WorldWideScience

Sample records for mutation decreased expression

  1. A new human NHERF1 mutation decreases renal phosphate transporter NPT2a expression by a PTH-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Marie Courbebaisse

    Full Text Available BACKGROUND: The sodium-hydrogen exchanger regulatory factor 1 (NHERF1 binds to the main renal phosphate transporter NPT2a and to the parathyroid hormone (PTH receptor. We have recently identified mutations in NHERF1 that decrease renal phosphate reabsorption by increasing PTH-induced cAMP production in the renal proximal tubule. METHODS: We compared relevant parameters of phosphate homeostasis in a patient with a previously undescribed mutation in NHERF1 and in control subjects. We expressed the mutant NHERF1 protein in Xenopus Oocytes and in cultured cells to study its effects on phosphate transport and PTH-induced cAMP production. RESULTS: We identified in a patient with inappropriate renal phosphate reabsorption a previously unidentified mutation (E68A located in the PDZ1 domain of NHERF1.We report the consequences of this mutation on NHERF1 function. E68A mutation did not modify cAMP production in the patient. PTH-induced cAMP synthesis and PKC activity were not altered by E68A mutation in renal cells in culture. In contrast to wild-type NHERF1, expression of the E68A mutant in Xenopus oocytes and in human cells failed to increase phosphate transport. Pull down experiments showed that E68A mutant did not interact with NPT2a, which robustly interacted with wild type NHERF1 and previously identified mutants. Biotinylation studies revealed that E68A mutant was unable to increase cell surface expression of NPT2a. CONCLUSIONS: Our results indicate that the PDZ1 domain is critical for NHERF1-NPT2a interaction in humans and for the control of NPT2a expression at the plasma membrane. Thus we have identified a new mechanism of renal phosphate loss and shown that different mutations in NHERF1 can alter renal phosphate reabsorption via distinct mechanisms.

  2. Decreased expression of lysyl hydroxylase 2 (LH2) in skin fibroblasts from three Ehlers-Danlos patients does not result from mutations in either the coding or proximal promoter region of the LH2 gene.

    Science.gov (United States)

    Walker, L C; Teebi, A S; Marini, J C; De Paepe, A; Malfait, F; Atsawasuwan, P; Yamauchi, M; Yeowell, H N

    2004-12-01

    The Ehlers-Danlos syndromes (EDS) are a heterogeneous group of inherited connective tissue disorders characterized by tissue fragility, hyperelasticity of the skin and joint hypermobility. This phenotype, accompanied by kyphoscoliosis and/or ocular fragility, is present in patients with the autosomal recessive type VI form of EDS. These patients have significantly decreased levels of lysyl hydroxylase (LH) activity, due to mutations in the LH1 gene. LH hydroxylates specific lysine residues in the collagen molecule that are precursors for the formation of cross-links which provide collagen with its tensile strength. No disorder has been directly linked to decreased expression of LH2 and LH3, two other isoforms of LH. This study describes 3 patients with mixed phenotypes of EDS, who have significantly decreased mRNAs for LH2, but normal levels of LH1 and LH3 mRNAs, in their skin fibroblasts. In contrast to the effect of LH1 deficiency in EDS VI patients, the decreased expression of LH2 does not affect LH activity, bifunctional collagen cross-links (measured after reduction as dihydroxylysinonorleucine (DHLNL) and hydroxylysinonorleucine (HLNL)), or helical lysine hydroxylation in these cell lines. Sequence analysis of full length LH2 cDNAs and 1kb of the promoter region of LH2 does not show mutations that could explain the decreased expression of LH2. These results suggest that the deficiency of LH2 in these fibroblasts may be caused by changes in other factors required for the expression of LH2.

  3. Insulin decreases atherosclerosis by inducing endothelin receptor B expression

    DEFF Research Database (Denmark)

    Park, Kyoungmin; Mima, Akira; Li, Qian

    2016-01-01

    Endothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1...... induction of NO action, which increases endothelin receptor B (EDNRB) expression and intracellular [Ca(2+)]. Using the mice with knockin mutation of eNOS, which had Ser1176 mutated to alanine (AKI), deleting the only known mechanism for insulin to activate eNOS/NO pathway, we observed that IRS1...... overexpression in the endothelia of Aki/ApoE(-/-) mice significantly decreased atherosclerosis. Interestingly, endothelial EDNRB expression was selectively reduced in intima of arteries from diabetic patients and rodents. However, endothelial EDNRB expression was upregulated by insulin via P13K/Akt pathway...

  4. Decreased decorin expression in the tumor microenvironment

    International Nuclear Information System (INIS)

    Bozoky, Benedek; Savchenko, Andrii; Guven, Hayrettin; Ponten, Fredrik; Klein, George; Szekely, Laszlo

    2014-01-01

    Decorin is a small leucine-rich proteoglycan, synthesized and deposited by fibroblasts in the stroma where it binds to collagen I. It sequesters several growth factors and antagonizes numerous members of the receptor tyrosine kinase family. In experimental murine systems, it acted as a potent tumor suppressor. Examining the Human Protein Atlas online database of immunostained tissue samples we have surveyed decorin expression in silico in several different tumor types, comparing them with corresponding normal tissues. We found that decorin is abundantly secreted and deposited in normal connective tissue but its expression is consistently decreased in the tumor microenvironment. We developed a software to quantitate the difference in expression. The presence of two closely related proteoglycans in the newly formed tumor stroma indicated that the decreased decorin expression was not caused by the delay in proteoglycan deposition in the newly formed connective tissue surrounding the tumor

  5. Presenilin 1 mutation decreases both calcium and contractile responses in cerebral arteries.

    Science.gov (United States)

    Toussay, Xavier; Morel, Jean-Luc; Biendon, Nathalie; Rotureau, Lolita; Legeron, François-Pierre; Boutonnet, Marie-Charlotte; Cho, Yoon H; Macrez, Nathalie

    2017-10-01

    Mutations or upregulation in presenilin 1 (PS1) gene are found in familial early-onset Alzheimer's disease or sporadic late-onset Alzheimer's disease, respectively. PS1 has been essentially studied in neurons and its mutation was shown to alter intracellular calcium (Ca 2+ ) signals. Here, we showed that PS1 is expressed in smooth muscle cells (SMCs) of mouse cerebral arteries, and we assessed the effects of the deletion of exon 9 of PS1 (PS1dE9) on Ca 2+ signals and contractile responses of vascular SMC. Agonist-induced contraction of cerebral vessels was significantly decreased in PS1dE9 both in vivo and ex vivo. Spontaneous activity of Ca 2+ sparks through ryanodine-sensitive channels (RyR) was unchanged, whereas the RyR-mediated Ca 2+ -release activated by caffeine was shorter in PS1dE9 SMC when compared with control. Moreover, PS1dE9 mutation decreased the caffeine-activated capacitive Ca 2+ entry, and inhibitors of SERCA pumps reversed the effects of PS1dE9 on Ca 2+ signals. PS1dE9 mutation also leads to the increased expression of SERCA3, phospholamban, and RyR3. These results show that PS1 plays a crucial role in the cerebrovascular system and the vascular reactivity is decreased through altered Ca 2+ signals in PS1dE9 mutant mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Decrease in specific micronutrient intake in colorectal cancer patients with tumors presenting Ki-ras mutation

    OpenAIRE

    JORDI SALAS; NURIA LASO; SERGI MAS; M. JOSE LAFUENTE; XAVIER CASTERAD; MANUEL TRIAS; ANTONIO BALLESTA; RAFAEL MOLINA; CARLOS ASCASO; SHICHUN ZHENG; JOHN K. WIENCKE; AMALIA LAFUENTE

    2004-01-01

    Decrease in specific micronutrient intake in colorectal cancer patients with tumors presenting Ki-ras mutation BACKGROUND: The diversity of the Mediterranean diet and the heterogeneity of acquired genetic alterations in colorectal cancer (CRC) led us to examine the possible association between dietary factors and mutations, such as Ki-ras mutations, in genes implicated in the pathogenesis of these neoplasms. PATIENTS AND METHODS: The study was based on 246 cases and 296 controls. For th...

  7. CURCUMIN DECREASES SPECIFICITY PROTEIN (Sp) EXPRESSION IN BLADDER CANCER CELLS

    OpenAIRE

    Chadalapaka, Gayathri; Jutooru, Indira; Chintharlapalli, Sudhakar; Papineni, Sabitha; Smith, Roger; Li, Xiangrong; Safe, Stephen

    2008-01-01

    Curcumin is the active component of tumeric, and this polyphenolic compound has been extensively investigated as an anticancer drug that modulates multiple pathways and genes. In this study, 10 – 25 µM curcumin inhibited 253JB-V and KU7 bladder cancer cell growth, and this was accompanied by induction of apoptosis and decreased expression of the proapoptotic protein survivin and the angiogenic proteins vascular endothelial growth factor (VEGF) and VEGF receptor 1 (VEGFR1). Since expression of...

  8. Mutation in HFE gene decreases manganese accumulation and oxidative stress in the brain after olfactory manganese exposure.

    Science.gov (United States)

    Ye, Qi; Kim, Jonghan

    2016-06-01

    Increased accumulation of manganese (Mn) in the brain is significantly associated with neurobehavioral deficits and impaired brain function. Airborne Mn has a high systemic bioavailability and can be directly taken up into the brain, making it highly neurotoxic. While Mn transport is in part mediated by several iron transporters, the expression of these transporters is altered by the iron regulatory gene, HFE. Mutations in the HFE gene are the major cause of the iron overload disorder, hereditary hemochromatosis, one of the prevalent genetic diseases in humans. However, whether or not HFE mutation modifies Mn-induced neurotoxicity has not been evaluated. Therefore, our goal was to define the role of HFE mutation in Mn deposition in the brain and the resultant neurotoxic effects after olfactory Mn exposure. Mice carrying the H67D HFE mutation, which is homologous to the H63D mutation in humans, and their control, wild-type mice, were intranasally instilled with MnCl2 with different doses (0, 0.2, 1.0 and 5.0 mg kg(-1)) daily for 3 days. Mn levels in the blood, liver and brain were determined using inductively-coupled plasma mass spectrometry (ICP-MS). H67D mutant mice showed significantly lower Mn levels in the blood, liver, and most brain regions, especially in the striatum, while mice fed an iron-overload diet did not. Moreover, mRNA expression of ferroportin, an essential exporter of iron and Mn, was up-regulated in the striatum. In addition, the levels of isoprostane, a marker of lipid peroxidation, were increased in the striatum after Mn exposure in wild-type mice, but were unchanged in H67D mice. Together, our results suggest that the H67D mutation provides decreased susceptibility to Mn accumulation in the brain and neurotoxicity induced by inhaled Mn.

  9. Reduced expression levels of PTEN are associated with decreased sensitivity of HCC827 cells to icotinib.

    Science.gov (United States)

    Zhai, Yang; Zhang, Yanjun; Nan, Kejun; Liang, Xuan

    2017-05-01

    The clinical resistance of non-small cell lung cancer (NSCLC) to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has been linked to EGFR T790M resistance mutations or MET amplifications. Additional mechanisms underlying EGFR-TKI drug resistance remain unclear. The present study demonstrated that icotinib significantly inhibited the proliferation and increased the apoptosis rate of HCC827 cells; the cellular mRNA and protein expression levels of phosphatase and tensin homolog (PTEN) were also significantly downregulated. To investigate the effect of PTEN expression levels on the sensitivity of HCC827 cells to icotinib, PTEN expression was silenced using a PTEN-specific small interfering RNA. The current study identified that the downregulation of PTEN expression levels may promote cellular proliferation in addition to decreasing the apoptosis of HCC827 cells, and may reduce the sensitivity of HCC827 cells to icotinib. These results suggested that reduced PTEN expression levels were associated with the decreased sensitivity of HCC827 cells to icotinib. Furthermore, PTEN expression levels may be a useful marker for predicting icotinib resistance and elucidating the resistance mechanisms underlying EGFR-mutated NSCLC.

  10. Benazepril hydrochloride improves diabetic nephropathy and decreases proteinuria by decreasing ANGPTL-4 expression.

    Science.gov (United States)

    Xue, Lingyu; Feng, Xiaoqing; Wang, Chuanhai; Zhang, Xuebin; Sun, Wenqiang; Yu, Kebo

    2017-10-04

    This study aimed to investigate the effects of benazepril hydrochloride (BH) on proteinuria and ANGPTL-4 expression in a diabetic nephropathy (DN) rat model. A total of 72 Wistar male rats were randomly divided into three groups: normal control (NC), DN group and BH treatment (BH) groups. The DN model was induced by streptozotocin (STZ). Weight, glucose, proteinuria, biochemical indicators and the kidney weight index were examined at 8, 12 and 16 weeks. In addition, ANGPTL-4 protein and mRNA expressions were assessed by immunohistochemistry and qRT-PCR, respectively. Relationships between ANGPTL-4 and biochemical indicators were investigated using Spearman analysis. Weight was significantly lower but glucose levels were significantly higher in both the DN and BH groups than in the NC group (P Benazepril hydrochloride improves DN and decreases proteinuria by decreasing ANGPTL-4 expression.

  11. Myostatin propeptide mutation of the hypermuscular Compact mice decreases the formation of myostatin and improves insulin sensitivity.

    Science.gov (United States)

    Kocsis, Tamas; Trencsenyi, Gyorgy; Szabo, Kitti; Baan, Julia Aliz; Muller, Geza; Mendler, Luca; Garai, Ildiko; Reinauer, Hans; Deak, Ferenc; Dux, Laszlo; Keller-Pinter, Aniko

    2017-03-01

    The TGFβ family member myostatin (growth/differentiation factor-8) is a negative regulator of skeletal muscle growth. The hypermuscular Compact mice carry the 12-bp Mstn(Cmpt-dl1Abc) deletion in the sequence encoding the propeptide region of the precursor promyostatin, and additional modifier genes of the Compact genetic background contribute to determine the full expression of the phenotype. In this study, by using mice strains carrying mutant or wild-type myostatin alleles with the Compact genetic background and nonmutant myostatin with the wild-type background, we studied separately the effect of the Mstn(Cmpt-dl1Abc) mutation or the Compact genetic background on morphology, metabolism, and signaling. We show that both the Compact myostatin mutation and Compact genetic background account for determination of skeletal muscle size. Despite the increased musculature of Compact s, the absolute size of heart and kidney is not influenced by myostatin mutation; however, the Compact genetic background increases them. Both Compact myostatin and genetic background exhibit systemic metabolic effects. The Compact mutation decreases adiposity and improves whole body glucose uptake, insulin sensitivity, and 18 FDG uptake of skeletal muscle and white adipose tissue, whereas the Compact genetic background has the opposite effect. Importantly, the mutation does not prevent the formation of mature myostatin; however, a decrease in myostatin level was observed, leading to altered activation of Smad2, Smad1/5/8, and Akt, and an increased level of p-AS160, a Rab-GTPase-activating protein responsible for GLUT4 translocation. Based on our analysis, the Compact genetic background strengthens the effect of myostatin mutation on muscle mass, but those can compensate for each other when systemic metabolic effects are compared. Copyright © 2017 the American Physiological Society.

  12. MET amplification, expression, and exon 14 mutations in colorectal adenocarcinoma.

    Science.gov (United States)

    Zhang, Meng; Li, Guichao; Sun, Xiangjie; Ni, Shujuan; Tan, Cong; Xu, Midie; Huang, Dan; Ren, Fei; Li, Dawei; Wei, Ping; Du, Xiang

    2018-04-08

    MET amplification, expression, and splice mutations at exon 14 result in dysregulation of the MET signaling pathway. The aim of this study was to identify the relationship between MET amplification, protein or mRNA expression, and mutations in colorectal cancer (CRC). MET immunohistochemistry (IHC) was used for MET protein expression analysis and fluorescence in situ hybridization (FISH) was used for MET amplification detection. Both analyses were performed in tissue microarrays (TMA) containing 294 of colorectal adenocarcinoma tissue samples and 131 samples of adjacent normal epithelial tissue. MET mRNA expression was examined by real-time quantitative polymerase chain reaction (qRT-PCR) in 72 fresh colorectal adenocarcinoma tissue samples and adjacent normal colon tissue. PCR sequencing was performed to screen for MET exon 14 splice mutations in 59 fresh CRC tissue samples. Our results showed that MET protein expression was higher in colorectal tumor tissue than in adjacent normal intestinal epithelium. Positive MET protein expression was associated with significantly poorer overall survival (OS) and disease-free survival (DFS). Multivariate analysis revealed that positive MET protein expression was an independent risk factor for DFS, but not for OS. MET mRNA expression was upregulated in tumor tissues compared with the adjacent normal tissues. The incidence of MET amplification was 4.4%. None of the patients was positive for MET mutation. Collectively, MET was overexpressed in colorectal adenocarcinoma, and its positive protein expression predicted a poorer outcome in CRC patients. Furthermore, according to our results, MET amplification and 14 exon mutation are extremely rare events in colorectal adenocarcinoma. Copyright © 2018. Published by Elsevier Inc.

  13. Decreased Expression of DREAM Promotes the Degeneration of Retinal Neurons

    Science.gov (United States)

    Chintala, Shravan; Cheng, Mei; Zhang, Xiao

    2015-01-01

    The intrinsic mechanisms that promote the degeneration of retinal ganglion cells (RGCs) following the activation of N-Methyl-D-aspartic acid-type glutamate receptors (NMDARs) are unclear. In this study, we have investigated the role of downstream regulatory element antagonist modulator (DREAM) in NMDA-mediated degeneration of the retina. NMDA, phosphate-buffered saline (PBS), and MK801 were injected into the vitreous humor of C57BL/6 mice. At 12, 24, and 48 hours after injection, expression of DREAM in the retina was determined by immunohistochemistry, western blot analysis, and electrophoretic mobility-shift assay (EMSA). Apoptotic death of cells in the retina was determined by terminal deoxynucleotidyl transferace dUTP nick end labeling (TUNEL) assays. Degeneration of RGCs in cross sections and in whole mount retinas was determined by using antibodies against Tuj1 and Brn3a respectively. Degeneration of amacrine cells and bipolar cells was determined by using antibodies against calretinin and protein kinase C (PKC)-alpha respectively. DREAM was expressed constitutively in RGCs, amacrine cells, bipolar cells, as well as in the inner plexiform layer (IPL). NMDA promoted a progressive decrease in DREAM levels in all three cell types over time, and at 48 h after NMDA-treatment very low DREAM levels were evident in the IPL only. DREAM expression in retinal nuclear proteins was decreased progressively after NMDA-treatment, and correlated with its decreased binding to the c-fos-DRE oligonucleotides. A decrease in DREAM expression correlated significantly with apoptotic death of RGCs, amacrine cells and bipolar cells. Treatment of eyes with NMDA antagonist MK801, restored DREAM expression to almost normal levels in the retina, and significantly decreased NMDA-mediated apoptotic death of RGCs, amacrine cells, and bipolar cells. Results presented in this study show for the first time that down-regulation of DREAM promotes the degeneration of RGCs, amacrine cells, and

  14. Functional features of gene expression profiles differentiating gastrointestinal stromal tumours according to KIT mutations and expression

    International Nuclear Information System (INIS)

    Ostrowski, Jerzy; Dobosz, Anna Jerzak Vel; Jarosz, Dorota; Ruka, Wlodzimierz; Wyrwicz, Lucjan S; Polkowski, Marcin; Paziewska, Agnieszka; Skrzypczak, Magdalena; Goryca, Krzysztof; Rubel, Tymon; Kokoszyñska, Katarzyna; Rutkowski, Piotr; Nowecki, Zbigniew I

    2009-01-01

    Gastrointestinal stromal tumours (GISTs) represent a heterogeneous group of tumours of mesenchymal origin characterized by gain-of-function mutations in KIT or PDGFRA of the type III receptor tyrosine kinase family. Although mutations in either receptor are thought to drive an early oncogenic event through similar pathways, two previous studies reported the mutation-specific gene expression profiles. However, their further conclusions were rather discordant. To clarify the molecular characteristics of differentially expressed genes according to GIST receptor mutations, we combined microarray-based analysis with detailed functional annotations. Total RNA was isolated from 29 frozen gastric GISTs and processed for hybridization on GENECHIP ® HG-U133 Plus 2.0 microarrays (Affymetrix). KIT and PDGFRA were analyzed by sequencing, while related mRNA levels were analyzed by quantitative RT-PCR. Fifteen and eleven tumours possessed mutations in KIT and PDGFRA, respectively; no mutation was found in three tumours. Gene expression analysis identified no discriminative profiles associated with clinical or pathological parameters, even though expression of hundreds of genes differentiated tumour receptor mutation and expression status. Functional features of genes differentially expressed between the two groups of GISTs suggested alterations in angiogenesis and G-protein-related and calcium signalling. Our study has identified novel molecular elements likely to be involved in receptor-dependent GIST development and allowed confirmation of previously published results. These elements may be potential therapeutic targets and novel markers of KIT mutation status

  15. Heart-specific expression of laminopathic mutations in transgenic zebrafish.

    Science.gov (United States)

    Verma, Ajay D; Parnaik, Veena K

    2017-07-01

    Lamins are key determinants of nuclear organization and function in the metazoan nucleus. Mutations in human lamin A cause a spectrum of genetic diseases that affect cardiac muscle and skeletal muscle as well as other tissues. A few laminopathies have been modeled using the mouse. As zebrafish is a well established model for the study of cardiac development and disease, we have investigated the effects of heart-specific lamin A mutations in transgenic zebrafish. We have developed transgenic lines of zebrafish expressing conserved lamin A mutations that cause cardiac dysfunction in humans. Expression of zlamin A mutations Q291P and M368K in the heart was driven by the zebrafish cardiac troponin T2 promoter. Homozygous mutant embryos displayed nuclear abnormalities in cardiomyocyte nuclei. Expression analysis showed the upregulation of genes involved in heart regeneration in transgenic mutant embryos and a cell proliferation marker was increased in adult heart tissue. At the physiological level, there was deviation of up to 20% from normal heart rate in transgenic embryos expressing mutant lamins. Adult homozygous zebrafish were fertile and did not show signs of early mortality. Our results suggest that transgenic zebrafish models of heart-specific laminopathies show cardiac regeneration and moderate deviations in heart rate during embryonic development. © 2017 International Federation for Cell Biology.

  16. Decreased astroglial monocarboxylate transporter 4 expression in temporal lobe epilepsy.

    Science.gov (United States)

    Liu, Bei; Niu, Le; Shen, Ming-Zhi; Gao, Lei; Wang, Chao; Li, Jie; Song, Li-Jia; Tao, Ye; Meng, Qiang; Yang, Qian-Li; Gao, Guo-Dong; Zhang, Hua

    2014-10-01

    Efflux of monocaroxylates like lactate, pyruvate, and ketone bodies from astrocytes through monocarboxylate transporter 4 (MCT4) supplies the local neuron population with metabolic intermediates to meet energy requirements under conditions of increased demand. Disruption of this astroglial-neuron metabolic coupling pathway may contribute to epileptogenesis. We measured MCT4 expression in temporal lobe epileptic foci excised from patients with intractable epilepsy and in rats injected with pilocarpine, an animal model of temporal lobe epilepsy (TLE). Cortical MCT4 expression levels were significantly lower in TLE patients compared with controls, due at least partially to MCT4 promoter methylation. Expression of MCT4 also decreased progressively in pilocarpine-treated rats from 12 h to 14 days post-administration. Underexpression of MCT4 in cultured astrocytes induced by a short hairpin RNA promoted apoptosis. Knockdown of astrocyte MCT4 also suppressed excitatory amino acid transporter 1 (EAAT1) expression. Reduced MCT4 and EAAT1 expression by astrocytes may lead to neuronal hyperexcitability and epileptogenesis in the temporal lobe by reducing the supply of metabolic intermediates and by allowing accumulation of extracellular glutamate.

  17. Decreased inducibility of TNF expression in lipid-loaded macrophages

    Directory of Open Access Journals (Sweden)

    Kallin Bengt

    2002-10-01

    Full Text Available Abstract Background Inflammation and immune responses are considered to be very important in the pathogenesis of atherosclerosis. Lipid accumulation in macrophages of the arterial intima is a characteristic feature of atherosclerosis which can influence the inflammatory potential of macrophages. We studied the effects of lipid loading on the regulation of TNF expression in human monocyte-derived macrophages. Results In macrophages incubated with acetylated low density lipoprotein (ac-LDL for 2 days, mRNA expression of TNF in cells stimulated with TNF decreased by 75%. In cell cultures stimulated over night with IL-1β, lipid loading decreased secretion of TNF into culture medium by 48%. These results suggest that lipid accumulation in macrophages makes them less responsive to inflammatory stimuli. Decreased basal activity and inducibility of transcription factor AP-1 was observed in lipid-loaded cells, suggesting a mechanism for the suppression of cytokine expression. NF-κB binding activity and inducibility were only marginally affected by ac-LDL. LDL and ac-LDL did not activate PPARγ. In contrast, oxidized LDL stimulated AP-1 and PPARγ but inhibited NF-κB, indicating that the effects of lipid loading with ac-LDL were not due to oxidation of lipids. Conclusions Accumulation of lipid, mainly cholesterol, results in down-regulation of TNF expression in macrophages. Since monocytes are known to be activated by cell adhesion, these results suggest that foam cells in atherosclerotic plaques may contribute less potently to an inflammatory reaction than newly arrived monocytes/macrophages.

  18. Characterization of differential gene expression in adrenocortical tumors harboring beta-catenin (CTNNB1) mutations.

    Science.gov (United States)

    Durand, Julien; Lampron, Antoine; Mazzuco, Tania L; Chapman, Audrey; Bourdeau, Isabelle

    2011-07-01

    Mutations of β-catenin gene (CTNNB1) are frequent in adrenocortical adenomas (AA) and adrenocortical carcinomas (ACC). However, the target genes of β-catenin have not yet been identified in adrenocortical tumors. Our objective was to identify genes deregulated in adrenocortical tumors harboring CTNNB1 genetic alterations and nuclear accumulation of β-catenin. Microarray analysis identified a dataset of genes that were differently expressed between AA with CTNNB1 mutations and wild-type (WT) tumors. Within this dataset, the expression profiles of five genes were validated by real time-PCR (RT-PCR) in a cohort of 34 adrenocortical tissues (six AA and one ACC with CTNNB1 mutations, 13 AA and four ACC with WT CTNNB1, and 10 normal adrenal glands) and two human ACC cell lines. We then studied the effects of suppressing β-catenin transcriptional activity with the T-cell factor/β-catenin inhibitors PKF115-584 and PNU74654 on gene expression in H295R and SW13 cells. RT-PCR analysis confirmed the overexpression of ISM1, RALBP1, and PDE2A and the down-regulation of PHYHIP in five of six AA harboring CTNNB1 mutations compared with WT AA (n = 13) and normal adrenal glands (n = 10). RALBP1 and PDE2A overexpression was also confirmed at the protein level by Western blotting analysis in mutated tumors. ENC1 was specifically overexpressed in three of three AA harboring CTNNB1 point mutations. mRNA expression and protein levels of RALBP1, PDE2A, and ENC1 were decreased in a dose-dependent manner in H295R cells after treatment with PKF115-584 or PNU74654. This study identified candidate genes deregulated in CTNNB1-mutated adrenocortical tumors that may lead to a better understanding of the role of the Wnt-β-catenin pathway in adrenocortical tumorigenesis.

  19. Aromatase expression is increased in BRCA1 mutation carriers

    International Nuclear Information System (INIS)

    Chand, Ashwini L; KConFab; Simpson, Evan R; Clyne, Colin D

    2009-01-01

    Until recently, the molecular mechanisms explaining increased incidence of ovarian and breast cancers in carriers of BRCA1 gene mutations had not been clearly understood. Of significance is the finding that BRCA1 negatively regulates aromatase expression in vitro. Our objective was to characterise aromatase gene (CYP19A1) and its promoter expression in breast adipose and ovarian tissue in BRCA1 mutation carriers and unaffected controls. We measured aromatase transcripts, total and promoter-specific (PII, PI.3, PI.4) in prophylactic oophorectomy or mastectomy, therapeutic mastectomy, ovarian and breast tissue from unaffected women. We demonstrate that the lack of functional BRCA1 protein correlates to higher aromatase levels in 85% of BRCA1 mutation carriers. This increase is mediated by aberrant transcriptional regulation of aromatase; in breast adipose by increases in promoter II/I.3 and I.4-specific transcripts; and in the ovary with elevation in promoter I.3 and II-specific transcripts. Understanding the link between BRCA1 and aromatase is significant in terms of understanding why carcinogenesis is restricted to estrogen-producing tissues in BRCA1 mutation carriers

  20. Cigarette smoke decreases mitochondrial porin expression and steroidogenesis

    International Nuclear Information System (INIS)

    Bose, Mahuya; Whittal, Randy M.; Gairola, C. Gary; Bose, Himangshu S.

    2008-01-01

    Steroidogenic acute regulatory protein (StAR) facilitates the movement of cholesterol from the outer to inner mitochondrial membrane for steroidogenesis. Here, we investigated the effect of cigarette smoke (CS) on steroidogenesis using adrenal mitochondria isolated from mice chronically exposed to CS. Steroidogenesis was decreased approximately 78% in CS-exposed mitochondria, as measured by synthesis of the steroid hormone precursor pregnenolone. This effect was accompanied by decreased mitochondrial import of 35 S-StAR. Further characterization of the imported 35 S-StAR by native gradient PAGE revealed the presence of a high molecular weight complex in both control and CS-exposed groups. Following density gradient fractionation of 35 S-StAR that had been extracted from control mitochondria, precursor StAR could be found in fractions 2-6 and smaller-sized StAR complexes in fractions 6-13. In the CS-exposed group, the appearance of precursor shifted from fraction 1-6 and the smaller complexes in fractions 6-9 disappeared. Mass spectrometric analysis revealed that the 35 S-StAR-associated protein complex was composed of several resident matrix proteins as well as the OMM resident, VDAC. VDAC expression was greatly reduced by CS, and blockage of VDAC with Koenig's polyanion decreased pregnenolone synthesis in isolated mitochondria. Taken together, these results suggest that VDAC may participate in steroidogenesis by promoting StAR interaction with the OMM and that CS may inhibit steroidogenesis by reducing VDAC-StAR interactions

  1. Decreased expression of Kv7 channels in Hirchsprung's disease.

    Science.gov (United States)

    O'Donnell, Anne-Marie; Coyle, David; Puri, Prem

    2017-07-01

    Voltage-dependent K + channels (Kv channels) participate in electrical rhythmicity and smooth muscle responses and are regulated by excitatory and inhibitory neurotransmitters. Kv channels also participate in the interstitial cell of Cajal (ICC) and smooth muscle cell (SMC) responses to neural inputs. The Kv family consists of 12 subfamilies, Kv1-Kv12, with five members of the Kv7 family identified to date: Kv7.1-Kv7.5. A recent study identified the potassium channel Kv7.5 as having a role in the excitability of ICC-IM in the mouse colon. We therefore designed this study to test the hypothesis that Kv7 channels are present in the normal human colon and are reduced in Hirschprung's disease (HSCR). HSCR tissue specimens were collected at the time of pull-through surgery (n=10), while normal control tissue specimens were obtained at the time of colostomy closure in patients with imperforate anus (n=10). Kv7.3-Kv7.5 immunohistochemistry was performed and visualized using confocal microscopy to assess their distribution. Western blot analysis was undertaken to determine Kv7.3-Kv7.5 protein quantification. Kv7.3 and Kv7.4-immunoreactivity was co-localized with neuron and ICC markers, while Kv7.5 was found to be expressed on both ICCs and SMCs. Western blot analysis revealed similar levels of Kv7.3 and Kv7.5 expression in the normal colon and HSCR colon, while Kv7.4 proteins were found to be markedly decreased in ganglionic specimens and decreased further in aganglionic specimens. A deficiency of Kv7.4 channels in the ganglionic and aganglionic bowel may place a role in colonic dysmotility in HSCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Novel CLCNKB mutations causing Bartter syndrome affect channel surface expression.

    Science.gov (United States)

    Keck, Mathilde; Andrini, Olga; Lahuna, Olivier; Burgos, Johanna; Cid, L Pablo; Sepúlveda, Francisco V; L'hoste, Sébastien; Blanchard, Anne; Vargas-Poussou, Rosa; Lourdel, Stéphane; Teulon, Jacques

    2013-09-01

    Mutations in the CLCNKB gene encoding the ClC-Kb Cl(-) channel cause Bartter syndrome, which is a salt-losing renal tubulopathy. Here, we investigate the functional consequences of seven mutations. When expressed in Xenopus laevis oocytes, four mutants carried no current (c.736G>C, p.Gly246Arg; c.1271G>A, p.Gly424Glu; c.1313G>A, p.Arg438His; c.1316T>C, p.Leu439Pro), whereas others displayed a 30%-60% reduction in conductance as compared with wild-type ClC-Kb (c.242T>C, p.Leu81Pro; c.274C>T, p.Arg92Trp; c.1052G>C, p.Arg351Pro). Anion selectivity and sensitivity to external Ca(2+) and H(+), typical of the ClC-Kb channel, were not modified in the partially active mutants. In oocytes, we found that all the mutations reduced surface expression with a profile similar to that observed for currents. In HEK293 cells, the currents in the mutants had similar profiles to those obtained in oocytes, except for p.Leu81Pro, which produced no current. Furthermore, p.Arg92Trp and p.Arg351Pro mutations did not modify the unit-conductance of closely related ClC-K1. Western blot analysis in HEK293 cells showed that ClC-Kb protein abundance was lower for the nonconducting mutants but similar to wild-type for other mutants. Overall, two classes of mutants can be distinguished: nonconducting mutants associated with low total protein expression, and partially conducting mutants with unaltered channel properties and ClC-Kb protein abundance. © 2013 WILEY PERIODICALS, INC.

  3. Gain-of-function R225W mutation in human AMPKgamma(3 causing increased glycogen and decreased triglyceride in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Sheila R Costford

    Full Text Available BACKGROUND: AMP-activated protein kinase (AMPK is a heterotrimeric enzyme that is evolutionarily conserved from yeast to mammals and functions to maintain cellular and whole body energy homeostasis. Studies in experimental animals demonstrate that activation of AMPK in skeletal muscle protects against insulin resistance, type 2 diabetes and obesity. The regulatory gamma(3 subunit of AMPK is expressed exclusively in skeletal muscle; however, its importance in controlling overall AMPK activity is unknown. While evidence is emerging that gamma subunit mutations interfere specifically with AMP activation, there remains some controversy regarding the impact of gamma subunit mutations. Here we report the first gain-of-function mutation in the muscle-specific regulatory gamma(3 subunit in humans. METHODS AND FINDINGS: We sequenced the exons and splice junctions of the AMPK gamma(3 gene (PRKAG3 in 761 obese and 759 lean individuals, identifying 87 sequence variants including a novel R225W mutation in subjects from two unrelated families. The gamma(3 R225W mutation is homologous in location to the gamma(2R302Q mutation in patients with Wolf-Parkinson-White syndrome and to the gamma(3R225Q mutation originally linked to an increase in muscle glycogen content in purebred Hampshire Rendement Napole (RN- pigs. We demonstrate in differentiated muscle satellite cells obtained from the vastus lateralis of R225W carriers that the mutation is associated with an approximate doubling of both basal and AMP-activated AMPK activities. Moreover, subjects bearing the R225W mutation exhibit a approximately 90% increase of skeletal muscle glycogen content and a approximately 30% decrease in intramuscular triglyceride (IMTG. CONCLUSIONS: We have identified for the first time a mutation in the skeletal muscle-specific regulatory gamma(3 subunit of AMPK in humans. The gamma(3R225W mutation has significant functional effects as demonstrated by increases in basal and AMP

  4. ETS-1 oncoprotein expression is decreased in aggressive papillary ...

    African Journals Online (AJOL)

    So far, there is no reliable prognostic marker has been proved for detection of the tumor progression and recurrence. Objectives: To analyze the correlation between ETS-1 oncoprotein immunohistochemical expression and the different stages and grades of the primary papillary transitional cell carcinoma of the urinary ...

  5. Decreased EGFR mRNA expression in response to antipsoriatic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-20

    Jul 20, 2009 ... pathogenesis of psoriasis, the objective of this study was to investigate the transcriptional effect of dithranol .... N.E. Fusenig, German Cancer Research Centre, Heidelberg, ... RT-PCR analysis of EGFR expression in HaCaT cells treated with ... reliability. ... relationship to cancer risk and therapy response.

  6. Decreased expression of endogenous feline leukemia virus in cat lymphomas: a case control study.

    Science.gov (United States)

    Krunic, Milica; Ertl, Reinhard; Hagen, Benedikt; Sedlazeck, Fritz J; Hofmann-Lehmann, Regina; von Haeseler, Arndt; Klein, Dieter

    2015-04-10

    Cats infected with exogenous feline leukemia virus (exFeLV) have a higher chance of lymphoma development than uninfected cats. Furthermore, an increased exFeLV transcription has been detected in lymphomas compared to non-malignant tissues. The possible mechanisms of lymphoma development by exFeLV are insertional mutagenesis or persistent stimulation of host immune cells by viral antigens, bringing them at risk for malignant transformation. Vaccination of cats against exFeLV has in recent years decreased the overall infection rate in most countries. Nevertheless, an increasing number of lymphomas have been diagnosed among exFeLV-negative cats. Endogenous feline leukemia virus (enFeLV) is another retrovirus for which transcription has been observed in cat lymphomas. EnFeLV provirus elements are present in the germline of various cat species and share a high sequence similarity with exFeLV but, due to mutations, are incapable of producing infectious viral particles. However, recombination between exFeLV and enFeLV could produce infectious particles. We examined the FeLV expression in cats that have developed malignant lymphomas and discussed the possible mechanisms that could have induced malignant transformation. For expression analysis we used next-generation RNA-sequencing (RNA-Seq) and for validation reverse transcription quantitative PCR (RT-qPCR). First, we showed that there was no expression of exFeLV in all samples, which eliminates the possibility of recombination between exFeLV and enFeLV. Next, we analyzed the difference in expression of three enFeLV genes between control and lymphoma samples. Our analysis showed an average of 3.40-fold decreased viral expression for the three genes in lymphoma compared to control samples. The results were confirmed by RT-qPCR. There is a decreased expression of enFeLV genes in lymphomas versus control samples, which contradicts previous observations for the exFeLV. Our results suggest that a persistent stimulation of host

  7. Wolbachia-induced cytoplasmic incompatibility is associated with decreased Hira expression in male Drosophila.

    Directory of Open Access Journals (Sweden)

    Ya Zheng

    Full Text Available BACKGROUND: Wolbachia are obligate endosymbiotic bacteria that infect numerous species of arthropods and nematodes. Wolbachia can induce several reproductive phenotypes in their insect hosts including feminization, male-killing, parthenogenesis and cytoplasmic incompatibility (CI. CI is the most common phenotype and occurs when Wolbachia-infected males mate with uninfected females resulting in no or very low numbers of viable offspring. However, matings between males and females infected with the same strain of Wolbachia result in viable progeny. Despite substantial scientific effort, the molecular mechanisms underlying CI are currently unknown. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression studies were undertaken in Drosophila melanogaster and D. simulans which display differential levels of CI using quantitative RT-PCR. We show that Hira expression is correlated with the induction of CI and occurs in a sex-specific manner. Hira expression is significantly lower in males which induce strong CI when compared to males inducing no CI or Wolbachia-uninfected males. A reduction in Hira expression is also observed in 1-day-old males that induce stronger CI compared to 5-day-old males that induce weak or no CI. In addition, Hira mutated D. melanogaster males mated to uninfected females result in significantly decreased hatch rates comparing with uninfected crosses. Interestingly, wMel-infected females may rescue the hatch rates. An obvious CI phenotype with chromatin bridges are observed in the early embryo resulting from Hira mutant fertilization, which strongly mimics the defects associated with CI. CONCLUSIONS/SIGNIFICANCE: Our results suggest Wolbachia-induced CI in Drosophila occurs due to a reduction in Hira expression in Wolbachia-infected males leading to detrimental effects on sperm fertility resulting in embryo lethality. These results may help determine the underlying mechanism of CI and provide further insight in to the important role

  8. Cis-regulatory somatic mutations and gene-expression alteration in B-cell lymphomas.

    Science.gov (United States)

    Mathelier, Anthony; Lefebvre, Calvin; Zhang, Allen W; Arenillas, David J; Ding, Jiarui; Wasserman, Wyeth W; Shah, Sohrab P

    2015-04-23

    With the rapid increase of whole-genome sequencing of human cancers, an important opportunity to analyze and characterize somatic mutations lying within cis-regulatory regions has emerged. A focus on protein-coding regions to identify nonsense or missense mutations disruptive to protein structure and/or function has led to important insights; however, the impact on gene expression of mutations lying within cis-regulatory regions remains under-explored. We analyzed somatic mutations from 84 matched tumor-normal whole genomes from B-cell lymphomas with accompanying gene expression measurements to elucidate the extent to which these cancers are disrupted by cis-regulatory mutations. We characterize mutations overlapping a high quality set of well-annotated transcription factor binding sites (TFBSs), covering a similar portion of the genome as protein-coding exons. Our results indicate that cis-regulatory mutations overlapping predicted TFBSs are enriched in promoter regions of genes involved in apoptosis or growth/proliferation. By integrating gene expression data with mutation data, our computational approach culminates with identification of cis-regulatory mutations most likely to participate in dysregulation of the gene expression program. The impact can be measured along with protein-coding mutations to highlight key mutations disrupting gene expression and pathways in cancer. Our study yields specific genes with disrupted expression triggered by genomic mutations in either the coding or the regulatory space. It implies that mutated regulatory components of the genome contribute substantially to cancer pathways. Our analyses demonstrate that identifying genomically altered cis-regulatory elements coupled with analysis of gene expression data will augment biological interpretation of mutational landscapes of cancers.

  9. How well do you know your mutation? Complex effects of genetic background on expressivity, complementation, and ordering of allelic effects.

    Directory of Open Access Journals (Sweden)

    Christopher H Chandler

    2017-11-01

    Full Text Available For a given gene, different mutations influence organismal phenotypes to varying degrees. However, the expressivity of these variants not only depends on the DNA lesion associated with the mutation, but also on factors including the genetic background and rearing environment. The degree to which these factors influence related alleles, genes, or pathways similarly, and whether similar developmental mechanisms underlie variation in the expressivity of a single allele across conditions and among alleles is poorly understood. Besides their fundamental biological significance, these questions have important implications for the interpretation of functional genetic analyses, for example, if these factors alter the ordering of allelic series or patterns of complementation. We examined the impact of genetic background and rearing environment for a series of mutations spanning the range of phenotypic effects for both the scalloped and vestigial genes, which influence wing development in Drosophila melanogaster. Genetic background and rearing environment influenced the phenotypic outcome of mutations, including intra-genic interactions, particularly for mutations of moderate expressivity. We examined whether cellular correlates (such as cell proliferation during development of these phenotypic effects matched the observed phenotypic outcome. While cell proliferation decreased with mutations of increasingly severe effects, surprisingly it did not co-vary strongly with the degree of background dependence. We discuss these findings and propose a phenomenological model to aid in understanding the biology of genes, and how this influences our interpretation of allelic effects in genetic analysis.

  10. Expression of the benign HEXA mutations, Arg247Trp and Arg249Trp, associated with beta-hexosaminidase A pseudodeficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Z.; Petroulakis, E.; Salo, T. [Univ. of Manitoba (Canada)] [and others

    1994-09-01

    {beta}-Hexosaminidase (Hex A) is a heterodimer of {alpha} and {beta} subunits encoded by the HEXA and HEXB genes, respectively. Mutations in the HEXA gene typically cause Tay-Sachs disease or less severe forms of G{sub M2} gangliosidosis. However, two benign mutations (Arg247Trp and Arg249Trp) in the {alpha}-subunit of Hex A account for Hex A deficiency in {approximately}36% of non-Jewish enzyme-defined Tay-Sachs disease carriers. These mutations do not result in any apparent clinical phenotype in individuals who are genetic compounds with a second disease-causing mutation. We expressed the {alpha}-subunit harboring each of the benign mutations separately to study activity toward the synthetic substrate, 4-MUGS, for comparison to activity from enzymes containing mutations associated with other forms of G{sub M2} gangliosidosis. The C739T (Arg247Trp;benign), C745T (Arg 249Trp; benign), G805A (Gly269Ser; adult-onset), G749A (Gly250Asp; juvenile), and C508T (Arg170Trp; infantile) mutations were introduced into the {alpha}-subunit cDNA. These were transfected alone, or with the {beta}-subunit cDNA, to generate Hex S ({alpha}{alpha}) or Hex A ({alpha}{beta}), respectively. The activities were monitored using 4-MUGS, and the levels of {alpha}-subunit protein were assessed by Western blotting. Repeated experiments show that the benign mutations produce approximately 35% of normal Hex S and 40% of normal Hex A activity. This level is much higher than that of Hex A harbouring the Gly169Ser adult-onset mutation (12%). A sequential decrease in expressed Hex A activity is observed as mutations associated with more severe phenotypes are expressed. The benign mutations also result in lower levels of mature {alpha}-subunit protein compared to normal, and slightly reduced levels of {alpha}-subunit precursor protein. The Hex A deficiency resulting from benign mutations is not as great as that associated with disease-causing mutations.

  11. The Decrease in Mitochondrial DNA Mutation Load Parallels Visual Recovery in a Leber Hereditary Optic Neuropathy Patient

    Directory of Open Access Journals (Sweden)

    Sonia Emperador

    2018-02-01

    Full Text Available The onset of Leber hereditary optic neuropathy is relatively rare in childhood and, interestingly, the rate of spontaneous visual recovery is very high in this group of patients. Here, we report a child harboring a rare pathological mitochondrial DNA mutation, present in heteroplasmy, associated with the disease. A patient follow-up showed a rapid recovery of the vision accompanied by a decrease of the percentage of mutated mtDNA. A retrospective study on the age of recovery of all childhood-onset Leber hereditary optic neuropathy patients reported in the literature suggested that this process was probably related with pubertal changes.

  12. Identification of a nonsense mutation in CWC15 associated with decreased reproductive efficiency in Jersey cattle.

    Directory of Open Access Journals (Sweden)

    Tad S Sonstegard

    Full Text Available With the recent advent of genomic tools for cattle, several recessive conditions affecting fertility have been identified and selected against, such as deficiency of uridine monophosphate synthase, complex vertebral malformation, and brachyspina. The current report refines the location of a recessive haplotype affecting fertility in Jersey cattle using crossover haplotypes, discovers the causative mutation using whole genome sequencing, and examines the gene's role in embryo loss. In an attempt to identify unknown recessive lethal alleles in the current dairy population, a search using deep Mendelian sampling of 5,288 Jersey cattle was conducted for high-frequency haplotypes that have a deficit of homozygotes at the population level. This search led to the discovery of a putative recessive lethal in Jersey cattle on Bos taurus autosome 15. The haplotype, denoted JH1, was associated with reduced fertility, and further investigation identified one highly-influential Jersey bull as the putative source ancestor. By combining SNP analysis of whole-genome sequences aligned to the JH1 interval and subsequent SNP validation a nonsense mutation in CWC15 was identified as the likely causative mutation underlying the fertility phenotype. No homozygous recessive individuals were found in 749 genotyped animals, whereas all known carriers and carrier haplotypes possessed one copy of the mutant allele. This newly identified lethal has been responsible for a substantial number of spontaneous abortions in Jersey dairy cattle throughout the past half-century. With the mutation identified, selection against the deleterious allele in breeding schemes will aid in reducing the incidence of this defect in the population. These results also show that carrier status can be imputed with high accuracy. Whole-genome resequencing proved to be a powerful strategy to rapidly identify a previously mapped deleterious mutation in a known carrier of a recessive lethal allele.

  13. Germline MLH1 Mutations Are Frequently Identified in Lynch Syndrome Patients With Colorectal and Endometrial Carcinoma Demonstrating Isolated Loss of PMS2 Immunohistochemical Expression.

    Science.gov (United States)

    Dudley, Beth; Brand, Randall E; Thull, Darcy; Bahary, Nathan; Nikiforova, Marina N; Pai, Reetesh K

    2015-08-01

    Current guidelines on germline mutation testing for patients suspected of having Lynch syndrome are not entirely clear in patients with tumors demonstrating isolated loss of PMS2 immunohistochemical expression. We analyzed the clinical and pathologic features of patients with tumors demonstrating isolated loss of PMS2 expression in an attempt to (1) determine the frequency of germline MLH1 and PMS2 mutations and (2) correlate mismatch-repair protein immunohistochemistry and tumor histology with germline mutation results. A total of 3213 consecutive colorectal carcinomas and 215 consecutive endometrial carcinomas were prospectively analyzed for DNA mismatch-repair protein expression by immunohistochemistry. In total, 32 tumors from 31 patients demonstrated isolated loss of PMS2 immunohistochemical expression, including 16 colorectal carcinomas and 16 endometrial carcinomas. Microsatellite instability (MSI) polymerase chain reaction was performed in 29 tumors from 28 patients with the following results: 28 tumors demonstrated high-level MSI, and 1 tumor demonstrated low-level MSI. Twenty of 31 (65%) patients in the study group had tumors demonstrating histopathology associated with high-level MSI. Seventeen patients underwent germline mutation analysis with the following results: 24% with MLH1 mutations, 35% with PMS2 mutations, 12% with PMS2 variants of undetermined significance, and 29% with no mutations in either MLH1 or PMS2. Three of the 4 patients with MLH1 germline mutations had a mutation that results in decreased stability and quantity of the MLH1 protein that compromises the MLH1-PMS2 protein complex, helping to explain the presence of immunogenic but functionally inactive MLH1 protein within the tumor. The high frequency of MLH1 germline mutations identified in our study has important implications for testing strategies in patients suspected of having Lynch syndrome and indicates that patients with tumors demonstrating isolated loss of PMS2 expression

  14. Effect of KCNJ5 Mutations on Gene Expression in Aldosterone-Producing Adenomas and Adrenocortical Cells

    Science.gov (United States)

    Monticone, Silvia; Hattangady, Namita G.; Nishimoto, Koshiro; Mantero, Franco; Rubin, Beatrice; Cicala, Maria Verena; Pezzani, Raffaele; Auchus, Richard J.; Ghayee, Hans K.; Shibata, Hirotaka; Kurihara, Isao; Williams, Tracy A.; Giri, Judith G.; Bollag, Roni J.; Edwards, Michael A.; Isales, Carlos M.

    2012-01-01

    Context: Primary aldosteronism is a heterogeneous disease that includes both sporadic and familial forms. A point mutation in the KCNJ5 gene is responsible for familial hyperaldosteronism type III. Somatic mutations in KCNJ5 also occur in sporadic aldosterone producing adenomas (APA). Objective: The objective of the study was to define the effect of the KCNJ5 mutations on gene expression and aldosterone production using APA tissue and human adrenocortical cells. Methods: A microarray analysis was used to compare the transcriptome profiles of female-derived APA samples with and without KCNJ5 mutations and HAC15 adrenal cells overexpressing either mutated or wild-type KCNJ5. Real-time PCR validated a set of differentially expressed genes. Immunohistochemical staining localized the KCNJ5 expression in normal adrenals and APA. Results: We report a 38% (18 of 47) prevalence of KCNJ5 mutations in APA. KCNJ5 immunostaining was highest in the zona glomerulosa of NA and heterogeneous in APA tissue, and KCNJ5 mRNA was 4-fold higher in APA compared with normal adrenals (P APA with and without KCNJ5 mutations displayed slightly different gene expression patterns, notably the aldosterone synthase gene (CYP11B2) was more highly expressed in APA with KCNJ5 mutations. Overexpression of KCNJ5 mutations in HAC15 increased aldosterone production and altered expression of 36 genes by greater than 2.5-fold (P APA, and our data suggest that these mutations increase expression of CYP11B2 and NR4A2, thus increasing aldosterone production. PMID:22628608

  15. FKS2 Mutations Associated with Decreased Echinocandin Susceptibility of Candida glabrata following Anidulafungin Therapy

    OpenAIRE

    Costa-de-Oliveira, Sofia; Miranda, Isabel Marcos; Silva, Raquel M.; Pinto e Silva, Ana; Rocha, Rita; Amorim, Antonio; Rodrigues, Acacio Goncalves; Pina-Vaz, Cidalia

    2011-01-01

    This is the first case report of Candida glabrata-disseminated candidiasis describing the acquisition of echinocandin resistance following anidulafungin treatment. The initial isolates recovered were susceptible to echinocandins. However, during 27 days of anidulafungin treatment, two resistant strains were isolated (from the blood and peritoneal fluid). The resistant peritoneal fluid isolate exhibited a Ser663Pro mutation in position 1987 of FKS2 HS1 (hot spot 1), whereas the resistant blood...

  16. Reduced expression of TAC1, PENK and SOCS2 in Hcrtr-2 mutated narcoleptic dog brain

    Directory of Open Access Journals (Sweden)

    Mignot Emmanuel

    2007-05-01

    Full Text Available Abstract Background Narcolepsy causes dramatic behavioral alterations in both humans and dogs, with excessive sleepiness and cataplexy triggered by emotional stimuli. Deficiencies in the hypocretin system are well established as the origin of the condition; both from studies in humans who lack the hypocretin ligand (HCRT and in dogs with a mutation in hypocretin receptor 2 (HCRTR2. However, little is known about molecular alterations downstream of the hypocretin signals. Results By using microarray technology we have screened the expression of 29760 genes in the brains of Doberman dogs with a heritable form of narcolepsy (homozygous for the canarc-1 [HCRTR-2-2] mutation, and their unaffected heterozygous siblings. We identified two neuropeptide precursor molecules, Tachykinin precursor 1 (TAC1 and Proenkephalin (PENK, that together with Suppressor of cytokine signaling 2 (SOCS2, showed reduced expression in narcoleptic brains. The difference was particularly pronounced in the amygdala, where mRNA levels of PENK were 6.2 fold lower in narcoleptic dogs than in heterozygous siblings, and TAC1 and SOCS2 showed 4.4 fold and 2.8 fold decrease in expression, respectively. The results obtained from microarray experiments were confirmed by real-time RT-PCR. Interestingly, it was previously shown that a single dose of amphetamine-like stimulants able to increase wakefulness in the dogs, also produce an increase in the expression of both TAC1 and PENK in mice. Conclusion These results suggest that TAC1, PENK and SOCS2 might be intimately connected with the excessive daytime sleepiness not only in dogs, but also in other species, possibly including humans.

  17. Analysis of KIT expression and KIT exon 11 mutations in canine oral malignant melanomas.

    Science.gov (United States)

    Murakami, A; Mori, T; Sakai, H; Murakami, M; Yanai, T; Hoshino, Y; Maruo, K

    2011-09-01

    KIT, a transmembrane receptor tyrosine kinase, is one of the specific targets for anti-cancer therapy. In humans, its expression and mutations have been identified in malignant melanomas and therapies using molecular-targeted agents have been promising in these tumours. As human malignant melanoma, canine malignant melanoma is a fatal disease with metastases and the poor response has been observed with all standard protocols. In our study, KIT expression and exon 11 mutations in dogs with histologically confirmed malignant oral melanomas were evaluated. Although 20 of 39 cases were positive for KIT protein, there was no significant difference between KIT expression and overall survival. Moreover, polymerase chain reaction amplification and sequencing of KIT exon 11 in 17 samples did not detect any mutations and proved disappointing. For several reasons, however, KIT expression and mutations of various exons including exon 11 should be investigated in more cases. © 2011 Blackwell Publishing Ltd.

  18. The Nature and Extent of Mutational Pleiotropy in Gene Expression of Male Drosophila serrata

    OpenAIRE

    McGuigan, Katrina; Collet, Julie M.; McGraw, Elizabeth A.; Ye, Yixin H.; Allen, Scott L.; Chenoweth, Stephen F.; Blows, Mark W.

    2014-01-01

    The nature and extent of mutational pleiotropy remain largely unknown, despite the central role that pleiotropy plays in many areas of biology, including human disease, agricultural production, and evolution. Here, we investigate the variation in 11,604 gene expression traits among 41 mutation accumulation (MA) lines of Drosophila serrata. We first confirmed that these expression phenotypes were heritable, detecting genetic variation in 96% of them in an outbred, natural population of D. serr...

  19. Retinal phenotype-genotype correlation of pediatric patients expressing mutations in the Norrie disease gene.

    Science.gov (United States)

    Wu, Wei-Chi; Drenser, Kimberly; Trese, Michael; Capone, Antonio; Dailey, Wendy

    2007-02-01

    To correlate the ophthalmic findings of patients with pediatric vitreoretinopathies with mutations occurring in the Norrie disease gene (NDP). One hundred nine subjects with diverse pediatric vitreoretinopathies and 54 control subjects were enrolled in the study. Diagnoses were based on retinal findings at each patient's first examination. Samples of DNA from each patient underwent polymerase chain reaction amplification and direct sequencing of the NDP gene. Eleven male patients expressing mutations in the NDP gene were identified in the test group, whereas the controls demonstrated wild-type NDP. All patients diagnosed as having Norrie disease had mutations in the NDP gene. Four of the patients with Norrie disease had mutations involving a cysteine residue in the cysteine-knot motif. Four patients diagnosed as having familial exudative vitreoretinopathy were found to have noncysteine mutations. One patient with retinopathy of prematurity had a 14-base deletion in the 5' untranslated region (exon 1), and 1 patient with bilateral persistent fetal vasculature syndrome expressed a noncysteine mutation in the second exon. Mutations disrupting the cysteine-knot motif corresponded to severe retinal dysgenesis, whereas patients with noncysteine mutations had varying degrees of avascular peripheral retina, extraretinal vasculature, and subretinal exudate. Patients exhibiting severe retinal dysgenesis should be suspected of carrying a mutation that disrupts the cysteine-knot motif in the NDP gene.

  20. Presence of activating KRAS mutations correlates significantly with expression of tumour suppressor genes DCN and TPM1 in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Rems Miran

    2009-08-01

    Full Text Available Abstract Background Despite identification of the major genes and pathways involved in the development of colorectal cancer (CRC, it has become obvious that several steps in these pathways might be bypassed by other as yet unknown genetic events that lead towards CRC. Therefore we wanted to improve our understanding of the genetic mechanisms of CRC development. Methods We used microarrays to identify novel genes involved in the development of CRC. Real time PCR was used for mRNA expression as well as to search for chromosomal abnormalities within candidate genes. The correlation between the expression obtained by real time PCR and the presence of the KRAS mutation was investigated. Results We detected significant previously undescribed underexpression in CRC for genes SLC26A3, TPM1 and DCN, with a suggested tumour suppressor role. We also describe the correlation between TPM1 and DCN expression and the presence of KRAS mutations in CRC. When searching for chromosomal abnormalities, we found deletion of the TPM1 gene in one case of CRC, but no deletions of DCN and SLC26A3 were found. Conclusion Our study provides further evidence of decreased mRNA expression of three important tumour suppressor genes in cases of CRC, thus implicating them in the development of this type of cancer. Moreover, we found underexpression of the TPM1 gene in a case of CRCs without KRAS mutations, showing that TPM1 might serve as an alternative path of development of CRC. This downregulation could in some cases be mediated by deletion of the TPM1 gene. On the other hand, the correlation of DCN underexpression with the presence of KRAS mutations suggests that DCN expression is affected by the presence of activating KRAS mutations, lowering the amount of the important tumour suppressor protein decorin.

  1. Expression analysis revealing destabilizing mutations in phosphomannomutase 2 deficiency (PMM2-CDG): expression analysis of PMM2-CDG mutations.

    Science.gov (United States)

    Vega, Ana Isabel; Pérez-Cerdá, Celia; Abia, David; Gámez, Alejandra; Briones, Paz; Artuch, Rafael; Desviat, Lourdes R; Ugarte, Magdalena; Pérez, Belén

    2011-08-01

    Deficiency of phosphomannomutase (PMM2, MIM#601785) is the most common congenital disorder of glycosylation. Herein we report the genetic analysis of 22 Spanish PMM2 deficient patients and the functional analysis of 14 nucleotide changes in a prokaryotic expression system in order to elucidate their molecular pathogenesis. PMM2 activity assay revealed the presence of six protein changes with no enzymatic activities (p.R123Q, p.R141H, p.F157S, p.P184T, p.F207S and p.D209G) and seven mild protein changes with residual activities ranging from 16 to 54% (p.L32R, p.V44A p.D65Y, p.P113L p.T118S, p.T237M and p.C241S) and also one variant change with normal activity (p.E197A). The results obtained from Western blot analysis, degradation time courses of 11 protein changes and structural analysis of the PMM2 protein, suggest that the loss-of-function of most mutant proteins is based on their increased susceptibility to degradation or aggregation compared to the wild type protein, considering PMM2 deficiency as a conformational disease. We have identified exclusively catalytic protein change (p.D209G), catalytic protein changes affecting protein stability (p.R123Q and p.R141H), two protein changes disrupting the dimer interface (p.P113L and p.T118S) and several misfolding changes (p.L32R, p.V44A, p.D65Y, p.F157S, p.P184T, p.F207S, p.T237M and p.C241S). Our current work opens a promising therapeutic option using pharmacological chaperones to revert the effect of the characterized misfolding mutations identified in a wide range of PMM2 deficient patients.

  2. Gene expression profiling and candidate gene resequencing identifies pathways and mutations important for malignant transformation caused by leukemogenic fusion genes.

    Science.gov (United States)

    Novak, Rachel L; Harper, David P; Caudell, David; Slape, Christopher; Beachy, Sarah H; Aplan, Peter D

    2012-12-01

    NUP98-HOXD13 (NHD13) and CALM-AF10 (CA10) are oncogenic fusion proteins produced by recurrent chromosomal translocations in patients with acute myeloid leukemia (AML). Transgenic mice that express these fusions develop AML with a long latency and incomplete penetrance, suggesting that collaborating genetic events are required for leukemic transformation. We employed genetic techniques to identify both preleukemic abnormalities in healthy transgenic mice as well as collaborating events leading to leukemic transformation. Candidate gene resequencing revealed that 6 of 27 (22%) CA10 AMLs spontaneously acquired a Ras pathway mutation and 8 of 27 (30%) acquired an Flt3 mutation. Two CA10 AMLs acquired an Flt3 internal-tandem duplication, demonstrating that these mutations can be acquired in murine as well as human AML. Gene expression profiles revealed a marked upregulation of Hox genes, particularly Hoxa5, Hoxa9, and Hoxa10 in both NHD13 and CA10 mice. Furthermore, mir196b, which is embedded within the Hoxa locus, was overexpressed in both CA10 and NHD13 samples. In contrast, the Hox cofactors Meis1 and Pbx3 were differentially expressed; Meis1 was increased in CA10 AMLs but not NHD13 AMLs, whereas Pbx3 was consistently increased in NHD13 but not CA10 AMLs. Silencing of Pbx3 in NHD13 cells led to decreased proliferation, increased apoptosis, and decreased colony formation in vitro, suggesting a previously unexpected role for Pbx3 in leukemic transformation. Published by Elsevier Inc.

  3. Collagen expression in fibroblasts with a novel LMNA mutation

    International Nuclear Information System (INIS)

    Nguyen, Desiree; Leistritz, Dru F.; Turner, Lesley; MacGregor, David; Ohson, Kamal; Dancey, Paul; Martin, George M.; Oshima, Junko

    2007-01-01

    Laminopathies are a group of genetic disorders caused by LMNA mutations; they include muscular dystrophies, lipodystrophies, and progeroid syndromes. We identified a novel heterozygous LMNA mutation, L59R, in a patient with the general appearance of mandibuloacral dysplasia and progeroid features. Examination of the nuclei of dermal fibroblasts revealed the irregular morphology characteristic of LMNA mutant cells. The nuclear morphological abnormalities of LMNA mutant lymphoblastoid cell lines were less prominent compared to those of primary fibroblasts. Since it has been reported that progeroid features are associated with increased extracellular matrix in dermal tissues, we compared a subset of these components in fibroblast cultures from LMNA mutants with those of control fibroblasts. There was no evidence of intracellular accumulation or altered mobility of collagen chains, or altered conversion of procollagen to collagen, suggesting that skin fibroblast-mediated matrix production may not play a significant role in the pathogenesis of this particular laminopathy

  4. Clinical expression of patients with the D1152H CFTR mutation.

    Science.gov (United States)

    Terlizzi, Vito; Carnovale, Vincenzo; Castaldo, Giuseppe; Castellani, Carlo; Cirilli, Natalia; Colombo, Carla; Corti, Fabiola; Cresta, Federico; D'Adda, Alice; Lucarelli, Marco; Lucidi, Vincenzina; Macchiaroli, Annamaria; Madarena, Elisa; Padoan, Rita; Quattrucci, Serena; Salvatore, Donatello; Zarrilli, Federica; Raia, Valeria

    2015-07-01

    Discordant results were reported on the clinical expression of subjects bearing the D1152H CFTR mutation, and also for the small number of cases reported so far. A retrospective review of clinical, genetic and biochemical data was performed from individuals homozygous or compound heterozygous for the D1152H mutation followed in 12 Italian cystic fibrosis (CF) centers. 89 subjects carrying at least D1152H on one allele were identified. 7 homozygous patients had very mild clinical expression. Over half of the 74 subjects compound heterozygous for D1152H and a I-II-III class mutation had borderline or pathological sweat test and respiratory or gastrointestinal symptoms; one third had pulmonary bacteria colonization and 10/74 cases had complications (i.e. diabetes, allergic bronchopulmonary aspergillosis, and hemoptysis). However, their clinical expression was less severe as compared to a group of CF patients homozygous for the F508del mutation. Finally, 8 subjects compound heterozygous for D1152H and a IV-V class mutation showed very mild disease. The natural history of subjects bearing the D1152H mutation is widely heterogeneous and is influenced by the mutation in trans. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  5. Delayed expression of enhanced reactivation and decreased mutagenesis of UV-irradiated adenovirus in UV-irradiated ataxia telangiectasia fibroblasts

    International Nuclear Information System (INIS)

    Bennett, C.B.; Rainbow, A.J.

    1988-01-01

    In this study the authors examined UV-enhanced reactivation (UVER) and UV-enhanced mutagenesis (UVEM) of UV-irradiated adenovirus in AT fibroblasts. UVER factors for Ad V antigen expression were significantly less than normal in AT strains tested when infection occurred immediately after UV-irradiation of cells. However, UVER factors were >1 and similar to those found for normal strains when cells were infected 24 h after UV-irradiation, indicating delay in the expression of UVER for Ad V antigen in AT cells. UV-irradiation of both normal and AT cells 24 h prior to infection also resulted in a significant increase in progeny survival for UV-irradiated Ad. In normal cells, this progeny UVER was concomitant with a significant increase in the mutation frequency for UV-irradiated virus (increase in targeted mutagenesis) suggesting existence of an inducible error-prone DNA repair mode in normal human cells. In contrast, pre-UV-irradiation of AT cells resulted in a significant decrease in the mutation frequency for UV-irradiated virus. (author)

  6. Nocodazole treatment decreases expression of pluripotency markers Nanog and Oct4 in human embryonic stem cells

    DEFF Research Database (Denmark)

    Kallas, Ade; Pook, Martin; Maimets, Martti

    2011-01-01

    in the expression of transcription markers Nanog and Oct4 as well as SSEA-3 and SSEA-4 in human embryonic cells after their treatment with nocodazole. Multivariate permeabilised-cell flow cytometry was applied for characterising the expression of Nanog and Oct4 during different cell cycle phases. Among untreated h......ESC we detected Nanog-expressing cells, which also expressed Oct4, SSEA-3 and SSEA-4. We also found another population expressing SSEA-4, but without Nanog, Oct4 and SSEA-3 expression. Nocodazole treatment resulted in a decrease of cell population positive for all four markers Nanog, Oct4, SSEA-3, SSEA-4....... Nocodazole-mediated cell-cycle arrest was accompanied by higher rate of apoptosis and upregulation of p53. Twenty-four hours after the release from nocodazole block, the cell cycle of hESC normalised, but no increase in the expression of transcription markers Nanog and Oct4 was detected. In addition...

  7. Decreased expression of Beclin 1 correlates closely with Bcl-xL expression and poor prognosis of ovarian carcinoma.

    Directory of Open Access Journals (Sweden)

    Huan-Xin Lin

    Full Text Available It has been suggested that autophagy-related Beclin 1 plays a critical role in the regulation of tumor development and/or progression, but its prognostic significance and relationship with Bcl-xL expression in ovarian carcinoma are unclear.In the present study, the methods of Western blotting and immunohistochemistry (IHC were utilized to investigate the expression status of Beclin 1 and Bcl-xL in fresh ovarian tissues and paraffin-embedded epithelial ovarian tumor tissues. Decreased expression of Beclin 1 was examined by IHC in 8.3% of normal ovaries, in 15.4% of cystadenomas, in 20.0% of borderline tumors, and in 55.6% of ovarian carcinomas, respectively. In ovarian carcinomas, decreased expression of Beclin 1 was correlated closely with ascending histological grade, later pT/pN/pM status and/or advanced clinical stage (P<0.05. In univariate survival analysis, a highly significant association between low-expressed Beclin 1 and shortened patient survival was evaluated in ovarian carcinoma patients (P<0.01, and Beclin 1 expression was an independent prognostic factor as evidenced by multivariate analysis (P = 0.013. In addition, decreased expression of Beclin 1 was inversely correlated with altered expression of Bcl-xL in ovarian carcinoma cohort, and combined analysis further showed that the low Beclin 1/high Bcl-xL group had the lowest survival rate.Our findings suggest that Beclin 1 expression, as examined by IHC, could be served as an additional tool in identifying ovarian carcinoma patients at risk of tumor progression, and predicting patient survival in ovarian carcinomas with increased expression of Bcl-xL.

  8. Evaluation the effect of uranium ore concentrations on the cyc2 gene expression in the mutated Acidithiobacillus sp. FJ2

    Directory of Open Access Journals (Sweden)

    Faezeh Fatemi

    2018-06-01

    Full Text Available Introduction: The uranium bioleaching process is performed using Acidithiobacillus ferrooxidans. This bacterium is capable of iron oxidation by an electron transport chain. One of the most important components of this chain is the cyc2 gene product that involved in the oxidation process of iron. Materials and methods: Evaluation of UV mutated (60, 120 and 180s Acidithiobacillus sp. FJ2 cyc2gene in the presence of uranium ore concentrations, has been implemented in this project. For this purpose, the original and mutated bacteria were cultivated in the presence of uranium ore concentrations (5, 10, 15, 25 and 50%. Uranium extraction, variation of pH and Eh values were measured at 24 h intervals. Then, when the uranium extraction yield reached to 100%, gene expressions of cyc2 original and mutatedAcidithiobacillus sp. FJ2 were analyzed using Real-time PCR method. Results: The results of the experiments showed that, with increasing pulp density, the uranium extraction rate and oxidation activity of bacteria were reduced. In addition, the result of cyc2 gene expression showed that the target gene expression increases in the presence of uranium ore compared to sample with absence of uranium ore, andwith further increase of pulp density, due to the toxicity of uranium, shows a decreasing trend. Discussion and conclusion: The results of this study indicated that the mutation in the bacterium has a positive effect on the uranium bioleaching process, which can play an important role in the process of uranium bioleaching at high concentrations. In addition, with increasing pulp density due to uranium toxicity, there is a decreasing trend in the process of uranium extraction, which indicates the important role of this factor in the uranium bioleaching process.

  9. Decreased expression of G-protein coupled receptor kinase 2 in cold thyroid nodules.

    Science.gov (United States)

    Voigt, C; Holzapfel, H-P; Paschke, R

    2005-02-01

    G-protein coupled receptor kinases (GRKs) have been shown to regulate the homologous desensitization of different G-protein coupled receptors. We have previously demonstrated that the expression of GRK 3 and 4 is increased in hyperfunctioning thyroid nodules (HTNs) and that GRKs 2, 3, 5 and 6 are able to desensitize the TSHR in vitro. Since cold thyroid nodules (CTNs) and HTNs show different molecular and functional properties, different expression patterns of GRKs in these nodules can be expected. The comparison of GRK expression between CTNs and HTNs could give additional insight into the regulation mechanisms of these nodules. We therefore examined the expression of GRKs in CTNs and analyzed the differences to HTNs. The expression of the different GRKs in CTNs was measured by Western blot followed by chemiluminescence imaging. We found a decreased expression of GRK 2 in CTNs compared to their surrounding tissues and an increased expression of GRK 3 and 4 in CTNs, which is similar to HTNs. The decreased GRK 2 expression most likely results from reduced cAMP stimulation in CTNs. However, the increased GRK 3 and 4 expression in CTNs remains unclear and requires further investigations.

  10. ABCG2 in peptic ulcer: gene expression and mutation analysis.

    Science.gov (United States)

    Salagacka-Kubiak, Aleksandra; Żebrowska, Marta; Wosiak, Agnieszka; Balcerczak, Mariusz; Mirowski, Marek; Balcerczak, Ewa

    2016-08-01

    The aim of this study was to evaluate the participation of polymorphism at position C421A and mRNA expression of the ABCG2 gene in the development of peptic ulcers, which is a very common and severe disease. ABCG2, encoded by the ABCG2 gene, has been found inter alia in the gastrointestinal tract, where it plays a protective role eliminating xenobiotics from cells into the extracellular environment. The materials for the study were biopsies of gastric mucosa taken during a routine endoscopy. For genotyping by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) at position C421A, DNA was isolated from 201 samples, while for the mRNA expression level by real-time PCR, RNA was isolated from 60 patients. The control group of healthy individuals consisted of 97 blood donors. The dominant genotype in the group of peptic ulcer patients and healthy individuals was homozygous CC. No statistically significant differences between healthy individuals and the whole group of peptic ulcer patients and, likewise, between the subgroups of peptic ulcer patients (infected and uninfected with Helicobacter pylori) were found. ABCG2 expression relative to GAPDH expression was found in 38 of the 60 gastric mucosa samples. The expression level of the gene varies greatly among cases. The statistically significant differences between the intensity (p = 0.0375) of H. pylori infection and ABCG2 gene expression have been shown. It was observed that the more intense the infection, the higher the level of ABCG2 expression.

  11. Low-Concentration Tributyltin Decreases GluR2 Expression via Nuclear Respiratory Factor-1 Inhibition.

    Science.gov (United States)

    Ishida, Keishi; Aoki, Kaori; Takishita, Tomoko; Miyara, Masatsugu; Sakamoto, Shuichiro; Sanoh, Seigo; Kimura, Tomoki; Kanda, Yasunari; Ohta, Shigeru; Kotake, Yaichiro

    2017-08-11

    Tributyltin (TBT), which has been widely used as an antifouling agent in paints, is a common environmental pollutant. Although the toxicity of high-dose TBT has been extensively reported, the effects of low concentrations of TBT are relatively less well studied. We have previously reported that low-concentration TBT decreases α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptor subunit 2 ( GluR2 ) expression in cortical neurons and enhances neuronal vulnerability to glutamate. However, the mechanism of this TBT-induced GluR2 decrease remains unknown. Therefore, we examined the effects of TBT on the activity of transcription factors that control GluR2 expression. Exposure of primary cortical neurons to 20 nM TBT for 3 h to 9 days resulted in a decrease in GluR2 mRNA expression. Moreover, TBT inhibited the DNA binding activity of nuclear respiratory factor-1 (NRF-1), a transcription factor that positively regulates the GluR2 . This result indicates that TBT inhibits the activity of NRF-1 and subsequently decreases GluR2 expression. In addition, 20 nM TBT decreased the expression of genes such as cytochrome c, cytochrome c oxidase (COX) 4, and COX 6c, which are downstream of NRF-1. Our results suggest that NRF-1 inhibition is an important molecular action of the neurotoxicity induced by low-concentration TBT.

  12. Low-Concentration Tributyltin Decreases GluR2 Expression via Nuclear Respiratory Factor-1 Inhibition

    Science.gov (United States)

    Ishida, Keishi; Aoki, Kaori; Takishita, Tomoko; Miyara, Masatsugu; Sakamoto, Shuichiro; Sanoh, Seigo; Kimura, Tomoki; Kanda, Yasunari; Ohta, Shigeru; Kotake, Yaichiro

    2017-01-01

    Tributyltin (TBT), which has been widely used as an antifouling agent in paints, is a common environmental pollutant. Although the toxicity of high-dose TBT has been extensively reported, the effects of low concentrations of TBT are relatively less well studied. We have previously reported that low-concentration TBT decreases α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptor subunit 2 (GluR2) expression in cortical neurons and enhances neuronal vulnerability to glutamate. However, the mechanism of this TBT-induced GluR2 decrease remains unknown. Therefore, we examined the effects of TBT on the activity of transcription factors that control GluR2 expression. Exposure of primary cortical neurons to 20 nM TBT for 3 h to 9 days resulted in a decrease in GluR2 mRNA expression. Moreover, TBT inhibited the DNA binding activity of nuclear respiratory factor-1 (NRF-1), a transcription factor that positively regulates the GluR2. This result indicates that TBT inhibits the activity of NRF-1 and subsequently decreases GluR2 expression. In addition, 20 nM TBT decreased the expression of genes such as cytochrome c, cytochrome c oxidase (COX) 4, and COX 6c, which are downstream of NRF-1. Our results suggest that NRF-1 inhibition is an important molecular action of the neurotoxicity induced by low-concentration TBT. PMID:28800112

  13. Missense mutation Lys18Asn in dystrophin that triggers X-linked dilated cardiomyopathy decreases protein stability, increases protein unfolding, and perturbs protein structure, but does not affect protein function.

    Directory of Open Access Journals (Sweden)

    Surinder M Singh

    Full Text Available Genetic mutations in a vital muscle protein dystrophin trigger X-linked dilated cardiomyopathy (XLDCM. However, disease mechanisms at the fundamental protein level are not understood. Such molecular knowledge is essential for developing therapies for XLDCM. Our main objective is to understand the effect of disease-causing mutations on the structure and function of dystrophin. This study is on a missense mutation K18N. The K18N mutation occurs in the N-terminal actin binding domain (N-ABD. We created and expressed the wild-type (WT N-ABD and its K18N mutant, and purified to homogeneity. Reversible folding experiments demonstrated that both mutant and WT did not aggregate upon refolding. Mutation did not affect the protein's overall secondary structure, as indicated by no changes in circular dichroism of the protein. However, the mutant is thermodynamically less stable than the WT (denaturant melts, and unfolds faster than the WT (stopped-flow kinetics. Despite having global secondary structure similar to that of the WT, mutant showed significant local structural changes at many amino acids when compared with the WT (heteronuclear NMR experiments. These structural changes indicate that the effect of mutation is propagated over long distances in the protein structure. Contrary to these structural and stability changes, the mutant had no significant effect on the actin-binding function as evident from co-sedimentation and depolymerization assays. These results summarize that the K18N mutation decreases thermodynamic stability, accelerates unfolding, perturbs protein structure, but does not affect the function. Therefore, K18N is a stability defect rather than a functional defect. Decrease in stability and increase in unfolding decrease the net population of dystrophin molecules available for function, which might trigger XLDCM. Consistently, XLDCM patients have decreased levels of dystrophin in cardiac muscle.

  14. Cigarette smoking decreases global microRNA expression in human alveolar macrophages.

    Directory of Open Access Journals (Sweden)

    Joel W Graff

    Full Text Available Human alveolar macrophages are critical components of the innate immune system. Cigarette smoking-induced changes in alveolar macrophage gene expression are linked to reduced resistance to pulmonary infections and to the development of emphysema/COPD. We hypothesized that microRNAs (miRNAs could control, in part, the unique messenger RNA (mRNA expression profiles found in alveolar macrophages of cigarette smokers. Activation of macrophages with different stimuli in vitro leads to a diverse range of M1 (inflammatory and M2 (anti-inflammatory polarized phenotypes that are thought to mimic activated macrophages in distinct tissue environments. Microarray mRNA data indicated that smoking promoted an "inverse" M1 mRNA expression program, defined by decreased expression of M1-induced transcripts and increased expression of M1-repressed transcripts with few changes in M2-regulated transcripts. RT-PCR arrays identified altered expression of many miRNAs in alveolar macrophages of smokers and a decrease in global miRNA abundance. Stratification of human subjects suggested that the magnitude of the global decrease in miRNA abundance was associated with smoking history. We found that many of the miRNAs with reduced expression in alveolar macrophages of smokers were predicted to target mRNAs upregulated in alveolar macrophages of smokers. For example, miR-452 is predicted to target the transcript encoding MMP12, an important effector of smoking-related diseases. Experimental antagonism of miR-452 in differentiated monocytic cells resulted in increased expression of MMP12. The comprehensive mRNA and miRNA expression profiles described here provide insight into gene expression regulation that may underlie the adverse effects cigarette smoking has on alveolar macrophages.

  15. Mutation and Expression of the DCC Gene in Human Lung Cancer

    Directory of Open Access Journals (Sweden)

    Takashi Kohno

    2000-07-01

    Full Text Available Chromosome 18q is frequently deleted in lung cancers, a common region of 18q deletions was mapped to chromosome 18g21. Since the DCC candidate tumor suppressor gene has been mapped in this region, mutation and expression of the DCC gene were examined in 46 lung cancer cell lines, consisting of 14 small cell lung carcinomas (SCLCs and 32 non-small cell lung carcinomas (NSCLCs, to elucidate the pathogenetic significance of DCC alterations in human lung carcinogenesis. A heterozygous missense mutation was detected in a NSCLC cell line, Ma26, while homozygous deletion was not detected in any of the cell lines. The DCC gene was expressed in 11 (24% of the 46 cell lines, the incidence of DCC expression was significantly higher in SCLCs (7/14, 50% than in NSCLCs (4/32, 13% (P = .01, Fisher's exact test. Therefore, genetic alterations of DCC are infrequent; however, the levels of DCC expression vary among lung cancer cells, in particular, between SCLCs and NSCLCs. The present result does not implicate DCC as a specific mutational target of 18q deletions in human lung cancer; however, it suggests that DCC is a potential target of inactivation by genetic defects including intron or promoter mutations and/or epigenetic alterations. The present result also suggests that DCC expression is associated with some properties of SCLCs, such as a neuroendocrine (NE feature.

  16. Clinical Expression and New SPINK5 Splicing Defects in Netherton Syndrome: Unmasking a Frequent Founder Synonymous Mutation and Unconventional Intronic Mutations

    DEFF Research Database (Denmark)

    Lacroix, Matthieu; Lacaze-Buzy, Laetitia; Furio, Laetitia

    2012-01-01

    a clinical triad suggestive of NS with variations in inter- and intra-familial disease expression. We identified a new and frequent synonymous mutation c.891C>T (p.Cys297Cys) in exon 11 of the 12 NS patients. This mutation disrupts an exonic splicing enhancer sequence and causes out-of-frame skipping of exon...

  17. Decreased expression of fibulin-4 in aortic wall of aortic dissection.

    Science.gov (United States)

    Huawei, P; Qian, C; Chuan, T; Lei, L; Laing, W; Wenlong, X; Wenzhi, L

    2014-02-01

    In this research, we will examine the expression of Fibulin-4 in aortic wall to find out its role in aortic dissection development. The samples of aortic wall were obtained from 10 patients operated for acute ascending aortic dissection and five patients for chronic ascending aortic dissection. Another 15 pieces of samples from patients who had coronary artery bypass were as controls. The aortic samples were stained with aldehyde magenta dyeing to evaluate the arrangement of elastic fibers. The Fibulin-4 protein and mRNA expression were both determined by Western blot and realtime quantitative polymerase chain reaction. Compared with the control group, both in acute and chronic ascending aortic dissection, elastic fiber fragments increased and the expression of fibulin-4 protein significantly decreased (P= 0.045 < 0.05). The level of fibulin-4 mRNA decreased in acute ascending aortic dissection (P= 0.034 < 0.05), while it increased in chronic ascending aortic dissection (P=0.004 < 0.05). The increased amounts of elastic fiber fragments were negatively correlated with the expression of fibulin-4 mRNA in acute ascending aortic dissection. In conclusion, in aortic wall of ascending aortic dissection, the expression of fibulin-4 protein decreased and the expression of fibulin-4 mRNA was abnormal. Fibulin-4 may play an important role in the pathogenesis of aortic dissection.

  18. Prenatal Exposure to Tributyltin Decreases GluR2 Expression in the Mouse Brain.

    Science.gov (United States)

    Ishida, Keishi; Saiki, Takashi; Umeda, Kanae; Miyara, Masatsugu; Sanoh, Seigo; Ohta, Shigeru; Kotake, Yaichiro

    2017-01-01

    Tributyltin (TBT), a common environmental contaminant, is widely used as an antifouling agent in paint. We previously reported that exposure of primary cortical neurons to TBT in vitro decreased the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit glutamate receptor 2 (GluR2) expression and subsequently increased neuronal vulnerability to glutamate. Therefore, to identify whether GluR2 expression also decreases after TBT exposure in vivo, we evaluated the changes in GluR2 expression in the mouse brain after prenatal or postnatal exposure to 10 and 25 ppm TBT through pellet diets. Although the mean feed intake and body weight did not decrease in TBT-exposed mice compared with that in control mice, GluR2 expression in the cerebral cortex and hippocampus decreased after TBT exposure during the prenatal period. These results indicate that a decrease in neuronal GluR2 may be involved in TBT-induced neurotoxicity, especially during the fetal period.

  19. Estrogen decreases tight junction protein ZO-1 expression in human primary gut tissues.

    Science.gov (United States)

    Zhou, Zejun; Zhang, Lumin; Ding, Miao; Luo, Zhenwu; Yuan, Shao; Bansal, Meena B; Gilkeson, Gary; Lang, Ren; Jiang, Wei

    2017-10-01

    Females have a higher prevalence of most autoimmune diseases; however, the mechanism is unknown. In this study, we examined the expression of tight junction protein zonula occludens 1 (ZO-1) and estrogen receptor (ER)-α/β in human primary gut tissues by immunohistochemistry, immunofluorescence and qPCR. The expression of ZO-1 and ER-β but not ER-α was present in both male and female gut tissues. There was no sex difference in ER-β expression, but ZO-1 expression was decreased in females compared to males. In vitro, estrogen treatment decreased ZO-1 mRNA and protein expression, ZO-1 promoter activity, IL-6 production, and NF-κB activation in human primary gut tissues or the Caco-2 cells, but increased the ER-β expression in Caco-2 cells. Consistently, plasma IL-6 levels in females were reduced relative to males in vivo. Our finding indicates that estrogen may play a role in gut tight junction expression and permeability. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. p53 expression and mutation analysis of odontogenic cysts with and without dysplasia.

    Science.gov (United States)

    Cox, Darren P

    2012-01-01

    Overexpression of p53 protein is well described in odontogenic cystic lesions (OCLs), including those with epithelial dysplasia; however, most p53 antibodies stain both wild-type and mutated p53 protein and may not reflect genotype. Direct sequencing of the p53 gene has not identified mutations in OCLs with dysplasia. The purpose of this study was to determine the molecular basis of p53 expression in several types of OCLs with and without dysplasia. The study material comprised 13 OCLs: odontogenic keratocyst (n = 5), orthokeratinized odontogenic cyst (n = 5), dentigerous cyst (n = 2), lateral periodontal cyst (n = 1), and unspecified developmental odontogenic cyst (UDOC) (n = 1). Five of these had features of mild or moderate epithelial dysplasia. One intraosseous squamous cell carcinoma (SCC) that was believed to have arisen from an antecedent dysplastic orthokeratinized OC was also included. Immunohistochemistry was performed using the DO7 monoclonal antibody that recognizes wild-type and mutated p53. DNA was extracted from microdissected tissue for all samples and exons 4 to 8 of the p53 gene direct sequenced. In 4 of 5 OCLs with dysplasia there was strong nuclear staining of basal and suprabasal cells. In all cases without dysplasia, nuclear expression in basal cells was either negative or weak and was absent in suprabasal cell nuclei. A mutation in exon 6 of the p53 gene (E224D) was identified in both the dysplastic orthokeratinized OC and the subsequent intraosseous SCC. OCLs with features of dysplasia show increased expression of p53 protein that does not reflect p53 mutational status. One dysplastic OC shared the same p53 mutation with a subsequent intraosseous SCC, indicating that p53 mutation may be associated with malignant transformation in this case. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Advanced method for high-throughput expression of mutated eukaryotic membrane proteins in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ito, Keisuke; Sugawara, Taishi; Shiroishi, Mitsunori; Tokuda, Natsuko; Kurokawa, Azusa; Misaka, Takumi; Makyio, Hisayoshi; Yurugi-Kobayashi, Takami; Shimamura, Tatsuro; Nomura, Norimichi; Murata, Takeshi; Abe, Keiko; Iwata, So

    2008-01-01

    Crystallization of eukaryotic membrane proteins is a challenging, iterative process. The protein of interest is often modified in an attempt to improve crystallization and diffraction results. To accelerate this process, we took advantage of a GFP-fusion yeast expression system that uses PCR to direct homologous recombination and gene cloning. We explored the possibility of employing more than one PCR fragment to introduce various mutations in a single step, and found that when up to five PCR fragments were co-transformed into yeast, the recombination frequency was maintained as the number of fragments was increased. All transformants expressed the model membrane protein, while the resulting plasmid from each clone contained the designed mutations only. Thus, we have demonstrated a technique allowing the expression of mutant membrane proteins within 5 days, combining a GFP-fusion expression system and yeast homologous recombination

  2. Frequency of p53 Gene Mutation and Protein Expression in Oral Squamous Cell Carcinoma

    International Nuclear Information System (INIS)

    Ara, N.; Atique, M.; Ahmed, S.; Bukhari, S. G. A.

    2014-01-01

    Objective: To determine the frequency of p53 gene mutation and protein expression in Oral Squamous Cell Carcinoma (OSCC) and to establish correlation between the two. Study Design: Analytical study. Place and Duration of Study: Histopathology Department and Molecular Biology Laboratory, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from May 2010 to May 2011. Methodology: Thirty diagnosed cases of OSCC were selected by consecutive sampling. Seventeen were retrieved from the record files of the AFIP, and 13 fresh/frozen sections were selected from patients reporting to the Oral Surgery Department, Armed Forces Institute of Dentistry (AFID). Gene p53 mutation was analyzed in all the cases using PCRSSCP analysis. DNA was extracted from the formalin-fixed and paraffin-embedded tissue sections and fresh/frozen sections. DNA thus extracted was amplified by polymerase chain reaction. The amplified products were denatured and finally analyzed by gel electrophoresis. Gene mutation was detected as electrophoretic mobility shift. The immunohistochemical marker p53 was applied to the same 30 cases and overexpression of protein p53 was recorded. Results: Immunohistochemical expression of marker p53 was positive in 67% (95% Confidence Interval (CI) 48.7 - 80.9) of the cases. Mutations of the p53 gene were detected in 23% (95% CI 11.5 - 41.2) of the OSCC. No statistically significant correlation was found between p53 gene mutation and protein p53 expression (rs = - 0.057, p = 0.765). Conclusion: A substantial number of patients have p53 gene mutation (23%) and protein p53 expression (67%) in oral squamous cell carcinoma (OSCC). (author)

  3. CLONING, EXPRESSION, AND MUTATIONAL ANALYSIS OF RAT S-ADENOSYL-1-METHIONINE: ARSENIC (III) METHYLTRANSFERASE

    Science.gov (United States)

    CLONING, EXPRESSION, AND MUTATIONAL ANALYSIS OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASEStephen B. Waters, Ph.D., Miroslav Styblo, Ph.D., Melinda A. Beck, Ph.D., University of North Carolina at Chapel Hill; David J. Thomas, Ph.D., U.S. Environmental...

  4. Decreased NOS1 expression in the anterior cingulate cortex in depression

    NARCIS (Netherlands)

    Gao, Shang-Feng; Qi, Xin-Rui; Zhao, Juan; Balesar, Rawien; Bao, Ai-Min; Swaab, Dick F.

    2013-01-01

    Decreased function of the anterior cingulate cortex (ACC) is crucially involved in the pathogenesis of depression. A key role of nitric oxide (NO) has also been proposed. We aimed to determine the NO content in the cerebrospinal fluid (CSF) and the expression of NO synthase (NOS) isoforms, that is,

  5. phuR intergenic mutation results in pleiotropic effects on global gene expression

    DEFF Research Database (Denmark)

    Khademi, Seyed Mohammad Hossein; Wassermann, Tina; Ciofu, Oana

    2015-01-01

    We have previously found a positive selection for promoter mutations in Pseudomonas aeruginosa DK2 leading to increased expression of the phu (Pseudomonas heme utilization) system. By mimicking conditions of the CF airways in vitro, we experimentally demonstrated that increased expression of phu......R confers a growth advantage in the presence of hemoglobin, thus suggesting that P. aeruginosa evolves towards iron acquisition from hemoglobin....

  6. Correlation of Merkel cell polyomavirus positivity with PDGFRα mutations and survivin expression in Merkel cell carcinoma.

    Science.gov (United States)

    Batinica, M; Akgül, B; Silling, S; Mauch, C; Zigrino, P

    2015-07-01

    Merkel cell carcinoma (MCC) is a neuroendocrine cancer of the skin postulated to originate through Merkel cell polyomavirus (MCPyV) oncogenesis and/or by mutations in molecules implicated in the regulation of cell growth and survival. Despite the fact that MCPvV is detected more broadly within the population, only a part of the infected people also develop MCC. It is thus conceivable that together, virus and for example mutations, are necessary for disease development. However, apart from a correlation between MCPyV positivity or mutations and MCC development, less is known about the association of these factors with progressive disease. To analyze MCPyV positivity, load and integration in MCC as well as presence of mutations in PDGFRα and TP53 genes and correlate these with clinical features and disease progression to identify features with prognostic value for clinical progression. This is a study on a MCC population group of 64 patients. MCPyV positivity, load and integration in parallel to mutations in the PDGFRα and TP53 were analyzed on genomic DNA from MCC specimens. In addition, expression of PDGFRα, survivin and p53 proteins was analyzed by immunodetection in tissues specimens. All these parameters were analyzed as function of patient's disease progression status. 83% of MCCs were positive for the MCPyV and among these 36% also displayed virus-T integration. Viral load ranged from 0.006 to 943 viral DNA copies/β-globin gene and was highest in patients with progressive disease. We detected more than one mutation within the PDGFRα gene and identified two new SNPs in 36% of MCC patients, whereas no mutations were found in TP53 gene. Survivin was expressed in 78% of specimens. We could not correlate either mutations in PDGFR or expression of PDGFR, p53 and surviving either to the disease progression or to the MCPyV positivity. In conclusion, our data indicate that the viral positivity when associated with high viral load, correlates with poor disease

  7. Decreased expression of Sprouty2 in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder: a correlation with BDNF expression.

    Directory of Open Access Journals (Sweden)

    Anilkumar Pillai

    Full Text Available BACKGROUND: Current theories on the pathophysiology of schizophrenia suggest altered brain plasticity such as decreased neural proliferation and migration, delayed myelination, and abnormal synaptic modeling, in the brain of subjects with schizophrenia. Though functional alterations in BDNF, which plays important role in neuroplasticity, are implicated in many abnormalities found in schizophrenia, the regulatory mechanism(s involved in the abnormal signaling of BDNF in schizophrenia is not clear. The present study investigated whether Sprouty2, a regulator of growth factor signaling, is abnormally expressed in schizophrenia, and is associated with the changes in BDNF mRNA in this disorder. The potential effect of antipsychotic drugs on Sprouty2 expression was tested in adult rats. METHODS AND FINDINGS: Sprouty2 and BDNF gene expression were analyzed in dorsolateral prefrontal cortex samples from the Stanley Array Collection. Quantitative real-time PCR analysis of RNA in 100 individuals (35 with schizophrenia, 31 with bipolar disorder, and 34 psychiatrically normal controls showed significantly decreased expression of Sprouty2 and BDNF in both schizophrenia and bipolar disorder. Moreover, a significant correlation between these two genes existed in control, schizophrenia and bipolar subjects. Long-term treatment with antipsychotic drugs, haloperidol and olanzapine, showed differential effects on both Sprouty2 and BDNF mRNA and protein levels in the frontal cortex of rats. CONCLUSION: These findings demonstrating decreased expression of Sprouty2 associated with changes in BDNF, suggest the possibility that these decreases are secondary to treatment rather than to factors that are significant in the disease process of either schizophrenia and/or bipolar disorder. Further exploration of Sprouty2-related signal transduction pathways may be helpful to design novel treatment strategies for these disorders.

  8. Decreased FOXD3 Expression Is Associated with Poor Prognosis in Patients with High-Grade Gliomas.

    Directory of Open Access Journals (Sweden)

    Wei Du

    Full Text Available The transcription factor forkhead box D3 (FOXD3 plays important roles in the development of neural crest and has been shown to suppress the development of various cancers. However, the expression and its potential biological roles of FOXD3 in high-grade gliomas (HGGs remain unknown.The mRNA and protein expression levels of FOXD3 were examined using real-time quantitative PCR and western blotting in 23 HGG and 13 normal brain samples, respectively. Immunohistochemistry was used to validate the expression FOXD3 protein in 184 HGG cases. The association between FOXD3 expression and the prognosis of HGG patients were analyzed using Kaplan-Meier survival curves and Cox proportional hazards regression models. In addition, we further examined the effects of FOXD3 on the proliferation and serum starvation-induced apoptosis of glioma cells.In comparison to normal brain tissues, FOXD3 expression was significantly decreased in HGG tissues at both mRNA and protein levels. Immunohistochemistry further validated the expression of FOXD3 in HGG tissues. Moreover, low FOXD3 expression was significantly associated with poor prognosis in HGG patients. Depletion of FOXD3 expression promoted glioma cell proliferation and inhibited serum starvation-induced apoptosis, whereas overexpression of FOXD3 inhibited glioma cell proliferation and promoted serum starvation-induced apoptosis.Our results indicated that FOXD3 might serve as an independent prognostic biomarker and a potential therapeutic target for HGGs, which warrant further investigation.

  9. [Clone, construct, expression and verification of lactoferricin B gene and several sequence mutations in yeast].

    Science.gov (United States)

    Feng, Yong-qian; Zha, Xiao-jun; Zhai, Chao-yang

    2007-07-01

    To construct the eucaryotic recombinant plasmid of pYES2/LactoferricinB expressing in yeast of S. cerevisiae, of which the expressed protein antibacterial activity was verified in preliminary. By self-template PCR method, the gene of Lactoferricin B and its several sequence mutations were amplified with the parts of the pre-synthesized single chains. And then Lactoferricin B gene and its mutants were cloned into the vector of pYES2 to construct the recombined expression plasmid pYES2/Lactoferricin B etc. extracted and used to transform the yeast S. cerevisiae. The expressions of proteins were determined after induced by galactose. The expression proteins were collected and purified by hydronium-exchange column, and the bacterial inhibited test was applied to identify the protein antibacterial activities. The PCR amplifying and DNA sequencing tests indicated that the purpose plasmid contained the Lactoferricin B gene and several mutations. The induced target proteins were confirmed by SDS-PAGE electrophoresis and mass spectrum test. The protein antibacterial activities of mutations were verified in preliminary. The recombined plasmid pYES2/Lactoferricin B etc. are successfully constructed and induced to express in yeast cell of S. cerevisiae; the obtained recombined protein of Lactoferricin B provides a basis for further research work on the biological function and antibacterial activity.

  10. Decreased Expression of Semaphorin3A/Neuropilin-1 Signaling Axis in Apical Periodontitis

    Directory of Open Access Journals (Sweden)

    Ying Lin

    2017-01-01

    Full Text Available Apical periodontitis (AP is a chronic infection of endodontic origin accompanied with bone destruction around the apical region. Semaphorin3A (Sema3A and neuropilin-1 (Nrp1 are regarded as a pair of immune regulators in bone metabolism. In this study, we firstly investigated the expression pattern of Sema3A/Nrp1 in apical periodontitis and its correlation with bone destruction. Using rat animal model, we analysed the level of mandibular bone destruction and the expression of Sema3A/Nrp1 on days 0, 7, 14, 21, 28, and 35 after pulp exposure. In addition, clinical samples from apical periodontitis patients were obtained to analyse the expression of Sema3A/Nrp1. These results indicated that the bone destruction level expanded from days 7 to 35. The number of positive cells and level of mRNA expression of Sema3A/Nrp1 were significantly decreased from days 7 to 35, with a negative correlation with bone destruction. Moreover, expression of Sema3A/Nrp1 in the AP group was reduced compared to the control group of clinical samples. In conclusion, decreased expression of Sema3A/Nrp1 was observed in periapical lesions and is potentially involved in the bone resorption of the periapical area, suggesting that Sema3A/Nrp1 may contribute to the pathological development of apical periodontitis.

  11. Decreased Hsp90 expression in infiltrative lobular carcinoma: an immunohistochemical study

    International Nuclear Information System (INIS)

    Zagouri, Flora; Patsouris, Effstratios; Zografos, George; Sergentanis, Theodoros; Nonni, Afrodite; Papadimitriou, Christos; Pazaiti, Anastasia; Michalopoulos, Nikolaos V; Safioleas, Panagiotis; Lazaris, Andreas; Theodoropoulos, George

    2010-01-01

    Elevated Hsp90 expression has been documented in breast ductal carcinomas, whereas decreased Hsp90 expression has been reported in precursor lobular lesions. This study aims to assess Hsp90 expression in infiltrative lobular carcinomas of the breast. Tissue specimens were taken from 32 patients with infiltrative lobular carcinoma. Immunohistochemical assessment of Hsp90 was performed both in the lesion and the adjacent normal breast ducts and lobules; the latter serving as control. Concerning Hsp90 assessment: i) the percentage of positive cells and ii) the intensity were separately analyzed. Subsequently, the Allred score was adopted and calculated. The intensity was treated as an ordinal variable-score (0: negative, low: 1, moderate: 2, high: 3). Statistical analysis followed. All infiltrative lobular carcinoma foci mainly presented with a positive cytoplasmic immunoreaction for Hsp90. Compared to the adjacent normal ducts and lobules, infiltrative lobular carcinoma exhibited a statistically significant decrease in Hsp90 expression, both in terms of Hsp90 positive cells (%) and Allred score (74.2 ± 11.2 vs. 59.1 ± 14.2 p = 0.0001; 7.00 ± 0.95 vs. 6.22 ± 1.01, p = 0.007, Wilcoxon matched-pairs signed-ranks test). Concerning the intensity of Hsp90 immunostaining only a marginal decrease was noted (2.16 ± 0.68 vs. 1.84 ± 0.63, p = 0.087, Wilcoxon matched-pairs signed-ranks test). ILC lesions seem to exhibit decreased Hsp90 expression, a finding contrary to what might have been expected, given that high Hsp90 expression is a trait of invasive ductal carcinomas

  12. Decreased Hsp90 expression in infiltrative lobular carcinoma: an immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Zagouri Flora

    2010-08-01

    Full Text Available Abstract Background Elevated Hsp90 expression has been documented in breast ductal carcinomas, whereas decreased Hsp90 expression has been reported in precursor lobular lesions. This study aims to assess Hsp90 expression in infiltrative lobular carcinomas of the breast. Methods Tissue specimens were taken from 32 patients with infiltrative lobular carcinoma. Immunohistochemical assessment of Hsp90 was performed both in the lesion and the adjacent normal breast ducts and lobules; the latter serving as control. Concerning Hsp90 assessment: i the percentage of positive cells and ii the intensity were separately analyzed. Subsequently, the Allred score was adopted and calculated. The intensity was treated as an ordinal variable-score (0: negative, low: 1, moderate: 2, high: 3. Statistical analysis followed. Results All infiltrative lobular carcinoma foci mainly presented with a positive cytoplasmic immunoreaction for Hsp90. Compared to the adjacent normal ducts and lobules, infiltrative lobular carcinoma exhibited a statistically significant decrease in Hsp90 expression, both in terms of Hsp90 positive cells (% and Allred score (74.2 ± 11.2 vs. 59.1 ± 14.2 p = 0.0001; 7.00 ± 0.95 vs. 6.22 ± 1.01, p = 0.007, Wilcoxon matched-pairs signed-ranks test. Concerning the intensity of Hsp90 immunostaining only a marginal decrease was noted (2.16 ± 0.68 vs. 1.84 ± 0.63, p = 0.087, Wilcoxon matched-pairs signed-ranks test. Conclusion ILC lesions seem to exhibit decreased Hsp90 expression, a finding contrary to what might have been expected, given that high Hsp90 expression is a trait of invasive ductal carcinomas.

  13. Megakaryocyte polyploidization is associated with decreased expression of polo-like kinase (PLK).

    Science.gov (United States)

    Yagi, M; Roth, G J

    2006-09-01

    During differentiation, megakaryocytes (MK), the bone marrow precursors of circulating blood platelets, undergo polyploidization, repeated rounds of DNA replication without cell division. Mature normal MK may contain a DNA content of up to 128N, in contrast to normal diploid (2N) cells. The extent of polyploidy may influence the number of platelets produced by the MK. Therefore, understanding the molecular mechanisms regulating polyploidization could identify events involved in controlling both cell division and thrombopoiesis. We investigated the expression of several proteins involved in mitosis in cultured mouse MK, and tested the effect of expression on polyploidization. Western blot and immunofluorescent analyses were used to assess expression of cell cycle proteins in cultured MK. Populations of polyploidizing MK were separated on the basis of DNA content by flow cytometry. The gene encoding mouse polo-like kinase 1 (PLK-1) was introduced into MK by retroviral transduction, and its effects measured by flow cytometry. Polyploid mouse MK expressed lower levels of two proteins, p55CDC and PLK-1, whose activity is necessary for cell cycle progression and completion of mitosis. Comparison of sorted 2N/4N and polyploid MK indicated that PLK-1 expression was absent in polyploid MK, while expression of other cell cycle proteins was similar in both populations. Forced expression of PLK-1 during MK differentiation was associated with decreased polyploidization. These experiments suggest that PLK-1 is an important regulator of polyploidization in differentiating MK.

  14. Laxative effect of repeated Daiokanzoto is attributable to decrease in aquaporin-3 expression in the colon.

    Science.gov (United States)

    Kon, Risako; Yamamura, Miho; Matsunaga, Yukari; Kimura, Hiroshi; Minami, Moe; Kato, Saki; Ikarashi, Nobutomo; Sugiyama, Kiyoshi

    2018-03-01

    Daiokanzoto (DKT) exerts its laxative effect via colonic inflammation caused by sennoside A in Daio (rhubarb). Previously, we showed that the laxative effect of sennoside A is related to decreased aquaporin-3 (AQP3) expression in mucosal epithelial cells due to colonic inflammation. We also found that a combination of glycyrrhizin, an ingredient in Kanzo (glycyrrhiza), and sennoside A attenuates the inflammatory response induced by sennoside A and reduces its laxative effect. These findings indicate that DKT may be a long-term treatment for chronic constipation, but there is no evidence supporting this hypothesis. In this study, we analyzed the laxative effect of repeated DKT administration, focusing on AQP3 expression in the colon. After rats were treated for 7 days, decreased AQP3 expression and the onset of diarrhea were observed in the DKT group, but were not seen in the Daio group either. Although the relative abundance of gut microbiota after repeated DKT administration was similar to that after control treatment, Daio reduced Lactobacillaceae, Bifidobacteriaceae, and Bacteroidaceae levels and markedly increased Lachnospiraceae levels. In this study, we show that DKT has a sustained laxative effect, even upon repeated use, probably because it maintains decreased AQP3 expression and gut microbiota homeostasis. This outcome therefore indicates that DKT can be used as a long-term treatment for chronic constipation.

  15. Decreased Expression of the Aryl Hydrocarbon Receptor in Ocular Behcet’s Disease

    Directory of Open Access Journals (Sweden)

    Chaokui Wang

    2014-01-01

    Full Text Available Recent studies show that the aryl hydrocarbon receptor (AhR is involved in immune responses. AhR is activated following interaction with its ligands, such as 6-formylindolo[3,2-b]carbazole (FICZ and 2-(1′H-indole-3′-carbonyl-thiazole-4-carboxylic acid methyl ester (ITE. In this study, we investigated the role of AhR activation by its endogenous ligands in the pathogenesis of ocular Behcet’s disease (BD. The expression of AhR was significantly decreased in active BD patients as compared to inactive BD patients and normal controls. Both FICZ and ITE inhibited Th1 and Th17 polarization and induced the expression of IL-22 by PBMCs and by CD4+T cells in active BD patients and normal controls. Stimulation of purified CD4+T cells with FICZ or ITE caused a decreased expression of RORC, IL-17, IL-23R, and CCR6 and an increased phosphorylation of STAT3 and STAT5. The present study suggests that a decreased AhR expression is associated with disease activity in BD patients. The activation of AhR by either FICZ or ITE was able to inhibit Th1 and Th17 cell polarization. Further studies are needed to investigate whether modulation of AhR might be used in the treatment of BD.

  16. Decreased expression of the aryl hydrocarbon receptor in ocular Behcet's disease.

    Science.gov (United States)

    Wang, Chaokui; Ye, Zi; Kijlstra, Aize; Zhou, Yan; Yang, Peizeng

    2014-01-01

    Recent studies show that the aryl hydrocarbon receptor (AhR) is involved in immune responses. AhR is activated following interaction with its ligands, such as 6-formylindolo[3,2-b]carbazole (FICZ) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). In this study, we investigated the role of AhR activation by its endogenous ligands in the pathogenesis of ocular Behcet's disease (BD). The expression of AhR was significantly decreased in active BD patients as compared to inactive BD patients and normal controls. Both FICZ and ITE inhibited Th1 and Th17 polarization and induced the expression of IL-22 by PBMCs and by CD4(+)T cells in active BD patients and normal controls. Stimulation of purified CD4(+)T cells with FICZ or ITE caused a decreased expression of RORC, IL-17, IL-23R, and CCR6 and an increased phosphorylation of STAT3 and STAT5. The present study suggests that a decreased AhR expression is associated with disease activity in BD patients. The activation of AhR by either FICZ or ITE was able to inhibit Th1 and Th17 cell polarization. Further studies are needed to investigate whether modulation of AhR might be used in the treatment of BD.

  17. Trps1 deficiency inhibits the morphogenesis of secondary hair follicles via decreased Noggin expression

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yujing [Department of Pathology, School of Medicine, Shandong University, Jinan Wen Hua Xi Road 44, Jinan 250012 (China); Nakanishi, Masako; Sato, Fuyuki; Oikawa, Kosuke [First Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012 (Japan); Muragaki, Yasuteru, E-mail: ymuragak@wakayama-med.ac.jp [First Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012 (Japan); Zhou, Gengyin, E-mail: zhougy@sdu.edu.cn [Department of Pathology, School of Medicine, Shandong University, Jinan Wen Hua Xi Road 44, Jinan 250012 (China)

    2015-01-16

    Highlights: • The number of secondary hair follicles is reduced by half in Trps1 KO embryonic skin compared to wild-type skin. • Noggin expression is significantly decreased and BMP signaling is promoted in Trps1 KO embryonic skin. • Treatment with a Noggin or BMP inhibitor rescued the decreased number of hair follicles in Trps1 KO skin graft cultures. • Cell proliferation and apoptosis of the epidermis were normalized by Noggin treatment. - Abstract: A representative phenotype of patients with tricho-rhino-phalangeal syndrome (TRPS) is sparse hair. To understand the developmental defects of these patient’s hair follicles, we analyzed the development of hair follicles histologically and biochemically using Trps1 deficient (KO) mice. First, we compared the numbers of primary hair follicles in wild-type (WT) and KO embryos at different developmental stages. No differences were observed in the E14.5 skins of WT and KO mice. However, at later time points, KO fetal skin failed to properly develop secondary hair follicles, and the number of secondary hair follicles present in E18.5 KO skin was approximately half compared to that of WT skin. Sonic hedgehog expression was significantly decreased in E17.5 KO skin, whereas no changes were observed in Eda/Edar expression in E14.5 or E17.5 skins. In addition, Noggin expression was significantly decreased in E14.5 and E17.5 KO skin compared to WT skin. In parallel with the suppression of Noggin expression, BMP signaling was promoted in the epidermal cells of KO skins compared to WT skins as determined by immunohistochemistry for phosphorylated Smad1/5/8. The reduced number of secondary hair follicles was restored in skin graft cultures treated with a Noggin and BMP inhibitor. Furthermore, decreased cell proliferation, and increased apoptosis in KO skin was rescued by Noggin treatment. Taken together, we conclude that hair follicle development in Trps1 KO embryos is impaired directly or indirectly by decreased Noggin

  18. Trps1 deficiency inhibits the morphogenesis of secondary hair follicles via decreased Noggin expression

    International Nuclear Information System (INIS)

    Sun, Yujing; Nakanishi, Masako; Sato, Fuyuki; Oikawa, Kosuke; Muragaki, Yasuteru; Zhou, Gengyin

    2015-01-01

    Highlights: • The number of secondary hair follicles is reduced by half in Trps1 KO embryonic skin compared to wild-type skin. • Noggin expression is significantly decreased and BMP signaling is promoted in Trps1 KO embryonic skin. • Treatment with a Noggin or BMP inhibitor rescued the decreased number of hair follicles in Trps1 KO skin graft cultures. • Cell proliferation and apoptosis of the epidermis were normalized by Noggin treatment. - Abstract: A representative phenotype of patients with tricho-rhino-phalangeal syndrome (TRPS) is sparse hair. To understand the developmental defects of these patient’s hair follicles, we analyzed the development of hair follicles histologically and biochemically using Trps1 deficient (KO) mice. First, we compared the numbers of primary hair follicles in wild-type (WT) and KO embryos at different developmental stages. No differences were observed in the E14.5 skins of WT and KO mice. However, at later time points, KO fetal skin failed to properly develop secondary hair follicles, and the number of secondary hair follicles present in E18.5 KO skin was approximately half compared to that of WT skin. Sonic hedgehog expression was significantly decreased in E17.5 KO skin, whereas no changes were observed in Eda/Edar expression in E14.5 or E17.5 skins. In addition, Noggin expression was significantly decreased in E14.5 and E17.5 KO skin compared to WT skin. In parallel with the suppression of Noggin expression, BMP signaling was promoted in the epidermal cells of KO skins compared to WT skins as determined by immunohistochemistry for phosphorylated Smad1/5/8. The reduced number of secondary hair follicles was restored in skin graft cultures treated with a Noggin and BMP inhibitor. Furthermore, decreased cell proliferation, and increased apoptosis in KO skin was rescued by Noggin treatment. Taken together, we conclude that hair follicle development in Trps1 KO embryos is impaired directly or indirectly by decreased Noggin

  19. Decreased BECN1 mRNA Expression in Human Breast Cancer is Associated With Estrogen Receptor-Negative Subtypes and Poor Prognosis

    Directory of Open Access Journals (Sweden)

    Hao Tang

    2015-03-01

    Full Text Available Both BRCA1 and Beclin 1 (BECN1 are tumor suppressor genes, which are in close proximity on the human chromosome 17q21 breast cancer tumor susceptibility locus and are often concurrently deleted. However, their importance in sporadic human breast cancer is not known. To interrogate the effects of BECN1 and BRCA1 in breast cancer, we studied their mRNA expression patterns in breast cancer patients from two large datasets: The Cancer Genome Atlas (TCGA (n = 1067 and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC (n = 1992. In both datasets, low expression of BECN1 was more common in HER2-enriched and basal-like (mostly triple-negative breast cancers compared to luminal A/B intrinsic tumor subtypes, and was also strongly associated with TP53 mutations and advanced tumor grade. In contrast, there was no significant association between low BRCA1 expression and HER2-enriched or basal-like subtypes, TP53 mutations or tumor grade. In addition, low expression of BECN1 (but not low BRCA1 was associated with poor prognosis, and BECN1 (but not BRCA1 expression was an independent predictor of survival. These findings suggest that decreased mRNA expression of the autophagy gene BECN1 may contribute to the pathogenesis and progression of HER2-enriched, basal-like, and TP53 mutant breast cancers.

  20. Expression of estrogen receptor beta in the breast carcinoma of BRCA1 mutation carriers

    International Nuclear Information System (INIS)

    Litwiniuk, Maria M; Rożnowski, Krzysztof; Filas, Violetta; Godlewski, Dariusz D; Stawicka, Małgorzata; Kaleta, Remigiusz; Bręborowicz, Jan

    2008-01-01

    Breast cancers (BC) in women carrying mutations in BRCA1 gene are more frequently estrogen receptor negative than the nonhereditary BC. Nevertheless, tamoxifen has been found to have a protective effect in preventing contralateral tumors in BRCA1 mutation carriers. The identification of the second human estrogen receptor, ERβ, raised a question of its role in hereditary breast cancer. The aim of this study was to assess the frequency of ERα, ERβ, PgR (progesterone receptor) and HER-2 expression in breast cancer patients with mutated BRCA1 gene and in the control group. The study group consisted of 48 women with BRCA1 gene mutations confirmed by multiplex PCR assay. The patients were tested for three most common mutations of BRCA1 affecting the Polish population (5382insC, C61G, 4153delA). Immunostaining for ERα, ERβ and PgR (progesterone receptor) was performed using monoclonal antibodies against ERα, PgR (DakoCytomation), and polyclonal antibody against ERβ (Chemicon). The EnVision detection system was applied. The study population comprised a control group of 120 BC operated successively during the years 1998–99. The results of our investigation showed that BRCA1 mutation carriers were more likely to have ERα-negative breast cancer than those in the control group. Only 14.5% of BRCA1-related cancers were ERα-positive compared with 57.5% in the control group (P < 0.0001). On the contrary, the expression of ERβ protein was observed in 42% of BRCA1-related tumors and in 55% of the control group. An interesting finding was that most hereditary cancers (75% of the whole group) were triple-negative: ERα(-)/PgR(-)/HER-2(-) but almost half of this group (44.4%) showed the expression of ERβ. In the case of BRCA1-associated tumors the expression of ERβ was significantly higher than the expression of ERα. This may explain the effectiveness of tamoxifen in preventing contralateral breast cancer development in BRCA1 mutation carriers

  1. Expression of kallikrein-related peptidase 7 is decreased in prostate cancer

    Directory of Open Access Journals (Sweden)

    Chong-Yu Zhang

    2015-02-01

    Full Text Available Recent evidence suggests that the human kallikrein 7 (KLK7 is differentially regulated in a variety of tumors. The aim of this study was to determine the expression of kallikrein-related peptidase 7 and KLK7 in our large collection of prostate samples. Between August 2000 and December 2012, 116 patients with histologically confirmed prostate cancer (PCa and 92 with benign prostate hyperplasia (BPH were recruited into the study. Using immunohistochemistry, quantitative reverse transcription polymerase chain reaction (RT-PCR and western blot, kallikrein-related peptidase 7 expression in BPH and PCa tissues was determined at the mRNA and protein levels. The relationships between kallikrein-related peptidase 7 mRNA expression and clinicopathological features were analyzed. A total of 64 of 92 (69.57% benign cases showed positive staining for KLK7 and 23 of 116 (19.83% malignant cases showed positive, the difference of KLK7 expression between PCa and BPH was statistically significant (P < 0.001. The expression level of kallikrein-related peptidase 7 mRNA was significantly decreased in PCa tissues compared with that in BPH tissues and normal prostate tissue. Kallikrein-related peptidase 7 mRNA exhibited different expression patterns in terms of localization depending on pathological category of PCa. Similarly, our western immunoblot analyses demonstrated that the protein expression levels of KLK7 was lower in PCa than in BPH tissues and normal prostate tissue. Kallikrein-related peptidase 7 and KLK7 expression are down-regulated in PCa and lower expression of kallikrein-related peptidase 7 closely correlates with higher Gleason score and higher prostate-specific antigen level.

  2. Decreased expression of GST pi is correlated with a poor prognosis in human esophageal squamous carcinoma

    Directory of Open Access Journals (Sweden)

    Wang Junsheng

    2010-07-01

    Full Text Available Abstract Background Glutathione S-transferase pi (GST pi is a subgroup of GST family, which provides cellular protection against free radical and carcinogenic compounds due to its detoxifying function. Expression patterns of GST pi have been studied in several carcinomas and its down-regulation was implicated to be involved in malignant transformation in patients with Barrett's esophagus. However, neither the exact role of GST pi in the pathogenesis nor its prognostic impact in squamous esophageal carcinoma is fully characterized. Methods Immunohistochemistry was used to investigate GST pi expression on 153 archival squamous esophageal carcinoma specimens with a GST pi monoclonal antibody. Statistic analyses were performed to explore its association with clinicopathological factors and clinical outcome. Results The GST pi expression was greatly reduced in tissues of esophageal carcinomas compared to adjacent normal tissues and residual benign tissues. Absent of GST pi protein expression in cytoplasm, nuclear and cytoplasm/nucleus was found in 51%, 64.7% and 48% of all the carcinoma cases, respectively. GST pi deficiency in cytoplasm, nucleus and cytoplasm/nucleus was significantly correlated to poor differentiation (p p p p p = 0.004, respectively and cytoplasm/nucleus (p = 0.017 and p = 0.031, respectively. In univariate analysis, absent of GST pi protein expression in cytoplasm, nucleus and cytoplasm/nucleus was significantly associated with a shorter overall survival (p p p p Conclusions Our results show that GST pi expression is down regulated in the squamous esophageal carcinoma, and that the lack of GST pi expression is associated with poor prognosis. Therefore, deficiency of GST pi protein expression may be an important mechanism involved in the carcinogenesis and progression of the squamous esophageal carcinoma, and the underlying mechanisms leading to decreased GST pi expression deserve further investigation.

  3. Prominin-2 expression increases protrusions, decreases caveolae and inhibits Cdc42 dependent fluid phase endocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Raman Deep, E-mail: Takhter.Ramandeep@mayo.edu; Schroeder, Andreas S.; Scheffer, Luana; Holicky, Eileen L.; Wheatley, Christine L.; Marks, David L., E-mail: Marks.david@mayo.edu; Pagano, Richard E.

    2013-05-10

    Highlights: •Prominin-2 expression induced protrusions that co-localized with lipid raft markers. •Prominin-2 expression decreased caveolae, caveolar endocytosis and increased pCav1. •Prominin-2 expression inhibited fluid phase endocytosis by inactivation of Cdc42. •These endocytic effects can be reversed by adding exogenous cholesterol. •Caveolin1 knockdown restored fluid phase endocytosis in Prominin2 expressing cells. -- Abstract: Background: Membrane protrusions play important roles in biological processes such as cell adhesion, wound healing, migration, and sensing of the external environment. Cell protrusions are a subtype of membrane microdomains composed of cholesterol and sphingolipids, and can be disrupted by cholesterol depletion. Prominins are pentaspan membrane proteins that bind cholesterol and localize to plasma membrane (PM) protrusions. Prominin-1 is of great interest as a marker for stem and cancer cells, while Prominin-2 (Prom2) is reportedly restricted to epithelial cells. Aim: To characterize the effects of Prom-2 expression on PM microdomain organization. Methods: Prom2-fluorescent protein was transfected in human skin fibroblasts (HSF) and Chinese hamster ovary (CHO) cells for PM raft and endocytic studies. Caveolae at PM were visualized using transmission electron microscopy. Cdc42 activation was measured and caveolin-1 knockdown was performed using siRNAs. Results: Prom2 expression in HSF and CHO cells caused extensive Prom2-positive protrusions that co-localized with lipid raft markers. Prom2 expression significantly decreased caveolae at the PM, reduced caveolar endocytosis and increased caveolin-1 phosphorylation. Prom2 expression also inhibited Cdc42-dependent fluid phase endocytosis via decreased Cdc42 activation. Effects on endocytosis were reversed by addition of cholesterol. Knockdown of caveolin-1 by siRNA restored Cdc42 dependent fluid phase endocytosis in Prom2-expressing cells. Conclusions: Prom2 protrusions primarily

  4. Hyperglycemia decreases expression of 14-3-3 proteins in an animal model of stroke.

    Science.gov (United States)

    Jeon, Seong-Jun; Sung, Jin-Hee; Koh, Phil-Ok

    2016-07-28

    Diabetes is a severe metabolic disorder and a major risk factor for stroke. Stroke severity is worse in patients with diabetes compared to the non-diabetic population. The 14-3-3 proteins are a family of conserved acidic proteins that are ubiquitously expressed in cells and tissues. These proteins are involved in many cellular processes including metabolic pathways, signal transduction, protein trafficking, protein synthesis, and cell cycle control. This study investigated 14-3-3 proteins expression in the cerebral cortex of animals with diabetes, cerebral ischemic injury and a combination of both diabetes and cerebral ischemic injury. Diabetes was induced by intraperitoneal injection of streptozotocin (40mg/kg) in adult male rats. After 4 weeks of treatment, middle cerebral artery occlusion (MCAO) was performed for the induction of focal cerebral ischemia and cerebral cortex tissue was collected 24h after MCAO. We confirmed that diabetes increases infarct volume following MCAO compared to non-diabetic animals. In diabetic animals with MCAO injury, reduction of 14-3-3 β/α, 14-3-3 ζ/δ, 14-3-3 γ, and 14-3-3 ε isoforms was detected. The expression of these proteins was significantly decreased in diabetic animals with MCAO injury compared to diabetic-only and MCAO-only animals. Moreover, Western blot analysis ascertained the decreased expression of 14-3-3 family proteins in diabetic animals with MCAO injury, including β/α, ζ/δ, γ, ε, τ, and η isoforms. These results show the changes of 14-3-3 proteins expression in streptozotocin-induced diabetic animals with MCAO injury. Thus, these findings suggest that decreases in 14-3-3 proteins might be involved in the regulation of 14-3-3 proteins under the presence of diabetes following MCAO. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Decreased Rac1 Cardiac Expression in Nitrofen-Induced Diaphragmatic Hernia.

    Science.gov (United States)

    Nakamura, Hiroki; Zimmer, Julia; Puri, Prem

    2018-02-01

     The high incidence of cardiac malformations in humans and animal models with congenital diaphragmatic hernia (CDH) is well known. The hypoplasia of left heart is common among fetuses with CDH and has been identified as a poor prognostic factor. However, the precise mechanisms underlying cardiac maldevelopment in CDH are not fully understood. Ras-related C3 botulinum toxin substrate 1 (Rac1) plays a key role in cardiomyocyte polarity and embryonic heart development. Deficiency of Rac1 is reported to impair elongation and cytoskeletal organization of cardiomyocytes, resulting in congenital cardiac defects. We designed this study to test the hypothesis that Rac1 expression is downregulated in the developing hearts of rats with nitrofen-induced CDH.  Following ethical approval (REC1103), time-pregnant Sprague Dawley rats received nitrofen or vehicle on gestational day 9 (D9). Fetuses were sacrificed on D18 and D21 and divided into CDH and control (CTRL) ( n  = 6 for each group and time point). Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and confocal-immunofluorescence microscopy were performed to detect cardiac gene and protein expression of Rac1.  qRT-PCR and Western blot analysis revealed that Rac1 expression was significantly decreased in the CDH group compared with controls ( p  Rac1 cardiac expression was markedly decreased in the CDH group compared with controls.  Decreased cardiac Rac1 expression in the nitrofen-induced CDH suggests that Rac1 deficiency during morphogenesis may impair structural cardiac remodeling, resulting in congenital cardiac defects. Georg Thieme Verlag KG Stuttgart · New York.

  6. Neurotrophins expression is decreased in lungs of human infants with congenital diaphragmatic hernia

    Directory of Open Access Journals (Sweden)

    O'Hanlon LD

    2014-02-01

    Full Text Available Lynn D O'Hanlon, Sherry M Mabry, Ikechukwu I EkekezieChildren's Mercy Hospitals/University of Missouri-Kansas City School of Medicine, Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Kansas City, MO, USAObjectives: To evaluate neurotrophin (NT (nerve growth factor [NGF], NT-3, and brain-derived neurotrophic factor [BDNF] expression in autopsy lung tissues of human congenital diaphragmatic hernia (CDH infants versus that of infants that expired with: 1 "normal" lungs (controls; 2 chronic lung disease (CLD; and 3 pulmonary hypertension (PPHN.Hypothesis: NT expression will be significantly altered in CDH lung tissue compared with normal lung tissue and other neonatal lung diseases.Study design: Immunohistochemical studies for NT proteins NGF, BDNF, and NT-3 were applied to human autopsy neonatal lung tissue samples.Subject selection: The samples included a control group of 18 samples ranging from 23-week gestational age to term, a CDH group of 15 samples, a PPHN group of six samples, and a CLD group of 12 samples.Methodology: The tissue samples were studied, and four representative slide fields of alveoli/saccules and four of bronchioles were recorded from each sample. These slide fields were then graded (from 0 to 3 by three blinded observers for intensity of staining.Results: BDNF, NGF, and NT-3 immunostaining intensity scores were significantly decreased in the CDH lung tissue (n=15 compared with normal neonatal lung tissue (n=18 (P<0.001. The other neonatal pulmonary diseases that were studied, CLD and PPHN, were much less likely to be affected and were much more variable in their neurotrophin expression.Conclusion: NT expression is decreased in CDH lungs. The decreased expression of NT in CDH lung tissue may suggest they contribute to the abnormality in this condition.Keywords: nerve growth factor, NGF, brain-derived neurotrophic factor, BDNF, neurotrophin-3, NT-3, chronic lung disease, persistent pulmonary hypertension, lung

  7. Low-Concentration Tributyltin Decreases GluR2 Expression via Nuclear Respiratory Factor-1 Inhibition

    OpenAIRE

    Ishida, Keishi; Aoki, Kaori; Takishita, Tomoko; Miyara, Masatsugu; Sakamoto, Shuichiro; Sanoh, Seigo; Kimura, Tomoki; Kanda, Yasunari; Ohta, Shigeru; Kotake, Yaichiro

    2017-01-01

    Tributyltin (TBT), which has been widely used as an antifouling agent in paints, is a common environmental pollutant. Although the toxicity of high-dose TBT has been extensively reported, the effects of low concentrations of TBT are relatively less well studied. We have previously reported that low-concentration TBT decreases ?-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptor subunit 2 (GluR2) expression in cortical neurons and enhances neuronal vulnerability ...

  8. Alcohol exposure decreases CREB binding protein expression and histone acetylation in the developing cerebellum.

    Directory of Open Access Journals (Sweden)

    Weixiang Guo

    Full Text Available Fetal alcohol exposure affects 1 in 100 children making it the leading cause of mental retardation in the US. It has long been known that alcohol affects cerebellum development and function. However, the underlying molecular mechanism is unclear.We demonstrate that CREB binding protein (CBP is widely expressed in granule and Purkinje neurons of the developing cerebellar cortex of naïve rats. We also show that exposure to ethanol during the 3(rd trimester-equivalent of human pregnancy reduces CBP levels. CBP is a histone acetyltransferase, a component of the epigenetic mechanism controlling neuronal gene expression. We further demonstrate that the acetylation of both histone H3 and H4 is reduced in the cerebellum of ethanol-treated rats.These findings indicate that ethanol exposure decreases the expression and function of CBP in the developing cerebellum. This effect of ethanol may be responsible for the motor coordination deficits that characterize fetal alcohol spectrum disorders.

  9. Decreased expression of pyruvate dehydrogenase A1 predicts an unfavorable prognosis in ovarian carcinoma.

    Science.gov (United States)

    Li, Yaqing; Huang, Ruixia; Li, Xiaoli; Li, Xiaoran; Yu, Dandan; Zhang, Mingzhi; Wen, Jianguo; Goscinski, Mariusz Adam; Trope, Claes G; Nesland, Jahn M; Suo, Zhenhe

    2016-01-01

    Pyruvate dehydrogenase A1 (PDHA1) serves as a gate-keeper enzyme link between glycolysis and the mitochondrial citric acid cycle. The inhibition of PDHA1 in cancer cells can result in an increased Warburg effect and a more aggressive phenotype in cancer cells. This study was conducted to investigate the expression of PDHA1 in ovarian cancer and the correlation between PDHA1 expression and the prognosis of patients. The PDHA1 protein expression in 3 ovarian cancer cell lines (OVCAR-3, SKOV-3 and ES-2) and 248 surgically removed ovarian carcinoma samples was immunocytochemically examined. Statistical analyses were performed to evaluate the correlations between PDHA1 expression and the clinicopathological characteristics of the patients as well as the predictive value of PDHA1. The results showed the presence of variable expression of PDHA1 in the three ovarian cancer cell lines. Of the 248 ovarian cancer tissue specimens, 45 cases (18.1%) were negative in tumor cells for PDHA1, 162 cases (65.3%) displayed a low expression level, and 41 cases (16.5%) had a relatively high PDHA1 staining. The expression of PDHA1 was associated with the histological subtype ( P =0.004) and FIGO stage ( P =0.002). The median OS time in the PDHA1 negative group, low expression group and high expression group were 0.939 years, 1.443 years and 9.900 years, respectively. The median PFS time in the above three groups were 0.287 years, 0.586 years and 9.900 years, respectively. Furthermore, the high expression of PDHA1 in ovarian carcinoma cells was significantly associated with better OS and PFS by statistical analyses. Multivariate analyses showed that PDHA1 expression was also an independent prognostic factor for higher OS in ovarian cancer patients (HR=0.705, 95% CI 0.541-0.918, P =0.01). Our study indicated that the decreased expression of PDHA1 might be an independent prognostic factor in unfavorable outcomes.

  10. Decreased interleukin-20 expression in scleroderma skin contributes to cutaneous fibrosis.

    Science.gov (United States)

    Kudo, Hideo; Jinnin, Masatoshi; Asano, Yoshihide; Trojanowska, Maria; Nakayama, Wakana; Inoue, Kuniko; Honda, Noritoshi; Kajihara, Ikko; Makino, Katsunari; Fukushima, Satoshi; Ihn, Hironobu

    2014-06-01

    To clarify the role of interleukin-20 (IL-20) in the regulatory mechanism of extracellular matrix expression and to determine the contribution of IL-20 to the phenotype of systemic sclerosis (SSc). Protein and messenger RNA (mRNA) levels of collagen, Fli-1, IL-20, and IL-20 receptor (IL-20R) were analyzed using polymerase chain reaction (PCR) array, immunoblotting, immunohistochemical staining, enzyme-linked immunosorbent assay, and real-time PCR. PCR array revealed that IL-20 decreased gene expression of α2(I) collagen (0.03-fold), Smad3 (0.02-fold), and endoglin (0.05-fold) in cultured normal dermal fibroblasts. Fli-1 protein expression was induced by IL-20 (~2-fold). The inhibition of collagen by IL-20, the induction of Fli-1 by IL-20, and the reduction of Smad3 and endoglin by IL-20 were also observed in SSc fibroblasts. Serum IL-20 levels were reduced only slightly in SSc patients but were significantly decreased in patients with scleroderma spectrum disorders (the prodromal stage of SSc) compared with those in normal subjects (111.3 pg/ml versus 180.4 pg/ml; P value of IL-20 and IL-20R, their function and expression in vivo should be further studied. Copyright © 2014 by the American College of Rheumatology.

  11. Enhanced Phospholipase A2 Group 3 Expression by Oxidative Stress Decreases the Insulin-Degrading Enzyme

    Science.gov (United States)

    Yui, Daishi; Nishida, Yoichiro; Nishina, Tomoko; Mogushi, Kaoru; Tajiri, Mio; Ishibashi, Satoru; Ajioka, Itsuki; Ishikawa, Kinya; Mizusawa, Hidehiro; Murayama, Shigeo; Yokota, Takanori

    2015-01-01

    Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD) model mice showed decreased insulin-degrading enzyme (IDE) levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa -/-) mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa -/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3); Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa -/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD. PMID:26637123

  12. Enhanced Phospholipase A2 Group 3 Expression by Oxidative Stress Decreases the Insulin-Degrading Enzyme.

    Directory of Open Access Journals (Sweden)

    Daishi Yui

    Full Text Available Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD model mice showed decreased insulin-degrading enzyme (IDE levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa-/- mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa-/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3; Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa-/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD.

  13. Experimental Hyperthyroidism Decreases Gene Expression and Serum Levels of Adipokines in Obesity

    Directory of Open Access Journals (Sweden)

    Renata de Azevedo Melo Luvizotto

    2012-01-01

    Full Text Available Aims. To analyze the influence of hyperthyroidism on the gene expression and serum concentration of leptin, resistin, and adiponectin in obese animals. Main Methods. Male Wistar rats were randomly divided into two groups: control (C—fed with commercial chow ad libitum—and obese (OB—fed with a hypercaloric diet. After group characterization, the OB rats continued receiving a hypercaloric diet and were randomized into two groups: obese animals (OB and obese with 25 μg triiodothyronine (T3/100 BW (OT. The T3 dose was administered every day for the last 2 weeks of the study. After 30 weeks the animals were euthanized. Samples of blood and adipose tissue were collected for biochemical and hormonal analyses as well as gene expression of leptin, resistin, and adiponectin. Results. T3 treatment was effective, increasing fT3 levels and decreasing fT4 and TSH serum concentration. Administration of T3 promotes weight loss, decreases all fat deposits, and diminishes serum levels of leptin, resistin, and adiponectin by reducing their gene expression. Conclusions. Our results suggest that T3 modulate serum and gene expression levels of leptin, resistin, and adiponectin in experimental model of obesity, providing new insights regarding the relationship between T3 and adipokines in obesity.

  14. Experimental hyperthyroidism decreases gene expression and serum levels of adipokines in obesity.

    Science.gov (United States)

    Luvizotto, Renata de Azevedo Melo; do Nascimento, André Ferreira; de Síbio, Maria Teresa; Olímpio, Regiane Marques Castro; Conde, Sandro José; Lima-Leopoldo, Ana Paula; Leopoldo, André Soares; Cicogna, Antonio Carlos; Nogueira, Célia Regina

    2012-01-01

    To analyze the influence of hyperthyroidism on the gene expression and serum concentration of leptin, resistin, and adiponectin in obese animals. Male Wistar rats were randomly divided into two groups: control (C)-fed with commercial chow ad libitum-and obese (OB)-fed with a hypercaloric diet. After group characterization, the OB rats continued receiving a hypercaloric diet and were randomized into two groups: obese animals (OB) and obese with 25 μg triiodothyronine (T(3))/100 BW (OT). The T(3) dose was administered every day for the last 2 weeks of the study. After 30 weeks the animals were euthanized. Samples of blood and adipose tissue were collected for biochemical and hormonal analyses as well as gene expression of leptin, resistin, and adiponectin. T(3) treatment was effective, increasing fT(3) levels and decreasing fT(4) and TSH serum concentration. Administration of T(3) promotes weight loss, decreases all fat deposits, and diminishes serum levels of leptin, resistin, and adiponectin by reducing their gene expression. Our results suggest that T(3) modulate serum and gene expression levels of leptin, resistin, and adiponectin in experimental model of obesity, providing new insights regarding the relationship between T(3) and adipokines in obesity.

  15. Mendelian and non-mendelian mutations affecting surface antigen expression in Paramecium tetraurelia

    International Nuclear Information System (INIS)

    Epstein, L.M.; Forney, J.D.

    1984-01-01

    A screening procedure was devised for the isolation of X-ray-induced mutations affecting the expression of the A immobilization antigen (i-antigen) in Paramecium tetraurelia. Two of the mutations isolated by this procedure proved to be in modifier genes. The two genes are unlinked to each other and unlinked to the structural A i-antigen gene. These are the first modifier genes identified in a Paramecium sp. that affect surface antigen expression. Another mutation was found to be a deletion of sequences just downstream from the A i-antigen gene. In cells carrying this mutation, the A i-antigen gene lies in close proximity to the end of a macronuclear chromosome. The expression of the A i-antigen is not affected in these cells, demonstrating that downstream sequences are not important for the regulation and expression of the A i-antigen gene. A stable cell line was also recovered which shows non-Mendelian inheritance of a macronuclear deletion of the A i-antigen gene. This mutant does not contain the gene in its macronucleus, but contains a complete copy of the gene in its micronucleus. In the cytoplasm of wild-type animals, the micronuclear gene is included in the developing macronucleus; in the cytoplasm of the mutant, the incorporation of the A i-antigen gene into the macronucleus is inhibited. This is the first evidence that a mechanism is available in ciliates to control the expression of a gene by regulating its incorporation into developing macronuclei

  16. Decrease in PSCA expression caused by Helicobacter pylori infection may promote progression to severe gastritis

    Science.gov (United States)

    Toyoshima, Osamu; Tanikawa, Chizu; Yamamoto, Ryuta; Watanabe, Hidenobu; Yamashita, Hiroharu; Sakitani, Kosuke; Yoshida, Shuntaro; Kubo, Michiaki; Matsuo, Keitaro; Ito, Hidemi; Koike, Kazuhiko; Seto, Yasuyuki; Matsuda, Koichi

    2018-01-01

    SNP rs2294008 in Prostate Stem Cell Antigen (PSCA) and decreased PSCA expression are associated with gastric cancer. The objective of this study is to investigate the role of rs2294008 and PSCA expression in the gastritis-gastric cancer carcinogenic pathway. We conducted a case-control association study of H. pylori-infected gastritis and gastric cancer. rs2294008 was associated with the progression to chronic active gastritis (P = 9.4 × 10–5; odds ratio = 3.88, TT + TC vs CC genotype), but not with H. pylori infection per se nor with the progression from active gastritis to gastric cancer. We also assessed the association of rs2294008 with PSCA mRNA expression in the gastric mucosa at various disease stages and found that rs2294008 was associated with PSCA expression (P = 1.3 × 10–12). H. pylori infection (P = 5.1 × 10–8) and eradication therapy (P gastritis compared with mild gastritis only among T allele carriers. Our findings revealed the regulation of PSCA expression by host genetic variation and bacterial infection might contribute to gastritis progression after H. pylori infection. PMID:29423095

  17. Expression of G(alpha)(s) proteins and TSH receptor signalling in hyperfunctioning thyroid nodules with TSH receptor mutations.

    Science.gov (United States)

    Holzapfel, Hans-Peter; Bergner, Beate; Wonerow, Peter; Paschke, Ralf

    2002-07-01

    Constitutively activating mutations of the thyrotrophin receptor (TSHR) are the main molecular cause of hyperfunctioning thyroid nodules (HTNs). The G protein coupling is an important and critical step in the TSHR signalling which mainly includes G(alpha)(s), G(alpha)(i) and G(alpha)(q)/11 proteins. We investigated the in vitro consequences of overexpressing G(alpha) proteins on signalling of the wild-type (WT) or mutated TSHR. Moreover, we investigated whether changes in G(alpha) protein expression are pathophysiologically relevant in HTNs or cold thyroid nodules (CTNs). Wild-type TSH receptor and mutated TSH receptors were coexpressed with G(alpha)(s), G(alpha)(i) or G(alpha)(q)/11, and cAMP and inositol phosphate (IP) production was measured after stimulation with TSH. The expression of G(alpha)(s), G(alpha)(i) and G(alpha)(q)/11 proteins was examined by Western blotting in 28 HTNs and 14 CTNs. Coexpression of G(alpha)(s) with the WT TSH receptor in COS 7 cells significantly increased the basal and TSH-stimulated cAMP accumulation while coexpression of the G(alpha)(q) or G(alpha)11 protein significantly increased the production of cAMP and inositol triphosphate (IP(3)). The coexpression of the TSH receptor mutants (I486F, DEL613-621), known to couple constitutively to G(alpha)(s) and G(alpha)(q) with G(alpha)(s) and G(alpha)(q)/11, significantly increased the basal and stimulated cAMP and IP(3) accumulation. Coexpression of the TSH receptor mutant V556F with G(alpha)(s) only increased the basal and stimulated cAMP production while its coexpression with G(alpha)(q)/11 increased the basal and stimulated IP(3) signalling. The expression of G(alpha)(s) protein subunits determined by Western blotting was significantly decreased in 14 HTNs with a constitutively activating TSH receptor mutation in comparison with the corresponding surrounding tissue, while in 14 HTNs without TSH receptor or G(alpha)(s) protein mutation and in 14 CTNs the expression of G

  18. Decreased expression of vitamin D receptors in neointimal lesions following coronary artery angioplasty in atherosclerotic swine.

    Directory of Open Access Journals (Sweden)

    Gaurav K Gupta

    Full Text Available Inflammatory cytokines, such as TNF-α, play a key role in the pathogenesis of occlusive vascular diseases. Activation of vitamin D receptors (VDR elicits both growth-inhibitory and anti-inflammatory effects. Here, we investigated the expression of TNF-α and VDR in post-angioplasty coronary artery neointimal lesions of hypercholesterolemic swine and examined the effect of vitamin D deficiency on the development of coronary restenosis. We also examined the effect of calcitriol on cell proliferation and effect of TNF-α on VDR activity and expression in porcine coronary artery smooth muscle cells (PCASMCs in-vitro.Expression of VDR and TNF-α and the effect of vitamin D deficiency in post-angioplasty coronary arteries were analyzed by immunohistochemistry and histomorphometry. Cell proliferation was examined by thymidine and BrdU incorporation assays in cultured PCASMCs. Effect of TNF-α-stimulation on the activity and expression of VDR was analyzed by luciferase assay, immunoblotting and immunocytochemistry. In-vivo, morphometric analysis of the tissues revealed typical lesions with significant neointimal proliferation. Histological evaluation showed expression of smooth muscle α-actin and significantly increased expression of TNF-α in neointimal lesions. Interestingly, there was significantly decreased expression of VDR in PCASMCs of neointimal region compared to normal media. Indeed, post-balloon angioplasty restenosis was significantly higher in vitamin D-deficient hypercholesterolemic swine compared to vitamin D-sufficient group. In-vitro, calcitriol inhibited both serum- and PDGF-BB-induced proliferation in PCASMCs and TNF-α-stimulation significantly decreased the expression and activity of VDR in PCASMCs.These data suggest that significant downregulation of VDR in proliferating smooth muscle cells in neointimal lesions could be due to atherogenic cytokines, including TNF-α. Vitamin D deficiency potentiates the development of coronary

  19. Decreased blood riboflavin levels are correlated with defective expression of RFT2 gene in gastric cancer

    Science.gov (United States)

    Eli, Maynur; Li, De-Sheng; Zhang, Wei-Wei; Kong, Bing; Du, Chen-Song; Wumar, Maimaitiaili; Mamtimin, Batur; Sheyhidin, Ilyar; Hasim, Ayshamgul

    2012-01-01

    AIM: To investigate the relationship between blood riboflavin levels and riboflavin transporter 2 (RFT2) gene expression in gastric carcinoma (GC) development. METHODS: High-performance liquid chromatography was used to detect blood riboflavin levels in patients with GC. Real-time fluorogenic quantitative polymerase chain reaction and immunohistochemistry were used to analyze the expression of RFT2 mRNA and protein in samples from 60 GC patients consisting of both tumor and normal tissue. RESULTS: A significant decrease in the RFT2 mRNA levels was detected in GC samples compared with those in the normal mucous membrane (0.398 ± 0.149 vs 1.479 ± 0.587; P = 0.040). Tumors exhibited low RFT2 protein expression (75%, 16.7%, 8.3% and 0% for no RFT2 staining, weak staining, medium staining and strong staining, respectively), which was significantly lower than that in the normal mucous membrane (10%, 16.7%, 26.7% and 46.7% for no RFT2 staining, weak staining, medium staining and strong staining, respectively; P riboflavin levels were reverse correlated with development of GC (1.2000 ± 0.97 569 ng/mL in high tumor stage patients vs 2.5980 ± 1.31 129 ng/mL in low tumor stage patients; P riboflavin levels with defective expression of RFT2 protein was found in GC patients (χ2 = 2.619; P = 0.019). CONCLUSION: Defective expression of RFT2 is associated with the development of GC and this may represent a mechanism underlying the decreased plasma riboflavin levels in GC. PMID:22791947

  20. Microarray Analysis of Iris Gene Expression in Mice with Mutations Influencing Pigmentation

    Science.gov (United States)

    Trantow, Colleen M.; Cuffy, Tryphena L.; Fingert, John H.; Kuehn, Markus H.

    2011-01-01

    Purpose. Several ocular diseases involve the iris, notably including oculocutaneous albinism, pigment dispersion syndrome, and exfoliation syndrome. To screen for candidate genes that may contribute to the pathogenesis of these diseases, genome-wide iris gene expression patterns were comparatively analyzed from mouse models of these conditions. Methods. Iris samples from albino mice with a Tyr mutation, pigment dispersion–prone mice with Tyrp1 and Gpnmb mutations, and mice resembling exfoliation syndrome with a Lyst mutation were compared with samples from wild-type mice. All mice were strain (C57BL/6J), age (60 days old), and sex (female) matched. Microarrays were used to compare transcriptional profiles, and differentially expressed transcripts were described by functional annotation clustering using DAVID Bioinformatics Resources. Quantitative real-time PCR was performed to validate a subset of identified changes. Results. Compared with wild-type C57BL/6J mice, each disease context exhibited a large number of statistically significant changes in gene expression, including 685 transcripts differentially expressed in albino irides, 403 in pigment dispersion–prone irides, and 460 in exfoliative-like irides. Conclusions. Functional annotation clusterings were particularly striking among the overrepresented genes, with albino and pigment dispersion–prone irides both exhibiting overall evidence of crystallin-mediated stress responses. Exfoliative-like irides from mice with a Lyst mutation showed overall evidence of involvement of genes that influence immune system processes, lytic vacuoles, and lysosomes. These findings have several biologically relevant implications, particularly with respect to secondary forms of glaucoma, and represent a useful resource as a hypothesis-generating dataset. PMID:20739468

  1. Decreased expression of GST pi is correlated with a poor prognosis in human esophageal squamous carcinoma

    International Nuclear Information System (INIS)

    Wang, Zhihui; He, Wei; Yang, Guanrui; Wang, Junsheng; Wang, Zhong; Nesland, Jahn M; Holm, Ruth; Suo, Zhenhe

    2010-01-01

    , deficiency of GST pi protein expression may be an important mechanism involved in the carcinogenesis and progression of the squamous esophageal carcinoma, and the underlying mechanisms leading to decreased GST pi expression deserve further investigation

  2. Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Taisuke [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Nagamatsu, Go, E-mail: gonag@sc.itc.keio.ac.jp [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kosaka, Takeo [Department of Urology, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Takubo, Keiyo [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Hotta, Akitsu [Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Department of Reprogramming Science, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Ellis, James [Ontario Human iPS Cell Facility, Molecular Genetics, University of Toronto, Developmental and Stem Cell Biology, SickKids, Toronto, Canada MG1L7 (Canada); Suda, Toshio, E-mail: sudato@sc.itc.keio.ac.jp [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan)

    2011-04-08

    Highlights: {yields} iPS cells were induced with a fluorescence monitoring system. {yields} ATM-deficient tail-tip fibroblasts exhibited quite a low reprogramming efficiency. {yields} iPS cells obtained from ATM-deficient cells had pluripotent cell characteristics. {yields} ATM-deficient iPS cells had abnormal chromosomes, which were accumulated in culture. -- Abstract: During cell division, one of the major features of somatic cell reprogramming by defined factors, cells are potentially exposed to DNA damage. Inactivation of the tumor suppressor gene p53 raised reprogramming efficiency but resulted in an increased number of abnormal chromosomes in established iPS cells. Ataxia-telangiectasia mutated (ATM), which is critical in the cellular response to DNA double-strand breaks, may also play an important role during reprogramming. To clarify the function of ATM in somatic cell reprogramming, we investigated reprogramming in ATM-deficient (ATM-KO) tail-tip fibroblasts (TTFs). Although reprogramming efficiency was greatly reduced in ATM-KO TTFs, ATM-KO iPS cells were successfully generated and showed the same proliferation activity as WT iPS cells. ATM-KO iPS cells had a gene expression profile similar to ES cells and WT iPS cells, and had the capacity to differentiate into all three germ layers. On the other hand, ATM-KO iPS cells accumulated abnormal genome structures upon continuous passages. Even with the abnormal karyotype, ATM-KO iPS cells retained pluripotent cell characteristics for at least 20 passages. These data indicate that ATM does participate in the reprogramming process, although its role is not essential.

  3. Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells

    International Nuclear Information System (INIS)

    Kinoshita, Taisuke; Nagamatsu, Go; Kosaka, Takeo; Takubo, Keiyo; Hotta, Akitsu; Ellis, James; Suda, Toshio

    2011-01-01

    Highlights: → iPS cells were induced with a fluorescence monitoring system. → ATM-deficient tail-tip fibroblasts exhibited quite a low reprogramming efficiency. → iPS cells obtained from ATM-deficient cells had pluripotent cell characteristics. → ATM-deficient iPS cells had abnormal chromosomes, which were accumulated in culture. -- Abstract: During cell division, one of the major features of somatic cell reprogramming by defined factors, cells are potentially exposed to DNA damage. Inactivation of the tumor suppressor gene p53 raised reprogramming efficiency but resulted in an increased number of abnormal chromosomes in established iPS cells. Ataxia-telangiectasia mutated (ATM), which is critical in the cellular response to DNA double-strand breaks, may also play an important role during reprogramming. To clarify the function of ATM in somatic cell reprogramming, we investigated reprogramming in ATM-deficient (ATM-KO) tail-tip fibroblasts (TTFs). Although reprogramming efficiency was greatly reduced in ATM-KO TTFs, ATM-KO iPS cells were successfully generated and showed the same proliferation activity as WT iPS cells. ATM-KO iPS cells had a gene expression profile similar to ES cells and WT iPS cells, and had the capacity to differentiate into all three germ layers. On the other hand, ATM-KO iPS cells accumulated abnormal genome structures upon continuous passages. Even with the abnormal karyotype, ATM-KO iPS cells retained pluripotent cell characteristics for at least 20 passages. These data indicate that ATM does participate in the reprogramming process, although its role is not essential.

  4. Valproic acid decreases urothelial cancer cell proliferation and induces thrombospondin-1 expression

    Directory of Open Access Journals (Sweden)

    Byler Timothy K

    2012-08-01

    Full Text Available Abstract Background Prevention of bladder cancer recurrence is a central challenge in the management of this highly prevalent disease. The histone deacetylase inhibitor valproic acid (sodium valproate has anti-angiogenic properties and has been shown to decrease bladder cancer growth in model systems. We have previously shown reduced expression of thrombospondin-1 in a mouse model and in human bladder cancer relative to normal urothelium. We speculated that inhibition of angiogenesis by valproate might be mediated by this anti-angiogenic protein. Methods Bladder cancer cell lines UMUC3 and T24 were treated with valproate or another histone deacetylase inhibitor, vorinostat, in culture for a period of three days. Proliferation was assessed by alamar blue reduction. Gene expression was evaluated by reverse transcription of RNA and quantitative PCR. Results Proliferation assays showed treatment with valproate or vorinostat decreased proliferation in both cell lines. Histone deacetylase inhibition also increased relative expression of thrombospondin-1 up to 8 fold at 5 mM valproate. Conclusions Histone deacetylase inhibitors warrant further study for the prevention or treatment of bladder cancer.

  5. The expression and mutation of β-catenin in colorectal traditional serrated adenomas

    Directory of Open Access Journals (Sweden)

    Xiaojun Dai

    2012-01-01

    Full Text Available Context : Exon 3 mutation of β-catenin is associated with the carcinogenesis. Aims: In this study we aimed to detect the expression of exon 3 mutations of β-catenin in colorectal TSA, TA/VTA, and CRC. Materials and Methods : Immunohistochemistry staining for β-catenin was performed for 30 TSA, 20 tubular adenomas (TA/villous tubular adenomas (VTA, and 21 colorectal carcinoma (CRC cases. DNA sequencing of the exon 3 of β-catenin gene was performed for 8 TSA cases, 6 TA cases, 5 VTA cases, and 10 CRC cases with positive staining in the nuclei and cytoplasm. Statistical Analysis: A Fisher exact test and chi-square test were used to analyze the differentiations of the expression of β-catenin in TSA, TA/VTA, and CRC. Results : The percentages of β-catenin expression in TSA, TA/VTA, and CRC were 76.6% (23/30, 70.0% (14/20, and 95.2% (20/21, respectively, and were significantly different among these three types of tissue specimens (χ2 = 22.805, P < 0.001. Although β-catenin expression levels in TSA were not related to it in TA/VTA, they were significantly different between TSA/TA/VTA and CRC. The degree of dysplasia was well correlated with β-catenin expression (TSA: P < 0.01; TA/VTA: P < 0.05. But β-catenin exon 3 mutations were not detected in any of these tissue specimens. Conclusions : Aberrant β-catenin expression is associated with the degree of dysplasia in TSA. β-catenin likely plays an important role in the pathogenesis of colorectal TSA and conventional adenomas.

  6. Decreased Siglec-9 Expression on Natural Killer Cell Subset Associated With Persistent HBV Replication

    Directory of Open Access Journals (Sweden)

    Di Zhao

    2018-05-01

    Full Text Available Siglec-9 is an MHC-independent inhibitory receptor selectively expressed on CD56dim NK cells. Its role in infection diseases has not been investigated yet. Here, we studied the potential regulatory roles of NK Siglec-9 in the pathogenesis of chronic hepatitis B (CHB infection. Flow cytometry evaluated the expression of Siglec-9 and other receptors on peripheral NK cells. Immunofluorescence staining was used to detect Siglec-9 ligands on liver biopsy tissues and cultured hepatocyte cell lines. Siglec-9 blocking assay was carried out and cytokine synthesis and CD107a degranulation was detected by flow cytometry. Compared to healthy donors, CHB patients had decreased Siglec-9+ NK cells, which reversely correlated with serum hepatitis B e antigen and HBV DNA titer. Siglec-9 expression on NK cells from patients achieving sustained virological response recovered to the level of normal donors. Neutralization of Siglec-9 restored cytokine synthesis and degranulation of NK cells from CHB patients. Immunofluorescence staining showed increased expression of Siglec-9 ligands in liver biopsy tissues from CHB patients and in hepatocyte cell lines infected with HBV or stimulated with inflammatory cytokines (IL-6 or TGF-β. These findings identify Siglec-9 as a negative regulator for NK cells contributing to HBV persistence and the intervention of Siglec-9 signaling might be of potentially translational significance.

  7. The expression of selenium-binding protein 1 is decreased in uterine leiomyoma

    Directory of Open Access Journals (Sweden)

    Quddus M Ruhul

    2010-12-01

    Full Text Available Abstract Background Selenium has been shown to inhibit cancer development and growth through the mediation of selenium-binding proteins. Decreased expression of selenium-binding protein 1 has been reported in cancers of the prostate, stomach, colon, and lungs. No information, however, is available concerning the roles of selenium-binding protein 1 in uterine leiomyoma. Methods Using Western Blot analysis and immunohistochemistry, we examined the expression of selenium-binding protein 1 in uterine leiomyoma and normal myometrium in 20 patients who had undergone hysterectomy for uterine leiomyoma. Results and Discussion The patient age ranged from 34 to 58 years with a mean of 44.3 years. Proliferative endometrium was seen in 8 patients, secretory endometrium in 7 patients, and atrophic endometrium in 5 patients. Two patients showed solitary leiomyoma, and eighteen patients revealed 2 to 5 tumors. Tumor size ranged from 1 to 15.5 cm with a mean of 4.3 cm. Both Western Blot analysis and immunohistochemistry showed a significant lower level of selenium-binding protein 1 in leiomyoma than in normal myometrium. Larger tumors had a tendency to show a lower level of selenium-binding protein 1 than smaller ones, but the difference did not reach a statistical significance. The expression of selenium-binding protein 1 was the same among patients with proliferative, secretory, and atrophic endometrium in either leiomyoma or normal myometrium. Also, we did not find a difference of selenium-binding protein 1 level between patients younger than 45 years and older patients in either leiomyoma or normal myometrium. Conclusions Decreased expression of selenium-binding protein 1 in uterine leiomyoma may indicate a role of the protein in tumorigenesis. Our findings may provide a basis for future studies concerning the molecular mechanisms of selenium-binding protein 1 in tumorigenesis as well as the possible use of selenium in prevention and treatment of uterine

  8. Decreased adrenoceptor stimulation in heart failure rats reduces NGF expression by cardiac parasympathetic neurons.

    Science.gov (United States)

    Hasan, Wohaib; Smith, Peter G

    2014-04-01

    Postganglionic cardiac parasympathetic and sympathetic nerves are physically proximate in atrial cardiac tissue allowing reciprocal inhibition of neurotransmitter release, depending on demands from central cardiovascular centers or reflex pathways. Parasympathetic cardiac ganglion (CG) neurons synthesize and release the sympathetic neurotrophin nerve growth factor (NGF), which may serve to maintain these close connections. In this study we investigated whether NGF synthesis by CG neurons is altered in heart failure, and whether norepinephrine from sympathetic neurons promotes NGF synthesis. NGF and proNGF immunoreactivity in CG neurons in heart failure rats following chronic coronary artery ligation was investigated. NGF immunoreactivity was decreased significantly in heart failure rats compared to sham-operated animals, whereas proNGF expression was unchanged. Changes in neurochemistry of CG neurons included attenuated expression of the cholinergic marker vesicular acetylcholine transporter, and increased expression of the neuropeptide vasoactive intestinal polypeptide. To further investigate norepinephrine's role in promoting NGF synthesis, we cultured CG neurons treated with adrenergic receptor (AR) agonists. An 82% increase in NGF mRNA levels was detected after 1h of isoproterenol (β-AR agonist) treatment, which increased an additional 22% at 24h. Antagonist treatment blocked isoproterenol-induced increases in NGF transcripts. In contrast, the α-AR agonist phenylephrine did not alter NGF mRNA expression. These results are consistent with β-AR mediated maintenance of NGF synthesis in CG neurons. In heart failure, a decrease in NGF synthesis by CG neurons may potentially contribute to reduced connections with adjacent sympathetic nerves. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. F4-related mutation and expression analysis of the aminopeptidase N gene in pigs.

    Science.gov (United States)

    Goetstouwers, T; Van Poucke, M; Nguyen, V U; Melkebeek, V; Coddens, A; Deforce, D; Cox, E; Peelman, L J

    2014-05-01

    Intestinal infections with F4 enterotoxigenic Escherichia coli (ETEC) are worldwide an important cause of diarrhea in neonatal and recently weaned pigs. Adherence of F4 ETEC to the small intestine by binding to specific receptors is mediated by F4 fimbriae. Porcine aminopeptidase N (ANPEP) was recently identified as a new F4 receptor. In this study, 7 coding mutations and 1 mutation in the 3' untranslated region (3' UTR)were identified in ANPEP by reverse transcriptase (RT-) PCR and sequencing using 3 F4 receptor-positive (F4R+) and 2 F4 receptor-negative (F4R-) pigs, which were F4 phenotyped based on the MUC4 TaqMan, oral immunization, and the in vitro villous adhesion assay. Three potential differential mutations (g.2615C > T, g.8214A > G, and g.16875C > G) identified by comparative analysis between the 3 F4R+ and 2 F4R- pigs were genotyped in 41 additional F4 phenotyped pigs. However, none of these 3 mutations could be associated with F4 ETEC susceptibility. In addition, the RT-PCR experiments did not reveal any differential expression or alternative splicing in the small intestine of F4R+ and F4R- pigs. In conclusion, we hypothesize that the difference in F4 binding to ANPEP is due to modifications in its carbohydrate moieties.

  10. ENU-mutagenesis mice with a non-synonymous mutation in Grin1 exhibit abnormal anxiety-like behaviors, impaired fear memory, and decreased acoustic startle response

    Science.gov (United States)

    2013-01-01

    Background The Grin1 (glutamate receptor, ionotropic, NMDA1) gene expresses a subunit of N-methyl-D-aspartate (NMDA) receptors that is considered to play an important role in excitatory neurotransmission, synaptic plasticity, and brain development. Grin1 is a candidate susceptibility gene for neuropsychiatric disorders, including schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD). In our previous study, we examined an N-ethyl-N-nitrosourea (ENU)-generated mutant mouse strain (Grin1Rgsc174/Grin1+) that has a non-synonymous mutation in Grin1. These mutant mice showed hyperactivity, increased novelty-seeking to objects, and abnormal social interactions. Therefore, Grin1Rgsc174/Grin1+ mice may serve as a potential animal model of neuropsychiatric disorders. However, other behavioral characteristics related to these disorders, such as working memory function and sensorimotor gating, have not been fully explored in these mutant mice. In this study, to further investigate the behavioral phenotypes of Grin1Rgsc174/Grin1+ mice, we subjected them to a comprehensive battery of behavioral tests. Results There was no significant difference in nociception between Grin1Rgsc174/Grin1+ and wild-type mice. The mutants did not display any abnormalities in the Porsolt forced swim and tail suspension tests. We confirmed the previous observations that the locomotor activity of these mutant mice increased in the open field and home cage activity tests. They displayed abnormal anxiety-like behaviors in the light/dark transition and the elevated plus maze tests. Both contextual and cued fear memory were severely deficient in the fear conditioning test. The mutant mice exhibited slightly impaired working memory in the eight-arm radial maze test. The startle amplitude was markedly decreased in Grin1Rgsc174/Grin1+ mice, whereas no significant differences between genotypes were detected in the prepulse inhibition (PPI) test. The mutant mice showed no obvious

  11. VEGF receptor expression decreases during lung development in congenital diaphragmatic hernia induced by nitrofen

    Directory of Open Access Journals (Sweden)

    L. Sbragia

    2014-02-01

    Full Text Available Changes in vascular endothelial growth factor (VEGF in pulmonary vessels have been described in congenital diaphragmatic hernia (CDH and may contribute to the development of pulmonary hypoplasia and hypertension; however, how the expression of VEGF receptors changes during fetal lung development in CDH is not understood. The aim of this study was to compare morphological evolution with expression of VEGF receptors, VEGFR1 (Flt-1 and VEGFR2 (Flk-1, in pseudoglandular, canalicular, and saccular stages of lung development in normal rat fetuses and in fetuses with CDH. Pregnant rats were divided into four groups (n=20 fetuses each of four different gestational days (GD 18.5, 19.5, 20.5, 21.5: external control (EC, exposed to olive oil (OO, exposed to 100 mg nitrofen, by gavage, without CDH (N-, and exposed to nitrofen with CDH (CDH on GD 9.5 (term=22 days. The morphological variables studied were: body weight (BW, total lung weight (TLW, left lung weight, TLW/BW ratio, total lung volume, and left lung volume. The histometric variables studied were: left lung parenchymal area density and left lung parenchymal volume. VEGFR1 and VEGFR2 expression were determined by Western blotting. The data were analyzed using analysis of variance with the Tukey-Kramer post hoc test. CDH frequency was 37% (80/216. All the morphological and histometric variables were reduced in the N- and CDH groups compared with the controls, and reductions were more pronounced in the CDH group (P<0.05 and more evident on GD 20.5 and GD 21.5. Similar results were observed for VEGFR1 and VEGFR2 expression. We conclude that N- and CDH fetuses showed primary pulmonary hypoplasia, with a decrease in VEGFR1 and VEGFR2 expression.

  12. VEGF receptor expression decreases during lung development in congenital diaphragmatic hernia induced by nitrofen

    Energy Technology Data Exchange (ETDEWEB)

    Sbragia, L. [Divisão de Cirurgia Pediátrica, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil, Divisão de Cirurgia Pediátrica, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Nassr, A.C.C. [Departamento de Hidrobiologia do Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brasil, Departamento de Hidrobiologia do Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Gonçalves, F.L.L. [Divisão de Cirurgia Pediátrica, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil, Divisão de Cirurgia Pediátrica, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Schmidt, A.F. [Pediatrics House Office, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH, USA, Pediatrics House Office, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); Zuliani, C.C. [Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil, Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP (Brazil); Garcia, P.V. [Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, SP, Brasil, Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, SP (Brazil); Gallindo, R.M. [Divisão de Cirurgia Pediátrica, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil, Divisão de Cirurgia Pediátrica, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Pereira, L.A.V. [Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, SP, Brasil, Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, SP (Brazil)

    2014-02-17

    Changes in vascular endothelial growth factor (VEGF) in pulmonary vessels have been described in congenital diaphragmatic hernia (CDH) and may contribute to the development of pulmonary hypoplasia and hypertension; however, how the expression of VEGF receptors changes during fetal lung development in CDH is not understood. The aim of this study was to compare morphological evolution with expression of VEGF receptors, VEGFR1 (Flt-1) and VEGFR2 (Flk-1), in pseudoglandular, canalicular, and saccular stages of lung development in normal rat fetuses and in fetuses with CDH. Pregnant rats were divided into four groups (n=20 fetuses each) of four different gestational days (GD) 18.5, 19.5, 20.5, 21.5: external control (EC), exposed to olive oil (OO), exposed to 100 mg nitrofen, by gavage, without CDH (N-), and exposed to nitrofen with CDH (CDH) on GD 9.5 (term=22 days). The morphological variables studied were: body weight (BW), total lung weight (TLW), left lung weight, TLW/BW ratio, total lung volume, and left lung volume. The histometric variables studied were: left lung parenchymal area density and left lung parenchymal volume. VEGFR1 and VEGFR2 expression were determined by Western blotting. The data were analyzed using analysis of variance with the Tukey-Kramer post hoc test. CDH frequency was 37% (80/216). All the morphological and histometric variables were reduced in the N- and CDH groups compared with the controls, and reductions were more pronounced in the CDH group (P<0.05) and more evident on GD 20.5 and GD 21.5. Similar results were observed for VEGFR1 and VEGFR2 expression. We conclude that N- and CDH fetuses showed primary pulmonary hypoplasia, with a decrease in VEGFR1 and VEGFR2 expression.

  13. VEGF receptor expression decreases during lung development in congenital diaphragmatic hernia induced by nitrofen

    International Nuclear Information System (INIS)

    Sbragia, L.; Nassr, A.C.C.; Gonçalves, F.L.L.; Schmidt, A.F.; Zuliani, C.C.; Garcia, P.V.; Gallindo, R.M.; Pereira, L.A.V.

    2014-01-01

    Changes in vascular endothelial growth factor (VEGF) in pulmonary vessels have been described in congenital diaphragmatic hernia (CDH) and may contribute to the development of pulmonary hypoplasia and hypertension; however, how the expression of VEGF receptors changes during fetal lung development in CDH is not understood. The aim of this study was to compare morphological evolution with expression of VEGF receptors, VEGFR1 (Flt-1) and VEGFR2 (Flk-1), in pseudoglandular, canalicular, and saccular stages of lung development in normal rat fetuses and in fetuses with CDH. Pregnant rats were divided into four groups (n=20 fetuses each) of four different gestational days (GD) 18.5, 19.5, 20.5, 21.5: external control (EC), exposed to olive oil (OO), exposed to 100 mg nitrofen, by gavage, without CDH (N-), and exposed to nitrofen with CDH (CDH) on GD 9.5 (term=22 days). The morphological variables studied were: body weight (BW), total lung weight (TLW), left lung weight, TLW/BW ratio, total lung volume, and left lung volume. The histometric variables studied were: left lung parenchymal area density and left lung parenchymal volume. VEGFR1 and VEGFR2 expression were determined by Western blotting. The data were analyzed using analysis of variance with the Tukey-Kramer post hoc test. CDH frequency was 37% (80/216). All the morphological and histometric variables were reduced in the N- and CDH groups compared with the controls, and reductions were more pronounced in the CDH group (P<0.05) and more evident on GD 20.5 and GD 21.5. Similar results were observed for VEGFR1 and VEGFR2 expression. We conclude that N- and CDH fetuses showed primary pulmonary hypoplasia, with a decrease in VEGFR1 and VEGFR2 expression

  14. The influence of continuous γ-irradiation at decreasing dose-rate on the survival rote and induction of gene mutations in cultured Chinese hamster cells

    International Nuclear Information System (INIS)

    Feoktistova, T.P.; Elisova, E.V.; Stavrakova, N.M.

    1991-01-01

    Continuous γ-irradiation at decreasing dose-rate was shown to be less effective than acute exposure with regard to the lethal effect and frequency of mutations of resistance to 6-thioguanine in cultured Chinese hamster cells. The cell population subjected to continuons irradiation was d more radioresistant than the intact one. Lethal and genetic effects of continuous irradiation at decreasing dose-rate were mainly determined by the contribution of the radiation dose received during the first 24 h of exposure

  15. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression

    International Nuclear Information System (INIS)

    Pinton, Philippe; Nougayrede, Jean-Philippe; Del Rio, Juan-Carlos; Moreno, Carolina; Marin, Daniela E.; Ferrier, Laurent; Bracarense, Ana-Paula; Kolf-Clauw, Martine; Oswald, Isabelle P.

    2009-01-01

    'The gastrointestinal tract represents the first barrier against food contaminants as well as the first target for these toxicants. Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereals and causes various toxicological effects. Through consumption of contaminated cereals and cereal products, human and pigs are exposed to this mycotoxin. Using in vitro, ex vivo and in vivo approaches, we investigated the effects of DON on the intestinal epithelium. We demonstrated that, in intestinal epithelial cell lines from porcine (IPEC-1) or human (Caco-2) origin, DON decreases trans-epithelial electrical resistance (TEER) and increases in a time and dose-dependent manner the paracellular permeability to 4 kDa dextran and to pathogenic Escherichia coli across intestinal cell monolayers. In pig explants treated with DON, we also observed an increased permeability of intestinal tissue. These alterations of barrier function were associated with a specific reduction in the expression of claudins, which was also seen in vivo in the jejunum of piglets exposed to DON-contaminated feed. In conclusion, DON alters claudin expression and decreases the barrier function of the intestinal epithelium. Considering that high levels of DON may be present in food or feed, consumption of DON-contaminated food/feed may induce intestinal damage and has consequences for human and animal health.

  16. Bone Morphogenetic Protein (BMP-7 expression is decreased in human hypertensive nephrosclerosis

    Directory of Open Access Journals (Sweden)

    Cohen Clemens D

    2010-11-01

    Full Text Available Abstract Background Bone Morphogenetic Protein (BMP-7 is protective in different animal models of acute and chronic kidney disease. Its role in human kidneys, and in particular hypertensive nephrosclerosis, has thus far not been described. Methods BMP-7 mRNA was quantified using real-time PCR and localised by immunostaining in tissue samples from normal and nephrosclerotic human kidneys. The impact of angiotensin (AT-II and the AT-II receptor antagonist telmisartan on BMP-7 mRNA levels and phosphorylated Smad 1/5/8 (pSmad 1/5/8 expression was quantified in proximal tubular cells (HK-2. Functional characteristics of BMP-7 were evaluated by testing its influence on TGF-β induced epithelial-to-mesenchymal transition (EMT, expression of TGF-β receptor type I (TGF-βRI and phosphorylated Smad 2 (pSmad 2 as well as on TNF-α induced apoptosis of proximal tubular cells. Results BMP-7 was predominantly found in the epithelia of the distal tubule and the collecting duct and was less abundant in proximal tubular cells. In sclerotic kidneys, BMP-7 was significantly decreased as demonstrated by real-time PCR and immunostaining. AT-II stimulation in HK-2 cells led to a significant decrease of BMP-7 and pSmad 1/5/8, which was partially ameliorated upon co-incubation with telmisartan. Only high concentrations of BMP-7 (100 ng/ml were able to reverse TNF-α-induced apoptosis and TGF-β-induced EMT in human proximal tubule cells possibly due to a decreased expression of TGF-βRI. In addition, BMP-7 was able to reverse TGF-β-induced phosphorylation of Smad 2. Conclusions The findings suggest a protective role for BMP-7 by counteracting the TGF-β and TNF-α-induced negative effects. The reduced expression of BMP-7 in patients with hypertensive nephrosclerosis may imply loss of protection and regenerative potential necessary to counter the disease.

  17. Hyperglycemia decreases preoxiredoxin-2 expression in a middle cerebral artery occlusion model.

    Science.gov (United States)

    Koh, Phil-Ok

    2017-06-01

    Diabetes is a major risk factor for stroke and is also associated with worsened outcomes following a stroke. Peroxiredoxin-2 exerts potent neuroprotective effects against oxidative stress. In the present study, we identified altered peroxiredoxin-2 expression in an ischemic stroke model under hyperglycemic conditions. Adult male rats were administrated streptozotocin (40 mg/kg) via intraperitoneal injection to induce diabetes. Middle cerebral artery occlusion (MCAO) was induced surgically 4 weeks after streptozotocin treatment and cerebral cortex tissues were isolated 24 hours after MCAO. Peroxiredoxin-2 expression was evaluated in the cerebral cortex of MCAO-operated animals using a proteomics approach, and was found to be decreased. In addition, the reduction in peroxiredoxin-2 levels was more severe in cerebral ischemia with diabetes compared to animals without diabetes. Reverse-transcriptase PCR and Western blot analyses confirmed the significantly reduced peroxiredoxin-2 expression in MCAO-operated animals under hyperglycemic conditions. It is an accepted fact that peroxiredoxin-2 has antioxidative activity against ischemic injury. Thus, the findings of this study suggest that a more severe reduction in peroxiredoxin-2 under hyperglycemic conditions leads to worsened brain damage during cerebral ischemia with diabetes.

  18. Mutations in 23S rRNA gene associated with decreased susceptibility to tiamulin and valnemulin in Mycoplasma gallisepticum.

    Science.gov (United States)

    Li, Bei-Bei; Shen, Jian-Zhong; Cao, Xing-Yuan; Wang, Yang; Dai, Lei; Huang, Si-Yang; Wu, Cong-Ming

    2010-07-01

    Mycoplasma gallisepticum is a major etiological agent of chronic respiratory disease (CRD) in chickens and sinusitis in turkeys. The pleuromutilin antibiotics tiamulin and valnemulin are currently used in the treatment of M. gallisepticum infection. We studied the in vitro development of pleuromutilin resistance in M. gallisepticum and investigated the molecular mechanisms involved in this process. Pleuromutilin-resistant mutants were selected by serial passages of M. gallisepticum strains PG31 and S6 in broth medium containing subinhibitory concentrations of tiamulin or valnemulin. A portion of the gene encoding 23S rRNA gene (domain V) and the gene encoding ribosome protein L3 were amplified and sequenced. No mutation could be detected in ribosome protein L3. Mutations were found at nucleotide positions 2058, 2059, 2061, 2447 and 2503 of 23S rRNA gene (Escherichia coli numbering). Although a single mutation could cause elevation of tiamulin and valnemulin MICs, combinations of two or three mutations were necessary to produce high-level resistance. All the mutants were cross-resistant to lincomycin, chloramphenicol and florfenicol. Mutants with the A2058G or the A2059G mutation exhibited cross-resistance to macrolide antibiotics erythromycin, tilmicosin and tylosin.

  19. Bilirubin Decreases Macrophage Cholesterol Efflux and ATP-Binding Cassette Transporter A1 Protein Expression.

    Science.gov (United States)

    Wang, Dongdong; Tosevska, Anela; Heiß, Elke H; Ladurner, Angela; Mölzer, Christine; Wallner, Marlies; Bulmer, Andrew; Wagner, Karl-Heinz; Dirsch, Verena M; Atanasov, Atanas G

    2017-04-28

    Mild but chronically elevated circulating unconjugated bilirubin is associated with reduced total and low-density lipoprotein cholesterol concentration, which is associated with reduced cardiovascular disease risk. We aimed to investigate whether unconjugated bilirubin influences macrophage cholesterol efflux, as a potential mechanism for the altered circulating lipoprotein concentrations observed in hyperbilirubinemic individuals. Cholesterol efflux from THP-1 macrophages was assessed using plasma obtained from normo- and hyperbilirubinemic (Gilbert syndrome) humans (n=60 per group) or (heterozygote/homozygote Gunn) rats (n=20 per group) as an acceptor. Hyperbilirubinemic plasma from patients with Gilbert syndrome and Gunn rats induced significantly reduced cholesterol efflux compared with normobilirubinemic plasma. Unconjugated bilirubin (3-17.1 μmol/L) exogenously added to plasma- or apolipoprotein A1-supplemented media also decreased macrophage cholesterol efflux in a concentration- and time-dependent manner. We also showed reduced protein expression of the ATP-binding cassette transporter A1 (ABCA1), a transmembrane cholesterol transporter involved in apolipoprotein A1-mediated cholesterol efflux, in THP-1 macrophages treated with unconjugated bilirubin and in peripheral blood mononuclear cells obtained from hyperbilirubinemic individuals. Furthermore, we demonstrated that bilirubin accelerates the degradation rate of the ABCA1 protein in THP-1 macrophages. Cholesterol efflux from THP-1 macrophages is decreased in the presence of plasma obtained from humans and rats with mild hyperbilirubinemia. A direct effect of unconjugated bilirubin on cholesterol efflux was demonstrated and is associated with decreased ABCA1 protein expression. These data improve our knowledge concerning bilirubin's impact on cholesterol transport and represent an important advancement in our understanding of bilirubin's role in cardiovascular disease. © 2017 The Authors. Published on

  20. Novel Sonic Hedgehog Mutation in a Couple with Variable Expression of Holoprosencephaly

    Directory of Open Access Journals (Sweden)

    M. Aguinaga

    2011-01-01

    Full Text Available Holoprosencephaly (HPE is the most common developmental defect of the forebrain and midface in humans. sporadic and inherited mutations in the human sonic hedgehog (SHH gene cause 37% of familial HPE. A couple was referred to our unit with a family history of two spontaneous first trimester miscarriages and a daughter with HPE who presented early neonatal death. The father had a repaired median cleft lip, absence of central incisors, facial medial hypoplasia, and cleft palate. Intelligence and a brain CT scan were normal. Direct paternal sequencing analysis showed a novel nonsense mutation (W127X. Facial characteristics are considered as HPE microforms, and the pedigree suggested autosomal dominant inheritance with a variable expression of the phenotype. This study reinforces the importance of an exhaustive evaluation of couples with a history of miscarriages and neonatal deaths with structural defects.

  1. Silencing the expression of connexin 43 decreases inflammation and joint destruction in experimental arthritis.

    Science.gov (United States)

    Tsuchida, Shinji; Arai, Yuji; Kishida, Tsunao; Takahashi, Kenji A; Honjo, Kuniaki; Terauchi, Ryu; Inoue, Hiroaki; Oda, Ryo; Mazda, Osam; Kubo, Toshikazu

    2013-04-01

    The objective of the present study was to determine whether the expression of connexin 43 (Cx43) effected on inflammatory conditions in rat fibroblast-like synoviocytes (FLS) and on rat model of rheumatoid arthritis (RA). The expression of Cx43 in rat FLS stimulated with lipopolysaccharide (LPS) was confirmed by real-time reverse transcriptase polymerase chain reaction (RT-PCR). The effects of small-interfering RNA targeting Cx43 (siCx43) on pro-inflammatory cytokines and chemokine were assessed by real-time RT-PCR and enzyme-linked immunosorbent assay (ELISA). The therapeutic and side effects of siCx43 in a rat model of collagen-induced arthritis (CIA) were examined by in vivo electroporation method. LPS markedly enhanced Cx43 gene expression in rat FLS, with transfection of siCx43 suppressing the over-expression of pro-inflammatory cytokines and the chemokine. Treatment of CIA rats with siCx43 significantly ameliorated paw swelling, and significantly reduced histological arthritis scores and radiographic scores. In histological appearance of rat ankle joints, siCx43 treatment significantly decreased the number of tartrate-resistant acid phosphatase (TRAP)-positive (osteoclast-like) cells. These findings indicated that siCx43 had anti-inflammatory effects in rat FLS and efficiently inhibited the development of CIA. Cx43 may play an important role in the pathophysiology of RA, and may be a potential target molecule for novel RA therapies. Copyright © 2012 Orthopaedic Research Society.

  2. Mapping the fitness landscape of gene expression uncovers the cause of antagonism and sign epistasis between adaptive mutations.

    Directory of Open Access Journals (Sweden)

    Hsin-Hung Chou

    2014-02-01

    Full Text Available How do adapting populations navigate the tensions between the costs of gene expression and the benefits of gene products to optimize the levels of many genes at once? Here we combined independently-arising beneficial mutations that altered enzyme levels in the central metabolism of Methylobacterium extorquens to uncover the fitness landscape defined by gene expression levels. We found strong antagonism and sign epistasis between these beneficial mutations. Mutations with the largest individual benefit interacted the most antagonistically with other mutations, a trend we also uncovered through analyses of datasets from other model systems. However, these beneficial mutations interacted multiplicatively (i.e., no epistasis at the level of enzyme expression. By generating a model that predicts fitness from enzyme levels we could explain the observed sign epistasis as a result of overshooting the optimum defined by a balance between enzyme catalysis benefits and fitness costs. Knowledge of the phenotypic landscape also illuminated that, although the fitness peak was phenotypically far from the ancestral state, it was not genetically distant. Single beneficial mutations jumped straight toward the global optimum rather than being constrained to change the expression phenotypes in the correlated fashion expected by the genetic architecture. Given that adaptation in nature often results from optimizing gene expression, these conclusions can be widely applicable to other organisms and selective conditions. Poor interactions between individually beneficial alleles affecting gene expression may thus compromise the benefit of sex during adaptation and promote genetic differentiation.

  3. Aluminium induced oxidative stress results in decreased mitochondrial biogenesis via modulation of PGC-1α expression

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Deep Raj; Sunkaria, Aditya; Wani, Willayat Yousuf; Sharma, Reeta Kumari; Kandimalla, Ramesh J.L. [Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012 (India); Bal, Amanjit [Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh (India); Gill, Kiran Dip, E-mail: kdgill2002@yahoo.co.in [Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012 (India)

    2013-12-01

    The present investigation was carried out to elucidate a possible molecular mechanism related to the effects of aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of Peroxisome proliferator activated receptor gamma co-activator 1α (PGC-1α) and its downstream targets i.e. Nuclear respiratory factor-1(NRF-1), Nuclear respiratory factor-2(NRF-2) and Mitochondrial transcription factor A (Tfam) in mitochondrial biogenesis. Aluminium lactate (10 mg/kg b.wt./day) was administered intragastrically to rats for 12 weeks. After 12 weeks of exposure, we found an increase in ROS levels, mitochondrial DNA oxidation and decrease in citrate synthase activity in the Hippocampus (HC) and Corpus striatum (CS) regions of rat brain. On the other hand, there was a decrease in the mRNA levels of the mitochondrial encoded subunits–NADH dehydrogenase (ND) subunits i.e. ND1, ND2, ND3, Cytochrome b (Cytb), Cytochrome oxidase (COX) subunits i.e. COX1, COX3, ATP synthase (ATPase) subunit 6 along with reduced expression of nuclear encoded subunits COX4, COX5A, COX5B of Electron transport chain (ETC). Besides, a decrease in mitochondrial DNA copy number and mitochondrial content in both regions of rat brain was observed. The PGC-1α was down-regulated in aluminium treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α in aluminium treated rats. Electron microscopy results revealed a significant increase in the mitochondrial swelling, loss of cristae, chromatin condensation and decreases in mitochondrial number in case of aluminium treated rats as compared to control. So, PGC-1α seems to be a potent target for aluminium neurotoxicity, which makes it an almost ideal target to control or limit the damage that has been associated with the defective mitochondrial function seen in neurodegenerative diseases. - Highlights: • Aluminium decreases the mRNA levels of mitochondrial and nuclear encoded

  4. Identifying EGFR-Expressed Cells and Detecting EGFR Multi-Mutations at Single-Cell Level by Microfluidic Chip

    Science.gov (United States)

    Li, Ren; Zhou, Mingxing; Li, Jine; Wang, Zihua; Zhang, Weikai; Yue, Chunyan; Ma, Yan; Peng, Hailin; Wei, Zewen; Hu, Zhiyuan

    2018-03-01

    EGFR mutations companion diagnostics have been proved to be crucial for the efficacy of tyrosine kinase inhibitor targeted cancer therapies. To uncover multiple mutations occurred in minority of EGFR-mutated cells, which may be covered by the noises from majority of un-mutated cells, is currently becoming an urgent clinical requirement. Here we present the validation of a microfluidic-chip-based method for detecting EGFR multi-mutations at single-cell level. By trapping and immunofluorescently imaging single cells in specifically designed silicon microwells, the EGFR-expressed cells were easily identified. By in situ lysing single cells, the cell lysates of EGFR-expressed cells were retrieved without cross-contamination. Benefited from excluding the noise from cells without EGFR expression, the simple and cost-effective Sanger's sequencing, but not the expensive deep sequencing of the whole cell population, was used to discover multi-mutations. We verified the new method with precisely discovering three most important EGFR drug-related mutations from a sample in which EGFR-mutated cells only account for a small percentage of whole cell population. The microfluidic chip is capable of discovering not only the existence of specific EGFR multi-mutations, but also other valuable single-cell-level information: on which specific cells the mutations occurred, or whether different mutations coexist on the same cells. This microfluidic chip constitutes a promising method to promote simple and cost-effective Sanger's sequencing to be a routine test before performing targeted cancer therapy.[Figure not available: see fulltext.

  5. Relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation in chronic lymphocytic leukemia.

    Science.gov (United States)

    Lin, Ke; Sherrington, Paul D; Dennis, Michael; Matrai, Zoltan; Cawley, John C; Pettitt, Andrew R

    2002-08-15

    Established adverse prognostic factors in chronic lymphocytic leukemia (CLL) include CD38 expression, relative lack of IgV(H) mutation, and defects of the TP53 gene. However, disruption of the p53 pathway can occur through mechanisms other than TP53 mutation, and we have recently developed a simple screening test that detects p53 dysfunction due to mutation of the genes encoding either p53 or ATM, a kinase that regulates p53. The present study was conducted to examine the predictive value of this test and to establish the relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation. CLL cells from 71 patients were examined for IgV(H) mutation, CD38 expression, and p53 dysfunction (detected as an impaired p53/p21 response to ionizing radiation). Survival data obtained from 69 patients were analyzed according to each of these parameters. Relative lack of IgV(H) mutation (less than 5%; n = 45), CD38 positivity (antigen expressed on more than 20% of malignant cells; n = 19), and p53 dysfunction (n = 19) were independently confirmed as adverse prognostic factors. Intriguingly, all p53-dysfunctional patients and all but one of the CD38(+) patients had less [corrected] than 5% IgV(H) mutation. Moreover, patients with p53 dysfunction and/or CD38 positivity (n = 31) accounted for the short survival of the less mutated group. These findings indicate that the poor outcome associated with having less than 5% IgV(H) mutation may be due to the overrepresentation of high-risk patients with p53 dysfunction and/or CD38 positivity within this group, and that CD38(-) patients with functionally intact p53 may have a prolonged survival regardless of the extent of IgV(H) mutation.

  6. Aluminium induced oxidative stress results in decreased mitochondrial biogenesis via modulation of PGC-1α expression.

    Science.gov (United States)

    Sharma, Deep Raj; Sunkaria, Aditya; Wani, Willayat Yousuf; Sharma, Reeta Kumari; Kandimalla, Ramesh J L; Bal, Amanjit; Gill, Kiran Dip

    2013-12-01

    The present investigation was carried out to elucidate a possible molecular mechanism related to the effects of aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of Peroxisome proliferator activated receptor gamma co-activator 1α (PGC-1α) and its downstream targets i.e. Nuclear respiratory factor-1(NRF-1), Nuclear respiratory factor-2(NRF-2) and Mitochondrial transcription factor A (Tfam) in mitochondrial biogenesis. Aluminium lactate (10mg/kgb.wt./day) was administered intragastrically to rats for 12 weeks. After 12 weeks of exposure, we found an increase in ROS levels, mitochondrial DNA oxidation and decrease in citrate synthase activity in the Hippocampus (HC) and Corpus striatum (CS) regions of rat brain. On the other hand, there was a decrease in the mRNA levels of the mitochondrial encoded subunits-NADH dehydrogenase (ND) subunits i.e. ND1, ND2, ND3, Cytochrome b (Cytb), Cytochrome oxidase (COX) subunits i.e. COX1, COX3, ATP synthase (ATPase) subunit 6 along with reduced expression of nuclear encoded subunits COX4, COX5A, COX5B of Electron transport chain (ETC). Besides, a decrease in mitochondrial DNA copy number and mitochondrial content in both regions of rat brain was observed. The PGC-1α was down-regulated in aluminium treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α in aluminium treated rats. Electron microscopy results revealed a significant increase in the mitochondrial swelling, loss of cristae, chromatin condensation and decreases in mitochondrial number in case of aluminium treated rats as compared to control. So, PGC-1α seems to be a potent target for aluminium neurotoxicity, which makes it an almost ideal target to control or limit the damage that has been associated with the defective mitochondrial function seen in neurodegenerative diseases. © 2013.

  7. New Mutations of Penicillin-Binding Proteins in Streptococcus agalactiae Isolates from Cattle with Decreased Susceptibility to Penicillin.

    Science.gov (United States)

    Hu, Yun; Kan, Yunchao; Zhang, Zhengtian; Lu, Zhanning; Li, Yanqiu; Leng, Chaoliang; Ji, Jun; Song, Shiyang; Shi, Hongfei

    2018-02-23

    Streptococcus agalactiae is a causal agent of bovine mastitis and is treated by β-lactam antibiotics (BLAs). Compared to penicillin-resistant S. agalactiae from humans, resistant strains in bovine are rarely reported. In this study, we aimed to investigate BLA resistance and mutations in penicillin-binding proteins (PBPs) of S. agalactiae in central and northeast China. The minimum inhibitory concentrations (MICs) of 129 penicillin-resistant S. agalactiae isolates from cows with mastitis were determined, and the related PBP genes were detected and sequenced. All strains were unsusceptible to penicillin G and mostly resistant to ampicillin, cefalexin, and ceftiofur sodium. One hundred twenty-nine strains were divided into 4 clonal groups and 8 sequence types by multilocus sequence typing analysis. We found a set of new substitutions in PBP1B, PBP2B, and PBP2X from most strains isolated from three provinces. The strains with high PBP mutations showed a broader unsusceptible spectrum and higher MICs than those with few or single mutation. Our research indicates unpredicted mutations in the PBP genes of S. agalactiae isolated from cows with mastitis treated by BLAs. This screening is the first of S. agalactiae from cattle.

  8. UNBS5162, a Novel Naphthalimide That Decreases CXCL Chemokine Expression in Experimental Prostate Cancers

    Directory of Open Access Journals (Sweden)

    Tatjana Mijatovic

    2008-06-01

    Full Text Available Several naphthalimides have been evaluated clinically as potential anticancer agents. UNBS3157, a naphthalimide that belongs to the same class as amonafide, was designed to avoid the specific activating metabolism that induces amonafide’s hematotoxicity. The current study shows that UNBS3157 rapidly and irreversibly hydrolyzes to UNBS5162 without generating amonafide. In vivo UNBS5162 after repeat administration significantly increased survival in orthotopic human prostate cancer models. Results obtained by the National Cancer Institute (NCI using UNBS3157 and UNBS5162 against the NCI 60 cell line panel did not show a correlation with any other compound present in the NCI database, including amonafide, thereby suggesting a unique mechanism of action for these two novel naphthalimides. Affymetrix genome-wide microarray analysis and enzyme-linked immunosorbent assay revealed that in vitro exposure of PC-3 cells to UNBS5162 (1 μM for 5 successive days dramatically decreased the expression of the proangiogenic CXCL chemokines. Histopathology additionally revealed antiangiogenic properties in vivo for UNBS5162 in the orthotopic PC-3 model. In conclusion, the present study reveals UNBS5162 to be a pan-antagonist of CXCL chemokine expression, with the compound displaying antitumor effects in experimental models of human refractory prostate cancer when administered alone and found to enhance the activity of taxol when coadministered with the taxoid.

  9. Intracerebroventricular C75 decreases meal frequency and reduces AgRP gene expression in rats.

    Science.gov (United States)

    Aja, Susan; Bi, Sheng; Knipp, Susan B; McFadden, Jill M; Ronnett, Gabriele V; Kuhajda, Francis P; Moran, Timothy H

    2006-07-01

    3-Carboxy-4-alkyl-2-methylenebutyrolactone (C75), an inhibitor of fatty acid synthase and stimulator of carnitine palmitoyltransferase-1, reduces food intake and body weight in rodents when given systemically or centrally. Intracellular molecular mechanisms involving changes in cellular energy status are proposed to initiate the feeding and body weight reductions. However, effectors that lie downstream of these initial steps are not yet fully identified. Present experiments characterize the time courses of hypophagia and weight loss after single injections of C75 into the lateral cerebroventicle in rats and go on to identify specific meal pattern changes and coinciding alterations in gene expression for feeding-related hypothalamic neuropeptides. C75 reduced chow intake and body weight dose dependently. Although the principal effects occurred on the first day, weight losses relative to vehicle control were maintained over multiple days. C75 did not affect generalized locomotor activity. C75 began to reduce feeding after a 6-h delay. The hypophagia was due primarily to decreased meal number during 6-12 h without a significant effect on meal size, suggesting that central C75 reduced the drive to initiate meals. C75 prevented the anticipated hypophagia-induced increases in mRNA for AgRP in the arcuate nucleus at 22 h and at 6 h when C75 begins to suppress feeding. Overall, the data suggest that gene expression changes leading to altered melanocortin signaling are important for the hypophagic response to intracerebroventricular C75.

  10. Mutations to Less-Preferred Synonymous Codons in a Highly Expressed Gene of Escherichia coli: Fitness and Epistatic Interactions.

    Directory of Open Access Journals (Sweden)

    David J Hauber

    Full Text Available Codon-tRNA coevolution to maximize protein production has been, until recently, the dominant hypothesis to explain codon-usage bias in highly expressed bacterial genes. Two predictions of this hypothesis are 1 selection is weak; and 2 similar silent replacements at different codons should have similar fitness consequence. We used an allele-replacement strategy to change five specific 3rd-codon-position (silent sites in the highly expressed Escherichia coli ribosomal protein gene rplQ from the wild type to a less-preferred alternative. We introduced the five mutations within a 10-codon region. Four of the silent sites were chosen to test the second prediction, with a CTG to CTA mutation being introduced at two closely linked leucine codons and an AAA to AAG mutation being introduced at two closely linked lysine codons. We also introduced a fifth silent mutation, a GTG to GTA mutation at a valine codon in the same genic region. We measured the fitness effect of the individual mutations by competing each single-mutant strain against the parental wild-type strain, using a disrupted form of the araA gene as a selectively neutral phenotypic marker to distinguish between strains in direct competition experiments. Three of the silent mutations had a fitness effect of |s| > 0.02, which is contradictory to the prediction that selection will be weak. The two leucine mutations had significantly different fitness effects, as did the two lysine mutations, contradictory to the prediction that similar mutations at different codons should have similar fitness effects. We also constructed a strain carrying all five silent mutations in combination. Its fitness effect was greater than that predicted from the individual fitness values, suggesting that negative synergistic epistasis acts on the combination allele.

  11. The effect of dys-1 mutation on miRNA expression profile in Caenorhabditis elegans during Shenzhou-8 mission

    Science.gov (United States)

    Xu, Dan; Sun, Yeqing; Gao, Ying; Xing, Yanfang

    microRNAs (miRNAs) is reported to be sensitive to radiation exposure and altered gravity, involved in a variety of biological processes through negative regulation of gene expression. Dystrophin-like dys-1 gene is expressed and required in muscle tissue, which plays a vital role in mechanical transduction when gravity varies. In the present study, we investigated the effect of dys-1 mutation on miRNA expression profile in Caenorhabditis elegans (C. elegans) under space radiation associated with microgravity (R+M) and radiation alone (R) environment during Shenzhou-8 mission. We performed miRNA microarray analysis in dys-1 mutant and wide-type (WT) of dauer larvae and found that 27 miRNAs changed in abundance after spaceflight. Compared with WT, there was different miRNA expression pattern in different treatments in dys-1 mutant. Cel-miR-796 and miR-124 were reversely expressed under R+M and R environment in WT and dys-1 mutant, respectively, indicating they might be affected by microgravity. Mutation of dys-1 remarkably reduced the number of altered miRNAs under space environment, resulting in the decrease of genes in biological categories of “body morphogenesis”, “behavior”, “cell adhesion” and so on. Particularly, we found that those genes controlling regulation of locomotion in WT were lost in dys-1 mutant, while genes in positive regulation of developmental process only existed in dys-1 mutant. miR-796 was predicted to target genes ace-1 and dyc-1 that are functionally linked to dys-1. Integration analysis of miRNA and mRNA expression profile revealed that miR-56 and miR-124 were involved in behavior and locomotion by regulating different target genes under space environment, among which nep-11, deb-1, C07H4.1 and F11H8.2 might be associated with neuromuscular system. Our findings suggest that dys-1 could cause alteration of miRNAs and target genes, involved in regulating the response of C. elegans to space microgravity in neuromuscular system. This

  12. Stepwise decrease in daptomycin susceptibility in clinical Staphylococcus aureus isolates associated with an initial mutation in rpoB and a compensatory inactivation of the clpX gene

    DEFF Research Database (Denmark)

    Bæk, Kristoffer Torbjørn; Thøgersen, Louise; Mogensen, René G.

    2015-01-01

    , reduced expression of virulence traits, induced expression of the stress-associated transcriptional regulator, Spx, and slow growth. A subsequent acquired loss-of-function mutation in clpX partly alleviated the growth defect conferred by the rpoB mutation without changing antibiotic susceptibility...

  13. Decreased VEGF-A and sustained PEDF expression in a human retinal pigment epithelium cell line cultured under hypothermia

    Directory of Open Access Journals (Sweden)

    Masayuki Takeyama

    2015-01-01

    Full Text Available BACKGROUND: Previous reports have described a decrease in retinal temperature and clinical improvement of wet age-related macular degeneration (AMD after vitrectomy. We hypothesized that the retinal temperature decrease after vitrectomy plays a part in the suppression of wet AMD development. To test this hypothesis, we evaluated the temperature dependence of the expression of vascular endothelial growth factor-A (VEGF-A and in vitro angiogen-esis in retinal pigment epithelium (RPE. RESULTS: We cultured ARPE-19 cells at 37, 35, 33 and 31°C and measured the expression of VEGF-A, VEGF-A splicing variants, and pigment epithelium-derived factor (PEDF. We performed an in vitro tube formation assay. The dehydrogenase activity was also evaluated at each temperature. Expression of VEGF-A significantly decreased with decreased temperature while PEDF expression did not. VEGF165 expression and in vitro angiogenesis also were temperature dependent. The dehydrogenase activity significantly decreased as the culture temperature decreased. CONCLUSIONS: RPE cultured under hypothermia that decreased cellular metabolism also had decreased VEGF-A and sustained PEDF expression, creating an anti-angiogenic environment. This mechanism may be associated with a beneficial effect after vitrectomy in patients with wet AMD.

  14. Impact of KRAS, BRAF, PIK3CA mutations, PTEN, AREG, EREG expression and skin rash in ≥ 2 line cetuximab-based therapy of colorectal cancer patients.

    Directory of Open Access Journals (Sweden)

    Zacharenia Saridaki

    2011-01-01

    Full Text Available To investigate the predictive significance of KRAS, BRAF, PIK3CA mutational status, AREG- EREG mRNA expression, PTEN protein expression and skin rash in metastatic colorectal cancer (mCRC patients treated with cetuximab containing salvage chemotherapy.Primary tumors from 112 mCRC patients were analyzed. The worst skin toxicity during treatment was recorded.KRAS, BRAF and PIK3CA mutations were present in 37 (33%, 8 (7.2% and 11 (9.8% cases, respectively, PTEN was lost in 21 (19.8% cases, AREG and EREG were overexpressed in 48 (45% and 51 (49% cases. In the whole study population, time to tumor progression (TTP and overall survival (OS was significantly lower in patients with KRAS (p = 0.001 and p = 0.026, respectively or BRAF (p = 0.001 and p<0.0001, respectively mutant tumors, downregulation of AREG (p = 0.018 and p = 0.013, respectively or EREG (p = 0.002 and p = 0.004, respectively and grade 0-1 skin rash (p<0.0001 and p<0.0001, respectively. In KRAS wt patients TTP and OS was significantly lower in patients with BRAF (p = 0.0001 and p<0.0001, respectively mutant tumors, downregulation of AREG (p = 0.021 and p = 0.004, respectively or EREG (p = 0.0001 and p<0.0001, respectively and grade 0-1 skin rash (p<0.0001 and p<0.0001, respectively. TTP was significantly lower in patients with PIK3CA mutations (p = 0.01 or lost PTEN (p = 0.002. Multivariate analysis revealed KRAS (Hazard Ratio [HR] 4.3, p<0.0001, BRAF mutation (HR: 5.1, p<0.0001, EREG low expression (HR: 1.6, p = 0.021 and absence of severe/moderate skin rash (HR: 4.0, p<0.0001 as independent prognostic factors for decreased TTP. Similarly, KRAS (HR 2.9, p = 0.01, BRAF mutation (HR: 3.0, p = 0.001, EREG low expression (HR: 1.7, p = 0.021, absence of severe/moderate skin rash (HR: 3.7, p<0.0001 and the presence of undifferantited tumours (HR: 2.2, p = 0.001 were revealed as independent prognostic factors for decreased OS.These results underscore that KRAS-BRAF mutations and EREG

  15. The effect of mutation on Rhodococcus equi virulence plasmid gene expression and mouse virulence.

    Science.gov (United States)

    Ren, Jun; Prescott, John F

    2004-11-15

    An 81 kb virulence plasmid containing a pathogenicity island (PI) plays a crucial role in the pathogenesis of Rhodococcus equi pneumonia in foals but its specific function in virulence and regulation of plasmid-encoded virulence genes is unclear. Using a LacZ selection marker developed for R. equi in this study, in combination with an apramycin resistance gene, an efficient two-stage homologous recombination targeted gene mutation procedure was used to mutate three virulence plasmid genes, a LysR regulatory gene homologue (ORF4), a ResD-like two-component response regulator homologue (ORF8), and a gene (ORF10) of unknown function that is highly expressed by R. equi inside macrophages, as well as the chromosomal gene operon, phoPR. Virulence testing by liver clearance after intravenous injection in mice showed that the ORF4 and ORF8 mutants were fully attenuated, that the phoPR mutant was hypervirulent, and that virulence of the ORF10 mutant remained unchanged. A virulence plasmid DNA microarray was used to compare the plasmid gene expression profile of each of the four gene-targeted mutants against the parental R. equi strain. Changes were limited to PI genes and gene induction was observed for all mutants, suggesting that expression of virulence plasmid genes is dominated by a negative regulatory network. The finding of attenuation of ORF4 and ORF8 mutants despite enhanced transcription of vapA suggests that factors other than VapA are important for full expression of virulence. ORF1, a putative Lsr antigen gene, was strongly and similarly induced in all mutants, implying a common regulatory pathway affecting this gene for all four mutated genes. ORF8 is apparently the centre of this common pathway. Two distinct highly correlated gene induction patterns were observed, that of the ORF4 and ORF8 mutants, and that of the ORF10 and phoPR mutants. The gene induction pattern distinguishing these two groups paralleled their virulence in mice.

  16. UV irradiation to mouse skin decreases hippocampal neurogenesis and synaptic protein expression via HPA axis activation.

    Science.gov (United States)

    Han, Mira; Ban, Jae-Jun; Bae, Jung-Soo; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2017-11-14

    The skin senses external environment, including ultraviolet light (UV). Hippocampus is a brain region that is responsible for memory and emotion. However, changes in hippocampus by UV irradiation to the skin have not been studied. In this study, after 2 weeks of UV irradiation to the mouse skin, we examined molecular changes related to cognitive functions in the hippocampus and activation of the hypothalamic-pituitary-adrenal (HPA) axis. UV exposure to the skin decreased doublecortin-positive immature neurons and synaptic proteins, including N-methyl-D-aspartate receptor 2 A and postsynaptic density protein-95, in the hippocampus. Moreover, we observed that UV irradiation to the skin down-regulated brain-derived neurotrophic factor expression and ERK signaling in the hippocampus, which are known to modulate neurogenesis and synaptic plasticity. The cutaneous and central HPA axes were activated by UV, which resulted in significant increases in serum levels of corticosterone. Subsequently, UV irradiation to the skin activated the glucocorticoid-signaling pathway in the hippocampal dentate gyrus. Interestingly, after 6 weeks of UV irradiation, mice showed depression-like behavior in the tail suspension test. Taken together, our data suggest that repeated UV exposure through the skin may negatively affect hippocampal neurogenesis and synaptic plasticity along with HPA axis activation.

  17. A multiplex single nucleotide polymorphism typing assay for detecting mutations that result in decreased fluoroquinolone susceptibility in Salmonella enterica serovars Typhi and Paratyphi A.

    LENUS (Irish Health Repository)

    Song, Yajun

    2010-08-01

    OBJECTIVES: Decreased susceptibility to fluoroquinolones has become a major problem for the successful therapy of human infections caused by Salmonella enterica, especially the life-threatening typhoid and paratyphoid fevers. METHODS: By using Luminex xTAG beads, we developed a rapid, reliable and cost-effective multiplexed genotyping assay for simultaneously detecting 11 mutations in gyrA, gyrB and parE of S. enterica serovars Typhi and Paratyphi A that result in nalidixic acid resistance (Nal(R)) and\\/or decreased susceptibility to fluoroquinolones. RESULTS: This assay yielded unambiguous single nucleotide polymorphism calls on extracted DNA from 292 isolates of Salmonella Typhi (Nal(R) = 223 and Nal(S) = 69) and 106 isolates of Salmonella Paratyphi A (Nal(R) = 24 and Nal(S) = 82). All of the 247 Nal(R) Salmonella Typhi and Salmonella Paratyphi A isolates were found to harbour at least one of the target mutations, with GyrA Phe-83 as the most common one (143\\/223 for Salmonella Typhi and 18\\/24 for Salmonella Paratyphi A). We also identified three GyrB mutations in eight Nal(S) Salmonella Typhi isolates (six for GyrB Phe-464, one for GyrB Leu-465 and one for GyrB Asp-466), and mutations GyrB Phe-464 and GyrB Asp-466 seem to be related to the decreased ciprofloxacin susceptibility phenotype in Salmonella Typhi. This assay can also be used directly on boiled single colonies. CONCLUSIONS: The assay presented here would be useful for clinical and reference laboratories to rapidly screen quinolone-resistant isolates of Salmonella Typhi and Salmonella Paratyphi A, and decipher the underlying genetic changes for epidemiological purposes.

  18. Epidermal growth factor receptor (EGFR) mutations and expression in squamous cell carcinoma of the esophagus in central Asia

    International Nuclear Information System (INIS)

    Abedi-Ardekani, Behnoush; Malekzadeh, Reza; Hainaut, Pierre; Dar, Nazir Ahmad; Mir, Mohammad Muzaffar; Zargar, Showkat Ahmad; Lone, M Muqbool; Martel-Planche, Ghyslaine; Villar, Stéphanie; Mounawar, Mounia; Saidi, Farrokh

    2012-01-01

    Esophageal squamous cell carcinoma (ESCC) shows geographic variations in incidence, with high incidences (>50/10 5 person-years) in central Asia, including North Eastern Iran (Golestan) and Northern India (Kashmir). In contrast to Western countries, smoking does not appear to be a significant risk factor for ESCC in central Asia. In lung adenocarcinoma, activating mutations in the gene encoding epidermal growth factor receptor (EGFR) are frequent in tumors of never smokers of Asian origin, predicting therapeutic sensitivity to Egfr-targeting drugs. In this study 152 cases of histologically confirmed ESCC from Iran (Tehran and Golestan Province) and North India (Kashmir Valley) have been analyzed for EGFR mutation by direct sequencing of exons 18–21. Egfr protein expression was evaluated by immunohistochemistry in 34 samples from Tehran and HER2 mutations were analyzed in 54 cases from Kashmir. A total of 14 (9.2%) EGFR variations were detected, including seven variations in exons. Among those, four (2.6%) were already documented in lung cancers, two were reported as polymorphisms and one was a potentially new activating mutation. All but one variation in introns were previously identified as polymorphisms. Over-expression of Egfr was detected in 22/34 (65%) of tested cases whereas no HER2 mutation was found in 54 cases from Kashmir. Overall, EGFR mutations appear to be a rare event in ESCC in high incidence areas of central Asia, although a very small proportion of cases may harbor mutations predicting sensitivity to anti-Egfr drugs

  19. Expression, prognostic significance and mutational analysis of protein tyrosine phosphatase SHP-1 in chronic myeloid leukemia.

    Science.gov (United States)

    Papadopoulou, Vasiliki; Kontandreopoulou, Elina; Panayiotidis, Panayiotis; Roumelioti, Maria; Angelopoulou, Maria; Kyriazopoulou, Lydia; Diamantopoulos, Panagiotis T; Vaiopoulos, George; Variami, Eleni; Kotsianidis, Ioannis; Athina Viniou, Nora

    2016-05-01

    The protein tyrosine phosphatase SHP-1 dephosphorylates BCR-ABL1, thereby serving as a potential control mechanism of BCR-ABL1 kinase activity. Pathways regulating SHP-1 expression, which could be exploited in the therapeutics of TKI-resistant chronic myeloid leukemia (CML), remain unknown. Moreover, the questions of whether there is any kind of SHP-1 deregulation in CML, contributing to disease initiation or evolution, as well as the question of prognostic significance of SHP-1, have not been definitively answered. This study shows moderately lower SHP-1 mRNA expression in chronic phase CML patients in comparison to healthy individuals and no change in SHP-1 mRNA levels after successful TKI treatment. Mutational analysis of the aminoterminal and phosphatase domains of SHP-1 in patients did not reveal genetic lesions. This study also found no correlation of SHP-1 expression at diagnosis with response to treatment, although a trend for lower SHP-1 expression was noted in the very small non-responders' group of the 3-month therapeutic milestone.

  20. An amelogenin mutation leads to disruption of the odontogenic apparatus and aberrant expression of Notch I

    Science.gov (United States)

    Chen, Xu; Li, Yong; Alawi, Faizan; Bouchard, Jessica R.; Kulkarni, Ashok B.; Gibson, Carolyn W.

    2012-01-01

    BACKGROUND Amelogenins are highly conserved proteins secreted by ameloblasts in the dental organ of developing teeth. These proteins regulate dental enamel thickness and structure in humans and mice. Mice that express an amelogenin transgene with a P70T mutation (TgP70T) develop abnormal epithelial proliferation in an amelogenin null (KO) background. Some of these cellular masses have the appearance of proliferating stratum intermedium, which is the layer adjacent to the ameloblasts in unerupted teeth. As Notch proteins are thought to constitute the developmental switch that separates ameloblasts from stratum intermedium, these signaling proteins were evaluated in normal and proliferating tissues. METHODS Mandibles were dissected for histology and immunohistochemistry using Notch I antibodies. Molar teeth were dissected for western blotting and RT-PCR for evaluation of Notch levels through imaging and statistical analyses. RESULTS Notch I was immunolocalized to ameloblasts of TgP70TKO mice, KO ameloblasts stained, but less strongly, and wild-type teeth had minimal staining. Cells within the proliferating epithelial cell masses were positive for Notch I and had an appearance reminiscent of calcifying epithelial odontogenic tumor with amyloid-like deposits. Notch I protein and mRNA were elevated in molar teeth from TgP70TKO mice. CONCLUSION Expression of TgP70T leads to abnormal structures in mandibles and maxillae of mice with the KO genetic background and these mice have elevated levels of Notch I in developing molars. As cells within the masses also express transgenic amelogenins, development of the abnormal proliferations suggests communication between amelogenin producing cells and the proliferating cells, dependent on the presence of the mutated amelogenin protein. PMID:20923441

  1. Renal dysfunction and barttin expression in Bartter syndrome Type IV associated with a G47R mutation in BSND in a family.

    Science.gov (United States)

    Park, C W; Lim, J H; Youn, D-Y; Chung, S; Lim, M-H; Kim, Y K; Chang, Y S; Lee, J-H

    2011-02-01

    Bartter syndrome (BS) Type IV, associated with a G47R mutation in the BSND gene, is known to result in a mild renal phenotype. However, we report here on three brothers with varying degrees of renal dysfunction from mild to end-stage renal disease associated with renal barttin and ClC-K expression. The brothers had histories of polyhydramnios, prematurity, polyuria, deafness, and small body size. Laboratory findings showed hypokalemic metabolic alkalosis, normotensive hyperreninemic hyperaldosteronism, and an increased urinary excretion of sodium, potassium and chloride, consistent with BS Type IV. Microscopic examination of renal tissue showed hyperplasia of cells at the juxtaglomerular apparatus with dilated atrophic tubules and tubulointerstitial fibrosis. A weak barttin signal related to CIC-K expression in the cytoplasm of tubule cells, but not the basement membrane, was noted. A sequence analysis of the BSND gene showed that the affected males were homozygous for a missense G47R mutation in exon 1 of BSND. These findings suggest that the G47R mutation results in a dramatic decrease in barttin expression, which appears to be related to the location of CIC-K being changed from the basement membrane to the cytoplasm in the tubule and might have varying effects on renal function associated with factors other than this gene.

  2. The prognostic values of EGFR expression and KRAS mutation in patients with synchronous or metachronous metastatic colorectal cancer

    International Nuclear Information System (INIS)

    Huang, Ching-Wen; Wang, Jaw-Yuan; Tsai, Hsiang-Lin; Chen, Yi-Ting; Huang, Chun-Ming; Ma, Cheng-Jen; Lu, Chien-Yu; Kuo, Chao-Hung; Wu, Deng-Chyang; Chai, Chee-Yin

    2013-01-01

    The epidermal growth factor receptor (EGFR)/RAS/RAF/MEK/MAPK pathway is an important pathway in the carcinogenesis, invasion and metastasis of colorectal cancers (CRCs). We conducted a retrospective study to determine the prognostic values of EGFR expression and KRAS mutation in patients with metastatic CRC (mCRC) based on synchronous or metachronous status. From October 2002 to March 2012, 205 patients with mCRC were retrospectively analyzed; 98 were found to have metachronous mCRC while 107 were found to have synchronous mCRC. The EGFR expressions were determinate by IHC (immunohistochemistry) analysis and categorized 1+ (weak intensity), 2+ (moderate intensity), and 3+ (strong intensity). Genomic DNA was isolated from frozen primary CRC tissues and direct sequencing of KRAS was performed. The clinicopathological features of these mCRC patients were retrospectively investigated according to EGFR expression and KRAS mutation status. Moreover, we analyzed the prognostic values of EGFR expression and KRAS mutation among these patients. Of the 205 patients with mCRC, EGFR expression was analyzed in 167 patients, and positive EGFR expression was noted in 140 of those patients (83.8%). KRAS mutation was investigated in 205 patients and mutations were noted in 88 of those patients (42.9%). In patients with metachronous mCRC, positive EGFR expression was significantly correlated with well-and moderately-differentiated tumors (P = 0.028), poorer disease-free survival (DFS) (P < 0.001), and overall survival (OS) (P < 0.001). Furthermore, positive EGFR expression was a significant independent prognostic factor of DFS (P = 0.006, HR: 4.012, 95% CI: 1.130–8.445) and OS (P = 0.028, HR: 3.090, 95% CI: 1.477–10.900) in metachronous mCRC patients. KRAS mutation status was not significantly related to DFS and OS of patients with metachronous mCRC; likewise, KRAS mutation status was not significantly different in the progression-free survival (PFS) and OS of patients with

  3. The LMNA mutation p.Arg321Ter associated with dilated cardiomyopathy leads to reduced expression and a skewed ratio of lamin A and lamin C proteins

    Energy Technology Data Exchange (ETDEWEB)

    Al-Saaidi, Rasha [Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus (Denmark); Rasmussen, Torsten B. [Department of Cardiology, Aarhus University Hospital, Aarhus (Denmark); Palmfeldt, Johan [Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus (Denmark); Nissen, Peter H. [Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus (Denmark); Beqqali, Abdelaziz [Heart Failure Research Center, Academic Medical Center, Amsterdam (Netherlands); Hansen, Jakob [Department of Forensic Medicine, Bioanalytical Unit, University of Aarhus (Denmark); Pinto, Yigal M. [Heart Failure Research Center, Academic Medical Center, Amsterdam (Netherlands); Boesen, Thomas [Department of Molecular Biology and Genetics, University of Aarhus (Denmark); Mogensen, Jens [Department of Cardiology, Odense University Hospital, Odense (Denmark); Bross, Peter, E-mail: peter.bross@ki.au.dk [Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus (Denmark)

    2013-11-15

    Dilated cardiomyopathy (DCM) is a disease of the heart muscle characterized by cardiac chamber enlargement and reduced systolic function of the left ventricle. Mutations in the LMNA gene represent the most frequent known genetic cause of DCM associated with disease of the conduction systems. The LMNA gene generates two major transcripts encoding the nuclear lamina major components lamin A and lamin C by alternative splicing. Both haploinsuffiency and dominant negative effects have been proposed as disease mechanism for premature termination codon (PTC) mutations in LMNA. These mechanisms however are still not clearly established. In this study, we used a representative LMNA nonsense mutation, p.Arg321Ter, to shed light on the molecular disease mechanisms. Cultured fibroblasts from three DCM patients carrying this mutation were analyzed. Quantitative reverse transcriptase PCR and sequencing of these PCR products indicated that transcripts from the mutant allele were degraded by the nonsense-mediated mRNA decay (NMD) mechanism. The fact that no truncated mutant protein was detectable in western blot (WB) analysis strengthens the notion that the mutant transcript is efficiently degraded. Furthermore, WB analysis showed that the expression of lamin C protein was reduced by the expected approximately 50%. Clearly decreased lamin A and lamin C levels were also observed by immunofluorescence microscopy analysis. However, results from both WB and nano-liquid chromatography/mass spectrometry demonstrated that the levels of lamin A protein were more reduced suggesting an effect on expression of lamin A from the wild type allele. PCR analysis of the ratio of lamin A to lamin C transcripts showed unchanged relative amounts of lamin A transcript suggesting that the effect on the wild type allele was operative at the protein level. Immunofluorescence microscopy analysis showed no abnormal nuclear morphology of patient fibroblast cells. Based on these data, we propose that

  4. Beyond differential expression: the quest for causal mutations and effector molecules

    Directory of Open Access Journals (Sweden)

    Hudson Nicholas J

    2012-07-01

    Full Text Available Abstract High throughput gene expression technologies are a popular choice for researchers seeking molecular or systems-level explanations of biological phenomena. Nevertheless, there has been a groundswell of opinion that these approaches have not lived up to the hype because the interpretation of the data has lagged behind its generation. In our view a major problem has been an over-reliance on isolated lists of differentially expressed (DE genes which – by simply comparing genes to themselves – have the pitfall of taking molecular information out of context. Numerous scientists have emphasised the need for better context. This can be achieved through holistic measurements of differential connectivity in addition to, or in replacement, of DE. However, many scientists continue to use isolated lists of DE genes as the major source of input data for common readily available analytical tools. Focussing this opinion article on our own research in skeletal muscle, we outline our resolutions to these problems – particularly a universally powerful way of quantifying differential connectivity. With a well designed experiment, it is now possible to use gene expression to identify causal mutations and the other major effector molecules with whom they cooperate, irrespective of whether they themselves are DE. We explain why, for various reasons, no other currently available experimental techniques or quantitative analyses are capable of reaching these conclusions.

  5. Globo H expression is associated with driver mutations and PD-L1 expressions in stage I non-small cell lung cancer.

    Science.gov (United States)

    Yang, Ching-Yao; Lin, Mong-Wei; Chang, Yih-Leong; Wu, Chen-Tu

    2017-12-12

    Globo H is a tumor-associated carbohydrate antigen exclusively expressed in cancer cells rather than normal tissue. Globo H has been found on many cancers of epithelial origins, and become an attractive target for cancer vaccine. We aimed to study the expression of Globo H in non-small cell lung cancer (NSCLC) patients, and correlated its expression with common driver mutations, clinical outcomes, and status of immune checkpoint, programmed death-ligand 1 (PD-L1). The study enrolled 228 patients with surgically resected stage I NSCLC, including 139 patients with adenocarcinoma (ADC) and 89 patients with squamous cell carcinoma (SqCC). Using immunohistochemistry, tumors with moderate to strong membranous staining in ⩾ 1% tumor cells per section were scored as positive Globo H expression. Driver mutations including EGFR, KRAS, BRAF were detected by direct sequencing, while ALK, PI3KCA, FGFR1 and PD-L1 expression was detected by immunohistochemical (IHC) staining. Positive Globo H expression was detected in 88 of the 228 (38.6%) patients. These included 51 of 139 (36.7%) patients with ADC and 37 of 89 (41.6%) patients with SqCC. Positive Globo H expression was significantly associated with EGFR mutation and PD-L1 expression in the ADC group, and PI3KCA overexpression in the SqCC group. The survival analysis showed that Globo H expression was not an independent prognostic factor in stage I NSCLC. Globo H expression was correlated with specific driver mutations in ADC and SqCC NSCLC tumors, as well as PD-L1 status. Immunotherapy targeting Globo H may have potential application in lung cancer treatment.

  6. A gain-of-function mutation in Tnni2 impeded bone development through increasing Hif3a expression in DA2B mice.

    Directory of Open Access Journals (Sweden)

    Xiaoquan Zhu

    2014-10-01

    Full Text Available Distal arthrogryposis type 2B (DA2B is an important genetic disorder in humans. However, the mechanisms governing this disease are not clearly understood. In this study, we generated knock-in mice carrying a DA2B mutation (K175del in troponin I type 2 (skeletal, fast (TNNI2, which encodes a fast-twitch skeletal muscle protein. Tnni2K175del mice (referred to as DA2B mice showed typical DA2B phenotypes, including limb abnormality and small body size. However, the current knowledge concerning TNNI2 could not explain the small body phenotype of DA2B mice. We found that Tnni2 was expressed in the osteoblasts and chondrocytes of long bone growth plates. Expression profile analysis using radii and ulnae demonstrated that Hif3a expression was significantly increased in the Tnni2K175del mice. Chromatin immunoprecipitation assays indicated that both wild-type and mutant tnni2 protein can bind to the Hif3a promoter using mouse primary osteoblasts. Moreover, we showed that the mutant tnni2 protein had a higher capacity to transactivate Hif3a than the wild-type protein. The increased amount of hif3a resulted in impairment of angiogenesis, delay in endochondral ossification, and decrease in chondrocyte differentiation and osteoblast proliferation, suggesting that hif3a counteracted hif1a-induced Vegf expression in DA2B mice. Together, our data indicated that Tnni2K175del mutation led to abnormally increased hif3a and decreased vegf in bone, which explain, at least in part, the small body size of Tnni2K175del mice. Furthermore, our findings revealed a new function of tnni2 in the regulation of bone development, and the study of gain-of-function mutation in Tnni2 in transgenic mice opens a new avenue to understand the pathological mechanism of human DA2B disorder.

  7. Dietary acidification enhances phosphorus digestibility but decreases H+/K+-ATPase expression in rainbow trout.

    Science.gov (United States)

    Sugiura, Shozo H; Roy, Prabir K; Ferraris, Ronaldo P

    2006-10-01

    Oxynticopeptic cells of fish stomach are thought to secrete less acid than the specialized parietal cells of mammalian stomach. Gastric acidity, however, has not been directly compared between fish and mammals. We therefore fed rainbow trout and rats the same meal, and found that the lowest postprandial pH of trout stomach was 2.7, which was only transiently sustained for 1 h, whereas that of rat stomach was 1.3, which was sustained for 3 h. Postprandial pH of the small intestine was slightly higher in trout (approximately 8.0) than in rats (approximately 7.6), but pH of the large intestine was similar (approximately 8.0). Addition of acids to fish feeds, in an attempt to aid the weak acidity of fish stomach, has been known to improve phosphorus digestibility, but its physiological effect on fish stomach is not known. Exogenous acids did improve phosphorus digestibility but also decreased steady-state mRNA expression of trout H(+)/K(+)-ATPase (ATP4A, the proton pump) as well as Na(+)/bicarbonate cotransporter (NBC), and had no effect on gastrin-like mRNA and somastostatin (SST) mRNA abundance. Gastrin-like mRNA and SST-2 mRNA were equally distributed between corpus and antrum. ATP4A mRNA and NBC mRNA were in the corpus, whereas SST-1 mRNA was in the antrum. Trout gastrin-like EST had modest homology to halibut and pufferfish gastrin, whereas trout ATP4A mRNA had > or = 95% amino acid homology with mammalian, Xenopus and flounder ATP4A. Although ATP4A seems highly conserved among vertebrates, gastric acidity is much less in trout than in rats, explaining the low digestibility of bone phosphorus, abundant in fish diets. Dietary acidification does not reduce acidity enough to markedly improve phosphorus digestibility, perhaps because exogenous acids may inhibit endogenous acid production.

  8. Inhibition of interleukin-6 decreases atrogene expression and ameliorates tail suspension-induced skeletal muscle atrophy

    Science.gov (United States)

    Yakabe, Mitsutaka; Ota, Hidetaka; Iijima, Katsuya; Eto, Masato; Ouchi, Yasuyoshi; Akishita, Masahiro

    2018-01-01

    Background Interleukin-6 (IL-6) is an inflammatory cytokine. Whether systemic IL-6 affects atrogene expression and disuse-induced skeletal muscle atrophy is unclear. Methods Tail-suspended mice were used as a disuse-induced muscle atrophy model. We administered anti-mouse IL-6 receptor antibody, beta-hydroxy-beta-methylbutyrate (HMB) and vitamin D to the mice and examined the effects on atrogene expression and muscle atrophy. Results Serum IL-6 levels were elevated in the mice. Inhibition of IL-6 receptor suppressed muscle RING finger 1 (MuRF1) expression and prevented muscle atrophy. HMB and vitamin D inhibited the serum IL-6 surge, downregulated the expression of MuRF1 and atrogin-1 in the soleus muscle, and ameliorated atrophy in the mice. Conclusion Systemic IL-6 affects MuRF1 expression and disuse-induced muscle atrophy. PMID:29351340

  9. Inhibition of interleukin-6 decreases atrogene expression and ameliorates tail suspension-induced skeletal muscle atrophy.

    Directory of Open Access Journals (Sweden)

    Mitsutaka Yakabe

    Full Text Available Interleukin-6 (IL-6 is an inflammatory cytokine. Whether systemic IL-6 affects atrogene expression and disuse-induced skeletal muscle atrophy is unclear.Tail-suspended mice were used as a disuse-induced muscle atrophy model. We administered anti-mouse IL-6 receptor antibody, beta-hydroxy-beta-methylbutyrate (HMB and vitamin D to the mice and examined the effects on atrogene expression and muscle atrophy.Serum IL-6 levels were elevated in the mice. Inhibition of IL-6 receptor suppressed muscle RING finger 1 (MuRF1 expression and prevented muscle atrophy. HMB and vitamin D inhibited the serum IL-6 surge, downregulated the expression of MuRF1 and atrogin-1 in the soleus muscle, and ameliorated atrophy in the mice.Systemic IL-6 affects MuRF1 expression and disuse-induced muscle atrophy.

  10. Decreased Expression of Na+/K+-ATPase, NHE3, NBC1, AQP1 and OAT in Gentamicin-induced Nephropathy

    Science.gov (United States)

    Bae, Woo Kyun; Lee, JongUn; Park, Jeong Woo; Bae, Eun Hui; Ma, Seong Kwon; Kim, Suhn Hee

    2008-01-01

    The present study was aimed to determine whether there is an altered regulation of tubular transporters in gentamicin-induced nephropathy. Sprague-Dawley male rats (200~250 g) were subcutaneously injected with gentamicin (100 mg/kg per day) for 7 days, and the expression of tubular transporters was determined by immunoblotting and immunohistochemistry. The mRNA and protein expression of OAT was also determined. Gentamicin-treated rats exhibited significantly decreased creatinine clearance along with increased plasma creatinine levels. Accordingly, the fractional excretion of sodium increased. Urine volume was increased, while urine osmolality and free water reabsorption were decreased. Immunoblotting and immunohistochemistry revealed decreased expression of Na+/K+-ATPase, NHE3, NBC1, and AQP1 in the kidney of gentamicin-treated rats. The expression of OAT1 and OAT3 was also decreased. Gentamicin-induced nephropathy may at least in part be causally related with a decreased expression of Na+/K+-ATPase, NHE3, NBC1, AQP1 and OAT. PMID:19967075

  11. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Chihiro Moriya

    2016-01-01

    Full Text Available We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD or a 60% high-fat diet (HFD with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects.

  12. A knockout mutation of a constitutive GPCR in Tetrahymena decreases both G-protein activity and chemoattraction.

    Directory of Open Access Journals (Sweden)

    Thomas J Lampert

    Full Text Available Although G-protein coupled receptors (GPCRs are a common element in many chemosensory transduction pathways in eukaryotic cells, no GPCR or regulated G-protein activity has yet been shown in any ciliate. To study the possible role for a GPCR in the chemoresponses of the ciliate Tetrahymena, we have generated a number of macronuclear gene knockouts of putative GPCRs found in the Tetrahymena Genome database. One of these knockout mutants, called G6, is a complete knockout of a gene that we call GPCR6 (TTHERM_00925490. Based on sequence comparisons, the Gpcr6p protein belongs to the Rhodopsin Family of GPCRs. Notably, Gpcr6p shares highest amino acid sequence homologies to GPCRs from Paramecium and several plants. One of the phenotypes of the G6 mutant is a decreased responsiveness to the depolarizing ions Ba²⁺ and K⁺, suggesting a decrease in basal excitability (decrease in Ca²⁺ channel activity. The other major phenotype of G6 is a loss of chemoattraction to lysophosphatidic acid (LPA and proteose peptone (PP, two known chemoattractants in Tetrahymena. Using microsomal [³⁵S]GTPγS binding assays, we found that wild-type (CU427 have a prominent basal G-protein activity. This activity is decreased to the same level by pertussis toxin (a G-protein inhibitor, addition of chemoattractants, or the G6 mutant. Since the basal G-protein activity is decreased by the GPCR6 knockout, it is likely that this gene codes for a constitutively active GPCR in Tetrahymena. We propose that chemoattractants like LPA and PP cause attraction in Tetrahymena by decreasing the basal G-protein stimulating activity of Gpcr6p. This leads to decreased excitability in wild-type and longer runs of smooth forward swimming (less interrupted by direction changes towards the attractant. Therefore, these attractants may work as inverse agonists through the constitutively active Gpcr6p coupled to a pertussis-sensitive G-protein.

  13. Distinct profiles of TERT promoter mutations and telomerase expression in head and neck cancer and cervical carcinoma.

    Science.gov (United States)

    Annunziata, Clorinda; Pezzuto, Francesca; Greggi, Stefano; Ionna, Franco; Losito, Simona; Botti, Gerardo; Buonaguro, Luigi; Buonaguro, Franco M; Tornesello, Maria Lina

    2018-03-31

    Two recurrent mutations (-124 G > A and -146 G > A) in the core promoter region of the human telomerase reverse transcriptase (TERT) gene create consensus binding sites for ETS transcription factors and cause increased TERT expression in several tumour types. We analyzed TERT promoter mutations and TERT mRNA levels in head and neck cancer, cervical carcinoma and cervical intraepithelial neoplasia (CIN) as well as in C-4I, CaSki, HeLa and SiHa cervical cell lines. Nucleotide sequence analysis of TERT promoter region showed that 33.3% of oral squamous cell carcinoma (SCC) and 16.8% of cervical SCC harboured mutually exclusive G to A transitions at nucleotide position -124 or -146. TERT promoter was mutated at nucleotide -146 (G > A) in SiHa cell line. Other nucleotide changes creating in some cases putative ETS binding sites were more frequent in oral SCC (26.7%) than in cervical carcinoma (4.8%). The frequency of mutations was independent of human papillomavirus (HPV) tumour status in both cervical and oral cancer. Expression of TERT gene was significantly higher in TERT promoter mutated (-124G > A or -146G > A) cervical SCC compared to not mutated SCC irrespective of HPV16 E6 and E7 levels. Such hot spot changes were not detected in oropharyngeal SCC, cervical adenocarcinoma and CIN lesions. Our results suggest that TERT promoter mutations play a relevant role in oral SCC as well as in cervical SCC, besides the already known effect of HPV16 E6 protein on TERT expression. © 2018 UICC.

  14. Mast cells infiltration and decreased E-cadherin expression in ketamine-induced cystitis

    Directory of Open Access Journals (Sweden)

    Mengqiang Li

    2015-01-01

    Conclusions: Increased mast cells in bladder wall and downregulated expression of E-cadherin junction protein in epithelial cells were probably associated with interstitial inflammation and fissures in mucosa. It implied that ketamine induced an interstitial cystitis.

  15. Decreased expression of serum and microvascular vascular endothelial growth factor receptor-2 in meningococcal sepsis*.

    NARCIS (Netherlands)

    Flier, M. van der; Baerveldt, E.M.; Miedema, A.; Hartwig, N.G.; Hazelzet, J.A.; Emonts, M.; Groot, R. de; Prens, E.P.; Vught, A.J. van; Jansen, N.J.

    2013-01-01

    OBJECTIVES: To determine the skin microvessel expression of vascular endothelial growth factor receptor 2 and serum-soluble vascular endothelial growth factor receptor 2 levels in children with meningococcal sepsis. DESIGN: Observational study. SETTING: Two tertiary academic children hospital PICUs.

  16. Decreased expression of LATS1 is correlated with the progression and prognosis of glioma

    Directory of Open Access Journals (Sweden)

    Ji Tianhai

    2012-08-01

    Full Text Available Abstract Background LATS1 is a tumor suppressor genes implicated in the pathogenesis of certain types of tumors, but its role is not known in human glioma. Methods Using real-time PCR and immunohistochemistry, we detected the mRNA and protein expression of LATS1 in glioma. The effect of LATS1 on cell growth and invasion were investigated. Results We found that mRNA and protein of LATS1 expression is significantly downregulated in glioma compared with normal control brain tissues. Furthermore, reduced LATS1 expression was markedly negatively correlated with WHO grade and KPS (p Conclusion These results indicate that LATS1 is an important candidate tumor suppressor and its downregulated expression may contribute to glioma progression.

  17. Ameliorating effect of wheat bran, Beta-carotene and Curcumin on K-ras gene mutations and expression of ntioxidant enzymes in rat colon cancer

    International Nuclear Information System (INIS)

    Tarek Elmaghraby, T.; Korraa, S.S.; Maher, M.M.; Hassan, N.H.A.

    2010-01-01

    In Egypt, colon cancer has unique characterises differ than other countries, more than third cases happen in people under 40 years, with advanced stage, high grade tumors that carry more mutations . This may be return to increase pollution in food and water. The aim of the present study, is the investigation of the role of some natural products approaches for colorectal carcinoma including curcumin, wheat bran and β-Carotene. Accordingly, animals were injected with 1,2-dimethylhydrazine hydrochloride (DMH) and/or dually exposed to ionizing radiation to induce colorectal cancer. The frequency of mutation of K-ras gene, the level activity of SOD, GpX antioxidant enzymes and expression of SOD1, SOD2 and GpX1 in tissue of 120 colon rats from 10 different treated groups were studied. Curcumin, wheat bran and D-carotene have inhibition effect on formation of colon cancer and decrease the mutations in K-ras gene. Moreover, they have ameliorating effect on antioxidants enzymes activities and expressions. The present study revealed that wheat bran and D-carotene have better effect than curcumin.

  18. Human biallelic MFN2 mutations induce mitochondrial dysfunction, upper body adipose hyperplasia, and suppression of leptin expression

    DEFF Research Database (Denmark)

    Rocha, Nuno M; Bulger, David A; Frontini, Andrea

    2017-01-01

    body adipose overgrowth. We describe similar massive adipose overgrowth with suppressed leptin expression in four further patients with biallelic MFN2 mutations and at least one p.Arg707Trp allele. Overgrown tissue was composed of normal-sized, UCP1-negative unilocular adipocytes, with mitochondrial...... network fragmentation, disorganised cristae, and increased autophagosomes. There was strong transcriptional evidence of mitochondrial stress signalling, increased protein synthesis, and suppression of signatures of cell death in affected tissue, whereas mitochondrial morphology and gene expression were...

  19. Chronic unpredictable stress decreases expression of brain-derived neurotrophic factor (BDNF) in mouse ovaries: relationship to oocytes developmental potential.

    Science.gov (United States)

    Wu, Li-Min; Hu, Mei-Hong; Tong, Xian-Hong; Han, Hui; Shen, Ni; Jin, Ren-Tao; Wang, Wei; Zhou, Gui-Xiang; He, Guo-Ping; Liu, Yu-Sheng

    2012-01-01

    Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary. Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA) axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated. Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn't affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment. BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress.

  20. Chronic unpredictable stress decreases expression of brain-derived neurotrophic factor (BDNF in mouse ovaries: relationship to oocytes developmental potential.

    Directory of Open Access Journals (Sweden)

    Li-Min Wu

    Full Text Available BACKGROUND: Brain-derived neurotropic factor (BDNF was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary. METHODS: Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated. RESULTS: Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn't affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment. CONCLUSION: BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress.

  1. Age-associated decrease in GDNF and its cognate receptor GFRα-1 protein expression in human skin.

    Science.gov (United States)

    Adly, Mohamed A; Assaf, Hanan A; Hussein, Mahmoud Rezk Abdelwahed

    2016-06-01

    Glial cell line-derived neurotrophic factor (GDNF) and its cognate receptor (GFRα-1) are expressed in normal human skin. They are involved in murine hair follicle morphogenesis and cycling control. We hypothesize that 'GDNF and GFRα-1 protein expression in human skin undergoes age-associated alterations. To test our hypothesis, the expression of these proteins was examined in human skin specimens obtained from 30 healthy individuals representing three age groups: children (5-18 years), adults (19-60 years) and the elderly (61-81 years). Immunofluorescent and light microscopic immunohistologic analyses were performed using tyramide signal amplification and avidin-biotin complex staining methods respectively. GDNF mRNA expression was examined by RT-PCR analysis. GDNF mRNA and protein as well as GFRα-1 protein expressions were detected in normal human skin. We found significantly reduced epidermal expression of these proteins with ageing. In the epidermis, the expression was strong in the skin of children and declined gradually with ageing, being moderate in adults and weak in the elderly. In children and adults, the expression of both GDNF and GFRα-1 proteins was strongest in the stratum basale and decreased gradually towards the surface layers where it was completely absent in the stratum corneum. In the elderly, GDNF and GFRα-1 protein expression was confined to the stratum basale. In the dermis, both GDNF and GFRα-1 proteins had strong expressions in the fibroblasts, sweat glands, sebaceous glands, hair follicles and blood vessels regardless of the age. Thus there is a decrease in epidermal GDNF and GFRα-1 protein expression in normal human skin with ageing. Our findings suggest that the consequences of this is that GFRα-1-mediated signalling is altered during the ageing process. The clinical and therapeutic ramifications of these observations mandate further investigations. © 2016 The Authors. International Journal of Experimental Pathology © 2016

  2. MiRNA-21 Expression Decreases from Primary Tumors to Liver Metastases in Colorectal Carcinoma.

    Directory of Open Access Journals (Sweden)

    Fabian Feiersinger

    Full Text Available Metastasis is the major cause of death in colorectal cancer patients. Expression of certain miRNAs in the primary tumors has been shown to be associated with progression of colorectal cancer and the initiation of metastasis. In this study, we compared miRNA expression in primary colorectal cancer and corresponding liver metastases in order to get an idea of the oncogenic importance of the miRNAs in established metastases.We analyzed the expression of miRNA-21, miRNA-31 and miRNA-373 in corresponding formalin-fixed paraffin-embedded (FFPE tissue samples of primary colorectal cancer, liver metastasis and healthy tissues of 29 patients by quantitative real-time PCR.All three miRNAs were significantly up-regulated in the primary tumor tissues as compared to healthy colon mucosa of the respective patients (p < 0.01. MiRNA-21 and miRNA-31 were also higher expressed in liver metastases as compared to healthy liver tissues (p < 0.01. No significant difference of expression of miRNA-31 and miRNA-373 was observed between primary tumors and metastases. Of note, miRNA-21 expression was significantly reduced in liver metastases as compared to the primary colorectal tumors (p < 0.01.In the context of previous studies demonstrating increased miRNA-21 expression in metastatic primary tumors, our findings raise the question whether miRNA-21 might be involved in the initiation but not in the perpetuation and growth of metastases.

  3. Daphnetin inhibits invasion and migration of LM8 murine osteosarcoma cells by decreasing RhoA and Cdc42 expression

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hiroki [Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto (Japan); Nakamura, Seikou [Department of Pharmacognosy, Kyoto Pharmaceutical University, Kyoto (Japan); Chisaki, Yugo [Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto (Japan); Takada, Tetsuya [Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto (Japan); Toda, Yuki [Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Kyoto (Japan); Murata, Hiroaki [Department of Orthopedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopedic Surgery, Matsushita Memorial Hospital, Osaka (Japan); Itoh, Kazuyuki [Department of Biology, Osaka Medical Center of Cancer and Cardiovascular Diseases, Osaka (Japan); Yano, Yoshitaka [Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto (Japan); Takata, Kazuyuki [Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto (Japan); Ashihara, Eishi, E-mail: ash@mb.kyoto-phu.ac.jp [Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto (Japan)

    2016-02-26

    Daphnetin, 7,8-dihydroxycoumarin, present in main constituents of Daphne odora var. marginatai, has multiple pharmacological activities including anti-proliferative effects in cancer cells. In this study, using a Transwell system, we showed that daphnetin inhibited invasion and migration of highly metastatic murine osteosarcoma LM8 cells in a dose-dependent manner. Following treatment by daphnetin, cells that penetrated the Transwell membrane were rounder than non-treated cells. Immunofluorescence analysis revealed that daphnetin decreased the numbers of intracellular stress fibers and filopodia. Moreover, daphnetin treatment dramatically decreased the expression levels of RhoA and Cdc42. In summary, the dihydroxycoumarin derivative daphnetin inhibits the invasion and migration of LM8 cells, and therefore represents a promising agent for use against metastatic cancer. - Highlights: • Daphnetin, a coumarin-derivative, inhibited invasion and migration of LM8 cells. • Stress fibers and filopodia were decreased by daphnetin treatment. • Daphnetin decreased RhoA and Cdc42 protein expression.

  4. Daphnetin inhibits invasion and migration of LM8 murine osteosarcoma cells by decreasing RhoA and Cdc42 expression

    International Nuclear Information System (INIS)

    Fukuda, Hiroki; Nakamura, Seikou; Chisaki, Yugo; Takada, Tetsuya; Toda, Yuki; Murata, Hiroaki; Itoh, Kazuyuki; Yano, Yoshitaka; Takata, Kazuyuki; Ashihara, Eishi

    2016-01-01

    Daphnetin, 7,8-dihydroxycoumarin, present in main constituents of Daphne odora var. marginatai, has multiple pharmacological activities including anti-proliferative effects in cancer cells. In this study, using a Transwell system, we showed that daphnetin inhibited invasion and migration of highly metastatic murine osteosarcoma LM8 cells in a dose-dependent manner. Following treatment by daphnetin, cells that penetrated the Transwell membrane were rounder than non-treated cells. Immunofluorescence analysis revealed that daphnetin decreased the numbers of intracellular stress fibers and filopodia. Moreover, daphnetin treatment dramatically decreased the expression levels of RhoA and Cdc42. In summary, the dihydroxycoumarin derivative daphnetin inhibits the invasion and migration of LM8 cells, and therefore represents a promising agent for use against metastatic cancer. - Highlights: • Daphnetin, a coumarin-derivative, inhibited invasion and migration of LM8 cells. • Stress fibers and filopodia were decreased by daphnetin treatment. • Daphnetin decreased RhoA and Cdc42 protein expression.

  5. Enteral intestinal alkaline phosphatase administration in newborns decreases iNOS expression in a neonatal necrotizing enterocolitis rat model.

    Science.gov (United States)

    Rentea, Rebecca M; Liedel, Jennifer L; Fredrich, Katherine; Pritchard, Kirkwood; Oldham, Keith T; Simpson, Pippa M; Gourlay, David M

    2013-01-01

    To determine if intestinal alkaline phosphatase (IAP) decreases intestinal injury resulting from experimentally induced necrotizing enterocolitis (NEC). We hypothesized that IAP administration prevents the initial development of NEC related intestinal inflammation. Pre- and full-term newborn Sprague-Dawley rat pups were sacrificed on day 1 of life. Pre-term pups were exposed to intermittent hypoxia and formula containing LPS to induce NEC. Select NEC pups were given 40, 4 or 0.4 units/kg of bovine IAP (NEC+IAP40u, IAP4u or IAP0.4u) enterally, once daily. Ileal sections were evaluated by real-time PCR (qRT-PCR) for IAP, iNOS, IL-1β, IL-6, and TNF-α mRNA and immunofluorescence for 3-nitrotyrosine (3-NT). Experimentally induced NEC decreased IAP mRNA expression by 66% (p ≤ 0.001). IAP supplementation increased IAP mRNA expression to control. Supplemental enteral IAP decreased nitrosative stress as measured by iNOS mRNA expression and 3-NT staining in the NEC stressed pups (p ≤ 0.01), as well as decreased intestinal TNF-α mRNA expression. In addition, IAP decreased LSP translocation into the serum in the treated pups. We conclude that enterally administered IAP prevents NEC-related intestinal injury and inflammation. Enteral IAP may prove a useful strategy in the prevention of NEC in preterm neonates. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Isolation and characterization of mutated alcohol oxidases from the yeast Hansenula polymorpha with decreased affinity toward substrates and their use as selective elements of an amperometric biosensor

    Directory of Open Access Journals (Sweden)

    Schuhmann Wolfgang

    2007-06-01

    Full Text Available Abstract Background Accurate, rapid, and economic on-line analysis of ethanol is very desirable. However, available biosensors achieve saturation at very low ethanol concentrations and thus demand the time and labour consuming procedure of sample dilution. Results Hansenula polymorpha (Pichia angusta mutant strains resistant to allyl alcohol in methanol medium were selected. Such strains possessed decreased affinity of alcohol oxidase (AOX towards methanol: the KM values for AOX of wild type and mutant strains CA2 and CA4 are shown to be 0.62, 2.48 and 1.10 mM, respectively, whereas Vmax values are increased or remain unaffected. The mutant AOX alleles from H. polymorpha mutants CA2 and CA4 were isolated and sequenced. Several point mutations in the AOX gene, mostly different between the two mutant alleles, have been identified. Mutant AOX forms were isolated and purified, and some of their biochemical properties were studied. An amperometric biosensor based on the mutated form of AOX from the strain CA2 was constructed and revealed an extended linear response to the target analytes, ethanol and formaldehyde, as compared to the sensor based on the native AOX. Conclusion The described selection methodology opens up the possibility of isolating modified forms of AOX with further decreased affinity toward substrates without reduction of the maximal velocity of reaction. It can help in creation of improved ethanol biosensors with a prolonged linear response towards ethanol in real samples of wines, beers or fermentation liquids.

  7. Disruption of mammalian target of rapamycin complex 1 in macrophages decreases chemokine gene expression and atherosclerosis

    NARCIS (Netherlands)

    Ai, Ding; Jiang, Hongfeng; Westerterp, Marit; Murphy, Andrew J.; Wang, Mi; Ganda, Anjali; Abramowicz, Sandra; Welch, Carrie; Almazan, Felicidad; Zhu, Yi; Miller, Yury I.; Tall, Alan R.

    2014-01-01

    The mammalian target of rapamycin complex 1 inhibitor, rapamycin, has been shown to decrease atherosclerosis, even while increasing plasma low-density lipoprotein levels. This suggests an antiatherogenic effect possibly mediated by the modulation of inflammatory responses in atherosclerotic plaques.

  8. Hydrostatic pressure decreases membrane fluidity and lipid desaturase expression in chondrocyte progenitor cells.

    Science.gov (United States)

    Montagne, Kevin; Uchiyama, Hiroki; Furukawa, Katsuko S; Ushida, Takashi

    2014-01-22

    Membrane biomechanical properties are critical in modulating nutrient and metabolite exchange as well as signal transduction. Biological membranes are predominantly composed of lipids, cholesterol and proteins, and their fluidity is tightly regulated by cholesterol and lipid desaturases. To determine whether such membrane fluidity regulation occurred in mammalian cells under pressure, we investigated the effects of pressure on membrane lipid order of mouse chondrogenic ATDC5 cells and desaturase gene expression. Hydrostatic pressure linearly increased membrane lipid packing and simultaneously repressed lipid desaturase gene expression. We also showed that cholesterol mimicked and cholesterol depletion reversed those effects, suggesting that desaturase gene expression was controlled by the membrane physical state itself. This study demonstrates a new effect of hydrostatic pressure on mammalian cells and may help to identify the molecular mechanisms involved in hydrostatic pressure sensing in chondrocytes. © 2013 Elsevier Ltd. All rights reserved.

  9. TOX3 (TNRC9) Over Expression in Bladder Cancer Cells Decreases Cellular Proliferation and Triggers an Interferon-Like Response

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Mansilla Castaño, Francisco; Dyrskjøt, Lars

    2013-01-01

    Background: Human TOX3 (TOX high mobility group box family member 3) regulates Ca2+ dependent transcription in neurons and has been associated with breast cancer susceptibility. Aim of the study was to investigate the expression of TOX3 in bladder cancer tissue samples and to identify genes...... urothelium. Microarray expression profiling of human bladder cancer cells over expressing TOX3 followed by Pathway analysis showed that TOX3 Overexpression mainly affected the Interferon Signaling Pathway. TOX3 up regulation induced the expression of several genes with a gamma interferon activation site (GAS......), e.g. STAT1. In vitro functional studies showed that TOX3 was able to bind to the GAS-sequence located at the STAT1 promoter. siRNA mediated knockdown of TOX3 in RT4 bladder cancer cells decreased STAT1 expression suggesting a direct impact of TOX3 on STAT1. Immunoprecipitation of TOX3 over...

  10. Promoter Hypermethylation and Decreased Expression of Syncytin-1 in Pancreatic Adenocarcinomas.

    Directory of Open Access Journals (Sweden)

    Qinsheng Lu

    Full Text Available Syncytin-1 is a member of human endogenous retroviral W gene family (HERVW1. Known to be expressed in human placental trophoblast, syncytin-1 protein mediates the fusion of cytotrophoblasts for the formation of syncytiotrophoblasts, the terminally differentiated form of trophoblast lineage. In addition, in vitro studies indicate that syncytin-1 possessed nonfusogenic functions such as those for immune suppression, cell cycle regulation and anti-apoptotic activities. Overexpression of syncytin-1 has been observed in various malignant tissues including breast, endometrial and ovarian cancers. It was reported that syncytin-1 gene expression is associated with dynamic changes of DNA hypomethylation in the 5' LTR. In this study, applying the real-time PCR, Western blot analysis and immunohistochemistry methods, we demonstrate a constitutive expression of syncytin-1 in normal pancreas tissues as well as normal tissues adjacent to cancer lesions. Moreover, a reduced expression is found in the pancreatic adenocarcinoma tissues. The expression levels of syncytin-1 are not correlated with the stage, historical grade and gender, but inversely correlated with patients' age. Furthermore, COBRA and bisulfite sequencing results indicated that the lower expression of syncytin-1 is correlated with the hypermethylation of two CpG dinucleotides in the 5' LTR of syncytin-1 gene. The nonfusogenic function of syncytin-1 in normal pancreas as well as its role(s in the pathogenesis and progression of pancreatic cancers remains to be investigated. Identification of the two CpG dinucleotides around transcription start site as key epigenetic elements has provided valuable information for further studies on the epigenetic regulation of syncytin-1 in pancreatic cancer cells.

  11. Identification of the first nonsense CDSN mutation with expression of a truncated protein causing peeling skin syndrome type B.

    Science.gov (United States)

    Mallet, A; Kypriotou, M; George, K; Leclerc, E; Rivero, D; Mazereeuw-Hautier, J; Serre, G; Huber, M; Jonca, N; Hohl, D

    2013-12-01

    Peeling skin disease (PSD), a generalized inflammatory form of peeling skin syndrome, is caused by autosomal recessive nonsense mutations in the corneodesmosin gene (CDSN). To investigate a novel mutation in CDSN. A 50-year-old white woman showed widespread peeling with erythema and elevated serum IgE. DNA sequencing, immunohistochemistry, Western blot and real-time polymerase chain reaction analyses of skin biopsies were performed in order to study the genetics and to characterize the molecular profile of the disease. Histology showed hyperkeratosis and acanthosis of the epidermis, and inflammatory infiltrates in the dermis. DNA sequencing revealed a homozygous mutation leading to a premature termination codon in CDSN: p.Gly142*. Protein analyses showed reduced expression of a 16-kDa corneodesmosin mutant in the upper epidermal layers, whereas the full-length protein was absent. These results are interesting regarding the genotype-phenotype correlations in diseases caused by CDSN mutations. The PSD-causing CDSN mutations identified heretofore result in total corneodesmosin loss, suggesting that PSD is due to full corneodesmosin deficiency. Here, we show for the first time that a mutant corneodesmosin can be stably expressed in some patients with PSD, and that this truncated protein is very probably nonfunctional. © 2013 British Association of Dermatologists.

  12. Association of BRAFV600E Mutation and MicroRNA Expression with Central Lymph Node Metastases in Papillary Thyroid Cancer: A Prospective Study from Four Endocrine Surgery Centers

    OpenAIRE

    Aragon Han, Patricia; Kim, Hyun-seok; Cho, Soonweng; Fazeli, Roghayeh; Najafian, Alireza; Khawaja, Hunain; McAlexander, Melissa; Dy, Benzon; Sorensen, Meredith; Aronova, Anna; Sebo, Thomas J.; Giordano, Thomas J.; Fahey, Thomas J.; Thompson, Geoffrey B.; Gauger, Paul G.

    2016-01-01

    Background: Studies have demonstrated an association of the BRAFV600E mutation and microRNA (miR) expression with aggressive clinicopathologic features in papillary thyroid cancer (PTC). Analysis of BRAFV600E mutations with miR expression data may improve perioperative decision making for patients with PTC, specifically in identifying patients harboring central lymph node metastases (CLNM).

  13. Epidermal growth factor receptor (EGFR mutations and expression in squamous cell carcinoma of the esophagus in central Asia

    Directory of Open Access Journals (Sweden)

    Abedi-Ardekani Behnoush

    2012-12-01

    Full Text Available Abstract Background Esophageal squamous cell carcinoma (ESCC shows geographic variations in incidence, with high incidences (>50/105 person-years in central Asia, including North Eastern Iran (Golestan and Northern India (Kashmir. In contrast to Western countries, smoking does not appear to be a significant risk factor for ESCC in central Asia. In lung adenocarcinoma, activating mutations in the gene encoding epidermal growth factor receptor (EGFR are frequent in tumors of never smokers of Asian origin, predicting therapeutic sensitivity to Egfr-targeting drugs. Methods In this study 152 cases of histologically confirmed ESCC from Iran (Tehran and Golestan Province and North India (Kashmir Valley have been analyzed for EGFR mutation by direct sequencing of exons 18–21. Egfr protein expression was evaluated by immunohistochemistry in 34 samples from Tehran and HER2 mutations were analyzed in 54 cases from Kashmir. Results A total of 14 (9.2% EGFR variations were detected, including seven variations in exons. Among those, four (2.6% were already documented in lung cancers, two were reported as polymorphisms and one was a potentially new activating mutation. All but one variation in introns were previously identified as polymorphisms. Over-expression of Egfr was detected in 22/34 (65% of tested cases whereas no HER2 mutation was found in 54 cases from Kashmir. Conclusion Overall, EGFR mutations appear to be a rare event in ESCC in high incidence areas of central Asia, although a very small proportion of cases may harbor mutations predicting sensitivity to anti-Egfr drugs.

  14. Form-deprivation myopia induces decreased expression of bone morphogenetic protein-2, 5 in guinea pig sclera

    Directory of Open Access Journals (Sweden)

    Qing Wang

    2015-02-01

    Full Text Available AIM: To identify the presence of various bone morphogenetic proteins (BMPs and their receptors in normal sclera of human, rat and guinea pigs, and to determine whether their expression changed with form-deprivation myopia (FDM in guinea pig sclera. METHODS: The expression of BMPs and BMP receptors were detected using reverse transcription polymerase chain reaction (RT-PCR and immunofluorescence. Two-week-old guinea pigs were monocularly form-deprived with a translucent lens. After fourteen days induction of FDM, total RNA was isolated and subjected to RT-PCR to examine the changes of BMPs and BMP receptors in tissues from the posterior sclera. Western blotting analysis was used to investigate their changes in protein levels. RESULTS: Human sclera expressed mRNAs for BMP-2, -4, -5, -7, -RIA, -RIB and BMP-RII. Conversely, rat sclera only expressed mRNA for BMP-7 and BMP-RIB, while the expression of BMPs and BMP receptors in guinea pigs were similar to that of humans. Human sclera also expresses BMP-2, -4, -5,-7 in protein level. Fourteen days after the induction of myopia, significant decreased expressions for BMP-2 and BMP-5 in the posterior sclera of FDM-affected eyes (PCONCLUSION: Various BMPs were expressed in human and guinea pig sclera. In the posterior sclera, expressions of BMP-2 and BMP-5 significantly decreased in FDM eyes. This finding indicates that various BMPs as components of the scleral cytokines regulating tissue homeostasis and provide evidence that alterations in the expression of BMP-2 and BMP-5 are associated with sclera remodeling during myopia induction.

  15. Mutations in the FHA-domain of ectopically expressed NBS1 lead to radiosensitization and to no increase in somatic mutation rates via a partial suppression of homologous recombination

    International Nuclear Information System (INIS)

    Ohara, Maki; Funyu, Yumi; Ebara, Shunsuke

    2014-01-01

    Ionizing radiation induces DNA double-strand breaks (DSBs). Mammalian cells repair DSBs through multiple pathways, and the repair pathway that is utilized may affect cellular radiation sensitivity. In this study, we examined effects on cellular radiosensitivity resulting from functional alterations in homologous recombination (HR). HR was inhibited by overexpression of the forkhead-associated (FHA) domain-mutated NBS1 (G27D/R28D: FHA-2D) protein in HeLa cells or in hamster cells carrying a human X-chromosome. Cells expressing FHA-2D presented partially (but significantly) HR-deficient phenotypes, which were assayed by the reduction of gene conversion frequencies measured with a reporter assay, a decrease in radiation-induced Mre11 foci formation, and hypersensitivity to camptothecin treatments. Interestingly, ectopic expression of FHA-2D did not increase the frequency of radiation-induced somatic mutations at the HPRT locus, suggesting that a partial reduction of HR efficiency has only a slight effect on genomic stability. The expression of FHA-2D rendered the exponentially growing cell population slightly (but significantly) more sensitive to ionizing radiation. This radiosensitization effect due to the expression of FHA-2D was enhanced when the cells were irradiated with split doses delivered at 24-h intervals. Furthermore, enhancement of radiation sensitivity by split dose irradiation was not seen in contact-inhibited G0/G1 populations, even though the cells expressed FHA-2D. These results suggest that the FHA domain of NBS1 might be an effective molecular target that can be used to induce radiosensitization using low molecular weight chemicals, and that partial inhibition of HR might improve the effectiveness of cancer radiotherapy. (author)

  16. Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival

    Science.gov (United States)

    Elsing, Alexandra N.; Aspelin, Camilla; Björk, Johanna K.; Bergman, Heidi A.; Himanen, Samu V.; Kallio, Marko J.; Roos-Mattjus, Pia

    2014-01-01

    Unless mitigated, external and physiological stresses are detrimental for cells, especially in mitosis, resulting in chromosomal missegregation, aneuploidy, or apoptosis. Heat shock proteins (Hsps) maintain protein homeostasis and promote cell survival. Hsps are transcriptionally regulated by heat shock factors (HSFs). Of these, HSF1 is the master regulator and HSF2 modulates Hsp expression by interacting with HSF1. Due to global inhibition of transcription in mitosis, including HSF1-mediated expression of Hsps, mitotic cells are highly vulnerable to stress. Here, we show that cells can counteract transcriptional silencing and protect themselves against proteotoxicity in mitosis. We found that the condensed chromatin of HSF2-deficient cells is accessible for HSF1 and RNA polymerase II, allowing stress-inducible Hsp expression. Consequently, HSF2-deficient cells exposed to acute stress display diminished mitotic errors and have a survival advantage. We also show that HSF2 expression declines during mitosis in several but not all human cell lines, which corresponds to the Hsp70 induction and protection against stress-induced mitotic abnormalities and apoptosis. PMID:25202032

  17. Inhibition of macrophage migration inhibitory factor decreases proliferation and cytokine expression in bladder cancer cells

    Directory of Open Access Journals (Sweden)

    Leifheit Erica C

    2004-07-01

    Full Text Available Abstract Background The importance of various inflammatory cytokines in maintaining tumor cell growth and viability is well established. Increased expression of the proinflammatory cytokine macrophage migration inhibitory factor (MIF has previously been associated with various types of adenocarcinoma. Methods MIF IHC was used to localize MIF in human bladder tissue. ELISA and Western blot analysis determined the synthesis and secretion of MIF by human bladder transitional cell carcinoma cells. The effects of MIF inhibitors (high molecular weight hyaluronate (HA, anti-MIF antibody or MIF anti-sense on cell growth and cytokine expression were analyzed. Results Human bladder cancer cells (HT-1376 secrete detectable amounts of MIF protein. Treatment with HA, anti-MIF antibody and MIF anti-sense reduced HT-1376 cell proliferation, MIF protein secretion, MIF gene expression and secreted inflammatory cytokines. Our evidence suggests MIF interacts with the invariant chain, CD74 and the major cell surface receptor for HA, CD44. Conclusions This study is the first to report MIF expression in the human bladder and these findings support a role for MIF in tumor cell proliferation. Since MIF participates in the inflammatory response and bladder cancer is associated with chronic inflammatory conditions, these new findings suggest that neutralizing bladder tumor MIF may serve as a novel therapeutic treatment for bladder carcinoma.

  18. Inhibition of macrophage migration inhibitory factor decreases proliferation and cytokine expression in bladder cancer cells

    International Nuclear Information System (INIS)

    Meyer-Siegler, Katherine L; Leifheit, Erica C; Vera, Pedro L

    2004-01-01

    The importance of various inflammatory cytokines in maintaining tumor cell growth and viability is well established. Increased expression of the proinflammatory cytokine macrophage migration inhibitory factor (MIF) has previously been associated with various types of adenocarcinoma. MIF IHC was used to localize MIF in human bladder tissue. ELISA and Western blot analysis determined the synthesis and secretion of MIF by human bladder transitional cell carcinoma cells. The effects of MIF inhibitors (high molecular weight hyaluronate (HA), anti-MIF antibody or MIF anti-sense) on cell growth and cytokine expression were analyzed. Human bladder cancer cells (HT-1376) secrete detectable amounts of MIF protein. Treatment with HA, anti-MIF antibody and MIF anti-sense reduced HT-1376 cell proliferation, MIF protein secretion, MIF gene expression and secreted inflammatory cytokines. Our evidence suggests MIF interacts with the invariant chain, CD74 and the major cell surface receptor for HA, CD44. This study is the first to report MIF expression in the human bladder and these findings support a role for MIF in tumor cell proliferation. Since MIF participates in the inflammatory response and bladder cancer is associated with chronic inflammatory conditions, these new findings suggest that neutralizing bladder tumor MIF may serve as a novel therapeutic treatment for bladder carcinoma

  19. Complement factor H deficiency results in decreased neuroretinal expression of Cd59a in aged mice

    DEFF Research Database (Denmark)

    Faber, Carsten; Williams, Jennifer; Juel, Helene Bæk

    2012-01-01

    Purpose. The complement system is closely linked to the pathogenesis of AMD. Several complement genes are expressed in RPE, and complement proteins accumulate in drusen. Further, a common variant of complement factor H (CFH) confers increased risk of developing AMD. Because the mechanisms by which...

  20. Decreased expression of natriuretic peptides associated with lipid accumulation in cardiac ventricle of obese mice

    DEFF Research Database (Denmark)

    Bartels, E.D.; Nielsen, J.M.; Bisgaard, L.S.

    2010-01-01

    % (P depression of ANP mRNA expression in cultured HL-1 atrial myocytes. The data suggest that obesity and altered cardiac lipid metabolism are associated with reduced production of ANP and BNP in the cardiac ventricles in the setting of normal as well as impaired cardiac function....

  1. PTEN-induction in U251 glioma cells decreases the expression of insulin-like growth factor binding protein-2

    International Nuclear Information System (INIS)

    Levitt, Randy J.; Georgescu, Maria-Magdalena; Pollak, Michael

    2005-01-01

    PTEN is a tumor suppressor gene whose loss of function is observed in ∼40-50% of human cancers. Although insulin-like growth factor binding protein-2 (IGFBP-2) was classically described as a growth inhibitor, multiple recent reports have shown an association of overexpression and/or high serum levels of IGFBP-2 with poor prognosis of several malignancies, including gliomas. Using an inducible PTEN expression system in the PTEN-null glioma cell line U251, we demonstrate that PTEN-induction is associated with reduced proliferation, increased apoptosis, and a substantial reduction of the high levels of IGFBP-2 expression. The PTEN-induced decrease in IGFBP-2 expression could be mimicked with the PI3-kinase inhibitor LY294002, indicating that the lipid phosphatase activity of PTEN is responsible for the observed effect. However, the rapamycin analog CCI-779 did not affect IGFBP-2 expression, suggesting that the PTEN-induced decrease in IGFBP-2 expression is not attributable to decreased mTOR signalling. Recombinant human IGFBP-2 was unable to rescue U251-PTEN cells from the antiproliferative effects of PTEN, and IGFBP-2 siRNA did not affect the IGF-dependent or -independent growth of this cell line. These results suggest that the clinical data linking IGFBP-2 expression to poor prognosis may arise, at least in part, because high levels of IGFBP-2 expression correlate with loss of function of PTEN, which is well known to lead to aggressive behavior of gliomas. Our results motivate translational research regarding the relationship between IGFBP-2 expression and loss of function of PTEN

  2. Changes of tumorigenicity and gene expressions of melanoma cells mutated in outer space

    International Nuclear Information System (INIS)

    Xiang Qing; Xu Mei; Xiao Cheng; Xu Bo; Li Hongyan; Geng Chuanying; Pan Lin; Fang Qing; Guo Yupeng; Tang Jingtian

    2006-01-01

    Objective: To screen the cell lines with decreased tumorigenicity, and identify those genes related to the development and metastasis of melanoma. Methods: The murine melanoma B16 cells were carried into the outer space by No. 20 retrievable satellite, and the survival cells were cloned after returned to earth. Five monoclonal cell lines(No.1, No.5, No.6, No.7, No.8) were utilized for further study. The cells were injected into C57BL/6J mice subcutaneously and abdominally respectively, then tumor-free time and survival time were recorded, tumor lumps were examined by routine pathological method. Gene chips were used to detect the gene expressions in 2 cell lines(No.1, No.8)with decreased tumorigenicity. Results: Compared with the control group, the tumor-free time was longer for No.1 cell lines (P<0.05). The survival time was significantly increased (P<0.01) and the weights of tumors were significantly decreased (P<0.01) for both No.1 and No.8 cell lines. The lymphocytes were infiltrated into tumors and adjacent tissues in those mice injected with No.1 and No.8 cell lines. Changes in 145 gene expressions were identified in No.1 cell lines, and 124 genes in No.8 cell lines (P<0.05), 9 genes of them were common to both cell lines. Furthermore, prostaglandin D2 synthase gene was markedly upregulated. Conclusion: The study implied that the decrease of tumorigenicity was related to the changes of carcinoma-associated gene expressions. (authors)

  3. Decreased triadin and increased calstabin2 expression in Great Danes with dilated cardiomyopathy.

    Science.gov (United States)

    Oyama, M A; Chittur, S V; Reynolds, C A

    2009-01-01

    Dilated cardiomyopathy (DCM) is a common cardiac disease of Great Dane dogs, yet very little is known about the underlying molecular abnormalities that contribute to disease. Discover a set of genes that are differentially expressed in Great Dane dogs with DCM as a way to identify candidate genes for further study as well as to better understand the molecular abnormalities that underlie the disease. Three Great Dane dogs with end-stage DCM and 3 large breed control dogs. Prospective study. Transcriptional activity of 42,869 canine DNA sequences was determined with a canine-specific oligonucleotide microarray. Genome expression patterns of left ventricular tissue samples from affected Great Dane dogs were evaluated by measuring the relative amount of complementary RNA hybridization to the microarray probes and comparing it with expression from large breed dogs with noncardiac disease. Three hundred and twenty-three transcripts were differentially expressed (> or = 2-fold change). The transcript with the greatest degree of upregulation (+61.3-fold) was calstabin2 (FKBP12.6), whereas the transcript with the greatest degree of downregulation (-9.07-fold) was triadin. Calstabin2 and triadin are both regulatory components of the cardiac ryanodine receptor (RyR2) and are critical to normal intracellular Ca2+ release and excitation-contraction coupling. Great Dane dogs with DCM demonstrate abnormal calstabin2 and triadin expression. These changes likely affect Ca2+ flux within cardiac cells and may contribute to the pathophysiology of disease. Microarray-based analysis identifies calstabin2, triadin, and RyR2 function as targets of future study.

  4. Activation of p44/42 in Human Natural Killer Cells Decreases Cell-surface Protein Expression: Relationship to Tributyltin-induced alterations of protein expression

    Science.gov (United States)

    Dudimah, Fred D.; Abraha, Abraham; Wang, Xiaofei; Whalen, Margaret M.

    2010-01-01

    Tributyltin (TBT) activates the mitogen activated protein kinase (MAPK), p44/42 in human natural killer (NK) cells. TBT also reduces NK cytotoxic function and decreases the expression of several NK-cell proteins. To understand the role that p44/42 activation plays in TBT-induced loss of NK cell function, we have investigated how selective activation of p44/42 by phorbol 12-myristate 13-acetate (PMA) affects NK cells. Previously we showed that PMA caused losses of lytic function similar to those seen with TBT exposures. Here we examined activation of p44/42 in the regulation of NK-cell protein expression and how this regulation may explain the protein expression changes seen with TBT exposures. NK cells exposed to PMA were examined for levels of cell-surface proteins, granzyme mRNA, and perforin mRNA expression. The expression of CD11a, CD16, CD18, and CD56 were reduced, perforin mRNA levels were unchanged and granzyme mRNA levels were increased. To verify that activation of p44/42 was responsible for the alterations seen in CD11a, CD16, CD18, and CD56 with PMA, NK cells were treated with the p44/42 pathway inhibitor (PD98059) prior to PMA exposures. In the presence of PD98059, PMA caused no decreases in the expression of the cell-surface proteins. Results of these studies indicate that the activation of p44/42 may lead to the loss of NK cell cytotoxic function by decreasing the expression of CD11a, CD16, CD18, and CD56. Further, activation of p44/42 appears to be at least in part responsible for the TBT-induced decreases in expression of CD16, CD18, and CD56. PMID:20883105

  5. Cocoa Enriched Diets Enhance Expression of Phosphatases and Decrease Expression of Inflammatory Molecules in Trigeminal Ganglion Neurons

    Science.gov (United States)

    Cady, Ryan J.; Durham, Paul L.

    2010-01-01

    Activation of trigeminal nerves and release of neuropeptides that promote inflammation are implicated in the underlying pathology of migraine and temporomandibular joint (TMJ) disorders. The overall response of trigeminal nerves to peripheral inflammatory stimuli involves a balance between enzymes that promote inflammation, kinases, and those that restore homeostasis, phosphatases. The goal of this study was to determine the effects of a cocoa-enriched diet on the expression of key inflammatory proteins in trigeminal ganglion neurons under basal and inflammatory conditions. Rats were fed a control diet or an isocaloric diet enriched in cocoa for 14 days prior to an injection of noxious stimuli to cause acute or chronic excitation of trigeminal neurons. In animals fed a cocoa-enriched diet, basal levels of the mitogen-activated kinase (MAP) phosphatases MKP-1 and MKP-3 were elevated in neurons. Importantly, the stimulatory effects of acute or chronic peripheral inflammation on neuronal expression of the MAPK p38 and extracellular signal-regulated kinases (ERK) were significantly repressed in response to cocoa. Similarly, dietary cocoa significantly suppressed basal neuronal expression of calcitonin gene-related peptide (CGRP) as well as stimulated levels of the inducible form of nitric oxide synthase (iNOS), proteins implicated in the underlying pathology of migraine and TMJ disorders. To our knowledge, this is first evidence that a dietary supplement can cause upregulation of MKP, and that cocoa can prevent inflammatory responses in trigeminal ganglion neurons. Furthermore, our data provide evidence that cocoa contains biologically active compounds that would be beneficial in the treatment of migraine and TMJ disorders. PMID:20138852

  6. Consequences of Marfan mutations to expression of fibrillin gene and to the structure of microfibrils

    Energy Technology Data Exchange (ETDEWEB)

    Peltonen, L.; Karttunen, L.; Rantamaeki, T. [NPHI, Helsinki (Finland)] [and others

    1994-09-01

    Marfan syndrome (MFS) is a dominantly inherited connective tissue disorder which is caused by mutations in the fibrillin-1 gene (FBN1). Over 40 family-specific FBN1 mutations have been identified. We have characterized 18 different heterozygous mutations including amino acid substitutions, premature stop, and splicing defects leading to deletions or one insertion, and one compound heterozygote with two differently mutated FBN1 alleles inherited from his affected parents. To unravel the consequences of FBN1 mutations to the transcription of FBN1 gene, we have measured the steady state levels of mRNA transcribed from the normal and mutated alleles. The missense mutations do not affect the transcription of the allele while the nonsense mutation leads to lower steady state amount of mutated allele. For the dissection of molecular pathogenesis of FBN1 mutations we have performed rotary shadowing of the microfibrils produced by the cell cultures from MFS patients. The cells from the neonatal patients with established mutations produced only disorganized fibrillin aggregates but no clearly defined microfibrils could be detected, suggesting a major role of this gene region coding for exons 24-26 in stabilization and organization of the bead structure of microfibrils. From the cells of a rare compound heterozygote case carrying two different mutations, no detectable microfibrils could be detected whereas the cells of his parents with heterozygous mutations were able to form identifiable but disorganized microfibrils. In the cells of an MFS case caused by a premature stop removing the C-terminus of fibrillin, the microfibril assembly takes place but the appropriate packing of the microfibrils is disturbed suggesting that C-terminae are actually located within the interbead domain of the microfibrils.

  7. Ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory chemokine ligand 2 gene in humans

    Directory of Open Access Journals (Sweden)

    Fischer Alexandra

    2012-10-01

    Full Text Available Abstract Background Coenzyme Q10 is an essential cofactor in the respiratory chain and serves in its reduced form, ubiquinol, as a potent antioxidant. Studies in vitro and in vivo provide evidence that ubiquinol reduces inflammatory processes via gene expression. Here we investigate the putative link between expression and DNA methylation of ubiquinol sensitive genes in monocytes obtained from human volunteers supplemented with 150 mg/ day ubiquinol for 14 days. Findings Ubiquinol decreases the expression of the pro-inflammatory chemokine (C-X-C motif ligand 2 gene (CXCL2 more than 10-fold. Bisulfite-/ MALDI-TOF-based analysis of regulatory regions of the CXCL2 gene identified six adjacent CpG islands which showed a 3.4-fold decrease of methylation status after ubiquinol supplementation. This effect seems to be rather gene specific, because ubiquinol reduced the expression of two other pro-inflammatory genes (PMAIP1, MMD without changing the methylation pattern of the respective gene. Conclusion In conclusion, ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory CXCL2 gene in humans. Current Controlled Trials ISRCTN26780329.

  8. Minoxidil specifically decreases the expression of lysine hydroxylase in cultured human skin fibroblasts.

    Science.gov (United States)

    Hautala, T; Heikkinen, J; Kivirikko, K I; Myllylä, R

    1992-01-01

    The levels of lysine hydroxylase protein and the levels of the mRNAs for lysine hydroxylase and the alpha- and beta-subunits of proline 4-hydroxylase were measured in cultured human skin fibroblasts treated with 1 mM-minoxidil. The data demonstrate that minoxidil decreases the amount of lysine hydroxylase protein, this being due to a decrease in the level of lysine hydroxylase mRNA. The effect of minoxidil appears to be highly specific, as no changes were observed in the amounts of mRNAs for the alpha- and beta-subunits of proline 4-hydroxylase. Images Fig. 1. Fig. 2. Fig. 3. PMID:1314568

  9. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma

    KAUST Repository

    Lissanu Deribe, Yonathan

    2016-03-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2E824*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57KIP2). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  10. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma.

    Science.gov (United States)

    Lissanu Deribe, Yonathan; Shi, Yanxia; Rai, Kunal; Nezi, Luigi; Amin, Samir B; Wu, Chia-Chin; Akdemir, Kadir C; Mahdavi, Mozhdeh; Peng, Qian; Chang, Qing Edward; Hornigold, Kirsti; Arold, Stefan T; Welch, Heidi C E; Garraway, Levi A; Chin, Lynda

    2016-03-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2(E824)*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57(KIP2)). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  11. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma

    KAUST Repository

    Lissanu Deribe, Yonathan; Shi, Yanxia; Rai, Kunal; Nezi, Luigi; Amin, Samir B.; Wu, Chia-Chin; Akdemir, Kadir C.; Mahdavi, Mozhdeh; Peng, Qian; Chang, Qing Edward; Hornigold, Kirsti; Arold, Stefan T.; Welch, Heidi C. E.; Garraway, Levi A.; Chin, Lynda

    2016-01-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2E824*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57KIP2). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  12. The ordering of expression among a few genes can provide simple cancer biomarkers and signal BRCA1 mutations

    Directory of Open Access Journals (Sweden)

    Parmigiani Giovanni

    2009-08-01

    Full Text Available Abstract Background A major challenge in computational biology is to extract knowledge about the genetic nature of disease from high-throughput data. However, an important obstacle to both biological understanding and clinical applications is the "black box" nature of the decision rules provided by most machine learning approaches, which usually involve many genes combined in a highly complex fashion. Achieving biologically relevant results argues for a different strategy. A promising alternative is to base prediction entirely upon the relative expression ordering of a small number of genes. Results We present a three-gene version of "relative expression analysis" (RXA, a rigorous and systematic comparison with earlier approaches in a variety of cancer studies, a clinically relevant application to predicting germline BRCA1 mutations in breast cancer and a cross-study validation for predicting ER status. In the BRCA1 study, RXA yields high accuracy with a simple decision rule: in tumors carrying mutations, the expression of a "reference gene" falls between the expression of two differentially expressed genes, PPP1CB and RNF14. An analysis of the protein-protein interactions among the triplet of genes and BRCA1 suggests that the classifier has a biological foundation. Conclusion RXA has the potential to identify genomic "marker interactions" with plausible biological interpretation and direct clinical applicability. It provides a general framework for understanding the roles of the genes involved in decision rules, as illustrated for the difficult and clinically relevant problem of identifying BRCA1 mutation carriers.

  13. LPL gene expression is associated with poor prognosis in CLL and closely related to NOTCH1 mutations

    DEFF Research Database (Denmark)

    Kristensen, Louise; Kielsgaard Kristensen, Thomas; Abildgaard, Niels

    2016-01-01

    these markers. AIM: To evaluate LPL gene expression together with the well-established prognostic markers of CLL and investigate correlations with more recently identified prognostic markers, NOTCH1 and TP53 mutations. METHODS: On 149 patients LPL gene expression was analyzed by real-time RT-PCR. Exon 34...... of NOTCH1 was PCR amplified and directly sequenced. RESULTS: LPL gene expression could be measured as a categorical variable (LPL+/LPL-) and was associated with time to treatment (p... and new prognostic markers, 3 out of 4 patients, who received treatment within 24 months after diagnosis, were LPL+ (p=0.03). There was a strong correlation between NOTCH1 mutation and LPL+ (p=0.005). The unfavorable prognosis of LPL+ was maintained in CLL with wild-type NOTCH1. CONCLUSIONS: NOTCH1...

  14. Decreased expression of thyroid receptor-associated protein 220 in temporal lobe tissue of patients with refractory epilepsy

    International Nuclear Information System (INIS)

    Li Jinmei; Wang Xuefeng; Xi Zhiqin; Gong Yun; Liu Fengying; Sun Jijun; Wu Yuan; Luan Guoming; Wang Yuping; Li Yunlin; Zhang Jianguo; Lu Yong; Li Hongwei

    2006-01-01

    Purpose: TRAP220 (thyroid hormone receptor-associated protein) functions as a coactivator for nuclear receptors and stimulates transcription by recruiting the TRAP mediator complex to hormone responsive promoter regions. Thus, TRAP220 enhances the function of thyroid/steroid hormone receptors such as thyroid hormone and oestrogen receptors. This study investigated the expression of TRAP220 mRNA and protein level in epileptic brains comparing with human control. Methods: We examined the expression of TRAP220 mRNA and protein levels in temporal lobes from patients with chronic pharmacoresistant epilepsy who have undergone surgery. Results: Expression of TRAP220 mRNA and protein was shown to be decreased significantly in the temporal cortex of the patients with epilepsy. Conclusions: Our work showed that a decrease in TRAP220 mRNA and protein levels may be involved in the pathophysiology of epilepsy and may be associated with impairment of the brain caused by frequent seizures

  15. Perinatal phencyclidine administration decreases the density of cortical interneurons and increases the expression of neuregulin-1.

    Science.gov (United States)

    Radonjić, Nevena V; Jakovcevski, Igor; Bumbaširević, Vladimir; Petronijević, Nataša D

    2013-06-01

    Perinatal phencyclidine (PCP) administration in rat blocks the N-methyl D-aspartate receptor (NMDAR) and causes symptoms reminiscent of schizophrenia in human. A growing body of evidence suggests that alterations in γ-aminobutyric acid (GABA) interneuron neurotransmission may be associated with schizophrenia. Neuregulin-1 (NRG-1) is a trophic factor important for neurodevelopment, synaptic plasticity, and wiring of GABA circuits. The aim of this study was to determine the long-term effects of perinatal PCP administration on the projection and local circuit neurons and NRG-1 expression in the cortex and hippocampus. Rats were treated on postnatal day 2 (P2), P6, P9, and P12 with either PCP (10 mg/kg) or saline. Morphological studies and determination of NRG-1 expression were performed at P70. We demonstrate reduced densities of principal neurons in the CA3 and dentate gyrus (DG) subregions of the hippocampus and a reduction of major interneuronal populations in all cortical and hippocampal regions studied in PCP-treated rats compared with controls. For the first time, we show the reduced density of reelin- and somatostatin-positive cells in the cortex and hippocampus of animals perinatally treated with PCP. Furthermore, an increase in the numbers of perisomatic inhibitory terminals around the principal cells was observed in the motor cortex and DG. We also show that perinatal PCP administration leads to an increased NRG-1 expression in the cortex and hippocampus. Taken together, our findings demonstrate that perinatal PCP administration increases NRG-1 expression and reduces the number of projecting and local circuit neurons, revealing complex consequences of NMDAR blockade.

  16. Nedd4L expression is decreased in ovarian epithelial cancer tissues compared to ovarian non-cancer tissue.

    Science.gov (United States)

    Yang, Qiuyun; Zhao, Jinghe; Cui, Manhua; Gi, Shuting; Wang, Wei; Han, Xiaole

    2015-12-01

    Recent studies have demonstrated that the neural precursor cell expressed, developmentally downregulated 4-like (Nedd4L) gene plays a role in the progression of various cancers. However, reports describing Nedd4L expression in ovarian cancer tissues are limited. A cohort (n = 117) of archival formalin-fixed, paraffin embedded resected normal ovarian epithelial tissues (n = 10), benign ovarian epithelial tumor tissues (n = 10), serous borderline ovarian epithelial tumor tissues (n = 14), mucous borderline ovarian epithelial tumor tissues (n = 11), and invasive ovarian epithelial cancer tissues (n = 72) were assessed for Nedd4L protein expression using immunohistochemistry. Nedd4L protein expression was significantly decreased in invasive ovarian epithelial cancer tissues compared to non-cancer tissues (P < 0.05). Decreased Nedd4L protein expression correlated with clinical stage, pathological grade, lymph node metastasis and survival (P < 0.05). Nedd4L protein expression may be an independent prognostic marker of ovarian cancer development. © 2015 Japan Society of Obstetrics and Gynecology.

  17. Increased cystic fibrosis transmembrane conductance regulators expression and decreased epithelial sodium channel alpha subunits expression in early abortion: findings from a mouse model and clinical cases of abortion.

    Directory of Open Access Journals (Sweden)

    Min Zhou

    Full Text Available The status of the maternal endometrium is vital in regulating humoral homeostasis and for ensuring embryo implantation. Cystic fibrosis transmembrane conductance regulators (CFTR and epithelial sodium channel alpha subunits (ENaC-α play an important role in female reproduction by maintaining humoral and cell homeostasis. However, it is not clear whether the expression levels of CFTR and ENaC-α in the decidual component during early pregnancy are related with early miscarriage. CBA×DBA/2 mouse mating has been widely accepted as a classical model of early miscarriage. The abortion rate associated with this mating was 33.33% in our study. The decidua of abortion-prone CBA female mice (DBA/2 mated had higher CFTR mRNA and protein expression and lower ENaC-α mRNA and protein expression, compared to normal pregnant CBA mice (BLAB/C mated. Furthermore, increased CFTR expression and decreased ENaC-α expression were observed in the uterine tissue from women with early miscarriage, as compared to those with successful pregnancy. In conclusion, increased CFTR expression and decreased ENaC-α expression in the decidua of early abortion may relate with failure of early pregnancy.

  18. Cloning, expression and mutation of a triazophos hydrolase gene from Burkholderia sp. SZL-1.

    Science.gov (United States)

    Zhang, Hao; Li, Qiang; Guo, Su-Hui; Cheng, Ming-Gen; Zhao, Meng-Jun; Hong, Qing; Huang, Xing

    2016-06-01

    Triazophos is a broad-spectrum and highly effective insecticide, and the residues of triazophos have been frequently detected in the environment. A triazophos-degrading bacterium, Burkholderia sp. SZL-1, was isolated from a long-term triazophos-polluted soil. Strain SZL-1 could hydrolyze triazophos to 1-phenyl-3-hydroxy-1,2,4-triazole, which was further utilized as the carbon sources for growth. The triazophos hydrolase gene trhA, cloned from strain SZL-1, was expressed and homogenously purified using Ni-nitrilotriacetic acid affinity chromatography. TrhA is 55 kDa and displays maximum activity at 25°C, pH 8.0. This enzyme still has nearly 60% activity at the range of 15°C-50°C for 30 min. TrhA was mutated by sequential error prone PCR and screened for improved activity for triazophos degradation. One purified variant protein (Val89-Gly89) named TrhA-M1 showed up to 3-fold improvement in specific activity against triazophos, and the specificity constants of Kcat and Kcat/Km for TrhA-M1 were improved up to 2.3- and 8.28-fold, respectively, compared to the wild-type enzyme. The results in this paper provided potential material for the contaminated soil remediation and hydrolase genetic structure research. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Bacterial Expression of Mouse Argonaute 2 for Functional and Mutational Studies

    Directory of Open Access Journals (Sweden)

    Aniello Russo

    2010-02-01

    Full Text Available RNA interference (RNAi is a post-transcriptional gene-silencing process that occurs in many eukaryotic organisms upon intracellular exposure to double-stranded RNA. Argonaute 2 (Ago2 protein is the catalytic engine of mammalian RNAi. It contains a PIWI domain that is structurally related to RNases H and possibly shares with them a two-metal-ion catalysis mechanism. Here we describe the expression in E. coli of mouse Ago2 and testing of its enzymatic activity in a RISC assay, i.e., for the ability to cleave a target RNA in a single position specified by a complementary small interfering RNA (siRNA. The results show that the enzyme can load the siRNA and cleave the complementary RNA in absence of other cellular factors, as described for human Ago2. It was also found that mutation of Arg669, a residue previously proposed to be involved in substrate and/or B metal ion binding, doesn’t affect the enzymatic activity, suggesting that this residue doesn’t belong to the active site.

  20. Dietary Lecithin Decreases Skeletal Muscle COL1A1 and COL3A1 Gene Expression in Finisher Gilts

    Directory of Open Access Journals (Sweden)

    Henny Akit

    2016-06-01

    Full Text Available The purpose of this study was to investigate the effect of dietary lecithin on skeletal muscle gene expression of collagen precursors and enzymes involved in collagen synthesis and degradation. Finisher gilts with an average start weight of 55.9 ± 2.22 kg were fed diets containing either 0, 4, 20 or 80 g/kg soybean lecithin prior to harvest for six weeks and the rectus abdominis muscle gene expression profile was analyzed by quantitative real-time PCR. Lecithin treatment down-regulated Type I (α1 procollagen (COL1A1 and Type III (α1 procollagen (COL3A1 mRNA expression ( p < 0.05, respectively, indicating a decrease in the precursors for collagen synthesis. The α-subunit of prolyl 4-hydroxylase (P4H mRNA expression also tended to be down-regulated ( p = 0.056, indicating a decrease in collagen synthesis. Decreased matrix metalloproteinase-1 (MMP-1 mRNA expression may reflect a positive regulatory response to the reduced collagen synthesis in muscle from the pigs fed lecithin ( p = 0.035. Lecithin had no effect on tissue inhibitor metalloproteinase-1 (TIMP-1, matrix metalloproteinase-13 (MMP-13 and lysyl oxidase mRNA expression. In conclusion, lecithin down-regulated COL1A1 and COL3A1 as well as tended to down-regulate α-subunit P4H expression. However, determination of muscle collagen content and solubility are required to support the gene functions.

  1. Over-expression of SlJA2 decreased heat tolerance of transgenic tobacco plants via salicylic acid pathway.

    Science.gov (United States)

    Liu, Zhong-Ming; Yue, Meng-Meng; Yang, Dong-Yue; Zhu, Shao-Bo; Ma, Na-Na; Meng, Qing-Wei

    2017-04-01

    Over-expression of SlJA2 decreased the accumulation of SA, which resulted in significant physiological and gene expression changes in transgenic tobacco plants, leading to the decreased heat tolerance of transgenic tobacco. NAC family, the largest transcription factors in plants, responses to different environmental stimuli. Here, we isolated a typical NAC transcription factor (SlJA2) from tomato and got transgenic tobacco with SlJA2 over-expression. Expression of SlJA2 was induced by heat stress (42 °C), chilling stress (4 °C), drought stress, osmotic stress, abscisic acid, and salicylic acid. Over-expression of SlJA2 decreased the accumulation of salicylic acid by regulating expression of salicylic acid degradation gene under heat stress. Compared to WT plants, stomatal apertures and water loss increased in transgenic plants, and the damage of photosynthetic apparatus and chlorophyll breakdown were more serious in transgenic plants under heat stress. Meanwhile, more H 2 O 2 and O 2 ·- were accumulated transgenic plants and proline synthesis was restricted, which resulted in more serious oxidative damage compared to WT. qRT-PCR analysis showed that over-expression of SlJA2 could down-regulate genes involved in reactive oxygen species scavenging, proline biosynthesis, and response to heat stress. All the above results indicated that SlJA2 may be a negative regulator responded to plant's heat tolerance. Thus, this study provides new insight into roles of NAC family member in plant response to abiotic stress.

  2. Decreased calcium pump expression in human erythrocytes is connected to a minor haplotype in the ATP2B4 gene.

    Science.gov (United States)

    Zámbó, Boglárka; Várady, György; Padányi, Rita; Szabó, Edit; Németh, Adrienn; Langó, Tamás; Enyedi, Ágnes; Sarkadi, Balázs

    2017-07-01

    Plasma membrane Ca 2+ -ATPases are key calcium exporter proteins in most tissues, and PMCA4b is the main calcium transporter in the human red blood cells (RBCs). In order to assess the expression level of PMCA4b, we have developed a flow cytometry and specific antibody binding method to quantitatively detect this protein in the erythrocyte membrane. Interestingly, we found several healthy volunteers showing significantly reduced expression of RBC-PMCA4b. Western blot analysis of isolated RBC membranes confirmed this observation, and indicated that there are no compensatory alterations in other PMCA isoforms. In addition, reduced PMCA4b levels correlated with a lower calcium extrusion capacity in these erythrocytes. When exploring the potential genetic background of the reduced PMCA4b levels, we found no missense mutations in the ATP2B4 coding regions, while a formerly unrecognized minor haplotype in the predicted second promoter region closely correlated with lower erythrocyte PMCA4b protein levels. In recent GWA studies, SNPs in this ATP2B4 haplotype have been linked to reduced mean corpuscular hemoglobin concentrations (MCHC), and to protection against malaria infection. Our data suggest that an altered regulation of gene expression is responsible for the reduced RBC-PMCA4b levels that is probably linked to the development of human disease-related phenotypes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Perspective-taking: decreasing stereotype expression, stereotype accessibility, and in-group favoritism.

    Science.gov (United States)

    Galinsky, A D; Moskowitz, G B

    2000-04-01

    Using 3 experiments, the authors explored the role of perspective-taking in debiasing social thought. In the 1st 2 experiments, perspective-taking was contrasted with stereotype suppression as a possible strategy for achieving stereotype control. In Experiment 1, perspective-taking decreased stereotypic biases on both a conscious and a nonconscious task. In Experiment 2, perspective-taking led to both decreased stereotyping and increased overlap between representations of the self and representations of the elderly, suggesting activation and application of the self-concept in judgments of the elderly. In Experiment 3, perspective-taking reduced evidence of in-group bias in the minimal group paradigm by increasing evaluations of the out-group. The role of self-other overlap in producing prosocial outcomes and the separation of the conscious, explicit effects from the nonconscious, implicit effects of perspective-taking are discussed.

  4. Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression

    DEFF Research Database (Denmark)

    Hamdi, Yosr; Soucy, Penny; Kuchenbaeker, Karoline B

    2017-01-01

    and ovarian cancer risks in 15,252 BRCA1 and 8211 BRCA2 mutation carriers ascertained from 54 studies participating in the Consortium of Investigators of Modifiers of BRCA1/2. RESULTS: We identified a region on 11q22.3 that is significantly associated with breast cancer risk in BRCA1 mutation carriers (most...... studies using estrogen receptor (ER)-negative or triple-negative (i.e., ER-, progesterone receptor-, and HER2-negative) cases could therefore be helpful to confirm the association of this locus with breast cancer risk.......1 and BRCA2 mutation carriers, a list of 175 genes was developed based of their involvement in cancer-related pathways. METHODS: Using data from a genome-wide map of SNPs associated with allelic expression, we assessed the association of ~320 SNPs located in the vicinity of these genes with breast...

  5. Dwarfism in homozygous Agc1CreERT mice is associated with decreased expression of aggrecan.

    Science.gov (United States)

    Rashid, Harunur; Chen, Haiyan; Hassan, Quamarul; Javed, Amjad

    2017-10-01

    Aggrecan (Acan), a large proteoglycan is abundantly expressed in cartilage tissue. Disruption of Acan gene causes dwarfism and perinatal lethality of homozygous mice. Because of sustained expression of Acan in the growth plate and articular cartilage, Agc Cre model has been developed for the regulated ablation of target gene in chondrocytes. In this model, the IRES-CreERT-Neo-pgk transgene is knocked-in the 3'UTR of the Acan gene. We consistently noticed variable weight and size among the Agc Cre littermates, prompting us to examine the cause of this phenotype. Wild-type, Cre-heterozygous (Agc +/Cre ), and Cre-homozygous (Agc Cre/Cre ) littermates were indistinguishable at birth. However, by 1-month, Agc Cre/Cre mice showed a significant reduction in body weight (18-27%) and body length (19-22%). Low body weight and dwarfism was sustained through adulthood and occurred in both genders. Compared with wild-type and Agc +/Cre littermates, long bones and vertebrae were shorter in Agc Cre/Cre mice. Histological analysis of Agc Cre/Cre mice revealed a significant reduction in the length of the growth plate and the thickness of articular cartilage. The amount of proteoglycan deposited in the cartilage of Agc Cre/Cre mice was nearly half of the WT littermates. Analysis of gene expression indicates impaired differentiation of chondrocyte in hyaline cartilage of Agc Cre/Cre mice. Notably, both Acan mRNA and protein was reduced by 50% in Agc Cre/Cre mice. A strong correlation was noted between the level of Acan mRNA and the body length. Importantly, Agc +/Cre mice showed no overt skeletal phenotype. Thus to avoid misinterpretation of data, only the Agc +/Cre mice should be used for conditional deletion of a target gene in the cartilage tissue. © 2017 Wiley Periodicals, Inc.

  6. Retrieval under stress decreases the long-term expression of a human declarative memory via reconsolidation.

    Science.gov (United States)

    Larrosa, Pablo Nicolás Fernández; Ojea, Alejandro; Ojea, Ignacio; Molina, Victor Alejandro; Zorrilla-Zubilete, María Aurelia; Delorenzi, Alejandro

    2017-07-01

    Acute stress impairs memory retrieval of several types of memories. An increase in glucocorticoids, several minutes after stressful events, is described as essential to the impairing retrieval-effects of stressors. Moreover, memory retrieval under stress can have long-term consequences. Through what process does the reactivated memory under stress, despite the disrupting retrieval effects, modify long-term memories? The reconsolidation hypothesis proposes that a previously consolidated memory reactivated by a reminder enters a vulnerability phase (labilization) during which it is transiently sensitive to modulation, followed by a re-stabilization phase. However, previous studies show that the expression of memories during reminder sessions is not a condition to trigger the reconsolidation process since unexpressed memories can be reactivated and labilized. Here we evaluate whether it is possible to reactivate-labilize a memory under the impairing-effects of a mild stressor. We used a paradigm of human declarative memory whose reminder structure allows us to differentiate between a reactivated-labile memory state and a reactivated but non-labile state. Subjects memorized a list of five cue-syllables associated with their respective response-syllables. Seventy-two hours later, results showed that the retrieval of the paired-associate memory was impaired when tested 20min after a mild stressor (cold pressor stress (CPS)) administration, coincident with cortisol levels increase. Then, we investigated the long-term effects of CPS administration prior to the reminder session. Under conditions where the reminder initiates the reconsolidation process, CPS impaired the long-term memory expression tested 24h later. In contrast, CPS did not show effects when administered before a reminder session that does not trigger reconsolidation. Results showed that memory reactivation-labilization occurs even when retrieval was impaired. Memory reactivation under stress could hinder

  7. Structural basis for decreased induction of class IB PI3-kinases expression by MIF inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Abhay Kumar [Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis MO USA; Pantouris, Georgios [Department of Pharmacology, Yale University School of Medicine, New Haven CT USA; Borosch, Sebastian [Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen Germany; Rojanasthien, Siripong [Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis MO USA; Cho, Thomas Yoonsang [Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis MO USA

    2016-09-13

    Macrophage migration inhibitory factor (MIF) is a master regulator of proinflammatory cytokines and plays pathological roles when not properly regulated in rheumatoid arthritis, lupus, atherosclerosis, asthma and cancer. Unlike canonical cytokines, MIF has vestigial keto-enol tautomerase activity. Most of the current MIF inhibitors were screened for the inhibition of this enzymatic activity. However, only some of the enzymatic inhibitors inhibit receptor-mediated biological functions of MIF, such as cell recruitment, through an unknown molecular mechanism. The goal of this study was to understand the molecular basis underlying the pharmacological inhibition of biological functions of MIF. Here, we demonstrate how the structural changes caused upon inhibitor binding translate into the alteration of MIF-induced downstream signalling. Macrophage migration inhibitory factor activates phosphoinositide 3-kinases (PI3Ks) that play a pivotal role in immune cell recruitment in health and disease. There are several different PI3K isoforms, but little is known about how they respond to MIF. We demonstrate that MIF up-regulates the expression of Class IB PI3Ks in leucocytes. We also demonstrate that MIF tautomerase active site inhibitors down-regulate the expression of Class IB PI3Ks as well as leucocyte recruitment in vitro and in vivo. Finally, based on our MIF:inhibitor complex crystal structures, we hypothesize that the reduction in Class IB PI3K expression occurs because of the displacement of Pro1 towards the second loop of MIF upon inhibitor binding, which results in increased flexibility of the loop 2 and sub-optimal MIF binding to its receptors. These results will provide molecular insights for fine-tuning the biological functions of MIF.

  8. The 3' region of Human Papillomavirus type 16 early mRNAs decrease expression

    DEFF Research Database (Denmark)

    Vinther, J.; Rosenstierne, M.W.; Kristiansen, Karen

    2005-01-01

    Background: High risk human papillomavirus (HR-HPV) infects mucosal surfaces and HR-HPV infection is required for development of cervical cancer. Accordingly, enforced expression of the early HR-HPV proteins can induce immortalisation of human cells. In most cervical cancers and cervical cancer...... cell lines the HR-HPV double stranded DNA genome has been integrated into the host cell genome. Methods: We have used a retroviral GUS reporter system to generate pools of stably transfected HaCaT and SiHa cells. The HPV-16 early sequences that are deleted upon integration of the HPV-16 genome...

  9. A Novel FOXE1 Mutation (R73S) in Bamforth–Lazarus Syndrome Causing Increased Thyroidal Gene Expression

    Science.gov (United States)

    Carré, Aurore; Hamza, Rasha T.; Kariyawasam, Dulanjalee; Guillot, Loïc; Teissier, Raphaël; Tron, Elodie; Castanet, Mireille; Dupuy, Corinne; El Kholy, Mohamed; Polak, Michel

    2014-01-01

    Background: Homozygous loss-of-function mutations in the FOXE1 gene have been reported in several patients with partial or complete Bamforth–Lazarus syndrome: congenital hypothyroidism (CH) with thyroid dysgenesis (usually athyreosis), cleft palate, spiky hair, with or without choanal atresia, and bifid epiglottis. Here, our objective was to evaluate potential functional consequences of a FOXE1 mutation in a patient with a similar clinical phenotype. Methods: FOXE1 was sequenced in eight patients with thyroid dysgenesis and cleft palate. Transient transfection was performed in HEK293 cells using the thyroglobulin (TG) and thyroid peroxidase (TPO) promoters in luciferase reporter plasmids to assess the functional impact of the FOXE1 mutations. Primary human thyrocytes transfected with wild type and mutant FOXE1 served to assess the impact of the mutation on endogenous TG and TPO expression. Results: We identified and characterized the function of a new homozygous FOXE1 missense mutation (p.R73S) in a boy with a typical phenotype (athyreosis, cleft palate, and partial choanal atresia). This new mutation located within the forkhead domain was inherited from the heterozygous healthy consanguineous parents. In vitro functional studies in HEK293 cells showed that this mutant gene enhanced the activity of the TG and TPO gene promoters (1.5-fold and 1.7-fold respectively vs. wild type FOXE1; p<0.05), unlike the five mutations previously reported in Bamforth–Lazarus syndrome. The gain-of-function effect of the FOXE1-p.R73S mutant gene was confirmed by an increase in endogenous TG production in primary human thyrocytes. Conclusion: We identified a new homozygous FOXE1 mutation responsible for enhanced expression of the TG and TPO genes in a boy whose phenotype is similar to that reported previously in patients with loss-of-function FOXE1 mutations. This finding further delineates the role for FOXE1 in both thyroid and palate development, and shows that enhanced gene

  10. TRPM8 axonal expression is decreased in painful human teeth with irreversible pulpitis and cold hyperalgesia

    Science.gov (United States)

    Alvarado, Lisa T.; Perry, Griffin M.; Hargreaves, Kenneth. M.; Henry, Michael A.

    2009-01-01

    Pulpitis pain may be triggered by a cold stimulus, yet the cellular mechanisms responsible for this phenomenon are largely unknown. One possible mechanism involves the direct activation of cold-responsive thermoreceptors. The purpose of this study was to evaluate the possible role of the TRPM8 thermoreceptor in cold-mediated noxious pulpal pain mechanisms by comparing expression patterns in pulpal nerves from healthy control molars to cold-sensitive painful molars with irreversible pulpitis. Samples were identically processed with the indirect immunofluorescence method and images obtained with confocal microscopy. The immunofluorescence intensity and area occupied by TRPM8 within N52/PGP9.5 identified nerve fibers were quantified. Results showed that relative to normal samples, TRPM8 nerve area expression was significantly less in the cold-sensitive painful samples (34.9% vs. 8%, p<0.03), but with no significant difference in immunofluorescence intensity between the two groups. These results suggest that TRPM8 is most likely not involved in cold-mediated noxious pulpal pain mechanisms. PMID:17889683

  11. CXCL10 Decreases GP73 Expression in Hepatoma Cells at the Early Stage of Hepatitis C Virus (HCV Infection

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2013-12-01

    Full Text Available Golgi protein 73 (GP73, which is up-regulated in hepatocellular carcinoma (HCC, has recently been identified as a novel serum marker for HCC diagnosis. Several reports also noted the increased levels of GP73 expression in chronic liver disease in patients with acute hepatitis of various etiologies, chronic Hepatitis C virus (HCV infection and alcoholic liver disease. The molecular mechanisms of GP73 expression in HCV related liver disease still need to be determined. In this study, we aimed to evaluate the effect of HCV infection on GP73 expression. GP73 was highly expressed in Huh7, Hep3B, 293T and HUVEC cells, and was low-expressed in HepG2 cells. HCV infection led to down-regulation of GP73 in Huh7 and HepG2/CD81 cells at the early stage of infection. CXCL10 decreased GP73 expression in Huh7 and HepG2 cells. Up-regulation of GP73 was noted in hepatocytes with cytopathic effect at advanced stage of HCV infection, and further research is needed to determine the unknown factors affecting GP73 expression. In conclusion, our study provided additional evidence for the roles of GP73 in liver disease.

  12. Scutellaria barbata attenuates diabetic retinopathy by preventing retinal inflammation and the decreased expression of tight junction protein

    Directory of Open Access Journals (Sweden)

    Xi-Yu Mei

    2017-06-01

    Full Text Available AIM: To observe the attenuation of ethanol extract of Herba Scutellaria barbata (SE against diabetic retinopathy (DR and its engaged mechanism. METHODS: C57BL/6J mice were intraperitoneally injected with streptozotocin (STZ, 55 mg/kg for 5 consecutive days to induce diabetes. The diabetic mice were orally given with SE (100, 200 mg/kg for 1mo at 1mo after STZ injection. Blood-retinal barrier (BRB breakdown was detected by using Evans blue permeation assay. Real-time polymerase chain reaction (RT-PCR, Western blot and immunofluorescence staining were used to detect mRNA and protein expression. Enzyme-linked immunosorbent assay (ELISA was used to detect serum contents of tumor necrosis factor-α (TNF-α and interleukin (IL-1β. RESULTS: SE (100, 200 mg/kg reversed the breakdown of BRB in STZ-induced diabetic mice. The decreased expression of retinal claudin-1 and claudin-19, which are both tight junction (TJ proteins, was reversed by SE. SE decreased the increased serum contents and retinal mRNA expression of TNF-α and IL-1β. SE also decreased the increased retinal expression of intercellular cell adhesion molecule-1 (ICAM-1. SE reduced the increased phosphorylation of nuclear factor kappa B (NFκB p65 and its subsequent nuclear translocation in retinas from STZ-induced diabetic mice. Results of Western blot and retinal immunofluorescence staining of ionized calcium-binding adapter molecule 1 (Iba1 demonstrated that SE abrogated the activation of microglia cells in STZ-induced diabetic mice. CONCLUSION: SE attenuates the development of DR by inhibiting retinal inflammation and restoring the decreased expression of TJ proteins including claudin-1 and claudin-19.

  13. Decreased expression of extracellular matrix proteins and trophic factors in the amygdala complex of depressed mice after chronic immobilization stress

    Directory of Open Access Journals (Sweden)

    Jung Soonwoong

    2012-06-01

    Full Text Available Abstract Background The amygdala plays an essential role in controlling emotional behaviors and has numerous connections to other brain regions. The functional role of the amygdala has been highlighted by various studies of stress-induced behavioral changes. Here we investigated gene expression changes in the amygdala in the chronic immobilization stress (CIS-induced depression model. Results Eight genes were decreased in the amygdala of CIS mice, including genes for neurotrophic factors and extracellular matrix proteins. Among these, osteoglycin, fibromodulin, insulin-like growth factor 2 (Igf2, and insulin-like growth factor binding protein 2 (Igfbp2 were further analyzed for histological expression changes. The expression of osteoglycin and fibromodulin simultaneously decreased in the medial, basolateral, and central amygdala regions. However, Igf2 and Igfbp2 decreased specifically in the central nucleus of the amygdala. Interestingly, this decrease was found only in the amygdala of mice showing higher immobility, but not in mice displaying lower immobility, although the CIS regimen was the same for both groups. Conclusions These results suggest that the responsiveness of the amygdala may play a role in the sensitivity of CIS-induced behavioral changes in mice.

  14. Expanded Mutational Spectrum in Cohen Syndrome, Tissue Expression, and Transcript Variants of COH1

    NARCIS (Netherlands)

    Seifert, Wenke; Holder-Espinasse, Muriel; Kuehnisch, Jirko; Kahrizi, Kimia; Tzschach, Andreas; Garshasbi, Masoud; Najmabadi, Hossein; Kuss, Andreas Walter; Kress, Wolfram; Laureys, Genevieve; Loeys, Bart; Brilstra, Eva; Mancini, Grazia M. S.; Dollfus, Helene; Dahan, Karin; Apse, Kira; Hennies, Hans Christian; Horn, Denise

    Cohen syndrome is characterised by mental retardation, postnatal microcephaly, facial dysmorphism, pigmentary retinopathy, myopia, and intermittent neutropenia. Mutations in COH1 (VPS13B) have been found in patients with Cohen syndrome from diverse ethnic origins. We have carried out mutation

  15. Mutation of praR in Rhizobium leguminosarum enhances root biofilms, improving nodulation competitiveness by increased expression of attachment proteins.

    Science.gov (United States)

    Frederix, Marijke; Edwards, Anne; Swiderska, Anna; Stanger, Andrew; Karunakaran, Ramakrishnan; Williams, Alan; Abbruscato, Pamela; Sanchez-Contreras, Maria; Poole, Philip S; Downie, J Allan

    2014-08-01

    In Rhizobium leguminosarum bv. viciae, quorum-sensing is regulated by CinR, which induces the cinIS operon. CinI synthesizes an AHL, whereas CinS inactivates PraR, a repressor. Mutation of praR enhanced biofilms in vitro. We developed a light (lux)-dependent assay of rhizobial attachment to roots and demonstrated that mutation of praR increased biofilms on pea roots. The praR mutant out-competed wild-type for infection of pea nodules in mixed inoculations. Analysis of gene expression by microarrays and promoter fusions revealed that PraR represses its own transcription and mutation of praR increased expression of several genes including those encoding secreted proteins (the adhesins RapA2, RapB and RapC, two cadherins and the glycanase PlyB), the polysaccharide regulator RosR, and another protein similar to PraR. PraR bound to the promoters of several of these genes indicating direct repression. Mutations in rapA2, rapB, rapC, plyB, the cadherins or rosR did not affect the enhanced root attachment or nodule competitiveness of the praR mutant. However combinations of mutations in rapA, rapB and rapC abolished the enhanced attachment and nodule competitiveness. We conclude that relief of PraR-mediated repression determines a lifestyle switch allowing the expression of genes that are important for biofilm formation on roots and the subsequent initiation of infection of legume roots. © 2014 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  16. Suppression of different classes of somatic mutations in Arabidopsis by vir gene-expressing Agrobacterium strains.

    Science.gov (United States)

    Shah, Jasmine M; Ramakrishnan, Anantha Maharasi; Singh, Amit Kumar; Ramachandran, Subalakshmi; Unniyampurath, Unnikrishnan; Jayshankar, Ajitha; Balasundaram, Nithya; Dhanapal, Shanmuhapreya; Hyde, Geoff; Baskar, Ramamurthy

    2015-08-26

    Agrobacterium infection, which is widely used to generate transgenic plants, is often accompanied by T-DNA-linked mutations and transpositions in flowering plants. It is not known if Agrobacterium infection also affects the rates of point mutations, somatic homologous recombinations (SHR) and frame-shift mutations (FSM). We examined the effects of Agrobacterium infection on five types of somatic mutations using a set of mutation detector lines of Arabidopsis thaliana. To verify the effect of secreted factors, we exposed the plants to different Agrobacterium strains, including wild type (Ach5), its derivatives lacking vir genes, oncogenes or T-DNA, and the heat-killed form for 48 h post-infection; also, for a smaller set of strains, we examined the rates of three types of mutations at multiple time-points. The mutation detector lines carried a non-functional β-glucuronidase gene (GUS) and a reversion of mutated GUS to its functional form resulted in blue spots. Based on the number of blue spots visible in plants grown for a further two weeks, we estimated the mutation frequencies. For plants co-cultivated for 48 h with Agrobacterium, if the strain contained vir genes, then the rates of transversions, SHRs and FSMs (measured 2 weeks later) were lower than those of uninfected controls. In contrast, co-cultivation for 48 h with any of the Agrobacterium strains raised the transposition rates above control levels. The multiple time-point study showed that in seedlings co-cultivated with wild type Ach5, the reduced rates of transversions and SHRs after 48 h co-cultivation represent an apparent suppression of an earlier short-lived increase in mutation rates (peaking for plants co-cultivated for 3 h). An increase after 3 h co-cultivation was also seen for rates of transversions (but not SHR) in seedlings exposed to the strain lacking vir genes, oncogenes and T-DNA. However, the mutation rates in plants co-cultivated for longer times with this strain subsequently

  17. Germline mutations in PMS2 and MLH1 in individuals with solitary loss of PMS2 expression in colorectal carcinomas from the Colon Cancer Family Registry Cohort.

    Science.gov (United States)

    Rosty, Christophe; Clendenning, Mark; Walsh, Michael D; Eriksen, Stine V; Southey, Melissa C; Winship, Ingrid M; Macrae, Finlay A; Boussioutas, Alex; Poplawski, Nicola K; Parry, Susan; Arnold, Julie; Young, Joanne P; Casey, Graham; Haile, Robert W; Gallinger, Steven; Le Marchand, Loïc; Newcomb, Polly A; Potter, John D; DeRycke, Melissa; Lindor, Noralane M; Thibodeau, Stephen N; Baron, John A; Win, Aung Ko; Hopper, John L; Jenkins, Mark A; Buchanan, Daniel D

    2016-02-19

    Immunohistochemistry for DNA mismatch repair proteins is used to screen for Lynch syndrome in individuals with colorectal carcinoma (CRC). Although solitary loss of PMS2 expression is indicative of carrying a germline mutation in PMS2, previous studies reported MLH1 mutation in some cases. We determined the prevalence of MLH1 germline mutations in a large cohort of individuals with a CRC demonstrating solitary loss of PMS2 expression. This cohort study included 88 individuals affected with a PMS2-deficient CRC from the Colon Cancer Family Registry Cohort. Germline PMS2 mutation analysis (long-range PCR and multiplex ligation-dependent probe amplification) was followed by MLH1 mutation testing (Sanger sequencing and multiplex ligation-dependent probe amplification). Of the 66 individuals with complete mutation screening, we identified a pathogenic PMS2 mutation in 49 (74%), a pathogenic MLH1 mutation in 8 (12%) and a MLH1 variant of uncertain clinical significance predicted to be damaging by in silico analysis in 3 (4%); 6 (9%) carried variants likely to have no clinical significance. Missense point mutations accounted for most alterations (83%; 9/11) in MLH1. The MLH1 c.113A> G p.Asn38Ser mutation was found in 2 related individuals. One individual who carried the MLH1 intronic mutation c.677+3A>G p.Gln197Argfs*8 leading to the skipping of exon 8, developed 2 tumours, both of which retained MLH1 expression. A substantial proportion of CRCs with solitary loss of PMS2 expression are associated with a deleterious MLH1 germline mutation supporting the screening for MLH1 in individuals with tumours of this immunophenotype, when no PMS2 mutation has been identified. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Cocaine-induced behavioral sensitization decreases the expression of endocannabinoid signaling-related proteins in the mouse hippocampus.

    Science.gov (United States)

    Blanco, Eduardo; Galeano, Pablo; Palomino, Ana; Pavón, Francisco J; Rivera, Patricia; Serrano, Antonia; Alen, Francisco; Rubio, Leticia; Vargas, Antonio; Castilla-Ortega, Estela; Decara, Juan; Bilbao, Ainhoa; de Fonseca, Fernando Rodríguez; Suárez, Juan

    2016-03-01

    In the reward mesocorticolimbic circuits, the glutamatergic and endocannabinoid systems are implicated in neurobiological mechanisms underlying cocaine addiction. However, the involvement of both systems in the hippocampus, a critical region to process relational information relevant for encoding drug-associated memories, in cocaine-related behaviors remains unknown. In the present work, we studied whether the hippocampal gene/protein expression of relevant glutamate signaling components, including glutamate-synthesizing enzymes and metabotropic and ionotropic receptors, and the hippocampal gene/protein expression of cannabinoid type 1 (CB1) receptor and endocannabinoid metabolic enzymes were altered following acute and/or repeated cocaine administration resulting in conditioned locomotion and locomotor sensitization. Results showed that acute cocaine administration induced an overall down-regulation of glutamate-related gene expression and, specifically, a low phosphorylation level of GluA1. In contrast, locomotor sensitization to cocaine produced an up-regulation of several glutamate receptor-related genes and, specifically, an increased protein expression of the GluN1 receptor subunit. Regarding the endocannabinoid system, acute and repeated cocaine administration were associated with an increased gene/protein expression of CB1 receptors and a decreased gene/protein expression of the endocannabinoid-synthesis enzymes N-acyl phosphatidylethanolamine D (NAPE-PLD) and diacylglycerol lipase alpha (DAGLα). These changes resulted in an overall decrease in endocannabinoid synthesis/degradation ratios, especially NAPE-PLD/fatty acid amide hydrolase and DAGLα/monoacylglycerol lipase, suggesting a reduced endocannabinoid production associated with a compensatory up-regulation of CB1 receptor. Overall, these findings suggest that repeated cocaine administration resulting in locomotor sensitization induces a down-regulation of the endocannabinoid signaling that could

  19. Altered polymorphonuclear leukocyte Fc gamma R expression contributes to decreased candicidal activity during intraabdominal sepsis

    International Nuclear Information System (INIS)

    Simms, H.H.; D'Amico, R.; Monfils, P.; Burchard, K.W.

    1991-01-01

    We investigated the effects of untreated intraabdominal sepsis on polymorphonuclear leukocyte (PMN) candicidal activity. Two groups of swine were studied. Group I (n=6) underwent sham laparotomy, group II (n=7) underwent cecal ligation and incision. Untreated intraabdominal sepsis resulted in a progressive decrease in PMN candicidal activity. Concomitant rosetting and phagocytosis assays demonstrated a decrease in both the attachment and phagocytosis of Candida albicans opsonized with both normal and septic swine serum by PMNs in group II. Iodine 125-labeled swine immunoglobulin G (IgG) and fluorescein isothioalanate (FITC)-labeled swine IgG were used to investigate Fc gamma receptor ligand interactions. Scatchard analyses demonstrated a progressive decline in both the binding affinity constant and number of IgG molecules bound per PMN. Stimulation of the oxidative burst markedly reduced 125I-labeled IgG binding in both group I and group II, with a greater decrement being seen in animals with intraabdominal sepsis. Further, in group II, PMN recycling of the Fc gamma receptor to the cell surface after generation of the oxidative burst was reduced by postoperative day 4. Binding of monoclonal antibodies to Fc gamma receptor II, but not Fc gamma receptor I/III markedly reduced intracellular candicidal activity. Immunofluorescence studies revealed a homogeneous pattern of FITC-IgG uptake by nearly all group I PMNs, whereas by postoperative day 8 a substantial number of PMNs from group II failed to internalize the FITC-IgG. These studies suggest that untreated intraabdominal sepsis reduces PMN candicidal activity and that this is due, in part, to altered PMN Fc gamma receptor ligand interactions

  20. Decreased expression of the ATM gene linked to poor prognosis for gastric cancer of different nationalities in Xinjiang.

    Science.gov (United States)

    Han, Mei; Ma, Lanying; Qu, Yanli; Tang, Yong

    2017-08-01

    To explore the clinicopathological significance of ATM gene in the occurrence and prognosis of gastric cancer (GC) from different nationalities in Xinjiang. The expression of ATM in 385 patients with GC (including 98 Uygurs, 231 Hans and 56 Kazaks) and its corresponding adjacent tissues were examined by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry assay to, analyze its correlations with clinicopathological features and prognosis of GC. The ATM expression in GC tissues was significantly decreased when compared to that in adjacent normal tissues of Uygur, Han and Kazak patients in Xinjiang, while Uygurs and Kazaks were much lower than Hans in the ATM expression of GC tissues (all PATM-negative tumors had a markedly lower survival rate than patients in Hans (P=0.028), and GC patients with ATM negative expression presented more unfavorable overall survival rate than those with positive expression among the three different nationalities (all PATM expression, TNM staging, depth of invasion, and lymph node metastasis were independent factors affecting the prognosis of GC patients in Xinjiang (all PATM was downregulated in GC patients in Xinjiang, especially for Uygurs and Kazaks, which suggested ATM to be an independent indicator of prognosis for GC therapy. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Suppression of topoisomerase IIα expression and function in human cells decreases chromosomal radiosensitivity

    International Nuclear Information System (INIS)

    Terry, Samantha Y.A.; Riches, Andrew C.; Bryant, Peter E.

    2009-01-01

    The mechanism behind chromatid break formation is as yet unclear, although it is known that DNA double-strand breaks (DSBs) are the initiating lesions. Chromatid breaks formed in cells in the G2-phase of the cell-cycle disappear ('rejoin') as a function of time between radiation exposure and cell fixation. However, the kinetics of disappearance of chromatid breaks does not correspond to those of DSB rejoining, leading us to seek alternative models. We have proposed that chromatid breaks could be formed indirectly from DSB and that the mechanism involves topoisomerase IIα. In support of this hypothesis we have recently shown that frequencies of radiation-induced chromatid breaks are lower in two variant human promyelocytic leukaemic cell lines with reduced topoisomerase IIα expression. Here we report that suppression of topoisomerase IIα in human hTERT-RPE1 cells, either by its abrogation using specific siRNA or by inhibition of its catalytic activity with the inhibitor ICRF-193, causes a reduction in frequency of chromatid breaks in radiation-exposed cells. The findings support our hypothesis for the involvement of topoisomerase IIα in the formation of radiation-induced chromatid breaks, and could help explain inter-individual variation in human chromosomal radiosensitivity; elevation of which has been linked with cancer susceptibility.

  2. Arsenic exposure from drinking water is associated with decreased gene expression and increased DNA methylation in peripheral blood

    Energy Technology Data Exchange (ETDEWEB)

    Ameer, Syeda Shegufta [Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund (Sweden); Engström, Karin [Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund (Sweden); Institute of Environmental Medicine, Unit of Metals & Health, Karolinska Institutet, Stockholm (Sweden); Hossain, Mohammad Bakhtiar [Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund (Sweden); Concha, Gabriela [Science Department, Risk Benefit Assessment Unit, National Food Agency, Uppsala (Sweden); Vahter, Marie [Institute of Environmental Medicine, Unit of Metals & Health, Karolinska Institutet, Stockholm (Sweden); Broberg, Karin, E-mail: Karin.broberg@ki.se [Institute of Environmental Medicine, Unit of Metals & Health, Karolinska Institutet, Stockholm (Sweden)

    2017-04-15

    Background: Exposure to inorganic arsenic increases the risk of cancer and non-malignant diseases. Inefficient arsenic metabolism is a marker for susceptibility to arsenic toxicity. Arsenic may alter gene expression, possibly by altering DNA methylation. Objectives: To elucidate the associations between arsenic exposure, gene expression, and DNA methylation in peripheral blood, and the modifying effects of arsenic metabolism. Methods: The study participants, women from the Andes, Argentina, were exposed to arsenic via drinking water. Arsenic exposure was assessed as the sum of arsenic metabolites in urine (U-As), using high performance liquid-chromatography hydride-generation inductively-coupled-plasma-mass-spectrometry, and arsenic metabolism efficiency was assessed by the urinary fractions (%) of the individual metabolites. Genome-wide gene expression (N = 80 women) and DNA methylation (N = 93; 80 overlapping with gene expression) in peripheral blood were measured using Illumina DirectHyb HumanHT-12 v4.0 and Infinium Human-Methylation 450K BeadChip, respectively. Results: U-As concentrations, ranging 10–1251 μg/L, was associated with decreased gene expression: 64% of the top 1000 differentially expressed genes were down-regulated with increasing U-As. U-As was also associated with hypermethylation: 87% of the top 1000 CpGs were hypermethylated with increasing U-As. The expression of six genes and six individual CpG sites were significantly associated with increased U-As concentration. Pathway analyses revealed enrichment of genes related to cell death and cancer. The pathways differed somewhat depending on arsenic metabolism efficiency. We found no overlap between arsenic-related gene expression and DNA methylation for individual genes. Conclusions: Increased arsenic exposure was associated with lower gene expression and hypermethylation in peripheral blood, but with no evident overlap. - Highlights: • Women exposed to inorganic arsenic were studied for

  3. The fatty liver dystrophy (fld) mutation: Developmentally related alterations in hepatic triglyceride metabolism and protein expression

    Energy Technology Data Exchange (ETDEWEB)

    Reue, K.; Rehnmark, S.; Cohen, R.D.; Leete, T.H.; Doolittle, M.H. [West Los Angeles VA Medical Center, CA (United States). Lipid Research Lab.]|[Univ. of California, Los Angeles, CA (United States). Dept. of Medicine; Giometti, C.S.; Mishler, K. [Argonne National Lab., IL (United States); Slavin, B.G. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-07-01

    Fatty liver dystrophy (fld) is an autosomal recessive mutation in mice characterized by hypertriglyceridemia and development of a fatty liver in the early neonatal period. Also associated with the fld phenotype is a tissue-specific deficiency in the expression of lipoprotein lipase and hepatic lipase, as well as elevations in hepatic apolipoprotein A-IV and apolipoprotein C-II mRNA levels. Although these lipid abnormalities resolve at the age of weaning, adult mutant mice exhibit a peripheral neuropathy associated with abnormal myelin formation. The fatty liver in fld/fld neonates is characterized by the accumulation of large triglyceride droplets within the parenchymal cells, and these droplets persist within isolated hepatocytes maintained in culture for several days. To identify the metabolic defect that leads to lipid accumulation, the authors investigated several aspects of cellular triglyceride metabolism. The mutant mice exhibited normal activity of acid triacylglycerol lipase, an enzyme thought to be responsible for hydrolysis of dietary triglycerides in the liver. Metabolic labeling studies performed with oleic acid revealed that free fatty acids accumulate in the liver of 3 day old fld/fld mice, but not in adults. This accumulation in liver was mirrored by elevated free fatty acid levels in plasma of fld/fld neonates, with levels highest in very young mice and returning to normal by the age of one month. Quantitation of fatty acid oxidation in cells isolated from fld/fld neonates revealed that oxidation rate is reduced 60% in hepatocytes and 40% in fibroblasts; hepatocytes from adult fld/fld mice exhibited an oxidation rate similar to those from wild-type mice.

  4. Aversive odorant causing appetite decrease downregulates tyrosine decarboxylase gene expression in the olfactory receptor neuron of the blowfly, Phormia regina

    Science.gov (United States)

    Ishida, Yuko; Ozaki, Mamiko

    2012-01-01

    In the blowfly Phormia regina, exposure to d-limonene for 5 days during feeding inhibits proboscis extension reflex behavior due to decreasing tyramine (TA) titer in the brain. TA is synthesized by tyrosine decarboxylase (Tdc) and catalyzed into octopamine (OA) by TA ß-hydroxylase (Tbh). To address the mechanisms of TA titer regulation in the blowfly, we cloned Tdc and Tbh cDNAs from P. regina (PregTdc and PregTbh). The deduced amino acid sequences of both proteins showed high identity to those of the corresponding proteins from Drosophila melanogaster at the amino acid level. PregTdc was expressed in the antenna, labellum, and tarsus whereas PregTbh was expressed in the head, indicating that TA is mainly synthesized in the sensory organs whereas OA is primarily synthesized in the brain. d-Limonene exposure significantly decreased PregTdc expression in the antenna but not in the labellum and the tarsus, indicating that PregTdc expressed in the antenna is responsible for decreasing TA titer. PregTdc-like immunoreactive material was localized in the thin-walled sensillum. In contrast, the OA/TA receptor (PregOAR/TAR) was localized to the thick-walled sensillum. The results indicated that d-limonene inhibits PregTdc expression in the olfactory receptor neurons in the thin-walled sensilla, likely resulting in reduced TA levels in the receptor neurons in the antenna. TA may be transferred from the receptor neuron to the specific synaptic junction in the antennal lobe of the brain through the projection neurons and play a role in conveying the aversive odorant information to the projection and local neurons.

  5. IκK-16 decreases miRNA-155 expression and attenuates the human monocyte inflammatory response.

    Directory of Open Access Journals (Sweden)

    Norman James Galbraith

    Full Text Available Excessive inflammatory responses in the surgical patient may result in cellular hypo-responsiveness, which is associated with an increased risk of secondary infection and death. microRNAs (miRNAs, such as miR-155, are powerful regulators of inflammatory signalling pathways including nuclear factor κB (NFκB. Our objective was to determine the effect of IκK-16, a selective blocker of inhibitor of kappa-B kinase (IκK, on miRNA expression and the monocyte inflammatory response. In a model of endotoxin tolerance using primary human monocytes, impaired monocytes had decreased p65 expression with suppressed TNF-α and IL-10 production (P < 0.05. miR-155 and miR-138 levels were significantly upregulated at 17 h in the impaired monocyte (P < 0.05. Notably, IκK-16 decreased miR-155 expression with a corresponding dose-dependent decrease in TNF-α and IL-10 production (P < 0.05, and impaired monocyte function was associated with increased miR-155 and miR-138 expression. In the context of IκK-16 inhibition, miR-155 mimics increased TNF-α production, while miR-155 antagomirs decreased both TNF-α and IL-10 production. These data demonstrate that IκK-16 treatment attenuates the monocyte inflammatory response, which may occur through a miR-155-mediated mechanism, and that IκK-16 is a promising approach to limit the magnitude of an excessive innate inflammatory response to LPS.

  6. The ducky2J mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression

    Science.gov (United States)

    Donato, Roberta; Page, Karen M.; Koch, Dietlind; Nieto-Rostro, Manuela; Foucault, Isabelle; Davies, Anthony; Wilkinson, Tonia; Rees, Michele; Edwards, Frances A.; Dolphin, Annette C.

    2006-01-01

    The mouse mutant ducky and its allele ducky2J represent a model for absence epilepsy characterized by spike-wave seizures, and cerebellar ataxia. These mice have mutations in Cacna2d2, which encodes the α2δ-2 calcium channel subunit. Of relevance to the ataxic phenotype, α2δ-2 mRNA is strongly expressed in cerebellar Purkinje cells (PCs). The Cacna2d2du2J mutation results in a two base-pair deletion in the coding region and a complete loss of α2δ-2 protein. Here we show that du2J/du2J mice have a 30% reduction in somatic calcium current, and a marked fall in the spontaneous PC firing rate at 22°C, accompanied by a decrease in firing regularity, which is not affected by blocking synaptic input to PCs. At 34°C du2J/du2J PCs show no spontaneous intrinsic activity. Du2J/du2J mice also have alterations in the cerebellar expression of several genes related to PC function. At P21 there is an elevation of tyrosine hydroxylase mRNA and a reduction in tenascin-C gene expression. Although du2J/+ mice have a marked reduction in α2δ-2 protein, they show no fall in PC somatic calcium currents or increase in cerebellar tryrosine hydroxylase gene expression. However, du2J/+ PCs do exhibit a significant reduction in firing rate, correlating with the reduction in α2δ-2. A hypothesis for future study is that effects on gene expression occur as a result of a reduction in somatic calcium currents, whereas effects on PC firing occur as a long-term result of loss of α2δ-2 and/or a reduction in calcium currents and calcium-dependent processes in regions other than the soma. PMID:17135419

  7. The ducky(2J) mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression.

    Science.gov (United States)

    Donato, Roberta; Page, Karen M; Koch, Dietlind; Nieto-Rostro, Manuela; Foucault, Isabelle; Davies, Anthony; Wilkinson, Tonia; Rees, Michele; Edwards, Frances A; Dolphin, Annette C

    2006-11-29

    The mouse mutant ducky and its allele ducky(2J) represent a model for absence epilepsy characterized by spike-wave seizures and cerebellar ataxia. These mice have mutations in Cacna2d2, which encodes the alpha2delta-2 calcium channel subunit. Of relevance to the ataxic phenotype, alpha2delta-2 mRNA is strongly expressed in cerebellar Purkinje cells (PCs). The Cacna2d2(du2J) mutation results in a 2 bp deletion in the coding region and a complete loss of alpha2delta-2 protein. Here we show that du(2J)/du(2J) mice have a 30% reduction in somatic calcium current and a marked fall in the spontaneous PC firing rate at 22 degrees C, accompanied by a decrease in firing regularity, which is not affected by blocking synaptic input to PCs. At 34 degrees C, du(2J)/du(2J) PCs show no spontaneous intrinsic activity. Du(2J)/du(2J) mice also have alterations in the cerebellar expression of several genes related to PC function. At postnatal day 21, there is an elevation of tyrosine hydroxylase mRNA and a reduction in tenascin-C gene expression. Although du(2J)/+ mice have a marked reduction in alpha2delta-2 protein, they show no fall in PC somatic calcium currents or increase in cerebellar tyrosine hydroxylase gene expression. However, du(2J)/+ PCs do exhibit a significant reduction in firing rate, correlating with the reduction in alpha2delta-2. A hypothesis for future study is that effects on gene expression occur as a result of a reduction in somatic calcium currents, whereas effects on PC firing occur as a long-term result of loss of alpha2delta-2 and/or a reduction in calcium currents and calcium-dependent processes in regions other than the soma.

  8. A Decrease of Histone Deacetylase 6 Expression Caused by Helicobacter Pylori Infection is Associated with Oncogenic Transformation in Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Qing He

    2017-07-01

    Full Text Available Background: Histone deacetylase 6 (HDAC6 plays a role in the progression of many tumors. However, the relationship between the level of HDAC6 expression and gastric tumorigenesis is still unclear. Here, we illustrate the potential correlation between Helicobacter pylori (HP infection and the variation of HDAC6 expression in different gastric lesions, as well as the clinical significance of HDAC6 expression in gastric cancer (GC patients. Materials and Methods: Between 2011 and 2016, 364 patients with different types of gastric lesions were enrolled in Baotou City Central Hospital. Immunostaining of HDAC6 expression and HP infection were performed in the following cohort including 21 normal tissues (Normal; 40 samples with chronic superficial gastritis (CSG; 106 with chronic atrophic gastritis (CAG; 94 with intestinal metaplasia (IM; 64 with dysplasia (DYS and 39 with gastric cancer (GC. Survival analysis was performed in another 80 GC patients using the Kaplan-Meier method and multivariate Cox regression analyses. The level of HDAC6 expression was determined by Real-time PCR, Western blotting and IHC staining in gastric cell lines and tissues. Furthermore, the correlation between HDAC6 expression and clinicopathological features and prognosis was analyzed in the GC cohort. HP strains were lavaged into Kunming mice to investigate the effects of HP infection on the expression of different HDAC members in this mouse model. Results: Higher levels of HDAC6 expression were detected in normal and premalignant lesions than in the GC tissues (p<0.01, and decreased HDAC6 expression was associated with HP infection and TNM stage (p<0.01 and p=0.048, respectively. Multivariate analysis revealed that HDAC6 expression was an independent predictor of the outcome of GC patients (p=0.04. HP mediated HDAC6 expression in the cell lines and KM mice. HP infection could promote HDAC1 and HDAC4 expression as determined by Western blotting. Conclusions: HDAC6 is a

  9. Decreased neutrophil-associated miRNA and increased B-cell associated miRNA expression during tuberculosis.

    Science.gov (United States)

    van Rensburg, I C; du Toit, L; Walzl, G; du Plessis, N; Loxton, A G

    2018-05-20

    MicroRNAs are short non-coding RNAs that regulate gene expression by binding to, and suppressing the expression of genes. Research show that microRNAs have potential to be used as biomarkers for diagnosis, treatment response and can be used for therapeutic interventions. Furthermore, microRNA expression has effects on immune cell functions, which may lead to disease. Considering the important protective role of neutrophils and B-cells during M.tb infection, we evaluated the expression of microRNAs, known to alter function of these cells, in the context of human TB. We utilised real-time PCR to evaluate the levels of microRNA transcripts in the peripheral blood of TB cases and healthy controls. We found that neutrophil-associated miR-197-3p, miR-99b-5p and miR-191-5p transcript levels were significantly lower in TB cases. Additionally, B-cell-associated miR-320a, miR-204-5p, miR331-3p and other transcript levels were higher in TB cases. The miRNAs differentially expressed in neutrophils are predominantly implicated in signalling pathways leading to cytokine productions. Here, the decreased expression in TB cases may imply a lack of suppression on signalling pathways, which may lead to increased production of pro-inflammatory cytokines such as interferon-gamma. Furthermore, the miRNAs differentially expressed in B-cells are mostly involved in the induction/suppression of apoptosis. Further functional studies are however required to elucidate the significance and functional effects of changes in the expression of these microRNAs. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Cerebral ischemic injury decreases α-synuclein expression in brain tissue and glutamate-exposed HT22 cells.

    Science.gov (United States)

    Koh, Phil-Ok

    2017-09-01

    α-Synuclein is abundantly expressed in neuronal tissue, plays an essential role in the pathogenesis of neurodegenerative disorders, and exerts a neuroprotective effect against oxidative stress. Cerebral ischemia causes severe neurological disorders and neuronal dysfunction. In this study, we examined α-synuclein expression in middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury and neuronal cells damaged by glutamate treatment. MCAO surgical operation was performed on male Sprague-Dawley rats, and brain samples were isolated 24 hours after MCAO. We confirmed neurological behavior deficit, infarction area, and histopathological changes following MCAO injury. A proteomic approach and Western blot analysis demonstrated a decrease in α-synuclein in the cerebral cortices after MCAO injury. Moreover, glutamate treatment induced neuronal cell death and decreased α-synuclein expression in a hippocampal-derived cell line in a dose-dependent manner. It is known that α-synuclein regulates neuronal survival, and low levels of α-synuclein expression result in cytotoxicity. Thus, these results suggest that cerebral ischemic injury leads to a reduction in α-synuclein and consequently causes serious brain damage.

  11. Normal IncA Expression and Fusogenicity of Inclusions in Chlamydia trachomatis Isolates with the incA I47T Mutation

    OpenAIRE

    Pannekoek, Yvonne; van der Ende, Arie; Eijk, Paul P.; van Marle, Jan; de Witte, Moniek A.; Ossewaarde, Jacobus M.; van den Brule, Adriaan J. C.; Morré, Servaas A.; Dankert, Jacob

    2001-01-01

    To investigate the correlation between the incA I47T mutation in Chlamydia trachomatis and the nonfusogenic phenotype, the incA genes of 25 isolates were sequenced. Four major sequence types were identified. Seven isolates (28%) had the I47T mutation. Isolates representing the four sequence types expressed IncA in the membrane of one large single inclusion. In conclusion, the incA I47T mutation is not associated with the nonfusogenic phenotype.

  12. B-Lymphoblastic Lymphomas Evolving from Follicular Lymphomas Co-Express Surrogate Light Chains and Mutated Gamma Heavy Chains.

    Science.gov (United States)

    Slot, Linda M; Hoogeboom, Robbert; Smit, Laura A; Wormhoudt, Thera A M; Biemond, Bart J; Oud, Monique E C M; Schilder-Tol, Esther J M; Mulder, André B; Jongejan, Aldo; van Kampen, Antoine H C; Kluin, Philip M; Guikema, Jeroen E J; Bende, Richard J; van Noesel, Carel J M

    2016-12-01

    Follicular lymphoma (FL) is an indolent B-cell non-Hodgkin lymphoma able to transform into germinal center-type diffuse large B-cell lymphoma. We describe four extraordinary cases of FL, which progressed to TdT + CD20 - precursor B-lymphoblastic lymphoma (B-LBL). Fluorescence in situ hybridization analysis showed that all four B-LBLs had acquired a MYC translocation on transformation. Comparative genomic hybridization analysis of one case demonstrated that in addition to 26 numerical aberrations that were shared between the FL and B-LBL, deletion of CDKN2A/B and 17q11, 14q32 amplification, and copy-neutral loss of heterozygosity of 9p were gained in the B-LBL cells. Whole-exome sequencing revealed mutations in FMN2, NEB, and SYNE1 and a nonsense mutation in KMT2D, all shared by the FL and B-LBL, and TNFRSF14, SMARCA2, CCND3 mutations uniquely present in the B-LBL. Remarkably, all four FL-B-LBL pairs expressed IgG. In two B-LBLs, evidence was obtained for ongoing rearrangement of IG light chain variable genes and expression of the surrogate light chain. IGHV mutation analysis showed that all FL-B-LBL pairs harbored identical or near-identical somatic mutations. From the somatic gene alterations found in the IG and non-IG genes, we conclude that the FLs and B-LBLs did not develop in parallel from early t(14;18)-positive IG-unmutated precursors, but that the B-LBLs developed from preexistent FL subclones that accumulated additional genetic damage. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. A nonsense mutation causing decreased levels of insulin receptor mRNA: Detection by a simplified technique for direct sequencing of genomic DNA amplified by the polymerase chain reaction

    International Nuclear Information System (INIS)

    Kadowaki, T.; Kadowaki, H.; Taylor, S.I.

    1990-01-01

    Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. The authors have studied a patient with leprechaunism (leprechaun/Minn-1), a genetic syndrome associated with intrauterine growth retardation and extreme insulin resistance. Genomic DNA from the patient was amplified by the polymerase chain reaction catalyzed by Thermus aquaticus (Taq) DNA polymerase, and the amplified DNA was directly sequenced. A nonsense mutations was identified at codon 897 in exon 14 in the paternal allele of the patient's insulin receptor gene. Levels of insulin receptor mRNA are decreased to <10% of normal in Epstein-Barr virus-transformed lymphoblasts and cultured skin fibroblasts from this patient. Thus, this nonsense mutation appears to cause a decrease in the levels of insulin receptor mRNA. In addition, they have obtained indirect evidence that the patient's maternal allele of the insulin receptor gene contains a cis-acting dominant mutation that also decreases the level of mRNA, but by a different mechanism. The nucleotide sequence of the entire protein-coding domain and the sequences of the intron-exon boundaries for all 22 exons of the maternal allele were normal. Presumably, the mutation in the maternal allele maps elsewhere in the insulin receptor gene. Thus, they conclude that the patient is a compound heterozygote for two cis-acting dominant mutations in the insulin receptor gene: (i) a nonsense mutation in the paternal allel that reduces the level of insulin receptor mRNA and (ii) an as yet unidentified mutation in the maternal allele that either decreases the rate of transcription or decreases the stability of the mRNA

  14. GBM-associated mutations and altered protein expression are more common in young patients.

    Science.gov (United States)

    Ferguson, Sherise D; Xiu, Joanne; Weathers, Shiao-Pei; Zhou, Shouhao; Kesari, Santosh; Weiss, Stephanie E; Verhaak, Roeland G; Hohl, Raymond J; Barger, Geoffrey R; Reddy, Sandeep K; Heimberger, Amy B

    2016-10-25

    Geriatric glioblastoma (GBM) patients have a poorer prognosis than younger patients, but IDH1/2 mutations (more common in younger patients) confer a favorable prognosis. We compared key GBM molecular alterations between an elderly (age ≥ 70) and younger (18 GBM cohort compared to the older cohort (P GBM cohort, younger patients had significantly more mutations in PDGFRA, PTPN11, SMARCA4, BRAF and TP53. GBMs from 178 elderly patients and 197 young patients were analyzed using DNA sequencing, immunohistochemistry, in situ hybridization, and MGMT-methylation assay to ascertain mutational and amplification/expressional status. Significant molecular differences occurred in GBMs from elderly and young patients. Except for the older cohort's more frequent PTEN mutation and MGMT methylation, younger patients had a higher frequency of potential therapeutic targets.

  15. Decreased expression level of BER genes in Alzheimer's disease patients is not derivative of their DNA methylation status.

    Science.gov (United States)

    Sliwinska, Agnieszka; Sitarek, Przemysław; Toma, Monika; Czarny, Piotr; Synowiec, Ewelina; Krupa, Renata; Wigner, Paulina; Bialek, Katarzyna; Kwiatkowski, Dominik; Korycinska, Anna; Majsterek, Ireneusz; Szemraj, Janusz; Galecki, Piotr; Sliwinski, Tomasz

    2017-10-03

    Neurodegeneration in Alzheimer's disease can be caused by accumulation of oxidative DNA damage resulting from altered expression of genes involved in the base excision repair system (BER). Promoter methylation can affect the profile of BER genes expression. Decreased expression of BER genes was observed in the brains of AD patients. The aim of our study was to compare the expression and methylation profiles of six genes coding for proteins involved in BER, namely: hOGG1, APE1, MUTYH, NEIL1, PARP1 and XRCC1, in the peripheral blood cells of AD patients and healthy volunteers. The study consisted of 100 persons diagnosed with Alzheimer's disease according to DSM-IV criteria, and 110 healthy volunteers. DNA and total RNA were isolated from venous blood cells. Promoter methylation profiles were obtained by High Resolution Melting (HRM) analysis of bisulfide converted DNA samples. Real-time PCR with TaqMan probes was employed for gene expression analysis. APE1, hOGG1, MUTYH, PARP1 and NEIL1 were significantly (pgenes. The methylation status of promoters is not associated with downregulation of BER genes. Our results show that downregulation of BER genes detected in peripheral blood samples could reflect the changes occurring in the brain of patients with AD, and may be a useful biomarker of this disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Mutations at Several Loci Cause Increased Expression of Ribonucleotide Reductase in Escherichia coli

    Science.gov (United States)

    Feeney, Morgan Anne; Ke, Na

    2012-01-01

    Production of deoxyribonucleotides for DNA synthesis is an essential and tightly regulated process. The class Ia ribonucleotide reductase (RNR), the product of the nrdAB genes, is required for aerobic growth of Escherichia coli. In catalyzing the reduction of ribonucleotides, two of the cysteines of RNR become oxidized, forming a disulfide bond. To regenerate active RNR, the cell uses thioredoxins and glutaredoxins to reduce the disulfide bond. Strains that lack thioredoxins 1 and 2 and glutaredoxin 1 do not grow because RNR remains in its oxidized, inactive form. However, suppressor mutations that lead to RNR overproduction allow glutaredoxin 3 to reduce sufficient RNR for growth of these mutant strains. We previously described suppressor mutations in the dnaA and dnaN genes that had such effects. Here we report the isolation of new mutations that lead to increased levels of RNR. These include mutations that were not known to influence production of RNR previously, such as a mutation in the hda gene and insertions in the nrdAB promoter region of insertion elements IS1 and IS5. Bioinformatic analysis raises the possibility that IS element insertion in this region represents an adaptive mechanism in nrdAB regulation in E. coli and closely related species. We also characterize mutations altering different amino acids in DnaA and DnaN from those isolated before. PMID:22247510

  17. The loss-of-function disease-mutation G301R in the Na+/K+-ATPase α2 isoform decreases lesion volume and improves functional outcome after acute spinal cord injury in mice.

    Science.gov (United States)

    Ellman, Ditte Gry; Isaksen, Toke Jost; Lund, Minna Christiansen; Dursun, Safinaz; Wirenfeldt, Martin; Jørgensen, Louise Helskov; Lykke-Hartmann, Karin; Lambertsen, Kate Lykke

    2017-09-08

    The Na + /K + -ATPases are transmembrane ion pumps important for maintenance of ion gradients across the plasma membrane that serve to support multiple cellular functions, such as membrane potentials, regulation of cellular volume and pH, and co-transport of signaling transmitters in all animal cells. The α 2 Na + /K + -ATPase subunit isoform is predominantly expressed in astrocytes, which us the sharp Na + -gradient maintained by the sodium pump necessary for astroglial metabolism. Prolonged ischemia induces an elevation of [Na + ] i , decreased ATP levels and intracellular pH owing to anaerobic metabolism and lactate accumulation. During ischemia, Na + /K + -ATPase-related functions will naturally increase the energy demand of the Na + /K + -ATPase ion pump. However, the role of the α 2 Na + /K + -ATPase in contusion injury to the spinal cord remains unknown. We used mice heterozygous mice for the loss-of-function disease-mutation G301R in the Atp1a2 gene (α 2 +/G301R ) to study the effect of reduced α 2 Na + /K + -ATPase expression in a moderate contusion spinal cord injury (SCI) model. We found that α 2 +/G301R mice display significantly improved functional recovery and decreased lesion volume compared to littermate controls (α 2 +/+ ) 7 days after SCI. The protein level of the α 1 isoform was significantly increased, in contrast to the α 3 isoform that significantly decreased 3 days after SCI in both α 2 +/G301R and α 2 +/+ mice. The level of the α 2 isoform was significantly decreased in α 2 +/G301R mice both under naïve conditions and 3 days after SCI compared to α 2 +/+ mice. We found no differences in astroglial aquaporin 4 levels and no changes in the expression of chemokines (CCL2, CCL5 and CXCL1) and cytokines (TNF, IL-6, IL-1β, IL-10 and IL-5) between genotypes, just as no apparent differences were observed in location and activation of CD45 and F4/80 positive microglia and infiltrating leukocytes. Our proof of concept study

  18. Catalpic acid decreases abdominal fat deposition, improves glucose homeostasis and upregulates PPAR alpha expression in adipose tissue.

    Science.gov (United States)

    Hontecillas, Raquel; Diguardo, Maggie; Duran, Elisa; Orpi, Marcel; Bassaganya-Riera, Josep

    2008-10-01

    Catalpic acid (CAT) is a conjugated linolenic acid (CLN) isomer containing trans-9, trans-11, cis-13 double bonds in an 18-carbon chain and it is found primarily in the seed oil of ornamental and medicinal trees and shrubs of the family Bignoniaceae. The objective of this study was to investigate whether CAT decreases obesity and ameliorates insulin sensitivity and glucose tolerance in mice fed high-fat diets. To test the efficacy of CAT in decreasing obesity and diabetes we used both a model of diet-induced obesity (DIO) and a genetic model of obesity (i.e., mice lacking the leptin receptor). Blood was collected on days 0, 7, 14, 21 and 28 for determining fasting glucose and insulin concentrations in plasma. In addition, a glucose tolerance test was administered on day 28. We found that dietary CAT (1g/100g) decreased fasting plasma glucose and insulin concentrations, ameliorated the glucose normalizing ability following glucose challenge and decreased abdominal white adipose tissue accumulation. In white adipose tissue (WAT), CAT upregulated peroxisome proliferator-activated receptor (PPAR) alpha and its responsive genes [i.e., stearoyl-coenzyme A desaturase (SCD1) and enoyl-coenzyme A hydratase (ECH)], increased concentrations of high-density lipoprotein (HDL) cholesterol and decreased plasma triglyceride (TG) levels. CAT decreased abdominal fat deposition, increased HDL cholesterol, decreased TG concentrations, decreased glucose and insulin homeostasis and modulated WAT gene expression in a manner reminiscent of the actions of the PPAR alpha-activating fibrate class of lipid-lowering drugs.

  19. A decrease in hepatic microRNA-9 expression impairs gluconeogenesis by targeting FOXO1 in obese mice.

    Science.gov (United States)

    Yan, Caifeng; Chen, Jinfeng; Li, Min; Xuan, Wenying; Su, Dongming; You, Hui; Huang, Yujie; Chen, Nuoqi; Liang, Xiubin

    2016-07-01

    MicroRNA-9 (miR-9) is involved in the regulation of pancreatic beta cell function. However, its role in gluconeogenesis is still unclear. Our objective was to investigate the role of miR-9 in hepatic glucose production (HGP). MiR-9 expression was measured in livers of high-fat diet (HFD) mice and ob/ob mice. The methylation status of the miR-9-3 promoter regions in hepatocytes was determined by the methylation-specific PCR procedure. The binding activity of DNA methyltransferase (DNMT)1, DNMT3a and DNMT3b on the miR-9-3 promoter was detected by chromatin immunoprecipitation (ChIP) and quantitative real-time PCR assays. HGP was evaluated in vitro and in vivo. Glucose tolerance, insulin tolerance and pyruvate tolerance tests were also performed. Reduced miR-9 expression and hypermethylation of the miR-9-3 promoter were observed in the livers of obese mice. Further study showed that the binding of DNMT1, but not of DNMT3a and DNMT3b, to the miR-9-3 promoter was increased in hepatocytes from ob/ob mice. Knockdown of DNMT1 alleviated the decrease in hepatic miR-9 expression in vivo and in vitro. Overexpression of hepatic miR-9 improved insulin sensitivity in obese mice and inhibited HGP. In addition, deletion of hepatic miR-9 led to an increase in random and fasting blood glucose levels in lean mice. Importantly, silenced forkhead box O1 (FOXO1) expression reversed the gluconeogenesis and glucose production in hepatocytes induced by miR-9 deletion. Our observations suggest that the decrease in miR-9 expression contributes to an inappropriately activated gluconeogenesis in obese mice.

  20. Decreased N-TAF1 expression in X-linked dystonia-parkinsonism patient-specific neural stem cells

    Directory of Open Access Journals (Sweden)

    Naoto Ito

    2016-04-01

    Full Text Available X-linked dystonia-parkinsonism (XDP is a hereditary neurodegenerative disorder involving a progressive loss of striatal medium spiny neurons. The mechanisms underlying neurodegeneration are not known, in part because there have been few cellular models available for studying the disease. The XDP haplotype consists of multiple sequence variations in a region of the X chromosome containing TAF1, a large gene with at least 38 exons, and a multiple transcript system (MTS composed of five unconventional exons. A previous study identified an XDP-specific insertion of a SINE-VNTR-Alu (SVA-type retrotransposon in intron 32 of TAF1, as well as a neural-specific TAF1 isoform, N-TAF1, which showed decreased expression in post-mortem XDP brain compared with control tissue. Here, we generated XDP patient and control fibroblasts and induced pluripotent stem cells (iPSCs in order to further probe cellular defects associated with this disease. As initial validation of the model, we compared expression of TAF1 and MTS transcripts in XDP versus control fibroblasts and iPSC-derived neural stem cells (NSCs. Compared with control cells, XDP fibroblasts exhibited decreased expression of TAF1 transcript fragments derived from exons 32-36, a region spanning the SVA insertion site. N-TAF1, which incorporates an alternative exon (exon 34′, was not expressed in fibroblasts, but was detectable in iPSC-differentiated NSCs at levels that were ∼threefold lower in XDP cells than in controls. These results support the previous findings that N-TAF1 expression is impaired in XDP, but additionally indicate that this aberrant transcription might occur in neural cells at relatively early stages of development that precede neurodegeneration.

  1. Changing phenotypic expression in a patient with a mitochondrial encephalopathy due to 13042G>A de novo mutation--a 5 year follow up.

    Science.gov (United States)

    Schinwelski, M; Kierdaszuk, B; Dulski, J; Tońska, K; Kodroń, A; Sitek, E J; Bartnik, E; Kamińska, A; Kwieciński, H; Sławek, J

    2015-08-01

    Mutations in NADH dehydrogenase (ND) subunits of complex I lead to mitochondrial encephalomyopathies associated with various phenotypes. This report aims to present the patient's clinical symptomatology in the context of a very rare 13042G>A de novo mutation and with an emphasis on changing phenotypic expression and pronounced, long-standing response to levetiracetam.

  2. Decreased expression of the ARID1A gene is associated with poor prognosis in primary gastric cancer.

    Directory of Open Access Journals (Sweden)

    Dan-dan Wang

    Full Text Available BACKGROUND: The ARID1A gene encodes adenine-thymine (AT-rich interactive domain-containing protein 1A, which participates in chromatin remodeling. ARID1A has been showed to function as a tumor suppressor in various cancer types. In the current study, we investigated the expression and prognosis value of ARID1A in primary gastric cancer. Meanwhile, the biological role of ARID1A was further investigated using cell model in vitro. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the role of ARID1A gene in primary gastric cancer pathogenesis, real-time quantitative PCR and western blotting were used to examine the ARID1A expression in paired cancerous and noncancerous tissues. Results revealed decreased ARID1A mRNA (P = 0.0029 and protein (P = 0.0015 expression in most tumor-bearing tissues compared with the matched adjacent non-tumor tissues, and in gastric cancer cell lines. To further investigate the clinicopathological and prognostic roles of ARID1A expression, we performed immunohistochemical analyses of the 224 paraffin-embedded gastric cancer tissue blocks. Data revealed that the loss of ARID1A expression was significantly correlated with T stage (P = 0.001 and grade (P = 0.006. Consistent with these results, we found that loss of ARID1A expression was significantly correlated with poor survival in gastric cancer patients (P = 0.003. Cox regression analyses showed that ARID1A expression was an independent predictor of overall survival (P = 0.029. Furthermore, the functions of ARID1A in the proliferation and colony formation of gastric cell lines were analyzed by transfecting cells with full-length ARID1A expression vector or siRNA targeting ARID1A. Restoring ARID1A expression in gastric cancer cells significantly inhibited cell proliferation and colony formation. Silencing ARID1A expression in gastric epithelial cell line significantly enhanced cell growth rate. CONCLUSIONS/SIGNIFICANCE: Our data suggest that ARID1A may play an important role

  3. Platform comparison for evaluation of ALK protein immunohistochemical expression, genomic copy number and hotspot mutation status in neuroblastomas.

    Directory of Open Access Journals (Sweden)

    Benedict Yan

    Full Text Available ALK is an established causative oncogenic driver in neuroblastoma, and is likely to emerge as a routine biomarker in neuroblastoma diagnostics. At present, the optimal strategy for clinical diagnostic evaluation of ALK protein, genomic and hotspot mutation status is not well-studied. We evaluated ALK immunohistochemical (IHC protein expression using three different antibodies (ALK1, 5A4 and D5F3 clones, ALK genomic status using single-color chromogenic in situ hybridization (CISH, and ALK hotspot mutation status using conventional Sanger sequencing and a next-generation sequencing platform (Ion Torrent Personal Genome Machine (IT-PGM, in archival formalin-fixed, paraffin-embedded neuroblastoma samples. We found a significant difference in IHC results using the three different antibodies, with the highest percentage of positive cases seen on D5F3 immunohistochemistry. Correlation with ALK genomic and hotspot mutational status revealed that the majority of D5F3 ALK-positive cases did not possess either ALK genomic amplification or hotspot mutations. Comparison of sequencing platforms showed a perfect correlation between conventional Sanger and IT-PGM sequencing. Our findings suggest that D5F3 immunohistochemistry, single-color CISH and IT-PGM sequencing are suitable assays for evaluation of ALK status in future neuroblastoma clinical trials.

  4. Inactivation of CDK/pRb pathway normalizes survival pattern of lymphoblasts expressing the FTLD-progranulin mutation c.709-1G>A.

    Directory of Open Access Journals (Sweden)

    Carolina Alquezar

    Full Text Available BACKGROUND: Mutations in the progranulin (PGRN gene, leading to haploinsufficiency, cause familial frontotemporal lobar degeneration (FTLD-TDP, although the pathogenic mechanism of PGRN deficit is largely unknown. Allelic loss of PGRN was previously shown to increase the activity of cyclin-dependent kinase (CDK CDK6/pRb pathway in lymphoblasts expressing the c.709-1G>A PGRN mutation. Since members of the CDK family appear to play a role in neurodegenerative disorders and in apoptotic death of neurons subjected to various insults, we investigated the role of CDK6/pRb in cell survival/death mechanisms following serum deprivation. METHODOLOGY/PRINCIPAL FINDINGS: We performed a comparative study of cell viability after serum withdrawal of established lymphoblastoid cell lines from control and carriers of c.709-1G>A PGRN mutation, asymptomatic and FTLD-TDP diagnosed individuals. Our results suggest that the CDK6/pRb pathway is enhanced in the c.709-1G>A bearing lymphoblasts. Apparently, this feature allows PGRN-deficient cells to escape from serum withdrawal-induced apoptosis by decreasing the activity of executive caspases and lowering the dissipation of mitochondrial membrane potential and the release of cytochrome c from the mitochondria. Inhibitors of CDK6 expression levels like sodium butyrate or the CDK6 activity such as PD332991 were able to restore the vulnerability of lymphoblasts from FTLD-TDP patients to trophic factor withdrawal. CONCLUSION/SIGNIFICANCE: The use of PGRN-deficient lymphoblasts from FTLD-TDP patients may be a useful model to investigate cell biochemical aspects of this disease. It is suggested that CDK6 could be potentially a therapeutic target for the treatment of the FTLD-TDP.

  5. The Expression of the Zonula Adhaerens Protein PLEKHA7 Is Strongly Decreased in High Grade Ductal and Lobular Breast Carcinomas.

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Tille

    Full Text Available PLEKHA7 is a junctional protein, which participates in a complex that stabilizes E-cadherin at the zonula adhaerens. Since E-cadherin is involved in epithelial morphogenesis, signaling, and tumor progression, we explored PLEKHA7 expression in cancer. PLEKHA7 expression was assessed in invasive ductal and lobular carcinomas of the breast by immunohistochemistry, immunofluorescence and quantitative RT-PCR. PLEKHA7 was detected at epithelial junctions of normal mammary ducts and lobules, and of tubular and micropapillary structures within G1 and G2 ductal carcinomas. At these junctions, the localization of PLEKHA7 was along the circumferential belt (zonula adhaerens, and only partially overlapping with that of E-cadherin, p120ctn and ZO-1, as shown previously in rodent tissues. PLEKHA7 immunolabeling was strongly decreased in G3 ductal carcinomas and undetectable in lobular carcinomas. PLEKHA7 mRNA was detected in both ductal and lobular carcinomas, with no observed correlation between mRNA levels and tumor type or grade. In summary, PLEKHA7 is a junctional marker of epithelial cells within tubular structures both in normal breast tissue and ductal carcinomas, and since PLEKHA7 protein but not mRNA expression is strongly decreased or lost in high grade ductal carcinomas and in lobular carcinomas, loss of PLEKHA7 is a newly characterized feature of these carcinomas.

  6. Schisandrin B protects PC12 cells by decreasing the expression of amyloid precursor protein and vacuolar protein sorting 35★

    Science.gov (United States)

    Yan, Mingmin; Mao, Shanping; Dong, Huimin; Liu, Baohui; Zhang, Qian; Pan, Gaofeng; Fu, Zhiping

    2012-01-01

    PC12 cell injury was induced using 20 μM amyloid β-protein 25–35 to establish a model of Alzheimer's disease. The cells were then treated with 5, 10, and 25 μM Schisandrin B. Methylthiazolyldiphenyl-tetrazolium bromide assays and Hoechst 33342 staining results showed that with increasing Schisandrin B concentration, the survival rate of PC12 cells injured by amyloid β-protein 25–35 gradually increased and the rate of apoptosis gradually decreased. Reverse transcription-PCR, immunocytochemical staining and western blot results showed that with increasing Schisandrin B concentration, the mRNA and protein expression of vacuolar protein sorting 35 and amyloid precursor protein were gradually decreased. Vacuolar protein sorting 35 and amyloid precursor protein showed a consistent trend for change. These findings suggest that 5, 10, and 25 μM Schisandrin B antagonizes the cellular injury induced by amyloid β-protein 25–35 in a dose-dependent manner. This may be caused by decreasing the expression of vacuolar protein sorting 35 and amyloid precursor protein. PMID:25745458

  7. Exercise Increases Cystathionine-γ-lyase Expression and Decreases the Status of Oxidative Stress in Myocardium of Ovariectomized Rats.

    Science.gov (United States)

    Tang, Zhiping; Wang, Yujun; Zhu, Xiaoyan; Ni, Xin; Lu, Jianqiang

    2016-01-01

    Exercise could be a therapeutic approach for cardiovascular dysfunction induced by estrogen deficiency. Our previous study has shown that estrogen maintains cystathionine-γ-lyase (CSE) expression and inhibits oxidative stress in the myocardium of female rats. In the present study, we investigated whether exercise improves CSE expression and oxidative stress status and ameliorates isoproterenol (ISO)-induced cardiac damage in ovariectomized (OVX) rats. The results showed that treadmill training restored the ovariectomy-induced reduction of CSE and estrogen receptor (ER)α and decrease of total antioxidant capacity (T-AOC) and increase of malondialdehyde (MDA). The level of CSE was positively correlated to T-AOC and ERα while inversely correlated to MDA. OVX rats showed increases in the serum levels of creatine kinase (CK) and lactate dehydrogenase (LDH) and the percentage of TUNEL staining in myocardium upon ISO insult compared to sham rats. Exercise training significantly reduced the serum levels of LDH and CK and the percentage of TUNEL staining in myocardium upon ISO insult in OVX rats. In cultured cardiomyocytes, ISO treatment decreased cell viability and increased LDH release, while overexpression of CSE increased cell viability and decreased LDH release in the cells upon ISO insult. The results suggest that exercise training improves the oxidative stress status and ameliorates the cardiac damage induced by oxidative stress in OVX rats. The improvement of oxidative stress status by exercise might be at least partially due to upregulation of CSE/H2S signaling.

  8. Lack of hormone binding in COS-7 cells expressing a mutated growth hormone receptor found in Laron dwarfism.

    Science.gov (United States)

    Edery, M; Rozakis-Adcock, M; Goujon, L; Finidori, J; Lévi-Meyrueis, C; Paly, J; Djiane, J; Postel-Vinay, M C; Kelly, P A

    1993-01-01

    A single point mutation in the growth hormone (GH) receptor gene generating a Phe-->Ser substitution in the extracellular binding domain of the receptor has been identified in one family with Laron type dwarfism. The mutation was introduced by site-directed mutagenesis into cDNAs encoding the full-length rabbit GH receptor and the extracellular domain or binding protein (BP) of the human and rabbit GH receptor, and also in cDNAs encoding the full length and the extracellular domain of the related rabbit prolactin (PRL) receptor. All constructs were transiently expressed in COS-7 cells. Both wild type and mutant full-length rabbit GH and PRL receptors, as well as GH and prolactin BPs (wild type and mutant), were detected by Western blot in cell membranes and concentrated culture media, respectively. Immunofluorescence studies showed that wild type and mutant full-length GH receptors had the same cell surface and intracellular distribution and were expressed with comparable intensities. In contrast, all mutant forms (full-length receptors or BPs), completely lost their modify the synthesis ligand. These results clearly demonstrate that this point mutation (patients with Laron syndrome) does not modify the synthesis or the intracellular pathway of receptor proteins, but rather abolishes ability of the receptor or BP to bind GH and is thus responsible for the extreme GH resistance in these patients. Images PMID:8450064

  9. Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression

    DEFF Research Database (Denmark)

    Hamdi, Yosr; Soucy, Penny; Kuchenbaeker, Karoline B

    2017-01-01

    1 and BRCA2 mutation carriers, a list of 175 genes was developed based of their involvement in cancer-related pathways. METHODS: Using data from a genome-wide map of SNPs associated with allelic expression, we assessed the association of ~320 SNPs located in the vicinity of these genes with breast...... and ovarian cancer risks in 15,252 BRCA1 and 8211 BRCA2 mutation carriers ascertained from 54 studies participating in the Consortium of Investigators of Modifiers of BRCA1/2. RESULTS: We identified a region on 11q22.3 that is significantly associated with breast cancer risk in BRCA1 mutation carriers (most...... significant SNP rs228595 p = 7 × 10(-6)). This association was absent in BRCA2 carriers (p = 0.57). The 11q22.3 region notably encompasses genes such as ACAT1, NPAT, and ATM. Expression quantitative trait loci associations were observed in both normal breast and tumors across this region, namely for ACAT1...

  10. Effect of radon and its progeny on the expression and mutation of p53 in lung tissues of mice

    International Nuclear Information System (INIS)

    Piao Chunnan; Tian Mei; Liu Jianxiang; Ruan Jianlei; Su Xu

    2010-01-01

    Objective: To explore the effect of radon and its progeny on the expression and mutations of p53 in lung tissue of mouse model. Methods: Apoptosis was detected by terminal deoxynucleotidy transferase-mediated dUTP-biotin nick end labeling. The expression of p53 gene was analyzed by immunohistochemistry, Western blot and realtime-PCR. PCR-SSCP was used to detect the mutation of p53 in lung tissues. Results: Compared with those in the control group, the apoptotic index were increased significantly in 30 WLM and 60 WLM groups (t=18.11, -10.30, P<0.05). The p53 protein was increased significantly (t=-11.08, P<0.05; t=-7.00, P<0.05) in 30 WLM and 60 WLM groups. The mutation of p53 gene was not detected in lungs of radon-exposure mice. Conclusions: Lung and bronchus might be the targets of radon and its progeny, and p53 gene plays an important role in the progression of radon-induced lung injury. (authors)

  11. Variable expressivity of FGF3 mutations associated with deafness and LAMM syndrome

    Directory of Open Access Journals (Sweden)

    Griffith Andrew J

    2011-02-01

    Full Text Available Abstract Background Recessive mutations of fibroblast growth factor 3 (FGF3 can cause LAMM syndrome (OMIM 610706, characterized by fully penetrant complete labyrinthine aplasia, microtia and microdontia. Methods We performed a prospective molecular genetic and clinical study of families segregating hearing loss linked to FGF3 mutations. Ten affected individuals from three large Pakistani families segregating FGF3 mutations were imaged with CT, MRI, or both to detect inner ear abnormalities. We also modeled the three dimensional structure of FGF3 to better understand the structural consequences of the three missense mutations. Results Two families segregated reported mutations (p.R104X and p.R95W and one family segregated a novel mutation (p.R132GfsX26 of FGF3. All individuals homozygous for p.R104X or p.R132GfsX26 had fully penetrant features of LAMM syndrome. However, recessive p.R95W mutations were associated with nearly normal looking auricles and variable inner ear structural phenotypes, similar to that reported for a Somali family also segregating p.R95W. This suggests that the mild phenotype is not entirely due to genetic background. Molecular modeling result suggests a less drastic effect of p.R95W on FGF3 function compared with known missense mutations detected in fully penetrant LAMM syndrome. Since we detected significant intrafamilial variability of the inner ear structural phenotype in the family segregating p.R95W, we also sequenced FGF10 as a likely candidate for a modifier. However, we did not find any sequence variation, pointing out that a larger sample size will be needed to map and identify a modifier. We also observed a mild to moderate bilateral conductive hearing loss in three carriers of p.R95W, suggesting either a semi-dominant effect of this mutant allele of FGF3, otitis media, or a consequence of genetic background in these three family members. Conclusions We noted a less prominent dental and external ear phenotype in

  12. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumor types are associated with increased TERT expression and telomerase activation

    Science.gov (United States)

    Huang, Dong-Sheng; Wang, Zhaohui; He, Xu-Jun; Diplas, Bill H.; Yang, Rui; Killela, Patrick J.; Liang, Junbo; Meng, Qun; Ye, Zai-Yuan; Wang, Wei; Jiang, Xiao-Ting; Xu, Li; He, Xiang-Lei; Zhao, Zhong-Sheng; Xu, Wen-Juan; Wang, Hui-Ju; Ma, Ying-Yu; Xia, Ying-Jie; Li, Li; Zhang, Ru-Xuan; Jin, Tao; Zhao, Zhong-Kuo; Xu, Ji; Yu, Sheng; Wu, Fang; Wang, Si-Zhen; Jiao, Yu-Chen; Yan, Hai; Tao, Hou-Quan

    2015-01-01

    Background Several somatic mutation hotspots were recently identified in the TERT promoter region in human cancers. Large scale studies of these mutations in multiple tumor types are limited, in particular in Asian populations. This study aimed to: analyze TERT promoter mutations in multiple tumor types in a large Chinese patient cohort, investigate novel tumor types and assess the functional significance of the mutations. Methods TERT promoter mutation status was assessed by Sanger sequencing for 13 different tumor types and 799 tumor tissues from Chinese cancer patients. Thymic epithelial tumors, gastrointestinal leiomyoma, and gastric schwannoma were included, for which the TERT promoter has not been previously sequenced. Functional studies included TERT expression by RT-qPCR, telomerase activity by the TRAP assay, and promoter activity by the luciferase reporter assay. Results TERT promoter mutations were highly frequent in glioblastoma (83.9%), urothelial carcinoma (64.5%), oligodendroglioma (70.0%), medulloblastoma (33.3%), and hepatocellular carcinoma (31.4%). C228T and C250T were the most common mutations. In urothelial carcinoma, several novel rare mutations were identified. TERT promoter mutations were absent in GIST, thymic epithelial tumors, gastrointestinal leiomyoma, gastric schwannoma, cholangiocarcinoma, gastric and pancreatic cancer. TERT promoter mutations highly correlated with upregulated TERT mRNA expression and telomerase activity in adult gliomas. These mutations differentially enhanced the transcriptional activity of the TERT core promoter. Conclusions TERT promoter mutations are frequent in multiple tumor types and have similar distributions in Chinese cancer patients. The functional significance of these mutations reflect the importance to telomere maintenance and hence tumorigenesis, making them potential therapeutic targets. PMID:25843513

  13. The M142T mutation causes B3 phenotype: three cases and an in vitro expression study.

    Science.gov (United States)

    Cho, Duck; Shin, Dong-Jun; Yazer, Mark Harris; Ihm, Chun-Hwa; Hur, Young-Moon; Kee, Seung-Jung; Kim, Soo-Hyun; Shin, Myung-Geun; Shin, Jong-Hee; Suh, Soon-Pal; Ryang, Dong-Wook

    2010-02-01

    The B3 phenotype is the most common B subtype in Korea. The B305 allele (425 T>C, M142T) was first reported in 2 Chinese individuals; however, it has not yet been reported in the Koreans, and the impact of the M142T mutation on the expression of the B3 phenotype has also not been studied. To resolve an ABO discrepancy between a group O neonate and her group O father and A(1)B(3) mother, blood samples from these individuals and other family members were referred to our laboratory for ABO gene analysis. The B305 allele was discovered in the neonate (B305/O01), her mother (A102/ B305), and her maternal aunt (B305/O02), while her father was typed as O01/O02. Transient transfection experiments were performed in HeLa cells using the B305 allele synthesized by site-directed mutagenesis; flow cytometric analysis revealed that this transfect expressed 35.5% of the total B antigen produced by the B101 allele transfect. For comparison, Bx01 allele transfects were also created, and they expressed 11.4% of the total B antigen expressed on the surface of B101 transfects. These experiments demonstrate that the M142T (425 T>C) mutation is responsible for the B subtype phenotype produced by the B305 allele.

  14. Western environment/lifestyle is associated with increased genome methylation and decreased gene expression in Chinese immigrants living in Australia.

    Science.gov (United States)

    Zhang, Guicheng; Wang, Kui; Schultz, Ennee; Khoo, Siew-Kim; Zhang, Xiaopeng; Annamalay, Alicia; Laing, Ingrid A; Hales, Belinda J; Goldblatt, Jack; Le Souëf, Peter N

    2016-01-01

    Several human diseases and conditions are disproportionally distributed in the world with a significant "Western-developed" vs. "Eastern-developing" gradient. We compared genome-wide DNA methylation of peripheral blood mononuclear cells in 25 newly arrived Chinese immigrants living in a Western environment for less than 6 months ("Newly arrived") with 23 Chinese immigrants living in the Western environment for more than two years ("Long-term") with a mean of 8.7 years, using the Infinium HumanMethylation450 BeadChip. In a sub-group of both subject groups (n = 12 each) we also investigated genome-wide gene expression using a Human HT-12 v4 expression beadChip. There were 62.5% probes among the total number of 382,250 valid CpG sites with greater mean Beta (β) in "Long-term" than in "Newly arrived". In the regions of CpG islands and gene promoters, compared with the CpG sites in all other regions, lower percentages of CpG sites with mean methylation levels in "Long-term" greater than "Newly arrived" were observed, but still >50%. The increase of methylation was associated with a general decrease of gene expression in Chinese immigrants living in the Western environment for a longer period of time. After adjusting for age, gender and other confounding factors the findings remained. Chinese immigrants living in Australia for a longer period of time have increased overall genome methylation and decreased overall gene expression compared with newly arrived immigrants. © 2015 Wiley Periodicals, Inc.

  15. Upregulation of PEDF expression by PARP inhibition contributes to the decrease in hyperglycemia-induced apoptosis in HUVECs

    International Nuclear Information System (INIS)

    Chen Haibing; Jia Weiping; Xu Xun; Fan Ying; Zhu Dongqing; Wu Haixiang; Xie Zhenggao; Zheng Zhi

    2008-01-01

    Poly(ADP-ribose)polymerase (PARP) inhibitors decrease angiogenesis through reducing vascular endothelium growth factor (VEGF) induced proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). In contrast to VEGF, pigment epithelium-derived factor (PEDF) has been demonstrated to act as a strong endogenous inhibitor of angiogenesis. Here, we show that PARP inhibition with a specific inhibitor PJ-34 or specific PARP antisense oligonucleotide upregulates hyperglycemia-induced PEDF expression in HUVECs in a dose-dependent manner. This results in the retard of activation of p38 MAP kinase and the concomitant decrease in cell apoptosis. These results give the first direct demonstration that PEDF might represent a target for PARP inhibition treatment and the effects of PEDF on endothelial cells growth are context dependent

  16. Decreased expression of cell adhesion genes in cancer stem-like cells isolated from primary oral squamous cell carcinomas.

    Science.gov (United States)

    Mishra, Amrendra; Sriram, Harshini; Chandarana, Pinal; Tanavde, Vivek; Kumar, Rekha V; Gopinath, Ashok; Govindarajan, Raman; Ramaswamy, S; Sadasivam, Subhashini

    2018-05-01

    The goal of this study was to isolate cancer stem-like cells marked by high expression of CD44, a putative cancer stem cell marker, from primary oral squamous cell carcinomas and identify distinctive gene expression patterns in these cells. From 1 October 2013 to 4 September 2015, 76 stage III-IV primary oral squamous cell carcinoma of the gingivobuccal sulcus were resected. In all, 13 tumours were analysed by immunohistochemistry to visualise CD44-expressing cells. Expression of CD44 within The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma RNA-sequencing data was also assessed. Seventy resected tumours were dissociated into single cells and stained with antibodies to CD44 as well as CD45 and CD31 (together referred as Lineage/Lin). From 45 of these, CD44 + Lin - and CD44 - Lin - subpopulations were successfully isolated using fluorescence-activated cell sorting, and good-quality RNA was obtained from 14 such sorted pairs. Libraries from five pairs were sequenced and the results analysed using bioinformatics tools. Reverse transcription quantitative polymerase chain reaction was performed to experimentally validate the differential expression of selected candidate genes identified from the transcriptome sequencing in the same 5 and an additional 9 tumours. CD44 was expressed on the surface of poorly differentiated tumour cells, and within the The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma samples, its messenger RNA levels were higher in tumours compared to normal. Transcriptomics revealed that 102 genes were upregulated and 85 genes were downregulated in CD44 + Lin - compared to CD44 - Lin - cells in at least 3 of the 5 tumours sequenced. The upregulated genes included those involved in immune regulation, while the downregulated genes were enriched for genes involved in cell adhesion. Decreased expression of PCDH18, MGP, SPARCL1 and KRTDAP was confirmed by reverse transcription quantitative polymerase chain reaction. Lower expression of

  17. Differential expression of ID4 and its association with TP53 mutation, SOX2, SOX4 and OCT-4 expression levels.

    Directory of Open Access Journals (Sweden)

    Thais Fernanda de Almeida Galatro

    Full Text Available Inhibitor of DNA Binding 4 (ID4 is a member of the helix-loop-helix ID family of transcription factors, mostly present in the central nervous system during embryonic development, that has been associated with TP53 mutation and activation of SOX2. Along with other transcription factors, ID4 has been implicated in the tumorigenic process of astrocytomas, contributing to cell dedifferentiation, proliferation and chemoresistance. In this study, we aimed to characterize the ID4 expression pattern in human diffusely infiltrative astrocytomas of World Health Organization (WHO grades II to IV of malignancy (AGII-AGIV; to correlate its expression level to that of SOX2, SOX4, OCT-4 and NANOG, along with TP53 mutational status; and to correlate the results with the clinical end-point of overall survival among glioblastoma patients. Quantitative real time PCR (qRT-PCR was performed in 130 samples of astrocytomas for relative expression, showing up-regulation of all transcription factors in tumor cases. Positive correlation was found when comparing ID4 relative expression of infiltrative astrocytomas with SOX2 (r = 0.50; p<0.005, SOX4 (r = 0.43; p<0.005 and OCT-4 (r = 0.39; p<0.05. The results from TP53 coding exon analysis allowed comparisons between wild-type and mutated status only in AGII cases, demonstrating significantly higher levels of ID4, SOX2 and SOX4 in mutated cases (p<0.05. This pattern was maintained in secondary GBM and further confirmed by immunohistochemistry, suggesting a role for ID4, SOX2 and SOX4 in early astrocytoma tumorigenesis. Combined hyperexpression of ID4, SOX4 and OCT-4 conferred a much lower (6 months median survival than did hypoexpression (18 months. Because both ID4 alone and a complex of SOX4 and OCT-4 activate SOX2 transcription, it is possible that multiple activation of SOX2 impair the prognosis of GBM patients. These observational results of associated expression of ID4 with SOX4 and OCT-4 may be used as a

  18. Altered microRNA expression in frontotemporal lobar degeneration with TDP-43 pathology caused by progranulin mutations

    Directory of Open Access Journals (Sweden)

    Kocerha Jannet

    2011-10-01

    Full Text Available Abstract Background Frontotemporal lobar degeneration (FTLD is a progressive neurodegenerative disorder that can be triggered through genetic or sporadic mechanisms. MicroRNAs (miRNAs have become a major therapeutic focus as their pervasive expression and powerful regulatory roles in disease pathogenesis become increasingly apparent. Here we examine the role of miRNAs in FTLD patients with TAR DNA-binding protein 43 pathology (FTLD-TDP caused by genetic mutations in the progranulin (PGRN gene. Results Using miRNA array profiling, we identified the 20 miRNAs that showed greatest evidence (unadjusted P PGRN mutations when compared to 32 FTLD-TDP patients with no apparent genetic abnormalities. Quantitative real-time PCR (qRT-PCR analyses provided technical validation of the differential expression for 9 of the 20 miRNAs in frontal cortex. Additional qRT-PCR analyses showed that 5 out of 9 miRNAs (miR-922, miR-516a-3p, miR-571, miR-548b-5p, and miR-548c-5p were also significantly dysregulated (unadjusted P PGRN mutation carriers, consistent with a systemic reduction in PGRN levels. We developed a list of gene targets for the 5 candidate miRNAs and found 18 genes dysregulated in a reported FTLD mRNA study to exhibit anti-correlated miRNA-mRNA patterns in affected cortex and cerebellar tissue. Among the targets is brain-specific angiogenesis inhibitor 3, which was recently identified as an important player in synapse biology. Conclusions Our study suggests that miRNAs may contribute to the pathogenesis of FTLD-TDP caused by PGRN mutations and provides new insight into potential future therapeutic options.

  19. Intestinal alkaline phosphatase administration in newborns decreases systemic inflammatory cytokine expression in a neonatal necrotizing enterocolitis rat model.

    Science.gov (United States)

    Rentea, Rebecca M; Liedel, Jennifer L; Fredrich, Katherine; Welak, Scott R; Pritchard, Kirkwood A; Oldham, Keith T; Simpson, Pippa M; Gourlay, David M

    2012-10-01

    Supplementation of intestinal alkaline phosphatase (IAP), an endogenous protein expressed in the intestines, decreases the severity of necrotizing enterocolitis (NEC)-associated intestinal injury and permeability. We hypothesized that IAP administration is protective in a dose-dependent manner of the inflammatory response in a neonatal rat model. Pre- and full-term newborn Sprague-Dawley rat pups were sacrificed on day of life 3. Control pups were vaginally delivered and dam fed. Preterm pups were delivered via cesarean section and exposed to intermittent hypoxia and formula feeds containing lipopolysaccharide (NEC) with and without IAP. Three different standardized doses were administered to a group of pups treated with 40, 4, and 0.4U/kg of bovine IAP (NEC+IAP40, IAP4, or IAP0.4U). Reverse transcription-real-time polymerase chain reaction (RT-PCR) for inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α on liver and lung tissues and serum cytokine analysis for interleukin (IL)-1β, IL-6, IL-10, and TNF-α were performed. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests, expressed as mean±standard error of the mean and P≤0.05 considered significant. Levels of cytokines IL-1β, IL-6, and TNF-α increased significantly in NEC versus control, returning to control levels with increasing doses of supplemental enteral IAP. Hepatic and pulmonary TNF-α and iNOS messenger ribonucleic acid expressions increased in NEC, and the remaining elevated despite IAP supplementation. Proinflammatory cytokine expression is increased systemically with intestinal NEC injury. Administration of IAP significantly reduces systemic proinflammatory cytokine expression in a dose-dependent manner. Early supplemental enteral IAP may reduce NEC-related injury and be useful for reducing effects caused by a proinflammatory cascade. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Increased expression of pro-angiogenic factors and vascularization in thyroid hyperfunctioning adenomas with and without TSH receptor activating mutations.

    Science.gov (United States)

    Celano, Marilena; Sponziello, Marialuisa; Tallini, Giovanni; Maggisano, Valentina; Bruno, Rocco; Dima, Mariavittoria; Di Oto, Enrico; Redler, Adriano; Durante, Cosimo; Sacco, Rosario; Filetti, Sebastiano; Russo, Diego

    2013-02-01

    Autonomously functioning thyroid nodules (AFTN) are known to receive an increased blood influx necessary to sustain their high rate of growth and hormone production. Here, we investigated the expression of hematic and lymphatic vases in a series of 20 AFTN compared with the contralateral non-tumor tissues of the same patients, and the transcript levels of proteins involved in the control of vascular proliferation, including the vascular endothelial growth factor (VEGF) and platelet-derived growth factors (PDGF) and their receptors and the endothelial nitric oxide synthase (eNOS). In parallel, the expression of the differentiation markers sodium/iodide symporter (NIS), thyroperoxidase (TPO), thyroglobulin (Tg), and TSH receptor (TSHR) was also investigated. The data were further analyzed comparing subgroups of tumors with or without mutations in the TSHR gene. Analysis by means of CD31 and D2-40 immunostaining showed in AFTN an increased number of hematic, but not lymphatic, vessels in parallel with an enhanced proliferation rate shown by increased Ki67 staining. Quantitative RT-PCR analysis revealed an increase of VEGF, VEGFR1 and 2, PDGF-A, PDGF-B, and eNOS expression in tumor versus normal tissues. Also, higher transcript levels of NIS, TPO, and Tg were detected. Comparison of the two subgroups of samples revealed only few differences in the expression of the genes examined. In conclusion, these data demonstrate an increased expression of angiogenesis-related factors associated with an enhanced proliferation of hematic, but not lymphatic, vessels in AFTNs. In this context, the presence of TSHR mutations may only slightly influence the expression of pro-angiogenic growth factors.

  1. Customized treatment in non-small-cell lung cancer based on EGFR mutations and BRCA1 mRNA expression.

    Directory of Open Access Journals (Sweden)

    Rafael Rosell

    Full Text Available BACKGROUND: Median survival is 10 months and 2-year survival is 20% in metastatic non-small-cell lung cancer (NSCLC treated with platinum-based chemotherapy. A small fraction of non-squamous cell lung cancers harbor EGFR mutations, with improved outcome to gefitinib and erlotinib. Experimental evidence suggests that BRCA1 overexpression enhances sensitivity to docetaxel and resistance to cisplatin. RAP80 and Abraxas are interacting proteins that form complexes with BRCA1 and could modulate the effect of BRCA1. In order to further examine the effect of EGFR mutations and BRCA1 mRNA levels on outcome in advanced NSCLC, we performed a prospective non-randomized phase II clinical trial, testing the hypothesis that customized therapy would confer improved outcome over non-customized therapy. In an exploratory analysis, we also examined the effect of RAP80 and Abraxas mRNA levels. METHODOLOGY/PRINCIPAL FINDINGS: We treated 123 metastatic non-squamous cell lung carcinoma patients using a customized approach. RNA and DNA were isolated from microdissected specimens from paraffin-embedded tumor tissue. Patients with EGFR mutations received erlotinib, and those without EGFR mutations received chemotherapy with or without cisplatin based on their BRCA1 mRNA levels: low, cisplatin plus gemcitabine; intermediate, cisplatin plus docetaxel; high, docetaxel alone. An exploratory analysis examined RAP80 and Abraxas expression. Median survival exceeded 28 months for 12 patients with EGFR mutations, and was 11 months for 38 patients with low BRCA1, 9 months for 40 patients with intermediate BRCA1, and 11 months for 33 patients with high BRCA1. Two-year survival was 73.3%, 41.2%, 15.6% and 0%, respectively. Median survival was influenced by RAP80 expression in the three BRCA1 groups. For example, for patients with both low BRCA1 and low RAP80, median survival exceeded 26 months. RAP80 was a significant factor for survival in patients treated according to BRCA1

  2. Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines

    DEFF Research Database (Denmark)

    Liu, Ying; Bodmer, Walter F

    2006-01-01

    A comprehensive analysis of the TP53 gene and its protein status was carried out on a panel of 56 colorectal cancer cell lines. This analysis was based on a combination of denaturing HPLC mutation screening of all exons of the p53 gene, sequencing the cDNA, and assessing the function of the p53 p...

  3. ACAT1 deletion in murine macrophages associated with cytotoxicity and decreased expression of collagen type 3A1

    International Nuclear Information System (INIS)

    Rodriguez, Annabelle; Ashen, M. Dominique; Chen, Edward S.

    2005-01-01

    In contrast to some published studies of murine macrophages, we previously showed that ACAT inhibitors appeared to be anti-atherogenic in primary human macrophages in that they decreased foam cell formation without inducing cytotoxicity. Herein, we examined foam cell formation and cytotoxicity in murine ACAT1 knockout (KO) macrophages in an attempt to resolve the discrepancies. Elicited peritoneal macrophages from normal C57BL6 and ACAT1 KO mice were incubated with DMEM containing acetylated LDL (acLDL, 100 μg protein/ml) for 48 h. Cells became cholesterol enriched and there were no differences in the total cholesterol mass. Esterified cholesterol mass was lower in ACAT1 KO foam cells compared to normal macrophages (p 14 C]adenine from macrophages, was approximately 2-fold greater in ACAT1 KO macrophages as compared to normal macrophages (p < 0.0001), and this was independent of cholesterol enrichment. cDNA microarray analysis showed that ACAT1 KO macrophages expressed substantially less collagen type 3A1 (26-fold), which was confirmed by RT-PCR. Total collagen content was also significantly reduced (57%) in lung homogenates isolated from ACAT1 KO mice (p < 0.02). Thus, ACAT1 KO macrophages show biochemical changes consistent with increased cytotoxicity and also a novel association with decreased expression of collagen type 3A1

  4. Exercise decreases lipogenic gene expression in adipose tissue and alters adipocyte cellularity during weight regain after weight loss.

    Directory of Open Access Journals (Sweden)

    Erin Danielle Giles

    2016-02-01

    Full Text Available Exercise is a potent strategy to facilitate long-term weight maintenance. In addition to increasing energy expenditure and reducing appetite, exercise also favors the oxidation of dietary fat, which likely helps prevent weight re-gain. It is unclear whether this exercise-induced metabolic shift is due to changes in energy balance, or whether exercise imparts additional adaptations in the periphery that limit the storage and favor the oxidation of dietary fat. To answer this question, adipose tissue lipid metabolism and related gene expression were studied in obese rats following weight loss and during the first day of relapse to obesity. Mature, obese rats were weight-reduced for 2 weeks with or without daily treadmill exercise (EX. Rats were weight maintained for 6 weeks, followed by relapse on: a ad libitum low fat diet (LFD, b ad libitum LFD plus EX, or c a provision of LFD to match the positive energy imbalance of exercised, relapsing animals. 24h retention of dietary- and de novo-derived fat were assessed directly using 14C palmitate/oleate and 3H20, respectively. Exercise decreased the size, but increased the number of adipocytes in both retroperitoneal (RP and subcutaneous (SC adipose depots, and prevented the relapse-induced increase in adipocyte size. Further, exercise decreased the expression of genes involved in lipid uptake (CD36 & LPL, de novo lipogenesis (FAS, ACC1, and triacylglycerol synthesis (MGAT & DGAT in RP adipose during relapse following weight loss. This was consistent with the metabolic data, whereby exercise reduced retention of de novo-derived fat even when controlling for the positive energy imbalance. The decreased trafficking of dietary fat to adipose tissue with exercise was explained by reduced energy intake which attenuated energy imbalance during refeeding. Despite having decreased expression of lipogenic genes, the net retention of de novo-derived lipid was higher in both the RP and SC adipose of exercising

  5. Decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats.

    Science.gov (United States)

    Zhang, Xiao-Juan; Zhou, Li-Hong; Ban, Xiang; Liu, Dian-Xin; Jiang, Wei; Liu, Xiao-Min

    2011-10-01

    Mammals spontaneously prefer lipid rich foods. Overconsumption of high-fat diet leads to obesity and related diseases. Recent findings indicate that taste may participate in the orosensory perception of dietary lipids and the fatty taste may contribute to a preference for and excessive consumption of dietary fat. CD36, a trans-membrane glycoprotein, which is located in the taste buds of circumvallate papillae of rodents, appears to be a plausible receptor for this fatty taste. Obese subjects present a stronger preference for fatty foods, though the mechanisms involved are complex and are not fully investigated. Our data from immunofluorescence and real-time RT-PCR showed that the expression levels of CD36 in circumvallate taste buds were significantly lower in high-fat diet induced obese rats as compared with that of control rats fed a normal diet. These results suggest that decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats may be associated with diminished fatty taste sensitivity and in order to compensate the preference for dietary fat, rats consume more fatty foods. Therapeutic strategies designed to alter or manipulate CD36 expression or function in taste buds may have important implications in treating obesity and related diseases. Copyright © 2010 Elsevier GmbH. All rights reserved.

  6. Force via integrins but not E-cadherin decreases Oct3/4 expression in embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Uda, Yuhei [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01, Aramaki-aoba, Aoba-ward, Sendai City (Japan); Poh, Yeh-Chuin; Chowdhury, Farhan; Wu, Douglas C. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Tanaka, Tetsuya S. [Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Sato, Masaaki [Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01, Aramaki-aoba, Aoba-ward, Sendai City (Japan); Wang, Ning, E-mail: nwangrw@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Force via integrins or cadherins induces similar cell stiffening responses. Black-Right-Pointing-Pointer Force via integrins but not cadherins induces cell spreading. Black-Right-Pointing-Pointer Force via integrins but not cadherins induces differentiation of embryonic stem cells. -- Abstract: Increasing evidence suggests that mechanical factors play a critical role in fate decisions of stem cells. Recently we have demonstrated that a local force applied via Arg-Gly-Asp (RGD) peptides coated magnetic beads to mouse embryonic stem (ES) cells increases cell spreading and cell stiffness and decreases Oct3/4 (Pou5f1) gene expression. However, it is not clear whether the effects of the applied stress on these functions of ES cells can be extended to natural extracellular matrix proteins or cell-cell adhesion molecules. Here we show that a local cyclic shear force applied via fibronectin or laminin to integrin receptors increased cell spreading and stiffness, downregulated Oct3/4 gene expression, and decreased cell proliferation rate. In contrast, the same cyclic force applied via cell-cell adhesion molecule E-cadherin (Cdh1) had no effects on cell spreading, Oct3/4 gene expression, and the self-renewal of mouse ES cells, but induced significant cell stiffening. Our findings demonstrate that biological responses of ES cells to force applied via integrins are different from those to force via E-cadherin, suggesting that mechanical forces might play different roles in different force transduction pathways to shape early embryogenesis.

  7. Reduced Penetrance and Variable Expression of SCN5A Mutations and the Importance of Co-inherited Genetic Variants: Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    T. Robyns, MD.

    2014-05-01

    Full Text Available Mutations in the SCN5A gene are responsible for multiple phenotypical presentations including Brugada syndrome, long QT syndrome, progressive familial heart block, sick sinus syndrome, dilated cardiomyopathy, lone atrial fibrillation and multiple overlap syndromes. These different phenotypic expressions of a mutation in a single gene can be explained by variable expression and reduced penetrance. One of the possible explanations of these phenomena is the co-inheritance of genetic variants. We describe a family where the individuals exhibit a compound heterozygosity in the SCN5A gene including a mutation (R1632H and a new variant (M858L. Individuals with both the mutation and new variant present with a more severe phenotype including spontaneous atrial tachyarrhythmia at young age. We give an overview of the different phenotypes of "SCN5A disease" and discuss the importance of co-inherited genetic variants in the expression of SCN5A disease.

  8. Radiation-induced progressive decreasing in the expression of reverse transcriptase gene of hEST2 and telomerase activity

    International Nuclear Information System (INIS)

    Zhu Hanneng; Chen Wenying; Xiong Sidong

    2000-01-01

    Telomerase is a ribonucleoprotein complex that adds heximeric repeats called telomeres to the growing ends of chromosomal DNA. Telomerase activity is present in a vast majority of tumors but is repressed in most normal tissues. Human telomerase catalytic subunit gene (hEST2) reverse transcriptase (RT) segment was cloned by PCR according to the sequence published in GeneBank. PCR was used to investigate the expression of the hEST2 RT segment in diverse tumors as well as in various normal tissues. Results indicated that hEST2 RT segment was detectable in tumor cells lines but not in normal cells and tissues. In order to identify the relationship between telomerase and the biological effect of radiation injury, HeLa cells, KB cells and A431 cells were employed to measure the change in telomerase activity after 60 Co-ray irradiation at RNA level and protein level. Quantitative PCR determined that expression of hEST2 RT segment that encodes seven motifs of the human telomeras decreased with increasing dosage of radiation. In addition, a PCR-based telomeric repeat amplification protocol was used to assay telomerase activity after exposure to radiation. The results strongly support the experiments we had made: Telomerase activity decreases with increasing dosage of radiation. We conclude that detection of the hEST2 RT segment by Northern blotting is a new method for detecting telomerase activity. Furthermore, radiation can cause a dose-dependent decrease in telomerase activity. The effect of radiation on telomerase is one possible reason for the death of cancer cells after irradiation. (author)

  9. Combination of isocitrate dehydrogenase 1 (IDH1) mutation and podoplanin expression in brain tumors identifies patients at high or low risk of venous thromboembolism.

    Science.gov (United States)

    Mir Seyed Nazari, Pegah; Riedl, Julia; Preusser, Matthias; Posch, Florian; Thaler, Johannes; Marosi, Christine; Birner, Peter; Ricken, Gerda; Hainfellner, Johannes A; Pabinger, Ingrid; Ay, Cihan

    2018-04-19

    Venous thromboembolism (VTE) is a frequent complication in primary brain tumor patients. Independent studies revealed that podoplanin expression in brain tumors is associated with increased VTE risk, while the isocitrate dehydrogenase 1 (IDH1) mutation is associated with very low VTE risk. To investigate the interrelation between intratumoral podoplanin expression and IDH1 mutation, and their mutual impact on VTE development. In a prospective cohort study, intratumoral IDH1 R132H mutation and podoplanin were determined in brain tumor specimens (mainly glioma) by immunohistochemistry. Primary endpoint of the study was symptomatic VTE during a 2-year follow-up. All brain tumors that expressed podoplanin to a medium-high extent showed also an IDH1 wildtype status. A score based on IDH1 status and podoplanin expression levels allowed predicting risk of VTE. Patients with wildtype IDH1 brain tumors and high podoplanin expression had a significantly increased VTE risk compared to those with mutant IDH1 tumors and no podoplanin expression (6-month risk 18.2% vs. 0%). IDH1 mutation and podoplanin overexpression seem to be exclusive. While brain tumor patients with IDH1 mutation are at very low VTE risk, the risk of VTE in patients with IDH1 wildtype tumors is strongly linked to podoplanin expression levels. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Decreased expression of microRNA-29 family in leiomyoma contributes to increased major fibrillar collagen production.

    Science.gov (United States)

    Marsh, Erica E; Steinberg, Marissa L; Parker, J Brandon; Wu, Ju; Chakravarti, Debabrata; Bulun, Serdar E

    2016-09-01

    To determine the expression and function of the microRNA-29 family (miRNA-29a, miRNA-29b, miRNA-29c) in human leiomyoma and myometrium. Basic science experimental design. Academic medical center. Women undergoing surgery for symptomatic uterine fibroids. Overexpression and knockdown of miRNA-29a, miRNA-29b, and miRNA-29c in primary leiomyoma and myometrial cells. [1] Expression of the miRNA-29 family members in vivo in leiomyoma versus myometrium; [2] Major fibrillar collagen (I, II, III) expression in leiomyoma and myometrial cells with manipulation of miRNA-29 species. Members of the miRNA-29 family (29a, 29b, 29c) are all down-regulated in leiomyoma versus myometrium in vivo. The expression of the miRNA-29 family can be successfully modulated in primary leiomyoma and myometrial cells. Overexpression of the miRNA-29 family in leiomyoma cells results in down-regulation of the major fibrillar collagens. Down-regulation of the miRNA-29 species in myometrium results in an increase in collagen type III deposition. The miRNA-29 family is consistently down-regulated in leiomyoma compared to matched myometrial tissue. This down-regulation contributes to the increased collagen seen in leiomyomas versus myometrium. When miRNA-29 members are overexpressed in leiomyoma cells, protein levels of all of the major fibrillar collagens decrease. The miRNA-29 members are potential therapeutic targets in this highly prevalent condition. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Krüppel-like factor 1 mutations and expression of hemoglobins F and A2 in homozygous hemoglobin E syndrome.

    Science.gov (United States)

    Tepakhan, Wanicha; Yamsri, Supawadee; Fucharoen, Goonnapa; Sanchaisuriya, Kanokwan; Fucharoen, Supan

    2015-07-01

    The basis for variability of hemoglobin (Hb) F in homozygous Hb E disease is not well understood. We have examined multiple mutations of the Krüppel-like factor 1 (KLF1) gene; an erythroid specific transcription factor and determined their associations with Hbs F and A2 expression in homozygous Hb E. Four KLF1 mutations including G176AfsX179, T334R, R238H, and -154 (C-T) were screened using specific PCR assays on 461 subjects with homozygous Hb E and 100 normal controls. None of these four mutations were observed in 100 normal controls. Among 461 subjects with homozygous Hb E, 306 had high (≥5 %) and 155 had low (<5 %) Hb F. DNA analysis identified the KLF1 mutations in 35 cases of the former group with high Hb F, including the G176AfsX179 mutation (17/306 = 5.6 %), T334R mutation (9/306 = 2.9 %), -154 (C-T) mutation (7/306 = 2.3 %), and R328H mutation (2/306 = 0.7 %). Only two subjects in the latter group with low Hb F carried the G176AfsX179 and -154 (C-T) mutations. Significant higher Hb A2 level was observed in those of homozygous Hb E with the G176AfsX179 mutation as compared to those without KLF1 mutations. These results indicate that KLF1 is among the genetic factors associated with increased Hbs F and A2, and in combination with other factors could explain the variabilities of these Hb expression in Hb E syndrome.

  12. Physiological Expression of AMPKγ2RG Mutation Causes Wolff-Parkinson-White Syndrome and Induces Kidney Injury in Mice.

    Science.gov (United States)

    Yang, Xiaodong; Mudgett, John; Bou-About, Ghina; Champy, Marie-France; Jacobs, Hugues; Monassier, Laurent; Pavlovic, Guillaume; Sorg, Tania; Herault, Yann; Petit-Demoulière, Benoit; Lu, Ku; Feng, Wen; Wang, Hongwu; Ma, Li-Jun; Askew, Roger; Erion, Mark D; Kelley, David E; Myers, Robert W; Li, Cai; Guan, Hong-Ping

    2016-11-04

    Mutations of the AMP-activated kinase gamma 2 subunit (AMPKγ2), N488I (AMPKγ2 NI ) and R531G (AMPKγ2 RG ), are associated with Wolff-Parkinson-White (WPW) syndrome, a cardiac disorder characterized by ventricular pre-excitation in humans. Cardiac-specific transgenic overexpression of human AMPKγ2 NI or AMPKγ2 RG leads to constitutive AMPK activation and the WPW phenotype in mice. However, overexpression of these mutant proteins also caused profound, non-physiological increase in cardiac glycogen, which might abnormally alter the true phenotype. To investigate whether physiological levels of AMPKγ2 NI or AMPKγ2 RG mutation cause WPW syndrome and metabolic changes in other organs, we generated two knock-in mouse lines on the C57BL/6N background harboring mutations of human AMPKγ2 NI and AMPKγ2 RG , respectively. Similar to the reported phenotypes of mice overexpressing AMPKγ2 NI or AMPKγ2 RG in the heart, both lines developed WPW syndrome and cardiac hypertrophy; however, these effects were independent of cardiac glycogen accumulation. Compared with AMPKγ2 WT mice, AMPKγ2 NI and AMPKγ2 RG mice exhibited reduced body weight, fat mass, and liver steatosis when fed with a high fat diet (HFD). Surprisingly, AMPKγ2 RG but not AMPKγ2 NI mice fed with an HFD exhibited severe kidney injury characterized by glycogen accumulation, inflammation, apoptosis, cyst formation, and impaired renal function. These results demonstrate that expression of AMPKγ2 NI and AMPKγ2 RG mutations at physiological levels can induce beneficial metabolic effects but that this is accompanied by WPW syndrome. Our data also reveal an unexpected effect of AMPKγ2 RG in the kidney, linking lifelong constitutive activation of AMPK to a potential risk for kidney dysfunction in the context of an HFD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Physiological Expression of AMPKγ2RG Mutation Causes Wolff-Parkinson-White Syndrome and Induces Kidney Injury in Mice*

    Science.gov (United States)

    Yang, Xiaodong; Mudgett, John; Bou-About, Ghina; Champy, Marie-France; Jacobs, Hugues; Monassier, Laurent; Pavlovic, Guillaume; Sorg, Tania; Herault, Yann; Petit-Demoulière, Benoit; Lu, Ku; Feng, Wen; Wang, Hongwu; Ma, Li-Jun; Askew, Roger; Erion, Mark D.; Kelley, David E.; Myers, Robert W.; Li, Cai

    2016-01-01

    Mutations of the AMP-activated kinase gamma 2 subunit (AMPKγ2), N488I (AMPKγ2NI) and R531G (AMPKγ2RG), are associated with Wolff-Parkinson-White (WPW) syndrome, a cardiac disorder characterized by ventricular pre-excitation in humans. Cardiac-specific transgenic overexpression of human AMPKγ2NI or AMPKγ2RG leads to constitutive AMPK activation and the WPW phenotype in mice. However, overexpression of these mutant proteins also caused profound, non-physiological increase in cardiac glycogen, which might abnormally alter the true phenotype. To investigate whether physiological levels of AMPKγ2NI or AMPKγ2RG mutation cause WPW syndrome and metabolic changes in other organs, we generated two knock-in mouse lines on the C57BL/6N background harboring mutations of human AMPKγ2NI and AMPKγ2RG, respectively. Similar to the reported phenotypes of mice overexpressing AMPKγ2NI or AMPKγ2RG in the heart, both lines developed WPW syndrome and cardiac hypertrophy; however, these effects were independent of cardiac glycogen accumulation. Compared with AMPKγ2WT mice, AMPKγ2NI and AMPKγ2RG mice exhibited reduced body weight, fat mass, and liver steatosis when fed with a high fat diet (HFD). Surprisingly, AMPKγ2RG but not AMPKγ2NI mice fed with an HFD exhibited severe kidney injury characterized by glycogen accumulation, inflammation, apoptosis, cyst formation, and impaired renal function. These results demonstrate that expression of AMPKγ2NI and AMPKγ2RG mutations at physiological levels can induce beneficial metabolic effects but that this is accompanied by WPW syndrome. Our data also reveal an unexpected effect of AMPKγ2RG in the kidney, linking lifelong constitutive activation of AMPK to a potential risk for kidney dysfunction in the context of an HFD. PMID:27621313

  14. Decreased expression of LamB and Odp1 complex is crucial for antibiotic resistance in Escherichia coli.

    Science.gov (United States)

    Lin, Xiang-min; Yang, Man-jun; Li, Hui; Wang, Chao; Peng, Xuan-Xian

    2014-02-26

    We previously revealed a negative regulation of LamB in chlortetracycline-resistant Escherichia coli strain. In the present study, we first showed that the negative regulation, which was characterized by decreased abundance of LamB with elevated growth of its gene-deleted mutant in medium with antibiotics, was a general response in resistance to different classes of antibiotics using 2-DE based proteomics or/and genetically gene-deletion mutant of LamB. Then, we revealed the interaction of LamB and Odp1 which catalyzes the overall conversion of pyruvate to acetyl-CoA and CO2, and found the decrease of the complex in antibiotic-resistant strains with a minimum inhibitory concentration dose-dependent manner. Further spectrofluorometry assay indicated that LamB served as a porin to influx an antibiotic. Finally, we showed that the decreased expression of LamB and Odp1 was detected in almost of all 34 multidrug-resistant strains, which suggested that LamB and Odp1 were biomarkers for identification of antibiotic-resistant E. coli. Our results indicated that the interaction of an outer membrane protein with an energy metabolic enzyme constructed an efficient pathway to resist antibiotics. These findings provide novel insights into the mechanisms of antibiotic resistance. Our data indicate that the negative regulation by LamB is widely detected in antibiotic-resistant E. coli. LamB serves as a porin to influx an antibiotic and is interacted with Odp1. The complex decreases in antibiotic-resistant strains with a MIC dose-dependent manner. Our findings indicate that interaction of outer membrane protein with energy metabolic enzyme constructs an efficient pathway to resist antibiotics and provides novel insights into the mechanisms of antibiotic resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Distinct Mutations Led to Inactivation of Type 1 Fimbriae Expression in Shigella spp.

    Science.gov (United States)

    Bravo, Verónica; Puhar, Andrea; Sansonetti, Philippe; Parsot, Claude; Toro, Cecilia S.

    2015-01-01

    Shigella spp. are responsible for bacillary dysentery in humans. The acquisition or the modification of the virulence plasmid encoding factors promoting entry of bacteria into and dissemination within epithelial cells was a critical step in the evolution of these bacteria from their Escherichia coli ancestor(s). Incorporation of genomic islands (GI) and gene inactivation also shaped interactions between these pathogens and their human host. Sequence analysis of the GI inserted next to the leuX tRNA gene in S. boydii, S. dysenteriae, S. flexneri, S. sonnei and enteroinvasive E. coli (EIEC) suggests that this region initially carried the fec, yjhATS and fim gene clusters. The fim cluster encoding type I fimbriae is systematically inactivated in both reference strains and clinical isolates and distinct mutations are responsible for this inactivation in at least three phylogenetic groups. To investigate consequences of the presence of fimbriae on the outcome of the interaction of Shigella with host cells, we used a S. flexneri strain harboring a plasmid encoding the E. coli fim operon. Production of fimbriae by this recombinant strain increased the ability of bacteria to adhere to and enter into epithelial cells and had no effect on their ability to disseminate from cell to cell. The observations that production of type I fimbriae increases invasion of epithelial cells and that independent mutations abolish fimbriae production in Shigella suggest that these mutations correspond to pathoadaptive events. PMID:25811616

  16. Distinct mutations led to inactivation of type 1 fimbriae expression in Shigella spp.

    Directory of Open Access Journals (Sweden)

    Verónica Bravo

    Full Text Available Shigella spp. are responsible for bacillary dysentery in humans. The acquisition or the modification of the virulence plasmid encoding factors promoting entry of bacteria into and dissemination within epithelial cells was a critical step in the evolution of these bacteria from their Escherichia coli ancestor(s. Incorporation of genomic islands (GI and gene inactivation also shaped interactions between these pathogens and their human host. Sequence analysis of the GI inserted next to the leuX tRNA gene in S. boydii, S. dysenteriae, S. flexneri, S. sonnei and enteroinvasive E. coli (EIEC suggests that this region initially carried the fec, yjhATS and fim gene clusters. The fim cluster encoding type I fimbriae is systematically inactivated in both reference strains and clinical isolates and distinct mutations are responsible for this inactivation in at least three phylogenetic groups. To investigate consequences of the presence of fimbriae on the outcome of the interaction of Shigella with host cells, we used a S. flexneri strain harboring a plasmid encoding the E. coli fim operon. Production of fimbriae by this recombinant strain increased the ability of bacteria to adhere to and enter into epithelial cells and had no effect on their ability to disseminate from cell to cell. The observations that production of type I fimbriae increases invasion of epithelial cells and that independent mutations abolish fimbriae production in Shigella suggest that these mutations correspond to pathoadaptive events.

  17. Bone marrow stromal elements in murine leukemia; Decreased CSF-producing fibroblasts and normal IL-1 expression by macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Ishay, Z [Laboratory of Experimental Hematology, Department of Anatomy and Embryology, Hebrew University-Hadassah Medical School (Israel); Barak, V [Laboratory of Immunology, Department of Oncology, Hadassah University Hospital (Israel); Shoshan, S [Faculty of Dental Medicine, Connective Tissue Research Laboratory, Hebrew University, Jerusalem (Israel); Prindull, G [Department of Pediatrics, University of Gottingen, Gottingen (Germany, F.R.)

    1990-01-01

    A study of bone marrow stromal elements in murine acute myeloid leukemia (AML) was carried out. Our previous studies had indicated marrow stromal deficiency in murine AML. In the current investigation, separate stromal cells were cultured and the results obtained have shown that, while marrow stromal macrophages are normal in leukemia and express adequate amounts of IL-1, the fibroblasts are markedly reduced. However, if sufficient fibroblasts are pooled in vitro, they produce adequate amounts of CSF. Test of TNF{alpha} in leukemic cells CM, as possible cause of marrow stromal inhibition in leukemia, had not disclosed this cytokine. Further, it was observed that total body lethal irradiation of leukemic mice aggravates the stromal deficiency, confirming results of our previous investigations. It is concluded that bone marrow stromal deficiency in murine AML is due to decreased fibroblasts and, implicity, reduced CSF production. (author).

  18. Exhaustive Training Increases Uncoupling Protein 2 Expression and Decreases Bcl-2/Bax Ratio in Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    W. Y. Liu

    2013-01-01

    Full Text Available This work investigates the effects of oxidative stress due to exhaustive training on uncoupling protein 2 (UCP2 and Bcl-2/Bax in rat skeletal muscles. A total of 18 Sprague-Dawley female rats were randomly divided into three groups: the control group (CON, the trained control group (TC, and the exhaustive trained group (ET. Malondialdehyde (MDA, superoxide dismutase (SOD, xanthine oxidase (XOD, ATPase, UCP2, and Bcl-2/Bax ratio in red gastrocnemius muscles were measured. Exhaustive training induced ROS increase in red gastrocnemius muscles, which led to a decrease in the cell antiapoptotic ability (Bcl-2/Bax ratio. An increase in UCP2 expression can reduce ROS production and affect mitochondrial energy production. Thus, oxidative stress plays a significant role in overtraining.

  19. Lifespan decrease in a Caenorhabditis elegans mutant lacking TRX-1, a thioredoxin expressed in ASJ sensory neurons.

    Science.gov (United States)

    Miranda-Vizuete, Antonio; Fierro González, Juan Carlos; Gahmon, Gabriele; Burghoorn, Jan; Navas, Plácido; Swoboda, Peter

    2006-01-23

    Thioredoxins are a class of small proteins that play a key role in regulating many cellular redox processes. We report here the characterization of the first member of the thioredoxin family in metazoans that is mainly associated with neurons. The Caenorhabditis elegans gene B0228.5 encodes a thioredoxin (TRX-1) that is expressed in ASJ ciliated sensory neurons, and to some extent also in the posterior-most intestinal cells. TRX-1 is active at reducing protein disulfides in the presence of a heterologous thioredoxin reductase. A mutant worm strain carrying a null allele of the trx-1 gene displays a reproducible decrease in both mean and maximum lifespan when compared to wild-type. The identification and characterization of TRX-1 paves the way to use C. elegans as an in vivo model to study the role of thioredoxins in lifespan and nervous system physiology and pathology.

  20. Mutations in Cytosine-5 tRNA Methyltransferases Impact Mobile Element Expression and Genome Stability at Specific DNA Repeats

    Directory of Open Access Journals (Sweden)

    Bianca Genenncher

    2018-02-01

    Full Text Available The maintenance of eukaryotic genome stability is ensured by the interplay of transcriptional as well as post-transcriptional mechanisms that control recombination of repeat regions and the expression and mobility of transposable elements. We report here that mutations in two (cytosine-5 RNA methyltransferases, Dnmt2 and NSun2, impact the accumulation of mobile element-derived sequences and DNA repeat integrity in Drosophila. Loss of Dnmt2 function caused moderate effects under standard conditions, while heat shock exacerbated these effects. In contrast, NSun2 function affected mobile element expression and genome integrity in a heat shock-independent fashion. Reduced tRNA stability in both RCMT mutants indicated that tRNA-dependent processes affected mobile element expression and DNA repeat stability. Importantly, further experiments indicated that complex formation with RNA could also contribute to the impact of RCMT function on gene expression control. These results thus uncover a link between tRNA modification enzymes, the expression of repeat DNA, and genomic integrity.

  1. Homologous expression of a mutated beta-tubulin gene does not confer benomyl resistance on Trichoderma virens.

    Science.gov (United States)

    Mukherjee, M; Hadar, R; Mukherjee, P K; Horwitz, B A

    2003-01-01

    To clone the beta-tubulins and to induce resistance to benzimidazoles in the biocontrol fungus Trichoderma virens through site-directed mutagenesis. Two beta-tubulin genes have been cloned using PCR amplification followed by the screening of a T. virens cDNA library. The full-length cDNA clones, coding for 445 and 446 amino acids, have been designated as T. virens tub1 and T. virens tub2. A sequence alignment of these two tubulins with tubulins from other filamentous fungi has shown the presence of some unique amino acid sequences not found in those positions in other beta-tubulins. Constitutive expression of the tub2 gene with a histidine to tyrosine substitution at position 6 (known to impart benomyl/methyl benzimadazol-2-yl carbamate resistance in other fungi), under the Pgpd promoter of Aspergillus nidulans, did not impart resistance to benomyl. The homologous expression of tub2 gene with a histidine to tyrosine mutation at position +6, which is known to impart benomyl tolerance in other fungi, does not impart resistance in T. virens. Unlike other Trichoderma spp., T. virens, has been difficult to mutate for benomyl tolerance. The present study, through site-directed mutagenesis, shows that a mutation known to impart benomyl tolerance in T. viride and other fungi does not impart resistance in this fungus. Understanding the mechanisms of this phenomenon will have a profound impact in plant-disease management, as many plant pathogenic fungi develop resistance to this group of fungicides forcing its withdrawal after a short period of use.

  2. Maternal hypoxia increases the activity of MMPs and decreases the expression of TIMPs in the brain of neonatal rats.

    Science.gov (United States)

    Tong, Wenni; Chen, Wanqiu; Ostrowski, Robert P; Ma, Qingyi; Souvenir, Rhonda; Zhang, Lubo; Zhang, John H; Tang, Jiping

    2010-02-15

    A recent study has shown that increased activity of matrix metalloproteinases-2 and metalloproteinases-9 (MMP-2 and MMP-9) has detrimental effect on the brain after neonatal hypoxia. The present study determined the effect of maternal hypoxia on neuronal survivability and the activity of MMP-2 and MMP-9, as well as the expression of tissue inhibitors of metalloproteinase 1 and 2 (TIMP-1 and TIMP-2) in the brain of neonatal rats. Pregnant rats were exposed to 10.5% oxygen for 6 days from the gestation day 15 to day 21. Pups were sacrificed at day 0, 4, 7, 14, and 21 after birth. Body weight and brain weight of the pups were measured at each time point. The activity of MMP-2 and MMP-9 and the protein abundance of TIMP-1 and TIMP-2 were determined by zymography and Western blotting, respectively. The tissue distribution of MMPs was examined by immunofluorescence staining. The neuronal death was detected by Nissl staining. Maternal hypoxia caused significant decreases in body and brain size, increased activity of MMP-2 at day 0, and increased MMP-9 at day 0 and 4. The increased activity of the MMPs was accompanied by an overall tendency towards a reduced expression of TIMPs at all ages with the significance observed for TIMPs at day 0, 4, and 7. Immunofluorescence analysis showed an increased expression of MMP-2, MMP-9 in the hippocampus at day 0 and 4. Nissl staining revealed significant cell death in the hippocampus at day 0, 4, and 7. Functional tests showed worse neurobehavioral outcomes in the hypoxic animals.

  3. Inhibition of HIF-1α decreases expression of pro-inflammatory IL-6 and TNF-α in diabetic retinopathy.

    Science.gov (United States)

    Gao, Xiuhua; Li, Yonghua; Wang, Hongxia; Li, Chuanbao; Ding, Jianguang

    2017-12-01

    Recent studies demonstrate that pro-inflammatory cytokines (PICs, i.e. IL-1β, IL-6 and TNF-α) in retinal tissues are likely involved in the development of diabetic retinopathy (DR). In this report, we particularly examined contributions of hypoxia inducible factor subtype 1α (HIF-1α) to the expression of PICs and their receptors in diabetic retina. Streptozotocin (STZ) was systemically injected to induce hyperglycaemia in rats. ELISA and Western blot analysis were employed to determine the levels of HIF-1α and PICs as well as PIC receptors in retinal tissues of control rats and STZ rats. The levels of retinal HIF-1α were significantly increased in STZ rats 4-10 weeks after induction of hyperglycaemia as compared with control animals. With increasing HIF-1α retinal PICs including IL-1β, IL-6 and TNF-α, their respective receptors, namely IL-1R, IL-6R and TNFR1, were also elevated in STZ rats. Moreover, inhibition of HIF-1α by injection of 2-methoxyestradiol (2-MET) significantly decreased the amplified expression IL-6, TNF-α, IL-6R and TNFR1 in diabetic retina, but did not modify IL-1β pathway. In addition, we examined protein expression of Caspase-3 indicating cell apoptosis in the retina of STZ rats after infusing 2-MET, demonstrating that 2-MET attenuated an increase in Caspase-3 evoked by STZ. Hypoxia inducible factor subtype 1α (HIF-1α) activated in diabetic retina is likely to play a role in regulating pathophysiological process via IL-6 and TNF-α mechanism. This has pharmacological implications to target specific HIF-1α, IL-6 and TNF-α signalling pathway for dysfunction and vulnerability related to DR. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  4. Regulation of glucose transport and c-fos and egr-1 expression in cells with mutated or endogenous growth hormone receptors

    DEFF Research Database (Denmark)

    Gong, T W; Meyer, D J; Liao, J

    1998-01-01

    To identify mechanisms by which GH receptors (GHR) mediate downstream events representative of growth and metabolic responses to GH, stimulation by GH of c-fos and egr-1 expression and glucose transport activity were examined in Chinese hamster ovary (CHO) cells expressing mutated GHR. In CHO cel...

  5. Curcumin-mediated decrease in the expression of nucleolar organizer regions in cervical cancer (HeLa) cells.

    Science.gov (United States)

    Lewinska, Anna; Adamczyk, Jagoda; Pajak, Justyna; Stoklosa, Sylwia; Kubis, Barbara; Pastuszek, Paulina; Slota, Ewa; Wnuk, Maciej

    2014-09-01

    Curcumin, the major yellow-orange pigment of turmeric derived from the rhizome of Curcuma longa, is a highly pleiotropic molecule with the potential to modulate inflammation, oxidative stress, cell survival, cell secretion, homeostasis and proliferation. Curcumin, at relatively high concentrations, was repeatedly reported to be a potent inducer of apoptosis in cancer cells and thus considered a promising anticancer agent. In the present paper, the effects of low concentrations of curcumin on human cervical cancer (HeLa) cells were studied. We found curcumin-mediated decrease in the cell number and viability, and increase in apoptotic events and superoxide level. In contrast to previously shown curcumin cytotoxicity toward different cervical cancer lines, we observed toxic effects when even as low as 1 μM concentration of curcumin was used. Curcumin was not genotoxic to HeLa cells. Because argyrophilic nucleolar protein (AgNOR protein) expression is elevated in malignant cells compared to normal cells reflecting the rapidity of cancer cell proliferation, we evaluated curcumin-associated changes in size (area) and number of silver deposits. We showed curcumin-induced decrease in AgNOR protein pools, which may be mediated by global DNA hypermethylation observed after low concentration curcumin treatment. In summary, we have shown for the first time that curcumin at low micromolar range may be effective against HeLa cells, which may have implications for curcumin-based treatment of cervical cancer in humans. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Valproic acid exposure decreases Cbp/p300 protein expression and histone acetyltransferase activity in P19 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lamparter, Christina L. [Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Winn, Louise M., E-mail: winnl@queensu.ca [Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); School of Environmental Studies, Queen' s University, Kingston, Ontario K7L 3N6 (Canada)

    2016-09-01

    The teratogenicity of the antiepileptic drug valproic acid (VPA) is well established and its inhibition of histone deacetylases (HDAC) is proposed as an initiating factor. Recently, VPA-mediated HDAC inhibition was demonstrated to involve transcriptional downregulation of histone acetyltransferases (HATs), which was proposed to compensate for the increased acetylation resulting from HDAC inhibition. Cbp and p300 are HATs required for embryonic development and deficiencies in either are associated with congenital malformations and embryolethality. The objective of the present study was to characterize Cbp/p300 following VPA exposure in P19 cells. Consistent with previous studies, exposure to 5 mM VPA over 24 h induced a moderate decrease in Cbp/p300 mRNA, which preceded a strong decrease in total cellular protein mediated by ubiquitin-proteasome degradation. Nuclear Cbp/p300 protein was also decreased following VPA exposure, although to a lesser extent. Total cellular and nuclear p300 HAT activity was reduced proportionately to p300 protein levels, however while total cellular HAT activity also decreased, nuclear HAT activity was unaffected. Using the Cbp/p300 HAT inhibitor C646, we demonstrated that HAT inhibition similarly affected many of the same endpoints as VPA, including increased reactive oxygen species and caspase-3 cleavage, the latter of which could be attenuated by pre-treatment with the antioxidant catalase. C646 exposure also decreased NF-κB/p65 protein, which was not due to reduced mRNA and was not attenuated with catalase pre-treatment. This study provides support for an adaptive HAT response following VPA exposure and suggests that reduced Cbp/p300 HAT activity could contribute to VPA-mediated alterations. - Highlights: • VPA exposure in vitro downregulates Cbp/p300 mRNA and induces protein degradation. • Cbp/p300 histone acetyltransferase activity is similarly reduced with VPA exposure. • Inhibition of Cbp/p300 acetyltransferase activity

  7. Mitochondrial DNA depletion, mitochondrial mutations and high TFAM expression in hepatocellular carcinoma

    OpenAIRE

    Qiao, Lihua; Ru, Guoqing; Mao, Zhuochao; Wang, Chenghui; Nie, Zhipeng; Li, Qiang; Huang-yang, Yiyi; Zhu, Ling; Liang, Xiaoyang; Yu, Jialing; Jiang, Pingping

    2017-01-01

    We investigated the role of mitochondrial genetic alterations in hepatocellular carcinoma by directly comparing the mitochondrial genomes of 86 matched pairs of HCC and non-tumor liver samples. Substitutions in 637 mtDNA sites were detected, comprising 89.80% transitions and 6.60% transversions. Forty-six somatic variants, including 15 novel mutations, were identified in 40.70% of tumor tissues. Of those, 21 were located in the non-coding region and 25 in the protein-coding region. Twenty-two...

  8. Ectopic expression of AID in a non-B cell line triggers A:T and G:C point mutations in non-replicating episomal vectors.

    Directory of Open Access Journals (Sweden)

    Tihana Jovanic

    Full Text Available Somatic hypermutation (SHM of immunoglobulin genes is currently viewed as a two step process initiated by the deamination of deoxycytidine (C to deoxyuridine (U, catalysed by the activation induced deaminase (AID. Phase 1 mutations arise from DNA replication across the uracil residue or the abasic site, generated by the uracil-DNA glycosylase, yielding transitions or transversions at G:C pairs. Phase 2 mutations result from the recognition of the U:G mismatch by the Msh2/Msh6 complex (MutS Homologue, followed by the excision of the mismatched nucleotide and the repair, by the low fidelity DNA polymerase eta, of the gap generated by the exonuclease I. These mutations are mainly focused at A:T pairs. Whereas in activated B cells both G:C and A:T pairs are equally targeted, ectopic expression of AID was shown to trigger only G:C mutations on a stably integrated reporter gene. Here we show that when using non-replicative episomal vectors containing a GFP gene, inactivated by the introduction of stop codons at various positions, a high level of EGFP positive cells was obtained after transient expression in Jurkat cells constitutively expressing AID. We show that mutations at G:C and A:T pairs are produced. EGFP positive cells are obtained in the absence of vector replication demonstrating that the mutations are dependent only on the mismatch repair (MMR pathway. This implies that the generation of phase 1 mutations is not a prerequisite for the expression of phase 2 mutations.

  9. KRAS and BRAF Mutations and PTEN Expression Do Not Predict Efficacy of Cetuximab-Based Chemoradiotherapy in Locally Advanced Rectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Erben, Philipp, E-mail: philipp.erben@medma.uni-heidelberg.de [III. Medizinische Klinik, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany); Stroebel, Philipp [Pathologisches Institut, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany); Horisberger, Karoline [Chirurgische Klinik, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany); Popa, Juliana; Bohn, Beatrice; Hanfstein, Benjamin [III. Medizinische Klinik, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany); Kaehler, Georg; Kienle, Peter; Post, Stefan [Chirurgische Klinik, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany); Wenz, Frederik [Klinik fuer Strahlentherapie und Radioonkologie, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany); Hochhaus, Andreas [III. Medizinische Klinik, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany); Klinik fuer Innere Medizin II, Abteilung Haematologie/Onkologie, Universitaetsklinikum Jena, Jena (Germany); Hofheinz, Ralf-Dieter [III. Medizinische Klinik, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany)

    2011-11-15

    Purpose: Mutations in KRAS and BRAF genes as well as the loss of expression of phosphatase and tensin homolog (PTEN) (deleted on chromosome 10) are associated with impaired activity of antibodies directed against epidermal growth factor receptor in patients with metastatic colorectal cancer. The predictive and prognostic value of the KRAS and BRAF point mutations as well as PTEN expression in patients with locally advanced rectal cancer (LARC) treated with cetuximab-based neoadjuvant chemoradiotherapy is unknown. Methods and Materials: We have conducted phase I and II trials of the combination of weekly administration of cetuximab and irinotecan and daily doses of capecitabine in conjunction with radiotherapy (45 Gy plus 5.4 Gy) in patients with LARC (stage uT3/4 or uN+). The status of KRAS and BRAF mutations was determined with direct sequencing, and PTEN expression status was determined with immunohistochemistry testing of diagnostic tumor biopsies. Tumor regression was evaluated by using standardized regression grading, and disease-free survival (DFS) was calculated according to the Kaplan-Meier method. Results: A total of 57 patients were available for analyses. A total of 31.6% of patients carried mutations in the KRAS genes. No BRAF mutations were found, while the loss of PTEN expression was observed in 9.6% of patients. Six patients achieved complete remission, and the 3-year DFS rate was 73%. No correlation was seen between tumor regression or DFS rate and a single marker or a combination of all markers. Conclusions: In the present series, no BRAF mutation was detected. The presence of KRAS mutations and loss of PTEN expression were not associated with impaired response to cetuximab-based chemoradiotherapy and 3-year DFS.

  10. KRAS and BRAF Mutations and PTEN Expression Do Not Predict Efficacy of Cetuximab-Based Chemoradiotherapy in Locally Advanced Rectal Cancer

    International Nuclear Information System (INIS)

    Erben, Philipp; Ströbel, Philipp; Horisberger, Karoline; Popa, Juliana; Bohn, Beatrice; Hanfstein, Benjamin; Kähler, Georg; Kienle, Peter; Post, Stefan; Wenz, Frederik; Hochhaus, Andreas; Hofheinz, Ralf-Dieter

    2011-01-01

    Purpose: Mutations in KRAS and BRAF genes as well as the loss of expression of phosphatase and tensin homolog (PTEN) (deleted on chromosome 10) are associated with impaired activity of antibodies directed against epidermal growth factor receptor in patients with metastatic colorectal cancer. The predictive and prognostic value of the KRAS and BRAF point mutations as well as PTEN expression in patients with locally advanced rectal cancer (LARC) treated with cetuximab-based neoadjuvant chemoradiotherapy is unknown. Methods and Materials: We have conducted phase I and II trials of the combination of weekly administration of cetuximab and irinotecan and daily doses of capecitabine in conjunction with radiotherapy (45 Gy plus 5.4 Gy) in patients with LARC (stage uT3/4 or uN+). The status of KRAS and BRAF mutations was determined with direct sequencing, and PTEN expression status was determined with immunohistochemistry testing of diagnostic tumor biopsies. Tumor regression was evaluated by using standardized regression grading, and disease-free survival (DFS) was calculated according to the Kaplan–Meier method. Results: A total of 57 patients were available for analyses. A total of 31.6% of patients carried mutations in the KRAS genes. No BRAF mutations were found, while the loss of PTEN expression was observed in 9.6% of patients. Six patients achieved complete remission, and the 3-year DFS rate was 73%. No correlation was seen between tumor regression or DFS rate and a single marker or a combination of all markers. Conclusions: In the present series, no BRAF mutation was detected. The presence of KRAS mutations and loss of PTEN expression were not associated with impaired response to cetuximab-based chemoradiotherapy and 3-year DFS.

  11. Decreased expression of RNA interference machinery, Dicer and Drosha, is associated with poor outcome in ovarian cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, William M.; Lin, Yvonne G.; Han, Liz Y.; Kamat, Aparna A.; Spannuth, Whitney A.; Schmandt, Rosemarie; Urbauer, Diana; Pennacchio, Len A.; Cheng, Jan-Fang; Zeidan, Alexandra; Wang, Hua; Mueller, Peter; Lenburg, Marc E.; Gray, Joe W.; Mok, Samuel; Birrer, Michael J.; Lopez-Berestein, Gabriel; Coleman, Robert L.; Bar-Eli, Menashe; Sood, Anil K.

    2008-05-06

    The clinical and functional significance of RNA interference (RNAi) machinery, Dicer and Drosha, in ovarian cancer is not known and was examined. Dicer and Drosha expression was measured in ovarian cancer cell lines (n=8) and invasive epithelial ovarian cancer specimens (n=111) and correlated with clinical outcome. Validation was performed with previously published cohorts of ovarian, breast, and lung cancer patients. Anti-Galectin-3 siRNA and shRNA transfections were used for in vitro functional studies. Dicer and Drosha mRNA and protein levels were decreased in 37% to 63% of ovarian cancer cell lines and in 60% and 51% of human ovarian cancer specimens, respectively. Low Dicer was significantly associated with advanced tumor stage (p=0.007), and low Drosha with suboptimal surgical cytoreduction (p=0.02). Tumors with both high Dicer and Drosha were associated with increased median patient survival (>11 years vs. 2.66 years for other groups; p<0.001). In multivariate analysis, high Dicer (HR=0.48; p=0.02), high-grade histology (HR=2.46; p=0.03), and poor chemoresponse (HR=3.95; p<0.001) were identified as independent predictors of disease-specific survival. Findings of poor clinical outcome with low Dicer expression were validated in separate cohorts of cancer patients. Galectin-3 silencing with siRNA transfection was superior to shRNA in cell lines with low Dicer (78-95% vs. 4-8% compared to non-targeting sequences), and similar in cell lines with high Dicer. Our findings demonstrate the clinical and functional impact of RNAi machinery alterations in ovarian carcinoma and support the use of siRNA constructs that do not require endogenous Dicer and Drosha for therapeutic applications.

  12. Decreased DGCR8 expression and miRNA dysregulation in individuals with 22q11.2 deletion syndrome.

    Directory of Open Access Journals (Sweden)

    Chantal Sellier

    Full Text Available Deletion of the 1.5-3 Mb region of chromosome 22 at locus 11.2 gives rise to the chromosome 22q11.2 deletion syndrome (22q11DS, also known as DiGeorge and Velocardiofacial Syndromes. It is the most common micro-deletion disorder in humans and one of the most common multiple malformation syndromes. The syndrome is characterized by a broad phenotype, whose characterization has expanded considerably within the last decade and includes many associated findings such as craniofacial anomalies (40%, conotruncal defects of the heart (CHD; 70-80%, hypocalcemia (20-60%, and a range of neurocognitive anomalies with high risk of schizophrenia, all with a broad phenotypic variability. These phenotypic features are believed to be the result of a change in the copy number or dosage of the genes located in the deleted region. Despite this relatively clear genetic etiology, very little is known about which genes modulate phenotypic variations in humans or if they are due to combinatorial effects of reduced dosage of multiple genes acting in concert. Here, we report on decreased expression levels of genes within the deletion region of chromosome 22, including DGCR8, in peripheral leukocytes derived from individuals with 22q11DS compared to healthy controls. Furthermore, we found dysregulated miRNA expression in individuals with 22q11DS, including miR-150, miR-194 and miR-185. We postulate this to be related to DGCR8 haploinsufficiency as DGCR8 regulates miRNA biogenesis. Importantly we demonstrate that the level of some miRNAs correlates with brain measures, CHD and thyroid abnormalities, suggesting that the dysregulated miRNAs may contribute to these phenotypes and/or represent relevant blood biomarkers of the disease in individuals with 22q11DS.

  13. Lignans isolated from Campylotropis hirtella (Franch.) Schindl. decreased prostate specific antigen and androgen receptor expression in LNCaP cells.

    Science.gov (United States)

    Han, Hui-Ying; Wang, Xiang-Hong; Wang, Nai-Li; Ling, Ming-Tat; Wong, Yong-Chuan; Yao, Xin-Sheng

    2008-08-27

    Accumulating epidemiological data suggest that Asian men have lower incidences of prostate cancer and benign prostate hyperplasia (BPH) compared with American and European populations and may have benefited from their higher intake of phytoestrogens in their diet. However, how these phytochemicals affect prostatic diseases is still unclear. In this study, we isolated six lignans from a plant, Campylotropis hirtella (Franch.) Schindl., which has been used as a folk medicine for treatment of BPH in China, through bioassay guided fractionation. They were dehydrodiconiferyl alcohol (C1), 4-[(-6-hydroxy-2,3-dihydro-1-benzofuran-3-yl)methyl]-5-methoxybenzene-1,3-diol (C2), erythro-guaiacylglycerol-beta-O-4'-coniferyl ether (C3), threo-guaiacylglycerol-beta-O-4'-coniferyl ether (C4), secoisolariciresinol (C5), and prupaside (C6), where C2 was identified as a new lignan analog. Their IC50 values for inhibition of prostate specific antigen (PSA) secretion were 19, 45, 110, 128, 137, and 186 microM, respectively, from C1 to C6 in LNCaP cells. Further study showed that C1-5 down-regulated cellular PSA expression and C1-4 also decreased androgen receptor (AR) expression in LNCaP cells. Furthermore, we investigated the proapoptotic effect of C1 on LNCaP cells. The active forms of caspase 3 associated with the specific proteolysis of poly (ADP-ribose) polymerase (PARP) were detected, and the antiapoptotic protein Bcl-2 was down-regulated after the treatment with C1. These results collectively indicated that these lignans may have chemopreventive or therapeutic actions for prostate cancer through suppressing AR signaling pathway and inducing apoptosis.

  14. A Val85Met Mutation in Melanocortin-1 Receptor Is Associated with Reductions in Eumelanic Pigmentation and Cell Surface Expression in Domestic Rock Pigeons (Columba livia)

    Science.gov (United States)

    Guernsey, Michael W.; Ritscher, Lars; Miller, Matthew A.; Smith, Daniel A.; Schöneberg, Torsten; Shapiro, Michael D.

    2013-01-01

    Variation in the melanocortin-1 receptor (Mc1r) is associated with pigmentation diversity in wild and domesticated populations of vertebrates, including several species of birds. Among domestic bird species, pigmentation variation in the rock pigeon ( Columba livia ) is particularly diverse. To determine the potential contribution of Mc1r variants to pigment diversity in pigeons, we sequenced Mc1r in a wide range of pigeon breeds and identified several single nucleotide polymorphisms, including a variant that codes for an amino acid substitution (Val85Met). In contrast to the association between Val85Met and eumelanism in other avian species, this change was associated with pheomelanism in pigeons. In vitro cAMP accumulation and protein expression assays revealed that Val85Met leads to decreased receptor function and reduced cell surface expression of the mutant protein. The reduced in vitro function is consistent with the observed association with reduced eumelanic pigmentation. Comparative genetic and cellular studies provide important insights about the range of mechanisms underlying diversity among vertebrates, including different phenotypic associations with similar mutations in different species. PMID:23977400

  15. A missense mutation in Grm6 reduces but does not eliminate mGluR6 expression or rod depolarizing bipolar cell function.

    Science.gov (United States)

    Peachey, Neal S; Hasan, Nazarul; FitzMaurice, Bernard; Burrill, Samantha; Pangeni, Gobinda; Karst, Son Yong; Reinholdt, Laura; Berry, Melissa L; Strobel, Marge; Gregg, Ronald G; McCall, Maureen A; Chang, Bo

    2017-08-01

    GRM6 encodes the metabotropic glutamate receptor 6 (mGluR6) used by retinal depolarizing bipolar cells (DBCs). Mutations in GRM6 lead to DBC dysfunction and underlie the human condition autosomal recessive complete congenital stationary night blindness. Mouse mutants for Grm6 are important models for this condition. Here we report a new Grm6 mutant, identified in an electroretinogram (ERG) screen of mice maintained at The Jackson Laboratory. The Grm6 nob8 mouse has a reduced-amplitude b-wave component of the ERG, which reflects light-evoked DBC activity. Sequencing identified a missense mutation that converts a highly conserved methionine within the ligand binding domain to leucine (p.Met66Leu). Consistent with prior studies of Grm6 mutant mice, the laminar size and structure in the Grm6 nob8 retina were comparable to control. The Grm6 nob8 phenotype is distinguished from other Grm6 mutants that carry a null allele by a reduced but not absent ERG b-wave, decreased but present expression of mGluR6 at DBC dendritic tips, and mislocalization of mGluR6 to DBC somas. Consistent with a reduced but not absent b-wave, there were a subset of retinal ganglion cells whose responses to light onset have times to peak within the range of those in control retinas. These data indicate that the p.Met66Leu mutant mGluR6 is trafficked less than control. However, the mGluR6 that is localized to the DBC dendritic tips is able to initiate DBC signal transduction. The Grm6 nob8 mouse extends the Grm6 allelic series and will be useful for elucidating the role of mGluR6 in DBC signal transduction and in human disease. NEW & NOTEWORTHY This article describes a mouse model of the human disease complete congenital stationary night blindness in which the mutation reduces but does not eliminate GRM6 expression and bipolar cell function, a distinct phenotype from that seen in other Grm6 mouse models.

  16. A novel mutation in the lysyl hydroxylase 1 gene causes decreased lysyl hydroxylase activity in an ehlers-danlos VIA patient

    NARCIS (Netherlands)

    Walker, L.C.; Overstreet, M.A.; Siddiqui, A.; Paepe, A. de; Ceylaner, G.; Malfait, F.; Symoens, S.; Atsawasuwan, P.; Yamauchi, M.; Ceylaner, S.; Bank, R.A.; Yeowell, H.N.

    2005-01-01

    The clinical diagnosis of a patient with the phenotype of Ehlers-Danlos syndrome type VI was confirmed biochemically by the severely diminished level of lysyl hydroxylase (LH) activity in the patient's skin fibroblasts. A novel homozygous mutation, a single base change of T1360 → G in exon 13 of the

  17. Mutations in valosin-containing protein (VCP) decrease ADP/ATP translocation across the mitochondrial membrane and impair energy metabolism in human neurons.

    Science.gov (United States)

    Ludtmann, Marthe H R; Arber, Charles; Bartolome, Fernando; de Vicente, Macarena; Preza, Elisavet; Carro, Eva; Houlden, Henry; Gandhi, Sonia; Wray, Selina; Abramov, Andrey Y

    2017-05-26

    Mutations in the gene encoding valosin-containing protein (VCP) lead to multisystem proteinopathies including frontotemporal dementia. We have previously shown that patient-derived VCP mutant fibroblasts exhibit lower mitochondrial membrane potential, uncoupled respiration, and reduced ATP levels. This study addresses the underlying basis for mitochondrial uncoupling using VCP knockdown neuroblastoma cell lines, induced pluripotent stem cells (iPSCs), and iPSC-derived cortical neurons from patients with pathogenic mutations in VCP Using fluorescent live cell imaging and respiration analysis we demonstrate a VCP mutation/knockdown-induced dysregulation in the adenine nucleotide translocase, which results in a slower rate of ADP or ATP translocation across the mitochondrial membranes. This deregulation can explain the mitochondrial uncoupling and lower ATP levels in VCP mutation-bearing neurons via reduced ADP availability for ATP synthesis. This study provides evidence for a role of adenine nucleotide translocase in the mechanism underlying altered mitochondrial function in VCP-related degeneration, and this new insight may inform efforts to better understand and manage neurodegenerative disease and other proteinopathies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Chronic zinc exposure decreases the surface expression of NR2A-containing NMDA receptors in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Jia Zhu

    Full Text Available Zinc distributes widely in the central nervous system, especially in the hippocampus, amygdala and cortex. The dynamic balance of zinc is critical for neuronal functions. Zinc modulates the activity of N-methyl-D-aspartate receptors (NMDARs through the direct inhibition and various intracellular signaling pathways. Abnormal NMDAR activities have been implicated in the aetiology of many brain diseases. Sustained zinc accumulation in the extracellular fluid is known to link to pathological conditions. However, the mechanism linking this chronic zinc exposure and NMDAR dysfunction is poorly understood.We reported that chronic zinc exposure reduced the numbers of NR1 and NR2A clusters in cultured hippocampal pyramidal neurons. Whole-cell and synaptic NR2A-mediated currents also decreased. By contrast, zinc did not affect NR2B, suggesting that chronic zinc exposure specifically influences NR2A-containg NMDARs. Surface biotinylation indicated that zinc exposure attenuated the membrane expression of NR1 and NR2A, which might arise from to the dissociation of the NR2A-PSD-95-Src complex.Chronic zinc exposure perturbs the interaction of NR2A to PSD-95 and causes the disorder of NMDARs in hippocampal neurons, suggesting a novel action of zinc distinct from its acute effects on NMDAR activity.

  19. Decreased SAP expression in T cells from patients with SLE contributes to early signaling abnormalities and reduced IL-2 production

    Science.gov (United States)

    Karampetsou, Maria P.; Comte, Denis; Kis-Toth, Katalin; Terhorst, Cox; Kyttaris, Vasileios C.; Tsokos, George C.

    2016-01-01

    T cells from patients with systemic lupus erythematosus (SLE) display a number of functions including increased early signaling events following engagement of the T cell receptor (TCR). Signaling lymphocytic activation molecule family (SLAMF) cell surface receptors and the X-chromosome-defined signaling lymphocytic activation molecule-associated protein (SAP) adaptor are important in the development of several immunocyte lineages and modulating immune response. Here we present evidence that SAP protein levels are decreased in T cells and in their main subsets isolated from 32 women and 3 men with SLE independently of disease activity. In SLE T cells the SAP protein is also subject to increased degradation by a caspase-3. Forced expression of SAP in SLE T cells simultaneously heightened IL-2 production, calcium (Ca2+) responses and tyrosine phosphorylation of a number of proteins. Exposure of normal T cells to SLE serum IgG, known to contain anti-CD3/TCR antibodies, resulted in SAP downregulation. We conclude that SLE T cells display reduced levels of the adaptor protein SAP probably as a result of continuous T cell activation and degradation by caspase-3. Restoration of SAP levels in SLE T cells corrects the overexcitable lupus T cell phenotype. PMID:27183584

  20. Curcumin decreases the expression of Pokemon by suppressing the binding activity of the Sp1 protein in human lung cancer cells.

    Science.gov (United States)

    Cui, Jiajun; Meng, Xianfeng; Gao, Xudong; Tan, Guangxuan

    2010-03-01

    Pokemon, which stands for POK erythroid myeloid ontogenic factor, can regulate expression of many genes and plays an important role in tumorigenesis. Curcumin, a natural and non-toxic yellow compound, has capacity for antioxidant, free radical scavenger, anti-inflammatory properties. Recent studies shows it is a potential inhibitor of cell proliferation in a variety of tumour cells. To investigate whether curcumin can regulate the expression of Pokemon, a series of experiments were carried out. Transient transfection experiments demonstrated that curcumin could decrease the activity of the Pokemon promoter. Western blot analysis suggested that curcumin could significantly decrease the expression of the Pokemon. Overexpression of Sp1 could enhance the activity of the Pokemon promoter, whereas knockdown of Sp1 could decrease its activity. More important, we also found that curcumin could decrease the expression of the Pokemon by suppressing the stimulation of the Sp1 protein. Therefore, curcumin is a potential reagent for tumour therapy which may target Pokemon.

  1. Profile of differentially expressed genes mediated by the type III epidermal growth factor receptor mutation expressed in a small-cell lung cancer cell line

    DEFF Research Database (Denmark)

    Pedersen, M.W.; Andersen, Thomas Thykjær; Ørntoft, Torben Falck

    2001-01-01

    Previous studies have shown a correlation between expression of the EGF receptor type III mutation (EGFRvIII) and a more malignant phenotype of various cancers including: non-small-cell lung cancer, glioblastoma multiforme, prostate cancer and breast cancer. Thus, a detailed molecular genetic...... understanding of how the EGFRvIII contributes to the malignant phenotype is of major importance for future therapy. The GeneChip Hu6800Set developed by Affymetrix was used to identify changes in gene expression caused by the expression of EGFRvIII. The cell line selected for the study was an EGF receptor...... negative small-cell-lung cancer cell line, GLC3, stably transfected with the EGFRvIII gene in a Tet-On system. By comparison of mRNA levels in EGFRvIII-GLC3 with those of Tet-On-GLC3, it was found that the levels of mRNAs encoding several transcription factors (ATF-3, JunD, and c-Myb), cell adhesion...

  2. Expression and new exon mutations of the human Beta defensins and their association on colon cancer development.

    Directory of Open Access Journals (Sweden)

    Abdelhabib Semlali

    Full Text Available The development of cancer involves genetic predisposition and a variety of environmental exposures. Genome-wide linkage analyses provide evidence for the significant linkage of many diseases to susceptibility loci on chromosome 8p23, the location of the human defensin gene cluster. Human β-defensins (hBDs are important molecules of innate immunity. This study was designed to analyze the expression and genetic variations in hBDs (hBD-1, hBD-2, hBD-3 and hBD-4 and their putative association with colon cancer. hBD gene expression and relative protein expression were evaluated by Real-Time polymerase chain reaction (qPCR and immunohistochemistry, respectively, from 40 normal patients and 40 age-matched patients with colon cancer in Saudi Arabia. In addition, hBD polymorphisms were genotyped by exon sequencing and by promoter methylation. hBD-1, hBD-2, hBD-3 and hBD-4 basal messenger RNA expression was significantly lower in tumor tissues compared with normal tissues. Several insertion mutations were detected in different exons of the analyzed hBDs. However, no methylation in any hBDs promoters was detected because of the limited number of CpG islands in these regions. We demonstrated for the first time a link between hBD expression and colon cancer. This suggests that there is a significant link between innate immunity deregulation through disruption of cationic peptides (hBDs and the potential development of colon cancer.

  3. Molecular analysis of congenital goitres with hypothyroidism caused by defective thyroglobulin synthesis. Identification of a novel c.7006C>T [p.R2317X] mutation and expression of minigenes containing nonsense mutations in exon 7.

    Science.gov (United States)

    Machiavelli, Gloria A; Caputo, Mariela; Rivolta, Carina M; Olcese, María C; Gruñeiro-Papendieck, Laura; Chiesa, Ana; González-Sarmiento, Rogelio; Targovnik, Héctor M

    2010-01-01

    Thyroglobulin (TG) deficiency is an autosomal-recessive disorder that results in thyroid dyshormonogenesis. A number of distinct mutations have been identified as causing human hypothyroid goitre. The purpose of this study was to identify and characterize new mutations in the TG gene in an attempt to increase the understanding of the genetic mechanism responsible for this disorder. A total of six patients from four nonconsanguineous families with marked impairment of TG synthesis were studied. Single-strand conformation polymorphism (SSCP) analysis, sequencing of DNA, genotyping, expression of chimeric minigenes and bioinformatic analysis were performed. Four different inactivating TG mutations were identified: one novel mutation (c.7006C>T [p.R2317X]) and three previously reported (c.886C>T [p.R277X], c.6701C>A [p.A2215D] and c.6725G>A [p.R2223H]). Consequently, one patient carried a compound heterozygous for p.R2223H/p.R2317X mutations; two brothers showed a homozygous p.A2215D substitution and the remaining three patients, from two families with typical phenotype, had a single p.R277X mutated allele. We also showed functional evidences that premature stop codons inserted at different positions in exon 7, which disrupt exonic splicing enhancer (ESE) sequences, do not interfere with exon definition and processing. In this study, we have identified a novel nonsense mutation p.R2317X in the acetylcholinesterase homology domain of TG. We have also observed that nonsense mutations do not interfere with the pre-mRNA splicing of exon 7. The results are in accordance with previous observations confirming the genetic heterogeneity of TG defects.

  4. Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression.

    Science.gov (United States)

    Henry, Anastasia G; Aghamohammadzadeh, Soheil; Samaroo, Harry; Chen, Yi; Mou, Kewa; Needle, Elie; Hirst, Warren D

    2015-11-01

    Lysosomal dysfunction plays a central role in the pathogenesis of several neurodegenerative disorders, including Parkinson's disease (PD). Several genes linked to genetic forms of PD, including leucine-rich repeat kinase 2 (LRRK2), functionally converge on the lysosomal system. While mutations in LRRK2 are commonly associated with autosomal-dominant PD, the physiological and pathological functions of this kinase remain poorly understood. Here, we demonstrate that LRRK2 regulates lysosome size, number and function in astrocytes, which endogenously express high levels of LRRK2. Expression of LRRK2 G2019S, the most common pathological mutation, produces enlarged lysosomes and diminishes the lysosomal capacity of these cells. Enlarged lysosomes appears to be a common phenotype associated with pathogenic LRRK2 mutations, as we also observed this effect in cells expressing other LRRK2 mutations; R1441C or Y1699C. The lysosomal defects associated with these mutations are dependent on both the catalytic activity of the kinase and autophosphorylation of LRRK2 at serine 1292. Further, we demonstrate that blocking LRRK2's kinase activity, with the potent and selective inhibitor PF-06447475, rescues the observed defects in lysosomal morphology and function. The present study also establishes that G2019S mutation leads to a reduction in lysosomal pH and increased expression of the lysosomal ATPase ATP13A2, a gene linked to a parkinsonian syndrome (Kufor-Rakeb syndrome), in brain samples from mouse and human LRRK2 G2019S carriers. Together, these results demonstrate that PD-associated LRRK2 mutations perturb lysosome function in a kinase-dependent manner, highlighting the therapeutic promise of LRRK2 kinase inhibitors in the treatment of PD. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. MicroRNA-31 expression in relation to BRAF mutation, CpG island methylation and colorectal continuum in serrated lesions.

    Science.gov (United States)

    Ito, Miki; Mitsuhashi, Kei; Igarashi, Hisayoshi; Nosho, Katsuhiko; Naito, Takafumi; Yoshii, Shinji; Takahashi, Hiroaki; Fujita, Masahiro; Sukawa, Yasutaka; Yamamoto, Eiichiro; Takahashi, Taiga; Adachi, Yasushi; Nojima, Masanori; Sasaki, Yasushi; Tokino, Takashi; Baba, Yoshifumi; Maruyama, Reo; Suzuki, Hiromu; Imai, Kohzoh; Yamamoto, Hiroyuki; Shinomura, Yasuhisa

    2014-12-01

    The CpG island methylator phenotype (CIMP) is a distinct form of epigenomic instability. Many CIMP-high colorectal cancers (CRCs) with BRAF mutation are considered to arise from serrated pathway. We recently reported that microRNA-31 (miR-31) is associated with BRAF mutation in colorectal tumors. Emerging new approaches have revealed gradual changes in BRAF mutation and CIMP-high throughout the colorectum in CRCs. Here, we attempted to identify a possible association between miR-31 and epigenetic features in serrated pathway, and hypothesized that miR-31 supports the "colorectal continuum" concept. We evaluated miR-31 expression, BRAF mutation and epigenetic features including CIMP status in 381 serrated lesions and 222 non-serrated adenomas and examined associations between them and tumor location (rectum; sigmoid, descending, transverse and ascending colon and cecum). A significant association was observed between high miR-31 expression and CIMP-high status in serrated lesions with BRAF mutation (p = 0.0001). In contrast, miR-31 was slightly but insignificantly associated with CIMP status in the cases with wild-type BRAF. miR-31 expression in sessile serrated adenomas (SSAs) with cytological dysplasia was higher than that in SSAs, whereas, no significant difference was observed between traditional serrated adenomas (TSAs) and TSAs with high-grade dysplasia. The frequency of miR-31, BRAF mutation CIMP-high and MLH1 methylation increased gradually from the rectum to cecum in serrated lesions. In conclusion, miR-31 expression was associated with CIMP-high status in serrated lesions with BRAF mutation. Our data also suggested that miR-31 plays an important role in SSA evolution and may be a molecule supporting the colorectal continuum. © 2014 UICC.

  6. Using answer set programming to integrate RNA expression with signalling pathway information to infer how mutations affect ageing.

    Science.gov (United States)

    Papatheodorou, Irene; Ziehm, Matthias; Wieser, Daniela; Alic, Nazif; Partridge, Linda; Thornton, Janet M

    2012-01-01

    A challenge of systems biology is to integrate incomplete knowledge on pathways with existing experimental data sets and relate these to measured phenotypes. Research on ageing often generates such incomplete data, creating difficulties in integrating RNA expression with information about biological processes and the phenotypes of ageing, including longevity. Here, we develop a logic-based method that employs Answer Set Programming, and use it to infer signalling effects of genetic perturbations, based on a model of the insulin signalling pathway. We apply our method to RNA expression data from Drosophila mutants in the insulin pathway that alter lifespan, in a foxo dependent fashion. We use this information to deduce how the pathway influences lifespan in the mutant animals. We also develop a method for inferring the largest common sub-paths within each of our signalling predictions. Our comparisons reveal consistent homeostatic mechanisms across both long- and short-lived mutants. The transcriptional changes observed in each mutation usually provide negative feedback to signalling predicted for that mutation. We also identify an S6K-mediated feedback in two long-lived mutants that suggests a crosstalk between these pathways in mutants of the insulin pathway, in vivo. By formulating the problem as a logic-based theory in a qualitative fashion, we are able to use the efficient search facilities of Answer Set Programming, allowing us to explore larger pathways, combine molecular changes with pathways and phenotype and infer effects on signalling in in vivo, whole-organism, mutants, where direct signalling stimulation assays are difficult to perform. Our methods are available in the web-service NetEffects: http://www.ebi.ac.uk/thornton-srv/software/NetEffects.

  7. A decrease in ubiquitination and resulting prolonged life-span of KIT underlies the KIT overexpression-mediated imatinib resistance of KIT mutation-driven canine mast cell tumor cells.

    Science.gov (United States)

    Kobayashi, Masato; Kuroki, Shiori; Kurita, Sena; Miyamoto, Ryo; Tani, Hiroyuki; Tamura, Kyoichi; Bonkobara, Makoto

    2017-10-01

    Overexpression of KIT is one of the mechanisms that contributes to imatinib resistance in KIT mutation-driven tumors. Here, the mechanism underlying this overexpression of KIT was investigated using an imatinib-sensitive canine mast cell tumor (MCT) line CoMS, which has an activating mutation in KIT exon 11. A KIT-overexpressing imatinib-resistant subline, rCoMS1, was generated from CoMS cells by their continuous exposure to increasing concentrations of imatinib. Neither a secondary mutation nor upregulated transcription of KIT was detected in rCoMS1 cells. A decrease in KIT ubiquitination, a prolonged KIT life-span, and KIT overexpression were found in rCoMS1 cells. These events were suppressed by withdrawal of imatinib and were re-induced by re‑treatment with imatinib. These findings suggest that imatinib elicited overexpression of KIT via suppression of its ubiquitination. These results also indicated that imatinib-induced overexpression of KIT in rCoMS1 cells was not a permanently acquired feature but was a reversible response of the cells. Moreover, the pan deubiquitinating enzyme inhibitor PR619 prevented imatinib induction of KIT overexpression, suggesting that the imatinib-induced decrease in KIT ubiquitination could be mediated by upregulation and/or activation of deubiquitinating enzyme(s). It may be possible that a similar mechanism of KIT overexpression underlies the acquisition of imatinib resistance in some human tumors that are driven by KIT mutation.

  8. Development of a replication defective adenovirus 5 vector expressing porcine interleukin-18 and a mutated analog

    Science.gov (United States)

    Cell-mediated immune responses against swine pathogens are sometimes necessary to elicit durable protective immunity. Cell mediated or Th1 immunity is dependent on the coordinated expression of several cytokines, including interferon-gamma to assist in the production of antigen-specific cytotoxic T...

  9. Chronic intermittent hypoxia from pedo-stage decreases glucose transporter 4 expression in adipose tissue and causes insulin resistance.

    Science.gov (United States)

    Chen, Lin; Cao, Zhao-long; Han, Fang; Gao, Zhan-cheng; He, Quan-ying

    2010-02-20

    The persistence of sleep disordered breathing (SDB) symptoms after tonsil and/or adenoid (T&A) surgery are common in children with obstructive sleep apnea (OSA). We tested the hypothesis that disturbances of glucose transporters (GLUTs) in intraabdominal adipose tissue caused by chronic intermittent hypoxia (CIH) from the pedo-period could facilitate the appearance of periphery insulin resistance in Sprague-Dawley (SD) rats. We tested the hypothesis that the changes of GLUTs in adipose tissue may be one of the reasons for persistent SDB among clinical OSA children after T&A surgery. Thirty 21-day-old SD rats were randomly divided into a CIH group, a chronic continuous hypoxia (CCH) group, and a normal oxygen group (control group) and exposed for 40 days. The changes of weight, fasting blood glucose and fasting blood insulin levels were measured. Hyperinsulinemic-euglycemic clamp techniques were used to measure insulin resistance in each animal. Real-time quantitative PCR and Western blotting were used to measure GLUT mRNA and proteins in intraabdominal adipose tissue. Additional intraabdomial white adipose tissue (WAT) was also processed into paraffin sections and directly observed for GLUTs1-4 expression. When compared with control group, CIH increased blood fasting insulin levels, (245.07 +/- 53.89) pg/ml vs. (168.63 +/- 38.70) pg/ml, P = 0.038, and decreased the mean glucose infusion rate (GIR), (7.25 +/- 1.29) mg x kg(-1) x min(-1) vs. (13.34 +/- 1.54) mg x kg(-1) x min(-1), P < 0.001. GLUT-4 mRNA and protein expression was significantly reduced after CIH compared with CCH or normal oxygen rats, 0.002 +/- 0.002 vs. 0.039 +/- 0.009, P < 0.001; 0.642 +/- 0.073 vs. 1.000 +/- 0.103, P = 0.035. CIH in young rats could induce insulin resistance via adverse effects on glycometabolism. These findings emphasize the importance of early detection and treatment of insulin insensitivity in obese childhood OSA.

  10. Postirradiation expression of lethal mutations in an immortalized human keratinocyte cell line

    International Nuclear Information System (INIS)

    O'Reilly, S.; Mothersill, C.; Seymour, C.B.

    1994-01-01

    The quantification of the extent of delayed cell death and the rate and pattern of its occurrence in relation to the cell division cycle is important in radiotherapy and also in radiation transformation studies related to protection and dose limits. Here the numbers of lethal mutations occurring over 45 population doublings (clonal expansion to about 10 13 cells per cell originally surviving irradiation) was measured in an HPV 16 immortalized human keratinocyte cell lines used for transformation studies. The results showed that when postirradiation (dose range 1-6 Gy) growth curves were constructed, the difference in slopes could be accounted for entirely by correcting for the non-clonogenic fraction in the cell count, excluding a longer cell generation time as an explanation. When the cell loss was examined over the entire growth period of 6 weeks (about 45 doublings of the cell population), it was found to be dose dependent for the first two passages, but then to become more independent of dose. The results allow a time/cell generation dependent factor to be derived for the cell line and used in survival curve equations where effects of radiation are being measured at times distant from the original exposure. (author)

  11. Both point mutations and low expression levels of the nicotinic acetylcholine receptor β1 subunit are associated with imidacloprid resistance in an Aphis gossypii (Glover) population from a Bt cotton field in China.

    Science.gov (United States)

    Chen, Xuewei; Li, Fen; Chen, Anqi; Ma, Kangsheng; Liang, Pingzhuo; Liu, Ying; Song, Dunlun; Gao, Xiwu

    2017-09-01

    Aphis gossypii Glover is a destructive pest of numerous crops throughout the world. Although the expansion of Bt cotton cultivation has helped to control some insect pests, the damage from cotton aphids has not been mitigated. The evolution of aphid resistance to imidacloprid has made its chemical control more difficult since its introduction in 1991. Field populations of A. gossypii that were collected from different transgenic (Bt) cotton planting areas of China in 2014 developed different levels of resistance to imidacloprid. The IMI_R strain has developed high resistance to imidacloprid with the resistance ratio >1200-fold. Compared with the susceptible IMI_S strain, the IMI_R strain also developed a high level cross resistance to sulfoxaflor and acetamiprid. The limited synergism with either PBO or DEF suggests that resistance may be due to the site mutation of molecular target rather than to enhanced detoxification. Three target-site mutations within the nicotinic acetylcholine receptor (nAChR) β1 subunit were detected in the IMI_R strain. The R81T mutation has been reported to be responsible for imidacloprid resistance in A. gossypii and M. persicae. Both V62I and K264E were first detected in A. gossypii. These point mutations are also present in field populations, suggesting that they play a role in the resistance to imidacloprid. Furthermore, the expression level of transcripts encoding β1 subunit was decreased significantly in the IMI_R strain compared with the IMI_S strain, suggesting that both point mutations and the down-regulation of nAChR β1 subunit expression may be involved in the resistance mechanism for imidacloprid in A. gossypii. These results should be useful for the management of imidacloprid-resistant cotton aphids in Bt cotton fields in China. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Upregulation of c-mesenchymal epithelial transition expression and RAS mutations are associated with late lung metastasis and poor prognosis in colorectal carcinoma.

    Science.gov (United States)

    Liu, Jianhua; Zeng, Weiqiang; Huang, Chengzhi; Wang, Junjiang; Xu, Lishu; Ma, Dong

    2018-05-01

    The present study aimed to investigate whether c-mesenchymal epithelial transition factor (C-MET) overexpression combined with RAS (including KRAS, NRAS and HRAS ) or BRAF mutations were associated with late distant metastases and the prognosis of patients with colorectal cancer (CRC). A total of 374 patients with stage III CRC were classified into 4 groups based on RAS/BRAF and C-MET status for comprehensive analysis. Mutations in RAS / BRAF were determined using Sanger sequencing and C-MET expression was examined using immunohistochemistry. The associations between RAS/BRAF mutations in combination with C-MET overexpression and clinicopathological variables including survival were evaluated. In addition, their predictive value for late distant metastases were statistically analyzed via logistic regression and receiver operating characteristic analysis. Among 374 patients, mutations in KRAS, NRAS, HRAS, BRAF and C-MET overexpression were observed in 43.9, 2.4, 0.3, 5.9 and 71.9% of cases, respectively. Considering RAS/BRAF mutations and C-MET overexpression, vascular invasion (P=0.001), high carcino-embryonic antigen level (P=0.031) and late distant metastases (PC-MET overexpression, although they were both predictive factors for adverse prognosis. Further logistic regression suggested that RAS/BRAF mutations and C-MET overexpression may predict late distant metastases. In conclusion, RAS/BRAF mutations and C-MET overexpression may serve as predictive indicators for metastatic behavior and poor prognosis of CRC.

  13. Rheinanthrone, a metabolite of sennoside A, triggers macrophage activation to decrease aquaporin-3 expression in the colon, causing the laxative effect of rhubarb extract.

    Science.gov (United States)

    Kon, Risako; Ikarashi, Nobutomo; Nagoya, Chika; Takayama, Tomoko; Kusunoki, Yoshiki; Ishii, Makoto; Ueda, Harumi; Ochiai, Wataru; Machida, Yoshiaki; Sugita, Kazuyuki; Sugiyama, Kiyoshi

    2014-02-27

    Aquaporin-3 (AQP3) is expressed in mucosal epithelial cells in the colon and is important for regulating fecal water content. We examined the role of AQP3 in the laxative effect of rhubarb extract. After orally administering rhubarb extract or its major component (sennoside A) to rats, the fecal water content, AQP3 expression and prostaglandin E2 (PGE2) concentrations in the colon were examined. The mechanism by which sennoside A decreases the expression of AQP3 was examined using the human colon cancer HT-29 cells and macrophage-derived Raw264.7 cells. During diarrhea by rhubarb extract administration, the PGE2 levels in the colon increased while the AQP3 expression significantly decreased. Similar changes were also observed when sennoside A was administered. When sennoside A or its metabolites, rheinanthrone and rhein were added to Raw264.7 cells, a significant increase in the PGE2 concentration was observed only in cells treated with rheinanthrone. Fifteen minutes after adding PGE2 to the HT-29 cells, the AQP3 expression decreased to approximately 40% of the control. When pretreated with indomethacin, sennoside A neither decreased the AQP3 expression nor induced diarrhea. Sennoside A may decrease AQP3 expression in the colon to inhibit water transport from the luminal to the vascular side, leading to a laxative effect. The decreases in the levels of AQP3 are caused by rheinanthrone, which is a metabolite of sennoside A, this metabolite activates the macrophages in the colon and increases the secretion of PGE2; PGE2 acts as a paracrine factor and decreases AQP3 expression in colon mucosal epithelial cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Minnelide Inhibits Androgen Dependent, Castration Resistant Prostate Cancer Growth by Decreasing Expression of Androgen Receptor Full Length and Splice Variants.

    Science.gov (United States)

    Isharwal, Sumit; Modi, Shrey; Arora, Nivedita; Uhlrich, Charles; Giri, Bhuwan; Barlass, Usman; Soubra, Ayman; Chugh, Rohit; Dehm, Scott M; Dudeja, Vikas; Saluja, Ashok; Banerjee, Sulagna; Konety, Badrinath

    2017-05-01

    With almost 30,000 deaths per year, prostate cancer is the second-leading cause of cancer-related death in men. Androgen Deprivation Therapy (ADT) has been the corner stone of prostate cancer treatment for decades. However, despite an initial response of prostate cancer to ADT, this eventually fails and the tumors recur, resulting in Castration Resistant Prostate Cancer (CRPC). Triptolide, a diterpene triepoxide, has been tested for its anti-tumor properties in a number of cancers for over a decade. Owing to its poor solubility in aqueous medium, its clinical application had been limited. To circumvent this problem, we have synthesized a water-soluble pro-drug of triptolide, Minnelide, that is currently being evaluated in a Phase 1 clinical trial against gastrointestinal tumors. In the current study, we assessed the therapeutic potential of Minnelide and its active compound triptolide against androgen dependent prostate cancer both in vitro as well as in vivo. Cell viability was measured by a MTT based assay after treating prostate cancer cells with multiple doses of triptolide. Apoptotic cell death was measured using a caspase 3/7 activity. Androgen Receptor (AR) promoter-binding activity was evaluated by using luciferase reporter assay. For evaluating the effect in vivo, 22Rv1 cells were implanted subcutaneously in animals, following which, treatment was started with 0.21 mg/kg Minnelide. Our study showed that treatment with triptolide induced apoptotic cell death in CRPC cells. Triptolide treatment inhibited AR transcriptional activity and decreased the expression of AR and its splice variants both at the mRNA and the protein level. Our studies show that triptolide inhibits nuclear translocation of Sp1, resulting in its decreased transcriptional activity leading to downregulation of AR and its splice variants in prostate cancer cells. In vivo, Minnelide (0.21 mg/kg) regressed subcutaneous tumors derived from CRPC 22RV1 at our study endpoint. Our animal

  15. Molecular Biology In Young Women With Breast Cancer: From Tumor Gene Expression To DNA Mutations.

    Science.gov (United States)

    Gómez-Flores-Ramos, Liliana; Castro-Sánchez, Andrea; Peña-Curiel, Omar; Mohar-Betancourt, Alejandro

    2017-01-01

    Young women with breast cancer (YWBC) represent roughly 15% of breast cancer (BC) cases in Latin America and other developing regions. Breast tumors occurring at an early age are more aggressive and have an overall worse prognosis compared to breast tumors in postmenopausal women. The expression of relevant proliferation biomarkers such as endocrine receptors and human epidermal growth factor receptor 2 appears to be unique in YWBC. Moreover, histopathological, molecular, genetic, and genomic studies have shown that YWBC exhibit a higher frequency of aggressive subtypes, differential tumor gene expression, increased genetic susceptibility, and specific genomic signatures, compared to older women with BC. This article reviews the current knowledge on tumor biology and genomic signatures in YWBC.

  16. A transgenic rat expressing human APP with the Swedish Alzheimer's disease mutation

    DEFF Research Database (Denmark)

    Folkesson, Ronnie; Malkiewicz, Katarzyna; Kloskowska, Ewa

    2007-01-01

    In recent years, transgenic mice have become valuable tools for studying mechanisms of Alzheimer's disease (AD). With the aim of developing an animal model better for memory and neurobehavioural testing, we have generated a transgenic rat model of AD. These animals express human amyloid precursor...... in cerebrovascular blood vessels with very rare diffuse plaques. We believe that crossing these animals with mutant PS1 transgenic rats will result in accelerated plaque formation similar to that seen in transgenic mice....

  17. Association of BIM Deletion Polymorphism and BIM-γ RNA Expression in NSCLC with EGFR Mutation.

    Science.gov (United States)

    Isobe, Kazutoshi; Kakimoto, Atsushi; Mikami, Tetsuo; Kaburaki, Kyohei; Kobayashi, Hiroshi; Yoshizawa, Takahiro; Makino, Takashi; Otsuka, Hajime; Sano, G O; Sugino, Keishi; Sakamoto, Susumu; Takai, Yujiro; Tochigi, Naobumi; Iyoda, Akira; Homma, Sakae

    This pilot study assessed the association of BIM deletion polymorphism and BIM RNA isoform in patients with EGFR-positive non-small cell lung cancer (NSCLC). The study included 33 patients with EGFR-positive NSCLC treated with gefitinib. BIM deletion polymorphism and BIM RNA isoform (EL/L/S/γ) were determined by polymerase chain reaction (PCR). BIM-γ expression was significantly higher in patients with BIM deletion polymorphism than among those without BIM deletion polymorphism inside tumors (p=0.038) and around tumors (p=0.0024). Relative BIM-γ expression was significantly higher in patients with BIM deletion polymorphism than among those without BIM deletion polymorphism (p=0.0017). Patients with BIM-γ had significantly shorter progression-free survival than those without BIM-γ (median: 304 vs. 732 days; p=0.023). Expression of BIM-γ mRNA and BIM deletion polymorphism were strongly associated. BIM-γ overexpression may have a role in apoptosis related to EGFR-tyrosine kinase inhibitor. Copyright© 2016, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  18. Acidosis Decreases c-Myc Oncogene Expression in Human Lymphoma Cells: A Role for the Proton-Sensing G Protein-Coupled Receptor TDAG8

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2013-10-01

    Full Text Available Acidosis is a biochemical hallmark of the tumor microenvironment. Here, we report that acute acidosis decreases c-Myc oncogene expression in U937 human lymphoma cells. The level of c-Myc transcripts, but not mRNA or protein stability, contributes to c-Myc protein reduction under acidosis. The pH-sensing receptor TDAG8 (GPR65 is involved in acidosis-induced c-Myc downregulation. TDAG8 is expressed in U937 lymphoma cells, and the overexpression or knockdown of TDAG8 further decreases or partially rescues c-Myc expression, respectively. Acidic pH alone is insufficient to reduce c-Myc expression, as it does not decrease c-Myc in H1299 lung cancer cells expressing very low levels of pH-sensing G protein-coupled receptors (GPCRs. Instead, c-Myc is slightly increased by acidosis in H1299 cells, but this increase is completely inhibited by ectopic overexpression of TDAG8. Interestingly, TDAG8 expression is decreased by more than 50% in human lymphoma samples in comparison to non-tumorous lymph nodes and spleens, suggesting a potential tumor suppressor function of TDAG8 in lymphoma. Collectively, our results identify a novel mechanism of c-Myc regulation by acidosis in the tumor microenvironment and indicate that modulation of TDAG8 and related pH-sensing receptor pathways may be exploited as a new approach to inhibit Myc expression.

  19. Variable clinical expressivity of STAT3 mutation in hyperimmunoglobulin E syndrome: genetic and clinical studies of six patients

    NARCIS (Netherlands)

    Wolach, Ofir; Kuijpers, Taco; Ben-Ari, Josef; Gavrieli, Ronit; Feinstein-Goren, Neta; Alders, Marielle; Garty, Ben Zion; Wolach, Baruch

    2014-01-01

    Autosomal dominant Hyper IgE syndrome (AD-HIES) is a rare and complex primary immunodeficiency that affects multiple systems. Mutations in signal transducer and activator of transcription 3 (STAT3) gene cause AD-HIES. These mutations have a dominant-negative effect and the presence of such mutations

  20. Meat and fish consumption, APC gene mutations and hMLH1 expression in colon and rectal cancer: a prospective cohort study (the Netherlands)

    NARCIS (Netherlands)

    Luchtenborg, M.; Weijenberg, M.P.; Goeij, de A.F.P.M.; Wark, P.A.; Brink, M.; Roemen, G.M.J.M.; Lentjes, M.H.F.M.; Bruine, de A.P.; Goldbohm, R.A.; Veer, van 't P.; Brandt, van den P.A.

    2005-01-01

    Objective:The aim of this study was to investigate the associations between meat and fish consumption and APC mutation status and hMLH1 expression in colon and rectal cancer. Methods:The associations were investigated in the Netherlands Cohort Study, and included 434 colon and 154 rectal cancer

  1. Detecting Mutations in the Mycobacterium tuberculosis Pyrazinamidase Gene pncA to Improve Infection Control and Decrease Drug Resistance Rates in Human Immunodeficiency Virus Coinfection

    Science.gov (United States)

    Dudley, Matthew Z.; Sheen, Patricia; Gilman, Robert H.; Ticona, Eduardo; Friedland, Jon S.; Kirwan, Daniela E.; Caviedes, Luz; Rodriguez, Richard; Cabrera, Lilia Z.; Coronel, Jorge; Grandjean, Louis; Moore, David A. J.; Evans, Carlton A.; Huaroto, Luz; Chávez-Pérez, Víctor; Zimic, Mirko

    2016-01-01

    Hospital infection control measures are crucial to tuberculosis (TB) control strategies within settings caring for human immunodeficiency virus (HIV)–positive patients, as these patients are at heightened risk of developing TB. Pyrazinamide (PZA) is a potent drug that effectively sterilizes persistent Mycobacterium tuberculosis bacilli. However, PZA resistance associated with mutations in the nicotinamidase/pyrazinamidase coding gene, pncA, is increasing. A total of 794 patient isolates obtained from four sites in Lima, Peru, underwent spoligotyping and drug resistance testing. In one of these sites, the HIV unit of Hospital Dos de Mayo (HDM), an isolation ward for HIV/TB coinfected patients opened during the study as an infection control intervention: circulating genotypes and drug resistance pre- and postintervention were compared. All other sites cared for HIV-negative outpatients: genotypes and drug resistance rates from these sites were compared with those from HDM. HDM patients showed high concordance between multidrug resistance, PZA resistance according to the Wayne method, the two most common genotypes (spoligotype international type [SIT] 42 of the Latino American-Mediterranean (LAM)-9 clade and SIT 53 of the T1 clade), and the two most common pncA mutations (G145A and A403C). These associations were absent among community isolates. The infection control intervention was associated with 58–92% reductions in TB caused by SIT 42 or SIT 53 genotypes (odds ratio [OR] = 0.420, P = 0.003); multidrug-resistant TB (OR = 0.349, P < 0.001); and PZA-resistant TB (OR = 0.076, P < 0.001). In conclusion, pncA mutation typing, with resistance testing and spoligotyping, was useful in identifying a nosocomial TB outbreak and demonstrating its resolution after implementation of infection control measures. PMID:27928075

  2. Naturally Occurring Frameshift Mutations in the tvb Receptor Gene Are Responsible for Decreased Susceptibility of Chicken to Infection with Avian Leukosis Virus Subgroups B, D, and E.

    Science.gov (United States)

    Li, Xinjian; Chen, Weiguo; Zhang, Huanmin; Li, Aijun; Shu, Dingming; Li, Hongxing; Dai, Zhenkai; Yan, Yiming; Zhang, Xinheng; Lin, Wencheng; Ma, Jingyun; Xie, Qingmei

    2018-04-15

    The group of highly related avian leukosis viruses (ALVs) in chickens are thought to have evolved from a common retroviral ancestor into six subgroups, A to E and J. These ALV subgroups use diverse cellular proteins encoded by four genetic loci in chickens as receptors to gain entry into host cells. Hosts exposed to ALVs might be under selective pressure to develop resistance to ALV infection. Indeed, resistance alleles have previously been identified in all four receptor loci in chickens. The tvb gene encodes a receptor, which determines the susceptibility of host cells to ALV subgroup B (ALV-B), ALV-D, and ALV-E. Here we describe the identification of two novel alleles of the tvb receptor gene, which possess independent insertions each within exon 4. The insertions resulted in frameshift mutations that reveal a premature stop codon that causes nonsense-mediated decay of the mutant mRNA and the production of truncated Tvb protein. As a result, we observed that the frameshift mutations in the tvb gene significantly lower the binding affinity of the truncated Tvb receptors for the ALV-B, ALV-D, and ALV-E envelope glycoproteins and significantly reduce susceptibility to infection by ALV-B, ALV-D and ALV-E in vitro and in vivo Taken together, these findings suggest that frameshift mutation can be a molecular mechanism of reducing susceptibility to ALV and enhance our understanding of virus-host coevolution. IMPORTANCE Avian leukosis virus (ALV) once caused devastating economic loss to the U.S. poultry industry prior the current eradication schemes in place, and it continues to cause severe calamity to the poultry industry in China and Southeast Asia, where deployment of a complete eradication scheme remains a challenge. The tvb gene encodes the cellular receptor necessary for subgroup B, D, and E ALV infection. Two tvb allelic variants that resulted from frameshift mutations have been identified in this study, which have been shown to have significantly reduced

  3. One angry woman: Anger expression increases influence for men, but decreases influence for women, during group deliberation.

    Science.gov (United States)

    Salerno, Jessica M; Peter-Hagene, Liana C

    2015-12-01

    We investigated whether expressing anger increases social influence for men, but diminishes social influence for women, during group deliberation. In a deception paradigm, participants believed they were engaged in a computer-mediated mock jury deliberation about a murder case. In actuality, the interaction was scripted. The script included 5 other mock jurors who provided verdicts and comments in support of the verdicts; 4 agreed with the participant and 1 was a "holdout" dissenter. Holdouts expressed their opinions with no emotion, anger, or fear and had either male or female names. Holdouts exerted no influence on participants' opinions when they expressed no emotion or fear. Participants' confidence in their own verdict dropped significantly, however, after male holdouts expressed anger. Yet, anger expression undermined female holdouts: Participants became significantly more confident in their original verdicts after female holdouts expressed anger-even though they were expressing the exact same opinion and emotion as the male holdouts. Mediation analyses revealed that participants drew different inferences from male versus female anger, which created a gender gap in influence during group deliberation. The current study has implications for group decisions in general, and jury deliberations in particular, by suggesting that expressing anger might lead men to gain influence, but women to lose influence over others (even when making identical arguments). These diverging consequences might result in women potentially having less influence on societally important decisions than men, such as jury verdicts. (c) 2015 APA, all rights reserved).

  4. Expression of FK506 binding protein 65 (FKBP65) is decreased in epithelial ovarian cancer cells compared to benign tumor cells and to ovarian epithelium

    DEFF Research Database (Denmark)

    Henriksen, Rudi; Sørensen, Flemming Brandt; Orntoft, Torben Falck

    2011-01-01

    to be followed by a strongly increased risk of ovarian cysts. We performed the present study to reveal how FKBP65 is expressed in the ovary and in ovarian tumors and to see if this expression might be related to ovarian tumor development, a relationship we have found in colorectal cancer. Biopsies from...... prospectively collected samples from ovaries and benign, borderline, and invasive ovarian tumors were analyzed for expression of FKBP65 by immunohistochemistry. The expression was compared to survival and several clinicopathological parameters. FKBP65 is strongly expressed in ovarian epithelium and in benign...... ovarian tumor cells. In the ovary, a positive staining was also found in endothelial cells of blood vessels. In non-invasive and in invasive malignant tumor cells, a decreased staining was observed, which was not correlated to stage, histology, or survival. A significant inversed correlation to expression...

  5. A naturally occurring mutation in ropB suppresses SpeB expression and reduces M1T1 group A streptococcal systemic virulence.

    Directory of Open Access Journals (Sweden)

    Andrew Hollands

    Full Text Available Epidemiological studies of group A streptococcus (GAS have noted an inverse relationship between SpeB expression and invasive disease. However, the role of SpeB in the course of infection is still unclear. In this study we utilize a SpeB-negative M1T1 clinical isolate, 5628, with a naturally occurring mutation in the gene encoding the regulator RopB, to elucidate the role of RopB and SpeB in systemic virulence. Allelic exchange mutagenesis was used to replace the mutated ropB allele in 5628 with the intact allele from the well characterized isolate 5448. The inverse allelic exchange was also performed to replace the intact ropB in 5448 with the mutated allele from 5628. An intact ropB was found to be essential for SpeB expression. While the ropB mutation was shown to have no effect on hemolysis of RBC's, extracellular DNase activity or survival in the presence of neutrophils, strains with the mutated ropB allele were less virulent in murine systemic models of infection. An isogenic SpeB knockout strain containing an intact RopB showed similarly reduced virulence. Microarray analysis found genes of the SpeB operon to be the primary target of RopB regulation. These data show that an intact RopB and efficient SpeB production are necessary for systemic infection with GAS.

  6. [Expression of JAK2V617F and MPLW515L/K mutation in 30 suspected cases of early myeloproliferative disorders].

    Science.gov (United States)

    Fan, Zheng; Zhang, Ri; Shen, Yi-Min; Fei, Hai-Rong; Zhu, Zi-Ling; Cen, Jian-Nong

    2008-09-01

    To investigate the prevalence of JAK2V617F and MPLW515L/K mutation in patients with slightly elevated platelets (BPC) or hemoglobin (Hb) not meeting the criteria of polycythemia vera (PV) or essential thrombocythemia (ET). Genomic DNA from bone marrow or blood mononuclear cells was screened with allele specific polymerase chain reaction (AS-PCR) for JAK2V617F and MPLW515L/K mutation. The history of thrombosis was assessed retrospectively by patients files. Of 30 patients, 14 (46.7%) were positive for the JAK2V617F mutation, none of them had the MPLW515L/ K. Five of these 14 patients had a history of thrombosis. Follow-up results were available in 22 patients. Among them, 12 patients with JAK2V617F mutation turned out to be MPD in 6-24 months; only 2 out of 10 patients without this mutation evolved to MPD. JAK2V617F mutation could be one of the diagnosis criteria of early MPD. No MPLW515L/K expression was found in early MPD.

  7. Clinical Expression and New SPINK5 Splicing Defects in Netherton Syndrome : Unmasking a Frequent Founder Synonymous Mutation and Unconventional Intronic Mutations

    NARCIS (Netherlands)

    Lacroix, Matthieu; Lacaze-Buzy, Laetitia; Furio, Laetitia; Tron, Elodie; Valari, Manthoula; Van der Wier, Gerda; Bodemer, Christine; Bygum, Anette; Bursztejn, Anne-Claire; Gaitanis, George; Paradisi, Mauro; Stratigos, Alexander; Weibel, Lisa; Deraison, Celine; Hovnanian, Alain

    Netherton syndrome (NS) is a severe skin disease caused by loss-of-function mutations in SPINK5 (serine protease inhibitor Kazal-type 5) encoding the serine protease inhibitor LEKTI (lympho-epithelial Kazal type-related inhibitor). Here, we disclose new SPINK5 defects in 12 patients, who presented a

  8. Mutations in APC, CTNNB1 and K-ras genes and expression of hMLH1 in sporadic colorectal carcinomas from the Netherlands Cohort Study

    International Nuclear Information System (INIS)

    Lüchtenborg, Margreet; Weijenberg, Matty P; Wark, Petra A; Saritas, A Merdan; Roemen, Guido MJM; Muijen, Goos NP van; Bruïne, Adriaan P de; Brandt, Piet A van den; Goeij, Anton FPM de

    2005-01-01

    The early to intermediate stages of the majority of colorectal tumours are thought to be driven by aberrations in the Wnt (APC, CTNNB1) and Ras (K-ras) pathways. A smaller proportion of cancers shows mismatch repair deficiency. The aim of this study was to analyse the co-occurrence of these genetic alterations in relation to tumour and patient characteristics. In a group of 656 unselected sporadic colorectal cancer patients, aberrations in the APC, K-ras, CTNNB1 genes, and expression of hMLH1 were investigated. Additionally, tumours were divided in groups based on molecular features and compared with respect to patient's age at diagnosis, sex, family history of colorectal cancer, tumour sub-localisation, Dukes' stage and differentiation. Mutations at the phosphorylation sites (codons 31, 33, 37, and 45) in the CTNNB1 gene were observed in tumours from only 5/464 patients. Tumours with truncating APC mutations and activating K-ras mutations in codons 12 and 13 occurred at similar frequencies (37% (245/656) and 36% (235/656), respectively). Seventeen percent of tumours harboured both an APC and a K-ras mutation (109/656). Nine percent of all tumours (58/656) lacked hMLH1 expression. Patients harbouring a tumour with absent hMLH1 expression were older, more often women, more often had proximal colon tumours that showed poorer differentiation when compared to patients harbouring tumours with an APC and/or K-ras mutation. CTNNB1 mutations seem to be of minor importance in sporadic colorectal cancer. The main differences in tumour and patient characteristics are found between groups of patients based on mismatch repair deficiency

  9. Mutations in APC, CTNNB1 and K-ras genes and expression of hMLH1 in sporadic colorectal carcinomas from the Netherlands Cohort Study

    Directory of Open Access Journals (Sweden)

    de Bruïne Adriaan P

    2005-12-01

    Full Text Available Abstract Background The early to intermediate stages of the majority of colorectal tumours are thought to be driven by aberrations in the Wnt (APC, CTNNB1 and Ras (K-ras pathways. A smaller proportion of cancers shows mismatch repair deficiency. The aim of this study was to analyse the co-occurrence of these genetic alterations in relation to tumour and patient characteristics. Methods In a group of 656 unselected sporadic colorectal cancer patients, aberrations in the APC, K-ras, CTNNB1 genes, and expression of hMLH1 were investigated. Additionally, tumours were divided in groups based on molecular features and compared with respect to patient's age at diagnosis, sex, family history of colorectal cancer, tumour sub-localisation, Dukes' stage and differentiation. Results Mutations at the phosphorylation sites (codons 31, 33, 37, and 45 in the CTNNB1 gene were observed in tumours from only 5/464 patients. Tumours with truncating APC mutations and activating K-ras mutations in codons 12 and 13 occurred at similar frequencies (37% (245/656 and 36% (235/656, respectively. Seventeen percent of tumours harboured both an APC and a K-ras mutation (109/656. Nine percent of all tumours (58/656 lacked hMLH1 expression. Patients harbouring a tumour with absent hMLH1 expression were older, more often women, more often had proximal colon tumours that showed poorer differentiation when compared to patients harbouring tumours with an APC and/or K-ras mutation. Conclusion CTNNB1 mutations seem to be of minor importance in sporadic colorectal cancer. The main differences in tumour and patient characteristics are found between groups of patients based on mismatch repair deficiency.

  10. Decreased expression of CIAPIN1 is correlated with poor prognosis in patients with esophageal squamous cell carcinoma.

    Science.gov (United States)

    Zheng, Xiushan; Zhao, Yunping; Wang, Xin; Li, Yunming; Wang, Ruwen; Jiang, Yaoguang; Gong, Taiqian; Li, Mengbin; Sun, Li; Hong, Liu; Li, Xiaohua; Liang, Jie; Luo, Guanhong; Jin, Bin; Yang, Jianjun; Zhang, Hongwei; Fan, Daiming

    2010-12-01

    CIAPIN1, a newly identified antiapoptotic molecule, is a downstream effector of the receptor tyrosine kinase-Ras signaling pathway in the mouse Ba/F3 pro-B cell line. Neither CIAPIN1 expression nor its clinical significance has been previously examined in esophageal squamous cell carcinoma (ESCC), and the present immunohistochemical analysis is the first study on CIAPIN1 distribution in ESCC. To investigate the relationships between the expression of CIAPIN1 and clinicopathological characteristics of ESCC, and evaluate the relationship between the expression of this gene and prognosis in ESCC patients. The expression of CIAPIN1 was investigated in 112 surgically resected specimens of ESCC by immunohistochemistry using a specific monoclonal antibody. The relations of CIAPIN1 expression with clinicopathological characteristics and the postoperative survival rate were statistically analyzed. We found that the expression of CIAPIN1 was statistically correlated with the degree of differentiation, depth of invasion, and lymph node metastasis of ESCC. Consistently, the survival rates of patients with CIAPIN1-negative tumors tended to be statistically lower than those with CIAPIN1-positive tumors. However, no significant difference was observed between CIAPIN1 expression and the patient age, sex, tumor location, and distant metastasis. Furthermore, multivariate analysis was performed by using Cox's proportional hazards model, and the results showed that lymph node metastases and CIAPIN1 expression were two independent prognostic factors. CIAPIN1 might play an important role in esophageal carcinogenesis, and it could be considered as a valuable prognostic indicator in ESCC. Finally, functional enhancement of CIAPIN1 might lead to a novel strategy for the treatment of SCC in the esophagus.

  11. Increased methylation and decreased expression of homeobox genes TLX1, HOXA10 and DLX5 in human placenta are associated with trophoblast differentiation.

    Science.gov (United States)

    Novakovic, Boris; Fournier, Thierry; Harris, Lynda K; James, Joanna; Roberts, Claire T; Yong, Hannah E J; Kalionis, Bill; Evain-Brion, Danièle; Ebeling, Peter R; Wallace, Euan M; Saffery, Richard; Murthi, Padma

    2017-07-03

    Homeobox genes regulate embryonic and placental development, and are widely expressed in the human placenta, but their regulatory control by DNA methylation is unclear. DNA methylation analysis was performed on human placentae from first, second and third trimesters to determine methylation patterns of homeobox gene promoters across gestation. Most homeobox genes were hypo-methylated throughout gestation, suggesting that DNA methylation is not the primary mechanism involved in regulating HOX genes expression in the placenta. Nevertheless, several genes showed variable methylation patterns across gestation, with a general trend towards an increase in methylation over gestation. Three genes (TLX1, HOXA10 and DLX5) showed inverse gains of methylation with decreasing mRNA expression throughout pregnancy, supporting a role for DNA methylation in their regulation. Proteins encoded by these genes were primarily localised to the syncytiotrophoblast layer, and showed decreased expression later in gestation. siRNA mediated downregulation of DLX5, TLX1 and HOXA10 in primary term villous cytotrophoblast resulted in decreased proliferation and increased expression of differentiation markers, including ERVW-1. Our data suggest that loss of DLX5, TLX1 and HOXA10 expression in late gestation is required for proper placental differentiation and function.

  12. Clinicopathological Features and Prognosis of Papillary Thyroid Microcarcinoma for Surgery and Relationships with the BRAFV600E Mutational Status and Expression of Angiogenic Factors.

    Directory of Open Access Journals (Sweden)

    Chenlei Shi

    Full Text Available To investigate the clinicopathological characteristics of papillary thyroid microcarcinoma (PTMC for surgery by comparing the difference between PTMC and larger papillary thyroid carcinoma (LPTC.We analyzed the differences in the clinicopathological characteristics, prognosis, B-type RAF kinase (BRAFV600E mutational status and expression of angiogenic factors, including pigment epithelium-derived factor (PEDF, Vascular Endothelial Growth Factor (VEGF, and hypoxia-inducible factor alpha subunit (HIF-1α, between PTMC and LPTC by retrospectively reviewing the records of 251 patients with papillary thyroid carcinoma, 169 with PTMC, and 82 with LPTC (diameter >1 cm.There were no significant differences in the gender, age, multifocality, Hashimoto's thyroiditis, TNM stage, PEDF protein expression, rate of recurrence, or mean follow-up duration between patients with PTMC or LPTC. The prevalence of extrathyroidal invasion (EI, lymph node metastasis (LNM, and BRAF mutation in patients with PTMC was significantly lower than in patients with LPTC. In addition, in PTMC patients with EI and/or LNM and/or positive BRAF (high-risk PTMC patients, the prevalence of extrathyroidal invasion, Hashimoto's disease, lymph node metastasis, tumor TNM stage, PEDF positive protein expression, the rate of recurrent disease, and the mRNA expression of anti-angiogenic factors was almost as high as in patients with larger PTC, but with no significant difference.Extrathyroid invasion, lymph node metastases, and BRAFV600E mutation were the high risk factors of PTMC. PTMC should be considered for the same treatment strategy as LPTC when any of these factors is found. Particularly, PTMC with BRAFV600E gene mutations needed earlier surgical treatment. In addition, the high cell subtype of PTMC with BRAFV600E gene mutation is recommended for total thyroidectomy in primary surgery to reduce the risk of recurrence.

  13. Decreased expression of liver X receptor-α in macrophages infected with Chlamydia pneumoniae in human atherosclerotic arteries in situ.

    Science.gov (United States)

    Bobryshev, Yuri V; Orekhov, Alexander N; Killingsworth, Murray C; Lu, Jinhua

    2011-01-01

    In in vitro experiments, Chlamydia pneumoniae has been shown to infect macrophages and to accelerate foam cell formation. It has been hypothesized that the C. pneumoniae infection affects foam cell formation by suppressing the expression of liver X receptors (LXR), but whether such an event occurs in human atherosclerosis is not known. In this study we examined carotid artery segments, obtained by endarterectomy, in which the presence of C. pneumoniae was confirmed by both polymerase chain reaction and immunohistochemistry. The expression of LXR-α in macrophages infected with C. pneumoniae and macrophages that were not infected was compared using a quantitative immunohistochemical analysis. The analysis revealed a 2.2-fold reduction in the expression of LXR-α in C. pneumoniae-infected cells around the lipid cores in atherosclerotic plaques. In the cytoplasm of laser-capture microdissected cells that were immunopositive for C. pneumoniae, electron microscopy demonstrated the presence of structures with the appearance of elementary, reticulate and aberrant bodies of C. pneumoniae. We conclude that LXR-α expression is reduced in C. pneumoniae-infected macrophages in human atherosclerotic lesions which supports the hypothesis that C. pneumoniae infection might suppress LXR expression in macrophages transforming into foam cells. Copyright © 2011 S. Karger AG, Basel.

  14. Analysis of clustered point mutations in the human ribosomal RNA gene promoter by transient expression in vivo

    International Nuclear Information System (INIS)

    Jones, M.H.; Learned, R.M.; Tjian, R.

    1988-01-01

    The authors have mapped the cis regulatory elements required in vivo for initiation at the human rRNA promoter by RNA polymerase I. Transient expression in COS-7 cells was used to evaluate the transcription phenotype of clustered base substitution mutations in the human rRNA promoter. The promoter consists of two major elements: a large upstream region, composed of several domains, that lies between nucleotides -234 and -107 relative to the transcription initiation site and affects transcription up to 100-fold and a core element that lies between nucleotides -45 and +20 and affects transcription up to 1000-fold. The upstream regions is able to retain partial function when positioned within 100-160 nucleotides of the transcription initiation site, but it cannot stimulate transcription from distances of ≥ 600 nucleotides. In addition, they demonstrate, using mouse-human hybrid rRNA promoters, that the sequences responsible for human species-specific transcription in vivo appear to reside in both the core and upstream elements, and sequences from the mouse rRNA promoter cannot be substituted for them

  15. Dietary Lycopene Supplementation Improves Cognitive Performances in Tau Transgenic Mice Expressing P301L Mutation via Inhibiting Oxidative Stress and Tau Hyperphosphorylation.

    Science.gov (United States)

    Yu, Lixia; Wang, Weiguang; Pang, Wei; Xiao, Zhonghai; Jiang, Yugang; Hong, Yan

    2017-01-01

    Oxidative stress is implicated in the pathogenesis of Alzheimer's disease (AD) and other tauopathies and participates in their development by promoting hyperphosphorylation of microtubule-associated protein tau. Lycopene, as an effective antioxidant, combined with vitamin E seemed to be additive against oxidative stress. The present study was undertaken to examine whether lycopene or lycopene/vitamin E could exert protective effects on memory deficit and oxidative stress in tau transgenic mice expressing P301L mutation. P301L transgenic mice were assigned to three groups: P301L group (P301L), P301L+lycopene (Lyc), and P301L+lycopene/vitamin E (Lyc+VE). Age-matched C57BL/6J mice as wild type controls (Con) were used in the present study. Spatial memory was assessed by radial arm while passive memories were evaluated by step-down and step-through tests. Levels of tau phosphorylation were detected by western blot. Oxidative stress biomarkers were measured in the serum using biochemical assay kits. Compared with the control group, P301L mice displayed significant spatial and passive memory impairments, elevated malondialdehyde (MDA) levels and decreased glutathione peroxidase (GSH-Px) activities in serum, and increased tau phosphorylation at Thr231/Ser235, Ser262, and Ser396 in brain. Supplementations of lycopene or lycopene/vitamin E could significantly ameliorate the memory deficits, observably decreased MDA concentrations and increased GSH-Px activities, and markedly attenuated tau hyperphosphorylation at multiple AD-related sites. Our findings indicated that the combination of lycopene and vitamin E antioxidants acted in a synergistic fashion to bring significant effects against oxidative stress in tauopathies.

  16. Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice

    Science.gov (United States)

    2011-01-01

    Exogenous administration of insulin-like growth factor (IGF)-I has anti-depressant properties in rodent models of depression. However, nothing is known about the anti-depressant properties of IGF-I during inflammation, nor have mechanisms by which IGF-I alters behavior following activation of the innate immune system been clarified. We hypothesized that central IGF-I would diminish depressive-like behavior on a background of an inflammatory response and that it would do so by inducing expression of the brain-derived neurotrophic factor (BDNF) while decreasing pro-inflammatory cytokine expression in the brain. IGF-I (1,000 ng) was administered intracerebroventricularly (i.c.v.) to CD-1 mice. Mice were subsequently given lipopolysaccharide i.c.v. (LPS, 10 ng). Sickness and depressive-like behaviors were assessed followed by analysis of brain steady state mRNA expression. Central LPS elicited typical transient signs of sickness of mice, including body weight loss, reduced feed intake and decreased social exploration toward a novel juvenile. Similarly, LPS increased time of immobility in the tail suspension test (TST). Pretreatment with IGF-I or antidepressants significantly decreased duration of immobility in the TST in both the absence and presence of LPS. To elucidate the mechanisms underlying the anti-depressant action of IGF-I, we quantified steady-state mRNA expression of inflammatory mediators in whole brain using real-time RT-PCR. LPS increased, whereas IGF-I decreased, expression of inflammatory markers interleukin-1ß (IL-1ß), tumor necrosis factor-(TNF)α, inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP). Moreover, IGF-I increased expression of BDNF. These results indicate that IGF-I down regulates glial activation and induces expression of an endogenous growth factor that shares anti-depressant activity. These actions of IGF-I parallel its ability to diminish depressive-like behavior. PMID:21306618

  17. Decreased expression of insulin-like growth factor binding protein-related protein-1 (IGFBP-rP1) in radiation-induced mouse hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Teishima, Jun [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine

    2002-04-01

    Insulin-like growth factor binding protein-related protein-1 (IGFBP-rP1) is a member of the IGFBP family, which was called IGFBP-7 or mac25 previously. Decreased expression of IGFBP-rP1 has been shown in breast cancer and prostatic cancer, and tumor suppressive effects of IGFBP-rP1 have been reported in prostatic cancer and osteosarcoma cell lines. In the present study, we investigated whether expression levels of IGFBP-rP1 were related to the development and the growth of radiation-induced hepatomas of B6C3F1 mice. In northern blot analysis, decreased expressions of IGFBP-rP1 gene were shown in radiation-induced mouse hepatomas compared to normal livers. In hepatoma cell lines established from these hepatomas, decreased expressions of IGFBP-rP1 were strongly related to the grade of anchorage-independent growth. In cell lines which were transfected with IGFBP-rP1cDNA, the doubling time of cell growth was increased, and the number and the size of colony formation in soft agar culture were decreased. In tumor formation assay by injecting these cells to B6C3F1 mice subcutaneously, the volume of tumors were decreased. Furthermore, the decreased expression of IGFBP-rP1 gene was observed in human hepatomas by northern blot analysis. These results may suggest that the suppression of IGFBP-rP1 is related to development and progression of mouse and human hepatomas. (author)

  18. Nitric oxide selectively decreases interferon-gamma expression by activated human T lymphocytes via a cGMP-independent mechanism

    NARCIS (Netherlands)

    Roozendaal, R; Vellenga, E; Postma, DS; De Monchy, JGR; Kauffman, HF

    1999-01-01

    The role of exogenous nitric oxide (NO) on the expression of interleukin (IL)-2, IL-4, IL-5 and interferon-gamma (IFN-gamma) by freshly isolated human T lymphocytes was investigated. The presence of NO, generated from any of the NO-donor compounds, S-nitroso-N-acetyl-D,L-penicillamine (NAP),

  19. Reduced function of the serotonin transporter is associated with decreased expression of BDNF in rodents as well as in humans.

    NARCIS (Netherlands)

    Molteni, R.; Cattaneo, A.; Calabrese, F.; Macchi, F.; Olivier, J.D.A.; Racagni, G.; Ellenbroek, A.A.; Gennarelli, M.; Riva, M.A.

    2010-01-01

    In order to identify the molecular mechanisms that may contribute to the enhanced susceptibility to depression under serotonin transporter (SERT) dysfunction, we analyzed the expression of brain-derived neurotrophic factor (BDNF), a key player in neuronal plasticity, which is implicated in the

  20. Blockade of OX40/OX40 ligand to decrease cytokine messenger RNA expression in acute renal allograft rejection in vitro.

    Science.gov (United States)

    Wang, Y-L; Li, G; Fu, Y-X; Wang, H; Shen, Z-Y

    2013-01-01

    The aim of this study was to investigate cytokine messenger RNA (mRNA) expression by peripheral blood mononuclear cells (PBMCs) from renal recipients experiencing acute rejection by blocking OX40-OX40L interactions with recombinant human OX40-Fc fusion protein (rhOX40Fc) in vitro. PBMCs were isolated from 20 recipients experiencing acute rejection episodes (rejection group) and 20 recipients with stable graft function (stable group). Levels of Th1 (interferon [IFN]-γ) and Th2 (interleukin [IL]-4) mRNA expressions by PBMCs were measured using real-time reverse transcriptase-polymerase chain reactions. IFN-γ mRNA expression levels were significantly higher in the rejection than the stable group (P rejection group, rhOX40Fc reduced significantly the expression of IFN-γ and IL-4 mRNA by anti-CD3-monoclonal antibody stimulated PBMCs (P type cytokines. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Decreased expression of cytochrome P450 protein in non-malignant colonic tissue of patients with colonic adenoma

    DEFF Research Database (Denmark)

    Bergheim, I.; Bode, C.; Parlesak, Alexandr

    2005-01-01

    BACKGROUND: Cytochrome P450 (CYP) enzymes in epithelial cells lining the alimentary tract play an important role in both the elimination and activation of (pro-)carcinogens. To estimate the role of cytochrome P450 in carcinogenesis of the colon, expression patterns and protein levels of four...... representative CYPs (CYP2C, CYP2E1, CYP3A4 and CYP3A5) were determined in colon mucosa of normal and adenomatous colonic tissue of patients with adenomas and disease-free controls. METHODS: Expression of CYP2C, CYP2E1, CYP3A4, and CYP3A5 in colon mucosa of normal and adenomatous colonic tissue of patients...... with adenoma and disease-free controls was determined by RT-PCR. Protein concentration of CYPs was determined using Western blot. RESULTS: With the exception of CYP3A5, expression of CYP mRNA was similar among groups and tissues (e.g. normal colon mucosa and adenoma). CYP3A5 mRNA expression was significantly...

  2. Experimental non-alcoholic fatty liver disease results in decreased hepatic uptake transporter expression and function in rats

    NARCIS (Netherlands)

    Fisher, Craig D.; Lickteig, Andrew J.; Augustine, Lisa M.; Oude Elferink, Ronald P. J.; Besselsen, David G.; Erickson, Robert P.; Cherrington, Nathan J.

    2009-01-01

    Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of diagnoses ranging from simple fatty liver (SFL), to non-alcoholic steatohepatitis (NASH). This study aimed to determine the effect of moderate and severe NAFLD on hepatic transporter expression and function in vivo. Rats were fed a

  3. Dominant negative umuD mutations decreasing RecA-mediated cleavage suggest roles for intact UmuD in modulation of SOS mutagenesis

    International Nuclear Information System (INIS)

    Battista, J.R.; Ohta, Toshihiro; Nohmi, Takehiko; Sun, W.; Walker, G.C.

    1990-01-01

    The products of the SOS-regulated umuDC operon are required for most UV and chemical mutagenesis in Escherichia coli. The UmuD protein shares homology with a family of proteins that includes LexA and several bacteriophage repressors. UmuD is posttranslationally activated for its role n mutagenesis by a RecA-mediated proteolytic cleavage that yields UmuD'. A set of missense mutants of umuD was isolated and shown to encode mutant UmuD proteins that are deficient in RecA-mediated cleavage in vivo. Most of these mutations are dominant to umuD + with respect to UV mutagenesis yet do not interfere with SOS induction. Although both UmuD and UmuD' form homodimers, the authors provide evidence that they preferentially form heterodimers. The relationship of UmuD to LexA, λ repressor, and other members of the family of proteins is discussed and possible roles intact UmuD in modulating SOS mutagenesis are discussed

  4. Distinct mutations in yeast TAF(II)25 differentially affect the composition of TFIID and SAGA complexes as well as global gene expression patterns.

    Science.gov (United States)

    Kirschner, Doris B; vom Baur, Elmar; Thibault, Christelle; Sanders, Steven L; Gangloff, Yann-Gaël; Davidson, Irwin; Weil, P Anthony; Tora, Làszlò

    2002-05-01

    The RNA polymerase II transcription factor TFIID, composed of the TATA-binding protein (TBP) and TBP-associated factors (TAF(II)s), nucleates preinitiation complex formation at protein-coding gene promoters. SAGA, a second TAF(II)-containing multiprotein complex, is involved in transcription regulation in Saccharomyces cerevisiae. One of the essential protein components common to SAGA and TFIID is yTAF(II)25. We define a minimal evolutionarily conserved 91-amino-acid region of TAF(II)25 containing a histone fold domain that is necessary and sufficient for growth in vivo. Different temperature-sensitive mutations of yTAF(II)25 or chimeras with the human homologue TAF(II)30 arrested cell growth at either the G(1) or G(2)/M cell cycle phase and displayed distinct phenotypic changes and gene expression patterns. Immunoprecipitation studies revealed that TAF(II)25 mutation-dependent gene expression and phenotypic changes correlated at least partially with the integrity of SAGA and TFIID. Genome-wide expression analysis revealed that the five TAF(II)25 temperature-sensitive mutant alleles individually affect the expression of between 18 and 33% of genes, whereas taken together they affect 64% of all class II genes. Thus, different yTAF(II)25 mutations induce distinct phenotypes and affect the regulation of different subsets of genes, demonstrating that no individual TAF(II) mutant allele reflects the full range of its normal functions.

  5. Kolmogorov-Smirnov statistical test for analysis of ZAP-70 expression in B-CLL, compared with quantitative PCR and IgV(H) mutation status.

    Science.gov (United States)

    Van Bockstaele, Femke; Janssens, Ann; Piette, Anne; Callewaert, Filip; Pede, Valerie; Offner, Fritz; Verhasselt, Bruno; Philippé, Jan

    2006-07-15

    ZAP-70 has been proposed as a surrogate marker for immunoglobulin heavy-chain variable region (IgV(H)) mutation status, which is known as a prognostic marker in B-cell chronic lymphocytic leukemia (CLL). The flow cytometric analysis of ZAP-70 suffers from difficulties in standardization and interpretation. We applied the Kolmogorov-Smirnov (KS) statistical test to make analysis more straightforward. We examined ZAP-70 expression by flow cytometry in 53 patients with CLL. Analysis was performed as initially described by Crespo et al. (New England J Med 2003; 348:1764-1775) and alternatively by application of the KS statistical test comparing T cells with B cells. Receiver-operating-characteristics (ROC)-curve analyses were performed to determine the optimal cut-off values for ZAP-70 measured by the two approaches. ZAP-70 protein expression was compared with ZAP-70 mRNA expression measured by a quantitative PCR (qPCR) and with the IgV(H) mutation status. Both flow cytometric analyses correlated well with the molecular technique and proved to be of equal value in predicting the IgV(H) mutation status. Applying the KS test is reproducible, simple, straightforward, and overcomes a number of difficulties encountered in the Crespo-method. The KS statistical test is an essential part of the software delivered with modern routine analytical flow cytometers and is well suited for analysis of ZAP-70 expression in CLL. (c) 2006 International Society for Analytical Cytology.

  6. Qualitative analysis of mouse specific-locus mutations: information on genetic organization, gene expression, and the chromosomal nature of induced lesions

    International Nuclear Information System (INIS)

    Russell, L.B.

    1982-01-01

    Analysis of mouse specific-locus (SL) mutations at three loci has identified over 33 distinct complementation groups - most of which are probably overlapping deficiencies - and 13 to 14 new functional units. The complementation maps that have been generated for the d-se and c regions include numerous vital functions; however, some of the genes in these regions are non-vital. At such loci, hypomorphic mutants must represent intragenic alterations, and some viable nulls could conceivably be intragenic lesions also. Analysis of SL mutations has provided information on genetic expression. Homozygous deficiencies can be completely viable or can kill at any one of a range of developmental stages. Heterozygonus deficiencies of up to 6 cM or more in genetic length have been recovered and propagated. The time of death of homozygous and the degree of inviability of heterozygous deficiencies are related more to specific content of the missing segment than to its length. Combinations of deficiencies with x-autosome translocations that inactivate the homologous region in a mosaic fashion have shown that organismic lethals are not necessarily cell lethal. The spectrum of mutations induced depends on the nature of the mutagen and the type of germ cell exposed. Radiation of spermatogonia produces intragenic as well as null mutations. Spontaneous mutations have an admixture of types not present in populations of mutations induced in germ cells, and this raises doubts concerning the accuracy of doubling-dose calculations in genetic risk estimation. The analysis of SL mutations has yielded genetic tools for the construction of detailed gene-dosage series, cis-trans comparisons, the mapping of known genes and identification of new genes, genetic rescue of various types, and the identification and isolation of DNA sequences

  7. Identification of adaptive mutations in the influenza A virus non-structural 1 gene that increase cytoplasmic localization and differentially regulate host gene expression.

    Directory of Open Access Journals (Sweden)

    Nicole Forbes

    Full Text Available The NS1 protein of influenza A virus (IAV is a multifunctional virulence factor. We have previously characterized gain-of-function mutations in the NS1 protein arising from the experimental adaptation of the human isolate A/Hong Kong/1/1968(H3N2 (HK to the mouse. The majority of these mouse adapted NS1 mutations were demonstrated to increase virulence, viral fitness, and interferon antagonism, but differ in binding to the post-transcriptional processing factor cleavage and polyadenylation specificity factor 30 (CPSF30. Because nuclear trafficking is a major genetic determinant of influenza virus host adaptation, we assessed subcellular localization and host gene expression of NS1 adaptive mutations. Recombinant HK viruses with adaptive mutations in the NS1 gene were assessed for NS1 protein subcellular localization in mouse and human cells using confocal microscopy and cellular fractionation. In human cells the HK wild-type (HK-wt virus NS1 protein partitioned equivalently between the cytoplasm and nucleus but was defective in cytoplasmic localization in mouse cells. Several adaptive mutations increased the proportion of NS1 in the cytoplasm of mouse cells with the greatest effects for mutations M106I and D125G. The host gene expression profile of the adaptive mutants was determined by microarray analysis of infected mouse cells to show either high or low extents of host-gene regulation (HGR or LGR phenotypes. While host genes were predominantly down regulated for the HGR group of mutants (D2N, V23A, F103L, M106I+L98S, L98S, M106V, and M106V+M124I, the LGR phenotype mutants (D125G, M106I, V180A, V226I, and R227K were characterized by a predominant up regulation of host genes. CPSF30 binding affinity of NS1 mutants did not predict effects on host gene expression. To our knowledge this is the first report of roles of adaptive NS1 mutations that impact intracellular localization and regulation of host gene expression.

  8. The Influence of LepR Tyrosine Site Mutations on Mouse Ovary Development and Related Gene Expression Changes

    Science.gov (United States)

    Tu, Xiaoyu; Kuang, Zhichao; Gong, Xia; Shi, Yan; Yu, Lin; Shi, Huijuan; Wang, Jian; Sun, Zhaogui

    2015-01-01

    Leptin exerts many biological functions, such as in metabolism and reproduction, through binding to and activating the leptin receptor, LepRb, which is expressed in many regions of the brain. To better understand the roles of LepR downstream signaling pathways, Y123F mice, which expressed mutant leptin receptors with phenylalanine (F) substituted for three tyrosines (Y) (Tyr985, Tyr1077 and Tyr1138), were generated. The body weight and abdominal fat deposits of Y123F homozygous mice (HOM) were higher than those of wild-type mice (WT). HOM ovaries were atrophic and the follicles developed abnormally; however, the HOM ovaries did not exhibit polycystic phenotypes. Moreover, Y123F HOM adults had no estrous cycle and the blood estrogen concentration remained stable at a low level below detection limit of 5 pg/ml. LepR expression in HOM ovaries was higher than in WT ovaries. Using cDNA Microarrays, the mRNA expressions of 41 genes were increased, and 100 were decreased in HOM vs. WT ovaries, and many signaling pathways were evaluated to be involved significantly. The expressions of 19 genes were validated by real-time quantitative PCR, most of which were consistent with the microarray results. Thus, Y123F HOM mice were suggested as a new animal model of PCOS for research that mainly emphasizes metabolic disorders and anovulation, but not the polycystic phenotype. Meanwhile, using the model, we found that JAK-STAT and hormone biosynthesis pathways were involved in the follicular development and ovulation disorders caused by LepR deficiency in ovaries, although we could not exclude indirect actions from the brain. PMID:26529315

  9. Inverted formin 2 mutations with variable expression in patients with sporadic and hereditary focal and segmental glomerulosclerosis.

    LENUS (Irish Health Repository)

    Gbadegesin, Rasheed A

    2012-01-01

    Focal and segmental glomerulosclerosis (FSGS) is a major cause of end-stage kidney disease. Recent advances in molecular genetics show that defects in the podocyte play a major role in its pathogenesis and mutations in inverted formin 2 (INF2) cause autosomal dominant FSGS. In order to delineate the role of INF2 mutations in familial and sporadic FSGS, we sought to identify variants in a large cohort of patients with FSGS. A secondary objective was to define an approach for genetic screening in families with autosomal dominant disease. A total of 248 individuals were identified with FSGS, of whom 31 had idiopathic disease. The remaining patients clustered into 64 families encompassing 15 from autosomal recessive and 49 from autosomal dominant kindreds. There were missense mutations in 8 of the 49 families with autosomal dominant disease. Three of the detected variants were novel and all mutations were confined to exon 4 of INF2, a regulatory region responsible for 90% of all changes reported in FSGS due to INF2 mutations. Thus, in our series, INF2 mutations were responsible for 16% of all cases of autosomal dominant FSGS, with these mutations clustered in exon 4. Hence, screening for these mutations may represent a rapid, non-invasive and cost-effective method for the diagnosis of autosomal dominant FSGS.

  10. High Stromal Carbonic Anhydrase IX Expression Is Associated With Decreased Survival in p16-Negative Head-and-Neck Tumors

    International Nuclear Information System (INIS)

    Brockton, Nigel; Dort, Joseph; Lau, Harold; Hao, Desiree; Brar, Sony; Klimowicz, Alexander; Petrillo, Stephanie; Diaz, Roman; Doll, Corinne; Magliocco, Anthony

    2011-01-01

    Purpose: Head-and-neck squamous cell carcinoma (HNSCC) is the fifth most common malignancy worldwide. Alcohol use and tobacco use are the most established risk factors; however, human papilloma virus (HPV) infection is a major risk factor for a subset of HNSCCs. Although HPV-positive tumors typically present at a more advanced stage at diagnosis, they are associated with a better prognosis. Tumor hypoxia confers poor prognosis and treatment failure, but direct tumor oxygen measurement is challenging. Endogenous markers of hypoxia (EMHs) have been proposed but have not replicated the prognostic utility of direct oxygen measurement. The expression of endogenous markers of hypoxia may be influenced by oxygen-independent factors, such as the HPV status of the tumor. Methods and Materials: Consecutive cases of locally advanced HNSCC, treated with a uniform regimen of combined radiotherapy and chemotherapy, were identified. Tissue microarrays were assembled from triplicate 0.6-mm cores of archived tumor tissue. HPV status was inferred from semiquantitative p16 immunostaining and directly measured by use of HPV-specific chromogenic in situ hybridization and polymerase chain reaction. Automated quantitative fluorescent immunohistochemistry was conducted to measure epithelial and stromal expression of carbonic anhydrase IX (CAIX) and glucose transporter 1 (GLUT1). Results: High stromal CAIX expression was associated with significantly reduced overall survival (p = 0.03) in patients with p16-negative tumors. Conclusions: This is the first study to use quantitative immunohistochemistry to examine endogenous markers of hypoxia stratified by tumor p16/HPV status. Assessment of CAIX expression in p16-negative HNSCC could identify patients with the least favorable prognosis and inform therapeutic strategies.

  11. STAT6 silencing induces hepatocellular carcinoma-derived cell apoptosis and growth inhibition by decreasing the RANKL expression.

    Science.gov (United States)

    Qing, Tian; Yamin, Zhang; Guijie, Wang; Yan, Jin; Zhongyang, Shen

    2017-08-01

    Signal transducer and activator of transcription-6 (STAT6) is highly expressed in various human cancers and considered a regulator of multiple biological processes in cancers, including cell apoptosis. Evidence has indicated that STAT6 predicts a worse prognosis in hepatocellular carcinoma (HCC) patients. The objective of this study was to investigate the effects and mechanism of STAT6 in human HCC cells. We found that STAT6 silencing significantly inhibited HepG2 and Hep3B cell survival and proliferation. We observed that depletion of STAT6 increased HepG2 and Hep3B cell apoptosis by using a histone DNA ELISA detection kit. STAT6 silencing induced expression of apoptosis-associated genes Bax and caspase-3/7 and inhibited anti-apoptosis gene Bcl-2 levels. We also observed that STAT6 silencing downregulated the expression of receptor activator of NF-κB ligand (RANKL). Our results demonstrated that treatment with pcDNA3.1-RANKL abolished STAT6 depletion-induced HepG2 and Hep3B cell apoptosis and growth inhibition. Based on these findings, we believe that RANKL plays a major role in STAT6-induced HCC cell apoptosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Immunohistochemical loss of 5-hydroxymethylcytosine expression in acute myeloid leukaemia: relationship to somatic gene mutations affecting epigenetic pathways.

    Science.gov (United States)

    Magotra, Minoti; Sakhdari, Ali; Lee, Paul J; Tomaszewicz, Keith; Dresser, Karen; Hutchinson, Lloyd M; Woda, Bruce A; Chen, Benjamin J

    2016-12-01

    Genes affecting epigenetic pathways are frequently mutated in myeloid malignancies, including acute myeloid leukaemia (AML). The genes encoding TET2, IDH1 and IDH2 are among the most commonly mutated genes, and cause defective conversion of 5-methylcytosine into 5-hydroxymethylcytosine (5hmC), impairing demethylation of DNA, and presumably serving as driver mutations in leukaemogenesis. The aim of this study was to correlate 5hmC immunohistochemical loss with the mutation status of genes involved in epigenetic pathways in AML. Immunohistochemical staining with an anti-5hmC antibody was performed on 41 decalcified, formalin-fixed paraffin-embedded (FFPE) bone marrow biopsies from patients with AML. Archived DNA was subjected to next-generation sequencing for analysis of a panel of genes, including TET2, IDH1, IDH2, WT1 and DNMT3A. TET2, IDH1, IDH2, WT1 and DNMT3A mutations were found in 46% (19/41) of the cases. Ten of 15 cases (67%) with TET2, IDH1, IDH2 or WT1 mutations showed deficient 5hmC staining, whereas nine of 26 cases (35%) without a mutation in these genes showed loss of 5hmC. It is of note that all four cases with TET2 mutations showed deficient 5hmC staining. Overall, somatic mutations in TET2, IDH1, IDH2, WT1 and DNMT3A were common in our cohort of AML cases. Immunohistochemical staining for 5hmC was lost in the majority of cases harbouring mutations in these genes, reflecting the proposed relationship between dysfunctional epigenetic pathways and leukaemogenesis. © 2016 John Wiley & Sons Ltd.

  13. Decrease in the CGG{sub n} trinucleotide repeat mutation of the fragile X syndrome to normal size range during paternal transmission

    Energy Technology Data Exchange (ETDEWEB)

    Vaeisaenen, M.L.; Haataja, R.; Leisti, J. [Oulu Univ. Hospital (Finland)

    1996-09-01

    The fragile X syndrome, the most common inherited form of mental retardation, is caused by the expansion of a CGG{sub n} trinucleotide repeat in the FMR-1 gene. Although the repeat number usually increases during transmission, few cases with reduction of an expanded CGG{sub n} repeat back to the normal size range have been reported. We describe for the first time a family in which such reduction has occurred in the paternal transmission. The paternal premutation ({Delta} = 300 hp) was not detected in one of the five daughters or in the son of this daughter, although he had the grandpaternal RFLP haplotype. Instead, fragments indicating the normal CGG{sub n} repeat size were seen on a Southern blot probed with StB12.3. PCR analysis of the CGG{sub n} repeat confirmed this; in addition to a maternal allele of 30 repeats, an allele of 34 repeats was detected in the daughter and, further, in her son. Sequencing of this new allele revealed a pure CGG{sub n} repeat configuration without AGG interruptions. No evidence for a somatic mosaicism of a premutation allele in the daughter or a normal allele in her father was detected when investigating DNA derived from blood lymphocytes and skin fibroblasts. Another unusual finding in this family was lack of the PCR product of the microsatellite marker RS46 (DXS548) in one of the grandmaternal X chromosomes, detected as incompatible inheritance of RS46 alleles. The results suggest an intergenerational reduction in the CGG{sub n} repeat from premutation size to the normal size range and stable transmission of the contracted repeat to the next generation. However, paternal germ-line mosaicism could not be excluded as an alternative explanation for the reverse mutation. 37 refs., 4 figs.

  14. Inflammatory Adipokines Decrease Expression of Two High Molecular Weight Isoforms of Tropomyosin Similar to the Change in Type 2 Diabetic Patients.

    Directory of Open Access Journals (Sweden)

    Stuart A Savill

    Full Text Available Cardiovascular disease and cancer are increased in Type 2 diabetes. TPM1 and TPM4 genes encode proteins associated with cardiovascular and neoplastic disease. High (HMW and low (LMW molecular weight isoforms from TPM1 and TPM4 are altered in several cancer cells and the 3'UTR of TPM1 mRNA is tumour suppressive. Leukocytes influence cardiovascular and neoplastic disease by immunosurveillance for cancer and by chronic inflammation in Type 2 diabetes and cardiovascular disease. The aim was to determine changes in expression of isoforms from TPM1 and TPM4 genes in leukocytes from Type 2 diabetic patients and to use the leukocyte cell line THP1 to identify possible mediators of changes in the patients. Gene expression was determined by RT-qPCR. In diabetes, expression of HMW isoforms from TPM1 were markedly decreased (0.55 v 1.00; p = 0.019 but HMW isoforms from TPM4 were not significantly different (0.76 v 1.00; p = 0.205. Within individual variance in expression of HMW isoforms was very high. The change in expression in HMW isoforms from TPM1 and TPM4 was replicated in THP1 cells treated with 1 ng/ml TNFα (0.10 and 0.12 v 1.00 respectively or 10 ng/ml IL-1α (0.17 and 0.14 v 1.00 respectively. Increased insulin or glucose concentrations had no substantial effects on TPM1 or TPM4 expression. Decreased TPM1 mRNA resulted in decreases in HMW protein levels. Expression of HMW isoforms from TPM1 is decreased in Type 2 diabetes. This is probably due to increased levels of inflammatory cytokines TNFα and IL-1α in Type 2 diabetes. Lower levels of TPM1 mRNA reduce tumour suppression and could contribute to increased cancer risk in Type 2 diabetes. Decreased HMW tropomyosin isoforms are associated with cancer. Decreased HMW isoforms give rise to cells that are more plastic, motile, invasive and prone to dedifferentiation resulting in leukocytes that are more invasive but less functionally effective.

  15. Decreased surface expression of the δ subunit of the GABAA receptor contributes to reduced tonic inhibition in dentate granule cells in a mouse model of fragile X syndrome.

    Science.gov (United States)

    Zhang, Nianhui; Peng, Zechun; Tong, Xiaoping; Lindemeyer, A Kerstin; Cetina, Yliana; Huang, Christine S; Olsen, Richard W; Otis, Thomas S; Houser, Carolyn R

    2017-11-01

    While numerous changes in the GABA system have been identified in models of Fragile X Syndrome (FXS), alterations in subunits of the GABA A receptors (GABA A Rs) that mediate tonic inhibition are particularly intriguing. Considering the key role of tonic inhibition in controlling neuronal excitability, reduced tonic inhibition could contribute to FXS-associated disorders such as hyperactivity, hypersensitivity, and increased seizure susceptibility. The current study has focused on the expression and function of the δ subunit of the GABA A R, a major subunit involved in tonic inhibition, in granule cells of the dentate gyrus in the Fmr1 knockout (KO) mouse model of FXS. Electrophysiological studies of dentate granule cells revealed a marked, nearly four-fold, decrease in tonic inhibition in the Fmr1 KO mice, as well as reduced effects of two δ subunit-preferring pharmacological agents, THIP and DS2, supporting the suggestion that δ subunit-containing GABA A Rs are compromised in the Fmr1 KO mice. Immunohistochemistry demonstrated a small but statistically significant decrease in δ subunit labeling in the molecular layer of the dentate gyrus in Fmr1 KO mice compared to wildtype (WT) littermates. The discrepancy between the large deficits in GABA-mediated tonic inhibition in granule cells in the Fmr1 KO mice and only modest reductions in immunolabeling of the δ subunit led to studies of surface expression of the δ subunit. Cross-linking experiments followed by Western blot analysis demonstrated a small, non-significant decrease in total δ subunit protein in the hippocampus of Fmr1 KO mice, but a four-fold decrease in surface expression of the δ subunit in these mice. No significant changes were observed in total or surface expression of the α4 subunit protein, a major partner of the δ subunit in the forebrain. Postembedding immunogold labeling for the δ subunit demonstrated a large, three-fold, decrease in the number of symmetric synapses with

  16. Metallothionein-I overexpression decreases brain pathology in transgenic mice with astrocyte-targeted expression of interleukin-6

    DEFF Research Database (Denmark)

    Molinero, Amalia; Penkowa, Milena; Hernández, Joaquín

    2003-01-01

    in this report support the idea that the upregulation of MT-I observed in GFAP-IL6 mice is an important mechanism for coping with brain damage. Thus, GFAP-IL6 mice that were crossed with TgMTI transgenic mice (GFAP-IL6xTgMTI) and overexpressed MT-I in the brain showed a decreased upregulation of cytokines...... such as IL-6 and a diminished recruitment and activation of macrophages and T cells throughout the CNS but mainly in the cerebellum. The GFAP-IL6 mice showed clear evidence of increased oxidative stress, which was significantly decreased by MT-I overexpression. Interestingly, MT-I overexpression increased...

  17. Dural afferents express acid-sensing ion channels: a role for decreased meningeal pH in migraine headache.

    Science.gov (United States)

    Yan, Jin; Edelmayer, Rebecca M; Wei, Xiaomei; De Felice, Milena; Porreca, Frank; Dussor, Gregory

    2011-01-01

    Migraine headache is one of the most common neurological disorders. The pathological conditions that directly initiate afferent pain signaling are poorly understood. In trigeminal neurons retrogradely labeled from the cranial meninges, we have recorded pH-evoked currents using whole-cell patch-clamp electrophysiology. Approximately 80% of dural-afferent neurons responded to a pH 6.0 application with a rapidly activating and rapidly desensitizing ASIC-like current that often exceeded 20nA in amplitude. Inward currents were observed in response to a wide range of pH values and 30% of the neurons exhibited inward currents at pH 7.1. These currents led to action potentials in 53%, 30% and 7% of the dural afferents at pH 6.8, 6.9 and 7.0, respectively. Small decreases in extracellular pH were also able to generate sustained window currents and sustained membrane depolarizations. Amiloride, a non-specific blocker of ASIC channels, inhibited the peak currents evoked upon application of decreased pH while no inhibition was observed upon application of TRPV1 antagonists. The desensitization time constant of pH 6.0-evoked currents in the majority of dural afferents was less than 500ms which is consistent with that reported for ASIC3 homomeric or heteromeric channels. Finally, application of pH 5.0 synthetic-interstitial fluid to the dura produced significant decreases in facial and hind-paw withdrawal threshold, an effect blocked by amiloride but not TRPV1 antagonists, suggesting that ASIC activation produces migraine-related behavior in vivo. These data provide a cellular mechanism by which decreased pH in the meninges following ischemic or inflammatory events directly excites afferent pain-sensing neurons potentially contributing to migraine headache. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  18. TGF-β1 downregulates StAR expression and decreases progesterone production through Smad3 and ERK1/2 signaling pathways in human granulosa cells.

    Science.gov (United States)

    Fang, Lanlan; Chang, Hsun-Ming; Cheng, Jung-Chien; Leung, Peter C K; Sun, Ying-Pu

    2014-11-01

    Regulation of progesterone production in granulosa cells is important for normal reproductive functions. Steroidogenic acute regulatory protein (StAR) is recognized as the key regulatory protein involved in the rate-limiting step of steroidogenesis. TGF-β1 protein is detected in human follicular fluid, and TGF-β1 and its receptors are expressed in human granulosa cells. However, the functional role of TGF-β1 in the regulation of StAR expression and progesterone production in human granulosa cells remains unknown. Our objective was to investigate the effects of TGF-β1 on StAR expression and progesterone production in human granulosa cells. SVOG cells are human granulosa cells that were obtained from women undergoing in vitro fertilization and immortalized with SV40 large T antigen. SVOG cells were used to investigate the effects of TGF-β1 on StAR expression and progesterone production at an academic research center. Levels of mRNA and protein were examined by RT-qPCR and western blotting, respectively. The accumulation levels of progesterone were measured by enzyme-linked immunosorbent assay (ELISA). TGF-β1 treatment downregulated StAR expression and decreased progesterone production. The suppressive effects of TGF-β1 on StAR expression and progesterone production were abolished by the inhibition of TGF-β type I receptor. In addition, treatment with TGF-β1 activated the Smad2/3 and ERK1/2 signaling pathways. The inhibition of the Smad3 and ERK1/2 signaling pathways attenuated the TGF-β1-induced downregulation of StAR expression and progesterone production. TGF-β1 downregulated StAR expression and decreased progesterone production by activating the Smad3 and ERK1/2 signaling pathways in human granulosa cells.

  19. 2,3,7,8-tetrachlorodibenzo-p-dioxin decrease expression of aryl hydrocarbon receptor in peripheral lymphocyte of β-thalassemia major patients.

    Science.gov (United States)

    Ghatrehsamani, Mahdi; Soleimani, Masoud; Esfahani, Behjat Al-Sadat Moayedi; Hakemi, Mazdak Ganjalikhani; Shirzad, Hedayatollah; Eskandari, Nahid; Adib, Minoo

    2015-01-01

    β-thalassemia major is a hereditary disease with inefficient erythropoiesis. Level of inflammatory cytokine is elevated in these patients. In this study, we investigate the effect of aryl hydrocarbon receptor (AhR) ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), on the expression of inflammatory mediators in β-thalassemia major patient's lymphocytes. Peripheral blood mononuclear cells of patients and healthy participants was isolated and cultured in favor of lymphocytes increment. Based on the treatment, we divided the cell into four groups. The orders of group's treatments were no treatment, tumor necrosis factor-α (TNF-α) treatment, TNF-α and TCDD treatment, TCDD treatment in Group 1-4, respectively. After cell culture, we extracted the cells RNA and converted them to cDNA. Real-time polymerase chain reaction was performed to assessment relative expression of caspase-1, NLRP3, and AhR. We compared all patient groups with equal healthy (control) groups. Results showed that expression of caspase-1 in patients (Groups 1 and 2) was significantly lower than healthy individuals (P 0.05). Expression of AhR in other groups of patients (3 and 4) was significantly lower than control groups (P < 0.05). Expression of caspase-1 in Group 4 was significantly larger than the control group (P < 0.001). We show here that chronic inflammation decrease caspase-1 expression and exposure of human lymphocytes to TCDD promote caspase-1 expression. Furthermore, activation of AhR with TCDD decreases AhR expression in lymphocytes of β-thalassemia major disease.

  20. Decreased expression of heat shock proteins may lead to compromised wound healing in type 2 diabetes mellitus patients.

    Science.gov (United States)

    Singh, Kanhaiya; Agrawal, Neeraj K; Gupta, Sanjeev K; Mohan, Gyanendra; Chaturvedi, Sunanda; Singh, Kiran

    2015-01-01

    Heat shock proteins (HSPs) are inducible stress proteins expressed in cells exposed to stress. HSPs promote wound healing by recruitment of dermal fibroblasts to the site of injury and bring about protein homeostasis. Diabetic wounds are hard to heal and inadequate HSPs may be important contributors in the etiology of diabetic foot ulcers (DFU). To analyze the differential expression of HSPs and their downstream molecules in human diabetic wounds compared to control wounds. Expressional levels of HSP27, HSP47 and HSP70 and their downstream molecules like TLR4, p38-MAPK were seen in biopsies from 101 human diabetic wounds compared to 8 control subjects without diabetes using RT-PCR, western blot and immunohistochemistry. Our study suggested a significant down regulation of HSP70, HSP47 and HSP27 (p value=diabetic wounds. Our study demonstrates that the down regulation of HSPs in diabetic wounds is associated with wound healing impairment in T2DM subjects. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The inhibition of LPS-induced splenocyte proliferation by ortho-substituted and microbially dechlorinated polychlorinated biphenyls is associated with a decreased expression of cyclin D2

    International Nuclear Information System (INIS)

    Smithwick, L. Ashley; Quensen, John F.; Smith, Andrew; Kurtz, David T.; London, Lucille; Morris, Pamela J.

    2004-01-01

    Immunological effects of polychlorinated biphenyls (PCBs) have been demonstrated in our laboratories with the preferential inhibition of lipopolysaccharide (LPS)-induced splenocyte proliferation by ortho-substituted PCB congeners. An investigation of the mechanism behind this immunotoxicity revealed an interruption in the progression of murine lymphocytes from G 0 /G 1 into S phase by Aroclor 1242 and the di-ortho-substituted congener, 2,2'-chlorobiphenyl (CB), whereas, a non-ortho-substituted congener, 4,4'-CB, did not affect cell cycle progression. This interruption of cell cycle progression by 2,2'-CB and Aroclor 1242 was associated with a decreased expression of the cell cycle regulatory protein, cyclin D2, while expression was not affected by exposure to the non-ortho-substituted 4,4'-CB. These results suggest the preferential inhibition of LPS-induced splenocyte proliferation by ortho-substituted congeners is a result of a decreased expression of cyclin D2, which leads to an interruption in cell cycle progression. In addition, PCB mixtures with an increased percentage of chlorines in the ortho position following an environmentally occurring degradation process inhibited LPS-induced proliferation, interrupted cell cycle progression, and decreased cyclin D2 expression. This study provides evidence for a mechanism of action of the immunological effects of ortho-substituted individual congeners as well as environmentally relevant mixtures enriched in congeners with this substitution pattern

  2. Co-ordinate decrease in the expression of the mitochondrial genome and nuclear genes for mitochondrial proteins in the lactation-induced mitochondrial hypotrophy of rat brown fat.

    Science.gov (United States)

    Martin, I; Giralt, M; Viñas, O; Iglesias, R; Mampel, T; Villarroya, F

    1995-01-01

    The relative abundance of the mitochondrial-encoded mRNAs for cytochrome c oxidase subunit II and NADH dehydrogenase subunit I was lower in brown adipose tissue (BAT) from lactating rats than in virgin controls. This decrease was in parallel with a significant decrease in mitochondrial 16 S rRNA levels and in the relative content of mitochondrial DNA in the tissue. BAT from lactating rats showed lowered mRNA expression of the nuclear-encoded genes for the mitochondrial uncoupling protein, subunit IV of cytochrome c oxidase and the adenine nucleotide translocase isoforms ANT1 and ANT2, whereas mRNA levels for the ATP synthase beta-subunit were unchanged. However, the relative content of this last protein was lower in BAT mitochondria from lactating rats than in virgin controls. It is concluded that lactation-induced mitochondrial hypotrophy in BAT is associated with a co-ordinate decrease in the expression of the mitochondrial genome and nuclear genes for mitochondrial proteins. This decrease is caused by regulatory events acting at different levels, including pre- and post-transcriptional regulation. BAT appears to be a useful model with which to investigate the molecular mechanisms involved in the co-ordination of the expression of the mitochondrial and nuclear genomes during mitochondrial biogenesis. Images Figure 1 Figure 2 PMID:8948428

  3. Decreased intracellular [Ca2+ ] coincides with reduced expression of Dhprα1s, RyR1, and diaphragmatic dysfunction in a rat model of sepsis.

    Science.gov (United States)

    Wang, Meng-Meng; Hao, Li-Ying; Guo, Feng; Zhong, Bin; Zhong, Xiao-Mei; Yuan, Jing; Hao, Yi-Fei; Zhao, Shuang; Sun, Xue-Fei; Lei, Ming; Jiao, Guang-Yu

    2017-12-01

    Sepsis can cause decreased diaphragmatic contractility. Intracellular calcium as a second messenger is central to diaphragmatic contractility. However, changes in intracellular calcium concentration ([Ca 2+ ]) and the distribution and co-localization of relevant calcium channels [dihydropyridine receptors, (DHPRα1s) and ryanodine receptors (RyR1)] remain unclear during sepsis. In this study we investigated the effect of changed intracellular [Ca 2+ ] and expression and distribution of DHPRα1s and RyR1 on diaphragm function during sepsis. We measured diaphragm contractility and isolated diaphragm muscle cells in a rat model of sepsis. The distribution and co-localization of DHPRα1s and RyR1 were determined using immunohistochemistry and immunofluorescence, whereas intracellular [Ca 2+ ] was measured by confocal microscopy and fluorescence spectrophotometry. Septic rat diaphragm contractility, expression of DHPRα1s and RyR1, and intracellular [Ca 2+ ] were significantly decreased in the rat sepsis model compared with controls. Decreased intracellular [Ca 2+ ] coincides with diaphragmatic contractility and decreased expression of DHPRα1s and RyR1 in sepsis. Muscle Nerve 56: 1128-1136, 2017. © 2017 Wiley Periodicals, Inc.

  4. Decreased A20 mRNA and protein expression in peripheral blood mononuclear cells in patients with type 2 diabetes and latent autoimmune diabetes in adults.

    Science.gov (United States)

    Cheng, Liqing; Zhang, Dongmei; Jiang, Youzhao; Deng, Wuquan; Wu, Qi'nan; Jiang, Xiaoyan; Chen, Bing

    2014-12-01

    A20 is a negative regulator of nuclear factor kappa B activation and the central gatekeeper in inflammation and immunity. While its role in type 1 diabetes has been widely studied, its expression level in immune cells from type 2 diabetes (T2D) and latent autoimmune diabetes in adult (LADA) patients remains unclear. This study aimed to clarify whether the expression of A20 is altered in patients with T2D or LADA. Quantitative real-time polymerase chain reaction and western blotting were utilized to determine the expression of A20 mRNA and protein respectively in peripheral blood mononuclear cells (PBMCs) from patients with T2D (n=36) or LADA (n=17) and sex- and age-matched healthy controls (n=34). The mRNA and protein expression of A20 in PBMCs from T2D and LADA patients was significantly decreased compared with healthy controls (P1 year since diagnosis) (P<0.05). Our results suggest that decreased expression of A20 in PBMCs may be involved in the pathogenesis of diabetes, and targeting A20 may offer a potential therapeutic tool in the treatment of diabetes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Decreased expression of caspase3 in penis and prostate tissues of rat after the treatment with buceng (Pimpinella alpina Molk & Euricoma longifolia Jack

    Directory of Open Access Journals (Sweden)

    Taufiqurrachman Taufiqurrachman

    2013-02-01

    Full Text Available Background: Buceng {combination of pasak bumi (Eurycoma longifolia Jack and purwoceng (Pimpinella alpine Molk} has been proven to increase testosterone (Te level and decrease apoptosis. Unfortunately, there is no evidence whether these effects are mediated by the declining of caspase3. Objective of this study was to evaluate whether buceng could decrease the expression of caspase3 of penis and prostate cells in Sprague Dawley male rats.Methods: Twenty four Sprague Dawley male rats weighing 300 g (90 days old were randomly assigned into 4 groups of 6 male rats. Group A, rats were castrated and received buceng 50 mg. Group B, rats were not castrated, sacrifices as positive control. Group C, rats were castrated and given 2 mL aquadest as negative control. Group D, rats were castrated and got of 6.75 mg mesterolone, dissolved in 2 mL water. MANOVA statistical analysis was adopted to examine the difference expression of caspase3 in all groups. The comparison of caspase3 expression between two groups exhibiting difference values were evaluated by Post Hoc test.Results: MANOVA revealed statistically significant differences in the expression of caspase3 of penis and prostate tissues among the four groups. Post Hoct test also indicated that expression of caspase3 in group A (buceng (33.56; 35.83 was significantly lower compared to group C (negative control (54.33; 60.07 and group D (mesterolone (51.91;56.21, p = 0.000, and higher compared than group B or normal rats (29.40; 27.72, but statistically not significant (p = 0.826.Conclusion: The treatment of 50 mg buceng/day for 30 consecutive days could decrease caspase3 expression in penis and prostate cells. (Med J Indones. 2013;22:2-8Keywords: Apoptosis, buceng (Pimpinella alpine Molk – Eurycoma longifolia Jack, caspase3 

  6. Protein kinase C activation decreases cell surface expression of the GLT-1 subtype of glutamate transporter. Requirement of a carboxyl-terminal domain and partial dependence on serine 486.

    Science.gov (United States)

    Kalandadze, Avtandil; Wu, Ying; Robinson, Michael B

    2002-11-29

    Na(+)-dependent glutamate transporters are required for the clearance of extracellular glutamate and influence both physiological and pathological effects of this excitatory amino acid. In the present study, the effects of a protein kinase C (PKC) activator on the cell surface expression and activity of the GLT-1 subtype of glutamate transporter were examined in two model systems, primary co-cultures of neurons and astrocytes that endogenously express GLT-1 and C6 glioma cells transfected with GLT-1. In both systems, activation of PKC with phorbol ester caused a decrease in GLT-1 cell surface expression. This effect is opposite to the one observed for the EAAC1 subtype of glutamate transporter (Davis, K. E., Straff, D. J., Weinstein, E. A., Bannerman, P. G., Correale, D. M., Rothstein, J. D., and Robinson, M. B. (1998) J. Neurosci. 18, 2475-2485). Several recombinant chimeric proteins between GLT-1 and EAAC1 transporter subtypes were generated to identify domains required for the subtype-specific redistribution of GLT-1. We identified a carboxyl-terminal domain consisting of 43 amino acids (amino acids 475-517) that is required for PKC-induced GLT-1 redistribution. Mutation of a non-conserved serine residue at position 486 partially attenuated but did not completely abolish the PKC-dependent redistribution of GLT-1. Although we observed a phorbol ester-dependent incorporation of (32)P into immunoprecipitable GLT-1, mutation of serine 486 did not reduce this signal. We also found that chimeras containing the first 446 amino acids of GLT-1 were not functional unless amino acids 475-517 of GLT-1 were also present. These non-functional transporters were not as efficiently expressed on the cell surface and migrated to a smaller molecular weight, suggesting that a subtype-specific interaction is required for the formation of functional transporters. These studies demonstrate a novel effect of PKC on GLT-1 activity and define a unique carboxyl-terminal domain as an

  7. Knockdown of AMPKα decreases ATM expression and increases radiosensitivity under hypoxia and nutrient starvation in an SV40-transformed human fibroblast cell line, LM217.

    Science.gov (United States)

    Murata, Yasuhiko; Hashimoto, Takuma; Urushihara, Yusuke; Shiga, Soichiro; Takeda, Kazuya; Jingu, Keiichi; Hosoi, Yoshio

    2018-01-22

    Presence of unperfused regions containing cells under hypoxia and nutrient starvation contributes to radioresistance in solid human tumors. It is well known that hypoxia causes cellular radioresistance, but little is known about the effects of nutrient starvation on radiosensitivity. We have reported that nutrient starvation induced decrease of mTORC1 activity and decrease of radiosensitivity in an SV40-transformed human fibroblast cell line, LM217, and that nutrient starvation induced increase of mTORC1 activity and increase of radiosensitivity in human liver cancer cell lines, HepG2 and HuH6 (Murata et al., BBRC 2015). Knockdown of mTOR using small interfering RNA (siRNA) for mTOR suppressed radiosensitivity under nutrient starvation alone in HepG2 cells, which suggests that mTORC1 pathway regulates radiosensitivity under nutrient starvation alone. In the present study, effects of hypoxia and nutrient starvation on radiosensitivity were investigated using the same cell lines. LM217 and HepG2 cells were used to examine the effects of hypoxia and nutrient starvation on cellular radiosensitivity, mTORC1 pathway including AMPK, ATM, and HIF-1α, which are known as regulators of mTORC1 activity, and glycogen storage, which is induced by HIF-1 and HIF-2 under hypoxia and promotes cell survival. Under hypoxia and nutrient starvation, AMPK activity and ATM expression were increased in LM217 cells and decreased in HepG2 cells compared with AMPK activity under nutrient starvation alone or ATM expression under hypoxia alone. Under hypoxia and nutrient starvation, radiosensitivity was decreased in LM217 cells and increased in HepG2 cells compared with radiosensitivity under hypoxia alone. Under hypoxia and nutrient starvation, knockdown of AMPK decreased ATM activity and increased radiation sensitivity in LM217 cells. In both cell lines, mTORC1 activity was decreased under hypoxia and nutrient starvation. Under hypoxia alone, knockdown of mTOR slightly increased ATM

  8. Decreased store operated Ca2+ entry in dendritic cells isolated from mice expressing PKB/SGK-resistant GSK3.

    Science.gov (United States)

    Schmid, Evi; Yan, Jing; Nurbaeva, Meerim K; Russo, Antonella; Yang, Wenting; Faggio, Caterina; Shumilina, Ekaterina; Lang, Florian

    2014-01-01

    Dendritic cells (DCs), key players of immunity, are regulated by glycogen synthase kinase GSK3. GSK3 activity is suppressed by PKB/Akt and SGK isoforms, which are in turn stimulated by the PI3K pathway. Exposure to bacterial lipopolysaccharides increases cytosolic Ca(2+)-concentration ([Ca(2+)]i), an effect augmented in DCs isolated from mutant mice expressing PKB/SGK-resistant GSK3α,β (gsk3(KI) ). Factors affecting [Ca(2+)]i include Ca(2+)-release from intracellular stores (CRIS), store-operated Ca(2+)-entry (SOCE) through STIM1/STIM2-regulated Orai1, K(+)-dependent Na(+)/Ca(2+)-exchangers (NCKX), K(+)-independent Na(+)/Ca(2+)-exchangers (NCX) and calbindin-D28k. The present study explored whether PKB/SGK-dependent GSK3α, β-activity impacts on CRIS, SOCE, NCKX, NCX or calbindin. DCs were isolated from gsk3(KI) mice and respective wild-type mice (gsk3(WT) ), [Ca(2+)]i estimated from Fura2 fluorescence, Orai1, STIM1, STIM2 as well as calbindin-D28k protein abundance determined by Western blotting and mRNA levels quantified by real time PCR. As a result, thapsigargin-induced CRIS and SOCE were significantly blunted by GSK3-inhibitors SB216763 (1-10 µM, 30 min) or GSK-XIII (10 µM, 30 min) but were significantly lower in gsk3(WT) than in gsk3(KI) DCs. Orai1, STIM1 and STIM2 protein abundance was significantly lower and calbindin-D28k abundance significantly higher in gsk3(KI) than in gsk3(WT) DCs. Activity of NCKX and NCX was significantly higher in gsk3(KI) than in gsk3(WT) DCs and was significantly increased by SB216763 (1 µM, 30 min) or GSK-XIII (10 µM, 30 min). Treatment of gsk3(WT) DCs with SB216763 (1 µM, 4-24 h) or GSK-XIII (10 µM, 4-24 h) did not significantly modify the protein abundance of Orai1, STIM1 and STIM2. The present observations point to a dual role of GSK3 in the regulation of Ca(2+) in DCs. Acute inhibition of GSK3 blunted the increase of [Ca(2+)]i following CRIS and SOCE and stimulated NCKX/NCX activity. However, expression of PKB

  9. Interference with PSMB4 Expression Exerts an Anti-Tumor Effect by Decreasing the Invasion and Proliferation of Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chen Cheng

    2018-01-01

    Full Text Available Background/Aims: Glioblastoma (GBM is a malignant brain tumor with a poor prognosis. Proteasome subunit beta type-4 (PSMB4 is an essential subunit that contributes to the assembly of the 20S proteasome complex. However, the role of PSMB4 in glioblastomas remains to be clarified. The aim of this study was to investigate the role of PSMB4 in GBM tumor progression. Methods: We first analyzed the PSMB4 protein and mRNA expression in 80 clinical brain specimens and 77 datasets from the National Center for Biotechnology Information (NCBI Gene Expression Omnibus (GEO database. Next, we inhibited the PSMB4 expression by siRNA in cellular and animal models to explore PSMB4’s underlying mechanisms. The cell survival after siPSMB4 transfection was assayed by MTT assay. Annexin V and propidium iodide staining was used to monitor the apoptosis by flow cytometric analysis. Moreover, the migration and invasion were evaluated by wound healing and Transwell assays. The expression of migration-related and invasion-related proteins after PSMB4 inhibition was detected by Western blotting. In addition, an orthotropic xenograft mouse model was used to assay the effect of PSMB4 knockdown in the in vivo study. Results: Basis on the results of bioinformatics study, glioma patients with higher PSMB4 expression had a shorter survival time than those with lower PSMB4 expression. The staining of clinical brain tissues showed elevated PSMB4 expression in GBM tissues compared with normal brain tissues. The PSMB4 inhibition decreased proliferation, migration and invasion abilities in human GBM cells. Downregulated PSMB4 resulted in cell cycle arrest and apoptosis in vitro. In an orthotropic xenograft mouse model, the glioma tumors progression was reduced when PSMB4 was down-regulated. The decreased PSMB4 enhanced the anti-tumor effect of temozolomide (TMZ on tumor growth. In addition, the absence of PSMB4 decreased the expression of phosphorylated focal adhesion kinase and

  10. Oleuropein Decreases Cyclooxygenase-2 and Interleukin-17 Expression and Attenuates Inflammatory Damage in Colonic Samples from Ulcerative Colitis Patients.

    Science.gov (United States)

    Larussa, Tiziana; Oliverio, Manuela; Suraci, Evelina; Greco, Marta; Placida, Roberta; Gervasi, Serena; Marasco, Raffaella; Imeneo, Maria; Paolino, Donatella; Tucci, Luigi; Gulletta, Elio; Fresta, Massimo; Procopio, Antonio; Luzza, Francesco

    2017-04-15

    Oleuropein (OLE) is the major phenolic secoiridoid of olive tree leaves, and its antioxidant and anti-inflammatory activities have been demonstrated in in vitro and in vivo animal models. The aim of this study was to investigate the activity of OLE in the colonic mucosa from patients with ulcerative colitis (UC). Biopsies obtained during colonoscopy from 14 patients with active UC were immediately placed in an organ culture chamber and challenged with lipopolysaccharide from Escherichia coli (EC-LPS) at 1 μg/mL in the presence or absence of 3 mM OLE. The expression of cyclooxygenase (COX)-2 and interleukin (IL)-17 was assessed in total protein extracts from treated colonic biopsies by Western blotting. Levels of IL-17 were also measured in culture supernatant by ELISA. A microscopic evaluation of the cultured biopsies was performed by conventional histology and immunohistochemistry. The expression of COX-2 and IL-17 were significantly lower in samples treated with OLE + EC-LPS compared with those treated with EC-LPS alone (0.80 ± 0.15 arbitrary units (a.u.) vs. 1.06 ± 0.19 a.u., p = 0.003, and 0.71 ± 0.08 a.u. vs. 1.26 ± 0.42 a.u., p = 0.03, respectively) as were the levels of IL-17 in culture supernatants of OLE + EC-LPS treated colonic samples (21.16 ± 8.64 pg/mL vs. 40.67 ± 9.24 pg/mL, p = 0.01). Histologically, OLE-treated colonic samples showed an amelioration of inflammatory damage with reduced infiltration of CD3, CD4, and CD20 cells, while CD68 numbers increased. The anti-inflammatory activity of OLE was demonstrated in colonic biopsies from UC patients. These new data support a potential role of OLE in the treatment of UC.

  11. Increased NQO1 but Not c-MET and Survivin Expression in Non-Small Cell Lung Carcinoma with KRAS Mutations

    Directory of Open Access Journals (Sweden)

    Ahmet Yilmaz

    2014-09-01

    Full Text Available Cigarette smoking is one of the most significant public health issues and the most common environmental cause of preventable cancer deaths worldwide. EGFR (Epidermal Growth Factor Receptor-targeted therapy has been used in the treatment of LC (lung cancer, mainly caused by the carcinogens in cigarette smoke, with variable success. Presence of mutations in the KRAS (Kirsten rat sarcoma viral oncogene homolog driver oncogene may confer worse prognosis and resistance to treatment for reasons not fully understood. NQO1 (NAD(PH:quinone oxidoreductase, also known as DT-diaphorase, is a major regulator of oxidative stress and activator of mitomycins, compounds that have been targeted in over 600 pre-clinical trials for treatment of LC. We sequenced KRAS and investigated expression of NQO1 and five clinically relevant proteins (DNMT1, DNMT3a, ERK1/2, c-MET, and survivin in 108 patients with non-small cell lung carcinoma (NSCLC. NQO1, ERK1/2, DNMT1, and DNMT3a but not c-MET and survivin expression was significantly more frequent in patients with KRAS mutations than those without, suggesting the following: (1 oxidative stress may play an important role in the pathogenesis, worse prognosis, and resistance to treatment reported in NSCLC patients with KRAS mutations, (2 selecting patients based on their KRAS mutational status for future clinical trials may increase success rate, and (3 since oxidation of nucleotides also specifically induces transversion mutations, the high rate of KRAS transversions in lung cancer patients may partly be due to the increased oxidative stress in addition to the known carcinogens in cigarette smoke.

  12. Mutations in the Arabidopsis Lst8 and Raptor genes encoding partners of the TOR complex, or inhibition of TOR activity decrease abscisic acid (ABA) synthesis.

    Science.gov (United States)

    Kravchenko, Alena; Citerne, Sylvie; Jéhanno, Isabelle; Bersimbaev, Rakhmetkazhi I; Veit, Bruce; Meyer, Christian; Leprince, Anne-Sophie

    2015-11-27

    The Target of Rapamycin (TOR) kinase regulates essential processes in plant growth and development by modulation of metabolism and translation in response to environmental signals. In this study, we show that abscisic acid (ABA) metabolism is also regulated by the TOR kinase. Indeed ABA hormone level strongly decreases in Lst8-1 and Raptor3g mutant lines as well as in wild-type (WT) Arabidopsis plants treated with AZD-8055, a TOR inhibitor. However the growth and germination of these lines are more sensitive to exogenous ABA. The diminished ABA hormone accumulation is correlated with lower transcript levels of ZEP, NCED3 and AAO3 biosynthetic enzymes, and higher transcript amount of the CYP707A2 gene encoding a key-enzyme in abscisic acid catabolism. These results suggest that the TOR signaling pathway is implicated in the regulation of ABA accumulation in Arabidopsis. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Hydrops fetalis and pulmonary lymphangiectasia due to FOXC2 mutation: an autosomal dominant hereditary lymphedema syndrome with variable expression.

    Science.gov (United States)

    de Bruyn, Gwendolyn; Casaer, Alexandra; Devolder, Katrien; Van Acker, Geert; Logghe, Hilde; Devriendt, Koen; Cornette, Luc

    2012-03-01

    Non-immune hydrops fetalis may find its origin within genetically determined lymphedema syndromes, caused by mutations in FOXC2 and SOX-18. We describe a newborn girl, diagnosed with non-immune hydrops fetalis at a gestational age of 30 weeks. Family history revealed the presence of an autosomal dominant late-onset form of lymphedema of the lower limbs in her father, associated with an aberrant implantation of the eyelashes in some individuals. The newborn, hydropic girl suffered from severe pulmonary lymphangiectasia, resulting in terminal respiratory failure at the age of 3 months. Genetic analysis in both the father and the newborn girl demonstrated a heterozygous FOXC2 mutation, i.e., c.939C>A, p.Tyr313X. Her two older sisters are currently asymptomatic and the parents decided not to test them for the FOXC2 mutation. Patients with a mutation in the FOXC2 transcription factor usually show lower limb lymphedema with onset at or after puberty, together with distichiasis. However, the eye manifestations can be very mild and easily overlooked. The association between FOXC2 mutation and neonatal hydrops resulting in terminal respiratory failure is not reported so far. Therefore, in sporadic patients diagnosed with non-immune hydrops fetalis, lymphangiogenic genes should be systematically screened for mutations. In addition, all cases of fetal edema must prompt a thorough analysis of the familial pedigree, in order to detect familial patterns and to facilitate adequate antenatal counseling.

  14. DNA methylation and gene expression changes derived from assisted reproductive technologies can be decreased by reproductive fluids

    Science.gov (United States)

    Canovas, Sebastian; Ivanova, Elena; Romar, Raquel; García-Martínez, Soledad; Soriano-Úbeda, Cristina; García-Vázquez, Francisco A; Saadeh, Heba; Andrews, Simon; Kelsey, Gavin; Coy, Pilar

    2017-01-01

    The number of children born since the origin of Assisted Reproductive Technologies (ART) exceeds 5 million. The majority seem healthy, but a higher frequency of defects has been reported among ART-conceived infants, suggesting an epigenetic cost. We report the first whole-genome DNA methylation datasets from single pig blastocysts showing differences between in vivo and in vitro produced embryos. Blastocysts were produced in vitro either without (C-IVF) or in the presence of natural reproductive fluids (Natur-IVF). Natur-IVF embryos were of higher quality than C-IVF in terms of cell number and hatching ability. RNA-Seq and DNA methylation analyses showed that Natur-IVF embryos have expression and methylation patterns closer to in vivo blastocysts. Genes involved in reprogramming, imprinting and development were affected by culture, with fewer aberrations in Natur-IVF embryos. Methylation analysis detected methylated changes in C-IVF, but not in Natur-IVF, at genes whose methylation could be critical, such as IGF2R and NNAT. DOI: http://dx.doi.org/10.7554/eLife.23670.001 PMID:28134613

  15. Decreased ERp57 Expression in WAG/Rij Rats Thalamus and Cortex; Possible Correlation with Absence Epilepsy.

    Science.gov (United States)

    Sahin, Deniz; Karadenizli, Sabriye; Kasap, Murat; Oztas, Berrin; Kir, Hale Maral; Akpinar, Gurler; Ates, Nurbay

    2018-02-06

    The role of intracellular proteins in the pathogenesis of absence epilepsy were mentioned. These proteins are thought to be related to energy generation, signal transduction, inflammation processes and membrane conductance. The investigation of protein profile of the genetically epileptic rat brains was the main subject of this study. For this, a 2D-gel electrophoresis based comparative proteome analysis was performed using thalamus tissue of genetic absence epileptic WAG/Rij and age matched Wistar rats. Regulated spots displaying differences in their abundance were identified using MALDI-TOF/TOF. Among the six spots (DHRS9, BR44, HINT1, CREM, SPRE and PDIA3/ERp57) the highest mascot score was attributed to ERp57 a neuroprotective/neurodegenerative system associated protein. Western Blot analyses were performed to validate changes occurring at ERp57 in thalamus and also identify changes in fronto-parietal cortex. Reductions in the expression levels of ERp57 were detected in the thalamic and the fronto-parietal brain regions of the WAG/Rij rats in comparison to Wistar rats. Such difference might be associated with the pathogenic mechanisms dictating the absence epilepsy. Lower levels of ERp57 may be playing an important role in the development of spontaneous seizures activity seen in the absence epileptic WAG/Rij rats strain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Decreased expression of microRNA let-7i and its association with chemotherapeutic response in human gastric cancer

    Directory of Open Access Journals (Sweden)

    Liu Kun

    2012-10-01

    Full Text Available Abstract Background MicroRNA let-7i has been proven to be down-regulated in many human malignancies and correlated with tumor progression and anticancer drug resistance. Our study aims to characterize the contribution of miRNA let-7i to the initiation and malignant progression of locally advanced gastric cancer (LAGC, and evaluate its possible value in neoadjuvant chemotherapeutic efficacy prediction. Methods Eighty-six previously untreated LAGC patients who underwent preoperative chemotherapy and radical resection were included in our study. Let-7i expression was examined for pairs of cancer tissues and corresponding normal adjacent tissues (NATs, using quantitative RT-PCR. The relationship of let-7i level to clinicopathological characteristics, pathologic tumor regression grades after chemotherapy, and overall survival (OS was also investigated. Results Let-7i was significantly down-regulated in most tumor tissues (78/86: 91% compared with paired NATs (P P =0.024 independently of other clinicopathological factors, including tumor node metastasis (TNM stage (HR = 3.226, P = 0.013, depth of infiltration (HR = 4.167, P P = 0.037. Conclusions These findings indicate that let-7i may be a good candidate for use a therapeutic target and a potential tissue marker for the prediction of chemotherapeutic sensitivity and prognosis in LAGC patients.

  17. Loss of mutL homolog-1 (MLH1) expression promotes acquisition of oncogenic and inhibitor-resistant point mutations in tyrosine kinases.

    Science.gov (United States)

    Springuel, Lorraine; Losdyck, Elisabeth; Saussoy, Pascale; Turcq, Béatrice; Mahon, François-Xavier; Knoops, Laurent; Renauld, Jean-Christophe

    2016-12-01

    Genomic instability drives cancer progression by promoting genetic abnormalities that allow for the multi-step clonal selection of cells with growth advantages. We previously reported that the IL-9-dependent TS1 cell line sequentially acquired activating substitutions in JAK1 and JAK3 upon successive selections for growth factor independent and JAK inhibitor-resistant cells, suggestive of a defect in mutation avoidance mechanisms. In the first part of this paper, we discovered that the gene encoding mutL homolog-1 (MLH1), a key component of the DNA mismatch repair system, is silenced by promoter methylation in TS1 cells. By means of stable ectopic expression and RNA interference methods, we showed that the high frequencies of growth factor-independent and inhibitor-resistant cells with activating JAK mutations can be attributed to the absence of MLH1 expression. In the second part of this paper, we confirm the clinical relevance of our findings by showing that chronic myeloid leukemia relapses upon ABL-targeted therapy correlated with a lower expression of MLH1 messenger RNA. Interestingly, the mutational profile observed in our TS1 model, characterized by a strong predominance of T:A>C:G transitions, was identical to the one described in the literature for primitive cells derived from chronic myeloid leukemia patients. Taken together, our observations demonstrate for the first time a causal relationship between MLH1-deficiency and incidence of oncogenic point mutations in tyrosine kinases driving cell transformation and acquired resistance to kinase-targeted cancer therapies.

  18. Clinical flow cytometric screening of SAP and XIAP expression accurately identifies patients with SH2D1A and XIAP/BIRC4 mutations.

    Science.gov (United States)

    Gifford, Carrie E; Weingartner, Elizabeth; Villanueva, Joyce; Johnson, Judith; Zhang, Kejian; Filipovich, Alexandra H; Bleesing, Jack J; Marsh, Rebecca A

    2014-07-01

    X-linked lymphoproliferative disease is caused by mutations in two genes, SH2D1A and XIAP/BIRC4. Flow cytometric methods have been developed to detect the gene products, SAP and XIAP. However, there is no literature describing the accuracy of flow cytometric screening performed in a clinical lab setting. We reviewed the clinical flow cytometric testing results for 656 SAP and 586 XIAP samples tested during a 3-year period. Genetic testing was clinically performed as directed by the managing physician in 137 SAP (21%) and 115 XIAP (20%) samples. We included these samples for analyses of flow cytometric test accuracy. SH2D1A mutations were detected in 15/137 samples. SAP expression was low in 13/15 (sensitivity 87%, CI 61-97%). Of the 122 samples with normal sequencing, SAP was normal in 109 (specificity 89%, CI 82-94%). The positive predictive values (PPVs) and the negative predictive values (NPVs) were 50% and 98%, respectively. XIAP/BIRC4 mutations were detected in 19/115 samples. XIAP expression was low in 18/19 (sensitivity 95%, CI 73-100%). Of the 96 samples with normal sequencing, 59 had normal XIAP expression (specificity 61%, CI 51-71%). The PPVs and NPVs were 33% and 98%, respectively. Receiver-operating characteristic analysis was able to improve the specificity to 75%. Clinical flow cytometric screening tests for SAP and XIAP deficiencies offer good sensitivity and specificity for detecting genetic mutations, and are characterized by high NPVs. We recommend these tests for patients suspected of having X-linked lymphoproliferative disease type 1 (XLP1) or XLP2. © 2014 Clinical Cytometry Society.

  19. Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice

    Directory of Open Access Journals (Sweden)

    Dantzer Robert

    2011-02-01

    Full Text Available Abstract Exogenous administration of insulin-like growth factor (IGF-I has anti-depressant properties in rodent models of depression. However, nothing is known about the anti-depressant properties of IGF-I during inflammation, nor have mechanisms by which IGF-I alters behavior following activation of the innate immune system been clarified. We hypothesized that central IGF-I would diminish depressive-like behavior on a background of an inflammatory response and that it would do so by inducing expression of the brain-derived neurotrophic factor (BDNF while decreasing pro-inflammatory cytokine expression in the brain. IGF-I (1,000 ng was administered intracerebroventricularly (i.c.v. to CD-1 mice. Mice were subsequently given lipopolysaccharide i.c.v. (LPS, 10 ng. Sickness and depressive-like behaviors were assessed followed by analysis of brain steady state mRNA expression. Central LPS elicited typical transient signs of sickness of mice, including body weight loss, reduced feed intake and decreased social exploration toward a novel juvenile. Similarly, LPS increased time of immobility in the tail suspension test (TST. Pretreatment with IGF-I or antidepressants significantly decreased duration of immobility in the TST in both the absence and presence of LPS. To elucidate the mechanisms underlying the anti-depressant action of IGF-I, we quantified steady-state mRNA expression of inflammatory mediators in whole brain using real-time RT-PCR. LPS increased, whereas IGF-I decreased, expression of inflammatory markers interleukin-1ß (IL-1ß, tumor necrosis factor-(TNFα, inducible nitric oxide synthase (iNOS and glial fibrillary acidic protein (GFAP. Moreover, IGF-I increased expression of BDNF. These results indicate that IGF-I down regulates glial activation and induces expression of an endogenous growth factor that shares anti-depressant activity. These actions of IGF-I parallel its ability to diminish depressive-like behavior.

  20. Early decreased TLR2 expression on monocytes is associated with their reduced phagocytic activity and impaired maturation in a porcine polytrauma model

    Science.gov (United States)

    Schimunek, Lukas; Serve, Rafael; Teuben, Michel P. J.; Störmann, Philipp; Auner, Birgit; Woschek, Mathias; Pfeifer, Roman; Horst, Klemens; Simon, Tim-P.; Kalbitz, Miriam; Sturm, Ramona; Pape, Hans-C.; Hildebrand, Frank; Marzi, Ingo

    2017-01-01

    In their post-traumatic course, trauma patients suffering from multiple injuries have a high risk for immune dysregulation, which may contribute to post-injury complications and late mortality. Monocytes as specific effector cells of the innate immunity play a crucial role in inflammation. Using their Pattern Recognition Receptors (PRRs), notably Toll-Like Receptors (TLR), the monocytes recognize pathogens and/or pathogen-associated molecular patterns (PAMPs) and organize their clearance. TLR2 is the major receptor for particles of gram-positive bacteria, and initiates their phagocytosis. Here, we investigated the phagocytizing capability of monocytes in a long-term porcine severe trauma model (polytrauma, PT) with regard to their TLR2 expression. Polytrauma consisted of femur fracture, unilateral lung contusion, liver laceration, hemorrhagic shock with subsequent resuscitation and surgical fracture fixation. After induction of PT, peripheral blood was withdrawn before (-1 h) and directly after trauma (0 h), as well as 3.5 h, 5.5 h, 24 h and 72 h later. CD14+ monocytes were identified and the expression levels of H(S)LA-DR and TLR2 were investigated by flow cytometry. Additionally, the phagocytizing activity of monocytes by applying S. aureus particles labelled with pHrodo fluorescent reagent was also assessed by flow cytometry. Furthermore, blood samples from 10 healthy pigs were exposed to a TLR2-neutralizing antibody and subsequently to S. aureus particles. Using flow cytometry, phagocytizing activity was determined. P below 0.05 was considered significant. The number of CD14+ monocytes of all circulating leukocytes remained constant during the observational time period, while the percentage of CD14+H(S)LA-DR+ monocytes significantly decreased directly, 3.5 h and 5.5 h after trauma. The percentage of TLR2+ expressing cells out of all monocytes significantly decreased directly, 3.5 h and 5.5 h after trauma. The percentage of phagocytizing monocytes decreased

  1. Transfection with extracellularly UV-damaged DNA induces human and rat cells to express a mutator phenotype towards parvovirus H-1

    International Nuclear Information System (INIS)

    Dinsart, C.; Cornelis, J.J.; Klein, B.; van der Eb, A.J.; Rommelaere, J.

    1984-01-01

    Human and rat cells transfected with UV-irradiated linear double-stranded DNA from calf thymus displayed a mutator activity. This phenotype was identified by growing a lytic thermosensitive single-stranded DNA virus (parvovirus H-1) in those cells and determining viral reversion frequencies. Likewise, exogenous UV-irradiated closed circular DNAs, either double-stranded (simian virus 40) or single-stranded (phi X174), enhanced the ability of recipient cells to mutate parvovirus H-1. The magnitude of mutator activity expression increased along with the number of UV lesions present in the inoculated DNA up to a saturation level. Unirradiated DNA displayed little inducing capacity, irrespective of whether it was single or double stranded. Deprivation of a functional replication origin did not impede UV-irradiated simian virus 40 DNA from providing rat and human cells with a mutator function. Our data suggest that in mammalian cells a trans-acting mutagenic signal might be generated from UV-irradiated DNA without the necessity for damaged DNA to replicate

  2. An XPA gene splicing mutation resulting in trace protein expression in an elderly patient with xeroderma pigmentosum group A without neurological abnormalities.

    Science.gov (United States)

    Takahashi, Y; Endo, Y; Kusaka-Kikushima, A; Nakamaura, S; Nakazawa, Y; Ogi, T; Uryu, M; Tsuji, G; Furue, M; Moriwaki, S

    2017-07-01

    A certain relationship between XPA gene mutations and the severity of symptoms has been observed in patients with xeroderma pigmentosum group A (XP-A). Patients with mutations within the DNA-binding domain usually exhibit severe symptoms, whereas splicing mutations in the same domain sometimes cause very mild symptoms. This inconsistency can be explained by a small amount of functional XPA protein produced from normally spliced transcripts. We herein report the case of an adult Japanese patient with XP-A with unusually mild symptoms. We identified a homozygous c.529G>A mutation in exon 4 of the XPA gene, which resulted in aberrant splicing with a 29-bp deletion in exon 4 causing a frameshift. Intact mRNA was observable, but a Western blot analysis failed to detect any normal XPA protein. We therefore evaluated the DNA repair capacity in normal cells in which the XPA expression was artificially diminished. The repair capacity was still present in cells with trace levels of the XPA protein. The repair capacity of the cells derived from our patient with mild symptoms was poor by comparison, but still significant compared with that of the cells derived from a patient with XP-A with severe symptoms. These results provide strong evidence that a trace level of XPA protein can still exert a relatively strong repair capacity, resulting in only a mild phenotype. © 2016 British Association of Dermatologists.

  3. Heat adaptation from regular hot water immersion decreases proinflammatory responses, HSP70 expression, and physical heat stress.

    Science.gov (United States)

    Yang, Fwu-Lin; Lee, Chia-Chi; Subeq, Yi-Maun; Lee, Chung-Jen; Ke, Chun-Yen; Lee, Ru-Ping

    2017-10-01

    Hot-water immersion (HWI) is a type of thermal therapy for treating various diseases. In our study, the physiological responses to occasional and regular HWI have been explored. The rats were divided into a control group, occasional group (1D), and regular group (7D). The 1D and 7D groups received 42°C during 15mins HWI for 1 and 7 days, respectively. The blood samples were collected for proinflammatory cytokines examinations, the heart, liver and kidney were excised for subsequent IHC analysis to measure the level of heat shock protein 70 (HSP70). The results revealed that the body temperature increased significantly during HWI on Day 3 and significantly declined on Days 6 and 7. For the 7D group, body weight, heart rate, hematocrit, platelet, osmolarity, and lactate level were lower than those in the 1D group. Furthermore, the levels of granulocyte counts, tumor necrosis factor-α, and interleukin-6 were lower in the 7D group than in the 1D group. The induction of HSP70 in the 1D group was higher than in the other groups. Physiological responses to occasional HWI are disadvantageous because of heat stress. However, adaptation to heat from regular HWI resulted in decreased proinflammatory responses and physical heat stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The expression of the new epididymal luminal protein of PDZ domain containing 1 is decreased in asthenozoospermia

    Directory of Open Access Journals (Sweden)

    A-Juan Liang

    2018-01-01

    Full Text Available Spermatozoa are not mature until they transit the epididymis where they acquire motility and the ability to fertilize an egg through sequential modifications. The epididymis has three functional regions, caput, corpus, and cauda, and the luminal proteins of the epididymis play important roles in the above modifications. However, the proteins with differential enrichment between the caput and cauda are still largely unknown. To reveal the functions of the caput and cauda during sperm maturation, luminal proteins from caput and cauda of mice were analyzed by isobaric tag for relative and absolute quantitation (iTRAQ. Overall, 128 differentially enriched proteins were found, of which 46 were caput enriched and 82 were cauda enriched. Bioinformatic analysis showed that lipid metabolism was active in the caput; while anion- and cation-binding activity and phosphorus and organophosphate metabolism were active in the cauda. A new epididymal luminal protein, the caput-enriched PDZ domain containing 1 (Pdzk1, also named Na+/H+ exchange regulatory cofactor 3 (NHERF3, which plays a critical role in cholesterol metabolism and carnitine transport, was found in the lipid metabolism. Western blotting and immunofluorescence analyses showed that Pdzk1 was expressed in the epididymis but not in the testis, and localized at the middle piece of the sperm tail. Pdzk1 protein level was also reduced in the spermatozoa in case of asthenozoospermic patients compared with that in normozoospermic men, suggesting that Pdzk1 may participate in sperm maturation regulation and may be associated with male infertility. These results may provide new insights into the mechanisms of sperm maturation and male infertility.

  5. Subchronic inhalation of coal dust particulate matter 10 induces bronchoalveolar hyperplasia and decreases MUC5AC expression in male Wistar rats.

    Science.gov (United States)

    Kania, Nia; Setiawan, Bambang; Widjadjanto, Edi; Nurdiana, Nurdiana; Widodo, M Aris; Kusuma, H M S Chandra

    2014-10-01

    Coal dust is a pollutant found in coal mines that are capable of inducing oxidative stress and inflammation, but the effects on lung metaplasia as an early step of carcinogenesis remain unknown. The purpose of the present study was to evaluate the effects of PM10 coal dust on lung histology, MUC5AC expression, epidermal growth factor (EGF) expression, and epidermal growth factor receptor (EGFR) expression. An experimental study was done on male Wistar rats, which were divided into the following groups: control groups exposed to coal dust for 14 days (at doses of 6.25 mg/m(3), 12.5 mg/m(3), and 25 mg/m(3)), and the groups exposed to coal dust for 28 days (at doses of 6.25 mg/m(3), 12.5 mg/m(3), and 25 mg/m(3)). EGF expressions in rat lungs were measured by ELISA. EGFR and MUC5AC were measured by a confocal laser scanning microscope. The bronchoalveolar epithelial image of the group exposed to coal dust for 14 and 28 days showed a epithelial rearrangement, hyperplastic (metaplastic) goblet cells, and scattered massive inflammatory cells. The pulmonary parenchymal image of the group of exposed to coal dust for 14 and 28 days showed scattered inflammatory cells filling up the pulmonary alveolar networks, leading to an appearance of thickened parenchymal alveoli until emphysema-like structure. There was no significant difference in MUC5AC, EGF, and EGFR expressions for 14-d exposure (p>0.05). There was no significant difference in EGF and EGFR expressions for 28-d exposure (p>0.05), but there was a significant difference in MUC5AC expression (phyperplasia and rearrangement of epithelial cells which accompanied by decrease expression MUC5AC in male rats. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Expression of the Na+/l- symporter (NIS is markedly decreased or absent in gastric cancer and intestinal metaplastic mucosa of Barrett esophagus

    Directory of Open Access Journals (Sweden)

    Wapnir Irene L

    2007-01-01

    Full Text Available Abstract Background The sodium/iodide symporter (NIS is a plasma membrane glycoprotein that mediates iodide (I- transport in the thyroid, lactating breast, salivary glands, and stomach. Whereas NIS expression and regulation have been extensively investigated in healthy and neoplastic thyroid and breast tissues, little is known about NIS expression and function along the healthy and diseased gastrointestinal tract. Methods Thus, we investigated NIS expression by immunohistochemical analysis in 155 gastrointestinal tissue samples and by immunoblot analysis in 17 gastric tumors from 83 patients. Results Regarding the healthy Gl tract, we observed NIS expression exclusively in the basolateral region of the gastric mucin-producing epithelial cells. In gastritis, positive NIS staining was observed in these cells both in the presence and absence of Helicobacter pylori. Significantly, NIS expression was absent in gastric cancer, independently of its histological type. Only focal faint NIS expression was detected in the direct vicinity of gastric tumors, i.e., in the histologically intact mucosa, the expression becoming gradually stronger and linear farther away from the tumor. Barrett mucosa with junctional and fundic-type columnar metaplasia displayed positive NIS staining, whereas Barrett mucosa with intestinal metaplasia was negative. NIS staining was also absent in intestinalized gastric polyps. Conclusion That NIS expression is markedly decreased or absent in case of intestinalization or malignant transformation of the gastric mucosa suggests that NIS may prove to be a significant tumor marker in the diagnosis and prognosis of gastric malignancies and also precancerous lesions such as Barrett mucosa, thus extending the medical significance of NIS beyond thyroid disease.

  7. Increasing of miR-148a 0061nd Decreasing of miR-146a Gene Expression in the Stomach with Ageing in Men

    Directory of Open Access Journals (Sweden)

    Shirin Abdolvand

    2017-06-01

    Full Text Available Abstract Background: The incidence of gastric cancer is different in two sexes with ratio 2 to 1 that it is more common in men. The most important biologically reason is sexual hormones between two sexes that lead to sexual dimorphism and in turn can cause a sex bias in incidence of disease between two sexes. Recently, studies have shown that microRNA is involved in sexual dimorphism in gene expression. Given the sexual dimorphism in the incidence of gastric cancer and sex hormones response elements in the regulatory regions of miR-146a and miR-148a genes, in this study, the expression of these two genes in the stomach of healthy men and women at different age groups were compared. Materials and Methods: Using endoscopy, gastric antrum tissues of 35 healthy women and 35 healthy men were collected. After RNA extraction and synthesis of cDNA, the expression of miR-146a and miR-148a genes were compared between sexes by Real time RT-PCR and data were analyzed using independent sample t and ANOVA tests. Results: There was no difference between men and women in genes expression of miR-146a and miR-148a. However, expression of miR-146a gene was significantly more in men under 45 years than men over 45 years (p= 0.017, df= 14, t= 1.47. Also, expression of miR-148a gene was significantly more in men over 45 years than men under 45 years (p=0.001, df= 12, t= 1.28. But the expression of both genes had no significant difference between women under 45 years and women over 45 years. Conclusion: Expression of miR-146a and miR-148a genes in the stomach is increased and decreased with aging in men, respectively.

  8. Egg ovotransferrin-derived ACE inhibitory peptide IRW increases ACE2 but decreases proinflammatory genes expression in mesenteric artery of spontaneously hypertensive rats.

    Science.gov (United States)

    Majumder, Kaustav; Liang, Guanxiang; Chen, Yanhong; Guan, LeLuo; Davidge, Sandra T; Wu, Jianping

    2015-09-01

    Egg ovotransferrin-derived angiotensin converting enzyme (ACE) inhibitory peptide IRW was previously shown to reduce blood pressure in spontaneously hypertensive rats through reduced vascular inflammation and increased nitric oxide-mediated vasorelaxation. The main objective of the present study was to investigate the molecular mechanism of this peptide through transcriptome analysis by RNAseq technique. Total RNA was extracted from kidney and mesenteric arteries; the RNAseq libraries (from untreated and IRW-treated groups) were constructed and subjected to sequence using HiSeq 2000 system (Illumina) system. A total of 12 764 and 13 352 genes were detected in kidney and mesenteric arteries, respectively. The differentially expressed (DE) genes between untreated and IRW-treated groups were identified and the functional analysis through ingenuity pathway analysis revealed a greater role of DE genes identified from mesenteric arteries than that of kidney in modulating various cardiovascular functions. Subsequent qPCR analysis further confirmed that IRW significantly increased the expression of ACE-2, ABCB-1, IRF-8, and CDH-1 while significantly decreased the expression ICAM-1 and VCAM-1 in mesenteric arteries. Our research showed for the first time that ACE inhibitory peptide IRW could contribute to its antihypertensive activity through increased ACE2 and decreased proinflammatory genes expression. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Neonatal manipulation of oxytocin prevents lipopolysaccharide-induced decrease in gene expression of growth factors in two developmental stages of the female rat.

    Science.gov (United States)

    Bakos, Jan; Lestanova, Zuzana; Strbak, Vladimir; Havranek, Tomas; Bacova, Zuzana

    2014-10-01

    Oxytocin production and secretion is important for early development of the brain. Long-term consequences of manipulation of oxytocin system might include changes in markers of brain plasticity - cytoskeletal proteins and neurotrophins. The aim of the present study was (1) to determine whether neonatal oxytocin administration affects gene expression of nestin, microtubule-associated protein-2 (MAP-2), brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the brain of two developmental stages of rat and (2) to evaluate whether neonatal oxytocin administration protects against lipopolysaccharide (LPS) induced inflammation. Neonatal oxytocin did not prevent a decrease of body weight in the LPS treated animals. Oxytocin significantly increased gene expression of BDNF in the right hippocampus in 21-day and 2-month old rats of both sexes. Gene expression of NGF and MAP-2 significantly increased in males treated with oxytocin. Both, growth factors and intermediate filament-nestin mRNA levels, were reduced in females exposed to LPS. Oxytocin treatment prevented a decrease in the gene expression of only growth factors. In conclusion, neonatal manipulation of oxytocin has developmental and sex-dependent effect on markers of brain plasticity. These results also indicate, that oxytocin may be protective against inflammation particularly in females. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Weak Organic Acids Decrease Borrelia burgdorferi Cytoplasmic pH, Eliciting an Acid Stress Response and Impacting RpoN- and RpoS-Dependent Gene Expression

    Directory of Open Access Journals (Sweden)

    Daniel P. Dulebohn

    2017-09-01

    Full Text Available The spirochete Borrelia burgdorferi survives in its tick vector, Ixodes scapularis, or within various hosts. To transition between and survive in these distinct niches, B. burgdorferi changes its gene expression in response to environmental cues, both biochemical and physiological. Exposure of B. burgdorferi to weak monocarboxylic organic acids, including those detected in the blood meal of fed ticks, decreased the cytoplasmic pH of B. burgdorferi in vitro. A decrease in the cytoplasmic pH induced the expression of genes encoding enzymes that have been shown to restore pH homeostasis in other bacteria. These include putative coupled proton/cation exchangers, a putative Na+/H+ antiporter, a neutralizing buffer transporter, an amino acid deaminase and a proton exporting vacuolar-type VoV1 ATPase. Data presented in this report suggested that the acid stress response triggered the expression of RpoN- and RpoS-dependent genes including important virulence factors such as outer surface protein C (OspC, BBA66, and some BosR (Borreliaoxidative stress regulator-dependent genes. Because the expression of virulence factors, like OspC, are so tightly connected by RpoS to general cellular stress responses and cell physiology, it is difficult to separate transmission-promoting conditions in what is clearly a multifactorial and complex regulatory web.

  11. Decreased expression of vesicular glutamate transporter 1 and complexin II mRNAs in schizophrenia: further evidence for a synaptic pathology affecting glutamate neurons.

    Science.gov (United States)

    Eastwood, S L; Harrison, P J

    2005-03-01

    Synaptic protein gene expression is altered in schizophrenia. In the hippocampal formation there may be particular involvement of glutamatergic neurons and their synapses, but overall the profile remains unclear. In this in situ hybridization histochemistry (ISHH) study, we examined four informative synaptic protein transcripts: vesicular glutamate transporter (VGLUT) 1, VGLUT2, complexin I, and complexin II, in dorsolateral prefrontal cortex (DPFC), superior temporal cortex (STC), and hippocampal formation, in 13 subjects with schizophrenia and 18 controls. In these areas, VGLUT1 and complexin II are expressed primarily by excitatory neurons, whereas complexin I is mainly expressed by inhibitory neurons. In schizophrenia, VGLUT1 mRNA was decreased in hippocampal formation and DPFC, complexin II mRNA was reduced in DPFC and STC, and complexin I mRNA decreased in STC. Hippocampal VGLUT1 mRNA declined with age selectively in the schizophrenia group. VGLUT2 mRNA was not quantifiable due to its low level. The data provide additional evidence for a synaptic pathology in schizophrenia, in terms of a reduced expression of three synaptic protein genes. In the hippocampus, the loss of VGLUT1 mRNA supports data indicating that glutamatergic presynaptic deficits are prominent, whereas the pattern of results in temporal and frontal cortex suggests broadly similar changes may affect inhibitory and excitatory neurons. The impairment of synaptic transmission implied by the synaptic protein reductions may contribute to the dysfunction of cortical neural circuits that characterises the disorder.

  12. The orexin-1 receptor antagonist SB-334867 decreases anxiety-like behavior and c-Fos expression in the hypothalamus of rats exposed to cat odor.

    Science.gov (United States)

    Vanderhaven, M W; Cornish, J L; Staples, L G

    2015-02-01

    Increasing evidence suggests that the orexin system is involved in modulating anxiety, and we have recently shown that cat odor-induced anxiety in rats is attenuated by the orexin receptor antagonist SB-334867. In the current experiment, c-Fos expression was used to map changes in neuronal activation following SB-334867 administration in the cat odor anxiety model. Male Wistar rats were exposed to cat odor with or without SB-334867 pre-treatment (10 mg/kg, i.p.). A naïve control group not exposed to cat odor was also used. Following cat odor exposure, brains were processed for c-Fos expression. Vehicle-treated rats showed an increase in anxiety-like behaviors (increased hiding and decreased approach toward the cat odor), and increased c-Fos expression in the posteroventral medial amygdala (MePV), paraventricular hypothalamus (PVN) and dorsal premammillary nucleus (PMd). In rats pretreated with SB-334867, approach scores increased and c-Fos expression decreased in the PVN and PMd. These results provide both behavioral and neuroanatomical evidence for the attenuation of cat odor-induced anxiety in rats via the orexin system. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  13. Inhibition of Cholesterol Synthesis in HepG2 Cells by GINST-Decreasing HMG-CoA Reductase Expression Via AMP-Activated Protein Kinase.

    Science.gov (United States)

    Han, Joon-Seung; Sung, Jong Hwan; Lee, Seung Kwon

    2017-11-01

    GINST, a hydrolyzed ginseng extract, has been reported to have antidiabetic effects and to reduce hyperglycemia and hyperlipidemia. Hypercholesterolemia is caused by diet or genetic factors and can lead to atherosclerosis and coronary heart disease. Thus, the purpose of this study is to determine whether GINST and the ginsenoside metabolite, IH-901 (compound K), reduce cholesterol synthesis in HepG2 cells and the signal transduction pathways involved. Concentrations of cholesterol were measured by using an enzymatic method. Expression levels of sterol regulatory element-binding protein 2 (SREBP2), HMG-CoA reductase (HMGCR), peroxisome proliferators-activated receptor γ (PPARγ), CCAAT/enhancer-binding proteins α (C/EBPα), GAPDH, and phosphorylation of AMP-activated protein kinase α (AMPKα), protein kinase B (PKB, also known as Akt), and mechanistic target of rapamycin complex 1 (mTORC1) were measured using western blot. Total cholesterol concentration decreased after GINST treatment for 24 and 48 h. Expression of HMGCR decreased more with GINST than with the inhibitors, U18666A and atorvastatin, after 48 h in a dose-dependent manner. Phosphorylation of AMPKα increased 2.5x by GINST after 360 min of treatment, and phosphorylation of Akt decreased after 120 and 360 min. We separated compound K from GINST extracts flash chromatography. Compound K decreased cholesterol synthesis in HepG2 cells at 24 and 48 h. Therefore, we conclude that GINST inhibits cholesterol synthesis in HepG2 cells by decreasing HMGCR expression via AMPKα activation. GINST, a hydrolyzed ginseng extract, can inhibit cholesterol synthesis in liver cells via activation of AMPKα. IH-901 (compound K), which is the main component with bioactivity in GINST, also has anticholesterol effects. Thus, we suggest that GINST can be used to reduce hypercholesterolemia. © 2017 Institute of Food Technologists®.

  14. An engineered tale-transcription factor rescues transcription of factor VII impaired by promoter mutations and enhances its endogenous expression in hepatocytes.

    Science.gov (United States)

    Barbon, Elena; Pignani, Silvia; Branchini, Alessio; Bernardi, Francesco; Pinotti, Mirko; Bovolenta, Matteo

    2016-06-24

    Tailored approaches to restore defective transcription responsible for severe diseases have been poorly explored. We tested transcription activator-like effectors fused to an activation domain (TALE-TFs) in a coagulation factor VII (FVII) deficiency model. In this model, the deficiency is caused by the -94C > G or -61T > G mutation, which abrogate the binding of Sp1 or HNF-4 transcription factors. Reporter assays in hepatoma HepG2 cells naturally expressing FVII identified a single TALE-TF (TF4) that, by targeting the region between mutations, specifically trans-activated both the variant (>100-fold) and wild-type (20-40-fold) F7 promoters. Importantly, in the genomic context of transfected HepG2 and transduced primary hepatocytes, TF4 increased F7 mRNA and protein levels (2- to 3-fold) without detectable off-target effects, even for the homologous F10 gene. The ectopic F7 expression in renal HEK293 cells was modestly affected by TF4 or by TALE-TF combinations. These results provide experimental evidence for TALE-TFs as gene-specific tools useful to counteract disease-causing promoter mutations.

  15. Expression of chicken interleukin-2 by a highly virulent strain of Newcastle disease virus leads to decreased systemic viral load but does not significantly affect mortality in chickens.

    Science.gov (United States)

    Susta, Leonardo; Diel, Diego G; Courtney, Sean; Cardenas-Garcia, Stivalis; Sundick, Roy S; Miller, Patti J; Brown, Corrie C; Afonso, Claudio L

    2015-08-08

    In mammals, interleukin 2 (IL-2) has been shown to decrease replication or attenuate pathogenicity of numerous viral pathogens (herpes simplex virus, vaccinia virus, human respiratory syncytial virus, human immunodeficiency virus) by activating natural killer cells (NK), cytotoxic T lymphocytes and expanding subsets of memory cells. In chickens, IL-2 has been shown to activate T cells, and as such it might have the potential to affect replication and pathogenesis of Newcastle disease virus (NDV). To assess the effect of IL-2 during NDV infection in chickens, we produced a recombinant virulent NDV strain expressing chicken IL-2 (rZJ1-IL2). The effects of IL-2 expression were investigated in vivo using the intracerebral pathogenicity index (ICPI) in day-old chicks and pathogenesis experiments in 4-week-old chickens. In these studies, rZJ1-IL2 was compared to a control virus expressing the green fluorescent protein (rZJ1-GFP). Assessed parameters included survival curves, detailed histological and immunohistochemical grading of lesions in multiple organs, and virus isolation in blood, spleen and mucosal secretions of infected birds. At the site of infection (eyelid), expression of IL-2 was demonstrated in areas of rZJ-IL2 replication, confirming IL-2 production in vivo. Compared to rZJ1-GFP strain, rZJ1-IL2 caused milder lesions and displayed decreased viral load in blood, spleen and mucosal secretions of infected birds. In the rZJ1-IL2-infected group, virus level in the blood peaked at day 4 post-infection (pi) (10(3.46) EID50 /0.1 ml) and drastically decreased at day 5 pi (10(0.9) EID50/0.1 ml), while in the rZJ1-GFP-infected group virus levels in the blood reached 10(5.35) EID50/0.1 ml at day 5. However, rZJ1-IL2-infected groups presented survival curves similar to control birds infected with rZJ1-GFP, with comparable clinical signs and 100 % mortality. Further, expression of IL-2 did not significantly affect the ICPI scores, compared to rZJ1-GFP strain. Increased

  16. Epidermal growth factor decreases PEPT2 transport capacity and expression in the rat kidney proximal tubule cell line SKPT0193 cl.2

    DEFF Research Database (Denmark)

    Bravo, Silvina A; Nielsen, Carsten Uhd; Amstrup, Jan

    2004-01-01

    by studies of apical uptake of [14C]glycylsarcosine, rPepT2 mRNA levels, and immunostaining of SKPT cells with a rPEPT2-specific antibody. On the contrary, apical uptake of glucose and lysine was increased in EGF-treated cells, indicating that EGF was not acting generally to decrease apical nutrient uptake...... mechanisms in the proximal tubule cells. Our findings indicate that EGF decreases rPEPT2 expression by lowering transcription of the rat PepT2 gene or by decreasing rat PepT2 mRNA stability. Previous investigators routinely used SKPT cell culture media with a high (10 ng/ml) EGF concentration. Our study...

  17. Defects in TLR3 expression and RNase L activation lead to decreased MnSOD expression and insulin resistance in muscle cells of obese people

    DEFF Research Database (Denmark)

    Fabre, Odile Martine Julie; Breuker, C; Amouzou, C

    2014-01-01

    Obesity is associated with chronic low-grade inflammation and oxidative stress that blunt insulin response in its target tissues, leading to insulin resistance (IR). IR is a characteristic feature of type 2 diabetes. Skeletal muscle is responsible for 75% of total insulin-dependent glucose uptake...... with palmitate, a saturated free fatty acid (FFA) known to induce inflammation and oxidative stress via TLR4 activation. While RNase L and RLI levels remained unchanged, OAS level was decreased in primary myotubes from insulin-resistant obese subjects (OB-IR) compared with myotubes from insulin-sensitive obese......; consequently, skeletal muscle IR is considered to be the primary defect of systemic IR development. Interestingly, some obese people stay insulin-sensitive and metabolically healthy. With the aim of understanding this difference and identifying the mechanisms responsible for insulin sensitivity maintenance...

  18. A novel mutation in SMOC1 and variable phenotypic expression in two patients with Waardenburg anophthalmia syndrome.

    Science.gov (United States)

    Jamshidi, Javad; Abdollahi, Shokoufeh; Ghaedi, Hamid; Alehabib, Elham; Tafakhori, Abbas; Alinaghi, Somayeh; Chapi, Marjan; Johari, Amir Hossein; Darvish, Hossein

    2017-11-01

    Waardenburg anophthalmia syndrome (WAS) is a rare disorder that mostly affects the eyes and distal limbs. In the current study we reported two Iranian patients with WAS. The first case was a 26-year-old girl with unilateral anophthalmia, bilateral camptodactyly and clinodactyly in her hands, oligodactly in her left foot and syndactyly of the second to fifth toes in her right foot. She also had severe hearing loss in both ears. The second case was a 12-year-old boy with bilateral anophthalmia, camptodactyly in his right hand, oligodactyly in his foot, clubfoot, and cryptorchidism. Both patients were mentally normal. To detect the causative mutation all exons and exon-intron boundaries of SMOC1 gene were sequenced in patients and other normal family members. We found a homozygous missense mutation (NM_001034852.2(SMOC1):c.367T > C) in exon 3 of SMOC1 gene in both patients. As the mutation segregated with the disease in the family, it should be the causative mutation. Our study extended the mutation spectrum of SMOC1 gene related to WAS. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Prevalence of mutation and phenotypic expression associated with sulfadoxine-pyrimethamine resistance in Plasmodium falciparum and Plasmodium vivax.

    Science.gov (United States)

    Zakai, Haytham A; Khan, Wajihullah; Asma, Umme

    2013-09-01

    Therapeutic efficacy of sulfadoxine-pyrimethamine (SP), which is commonly used to treat falciparum malaria, was assessed in isolates of Plasmodium falciparum (Welch, 1897) and Plasmodium vivax (Grassi et Feletti, 1890) ofAligarh, Uttar Pradesh, North India and Taif, Saudi Arabia during 2011-2012. Both the species showed mutations in dihydrofolate reductase (DHFR) enzyme as they have common biochemical drug targets. Mutation rate for pfdhfr was higher compared to pvdhfr because the drug was mainly given to treat falciparum malaria. Since both the species coexist, P. vivax was also exposed to SP due to faulty species diagnosis or medication without specific diagnosis. Low level of mutations against SP in P. falciparum of Saudi isolates indicates that the SP combination is still effective for the treatment of falciparum malaria. Since SP is used as first-line of treatment because of high level of resistance against chloroquine (CQ), it may result in spread of higher level of mutations resulting in drug resistance and treatment failure in near future. Therefore, to avoid further higher mutations in the parasite, use of better treatment regimens such as artesunate combination therapy must be introduced against SP combination.

  20. Let-7i attenuates human brain microvascular endothelial cell damage in oxygen glucose deprivation model by decreasing toll-like receptor 4 expression.

    Science.gov (United States)

    Xiang, Wei; Tian, Canhui; Peng, Shunli; Zhou, Liang; Pan, Suyue; Deng, Zhen

    2017-11-04

    The let-7 family of microRNAs (miRNAs) plays an important role on endothelial cell function. However, there have been few studies on their role under ischemic conditions. In this study, we demonstrate that let-7i, belonging to the let-7 family, rescues human brain microvascular endothelial cells (HBMECs) in an oxygen-glucose deprivation (OGD) model. Our data show that the expression of let-7 family miRNAs was downregulated after OGD. Overexpression of let-7i significantly alleviated cell death and improved survival of OGD-treated HBMECs. Let-7i also protected permeability in an in vitro blood brain barrier (BBB) model. Further, let-7i downregulated the expression of toll-like receptor 4 (TLR4), an inflammation trigger. Moreover, overexpression of let-7i decreased matrix metallopeptidase 9 (MMP9) and inducible nitric oxide synthase (iNOS) expression under OGD. Upon silencing TLR4 expression in HBMECs, the anti-inflammatory effect of let-7i was abolished. Our research suggests that let-7i promotes OGD-induced inflammation via downregulating TLR4 expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Mild Moxibustion Decreases the Expression of Prokineticin 2 and Prokineticin Receptor 2 in the Colon and Spinal Cord of Rats with Irritable Bowel Syndrome

    Directory of Open Access Journals (Sweden)

    Cili Zhou

    2014-01-01

    Full Text Available It has been proven that prokineticin 2 (PK2 and its receptor PKR2 play an important role in hyperalgesia, while mild moxibustion can relieve visceral hypersensitivity in a rat model of irritable bowel syndrome (IBS. The goal of the present study was to determine the effects of mild moxibustion on the expression of PK2 and PKR2 in colon and spinal cord in IBS rat model, which was induced by colorectal distension using inflatable balloons. After mild moxibustion treatment, abdominal withdrawal reflex (AWR scores were assessed by colorectal distension; protein and mRNA expression of PK2 and PKR2 in rat colon and spinal cord was determined by immunohistochemistry and fluorescence quantitative PCR. Compared with normal rats, the AWR scores of rats and the expressions of PK2/PKR2 proteins and mRNAs in colon and spinal cord tissue were significantly increased in the model group; compared with the model group, the AWR scores of rats and the expressions of PK2/PKR2 proteins and mRNAs in colon and spinal cord tissue were significantly decreased in the mild moxibustion group. These findings suggest that the analgesia effect of mild moxibustion may be associated with the reduction of the abnormally increased expression of the PK2/PKR2 proteins and mRNAs in the colon and spinal cord.

  2. Fatigue and gene expression in human leukocytes: Increased NF-κB and decreased glucocorticoid signaling in breast cancer survivors with persistent fatigue

    Science.gov (United States)

    Bower, Julienne E.; Ganz, Patricia A.; Irwin, Michael R.; Arevalo, Jesusa M.G.; Cole, Steve W.

    2013-01-01

    Fatigue is highly prevalent in the general population and is one of the most common side effects of cancer treatment. There is growing evidence that pro-inflammatory cytokines play a role in cancer-related fatigue, although the molecular mechanisms for chronic inflammation and fatigue have not been determined. The current study utilized genome-wide expression microarrays to identify differences in gene expression and associated alterations in transcriptional activity in leukocytes from breast cancer survivors with persistent fatigue (n = 11) and non-fatigued controls (n = 10). We focused on transcription of inflammation-related genes, particularly those responsive to the pro-inflammatory NF-κB transcription control pathway. Further, given the role of glucocorticoids as key regulators of inflammatory processes, we examined transcription of glucocorticoid-responsive genes indicative of potential glucocorticoid receptor (GR) desensitization. Plasma levels of cortisol were also assessed. Consistent with hypotheses, results showed increased expression of transcripts with response elements for NF-κB, and reduced expression of transcripts with response elements for glucocorticoids (p < .05) in fatigued breast cancer survivors. No differences in plasma levels of cortisol were observed. These data indicate that increased activity of pro-inflammatory transcription factors may contribute to persistent cancer-related fatigue and provide insight into potential mechanisms for tonic increases in NF-κB activity, specifically decreased expression of GR anti-inflammatory transcription factors. PMID:20854893

  3. SIRT3 Expression Decreases with Reactive Oxygen Species Generation in Rat Cortical Neurons during Early Brain Injury Induced by Experimental Subarachnoid Hemorrhage

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2016-01-01

    Full Text Available Sirtuin3 (SIRT3 is an important protein deacetylase which predominantly presents in mitochondria and exhibits broad bioactivities including regulating energy metabolism and counteracting inflammatory effect. Since inflammatory cascade was proved to be critical for pathological damage following subarachnoid hemorrhage (SAH, we investigated the overall expression and cell-specific distribution of SIRT3 in the cerebral cortex of Sprague-Dawley rats with experimental SAH induced by internal carotid perforation. Results suggested that SIRT3 was expressed abundantly in neurons and endothelia but rarely in gliocytes in normal cerebral cortex. After experimental SAH, mRNA and protein expressions of SIRT3 decreased significantly as early as 8 hours and dropped to the minimum value at 24 h after SAH. By contrast, SOD2 expression increased slowly as early as 12 hours after experimental SAH, rose up sharply at the following 12 hours, and then was maintained at a higher level. In conclusion, attenuated SIRT3 expression in cortical neurons was associated closely with enhanced reactive oxygen species generation and cellular apoptosis, implying that SIRT3 might play an important neuroprotective role during early brain injury following SAH.

  4. 7-ketocholesterol inhibits Na,K-ATPase activity by decreasing expression of its α1-subunit and membrane fluidity in human endothelial cells.

    Science.gov (United States)

    Duran, M J; Pierre, S V; Lesnik, P; Pieroni, G; Bourdeaux, M; Dignat-Georges, F; Sampol, J; Maixent, J M

    2010-11-09

    As cholesterol, oxysterols, can insert the cell membrane and thereby modify the functions of membrane-bound proteins. The Na,K-ATPase is very sensitive to its lipid environment, seems to be involved in important endothelial functions as the regulation of nitric oxide (NO) release. The effects of 7-ketocholesterol , an oxysterol present in oxidized LDL, was investigated on Na,K-ATPase in isolated human endothelial cells. Cells were incubated 24h with lecithin-, cholesterol- or 7-ketocholesterol liposomes (6 μg/ml). K+-stimulated paranitrophenyl phosphatase activity, reflecting Na,K-ATPase activity, was evaluated as well as cell viability and lipoperoxidation. The expression of Na,K-ATPase subunits mRNAs and membrane fluidity were also investigated. As Na,K-ATPase and nitric oxide seem to be related, we determined the production of NO and the expression of endothelial NO synthase mRNAs. Na,K-ATPase activity was strongly decreased by 7-ketocholesterol. This decrease, not related to lipoperoxidation, was correlated with a decreased expression of the Na,K-ATPase α1-subunit messengers and with rigidity of plasma membranes. Cholesterol induced similar effects but was less potent than 7-ketocholesterol. Basal NO production and expression of endothelial NO synthase mRNAs were not modified by 7-ketocholesterol. Our new findings demonstrate that 7-ketocholesterol, used at non toxic doses, was very potent to disrupt the transport of ions by Na,K-ATPase and perturb membrane structure. These data demonstrate that 7-ketocholesterol induces endothelial dysfunction without cell death that may contribute to early events in atherosclerosis.

  5. DNA hypermethylation and decreased mRNA expression of MAL, PRIMA1, PTGDR and SFRP1 in colorectal adenoma and cancer

    International Nuclear Information System (INIS)

    Kalmár, Alexandra; Péterfia, Bálint; Hollósi, Péter; Galamb, Orsolya; Spisák, Sándor; Wichmann, Barnabás; Bodor, András; Tóth, Kinga; Patai, Árpád V.; Valcz, Gábor; Nagy, Zsófia Brigitta; Kubák, Vivien; Tulassay, Zsolt; Kovalszky, Ilona; Molnár, Béla

    2015-01-01

    Colorectal cancer (CRC) development is accompanied by changes in expression for several genes; but the details of the underlying regulatory procesess remain unknown. Our aims were to assess the role of epigenetic processes in tumour formation and to identify characteristic DNA methylation and miRNA alterations in the colorectal adenoma-carcinoma sequence. Whole genome expression profiling was performed on colonic biopsy samples (49 healthy normal, 49 colorectal adenoma (AD), 49 CRC); on laser capture microdissected (LCM) epithelial and stromal cells from 6 CRC-normal adjacent tissue (NAT) samples pairs, and on demethylated human CRC cell lines using HGU133 Plus 2.0 microarrays (Affymetrix). Methylation status of genes with gradually altering expression along the AD-CRC sequence was further analysed on 10–10 macrodissected and 5–5 LCM samples from healthy colon, from adenoma and from CRC biopsy samples using bisulfite-sequencing PCR (BS-PCR) followed by pyrosequencing. In silico miRNA prediction for the selected genes was performed with miRWALK algorithm, miRNA expression was analysed on 3 CRC-NAT sample pairs and 3 adenoma tissue samples using the Human Panel I + II (Exiqon). SFRP1 immunohistochemistry experiments were performed. A set of transcripts (18 genes including MAL, SFRP1, SULT1A1, PRIMA1, PTGDR) showed decreasing expression (p < 0.01) in the biopsy samples along the adenoma-carcinoma sequence. Three of those (COL1A2, SFRP2, SOCS3) showed hypermethylation and THBS2 showed hypomethylation both in AD and in CRC samples compared to NAT, while BCL2, PRIMA1 and PTGDR showed hypermethylation only in the CRC group. miR-21 was found to be significantly (p < 0.01) upregulated in adenoma and tumour samples compared to the healthy colonic tissue controls and could explain the altered expression of genes for which DNA methylation changes do not appear to play role (e.g. BCL2, MAL, PTGS2). Demethylation treatment could upregulate gene expression of genes that were

  6. A mutation in the tuft mouse disrupts TET1 activity and alters the expression of genes that are crucial for neural tube closure

    Directory of Open Access Journals (Sweden)

    Keith S. K. Fong

    2016-05-01

    Full Text Available Genetic variations affecting neural tube closure along the head result in malformations of the face and brain. Neural tube defects (NTDs are among the most common birth defects in humans. We previously reported a mouse mutant called tuft that arose spontaneously in our wild-type 3H1 colony. Adult tuft mice present midline craniofacial malformations with or without an anterior cephalocele. In addition, affected embryos presented neural tube closure defects resulting in insufficient closure of the anterior neuropore or exencephaly. Here, through whole-genome sequencing, we identified a nonsense mutation in the Tet1 gene, which encodes a methylcytosine dioxygenase (TET1, co-segregating with the tuft phenotype. This mutation resulted in premature termination that disrupts the catalytic domain that is involved in the demethylation of cytosine. We detected a significant loss of TET enzyme activity in the heads of tuft embryos that were homozygous for the mutation and had NTDs. RNA-Seq transcriptome analysis indicated that multiple gene pathways associated with neural tube closure were dysregulated in tuft embryo heads. Among them, the expressions of Cecr2, Epha7 and Grhl2 were significantly reduced in some embryos presenting neural tube closure defects, whereas one or more components of the non-canonical WNT signaling pathway mediating planar cell polarity and convergent extension were affected in others. We further show that the recombinant mutant TET1 protein was capable of entering the nucleus and affected the expression of endogenous Grhl2 in IMCD-3 (inner medullary collecting duct cells. These results indicate that TET1 is an epigenetic determinant for regulating genes that are crucial to closure of the anterior neural tube and its mutation has implications to craniofacial development, as presented by the tuft mouse.

  7. Hypervariable region 1 deletion and required adaptive envelope mutations confer decreased dependency on scavenger receptor class B type I and low-density lipoprotein receptor for hepatitis C virus

    DEFF Research Database (Denmark)

    Prentoe, Jannick; Serre, Stéphanie B N; Ramirez, Santseharay

    2014-01-01

    -deleted viruses. Apolipoprotein E (ApoE)-specific HCV neutralization was similar for H77, J6, and S52 viruses with and without HVR1. In conclusion, HVR1 and HVR1-related adaptive envelope mutations appeared to be involved in LDLr and SR-BI dependency, respectively. Also, LDLr served Apo....../S733F), S52(ΔHVR1/A369V), and S52(A369V), but not for J6(ΔHVR1). Low-density lipoprotein receptor (LDLr) dependency was decreased for HVR1-deleted viruses, but not for H77(N476D/S733F) and S52(A369V). Soluble LDLr neutralization revealed strong inhibition of parental HCV but limited effect against HVR1...

  8. Hypoxia and hypoxia mimetics decrease aquaporin 5 (AQP5 expression through both hypoxia inducible factor-1α and proteasome-mediated pathways.

    Directory of Open Access Journals (Sweden)

    Jitesh D Kawedia

    Full Text Available The alveolar epithelium plays a central role in gas exchange and fluid transport, and is therefore critical for normal lung function. Since the bulk of water flux across this epithelium depends on the membrane water channel Aquaporin 5 (AQP5, we asked whether hypoxia had any effect on AQP5 expression. We show that hypoxia causes a significant (70% decrease in AQP5 expression in the lungs of mice exposed to hypoxia. Hypoxia and the hypoxia mimetic, cobalt, also caused similar decreases in AQP5 mRNA and protein expression in the mouse lung epithelial cell line MLE-12. The action of hypoxia and cobalt on AQP5 transcription was demonstrated by directly quantifying heternonuclear RNA by real-time PCR. Dominant negative mutants of Hypoxia Inducible Factor (HIF-1α and HIF-1α siRNA blocked the action of cobalt, showing that HIF-1α is a key component in this mechanism. The proteasome inhibitors, lactacystin or proteasome inhibitor-III completely abolished the effect of hypoxia and cobalt both at the protein and mRNA level indicating that the proteasome pathway is probably involved not only for the stability of HIF-1α protein, but for the stability of unidentified transcription factors that regulate AQP5 transcription. These studies reveal a potentially important physiological mechanism linking hypoxic stress and membrane water channels.

  9. Hypoxia and Hypoxia Mimetics Decrease Aquaporin 5 (AQP5) Expression through Both Hypoxia Inducible Factor-1α and Proteasome-Mediated Pathways

    Science.gov (United States)

    Kawedia, Jitesh D.; Yang, Fan; Sartor, Maureen A.; Gozal, David; Czyzyk-Krzeska, Maria; Menon, Anil G.

    2013-01-01

    The alveolar epithelium plays a central role in gas exchange and fluid transport, and is therefore critical for normal lung function. Since the bulk of water flux across this epithelium depends on the membrane water channel Aquaporin 5 (AQP5), we asked whether hypoxia had any effect on AQP5 expression. We show that hypoxia causes a significant (70%) decrease in AQP5 expression in the lungs of mice exposed to hypoxia. Hypoxia and the hypoxia mimetic, cobalt, also caused similar decreases in AQP5 mRNA and protein expression in the mouse lung epithelial cell line MLE-12. The action of hypoxia and cobalt on AQP5 transcription was demonstrated by directly quantifying heternonuclear RNA by real-time PCR. Dominant negative mutants of Hypoxia Inducible Factor (HIF-1α) and HIF-1α siRNA blocked the action of cobalt, showing that HIF-1α is a key component in this mechanism. The proteasome inhibitors, lactacystin or proteasome inhibitor-III completely abolished the effect of hypoxia and cobalt both at the protein and mRNA level indicating that the proteasome pathway is probably involved not only for the stability of HIF-1α protein, but for the stability of unidentified transcription factors that regulate AQP5 transcription. These studies reveal a potentially important physiological mechanism linking hypoxic stress and membrane water channels. PMID:23469202

  10. Neural Mobilization Treatment Decreases Glial Cells and Brain-Derived Neurotrophic Factor Expression in the Central Nervous System in Rats with Neuropathic Pain Induced by CCI in Rats

    Directory of Open Access Journals (Sweden)

    Aline Carolina Giardini

    2017-01-01

    Full Text Available Background. Glial cells are implicated in the development of chronic pain and brain-derived neurotropic factor (BDNF released from activated microglia contributes to the nociceptive transmission. Neural mobilization (NM technique is a method clinically effective in reducing pain sensitivity. Here we examined the involvement of glial cells and BDNF expression in the thalamus and midbrain after NM treatment in rats with chronic constriction injury (CCI. CCI was induced and rats were subsequently submitted to 10 sessions of NM, every other day, beginning 14 days after CCI. Thalamus and midbrain were analyzed for glial fibrillary acidic protein (GFAP, microglial cell OX-42, and BDNF using Immunohistochemistry and Western blot assays. Results. Thalamus and midbrain of CCI group showed increases in GFAP, OX-42, and BDNF expression compared with control group and, in contrast, showed decreases in GFAP, OX-42, and BDNF after NM when compared with CCI group. The decreased immunoreactivity for GFAP, OX-42, and BDNF in ventral posterolateral nucleus in thalamus and the periaqueductal gray in midbrain was shown by immunohistochemistry. Conclusions. These findings may improve the knowledge about the involvement of astrocytes, microglia, and BDNF in the chronic pain and show that NM treatment, which alleviates neuropathic pain, affects glial cells and BDNF expression.

  11. PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution

    NARCIS (Netherlands)

    Mirzaa, Ghayda; Timms, Andrew E.; Conti, Valerio; Boyle, Evan August; Girisha, Katta M.; Martin, Beth; Kircher, Martin; Olds, Carissa; Juusola, Jane; Collins, Sarah; Park, Kaylee; Carter, Melissa; Glass, Ian; Krägeloh-Mann, Inge; Chitayat, David; Parikh, Aditi Shah; Bradshaw, Rachael; Torti, Erin; Braddock, Stephen; Burke, Leah; Ghedia, Sondhya; Stephan, Mark; Stewart, Fiona; Prasad, Chitra; Napier, Melanie; Saitta, Sulagna; Straussberg, Rachel; Gabbett, Michael; O'Connor, Bridget C.; Keegan, Catherine E.; Yin, Lim Jiin; Lai, Angeline Hwei Meeng; Martin, Nicole; McKinnon, Margaret; Addor, Marie-Claude; Boccuto, Luigi; Schwartz, Charles E.; Lanoel, Agustina; Conway, Robert L.; Devriendt, Koenraad; Tatton-Brown, Katrina; Pierpont, Mary Ella; Painter, Michael; Worgan, Lisa; Reggin, James; Hennekam, Raoul; Tsuchiya, Karen; Pritchard, Colin C.; Aracena, Mariana; Gripp, Karen W.; Cordisco, Maria; Esch, Hilde Van; Garavelli, Livia; Curry, Cynthia; Goriely, Anne; Kayserilli, Hulya; Shendure, Jay; Graham, John; Guerrini, Renzo; Dobyns, William B.

    2016-01-01

    Mosaicism is increasingly recognized as a cause of developmental disorders with the advent of next-generation sequencing (NGS). Mosaic mutations of PIK3CA have been associated with the widest spectrum of phenotypes associated with overgrowth and vascular malformations. We performed targeted NGS

  12. Steroid receptor coactivator 1 deficiency increases MMTV-neu mediated tumor latency and differentiation specific gene expression, decreases metastasis, and inhibits response to PPAR ligands

    International Nuclear Information System (INIS)

    Han, Ji Seung; Crowe, David L

    2010-01-01

    The peroxisome proliferator activated receptor (PPAR) subgroup of the nuclear hormone receptor superfamily is activated by a variety of natural and synthetic ligands. PPARs can heterodimerize with retinoid X receptors, which have homology to other members of the nuclear receptor superfamily. Ligand binding to PPAR/RXRs results in recruitment of transcriptional coactivator proteins such as steroid receptor coactivator 1 (SRC-1) and CREB binding protein (CBP). Both SRC-1 and CBP are histone acetyltransferases, which by modifying nucleosomal histones, produce more open chromatin structure and increase transcriptional activity. Nuclear hormone receptors can recruit limiting amounts of coactivators from other transcription factor binding sites such as AP-1, thereby inhibiting the activity of AP-1 target genes. PPAR and RXR ligands have been used in experimental breast cancer therapy. The role of coactivator expression in mammary tumorigenesis and response to drug therapy has been the subject of recent studies. We examined the effects of loss of SRC-1 on MMTV-neu mediated mammary tumorigenesis. SRC-1 null mutation in mammary tumor prone mice increased the tumor latency period, reduced tumor proliferation index and metastasis, inhibited response to PPAR and RXR ligands, and induced genes involved in mammary gland differentiation. We also examined human breast cancer cell lines overexpressing SRC-1 or CBP. Coactivator overexpression increased cellular proliferation with resistance to PPAR and RXR ligands and remodeled chromatin of the proximal epidermal growth factor receptor promoter. These results indicate that histone acetyltransferases play key roles in mammary tumorigenesis and response to anti-proliferative therapies

  13. N-3 Polyunsaturated Fatty Acids Decrease the Protein Expression of Soluble Epoxide Hydrolase via Oxidative Stress-Induced P38 Kinase in Rat Endothelial Cells.

    Science.gov (United States)

    Okada, Takashi; Morino, Katsutaro; Nakagawa, Fumiyuki; Tawa, Masashi; Kondo, Keiko; Sekine, Osamu; Imamura, Takeshi; Okamura, Tomio; Ugi, Satoshi; Maegawa, Hiroshi

    2017-06-24

    N -3 polyunsaturated fatty acids (PUFAs) improve endothelial function. The arachidonic acid-derived metabolites (epoxyeicosatrienoic acids (EETs)) are part of the endothelial hyperpolarization factor and are vasodilators independent of nitric oxide. However, little is known regarding the regulation of EET concentration by docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in blood vessels. Sprague-Dawley rats were fed either a control or fish oil diet for 3 weeks. Compared with the control, the fish oil diet improved acetylcholine-induced vasodilation and reduced the protein expression of soluble epoxide hydrolase (sEH), a key EET metabolic enzyme, in aortic strips. Both DHA and EPA suppressed sEH protein expression in rat aorta endothelial cells (RAECs). Furthermore, the concentration of 4-hydroxy hexenal (4-HHE), a lipid peroxidation product of n -3 PUFAs, increased in n -3 PUFA-treated RAECs. In addition, 4-HHE treatment suppressed sEH expression in RAECs, suggesting that 4-HHE (derived from n -3 PUFAs) is involved in this phenomenon. The suppression of sEH was attenuated by the p38 kinase inhibitor (SB203580) and by treatment with the antioxidant N-acetyl-L-cysteine. In conclusion, sEH expression decreased after n -3 PUFAs treatment, potentially through oxidative stress and p38 kinase. Mild oxidative stress induced by n -3 PUFAs may contribute to their cardio-protective effect.

  14. Harsh parent-child conflict is associated with decreased anti-inflammatory gene expression and increased symptom severity in children with asthma.

    Science.gov (United States)

    Ehrlich, Katherine B; Miller, Gregory E; Chen, Edith

    2015-11-01

    Asthma is a chronic respiratory disorder that affects over 7 million children in the United States. Evidence indicates that family stressors are associated with worsening of asthma symptoms, and some research suggests that these stressful experiences engender changes in children's immune systems in ways that exacerbate airway inflammation and contribute to both acute and chronic asthma symptoms. We examined the association between observed experiences of parent-child conflict and the expression of signaling molecules involved in the transduction of anti-inflammatory signals that regulate airway inflammation and obstruction. Fifty-seven children and their parents participated in a conflict task, and coders rated interactions for evidence of harsh and supportive behaviors. Children reported on their perceptions of parental support and reported on their daily asthma symptoms for 2 weeks. We collected peripheral blood in children to measure leukocyte expression of messenger RNA for the glucocorticoid receptor and the β2-adrenergic receptor. Analyses revealed that harsh conflict behaviors were associated with decreased expression of both messenger RNAs and more severe asthma symptoms. Neither supportive behaviors nor perceived parental support was associated with gene expression or asthma symptoms. These findings suggest that harsh interactions with parents are associated with downregulation of key anti-inflammatory signaling molecules and difficulties breathing in children with asthma. Children with asthma who are also victims of maltreatment may be particularly susceptible to transcriptional changes in immune cells that could worsen asthma over time.

  15. Association of BRAFV600E Mutation and MicroRNA Expression with Central Lymph Node Metastases in Papillary Thyroid Cancer: A Prospective Study from Four Endocrine Surgery Centers

    Science.gov (United States)

    Aragon Han, Patricia; Kim, Hyun-seok; Cho, Soonweng; Fazeli, Roghayeh; Najafian, Alireza; Khawaja, Hunain; McAlexander, Melissa; Dy, Benzon; Sorensen, Meredith; Aronova, Anna; Sebo, Thomas J.; Giordano, Thomas J.; Fahey, Thomas J.; Thompson, Geoffrey B.; Gauger, Paul G.; Somervell, Helina; Bishop, Justin A.; Eshleman, James R.; Schneider, Eric B.; Witwer, Kenneth W.; Umbricht, Christopher B.

    2016-01-01

    Background: Studies have demonstrated an association of the BRAFV600E mutation and microRNA (miR) expression with aggressive clinicopathologic features in papillary thyroid cancer (PTC). Analysis of BRAFV600E mutations with miR expression data may improve perioperative decision making for patients with PTC, specifically in identifying patients harboring central lymph node metastases (CLNM). Methods: Between January 2012 and June 2013, 237 consecutive patients underwent total thyroidectomy and prophylactic central lymph node dissection (CLND) at four endocrine surgery centers. All tumors were tested for the presence of the BRAFV600E mutation and miR-21, miR-146b-3p, miR-146b-5p, miR-204, miR-221, miR-222, and miR-375 expression. Bivariate and multivariable analyses were performed to examine associations between molecular markers and aggressive clinicopathologic features of PTC. Results: Multivariable logistic regression analysis of all clinicopathologic features found miR-146b-3p and miR-146b-5p to be independent predictors of CLNM, while the presence of BRAFV600E almost reached significance. Multivariable logistic regression analysis limited to only predictors available preoperatively (molecular markers, age, sex, and tumor size) found miR-146b-3p, miR-146b-5p, miR-222, and BRAFV600E mutation to predict CLNM independently. While BRAFV600E was found to be associated with CLNM (48% mutated in node-positive cases vs. 28% mutated in node-negative cases), its positive and negative predictive values (48% and 72%, respectively) limit its clinical utility as a stand-alone marker. In the subgroup analysis focusing on only classical variant of PTC cases (CVPTC), undergoing prophylactic lymph node dissection, multivariable logistic regression analysis found only miR-146b-5p and miR-222 to be independent predictors of CLNM, while BRAFV600E was not significantly associated with CLNM. Conclusion: In the patients undergoing prophylactic CLNDs, miR-146b-3p, miR-146b-5p, and mi

  16. “Marker of Self” CD47 on lentiviral vectors decreases macrophage-mediated clearance and increases delivery to SIRPA-expressing lung carcinoma tumors

    Directory of Open Access Journals (Sweden)

    Nisha G Sosale

    2016-01-01

    Full Text Available Lentiviruses infect many cell types and are now widely used for gene delivery in vitro, but in vivo uptake of these foreign vectors by macrophages is a limitation. Lentivectors are produced here from packaging cells that overexpress “Marker of Self” CD47, which inhibits macrophage uptake of cells when prophagocytic factors are also displayed. Single particle analyses show “hCD47-Lenti” display properly oriented human-CD47 for interactions with the macrophage's inhibitory receptor SIRPA. Macrophages derived from human and NOD/SCID/Il2rg−/− (NSG mice show a SIRPA-dependent decrease in transduction, i.e., transgene expression, by hCD47-Lenti compared to control Lenti. Consistent with known “Self” signaling pathways, macrophage transduction by control Lenti is decreased by drug inhibition of Myosin-II to the same levels as hCD47-Lenti. In contrast, human lung carcinoma cells express SIRPA and use it to enhance transduction by hCD47-Lenti- as illustrated by more efficient gene deletion using CRISPR/Cas9. Intravenous injection of hCD47-Lenti into NSG mice shows hCD47 prolongs circulation, unless a blocking anti-SIRPA is preinjected. In vivo transduction of spleen and liver macrophages also decreases for hCD47-Lenti while transduction of lung carcinoma xenografts increases. hCD47 could be useful when macrophage uptake is limiting on other viral vectors that are emerging in cancer treatments (e.g., Measles glycoprotein-pseudotyped lentivectors and also in targeting various SIRPA-expressing tumors such as glioblastomas.

  17. Neurogenic detrusor overactivity is associated with decreased expression and function of the large conductance voltage- and Ca(2+-activated K(+ channels.

    Directory of Open Access Journals (Sweden)

    Kiril L Hristov

    Full Text Available Patients suffering from a variety of neurological diseases such as spinal cord injury, Parkinson's disease, and multiple sclerosis often develop neurogenic detrusor overactivity (NDO, which currently lacks a universally effective therapy. Here, we tested the hypothesis that NDO is associated with changes in detrusor smooth muscle (DSM large conductance Ca(2+-activated K(+ (BK channel expression and function. DSM tissue samples from 33 patients were obtained during open bladder surgeries. NDO patients were clinically characterized preoperatively with pressure-flow urodynamics demonstrating detrusor overactivity, in the setting of a clinically relevant neurological condition. Control patients did not have overactive bladder and did not have a clinically relevant neurological disease. We conducted quantitative polymerase chain reactions (qPCR, perforated patch-clamp electrophysiology on freshly-isolated DSM cells, and functional studies on DSM contractility. qPCR experiments revealed that DSM samples from NDO patients showed decreased BK channel mRNA expression in comparison to controls. Patch-clamp experiments demonstrated reduced whole cell and transient BK currents (TBKCs in freshly-isolated DSM cells from NDO patients. Functional studies on DSM contractility showed that spontaneous phasic contractions had a decreased sensitivity to iberiotoxin, a selective BK channel inhibitor, in DSM strips isolated from NDO patients. These results reveal the novel finding that NDO is associated with decreased DSM BK channel expression and function leading to increased DSM excitability and contractility. BK channel openers or BK channel gene transfer could be an alternative strategy to control NDO. Future clinical trials are needed to evaluate the value of BK channel opening drugs or gene therapies for NDO treatment and to identify any possible adverse effects.

  18. Decreased Expression of Arginine-Phenylalanine-Amide-Related Peptide-3 Gene in Dorsomedial Hypothalamic Nucleus of Constant Light Exposure Model of Polycystic Ovarian Syndrome

    Science.gov (United States)

    Shaaban, Zahra; Jafarzadeh Shirazi, Mohammad Reza; Nooranizadeh, Mohammad Hossein; Tamadon, Amin; Rahmanifar, Farhad; Ahmadloo, Somayeh; Ramezani, Amin; Zamiri, Mohammad Javad; Razeghian Jahromi, Iman; Sabet Sarvestani, Fatemeh; Hosseinabadi, Omid Koohi

    2018-01-01

    Background An abnormality in pulse amplitude and frequency of gonadotropin releasing hormone (GnRH) secretion is the most characteristics of polycystic ovarian syndrome (PCOS). On the other hand, arginine-phenylalanine-amide (RFamide)-related peptide-3 (RFRP3) inhibits the secretion of GnRH in mammalian hypothalamus. The current study performed in order to investigate the expression of RFRP3 mRNA in the dorsomedial hypothalamic nucleus (DMH) after the induction of PCOS in a rat model of constant light exposure, and the possible role of parity on occurrence of PCOS. Materials and Methods In the experimental study, female nulliparous (n=12) and primiparous (n=12) rats were randomly subdivided into control and PCOS subgroups (n=6). PCOS were induced by 90 days exposure to constant light. After 90 days, blood, brain, and ovaries were sampled. Serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), and testosterone were evaluated. In addition, six adult female ovariectomized rats as a control of real-time polymerase chain reaction (PCR) tests were prepared and in the DMH of all rats, the relative mRNA expression of RFRP3 was assessed. Results Histological evaluation of ovaries represented the polycystic features. In addition, serum concentrations of testosterone in the PCOS subgroups were more than the controls (P<0.05). Furthermore, the relative expression of RFRP3 mRNA in PCOS subgroups was lower than the controls (P<0.05). Conclusion Constant light model of the PCOS-induced rats decreased the gene expression of RFRP3 in the DMH that suggests the decrease of RFRP3 may reduce its inhibitory effect on GnRH during the PCOS pathogenesis. This effect was stronger in the nulliparous rats than the primiparous. PMID:29334206

  19. Gymnocypris przewalskii decreases cytosolic carbonic anhydrase expression to compensate for respiratory alkalosis and osmoregulation in the saline-alkaline lake Qinghai.

    Science.gov (United States)

    Yao, Zongli; Guo, Wenfei; Lai, Qifang; Shi, Jianquan; Zhou, Kai; Qi, Hongfang; Lin, Tingting; Li, Ziniu; Wang, Hui

    2016-01-01

    Naked carp (Gymnocypris przewalskii), endemic to the saline-alkaline Lake Qinghai, have the capacity to tolerate combined high salinity and alkalinity, but migrate to spawn in freshwater rivers each year. In this study, the full-length cDNA of the cytosolic carbonic anhydrase c isoform of G. przewalskii (GpCAc) was amplified and sequenced; mRNA levels and enzyme activity of GpCAc and blood chemistry were evaluated to understand the compensatory responses as the naked carp returned to the saline-alkaline lake after spawning. We found that GpCAc had a total length of 1400 bp and encodes a peptide of 260 amino acids. Comparison of the deduced amino acid sequences and phylogenetic analysis showed that GpCAc was a member of the cytosolic carbonic anhydrase II-like c family. Cytosolic-carbonic-anhydrase-c-specific primers were used to analyze the tissue distribution of GpCAc mRNA expression. Expression of GpCAc mRNA was found in brain, gill, liver, kidney, gut, and muscle tissues, but primarily in the gill and posterior kidney; however, none was evident in red blood cells. Transferring fish from river water to lake water resulted in a respiratory alkalosis, osmolality, and ion rise in the blood, as well as significant decreases in the expression and enzyme activity of GpCAc in both the gill and kidney within 96 h. These results indicate that GpCAc may play an important role in the acclimation to both high salinity and carbonate alkalinity. Specifically, G. przewalskii decreases cytosolic carbonic anhydrase c expression to compensate for a respiratory alkalosis and to aid in osmoregulation during the transition from river to saline-alkaline lake.

  20. Decreased expression of connective tissue growth factor in non-small cell lung cancer is associated with clinicopathological variables and can be restored by epigenetic modifiers.

    Science.gov (United States)

    Drzewiecka, Hanna; Gałęcki, Bartłomiej; Jarmołowska-Jurczyszyn, Donata; Kluk, Andrzej; Dyszkiewicz, Wojciech; Jagodziński, Paweł P

    2016-09-01

    Recent studies indicated undisputed contribution of connective tissue growth factor (CTGF) in the development of many cancers, including non-small cell lung cancer (NSCLC). However, the functional role and regulation of CTGF expression during tumorigenesis remain elusive. Our goal was to determine CTGF transcript and protein levels in tumoral and matched control tissues from 98 NSCLC patients, to correlate the results with clinicopathological features and to investigate whether the CTGF expression can be epigenetically regulated in NSCLC. We used quantitative PCR, Western blotting and immunohistochemistry to evaluate CTGF expression in lung cancerous and histopathologically unchanged tissues. We tested the impact of 5-Aza-2'-deoxycytidine (5-dAzaC) and trichostatin A (TSA) on CTGF transcript and protein levels in NSCLC cells (A549, Calu-1). DNA methylation status of the CTGF regulatory region was evaluated by bisulfite sequencing. The influence of 5-dAzaC and TSA on NSCLC cells viability and proliferation was monitored by the trypan blue assay. We found significantly decreased levels of CTGF mRNA and protein (both p cancerous tissues of NSCLC patients. Down-regulation of CTGF occurred regardless of gender in all histological subtypes of NSCLC. Moreover, we showed that 5-dAzaC and TSA were able to restore CTGF mRNA and protein contents in NSCLC cells. However, no methylation within CTGF regulatory region was detected. Both compounds significantly reduced NSCLC cells proliferation. Decreased expression of CTGF is a common feature in NSCLC; however, it can be restored by the chromatin-modifying agents such as 5-dAzaC or TSA and consequently restrain cancer development.