrome, to our knowledge, has not been previously reported. Males with PH have been known to harbor FLNA mutations, although uniformly, they either show early lethality or survive and have a normal intellect. The current studies show that FLNA mutations can cause periventricular heterotopia, developmental regression, and West syndrome in male patients, suggesting that this type of FLNA mutation may contribute to severe neurologic deficits.

  4. ATM inhibition induces synthetic lethality and enhances sensitivity of PTEN-deficient breast cancer cells to cisplatin.

    Science.gov (United States)

    Li, Ke; Yan, Huaying; Guo, Wenhao; Tang, Mei; Zhao, Xinyu; Tong, Aiping; Peng, Yong; Li, Qintong; Yuan, Zhu

    2018-05-01

    PTEN deficiency often causes defects in DNA damage repair. Currently, effective therapies for breast cancer are lacking. ATM is an attractive target for cancer treatment. Previous studies suggested a synthetic lethality between PTEN and PARP. However, the synthetically lethal interaction between PTEN and ATM in breast cancer has not been reported. Moreover, the mechanism remains elusive. Here, using KU-60019, an ATM kinase inhibitor, we investigated ATM inhibition as a synthetically lethal strategy to target breast cancer cells with PTEN defects. We found that KU-60019 preferentially sensitizes PTEN-deficient MDA-MB-468 breast cancer cells to cisplatin, though it also slightly enhances sensitivity of PTEN wild-type breast cancer cells. The increased cytotoxic sensitivity is associated with apoptosis, as evidenced by flow cytometry and PARP cleavage. Additionally, the increase of DNA damage accumulation due to the decreased capability of DNA repair, as indicated by γ-H2AX and Rad51 foci, also contributed to this selective cytotoxicity. Mechanistically, compared with PTEN wild-type MDA-MB-231 cells, PTEN-deficient MDA-MB-468 cells have lower level of Rad51, higher ATM kinase activity, and display the elevated level of DNA damage. Moreover, these differences could be further enlarged by cisplatin. Our findings suggest that ATM is a promising target for PTEN-defective breast cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Novel insertion mutation in a non-Jewish Caucasian type 1 Gaucher disease patient

    Energy Technology Data Exchange (ETDEWEB)

    Choy, F.Y.M.; Humphries, M.L. [Univ. of Victoria, British Columbia (Canada); Ferreira, P. [Univ. of Alberta, Edmonton (Canada)

    1997-01-20

    Gaucher disease is the most prevalent lysosomal storage disorder. It is autosomal recessive, resulting in lysosomal glucocerebrosidase deficiency. Three clinical forms of Gaucher disease have been described: type 1 (nonneuronopathic), type 2 (acute neuronopathic), and type 3 (subacute neuronopathic). We performed PCR-thermal cycle sequence analysis of glucocerebrosidase genomic DNA and identified a novel mutation in a non-Jewish type 1 Gaucher disease patient. It is a C insertion in exon 3 at cDNA nucleotide position 122 and genomic nucleotide position 1626. This mutation causes a frameshift and, subsequently, four of the five codons immediately downstream of the insertion were changed while the sixth was converted to a stop codon, resulting in premature termination of protein translation. The 122CC insertion abolishes a Cac81 restriction endonuclease cleavage site, allowing a convenient and reliable method for detection using RFLP analysis of PCR-amplified glucocerebrosidase genomic DNA. The mutation in the other Gaucher allele was found to be an A{r_arrow}G substitution at glucocerebrosidase cDNA nucleotide position 1226 that so far has only been reported among type 1 Gaucher disease patients. Since mutation 122CC causes a frameshift and early termination of protein translation, it most likely results in a meaningless transcript and subsequently no residual glucocerebrosidase enzyme activity. We speculate that mutation 122CC may result in a worse prognosis than mutations associated with partial activity. When present in the homozygous form, it could be a lethal allele similar to what has been postulated for the other known insertion mutation, 84GG. Our patient, who is a compound heterozygote 122CC/1226G, has moderately severe type 1 Gaucher disease. Her clinical response to Ceredase{reg_sign} therapy that began 31 months ago has been favorable, though incomplete. 30 refs., 3 figs., 2 tabs.

  6. Survival and mutation in clones derived from V79 Chinese hamster cells irradiated with multiple small exposures to far-UV and mid-UV

    International Nuclear Information System (INIS)

    Ikebuchi, M.; Osmak, M.; Hill, C.

    1987-01-01

    Clones were isolated from U81 and N80 cells that were established by irradiation of Chinese hamster V79-M12G cells on a once a day schedule with 81 and 80 fractions of 6 J m/sup -2/ far-UV and 150 Jm/sup -2/ mid-UV (UV-B), respectively. These clones were examined for UV sensitivity to cell lethality and induction of mutations at 6TG/sup r/ (resistance to 6-thioguanine) and Oua/sup R/ (resistance to ouabain) loci. Survival curves for these clones indicate that their UV sensitivities to lethality vary from that of M12G cells to that of U81 and N80 parental cells. Clones also show heterogeneity for mutability to mid-UV: For induction of 6TG/sup r/, for example, non-mutable (U814), hypomutable (U815) and hypermutable (U811) were isolated from U81 cells. The authors are investigating by chromosome analysis and repair experiments why resistance to far-UV and mid-UV cell killing in these cells appears to be induced but the resulting survivors have a heterogeneous response to mutation induction by further doses of UV light

  7. Elucidating the Interdependence of Drug Resistance from Combinations of Mutations.

    Science.gov (United States)

    Ragland, Debra A; Whitfield, Troy W; Lee, Sook-Kyung; Swanstrom, Ronald; Zeldovich, Konstantin B; Kurt-Yilmaz, Nese; Schiffer, Celia A

    2017-11-14

    HIV-1 protease is responsible for the cleavage of 12 nonhomologous sites within the Gag and Gag-Pro-Pol polyproteins in the viral genome. Under the selective pressure of protease inhibition, the virus evolves mutations within (primary) and outside of (secondary) the active site, allowing the protease to process substrates while simultaneously countering inhibition. The primary protease mutations impede inhibitor binding directly, while the secondary mutations are considered accessory mutations that compensate for a loss in fitness. However, the role of secondary mutations in conferring drug resistance remains a largely unresolved topic. We have shown previously that mutations distal to the active site are able to perturb binding of darunavir (DRV) via the protein's internal hydrogen-bonding network. In this study, we show that mutations distal to the active site, regardless of context, can play an interdependent role in drug resistance. Applying eigenvalue decomposition to collections of hydrogen bonding and van der Waals interactions from a series of molecular dynamics simulations of 15 diverse HIV-1 protease variants, we identify sites in the protease where amino acid substitutions lead to perturbations in nonbonded interactions with DRV and/or the hydrogen-bonding network of the protease itself. While primary mutations are known to drive resistance in HIV-1 protease, these findings delineate the significant contributions of accessory mutations to resistance. Identifying the variable positions in the protease that have the greatest impact on drug resistance may aid in future structure-based design of inhibitors.

  8. Molecular Mechanisms of Glutamine Synthetase Mutations that Lead to Clinically Relevant Pathologies.

    Directory of Open Access Journals (Sweden)

    Benedikt Frieg

    2016-02-01

    Full Text Available Glutamine synthetase (GS catalyzes ATP-dependent ligation of ammonia and glutamate to glutamine. Two mutations of human GS (R324C and R341C were connected to congenital glutamine deficiency with severe brain malformations resulting in neonatal death. Another GS mutation (R324S was identified in a neurologically compromised patient. However, the molecular mechanisms underlying the impairment of GS activity by these mutations have remained elusive. Molecular dynamics simulations, free energy calculations, and rigidity analyses suggest that all three mutations influence the first step of GS catalytic cycle. The R324S and R324C mutations deteriorate GS catalytic activity due to loss of direct interactions with ATP. As to R324S, indirect, water-mediated interactions reduce this effect, which may explain the suggested higher GS residual activity. The R341C mutation weakens ATP binding by destabilizing the interacting residue R340 in the apo state of GS. Additionally, the mutation is predicted to result in a significant destabilization of helix H8, which should negatively affect glutamate binding. This prediction was tested in HEK293 cells overexpressing GS by dot-blot analysis: Structural stability of H8 was impaired through mutation of amino acids interacting with R341, as indicated by a loss of masking of an epitope in the glutamate binding pocket for a monoclonal anti-GS antibody by L-methionine-S-sulfoximine; in contrast, cells transfected with wild type GS showed the masking. Our analyses reveal complex molecular effects underlying impaired GS catalytic activity in three clinically relevant mutants. Our findings could stimulate the development of ATP binding-enhancing molecules by which the R324S mutant can be repaired extrinsically.

  9. What Are Reasons for the Large Gender Differences in the Lethality of Suicidal Acts? An Epidemiological Analysis in Four European Countries.

    Directory of Open Access Journals (Sweden)

    Roland Mergl

    objects and poisoning by substances other than drugs. Median age at time of suicidal behaviour (35-44 years did not differ between males and females. The overall gender difference in lethality of suicidal behaviour was explained by males choosing more lethal suicide methods (odds ratio (OR = 2.03; 95% CI = 1.65 to 2.50; p < 0.000001 and additionally, but to a lesser degree, by a higher lethality of suicidal acts for males even within the same method (OR = 1.64; 95% CI = 1.32 to 2.02; p = 0.000005. Results of a regression analysis revealed neither age nor country differences were significant predictors for gender differences in the lethality of suicidal acts. The proportion of serious suicide attempts among all non-fatal suicidal acts with known intentionality (NFSAi was significantly higher in men (57.1%; 1,207 of 2,115 NFSAi than in women (48.6%; 1,508 of 3,100 NFSAi (χ2 = 35.74; p < 0.000001.Due to restrictive data security regulations to ensure anonymity in Ireland, specific ages could not be provided because of the relatively low absolute numbers of suicide in the Irish intervention and control region. Therefore, analyses of the interaction between gender and age could only be conducted for three of the four countries. Attempted suicides were assessed for patients presenting to emergency departments or treated in hospitals. An unknown rate of attempted suicides remained undetected. This may have caused an overestimation of the lethality of certain methods. Moreover, the detection of attempted suicides and the registration of completed suicides might have differed across the four countries. Some suicides might be hidden and misclassified as undetermined deaths.Men more often used highly lethal methods in suicidal behaviour, but there was also a higher method-specific lethality which together explained the large gender differences in the lethality of suicidal acts. Gender differences in the lethality of suicidal acts were fairly consistent across all four European

  10. Mutations in the DNA-binding domain of NR2E3 affect in vivo dimerization and interaction with CRX.

    Directory of Open Access Journals (Sweden)

    Raphael Roduit

    Full Text Available BACKGROUND: NR2E3 (PNR is an orphan nuclear receptor essential for proper photoreceptor determination and differentiation. In humans, mutations in NR2E3 have been associated with the recessively inherited enhanced short wavelength sensitive (S- cone syndrome (ESCS and, more recently, with autosomal dominant retinitis pigmentosa (adRP. NR2E3 acts as a suppressor of the cone generation program in late mitotic retinal progenitor cells. In adult rod photoreceptors, NR2E3 represses cone-specific gene expression and acts in concert with the transcription factors CRX and NRL to activate rod-specific genes. NR2E3 and CRX have been shown to physically interact in vitro through their respective DNA-binding domains (DBD. The DBD also contributes to homo- and heterodimerization of nuclear receptors. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed NR2E3 homodimerization and NR2E3/CRX complex formation in an in vivo situation by Bioluminescence Resonance Energy Transfer (BRET(2. NR2E3 wild-type protein formed homodimers in transiently transfected HEK293T cells. NR2E3 homodimerization was impaired in presence of disease-causing mutations in the DBD, except for the p.R76Q and p.R104W mutant proteins. Strikingly, the adRP-linked p.G56R mutant protein interacted with CRX with a similar efficiency to that of NR2E3 wild-type and p.R311Q proteins. In contrast, all other NR2E3 DBD-mutant proteins did not interact with CRX. The p.G56R mutant protein was also more effective in abolishing the potentiation of rhodospin gene transactivation by the NR2E3 wild-type protein. In addition, the p.G56R mutant enhanced the transrepression of the M- and S-opsin promoter, while all other NR2E3 DBD-mutants did not. CONCLUSIONS/SIGNIFICANCE: These results suggest different disease mechanisms in adRP- and ESCS-patients carrying NR2E3 mutations. Titration of CRX by the p.G56R mutant protein acting as a repressor in trans may account for the severe clinical phenotype in adRP patients.

  11. The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome.

    Science.gov (United States)

    Garrity, Deborah M; Childs, Sarah; Fishman, Mark C

    2002-10-01

    Holt-Oram syndrome is one of the autosomal dominant human "heart-hand" disorders, with a combination of upper limb malformations and cardiac defects. Holt-Oram syndrome is caused by mutations in the TBX5 gene, a member of a large family of T-box transcription factors that play important roles in cell-type specification and morphogenesis. In a screen for mutations affecting zebrafish cardiac function, we isolated the recessive lethal mutant heartstrings, which lacks pectoral fins and exhibits severe cardiac dysfunction, beginning with a slow heart rate and progressing to a stretched, non-functional heart. We mapped and cloned the heartstrings mutation and find it to encode the zebrafish ortholog of the TBX5 gene. The heartstrings mutation causes premature termination at amino acid 316. Homozygous mutant embryos never develop pectoral fin buds and do not express several markers of early fin differentiation. The total absence of any fin bud differentiation distinguishes heartstrings from most other mutations that affect zebrafish fin development, suggesting that Tbx5 functions very early in the pectoral fin induction pathway. Moderate reduction of Tbx5 by morpholino causes fin malformations, revealing an additional early requirement for Tbx5 in coordinating the axes of fin outgrowth. The heart of heartstrings mutant embryos appears to form and function normally through the early heart tube stage, manifesting only a slight bradycardia compared with wild-type siblings. However, the heart fails to loop and then progressively deteriorates, a process affecting the ventricle as well as the atrium. Relative to mammals, fish require lower levels of Tbx5 to produce malformed appendages and display whole-heart rather than atrial-predominant cardiac defects. However, the syndromic deficiencies of tbx5 mutation are remarkably well retained between fish and mammals.

  12. Ribosomal elongation factor 4 promotes cell death associated with lethal stress.

    Science.gov (United States)

    Li, Liping; Hong, Yuzhi; Luan, Gan; Mosel, Michael; Malik, Muhammad; Drlica, Karl; Zhao, Xilin

    2014-12-09

    Ribosomal elongation factor 4 (EF4) is highly conserved among bacteria, mitochondria, and chloroplasts. However, the EF4-encoding gene, lepA, is nonessential and its deficiency shows no growth or fitness defect. In purified systems, EF4 back-translocates stalled, posttranslational ribosomes for efficient protein synthesis; consequently, EF4 has a protective role during moderate stress. We were surprised to find that EF4 also has a detrimental role during severe stress: deletion of lepA increased Escherichia coli survival following treatment with several antimicrobials. EF4 contributed to stress-mediated lethality through reactive oxygen species (ROS) because (i) the protective effect of a ΔlepA mutation against lethal antimicrobials was eliminated by anaerobic growth or by agents that block hydroxyl radical accumulation and (ii) the ΔlepA mutation decreased ROS levels stimulated by antimicrobial stress. Epistasis experiments showed that EF4 functions in the same genetic pathway as the MazF toxin, a stress response factor implicated in ROS-mediated cell death. The detrimental action of EF4 required transfer-messenger RNA (tmRNA, which tags truncated proteins for degradation and is known to be inhibited by EF4) and the ClpP protease. Inhibition of a protective, tmRNA/ClpP-mediated degradative activity would allow truncated proteins to indirectly perturb the respiratory chain and thereby provide a potential link between EF4 and ROS. The connection among EF4, MazF, tmRNA, and ROS expands a pathway leading from harsh stress to bacterial self-destruction. The destructive aspect of EF4 plus the protective properties described previously make EF4 a bifunctional factor in a stress response that promotes survival or death, depending on the severity of stress. Translation elongation factor 4 (EF4) is one of the most conserved proteins in nature, but it is dispensable. Lack of strong phenotypes for its genetic knockout has made EF4 an enigma. Recent biochemical work has

  13. The bureaucratization of war: moral challenges exemplified by the covert lethal drone

    Directory of Open Access Journals (Sweden)

    Richard Adams

    2013-12-01

    Full Text Available This article interrogates the bureaucratization of war, incarnate in the covert lethal drone. Bureaucracies are criticized typically for their complexity, inefficiency, and inflexibility. This article is concerned with their moral indifference. It explores killing, which is so highly administered, so morally remote, and of such scale, that we acknowledge a covert lethal program. This is a bureaucratized program of assassination in contravention of critical human rights. In this article, this program is seen to compromise the advance of global justice. Moreover, the bureaucratization of lethal force is seen to dissolve democratic ideals from within. The bureaucracy isolates the citizens from lethal force applied in their name. People are killed, in the name of the State, but without conspicuous justification, or judicial review, and without informed public debate. This article gives an account of the risk associated with the bureaucratization of the State's lethal power. Exemplified by the covert drone, this is power with formidable reach. It is power as well, which requires great moral sensitivity. Considering the drone program, this article identifies challenges, which will become more prominent and pressing, as technology advances.

  14. A quick method for testing recessive lethal damage with a diploid strain of Aspergillus nidulans

    International Nuclear Information System (INIS)

    Morpurgo, G.; Puppo, S.; Gualandi, G.; Conti, L.

    1978-01-01

    A simple method capable of detecting recessive lethal damage in a diploid strain of Aspergillus nidulans is described. The method scores the recessive lethals on the 1st, the 3rd and the 5th chromosomes, which represent about 40% of the total map of A. nidulans. Two examples of induced lethals, with ultraviolet irradiation and methyl methanesulfonate are shown. The frequency of lethals may reach 36% of the total population with UV irradiation. (Auth.)

  15. Short-Rib Polydactyly and Jeune Syndromes Are Caused by Mutations in WDR60

    Science.gov (United States)

    McInerney-Leo, Aideen M.; Schmidts, Miriam; Cortés, Claudio R.; Leo, Paul J.; Gener, Blanca; Courtney, Andrew D.; Gardiner, Brooke; Harris, Jessica A.; Lu, Yeping; Marshall, Mhairi; Scambler, Peter J.; Beales, Philip L.; Brown, Matthew A.; Zankl, Andreas; Mitchison, Hannah M.; Duncan, Emma L.; Wicking, Carol

    2013-01-01

    Short-rib polydactyly syndromes (SRPS I–V) are a group of lethal congenital disorders characterized by shortening of the ribs and long bones, polydactyly, and a range of extraskeletal phenotypes. A number of other disorders in this grouping, including Jeune and Ellis-van Creveld syndromes, have an overlapping but generally milder phenotype. Collectively, these short-rib dysplasias (with or without polydactyly) share a common underlying defect in primary cilium function and form a subset of the ciliopathy disease spectrum. By using whole-exome capture and massive parallel sequencing of DNA from an affected Australian individual with SRPS type III, we detected two novel heterozygous mutations in WDR60, a relatively uncharacterized gene. These mutations segregated appropriately in the unaffected parents and another affected family member, confirming compound heterozygosity, and both were predicted to have a damaging effect on the protein. Analysis of an additional 54 skeletal ciliopathy exomes identified compound heterozygous mutations in WDR60 in a Spanish individual with Jeune syndrome of relatively mild presentation. Of note, these two families share one novel WDR60 missense mutation, although haplotype analysis suggested no shared ancestry. We further show that WDR60 localizes at the base of the primary cilium in wild-type human chondrocytes, and analysis of fibroblasts from affected individuals revealed a defect in ciliogenesis and aberrant accumulation of the GLI2 transcription factor at the centrosome or basal body in the absence of an obvious axoneme. These findings show that WDR60 mutations can cause skeletal ciliopathies and suggest a role for WDR60 in ciliogenesis. PMID:23910462

  16. RBE of Cf-252 neutrons as determined by its lethal, mutagenic, and cytogenetic effects on human cells

    International Nuclear Information System (INIS)

    Ban, Sadayuki

    1989-01-01

    To assess the biological effects of neutrons, a man-made spontaneously fissioning isotope, Cf-252, is useful as an experimental model to obtain basic biological data on mixed radiation of gamma-rays and neutrons. The paper describes the lethal effect of Cf-252 radiation on human skin fibroblasts, its lethal and mutagenic effect on HeLa MR cells, and the micronuclei inducing effect on human peripheral lymphocytes. Dose-survival responses of three fibroblast cell strains exposed to Cf-252 radiation are measured. Individual difference is larger than the experimental fluctuation. D 10 values of each strain are obtained from the linear model and linear-quadratic model. Though the dose rate of X-ray is higher than that of Cf-252 radiations, the mean value of RBE(n+γ) is simply obtained as 1.86+0.31 (RBE:relative biological effectiveness). RBE(n) of Cf-252 neutrons to high-dose-rate X-rays is 2.29. After X-ray irradiation, the survival curve of HeLa MR cells gives an extrapolation number of 3.6. It is 1.3 after Cf-252 irradiation. At 50% survival, RBE(n+γ) and RBE(n) are 2.05 and 2.6, respectively. At 10% survival they are 2.05 and 2.6. The mutation frequencies after X-ray irradiation showed a significant non-linear increase with dose. Those after Cf-252 irradiation increase linearly with dose. (N.K.)

  17. New type of lethal short-limbed dwarfism

    Energy Technology Data Exchange (ETDEWEB)

    Nairn, E.R.; Chapman, S.

    1989-05-01

    Details are presented of a most unusual osteo-chondrodysplasia which presents with lethal neonatal short-limbed dwarfism, defective ossification and nodular calcification with cartilage. The features resemble one case previously described in the literature.

  18. EFFECT OF GAMMA RADIATION OF MACRO MUTATIONS, EFFECTIVENESS AND EFFICIENCY UNDER M2 GENERATION IN PEA (Pisum sativum L.

    Directory of Open Access Journals (Sweden)

    Arvind KUMAR

    2016-06-01

    Full Text Available The present investigation was undertaken to study the spectrum of macro mutants, effectiveness and efficiency of different doses of gamma rays in pea variety (Arkel. The seeds were treated with gamma rays viz., 00kR (dry control, 05kR, 10kR, 15kR, 20kR, 25kR, 30kR, 35kR, 40kR (dry seeds and presoaked seeds of the same was exposed to 00kR (wet control, 05kR, 10kR, 15kR, 20kR (kilo Roentgen biological damage was calculated in M1 and M2 generation based on lethality (L and pollen sterility. The irradiated seeds were sown in the M1 field their respective controls and harvested in bulk to raise the M2 generation in Randomized Block Design (RBD with three replications. The spectrum of macro mutants i.e., plant stature (tall, dwarf, small dwarf, maturity (early, late, pod shape (bold, long, short, seed colour (brown, light white, light green and seed shape (small, bold, wrinkled were observed in M2 generation. The usefulness of any mutagen in plant breeding depends not only on its effectiveness but also upon if efficiency. Mutagenic effectiveness is a measure of the frequency of mutations induced by unit mutagen dose, whereas mutagenic efficiency is measure of proportion of mutations in relation of undesirable changes like lethality and sterility are used for gamma rays. A result of the indicated positive relationship in M2 generation with macro mutation, effectiveness and efficiency was found to be highest at lowest doses.

  19. BRAF mutation in hairy cell leukemia

    Directory of Open Access Journals (Sweden)

    Ahmad Ahmadzadeh

    2014-09-01

    Full Text Available BRAF is a serine/threonine kinase with a regulatory role in the mitogen-activated protein kinase (MAPK signaling pathway. A mutation in the RAF gene, especially in BRAF protein, leads to an increased stimulation of this cascade, causing uncontrolled cell division and development of malignancy. Several mutations have been observed in the gene coding for this protein in a variety of human malignancies, including hairy cell leukemia (HCL. BRAF V600E is the most common mutation reported in exon15 of BRAF, which is observed in almost all cases of classic HCL, but it is negative in other B-cell malignancies, including the HCL variant. Therefore it can be used as a marker to differentiate between these B-cell disorders. We also discuss the interaction between miRNAs and signaling pathways, including MAPK, in HCL. When this mutation is present, the use of BRAF protein inhibitors may represent an effective treatment. In this review we have evaluated the role of the mutation of the BRAF gene in the pathogenesis and progression of HCL.

  20. Quantitative aspects of repair of potentially lethal damage in mammalian cells

    International Nuclear Information System (INIS)

    Iliakis, G.; Pohlit, W.

    1979-01-01

    Stationary cultures of Ehrlich ascites tumour cells were irradiated with X-rays and then immediately or after a time interval tsub(rep) plated to measure the survival. The increase in survival observed after delayed plating was interpreted as repair of potentially lethal damage. A cybernetic model was used to analyse these data. Three states of damage were assumed for the cells. In state A the cells could grow to macrocolonies, in state B the cells suffered potentially lethal damage and could grow to macrocolonies only if they were allowed to repair the damage and in state C the cells were lethally damaged. A method of deriving the values of the parameters of the model from the experimental data was given. The dependence of the reaction rate constant of the repair potentially lethal damage on the dose D was used to derive a possible mechanism for the production of the shoulder in the dose effect curve. Finally this model was compared with other models of radiation action in living cells. (author)

  1. BRCA2, EGFR, and NTRK mutations in mismatch repair-deficient colorectal cancers with MSH2 or MLH1 mutations.

    Science.gov (United States)

    Deihimi, Safoora; Lev, Avital; Slifker, Michael; Shagisultanova, Elena; Xu, Qifang; Jung, Kyungsuk; Vijayvergia, Namrata; Ross, Eric A; Xiu, Joanne; Swensen, Jeffrey; Gatalica, Zoran; Andrake, Mark; Dunbrack, Roland L; El-Deiry, Wafik S

    2017-06-20

    Deficient mismatch repair (MMR) and microsatellite instability (MSI) contribute to ~15% of colorectal cancer (CRCs). We hypothesized MSI leads to mutations in DNA repair proteins including BRCA2 and cancer drivers including EGFR. We analyzed mutations among a discovery cohort of 26 MSI-High (MSI-H) and 558 non-MSI-H CRCs profiled at Caris Life Sciences. Caris-profiled MSI-H CRCs had high mutation rates (50% vs 14% in non-MSI-H, P MLH1-mutant CRCs showed higher mutation rates in BRCA2 compared to non-MSH2/MLH1-mutant tumors (38% vs 6%, P MLH1-mutant CRCs included 75 unique mutations not known to occur in breast or pancreatic cancer per COSMIC v73. Only 5 deleterious BRCA2 mutations in CRC were previously reported in the BIC database as germ-line mutations in breast cancer. Some BRCA2 mutations were predicted to disrupt interactions with partner proteins DSS1 and RAD51. Some CRCs harbored multiple BRCA2 mutations. EGFR was mutated in 45.5% of MSH2/MLH1-mutant and 6.5% of non-MSH2/MLH1-mutant tumors (P MLH1-mutant CRC including NTRK1 I699V, NTRK2 P716S, and NTRK3 R745L. Our findings have clinical relevance regarding therapeutic targeting of BRCA2 vulnerabilities, EGFR mutations or other identified oncogenic drivers such as NTRK in MSH2/MLH1-mutant CRCs or other tumors with mismatch repair deficiency.

  2. Role of DNA deletion length in mutation and cell survival

    International Nuclear Information System (INIS)

    Braby, L.A.; Morgan, T.L.

    1992-01-01

    A model is presented which is based on the assumption that malignant transformation, mutation, chromosome aberration, and reproductive death of cells are all manifestations of radiation induced deletions in the DNA of the cell, and that the size of the deletion in relation to the spacing of essential genes determines the consequences of that deletion. It is assumed that two independent types of potentially lethal lesions can result in DNA deletions, and that the relative numbers of these types of damage is dependent on radiation quality. The repair of the damage reduces the length of a deletion, but does not always eliminate it. The predictions of this model are in good agreement with a wide variety of experimental evidence. (author)

  3. Genetics Home Reference: Amish lethal microcephaly

    Science.gov (United States)

    ... 1 in 500 newborns in the Old Order Amish population of Pennsylvania. It has not been found outside this population. Related Information What information about a genetic condition can statistics provide? Why are some genetic ... gene cause Amish lethal microcephaly . The SLC25A19 gene provides instructions for ...

  4. Unexpected allelic heterogeneity and spectrum of mutations in Fowler syndrome revealed by next-generation exome sequencing.

    Science.gov (United States)

    Lalonde, Emilie; Albrecht, Steffen; Ha, Kevin C H; Jacob, Karine; Bolduc, Nathalie; Polychronakos, Constantin; Dechelotte, Pierre; Majewski, Jacek; Jabado, Nada

    2010-08-01

    Protein coding genes constitute approximately 1% of the human genome but harbor 85% of the mutations with large effects on disease-related traits. Therefore, efficient strategies for selectively sequencing complete coding regions (i.e., "whole exome") have the potential to contribute our understanding of human diseases. We used a method for whole-exome sequencing coupling Agilent whole-exome capture to the Illumina DNA-sequencing platform, and investigated two unrelated fetuses from nonconsanguineous families with Fowler Syndrome (FS), a stereotyped phenotype lethal disease. We report novel germline mutations in feline leukemia virus subgroup C cellular-receptor-family member 2, FLVCR2, which has recently been shown to cause FS. Using this technology, we identified three types of genetic abnormalities: point-mutations, insertions-deletions, and intronic splice-site changes (first pathogenic report using this technology), in the fetuses who both were compound heterozygotes for the disease. Although revealing a high level of allelic heterogeneity and mutational spectrum in FS, this study further illustrates the successful application of whole-exome sequencing to uncover genetic defects in rare Mendelian disorders. Of importance, we show that we can identify genes underlying rare, monogenic and recessive diseases using a limited number of patients (n=2), in the absence of shared genetic heritage and in the presence of allelic heterogeneity.

  5. Mutations in Dnaaf1 and Lrrc48 Cause Hydrocephalus, Laterality Defects, and Sinusitis in Mice

    Directory of Open Access Journals (Sweden)

    Seungshin Ha

    2016-08-01

    Full Text Available We have previously described a forward genetic screen in mice for abnormalities of brain development. Characterization of two hydrocephalus mutants by whole-exome sequencing after whole-genome SNP mapping revealed novel recessive mutations in Dnaaf1 and Lrrc48. Mouse mutants of these two genes have not been previously reported. The Dnaaf1 mutant carries a mutation at the splice donor site of exon 4, which results in abnormal transcripts. The Lrrc48 mutation is a missense mutation at a highly conserved leucine residue, which is also associated with a decrease in Lrrc48 transcription. Both Dnaaf1 and Lrrc48 belong to a leucine-rich repeat-containing protein family and are components of the ciliary axoneme. Their Chlamydomonas orthologs are known to be required for normal ciliary beat frequency or flagellar waveform, respectively. Some Dnaaf1 or Lrrc48 homozygote mutants displayed laterality defects, suggesting a motile cilia defect in the embryonic node. Mucus accumulation and neutrophil infiltration in the maxillary sinuses suggested sinusitis. Dnaaf1 mutants showed postnatal lethality, and none survived to weaning age. Lrrc48 mutants survive to adulthood, but had male infertility. ARL13B immunostaining showed the presence of motile cilia in the mutants, and the distal distribution of DNAH9 in the axoneme of upper airway motile cilia appeared normal. The phenotypic abnormalities suggest that mutations in Dnaaf1 and Lrrc48 cause defects in motile cilia function.

  6. [Detection of the lethal process in plankton noctiluca by means of a forbidden transition of ESR of Mn2+ ion].

    Science.gov (United States)

    Kamenev, S E; Kopvillem, U Kh; Pasynkov, A S; Sharipov, R Z

    1981-01-01

    A forbidden ESR line of Mn2+ that is connected with the penetration of Mn into the plancton organism and binding it to a marcomolecule is selected from the experiment. A method for saturating the plancton organism with paramagnetic ions is proposed. It is shown that the constant of the axial electric field in the spin hamiltonian of Mn2+ ion described the dynamics of a selforganizing system. It is tested that the lethal process in the plancton with paramagnetic ion enrichment originated from boson avalanche. Experiments are performed with plancton noctiluca which illustrate the occurrence of avalancheline lethal process in the case of paramagnetic ion enrichment with limiting concentration. The meaning of these results for the problems of oceanology and pollution-ocean inhabitants interaction in the case of paramagnetic ions is discussed.

  7. Infantile Systemic Hyalinosis: A Case Report with a Novel Mutation

    Directory of Open Access Journals (Sweden)

    Siham Al Sinani

    2013-01-01

    Full Text Available Infantile Systemic Hyalinosis (ISH (OMIM 236490 is a rare, progressive and fatal autosomal recessive disorder characterized by multiple subcutaneous skin nodules, gingival hypertrophy, osteopenia, joint contractures, failure to thrive, diarrhea with protein losing enteropathy, and frequent infections. There is diffuse deposition of hyaline material in the skin, gastrointestinal tract, muscle and endocrine glands. It is caused by mutations in the ANTXR2 (also known as CMG2 gene, which encodes a trans-membranous protein involved in endothelial development and basement membrane-extracellular matrix assembly. We describe a child with classical features of ISH presenting in infancy with severe chronic debilitating pain and progressive joint contractures. The diagnosis was confirmed by molecular DNA sequencing of ANTXR2 gene which revealed a novel homozygous mutation not previously reported; 79 bp deletion of the entire exon 11 (c.867_945del, p.E289DfsX22. Although this is the first reported case of ISH in Oman, we believe that the disease is under-diagnosed since children affected with this lethal disease pass away early in infancy prior to establishing a final diagnosis.

  8. Impulsivity, aggression and brain structure in high and low lethality suicide attempters with borderline personality disorder.

    Science.gov (United States)

    Soloff, Paul; White, Richard; Diwadkar, Vaibhav A

    2014-06-30

    Impulsivity and aggressiveness are trait dispositions associated with the vulnerability to suicidal behavior across diagnoses. They are associated with structural and functional abnormalities in brain networks involved in regulation of mood, impulse and behavior. They are also core characteristics of borderline personality disorder (BPD), a disorder defined, in part, by recurrent suicidal behavior. We assessed the relationships between personality traits, brain structure and lethality of suicide attempts in 51 BPD attempters using multiple regression analyses on structural MRI data. BPD was diagnosed by the Diagnostic Interview for Borderline Patients-revised, impulsivity by the Barratt Impulsiveness Scale (BIS), aggression by the Brown-Goodwin Lifetime History of Aggression (LHA), and high lethality by a score of 4 or more on the Lethality Rating Scale (LRS). Sixteen High Lethality attempters were compared to 35 Low Lethality attempters, with no significant differences noted in gender, co-morbidity, childhood abuse, BIS or LHA scores. Degree of medical lethality (LRS) was negatively related to gray matter volumes across multiple fronto-temporal-limbic regions. Effects of impulsivity and aggression on gray matter volumes discriminated High from Low Lethality attempters and differed markedly within lethality groups. Lethality of suicide attempts in BPD may be related to the mediation of these personality traits by specific neural networks. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Interactions of a didomain fragment of the Drosophila Sex-lethal protein with single-stranded uridine-rich oligoribonucleotides derived from the transformer and Sex-lethal messenger RNA precursors: NMR with residue-selective [5-2H]uridine substitutions

    International Nuclear Information System (INIS)

    Kim, Insil; Muto, Yutaka; Watanabe, Satoru; Kitamura, Aya; Futamura, Yasuhiro; Yokoyama, Shigeyuki; Hosono, Kazumi; Kawai, Gota; Takaku, Hiroshi; Dohmae, Naoshi; Takio, Koji; Sakamoto, Hiroshi; Shimura, Yoshiro

    2000-01-01

    Proteins that contain two or more copies of the RNA-binding domain [ribonucleoprotein (RNP) domain or RNA recognition motif (RRM)] are considered to be involved in the recognition of single-stranded RNA, but the mechanisms of this recognition are poorly understood at the molecular level. For an NMR analysis of a single-stranded RNA complexed with a multi-RBD protein, residue-selective stable-isotope labeling techniques are necessary, rather than common assignment methods based on the secondary structure of RNA. In the present study, we analyzed the interaction of a Drosophila Sex-lethal (Sxl) protein fragment, consisting of two RBDs (RBD1-RBD2), with two distinct target RNAs derived from the tra and Sxl mRNA precursors with guanosine and adenosine, respectively, in a position near the 5'-terminus of a uridine stretch. First, we prepared a [5- 2 H]uridine phosphoramidite, and synthesized a series of 2 H-labeled RNAs, in which all of the uridine residues except one were replaced by [5- 2 H]uridine in the target sequence, GU 8 C. By observing the H5-H6 TOCSY cross peaks of the series of 2 H-labeled RNAs complexed with the Sxl RBD1-RBD2, all of the base H5-H6 proton resonances of the target RNA were unambiguously assigned. Then, the H5-H6 cross peaks of other target RNAs, GU 2 GU 8 , AU 8 , and UAU 8 , were assigned by comparison with those of GU 8 C. We found that the uridine residue prior to the G or A residue is essential for proper interaction with the protein, and that the interaction is tighter for A than for G. Moreover, the H1' resonance assignments were achieved from the H5-H6 assignments. The results revealed that all of the protein-bound nucleotide residues, except for only two, are in the unusual C2'-endo ribose conformation in the complex

  10. Interactions of a didomain fragment of the Drosophila Sex-lethal protein with single-stranded uridine-rich oligoribonucleotides derived from the transformer and Sex-lethal messenger RNA precursors: NMR with residue-selective [5-2H]uridine substitutions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Insil; Muto, Yutaka; Watanabe, Satoru; Kitamura, Aya; Futamura, Yasuhiro; Yokoyama, Shigeyuki [University of Tokyo, Department of Biophysics and Biochemistry, Graduate School of Science (Japan); Hosono, Kazumi; Kawai, Gota; Takaku, Hiroshi [Chiba Institute of Technology, Department of Industrial Chemistry (Japan); Dohmae, Naoshi; Takio, Koji [Institute of Physical and Chemical Research (RIKEN) (Japan); Sakamoto, Hiroshi [Kobe University, Department of Biology, Faculty of Science (Japan); Shimura, Yoshiro [Biomolecular Engineering Research Institute (Japan)

    2000-06-15

    Proteins that contain two or more copies of the RNA-binding domain [ribonucleoprotein (RNP) domain or RNA recognition motif (RRM)] are considered to be involved in the recognition of single-stranded RNA, but the mechanisms of this recognition are poorly understood at the molecular level. For an NMR analysis of a single-stranded RNA complexed with a multi-RBD protein, residue-selective stable-isotope labeling techniques are necessary, rather than common assignment methods based on the secondary structure of RNA. In the present study, we analyzed the interaction of a Drosophila Sex-lethal (Sxl) protein fragment, consisting of two RBDs (RBD1-RBD2), with two distinct target RNAs derived from the tra and Sxl mRNA precursors with guanosine and adenosine, respectively, in a position near the 5'-terminus of a uridine stretch. First, we prepared a [5-{sup 2}H]uridine phosphoramidite, and synthesized a series of {sup 2}H-labeled RNAs, in which all of the uridine residues except one were replaced by [5-{sup 2}H]uridine in the target sequence, GU{sub 8}C. By observing the H5-H6 TOCSY cross peaks of the series of {sup 2}H-labeled RNAs complexed with the Sxl RBD1-RBD2, all of the base H5-H6 proton resonances of the target RNA were unambiguously assigned. Then, the H5-H6 cross peaks of other target RNAs, GU{sub 2}GU{sub 8}, AU{sub 8}, and UAU{sub 8}, were assigned by comparison with those of GU{sub 8}C. We found that the uridine residue prior to the G or A residue is essential for proper interaction with the protein, and that the interaction is tighter for A than for G. Moreover, the H1' resonance assignments were achieved from the H5-H6 assignments. The results revealed that all of the protein-bound nucleotide residues, except for only two, are in the unusual C2'-endo ribose conformation in the complex.

  11. Deficiency in plasma protein synthesis caused by x-ray-induced lethal albino alleles in mouse

    International Nuclear Information System (INIS)

    Garland, R.C.; Satrustegui, J.; Gluecksohn-Waelsch, S.; Cori, C.F.

    1976-01-01

    Plasma protein synthesis was studied in mice bearing x-ray induced lethal mutations at the albino locus. Newborn albino mutants showed a decrease in each of the three principal plasma proteins, albumin, α-fetoprotein, and transferrin, when compared with colored littermate controls. Incorporation of [ 14 C] leucine into plasma proteins of the newborn albinos 30 min after injection was only 1 / 5 that of the controls, but incorporation into total liver protein was only slightly diminished. Incorporation of [ 14 C] leucine into an albumin fraction obtained by immunoprecipitation from livers incubated in vitro in an amino acid mixture was also strongly diminished. Thus, the liver of 18-day-old albino fetuses incorporated into this fraction 1 / 3 and that of newborn albinos 1 / 8 as much as the controls, but in both cases the incorporation into total liver protein was only 25 percent less than in the respective controls. These results indicate that the rather severe structural abnormalities observed in the mutants in the endoplasmic reticulum and the Golgi apparatus are not associated with a general deficiency of hepatic protein synthesis. Instead the data from this and previous work show that the progressive deficiency from fetal life to birth involves certain specific proteins represented by several perinatally developing enzymes and by plasma proteins. It is suggested that the mutational effects observed in these mice are due to deletions involving regulatory rather than structural genes at or near the albino locus

  12. Photobiological activity of 4-methylpsoralen and 4-methyl-4', 5'-dihydropsoralen with respect to lethal and mutagenic effects on E. coli, and prophage induction

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, H. (Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine)

    1984-06-01

    The lethal and mutagenic effects on E. coli as well as the induction of prophage lambda were determined after treatment with 4-methylpsoralen, 8-methoxypsoralen, psoralen or 4-methyl-4',5'-dihydropsoralen and UV-A irradiation. All psoralens used caused photokilling and photomutagenesis of strains H/r30R and Hs30R. 4-Methylpsoralen was more efficient for killing and for the induced mutation than 8-methoxypsoralen or psoralen in view of the dose modification factor. This finding can be explained by the methylation effect of psoralen. 4-Methylpsoralen induced more mutation in Hs30R than in H/r30R. Monofunctional 4-methyl-4',5'-dihydropsoralen required much higher fluence than bifunctional psoralens to kill cells and to induce the mutation. When the induced mutation frequency was expressed as a function of survival, mutagenic efficiency ranked in the following order: 8-methoxypsoralen > psoralen > 4-methylpsoralen > 4-methyl-4',5'-dihydropsoralen. 4-Methylpsoralen was 3-4-fold less mutagenic than 8-methoxypsoralen in this plot. Lytic growth of prophage in E. coli AB1157 (lambda) was induced by the treatment. When the bifunctional psoralens were used, the maximum induced fraction was larger than 20%. However, it was only 2% when 4-methyl-4',5'-dihydropsoralen was used.

  13. Update of the androgen receptor gene mutations database.

    Science.gov (United States)

    Gottlieb, B; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1999-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 309 to 374 during the past year. We have expanded the database by adding information on AR-interacting proteins; and we have improved the database by identifying those mutation entries that have been updated. Mutations of unknown significance have now been reported in both the 5' and 3' untranslated regions of the AR gene, and in individuals who are somatic mosaics constitutionally. In addition, single nucleotide polymorphisms, including silent mutations, have been discovered in normal individuals and in individuals with male infertility. A mutation hotspot associated with prostatic cancer has been identified in exon 5. The database is available on the internet (http://www.mcgill.ca/androgendb/), from EMBL-European Bioinformatics Institute (ftp.ebi.ac.uk/pub/databases/androgen), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca). Copyright 1999 Wiley-Liss, Inc.

  14. Experimental evaluation of the relationship between lethal or non-lethal virulence and transmission success in malaria parasite infections

    Directory of Open Access Journals (Sweden)

    Nithiuthai S

    2004-09-01

    Full Text Available Abstract Background Evolutionary theory suggests that the selection pressure on parasites to maximize their transmission determines their optimal host exploitation strategies and thus their virulence. Establishing the adaptive basis to parasite life history traits has important consequences for predicting parasite responses to public health interventions. In this study we examine the extent to which malaria parasites conform to the predicted adaptive trade-off between transmission and virulence, as defined by mortality. The majority of natural infections, however, result in sub-lethal virulent effects (e.g. anaemia and are often composed of many strains. Both sub-lethal effects and pathogen population structure have been theoretically shown to have important consequences for virulence evolution. Thus, we additionally examine the relationship between anaemia and transmission in single and mixed clone infections. Results Whereas there was a trade-off between transmission success and virulence as defined by host mortality, contradictory clone-specific patterns occurred when defining virulence by anaemia. A negative relationship between anaemia and transmission success was found for one of the parasite clones, whereas there was no relationship for the other. Notably the two parasite clones also differed in a transmission phenotype (gametocyte sex ratio that has previously been shown to respond adaptively to a changing blood environment. In addition, as predicted by evolutionary theory, mixed infections resulted in increased anaemia. The increased anaemia was, however, not correlated with any discernable parasite trait (e.g. parasite density or with increased transmission. Conclusions We found some evidence supporting the hypothesis that there is an adaptive basis correlating virulence (as defined by host mortality and transmission success in malaria parasites. This confirms the validity of applying evolutionary virulence theory to biomedical

  15. The cytochrome b p.278Y>C mutation causative of a multisystem disorder enhances superoxide production and alters supramolecular interactions of respiratory chain complexes

    DEFF Research Database (Denmark)

    Ghelli, Anna; Tropeano, Concetta V; Calvaruso, Maria Antonietta

    2013-01-01

    , the examination of respiratory supercomplexes revealed that the amounts of CIII dimer and III2IV1 were reduced, whereas those of I1III2IVn slightly increased. We therefore suggest that the deleterious effects of p.278Y>C mutation on cytochrome b are palliated when CIII is assembled into the supercomplexes I1III2......IVn, in contrast to when it is found alone. These findings underline the importance of supramolecular interactions between complexes for maintaining a basal respiratory chain activity and shed light to the molecular basis of disease manifestations associated with this mutation.......Cytochrome b is the only mtDNA-encoded subunit of the mitochondrial complex III (CIII), the functional bottleneck of the respiratory chain. Previously, the human cytochrome b missense mutation m.15579A>G, which substitutes the Tyr 278 with Cys (p.278Y>C), was identified in a patient with severe...

  16. Critical analysis of the maximum non inhibitory concentration (MNIC) method in quantifying sub-lethal injury in Saccharomyces cerevisiae cells exposed to either thermal or pulsed electric field treatments.

    Science.gov (United States)

    Kethireddy, V; Oey, I; Jowett, Tim; Bremer, P

    2016-09-16

    Sub-lethal injury within a microbial population, due to processing treatments or environmental stress, is often assessed as the difference in the number of cells recovered on non-selective media compared to numbers recovered on a "selective media" containing a predetermined maximum non-inhibitory concentration (MNIC) of a selective agent. However, as knowledge of cell metabolic response to injury, population diversity and dynamics increased, the rationale behind the conventional approach of quantifying sub-lethal injury must be scrutinized further. This study reassessed the methodology used to quantify sub-lethal injury for Saccharomyces cerevisiae cells (≈ 4.75 Log CFU/mL) exposed to either a mild thermal (45°C for 0, 10 and 20min) or a mild pulsed electric field treatment (field strengths of 8.0-9.0kV/cm and energy levels of 8, 14 and 21kJ/kg). Treated cells were plated onto either Yeast Malt agar (YM) or YM containing NaCl, as a selective agent at 5-15% in 1% increments. The impact of sub-lethal stress due to initial processing, the stress due to selective agents in the plating media, and the subsequent variation of inhibition following the treatments was assessed based on the CFU count (cell numbers). ANOVA and a generalised least squares model indicated significant effects of media, treatments, and their interaction effects (P<0.05) on cell numbers. It was shown that the concentration of the selective agent used dictated the extent of sub-lethal injury recorded owing to the interaction effects of the selective component (NaCl) in the recovery media. Our findings highlight a potential common misunderstanding on how culture conditions impact on sub-lethal injury. Interestingly for S. cerevisiae cells the number of cells recovered at different NaCl concentrations in the media appears to provide valuable information about the mode of injury, the comparative efficacy of different processing regimes and the inherent degree of resistance within a population. This

  17. Effect of sulfhydryls on potentiation of radiation-induced cell lethality by substituted anthraquinones

    International Nuclear Information System (INIS)

    Kimler, B.F.

    1984-01-01

    The effects of various substituted anthraquinones (SAQ's) and Adriamycin (ADR) were investigated in cultured Chinese hamster V79 cells. These drugs cause a potentiation of radiation-induced cell lethality, albeit by different mechanisms. One possibility is that these components operate through the production of free radicals which then produce DNA strand breaks and crosslinks. If so, then one should be able to change the degree of cell kill by modifying sulfhydryl (SH) levels such that free radical processes are altered. Diamide, buthionine-S, R-sulfoximine, and N-ethylmaleimide (NEM) were used to reduce intracellular SH levels. Cysteamine and dithiotheitol were used to increase SH levels. In general, altered SH levels did not affect SAQ-induced cytotoxicity at low drug concentrations. When drug-tested cells were also irradiated, survival levels were generally those predicted from assuming purely additive interactions. On the other hand, survival after treatment with high concentrations of ADR and one other SAQ were decreased by concomitant treatment with NEM. Since altered SH levels do not produce changes in the potentiation of radiation-induced cell lethality by SAQs, it is concluded that free radicals are not involved in this potentiation. A free radical-mediated process may be involved in the cytotoxicity induced by ADR and other SAQs; however, it is not a simple process

  18. Relative Risks for Lethal Prostate Cancer Based on Complete Family History of Prostate Cancer Death.

    Science.gov (United States)

    Albright, Frederick S; Stephenson, Robert A; Agarwal, Neeraj; Cannon-Albright, Lisa A

    2017-01-01

    There are few published familial relative risks (RR) for lethal prostate cancer. This study estimates RRs for lethal prostate cancer based on comprehensive family history data, with the goal of improving identification of those men at highest risk of dying from prostate cancer. We used a population-based genealogical resource linked to a statewide electronic SEER cancer registry and death certificates to estimate relative risks (RR) for death from prostate cancer based upon family history. Over 600,000 male probands were analyzed, representing a variety of family history constellations of lethal prostate cancer. RR estimates were based on the ratio of the observed to the expected number of lethal prostate cancer cases using internal rates. RRs for lethal prostate cancer based on the number of affected first-degree relatives (FDR) ranged from 2.49 (95% CI: 2.27, 2.73) for exactly 1 FDR to 5.30 (2.13, 10.93) for ≥3 affected FDRs. In an absence of affected FDRs, increased risk was also significant for increasing numbers of affected second-degree or third degree relatives. Equivalent risks were observed for similar maternal and paternal family history. This study provides population-based estimates of lethal prostate cancer risk based on lethal prostate cancer family history. Many family history constellations associated with two to greater than five times increased risk for lethal prostate cancer were identified. These lethal prostate cancer risk estimates hold potential for use in identification, screening, early diagnosis, and treatment of men at high risk for death from prostate cancer. Prostate77:41-48, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase.

    Science.gov (United States)

    Boronat, Susanna; Domènech, Alba; Carmona, Mercè; García-Santamarina, Sarela; Bañó, M Carmen; Ayté, José; Hidalgo, Elena

    2017-06-01

    The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR). RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.

  20. Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase.

    Directory of Open Access Journals (Sweden)

    Susanna Boronat

    2017-06-01

    Full Text Available The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR. RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.

  1. Insights into the binding specificity of wild type and mutated wheat germ agglutinin towards Neu5Acα(2-3)Gal: a study by in silico mutations and molecular dynamics simulations.

    Science.gov (United States)

    Parasuraman, Ponnusamy; Murugan, Veeramani; Selvin, Jeyasigamani F A; Gromiha, M Michael; Fukui, Kazuhiko; Veluraja, Kasinadar

    2014-08-01

    Wheat germ agglutinin (WGA) is a plant lectin, which specifically recognizes the sugars NeuNAc and GlcNAc. Mutated WGA with enhanced binding specificity can be used as biomarkers for cancer. In silico mutations are performed at the active site of WGA to enhance the binding specificity towards sialylglycans, and molecular dynamics simulations of 20 ns are carried out for wild type and mutated WGAs (WGA1, WGA2, and WGA3) in complex with sialylgalactose to examine the change in binding specificity. MD simulations reveal the change in binding specificity of wild type and mutated WGAs towards sialylgalactose and bound conformational flexibility of sialylgalactose. The mutated polar amino acid residues Asn114 (S114N), Lys118 (G118K), and Arg118 (G118R) make direct and water mediated hydrogen bonds and hydrophobic interactions with sialylgalactose. An analysis of possible hydrogen bonds, hydrophobic interactions, total pair wise interaction energy between active site residues and sialylgalactose and MM-PBSA free energy calculation reveals the plausible binding modes and the role of water in stabilizing different binding modes. An interesting observation is that the binding specificity of mutated WGAs (cyborg lectin) towards sialylgalactose is found to be higher in double point mutation (WGA3). One of the substituted residues Arg118 plays a crucial role in sugar binding. Based on the interactions and energy calculations, it is concluded that the order of binding specificity of WGAs towards sialylgalactose is WGA3 > WGA1 > WGA2 > WGA. On comparing with the wild type, double point mutated WGA (WGA3) exhibits increased specificity towards sialylgalactose, and thus, it can be effectively used in targeted drug delivery and as biological cell marker in cancer therapeutics. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Indirect effects of non-lethal predation on bivalve activity and sediment reworking

    NARCIS (Netherlands)

    Maire, O.; Merchant, J.N.; Bulling, M.; Teal, L.R.; Gremare, A.; Duchene, J.C.; Solan, M.

    2010-01-01

    Deposit-feeders are the dominant bioturbators of aquatic sediments, where they profoundly impact biogeochemical processes, but they are also vulnerable to both lethal and non-lethal predation by a large variety of predators. In this study, we performed a series of experiments to test the effects of

  3. Anthrax Toxin Receptor 2–Dependent Lethal Toxin Killing In Vivo

    Science.gov (United States)

    Scobie, Heather M; Wigelsworth, Darran J; Marlett, John M; Thomas, Diane; Rainey, G. Jonah A; Lacy, D. Borden; Manchester, Marianne; Collier, R. John; Young, John A. T

    2006-01-01

    Anthrax toxin receptors 1 and 2 (ANTXR1 and ANTXR2) have a related integrin-like inserted (I) domain which interacts with a metal cation that is coordinated by residue D683 of the protective antigen (PA) subunit of anthrax toxin. The receptor-bound metal ion and PA residue D683 are critical for ANTXR1-PA binding. Since PA can bind to ANTXR2 with reduced affinity in the absence of metal ions, we reasoned that D683 mutant forms of PA might specifically interact with ANTXR2. We show here that this is the case. The differential ability of ANTXR1 and ANTXR2 to bind D683 mutant PA proteins was mapped to nonconserved receptor residues at the binding interface with PA domain 2. Moreover, a D683K mutant form of PA that bound specifically to human and rat ANTXR2 mediated killing of rats by anthrax lethal toxin, providing strong evidence for the physiological importance of ANTXR2 in anthrax disease pathogenesis. PMID:17054395

  4. Compensatory mutations cause excess of antagonistic epistasis in RNA secondary structure folding

    Directory of Open Access Journals (Sweden)

    Adami Christoph

    2003-02-01

    Full Text Available Background The rate at which fitness declines as an organism's genome accumulates random mutations is an important variable in several evolutionary theories. At an intuitive level, it might seem natural that random mutations should tend to interact synergistically, such that the rate of mean fitness decline accelerates as the number of random mutations is increased. However, in a number of recent studies, a prevalence of antagonistic epistasis (the tendency of multiple mutations to have a mitigating rather than reinforcing effect has been observed. Results We studied in silico the net amount and form of epistatic interactions in RNA secondary structure folding by measuring the fraction of neutral mutants as a function of mutational distance d. We found a clear prevalence of antagonistic epistasis in RNA secondary structure folding. By relating the fraction of neutral mutants at distance d to the average neutrality at distance d, we showed that this prevalence derives from the existence of many compensatory mutations at larger mutational distances. Conclusions Our findings imply that the average direction of epistasis in simple fitness landscapes is directly related to the density with which fitness peaks are distributed in these landscapes.

  5. Compensatory mutations cause excess of antagonistic epistasis in RNA secondary structure folding.

    Science.gov (United States)

    Wilke, Claus O; Lenski, Richard E; Adami, Christoph

    2003-02-05

    The rate at which fitness declines as an organism's genome accumulates random mutations is an important variable in several evolutionary theories. At an intuitive level, it might seem natural that random mutations should tend to interact synergistically, such that the rate of mean fitness decline accelerates as the number of random mutations is increased. However, in a number of recent studies, a prevalence of antagonistic epistasis (the tendency of multiple mutations to have a mitigating rather than reinforcing effect) has been observed. We studied in silico the net amount and form of epistatic interactions in RNA secondary structure folding by measuring the fraction of neutral mutants as a function of mutational distance d. We found a clear prevalence of antagonistic epistasis in RNA secondary structure folding. By relating the fraction of neutral mutants at distance d to the average neutrality at distance d, we showed that this prevalence derives from the existence of many compensatory mutations at larger mutational distances. Our findings imply that the average direction of epistasis in simple fitness landscapes is directly related to the density with which fitness peaks are distributed in these landscapes.

  6. Sonographic features of lethal multiple pterygium syndrome at 14 weeks.

    Science.gov (United States)

    Chen, Min; Chan, Gavin Shueng Wai; Lee, Chin Peng; Tang, Mary Hoi Yin

    2005-06-01

    Lethal multiple pterygium syndrome is a rare inherited disorder. Previous reports suggest that the diagnosis may be based on prenatal sonographic demonstration of severe limb flexion, absence of fetal motion, and a large cystic hygroma in the second and third trimesters. We present the sonographic features and postmortem features of a fetus with lethal multiple pterygium syndrome at 13 weeks of gestation, which shows that the condition can possibly be diagnosed in the first trimester of pregnancy.

  7. Influence of temperature and pressure on the lethality of ultrasound

    International Nuclear Information System (INIS)

    Raso, J.; Pagan, R.; Condon, S.; Sala, F.J.

    1998-01-01

    A specially designed resistometer was constructed, and the lethal effect on Yersinia enterocolitica of ultrasonic waves (UW) at different static pressures (manosonication [MS]) and of combined heat-UW under pressure treatments (manothermosonication [MTS]) was investigated. During MS treatments at 30 degrees C and 200 kPa, the increase in the amplitude of UW of 20 kHz from 21 to 150 micrometers exponentially decreased decimal reduction time values (D(MS)) from 4 to 0.37 min. When pressure was increased from 0 to 600 kPa at a constant amplitude (150 micrometers) and temperature (30 degrees C), D(MS) values decreased from 1.52 to 0.20 min. The magnitude of this decrease in D(MS) declined progressively as pressure was increased. The influence of pressure on D(MS) values was greater with increased amplitude of UW. Pressure alone of as much as 600 kPa did not influence the heat resistance of Y. enterocolitica (D60 = 0.094; zeta = 5.65). At temperatures of as much as 58 degrees C, the lethality of UW under pressure was greater than that of heat treatment alone at the same temperature. At higher temperatures, this difference disappeared. Heat and UW under pressure seemed to act independently. The lethality of MTS treatments appeared to result from the added effects of UW under pressure and the lethal effect of heat. The individual contributions of heat and of UW under pressure to the total lethal effect of MTS depended on temperature. The inactivating effect of UW was not due to titanium particles eroded from the sonication horn. The addition to the MS media of cysteamine did not increase the resistance of Y. enterocolitica to MS treatment. MS treatment caused cell disruption

  8. Mutational characterization of the P3H1/CRTAP/CypB complex in recessive osteogenesis imperfecta.

    Science.gov (United States)

    Barbirato, C; Trancozo, M; Almeida, M G; Almeida, L S; Santos, T O; Duarte, J C G; Rebouças, M R G O; Sipolatti, V; Nunes, V R R; Paula, F

    2015-12-03

    Osteogenesis imperfecta (OI) is a genetic disease characterized by bone deformities and fractures. Most cases are caused by autosomal dominant mutations in the type I collagen genes COL1A1 and COL1A2; however, an increasing number of recessive mutations in other genes have been reported. The LEPRE1, CRTAP, and PPIB genes encode proteins that form the P3H1/CRTAP/CypB complex, which is responsible for posttranslational modifications of type I collagen. In general, mutations in these genes lead to severe and lethal phenotypes of recessive OI. Here, we describe sixteen genetic variations detected in LEPRE1, CRTAP, and PPIB from 25 Brazilian patients with OI. Samples were screened for mutations on single-strand conformation polymorphism gels and variants were determined by automated sequencing. Seven variants were detected in patients but were absent in control samples. LEPRE1 contained the highest number of variants, including the previously described West African allele (c.1080+1G>T) found in one patient with severe OI as well as a previously undescribed p.Trp675Leu change that is predicted to be disease causing. In CRTAP, one patient carried the c.558A>G homozygous mutation, predicted as disease causing through alteration of a splice site. Genetic variations detected in the PPIB gene are probably not pathogenic due to their localization or because of their synonymous effect. This study enhances our knowledge about the mutational pattern of the LEPRE1, CRTAP, and PPIB genes. In addition, the results strengthen the proposition that LEPRE1 should be the first gene analyzed in mutation detection studies in patients with recessive OI.

  9. Biallelic UFM1 and UFC1 mutations expand the essential role of ufmylation in brain development.

    Science.gov (United States)

    Nahorski, Michael S; Maddirevula, Sateesh; Ishimura, Ryosuke; Alsahli, Saud; Brady, Angela F; Begemann, Anaïs; Mizushima, Tsunehiro; Guzmán-Vega, Francisco J; Obata, Miki; Ichimura, Yoshinobu; Alsaif, Hessa S; Anazi, Shams; Ibrahim, Niema; Abdulwahab, Firdous; Hashem, Mais; Monies, Dorota; Abouelhoda, Mohamed; Meyer, Brian F; Alfadhel, Majid; Eyaid, Wafa; Zweier, Markus; Steindl, Katharina; Rauch, Anita; Arold, Stefan T; Woods, C Geoffrey; Komatsu, Masaaki; Alkuraya, Fowzan S

    2018-06-02

    The post-translational modification of proteins through the addition of UFM1, also known as ufmylation, plays a critical developmental role as revealed by studies in animal models. The recent finding that biallelic mutations in UBA5 (the E1-like enzyme for ufmylation) cause severe early-onset encephalopathy with progressive microcephaly implicates ufmylation in human brain development. More recently, a homozygous UFM1 variant was proposed as a candidate aetiology of severe early-onset encephalopathy with progressive microcephaly. Here, we establish a locus for severe early-onset encephalopathy with progressive microcephaly based on two families, and map the phenotype to a novel homozygous UFM1 mutation. This mutation has a significantly diminished capacity to form thioester intermediates with UBA5 and with UFC1 (the E2-like enzyme for ufmylation), with resulting impaired ufmylation of cellular proteins. Remarkably, in four additional families where eight children have severe early-onset encephalopathy with progressive microcephaly, we identified two biallelic UFC1 mutations, which impair UFM1-UFC1 intermediate formation with resulting widespread reduction of cellular ufmylation, a pattern similar to that observed with UFM1 mutation. The striking resemblance between UFM1- and UFC1-related clinical phenotype and biochemical derangements strongly argues for an essential role for ufmylation in human brain development. The hypomorphic nature of UFM1 and UFC1 mutations and the conspicuous depletion of biallelic null mutations in the components of this pathway in human genome databases suggest that it is necessary for embryonic survival, which is consistent with the embryonic lethal nature of knockout models for the orthologous genes.

  10. Clostridium sordellii lethal toxin kills mice by inducing a major increase in lung vascular permeability.

    Science.gov (United States)

    Geny, Blandine; Khun, Huot; Fitting, Catherine; Zarantonelli, Leticia; Mazuet, Christelle; Cayet, Nadège; Szatanik, Marek; Prevost, Marie-Christine; Cavaillon, Jean-Marc; Huerre, Michel; Popoff, Michel R

    2007-03-01

    When intraperitoneally injected into Swiss mice, Clostridium sordellii lethal toxin reproduces the fatal toxic shock syndrome observed in humans and animals after natural infection. This animal model was used to study the mechanism of lethal toxin-induced death. Histopathological and biochemical analyses identified lung and heart as preferential organs targeted by lethal toxin. Massive extravasation of blood fluid in the thoracic cage, resulting from an increase in lung vascular permeability, generated profound modifications such as animal dehydration, increase in hematocrit, hypoxia, and finally, cardiorespiratory failure. Vascular permeability increase induced by lethal toxin resulted from modifications of lung endothelial cells as evidenced by electron microscopy. Immunohistochemical analysis demonstrated that VE-cadherin, a protein participating in intercellular adherens junctions, was redistributed from membrane to cytosol in lung endothelial cells. No major sign of lethal toxin-induced inflammation was observed that could participate in the toxic shock syndrome. The main effect of the lethal toxin is the glucosylation-dependent inactivation of small GTPases, in particular Rac, which is involved in actin polymerization occurring in vivo in lungs leading to E-cadherin junction destabilization. We conclude that the cells most susceptible to lethal toxin are lung vascular endothelial cells, the adherens junctions of which were altered after intoxication.

  11. Evaluating the Predictive Validity of Suicidal Intent and Medical Lethality in Youth

    Science.gov (United States)

    Sapyta, Jeffrey; Goldston, David B.; Erkanli, Alaattin; Daniel, Stephanie S.; Heilbron, Nicole; Mayfield, Andrew; Treadway, S. Lyn

    2012-01-01

    Objectives: To examine whether suicidal intent and medical lethality of past suicide attempts are predictive of future attempts, the association between intent and lethality, and the consistency of these characteristics across repeated attempts among youth. Method: Suicide attempts in a 15-year prospective study of 180 formerly psychiatrically…

  12. Induction of high tolerance to artemisinin by sub-lethal administration: A new in vitro model of P. falciparum.

    Directory of Open Access Journals (Sweden)

    Serena De Lucia

    Full Text Available Artemisinin resistance is a major threat to malaria control efforts. Resistance is characterized by an increase in the Plasmodium falciparum parasite clearance half-life following treatment with artemisinin-based combination therapies (ACTs and an increase in the percentage of surviving parasites. The remarkably short blood half-life of artemisinin derivatives may contribute to drug-resistance, possibly through factors including sub-lethal plasma concentrations and inadequate exposure. Here we selected for a new strain of artemisinin resistant parasites, termed the artemisinin resistant strain 1 (ARS1, by treating P. falciparum Palo Alto (PA cultures with sub-lethal concentrations of dihydroartemisinin (DHA. The resistance phenotype was maintained for over 1 year through monthly maintenance treatments with low doses of 2.5 nM DHA. There was a moderate increase in the DHA IC50 in ARS1 when compared with parental strain PA after 72 h of drug exposure (from 0.68 nM to 2 nM DHA. In addition, ARS1 survived treatment physiologically relevant DHA concentrations (700 nM observed in patients. Furthermore, we confirmed a lack of cross-resistance against a panel of antimalarials commonly used as partner drugs in ACTs. Finally, ARS1 did not contain Pfk13 propeller domain mutations associated with ART resistance in the Greater Mekong Region. With a stable growth rate, ARS1 represents a valuable tool for the development of new antimalarial compounds and studies to further elucidate the mechanisms of ART resistance.

  13. Induced mutations for crop improvement- the generation next

    International Nuclear Information System (INIS)

    Bhatia, C.R.

    2000-01-01

    Experiments to use induced mutations for the improvement of crop plants were initiated in the country in mid nineteen fifties. After forty five years and reasonably good success stories, it is no longer an attractive subject for bright young graduate students. The areas of intellectually satisfying, contemporary, plant genetics based on induced mutations that can also bring social and commercial benefits are identified. These are: nodulation mutants in legumes, altering fatty acid composition in oil crops, modification of root characters, altering host-pathogen interactions, flowering time, day length insensitivity and some changes in modulation pattern involve mutations

  14. Functional analysis of HNPCC-related missense mutations in MSH2

    International Nuclear Information System (INIS)

    Luetzen, Anne; Wind, Niels de; Georgijevic, Dubravka; Nielsen, Finn Cilius; Rasmussen, Lene Juel

    2008-01-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with germline mutations in the human DNA mismatch repair (MMR) genes, most frequently MSH2 and MLH1. The majority of HNPCC mutations cause truncations and thus loss of function of the affected polypeptide. However, a significant proportion of MMR mutations found in HNPCC patients are single amino acid substitutions and the functional consequences of many of these mutations in DNA repair are unclear. We have examined the consequences of seven MSH2 missense mutations found in HNPCC families by testing the MSH2 mutant proteins in functional assays as well as by generating equivalent missense mutations in Escherichia coli MutS and analyzing the phenotypes of these mutants. Here we show that two mutant proteins, MSH2-P622L and MSH2-C697F confer multiple biochemical defects, namely in mismatch binding, in vivo interaction with MSH6 and EXO1, and in nuclear localization in the cell. Mutation G674R, located in the ATP-binding region of MSH2, appears to confer resistance to ATP-dependent mismatch release. Mutations D167H and H639R show reduced mismatch binding. Results of in vivo experiments in E. coli with MutS mutants show that one additional mutant, equivalent of MSH2-A834T that do not show any defects in MSH2 assays, is repair deficient. In conclusion, all mutant proteins (except for MSH2-A305T) have defects; either in mismatch binding, ATP-release, mismatch repair activity, subcellular localization or protein-protein interactions

  15. Functional analysis of HNPCC-related missense mutations in MSH2

    Energy Technology Data Exchange (ETDEWEB)

    Luetzen, Anne [Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark); Wind, Niels de; Georgijevic, Dubravka [Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden (Netherlands); Nielsen, Finn Cilius [Department of Clinical Biochemistry, Rigshospitalet, DK-2100 Copenhagen (Denmark); Rasmussen, Lene Juel [Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark)], E-mail: ljr@ruc.dk

    2008-10-14

    Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with germline mutations in the human DNA mismatch repair (MMR) genes, most frequently MSH2 and MLH1. The majority of HNPCC mutations cause truncations and thus loss of function of the affected polypeptide. However, a significant proportion of MMR mutations found in HNPCC patients are single amino acid substitutions and the functional consequences of many of these mutations in DNA repair are unclear. We have examined the consequences of seven MSH2 missense mutations found in HNPCC families by testing the MSH2 mutant proteins in functional assays as well as by generating equivalent missense mutations in Escherichia coli MutS and analyzing the phenotypes of these mutants. Here we show that two mutant proteins, MSH2-P622L and MSH2-C697F confer multiple biochemical defects, namely in mismatch binding, in vivo interaction with MSH6 and EXO1, and in nuclear localization in the cell. Mutation G674R, located in the ATP-binding region of MSH2, appears to confer resistance to ATP-dependent mismatch release. Mutations D167H and H639R show reduced mismatch binding. Results of in vivo experiments in E. coli with MutS mutants show that one additional mutant, equivalent of MSH2-A834T that do not show any defects in MSH2 assays, is repair deficient. In conclusion, all mutant proteins (except for MSH2-A305T) have defects; either in mismatch binding, ATP-release, mismatch repair activity, subcellular localization or protein-protein interactions.

  16. Prevention and treatment of colon cancer by peroral administration of HAMLET (human α-lactalbumin made lethal to tumour cells).

    Science.gov (United States)

    Puthia, Manoj; Storm, Petter; Nadeem, Aftab; Hsiung, Sabrina; Svanborg, Catharina

    2014-01-01

    Most colon cancers start with dysregulated Wnt/β-catenin signalling and remain a major therapeutic challenge. Examining whether HAMLET (human α-lactalbumin made lethal to tumour cells) may be used for colon cancer treatment is logical, based on the properties of the complex and its biological context. To investigate if HAMLET can be used for colon cancer treatment and prevention. Apc(Min)(/+) mice, which carry mutations relevant to hereditary and sporadic human colorectal tumours, were used as a model for human disease. HAMLET was given perorally in therapeutic and prophylactic regimens. Tumour burden and animal survival of HAMLET-treated and sham-fed mice were compared. Tissue analysis focused on Wnt/β-catenin signalling, proliferation markers and gene expression, using microarrays, immunoblotting, immunohistochemistry and ELISA. Confocal microscopy, reporter assay, immunoprecipitation, immunoblotting, ion flux assays and holographic imaging were used to determine effects on colon cancer cells. Peroral HAMLET administration reduced tumour progression and mortality in Apc(Min)(/+) mice. HAMLET accumulated specifically in tumour tissue, reduced β-catenin and related tumour markers. Gene expression analysis detected inhibition of Wnt signalling and a shift to a more differentiated phenotype. In colon cancer cells with APC mutations, HAMLET altered β-catenin integrity and localisation through an ion channel-dependent pathway, defining a new mechanism for controlling β-catenin signalling. Remarkably, supplying HAMLET to the drinking water from the time of weaning also significantly prevented tumour development. These data identify HAMLET as a new, peroral agent for colon cancer prevention and treatment, especially needed in people carrying APC mutations, where colon cancer remains a leading cause of death.

  17. DNA synthesis time in germinating rice and pattern of diethylsulphate induced mutations in pre-soaked seeds

    International Nuclear Information System (INIS)

    Narahari, P.

    1978-01-01

    DNA synthesis pattern in germinating rice seeds, pre-soaked in water for varying periods upto 48 hr, was determined by following the pulse incorporation of 3 H-thymidine into the TCA-insoluble nucleoprotein. Synthesis of DNA commenced at 24 hr, progressively increased to a first peak at about 38 hr, thereafter showed a 1/3rd drop and subsequently increased to a 2nd and still higher peak at 46 to 48 hr of pre-soaking. Treatments of diethylsulphate (dES) at a low concentration (0.2%-2hr) administered at various progressing stages of DNA synthesis resulted in decrease in seedling height and survival, and increase in mutation frequency at 45 hr. pre-soaking, maximum mutation frequencies of 20, 10 and 2% on M 1 plants, M 1 spikes and M 2 seedling bases, respectively were observed. Higher dES concentration (0.3%-2hr) given at later periods of pre-soaking showed near lethal effects and consequently decreased mutation frequencies. Treatments of sodium fluoride given singly or in combination with dES did not show any substantially different results as compared to those of the respective controls. Mutation spectra observed after dES treatments to germinating seeds, at different pre-soaking periods, were quite dissimilar. Specific mutations of economic importance like semi-dwarf mutants were isolated from the treatment of germinating seeds pre-soaked for 37.5 hr or more when shoot apex cells were undergoing DNA synthesis. (author)

  18. Short-rib polydactyly and Jeune syndromes are caused by mutations in WDR60.

    Science.gov (United States)

    McInerney-Leo, Aideen M; Schmidts, Miriam; Cortés, Claudio R; Leo, Paul J; Gener, Blanca; Courtney, Andrew D; Gardiner, Brooke; Harris, Jessica A; Lu, Yeping; Marshall, Mhairi; Scambler, Peter J; Beales, Philip L; Brown, Matthew A; Zankl, Andreas; Mitchison, Hannah M; Duncan, Emma L; Wicking, Carol

    2013-09-05

    Short-rib polydactyly syndromes (SRPS I-V) are a group of lethal congenital disorders characterized by shortening of the ribs and long bones, polydactyly, and a range of extraskeletal phenotypes. A number of other disorders in this grouping, including Jeune and Ellis-van Creveld syndromes, have an overlapping but generally milder phenotype. Collectively, these short-rib dysplasias (with or without polydactyly) share a common underlying defect in primary cilium function and form a subset of the ciliopathy disease spectrum. By using whole-exome capture and massive parallel sequencing of DNA from an affected Australian individual with SRPS type III, we detected two novel heterozygous mutations in WDR60, a relatively uncharacterized gene. These mutations segregated appropriately in the unaffected parents and another affected family member, confirming compound heterozygosity, and both were predicted to have a damaging effect on the protein. Analysis of an additional 54 skeletal ciliopathy exomes identified compound heterozygous mutations in WDR60 in a Spanish individual with Jeune syndrome of relatively mild presentation. Of note, these two families share one novel WDR60 missense mutation, although haplotype analysis suggested no shared ancestry. We further show that WDR60 localizes at the base of the primary cilium in wild-type human chondrocytes, and analysis of fibroblasts from affected individuals revealed a defect in ciliogenesis and aberrant accumulation of the GLI2 transcription factor at the centrosome or basal body in the absence of an obvious axoneme. These findings show that WDR60 mutations can cause skeletal ciliopathies and suggest a role for WDR60 in ciliogenesis. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  19. Genomic mutation study for long-term cells induced by carbon ions

    International Nuclear Information System (INIS)

    Wang, X.; Furusawa, Y.; Suzuki, M.; Hirayama, R.; Matsumoto, Y.; Qin, Y.

    2007-01-01

    Complete text of publication follows. Objective: Densely ionizing (high LET) radiation can increase the relative biological effectiveness of cell and tissue. Astronauts in the space exploration have the potential exposure of chronic low-dose radiations in the field of low-flux galactic cosmic rays (GCR) and the subsequent biological effects have become one of the major concerns of space science. Furthermore, Heavy ions also are used new radiation therapy owing increased lethal effectiveness of high LET radiation. During radiation therapy, normal tissues also are exposed to ionizing radiation. Radiation can induce genomic mutation and instability in descendants of irradiated cells. Induction of genomic instability can represent one of the initiating steps leading to malignant transformation. Higher frequencies of mutation can be expected to provide higher rates of carcinogenicity with human exposure. Therefore, the study of radiation induced genomic mutation and instability is relevant to the estimates of the risk of secondary malignancies associated with radiation therapy and the carcinogenic effects of space environmental radiation. The hypoxanthine-guanine phosphoribosyltransferase (hprt) locus has been the most commonly used as a target gene for mutation detection studies. In this study, we investigated the generation expression dependence of mutation induction on HPRT locus in CHO cells irradiated with carbon ions. Methods: Chinese hamster ovary (CHO) cells were irradiated with graded doses of carbon ions (290MeV/u, LET:13kev/um) accelerated with Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences(NIRS). The survival effect of cells plated immediately after irradiation was measured with cell colony formation assay. After irradiation, cells were continues reseeding and cultures for lone-term proliferation. Cell samples were collected at 6, 12, 18, 24, 30, 37 and 44 days post irradiation. Mutation induction of cell

  20. Distinct Mechanisms of Pathogenic DJ-1 Mutations in Mitochondrial Quality Control

    Directory of Open Access Journals (Sweden)

    Daniela Strobbe

    2018-03-01

    Full Text Available The deglycase and chaperone protein DJ-1 is pivotal for cellular oxidative stress responses and mitochondrial quality control. Mutations in PARK7, encoding DJ-1, are associated with early-onset familial Parkinson’s disease and lead to pathological oxidative stress and/or disrupted protein degradation by the proteasome. The aim of this study was to gain insights into the pathogenic mechanisms of selected DJ-1 missense mutations, by characterizing protein–protein interactions, core parameters of mitochondrial function, quality control regulation via autophagy, and cellular death following dopamine accumulation. We report that the DJ-1M26I mutant influences DJ-1 interactions with SUMO-1, in turn enhancing removal of mitochondria and conferring increased cellular susceptibility to dopamine toxicity. By contrast, the DJ-1D149A mutant does not influence mitophagy, but instead impairs Ca2+ dynamics and free radical homeostasis by disrupting DJ-1 interactions with a mitochondrial accessory protein known as DJ-1-binding protein (DJBP/EFCAB6. Thus, individual DJ-1 mutations have different effects on mitochondrial function and quality control, implying mutation-specific pathomechanisms converging on impaired mitochondrial homeostasis.

  1. Genome complexity, robustness and genetic interactions in digital organisms

    Science.gov (United States)

    Lenski, Richard E.; Ofria, Charles; Collier, Travis C.; Adami, Christoph

    1999-08-01

    Digital organisms are computer programs that self-replicate, mutate and adapt by natural selection. They offer an opportunity to test generalizations about living systems that may extend beyond the organic life that biologists usually study. Here we have generated two classes of digital organism: simple programs selected solely for rapid replication, and complex programs selected to perform mathematical operations that accelerate replication through a set of defined `metabolic' rewards. To examine the differences in their genetic architecture, we introduced millions of single and multiple mutations into each organism and measured the effects on the organism's fitness. The complex organisms are more robust than the simple ones with respect to the average effects of single mutations. Interactions among mutations are common and usually yield higher fitness than predicted from the component mutations assuming multiplicative effects; such interactions are especially important in the complex organisms. Frequent interactions among mutations have also been seen in bacteria, fungi and fruitflies. Our findings support the view that interactions are a general feature of genetic systems.

  2. Evaluation of Selected CYP51A1 Polymorphisms in View of Interactions with Substrate and Redox Partner

    Directory of Open Access Journals (Sweden)

    Tadeja Režen

    2017-06-01

    Full Text Available Cholesterol is essential for development, growth, and maintenance of organisms. Mutations in cholesterol biosynthetic genes are embryonic lethal and few polymorphisms have been so far associated with pathologies in humans. Previous analyses show that lanosterol 14α-demethylase (CYP51A1 from the late part of cholesterol biosynthesis has only a few missense mutations with low minor allele frequencies and low association with pathologies in humans. The aim of this study is to evaluate the role of amino acid changes in the natural missense mutations of the hCYP51A1 protein. We searched SNP databases for existing polymorphisms of CYP51A1 and evaluated their effect on protein function. We found rare variants causing detrimental missense mutations of CYP51A1. Some missense variants were also associated with a phenotype in humans. Two missense variants have been prepared for testing enzymatic activity in vitro but failed to produce a P450 spectrum. We performed molecular modeling of three selected missense variants to evaluate the effect of the amino acid substitution on potential interaction with its substrate and the obligatory redox partner POR. We show that two of the variants, R277L and especially D152G, have possibly lower binding potential toward obligatory redox partner POR. D152G and R431H have also potentially lower affinity toward the substrate lanosterol. We evaluated the potential effect of damaging variants also using data from other in vitro CYP51A1 mutants. In conclusion, we propose to include damaging CYP51A1 variants into personalized diagnostics to improve genetic counseling for certain rare disease phenotypes.

  3. Risk scaling factors from inactivation to chromosome aberrations, mutations and oncogenic transformations in mammalian cells

    International Nuclear Information System (INIS)

    Alkaharam, A.S.; Watt, D.E.

    1997-01-01

    Analyses of bio-effect mechanisms of damage to mammalian cells in terms of the quality parameter 'mean free path for primary ionisation', for heavy charged particles, strongly suggests that there is a common mechanism for the biological endpoints of chromosome aberrations, mutations and oncogenic transformation. The lethal lesions are identified as unrepaired double-strand breaks in the intracellular DNA. As data for the various endpoints studied can be represented in a unified scheme, for any radiation type, it follows that radiation risk factors can be determined on the basis of simple ratios to the inactivation cross sections. There are intrinsic physical reasons why neutrons can never reach the saturation level of heavier particles for equal fluences. The probabilities of risk with respect to inactivation, for chromosome dicentrics, mutation of the HPRT gene and of oncogenic transformation are respectively 0.24, 5.8 x 10 -5 , and 4.1 x 10 -3 . (author)

  4. Wolbachia Protein TomO Targets nanos mRNA and Restores Germ Stem Cells in Drosophila Sex-lethal Mutants.

    Science.gov (United States)

    Ote, Manabu; Ueyama, Morio; Yamamoto, Daisuke

    2016-09-12

    Wolbachia, endosymbiotic bacteria prevalent in invertebrates, manipulate their hosts in a variety of ways: they induce cytoplasmic incompatibility, male lethality, male-to-female transformation, and parthenogenesis. However, little is known about the molecular basis for host manipulation by these bacteria. In Drosophila melanogaster, Wolbachia infection makes otherwise sterile Sex-lethal (Sxl) mutant females capable of producing mature eggs. Through a functional genomic screen for Wolbachia genes with growth-inhibitory effects when expressed in cultured Drosophila cells, we identified the gene WD1278 encoding a novel protein we call toxic manipulator of oogenesis (TomO), which phenocopies some of the Wolbachia effects in Sxl mutant D. melanogaster females. We demonstrate that TomO enhances the maintenance of germ stem cells (GSCs) by elevating Nanos (Nos) expression via its interaction with nos mRNA, ultimately leading to the restoration of germ cell production in Sxl mutant females that are otherwise without GSCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The evolution of lethal intergroup violence

    OpenAIRE

    Kelly, Raymond C.

    2005-01-01

    Recent findings and analyses in evolutionary biology, archaeology, and ethnology provide a favorable conjuncture for examining the evolution of lethal intergroup violence among hominids during the 2.9-million-year Paleolithic time span. Here, I seek to identify and investigate the main turning points in this evolutionary trajectory and to delineate the periodization that follows from this inquiry.

  6. The evolution of lethal intergroup violence.

    Science.gov (United States)

    Kelly, Raymond C

    2005-10-25

    Recent findings and analyses in evolutionary biology, archaeology, and ethnology provide a favorable conjuncture for examining the evolution of lethal intergroup violence among hominids during the 2.9-million-year Paleolithic time span. Here, I seek to identify and investigate the main turning points in this evolutionary trajectory and to delineate the periodization that follows from this inquiry.

  7. Microbial Herd Protection Mediated by Antagonistic Interaction in Polymicrobial Communities

    Science.gov (United States)

    Wong, Megan J. Q.; Liang, Xiaoye; Smart, Matt; Tang, Le; Moore, Richard; Ingalls, Brian

    2016-01-01

    ABSTRACT In host and natural environments, microbes often exist in complex multispecies communities. The molecular mechanisms through which such communities develop and persist, despite significant antagonistic interactions between species, are not well understood. The type VI secretion system (T6SS) is a lethal weapon commonly employed by Gram-negative bacteria to inhibit neighboring species through the delivery of toxic effectors. It is well established that intraspecies protection is conferred by immunity proteins that neutralize effector toxicities. In contrast, the mechanisms for interspecies protection are not clear. Here we use two T6SS-active antagonistic bacterial species, Aeromonas hydrophila and Vibrio cholerae, to demonstrate that interspecies protection is dependent on effectors. A. hydrophila and V. cholerae do not share conserved immunity genes but could coexist equally in a mixture. However, mutants lacking the T6SS or effectors were effectively eliminated by the competing wild-type strain. Time-lapse microscopic analyses showed that mutually lethal interactions drive the segregation of mixed species into distinct single-species clusters by eliminating interspersed single cells. Cluster formation provides herd protection by abolishing lethal interactions inside each cluster and restricting the interactions to the boundary. Using an agent-based modeling approach, we simulated the antagonistic interactions of two hypothetical species. The resulting simulations recapitulated our experimental observations. These results provide mechanistic insights regarding the general role of microbial weapons in determining the structures of complex multispecies communities. IMPORTANCE Investigating the warfare of microbes allows us to better understand the ecological relationships in complex microbial communities such as the human microbiota. Here we use the T6SS, a deadly bacterial weapon, as a model to demonstrate the importance of lethal interactions in

  8. 77 FR 6548 - Notice of Availability of Ballistic Survivability, Lethality and Vulnerability Analyses

    Science.gov (United States)

    2012-02-08

    ... DEPARTMENT OF DEFENSE Department of the Army Notice of Availability of Ballistic Survivability, Lethality and Vulnerability Analyses AGENCY: Department of the Army, DoD. ACTION: Notice of availability. SUMMARY: The US Army Research Laboratory's (ARL's), Survivability, Lethality Analysis Directorate (SLAD...

  9. Induced plasmon mutations affecting the growth habit of peanuts, A. hypogaea L

    International Nuclear Information System (INIS)

    Levy, A.; Ashri, A.

    1978-01-01

    The effectiveness of the acridines ethidium bromide (EB) and acriflavine in inducing plasmon mutations was compared with the alkylating agents ethyl methanesulphonate (EMS) and diethyl sulphate and to γ-rays. The growth habit (trailing versus bunch) of peanuts (A. hypogaea), controlled by genic-cytoplasmic interactions, was utilized. Breeding tests distinguishing nuclear from plasmon mutations were developed and are described in detail. Plasmon mutations were induced, but there were differences in mutation yields between the cultivars and the mutagens. (Auth.)

  10. Mutator/hypermutable fetal/juvenile metakaryotic stem cells and human colorectal carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Lohith G. Kini

    2013-10-01

    Full Text Available Adult age-specific colorectal cancer incidence rates increase exponentially from maturity, reach a maximum, then decline in extreme old age. Armitage and Doll (1957 postulated that the exponential increase resulted from n mutations occurring throughout adult life in normal cells at risk that initiated the growth of a preneoplastic colony in which subsequent m mutations promoted one of the preneoplastic cells at risk to form a lethal neoplasia. We have reported cytologic evidence that these cells at risk are fetal/juvenile organogenic, then preneoplastic metakaryotic stem cells. Metakaryotic cells display stem-like behaviors of both symmetric and asymmetric nuclear divisions and peculiarities such as bell shaped nuclei and amitotic nuclear fission that distinguish them from embryonic, eukaryotic stem cells. Analyses of mutant colony sizes and numbers in adult lung epithelia supported the inferences that the metakaryotic organogenic stem cells are constitutively mutator/hypermutable and that their contributions to cancer initiation are limited to the fetal/juvenile period. We have amended the two-stage model of Armitage and Doll and incorporated these several inferences in a computer program CancerFit v.5.0. We compared the expectations of the amended model to adult (15-104 yr age-specific colon cancer rates for European American males born 1890-99 and observed remarkable concordance. When estimates of normal colonic fetal/juvenile APC and OAT gene mutation rates (~2-5 x 10-5 per stem cell doubling and preneoplastic colonic gene loss rates (~ 8 x 10-3 were applied, the model was in accordance only for the values of n = 2 and m = 4 or 5.

  11. Choline transporter mutations in severe congenital myasthenic syndrome disrupt transporter localization.

    Science.gov (United States)

    Wang, Haicui; Salter, Claire G; Refai, Osama; Hardy, Holly; Barwick, Katy E S; Akpulat, Ugur; Kvarnung, Malin; Chioza, Barry A; Harlalka, Gaurav; Taylan, Fulya; Sejersen, Thomas; Wright, Jane; Zimmerman, Holly H; Karakaya, Mert; Stüve, Burkhardt; Weis, Joachim; Schara, Ulrike; Russell, Mark A; Abdul-Rahman, Omar A; Chilton, John; Blakely, Randy D; Baple, Emma L; Cirak, Sebahattin; Crosby, Andrew H

    2017-11-01

    The presynaptic, high-affinity choline transporter is a critical determinant of signalling by the neurotransmitter acetylcholine at both central and peripheral cholinergic synapses, including the neuromuscular junction. Here we describe an autosomal recessive presynaptic congenital myasthenic syndrome presenting with a broad clinical phenotype due to homozygous choline transporter missense mutations. The clinical phenotype ranges from the classical presentation of a congenital myasthenic syndrome in one patient (p.Pro210Leu), to severe neurodevelopmental delay with brain atrophy (p.Ser94Arg) and extend the clinical outcomes to a more severe spectrum with infantile lethality (p.Val112Glu). Cells transfected with mutant transporter construct revealed a virtually complete loss of transport activity that was paralleled by a reduction in transporter cell surface expression. Consistent with these findings, studies to determine the impact of gene mutations on the trafficking of the Caenorhabditis elegans choline transporter orthologue revealed deficits in transporter export to axons and nerve terminals. These findings contrast with our previous findings in autosomal dominant distal hereditary motor neuropathy of a dominant-negative frameshift mutation at the C-terminus of choline transporter that was associated with significantly reduced, but not completely abrogated choline transporter function. Together our findings define divergent neuropathological outcomes arising from different classes of choline transporter mutation with distinct disease processes and modes of inheritance. These findings underscore the essential role played by the choline transporter in sustaining acetylcholine neurotransmission at both central and neuromuscular synapses, with important implications for treatment and drug selection. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Annotating Mutational Effects on Proteins and Protein Interactions: Designing Novel and Revisiting Existing Protocols.

    Science.gov (United States)

    Li, Minghui; Goncearenco, Alexander; Panchenko, Anna R

    2017-01-01

    In this review we describe a protocol to annotate the effects of missense mutations on proteins, their functions, stability, and binding. For this purpose we present a collection of the most comprehensive databases which store different types of sequencing data on missense mutations, we discuss their relationships, possible intersections, and unique features. Next, we suggest an annotation workflow using the state-of-the art methods and highlight their usability, advantages, and limitations for different cases. Finally, we address a particularly difficult problem of deciphering the molecular mechanisms of mutations on proteins and protein complexes to understand the origins and mechanisms of diseases.

  13. Mutation choice to eliminate buried free cysteines in protein therapeutics.

    Science.gov (United States)

    Xia, Xue; Longo, Liam M; Blaber, Michael

    2015-02-01

    Buried free-cysteine (Cys) residues can contribute to an irreversible unfolding pathway that promotes protein aggregation, increases immunogenic potential, and significantly reduces protein functional half-life. Consequently, mutation of buried free-Cys residues can result in significant improvement in the storage, reconstitution, and pharmacokinetic properties of protein-based therapeutics. Mutational design to eliminate buried free-Cys residues typically follows one of two common heuristics: either substitution by Ser (polar and isosteric), or substitution by Ala or Val (hydrophobic); however, a detailed structural and thermodynamic understanding of Cys mutations is lacking. We report a comprehensive structure and stability study of Ala, Ser, Thr, and Val mutations at each of the three buried free-Cys positions (Cys16, Cys83, and Cys117) in fibroblast growth factor-1. Mutation was almost universally destabilizing, indicating a general optimization for the wild-type Cys, including van der Waals and H-bond interactions. Structural response to Cys mutation characteristically involved changes to maintain, or effectively substitute, local H-bond interactions-by either structural collapse to accommodate the smaller oxygen radius of Ser/Thr, or conversely, expansion to enable inclusion of novel H-bonding solvent. Despite the diverse structural effects, the least destabilizing average substitution at each position was Ala, and not isosteric Ser. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Lethal Zika Virus Disease Models in Young and Older Interferon α/β Receptor Knock Out Mice

    Directory of Open Access Journals (Sweden)

    Andrea Marzi

    2018-04-01

    Full Text Available The common small animal disease models for Zika virus (ZIKV are mice lacking the interferon responses, but infection of interferon receptor α/β knock out (IFNAR−/− mice is not uniformly lethal particularly in older animals. Here we sought to advance this model in regard to lethality for future countermeasure efficacy testing against more recent ZIKV strains from the Asian lineage, preferably the American sublineage. We first infected IFNAR−/− mice subcutaneously with the contemporary ZIKV-Paraiba strain resulting in predominantly neurological disease with ~50% lethality. Infection with ZIKV-Paraiba by different routes established a uniformly lethal model only in young mice (4-week old upon intraperitoneal infection. However, intraperitoneal inoculation of ZIKV-French Polynesia resulted in uniform lethality in older IFNAR−/− mice (10–12-weeks old. In conclusion, we have established uniformly lethal mouse disease models for efficacy testing of antivirals and vaccines against recent ZIKV strains representing the Asian lineage.

  15. Daily ingestion of the probiotic Lactobacillus paracasei ST11 decreases Vaccinia virus dissemination and lethality in a mouse model.

    Science.gov (United States)

    Dos Santos Pereira Andrade, A C; Lima, M Teixeira; Oliveira, G Pereira; Calixto, R Silva; de Sales E Souza, É Lorenna; da Glória de Souza, D; de Almeida Leite, C M; Ferreira, J M Siqueira; Kroon, E G; de Oliveira, D Bretas; Dos Santos Martins, F; Abrahão, J S

    2017-02-07

    Vaccinia virus (VACV) is an important pathogen. Although studies have shown relationships between probiotics and viruses, the effect of probiotics on VACV infection is unknown. Therefore, this work aims to investigate the probiotics effects on VACV infection. Mice were divided into four groups, two non-infected groups, one receiving the probiotic, the other one not receiving it, and two groups infected intranasally with VACV Western Reserve (VACV-WR) receiving or not receiving the probiotic. Viral titres in organs and cytokine production in the lungs were analysed. Lung samples were also subjected to histological analysis. The intake of probiotic results in reduction in viral spread with a significant decrease of VACV titer on lung, liver and brain of treated group. In addition,treatment with the probiotic results in attenuated mice lung inflammation showing fewer lesions on histological findings and decreased lethality in mice infected with VACV. The ingestion of Lactobacillus paracasei ST11 (LPST11) after VACV infection resulted in 2/9 animal lethality compared with 4/9 in the VACV group. This is the first study on probiotics and VACV interactions, providing not only information about this interaction, but also proposing a model for future studies involving probiotics and other poxvirus.

  16. Detection of haplotypes associated with prenatal death in dairy cattle and identification of deleterious mutations in GART, SHBG and SLC37A2

    OpenAIRE

    Fritz, Sebastien; Capitan, Aurelien; Djari, Anis; Rodriguez, Sabrina; Barbat, Anne; Baur, Aurélia; Grohs, Cecile; Weiss, Bernard; Boussaha, Mekki; Esquerre, Diane; Klopp, Christophe; Rocha, Dominique

    2013-01-01

    The regular decrease of female fertility over time is a major concern in modern dairy cattle industry. Only half of this decrease is explained by indirect response to selection on milk production, suggesting the existence of other factors such as embryonic lethal genetic defects. Genomic regions harboring recessive deleterious mutations were detected in three dairy cattle breeds by identifying frequent haplotypes (>1%) showing a deficit in homozygotes among Illumina Bovine 50k Beadchip haplot...

  17. Damage to E. coli cells induced by tritium decay: secondary lethality under nongrowth conditions

    International Nuclear Information System (INIS)

    Koukalova, B.; Kuhrova, V.

    1980-01-01

    Cells containing incorporated 3 H-thymidine are damaged by its decay. It was found with E.coli TAU-bar cells that a small part of the damage is lethal whereas most of it is reparable and only potentially lethal. If cells are subjected to nongrowth conditions, the potentially lethal damage changes to lethal damage. This process is called secondary lethality (SL). The extent of SL and some changes in DNA under three different modes of growth inhibition were determined. It was found that: (i) SL is maximal under conditions of amino acid starvation (-AA), the viable count decreasing by two orders of magnitude. (ii) SL is 4 times lower in the presence of chloramphenicol (-AA+CLP) and 6.5 times lower under +AA+CLP conditions. Changes in the sedimentation rate of DNA determined in alkaline sucrose gradient correlate with the differences in SL: under -AA conditions the sedimentation rate of DNA decreases whereas in the presence of CLP no decrease occurs. The results suggest that certain enzymatic processes take place under -AA conditions which lead to irreparable changes in DNA. (author)

  18. Damage to E. coli cells induced by tritium decay: secondary lethality under nongrowth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Koukalova, B; Kuhrova, V [Ceskoslovenska Akademie Ved, Brno. Biofysikalni Ustav

    1980-05-01

    Cells containing incorporated /sup 3/H-thymidine are damaged by its decay. It was found with E.coli TAU-bar cells that a small part of the damage is lethal whereas most of it is reparable and only potentially lethal. If cells are subjected to nongrowth conditions, the potentially lethal damage changes to lethal damage. This process is called secondary lethality (SL). The extent of SL and some changes in DNA under three different modes of growth inhibition were determined. It was found that: (i) SL is maximal under conditions of amino acid starvation (-AA), the viable count decreasing by two orders of magnitude. (ii) SL is 4 times lower in the presence of chloramphenicol (-AA+CLP) and 6.5 times lower under +AA+CLP conditions. Changes in the sedimentation rate of DNA determined in alkaline sucrose gradient correlate with the differences in SL: under -AA conditions the sedimentation rate of DNA decreases whereas in the presence of CLP no decrease occurs. The results suggest that certain enzymatic processes take place under -AA conditions which lead to irreparable changes in DNA.

  19. Scaling laws and universality for the strength of genetic interactions in yeast

    Science.gov (United States)

    Velenich, Andrea; Dai, Mingjie; Gore, Jeff

    2012-02-01

    Genetic interactions provide a window to the organization of the thousands of biochemical reactions in living cells. If two mutations affect unrelated cellular functions, the fitness effects of their combination can be easily predicted from the two separate fitness effects. However, because of interactions, for some pairs of mutations their combined fitness effect deviates from the naive prediction. We study genetic interactions in yeast cells by analyzing a publicly available database containing experimental growth rates of 5 million double mutants. We show that the characteristic strength of genetic interactions has a simple power law dependence on the fitness effects of the two interacting mutations and that the probability distribution of genetic interactions is a universal function. We further argue that the strength of genetic interactions depends only on the fitness effects of the interacting mutations and not on their biological origin in terms of single point mutations, entire gene knockouts or even more complicated physiological perturbations. Finally, we discuss the implications of the power law scaling of genetic interactions on the ruggedness of fitness landscapes and the consequent evolutionary dynamics.

  20.  Mutations of noncollagen genes in osteogenesis imperfecta – implications of the gene products in collagen biosynthesis and pathogenesis of disease

    Directory of Open Access Journals (Sweden)

    Anna Galicka

    2012-06-01

    Full Text Available  Recent investigations revealed that the “brittle bone” phenotype in osteogenesis imperfecta (OI is caused not only by dominant mutations in collagen type I genes, but also by recessively inherited mutations in genes responsible for the post-translational processing of type I procollagen as well as for bone formation. The phenotype of patients with mutations in noncollagen genes overlaps with very severe type III and lethal type II OI caused by mutations in collagen genes. Mutations in genes that encode proteins involved in collagen prolyl 3-hydroxylation (P3H1/CRTAP/CyPB eliminated Pro986 hydroxylation and caused an increase in modification of collagen helix by prolyl 4-hydroxylase and lysyl hydroxylase. However, the importance of these disturbances in the disease pathomechanism is not known. Loss of complex proteins’ function as collagen chaperones may dominate the disease mechanism. The latest findings added to the spectrum of OI-causing and collagen-influencing factors other chaperones (HSP47 and FKBP65 and protein BMP-1, which emphasizes the complexity of collagen folding and secretion as well as their importance in bone formation. Furthermore, mutations in genes encoding transcription factor SP7/Osterix and pigment epithelium-derived factor (PEDF constitute a novel mechanism for OI, which is independent of changes in biosynthesis and processing of collagen.