WorldWideScience

Sample records for mutated notch1 receptors

  1. Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors.

    Directory of Open Access Journals (Sweden)

    Miguel Aste-Amézaga

    2010-02-01

    Full Text Available Notch receptors normally play a key role in guiding a variety of cell fate decisions during development and differentiation of metazoan organisms. On the other hand, dysregulation of Notch1 signaling is associated with many different types of cancer as well as tumor angiogenesis, making Notch1 a potential therapeutic target.Here we report the in vitro activities of inhibitory Notch1 monoclonal antibodies derived from cell-based and solid-phase screening of a phage display library. Two classes of antibodies were found, one directed against the EGF-repeat region that encompasses the ligand-binding domain (LBD, and the second directed against the activation switch of the receptor, the Notch negative regulatory region (NRR. The antibodies are selective for Notch1, inhibiting Jag2-dependent signaling by Notch1 but not by Notch 2 and 3 in reporter gene assays, with EC(50 values as low as 5+/-3 nM and 0.13+/-0.09 nM for the LBD and NRR antibodies, respectively, and fail to recognize Notch4. While more potent, NRR antibodies are incomplete antagonists of Notch1 signaling. The antagonistic activity of LBD, but not NRR, antibodies is strongly dependent on the activating ligand. Both LBD and NRR antibodies bind to Notch1 on human tumor cell lines and inhibit the expression of sentinel Notch target genes, including HES1, HES5, and DTX1. NRR antibodies also strongly inhibit ligand-independent signaling in heterologous cells transiently expressing Notch1 receptors with diverse NRR "class I" point mutations, the most common type of mutation found in human T-cell acute lymphoblastic leukemia (T-ALL. In contrast, NRR antibodies failed to antagonize Notch1 receptors bearing rare "class II" or "class III" mutations, in which amino acid insertions generate a duplicated or constitutively sensitive metalloprotease cleavage site. Signaling in T-ALL cell lines bearing class I mutations is partially refractory to inhibitory antibodies as compared to cell

  2. Frequency and distribution of Notch mutations in tumor cell lines

    International Nuclear Information System (INIS)

    Mutvei, Anders Peter; Fredlund, Erik; Lendahl, Urban

    2015-01-01

    Deregulated Notch signaling is linked to a variety of tumors and it is therefore important to learn more about the frequency and distribution of Notch mutations in a tumor context. In this report, we use data from the recently developed Cancer Cell Line Encyclopedia to assess the frequency and distribution of Notch mutations in a large panel of cancer cell lines in silico. Our results show that the mutation frequency of Notch receptor and ligand genes is at par with that for established oncogenes and higher than for a set of house-keeping genes. Mutations were found across all four Notch receptor genes, but with notable differences between protein domains, mutations were for example more prevalent in the regions encoding the LNR and PEST domains in the Notch intracellular domain. Furthermore, an in silico estimation of functional impact showed that deleterious mutations cluster to the ligand-binding and the intracellular domains of NOTCH1. For most cell line groups, the mutation frequency of Notch genes is higher than in associated primary tumors. Our results shed new light on the spectrum of Notch mutations after in vitro culturing of tumor cells. The higher mutation frequency in tumor cell lines indicates that Notch mutations are associated with a growth advantage in vitro, and thus may be considered to be driver mutations in a tumor cell line context. The online version of this article (doi:10.1186/s12885-015-1278-x) contains supplementary material, which is available to authorized users

  3. Mutations in the estrogen receptor alpha hormone binding domain promote stem cell phenotype through notch activation in breast cancer cell lines.

    Science.gov (United States)

    Gelsomino, L; Panza, S; Giordano, C; Barone, I; Gu, G; Spina, E; Catalano, S; Fuqua, S; Andò, S

    2018-04-24

    The detection of recurrent mutations affecting the hormone binding domain (HBD) of estrogen receptor alpha (ERα/ESR1) in endocrine therapy-resistant and metastatic breast cancers has prompted interest in functional characterization of these genetic alterations. Here, we explored the role of HBD-ESR1 mutations in influencing the behavior of breast cancer stem cells (BCSCs), using various BC cell lines stably expressing wild-type or mutant (Y537 N, Y537S, D538G) ERα. Compared to WT-ERα clones, mutant cells showed increased CD44 + /CD24 - ratio, mRNA levels of stemness genes, Mammosphere Forming Efficiency (MFE), Self-Renewal and migratory capabilities. Mutant clones exhibited high expression of NOTCH receptors/ligands/target genes and blockade of NOTCH signaling reduced MFE and migratory potential. Mutant BCSC activity was dependent on ERα phosphorylation at serine 118, since its inhibition decreased MFE and NOTCH4 activation only in mutant cells. Collectively, we demonstrate that the expression of HBD-ESR1 mutations may drive BC cells to acquire stem cell traits through ER/NOTCH4 interplay. We propose the early detection of HBD-ESR1 mutations as a challenge in precision medicine strategy, suggesting the development of tailored-approaches (i.e. NOTCH inhibitors) to prevent disease development and metastatic spread in BC mutant-positive patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Proteolytic regulation of Notch1 receptor activity in cancer

    NARCIS (Netherlands)

    van Tetering, Geert

    2011-01-01

    The Notch receptor is part of a highly conserved signaling pathway essential in development and disease in embryos and adults. Notch proteins coordinate cell-cell communication through receptor-ligand interactions between adjacent cells. First Notch is cleaved in the Golgi by furin at Site-1 (S1)

  5. In vivo analysis of the Notch receptor S1 cleavage.

    Directory of Open Access Journals (Sweden)

    Robert J Lake

    2009-08-01

    Full Text Available A ligand-independent cleavage (S1 in the extracellular domain of the mammalian Notch receptor results in what is considered to be the canonical heterodimeric form of Notch on the cell surface. The in vivo consequences and significance of this cleavage on Drosophila Notch signaling remain unclear and contradictory. We determined the cleavage site in Drosophila and examined its in vivo function by a transgenic analysis of receptors that cannot be cleaved. Our results demonstrate a correlation between loss of cleavage and loss of in vivo function of the Notch receptor, supporting the notion that S1 cleavage is an in vivo mechanism of Notch signal control.

  6. Characterization of activating mutations of NOTCH3 in T-cell acute lymphoblastic leukemia and anti-leukemic activity of NOTCH3 inhibitory antibodies.

    Science.gov (United States)

    Bernasconi-Elias, P; Hu, T; Jenkins, D; Firestone, B; Gans, S; Kurth, E; Capodieci, P; Deplazes-Lauber, J; Petropoulos, K; Thiel, P; Ponsel, D; Hee Choi, S; LeMotte, P; London, A; Goetcshkes, M; Nolin, E; Jones, M D; Slocum, K; Kluk, M J; Weinstock, D M; Christodoulou, A; Weinberg, O; Jaehrling, J; Ettenberg, S A; Buckler, A; Blacklow, S C; Aster, J C; Fryer, C J

    2016-11-24

    Notch receptors have been implicated as oncogenic drivers in several cancers, the most notable example being NOTCH1 in T-cell acute lymphoblastic leukemia (T-ALL). To characterize the role of activated NOTCH3 in cancer, we generated an antibody that detects the neo-epitope created upon gamma-secretase cleavage of NOTCH3 to release its intracellular domain (ICD3), and sequenced the negative regulatory region (NRR) and PEST (proline, glutamate, serine, threonine) domain coding regions of NOTCH3 in a panel of cell lines. We also characterize NOTCH3 tumor-associated mutations that result in activation of signaling and report new inhibitory antibodies. We determined the structural basis for receptor inhibition by obtaining the first co-crystal structure of a NOTCH3 antibody with the NRR protein and defined two distinct epitopes for NRR antibodies. The antibodies exhibit potent anti-leukemic activity in cell lines and tumor xenografts harboring NOTCH3 activating mutations. Screening of primary T-ALL samples reveals that 2 of 40 tumors examined show active NOTCH3 signaling. We also identified evidence of NOTCH3 activation in 12 of 24 patient-derived orthotopic xenograft models, 2 of which exhibit activation of NOTCH3 without activation of NOTCH1. Our studies provide additional insights into NOTCH3 activation and offer a path forward for identification of cancers that are likely to respond to therapy with NOTCH3 selective inhibitory antibodies.

  7. Identification of a Paralog-Specific Notch1 Intracellular Domain Degron

    OpenAIRE

    Broadus, Matthew R.; Chen, Tony W.; Neitzel, Leif R.; Ng, Victoria H.; Jodoin, Jeanne; Lee, Laura A.; Salic, Adrian; Robbins, David J.; Capobianco, Anthony J.; Patton, James G.; Huppert, Stacey S.; Lee, Ethan

    2016-01-01

    Upon Notch pathway activation, the receptor is cleaved to release the Notch intracellular domain (NICD), which translocates to the nucleus to activate gene transcription. Using Xenopus egg extracts, we have identified a Notch1-specific destruction signal (N1-Box). We show that mutations in the N1-Box inhibit NICD1 degradation and that the N1-Box is transferable for the promotion of degradation of heterologous proteins in Xenopus egg extracts and in cultured human cells. Mutation of the N1-Box...

  8. Identification of a Paralog-Specific Notch1 Intracellular Domain Degron

    Directory of Open Access Journals (Sweden)

    Matthew R. Broadus

    2016-05-01

    Full Text Available Upon Notch pathway activation, the receptor is cleaved to release the Notch intracellular domain (NICD, which translocates to the nucleus to activate gene transcription. Using Xenopus egg extracts, we have identified a Notch1-specific destruction signal (N1-Box. We show that mutations in the N1-Box inhibit NICD1 degradation and that the N1-Box is transferable for the promotion of degradation of heterologous proteins in Xenopus egg extracts and in cultured human cells. Mutation of the N1-Box enhances Notch1 activity in cultured human cells and zebrafish embryos. Human cancer mutations within the N1-Box enhance Notch1 signaling in transgenic zebrafish, highlighting the physiological relevance of this destruction signal. We find that binding of the Notch nuclear factor, CSL, to the N1-Box blocks NICD1 turnover. Our studies reveal a mechanism by which degradation of NICD1 is regulated by the N1-Box to minimize stochastic flux and to establish a threshold for Notch1 pathway activation.

  9. Sequential mutations in Notch1, Fbxw7, and Tp53 in radiation-induced mouse thymic lymphomas.

    Science.gov (United States)

    Jen, Kuang-Yu; Song, Ihn Young; Banta, Karl Luke; Wu, Di; Mao, Jian-Hua; Balmain, Allan

    2012-01-19

    T-cell acute lymphoblastic lymphomas commonly demonstrate activating Notch1 mutations as well as mutations or deletions in Fbxw7. However, because Fbxw7 targets Notch1 for degradation, genetic alterations in these genes are expected to be mutually exclusive events in lymphomagenesis. Previously, by using a radiation-induced Tp53-deficient mouse model for T-cell acute lymphoblastic lymphoma, we reported that loss of heterozygosity at the Fbxw7 locus occurs frequently in a Tp53-dependent manner. In the current study, we show that these thymic lymphomas also commonly exhibit activating Notch1 mutations in the proline-glutamic acid-serine-threonine (PEST) domain. Moreover, concurrent activating Notch1 PEST domain mutations and single-copy deletions at the Fbxw7 locus occur with high frequency in the same individual tumors, indicating that these changes are not mutually exclusive events. We further demonstrate that although Notch1 PEST domain mutations are independent of Tp53 status, they are completely abolished in mice with germline Fbxw7 haploinsufficiency. Therefore, Notch1 PEST domain mutations only occur when Fbxw7 expression levels are intact. These data suggest a temporal sequence of mutational events involving these important cancer-related genes, with Notch1 PEST domain mutations occurring first, followed by Fbxw7 deletion, and eventually by complete loss of Tp53.

  10. Droplet digital PCR analysis of NOTCH1 gene mutations in chronic lymphocytic leukemia.

    Science.gov (United States)

    Minervini, Angela; Francesco Minervini, Crescenzio; Anelli, Luisa; Zagaria, Antonella; Casieri, Paola; Coccaro, Nicoletta; Cumbo, Cosimo; Tota, Giuseppina; Impera, Luciana; Orsini, Paola; Brunetti, Claudia; Giordano, Annamaria; Specchia, Giorgina; Albano, Francesco

    2016-12-27

    In chronic lymphocytic leukemia (CLL), NOTCH1 gene mutations (NOTCH1mut) have been associated with adverse prognostic features but the independence of these as a prognostic factor is still controversial. In our study we validated a c.7541-7542delCT NOTCH1 mutation assay based on droplet digital PCR (ddPCR); we also analyzed the NOTCH1mut allelic burden, expressed as fractional abundance (FA), in 88 CLL patients at diagnosis to assess its prognostic role and made a longitudinal ddPCR analysis in 10 cases harboring NOTCH1mut to verify the FA variation over time. Our data revealed that with the ddPCR approach the incidence of NOTCH1mut in CLL was much higher (53.4%) than expected. However, longitudinal ddPCR analysis of CLL cases showed a statistically significant reduction of the NOTCH1mut FA detected at diagnosis after treatment (median FA 11.67 % vs 0.09 %, respectively, p = 0.01); the same difference, in terms of NOTCH1mut FA, was observed in the relapsed cases compared to the NOTCH1mut allelic fraction observed in patients in complete or partial remission (median FA 4.75% vs 0.43%, respectively, p = 0.007). Our study demonstrated a much higher incidence of NOTCH1mut in CLL than has previously been reported, and showed that the NOTCH1mut allelic burden evaluation by ddPCR might identify patients in need of a closer clinical follow-up during the "watch and wait" interval and after standard chemotherapy.

  11. FBXW7 and NOTCH1 mutations in childhood T cell acute lymphoblastic leukaemia and T cell non-Hodgkin lymphoma.

    Science.gov (United States)

    Park, Myoung-Ja; Taki, Tomohiko; Oda, Megumi; Watanabe, Tomoyuki; Yumura-Yagi, Keiko; Kobayashi, Ryoji; Suzuki, Nobuhiro; Hara, Junichi; Horibe, Keizo; Hayashi, Yasuhide

    2009-04-01

    Mutation analysis of FBXW7 and NOTCH1 genes was performed in 55 T cell acute lymphoblastic leukaemia (T-ALL) and 14 T cell non-Hodgkin lymphoma (T-NHL) patients who were treated on the Japan Association of Childhood Leukaemia Study (JACLS) protocols ALL-97 and NHL-98. FBXW7 and/or NOTCH1 mutations were found in 22 (40.0%) of 55 T-ALL and 7 (50.0%) of 14 T-NHL patients. FBXW7 mutations were found in 8 (14.6%) of 55 T-ALL and 3 (21.4%) of 14 T-NHL patients, and NOTCH1 mutations in 17 (30.9%) of 55 T-ALL and 6 (42.9%) of 14 T-NHL patients. Three (5.4%) T-ALL and two (1.4%) T-NHL patients had mutations in both FBXW7 and NOTCH1. FBXW7 mutations included one insertion, one deletion, one deletion/insertion and nine missense mutations. NOTCH1 mutations were detected in the heterodimerization domain (HD) in 15 cases, in the PEST domain in seven cases, and in both the HD and PEST domains in one case. Five-year event-free survival and overall survival for patients with FBXW7 and/or NOTCH1 mutations were 95.5% (95% CI, 71.9-99.4%) and 100% respectively, suggesting that T-ALL patients with FBXW7 and/or NOTCH1 mutation represent a good prognosis compared to those without FBXW7 and/or NOTCH1 mutations (63.6%, P = 0.007 and 78.8%, P = 0.023, respectively).

  12. LPL gene expression is associated with poor prognosis in CLL and closely related to NOTCH1 mutations

    DEFF Research Database (Denmark)

    Kristensen, Louise; Kielsgaard Kristensen, Thomas; Abildgaard, Niels

    2016-01-01

    these markers. AIM: To evaluate LPL gene expression together with the well-established prognostic markers of CLL and investigate correlations with more recently identified prognostic markers, NOTCH1 and TP53 mutations. METHODS: On 149 patients LPL gene expression was analyzed by real-time RT-PCR. Exon 34...... of NOTCH1 was PCR amplified and directly sequenced. RESULTS: LPL gene expression could be measured as a categorical variable (LPL+/LPL-) and was associated with time to treatment (p... and new prognostic markers, 3 out of 4 patients, who received treatment within 24 months after diagnosis, were LPL+ (p=0.03). There was a strong correlation between NOTCH1 mutation and LPL+ (p=0.005). The unfavorable prognosis of LPL+ was maintained in CLL with wild-type NOTCH1. CONCLUSIONS: NOTCH1...

  13. Oncogenic Notch signaling in T-cell and B-cell lymphoproliferative disorders.

    Science.gov (United States)

    Chiang, Mark Y; Radojcic, Vedran; Maillard, Ivan

    2016-07-01

    This article highlights recent discoveries about Notch activation and its oncogenic functions in lymphoid malignancies, and discusses the therapeutic potential of Notch inhibition. NOTCH mutations arise in a broad spectrum of lymphoid malignancies and are increasingly scrutinized as putative therapeutic targets. In T-cell acute lymphoblastic leukemia (T-ALL), NOTCH1 mutations affect the extracellular negative regulatory region and lead to constitutive Notch activation, although mutated receptors remain sensitive to Notch ligands. Other NOTCH1 mutations in T-ALL and NOTCH1/2 mutations in multiple B-cell malignancies truncate the C-terminal proline (P), glutamic acid (E), serine (S), threonine (T)-rich (PEST) domain, leading to decreased Notch degradation after ligand-mediated activation. Thus, targeting Notch ligand-receptor interactions could provide therapeutic benefits. In addition, we discuss recent reports on clinical testing of Notch inhibitors in T-ALL that influenced contemporary thinking on the challenges of targeting Notch in cancer. We review advances in the laboratory to address these challenges in regards to drug targets, the Notch-driven metabolome, and the sophisticated protein-protein interactions at Notch-dependent superenhancers that underlie oncogenic Notch functions. Notch signaling is a recurrent oncogenic pathway in multiple T- and B-cell lymphoproliferative disorders. Understanding the complexity and consequences of Notch activation is critical to define optimal therapeutic strategies targeting the Notch pathway.

  14. Structure of human POFUT1, its requirement in ligand-independent oncogenic Notch signaling, and functional effects of Dowling-Degos mutations

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Brian J.; Zimmerman, Brandon; Egan, Emily D.; Lofgren, Michael; Xu, Xiang; Hesser, Anthony; Blacklow, Stephen C.

    2017-03-17

    Protein O-fucosyltransferase-1 (POFUT1), which transfers fucose residues to acceptor sites on serine and threonine residues of epidermal growth factor-like repeats of recipient proteins, is essential for Notch signal transduction in mammals. Here, we examine the consequences of POFUT1 loss on the oncogenic signaling associated with certain leukemia-associated mutations of human Notch1, report the structures of human POFUT1 in free and GDP-fucose bound states, and assess the effects of Dowling-Degos mutations on human POFUT1 function. CRISPR-mediated knockout of POFUT1 in U2OS cells suppresses both normal Notch1 signaling, and the ligand-independent signaling associated with leukemogenic mutations of Notch1. Normal and oncogenic signaling are rescued by wild-type POFUT1 but rescue is impaired by an active-site R240A mutation. The overall structure of the human enzyme closely resembles that of the Caenorhabditis elegans protein, with an overall backbone RMSD of 0.93 Å, despite primary sequence identity of only 39% in the mature protein. GDP-fucose binding to the human enzyme induces limited backbone conformational movement, though the side chains of R43 and D244 reorient to make direct contact with the fucose moiety in the complex. The reported Dowling-Degos mutations of POFUT1, except for M262T, fail to rescue Notch1 signaling efficiently in the CRISPR-engineered POFUT1-/- background. Together, these studies identify POFUT1 as a potential target for cancers driven by Notch1 mutations and provide a structural roadmap for its inhibition.

  15. Notch receptor expression in neurogenic regions of the adult zebrafish brain.

    Directory of Open Access Journals (Sweden)

    Vanessa de Oliveira-Carlos

    Full Text Available The adult zebrash brain has a remarkable constitutive neurogenic capacity. The regulation and maintenance of its adult neurogenic niches are poorly understood. In mammals, Notch signaling is involved in stem cell maintenance both in embryonic and adult CNS. To better understand how Notch signaling is involved in stem cell maintenance during adult neurogenesis in zebrafish we analysed Notch receptor expression in five neurogenic zones of the adult zebrafish brain. Combining proliferation and glial markers we identified several subsets of Notch receptor expressing cells. We found that 90 [Formula: see text] of proliferating radial glia express notch1a, notch1b and notch3. In contrast, the proliferating non-glial populations of the dorsal telencephalon and hypothalamus rarely express notch3 and about half express notch1a/1b. In the non-proliferating radial glia notch3 is the predominant receptor throughout the brain. In the ventral telencephalon and in the mitotic area of the optic tectum, where cells have neuroepithelial properties, notch1a/1b/3 are expressed in most proliferating cells. However, in the cerebellar niche, although progenitors also have neuroepithelial properties, only notch1a/1b are expressed in a high number of PCNA [Formula: see text] cells. In this region notch3 expression is mostly in Bergmann glia and at low levels in few PCNA [Formula: see text] cells. Additionally, we found that in the proliferation zone of the ventral telencephalon, Notch receptors display an apical high to basal low gradient of expression. Notch receptors are also expressed in subpopulations of oligodendrocytes, neurons and endothelial cells. We suggest that the partial regional heterogeneity observed for Notch expression in progenitor cells might be related to the cellular diversity present in each of these neurogenic niches.

  16. NOTCH1 Is Aberrantly Activated in Chronic Lymphocytic Leukemia Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Mauro Di Ianni

    2018-04-01

    Full Text Available To investigate chronic lymphocytic leukemia (CLL-initiating cells, we assessed NOTCH1 mutation/expression in hematopoietic stem cells (HSCs. In NOTCH1-mutated CLL, we detected subclonal mutations in 57% CD34+/CD38− HSCs. NOTCH1 mutation was present in 66% CD34+/CD38+ progenitor cells displaying an increased mutational burden compared to HSCs. Flow cytometric analysis revealed significantly higher NOTCH1 activation in CD34+/CD38− and CD34+/CD38+ cells from CLL patients, regardless NOTCH1 mutation compared to healthy donors. Activated NOTCH1 resulted in overexpression of the NOTCH1 target c-MYC. We conclude that activated NOTCH1 is an early event in CLL that may contribute to aberrant HSCs in this disease.

  17. NOTCH1 Is Aberrantly Activated in Chronic Lymphocytic Leukemia Hematopoietic Stem Cells.

    Science.gov (United States)

    Di Ianni, Mauro; Baldoni, Stefano; Del Papa, Beatrice; Aureli, Patrizia; Dorillo, Erica; De Falco, Filomena; Albi, Elisa; Varasano, Emanuela; Di Tommaso, Ambra; Giancola, Raffaella; Accorsi, Patrizia; Rotta, Gianluca; Rompietti, Chiara; Silva Barcelos, Estevão Carlos; Campese, Antonio Francesco; Di Bartolomeo, Paolo; Screpanti, Isabella; Rosati, Emanuela; Falzetti, Franca; Sportoletti, Paolo

    2018-01-01

    To investigate chronic lymphocytic leukemia (CLL)-initiating cells, we assessed NOTCH1 mutation/expression in hematopoietic stem cells (HSCs). In NOTCH1- mutated CLL, we detected subclonal mutations in 57% CD34+/CD38- HSCs. NOTCH1 mutation was present in 66% CD34+/CD38+ progenitor cells displaying an increased mutational burden compared to HSCs. Flow cytometric analysis revealed significantly higher NOTCH1 activation in CD34+/CD38- and CD34+/CD38+ cells from CLL patients, regardless NOTCH1 mutation compared to healthy donors. Activated NOTCH1 resulted in overexpression of the NOTCH1 target c-MYC. We conclude that activated NOTCH1 is an early event in CLL that may contribute to aberrant HSCs in this disease.

  18. Common nonmutational NOTCH1 activation in chronic lymphocytic leukemia.

    Science.gov (United States)

    Fabbri, Giulia; Holmes, Antony B; Viganotti, Mara; Scuoppo, Claudio; Belver, Laura; Herranz, Daniel; Yan, Xiao-Jie; Kieso, Yasmine; Rossi, Davide; Gaidano, Gianluca; Chiorazzi, Nicholas; Ferrando, Adolfo A; Dalla-Favera, Riccardo

    2017-04-04

    Activating mutations of NOTCH1 (a well-known oncogene in T-cell acute lymphoblastic leukemia) are present in ∼4-13% of chronic lymphocytic leukemia (CLL) cases, where they are associated with disease progression and chemorefractoriness. However, the specific role of NOTCH1 in leukemogenesis remains to be established. Here, we report that the active intracellular portion of NOTCH1 (ICN1) is detectable in ∼50% of peripheral blood CLL cases lacking gene mutations. We identify a "NOTCH1 gene-expression signature" in CLL cells, and show that this signature is significantly enriched in primary CLL cases expressing ICN1, independent of NOTCH1 mutation. NOTCH1 target genes include key regulators of B-cell proliferation, survival, and signal transduction. In particular, we show that NOTCH1 transactivates MYC via binding to B-cell-specific regulatory elements, thus implicating this oncogene in CLL development. These results significantly extend the role of NOTCH1 in CLL pathogenesis, and have direct implications for specific therapeutic targeting.

  19. PKCζ regulates Notch receptor routing and activity in a Notch signaling-dependent manner

    NARCIS (Netherlands)

    Sjöqvist, M.; Antfolk, D.; Ferraris, S.; Rraklli, V.; Haga, C.; Antila, C.; Mutvei, A.; Imanishi, S.Y.; Holmberg, J.; Jin, S.; Eriksson, J.E.; Lendahl, U.; Sahlgren, C.M.

    Activation of Notch signaling requires intracellular routing of the receptor, but the mechanisms controlling the distinct steps in the routing process is poorly understood. We identify PKCζ as a key regulator of Notch receptor intracellular routing. When PKCζ was inhibited in the developing chick

  20. Endosomal sorting of Notch receptors through COMMD9-dependent pathways modulates Notch signaling

    NARCIS (Netherlands)

    Li, Haiying; Koo, Yeon; Mao, Xicheng; Sifuentes-Dominguez, Luis; Morris, Lindsey L.; Jia, Da; Miyata, Naoteru; Faulkner, Rebecca A.; van Deursen, Jan M.; Vooijs, Marc; Billadeau, Daniel D.; van de Sluis, Bart; Cleaver, Orane; Burstein, Ezra

    2015-01-01

    Notch family members are transmembrane receptors that mediate essential developmental programs. Upon ligand binding, a proteolytic event releases the intracellular domain of Notch, which translocates to the nucleus to regulate gene transcription. In addition, Notch trafficking across the

  1. Disrupting Jagged1-Notch signaling impairs spatial memory formation in adult mice.

    Science.gov (United States)

    Sargin, Derya; Botly, Leigh C P; Higgs, Gemma; Marsolais, Alexander; Frankland, Paul W; Egan, Sean E; Josselyn, Sheena A

    2013-07-01

    It is well-known that Notch signaling plays a critical role in brain development and growing evidence implicates this signaling pathway in adult synaptic plasticity and memory formation. The Notch1 receptor is activated by two subclasses of ligands, Delta-like (including Dll1 and Dll4) and Jagged (including Jag1 and Jag2). Ligand-induced Notch1 receptor signaling is modulated by a family of Fringe proteins, including Lunatic fringe (Lfng). Although Dll1, Jag1 and Lfng are critical regulators of Notch signaling, their relative contribution to memory formation in the adult brain is unknown. To investigate the roles of these important components of Notch signaling in memory formation, we examined spatial and fear memory formation in adult mice with reduced expression of Dll1, Jag1, Lfng and Dll1 plus Lfng. We also examined motor activity, anxiety-like behavior and sensorimotor gating using the acoustic startle response in these mice. Of the lines of mutant mice tested, we found that only mice with reduced Jag1 expression (mice heterozygous for a null mutation in Jag1, Jag1(+/-)) showed a selective impairment in spatial memory formation. Importantly, all other behavior including open field activity, conditioned fear memory (both context and discrete cue), acoustic startle response and prepulse inhibition, was normal in this line of mice. These results provide the first in vivo evidence that Jag1-Notch signaling is critical for memory formation in the adult brain. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  2. Gauging NOTCH1 Activation in Cancer Using Immunohistochemistry.

    Directory of Open Access Journals (Sweden)

    Michael J Kluk

    Full Text Available Fixed, paraffin-embedded (FPE tissues are a potentially rich resource for studying the role of NOTCH1 in cancer and other pathologies, but tests that reliably detect activated NOTCH1 (NICD1 in FPE samples have been lacking. Here, we bridge this gap by developing an immunohistochemical (IHC stain that detects a neoepitope created by the proteolytic cleavage event that activates NOTCH1. Following validation using xenografted cancers and normal tissues with known patterns of NOTCH1 activation, we applied this test to tumors linked to dysregulated Notch signaling by mutational studies. As expected, frequent NICD1 staining was observed in T lymphoblastic leukemia/lymphoma, a tumor in which activating NOTCH1 mutations are common. However, when IHC was used to gauge NOTCH1 activation in other human cancers, several unexpected findings emerged. Among B cell tumors, NICD1 staining was much more frequent in chronic lymphocytic leukemia than would be predicted based on the frequency of NOTCH1 mutations, while mantle cell lymphoma and diffuse large B cell lymphoma showed no evidence of NOTCH1 activation. NICD1 was also detected in 38% of peripheral T cell lymphomas. Of interest, NICD1 staining in chronic lymphocytic leukemia cells and in angioimmunoblastic lymphoma was consistently more pronounced in lymph nodes than in surrounding soft tissues, implicating factors in the nodal microenvironment in NOTCH1 activation in these diseases. Among carcinomas, diffuse strong NICD1 staining was observed in 3.8% of cases of triple negative breast cancer (3 of 78 tumors, but was absent from 151 non-small cell lung carcinomas and 147 ovarian carcinomas. Frequent staining of normal endothelium was also observed; in line with this observation, strong NICD1 staining was also seen in 77% of angiosarcomas. These findings complement insights from genomic sequencing studies and suggest that IHC staining is a valuable experimental tool that may be useful in selection of

  3. Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1α and Notch1 in head neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Wei-Ming Wang

    Full Text Available Angiogenesis, a marker of cancer development, affects response to radiotherapy sensibility. This preclinical study aims to understand the receptor tyrosine kinase-mediated angiogenesis in head neck squamous cell carcinoma (HNSCC. The receptor tyrosine kinase activity in a transgenic mouse model of HNSCC was assessed. The anti-tumorigenetic and anti-angiogenetic effects of cetuximab-induced epidermal growth factor receptor (EGFR inhibition were investigated in xenograft and transgenic mouse models of HNSCC. The signaling transduction of Notch1 and hypoxia-inducible factor-1α (HIF-1α was also analyzed. EGFR was overexpressed and activated in the Tgfbr1/Pten deletion (2cKO mouse model of HNSCC. Cetuximab significantly delayed tumor onset by reducing tumor angiogenesis. This drug exerted similar effects on heterotopic xenograft tumors. In the human HNSCC tissue array, increased EGFR expression correlated with increased HIF-1α and micro vessel density. Cetuximab inhibited tumor-induced angiogenesis in vitro and in vivo by significantly downregulating HIF-1α and Notch1. EGFR is involved in the tumor angiogenesis of HNSCC via the HIF-1α and Notch1 pathways. Therefore, targeting EGFR by suppressing hypoxia- and Notch-induced angiogenesis may benefit HNSCC therapy.

  4. Cardiovascular malformations caused by NOTCH1 mutations do not keep left : data on 428 probands with left-sided CHD and their families

    NARCIS (Netherlands)

    Kerstjens-Frederikse, Wilhelmina S.; van de Laar, Ingrid M. B. H.; Vos, Yvonne J.; Verhagen, Judith M. A.; Berger, Rolf M. F.; Lichtenbelt, Klaske D.; Wassink-Ruiter, Jolien S. Klein; van der Zwaag, Paul A.; Sarvaas, Gideon J. du Marchie; Bergman, Klasien A.; Bilardo, Catia M.; Roos-Hesselink, Jolien W.; Janssen, Johan H. P.; Frohn-Mulder, Ingrid M.; van Spaendonck-Zwarts, Karin Y.; Melle, van Joost P.; Hofstra, Robert M. W.; Wessels, M. W.

    Purpose: We aimed to determine the prevalence and phenotypic spectrum of NOTCH1 mutations in left-sided congenital heart disease (LS-CHD). LS-CHD includes aortic valve stenosis, a bicuspid aortic valve, coarctation of the aorta, and hypoplastic left heart syndrome. Methods: NOTCH1 was screened for

  5. Notch 1 Receptor, Delta 1 Ligand and HES 1 Transcription Factor are Expressed in the Lining Epithelium of Periapical Cysts (Preliminary Study).

    Science.gov (United States)

    Meliou, E; Kerezoudis, Np; Tosios, Ki; Kiaris, H

    2010-07-27

    Periapical cyst is a chronic inflammatory disorder of periradicular tissues. The precise pathological mechanisms involved in periapical cyst enlargement remain unclear. Notch signaling is an evolutionarily conserved pathway with a regulatory role in cell fate decisions during development and in carcinogenesis. To date, there are no published data available on the expression of Notch signaling components in periapical cysts or any other jaw cyst. In this immunohistochemical study we have examined the expression of the receptor Notch 1, the ligand Delta 1 and the transcription factor HES 1 in the epithelium of well defined periapical cysts. Immunostaining reaction of Notch 1, Delta 1 and HES 1 was observed in the cytoplasm and/or the cytoplasmic membrane and occasionally in the nucleus in the majority of epithelial cells of all periapical cysts. The present observations indicate that Notch pathway is active in the epithelium of periapical cysts. It can be speculated that activation of epithelial cells of periapical cysts is associated with activation of Notch pathway and imply involvement of this pathway in periapical cyst growth and expansion.

  6. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma.

    Science.gov (United States)

    Kiel, Mark J; Velusamy, Thirunavukkarasu; Betz, Bryan L; Zhao, Lili; Weigelin, Helmut G; Chiang, Mark Y; Huebner-Chan, David R; Bailey, Nathanael G; Yang, David T; Bhagat, Govind; Miranda, Roberto N; Bahler, David W; Medeiros, L Jeffrey; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2012-08-27

    Splenic marginal zone lymphoma (SMZL), the most common primary lymphoma of spleen, is poorly understood at the genetic level. In this study, using whole-genome DNA sequencing (WGS) and confirmation by Sanger sequencing, we observed mutations identified in several genes not previously known to be recurrently altered in SMZL. In particular, we identified recurrent somatic gain-of-function mutations in NOTCH2, a gene encoding a protein required for marginal zone B cell development, in 25 of 99 (∼25%) cases of SMZL and in 1 of 19 (∼5%) cases of nonsplenic MZLs. These mutations clustered near the C-terminal proline/glutamate/serine/threonine (PEST)-rich domain, resulting in protein truncation or, rarely, were nonsynonymous substitutions affecting the extracellular heterodimerization domain (HD). NOTCH2 mutations were not present in other B cell lymphomas and leukemias, such as chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL; n = 15), mantle cell lymphoma (MCL; n = 15), low-grade follicular lymphoma (FL; n = 44), hairy cell leukemia (HCL; n = 15), and reactive lymphoid hyperplasia (n = 14). NOTCH2 mutations were associated with adverse clinical outcomes (relapse, histological transformation, and/or death) among SMZL patients (P = 0.002). These results suggest that NOTCH2 mutations play a role in the pathogenesis and progression of SMZL and are associated with a poor prognosis.

  7. Redundant Notch1 and Notch2 signaling is necessary for IFNγ secretion by T helper 1 cells during infection with Leishmania major.

    Directory of Open Access Journals (Sweden)

    Floriane Auderset

    Full Text Available The protective immune response to intracellular parasites involves in most cases the differentiation of IFNγ-secreting CD4(+ T helper (Th 1 cells. Notch receptors regulate cell differentiation during development but their implication in the polarization of peripheral CD4(+ T helper 1 cells is not well understood. Of the four Notch receptors, only Notch1 (N1 and Notch2 (N2 are expressed on activated CD4(+ T cells. To investigate the role of Notch in Th1 cell differentiation following parasite infection, mice with T cell-specific gene ablation of N1, N2 or both (N1N2(ΔCD4Cre were infected with the protozoan parasite Leishmania major. N1N2(ΔCD4Cre mice, on the C57BL/6 L. major-resistant genetic background, developed unhealing lesions and uncontrolled parasitemia. Susceptibility correlated with impaired secretion of IFNγ by draining lymph node CD4(+ T cells and increased secretion of the IL-5 and IL-13 Th2 cytokines. Mice with single inactivation of N1 or N2 in their T cells were resistant to infection and developed a protective Th1 immune response, showing that CD4(+ T cell expression of N1 or N2 is redundant in driving Th1 differentiation. Furthermore, we show that Notch signaling is required for the secretion of IFNγ by Th1 cells. This effect is independent of CSL/RBP-Jκ, the major effector of Notch receptors, since L. major-infected mice with a RBP-Jκ deletion in their T cells were able to develop IFNγ-secreting Th1 cells, kill parasites and heal their lesions. Collectively, we demonstrate here a crucial role for RBP-Jκ-independent Notch signaling in the differentiation of a functional Th1 immune response following L. major infection.

  8. The truncate mutation of Notch2 enhances cell proliferation through activating the NF-κB signal pathway in the diffuse large B-cell lymphomas.

    Directory of Open Access Journals (Sweden)

    Xinxia Zhang

    Full Text Available The Notch2 is a critical membrane receptor for B-cell functions, and also displays various biological roles in lymphoma pathogenesis. In this article, we reported that 3 of 69 (4.3% diffuse large B-cell lymphomas (DLBCLs exhibited a truncate NOTCH2 mutation at the nucleotide 7605 (G/A in the cDNA sequence, which led to partial deletion of the C-terminal of PEST (proline-, glutamic acid-, serine- and threonine-rich domain. The truncate Notch2 activated both the Notch2 and the NF-κB signals and promoted the proliferation of B-cell lymphoma cell lines, including DLBCL and Burkitt's lymphoma cell lines. Moreover, the ectopic proliferation was completely inhibited by ammonium pyrrolidinedithiocarbamate (PDTC, an NF-κB inhibitor. Simultaneously, PDTC also reduced the expression level of Notch2. Based on these results, we conclude that the Notch2 receptor with PEST domain truncation enhances cell proliferation which may be associated with the activation of the Notch2 and the NF-κB signaling. Our results are expected to provide a possible target for new DLBCL therapies by suppressing the Notch2 and the NF-κB signaling.

  9. Induced pluripotent stem cells with NOTCH1 gene mutation show impaired differentiation into smooth muscle and endothelial cells: Implications for bicuspid aortic valve-related aortopathy.

    Science.gov (United States)

    Jiao, Jiao; Tian, Weihua; Qiu, Ping; Norton, Elizabeth L; Wang, Michael M; Chen, Y Eugene; Yang, Bo

    2018-03-12

    The NOTCH1 gene mutation has been identified in bicuspid aortic valve patients. We developed an in vitro model with human induced pluripotent stem cells (iPSCs) to evaluate the role of NOTCH1 in smooth muscle and endothelial cell (EC) differentiation. The iPSCs were derived from a patient with a normal tricuspid aortic valve and aorta. The NOTCH1 gene was targeted in iPSCs with the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 nuclease (Cas9) system. The NOTCH1 -/- (NOTCH1 homozygous knockout) and isogenic control iPSCs (wild type) were differentiated into neural crest stem cells (NCSCs) and into cardiovascular progenitor cells (CVPCs). The NCSCs were differentiated into smooth muscle cells (SMCs). The CVPCs were differentiated into ECs. The differentiations of SMCs and ECs were compared between NOTCH1 -/- and wild type cells. The expression of NCSC markers (SRY-related HMG-box 10 and transcription factor AP-2 alpha) was significantly lower in NOTCH1 -/- NCSCs than in wild type NCSCs. The SMCs derived from NOTCH1 -/- NCSCs showed immature morphology with smaller size and decreased expression of all SMC-specific contractile proteins. In NOTCH1 -/- CVPCs, the expression of ISL1, NKX2.5, and MYOCD was significantly lower than that in isogenic control CVPCs, indicating impaired differentiation from iPSCs to CVPCs. The NOTCH1 -/- ECs derived from CVPCs showed significantly lower expression of cluster of differentiation 105 and cluster of differentiation 31 mRNA and protein, indicating a defective differentiation process. NOTCH1 is critical in SMC and EC differentiation of iPSCs through NCSCs and CVPCs, respectively. NOTCH1 gene mutations might potentially contribute to the development of thoracic aortic aneurysms by affecting SMC differentiation in some patients with bicuspid aortic valve. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  10. Diagnosing CADASIL using MRI: evidence from families with known mutations of Notch 3 gene

    International Nuclear Information System (INIS)

    Chawda, S.J.; Lange, R.P.J. de; St-Clair, D.; Hourihan, M.D.; Halpin, S.F.S.

    2000-01-01

    Clinical data and MRI findings are presented on 18 subjects from two families with neuropathologically confirmed CADASIL. DNA analysis revealed mutations in exon 4 of Notch 3 gene in both families. All family members with mutations in Notch 3 gene had extensive abnormalities on MRI, principally lesions in the white matter of the frontal lobes and in the external capsules. Of several family members in whom a diagnosis of CADASIL was suspected on the basis of minor symptoms, one had MRI changes consistent with CADASIL; none of these cases carried a mutation in the Notch 3 gene. MRI and clinical features that may alert the radiologist to the diagnosis of CADASIL are reviewed. However, a wide differential diagnosis exists for the MRI appearances of CADASIL, including multiple sclerosis and small-vessel disease secondary to hypertension. The definitive diagnosis cannot be made on MRI alone and requires additional evidence, where available, from a positive family history and by screening DNA for mutations of Notch 3 gene. (orig.)

  11. ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway.

    Science.gov (United States)

    Larrivée, Bruno; Prahst, Claudia; Gordon, Emma; del Toro, Raquel; Mathivet, Thomas; Duarte, Antonio; Simons, Michael; Eichmann, Anne

    2012-03-13

    Activin receptor-like kinase 1 (ALK1) is an endothelial-specific member of the TGF-β/BMP receptor family that is inactivated in patients with hereditary hemorrhagic telangiectasia (HHT). How ALK1 signaling regulates angiogenesis remains incompletely understood. Here we show that ALK1 inhibits angiogenesis by cooperating with the Notch pathway. Blocking Alk1 signaling during postnatal development in mice leads to retinal hypervascularization and the appearance of arteriovenous malformations (AVMs). Combined blockade of Alk1 and Notch signaling further exacerbates hypervascularization, whereas activation of Alk1 by its high-affinity ligand BMP9 rescues hypersprouting induced by Notch inhibition. Mechanistically, ALK1-dependent SMAD signaling synergizes with activated Notch in stalk cells to induce expression of the Notch targets HEY1 and HEY2, thereby repressing VEGF signaling, tip cell formation, and endothelial sprouting. Taken together, these results uncover a direct link between ALK1 and Notch signaling during vascular morphogenesis that may be relevant to the pathogenesis of HHT vascular lesions. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Sequestration of latent TGF-β binding protein 1 into CADASIL-related Notch3-ECD deposits.

    Science.gov (United States)

    Kast, Jessica; Hanecker, Patrizia; Beaufort, Nathalie; Giese, Armin; Joutel, Anne; Dichgans, Martin; Opherk, Christian; Haffner, Christof

    2014-08-13

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) represents the most common hereditary form of cerebral small vessel disease characterized by early-onset stroke and premature dementia. It is caused by mutations in the transmembrane receptor Notch3, which promote the aggregation and accumulation of the Notch3 extracellular domain (Notch3-ECD) within blood vessel walls. This process is believed to mediate the abnormal recruitment and dysregulation of additional factors including extracellular matrix (ECM) proteins resulting in brain vessel dysfunction. Based on recent evidence indicating a role for the transforming growth factor-β (TGF-β) pathway in sporadic and familial small vessel disease we studied fibronectin, fibrillin-1 and latent TGF-β binding protein 1 (LTBP-1), three ECM constituents involved in the regulation of TGF-β bioavailability, in post-mortem brain tissue from CADASIL patients and control subjects. Fibronectin and fibrillin-1 were found to be enriched in CADASIL vessels without co-localizing with Notch3-ECD deposits, likely as a result of fibrotic processes secondary to aggregate formation. In contrast, LTBP-1 showed both an accumulation and a striking co-localization with Notch3-ECD deposits suggesting specific recruitment into aggregates. We also detected increased levels of the TGF-β prodomain (also known as latency-associated peptide, LAP) indicating dysregulation of the TGF-β pathway in CADASIL development. In vitro analyses revealed a direct interaction between LTBP-1 and Notch3-ECD and demonstrated a specific co-aggregation of LTBP-1 with mutant Notch3. We propose LTBP-1 as a novel component of Notch3-ECD deposits and suggest its involvement in pathological processes triggered by Notch3-ECD aggregation.

  13. An Angiotensin II Type 1 Receptor Blocker Prevents Renal Injury via Inhibition of the Notch Pathway in Ins2 Akita Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Masaya Koshizaka

    2012-01-01

    Full Text Available Recently, it has been reported that the Notch pathway is involved in the pathogenesis of diabetic nephropathy. In this study, we investigated the activation of the Notch pathway in Ins2 Akita diabetic mouse (Akita mouse and the effects of telmisartan, an angiotensin II type1 receptor blocker, on the Notch pathway. The intracellular domain of Notch1 (ICN1 is proteolytically cleaved from the cell plasma membrane in the course of Notch activation. The expression of ICN1 and its ligand, Jagged1, were increased in the glomeruli of Akita mice, especially in the podocytes. Administration of telmisartan significantly ameliorated the expression of ICN1 and Jagged1. Telmisartan inhibited the angiotensin II-induced increased expression of transforming growth factor β and vascular endothelial growth factor A which could directly activate the Notch signaling pathway in cultured podocytes. Our results indicate that the telmisartan prevents diabetic nephropathy through the inhibition of the Notch pathway.

  14. R54C Mutation of NOTCH3 Gene in the First Rungus Family with CADASIL.

    Directory of Open Access Journals (Sweden)

    Kheng-Seang Lim

    Full Text Available Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL is a rare hereditary stroke caused by mutations in NOTCH3 gene. We report the first case of CADASIL in an indigenous Rungus (Kadazan-Dusun family in Kudat, Sabah, Malaysia confirmed by a R54C (c.160C>T, p.Arg54Cys mutation in the NOTCH3. This mutation was previously reported in a Caucasian and two Korean cases of CADASIL. We recruited two generations of the affected Rungus family (n = 9 and found a missense mutation (c.160C>T in exon 2 of NOTCH3 in three siblings. Two of the three siblings had severe white matter abnormalities in their brain MRI (Scheltens score 33 and 50 respectively, one of whom had a young stroke at the age of 38. The remaining sibling, however, did not show any clinical features of CADASIL and had only minimal changes in her brain MRI (Scheltens score 17. This further emphasized the phenotype variability among family members with the same mutation in CADASIL. This is the first reported family with CADASIL in Rungus subtribe of Kadazan-Dusun ethnicity with a known mutation at exon 2 of NOTCH3. The penetrance of this mutation was not complete during the course of this study.

  15. Perivascular delivery of Notch 1 siRNA inhibits injury-induced arterial remodeling.

    Directory of Open Access Journals (Sweden)

    Eileen M Redmond

    Full Text Available To determine the efficacy of perivascular delivery of Notch 1 siRNA in preventing injury-induced arterial remodeling.Carotid artery ligation was performed to induce arterial remodeling. After 14 days, morphometric analysis confirmed increased vSMC growth and subsequent media thickening and neointimal formation. Laser capture microdissection, quantitative qRT-PCR and immunoblot analysis of medial tissue revealed a significant increase in Notch1 receptor and notch target gene, Hrt 1 and 2 expression in the injured vessels. Perivascular delivery of Notch 1 siRNA by pluronic gel inhibited the injury-induced increase in Notch 1 receptor and target gene expression when compared to scrambled siRNA controls while concomitantly reducing media thickening and neointimal formation to pre-injury, sham-operated levels. Selective Notch 1 knockdown also reversed the injury-induced inhibition of pro-apoptotic Bax expression while decreasing injury-induced anti-apoptotic Bcl-XL expression to sham-operated control levels. In parallel experiments, proliferative cyclin levels, as measured by PCNA expression, were reversed to sham-operated control levels following selective Notch 1 knockdown.These results suggest that injury-induced arterial remodeling can be successfully inhibited by localized perivascular delivery of Notch 1 siRNA.

  16. New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: targeted therapy of γ-secretase inhibitor resistant T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Hales, Eric C; Taub, Jeffrey W; Matherly, Larry H

    2014-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is characterized as a high-risk stratified disease associated with frequent relapse, chemotherapy resistance, and a poorer prognostic outlook than B-precursor ALL. Many of the challenges in treating T-ALL reflect the lack of prognostic cytogenetic or molecular abnormalities on which to base therapy, including targeted therapy. Notch1 activating mutations were identified in more than 50% of T-ALL cases and can be therapeutically targeted with γ-secretase inhibitors (GSIs). Mutant Notch1 can activate cMyc and PI3K-AKT-mTOR1 signaling in T-ALL. In T-ALLs with wild-type phosphatase and tensin homolog deleted on chromosome ten (PTEN), Notch1 transcriptionally represses PTEN, an effect reversible by GSIs. Notch1 also promotes growth factor receptor (IGF1R and IL7Rα) signaling to PI3K-AKT. Loss of PTEN is common in primary T-ALLs due to mutation or posttranslational inactivation and results in chronic activation of PI3K-AKT-mTOR1 signaling, GSI-resistance, and repression of p53-mediated apoptosis. Notch1 itself might regulate posttranslational inactivation of PTEN. PP2A is activated by Notch1 in PTEN-null T-ALL cells, and GSIs reduce PP2A activity and increase phosphorylation of AKT, AMPK, and p70S6K. This review focuses on the central role of the PI3K-AKT-mTOR1 signaling in T-ALL, including its regulation by Notch1 and potential therapeutic interventions, with emphasis on GSI-resistant T-ALL. © 2013.

  17. Notching on cancer’s door: Notch signaling in brain tumors

    Directory of Open Access Journals (Sweden)

    Marcin eTeodorczyk

    2015-01-01

    Full Text Available Notch receptors play an essential role in the regulation of central cellular processes during embryonic and postnatal development. The mammalian genome encodes for four Notch paralogs (Notch 1-4, which are activated by three Delta-like (Dll1/3/4 and two Serrate-like (Jagged1/2 ligands. Further, non-canonical Notch ligands such as EGFL7 have been identified and serve mostly as antagonists of Notch signaling. The Notch pathway prevents neuronal differentiation in the central nervous system by driving neural stem cell maintenance and commitment of neural progenitor cells into the glial lineage. Notch is therefore often implicated in the development of brain tumors, as tumor cells share various characteristics with neural stem and progenitor cells. Notch receptors are overexpressed in gliomas and their oncogenicity has been confirmed by gain- and loss-of-function studies in vitro and in vivo. To this end, special attention is paid to the impact of Notch signaling on stem-like brain tumor-propagating cells as these cells contribute to growth, survival, invasion and recurrence of brain tumors. Based on the outcome of ongoing studies in vivo, Notch-directed therapies such as γ secretase inhibitors and blocking antibodies have entered and completed various clinical trials. This review summarizes the current knowledge on Notch signaling in brain tumor formation and therapy.

  18. Essential Role of Endothelial Notch1 in Angiogenesis

    Science.gov (United States)

    Limbourg, Florian P.; Takeshita, Kyosuke; Radtke, Freddy; Bronson, Roderick T.; Chin, Michael T.; Liao, James K.

    2009-01-01

    Background Notch signaling influences binary cell fate decisions in a variety of tissues. The Notch1 receptor is widely expressed during embryogenesis and is essential for embryonic development. Loss of global Notch1 function results in early embryonic lethality, but the cell type responsible for this defect is not known. Here, we identify the endothelium as the primary target tissue affected by Notch1 signaling. Methods and Results We generated an endothelium-specific deletion of Notch1 using Tie2Cre and conditional Notch1flox/flox mice. Mutant embryos lacking endothelial Notch1 died at approximately embryonic day 10.5 with profound vascular defects in placenta, yolk sac, and embryo proper, whereas heterozygous deletion had no effect. In yolk sacs of mutant embryos, endothelial cells formed a primary vascular plexus indicative of intact vasculogenesis but failed to induce the secondary vascular remodeling required to form a mature network of well-organized large and small blood vessels, which demonstrates a defect in angiogenesis. These vascular defects were also evident in the placenta, where blood vessels failed to invade the placental labyrinth, and in the embryo proper, where defective blood vessel maturation led to pericardial and intersomitic hemorrhage. Enhanced activation of caspase-3 was detected in endothelial and neural cells of mutant mice, which resulted in enhanced apoptotic degeneration of somites and the neural tube. Conclusions These findings recapitulate the vascular phenotype of global Notch1-/- mutants and indicate an essential cell-autonomous role of Notch1 signaling in the endothelium during vascular development. These results may have important clinical implications with regard to Notch1 signaling in adult angiogenesis. PMID:15809373

  19. Notch1 regulates hippocampal plasticity through interaction with the Reelin pathway, glutamatergic transmission and CREB signaling

    Directory of Open Access Journals (Sweden)

    Emanuele eBrai

    2015-11-01

    Full Text Available Notch signaling plays a crucial role in adult brain function such as synaptic plasticity, memory and olfaction. Several reports suggest an involvement of this pathway in neurodegenerative dementia. Yet, to date, the mechanism underlying Notch activity in mature neurons remains unresolved. In this work, we investigate how Notch regulates synaptic potentiation and contributes to the establishment of memory in mice. We observe that Notch1 is a postsynaptic receptor with functional interactions with the Reelin receptor, ApoER2, and the ionotropic receptor, NMDAR. Targeted loss of Notch1 in the hippocampal CA fields affects Reelin signaling by influencing Dab1 expression and impairs the synaptic potentiation achieved through Reelin stimulation. Further analysis indicates that loss of Notch1 affects the expression and composition of the NMDAR but not AMPAR. Glutamatergic signaling is further compromised through downregulation of CamKII and its secondary and tertiary messengers resulting in reduced CREB signaling. Our results identify Notch1 as an important regulator of mechanisms involved in synaptic plasticity and memory formation. These findings emphasize the possible involvement of this signaling receptor in dementia.

  20. Inhibitory role of Notch1 in calcific aortic valve disease.

    Directory of Open Access Journals (Sweden)

    Asha Acharya

    Full Text Available Aortic valve calcification is the most common form of valvular heart disease, but the mechanisms of calcific aortic valve disease (CAVD are unknown. NOTCH1 mutations are associated with aortic valve malformations and adult-onset calcification in families with inherited disease. The Notch signaling pathway is critical for multiple cell differentiation processes, but its role in the development of CAVD is not well understood. The aim of this study was to investigate the molecular changes that occur with inhibition of Notch signaling in the aortic valve. Notch signaling pathway members are expressed in adult aortic valve cusps, and examination of diseased human aortic valves revealed decreased expression of NOTCH1 in areas of calcium deposition. To identify downstream mediators of Notch1, we examined gene expression changes that occur with chemical inhibition of Notch signaling in rat aortic valve interstitial cells (AVICs. We found significant downregulation of Sox9 along with several cartilage-specific genes that were direct targets of the transcription factor, Sox9. Loss of Sox9 expression has been published to be associated with aortic valve calcification. Utilizing an in vitro porcine aortic valve calcification model system, inhibition of Notch activity resulted in accelerated calcification while stimulation of Notch signaling attenuated the calcific process. Finally, the addition of Sox9 was able to prevent the calcification of porcine AVICs that occurs with Notch inhibition. In conclusion, loss of Notch signaling contributes to aortic valve calcification via a Sox9-dependent mechanism.

  1. Notch signaling regulates platelet-derived growth factor receptor-β expression in vascular smooth muscle cells

    NARCIS (Netherlands)

    Jin, S.; Hansson, E.M.; Tikka, S.; Lanner, F.; Sahlgren, C.; Farnebo, F.; Baumann, M.; Kalimo, H.; Lendahl, U.

    2008-01-01

    Notch signaling is critically important for proper architecture of the vascular system, and mutations in NOTCH3 are associated with CADASIL, a stroke and dementia syndrome with vascular smooth muscle cell (VSMC) dysfunction. In this report, we link Notch signaling to platelet-derived growth factor

  2. Reduced Notch signalling leads to postnatal skeletal muscle hypertrophy in Pofut1cax/cax mice.

    Science.gov (United States)

    Al Jaam, Bilal; Heu, Katy; Pennarubia, Florian; Segelle, Alexandre; Magnol, Laetitia; Germot, Agnès; Legardinier, Sébastien; Blanquet, Véronique; Maftah, Abderrahman

    2016-09-01

    Postnatal skeletal muscle growth results from the activation of satellite cells and/or an increase in protein synthesis. The Notch signalling pathway maintains satellite cells in a quiescent state, and once activated, sustains their proliferation and commitment towards differentiation. In mammals, POFUT1-mediated O-fucosylation regulates the interactions between NOTCH receptors and ligands of the DELTA/JAGGED family, thus initiating the activation of canonical Notch signalling. Here, we analysed the consequences of downregulated expression of the Pofut1 gene on postnatal muscle growth in mutant Pofut1(cax/cax) (cax, compact axial skeleton) mice and differentiation of their satellite cell-derived myoblasts (SCDMs). Pofut1(cax/cax) mice exhibited muscle hypertrophy, no hyperplasia and a decrease in satellite cell numbers compared with wild-type C3H mice. In agreement with these observations, Pofut1(cax/cax) SCDMs differentiated earlier concomitant with reduced Pax7 expression and decrease in PAX7(+)/MYOD(-) progenitor cells. In vitro binding assays showed a reduced interaction of DELTA-LIKE 1 ligand (DLL1) with NOTCH receptors expressed at the cell surface of SCDMs, leading to a decreased Notch signalling as seen by the quantification of cleaved NICD and Notch target genes. These results demonstrated that POFUT1-mediated O-fucosylation of NOTCH receptors regulates myogenic cell differentiation and affects postnatal muscle growth in mice. © 2016 The Authors.

  3. The Notch Signaling Pathway Is Balancing Type 1 Innate Lymphoid Cell Immune Functions

    Directory of Open Access Journals (Sweden)

    Thibaut Perchet

    2018-06-01

    Full Text Available The Notch pathway is one of the canonical signaling pathways implicated in the development of various solid tumors. During carcinogenesis, the Notch pathway dysregulation induces tumor expression of Notch receptor ligands participating to escape the immune surveillance. The Notch pathway conditions both the development and the functional regulation of lymphoid subsets. Its importance on T cell subset polarization has been documented contrary to its action on innate lymphoid cells (ILC. We aim to analyze the effect of the Notch pathway on type 1 ILC polarization and functions after disruption of the RBPJk-dependent Notch signaling cascade. Indeed, type 1 ILC comprises conventional NK (cNK cells and type 1 helper innate lymphoid cells (ILC1 that share Notch-related functional characteristics such as the IFNg secretion downstream of T-bet expression. cNK cells have strong antitumor properties. However, data are controversial concerning ILC1 functions during carcinogenesis with models showing antitumoral capacities and others reporting ILC1 inability to control tumor growth. Using various mouse models of Notch signaling pathway depletion, we analyze the effects of its absence on type 1 ILC differentiation and cytotoxic functions. We also provide clues into its role in the maintenance of immune homeostasis in tissues. We show that modulating the Notch pathway is not only acting on tumor-specific T cell activity but also on ILC immune subset functions. Hence, our study uncovers the intrinsic Notch signaling pathway in ILC1/cNK populations and their response in case of abnormal Notch ligand expression. This study help evaluating the possible side effects mediated by immune cells different from T cells, in case of multivalent forms of the Notch receptor ligand delta 1 treatments. In definitive, it should help determining the best novel combination of therapeutic strategies in case of solid tumors.

  4. Identification of epidermal Pdx1 expression discloses different roles of Notch1 and Notch2 in murine Kras(G12D-induced skin carcinogenesis in vivo.

    Directory of Open Access Journals (Sweden)

    Pawel K Mazur

    Full Text Available BACKGROUND: The Ras and Notch signaling pathways are frequently activated during development to control many diverse cellular processes and are often dysregulated during tumorigenesis. To study the role of Notch and oncogenic Kras signaling in a progenitor cell population, Pdx1-Cre mice were utilized to generate conditional oncogenic Kras(G12D mice with ablation of Notch1 and/or Notch2. METHODOLOGY/PRINCIPAL FINDINGS: Surprisingly, mice with activated Kras(G12D and Notch1 but not Notch2 ablation developed skin papillomas progressing to squamous cell carcinoma providing evidence for Pdx1 expression in the skin. Immunostaining and lineage tracing experiments indicate that PDX1 is present predominantly in the suprabasal layers of the epidermis and rarely in the basal layer. Further analysis of keratinocytes in vitro revealed differentiation-dependent expression of PDX1 in terminally differentiated keratinocytes. PDX1 expression was also increased during wound healing. Further analysis revealed that loss of Notch1 but not Notch2 is critical for skin tumor development. Reasons for this include distinct Notch expression with Notch1 in all layers and Notch2 in the suprabasal layer as well as distinctive p21 and β-catenin signaling inhibition capabilities. CONCLUSIONS/SIGNIFICANCE: Our results provide strong evidence for epidermal expression of Pdx1 as of yet not identified function. In addition, this finding may be relevant for research using Pdx1-Cre transgenic strains. Additionally, our study confirms distinctive expression and functions of Notch1 and Notch2 in the skin supporting the importance of careful dissection of the contribution of individual Notch receptors.

  5. 14q deletions are associated with trisomy 12, NOTCH1 mutations and unmutated IGHV genes in chronic lymphocytic leukemia and small lymphocytic lymphoma.

    Science.gov (United States)

    Cosson, Adrien; Chapiro, Elise; Belhouachi, Nabila; Cung, Hong-Anh; Keren, Boris; Damm, Frederik; Algrin, Caroline; Lefebvre, Christine; Fert-Ferrer, Sandra; Luquet, Isabelle; Gachard, Nathalie; Mugneret, Francine; Terre, Christine; Collonge-Rame, Marie-Agnes; Michaux, Lucienne; Rafdord-Weiss, Isabelle; Talmant, Pascaline; Veronese, Lauren; Nadal, Nathalie; Struski, Stephanie; Barin, Carole; Helias, Catherine; Lafage, Marina; Lippert, Eric; Auger, Nathalie; Eclache, Virginie; Roos-Weil, Damien; Leblond, Veronique; Settegrana, Catherine; Maloum, Karim; Davi, Frederic; Merle-Beral, Helene; Lesty, Claude; Nguyen-Khac, Florence

    2014-08-01

    Deletions of the long arm of chromosome 14 [del(14q)] are rare but recurrently observed in mature B-cell neoplasms, particularly in chronic lymphocytic leukemia (CLL). To further characterize this aberration, we studied 81 cases with del(14q): 54 of CLL and 27 of small lymphocytic lymphoma (SLL), the largest reported series to date. Using karyotype and fluorescence in situ hybridization (FISH), the most frequent additional abnormality was trisomy 12 (tri12), observed in 28/79 (35%) cases, followed by del13q14 (12/79, 15%), delTP53 (11/80, 14%) delATM (5/79, 6%), and del6q21 (3/76, 4%). IGHV genes were unmutated in 41/53 (77%) patients, with a high frequency of IGHV1-69 (21/52, 40%). NOTCH1 gene was mutated in 14/45 (31%) patients. There was no significant difference in cytogenetic and molecular abnormalities between CLL and SLL. Investigations using FISH and SNP-array demonstrated the heterogeneous size of the 14q deletions. However, a group with the same del(14)(q24.1q32.33) was identified in 48% of cases. In this group, tri12 (P = 0.004) and NOTCH1 mutations (P = 0.02) were significantly more frequent than in the other patients. In CLL patients with del(14q), median treatment-free survival (TFS) was 27 months. In conclusion, del(14q) is associated with tri12 and with pejorative prognostic factors: unmutated IGHV genes (with over-representation of the IGHV1-69 repertoire), NOTCH1 mutations, and a short TFS. © 2014 Wiley Periodicals, Inc.

  6. Notch1 and 4 Signaling Responds to an Increasing Vascular Wall Shear Stress in a Rat Model of Arteriovenous Malformations

    Directory of Open Access Journals (Sweden)

    Jian Tu

    2014-01-01

    Full Text Available Notch signaling is suggested to promote the development and maintenance of cerebral arteriovenous malformations (AVMs, and an increasing wall shear stress (WSS contributes to AVM rupture. Little is known about whether WSS impacts Notch signaling, which is important for understanding the angiogenesis of AVMs. WSS was measured in arteriovenous fistulas (AVF surgically created in 96 rats at different time points over a period of 84 days. The expression of Notch receptors 1 and 4 and their ligands, Delta1 and 4, Jagged1, and Notch downstream gene target Hes1 was quantified in “nidus” vessels. The interaction events between Notch receptors and their ligands were quantified using proximity ligation assay. There was a positive correlation between WSS and time (r=0.97; P<0.001. The expression of Notch receptors and their ligands was upregulated following AVF formation. There was a positive correlation between time and the number of interactions between Notch receptors and their ligands aftre AVF formation (r=0.62, P<0.05 and a positive correlation between WSS and the number of interactions between Notch receptors and their ligands (r=0.87, P<0.005. In conclusion, an increasing WSS may contribute to the angiogenesis of AVMs by activation of Notch signaling.

  7. PI3K/AKT signaling inhibits NOTCH1 lysosome-mediated degradation.

    Science.gov (United States)

    Platonova, Natalia; Manzo, Teresa; Mirandola, Leonardo; Colombo, Michela; Calzavara, Elisabetta; Vigolo, Emilia; Cermisoni, Greta Chiara; De Simone, Daria; Garavelli, Silvia; Cecchinato, Valentina; Lazzari, Elisa; Neri, Antonino; Chiaramonte, Raffaella

    2015-06-06

    The pathways of NOTCH and PI3K/AKT are dysregulated in about 60% and 48% of T-cell acute lymphoblastic leukemia (T-ALL) patients, respectively. In this context, they interact and cooperate in controlling tumor cell biology. Here, we propose a novel mechanism by which the PI3K/AKT pathway regulates NOTCH1 in T-ALL, starting from the evidence that the inhibition of PI3K/AKT signaling induced by treatment with LY294002 or transient transfection with a dominant negative AKT mutant downregulates NOTCH1 protein levels and activity, without affecting NOTCH1 transcription. We showed that the withdrawal of PI3K/AKT signaling was associated to NOTCH1 phosphorylation in tyrosine residues and monoubiquitination of NOTCH1 detected by Ubiquitin capture assay. Co-immunoprecipitation assay and colocalization analysis further showed that the E3 ubiquitin ligase c-Cbl interacts and monoubiquitinates NOTCH1, activating its lysosomal degradation. These results suggest that the degradation of NOTCH1 could represent a mechanism of control by which NOTCH1 receptors are actively removed from the cell surface. This mechanism is finely regulated by the PI3K/AKT pathway in physiological conditions. In pathological conditions characterized by PI3K/AKT hyperactivation, such as T-ALL, the excessive AKT signaling could lead to NOTCH1 signaling dysregulation. Therefore, a therapeutic strategy directed to PI3K/AKT in T-ALL could contemporaneously inhibit the dysregulated NOTCH1 signaling. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates later-life Notch1-mediated T cell development and leukemogenesis

    International Nuclear Information System (INIS)

    Ahrenhoerster, Lori S.; Leuthner, Tess C.; Tate, Everett R.; Lakatos, Peter A.; Laiosa, Michael D.

    2015-01-01

    Over half of T cell acute lymphoblastic leukemia (T-ALL) patients have activating mutations in the Notch gene. Moreover, the contaminant 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is a known carcinogen that mediates its toxicity through the aryl hydrocarbon receptor (AHR), and crosstalk between activated AHR and Notch signaling pathways has previously been observed. Given the importance of Notch signaling in thymocyte development and T-ALL disease progression, we hypothesized that the activated AHR potentiates disease initiation and progression in an in vivo model of Notch1-induced thymoma. This hypothesis was tested utilizing adult and developmental exposure paradigms to TCDD in mice expressing a constitutively active Notch1 transgene (Notch ICN-TG ). Following exposure of adult Notch ICN-TG mice to a single high dose of TCDD, we observed a significant increase in the efficiency of CD8 thymocyte generation. We next exposed pregnant mice to 3 μg/kg of TCDD throughout gestation and lactation to elucidate effects of developmental AHR activation on later-life T cell development and T-ALL-like thymoma susceptibility induced by Notch1. We found that the vehicle-exposed Notch ICN-TG offspring have a peripheral T cell pool heavily biased toward the CD4 lineage, while TCDD-exposed Notch ICN-TG offspring were biased toward the CD8 lineage. Furthermore, while the vehicle-exposed NotchICN-TG mice showed increased splenomegaly and B to T cell ratios indicative of disease, mice developmentally exposed to TCDD were largely protected from disease. These studies support a model where developmental AHR activation attenuates later-life Notch1-dependent impacts on thymocyte development and disease progression. - Highlights: • Adult mice exposed to 30 μg/kg TCDD have higher efficiency of CD8 thymocyte generation. • Mice carrying a constitutively active Notch transgene were exposed to 3 μg/kg TCDD throughout development. • Progression of Notch-induced thymoma was different in

  9. Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates later-life Notch1-mediated T cell development and leukemogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenhoerster, Lori S.; Leuthner, Tess C.; Tate, Everett R.; Lakatos, Peter A.; Laiosa, Michael D., E-mail: laiosa@uwm.edu

    2015-03-01

    Over half of T cell acute lymphoblastic leukemia (T-ALL) patients have activating mutations in the Notch gene. Moreover, the contaminant 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is a known carcinogen that mediates its toxicity through the aryl hydrocarbon receptor (AHR), and crosstalk between activated AHR and Notch signaling pathways has previously been observed. Given the importance of Notch signaling in thymocyte development and T-ALL disease progression, we hypothesized that the activated AHR potentiates disease initiation and progression in an in vivo model of Notch1-induced thymoma. This hypothesis was tested utilizing adult and developmental exposure paradigms to TCDD in mice expressing a constitutively active Notch1 transgene (Notch{sup ICN-TG}). Following exposure of adult Notch{sup ICN-TG} mice to a single high dose of TCDD, we observed a significant increase in the efficiency of CD8 thymocyte generation. We next exposed pregnant mice to 3 μg/kg of TCDD throughout gestation and lactation to elucidate effects of developmental AHR activation on later-life T cell development and T-ALL-like thymoma susceptibility induced by Notch1. We found that the vehicle-exposed Notch{sup ICN-TG} offspring have a peripheral T cell pool heavily biased toward the CD4 lineage, while TCDD-exposed Notch{sup ICN-TG} offspring were biased toward the CD8 lineage. Furthermore, while the vehicle-exposed NotchICN-TG mice showed increased splenomegaly and B to T cell ratios indicative of disease, mice developmentally exposed to TCDD were largely protected from disease. These studies support a model where developmental AHR activation attenuates later-life Notch1-dependent impacts on thymocyte development and disease progression. - Highlights: • Adult mice exposed to 30 μg/kg TCDD have higher efficiency of CD8 thymocyte generation. • Mice carrying a constitutively active Notch transgene were exposed to 3 μg/kg TCDD throughout development. • Progression of Notch

  10. Molecular Characterization of Notch1 Positive Progenitor Cells in the Developing Retina.

    Directory of Open Access Journals (Sweden)

    Galina Dvoriantchikova

    Full Text Available The oscillatory expression of Notch signaling in neural progenitors suggests that both repressors and activators of neural fate specification are expressed in the same progenitors. Since Notch1 regulates photoreceptor differentiation and contributes (together with Notch3 to ganglion cell fate specification, we hypothesized that genes encoding photoreceptor and ganglion cell fate activators would be highly expressed in Notch1 receptor-bearing (Notch1+ progenitors, directing these cells to differentiate into photoreceptors or into ganglion cells when Notch1 activity is diminished. To identify these genes, we used microarray analysis to study expression profiles of whole retinas and isolated from them Notch1+ cells at embryonic day 14 (E14 and postnatal day 0 (P0. To isolate Notch1+ cells, we utilized immunomagnetic cell separation. We also used Notch3 knockout (Notch3KO animals to evaluate the contribution of Notch3 signaling in ganglion cell differentiation. Hierarchical clustering of 6,301 differentially expressed genes showed that Notch1+ cells grouped near the same developmental stage retina cluster. At E14, we found higher expression of repressors (Notch1, Hes5 and activators (Dll3, Atoh7, Otx2 of neuronal differentiation in Notch1+ cells compared to whole retinal cell populations. At P0, Notch1, Hes5, and Dll1 expression was significantly higher in Notch1+ cells than in whole retinas. Otx2 expression was more than thirty times higher than Atoh7 expression in Notch1+ cells at P0. We also observed that retinas of wild type animals had only 14% (P < 0.05 more ganglion cells compared to Notch3KO mice. Since this number is relatively small and Notch1 has been shown to contribute to ganglion cell fate specification, we suggested that Notch1 signaling may play a more significant role in RGC development than the Notch3 signaling cascade. Finally, our findings suggest that Notch1+ progenitors--since they heavily express both pro-ganglion cell (Atoh7

  11. TLX1 and NOTCH coregulate transcription in T cell acute lymphoblastic leukemia cells

    OpenAIRE

    Riz, Irene; Hawley, Teresa S; Luu, Truong V; Lee, Norman H; Hawley, Robert G

    2010-01-01

    Abstract Background The homeobox gene TLX1 (for T-cell leukemia homeobox 1, previously known as HOX11) is inappropriately expressed in a major subgroup of T cell acute lymphoblastic leukemia (T-ALL) where it is strongly associated with activating NOTCH1 mutations. Despite the recognition that these genetic lesions cooperate in leukemogenesis, there have been no mechanistic studies addressing how TLX1 and NOTCH1 functionally interact to promote the leukemic phenotype. Results Global gene expre...

  12. Context-Dependent Functional Divergence of the Notch Ligands DLL1 and DLL4 In Vivo.

    Directory of Open Access Journals (Sweden)

    Kristina Preuße

    2015-06-01

    Full Text Available Notch signalling is a fundamental pathway that shapes the developing embryo and sustains adult tissues by direct communication between ligand and receptor molecules on adjacent cells. Among the ligands are two Delta paralogues, DLL1 and DLL4, that are conserved in mammals and share a similar structure and sequence. They activate the Notch receptor partly in overlapping expression domains where they fulfil redundant functions in some processes (e.g. maintenance of the crypt cell progenitor pool. In other processes, however, they appear to act differently (e.g. maintenance of foetal arterial identity raising the questions of how similar DLL1 and DLL4 really are and which mechanism causes the apparent context-dependent divergence. By analysing mice that conditionally overexpress DLL1 or DLL4 from the same genomic locus (Hprt and mice that express DLL4 instead of DLL1 from the endogenous Dll1 locus (Dll1Dll4ki, we found functional differences that are tissue-specific: while DLL1 and DLL4 act redundantly during the maintenance of retinal progenitors, their function varies in the presomitic mesoderm (PSM where somites form in a Notch-dependent process. In the anterior PSM, every cell expresses both Notch receptors and ligands, and DLL1 is the only activator of Notch while DLL4 is not endogenously expressed. Transgenic DLL4 cannot replace DLL1 during somitogenesis and in heterozygous Dll1Dll4ki/+ mice, the Dll1Dll4ki allele causes a dominant segmentation phenotype. Testing several aspects of the complex Notch signalling system in vitro, we found that both ligands have a similar trans-activation potential but that only DLL4 is an efficient cis-inhibitor of Notch signalling, causing a reduced net activation of Notch. These differential cis-inhibitory properties are likely to contribute to the functional divergence of DLL1 and DLL4.

  13. Evidence of Aortopathy in Mice with Haploinsufficiency of Notch1 in Nos3-Null Background

    Directory of Open Access Journals (Sweden)

    Sara N. Koenig

    2015-03-01

    Full Text Available Thoracic aortic aneurysms (TAA are a significant cause of morbidity and mortality in humans. While the exact etiology is unknown, genetic factors play an important role. Mutations in NOTCH1 have been linked to bicuspid aortic valve (BAV and aortopathy in humans. The aim of this study was to determine if haploinsufficiency of Notch1 contributes to aortopathy using Notch1+/−; Nos3−/− mice. Echocardiographic analysis of Notch1+/−; Nos3−/− mice reveals effacement of the sinotubular junction and a trend toward dilation of the aortic sinus. Furthermore, examination of the proximal aorta of Notch1+/−; Nos3−/− mice reveals elastic fiber degradation, a trend toward increased matrix metalloproteinase 2 expression, and increased smooth muscle cell apoptosis, features characteristic of aneurysmal disease. Although at a lower penetrance, we also found features consistent with aortopathic changes in Notch1 heterozygote mice and in Nos3-null mice. Our findings implicate a novel role for Notch1 in aortopathy of the proximal aorta.

  14. Mutations in TSPEAR, Encoding a Regulator of Notch Signaling, Affect Tooth and Hair Follicle Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Alon Peled

    2016-10-01

    Full Text Available Despite recent advances in our understanding of the pathogenesis of ectodermal dysplasias (EDs, the molecular basis of many of these disorders remains unknown. In the present study, we aimed at elucidating the genetic basis of a new form of ED featuring facial dysmorphism, scalp hypotrichosis and hypodontia. Using whole exome sequencing, we identified 2 frameshift and 2 missense mutations in TSPEAR segregating with the disease phenotype in 3 families. TSPEAR encodes the thrombospondin-type laminin G domain and EAR repeats (TSPEAR protein, whose function is poorly understood. TSPEAR knock-down resulted in altered expression of genes known to be regulated by NOTCH and to be involved in murine hair and tooth development. Pathway analysis confirmed that down-regulation of TSPEAR in keratinocytes is likely to affect Notch signaling. Accordingly, using a luciferase-based reporter assay, we showed that TSPEAR knock-down is associated with decreased Notch signaling. In addition, NOTCH1 protein expression was reduced in patient scalp skin. Moreover, TSPEAR silencing in mouse hair follicle organ cultures was found to induce apoptosis in follicular epithelial cells, resulting in decreased hair bulb diameter. Collectively, these observations indicate that TSPEAR plays a critical, previously unrecognized role in human tooth and hair follicle morphogenesis through regulation of the Notch signaling pathway.

  15. TLX1 and NOTCH coregulate transcription in T cell acute lymphoblastic leukemia cells

    Directory of Open Access Journals (Sweden)

    Lee Norman H

    2010-07-01

    Full Text Available Abstract Background The homeobox gene TLX1 (for T-cell leukemia homeobox 1, previously known as HOX11 is inappropriately expressed in a major subgroup of T cell acute lymphoblastic leukemia (T-ALL where it is strongly associated with activating NOTCH1 mutations. Despite the recognition that these genetic lesions cooperate in leukemogenesis, there have been no mechanistic studies addressing how TLX1 and NOTCH1 functionally interact to promote the leukemic phenotype. Results Global gene expression profiling after downregulation of TLX1 and inhibition of the NOTCH pathway in ALL-SIL cells revealed that TLX1 synergistically regulated more than 60% of the NOTCH-responsive genes. Structure-function analysis demonstrated that TLX1 binding to Groucho-related TLE corepressors was necessary for maximal transcriptional regulation of the NOTCH-responsive genes tested, implicating TLX1 modulation of the NOTCH-TLE regulatory network. Comparison of the dataset to publicly available biological databases indicated that the TLX1/NOTCH-coregulated genes are frequently targeted by MYC. Gain- and loss-of-function experiments confirmed that MYC was an essential mediator of TLX1/NOTCH transcriptional output and growth promotion in ALL-SIL cells, with TLX1 contributing to the NOTCH-MYC regulatory axis by posttranscriptional enhancement of MYC protein levels. Functional classification of the TLX1/NOTCH-coregulated targets also showed enrichment for genes associated with other human cancers as well as those involved in developmental processes. In particular, we found that TLX1, NOTCH and MYC coregulate CD1B and RAG1, characteristic markers of early cortical thymocytes, and that concerted downregulation of the TLX1 and NOTCH pathways resulted in their irreversible repression. Conclusions We found that TLX1 and NOTCH synergistically regulate transcription in T-ALL, at least in part via the sharing of a TLE corepressor and by augmenting expression of MYC. We conclude that

  16. Anti-estrogen Resistance in Human Breast Tumors Is Driven by JAG1-NOTCH4-Dependent Cancer Stem Cell Activity

    Directory of Open Access Journals (Sweden)

    Bruno M. Simões

    2015-09-01

    Full Text Available Breast cancers (BCs typically express estrogen receptors (ERs but frequently exhibit de novo or acquired resistance to hormonal therapies. Here, we show that short-term treatment with the anti-estrogens tamoxifen or fulvestrant decrease cell proliferation but increase BC stem cell (BCSC activity through JAG1-NOTCH4 receptor activation both in patient-derived samples and xenograft (PDX tumors. In support of this mechanism, we demonstrate that high ALDH1 predicts resistance in women treated with tamoxifen and that a NOTCH4/HES/HEY gene signature predicts for a poor response/prognosis in 2 ER+ patient cohorts. Targeting of NOTCH4 reverses the increase in Notch and BCSC activity induced by anti-estrogens. Importantly, in PDX tumors with acquired tamoxifen resistance, NOTCH4 inhibition reduced BCSC activity. Thus, we establish that BCSC and NOTCH4 activities predict both de novo and acquired tamoxifen resistance and that combining endocrine therapy with targeting JAG1-NOTCH4 overcomes resistance in human breast cancers.

  17. An amelogenin mutation leads to disruption of the odontogenic apparatus and aberrant expression of Notch I

    Science.gov (United States)

    Chen, Xu; Li, Yong; Alawi, Faizan; Bouchard, Jessica R.; Kulkarni, Ashok B.; Gibson, Carolyn W.

    2012-01-01

    BACKGROUND Amelogenins are highly conserved proteins secreted by ameloblasts in the dental organ of developing teeth. These proteins regulate dental enamel thickness and structure in humans and mice. Mice that express an amelogenin transgene with a P70T mutation (TgP70T) develop abnormal epithelial proliferation in an amelogenin null (KO) background. Some of these cellular masses have the appearance of proliferating stratum intermedium, which is the layer adjacent to the ameloblasts in unerupted teeth. As Notch proteins are thought to constitute the developmental switch that separates ameloblasts from stratum intermedium, these signaling proteins were evaluated in normal and proliferating tissues. METHODS Mandibles were dissected for histology and immunohistochemistry using Notch I antibodies. Molar teeth were dissected for western blotting and RT-PCR for evaluation of Notch levels through imaging and statistical analyses. RESULTS Notch I was immunolocalized to ameloblasts of TgP70TKO mice, KO ameloblasts stained, but less strongly, and wild-type teeth had minimal staining. Cells within the proliferating epithelial cell masses were positive for Notch I and had an appearance reminiscent of calcifying epithelial odontogenic tumor with amyloid-like deposits. Notch I protein and mRNA were elevated in molar teeth from TgP70TKO mice. CONCLUSION Expression of TgP70T leads to abnormal structures in mandibles and maxillae of mice with the KO genetic background and these mice have elevated levels of Notch I in developing molars. As cells within the masses also express transgenic amelogenins, development of the abnormal proliferations suggests communication between amelogenin producing cells and the proliferating cells, dependent on the presence of the mutated amelogenin protein. PMID:20923441

  18. The Research Progress of SiRNA Targeting Notch1 on Tumor Cells: A Mini Review of the State of the Art

    Directory of Open Access Journals (Sweden)

    Lanfen Huo

    2016-09-01

    Full Text Available Notch signaling is a highly conserved signaling pathway, playing an important role in a variety of cell differentiation, development and regulation. Notch signaling includes Notch1-4; Notch1 gene encodes Notch1 signaling that can shorten cell cycle, enhance cell proliferation, inhibit cell differentiation, and promote apoptosis. Mutation and overexpression of the Notch1 gene may induce tumorigenesis, which plays an important role in the development of tumors across a variety of signaling pathways. Currently, using RNA interference technology (RNAi synthesizing small interference RNA (siRNA targeting Notch1 gene(siNotch1)has become a hot topic, and clinical application of gene silencing has also obtained a certain therapeutic effect. In this paper, the application of Notch1 gene silencing in tumor progress was reviewed.

  19. Human papillomavirus 16E6 and NFX1-123 potentiate notch signaling and differentiation without activating cellular arrest

    Energy Technology Data Exchange (ETDEWEB)

    Vliet-Gregg, Portia A.; Hamilton, Jennifer R. [Center for Global Infectious Disease Research, Seattle Children' s Research Institute, 1900 Ninth Ave., Seattle, WA 98101 (United States); Katzenellenbogen, Rachel A., E-mail: rkatzen@uw.edu [Center for Global Infectious Disease Research, Seattle Children' s Research Institute, 1900 Ninth Ave., Seattle, WA 98101 (United States); Department of Pediatrics, Division of Adolescent Medicine, University of Washington, Seattle WA (United States)

    2015-04-15

    High-risk human papillomavirus (HR HPV) oncoproteins bind host cell proteins to dysregulate and uncouple apoptosis, senescence, differentiation, and growth. These pathways are important for both the viral life cycle and cancer development. HR HPV16 E6 (16E6) interacts with the cellular protein NFX1-123, and they collaboratively increase the growth and differentiation master regulator, Notch1. In 16E6 expressing keratinocytes (16E6 HFKs), the Notch canonical pathway genes Hes1 and Hes5 were increased with overexpression of NFX1-123, and their expression was directly linked to the activation or blockade of the Notch1 receptor. Keratinocyte differentiation genes Keratin 1 and Keratin 10 were also increased, but in contrast their upregulation was only indirectly associated with Notch1 receptor stimulation and was fully unlinked to growth arrest, increased p21{sup Waf1/CIP1}, or decreased proliferative factor Ki67. This leads to a model of 16E6, NFX1-123, and Notch1 differently regulating canonical and differentiation pathways and entirely uncoupling cellular arrest from increased differentiation. - Highlights: • 16E6 and NFX1-123 increased the Notch canonical pathway through Notch1. • 16E6 and NFX1-123 increased the differentiation pathway indirectly through Notch1. • 16E6 and NFX1-123 increased differentiation gene expression without growth arrest. • Increased NFX1-123 with 16E6 may create an ideal cellular phenotype for HPV.

  20. Inhibition of Notch1 promotes hedgehog signalling in a HES1-dependent manner in chondrocytes and exacerbates experimental osteoarthritis.

    Science.gov (United States)

    Lin, Neng-Yu; Distler, Alfiya; Beyer, Christian; Philipi-Schöbinger, Ariella; Breda, Silvia; Dees, Clara; Stock, Michael; Tomcik, Michal; Niemeier, Andreas; Dell'Accio, Francesco; Gelse, Kolja; Mattson, Mark P; Schett, Georg; Distler, Jörg Hw

    2016-11-01

    Notch ligands and receptors have recently been shown to be differentially expressed in osteoarthritis (OA). We aim to further elucidate the functional role of Notch signalling in OA using Notch1 antisense transgenic (Notch1 AS) mice. Notch and hedgehog signalling were analysed by real-time PCR and immunohistochemistry. Notch-1 AS mice were employed as a model of impaired Notch signalling in vivo. Experimental OA was induced by destabilisation of the medial meniscus (DMM). The extent of cartilage destruction and osteophyte formation was analysed by safranin-O staining with subsequent assessment of the Osteoarthritis Research Society International (OARSI) and Mankin scores and µCT scanning. Collagen X staining was used as a marker of chondrocyte hypertrophy. The role of hairy/enhancer of split 1 (Hes-1) was investigated with knockdown and overexpression experiments. Notch signalling was activated in human and murine OA with increased expression of Jagged1, Notch-1, accumulation of the Notch intracellular domain 1 and increased transcription of Hes-1. Notch1 AS mice showed exacerbated OA with increases in OARSI scores, osteophyte formation, increased subchondral bone plate density, collagen X and osteocalcin expression and elevated levels of Epas1 and ADAM-TS5 mRNA. Inhibition of the Notch pathway induced activation of hedgehog signalling with induction of Gli-1 and Gli-2 and increased transcription of hedgehog target genes. The regulatory effects of Notch signalling on Gli-expression were mimicked by Hes-1. Inhibition of Notch signalling activates hedgehog signalling, enhances chondrocyte hypertrophy and exacerbates experimental OA including osteophyte formation. These data suggest that the activation of the Notch pathway may limit aberrant hedgehog signalling in OA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Notch signaling regulates expression of Mcl-1 and apoptosis in PPD-treated macrophages.

    Science.gov (United States)

    Palaga, Tanapat; Ratanabunyong, Siriluk; Pattarakankul, Thitiporn; Sangphech, Naunpun; Wongchana, Wipawee; Hadae, Yukihiro; Kueanjinda, Patipark

    2013-09-01

    Macrophages are cellular targets for infection by bacteria and viruses. The fate of infected macrophages plays a key role in determining the outcome of the host immune response. Apoptotic cell death of macrophages is considered to be a protective host defense that eliminates pathogens and infected cells. In this study, we investigated the involvement of Notch signaling in regulating apoptosis in macrophages treated with tuberculin purified protein derivative (PPD). Murine bone marrow-derived macrophages (BMMs) treated with PPD or infected with Mycobacterium bovis Bacillus Calmette-Guérin (BCG) induced upregulation of Notch1. This upregulation correlated well with the upregulation of the anti-apoptotic gene mcl-1 both at the transcriptional and translational levels. Decreased levels of Notch1 and Mcl-1 were observed in BMM treated with PPD when a gamma secretase inhibitor (GSI), which inhibits the processing of Notch receptors, was used. Moreover, silencing Notch1 in the macrophage-like cell line RAW264.7 decreased Mcl-1 protein expression, suggesting that Notch1 is critical for Mcl-1 expression in macrophages. A significant increase in apoptotic cells was observed upon treatment of BMM with PPD in the presence of GSI compared to the vehicle-control treated cells. Finally, analysis of the mcl-1 promoter in humans and mice revealed a conserved potential CSL/RBP-Jκ binding site. The association of Notch1 with the mcl-1 promoter was confirmed by chromatin immunoprecipitation. Taken together, these results indicate that Notch1 inhibits apoptosis of macrophages stimulated with PPD by directly controlling the mcl-1 promoter.

  2. SCL, LMO1 and Notch1 Reprogram Thymocytes into Self-Renewing Cells

    Science.gov (United States)

    Rojas-Sutterlin, Shanti; Herblot, Sabine; Hébert, Josée; Sauvageau, Guy; Lemieux, Sébastien; Lécuyer, Eric; Veiga, Diogo F. T.; Hoang, Trang

    2014-01-01

    The molecular determinants that render specific populations of normal cells susceptible to oncogenic reprogramming into self-renewing cancer stem cells are poorly understood. Here, we exploit T-cell acute lymphoblastic leukemia (T-ALL) as a model to define the critical initiating events in this disease. First, thymocytes that are reprogrammed by the SCL and LMO1 oncogenic transcription factors into self-renewing pre-leukemic stem cells (pre-LSCs) remain non-malignant, as evidenced by their capacities to generate functional T cells. Second, we provide strong genetic evidence that SCL directly interacts with LMO1 to activate the transcription of a self-renewal program coordinated by LYL1. Moreover, LYL1 can substitute for SCL to reprogram thymocytes in concert with LMO1. In contrast, inhibition of E2A was not sufficient to substitute for SCL, indicating that thymocyte reprogramming requires transcription activation by SCL-LMO1. Third, only a specific subset of normal thymic cells, known as DN3 thymocytes, is susceptible to reprogramming. This is because physiological NOTCH1 signals are highest in DN3 cells compared to other thymocyte subsets. Consistent with this, overexpression of a ligand-independent hyperactive NOTCH1 allele in all immature thymocytes is sufficient to sensitize them to SCL-LMO1, thereby increasing the pool of self-renewing cells. Surprisingly, hyperactive NOTCH1 cannot reprogram thymocytes on its own, despite the fact that NOTCH1 is activated by gain of function mutations in more than 55% of T-ALL cases. Rather, elevating NOTCH1 triggers a parallel pathway involving Hes1 and Myc that dramatically enhances the activity of SCL-LMO1 We conclude that the acquisition of self-renewal and the genesis of pre-LSCs from thymocytes with a finite lifespan represent a critical first event in T-ALL. Finally, LYL1 and LMO1 or LMO2 are co-expressed in most human T-ALL samples, except the cortical T subtype. We therefore anticipate that the self-renewal network

  3. O-fucosylation of the notch ligand mDLL1 by POFUT1 is dispensable for ligand function.

    Directory of Open Access Journals (Sweden)

    Julia Müller

    Full Text Available Fucosylation of Epidermal Growth Factor-like (EGF repeats by protein O-fucosyltransferase 1 (POFUT1 in vertebrates, OFUT1 in Drosophila is pivotal for NOTCH function. In Drosophila OFUT1 also acts as chaperone for Notch independent from its enzymatic activity. NOTCH ligands are also substrates for POFUT1, but in Drosophila OFUT1 is not essential for ligand function. In vertebrates the significance of POFUT1 for ligand function and subcellular localization is unclear. Here, we analyze the importance of O-fucosylation and POFUT1 for the mouse NOTCH ligand Delta-like 1 (DLL1. We show by mass spectral glycoproteomic analyses that DLL1 is O-fucosylated at the consensus motif C²XXXX(S/TC³ (where C² and C³ are the second and third conserved cysteines within the EGF repeats found in EGF repeats 3, 4, 7 and 8. A putative site with only three amino acids between the second cysteine and the hydroxy amino acid within EGF repeat 2 is not modified. DLL1 proteins with mutated O-fucosylation sites reach the cell surface and accumulate intracellularly. Likewise, in presomitic mesoderm cells of POFUT1 deficient embryos DLL1 is present on the cell surface, and in mouse embryonic fibroblasts lacking POFUT1 the same relative amount of overexpressed wild type DLL1 reaches the cell surface as in wild type embryonic fibroblasts. DLL1 expressed in POFUT1 mutant cells can activate NOTCH, indicating that POFUT1 is not required for DLL1 function as a Notch ligand.

  4. Overexpression of protein O-fucosyltransferase 1 accelerates hepatocellular carcinoma progression via the Notch signaling pathway

    International Nuclear Information System (INIS)

    Ma, Lijie; Dong, Pingping; Liu, Longzi; Gao, Qiang; Duan, Meng; Zhang, Si; Chen, She; Xue, Ruyi; Wang, Xiaoying

    2016-01-01

    Aberrant activation of Notch signaling frequently occurs in liver cancer, and is associated with liver malignancies. However, the mechanisms regulating pathologic Notch activation in hepatocellular carcinoma (HCC) remain unclear. Protein O-fucosyltransferase 1 (Pofut1) catalyzes the addition of O-linked fucose to the epidermal growth factor-like repeats of Notch. In the present study, we detected the expression of Pofut1 in 8 HCC cell lines and 253 human HCC tissues. We reported that Pofut1 was overexpressed in HCC cell lines and clinical HCC tissues, and Pofut1 overexpression clinically correlated with the unfavorable survival and high disease recurrence in HCC. The in vitro assay demonstrated that Pofut1 overexpression accelerated the cell proliferation and migration in HCC cells. Furthermore, Pofut1 overexpression promoted the binding of Notch ligand Dll1 to Notch receptor, and hence activated Notch signaling pathway in HCC cells, indicating that Pofut1 overexpression could be a reason for the aberrant activation of Notch signaling in HCC. Taken together, our findings indicated that an aberrant activated Pofut1-Notch pathway was involved in HCC progression, and blockage of this pathway could be a promising strategy for the therapy of HCC. - Highlights: • Pofut1 overexpression in HCC was correlated with aggressive tumor behaviors. • Pofut1 overexpression in HCC was associated with poor prognosis. • Pofut1 promoted cell proliferation, migration and invasion in hepatoma cells. • Pofut1 activated Notch signaling pathway in hepatoma cells.

  5. Overexpression of protein O-fucosyltransferase 1 accelerates hepatocellular carcinoma progression via the Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lijie [Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai (China); Dong, Pingping [Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai (China); Liu, Longzi; Gao, Qiang; Duan, Meng [Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai (China); Zhang, Si; Chen, She [Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Xue, Ruyi, E-mail: xue.ruyi@zs-hospital.sh.cn [Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai (China); Wang, Xiaoying, E-mail: xiaoyingwang@fudan.edu.cn [Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai (China)

    2016-04-29

    Aberrant activation of Notch signaling frequently occurs in liver cancer, and is associated with liver malignancies. However, the mechanisms regulating pathologic Notch activation in hepatocellular carcinoma (HCC) remain unclear. Protein O-fucosyltransferase 1 (Pofut1) catalyzes the addition of O-linked fucose to the epidermal growth factor-like repeats of Notch. In the present study, we detected the expression of Pofut1 in 8 HCC cell lines and 253 human HCC tissues. We reported that Pofut1 was overexpressed in HCC cell lines and clinical HCC tissues, and Pofut1 overexpression clinically correlated with the unfavorable survival and high disease recurrence in HCC. The in vitro assay demonstrated that Pofut1 overexpression accelerated the cell proliferation and migration in HCC cells. Furthermore, Pofut1 overexpression promoted the binding of Notch ligand Dll1 to Notch receptor, and hence activated Notch signaling pathway in HCC cells, indicating that Pofut1 overexpression could be a reason for the aberrant activation of Notch signaling in HCC. Taken together, our findings indicated that an aberrant activated Pofut1-Notch pathway was involved in HCC progression, and blockage of this pathway could be a promising strategy for the therapy of HCC. - Highlights: • Pofut1 overexpression in HCC was correlated with aggressive tumor behaviors. • Pofut1 overexpression in HCC was associated with poor prognosis. • Pofut1 promoted cell proliferation, migration and invasion in hepatoma cells. • Pofut1 activated Notch signaling pathway in hepatoma cells.

  6. Expression of estrogen receptor beta in the breast carcinoma of BRCA1 mutation carriers

    International Nuclear Information System (INIS)

    Litwiniuk, Maria M; Rożnowski, Krzysztof; Filas, Violetta; Godlewski, Dariusz D; Stawicka, Małgorzata; Kaleta, Remigiusz; Bręborowicz, Jan

    2008-01-01

    Breast cancers (BC) in women carrying mutations in BRCA1 gene are more frequently estrogen receptor negative than the nonhereditary BC. Nevertheless, tamoxifen has been found to have a protective effect in preventing contralateral tumors in BRCA1 mutation carriers. The identification of the second human estrogen receptor, ERβ, raised a question of its role in hereditary breast cancer. The aim of this study was to assess the frequency of ERα, ERβ, PgR (progesterone receptor) and HER-2 expression in breast cancer patients with mutated BRCA1 gene and in the control group. The study group consisted of 48 women with BRCA1 gene mutations confirmed by multiplex PCR assay. The patients were tested for three most common mutations of BRCA1 affecting the Polish population (5382insC, C61G, 4153delA). Immunostaining for ERα, ERβ and PgR (progesterone receptor) was performed using monoclonal antibodies against ERα, PgR (DakoCytomation), and polyclonal antibody against ERβ (Chemicon). The EnVision detection system was applied. The study population comprised a control group of 120 BC operated successively during the years 1998–99. The results of our investigation showed that BRCA1 mutation carriers were more likely to have ERα-negative breast cancer than those in the control group. Only 14.5% of BRCA1-related cancers were ERα-positive compared with 57.5% in the control group (P < 0.0001). On the contrary, the expression of ERβ protein was observed in 42% of BRCA1-related tumors and in 55% of the control group. An interesting finding was that most hereditary cancers (75% of the whole group) were triple-negative: ERα(-)/PgR(-)/HER-2(-) but almost half of this group (44.4%) showed the expression of ERβ. In the case of BRCA1-associated tumors the expression of ERβ was significantly higher than the expression of ERα. This may explain the effectiveness of tamoxifen in preventing contralateral breast cancer development in BRCA1 mutation carriers

  7. Analysis list: NOTCH1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NOTCH1 Blood + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/NOTCH1.1....tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/NOTCH1.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/NOTC...H1.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/NOTCH1.Blood.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/Blood.gml ...

  8. The common oncogenomic program of NOTCH1 and NOTCH3 signaling in T-cell acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Sung Hee Choi

    Full Text Available Notch is a major oncogenic driver in T cell acute lymphoblastic leukemia (T-ALL, in part because it binds to an enhancer that increases expression of MYC. Here, we exploit the capacity of activated NOTCH1 and NOTCH3 to induce T-ALL, despite substantial divergence in their intracellular regions, as a means to elucidate a broad, common Notch-dependent oncogenomic program through systematic comparison of the transcriptomes and Notch-bound genomic regulatory elements of NOTCH1- and NOTCH3-dependent T-ALL cells. ChIP-seq studies show a high concordance of functional NOTCH1 and NOTCH3 genomic binding sites that are enriched in binding motifs for RBPJ, the transcription factor that recruits activated Notch to DNA. The interchangeability of NOTCH1 and NOTCH3 was confirmed by rescue of NOTCH1-dependent T-ALL cells with activated NOTCH3 and vice versa. Despite remarkable overall similarity, there are nuanced differences in chromatin landscapes near critical common Notch target genes, most notably at a Notch-dependent enhancer that regulates MYC, which correlates with responsiveness to Notch pathway inhibitors. Overall, a common oncogenomic program driven by binding of either Notch is sufficient to maintain T-ALL cell growth, whereas cell-context specific differences appear to influence the response of T-ALL cells to Notch inhibition.

  9. Disease-associated extracellular loop mutations in the adhesion G protein-coupled receptor G1 (ADGRG1; GPR56) differentially regulate downstream signaling.

    Science.gov (United States)

    Kishore, Ayush; Hall, Randy A

    2017-06-09

    Mutations to the adhesion G protein-coupled receptor ADGRG1 (G1; also known as GPR56) underlie the neurological disorder bilateral frontoparietal polymicrogyria. Disease-associated mutations in G1 studied to date are believed to induce complete loss of receptor function through disruption of either receptor trafficking or signaling activity. Given that N-terminal truncation of G1 and other adhesion G protein-coupled receptors has been shown to significantly increase the receptors' constitutive signaling, we examined two different bilateral frontoparietal polymicrogyria-inducing extracellular loop mutations (R565W and L640R) in the context of both full-length and N-terminally truncated (ΔNT) G1. Interestingly, we found that these mutations reduced surface expression of full-length G1 but not G1-ΔNT in HEK-293 cells. Moreover, the mutations ablated receptor-mediated activation of serum response factor luciferase, a classic measure of Gα 12/13 -mediated signaling, but had no effect on G1-mediated signaling to nuclear factor of activated T cells (NFAT) luciferase. Given these differential signaling results, we sought to further elucidate the pathway by which G1 can activate NFAT luciferase. We found no evidence that ΔNT activation of NFAT is dependent on Gα q/11 -mediated or β-arrestin-mediated signaling but rather involves liberation of Gβγ subunits and activation of calcium channels. These findings reveal that disease-associated mutations to the extracellular loops of G1 differentially alter receptor trafficking, depending on the presence of the N terminus, and differentially alter signaling to distinct downstream pathways. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Notch and presenilin regulate cellular expansion and cytokine secretion but cannot instruct Th1/Th2 fate acquisition.

    Directory of Open Access Journals (Sweden)

    Chin-Tong Ong

    2008-07-01

    Full Text Available Recent reports suggested that Delta1, 4 and Jagged1, 2 possessed the ability to instruct CD4(+ T cell into selection of Th1 or Th2 fates, respectively, although the underlying mechanism endowing the cleaved Notch receptor with memory of ligand involved in its activation remains elusive. To examine this, we prepared artificial antigen-presenting cells expressing either DLL1 or Jag1. Although both ligands were efficient in inducing Notch2 cleavage and activation in CD4(+ T or reporter cells, the presence of Lunatic Fringe in CD4(+ T cells inhibited Jag1 activation of Notch1 receptor. Neither ligand could induce Th1 or Th2 fate choice independently of cytokines or redirect cytokine-driven Th1 or Th2 development. Instead, we find that Notch ligands only augment cytokine production during T cell differentiation in the presence of polarizing IL-12 and IL-4. Moreover, the differentiation choices of naïve CD4(+ T cells lacking gamma-secretase, RBP-J, or both in response to polarizing cytokines revealed that neither presenilin proteins nor RBP-J were required for cytokine-induced Th1/Th2 fate selection. However, presenilins facilitate cellular proliferation and cytokine secretion in an RBP-J (and thus, Notch independent manner. The controversies surrounding the role of Notch and presenilins in Th1/Th2 polarization may reflect their role as genetic modifiers of T-helper cells differentiation.

  11. Potential involvement of Notch1 signalling in the pathogenesis of primary cutaneous CD30-positive lymphoproliferative disorders

    DEFF Research Database (Denmark)

    Kamstrup, M.R.; Ralfkiaer, E.; Skovgaard, G.L.

    2008-01-01

    Background The central role of Notch signalling in T-cell development and oncogenesis raises the question of the importance of this pathway in cutaneous T-cell lymphomas. Objectives To investigate the pattern of expression of Notch and its ligands, Jagged and Delta, in skin samples of primary...... obtained from three patients with LyP and two patients with primary cutaneous ALCL. Results We identified single Notch1-positive cells or small clusters of atypical cells in LyP. Similarly, strongly positive Jagged1 cells tended to be localized in clusters. Primary cutaneous ALCL had higher expression...... of Notch1 and Jagged1 compared with LyP. Cells expressing Notch1 and Jagged1 were colocalized and a subset of cells expressed both the receptor and the ligand. The expression of the ligand Delta1 was low to undetectable in both types of lymphoproliferations. A subpopulation of lymphoma cells was found...

  12. Patients with Obesity Caused by Melanocortin-4 Receptor Mutations Can Be Treated with a Glucagon-like Peptide-1 Receptor Agonist

    DEFF Research Database (Denmark)

    Iepsen, Eva W; Zhang, Jinyi; Thomsen, Henrik S

    2018-01-01

    Pathogenic mutations in the appetite-regulating melanocortin-4 receptor (MC4R) represent the most common cause of monogenic obesity with limited treatment options. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) cause weight loss by reducing appetite. We assessed the effect of the GLP-1 RA...... liraglutide 3.0 mg for 16 weeks in 14 obese individuals with pathogenic MC4R mutations (BMI 37.5 ± 6.8) and 28 matched control participants without MC4R mutation (BMI 36.8 ± 4.8). Liraglutide decreased body weight by 6.8 kg ± 1.8 kg in individuals with pathogenic MC4R mutations and by 6.1 kg ± 1.2 kg...... in control participants. Total body fat, waist circumference, and fasting and postprandial glucose concentrations similarly decreased in both groups. Thus, liraglutide induced an equal, clinically significant weight loss of 6% in both groups, indicating that the appetite-reducing effect of liraglutide...

  13. The adhesion force of Notch with Delta and the rate of Notch signaling.

    Science.gov (United States)

    Ahimou, Francois; Mok, Lee-Peng; Bardot, Boris; Wesley, Cedric

    2004-12-20

    Notch signaling is repeatedly used during animal development to specify cell fates. Using atomic force microscopy on live cells, chemical inhibitors, and conventional analyses, we show that the rate of Notch signaling is linked to the adhesion force between cells expressing Notch receptors and Delta ligand. Both the Notch extracellular and intracellular domains are required for the high adhesion force with Delta. This high adhesion force is lost within minutes, primarily due to the action of Presenilin on Notch. Reduced turnover or Delta pulling accelerate this loss. These data suggest that strong adhesion between Notch and Delta might serve as a booster for initiating Notch signaling at a high rate.

  14. Manic fringe inhibits tumor growth by suppressing Notch3 degradation in lung cancer.

    Science.gov (United States)

    Yi, Fuming; Amarasinghe, Baru; Dang, Thao P

    2013-01-01

    Notch signaling plays an essential role in development as well as cancer. We have previously shown that Notch3 is important for lung cancer growth and survival. Notch receptors are activated through the interaction with their ligands, resulting in proteolytic cleavage of the receptors. This interaction is modulated by Fringe, a family of fucose-specific β1,3 N-acetylglucosaminyltransferases that modify the extracellular subunit of Notch receptors. Studies in developmental models showed that Fringe enhances Notch's response to Delta ligands at the expense of Jagged ligands. We observed that Manic Fringe expression is down-regulated in lung cancer. Since Jagged1, a known ligand for Notch3, is often over-expressed in lung cancer, we hypothesized that Fringe negatively regulates Notch3 activation. In this study, we show that re-expression of Manic Fringe down-regulates Notch3 target genes HES1 and HeyL and reduces tumor phenotype in vitro and in vivo. The mechanism for this phenomenon appears to be related to modulation of Notch3 protein stability. Proteasome inhibition reverses Manic Fringe-induced protein turnover. Taken together, our data provide the first evidence that Manic Fringe functions as a tumor suppressor in the lung and that the mechanism of its anti-tumor activity is mediated by inhibition of Notch3 activation.

  15. The Role of Notch Signaling Pathway in Breast Cancer Pathogenesis

    Science.gov (United States)

    2005-07-01

    breast cancer cells, I tested whether ErbB2 overexpression will cooperate with Notch in HMLE cells. While overexpression of activated Notch1 failed to...tyrosine kinase upstream of Ras normally found overexpressed in many breast cancers , also failed to transform HMLE cells. These observations suggested...cooperation between Notch1IC and ErbB2 signaling in transforming HMLE cells. Breast cancers typically do not harbor oncogenic Ras mutations; nevertheless

  16. Genetic screens to identify new Notch pathway mutants in Drosophila.

    Science.gov (United States)

    Giagtzoglou, Nikolaos

    2014-01-01

    Notch signaling controls a wide range of developmental processes, including proliferation, apoptosis, and cell fate specification during both development and adult tissue homeostasis. The functional versatility of the Notch signaling pathway is tightly linked with the complexity of its regulation in different cellular contexts. To unravel the complexity of Notch signaling, it is important to identify the different components of the Notch signaling pathway. A powerful strategy to accomplish this task is based on genetic screens. Given that the developmental context of signaling is important, these screens should be customized to specific cell populations or tissues. Here, I describe how to perform F1 clonal forward genetic screens in Drosophila to identify novel components of the Notch signaling pathway. These screens combine a classical EMS (ethyl methanesulfonate) chemical mutagenesis protocol along with clonal analysis via FRT-mediated mitotic recombination. These F1 clonal screens allow rapid phenotypic screening within clones of mutant cells induced at specific developmental stages and in tissues of interest, bypassing the pleiotropic effects of isolated mutations. More importantly, since EMS mutations have been notoriously difficult to map to specific genes in the past, I briefly discuss mapping methods that allow rapid identification of the causative mutations.

  17. Opposing regulation of PROX1 by interleukin-3 receptor and NOTCH directs differential host cell fate reprogramming by Kaposi sarcoma herpes virus.

    Directory of Open Access Journals (Sweden)

    Jaehyuk Yoo

    Full Text Available Lymphatic endothelial cells (LECs are differentiated from blood vascular endothelial cells (BECs during embryogenesis and this physiological cell fate specification is controlled by PROX1, the master regulator for lymphatic development. When Kaposi sarcoma herpes virus (KSHV infects host cells, it activates the otherwise silenced embryonic endothelial differentiation program and reprograms their cell fates. Interestingly, previous studies demonstrated that KSHV drives BECs to acquire a partial lymphatic phenotype by upregulating PROX1 (forward reprogramming, but stimulates LECs to regain some BEC-signature genes by downregulating PROX1 (reverse reprogramming. Despite the significance of this KSHV-induced bidirectional cell fate reprogramming in KS pathogenesis, its underlying molecular mechanism remains undefined. Here, we report that IL3 receptor alpha (IL3Rα and NOTCH play integral roles in the host cell type-specific regulation of PROX1 by KSHV. In BECs, KSHV upregulates IL3Rα and phosphorylates STAT5, which binds and activates the PROX1 promoter. In LECs, however, PROX1 was rather downregulated by KSHV-induced NOTCH signal via HEY1, which binds and represses the PROX1 promoter. Moreover, PROX1 was found to be required to maintain HEY1 expression in LECs, establishing a reciprocal regulation between PROX1 and HEY1. Upon co-activation of IL3Rα and NOTCH, PROX1 was upregulated in BECs, but downregulated in LECs. Together, our study provides the molecular mechanism underlying the cell type-specific endothelial fate reprogramming by KSHV.

  18. Angiogenesis-related protein expression in bevacizumab-treated metastatic colorectal cancer: NOTCH1 detrimental to overall survival

    International Nuclear Information System (INIS)

    Paiva, Tadeu Ferreira Jr.; Jesus, Victor Hugo Fonseca de; Marques, Raul Amorim; Costa, Alexandre André Balieiro Anastácio da; Macedo, Mariana Petaccia de; Peresi, Patricia Maria; Damascena, Aline; Rossi, Benedito Mauro; Begnami, Maria Dirlei; Lima, Vladmir Cláudio Cordeiro de

    2015-01-01

    The development of targeted therapies has undoubtedly broadened therapeutic options for patients with colorectal cancer (CRC). The use of bevacizumab to reduce angiogenesis has been associated with improved clinical outcomes. However, an urgent need for prognostic/predictive biomarkers for anti-angiogenic therapies still exists. Clinical data of 105 CRC patients treated with bevacizumab in conjunction with chemotherapy were analyzed. The expression of vascular endothelial growth factor (VEGF) receptors, NOTCH1 receptor and its ligand DLL4 were determined by immunohistochemistry. Tumor samples were arranged on a tissue microarray. The association between protein expression and clinicopathological characteristics and outcomes was determined. Bevacizumab was administered as a first-line of treatment in 70.5 % of our cases. The median progression-free survival (PFS) was 10.2 months. The median overall survival (OS) of the total cohort was 24.4 months. Bevacizumab, as the first-line of treatment, and the presence of liver metastasis were independently associated with objective response rate. Membrane VEGFR1 and VEGFR3 expressions were associated with the presence of lung metastasis; interestingly, VEGFR3 was associated with less liver metastasis. NOTCH1 expression was associated with lymph node metastasis. There was a trend toward association between improved PFS and lower NOTCH1 expression (p = 0.06). Improved OS was significantly associated with lower NOTCH1 expression (p = 0.01). In a multivariate analysis, ECOG (Eastern Cooperative Oncology Group) performance status, liver metastasis, histological grade, and NOTCH1 expression were independently associated with OS. Our findings illustrated the expression profile of angiogenesis-related proteins and their association with clinicopathological characteristics and outcomes. NOTCH1 expression is a detrimental prognostic factor in metastatic CRC patients treated with chemotherapy plus bevacizumab. The online version of

  19. Notch1 Mediates Preconditioning Protection Induced by GPER in Normotensive and Hypertensive Female Rat Hearts

    Directory of Open Access Journals (Sweden)

    Carmine Rocca

    2018-05-01

    Full Text Available G protein-coupled estrogen receptor (GPER is an estrogen receptor expressed in the cardiovascular system. G1, a selective GPER ligand, exerts cardiovascular effects through activation of the PI3K-Akt pathway and Notch signaling in normotensive animals. Here, we investigated whether the G1/GPER interaction is involved in the limitation of infarct size, and improvement of post-ischemic contractile function in female spontaneous hypertensive rat (SHR hearts. In this model, we also studied Notch signaling and key components of survival pathway, namely PI3K-Akt, nitric oxide synthase (NOS and mitochondrial K+-ATP (MitoKATP channels. Rat hearts isolated from female SHR underwent 30 min of global, normothermic ischemia and 120 min of reperfusion. G1 (10 nM alone or specific inhibitors of GPER, PI3K/NOS and MitoKATP channels co-infused with G1, just before I/R, were studied. The involvement of Notch1 was studied by Western blotting. Infarct size and left ventricular pressure were measured. To confirm endothelial-independent G1-induced protection by Notch signaling, H9c2 cells were studied with specific inhibitor, N-[N-(3,5 difluorophenacetyl-L-alanyl]-S-phenylglycine t-butyl ester (DAPT, 5 μM, of this signaling. Using DAPT, we confirmed the involvement of G1/Notch signaling in limiting infarct size in heart of normotensive animals. In the hypertensive model, G1-induced reduction in infarct size and improvement of cardiac function were prevented by the inhibition of GPER, PI3K/NOS, and MitoKATP channels. The involvement of Notch was confirmed by western blot in the hypertensive model and by the specific inhibitor in the normotensive model and cardiac cell line. Our results suggest that GPERs play a pivotal role in mediating preconditioning cardioprotection in normotensive and hypertensive conditions. The G1-induced protection involves Notch1 and is able to activate the survival pathway in the presence of comorbidity. Several pathological conditions

  20. The adhesion force of Notch with Delta and the rate of Notch signaling

    OpenAIRE

    Ahimou, Francois; Mok, Lee-Peng; Bardot, Boris; Wesley, Cedric

    2004-01-01

    Notch signaling is repeatedly used during animal development to specify cell fates. Using atomic force microscopy on live cells, chemical inhibitors, and conventional analyses, we show that the rate of Notch signaling is linked to the adhesion force between cells expressing Notch receptors and Delta ligand. Both the Notch extracellular and intracellular domains are required for the high adhesion force with Delta. This high adhesion force is lost within minutes, primarily due to the action of ...

  1. The non-canonical NOTCH1 ligand Delta-like 1 homolog (DLK1) self interacts in mammals

    DEFF Research Database (Denmark)

    Traustadóttir, Gunnhildur Ásta; Jensen, Charlotte Harken; Garcia Ramirez, Jose Javier

    2017-01-01

    the proposed DLK1-IGFBP1 interaction was not supported by MTH. Very little has previously been described on the DLK1 self-interaction. Herein, we showed by immunoprecipitation as well as Sulfo-SBED label transfer that the DLK1-DLK1 interaction likely is part of Dlk1's function in preadipocytes. Furthermore our......Delta-like 1 homolog (DLK1) is an imprinted gene, which is widely expressed during mammalian development and plays a pivotal role in differentiation of various tissue types. Most recently, we have shown that DLK1 interacts with NOTCH1, yet several Notch independent mechanisms have previously been...... suggested as well, but only poorly confirmed in a mammalian context. In the present study, we employed the mammalian two-hybrid (MTH) system, a genetic in vivo protein-protein interaction system, to show robust DLK1-DLK1, DLK1-FnI (Fibronectin) and DLK1-CFR (cysteine-rich FGF receptor) interactions, whereas...

  2. An Evolutionary-Conserved Function of Mammalian Notch Family Members as Cell Adhesion Molecules

    Science.gov (United States)

    Murata, Akihiko; Yoshino, Miya; Hikosaka, Mari; Okuyama, Kazuki; Zhou, Lan; Sakano, Seiji; Yagita, Hideo; Hayashi, Shin-Ichi

    2014-01-01

    Notch family members were first identified as cell adhesion molecules by cell aggregation assays in Drosophila studies. However, they are generally recognized as signaling molecules, and it was unclear if their adhesion function was restricted to Drosophila. We previously demonstrated that a mouse Notch ligand, Delta-like 1 (Dll1) functioned as a cell adhesion molecule. We here investigated whether this adhesion function was conserved in the diversified mammalian Notch ligands consisted of two families, Delta-like (Dll1, Dll3 and Dll4) and Jagged (Jag1 and Jag2). The forced expression of mouse Dll1, Dll4, Jag1, and Jag2, but not Dll3, on stromal cells induced the rapid and enhanced adhesion of cultured mast cells (MCs). This was attributed to the binding of Notch1 and Notch2 on MCs to each Notch ligand on the stromal cells themselves, and not the activation of Notch signaling. Notch receptor-ligand binding strongly supported the tethering of MCs to stromal cells, the first step of cell adhesion. However, the Jag2-mediated adhesion of MCs was weaker and unlike other ligands appeared to require additional factor(s) in addition to the receptor-ligand binding. Taken together, these results demonstrated that the function of cell adhesion was conserved in mammalian as well as Drosophila Notch family members. Since Notch receptor-ligand interaction plays important roles in a broad spectrum of biological processes ranging from embryogenesis to disorders, our finding will provide a new perspective on these issues from the aspect of cell adhesion. PMID:25255288

  3. Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Peng-Yeh [Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan, ROC (China); Tsai, Chong-Bin [Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan, ROC (China); Department of Ophthalmology, Chiayi Christian Hospital, Chiayi 600, Taiwan, ROC (China); Tseng, Min-Jen, E-mail: biomjt@ccu.edu.tw [Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan, ROC (China)

    2013-01-18

    Highlights: ► Notch4IC modulates the ERK pathway and cell cycle to promote 3T3-L1 proliferation. ► Notch4IC facilitates 3T3-L1 differentiation by up-regulating proadipogenic genes. ► Notch4IC promotes proliferation during the early stage of 3T3-L1 adipogenesis. ► Notch4IC enhances differentiation during subsequent stages of 3T3-L1 adipogenesis. -- Abstract: Adipose tissue is composed of adipocytes, which differentiate from precursor cells in a process called adipogenesis. Many signal molecules are involved in the transcriptional control of adipogenesis, including the Notch pathway. Previous adipogenic studies of Notch have focused on Notch1 and HES1; however, the role of other Notch receptors in adipogenesis remains unclear. Q-RT-PCR analyses showed that the augmentation of Notch4 expression during the differentiation of 3T3-L1 preadipocytes was comparable to that of Notch1. To elucidate the role of Notch4 in adipogenesis, the human active form Notch4 (N4IC) was transiently transfected into 3T3-L1 cells. The expression of HES1, Hey1, C/EBPδ and PPARγ was up-regulated, and the expression of Pref-1, an adipogenic inhibitor, was down-regulated. To further characterize the effect of N4IC in adipogenesis, stable cells expressing human N4IC were established. The expression of N4IC promoted proliferation and enhanced differentiation of 3T3-L1 cells compared with those of control cells. These data suggest that N4IC promoted proliferation through modulating the ERK pathway and the cell cycle during the early stage of 3T3-L1 adipogenesis and facilitated differentiation through up-regulating adipogenic genes such as C/EBPα, PPARγ, aP2, LPL and HSL during the middle and late stages of 3T3-L1 adipogenesis.

  4. dlk acts as a negative regulator of Notch1 activation through interactions with specific EGF-like repeats

    International Nuclear Information System (INIS)

    Baladron, Victoriano; Ruiz-Hidalgo, Maria Jose; Nueda, Maria Luisa; Diaz-Guerra, Maria Jose M.; Garcia-Ramirez, Jose Javier; Bonvini, Ezio; Gubina, Elena; Laborda, Jorge

    2005-01-01

    The protein dlk, encoded by the Dlk1 gene, belongs to the Notch epidermal growth factor (EGF)-like family of receptors and ligands, which participate in cell fate decisions during development. The molecular mechanisms by which dlk regulates cell differentiation remain unknown. By using the yeast two-hybrid system, we found that dlk interacts with Notch1 in a specific manner. Moreover, by using luciferase as a reporter gene under the control of a CSL/RBP-Jk/CBF-1-dependent promoter in the dlk-negative, Notch1-positive Balb/c 14 cell line, we found that addition of synthetic dlk EGF-like peptides to the culture medium or forced expression of dlk decreases endogenous Notch activity. Furthermore, the expression of the gene Hes-1, a target for Notch1 activation, diminishes in confluent Balb/c14 cells transfected with an expression construct encoding for the extracellular EGF-like region of dlk. The expression of Dlk1 and Notch1 increases in 3T3-L1 cells maintained in a confluent state for several days, which is associated with a concomitant decrease in Hes-1 expression. On the other hand, the decrease of Dlk1 expression in 3T3-L1 cells by antisense cDNA transfection is associated with an increase in Hes-1 expression. These results suggest that dlk functionally interacts in vivo with Notch1, which may lead to the regulation of differentiation processes modulated by Notch1 activation and signaling, including adipogenesis

  5. A substrate specificity-determining unit of three Lin12-Notch repeat modules is formed in trans within the pappalysin-1 dimer and requires a sequence stretch C-terminal to the third module

    DEFF Research Database (Denmark)

    Weyer, Kathrin; Boldt, Henning B; Poulsen, Christine B

    2007-01-01

    -A cleaves IGFBP-4 and IGFBP-5, whereas PAPP-A2 cleaves only IGFBP-5. The pappalysins contain three Lin12-Notch repeat (LNR1-3) modules, previously considered unique to the Notch receptor family in which they function to regulate receptor cleavage. In contrast to the Notch receptor where three LNR modules...

  6. Notch signaling and ghost cell fate in the calcifying cystig odontogenic tumor

    Directory of Open Access Journals (Sweden)

    Siar CH

    2011-11-01

    Full Text Available Abstract Notch signaling is an evolutionarily conserved mechanism that enables adjacent cells to adopt different fates. Ghost cells (GCs are anucleate cells with homogeneous pale eosinophilic cytoplasm and very pale to clear central areas (previous nucleus sites. Although GCs are present in a variety of odontogenic lesions notably the calcifying cystic odontogenic tumor (GCOT, their nature and process of formation remains elusive. The aim of this study was to investigate the role of Notch signaling in the cell fate specification of GCs in CCOT. Immunohistochemical staining for four Notch receptors (Notch1, Notch2, Notch3 and Notch4 and three ligands (Jagged1, Jagged2 and Delta1 was performed on archival tissues of five CCOT cases. Level of positivity was quantified as negative (0, mild (+, moderate (2+ and strong (3+. Results revealed that GCs demonstrated overexpression for Notch1 and Jagged1 suggesting that Notch1Jagged1 signaling might serve as the main transduction mechanism in cell fate decision for GCs in CCOT. Protein localizations were largely membranous and/or cytoplasmic. Mineralized GCs also stained positive implicating that the calcification process might be associated with upregulation of these molecules. The other Notch receptors and ligands were weak to absent in GCs and tumoral epithelium. Stromal endothelium and fibroblasts were stained variably positive.

  7. Part 1: Notch-sparing γ-secretase inhibitors: The identification of novel naphthyl and benzofuranyl amide analogs.

    Science.gov (United States)

    Lu, Dai; Wei, Han-Xun; Zhang, Jing; Gu, Yongli; Osenkowski, Pamela; Ye, Wenjuan; Selkoe, Dennis J; Wolfe, Michael S; Augelli-Szafran, Corinne E

    2016-05-01

    γ-Secretase is one of two proteases directly involved in the production of the amyloid β-peptide (Aβ), which is pathogenic in Alzheimer's disease. Inhibition of γ-secretase to suppress the production of Aβ should not block processing of one of its alternative substrates, Notch1 receptors, as interference with Notch1 signaling leads to severe toxic effects. In the course of our studies to identify γ-secretase inhibitors with selectivity for APP over Notch, 1 [3-(benzyl(isopropyl)amino)-1-(naphthalen-2-yl)propan-1-one] was found to inhibit γ-secretase-mediated Aβ production without interfering with γ-secretase-mediated Notch processing in purified enzyme assays. As 1 is chemically unstable, efforts to increase the stability of this compound led to the identification of 2 [naphthalene-2-carboxylic acid benzyl-isopropyl-amide] which showed similar biological activity to compound 1. Synthesis and evaluation of a series of amide analogs resulted in benzofuranyl amide analogs that showed promising Notch-sparing γ-secretase inhibitory effects. This class of compounds may serve as a novel lead series for further study in the development of γ-secretase inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. G protein-coupled receptor mutations and human genetic disease.

    Science.gov (United States)

    Thompson, Miles D; Hendy, Geoffrey N; Percy, Maire E; Bichet, Daniel G; Cole, David E C

    2014-01-01

    Genetic variations in G protein-coupled receptor genes (GPCRs) disrupt GPCR function in a wide variety of human genetic diseases. In vitro strategies and animal models have been used to identify the molecular pathologies underlying naturally occurring GPCR mutations. Inactive, overactive, or constitutively active receptors have been identified that result in pathology. These receptor variants may alter ligand binding, G protein coupling, receptor desensitization and receptor recycling. Receptor systems discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone (FSH), luteinizing hormone, gonadotropin-releasing hormone (GNRHR), adrenocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA or neuropeptide S receptor 1 (NPSR1)). The role of activating and inactivating calcium-sensing receptor (CaSR) mutations is discussed in detail with respect to familial hypocalciuric hypercalcemia (FHH) and autosomal dominant hypocalemia (ADH). The CASR mutations have been associated with epilepsy. Diseases caused by the genetic disruption of GPCR functions are discussed in the context of their potential to be selectively targeted by drugs that rescue altered receptors. Examples of drugs developed as a result of targeting GPCRs mutated in disease include: calcimimetics and calcilytics, therapeutics targeting melanocortin receptors in obesity, interventions that alter GNRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor congenital bleeding phenotype. De-orphanization projects have identified novel disease-associated receptors, such as NPSR1 and GPR35. The identification of variants in these receptors provides genetic reagents useful in drug screens. Discussion of the variety of GPCRs that are disrupted in monogenic Mendelian disorders provides the basis for examining the significance of common

  9. Enhanced Human-Type Receptor Binding by Ferret-Transmissible H5N1 with a K193T Mutation.

    Science.gov (United States)

    Peng, Wenjie; Bouwman, Kim M; McBride, Ryan; Grant, Oliver C; Woods, Robert J; Verheije, Monique H; Paulson, James C; de Vries, Robert P

    2018-05-15

    All human influenza pandemics have originated from avian influenza viruses. Although multiple changes are needed for an avian virus to be able to transmit between humans, binding to human-type receptors is essential. Several research groups have reported mutations in H5N1 viruses that exhibit specificity for human-type receptors and promote respiratory droplet transmission between ferrets. Upon detailed analysis, we have found that these mutants exhibit significant differences in fine receptor specificity compared to human H1N1 and H3N2 and retain avian-type receptor binding. We have recently shown that human influenza viruses preferentially bind to α2-6-sialylated branched N-linked glycans, where the sialic acids on each branch can bind to receptor sites on two protomers of the same hemagglutinin (HA) trimer. In this binding mode, the glycan projects over the 190 helix at the top of the receptor-binding pocket, which in H5N1 would create a stearic clash with lysine at position 193. Thus, we hypothesized that a K193T mutation would improve binding to branched N-linked receptors. Indeed, the addition of the K193T mutation to the H5 HA of a respiratory-droplet-transmissible virus dramatically improves both binding to human trachea epithelial cells and specificity for extended α2-6-sialylated N-linked glycans recognized by human influenza viruses. IMPORTANCE Infections by avian H5N1 viruses are associated with a high mortality rate in several species, including humans. Fortunately, H5N1 viruses do not transmit between humans because they do not bind to human-type receptors. In 2012, three seminal papers have shown how these viruses can be engineered to transmit between ferrets, the human model for influenza virus infection. Receptor binding, among others, was changed, and the viruses now bind to human-type receptors. Receptor specificity was still markedly different compared to that of human influenza viruses. Here we report an additional mutation in ferret

  10. Mutational analysis of the antagonist-binding site of the histamine H(1) receptor.

    Science.gov (United States)

    Wieland, K; Laak, A M; Smit, M J; Kühne, R; Timmerman, H; Leurs, R

    1999-10-15

    We combined in a previously derived three-dimensional model of the histamine H(1) receptor (Ter Laak, A. M., Timmerman, H., Leurs, H., Nederkoorn, P. H. J., Smit, M. J., and Donne-Op den Kelder, G. M. (1995) J. Comp. Aid. Mol. Design. 9, 319-330) a pharmacophore for the H(1) antagonist binding site (Ter Laak, A. M., Venhorst, J., Timmerman, H., and Donné-Op de Kelder, G. M. (1994) J. Med. Chem. 38, 3351-3360) with the known interacting amino acid residue Asp(116) (in transmembrane domain III) of the H(1) receptor and verified the predicted receptor-ligand interactions by site-directed mutagenesis. This resulted in the identification of the aromatic amino acids Trp(167), Phe(433), and Phe(436) in transmembrane domains IV and VI of the H(1) receptor as probable interaction points for the trans-aromatic ring of the H(1) antagonists. Subsequently, a specific interaction of carboxylate moieties of two therapeutically important, zwitterionic H(1) antagonists with Lys(200) in transmembrane domain V was predicted. A Lys(200) --> Ala mutation results in a 50- (acrivastine) to 8-fold (d-cetirizine) loss of affinity of these zwitterionic antagonists. In contrast, the affinities of structural analogs of acrivastine and cetirizine lacking the carboxylate group, triprolidine and meclozine, respectively, are unaffected by the Lys(200) --> Ala mutation. These data strongly suggest that Lys(200), unique for the H(1) receptor, acts as a specific anchor point for these "second generation" H(1) antagonists.

  11. Minocycline attenuates the development of diabetic neuropathy by inhibiting spinal cord Notch signaling in rat.

    Science.gov (United States)

    Yang, Cheng; Gao, Jie; Wu, Banglin; Yan, Nuo; Li, Hui; Ren, Yiqing; Kan, Yufei; Liang, Jiamin; Jiao, Yang; Yu, Yonghao

    2017-10-01

    We studied the effects of minocycline (an inhibitor of microglial activation) on the expression and activity of Notch-1 receptor, and explored the therapeutic efficacy of minocycline combined with Notch inhibitor DAPT in the treatment of diabetic neuropathic pain (DNP). Diabetic rat model was established by intraperitoneal injection (ip) of Streptozotocin (STZ). Expression and activity of Notch-1 and expression of macrophage/microglia marker Iba-1 were detected by WB. Diabetes induction significantly attenuated sciatic nerve conduction velocity, and dramatically augmented the expression and the activity of Notch-1 in the lumbar enlargement of the spinal cord. Minocycline treatment, however, accelerated the decreased conduction velocity of sciatic nerve and suppressed Notch-1expression and activity in diabetic rats. Similar to DAPT treatment, minocycline administration also prolonged thermal withdrawal latency (TWL) and increase mechanical withdrawal threshold (MWT) in diabetic rats in response to heat or mechanical stimulation via inhibition the expression and the activity of Notch-1 in spinal cord. Combination of DAPT and minocycline further inhibited Notch-1 receptor signaling and reduce neuropathic pain exhibited as improved TWL and MWT. Our study revealed a novel mechanism of Notch-1 receptor inhibition in spinal cord induced by minocycline administration, and suggested that the combination of minocycline and DAPT has the potential to treat DNP. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Notch signaling mediates granulocyte-macrophage colony-stimulating factor priming-induced transendothelial migration of human eosinophils.

    Science.gov (United States)

    Liu, L Y; Wang, H; Xenakis, J J; Spencer, L A

    2015-07-01

    Priming with cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF) enhances eosinophil migration and exacerbates the excessive accumulation of eosinophils within the bronchial mucosa of asthmatics. However, mechanisms that drive GM-CSF priming are incompletely understood. Notch signaling is an evolutionarily conserved pathway that regulates cellular processes, including migration, by integrating exogenous and cell-intrinsic cues. This study investigates the hypothesis that the priming-induced enhanced migration of human eosinophils requires the Notch signaling pathway. Using pan Notch inhibitors and newly developed human antibodies that specifically neutralize Notch receptor 1 activation, we investigated a role for Notch signaling in GM-CSF-primed transmigration of human blood eosinophils in vitro and in the airway accumulation of mouse eosinophils in vivo. Notch receptor 1 was constitutively active in freshly isolated human blood eosinophils, and inhibition of Notch signaling or specific blockade of Notch receptor 1 activation during GM-CSF priming impaired priming-enhanced eosinophil transendothelial migration in vitro. Inclusion of Notch signaling inhibitors during priming was associated with diminished ERK phosphorylation, and ERK-MAPK activation was required for GM-CSF priming-induced transmigration. In vivo in mice, eosinophil accumulation within allergic airways was impaired following systemic treatment with Notch inhibitor, or adoptive transfer of eosinophils treated ex vivo with Notch inhibitor. These data identify Notch signaling as an intrinsic pathway central to GM-CSF priming-induced eosinophil tissue migration. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma

    Science.gov (United States)

    Baglioni, Michele; Fornari, Francesca; Giannone, Ferdinando; Ravaioli, Matteo; Cescon, Matteo; Chieco, Pasquale; Bolondi, Luigi; Gramantieri, Laura

    2014-01-01

    To successfully target Notch receptors as part of a multidrug anticancer strategy, it will be essential to fully characterize the factors that are modulated by Notch signaling. We recently reported that Notch3 silencing in HCC results in p53 up-regulation in vitro and, therefore, we focused on the mechanisms that associate Notch3 to p53 protein expression. We explored the regulation of p53 by Notch3 signalling in three HCC cell lines HepG2, SNU398 and Hep3B.We found that Notch3 regulates p53 at post-transcriptional level controlling both Cyclin G1 expression and the feed-forward circuit involving p53, miR-221 and MDM2. Moreover, our results were validated in human HCCs and in a rat model of HCC treated with Notch3 siRNAs. Our findings are becoming an exciting area for further in-depth research toward targeted inactivation of Notch3 receptor as a novel therapeutic approach for increasing the drug-sensitivity, and thereby improving the treatment outcome of patients affected by HCC. Indeed, we proved that Notch3 silencing strongly increases the effects of Nutilin-3. With regard to therapeutic implications, Notch3-specific drugs could represent a valuable strategy to limit Notch signaling in the context of hepatocellular carcinoma over-expressing this receptor. PMID:25431954

  14. hCLP46 regulates U937 cell proliferation via Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wenzhan; Du, Jie; Chu, Qiaoyun [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Youxin [School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China); Liu, Lixin [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Song, Manshu [School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China); Wang, Wei, E-mail: wei6014@yahoo.com [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China)

    2011-04-29

    Highlights: {yields} Knock down of hCLP46 by RNAi impairs mammalian Notch signaling. {yields} hCLP46 affects neither cell surface Notch1 expression nor ligand-receptor binding. {yields} Knock down of hCLP46 inhibits U937 cell-growth by up-regulation of CDKN1B. -- Abstract: Human CAP10-like protein 46 kDa (hCLP46) is the homolog of Rumi, which is the first identified protein O-glucosyltransferase that modifies Notch receptor in Drosophila. Dysregulation of hCLP46 occurs in many hematologic diseases, but the role of hCLP46 remains unclear. Knockdown of hCLP46 by RNA interference resulted in decreased protein levels of endogenous Notch1, Notch intracellular domain (NICD) and Notch target gene Hes-1, suggesting the impairment of the Notch signaling. However, neither cell surface Notch expression nor ligand binding activities were affected. In addition, down-regulated expression of hCLP46 inhibited the proliferation of U937 cells, which was correlated with increased cyclin-dependent kinase inhibitor (CDKI) CDKN1B (p27) and decreased phosphorylation of retinoblastoma (RB) protein. We showed that lack of hCLP46 results in impaired ligand induced Notch activation in mammalian cell, and hCLP46 regulates the proliferation of U937 cell through CDKI-RB signaling pathway, which may be important for the pathogenesis of leukemia.

  15. Notch Inhibits Osteoblast Differentiation and Causes Osteopenia

    Science.gov (United States)

    Zanotti, Stefano; Smerdel-Ramoya, Anna; Stadmeyer, Lisa; Durant, Deena; Radtke, Freddy; Canalis, Ernesto

    2008-01-01

    Notch receptors are determinants of cell fate decisions. To define the role of Notch in the adult skeleton, we created transgenic mice overexpressing the Notch intracellular domain (NICD) under the control of the type I collagen promoter. First-generation transgenics were small and osteopenic. Bone histomorphometry revealed that NICD caused a decrease in bone volume, secondary to a reduction in trabecular number; osteoblast and osteoclast number were decreased. Low fertility of founder mice and lethality of young pups did not allow the complete establishment of transgenic lines. To characterize the effect of Notch overexpression in vitro, NICD was induced in osteoblasts and stromal cells from Rosanotch mice, in which a STOP cassette flanked by loxP sites is upstream of NICD, by transduction with an adenoviral vector expressing Cre recombinase (Cre) under the control of the cytomegalovirus (CMV) promoter (Ad-CMV-Cre). NICD impaired osteoblastogenesis and inhibited Wnt/β-catenin signaling. To determine the effects of notch1 deletion in vivo, mice in which notch1 was flanked by loxP sequences (notch1loxP/loxP) were mated with mice expressing Cre recombinase under the control of the osteocalcin promoter. Conditional null notch1 mice had no obvious skeletal phenotype, possibly because of rescue by notch2; however, 1-month-old females exhibited a modest increase in osteoclast surface and eroded surface. Osteoblasts from notch1loxP/loxP mice, transduced with Ad-CMV-Cre and transfected with Notch2 small interfering RNA, displayed increased alkaline phosphatase activity. In conclusion, Notch signaling in osteoblasts causes osteopenia and impairs osteo-blastogenesis by inhibiting the Wnt/β-catenin pathway. PMID:18420737

  16. Notch-1 mediates hypoxia-induced angiogenesis in rheumatoid arthritis.

    Science.gov (United States)

    Gao, Wei; Sweeney, Catherine; Connolly, Mary; Kennedy, Aisling; Ng, Chin Teck; McCormick, Jennifer; Veale, Douglas J; Fearon, Ursula

    2012-07-01

    To examine the effect of hypoxia on Notch-1 signaling pathway components and angiogenesis in inflammatory arthritis. The expression and regulation of Notch-1, its ligand delta-like protein 4 (DLL-4) and downstream signaling components (hairy-related transcription factor 1 [HRT-1], HRT-2), and hypoxia-inducible factor 1α (HIF-1α) under normoxic and hypoxic conditions (1-3%) were assessed in synovial tissue specimens from patients with inflammatory arthritis and controls and in human dermal microvascular endothelial cells (HDMECs) by immunohistology, dual immunofluorescence staining (Notch-1/factor VIII), Western blotting, and real-time polymerase chain reaction. In vivo synovial tissue oxygen levels (tissue PO2) were measured under direct visualization at arthroscopy. HDMEC activation under hypoxic conditions in the presence of Notch-1 small interfering RNA (siRNA), the γ-secretase inhibitor DAPT, or dimethyloxalylglycine (DMOG) was assessed by Matrigel tube formation assay, migration assay, invasion assay, and matrix metalloproteinase 2 (MMP-2)/MMP-9 zymography. Expression of Notch-1, its ligand DLL-4, and HRT-1 was demonstrated in synovial tissue, with the strongest expression localized to perivascular/vascular regions. Localization of Notch-1 to synovial endothelium was confirmed by dual immunofluorescence staining. Notch-1 intracellular domain (NICD) expression was significantly higher in synovial tissue from patients with tissue PO2 of PO2 of >20 mm Hg (>3% O2). Exposure of HDMECs to 3% hypoxia induced HIF-1α and NICD protein expression and DLL-4, HRT-1, and HRT-2 messenger RNA expression. DMOG directly induced NICD expression, while Notch-1 siRNA inhibited hypoxia-induced HIF-1α expression, suggesting that Notch-1/HIF-1α signaling is bidirectional. Finally, 3% hypoxia-induced angiogenesis, endothelial cell migration, endothelial cell invasion, and proMMP-2 and proMMP-9 activities were inhibited by Notch-1 siRNA and/or the γ-secretase inhibitor DAPT. Our

  17. Mutations in POGLUT1, Encoding Protein O-Glucosyltransferase 1, Cause Autosomal-Dominant Dowling-Degos Disease

    Science.gov (United States)

    Basmanav, F. Buket; Oprisoreanu, Ana-Maria; Pasternack, Sandra M.; Thiele, Holger; Fritz, Günter; Wenzel, Jörg; Größer, Leopold; Wehner, Maria; Wolf, Sabrina; Fagerberg, Christina; Bygum, Anette; Altmüller, Janine; Rütten, Arno; Parmentier, Laurent; El Shabrawi-Caelen, Laila; Hafner, Christian; Nürnberg, Peter; Kruse, Roland; Schoch, Susanne; Hanneken, Sandra; Betz, Regina C.

    2014-01-01

    Dowling-Degos disease (DDD) is an autosomal-dominant genodermatosis characterized by progressive and disfiguring reticulate hyperpigmentation. We previously identified loss-of-function mutations in KRT5 but were only able to detect pathogenic mutations in fewer than half of our subjects. To identify additional causes of DDD, we performed exome sequencing in five unrelated affected individuals without mutations in KRT5. Data analysis identified three heterozygous mutations from these individuals, all within the same gene. These mutations, namely c.11G>A (p.Trp4∗), c.652C>T (p.Arg218∗), and c.798-2A>C, are within POGLUT1, which encodes protein O-glucosyltransferase 1. Further screening of unexplained cases for POGLUT1 identified six additional mutations, as well as two of the above described mutations. Immunohistochemistry of skin biopsies of affected individuals with POGLUT1 mutations showed significantly weaker POGLUT1 staining in comparison to healthy controls with strong localization of POGLUT1 in the upper parts of the epidermis. Immunoblot analysis revealed that translation of either wild-type (WT) POGLUT1 or of the protein carrying the p.Arg279Trp substitution led to the expected size of about 50 kDa, whereas the c.652C>T (p.Arg218∗) mutation led to translation of a truncated protein of about 30 kDa. Immunofluorescence analysis identified a colocalization of the WT protein with the endoplasmic reticulum and a notable aggregating pattern for the truncated protein. Recently, mutations in POFUT1, which encodes protein O-fucosyltransferase 1, were also reported to be responsible for DDD. Interestingly, both POGLUT1 and POFUT1 are essential regulators of Notch activity. Our results furthermore emphasize the important role of the Notch pathway in pigmentation and keratinocyte morphology. PMID:24387993

  18. Whole-exome sequencing reveals a rare interferon gamma receptor 1 mutation associated with myasthenia gravis.

    Science.gov (United States)

    Qi, Guoyan; Liu, Peng; Gu, Shanshan; Yang, Hongxia; Dong, Huimin; Xue, Yinping

    2018-04-01

    Our study is aimed to explore the underlying genetic basis of myasthenia gravis. We collected a Chinese pedigree with myasthenia gravis, and whole-exome sequencing was performed on the two affected siblings and their parents. The candidate pathogenic gene was identified by bioinformatics filtering, which was further verified by Sanger sequencing. The homozygous mutation c.G40A (p.V14M) in interferon gamma receptor 1was identified. Moreover, the mutation was also detected in 3 cases of 44 sporadic myasthenia gravis patients. The p.V14M substitution in interferon gamma receptor 1 may affect the signal peptide function and the translocation on cell membrane, which could disrupt the binding of the ligand of interferon gamma and antibody production, contributing to myasthenia gravis susceptibility. We discovered that a rare variant c.G40A in interferon gamma receptor 1 potentially contributes to the myasthenia gravis pathogenesis. Further functional studies are needed to confirm the effect of the interferon gamma receptor 1 on the myasthenia gravis phenotype.

  19. Biochemical characterization and cellular effects of CADASIL mutants of NOTCH3.

    Directory of Open Access Journals (Sweden)

    He Meng

    Full Text Available Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL is the best understood cause of dominantly inherited stroke and results from NOTCH3 mutations that lead to NOTCH3 protein accumulation and selective arterial smooth muscle degeneration. Previous studies show that NOTCH3 protein forms multimers. Here, we investigate protein interactions between NOTCH3 and other vascular Notch isoforms and characterize the effects of elevated NOTCH3 on smooth muscle gene regulation. We demonstrate that NOTCH3 forms heterodimers with NOTCH1, NOTCH3, and NOTCH4. R90C and C49Y mutant NOTCH3 form complexes which are more resistant to detergents than wild type NOTCH3 complexes. Using quantitative NOTCH3-luciferase clearance assays, we found significant inhibition of mutant NOTCH3 clearance. In coculture assays of NOTCH function, overexpressed wild type and mutant NOTCH3 significantly repressed NOTCH-regulated smooth muscle transcripts and potently impaired the activity of three independent smooth muscle promoters. Wildtype and R90C recombinant NOTCH3 proteins applied to cell cultures also blocked canonical Notch fuction. We conclude that CADASIL mutants of NOTCH3 complex with NOTCH1, 3, and 4, slow NOTCH3 clearance, and that overexpressed wild type and mutant NOTCH3 protein interfere with key NOTCH-mediated functions in smooth muscle cells.

  20. Differential effects of CSF-1R D802V and KIT D816V homologous mutations on receptor tertiary structure and allosteric communication.

    Directory of Open Access Journals (Sweden)

    Priscila Da Silva Figueiredo Celestino Gomes

    Full Text Available The colony stimulating factor-1 receptor (CSF-1R and the stem cell factor receptor KIT, type III receptor tyrosine kinases (RTKs, are important mediators of signal transduction. The normal functions of these receptors can be compromised by gain-of-function mutations associated with different physiopatological impacts. Whereas KIT D816V/H mutation is a well-characterized oncogenic event and principal cause of systemic mastocytosis, the homologous CSF-1R D802V has not been identified in human cancers. The KIT D816V oncogenic mutation triggers resistance to the RTK inhibitor Imatinib used as first line treatment against chronic myeloid leukemia and gastrointestinal tumors. CSF-1R is also sensitive to Imatinib and this sensitivity is altered by mutation D802V. Previous in silico characterization of the D816V mutation in KIT evidenced that the mutation caused a structure reorganization of the juxtamembrane region (JMR and facilitated its departure from the kinase domain (KD. In this study, we showed that the equivalent CSF-1R D802V mutation does not promote such structural effects on the JMR despite of a reduction on some key H-bonds interactions controlling the JMR binding to the KD. In addition, this mutation disrupts the allosteric communication between two essential regulatory fragments of the receptors, the JMR and the A-loop. Nevertheless, the mutation-induced shift towards an active conformation observed in KIT D816V is not observed in CSF-1R D802V. The distinct impact of equivalent mutation in two homologous RTKs could be associated with the sequence difference between both receptors in the native form, particularly in the JMR region. A local mutation-induced perturbation on the A-loop structure observed in both receptors indicates the stabilization of an inactive non-inhibited form, which Imatinib cannot bind.

  1. Differential Effects of CSF-1R D802V and KIT D816V Homologous Mutations on Receptor Tertiary Structure and Allosteric Communication

    Science.gov (United States)

    Da Silva Figueiredo Celestino Gomes, Priscila; Panel, Nicolas; Laine, Elodie; Pascutti, Pedro Geraldo; Solary, Eric; Tchertanov, Luba

    2014-01-01

    The colony stimulating factor-1 receptor (CSF-1R) and the stem cell factor receptor KIT, type III receptor tyrosine kinases (RTKs), are important mediators of signal transduction. The normal functions of these receptors can be compromised by gain-of-function mutations associated with different physiopatological impacts. Whereas KIT D816V/H mutation is a well-characterized oncogenic event and principal cause of systemic mastocytosis, the homologous CSF-1R D802V has not been identified in human cancers. The KIT D816V oncogenic mutation triggers resistance to the RTK inhibitor Imatinib used as first line treatment against chronic myeloid leukemia and gastrointestinal tumors. CSF-1R is also sensitive to Imatinib and this sensitivity is altered by mutation D802V. Previous in silico characterization of the D816V mutation in KIT evidenced that the mutation caused a structure reorganization of the juxtamembrane region (JMR) and facilitated its departure from the kinase domain (KD). In this study, we showed that the equivalent CSF-1R D802V mutation does not promote such structural effects on the JMR despite of a reduction on some key H-bonds interactions controlling the JMR binding to the KD. In addition, this mutation disrupts the allosteric communication between two essential regulatory fragments of the receptors, the JMR and the A-loop. Nevertheless, the mutation-induced shift towards an active conformation observed in KIT D816V is not observed in CSF-1R D802V. The distinct impact of equivalent mutation in two homologous RTKs could be associated with the sequence difference between both receptors in the native form, particularly in the JMR region. A local mutation-induced perturbation on the A-loop structure observed in both receptors indicates the stabilization of an inactive non-inhibited form, which Imatinib cannot bind. PMID:24828813

  2. Opposing actions of endocannabinoids on cholangiocarcinoma growth is via the differential activation of Notch signaling

    Energy Technology Data Exchange (ETDEWEB)

    Frampton, Gabriel; Coufal, Monique [Department of Internal Medicine, Texas A and M Health Science Center College of Medicine, Temple, TX (United States); Li, Huang [Department of Internal Medicine, Texas A and M Health Science Center College of Medicine, Temple, TX (United States); Department of Hepatobiliary Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Ramirez, Jonathan [Digestive Disease Research Center, Scott and White Hospital, Temple, TX (United States); DeMorrow, Sharon, E-mail: demorrow@medicine.tamhsc.edu [Department of Internal Medicine, Texas A and M Health Science Center College of Medicine, Temple, TX (United States); Digestive Disease Research Center, Scott and White Hospital, Temple, TX (United States)

    2010-05-15

    The endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) have opposing effects on cholangiocarcinoma growth. Implicated in cancer, Notch signaling requires the {gamma}-secretase complex for activation. The aims of this study were to determine if the opposing effects of endocannabinoids depend on the differential activation of the Notch receptors and to demonstrate that the differential activation of these receptors are due to presenilin 1 containing- and presenilin 2 containing-{gamma}-secretase complexes. Mz-ChA-1 cells were treated with AEA or 2-AG. Notch receptor expression, activation, and nuclear translocation were determined. Specific roles for Notch 1 and 2 on cannabinoid-induced effects were determined by transient transfection of Notch 1 or 2 shRNA vectors before stimulation with AEA or 2-AG. Expression of presenilin 1 and 2 was determined after AEA or 2-AG treatment, and the involvement of presenilin 1 and 2 in the cannabinoid-induced effects was demonstrated in cell lines with low presenilin 1 or 2 expression. Antiproliferative effects of AEA required increased Notch 1 mRNA, activation, and nuclear translocation, whereas the growth-promoting effects induced by 2-AG required increased Notch 2 mRNA expression, activation, and nuclear translocation. AEA increased presenilin 1 expression and recruitment into the {gamma}-secretase complex, whereas 2-AG increased expression and recruitment of presenilin 2. The development of novel therapeutic strategies aimed at modulating the endocannabinoid system or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management.

  3. Opposing actions of endocannabinoids on cholangiocarcinoma growth is via the differential activation of Notch signaling

    International Nuclear Information System (INIS)

    Frampton, Gabriel; Coufal, Monique; Li, Huang; Ramirez, Jonathan; DeMorrow, Sharon

    2010-01-01

    The endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) have opposing effects on cholangiocarcinoma growth. Implicated in cancer, Notch signaling requires the γ-secretase complex for activation. The aims of this study were to determine if the opposing effects of endocannabinoids depend on the differential activation of the Notch receptors and to demonstrate that the differential activation of these receptors are due to presenilin 1 containing- and presenilin 2 containing-γ-secretase complexes. Mz-ChA-1 cells were treated with AEA or 2-AG. Notch receptor expression, activation, and nuclear translocation were determined. Specific roles for Notch 1 and 2 on cannabinoid-induced effects were determined by transient transfection of Notch 1 or 2 shRNA vectors before stimulation with AEA or 2-AG. Expression of presenilin 1 and 2 was determined after AEA or 2-AG treatment, and the involvement of presenilin 1 and 2 in the cannabinoid-induced effects was demonstrated in cell lines with low presenilin 1 or 2 expression. Antiproliferative effects of AEA required increased Notch 1 mRNA, activation, and nuclear translocation, whereas the growth-promoting effects induced by 2-AG required increased Notch 2 mRNA expression, activation, and nuclear translocation. AEA increased presenilin 1 expression and recruitment into the γ-secretase complex, whereas 2-AG increased expression and recruitment of presenilin 2. The development of novel therapeutic strategies aimed at modulating the endocannabinoid system or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management.

  4. Altered epidermal growth factor-like sequences provide evidence for a role of Notch as a receptor in cell fate decisions.

    Science.gov (United States)

    Heitzler, P; Simpson, P

    1993-03-01

    In Drosophila each neural precursor is chosen from a group of cells through cell interactions mediated by Notch and Delta which may function as receptor and ligand (signal), respectively, in a lateral signalling pathway. The cells of a group are equipotential and express both Notch and Delta. Hyperactive mutant Notch molecules, (Abruptex), probably have an enhanced affinity for the ligand. When adjacent to wild-type cells, cells bearing the Abruptex proteins are unable to produce the signal. It is suggested that in addition to the binding of Notch molecules on one cell to the Delta molecules of opposing cells, the Notch and Delta proteins on the surface of the same cell may interact. Binding between a cell's own Notch and Delta molecules would alter the availability of these proteins to interact with their counterparts on adjacent cells.

  5. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells

    International Nuclear Information System (INIS)

    Dontu, Gabriela; Jackson, Kyle W; McNicholas, Erin; Kawamura, Mari J; Abdallah, Wissam M; Wicha, Max S

    2004-01-01

    Notch signaling has been implicated in the regulation of cell-fate decisions such as self-renewal of adult stem cells and differentiation of progenitor cells along a particular lineage. Moreover, depending on the cellular and developmental context, the Notch pathway acts as a regulator of cell survival and cell proliferation. Abnormal expression of Notch receptors has been found in different types of epithelial metaplastic lesions and neoplastic lesions, suggesting that Notch may act as a proto-oncogene. The vertebrate Notch1 and Notch4 homologs are involved in normal development of the mammary gland, and mutated forms of these genes are associated with development of mouse mammary tumors. In order to determine the role of Notch signaling in mammary cell-fate determination, we have utilized a newly described in vitro system in which mammary stem/progenitor cells can be cultured in suspension as nonadherent 'mammospheres'. Notch signaling was activated using exogenous ligands, or was inhibited using previously characterized Notch signaling antagonists. Utilizing this system, we demonstrate that Notch signaling can act on mammary stem cells to promote self-renewal and on early progenitor cells to promote their proliferation, as demonstrated by a 10-fold increase in secondary mammosphere formation upon addition of a Notch-activating DSL peptide. In addition to acting on stem cells, Notch signaling is also able to act on multipotent progenitor cells, facilitating myoepithelial lineage-specific commitment and proliferation. Stimulation of this pathway also promotes branching morphogenesis in three-dimensional Matrigel cultures. These effects are completely inhibited by a Notch4 blocking antibody or a gamma secretase inhibitor that blocks Notch processing. In contrast to the effects of Notch signaling on mammary stem/progenitor cells, modulation of this pathway has no discernable effect on fully committed, differentiated, mammary epithelial cells. These studies

  6. [Clinical relevance of ESR1 circulating mutations detection in hormone receptor positive metastatic breast cancer].

    Science.gov (United States)

    Clatot, Florian; Perdrix, Anne; Sefrioui, David; Sarafan-Vasseur, Nasrin; Di Fiore, Frédéric

    2018-01-01

    If hormone therapy is a key treatment for hormone receptor positive advanced breast cancers, secondary resistance occurs as a rule. Recently, acquired alterations of the ESR1 gene have been identified as a mechanism of resistance on aromatase inhibitor (AI) treatment. The selective pressure by AI exposure during the metastatic setting triggers the emergence of ESR1 activating mutations. In that context, the "liquid biopsy" concept has been used to detect this molecular resistance before progression. Thus, the ESR1 circulating mutation detection will soon be used in daily practice to help monitoring patients on AI treatment and provide an early change for specific therapies that still have to be determined in prospective clinical trials. This review will present the acquired ESR1 mutations, as well as the methods used for their detection in blood and the potential clinical impact of this approach for hormone receptor positive breast cancer management. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  7. The pathological significance of Notch1 in oral squamous cell carcinoma.

    Science.gov (United States)

    Yoshida, Ryoji; Nagata, Masashi; Nakayama, Hideki; Niimori-Kita, Kanako; Hassan, Wael; Tanaka, Takuji; Shinohara, Masanori; Ito, Takaaki

    2013-10-01

    Notch signaling has been reported to be involved in several types of malignant tumors; however, the role and activation mechanism of Notch signaling in oral squamous cell carcinoma (OSCC) remains poorly characterized. The purpose of this study was to elucidate the pathological significance of Notch signaling and its activation mechanism in the development and progression of OSCC. In this study, we showed that the expression of Notch1 and intracellular Notch domain (NICD) are upregulated in OSCCs. In addition, Notch1 and NICD were found to be characteristically localized at the invasive tumor front. TNF-α, a major inflammatory cytokine, significantly activated Notch signaling in vitro. In a clinicopathological analysis, Notch1 expression correlated with both the T-stage and the clinical stage. Furthermore, loss of Notch1 expression correlated with the inhibition of cell proliferation and TNF-α-dependent invasiveness in an OSCC cell line. In addition, γ-secretase inhibitor (GSI) prevented cell proliferation and TNF-α-dependent invasion of OSCC cells in vitro. These results indicate that altered expression of Notch1 is associated with increased cancer progression and that Notch1 regulates the steps involved in cell metastasis in OSCC. Moreover, inactivating Notch signaling with GSI could therefore be a useful approach for treating patients with OSCC.

  8. Structural insights into transient receptor potential vanilloid type 1 (TRPV1) from homology modeling, flexible docking, and mutational studies.

    Science.gov (United States)

    Lee, Jin Hee; Lee, Yoonji; Ryu, HyungChul; Kang, Dong Wook; Lee, Jeewoo; Lazar, Jozsef; Pearce, Larry V; Pavlyukovets, Vladimir A; Blumberg, Peter M; Choi, Sun

    2011-04-01

    The transient receptor potential vanilloid subtype 1 (TRPV1) is a non-selective cation channel composed of four monomers with six transmembrane helices (TM1-TM6). TRPV1 is found in the central and peripheral nervous system, and it is an important therapeutic target for pain relief. We describe here the construction of a tetrameric homology model of rat TRPV1 (rTRPV1). We experimentally evaluated by mutational analysis the contribution of residues of rTRPV1 contributing to ligand binding by the prototypical TRPV1 agonists, capsaicin and resiniferatoxin (RTX). We then performed docking analysis using our homology model. The docking results with capsaicin and RTX showed that our homology model was reliable, affording good agreement with our mutation data. Additionally, the binding mode of a simplified RTX (sRTX) ligand as predicted by the modeling agreed well with those of capsaicin and RTX, accounting for the high binding affinity of the sRTX ligand for TRPV1. Through the homology modeling, docking and mutational studies, we obtained important insights into the ligand-receptor interactions at the molecular level which should prove of value in the design of novel TRPV1 ligands.

  9. Notch signaling and progenitor/ductular reaction in steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Carola M Morell

    Full Text Available Persistent hepatic progenitor cells (HPC activation resulting in ductular reaction (DR is responsible for pathologic liver repair in cholangiopathies. Also, HPC/DR expansion correlates with fibrosis in several chronic liver diseases, including steatohepatitis. Increasing evidence indicates Notch signaling as a key regulator of HPC/DR response in biliary and more in general liver injuries. Therefore, we aimed to investigate the role of Notch during HPC/DR activation in a mouse model of steatohepatitis.Steatohepatitis was generated using methionine-choline deficient (MCD diet. For hepatocyte lineage tracing, R26R-YFP mice were infected with AAV8-TBG-Cre.MCD diet promoted a strong HPC/DR response that progressively diffused in the lobule, and correlated with increased fibrosis and TGF-β1 expression. Notch signaling was unchanged in laser-capture microdissected HPC/DR, whereas Notch receptors were down regulated in hepatocytes. However, in-vivo lineage tracing experiments identified discrete hepatocytes showing Notch-1 activation and expressing (the Notch-dependent Sox9. Stimulation of AML-12 hepatocyte-cell line with immobilized Jag1 induced Sox9 and down-regulated albumin and BSEP expression. TGF-β1 treatment in primary hepatic stellate cells (HSC induced Jag1 expression. In MCD diet-fed mice, αSMA-positive HSC were localized around Sox9 expressing hepatocytes, suggesting that Notch activation in hepatocytes was promoted by TGF-β1 stimulated HSC. In-vivo Notch inhibition reduced HPC response and fibrosis progression.Our data suggest that Notch signaling is an important regulator of DR and that in steatohepatitis, hepatocytes exposed to Jag1-positive HSC, contribute to pathologic DR by undergoing Notch-mediated differentiation towards an HPC-like phenotype. Given the roles of Notch in fibrosis and liver cancer, these data suggest mesenchymal expression of Jag1 as an alternative therapeutic target.

  10. Inhibition of Notch1 increases paclitaxel sensitivity to human breast cancer

    Institute of Scientific and Technical Information of China (English)

    Zhao Li; Ma Yongjie; Gu Feng; Fu Li

    2014-01-01

    Background Paclitaxel (PAC) is the first-line chemotherapy drug for most breast cancer patients,but clinical studies showed that some breast cancer patients were insensitive to PAC,which led to chemotherapy failure.It was reported that Notch1 signaling participated in drug resistance of breast cancer.Here,we show whether Notch1 expression is related to PAC sensitivity of breast cancer.Methods We employed Notch1 siRNA and Notch1 inhibitor,N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butylester (DAPT),to down regulate Notch1 expression in human breast cancer cells MDA-MB-231,and detected the inhibition effect by Western blotting and reverse trans cription-polymerase chain reaction,respectively.After 24 hours exposure to different concentration of PAC (0,1,5,10,15,20,and 25 μg/ml),the viability of the control group and experimental group cells was tested by MTT.We also examined the expression of Notch1 in PAC sensitive and nonsensitive breast cancer patients,respectively by immunohistochemistry (IHC).The PAC sensitivity of breast cancer patients were identified by collagen gel droplet embedded culture-drug sensitivity test (CD-DST).Results Down regulation of Notch1 expression by Notch1siRNA interference or Notch1 inhibitor increased the PAC sensitivity in MDA-MB-231 cells (P <0.05).Also,the expression of Notch1 in PAC sensitive patients was much lower than that of PAC non-sensitive patients (P <0.01).Conclusion Notch1 expression has an effect on PAC sensitivity in breast cancer patients,and the inhibition of Notch1 increases paclitaxel sensitivity to human breast cancer.

  11. Glioma cell fate decisions mediated by Dll1-Jag1-Fringe in Notch1 signaling pathway.

    Science.gov (United States)

    Shi, Xiaofei; Wang, Ruiqi

    2017-09-21

    The Notch family of proteins plays a vital role in determining cell fates, such as proliferation, differentiation, and apoptosis. It has been shown that Notch1 and its ligands, Dll1 and Jag1, are overexpressed in many glioma cell lines and primary human gliomas. The roles of Notch1 in some cancers have been firmly established, and recent data implicate that it plays important roles in glioma cell fate decisions. This paper focuses on devising a specific theoretical framework that incorporates Dll1, Jag1, and Fringe in Notch1 signaling pathway to explore their functional roles of these proteins in glioma cells in the tumorigenesis and progression of human gliomas, and to study how glioma cell fate decisions are modulated by both trans-activation and cis-inhibition. This paper presents a computational model for Notch1 signaling pathway in glioma cells. Based on the bifurcation analysis of the model, we show that how the glioma cell fate decisions are modulated by both trans-activation and cis-inhibition mediated by the Fringe protein, providing insight into the design and control principles of the Notch signaling system and the gliomas. This paper presents a computational model for Notch1 signaling pathway in glioma cells based on intertwined dynamics with cis-inhibition and trans-activation involving the proteins Notch1, Dll1, Jag1, and Fringe. The results show that how the glioma cell fate transitions are performed by the Notch1 signaling. Transition from grade III ∼ IV with significantly high Notch1 to grade I ∼ II with high Notch1, and then to normal cells by repressing the Fringe levels or decreasing the strength of enhancement induced by Fringe.

  12. Role of Notch signaling in the mammalian heart

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.L.; Liu, J.C. [Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Donghu District, Nanchang, Jiangxi (China)

    2013-12-12

    Notch signaling is an evolutionarily ancient, highly conserved pathway important for deciding cell fate, cellular development, differentiation, proliferation, apoptosis, adhesion, and epithelial-to-mesenchymal transition. Notch signaling is also critical in mammalian cardiogenesis, as mutations in this signaling pathway are linked to human congenital heart disease. Furthermore, Notch signaling can repair myocardial injury by promoting myocardial regeneration, protecting ischemic myocardium, inducing angiogenesis, and negatively regulating cardiac fibroblast-myofibroblast transformation. This review provides an update on the known roles of Notch signaling in the mammalian heart. The goal is to assist in developing strategies to influence Notch signaling and optimize myocardial injury repair.

  13. Far infrared promotes wound healing through activation of Notch1 signaling.

    Science.gov (United States)

    Hsu, Yung-Ho; Lin, Yuan-Feng; Chen, Cheng-Hsien; Chiu, Yu-Jhe; Chiu, Hui-Wen

    2017-11-01

    The Notch signaling pathway is critically involved in cell proliferation, differentiation, development, and homeostasis. Far infrared (FIR) has an effect that promotes wound healing. However, the underlying molecular mechanisms are unclear. In the present study, we employed in vivo and HaCaT (a human skin keratinocyte cell line) models to elucidate the role of Notch1 signaling in FIR-promoted wound healing. We found that FIR enhanced keratinocyte migration and proliferation. FIR induced the Notch1 signaling pathway in HaCaT cells and in a microarray dataset from the Gene Expression Omnibus database. We next determined the mRNA levels of NOTCH1 in paired normal and wound skin tissues derived from clinical patients using the microarray dataset and Ingenuity Pathway Analysis software. The result indicated that the Notch1/Twist1 axis plays important roles in wound healing and tissue repair. In addition, inhibiting Notch1 signaling decreased the FIR-enhanced proliferation and migration. In a full-thickness wound model in rats, the wounds healed more rapidly and the scar size was smaller in the FIR group than in the light group. Moreover, FIR could increase Notch1 and Delta1 in skin tissues. The activation of Notch1 signaling may be considered as a possible mechanism for the promoting effect of FIR on wound healing. FIR stimulates keratinocyte migration and proliferation. Notch1 in keratinocytes has an essential role in FIR-induced migration and proliferation. NOTCH1 promotes TWIST1-mediated gene expression to assist wound healing. FIR might promote skin wound healing in a rat model. FIR stimulates keratinocyte migration and proliferation. Notch1 in keratinocytes has an essential role in FIR-induced migration and proliferation. NOTCH1 promotes TWIST1-mediated gene expression to assist wound healing. FIR might promote skin wound healing in a rat model.

  14. Interactions of Notch1 and TLR4 signaling pathways in DRG neurons of in vivo and in vitro models of diabetic neuropathy.

    Science.gov (United States)

    Chen, Tianhua; Li, Hao; Yin, Yiting; Zhang, Yuanpin; Liu, Zhen; Liu, Huaxiang

    2017-11-02

    Understanding the interactions between Notch1 and toll-like receptor 4 (TLR4) signaling pathways in the development of diabetic peripheral neuropathy may lead to interpretation of the mechanisms and novel approaches for preventing diabetic neuropathic pain. In the present study, the interactions between Notch1 and TLR4 signaling pathways were investigated by using dorsal root ganglion (DRG) from diabetic neuropathic pain rats and cultured DRG neurons under high glucose challenge. The results showed that high glucose induced not only Notch1 mRNA, HES1 mRNA, and TLR4 mRNA expression, but also Notch1 intracellular domain (NICD1) and TLR4 protein expression in DRG neurons. The proportion of NICD1-immunoreactive (IR) and TLR4-IR neurons in DRG cultures was also increased after high glucose challenge. The above alterations could be partially reversed by inhibition of either Notch1 or TLR4 signaling pathway. Inhibition of either Notch1 or TLR4 signaling pathway could improve mechanical allodynia and thermal hyperalgesia thresholds. Inhibition of Notch1 or TLR4 signaling also decreased tumor necrosis factor-α (TNF-α) levels in DRG from diabetic neuropathic rats. These data imply that the interaction between Notch1 and TLR4 signaling pathways is one of the important mechanisms in the development or progression of diabetic neuropathy.

  15. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia

    Science.gov (United States)

    Puente, Xose S.; Pinyol, Magda; Quesada, Víctor; Conde, Laura; Ordóñez, Gonzalo R.; Villamor, Neus; Escaramis, Georgia; Jares, Pedro; Beà, Sílvia; González-Díaz, Marcos; Bassaganyas, Laia; Baumann, Tycho; Juan, Manel; López-Guerra, Mónica; Colomer, Dolors; Tubío, José M. C.; López, Cristina; Navarro, Alba; Tornador, Cristian; Aymerich, Marta; Rozman, María; Hernández, Jesús M.; Puente, Diana A.; Freije, José M. P.; Velasco, Gloria; Gutiérrez-Fernández, Ana; Costa, Dolors; Carrió, Anna; Guijarro, Sara; Enjuanes, Anna; Hernández, Lluís; Yagüe, Jordi; Nicolás, Pilar; Romeo-Casabona, Carlos M.; Himmelbauer, Heinz; Castillo, Ester; Dohm, Juliane C.; de Sanjosé, Silvia; Piris, Miguel A.; de Alava, Enrique; Miguel, Jesús San; Royo, Romina; Gelpí, Josep L.; Torrents, David; Orozco, Modesto; Pisano, David G.; Valencia, Alfonso; Guigó, Roderic; Bayés, Mónica; Heath, Simon; Gut, Marta; Klatt, Peter; Marshall, John; Raine, Keiran; Stebbings, Lucy A.; Futreal, P. Andrew; Stratton, Michael R.; Campbell, Peter J.; Gut, Ivo; López-Guillermo, Armando; Estivill, Xavier; Montserrat, Emili; López-Otín, Carlos; Campo, Elías

    2012-01-01

    Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution1,2. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes3,4. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer. PMID:21642962

  16. Fringe proteins modulate Notch-ligand cis and trans interactions to specify signaling states.

    Science.gov (United States)

    LeBon, Lauren; Lee, Tom V; Sprinzak, David; Jafar-Nejad, Hamed; Elowitz, Michael B

    2014-09-25

    The Notch signaling pathway consists of multiple types of receptors and ligands, whose interactions can be tuned by Fringe glycosyltransferases. A major challenge is to determine how these components control the specificity and directionality of Notch signaling in developmental contexts. Here, we analyzed same-cell (cis) Notch-ligand interactions for Notch1, Dll1, and Jag1, and their dependence on Fringe protein expression in mammalian cells. We found that Dll1 and Jag1 can cis-inhibit Notch1, and Fringe proteins modulate these interactions in a way that parallels their effects on trans interactions. Fringe similarly modulated Notch-ligand cis interactions during Drosophila development. Based on these and previously identified interactions, we show how the design of the Notch signaling pathway leads to a restricted repertoire of signaling states that promote heterotypic signaling between distinct cell types, providing insight into the design principles of the Notch signaling system, and the specific developmental process of Drosophila dorsal-ventral boundary formation.

  17. SQSTM1 Mutations and Glaucoma.

    Directory of Open Access Journals (Sweden)

    Todd E Scheetz

    Full Text Available Glaucoma is the most common cause of irreversible blindness worldwide. One subset of glaucoma, normal tension glaucoma (NTG occurs in the absence of high intraocular pressure. Mutations in two genes, optineurin (OPTN and TANK binding kinase 1 (TBK1, cause familial NTG and have known roles in the catabolic cellular process autophagy. TKB1 encodes a kinase that phosphorylates OPTN, an autophagy receptor, which ultimately activates autophagy. The sequestosome (SQSTM1 gene also encodes an autophagy receptor and also is a target of TBK1 phosphorylation. Consequently, we hypothesized that mutations in SQSTM1 may also cause NTG. We tested this hypothesis by searching for glaucoma-causing mutations in a cohort of NTG patients (n = 308 and matched controls (n = 157 using Sanger sequencing. An additional 1098 population control samples were also analyzed using whole exome sequencing. A total of 17 non-synonymous mutations were detected which were not significantly skewed between cases and controls when analyzed separately, or as a group (p > 0.05. These data suggest that SQSTM1 mutations are not a common cause of NTG.

  18. Expression of Notch1 Correlates with Breast Cancer Progression and Prognosis.

    Directory of Open Access Journals (Sweden)

    Xun Yuan

    Full Text Available Various studies have evaluated the significance of Notch1 expression in breast cancer, but the results have ever been disputed. By using 21 studies involving 3867 patients, this meta-analysis revealed that the expression of Notch1 was significantly higher in breast cancer than in normal tissues (OR=7.21; 95%CI, 4.7-11.07 and that higher Notch1 expression was associated with transition from ductal carcinoma in situ (DCIS to invasive cancer (OR=3.75; 95% CI, 1.8-7.78. Higher Notch1 activity was observed in the basal subtype of breast cancer (OR=2.53; 95% CI, 1.18-5.43. Moreover, patients with Notch1 overexpression exhibited significantly worse overall and recurrence-free survival. Our meta-analysis suggests that Notch inhibitors may be useful in blocking the early progression of DCIS and that the outcomes of clinical trials for Notch1-targeting therapeutics could be improved by the molecular stratification of breast cancer patients.

  19. Notch3 signalling promotes tumour growth in colorectal cancer.

    Science.gov (United States)

    Serafin, Valentina; Persano, Luca; Moserle, Lidia; Esposito, Giovanni; Ghisi, Margherita; Curtarello, Matteo; Bonanno, Laura; Masiero, Massimo; Ribatti, Domenico; Stürzl, Michael; Naschberger, Elisabeth; Croner, Roland S; Jubb, Adrian M; Harris, Adrian L; Koeppen, Hartmut; Amadori, Alberto; Indraccolo, Stefano

    2011-08-01

    Increased Notch1 activity has been observed in intestinal tumours, partially accomplished by β-catenin-mediated up-regulation of the Notch ligand Jagged-1. Whether further mechanisms of Notch activation exist and other Notch receptors might be involved is unclear. Microarray data indicated that Notch3 transcript levels are significantly up-regulated in primary and metastatic CRC samples compared to normal mucosa. Moreover, Notch3 protein was expressed at strong/moderate levels by 19.7% of 158 CRC samples analysed, and at weak levels by 51.2% of the samples. Intrigued by these findings, we sought to investigate whether Notch3 modulates oncogenic features of CRC cells. By exploiting xenografts of CRC cells with different tumourigenic properties in mice, we found that the aggressive phenotype was associated with altered expression of components of the Notch pathway, including Notch3, Delta-like 4 (DLL4), and Jagged-1 ligands. Stimulation with immobilized recombinant DLL4 or transduction with DLL4-expressing vectors dramatically increased Notch3 expression in CRC cells, associated with accelerated tumour growth. Forced expression of an active form of Notch3 mirrored the effects of DLL4 stimulation and increased tumour formation. Conversely, attenuation of Notch3 levels by shRNA resulted in perturbation of the cell cycle followed by reduction in cell proliferation, clonogenic capacity, and inhibition of tumour growth. Altogether, these findings indicate that Notch3 can modulate the tumourigenic properties of CRC cells and contributes to sustained Notch activity in DLL4-expressing tumours. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. Recurrent LDL-receptor mutation causes familial ...

    African Journals Online (AJOL)

    1995-05-05

    May 5, 1995 ... 3. eaudet . New. Recurrent LDL-receptor mutation causes familial hypercholesterolaemia in ... amplification refractory mutation system (ARMS)" and single- strand conformation .... Location. Afrikaner. Mixed race. ApaLl.

  1. Immunohistochemical analysis of the role and relationship between Notch-1 and Oct-4 expression in urinary bladder carcinoma.

    Science.gov (United States)

    Abdou, Asmaa Gaber; El-Wahed, Moshira Mohammed Abd; Kandil, Mona Abd-Elhalim; Samaka, Rehab Monir; Elkady, Noha

    2013-10-01

    Most tumors contain a minor population of cancer stem cells that are responsible for tumor heterogeneity, resistance to therapy and recurrence. Oct-4 is a transcription factor responsible for self-renewal of stem cells, whereas the Notch family of receptors and ligands may play a pivotal role in the regulation of stem cell maintenance and differentiation. This study aimed at an evaluation of Oct-4 and Notch-1 expression in both carcinoma and stromal cells of 83 cases of primary bladder carcinoma and to study the relationship between them. Notch-1 was expressed in carcinoma and stromal cells of all malignant cases, where expression in both cell types was correlated with parameters indicating differentiation, such as low grade (p bladder carcinoma, such as poor differentiation (p = 0.001), high proliferation (p bladder carcinoma, where they may cooperate in the progression of bladder carcinoma by acquiring aggressive features, such as a liability for recurrence and dissemination. Notch-1 is also expressed in both carcinoma cells and stromal cells of bladder carcinoma. Although they could share in enhancing differentiation, stromal expression of Notch-1 may have a bad impact, possibly through up-regulation of the active nuclear form of Oct-4 in carcinoma cells. © 2013 APMIS Published by Blackwell Publishing Ltd.

  2. The MSX1 homeobox transcription factor is a downstream target of PHOX2B and activates the Delta-Notch pathway in neuroblastoma

    International Nuclear Information System (INIS)

    Revet, Ingrid; Huizenga, Gerda; Chan, Alvin; Koster, Jan; Volckmann, Richard; Sluis, Peter van; Ora, Ingrid; Versteeg, Rogier; Geerts, Dirk

    2008-01-01

    Neuroblastoma is an embryonal tumour of the peripheral sympathetic nervous system (SNS). One of the master regulator genes for peripheral SNS differentiation, the homeobox transcription factor PHOX2B, is mutated in familiar and sporadic neuroblastomas. Here we report that inducible expression of PHOX2B in the neuroblastoma cell line SJNB-8 down-regulates MSX1, a homeobox gene important for embryonic neural crest development. Inducible expression of MSX1 in SJNB-8 caused inhibition of both cell proliferation and colony formation in soft agar. Affymetrix micro-array and Northern blot analysis demonstrated that MSX1 strongly up-regulated the Delta-Notch pathway genes DLK1, NOTCH3, and HEY1. In addition, the proneural gene NEUROD1 was down-regulated. Western blot analysis showed that MSX1 induction caused cleavage of the NOTCH3 protein to its activated form, further confirming activation of the Delta-Notch pathway. These experiments describe for the first time regulation of the Delta-Notch pathway by MSX1, and connect these genes to the PHOX2B oncogene, indicative of a role in neuroblastoma biology. Affymetrix micro-array analysis of a neuroblastic tumour series consisting of neuroblastomas and the more benign ganglioneuromas showed that MSX1, NOTCH3 and HEY1 are more highly expressed in ganglioneuromas. This suggests a block in differentiation of these tumours at distinct developmental stages or lineages

  3. Inhibition of fibroblast growth by Notch1 signaling is mediated by induction of Wnt11-dependent WISP-1.

    Directory of Open Access Journals (Sweden)

    Zhao-Jun Liu

    Full Text Available Fibroblasts are an integral component of stroma and important source of growth factors and extracellular matrix (ECM. They play a prominent role in maintaining tissue homeostasis and in wound healing and tumor growth. Notch signaling regulates biological function in a variety of cells. To elucidate the physiological function of Notch signaling in fibroblasts, we ablated Notch1 in mouse (Notch1(Flox/Flox embryonic fibroblasts (MEFs. Notch1-deficient (Notch1(-/- MEFs displayed faster growth and motility rate compared to Notch1(Flox/Flox MEFs. Such phenotypic changes, however, were reversible by reconstitution of Notch1 activation via overexpression of the intracellular domain of Notch1 (NICD1 in Notch1-deficient MEFs. In contrast, constitutive activation of Notch1 signaling by introducing NICD1 into primary human dermal fibroblasts (FF2441, which caused pan-Notch activation, inhibited cell growth and motility, whereas cellular inhibition was relievable when the Notch activation was countered with dominant-negative mutant of Master-mind like 1 (DN-MAML-1. Functionally, "Notch-activated" stromal fibroblasts could inhibit tumor cell growth/invasion. Moreover, Notch activation induced expression of Wnt-induced secreted proteins-1 (WISP-1/CCN4 in FF2441 cells while deletion of Notch1 in MEFs resulted in an opposite effect. Notably, WISP-1 suppressed fibroblast proliferation, and was responsible for mediating Notch1's inhibitory effect since siRNA-mediated blockade of WISP-1 expression could relieve cell growth inhibition. Notch1-induced WISP-1 expression appeared to be Wnt11-dependent, but Wnt1-independent. Blockade of Wnt11 expression resulted in decreased WISP-1 expression and liberated Notch-induced cell growth inhibition. These findings indicated that inhibition of fibroblast proliferation by Notch pathway activation is mediated, at least in part, through regulating Wnt1-independent, but Wnt11-dependent WISP-1 expression.

  4. The histone deacetylase HDAC1 positively regulates Notch signaling during Drosophila wing development

    Directory of Open Access Journals (Sweden)

    Zehua Wang

    2018-02-01

    Full Text Available The Notch signaling pathway is highly conserved across different animal species and plays crucial roles in development and physiology. Regulation of Notch signaling occurs at multiple levels in different tissues and cell types. Here, we show that the histone deacetylase HDAC1 acts as a positive regulator of Notch signaling during Drosophila wing development. Depletion of HDAC1 causes wing notches on the margin of adult wing. Consistently, the expression of Notch target genes is reduced in the absence of HDAC1 during wing margin formation. We further provide evidence that HDAC1 acts upstream of Notch activation. Mechanistically, we show that HDAC1 regulates Notch protein levels by promoting Notch transcription. Consistent with this, the HDAC1-associated transcriptional co-repressor Atrophin (Atro is also required for transcriptional activation of Notch in the wing disc. In summary, our results demonstrate that HDAC1 positively regulates Notch signaling and reveal a previously unidentified function of HDAC1 in Notch signaling.

  5. A case of pseudohypoaldosteronism type 1 with a mutation in the mineralocorticoid receptor gene

    Directory of Open Access Journals (Sweden)

    Se Eun Lee

    2011-02-01

    Full Text Available Pseudohypoaldosteronism type 1 (PHA1 is a rare form of mineralocorticoid resistance characterized in newborns by salt wasting with dehydration, hyperkalemia and failure to thrive. This disease is heterogeneous in etiology and includes autosomal dominant PHA1 owing to mutations of the NR3C2 gene encoding the mineralocorticoid receptor, autosomal recessive PHA1 due to mutations of the epithelial sodium channel (ENaC gene, and secondary PHA1 associated with urinary tract diseases. Amongst these diseases, autosomal dominant PHA1 shows has manifestations restricted to renal tubules including a mild salt loss during infancy and that shows a gradual improvement with advancing age. Here, we report a neonatal case of PHA1 with a NR3C2 gene mutation (a heterozygous c.2146_2147insG in exon 5, in which the patient showed failure to thrive, hyponatremia, hyperkalemia, and elevated plasma renin and aldosterone levels. This is the first case of pseudohypoaldosteronism type 1 confirmed by genetic analysis in Korea.

  6. Notch3 marks clonogenic mammary luminal progenitor cells in vivo.

    Science.gov (United States)

    Lafkas, Daniel; Rodilla, Veronica; Huyghe, Mathilde; Mourao, Larissa; Kiaris, Hippokratis; Fre, Silvia

    2013-10-14

    The identity of mammary stem and progenitor cells remains poorly understood, mainly as a result of the lack of robust markers. The Notch signaling pathway has been implicated in mammary gland development as well as in tumorigenesis in this tissue. Elevated expression of the Notch3 receptor has been correlated to the highly aggressive "triple negative" human breast cancer. However, the specific cells expressing this Notch paralogue in the mammary gland remain unknown. Using a conditionally inducible Notch3-CreERT2(SAT) transgenic mouse, we genetically marked Notch3-expressing cells throughout mammary gland development and followed their lineage in vivo. We demonstrate that Notch3 is expressed in a highly clonogenic and transiently quiescent luminal progenitor population that gives rise to a ductal lineage. These cells are capable of surviving multiple successive pregnancies, suggesting a capacity to self-renew. Our results also uncover a role for the Notch3 receptor in restricting the proliferation and consequent clonal expansion of these cells.

  7. Diverse growth hormone receptor gene mutations in Laron syndrome.

    Science.gov (United States)

    Berg, M A; Argente, J; Chernausek, S; Gracia, R; Guevara-Aguirre, J; Hopp, M; Pérez-Jurado, L; Rosenbloom, A; Toledo, S P; Francke, U

    1993-01-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), we analyzed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. We amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). We identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71 + 1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, we determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations we identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. We conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. Images Figure 1 Figure 2 PMID:8488849

  8. The critical role of Notch ligand Delta-like 1 in the pathogenesis of influenza A virus (H1N1 infection.

    Directory of Open Access Journals (Sweden)

    Toshihiro Ito

    2011-11-01

    Full Text Available Influenza A viral infections have been identified as the etiologic agents for historic pandemics, and contribute to the annual mortality associated with acute viral pneumonia. While both innate and acquired immunity are important in combating influenza virus infection, the mechanism connecting these arms of the immune system remains unknown. Recent data have indicated that the Notch system is an important bridge between antigen-presenting cells (APCs and T cell communication circuits and plays a central role in driving the immune system to overcome disease. In the present study, we examine the role of Notch signaling during influenza H1N1 virus infection, focusing on APCs. We demonstrate here that macrophages, but not dendritic cells (DCs, increased Notch ligand Delta-like 1 (Dll1 expression following influenza virus challenge. Dll1 expression on macrophages was dependent on retinoic acid-inducible gene-I (RIG-I induced type-I IFN pathway, and not on the TLR3-TRIF pathway. We also found that IFNα-Receptor knockout mice failed to induce Dll1 expression on lung macrophages and had enhanced mortality during influenza virus infection. Our results further showed that specific neutralization of Dll1 during influenza virus challenge induced higher mortality, impaired viral clearance, and decreased levels of IFN-γ. In addition, we blocked Notch signaling by using γ-secretase inhibitor (GSI, a Notch signaling inhibitor. Intranasal administration of GSI during influenza infection also led to higher mortality, and higher virus load with excessive inflammation and an impaired production of IFN-γ in lungs. Moreover, Dll1 expression on macrophages specifically regulates IFN-γ levels from CD4(+and CD8(+T cells, which are important for anti-viral immunity. Together, the results of this study show that Dll1 positively influences the development of anti-viral immunity, and may provide mechanistic approaches for modifying and controlling the immune response

  9. Melanocortin 4 receptor mutations in obese Czech children

    DEFF Research Database (Denmark)

    Hainerová, Irena; Larsen, Lesli H; Holst, Birgitte

    2007-01-01

    Mutations in the melanocortin 4 receptor gene (MC4R) represent the most common known cause of monogenic human obesity.......Mutations in the melanocortin 4 receptor gene (MC4R) represent the most common known cause of monogenic human obesity....

  10. The heterotaxy gene GALNT11 glycosylates Notch to orchestrate cilia type and laterality

    DEFF Research Database (Denmark)

    Boskovski, Marko T; Yuan, Shiaulou; Pedersen, Nis Borbye

    2013-01-01

    to such determination. We previously identified GALNT11 as a candidate disease gene in a patient with heterotaxy, and now demonstrate, in Xenopus tropicalis, that galnt11 activates Notch signalling. GALNT11 O-glycosylates human NOTCH1 peptides in vitro, thereby supporting a mechanism of Notch activation either...... by increasing ADAM17-mediated ectodomain shedding of the Notch receptor or by modification of specific EGF repeats. We further developed a quantitative live imaging technique for Xenopus left-right organizer cilia and show that Galnt11-mediated Notch1 signalling modulates the spatial distribution and ratio...... of motile and immotile cilia at the left-right organizer. galnt11 or notch1 depletion increases the ratio of motile cilia at the expense of immotile cilia and produces a laterality defect reminiscent of loss of the ciliary sensor Pkd2. By contrast, Notch overexpression decreases this ratio, mimicking...

  11. Lunatic fringe-mediated Notch signaling regulates adult hippocampal neural stem cell maintenance.

    Science.gov (United States)

    Semerci, Fatih; Choi, William Tin-Shing; Bajic, Aleksandar; Thakkar, Aarohi; Encinas, Juan Manuel; Depreux, Frederic; Segil, Neil; Groves, Andrew K; Maletic-Savatic, Mirjana

    2017-07-12

    Hippocampal neural stem cells (NSCs) integrate inputs from multiple sources to balance quiescence and activation. Notch signaling plays a key role during this process. Here, we report that Lunatic fringe ( Lfng), a key modifier of the Notch receptor, is selectively expressed in NSCs. Further, Lfng in NSCs and Notch ligands Delta1 and Jagged1, expressed by their progeny, together influence NSC recruitment, cell cycle duration, and terminal fate. We propose a new model in which Lfng-mediated Notch signaling enables direct communication between a NSC and its descendants, so that progeny can send feedback signals to the 'mother' cell to modify its cell cycle status. Lfng-mediated Notch signaling appears to be a key factor governing NSC quiescence, division, and fate.

  12. NOTCH2 signaling confers immature morphology and aggressiveness in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Hayashi, Yoshihiro; Osanai, Makoto; Lee, Gang-Hong

    2015-10-01

    The NOTCH family of membranous receptors plays key roles during development and carcinogenesis. Since NOTCH2, yet not NOTCH1 has been shown essential for murine hepatogenesis, NOTCH2 rather than NOTCH1 may be more relevant to human hepatocarcinogenesis; however, no previous studies have supported this hypothesis. We therefore assessed the role of NOTCH2 in human hepatocellular carcinoma (HCC) by immunohistochemistry and cell culture. Immunohistochemically, 19% of primary HCCs showed nuclear staining for NOTCH2, indicating activated NOTCH2 signaling. NOTCH2-positive HCCs were on average in more advanced clinical stages, and exhibited more immature cellular morphology, i.e. higher nuclear-cytoplasmic ratios and nuclear densities. Such features were not evident in NOTCH1‑positive HCCs. In human HCC cell lines, abundant NOTCH2 expression was associated with anaplasia, represented by loss of E-cadherin. When NOTCH2 signaling was stably downregulated in HLF cells, an anaplastic HCC cell line, the cells were attenuated in potential for in vitro invasiveness and migration, as well as in vivo tumorigenicity accompanied by histological maturation. Generally, inverse results were obtained for a differentiated HCC cell line, Huh7, manipulated to overexpress activated NOTCH2. These findings suggested that the NOTCH2 signaling may confer aggressive behavior and immature morphology in human HCC cells.

  13. TBECH, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane, alters androgen receptor regulation in response to mutations associated with prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kharlyngdoh, Joubert Banjop; Asnake, Solomon; Pradhan, Ajay; Olsson, Per-Erik, E-mail: per-erik.olsson@oru.se

    2016-09-15

    Point mutations in the AR ligand-binding domain (LBD) can result in altered AR structures leading to changes of ligand specificity and functions. AR mutations associated to prostate cancer (PCa) have been shown to result in receptor activation by non-androgenic substances and anti-androgenic drugs. Two AR mutations known to alter the function of anti-androgens are the AR{sub T877A} mutation, which is frequently detected mutation in PCa tumors and the AR{sub W741C} that is rare and has been derived in vitro following exposure of cells to the anti-androgen bicalutamide. AR activation by non-androgenic environmental substances has been suggested to affect PCa progression. In the present study we investigated the effect of AR mutations (AR{sub W741C} and AR{sub T877A}) on the transcriptional activation following exposure of cells to an androgenic brominated flame retardant, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane (TBECH, also named DBE-DBCH). The AR mutations resulted in higher interaction energies and increased transcriptional activation in response to TBECH diastereomer exposures. The AR{sub T877A} mutation rendered AR highly responsive to low levels of DHT and TBECH and led to increased AR nuclear translocation. Gene expression analysis showed a stronger induction of AR target genes in LNCaP cells (AR{sub T877A}) compared to T-47D cells (AR{sub WT}) following TBECH exposure. Furthermore, AR knockdown experiments confirmed the AR dependency of these responses. The higher sensitivity of AR{sub T877A} and AR{sub W741C} to low levels of TBECH suggests that cells with these AR mutations are more susceptible to androgenic endocrine disrupters. - Highlights: • TBECH, is an endocrine disrupting compound that differ in activity depending on AR structure and sequence. • TBECH interaction with the human AR-LBD containing the mutations W741C and T877A is increased compared to the wild type receptor • The mutations, W741C and T877A, are more potent than the wild type

  14. Lipoprotein profiles in human heterozygote carriers of a functional mutation P297S in scavenger receptor class B1

    NARCIS (Netherlands)

    Ljunggren, Stefan A.; Levels, Johannes H. M.; Hovingh, Kees; Holleboom, Adriaan G.; Vergeer, Menno; Argyri, Letta; Gkolfinopoulou, Christina; Chroni, Angeliki; Sierts, Jeroen A.; Kastelein, John J.; Kuivenhoven, Jan Albert; Lindahl, Mats; Karlsson, Helen

    2015-01-01

    The scavenger receptor class B type 1 (SR-B1) is an important HDL receptor involved in cholesterol uptake and efflux, but its physiological role in human lipoprotein metabolism is not fully understood. Heterozygous carriers of the SR-B1(P297S) mutation are characterized by increased HDL cholesterol

  15. Down-regulation of Notch-1 by γ-secretase inhibitor suppress the ...

    African Journals Online (AJOL)

    Notch-1 signaling is crucial for stem cell maintenance and in a variety of tissues. Previous research has demonstrated that Notch-1 activity plays a key role in prostate tumorigenesis. However, the function of Notch-1 signaling in tumorigenesis can be either oncogene or suppressor gene. In our paper, γ- secretase inhibitor ...

  16. Therapeutic NOTCH3 cysteine correction in CADASIL using exon skipping: in vitro proof of concept

    NARCIS (Netherlands)

    Rutten, J.W.; Dauwerse, H.G.; Peters, D.J.; Goldfarb, A.; Venselaar, H.; Haffner, C.; Ommen, G.J. van; Aartsma-Rus, A.M.; Oberstein, S.A.

    2016-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, or CADASIL, is a hereditary cerebral small vessel disease caused by characteristic cysteine altering missense mutations in theNOTCH3gene.NOTCH3mutations in CADASIL result in an uneven number of cysteine

  17. ENU mutagenesis reveals that Notchless homolog 1 (Drosophila affects Cdkn1a and several members of the Wnt pathway during murine pre-implantation development

    Directory of Open Access Journals (Sweden)

    Lossie Amy C

    2012-12-01

    Full Text Available Abstract Background Our interests lie in determining the genes and genetic pathways that are important for establishing and maintaining maternal-fetal interactions during pregnancy. Mutation analysis targeted to a 34 Mb domain flanked by Trp53 and Wnt3 demonstrates that this region of mouse chromosome 11 contains a large number of essential genes. Two mutant alleles (l11Jus1 and l11Jus4, which fall into the same complementation group, survive through implantation but fail prior to gastrulation. Results Through a positional cloning strategy, we discovered that these homozygous mutant alleles contain non-conservative missense mutations in the Notchless homolog 1 (Drosophila (Nle1 gene. NLE1 is a member of the large WD40-repeat protein family, and is thought to signal via the canonical NOTCH pathway in vertebrates. However, the phenotype of the Nle1 mutant mice is much more severe than single Notch receptor mutations or even in animals in which NOTCH signaling is blocked. To test the hypothesis that NLE1 functions in multiple signaling pathways during pre-implantation development, we examined expression of multiple Notch downstream target genes, as well as select members of the Wnt pathway in wild-type and mutant embryos. We did not detect altered expression of any primary members of the Notch pathway or in Notch downstream target genes. However, our data reveal that Cdkn1a, a NOTCH target, was upregulated in Nle1 mutants, while several members of the Wnt pathway are downregulated. In addition, we found that Nle1 mutant embryos undergo caspase-mediated apoptosis as hatched blastocysts, but not as morulae or blastocysts. Conclusions Taken together, these results uncover potential novel functions for NLE1 in the WNT and CDKN1A pathways during embryonic development in mammals.

  18. Mastermind-Like 1 Is Ubiquitinated: Functional Consequences for Notch Signaling.

    Directory of Open Access Journals (Sweden)

    Mozhgan Farshbaf

    Full Text Available Early studies demonstrated the involvement of ubiquitination of the Notch intracellular domain for rapid turnover of the transcriptional complex at Notch target genes. It was shown that this ubiquitination was promoted by the co-activator Mastermind like 1 (MAML1. MAML1 also contains numerous lysine residues that may also be ubiquitinated and necessary for protein regulation. In this study, we show that over-expressed MAML1 is ubiquitinated and identify eight conserved lysine residues which are required for ubiquitination. We also show that p300 stimulates ubiquitination and that Notch inhibits ubiquitination. Furthermore, we show that a mutant MAML1 that has decreased ubiquitination shows increased output from a HES1 reporter gene assay. Therefore, we speculate that ubiquitination of MAML1 might be a mechanism to maintain low levels of the protein until needed for transcriptional activation. In summary, this study identifies that MAML1 is ubiquitinated in the absence of Notch signaling to maintain low levels of MAML1 in the cell. Our data supports the notion that a precise and tight regulation of the Notch pathway is required for this signaling pathway.

  19. Ehrlichia chaffeensis TRP120 Activates Canonical Notch Signaling To Downregulate TLR2/4 Expression and Promote Intracellular Survival

    Directory of Open Access Journals (Sweden)

    Taslima T. Lina

    2016-07-01

    Full Text Available Ehrlichia chaffeensis preferentially targets mononuclear phagocytes and survives through a strategy of subverting innate immune defenses, but the mechanisms are unknown. We have shown E. chaffeensis type 1 secreted tandem repeat protein (TRP effectors are involved in diverse molecular pathogen-host interactions, such as the TRP120 interaction with the Notch receptor-cleaving metalloprotease ADAM17. In the present study, we demonstrate E. chaffeensis, via the TRP120 effector, activates the canonical Notch signaling pathway to promote intracellular survival. We found that nuclear translocation of the transcriptionally active Notch intracellular domain (NICD occurs in response to E. chaffeensis or recombinant TRP120, resulting in upregulation of Notch signaling pathway components and target genes notch1, adam17, hes, and hey. Significant differences in canonical Notch signaling gene expression levels (>40% were observed during early and late stages of infection, indicating activation of the Notch pathway. We linked Notch pathway activation specifically to the TRP120 effector, which directly interacts with the Notch metalloprotease ADAM17. Using pharmacological inhibitors and small interfering RNAs (siRNAs against γ-secretase enzyme, Notch transcription factor complex, Notch1, and ADAM17, we demonstrated that Notch signaling is required for ehrlichial survival. We studied the downstream effects and found that E. chaffeensis TRP120-mediated activation of the Notch pathway causes inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2 and p38 mitogen-activated protein kinase (MAPK pathways required for PU.1 and subsequent Toll-like receptor 2/4 (TLR2/4 expression. This investigation reveals a novel mechanism whereby E. chaffeensis exploits the Notch pathway to evade the host innate immune response for intracellular survival.

  20. 4-Chloropropofol enhances chloride currents in human hyperekplexic and artificial mutated glycine receptors

    Directory of Open Access Journals (Sweden)

    de la Roche Jeanne

    2012-09-01

    Full Text Available Abstract Background The mammalian neurological disorder hereditary hyperekplexia can be attributed to various mutations of strychnine sensitive glycine receptors. The clinical symptoms of “startle disease” predominantly occur in the newborn leading to convulsive hypertonia and an exaggerated startle response to unexpected mild stimuli. Amongst others, point mutations R271Q and R271L in the α1-subunit of strychnine sensitive glycine receptors show reduced glycine sensitivity and cause the clinical symptoms of hyperekplexia. Halogenation has been shown to be a crucial structural determinant for the potency of a phenolic compound to positively modulate glycine receptor function. The aim of this in vitro study was to characterize the effects of 4-chloropropofol (4-chloro-2,6-dimethylphenol at four glycine receptor mutations. Methods Glycine receptor subunits were expressed in HEK 293 cells and experiments were performed using the whole-cell patch-clamp technique. Results 4-chloropropofol exerted a positive allosteric modulatory effect in a low sub-nanomolar concentration range at the wild type receptor (EC50 value of 0.08 ± 0.02 nM and in a micromolar concentration range at the mutations (1.3 ± 0.6 μM, 0.1 ± 0.2 μM, 6.0 ± 2.3 μM and 55 ± 28 μM for R271Q, L, K and S267I, respectively. Conclusions 4-chloropropofol might be an effective compound for the activation of mutated glycine receptors in experimental models of startle disease.

  1. Notch Signaling Pathway Is Activated in Motoneurons of Spinal Muscular Atrophy

    Directory of Open Access Journals (Sweden)

    Gabriel Olmos

    2013-05-01

    Full Text Available Spinal muscular atrophy (SMA is a neurodegenerative disease produced by low levels of Survival Motor Neuron (SMN protein that affects alpha motoneurons in the spinal cord. Notch signaling is a cell-cell communication system well known as a master regulator of neural development, but also with important roles in the adult central nervous system. Aberrant Notch function is associated with several developmental neurological disorders; however, the potential implication of the Notch pathway in SMA pathogenesis has not been studied yet. We report here that SMN deficiency, induced in the astroglioma cell line U87MG after lentiviral transduction with a shSMN construct, was associated with an increase in the expression of the main components of Notch signaling pathway, namely its ligands, Jagged1 and Delta1, the Notch receptor and its active intracellular form (NICD. In the SMNΔ7 mouse model of SMA we also found increased astrocyte processes positive for Jagged1 and Delta1 in intimate contact with lumbar spinal cord motoneurons. In these motoneurons an increased Notch signaling was found, as denoted by increased NICD levels and reduced expression of the proneural gene neurogenin 3, whose transcription is negatively regulated by Notch. Together, these findings may be relevant to understand some pathologic attributes of SMA motoneurons.

  2. Diseases associated with growth hormone-releasing hormone receptor (GHRHR) mutations.

    Science.gov (United States)

    Martari, Marco; Salvatori, Roberto

    2009-01-01

    The growth hormone (GH)-releasing hormone (GHRH) receptor (GHRHR) belongs to the G protein-coupled receptors family. It is expressed almost exclusively in the anterior pituitary, where it is necessary for somatotroph cells proliferation and for GH synthesis and secretion. Mutations in the human GHRHR gene (GHRHR) can impair ligand binding and signal transduction, and have been estimated to cause about 10% of autosomal recessive familial isolated growth hormone deficiency (IGHD). Mutations reported to date include five splice donor site mutations, two microdeletions, two nonsense mutations, seven missense mutations, and one mutation in the promoter. These mutations have an autosomal recessive mode of inheritance, and heterozygous individuals do not show signs of IGHD, although the presence of an intermediate phenotype has been hypothesized. Conversely, patients with biallelic mutations have low serum insulin-like growth factor-1 and GH levels (with absent or reduced GH response to exogenous stimuli), resulting--if not treated--in proportionate dwarfism. This chapter reviews the biology of the GHRHR, the mutations that affect its gene and their effects in homozygous and heterozygous individuals. Copyright © 2009 Elsevier Inc. All rights reserved.

  3. Clinical and functional characterization of a patient carrying a compound heterozygous pericentrin mutation and a heterozygous IGF1 receptor mutation.

    Directory of Open Access Journals (Sweden)

    Eva Müller

    Full Text Available Intrauterine and postnatal longitudinal growth is controlled by a strong genetic component that regulates a complex network of endocrine factors integrating them with cellular proliferation, differentiation and apoptotic processes in target tissues, particularly the growth centers of the long bones. Here we report on a patient born small for gestational age (SGA with severe, proportionate postnatal growth retardation, discreet signs of skeletal dysplasia, microcephaly and moyamoya disease. Initial genetic evaluation revealed a novel heterozygous IGF1R p.Leu1361Arg mutation affecting a highly conserved residue with the insulin-like growth factor type 1 receptor suggestive for a disturbance within the somatotropic axis. However, because the mutation did not co-segregate with the phenotype and functional characterization did not reveal an obvious impairment of the ligand depending major IGF1R signaling capabilities a second-site mutation was assumed. Mutational screening of components of the somatotropic axis, constituents of the IGF signaling system and factors involved in cellular proliferation, which are described or suggested to provoke syndromic dwarfism phenotypes, was performed. Two compound heterozygous PCNT mutations (p.[Arg585X];[Glu1774X] were identified leading to the specification of the diagnosis to MOPD II. These investigations underline the need for careful assessment of all available information to derive a firm diagnosis from a sequence aberration.

  4. Clinical and functional characterization of a patient carrying a compound heterozygous pericentrin mutation and a heterozygous IGF1 receptor mutation.

    Science.gov (United States)

    Müller, Eva; Dunstheimer, Desiree; Klammt, Jürgen; Friebe, Daniela; Kiess, Wieland; Kratzsch, Jürgen; Kruis, Tassilo; Laue, Sandy; Pfäffle, Roland; Wallborn, Tillmann; Heidemann, Peter H

    2012-01-01

    Intrauterine and postnatal longitudinal growth is controlled by a strong genetic component that regulates a complex network of endocrine factors integrating them with cellular proliferation, differentiation and apoptotic processes in target tissues, particularly the growth centers of the long bones. Here we report on a patient born small for gestational age (SGA) with severe, proportionate postnatal growth retardation, discreet signs of skeletal dysplasia, microcephaly and moyamoya disease. Initial genetic evaluation revealed a novel heterozygous IGF1R p.Leu1361Arg mutation affecting a highly conserved residue with the insulin-like growth factor type 1 receptor suggestive for a disturbance within the somatotropic axis. However, because the mutation did not co-segregate with the phenotype and functional characterization did not reveal an obvious impairment of the ligand depending major IGF1R signaling capabilities a second-site mutation was assumed. Mutational screening of components of the somatotropic axis, constituents of the IGF signaling system and factors involved in cellular proliferation, which are described or suggested to provoke syndromic dwarfism phenotypes, was performed. Two compound heterozygous PCNT mutations (p.[Arg585X];[Glu1774X]) were identified leading to the specification of the diagnosis to MOPD II. These investigations underline the need for careful assessment of all available information to derive a firm diagnosis from a sequence aberration.

  5. Notch and the awesome power of genetics.

    Science.gov (United States)

    Greenwald, Iva

    2012-07-01

    Notch is a receptor that mediates cell-cell interactions in animal development, and aberrations in Notch signal transduction can cause cancer and other human diseases. Here, I describe the major advances in the Notch field from the identification of the first mutant in Drosophila almost a century ago through the elucidation of the unusual mechanism of signal transduction a little over a decade ago. As an essay for the GENETICS Perspectives series, it is my personal and critical commentary as well as an historical account of discovery.

  6. The Dmp1-SOST Transgene Interacts With and Downregulates the Dmp1-Cre Transgene and the Rosa(Notch) Allele.

    Science.gov (United States)

    Zanotti, Stefano; Canalis, Ernesto

    2016-05-01

    Activation of Notch1 in osteocytes of Rosa(Notch) mice, where a loxP-flanked STOP cassette and the Nicd coding sequence were targeted to the reverse orientation splice acceptor (Rosa)26 locus, causes osteopetrosis associated with suppressed Sost expression and enhanced Wnt signaling. To determine whether Sost downregulation mediates the effects of Notch activation in osteocytes, Rosa(Notch) mice were crossed with transgenics expressing Cre recombinase or SOST under the control of the dentin matrix protein (Dmp)1 promoter. Dmp1-SOST transgenics displayed vertebral osteopenia and a modest femoral cancellous and cortical bone phenotype, whereas hemizygous Dmp1-Cre transgenics heterozygous for the Rosa(Notch) allele (Dmp1-Cre;Rosa(Notch)) exhibited osteopetrosis. The phenotype of Notch activation in osteocytes was prevented in Dmp1-Cre;Rosa(Notch) mice hemizygous for the Dmp1-SOST transgene. The effect was associated with downregulated Notch signaling and suppressed Dmp1 and Rosa26 expression. To test whether SOST regulates Notch expression in osteocytes, cortical bone cultures from Dmp1-Cre;Rosa(Notch) mice or from Rosa(Notch) control littermates were exposed to recombinant human SOST. The addition of SOST had only modest effects on Notch target gene mRNA levels and suppressed Dmp1, but not Cre or Rosa26, expression. These findings suggest that prevention of the Dmp1-Cre;Rosa(Notch) skeletal phenotype by Dmp1-SOST is not secondary to SOST expression but to interactions among the Dmp1-SOST and Dmp1-Cre transgenes and the Rosa26 locus. In conclusion, the Dmp1-SOST transgene suppresses the expression of the Dmp1-Cre transgene and of Rosa26. © 2015 Wiley Periodicals, Inc.

  7. Notch lineages and activity in intestinal stem cells determined by a new set of knock-in mice.

    Directory of Open Access Journals (Sweden)

    Silvia Fre

    Full Text Available The conserved role of Notch signaling in controlling intestinal cell fate specification and homeostasis has been extensively studied. Nevertheless, the precise identity of the cells in which Notch signaling is active and the role of different Notch receptor paralogues in the intestine remain ambiguous, due to the lack of reliable tools to investigate Notch expression and function in vivo. We generated a new series of transgenic mice that allowed us, by lineage analysis, to formally prove that Notch1 and Notch2 are specifically expressed in crypt stem cells. In addition, a novel Notch reporter mouse, Hes1-EmGFP(SAT, demonstrated exclusive Notch activity in crypt stem cells and absorptive progenitors. This roster of knock-in and reporter mice represents a valuable resource to functionally explore the Notch pathway in vivo in virtually all tissues.

  8. Notch 1 as a potential therapeutic target in cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Kamstrup, Maria Rørbæk; Gjerdrum, Lise Mette Rahbek; Biskup, Edyta Urszula

    2010-01-01

    Deregulation of Notch signaling has been linked to the development of T-cell leukemias and several solid malignancies. Yet, it is unknown whether Notch signalling is involved in the pathogenesis of mycosis fungoides and Sezary syndrome, the most common subtypes of cutaneous T cell lymphoma....... By immunohistochemistry of 40 biopsies taken from skin lesions of mycosis fungoides and Sezary syndrome we demonstrated prominent expression of Notch1 on tumor cells, especially in the more advanced stages. The gamma-secretase inhibitor I blocked Notch signaling and potently induced apoptosis in cell lines derived from...... mycosis fungoides (MyLa) and Sezary syndrome (SeAx, HuT-78)and in primary leukemic Sézary cells. Specific downregulation of Notch1 (but not Notch2 and Notch3) by siRNA induced apoptosis in SeAx. The mechanism of apoptosis involved the inhibition of NF-kappaB, which is the most important prosurvival...

  9. Prognostic value of Notch-1 expression in hepatocellular carcinoma: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Wu T

    2015-10-01

    Full Text Available Tao Wu,1 Min Jiao,1 Li Jing,1 Min-Cong Wang,1 Hai-Feng Sun,2 Qing Li,1 Yi-Yang Bai,1 Yong-Chang Wei,1 Ke-Jun Nan,1 Hui Guo1 1Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, 2Department of Oncology, Shaanxi Cancer Hospital, Xi’an, People’s Republic of China Abstract: Association of Notch-1 expression with prognosis of patients with hepatocellular carcinoma (HCC remains controversial. We conducted a meta-analysis to reevaluate the association of Notch-1 expression with clinicopathological characteristics and prognosis of HCC. PubMed, Embase, Web of Science, and China National Knowledge Infrastructure were searched to look for relevant studies. The association between Notch-1 expression and clinicopathological parameters and overall survival (OS was then reassessed using the meta-analysis for odds ratio (OR or hazard ratio (HR and 95% confidence interval (CI. A total of seven studies, including 810 HCC patients, were eligible for the meta-analysis. Our data showed that high Notch-1 expression was able to predict poor OS (HR 1.50, 95% CI 1.17–1.83, P=0.0001. The pooled OR showed that high Notch-1 expression was significantly associated with tumor metastasis (OR 0.37, 95% CI 0.16–0.86, P=0.02 and tumor size >5 cm (OR 0.48, 95% CI 0.26–0.88, P=0.02. In contrast, there was no association between high Notch-1 expression and tumor differentiation, late TNM stage, tumor number, and portal vein invasion of HCC. In conclusion, Notch-1 overexpression might predict poorer survival and more aggressive behavior in patients with HCC. Keywords: hepatocellular carcinoma, Notch-1, prognosis, clinicopathological features, meta-analysis

  10. Mutual inactivation of Notch receptors and ligands facilitates developmental patterning.

    Directory of Open Access Journals (Sweden)

    David Sprinzak

    2011-06-01

    Full Text Available Developmental patterning requires juxtacrine signaling in order to tightly coordinate the fates of neighboring cells. Recent work has shown that Notch and Delta, the canonical metazoan juxtacrine signaling receptor and ligand, mutually inactivate each other in the same cell. This cis-interaction generates mutually exclusive sending and receiving states in individual cells. It generally remains unclear, however, how this mutual inactivation and the resulting switching behavior can impact developmental patterning circuits. Here we address this question using mathematical modeling in the context of two canonical pattern formation processes: boundary formation and lateral inhibition. For boundary formation, in a model motivated by Drosophila wing vein patterning, we find that mutual inactivation allows sharp boundary formation across a broader range of parameters than models lacking mutual inactivation. This model with mutual inactivation also exhibits robustness to correlated gene expression perturbations. For lateral inhibition, we find that mutual inactivation speeds up patterning dynamics, relieves the need for cooperative regulatory interactions, and expands the range of parameter values that permit pattern formation, compared to canonical models. Furthermore, mutual inactivation enables a simple lateral inhibition circuit architecture which requires only a single downstream regulatory step. Both model systems show how mutual inactivation can facilitate robust fine-grained patterning processes that would be difficult to implement without it, by encoding a difference-promoting feedback within the signaling system itself. Together, these results provide a framework for analysis of more complex Notch-dependent developmental systems.

  11. Targeting Homologous Recombination in Notch-Driven C. elegans Stem Cell and Human Tumors.

    Directory of Open Access Journals (Sweden)

    Xinzhu Deng

    Full Text Available Mammalian NOTCH1-4 receptors are all associated with human malignancy, although exact roles remain enigmatic. Here we employ glp-1(ar202, a temperature-sensitive gain-of-function C. elegans NOTCH mutant, to delineate NOTCH-driven tumor responses to radiotherapy. At ≤20°C, glp-1(ar202 is wild-type, whereas at 25°C it forms a germline stem cell⁄progenitor cell tumor reminiscent of human cancer. We identify a NOTCH tumor phenotype in which all tumor cells traffic rapidly to G2⁄M post-irradiation, attempt to repair DNA strand breaks exclusively via homology-driven repair, and when this fails die by mitotic death. Homology-driven repair inactivation is dramatically radiosensitizing. We show that these concepts translate directly to human cancer models.

  12. Heterogeneity of breast cancer stem cells as evidenced with Notch-dependent and Notch-independent populations

    International Nuclear Information System (INIS)

    Wong, Nelson K Y; Fuller, Megan; Sung, Sandy; Wong, Fred; Karsan, Aly

    2012-01-01

    Studies have suggested the potential importance of Notch signaling to the cancer stem cell population in some tumors, but it is not known whether all cells in the cancer stem cell fraction require Notch activity. To address this issue, we blocked Notch activity in MCF-7 cells by expressing a dominant-negative MAML-GFP (dnMAML) construct, which inhibits signaling through all Notch receptors, and quantified the effect on tumor-initiating activity. Inhibition of Notch signaling reduced primary tumor sphere formation and side population. Functional quantification of tumor-initiating cell numbers in vivo showed a significant decrease, but not a complete abrogation, of these cells in dnMAML-expressing cells. Interestingly, when assessed in secondary assays in vitro or in vivo, there was no difference in tumor-initiating activity between the dnMAML-expressing cells and control cells. The fact that a subpopulation of dnMAML-expressing cells was capable of forming primary and secondary tumors indicates that there are Notch-independent tumor-initiating cells in the breast cancer cell line MCF-7. Our findings thus provide direct evidence for a heterogeneous cancer stem cell pool, which will require combination therapies against multiple oncogenic pathways to eliminate the tumor-initiating cell population

  13. Role of Notch Signaling in Human Breast Cancer Pathogenesis

    Science.gov (United States)

    2006-11-01

    transform HMLE cells. Similarly, overexpression of ErbB2, a receptor tyrosine kinase upstream of Ras normally found overexpressed in many breast cancers ...Assess Notch-Ras cooperation in breast cancers in vivo: Since the major observation in this project has been the cooperation of Notch and Ras in HMLE ...metastasis. The in vitro cooperation between Notch and Ras in HMLE cells is mimicked in naturally arising breast cancers in vivo. Further dissection of the

  14. FOXP3 expression is modulated by TGF-β1/NOTCH1 pathway in human melanoma

    Science.gov (United States)

    Skarmoutsou, Eva; Bevelacqua, Valentina; D'Amico, Fabio; Russo, Angela; Spandidos, Demetrios A.; Scalisi, Aurora

    2018-01-01

    Forkhead box protein 3 (FOXP3) transcription factor is expressed by immune cells and several human cancers and is associated with tumor aggressiveness and unfavorable clinical outcomes. NOTCH and transforming growth factor-β (TGF-β) protumorigenic effects are mediated by FOXP3 expression in several cancer models; however, their interaction and role in melanoma is unknown. We investigated TGF-β-induced FOXP3 gene expression during NOTCH1 signaling inactivation. Primary (WM35) and metastatic melanoma (A375 and A2058) cell lines and normal melanocytes (NHEM) were used. FOXP3 subcellular distribution was evaluated by immuno cytochemical analysis. Gene expression levels were assessed by reverse transcription-quantitative polymerase chain reaction. Protein levels were assessed by western blot analysis. The γ-secretase inhibitor (GSI) was used for NOTCH1 inhibition and recombinant human (rh)TGF-β was used for melanoma cell stimulation. Cell proliferation and viability were respectively assessed by MTT and Trypan blue dye assays. FOXP3 mRNA and protein levels were progressively higher in WM35, A375 and A2058 cell lines compared to NHEM and their levels were further increased after stimulation with rh-TGF-β. TGF-β-mediated FOXP3 expression was mediated by NOTCH1 signaling. Inhibition of NOTCH1 with concomitant rh-TGF-β stimulation determined the reduction in gene expression and protein level of FOXP3. Finally, melanoma cell line proliferation and viability were reduced by NOTCH1 inhibition. The results show that nn increase in FOXP3 expression in metastatic melanoma cell lines is a potential marker of tumor aggressiveness and metastasis. NOTCH1 is a central mediator of TGF-β-mediated FOXP3 expression and NOTCH1 inhibition produces a significant reduction of melanoma cell proliferation and viability. PMID:29620159

  15. Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer.

    Science.gov (United States)

    Rodilla, Verónica; Villanueva, Alberto; Obrador-Hevia, Antonia; Robert-Moreno, Alex; Fernández-Majada, Vanessa; Grilli, Andrea; López-Bigas, Nuria; Bellora, Nicolás; Albà, M Mar; Torres, Ferran; Duñach, Mireia; Sanjuan, Xavier; Gonzalez, Sara; Gridley, Thomas; Capella, Gabriel; Bigas, Anna; Espinosa, Lluís

    2009-04-14

    Notch has been linked to beta-catenin-dependent tumorigenesis; however, the mechanisms leading to Notch activation and the contribution of the Notch pathway to colorectal cancer is not yet understood. By microarray analysis, we have identified a group of genes downstream of Wnt/beta-catenin (down-regulated when blocking Wnt/beta-catenin) that are directly regulated by Notch (repressed by gamma-secretase inhibitors and up-regulated by active Notch1 in the absence of beta-catenin signaling). We demonstrate that Notch is downstream of Wnt in colorectal cancer cells through beta-catenin-mediated transcriptional activation of the Notch-ligand Jagged1. Consistently, expression of activated Notch1 partially reverts the effects of blocking Wnt/beta-catenin pathway in tumors implanted s.c. in nude mice. Crossing APC(Min/+) with Jagged1(+/Delta) mice is sufficient to significantly reduce the size of the polyps arising in the APC mutant background indicating that Notch is an essential modulator of tumorigenesis induced by nuclear beta-catenin. We show that this mechanism is operating in human tumors from Familial Adenomatous Polyposis patients. We conclude that Notch activation, accomplished by beta-catenin-mediated up-regulation of Jagged1, is required for tumorigenesis in the intestine. The Notch-specific genetic signature is sufficient to block differentiation and promote vasculogenesis in tumors whereas proliferation depends on both pathways.

  16. Fringe Controls Naïve CD4+T Cells Differentiation through Modulating Notch Signaling in Asthmatic Rat Models

    Science.gov (United States)

    Gu, Wen; Xu, Weiguo; Ding, Tao; Guo, Xuejun

    2012-01-01

    The ability of Notch signaling to regulate T helper cell development and differentiation has been widely accepted. Fringe, O-fucose-β1,3-N-acetylglucosaminyltransferases modulate Notch receptor expression and promote the Notch signaling pathway through receptor-ligand binding. In this study, we assayed the expression levels of three Fringe homologs in naive CD4+T cells in asthmatic rats. We found that Radical Fringe (Rfng) was highly expressed, whereas both Lunatic Fringe (Lfng) and Manic Fringe (Mfng) were expressed at low levels. Down-regulation of Rfng using siRNA, and overexpression of Lfng or Mfng enhanced Th1 subset lineages and diminished Th2 subset lineages. Notch signaling was more activated in asthmatic naïve CD4+T cells than in control cells, and Lfng, but not Mfng or Rfng, partly inhibited Notch signaling in asthmatic naïve CD4+T lymphocytes. Lfng overexpression resulted in significantly decreased Th2 cytokine production in asthma, which was the same effect as the GSI (γ-secretase inhibitor) treatment alone, but had an increased effect on Th1 cytokines than GSI treatment. Collectively, these data identify the essential role of Fringe modulating naïve CD4+T cells differentiation through Notch signaling. Lfng regulated Th2 cells differentiation via a Notch-dependent manner and Th1 cells differentiation via a Notch-independent manner. Fringe could be a therapeutic strategy for the management and prevention of allergic asthma. PMID:23071776

  17. Fringe controls naïve CD4(+)T cells differentiation through modulating notch signaling in asthmatic rat models.

    Science.gov (United States)

    Gu, Wen; Xu, Weiguo; Ding, Tao; Guo, Xuejun

    2012-01-01

    The ability of Notch signaling to regulate T helper cell development and differentiation has been widely accepted. Fringe, O-fucose-β1,3-N-acetylglucosaminyltransferases modulate Notch receptor expression and promote the Notch signaling pathway through receptor-ligand binding. In this study, we assayed the expression levels of three Fringe homologs in naive CD4(+)T cells in asthmatic rats. We found that Radical Fringe (Rfng) was highly expressed, whereas both Lunatic Fringe (Lfng) and Manic Fringe (Mfng) were expressed at low levels. Down-regulation of Rfng using siRNA, and overexpression of Lfng or Mfng enhanced Th1 subset lineages and diminished Th2 subset lineages. Notch signaling was more activated in asthmatic naïve CD4(+)T cells than in control cells, and Lfng, but not Mfng or Rfng, partly inhibited Notch signaling in asthmatic naïve CD4(+)T lymphocytes. Lfng overexpression resulted in significantly decreased Th2 cytokine production in asthma, which was the same effect as the GSI (γ-secretase inhibitor) treatment alone, but had an increased effect on Th1 cytokines than GSI treatment. Collectively, these data identify the essential role of Fringe modulating naïve CD4(+)T cells differentiation through Notch signaling. Lfng regulated Th2 cells differentiation via a Notch-dependent manner and Th1 cells differentiation via a Notch-independent manner. Fringe could be a therapeutic strategy for the management and prevention of allergic asthma.

  18. Shengui Sansheng San extraction is an angiogenic switch via regulations of AKT/mTOR, ERK1/2 and Notch1 signal pathways after ischemic stroke.

    Science.gov (United States)

    Liu, Bowen; Luo, Cheng; Zheng, Zhaoguang; Xia, Zhenyan; Zhang, Qian; Ke, Chienchih; Liu, Renshyan; Zhao, Yonghua

    2018-05-15

    As a traditional Chinese herbal formula, Shengui Sansheng San (SSS) has been employed for stroke treatment more than 300 years. We hypothesize that SSS extraction is an angiogenic switch in penumbra post-stroke, and corresponding mechanisms are investigated. In present study, rats were subjected to permanent middle cerebral artery occlusion model (MCAo) and were treated with low, middle and high doses of SSS extraction. We assessed neurological function and survival rate, and measured infarct volume by 2,3,5-triphenyltetrazolium chloride staining on day 7 after ischemia. von Willebrand factor (vWF), stromal cell-derived factor-1 alpha (SDF-1α) /chemokine (C-X-C motif) receptor 4 (CXCR4) axis, vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) as well as protein kinase B (AKT)/mammalian target of rapamycin (mTOR) /hypoxia-inducible factor-1 alpha (HIF-1α), extracellular signal-regulated kinase 1/2 (ERK1/2) and Notch1 signaling pathways were respectively investigated by immunofluorescence assay or western blotting in vivo and oxygen-glucose-deprived (OGD) brain microvascular endothelial cells (BMECs); simultaneously, wound healing of BMECs and tube formation assay were administrated. Compared to MCAo group, SSS extraction could significantly improve neurological functional scores, survival rate and cerebral infarct volume, enhance vWF + vascular density and perimeter, SDF-1α/CXCR4 axis, VEGF expression, as well as activate AKT/mTOR/HIF-1α and ERK1/2 and inhibit Notch1 pathways in penumbra. In vitro, containing SSS extraction serum increased BMEC migration, capillary formation and VEGF expression via up-regulations of AKT/mTOR and ERK1/2 pathways in OGD BMECs, but ERK inhibitor (U0126) reversed the result of VEGF expression in high dose of SSS group. Additionally, VEGFR2 and Notch1 expressions were suppressed by containing SSS extraction serum. All results were in dose dependent manner. Our study firstly demonstrates that SSS extraction is an

  19. Novel growth hormone receptor gene mutation in a patient with Laron syndrome.

    Science.gov (United States)

    Arman, Ahmet; Yüksel, Bilgin; Coker, Ajda; Sarioz, Ozlem; Temiz, Fatih; Topaloglu, Ali Kemal

    2010-04-01

    Growth Hormone (GH) is a 22 kDa protein that has effects on growth and glucose and fat metabolisms. These effects are initiated by binding of growth hormone (GH) to growth hormone receptors (GHR) expressed in target cells. Mutations or deletions in the growth hormone receptor cause an autosomal disorder called Laron-type dwarfism (LS) characterized by high circulating levels of serum GH and low levels of insulin like growth factor-1 (IGF-1). We analyzed the GHR gene for genetic defect in seven patients identified as Laron type dwarfism. We identified two missense mutations (S40L and W104R), and four polymorphisms (S473S, L526I, G168G and exon 3 deletion). We are reporting a mutation (W104R) at exon 5 of GHR gene that is not previously reported, and it is a novel mutation.

  20. Inhibition of Notch signaling alters the phenotype of orthotopic tumors formed from glioblastoma multiforme neurosphere cells but does not hamper intracranial tumor growth regardless of endogene Notch pathway signature

    DEFF Research Database (Denmark)

    Kristoffersen, Karina; Nedergaard, Mette Kjølhede; Villingshøj, Mette

    2014-01-01

    BACKGROUND: Brain cancer stem-like cells (bCSC) are cancer cells with neural stem cell (NSC)-like properties found in the devastating brain tumor glioblastoma multiforme (GBM). bCSC are proposed a central role in tumor initiation, progression, treatment resistance and relapse and as such present...... a promising target in GBM research. The Notch signaling pathway is often deregulated in GBM and we have previously characterized GBM-derived bCSC cultures based on their expression of the Notch-1 receptor and found that it could be used as predictive marker for the effect of Notch inhibition. The aim...... of the present project was therefore to further elucidate the significance of Notch pathway activity for the tumorigenic properties of GBM-derived bCSC. METHODS: Human-derived GBM xenograft cells previously established as NSC-like neurosphere cultures were used. Notch inhibition was accomplished by exposing...

  1. Immunolocalization of notch signaling protein molecules in a maxillary chondrosarcoma and its recurrent tumor

    Directory of Open Access Journals (Sweden)

    Siar CH

    2010-10-01

    Full Text Available Abstract Background Notch receptors are critical determinants of cell fate in a variety of organisms. Notch signaling is involved in the chondrogenic specification of neural crest cells. Aberrant Notch activity has been implicated in numerous human diseases including cancers; however its role in chondrogenic tumors has not been clarified. Method Tissue samples from a case of primary chondrosarcoma of the maxilla and its recurrent tumor were examined immunohistochemically for Notch1-4 and their ligands (Jagged1, Jagged2 and Delta1 expression. Results Both primary and recurrent tumors were histopathologically diagnosed as conventional hyaline chondrosarcoma (WHO Grade I. Hypercellular tumor areas strongly expressed Notch3 and Jagged1 in spindle and pleomorphic cells suggesting up-regulation of these protein molecules at sites of tumor proliferation. Expression patterns were distinct with some overlap. Differentiated malignant and atypical chondrocytes demonstrated variable expression levels of Jagged1, and weak to absent staining for Notch1, 4 and Delta1. Protein immunolocalization was largely membranous and cytoplasmic, sometimes outlining the lacunae of malignant chondrocytes. Hyaline cartilage demonstrated a diffuse or granular precipitation of Jagged1 suggesting presence of soluble Jagged1 activity at sites of abnormal chondrogenesis. No immunoreactivity for the other Notch members was observed. Calcified cartilage was consistently Notch-negative indicating down-regulation of Notch with cartilage maturation. Stromal components namely endothelial cells and fibroblasts variably expressed Notch1, 3 and Jagged1 but were mildly or non-reactive for the other members. Conclusions Results indicate that Notch signaling pathway may participate in cellular differentiation and proliferation in chondrosarcoma. Findings implicate Notch3 and Jagged1 as key molecules that influence the differentiation and maturation of cells of chondrogenic lineage.

  2. Notch 1 Receptor, Delta 1 Ligand and HES 1 Transcription Factor are Expressed in the Lining Epithelium of Periapical Cysts (Preliminary Study)

    OpenAIRE

    Meliou, E; Kerezoudis, NP; Tosios, KI; Kiaris, H

    2010-01-01

    Periapical cyst is a chronic inflammatory disorder of periradicular tissues. The precise pathological mechanisms involved in periapical cyst enlargement remain unclear. Notch signaling is an evolutionarily conserved pathway with a regulatory role in cell fate decisions during development and in carcinogenesis. To date, there are no published data available on the expression of Notch signaling components in periapical cysts or any other jaw cyst. In this immunohistochemical study we have exami...

  3. Asymmetric cell division and Notch signaling specify dopaminergic neurons in Drosophila.

    Directory of Open Access Journals (Sweden)

    Murni Tio

    Full Text Available In Drosophila, dopaminergic (DA neurons can be found from mid embryonic stages of development till adulthood. Despite their functional involvement in learning and memory, not much is known about the developmental as well as molecular mechanisms involved in the events of DA neuronal specification, differentiation and maturation. In this report we demonstrate that most larval DA neurons are generated during embryonic development. Furthermore, we show that loss of function (l-o-f mutations of genes of the apical complex proteins in the asymmetric cell division (ACD machinery, such as inscuteable and bazooka result in supernumerary DA neurons, whereas l-o-f mutations of genes of the basal complex proteins such as numb result in loss or reduction of DA neurons. In addition, when Notch signaling is reduced or abolished, additional DA neurons are formed and conversely, when Notch signaling is activated, less DA neurons are generated. Our data demonstrate that both ACD and Notch signaling are crucial mechanisms for DA neuronal specification. We propose a model in which ACD results in differential Notch activation in direct siblings and in this context Notch acts as a repressor for DA neuronal specification in the sibling that receives active Notch signaling. Our study provides the first link of ACD and Notch signaling in the specification of a neurotransmitter phenotype in Drosophila. Given the high degree of conservation between Drosophila and vertebrate systems, this study could be of significance to mechanisms of DA neuronal differentiation not limited to flies.

  4. Growth Hormone Receptor Mutations Related to Individual Dwarfism

    Science.gov (United States)

    Li, Charles; Zhang, Xiquan

    2018-01-01

    Growth hormone (GH) promotes body growth by binding with two GH receptors (GHRs) at the cell surface. GHRs interact with Janus kinase, signal transducers, and transcription activators to stimulate metabolic effects and insulin-like growth factor (IGF) synthesis. However, process dysfunctions in the GH–GHR–IGF-1 axis cause animal dwarfism. If, during the GH process, GHR is not successfully recognized and/or bound, or GHR fails to transmit the GH signal to IGF-1, the GH dysfunction occurs. The goal of this review was to focus on the GHR mutations that lead to failures in the GH–GHR–IGF-1 signal transaction process in the dwarf phenotype. Until now, more than 90 GHR mutations relevant to human short stature (Laron syndrome and idiopathic short stature), including deletions, missense, nonsense, frameshift, and splice site mutations, and four GHR defects associated with chicken dwarfism, have been described. Among the 93 identified mutations of human GHR, 68 occur extracellularly, 13 occur in GHR introns, 10 occur intracellularly, and two occur in the transmembrane. These mutations interfere with the interaction between GH and GHRs, GHR dimerization, downstream signaling, and the expression of GHR. These mutations cause aberrant functioning in the GH-GHR-IGF-1 axis, resulting in defects in the number and diameter of muscle fibers as well as bone development. PMID:29748515

  5. Growth Hormone Receptor Mutations Related to Individual Dwarfism

    Directory of Open Access Journals (Sweden)

    Shudai Lin

    2018-05-01

    Full Text Available Growth hormone (GH promotes body growth by binding with two GH receptors (GHRs at the cell surface. GHRs interact with Janus kinase, signal transducers, and transcription activators to stimulate metabolic effects and insulin‐like growth factor (IGF synthesis. However, process dysfunctions in the GH–GHR–IGF-1 axis cause animal dwarfism. If, during the GH process, GHR is not successfully recognized and/or bound, or GHR fails to transmit the GH signal to IGF-1, the GH dysfunction occurs. The goal of this review was to focus on the GHR mutations that lead to failures in the GH–GHR–IGF-1 signal transaction process in the dwarf phenotype. Until now, more than 90 GHR mutations relevant to human short stature (Laron syndrome and idiopathic short stature, including deletions, missense, nonsense, frameshift, and splice site mutations, and four GHR defects associated with chicken dwarfism, have been described. Among the 93 identified mutations of human GHR, 68 occur extracellularly, 13 occur in GHR introns, 10 occur intracellularly, and two occur in the transmembrane. These mutations interfere with the interaction between GH and GHRs, GHR dimerization, downstream signaling, and the expression of GHR. These mutations cause aberrant functioning in the GH-GHR-IGF-1 axis, resulting in defects in the number and diameter of muscle fibers as well as bone development.

  6. Valsartan ameliorates podocyte loss in diabetic mice through the Notch pathway.

    Science.gov (United States)

    Gao, Feng; Yao, Min; Cao, Yanping; Liu, Shuxia; Liu, Qingjuan; Duan, Huijun

    2016-05-01

    The Notch pathway is known to be linked to diabetic nephropathy (DN); however, its underlying mechanism was poorly understood. In the present study, we examined the effect of Valsartan, an angiotensin II type 1 receptor antagonist, on the Notch pathway and podocyte loss in DN. Diabetes was induced in mice by an intraperitoneal injection of streptozotocin and and this was followed by treatment with Valsartan. Levels of blood glucose, kidney weight and body weight, as well as proteinuria were measured. Samples of the kidneys were also histologically examined. The relative levels of Jagged1, Notch1, Notch intracellular domain 1 (NICD1), Hes family BHLH transcription factor 1 (Hes1) and Hes-related family BHLH transcription factor with YRPW motif 1 expression (Hey1) in the glomeruli were determined by immunohistochemical analysis, western blot analysis and RT-qPCR. The B-Cell CLL/Lymphoma 2 (Bcl-2) and p53 pathways were examined by western blot analysis. Apoptosis and detachment of podocytes from the glomerular basement membrane were examined using a TUNEL assay, flow cytometric analysis and ELISA. The number of podocytes was quantified by measuring Wilms tumor-1 (WT-1) staining. We noted that the expression of Jagged1, Notch1, NICD1, Hes1 and Hey1 was increased in a time-dependent manner in the glomeruli of mice with streptozotocin (STZ)-induced diabetes. Moreover, in diabetic mice, Valsartan significantly reduced kidney weight and proteinuria, and mitigated the pathogenic processes in the kidneys. Valsartan also inhibited the activation of Notch, Bcl-2 and p53 pathways and ameliorated podocyte loss in the glomeruli of mice with STZ-induced diabetes. Taken together, these findings indicated that Valsartan exerted a beneficial effect on reducing podocyte loss, which is associated with inhibition of Notch pathway activation in the glomeruli of diabetic mice.

  7. Vía de señalización Notch y nuevas estrategias para el tratamiento de cáncer Notch signaling pathway and new strategies in cancer treatment

    Directory of Open Access Journals (Sweden)

    Leticia Santos

    2006-04-01

    Full Text Available La vía de señalización Notch desempeña un papel fundamental en las diferentes etapas del desarrollo celular como la proliferación, crecimiento, diferenciación y apoptosis. Estudios recientes han demostrado que, dependiendo del nivel de expresión y del contexto celular, los receptores de membrana Notch contribuyen en la resistencia a apoptosis en células tumorales. Estos descubrimientos sugieren que componentes de la vía de señalización Notch son un blanco potencial para el desarrollo de terapias más efectivas contra el cáncer. Esta revisión describe la función de la vía Notch y nuevas estrategias utilizadas en la modulación de su señal.The Notch signaling pathway plays a crucial role at different stages of cell development, such as proliferation, growth, differentiation, and apoptosis. Recent studies demonstrate that depending on the expression level and cellular context, the Notch receptors play a role in apoptosis resistance in malignant cells. These findings suggest that Notch signaling components may be a potential target in the development of new cancer therapies. This review describes the function of the Notch pathway and new strategies in the modulation of its signal.

  8. Three novel and two known androgen receptor gene mutations ...

    Indian Academy of Sciences (India)

    gene mutations associated with androgen insensitivity syndrome in sex-reversed XY female patients. J. Genet. ... signal and a C-terminal. Keywords. androgen insensitivity syndrome; androgen receptor; truncation mutation; N-terminal domain; XY sex reversal. .... and an increased risk of gonadal tumour. Mutations in SRY.

  9. The Androgen Receptor Gene Mutations Database.

    Science.gov (United States)

    Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1998-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).

  10. Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythemia patients.

    Science.gov (United States)

    Cabagnols, Xénia; Favale, Fabrizia; Pasquier, Florence; Messaoudi, Kahia; Defour, Jean Philippe; Ianotto, Jean Christophe; Marzac, Christophe; Le Couédic, Jean Pierre; Droin, Nathalie; Chachoua, Ilyas; Favier, Remi; Diop, M'boyba Khadija; Ugo, Valérie; Casadevall, Nicole; Debili, Najet; Raslova, Hana; Bellanné-Chantelot, Christine; Constantinescu, Stefan N; Bluteau, Olivier; Plo, Isabelle; Vainchenker, William

    2016-01-21

    Mutations in signaling molecules of the cytokine receptor axis play a central role in myeloproliferative neoplasm (MPN) pathogenesis. Polycythemia vera is mainly related to JAK2 mutations, whereas a wider mutational spectrum is detected in essential thrombocythemia (ET) with mutations in JAK2, the thrombopoietin (TPO) receptor (MPL), and the calreticulin (CALR) genes. Here, we studied the mutational profile of 17 ET patients negative for JAK2V617F, MPLW515K/L, and CALR mutations, using whole-exome sequencing and next-generation sequencing (NGS) targeted on JAK2 and MPL. We found several signaling mutations including JAK2V617F at very low allele frequency, 1 homozygous SH2B3 mutation, 1 MPLS505N, 1 MPLW515R, and 2 MPLS204P mutations. In the remaining patients, 4 presented a clonal and 7 a polyclonal hematopoiesis, suggesting that certain triple-negative ETs are not MPNs. NGS on 26 additional triple-negative ETs detected only 1 MPLY591N mutation. Functional studies on MPLS204P and MPLY591N revealed that they are weak gain-of-function mutants increasing MPL signaling and conferring either TPO hypersensitivity or independence to expressing cells, but with a low efficiency. Further studies should be performed to precisely determine the frequency of MPLS204 and MPLY591 mutants in a bigger cohort of MPN. © 2016 by The American Society of Hematology.

  11. Oncogenic programmes and Notch activity: an 'organized crime'?

    Science.gov (United States)

    Dominguez, Maria

    2014-04-01

    The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors

    Energy Technology Data Exchange (ETDEWEB)

    de Vries, Robert P.; Tzarum, Netanel; Peng, Wenjie; Thompson, Andrew J.; Ambepitiya Wickramasinghe, Iresha N.; de la Pena, Alba T. Torrents; van Breemen, Marielle J.; Bouwman, Kim M.; Zhu, Xueyong; McBride, Ryan; Yu, Wenli; Sanders, Rogier W.; Verheije, Monique H.; Wilson, Ian A.; Paulson, James C.

    2017-07-10

    In June 2013, the first case of human infection with an avian H6N1 virus was reported in a Taiwanese woman. Although this was a single non-fatal case, the virus continues to circulate in Taiwanese poultry. As with any emerging avian virus that infects humans, there is concern that acquisition of human-type receptor specificity could enable transmission in the human population. Despite mutations in the receptor-binding pocket of the human H6N1 isolate, it has retained avian-type (NeuAcα2-3Gal) receptor specificity. However, we show here that a single nucleotide substitution, resulting in a change from Gly to Asp at position 225 (G225D), completely switches specificity to human-type (NeuAcα2-6Gal) receptors. Significantly, G225D H6 loses binding to chicken trachea epithelium and is now able to bind to human tracheal tissue. Structural analysis reveals that Asp225 directly interacts with the penultimate Gal of the human-type receptor, stabilizing human receptor binding.

  13. RITA, a novel modulator of Notch signalling, acts via nuclear export of RBP-J.

    Science.gov (United States)

    Wacker, Stephan Armin; Alvarado, Cristobal; von Wichert, Götz; Knippschild, Uwe; Wiedenmann, Jörg; Clauss, Karen; Nienhaus, Gerd Ulrich; Hameister, Horst; Baumann, Bernd; Borggrefe, Tilman; Knöchel, Walter; Oswald, Franz

    2011-01-05

    The evolutionarily conserved Notch signal transduction pathway regulates fundamental cellular processes during embryonic development and in the adult. Ligand binding induces presenilin-dependent cleavage of the receptor and a subsequent nuclear translocation of the Notch intracellular domain (NICD). In the nucleus, NICD binds to the recombination signal sequence-binding protein J (RBP-J)/CBF-1 transcription factor to induce expression of Notch target genes. Here, we report the identification and functional characterization of RBP-J interacting and tubulin associated (RITA) (C12ORF52) as a novel RBP-J/CBF-1-interacting protein. RITA is a highly conserved 36 kDa protein that, most interestingly, binds to tubulin in the cytoplasm and shuttles rapidly between cytoplasm and nucleus. This shuttling RITA exports RBP-J/CBF-1 from the nucleus. Functionally, we show that RITA can reverse a Notch-induced loss of primary neurogenesis in Xenopus laevis. Furthermore, RITA is able to downregulate Notch-mediated transcription. Thus, we propose that RITA acts as a negative modulator of the Notch signalling pathway, controlling the level of nuclear RBP-J/CBF-1, where its amounts are limiting.

  14. Immunohistochemical expression of Notch signaling in the lining epithelium of periapical cysts.

    Science.gov (United States)

    Meliou, Eleni; Kerezoudis, Nikolaos; Tosios, Konstantinos; Lafkas, Daniel; Kiaris, Hippokratis

    2011-02-01

    In this study we evaluated the immunohistochemical expression of the receptors Notch 1 and Notch 2, the ligand Delta 1, and the transcription factors HES 1 and HES 5 in the epithelium of well-defined periapical cysts. Immunohistochemistry was carried out on 55 formalin-fixed and paraffin-embedded, well-defined periapical cysts with minimum inflammation, obtained from the archival tissue database of the Department of Oral Pathology and Surgery. Western blotting was performed to evaluate the specificity of the anti-Notch antibody and the expression of Notch signaling in 5 fresh-frozen periapical cysts. The levels of staining intensity were estimated by the performance of a semiautomated image analysis system. Descriptive statistic of mean values obtained by computerized image analysis method was performed. Immunostaining reaction of all Notch signaling components was observed in the cytoplasm and/or the cytoplasmic membrane in the majority of epithelial cells of periapical cysts. Nuclear staining was observed occasionally in all cases. Notch 2 showed strong staining in 52.83% of the cases, followed by Notch 1 (35.85%), HES 1 and HES 5 moderate staining in 72.73% and 57.69% of the cases, respectively, and Delta 1 weak staining in 58.33% of the cases. No statistical correlation was found between the antibodies and the sex or the age of the study group. Notch is an evolutionarily conserved signaling mechanism that regulates cell fate decisions during development and postnatal life in organisms as diverse as worms, flies, and humans. The present observations indicate that Notch pathway is active downstream in the lining epithelium of periapical cysts, suggesting an involvement of this pathway in periapical cyst growth and expansion. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. O-Fucose Monosaccharide of Drosophila Notch Has a Temperature-sensitive Function and Cooperates with O-Glucose Glycan in Notch Transport and Notch Signaling Activation*

    Science.gov (United States)

    Ishio, Akira; Sasamura, Takeshi; Ayukawa, Tomonori; Kuroda, Junpei; Ishikawa, Hiroyuki O.; Aoyama, Naoki; Matsumoto, Kenjiroo; Gushiken, Takuma; Okajima, Tetsuya; Yamakawa, Tomoko; Matsuno, Kenji

    2015-01-01

    Notch (N) is a transmembrane receptor that mediates the cell-cell interactions necessary for many cell fate decisions. N has many epidermal growth factor-like repeats that are O-fucosylated by the protein O-fucosyltransferase 1 (O-Fut1), and the O-fut1 gene is essential for N signaling. However, the role of the monosaccharide O-fucose on N is unclear, because O-Fut1 also appears to have O-fucosyltransferase activity-independent functions, including as an N-specific chaperon. Such an enzymatic activity-independent function could account for the essential role of O-fut1 in N signaling. To evaluate the role of the monosaccharide O-fucose modification in N signaling, here we generated a knock-in mutant of O-fut1 (O-fut1R245A knock-in), which expresses a mutant protein that lacks O-fucosyltransferase activity but maintains the N-specific chaperon activity. Using O-fut1R245A knock-in and other gene mutations that abolish the O-fucosylation of N, we found that the monosaccharide O-fucose modification of N has a temperature-sensitive function that is essential for N signaling. The O-fucose monosaccharide and O-glucose glycan modification, catalyzed by Rumi, function redundantly in the activation of N signaling. We also showed that the redundant function of these two modifications is responsible for the presence of N at the cell surface. Our findings elucidate how different forms of glycosylation on a protein can influence the protein's functions. PMID:25378397

  16. The melatonin-MT1 receptor axis modulates tumor growth in PTEN-mutated gliomas.

    Science.gov (United States)

    Ma, Huihui; Wang, Zhen; Hu, Lei; Zhang, Shangrong; Zhao, Chenggang; Yang, Haoran; Wang, Hongzhi; Fang, Zhiyou; Wu, Lijun; Chen, Xueran

    2018-02-19

    More than 40% of glioma patients have tumors that harbor PTEN (phosphatase and tensin homologue deleted on chromosome ten) mutations; this disease is associated with poor therapeutic resistance and outcome. Such mutations are linked to increased cell survival and growth, decreased apoptosis, and drug resistance; thus, new therapeutic strategies focusing on inhibiting glioma tumorigenesis and progression are urgently needed. Melatonin, an indolamine produced and secreted predominantly by the pineal gland, mediates a variety of physiological functions and possesses antioxidant and antitumor properties. Here, we analyzed the relationship between PTEN and the inhibitory effect of melatonin in primary human glioma cells and cultured glioma cell lines. The results showed that melatonin can inhibit glioma cell growth both in culture and in vivo. This inhibition was associated with PTEN levels, which significantly correlated with the expression level of MT1 in patients. In fact, c-fos-mediated MT1 was shown to be a key modulator of the effect of melatonin on gliomas that harbor wild type PTEN. Taken together, these data suggest that melatonin-MT1 receptor complexes represent a potential target for the treatment of glioma. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. An obligatory role of mind bomb-1 in notch signaling of mammalian development.

    Directory of Open Access Journals (Sweden)

    Bon-Kyoung Koo

    2007-11-01

    Full Text Available The Notch signaling pathway is an evolutionarily conserved intercellular signaling module essential for cell fate specification that requires endocytosis of Notch ligands. Structurally distinct E3 ubiquitin ligases, Neuralized (Neur and Mind bomb (Mib, cooperatively regulate the endocytosis of Notch ligands in Drosophila. However, the respective roles of the mammalian E3 ubiquitin ligases, Neur1, Neur2, Mib1, and Mib2, in mammalian development are poorly understood.Through extensive use of mammalian genetics, here we show that Neur1 and Neur2 double mutants and Mib2(-/- mice were viable and grossly normal. In contrast, conditional inactivation of Mib1 in various tissues revealed the representative Notch phenotypes: defects of arterial specification as deltalike4 mutants, abnormal cerebellum and skin development as jagged1 conditional mutants, and syndactylism as jagged2 mutants.Our data provide the first evidence that Mib1 is essential for Jagged as well as Deltalike ligand-mediated Notch signaling in mammalian development, while Neur1, Neur2, and Mib2 are dispensable.

  18. Three mutations switch H7N9 influenza to human-type receptor specificity

    Energy Technology Data Exchange (ETDEWEB)

    de Vries, Robert P.; Peng, Wenjie; Grant, Oliver C.; Thompson, Andrew J.; Zhu, Xueyong; Bouwman, Kim M.; de la Pena, Alba T. Torrents; van Breemen, Marielle J.; Ambepitiya Wickramasinghe, Iresha N.; de Haan, Cornelis A. M.; Yu, Wenli; McBride, Ryan; Sanders, Rogier W.; Woods, Robert J.; Verheije, Monique H.; Wilson, Ian A.; Paulson, James C.; Fernandez-Sesma, Ana

    2017-06-15

    The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA) mutation (Q226L) that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal) to human-type (NeuAcα2-6Gal), as documented for the avian progenitors of the 1957 (H2N2) and 1968 (H3N2) human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. To determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.

  19. Three mutations switch H7N9 influenza to human-type receptor specificity.

    Directory of Open Access Journals (Sweden)

    Robert P de Vries

    2017-06-01

    Full Text Available The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA mutation (Q226L that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal to human-type (NeuAcα2-6Gal, as documented for the avian progenitors of the 1957 (H2N2 and 1968 (H3N2 human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. To determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.

  20. Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment.

    Science.gov (United States)

    Katsushima, Keisuke; Natsume, Atsushi; Ohka, Fumiharu; Shinjo, Keiko; Hatanaka, Akira; Ichimura, Norihisa; Sato, Shinya; Takahashi, Satoru; Kimura, Hiroshi; Totoki, Yasushi; Shibata, Tatsuhiro; Naito, Mitsuru; Kim, Hyun Jin; Miyata, Kanjiro; Kataoka, Kazunori; Kondo, Yutaka

    2016-12-06

    Targeting self-renewal is an important goal in cancer therapy and recent studies have focused on Notch signalling in the maintenance of stemness of glioma stem cells (GSCs). Understanding cancer-specific Notch regulation would improve specificity of targeting this pathway. In this study, we find that Notch1 activation in GSCs specifically induces expression of the lncRNA, TUG1. TUG1 coordinately promotes self-renewal by sponging miR-145 in the cytoplasm and recruiting polycomb to repress differentiation genes by locus-specific methylation of histone H3K27 via YY1-binding activity in the nucleus. Furthermore, intravenous treatment with antisense oligonucleotides targeting TUG1 coupled with a drug delivery system induces GSC differentiation and efficiently represses GSC growth in vivo. Our results highlight the importance of the Notch-lncRNA axis in regulating self-renewal of glioma cells and provide a strong rationale for targeting TUG1 as a specific and potent therapeutic approach to eliminate the GSC population.

  1. The Hippo signaling functions through the Notch signaling to regulate intrahepatic bile duct development in mammals

    Science.gov (United States)

    Wu, Nan; Nguyen, Quy; Wan, Ying; Zhou, Tiaohao; Venter, Julie; Frampton, Gabriel A; DeMorrow, Sharon; Pan, Duojia; Meng, Fanyin; Glaser, Shannon; Alpini, Gianfranco; Bai, Haibo

    2018-01-01

    The Hippo signaling pathway and the Notch signaling pathway are evolutionary conserved signaling cascades that have important roles in embryonic development of many organs. In murine liver, disruption of either pathway impairs intrahepatic bile duct development. Recent studies suggested that the Notch signaling receptor Notch2 is a direct transcriptional target of the Hippo signaling pathway effector YAP, and the Notch signaling is a major mediator of the Hippo signaling in maintaining biliary cell characteristics in adult mice. However, it remains to be determined whether the Hippo signaling pathway functions through the Notch signaling in intrahepatic bile duct development. We found that loss of the Hippo signaling pathway tumor suppressor Nf2 resulted in increased expression levels of the Notch signaling pathway receptor Notch2 in cholangiocytes but not in hepatocytes. When knocking down Notch2 on the background of Nf2 deficiency in mouse livers, the excessive bile duct development induced by Nf2 deficiency was suppressed by heterozygous and homozygous deletion of Notch2 in a dose-dependent manner. These results implicated that Notch signaling is one of the downstream effectors of the Hippo signaling pathway in regulating intrahepatic bile duct development. PMID:28581486

  2. Insight on Mutation-Induced Resistance from Molecular Dynamics Simulations of the Native and Mutated CSF-1R and KIT.

    Directory of Open Access Journals (Sweden)

    Priscila Da Silva Figueiredo Celestino Gomes

    Full Text Available The receptors tyrosine kinases (RTKs for the colony stimulating factor-1, CSF-1R, and for the stem cell factor, SCFR or KIT, are important mediators of signal transduction. The abnormal function of these receptors, promoted by gain-of-function mutations, leads to their constitutive activation, associated with cancer or other proliferative diseases. A secondary effect of the mutations is the alteration of receptors' sensitivity to tyrosine kinase inhibitors, compromising effectiveness of these molecules in clinical treatment. In particular, the mutation V560G in KIT increases its sensitivity to Imatinib, while the D816V in KIT, and D802V in CSF-1R, triggers resistance to the drug. We analyzed the Imatinib binding affinity to the native and mutated KIT (mutations V560G, S628N and D816V and CSF-1R (mutation D802V by using molecular dynamics simulations and energy calculations of Imatinib•target complexes. Further, we evaluated the sensitivity of the studied KIT receptors to Imatinib by measuring the inhibition of KIT phosphorylation. Our study showed that (i the binding free energy of Imatinib to the targets is highly correlated with their experimentally measured sensitivity; (ii the electrostatic interactions are a decisive factor affecting the binding energy; (iii the most deleterious impact to the Imatinib sensitivity is promoted by D802V (CSF-1R and D816V (KIT mutations; (iv the role of the juxtamembrane region, JMR, in the imatinib binding is accessory. These findings contribute to a better description of the mutation-induced effects alternating the targets sensitivity to Imatinib.

  3. Constitutively active Notch1 induces growth arrest of HPV-positive cervical cancer cells via separate signaling pathways

    International Nuclear Information System (INIS)

    Talora, Claudio; Cialfi, Samantha; Segatto, Oreste; Morrone, Stefania; Kim Choi, John; Frati, Luigi; Paolo Dotto, Gian; Gulino, Alberto; Screpanti, Isabella

    2005-01-01

    Notch signaling plays a key role in cell-fate determination and differentiation in different organisms and cell types. Several reports suggest that Notch signaling may be involved in neoplastic transformation. However, in primary keratinocytes, Notch1 can function as a tumor suppressor. Similarly, in HPV-positive cervical cancer cells, constitutively active Notch1 signaling was found to cause growth suppression. Activated Notch1 in these cells represses viral E6/E7 expression through AP-1 down-modulation, resulting in increased p53 expression and a block of pRb hyperphosphorylation. Here we show that in cervical cancer cell lines in which Notch1 ability to repress AP-1 activity is impaired, Notch1-enforced expression elicits an alternative pathway leading to growth arrest. Indeed, activated Notch1 signaling suppresses activity of the helix-loop-helix transcription factor E47, via ERK1/2 activation, resulting in inhibition of cell cycle progression. Moreover, we found that RBP-Jκ-dependent Notch signaling is specifically repressed in cervical cancer cells and this repression could provide one such mechanism that needs to be activated for cervical carcinogenesis. Finally, we show that inhibition of endogenous Notch1 signaling, although results in a proliferative advantage, sensitizes cervical cancer cell lines to drug-induced apoptosis. Together, our results provide novel molecular insights into Notch1-dependent growth inhibitory effects, counteracting the transforming potential of HPV

  4. The adaptor SASH1 acts through NOTCH1 and its inhibitor DLK1 in a 3D model of lumenogenesis involving CEACAM1.

    Science.gov (United States)

    Stubblefield, Kandis; Chean, Jennifer; Nguyen, Tung; Chen, Charng-Jui; Shively, John E

    2017-10-15

    CEACAM1 transfection into breast cancer cells restores lumen formation in a 3D culture model. Among the top up-regulated genes that were associated with restoration of lumen formation, the adaptor protein SASH1 was identified. Furthermore, SASH1 was shown to be critical for lumen formation by RNAi inhibition. Upon analyzing the gene array from CEACAM1/MCF7 cells treated with SASH1 RNAi, DLK1, an inhibitor of NOTCH1 signaling, was found to be down-regulated to the same extent as SASH1. Subsequent treatment of CEACAM1/MCF7 cells with RNAi to DLK1 also inhibited lumen formation, supporting its association with SASH1. In agreement with the role of DLK1 as a NOTCH1 inhibitor, NOTCH1, as well as its regulated genes HES1 and HEY1, were down-regulated in CEACAM1/MCF7 cells by the action of DLK1 RNAi, and up-regulated by SASH1 RNAi. When CEACAM1/MCF7 cells were treated with a γ-secretase inhibitor known to inhibit NOTCH signaling, lumen formation was inhibited. We conclude that restoration of lumen formation by CEACAM1 regulates the NOTCH1 signaling pathway via the adaptor protein SASH1 and the NOTCH1 inhibitor DLK1. These data suggest that the putative involvement of NOTCH1 as a tumor-promoting gene in breast cancer may depend on its lack of regulation in cancer, whereas its involvement in normal lumen formation requires activation of its expression, and subsequently, inhibition of its signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The jagged-2/notch-1/hes-1 pathway is involved in intestinal epithelium regeneration after intestinal ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Guoqing Chen

    Full Text Available Notch signaling plays a critical role in the maintenance of intestinal crypt epithelial cell proliferation. The aim of this study was to investigate the role of Notch signaling in the proliferation and regeneration of intestinal epithelium after intestinal ischemia reperfusion (I/R injury.Male Sprague-Dawley rats were subjected to sham operation or I/R by occlusion of the superior mesenteric artery (SMA for 20 min. Intestinal tissue samples were collected at 0, 1, 2, 4, and 6 h after reperfusion. Proliferation of the intestinal epithelium was evaluated by immunohistochemical staining of proliferating nuclear antigen (PCNA. The mRNA and protein expression levels of Notch signaling components were examined using Real-time PCR and Western blot analyses. Immunofluorescence was also performed to detect the expression and location of Jagged-2, cleaved Notch-1, and Hes-1 in the intestine. Finally, the γ-secretase inhibitor DAPT and the siRNA for Jagged-2 and Hes-1 were applied to investigate the functional role of Notch signaling in the proliferation of intestinal epithelial cells in an in vitro IEC-6 culture system.I/R injury caused increased intestinal crypt epithelial cell proliferation and increased mRNA and protein expression of Jagged-2, Notch-1, and Hes-1. The immunofluorescence results further confirmed increased protein expression of Jagged-2, cleaved Notch-1, and Hes-1 in the intestinal crypts. The inhibition of Notch signaling with DAPT and the suppression of Jagged-2 and Hes-1 expression using siRNA both significantly inhibited the proliferation of IEC-6 cells.The Jagged-2/Notch-1/Hes-1 signaling pathway is involved in intestinal epithelium regeneration early after I/R injury by increasing crypt epithelial cell proliferation.

  6. No evidence for induction of key components of the Notch signaling pathway (Notch-1, Jagged-1) by treatment with UV-B, 1,25(OH)(2)D(3), and/or epigenetic drugs (TSA, 5-Aza) in human keratinocytes in vitro.

    Science.gov (United States)

    Reichrath, Sandra; Reichrath, Jörg

    2012-01-01

    Notch signaling is of high importance for growth and survival of various cell types. We now analyzed the protein expression of two key components of the Notch signaling pathway (Notch-1, Jagged-1) in spontaneously immortalized (HaCaT) and in malignant (SCL-1) human keratinocytes, using western analysis. We found that Notch-1 and its corresponding ligand Jagged-1 are expressed in both cell lines, with no marked change following UV-B treatment. Moreover, treatment of both cell lines before or after UV-B irradiation with 1,25-dihydroxyvitamin D(3), the biologically active form of vitamin D, and/or epigenetic modulating drugs (TSA; 5-Aza) did not result in a marked modulation of the protein expression of Notch-1 or Jagged-1. Under the experimental conditions of this study, treatment with 1,25(OH)(2)D(3) protected human keratinocytes in part against the antiproliferative effects of UV-B-radiation. In conclusion, our findings do not point at a differential expression of these two key components of Notch signaling in non-malignant as compared to malignant human keratinocytes, indicating that alterations in their expression are not of importance for the photocarcinogenesis of human squamous cell carcinomas. Moreover, our findings do not support the hypothesis that modulation of Notch signaling may be involved in the photoprotective effect of 1,25-dihydroxyvitamin D(3), that we and others reported previously. Additionally, we demonstrate that epigenetic modulating drugs (TSA, 5-Aza) do not markedly modulate the expression Notch-1 or Jagged-1 in UV-B-treated human keratinocytes in vitro.

  7. Comparative functional analysis of two fibroblast growth factor receptor 1 (FGFR1) mutations affecting the same residue (R254W and R254Q) in isolated hypogonadotropic hypogonadism (IHH).

    Science.gov (United States)

    Koika, Vasiliki; Varnavas, Petros; Valavani, Helen; Sidis, Yisrael; Plummer, Lacey; Dwyer, Andrew; Quinton, Richard; Kanaka-Gantenbein, Christine; Pitteloud, Nelly; Sertedaki, Amalia; Dacou-Voutetakis, Catherine; Georgopoulos, Neoklis A

    2013-03-01

    FGFR1 mutations have been identified in both Kallmann syndrome and normosmic HH (nIHH). To date, few mutations in the FGFR1 gene have been structurally or functionally characterized in vitro to identify molecular mechanisms that contribute to the disease pathogenesis. We attempted to define the in vitro functionality of two FGFR1 mutants (R254W and R254Q), resulting from two different amino acid substitutions of the same residue, and to correlate the in vitro findings to the patient phenotypes. Two unrelated GnRH deficient probands were found to harbor mutations in FGFR1 (R254W and R254Q). Mutant signaling activity and expression levels were evaluated in vitro and compared to a wild type (WT) receptor. Signaling activity was determined by a FGF2/FGFR1 dependent transcription reporter assay. Receptor total expression levels were assessed by Western blot and cell surface expression was measured by a radiolabeled antibody binding assay. The R254W maximal receptor signaling capacity was reduced by 45% (p<0.01) while R254Q activity was not different from WT. However, both mutants displayed diminished total protein expression levels (40 and 30% reduction relative to WT, respectively), while protein maturation was unaffected. Accordingly, cell surface expression levels of the mutant receptors were also significantly reduced (35% p<0.01 and 15% p<0.05, respectively). The p.R254W and p.R254Q are both loss-of-function mutations as demonstrated by their reduced overall and cell surface expression levels suggesting a deleterious effect on receptor folding and stability. It appears that a tryptophan substitution at R254 is more disruptive to receptor structure than the more conserved glutamine substitution. No clear correlation between the severity of in vitro loss-of-function and phenotypic presentation could be assigned. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Dll1- and Dll4-mediated Notch signaling is required for homeostasis of intestinal stem cells

    Science.gov (United States)

    Pellegrinet, Luca; Rodilla, Veronica; Liu, Zhenyi; Chen, Shuang; Koch, Ute; Espinosa, Lluis; Kaestner, Klaus H.; Kopan, Raphael; Lewis, Julian; Radtke, Freddy

    2011-01-01

    Background & Aims Ablation of Notch signaling within the intestinal epithelium results in loss of proliferating crypt progenitors, due to their conversion into post-mitotic secretory cells. We aimed to confirm that Notch was active in stem cells (SC), investigate consequences of loss of Notch signaling within the intestinal SC compartment, and identify the physiological ligands of Notch in mouse intestine. Furthermore, we investigated whether the induction of goblet cell differentiation that results from loss of Notch requires the transcription factor Krüppel-like factor 4 (Klf4). Methods Trasgenic mice that carried a reporter of Notch1 activation were used for lineage tracing experiments. The in vivo functions of the Notch ligands Jagged1 (Jag1), Delta-like1 (Dll1), Delta-like4 (Dll4), and the transcription factor Klf4 were assessed in mice with inducible, gut-specific gene targeting (Vil-Cre-ERT2). Results Notch1 signaling was found to be activated in intestinal SC. Although deletion of Jag1 or Dll4 did not perturb the intestinal epithelium, inactivation of Dll1 resulted in a moderate increase in number of goblet cells without noticeable effects of progenitor proliferation. However, simultaneous inactivation of Dll1 and Dll4 resulted in the complete conversion of proliferating progenitors into post-mitotic goblet cells, concomitant with loss of SC (Olfm4+, Lgr5+ and Ascl2+). Klf4 inactivation did not interfere with goblet cell differentiation in adult wild-type or in Notch pathway-deficient gut. Conclusions Notch signaling in SC and progenitors is activated by Dll1 and Dll4 ligands and is required for maintenance of intestinal progenitor and SC. Klf4 is dispensable for goblet cell differentiation in intestines of adult Notch-deficient mice. PMID:21238454

  9. Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells.

    Science.gov (United States)

    Pellegrinet, Luca; Rodilla, Veronica; Liu, Zhenyi; Chen, Shuang; Koch, Ute; Espinosa, Lluis; Kaestner, Klaus H; Kopan, Raphael; Lewis, Julian; Radtke, Freddy

    2011-04-01

    Ablation of Notch signaling within the intestinal epithelium results in loss of proliferating crypt progenitors due to their conversion into postmitotic secretory cells. We aimed to confirm that Notch was active in stem cells (SCs), investigate consequences of loss of Notch signaling within the intestinal SC compartment, and identify the physiologic ligands of Notch in mouse intestine. Furthermore, we investigated whether the induction of goblet cell differentiation that results from loss of Notch requires the transcription factor Krüppel-like factor 4 (Klf4). Transgenic mice that carried a reporter of Notch1 activation were used for lineage tracing experiments. The in vivo functions of the Notch ligands Jagged1 (Jag1), Delta-like1 (Dll1), Delta-like4 (Dll4), and the transcription factor Klf4 were assessed in mice with inducible, gut-specific gene targeting (Vil-Cre-ER(T2)). Notch1 signaling was found to be activated in intestinal SCs. Although deletion of Jag1 or Dll4 did not perturb the intestinal epithelium, inactivation of Dll1 resulted in a moderate increase in number of goblet cells without noticeable effects of progenitor proliferation. However, simultaneous inactivation of Dll1 and Dll4 resulted in the complete conversion of proliferating progenitors into postmitotic goblet cells, concomitant with loss of SCs (Olfm4(+), Lgr5(+), and Ascl2(+)). Klf4 inactivation did not interfere with goblet cell differentiation in adult wild-type or in Notch pathway-deficient gut. Notch signaling in SCs and progenitors is activated by Dll1 and Dll4 ligands and is required for maintenance of intestinal progenitor and SCs. Klf4 is dispensable for goblet cell differentiation in intestines of adult Notch-deficient mice. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  10. Notch activation is dispensable for D, L-sulforaphane-mediated inhibition of human prostate cancer cell migration.

    Directory of Open Access Journals (Sweden)

    Eun-Ryeong Hahm

    Full Text Available D, L-Sulforaphane (SFN, a synthetic racemic analog of broccoli constituent L-sulforaphane, is a highly promising cancer chemopreventive agent with in vivo efficacy against chemically-induced as well as oncogene-driven cancer in preclinical rodent models. Cancer chemopreventive effect of SFN is characterized by G(2/M phase cell cycle arrest, apoptosis induction, and inhibition of cell migration and invasion. Moreover, SFN inhibits multiple oncogenic signaling pathways often hyperactive in human cancers, including nuclear factor-κB, Akt, signal transducer and activator of transcription 3, and androgen receptor. The present study was designed to determine the role of Notch signaling, which is constitutively active in many human cancers, in anticancer effects of SFN using prostate cancer cells as a model. Exposure of human prostate cancer cells (PC-3, LNCaP, and/or LNCaP-C4-2B to SFN as well as its naturally-occurring thio-, sulfinyl-, and sulfonyl-analogs resulted in cleavage (activation of Notch1, Notch2, and Notch4, which was accompanied by a decrease in levels of full-length Notch forms especially at the 16- and 24-hour time points. The SFN-mediated cleavage of Notch isoforms was associated with its transcriptional activation as evidenced by RBP-Jk-, HES-1A/B- and HEY-1 luciferase reporter assays. Migration of PC-3 and LNCaP cells was decreased significantly by RNA interference of Notch1 and Notch2, but not Notch4. Furthermore, SFN-mediated inhibition of PC-3 and LNCaP cell migration was only marginally affected by knockdown of Notch1 and Notch2. Strikingly, SFN administration to Transgenic Adenocarcinoma of Mouse Prostate transgenic mice failed to increase levels of cleaved Notch1, cleaved Notch2, and HES-1 proteins in vivo in prostatic intraepithelial neoplasia, well-differentiated carcinoma or poorly-differentiated prostate cancer lesions. These results indicate that Notch activation is largely dispensable for SFN-mediated inhibition of cell

  11. Nrf2 and Notch Signaling in Lung Cancer: Near the Crossroad

    Directory of Open Access Journals (Sweden)

    Angelo Sparaneo

    2016-01-01

    Full Text Available The transcription factor Nrf2 (NF-E2 related factor 2 is a master regulator of the cell antioxidant response associated with tumor growth and resistance to cytotoxic treatments. In particular, Nrf2 induces upregulation of cytoprotective genes by interacting with the closely situated AREs (Antioxidant Response Elements in response to endogenous or exogenous stress stimuli and takes part to several oncogenic signaling pathways. Among these, the crosstalk with Notch pathway has been shown to enhance cytoprotection and maintenance of cellular homeostasis, tissue organization by modulating cell proliferation kinetics, and stem cell self-renewal in several organs. The role of Notch and Nrf2 related pathways in tumorigenesis is highly variable and when they are both abnormally activated they can synergistically cause neoplastic proliferation by promoting cell survival, differentiation, invasion, and metastases. NFE2L2, KEAP1, and NOTCH genes family appear in the list of significantly mutated genes in tumors in both combined and individual sets, supporting the crucial role that the aberrant Nrf2-Notch crosstalk might have in cancerogenesis. In this review, we summarize current knowledge about the alterations of Nrf2 and Notch pathways and their reciprocal transcriptional regulation throughout tumorigenesis and progression of lung tumors, supporting the potentiality of putative biomarkers and therapeutic targets.

  12. Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2

    DEFF Research Database (Denmark)

    Seemann, Petra; Schwappacher, Raphaela; Kjær, Klaus Wilbrandt

    2005-01-01

    Here we describe 2 mutations in growth and differentiation factor 5 (GDF5) that alter receptor-binding affinities. They cause brachydactyly type A2 (L441P) and symphalangism (R438L), conditions previously associated with mutations in the GDF5 receptor bone morphogenetic protein receptor type 1b...

  13. tortuga refines Notch pathway gene expression in the zebrafish presomitic mesoderm at the post-transcriptional level.

    Science.gov (United States)

    Dill, Kariena K; Amacher, Sharon L

    2005-11-15

    We have identified the zebrafish tortuga (tor) gene by an ENU-induced mutation that disrupts the presomitic mesoderm (PSM) expression of Notch pathway genes. In tor mutants, Notch pathway gene expression persists in regions of the PSM where expression is normally off in wild type embryos. The expression of hairy/Enhancer of split-related 1 (her1) is affected first, followed by the delta genes deltaC and deltaD, and finally, by another hairy/Enhancer of split-related gene, her7. In situ hybridization with intron-specific probes for her1 and deltaC indicates that transcriptional bursts of expression are normal in tor mutants, suggesting that tor normally functions to refine her1 and deltaC message levels downstream of transcription. Despite the striking defects in Notch pathway gene expression, somite boundaries form normally in tor mutant embryos, although somitic mesoderm defects are apparent later, when cells mature to form muscle fibers. Thus, while the function of Notch pathway genes is required for proper somite formation, the tor mutant phenotype suggests that precise oscillations of Notch pathway transcripts are not essential for establishing segmental pattern in the presomitic mesoderm.

  14. Constitutively active Notch1 converts cranial neural crest-derived frontonasal mesenchyme to perivascular cells in vivo

    Directory of Open Access Journals (Sweden)

    Sophie R. Miller

    2017-03-01

    Full Text Available Perivascular/mural cells originate from either the mesoderm or the cranial neural crest. Regardless of their origin, Notch signalling is necessary for their formation. Furthermore, in both chicken and mouse, constitutive Notch1 activation (via expression of the Notch1 intracellular domain is sufficient in vivo to convert trunk mesoderm-derived somite cells to perivascular cells, at the expense of skeletal muscle. In experiments originally designed to investigate the effect of premature Notch1 activation on the development of neural crest-derived olfactory ensheathing glial cells (OECs, we used in ovo electroporation to insert a tetracycline-inducible NotchΔE construct (encoding a constitutively active mutant of mouse Notch1 into the genome of chicken cranial neural crest cell precursors, and activated NotchΔE expression by doxycycline injection at embryonic day 4. NotchΔE-targeted cells formed perivascular cells within the frontonasal mesenchyme, and expressed a perivascular marker on the olfactory nerve. Hence, constitutively activating Notch1 is sufficient in vivo to drive not only somite cells, but also neural crest-derived frontonasal mesenchyme and perhaps developing OECs, to a perivascular cell fate. These results also highlight the plasticity of neural crest-derived mesenchyme and glia.

  15. The Anti-Adipogenic Potential of COUP-TFII Is Mediated by Downregulation of the Notch Target Gene Hey1.

    Directory of Open Access Journals (Sweden)

    Ilse Scroyen

    Full Text Available Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII belongs to the steroid/thyroid hormone receptor superfamily and may contribute to the pathogenesis of obesity. It has not conclusively been established, however, whether its role is pro- or anti-adipogenic.Gene silencing of Coup-tfII in 3T3-F442A preadipocytes resulted in enhanced differentiation into mature adipocytes. This was associated with upregulation of the Notch signaling target gene Hey1. A functional role of Hey1 was confirmed by gene silencing in 3T3-F442A preadipocytes, resulting in impaired differentiation. In vivo, de novo fat pad formation in NUDE mice was significantly stimulated following injection of preadipocytes with Coup-tfII gene silencing, but impaired with Hey1 gene silencing. Moreover, expression of Coup-tfII was lower and that of Hey1 higher in isolated adipocytes of obese as compared to lean adipose tissue.These in vitro and in vivo data support an anti-adipogenic role of COUP-TFII via downregulating the Notch signaling target gene Hey1.

  16. Different profiles of notch signaling in cigarette smoke-induced pulmonary emphysema and bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Li, Shi; Hu, Xiaofei; Wang, Zheng; Wu, Meng; Zhang, Jinnong

    2015-05-01

    Different profiles of Notch signaling mediate naive T cell differentiation which might be involved in pulmonary emphysema and fibrosis. C57BL/6 mice were randomized into cigarette smoke (CS) exposure, bleomycin (BLM) exposure, and two separate groups of control for sham exposure to CS or BLM. The paratracheal lymph nodes of the animals were analyzed by real-time PCR and immunohistochemistry. Morphometry of the lung parenchyma, measurement of the cytokines, and cytometry of the bronchoalveolar lavage fluid (BALF) were also done accordingly. In comparison with controls, all Notch receptors and ligands were upregulated by chronic CS exposure, especially Notch3 and DLL1 (P emphysema-like morphology and Th1-biased inflammation. While Notch3 and DLL1 were downregulated by BLM exposure (P pulmonary emphysema. Unable to initiate the Th1 response or inhibit it may lead to Th2 polarization and aberrant repair.

  17. A novel mutation in the P2Y12 receptor and a function-reducing polymorphism in protease-activated receptor 1 in a patient with chronic bleeding.

    Science.gov (United States)

    Patel, Y M; Lordkipanidzé, M; Lowe, G C; Nisar, S P; Garner, K; Stockley, J; Daly, M E; Mitchell, M; Watson, S P; Austin, S K; Mundell, S J

    2014-05-01

    The study of patients with bleeding problems is a powerful approach in determining the function and regulation of important proteins in human platelets. We have identified a patient with a chronic bleeding disorder expressing a homozygous P2RY(12) mutation, predicting an arginine to cysteine (R122C) substitution in the G-protein-coupled P2Y(12) receptor. This mutation is found within the DRY motif, which is a highly conserved region in G-protein-coupled receptors (GPCRs) that is speculated to play a critical role in regulating receptor conformational states. To determine the functional consequences of the R122C substitution for P2Y(12) function. We performed a detailed phenotypic analysis of an index case and affected family members. An analysis of the variant R122C P2Y(12) stably expressed in cells was also performed. ADP-stimulated platelet aggregation was reduced as a result of a significant impairment of P2Y(12) activity in the patient and family members. Cell surface R122C P2Y(12) expression was reduced both in cell lines and in platelets; in cell lines, this was as a consequence of agonist-independent internalization followed by subsequent receptor trafficking to lysosomes. Strikingly, members of this family also showed reduced thrombin-induced platelet activation, owing to an intronic polymorphism in the F2R gene, which encodes protease-activated receptor 1 (PAR-1), that has been shown to be associated with reduced PAR-1 receptor activity. Our study is the first to demonstrate a patient with deficits in two stimulatory GPCR pathways that regulate platelet activity, further indicating that bleeding disorders constitute a complex trait. © 2014 International Society on Thrombosis and Haemostasis.

  18. Mapping Sites of O-Glycosylation and Fringe Elongation on Drosophila Notch*

    Science.gov (United States)

    Harvey, Beth M.; Rana, Nadia A.; Moss, Hillary; Leonardi, Jessica; Jafar-Nejad, Hamed; Haltiwanger, Robert S.

    2016-01-01

    Glycosylation of the Notch receptor is essential for its activity and serves as an important modulator of signaling. Three major forms of O-glycosylation are predicted to occur at consensus sites within the epidermal growth factor-like repeats in the extracellular domain of the receptor: O-fucosylation, O-glucosylation, and O-GlcNAcylation. We have performed comprehensive mass spectral analyses of these three types of O-glycosylation on Drosophila Notch produced in S2 cells and identified peptides containing all 22 predicted O-fucose sites, all 18 predicted O-glucose sites, and all 18 putative O-GlcNAc sites. Using semiquantitative mass spectral methods, we have evaluated the occupancy and relative amounts of glycans at each site. The majority of the O-fucose sites were modified to high stoichiometries. Upon expression of the β3-N-acetylglucosaminyltransferase Fringe with Notch, we observed varying degrees of elongation beyond O-fucose monosaccharide, indicating that Fringe preferentially modifies certain sites more than others. Rumi modified O-glucose sites to high stoichiometries, although elongation of the O-glucose was site-specific. Although the current putative consensus sequence for O-GlcNAcylation predicts 18 O-GlcNAc sites on Notch, we only observed apparent O-GlcNAc modification at five sites. In addition, we performed mass spectral analysis on endogenous Notch purified from Drosophila embryos and found that the glycosylation states were similar to those found on Notch from S2 cells. These data provide foundational information for future studies investigating the mechanisms of how O-glycosylation regulates Notch activity. PMID:27268051

  19. Oridonin inhibits breast cancer growth and metastasis through blocking the Notch signaling

    Directory of Open Access Journals (Sweden)

    Shixin Xia

    2017-05-01

    Full Text Available Background: Oridonin is a diterpenoid isolated from Rabdosia rubescens with potent anticancer activity. The aim of our study is to investigate the role of oridonin to inhibit growth and metastasis of human breast cancer cells. Methods: The effect of oridonin on proliferation was evaluated by MTT assay, cell migration and invasion were evaluated by transwell migration and invasion assays in human breast cancer cells. The inhibitive effect of oridonin in vivo was determined by using xenografted nude mice. In addition, the expression of Notch receptors (Notch 1–4 was detected by western blot. Results: Oridonin inhibited human breast cancer cells in vitro and in vivo. In addition, oridonin significantly induced human breast cancer cells apoptosis. Furthermore, the oridonin treatment not only inhibited cancer cell migration and invasion, but more significantly, decreased the expression of Notch 1-4 protein. Conclusion: Our results suggest that the inhibitive effect of oridonin is likely to be driven by the inhibition of Notch signaling pathway and the resulting increased apoptosis.

  20. Notch1 is a 5-fluorouracil resistant and poor survival marker in human esophagus squamous cell carcinomas.

    Directory of Open Access Journals (Sweden)

    Jian Liu

    Full Text Available Notch signaling involves the processes that govern cell proliferation, cell fate decision, cell differentiation and stem cell maintenance. Due to its fundamental role in stem cells, it has been speculated during the recent years that Notch family may have critical functions in cancer stem cells or cancer cells with a stem cell phenotype, therefore playing an important role in the process of oncogenesis. In this study, expression of Notch family in KYSE70, KYSE140 and KYSE450 squamous esophageal cancer cell lines and virus transformed squamous esophageal epithelial cell line Het-1A was examined by quantitative RT-PCR. Compared to the Het-1A cells, higher levels of Nocth1 and Notch3 expression in the cancer cell lines were identified. Due to the finding that NOTCH3 mainly mediates squamous cell differentiation, NOTCH1 expression was further studied in these cell lines. By Western blot analyses, the KYSE70 cell line which derived from a poorly differentiated tumor highly expressed Notch1, and the Notch1 expression in this cell line was hypoxia inducible, while the KYSE450 cell line which derived from a well differentiated tumor was always negative for Notch1, even in hypoxia. Additional studies demonstrated that the KYSE70 cell line was more 5-FU resistant than the KYSE450 cell line and such 5-FU resistance is correlated to Notch1 expression verified by Notch1 knockdown experiments. In clinical samples, Notch1 protein expression was detected in the basal cells of human esophagus epithelia, and its expression in squamous cell carcinomas was significantly associated with higher pathological grade and shorter overall survival. We conclude that Notch1 expression is associated with cell aggressiveness and 5-FU drug resistance in human esophageal squamous cell carcinoma cell lines in vitro and is significantly associated with a poor survival in human esophageal squamous cell carcinomas.

  1. Tumor-specific mutations in low-frequency genes affect their functional properties

    NARCIS (Netherlands)

    L. Erdem-Eraslan (Lale); D. Heijsman (Daphne); M. De Wit (Maurice); A.E. Kremer (Andreas); A. Sacchetti (Andrea); P.J. van der Spek (Peter); P.A.E. Sillevis Smitt (Peter); P.J. French (Pim)

    2015-01-01

    textabstractCausal genetic changes in oligodendrogliomas (OD) with 1p/19q co-deletion include mutations in IDH1, IDH2, CIC, FUBP1, TERT promoter and NOTCH1. However, it is generally assumed that more somatic mutations are required for tumorigenesis. This study aimed to establish whether genes

  2. Persistent expression of activated notch in the developing hypothalamus affects survival of pituitary progenitors and alters pituitary structure.

    Science.gov (United States)

    Aujla, Paven K; Bogdanovic, Vedran; Naratadam, George T; Raetzman, Lori T

    2015-08-01

    As the pituitary gland develops, signals from the hypothalamus are necessary for pituitary induction and expansion. Little is known about the control of cues that regulate early signaling between the two structures. Ligands and receptors of the Notch signaling pathway are found in both the hypothalamus and Rathke's pouch. The downstream Notch effector gene Hes1 is required for proper pituitary formation; however, these effects could be due to the action of Hes1 in the hypothalamus, Rathke's pouch, or both. To determine the contribution of hypothalamic Notch signaling to pituitary organogenesis, we used mice with loss and gain of Notch function within the developing hypothalamus. We demonstrate that loss of Notch signaling by conditional deletion of Rbpj in the hypothalamus does not affect expression of Hes1 within the posterior hypothalamus or expression of Hes5. In contrast, expression of activated Notch within the hypothalamus results in ectopic Hes5 expression and increased Hes1 expression, which is sufficient to disrupt pituitary development and postnatal expansion. Taken together, our results indicate that Rbpj-dependent Notch signaling within the developing hypothalamus is not necessary for pituitary development, but persistent Notch signaling and ectopic Hes5 expression in hypothalamic progenitors affects pituitary induction and expansion. © 2015 Wiley Periodicals, Inc.

  3. Alagille syndrome in a Vietnamese cohort: mutation analysis and assessment of facial features.

    Science.gov (United States)

    Lin, Henry C; Le Hoang, Phuc; Hutchinson, Anne; Chao, Grace; Gerfen, Jennifer; Loomes, Kathleen M; Krantz, Ian; Kamath, Binita M; Spinner, Nancy B

    2012-05-01

    Alagille syndrome (ALGS, OMIM #118450) is an autosomal dominant disorder that affects multiple organ systems including the liver, heart, eyes, vertebrae, and face. ALGS is caused by mutations in one of two genes in the Notch Signaling Pathway, Jagged1 (JAG1) or NOTCH2. In this study, analysis of 21 Vietnamese ALGS individuals led to the identification of 19 different mutations (18 JAG1 and 1 NOTCH2), 17 of which are novel, including the third reported NOTCH2 mutation in Alagille Syndrome. The spectrum of JAG1 mutations in the Vietnamese patients is similar to that previously reported, including nine frameshift, three missense, two splice site, one nonsense, two whole gene, and one partial gene deletion. The missense mutations are all likely to be disease causing, as two are loss of cysteines (C22R and C78G) and the third creates a cryptic splice site in exon 9 (G386R). No correlation between genotype and phenotype was observed. Assessment of clinical phenotype revealed that skeletal manifestations occur with a higher frequency than in previously reported Alagille cohorts. Facial features were difficult to assess and a Vietnamese pediatric gastroenterologist was only able to identify the facial phenotype in 61% of the cohort. To assess the agreement among North American dysmorphologists at detecting the presence of ALGS facial features in the Vietnamese patients, 37 clinical dysmorphologists evaluated a photographic panel of 20 Vietnamese children with and without ALGS. The dysmorphologists were unable to identify the individuals with ALGS in the majority of cases, suggesting that evaluation of facial features should not be used in the diagnosis of ALGS in this population. This is the first report of mutations and phenotypic spectrum of ALGS in a Vietnamese population. Copyright © 2012 Wiley Periodicals, Inc.

  4. Ghrelin receptor mutations--too little height and too much hunger

    DEFF Research Database (Denmark)

    Holst, Birgitte; Schwartz, Thue W

    2006-01-01

    The ghrelin receptor is known from in vitro studies to signal in the absence of the hormone ghrelin at almost 50% of its maximal capacity. But, as for many other 7-transmembrane receptors, the in vivo importance of this ligand-independent signaling has remained unclear. In this issue of the JCI......, Pantel et al. find that a natural mutation in the ghrelin receptor, Ala204Glu, which is associated with a selective loss of constitutive activity without affecting ghrelin affinity, potency, or efficacy, segregates in 2 families with the development of short stature (see the related article beginning...... on page 760). By combination of the observations from this study with those related to the phenotype of subjects carrying another natural ghrelin receptor mutation, Phe279Leu, having identical molecular-pharmacological properties, it is proposed that selective lack of ghrelin receptor constitutive...

  5. Notch1 deficiency in postnatal neural progenitor cells in the dentate gyrus leads to emotional and cognitive impairment.

    Science.gov (United States)

    Feng, Shufang; Shi, Tianyao; Qiu, Jiangxia; Yang, Haihong; Wu, Yan; Zhou, Wenxia; Wang, Wei; Wu, Haitao

    2017-10-01

    It is well known that Notch1 signaling plays a crucial role in embryonic neural development and adult neurogenesis. The latest evidence shows that Notch1 also plays a critical role in synaptic plasticity in mature hippocampal neurons. So far, deeper insights into the function of Notch1 signaling during the different steps of adult neurogenesis are still lacking, and the mechanisms by which Notch1 dysfunction is associated with brain disorders are also poorly understood. In the current study, we found that Notch1 was highly expressed in the adult-born immature neurons in the hippocampal dentate gyrus. Using a genetic approach to selectively ablate Notch1 signaling in late immature precursors in the postnatal hippocampus by cross-breeding doublecortin (DCX) + neuron-specific proopiomelanocortin (POMC)-α Cre mice with floxed Notch1 mice, we demonstrated a previously unreported pivotal role of Notch1 signaling in survival and function of adult newborn neurons in the dentate gyrus. Moreover, behavioral and functional studies demonstrated that POMC-Notch1 -/- mutant mice showed anxiety and depressive-like behavior with impaired synaptic transmission properties in the dentate gyrus. Finally, our mechanistic study showed significantly compromised phosphorylation of cAMP response element-binding protein (CREB) in Notch1 mutants, suggesting that the dysfunction of Notch1 mutants is associated with the disrupted pCREB signaling in postnatally generated immature neurons in the dentate gyrus.-Feng, S., Shi, T., Qiu, J., Yang, H., Wu, Y., Zhou, W., Wang, W., Wu, H. Notch1 deficiency in postnatal neural progenitor cells in the dentate gyrus leads to emotional and cognitive impairment. © FASEB.

  6. Mind bomb-1 in dendritic cells is specifically required for Notch-mediated T helper type 2 differentiation.

    Directory of Open Access Journals (Sweden)

    Hyun-Woo Jeong

    Full Text Available In dendritic cell (DC-CD4(+ T cell interaction, Notch signaling has been implicated in the CD4(+ T cell activation, proliferation, and subset differentiation. However, there has been a lot of debate on the exact role of Notch signaling. Here, we observed that expression of Mind bomb-1 (Mib1, a critical regulator of Notch ligands for the activation of Notch signaling, increases gradually as precursor cells differentiate into DCs in mice. To clarify the role of Mib1 in DC-CD4(+ T cell interactions, we generated Mib1-null bone marrow-derived DCs. These cells readily expressed Notch ligands but failed to initiate Notch activation in the adjacent cells. Nevertheless, Mib1-null DCs were able to prime the activation and proliferation of CD4(+ T cells, suggesting that Notch activation in CD4(+ T cells is not required for these processes. Intriguingly, stimulation of CD4(+ T cells with Mib1-null DCs resulted in dramatically diminished Th2 cell populations, while preserving Th1 cell populations, both in vitro and in vivo. Our results demonstrate that Mib1 in DCs is critical for the activation of Notch signaling in CD4(+ T cells, and Notch signaling reinforces Th2 differentiation, but is not required for the activation or proliferation of the CD4(+ T cells.

  7. Novel NTRK1 mutations cause hereditary sensory and autonomic neuropathy type IV: demonstration of a founder mutation in the Turkish population.

    Science.gov (United States)

    Tüysüz, Beyhan; Bayrakli, Fatih; DiLuna, Michael L; Bilguvar, Kaya; Bayri, Yasar; Yalcinkaya, Cengiz; Bursali, Aysegul; Ozdamar, Elif; Korkmaz, Baris; Mason, Christopher E; Ozturk, Ali K; Lifton, Richard P; State, Matthew W; Gunel, Murat

    2008-05-01

    Hereditary sensory and autonomic neuropathy type IV (HSAN IV), or congenital insensitivity to pain with anhidrosis, is an autosomal recessive disorder characterized by insensitivity to noxious stimuli, anhidrosis from deinnervated sweat glands, and delayed mental and motor development. Mutations in the neurotrophic tyrosine kinase receptor type 1 (NTRK1), a receptor in the neurotrophin signaling pathway phosphorylated in response to nerve growth factor, are associated with this disorder. We identified six families from Northern Central Turkey with HSAN IV. We screened the NTRK1 gene for mutations in these families. Microsatellite and single nucleotide polymorphism (SNP) markers on the Affymetrix 250K chip platform were used to determine the haplotypes for three families harboring the same mutation. Screening for mutations in the NTRK1 gene demonstrated one novel frameshift mutation, two novel nonsense mutations, and three unrelated kindreds with the same splice-site mutation. Genotyping of the three families with the identical splice-site mutation revealed that they share the same haplotype. This report broadens the spectrum of mutations in NTRK1 that cause HSAN IV and demonstrates a founder mutation in the Turkish population.

  8. Implications of compound heterozygous insulin receptor mutations in congenital muscle fibre type disproportion myopathy for the receptor kinase activation

    DEFF Research Database (Denmark)

    Klein, H H; Müller, R; Vestergaard, H

    1999-01-01

    We studied insulin receptor kinase activation in two brothers with congenital muscle fibre type disproportion myopathy and compound heterozygous mutations of the insulin receptor gene, their parents, and their unaffected brother. In the father who has a heterozygote Arg1174-->Gln mutation, in sit...

  9. Cell-Cell Contact Area Affects Notch Signaling and Notch-Dependent Patterning.

    Science.gov (United States)

    Shaya, Oren; Binshtok, Udi; Hersch, Micha; Rivkin, Dmitri; Weinreb, Sheila; Amir-Zilberstein, Liat; Khamaisi, Bassma; Oppenheim, Olya; Desai, Ravi A; Goodyear, Richard J; Richardson, Guy P; Chen, Christopher S; Sprinzak, David

    2017-03-13

    During development, cells undergo dramatic changes in their morphology. By affecting contact geometry, these morphological changes could influence cellular communication. However, it has remained unclear whether and how signaling depends on contact geometry. This question is particularly relevant for Notch signaling, which coordinates neighboring cell fates through direct cell-cell signaling. Using micropatterning with a receptor trans-endocytosis assay, we show that signaling between pairs of cells correlates with their contact area. This relationship extends across contact diameters ranging from micrometers to tens of micrometers. Mathematical modeling predicts that dependence of signaling on contact area can bias cellular differentiation in Notch-mediated lateral inhibition processes, such that smaller cells are more likely to differentiate into signal-producing cells. Consistent with this prediction, analysis of developing chick inner ear revealed that ligand-producing hair cell precursors have smaller apical footprints than non-hair cells. Together, these results highlight the influence of cell morphology on fate determination processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Novel mutations in scavenger receptor BI associated with high HDL cholesterol in humans

    NARCIS (Netherlands)

    Brunham, Liam R.; Tietjen, Ian; Bochem, Andrea E.; Singaraja, Roshni R.; Franchini, Patrick L.; Radomski, Chris; Mattice, Maryanne; Legendre, Annick; Hovingh, G. Kees; Kastelein, John J. P.; Hayden, Michael R.

    2011-01-01

    The scavenger receptor class B, member 1 (SR-BI), is a key cellular receptor for high-density lipoprotein (HDL) in mice, but its relevance to human physiology has not been well established. Recently a family was reported with a mutation in the gene encoding SR-BI and high HDL cholesterol (HDL-C).

  11. Napsin A and Thyroid Transcription Factor-1-Positive Cerebellar Tumor with Epidermal Growth Factor Receptor Mutation

    Directory of Open Access Journals (Sweden)

    Taiji Kuwata

    2011-12-01

    Full Text Available We present a very rare case of cerebellar metastasis of unknown origin, in which a primary lung adenocarcinoma was diagnosed by pathological examination of a cerebellar metastatic tumor, using immunohistochemical markers and epidermal growth factor receptor (EGFR mutation of primary lung cancer. A 69-year-old woman was admitted to our hospital because of a hemorrhagic cerebellar tumor and multiple small brain tumors. She underwent cerebellar tumor resection. On pathological examination, the tumor was diagnosed as adenocarcinoma. However, the primary tumor site was unidentifiable even with several imaging inspections. On immunohistochemical analysis, the resected tumor was positive for napsin A and thyroid transcription factor-1. In addition, an EGFR mutation was detected in the tumor. Therefore, primary lung cancer was diagnosed and the patient was started on gefitinib (250 mg/day therapy.

  12. Regulation of glucose transport and c-fos and egr-1 expression in cells with mutated or endogenous growth hormone receptors

    DEFF Research Database (Denmark)

    Gong, T W; Meyer, D J; Liao, J

    1998-01-01

    To identify mechanisms by which GH receptors (GHR) mediate downstream events representative of growth and metabolic responses to GH, stimulation by GH of c-fos and egr-1 expression and glucose transport activity were examined in Chinese hamster ovary (CHO) cells expressing mutated GHR. In CHO cel...

  13. 17β-estradiol regulates the differentiation of cementoblasts via Notch signaling cascade

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Jing; Zhou, Zeyuan; Huang, Li; Li, Yuyu [Department of Orthodontics, The State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province (China); Li, Jingtao [Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province (China); Zou, Shujuan, E-mail: drzsj@scu.edu.cn [Department of Orthodontics, The State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province (China)

    2016-08-12

    Estrogen has been well recognized as a key factor in the homeostasis of bone and periodontal tissue, but the way it regulates the activities of cementoblasts, the cell population maintaining cementum has not been fully understood. In this study, we examined the expression of estrogen receptor in OCCM-30 cells and the effect of 17β-estradiol (E2) on the proliferation and differentiation of OCCM-30 cells. We found that both estrogen receptor α and β were expressed in OCCM-30 cells. E2 exerted no significant influence on the proliferation of OCCM-30 cells, but inhibited the transcription and translation of BSP and Runx2 in the early phase of osteogenic induction except the BSP mRNA. Afterwards in the late phase of osteogenic induction, E2 enhanced the transcription and translation of BSP and Runx2 and promoted the calcium deposition. In addition, the expression level of Notch1, NICD and Hey1 mRNAs responded to exogenous E2 in a pattern similar to that of the osteoblastic markers. DAPT could attenuate the effect of E2 on the expression of osteoblastic markers. These findings indicated that E2 might regulate the differentiation of cementoblasts via Notch signaling. - Highlights: • 17β-estradiol showed no significant effect on the proliferation of cementoblasts. • 17β-estradiol promoted the osteoblastic differentiation of cementoblasts despite of an early transient inhibition. • Notch signaling was regulated by 17β-estradiol and was responsible for mediating the effect of E2 on cementoblasts. • Hey1 might display an opposite expression pattern to Notch signaling in certain circumstances.

  14. The role of the Hes1 crosstalk hub in Notch-Wnt interactions of the intestinal crypt.

    Directory of Open Access Journals (Sweden)

    Sophie K Kay

    2017-02-01

    Full Text Available The Notch pathway plays a vital role in determining whether cells in the intestinal epithelium adopt a secretory or an absorptive phenotype. Cell fate specification is coordinated via Notch's interaction with the canonical Wnt pathway. Here, we propose a new mathematical model of the Notch and Wnt pathways, in which the Hes1 promoter acts as a hub for pathway crosstalk. Computational simulations of the model can assist in understanding how healthy intestinal tissue is maintained, and predict the likely consequences of biochemical knockouts upon cell fate selection processes. Chemical reaction network theory (CRNT is a powerful, generalised framework which assesses the capacity of our model for monostability or multistability, by analysing properties of the underlying network structure without recourse to specific parameter values or functional forms for reaction rates. CRNT highlights the role of β-catenin in stabilising the Notch pathway and damping oscillations, demonstrating that Wnt-mediated actions on the Hes1 promoter can induce dynamic transitions in the Notch system, from multistability to monostability. Time-dependent model simulations of cell pairs reveal the stabilising influence of Wnt upon the Notch pathway, in which β-catenin- and Dsh-mediated action on the Hes1 promoter are key in shaping the subcellular dynamics. Where Notch-mediated transcription of Hes1 dominates, there is Notch oscillation and maintenance of fate flexibility; Wnt-mediated transcription of Hes1 favours bistability akin to cell fate selection. Cells could therefore regulate the proportion of Wnt- and Notch-mediated control of the Hes1 promoter to coordinate the timing of cell fate selection as they migrate through the intestinal epithelium and are subject to reduced Wnt stimuli. Furthermore, mutant cells characterised by hyperstimulation of the Wnt pathway may, through coupling with Notch, invert cell fate in neighbouring healthy cells, enabling an aberrant

  15. Hepatitis B virus X protein promotes interleukin-7 receptor expression via NF-κB and Notch1 pathway to facilitate proliferation and migration of hepatitis B virus-related hepatoma cells

    Directory of Open Access Journals (Sweden)

    Fanyun Kong

    2016-11-01

    Full Text Available Abstract Background Interleukin-7 receptor (IL-7R is involved in the abnormal function of solid tumors, but the role and regulatory mechanisms of IL-7R in HBV-related hepatocellular carcinoma (HCC are still unclear. Methods Gene and protein expression levels of IL-7R were examined in hepatoma cells transfected with hepatitis B virus (HBV plasmids and in hepatoma cells transfected with the multifunctional nonstructural protein X (HBX. The expression of HBX and IL-7R was measured by immunohistochemical analysis in HBV-related HCC tissues. The role of NF-κB and Notch1 pathways in HBX-mediated expression of IL-7R in hepatoma cells was examined. Activation of IL-7R downstream of intracellular signaling proteins AKT, JNK, STAT5, and the associated molecules CyclinD1 and matrix metalloproteinase-9 (MMP-9, was assessed in HBX-positive cells with or without treatment with IL-7R short hairpin RNA (shRNA. Additionally, the role of IL-7R in HBX-mediated proliferation and migration of hepatoma cells was investigated. Results The expression of IL-7R was increased in hepatoma cells transfected with HBV plasmids; HBX was responsible for the HBV-mediated upregulation of IL-7R. Compared to adjacent tissues, the expression of HBX and IL-7R was increased in HBV-related HCC tissues. Additionally, the relative expression levels of HBX were associated with IL-7R in HBV-related HCC tissues. The activation of NF-κB pathways and expression of Notch1 were increased in hepatoma cells transfected with HBX, and inhibition of NF-κB and Notch1 pathways significantly decreased HBX-mediated expression of IL-7R. The activation of AKT and JNK and the expression of CyclinD1 and MMP-9 were increased in HBX-positive cells. When cells were treated with IL-7R shRNA, the activation of AKT and JNK, as well as the expression of CyclinD1 and MMP-9, were significantly inhibited. Additionally, IL-7R was responsible for HBX-induced proliferation and migration ability of hepatoma cells

  16. miR-935 suppresses gastric signet ring cell carcinoma tumorigenesis by targeting Notch1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chao [Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730 (China); Yu, Jianchun, E-mail: yu_jchpumch@163.com [Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730 (China); Kang, Weiming [Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730 (China); Liu, Yuqin [Cell Culture Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 (China); Ma, Zhiqiang; Zhou, Li [Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730 (China)

    2016-01-29

    Gastric signet ring cell carcinoma (GSRCC) is a unique pathological type of gastric carcinoma that is extremely invasive and has a poor prognosis. Expression of microRNAs (miRNAs) has been closely linked to the carcinogenesis of gastric cancer and has been considered as a powerful prognostic marker. The function of miR-935 has never been reported in cancer before. We found, using microRNA array, that expression of miR-935 in GSRCC cell lines is lower than in non-GSRCC cell lines, and enhanced expression of miR-935 in GSRCC cell-lines inhibit cell proliferation, migration and invasion. We also identified Notch1 as a direct target of miR-935. Knockdown of Notch1 reduced proliferation, migration/invasion of GSRCC cells, and overexpression Notch1's activated form (Notch intracellular domain) could rescue miR-935's tumor suppressive effect on GSRCC. Expression of miR-935 was lower in gastric carcinoma tissue than in paired normal tissue samples, and lower in GSRCC than in non-GSRCC. Our results demonstrate the inverse correlation between the expression of miR-935 and Notch1 in gastric tissues. We conclude that miR-935 inhibits gastric carcinoma cell proliferation, migration and invasion by targeting Notch1, suggesting potential applications of the miR-935-Notch1 pathway in gastric cancer clinical diagnosis and therapeutics, especially in gastric signet ring cell carcinoma. - Highlights: • The expression of miR-935 is lower in GC tissue than in paired normal tissue. • The expression of miR-935 is lower in GSRCC tissue than in non-GSRCC. • Enhanced expression of miR-935 suppresses tumorigenesis of GSRCC. • Notch1 is a direct target of miR-935.

  17. An ochre mutation in the vitamin D receptor gene causes hereditary 1,25-dihydroxyvitamin D3-resistant rickets in three families

    International Nuclear Information System (INIS)

    Ritchie, H.H.; Hughes, M.R.; Thompson, E.T.; Pike, J.W.; O'Malley, B.W.; Malloy, P.J.; Feldman, D.; Hochberg, Z.

    1989-01-01

    Hereditary 1,25-dihydroxyvitamin D 3 -resistant rickets is a rare autosomal-recessive disease resulting from target-organ resistance to the action of the active hormonal form of vitamin D. Four affected children from three related families with the classical syndrome of hereditary 1,25-dihydroxyvitamin D 3 -resistant rickets and the absence of detectable binding to the vitamin D receptor (VDR) in cultured fibroblasts or lymphoblasts were examined for genetic abnormalities in the VDR gene. Genomic DNA from Epstein-Barr virus-transformed lymphoblasts of eight family members was isolated and amplified by polymerase chain reaction techniques. Amplified fragments containing the eight structural exons encoding the VDR protein were sequenced. The DNA from all affected children exhibited a single C → A base substitution within exon 7 at nucleotide 970. Although the affected children were all homozygotic for the mutation, the four parents tested all exhibited both wild-type and mutant alleles, indicating a heterozygous state. Recreated mutant receptor exhibited no specific 1,25-[ 3 H]dihydroxyvitamin D 3 binding and failed to activate a cotransfected VDR promoter-reporter gene construct. Thus these findings identify an ochre mutation in a human steroid hormone receptor in patients with hereditary 1,25-dihydroxyvitamin D 3 -resistant rickets

  18. AP1S3 Mutations Are Associated with Pustular Psoriasis and Impaired Toll-like Receptor 3 Trafficking

    Science.gov (United States)

    Setta-Kaffetzi, Niovi; Simpson, Michael A.; Navarini, Alexander A.; Patel, Varsha M.; Lu, Hui-Chun; Allen, Michael H.; Duckworth, Michael; Bachelez, Hervé; Burden, A. David; Choon, Siew-Eng; Griffiths, Christopher E.M.; Kirby, Brian; Kolios, Antonios; Seyger, Marieke M.B.; Prins, Christa; Smahi, Asma; Trembath, Richard C.; Fraternali, Franca; Smith, Catherine H.; Barker, Jonathan N.; Capon, Francesca

    2014-01-01

    Adaptor protein complex 1 (AP-1) is an evolutionary conserved heterotetramer that promotes vesicular trafficking between the trans-Golgi network and the endosomes. The knockout of most murine AP-1 complex subunits is embryonically lethal, so the identification of human disease-associated alleles has the unique potential to deliver insights into gene function. Here, we report two founder mutations (c.11T>G [p.Phe4Cys] and c.97C>T [p.Arg33Trp]) in AP1S3, the gene encoding AP-1 complex subunit σ1C, in 15 unrelated individuals with a severe autoinflammatory skin disorder known as pustular psoriasis. Because the variants are predicted to destabilize the 3D structure of the AP-1 complex, we generated AP1S3-knockdown cell lines to investigate the consequences of AP-1 deficiency in skin keratinocytes. We found that AP1S3 silencing disrupted the endosomal translocation of the innate pattern-recognition receptor TLR-3 (Toll-like receptor 3) and resulted in a marked inhibition of downstream signaling. These findings identify pustular psoriasis as an autoinflammatory phenotype caused by defects in vesicular trafficking and demonstrate a requirement of AP-1 for Toll-like receptor homeostasis. PMID:24791904

  19. Notch1 is required for hypoxia-induced proliferation, invasion and chemoresistance of T-cell acute lymphoblastic leukemia cells

    Directory of Open Access Journals (Sweden)

    Zou Jie

    2013-01-01

    Full Text Available Abstract Background Notch1 is a potent regulator known to play an oncogenic role in many malignancies including T-cell acute lymphoblastic leukemia (T-ALL. Tumor hypoxia and increased hypoxia-inducible factor-1α (HIF-1α activity can act as major stimuli for tumor aggressiveness and progression. Although hypoxia-mediated activation of the Notch1 pathway plays an important role in tumor cell survival and invasiveness, the interaction between HIF-1α and Notch1 has not yet been identified in T-ALL. This study was designed to investigate whether hypoxia activates Notch1 signalling through HIF-1α stabilization and to determine the contribution of hypoxia and HIF-1α to proliferation, invasion and chemoresistance in T-ALL. Methods T-ALL cell lines (Jurkat, Sup-T1 transfected with HIF-1α or Notch1 small interference RNA (siRNA were incubated in normoxic or hypoxic conditions. Their potential for proliferation and invasion was measured by WST-8 and transwell assays. Flow cytometry was used to detect apoptosis and assess cell cycle regulation. Expression and regulation of components of the HIF-1α and Notch1 pathways and of genes related to proliferation, invasion and apoptosis were assessed by quantitative real-time PCR or Western blot. Results Hypoxia potentiated Notch1 signalling via stabilization and activation of the transcription factor HIF-1α. Hypoxia/HIF-1α-activated Notch1 signalling altered expression of cell cycle regulatory proteins and accelerated cell proliferation. Hypoxia-induced Notch1 activation increased the expression of matrix metalloproteinase-2 (MMP2 and MMP9, which increased invasiveness. Of greater clinical significance, knockdown of Notch1 prevented the protective effect of hypoxia/HIF-1α against dexamethasone-induced apoptosis. This sensitization correlated with losing the effect of hypoxia/HIF-1α on Bcl-2 and Bcl-xL expression. Conclusions Notch1 signalling is required for hypoxia/HIF-1α-induced proliferation

  20. Epidermal Notch1 recruits RORγ + group 3 innate lymphoid cells to orchestrate normal skin repair

    NARCIS (Netherlands)

    Z. Li (Zhi); T. Hodgkinson (Tom); E.J. Gothard (Elizabeth J.); S. Boroumand (Soulmaz); R. Lamb (Rebecca); I. Cummins (Ian); P. Narang (Priyanka); A. Sawtell (Amy); J. Coles (Jenny); G. Leonov (German); A. Reboldi (Andrea); C.D. Buckley; T. Cupedo (Tom); C. Siebel (Christian); A. Bayat (Ardeshir); M. Coles (Mark); C.A. Ambler (Carrie A.)

    2016-01-01

    textabstractNotch has a well-defined role in controlling cell fate decisions in the embryo and the adult epidermis and immune systems, yet emerging evidence suggests Notch also directs non-cell-autonomous signalling in adult tissues. Here, we show that Notch1 works as a damage response signal.

  1. Metabolic syndrome impairs notch signaling and promotes apoptosis in chronically ischemic myocardium.

    Science.gov (United States)

    Elmadhun, Nassrene Y; Sabe, Ashraf A; Lassaletta, Antonio D; Chu, Louis M; Kondra, Katelyn; Sturek, Michael; Sellke, Frank W

    2014-09-01

    Impaired angiogenesis is a known consequence of metabolic syndrome (MetS); however, the mechanism is not fully understood. Recent studies have shown that the notch signaling pathway is an integral component of cardiac angiogenesis. We tested, in a clinically relevant swine model, the effects of MetS on notch and apoptosis signaling in chronically ischemic myocardium. Ossabaw swine were fed either a regular diet (control [CTL], n = 8) or a high-cholesterol diet (MetS, n = 8) to induce MetS. An ameroid constrictor was placed to induce chronic myocardial ischemia. Eleven weeks later, the wine underwent cardiac harvest of the ischemic myocardium. Downregulation of pro-angiogenesis proteins notch2, notch4, jagged2, angiopoietin 1, and endothelial nitric oxide synthase were found in the MetS group compared with the CTL group. Also, upregulation of pro-apoptosis protein caspase 8 and downregulation of anti-angiogenesis protein phosphorylated forkhead box transcription factor 03 and pro-survival proteins phosphorylated P38 and heat shock protein 90 were present in the MetS group. Cell death was increased in the MetS group compared with the CTL group. Both CTL and MetS groups had a similar arteriolar count and capillary density, and notch3 and jagged1 were both similarly concentrated in the smooth muscle wall. MetS in chronic myocardial ischemia significantly impairs notch signaling by downregulating notch receptors, ligands, and pro-angiogenesis proteins. MetS also increases apoptosis signaling, decreases survival signaling, and increases cell death in chronically ischemic myocardium. Although short-term angiogenesis appears unaffected in this model of early MetS, the molecular signals for angiogenesis are impaired, suggesting that inhibition of notch signaling might underlie the decreased angiogenesis in later stages of MetS. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  2. New hyperekplexia mutations provide insight into glycine receptor assembly, trafficking, and activation mechanisms

    DEFF Research Database (Denmark)

    Bode, Anna; Wood, Sian-Elin; Mullins, Jonathan G L

    2013-01-01

    Hyperekplexia is a syndrome of readily provoked startle responses, alongside episodic and generalized hypertonia, that presents within the first month of life. Inhibitory glycine receptors are pentameric ligand-gated ion channels with a definitive and clinically well stratified linkage...... a structural mechanism for channel activation. Receptors incorporating p.P230S (which is heterozygous with p.R65W) desensitized much faster than wild type receptors and represent a new TM1 site capable of modulating desensitization. The recessive mutations p.R72C, p.R218W, p.L291P, p.D388A, and p.E375X...... precluded cell surface expression unless co-expressed with α1 wild type subunits. The recessive p.E375X mutation resulted in subunit truncation upstream of the TM4 domain. Surprisingly, on the basis of three independent assays, we were able to infer that p.E375X truncated subunits are incorporated...

  3. The role of the Hes1 crosstalk hub in Notch-Wnt interactions of the intestinal crypt

    KAUST Repository

    Kay, Sophie K.

    2017-03-01

    The Notch pathway plays a vital role in determining whether cells in the intestinal epithelium adopt a secretory or an absorptive phenotype. Cell fate specification is coordinated via Notch’s interaction with the canonical Wnt pathway. Here, we propose a new mathematical model of the Notch and Wnt pathways, in which the Hes1 promoter acts as a hub for pathway crosstalk. Computational simulations of the model can assist in understanding how healthy intestinal tissue is maintained, and predict the likely consequences of biochemical knockouts upon cell fate selection processes. Chemical reaction network theory (CRNT) is a powerful, generalised framework which assesses the capacity of our model for monostability or multistability, by analysing properties of the underlying network structure without recourse to specific parameter values or functional forms for reaction rates. CRNT highlights the role of β-catenin in stabilising the Notch pathway and damping oscillations, demonstrating that Wnt-mediated actions on the Hes1 promoter can induce dynamic transitions in the Notch system, from multistability to monostability. Time-dependent model simulations of cell pairs reveal the stabilising influence of Wnt upon the Notch pathway, in which β-catenin- and Dsh-mediated action on the Hes1 promoter are key in shaping the subcellular dynamics. Where Notch-mediated transcription of Hes1 dominates, there is Notch oscillation and maintenance of fate flexibility; Wnt-mediated transcription of Hes1 favours bistability akin to cell fate selection. Cells could therefore regulate the proportion of Wnt- and Notch-mediated control of the Hes1 promoter to coordinate the timing of cell fate selection as they migrate through the intestinal epithelium and are subject to reduced Wnt stimuli. Furthermore, mutant cells characterised by hyperstimulation of the Wnt pathway may, through coupling with Notch, invert cell fate in neighbouring healthy cells, enabling an aberrant cell to maintain

  4. The role of the Hes1 crosstalk hub in Notch-Wnt interactions of the intestinal crypt

    KAUST Repository

    Kay, Sophie K.; Harrington, Heather A.; Shepherd, Sarah; Brennan, Keith; Dale, Trevor; Osborne, James M.; Gavaghan, David J.; Byrne, Helen M.

    2017-01-01

    The Notch pathway plays a vital role in determining whether cells in the intestinal epithelium adopt a secretory or an absorptive phenotype. Cell fate specification is coordinated via Notch’s interaction with the canonical Wnt pathway. Here, we propose a new mathematical model of the Notch and Wnt pathways, in which the Hes1 promoter acts as a hub for pathway crosstalk. Computational simulations of the model can assist in understanding how healthy intestinal tissue is maintained, and predict the likely consequences of biochemical knockouts upon cell fate selection processes. Chemical reaction network theory (CRNT) is a powerful, generalised framework which assesses the capacity of our model for monostability or multistability, by analysing properties of the underlying network structure without recourse to specific parameter values or functional forms for reaction rates. CRNT highlights the role of β-catenin in stabilising the Notch pathway and damping oscillations, demonstrating that Wnt-mediated actions on the Hes1 promoter can induce dynamic transitions in the Notch system, from multistability to monostability. Time-dependent model simulations of cell pairs reveal the stabilising influence of Wnt upon the Notch pathway, in which β-catenin- and Dsh-mediated action on the Hes1 promoter are key in shaping the subcellular dynamics. Where Notch-mediated transcription of Hes1 dominates, there is Notch oscillation and maintenance of fate flexibility; Wnt-mediated transcription of Hes1 favours bistability akin to cell fate selection. Cells could therefore regulate the proportion of Wnt- and Notch-mediated control of the Hes1 promoter to coordinate the timing of cell fate selection as they migrate through the intestinal epithelium and are subject to reduced Wnt stimuli. Furthermore, mutant cells characterised by hyperstimulation of the Wnt pathway may, through coupling with Notch, invert cell fate in neighbouring healthy cells, enabling an aberrant cell to maintain

  5. Hyperfunctioning thyroid nodules in toxic multinodular goiter share activating thyrotropin receptor mutations with solitary toxic adenoma.

    Science.gov (United States)

    Tonacchera, M; Chiovato, L; Pinchera, A; Agretti, P; Fiore, E; Cetani, F; Rocchi, R; Viacava, P; Miccoli, P; Vitti, P

    1998-02-01

    Toxic multinodular goiter is a cause of nonautoimmune hyperthyroidism and is believed to differ in its nature and pathogenesis from toxic adenoma. Gain-of-function mutations of the TSH receptor gene have been identified as a cause of toxic adenoma. The pathogenesis at the molecular level of hyperfunctioning nodules in toxic multinodular goiter has yet not been reported. Six patients with a single hot nodule within a multinodular goiter and 11 patients with toxic thyroid adenoma were enrolled in our study. At histology five hyperfunctioning nodules in multinodular goiters showed the features of adenomas, and one was identified as a hyperplastic nodule. The entire exon 10 of the TSH receptor gene was directly sequenced after PCR amplification from genomic DNA obtained from surgical specimens. Functional studies of mutated receptors were performed in COS-7 cells. Five out of 6 (83%) hyperfunctioning nodules within toxic multinodular goiters harbored a TSH receptor mutation. A TSH receptor mutation was also evident in the hyperfunctioning nodule that at histology had the features of noncapsulated hyperplastic nodule. Among toxic adenomas, 8 out of 11 (72%) nodules harbored a TSH receptor mutation. All the mutations were heterozygotic and somatic. Nonfunctioning nodules, whether adenomas or hyperplastic nodules present in association with hyperfunctioning nodules in the same multinodular goiters, had no TSH receptor mutation. All the mutations identified had constitutive activity as assessed by cAMP production after expression in COS-7 cells. Hyperfunctioning thyroid nodules in multinodular goiters recognize the same pathogenetic event (TSH receptor mutation) as toxic adenoma. Other mechanisms are implicated in the growth of nonfunctioning thyroid nodules coexistent in the same gland.

  6. The homeobox gene mirror links EGF signalling to embryonic dorso-ventral axis formation through notch activation.

    Science.gov (United States)

    Jordan, K C; Clegg, N J; Blasi, J A; Morimoto, A M; Sen, J; Stein, D; McNeill, H; Deng, W M; Tworoger, M; Ruohola-Baker, H

    2000-04-01

    Recent studies in vertebrates and Drosophila melanogaster have revealed that Fringe-mediated activation of the Notch pathway has a role in patterning cell layers during organogenesis. In these processes, a homeobox-containing transcription factor is responsible for spatially regulating fringe (fng) expression and thus directing activation of the Notch pathway along the fng expression border. Here we show that this may be a general mechanism for patterning epithelial cell layers. At three stages in Drosophila oogenesis, mirror (mirr) and fng have complementary expression patterns in the follicle-cell epithelial layer, and at all three stages loss of mirr enlarges, and ectopic expression of mirr restricts, fng expression, with consequences for follicle-cell patterning. These morphological changes are similar to those caused by Notch mutations. Ectopic expression of mirr in the posterior follicle cells induces a stripe of rhomboid (rho) expression and represses pipe (pip), a gene with a role in the establishment of the dorsal-ventral axis, at a distance. Ectopic Notch activation has a similar long-range effect on pip. Our results suggest that Mirror and Notch induce secretion of diffusible morphogens and we have identified TGF-beta (encoded by dpp) as such a molecule in germarium. We also found that mirr expression in dorsal follicle cells is induced by the EGF-receptor (EGFR) pathway and that mirr then represses pip expression in all but the ventral follicle cells, connecting EGFR activation in the dorsal follicle cells to repression of pip in the dorsal and lateral follicle cells. Our results suggest that the differentiation of ventral follicle cells is not a direct consequence of germline signalling, but depends on long-range signals from dorsal follicle cells, and provide a link between early and late events in Drosophila embryonic dorsal-ventral axis formation.

  7. Spectrum of somatic mutations detected by targeted next-generation sequencing and their prognostic significance in adult patients with acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Juan Feng

    2017-02-01

    Full Text Available Abstract Target-specific next-generation sequencing technology was used to analyze 112 genes in adult patients with acute lymphoblastic leukemia (ALL. This sequencing mainly focused on the specific mutational hotspots. Among the 121 patients, 93 patients were B-ALL (76.9%, and 28 patients (23.1% were T-ALL. Of the 121 patients, 110 (90.9% harbored at least one mutation. The five most frequently mutated genes in T-ALL are NOTCH1, JAK3, FBXW7, FAT1, and NRAS. In B-ALL, FAT1, SF1, CRLF2, TET2, and PTPN1 have higher incidence of mutations. Gene mutations are different between Ph+ALL and Ph−ALL patients. B-ALL patients with PTPN11 mutation and T-ALL patients with NOTCH1 and/or FBXW7 mutations showed better survival. But B-ALL with JAK1/JAK2 mutations showed worse survival. The results suggest that gene mutations exist in adult ALL patients universally, they are related with prognosis.

  8. A novel splicing mutation in the V2 vasopressin receptor

    DEFF Research Database (Denmark)

    Kamperis, Konstantinos; Siggaard, C; Herlin, Troels

    2000-01-01

    as clinical investigations comprising a fluid deprivation test and a 1-deamino-8-D-arginine-vasopressin (dDAVP) infusion test in the study subject and his mother. We found a highly unusual, novel, de novo 1447A-->C point mutation (gDNA), involving the invariable splice acceptor of the second intron...... of the gene in both the affected male (hemizygous) and his mother (heterozygous). This mutation is likely to cause aberrant splicing of the terminal intron of the gene, leading to a non-functional AVP receptor. The clinical studies were consistent with such a hypothesis, as the affected subject had a severe...

  9. NADPH Oxidase 1 Modulates WNT and NOTCH1 Signaling To Control the Fate of Proliferative Progenitor Cells in the Colon▿

    Science.gov (United States)

    Coant, Nicolas; Ben Mkaddem, Sanae; Pedruzzi, Eric; Guichard, Cécile; Tréton, Xavier; Ducroc, Robert; Freund, Jean-Noel; Cazals-Hatem, Dominique; Bouhnik, Yoram; Woerther, Paul-Louis; Skurnik, David; Grodet, Alain; Fay, Michèle; Biard, Denis; Lesuffleur, Thécla; Deffert, Christine; Moreau, Richard; Groyer, André; Krause, Karl-Heinz; Daniel, Fanny; Ogier-Denis, Eric

    2010-01-01

    The homeostatic self-renewal of the colonic epithelium requires coordinated regulation of the canonical Wnt/β-catenin and Notch signaling pathways to control proliferation and lineage commitment of multipotent stem cells. However, the molecular mechanisms by which the Wnt/β-catenin and Notch1 pathways interplay in controlling cell proliferation and fate in the colon are poorly understood. Here we show that NADPH oxidase 1 (NOX1), a reactive oxygen species (ROS)-producing oxidase that is highly expressed in colonic epithelial cells, is a pivotal determinant of cell proliferation and fate that integrates Wnt/β-catenin and Notch1 signals. NOX1-deficient mice reveal a massive conversion of progenitor cells into postmitotic goblet cells at the cost of colonocytes due to the concerted repression of phosphatidylinositol 3-kinase (PI3K)/AKT/Wnt/β-catenin and Notch1 signaling. This conversion correlates with the following: (i) the redox-dependent activation of the dual phosphatase PTEN, causing the inactivation of the Wnt pathway effector β-catenin, and (ii) the downregulation of Notch1 signaling that provokes derepression of mouse atonal homolog 1 (Math1) expression. We conclude that NOX1 controls the balance between goblet and absorptive cell types in the colon by coordinately modulating PI3K/AKT/Wnt/β-catenin and Notch1 signaling. This finding provides the molecular basis for the role of NOX1 in cell proliferation and postmitotic differentiation. PMID:20351171

  10. Characterization of Heterozygous HTRA1 Mutations in Taiwanese Patients With Cerebral Small Vessel Disease.

    Science.gov (United States)

    Lee, Yi-Chung; Chung, Chih-Ping; Chao, Nai-Chen; Fuh, Jong-Ling; Chang, Feng-Chi; Soong, Bing-Wing; Liao, Yi-Chu

    2018-07-01

    Homozygous and compound heterozygous mutations in the high temperature requirement serine peptidase A1 gene ( HTRA1 ) cause cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. However, heterozygous HTRA1 mutations were recently identified to be associated with autosomal dominant cerebral small vessel disease (SVD). The present study aims at investigating the clinical features, frequency, and spectrum of HTRA1 mutations in a Taiwanese cohort with SVD. Mutational analyses of HTRA1 were performed by Sanger sequencing in 222 subjects, selected from a cohort of 337 unrelated patients with SVD after excluding those harboring a NOTCH3 mutation. The influence of these mutations on HTRA1 protease activities was characterized. Seven novel heterozygous mutations in HTRA1 were identified, including p.Gly120Asp, p.Ile179Asn, p.Ala182Profs*33, p.Ile256Thr, p.Gly276Ala, p.Gln289Ter, and p.Asn324Thr, and each was identified in 1 single index patient. All mutations significantly compromise the HTRA1 protease activities. For the 7 index cases and another 2 affected siblings carrying a heterozygous HTRA1 mutation, the common clinical presentations include lacunar infarction, intracerebral hemorrhage, cognitive decline, and spondylosis at the fifth to sixth decade of life. Among the 9 patients, 4 have psychiatric symptoms as delusion, depression, and compulsive behavior, 3 have leukoencephalopathy in anterior temporal poles, and 2 patients have alopecia. Heterozygous HTRA1 mutations account for 2.08% (7 of 337) of SVD in Taiwan. The clinical and neuroradiological features of HTRA1 -related SVD and sporadic SVD are similar. These findings broaden the mutational spectrum of HTRA1 and highlight the pathogenic role of heterozygous HTRA1 mutations in SVD. © 2018 American Heart Association, Inc.

  11. 14-3-3{sigma} controls corneal epithelial cell proliferation and differentiation through the Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Ying [Stem Cell Institute, James Brown Cancer Center, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Lu, Qingxian [Tumor Immunobiology Group, James Brown Cancer Center, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Li, Qiutang, E-mail: q.li@louisville.edu [Stem Cell Institute, James Brown Cancer Center, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States); Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E. Muhammad Ali Blvd., Louisville, KY 40202 (United States)

    2010-02-19

    14-3-3{sigma} (also called stratifin) is specifically expressed in the stratified squamous epithelium and its function was recently shown to be linked to epidermal stratification and differentiation in the skin. In this study, we investigated its role in corneal epithelium cell proliferation and differentiation. We showed that the 14-3-3{sigma} mutation in repeated epilation (Er) mutant mice results in a dominant negative truncated protein. Primary corneal epithelial cells expressing the dominant negative protein failed to undergo high calcium-induced cell cycle arrest and differentiation. We further demonstrated that blocking endogenous 14-3-3{sigma} activity in corneal epithelial cells by overexpressing dominative negative 14-3-3{sigma} led to reduced Notch activity and Notch1/2 transcription. Significantly, expression of the active Notch intracellular domain overcame the block in epithelial cell differentiation in 14-3-3{sigma} mutant-expressing corneal epithelial cells. We conclude that 14-3-3{sigma} is critical for regulating corneal epithelial proliferation and differentiation by regulating Notch signaling activity.

  12. 14-3-3σ controls corneal epithelial cell proliferation and differentiation through the Notch signaling pathway

    International Nuclear Information System (INIS)

    Xin, Ying; Lu, Qingxian; Li, Qiutang

    2010-01-01

    14-3-3σ (also called stratifin) is specifically expressed in the stratified squamous epithelium and its function was recently shown to be linked to epidermal stratification and differentiation in the skin. In this study, we investigated its role in corneal epithelium cell proliferation and differentiation. We showed that the 14-3-3σ mutation in repeated epilation (Er) mutant mice results in a dominant negative truncated protein. Primary corneal epithelial cells expressing the dominant negative protein failed to undergo high calcium-induced cell cycle arrest and differentiation. We further demonstrated that blocking endogenous 14-3-3σ activity in corneal epithelial cells by overexpressing dominative negative 14-3-3σ led to reduced Notch activity and Notch1/2 transcription. Significantly, expression of the active Notch intracellular domain overcame the block in epithelial cell differentiation in 14-3-3σ mutant-expressing corneal epithelial cells. We conclude that 14-3-3σ is critical for regulating corneal epithelial proliferation and differentiation by regulating Notch signaling activity.

  13. Notch sensitivity of aliphatic polyketone terpolymers

    NARCIS (Netherlands)

    Zuiderduin, W.C.J.; Huetink, Han; Gaymans, R.J.

    2004-01-01

    The notch sensitivity of aliphatic polyketone (PK) terpolymers was investigated in this article. The notch-tip radius was varied between the size of an actual propagating crack tip of 1-2 m and the largest notch tip of 1000 m radius. The larger notch-tip radii (1000-15 m) were milled into the

  14. The role of uric acid in the pathogenesis of diabetic retinopathy based on notch pathway.

    Science.gov (United States)

    Zhu, Dan-Dan; Wang, Yun-Zhi; Zou, Chen; She, Xin-Ping; Zheng, Zhi

    2018-06-19

    Uric acid has been proposed as an independent risk factor of diabetic retinopathy. Although Notch signaling was reported to be affected in the presence of high concentrations of uric acid or glucose, the underlying mechanisms of hyperuricemia through the Notch signaling pathway to promote the development of diabetic retinopathy remain unknown. We incubated human retinal endothelial cells (HRECs) with high glucose, high uric acid and high glucose plus high glucose respectively and evaluated the apoptosis rate in different treated cells by Tunel staining. We induced diabetic model by intraperitoneally streptozotocin. Then healthy rats and diabetic rats were given with adenine and oteracil potassium by gavage. Using automatic biochemical analyzer to detect blood glucose, uric acid, urea nitrogen, creatinine levels, to verify the success of modeling. The expression and mRNA levels of ICAM-1, IL-6, MCP-1, TNF-a, receptors Notch 1, ligands Dll 1, Dll 4, Jagged 1, Jagged 2 were detected by RT-PCR and Western-Blot. Notch1 siRNA was used to interfere Notch signaling pathway, the expression and mRNA levels of ICAM-1, IL-6, MCP-1 and TNF-α was detected by RT-PCR and Western blot respectively. In vitro models, the apoptosis of HRECs cells in high uric acid plus high glucose group was the most significant. In vitro and vivo models, detection of inflammatory cytokines revealed that the expression of inflammatory cytokines increased most significantly in high uric acid plus high glucose group. Notch signaling pathway activity was also increased most significantly in high uric acid plus high glucose group. After Notch 1 siRNA transfection in high glucose and high glucose plus uric acid group, the activity of Notch signaling pathway was successfully down-regulated. We found that the apoptosis of HRECs was significantly decreased in cells transfected with Notch 1 siRNA compared to the blank vector group, and the expression of inflammatory cytokines in cells was also significantly

  15. Update of the androgen receptor gene mutations database.

    Science.gov (United States)

    Gottlieb, B; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1999-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 309 to 374 during the past year. We have expanded the database by adding information on AR-interacting proteins; and we have improved the database by identifying those mutation entries that have been updated. Mutations of unknown significance have now been reported in both the 5' and 3' untranslated regions of the AR gene, and in individuals who are somatic mosaics constitutionally. In addition, single nucleotide polymorphisms, including silent mutations, have been discovered in normal individuals and in individuals with male infertility. A mutation hotspot associated with prostatic cancer has been identified in exon 5. The database is available on the internet (http://www.mcgill.ca/androgendb/), from EMBL-European Bioinformatics Institute (ftp.ebi.ac.uk/pub/databases/androgen), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca). Copyright 1999 Wiley-Liss, Inc.

  16. FOXA1 promotes tumor cell proliferation through AR involving the Notch pathway in endometrial cancer

    International Nuclear Information System (INIS)

    Qiu, Meiting; Bao, Wei; Wang, Jingyun; Yang, Tingting; He, Xiaoying; Liao, Yun; Wan, Xiaoping

    2014-01-01

    Increasing evidence suggests that forkhead box A1 (FOXA1) is frequently dysregulated in many types of human cancers. However, the exact function and mechanism of FOXA1 in human endometrial cancer (EC) remains unclear. FOXA1 expression, androgen receptor (AR) expression, and the relationships of these two markers with clinicopathological factors were determined by immunohistochemistry analysis. FOXA1 and AR were up-regulated by transient transfection with plasmids, and were down-regulated by transfection with siRNA or short hairpin RNA (shRNA). The effects of FOXA1 depletion and FOXA1 overexpression on AR-mediated transcription as well as Notch pathway and their impact on EC cell proliferation were examined by qRT-PCR, western blotting, co-immunoprecipitation, ChIP-PCR, MTT, colony-formation, and xenograft tumor–formation assays. We found that the expression of FOXA1 and AR in ECs was significantly higher than that in a typical hyperplasia and normal tissues. FOXA1 expression was significantly correlated with AR expression in clinical tissues. High FOXA1 levels positively correlated with pathological grade and depth of myometrial invasion in EC. High AR levels also positively correlated with pathological grade in EC. Moreover, the expression of XBP1, MYC, ZBTB16, and UHRF1, which are downstream targets of AR, was promoted by FOXA1 up-regulation or inhibited by FOXA1 down-regulation. Co-immunoprecipitation showed that FOXA1 interacted with AR in EC cells. ChIP-PCR assays showed that FOXA1 and AR could directly bind to the promoter and enhancer regions upstream of MYC. Mechanistic investigation revealed that over-expression of Notch1 and Hes1 proteins by FOXA1 could be reversed by AR depletion. In addition, we showed that down-regulation of AR attenuated FOXA1-up-regulated cell proliferation. However, AR didn’t influence the promotion effect of FOXA1 on cell migration and invasion. In vivo xenograft model, FOXA1 knockdown reduced the rate of tumor growth. These

  17. Increased Wnt and Notch signaling: a clue to the renal disease in Schimke immuno-osseous dysplasia?

    Directory of Open Access Journals (Sweden)

    Marie Morimoto

    2016-11-01

    Full Text Available Abstract Background Schimke immuno-osseous dysplasia (SIOD is a multisystemic disorder caused by biallelic mutations in the SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily A-like 1 (SMARCAL1 gene. Changes in gene expression underlie the arteriosclerosis and T-cell immunodeficiency of SIOD; therefore, we hypothesized that SMARCAL1 deficiency causes the focal segmental glomerulosclerosis (FSGS of SIOD by altering renal gene expression. We tested this hypothesis by gene expression analysis of an SIOD patient kidney and verified these findings through immunofluorescent analysis in additional SIOD patients and a genetic interaction analysis in Drosophila. Results We found increased expression of components and targets of the Wnt and Notch signaling pathways in the SIOD patient kidney, increased levels of unphosphorylated β-catenin and Notch1 intracellular domain in the glomeruli of most SIOD patient kidneys, and genetic interaction between the Drosophila SMARCAL1 homologue Marcal1 and genes of the Wnt and Notch signaling pathways. Conclusions We conclude that increased Wnt and Notch activity result from SMARCAL1 deficiency and, as established causes of FSGS, contribute to the renal disease of most SIOD patients. This further clarifies the pathogenesis of SIOD and will hopefully direct potential therapeutic approaches for SIOD patients.

  18. Intracellular-activated Notch1 can reactivate Kaposi's sarcoma-associated herpesvirus from latency

    International Nuclear Information System (INIS)

    Lan, Ke; Murakami, Masanao; Choudhuri, Tathagata; Kuppers, Daniel A.; Robertson, Erle S.

    2006-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a predominantly latent infection in the infected host. Importantly, during latency, only a small number of viral encoded genes are expressed. This viral gene expression pattern contributes to the establishment of long-term infection as well as the ability of the virus to evade the immune system. Previous studies have been shown that the replication and transcription activator (RTA) encoded by ORF50 activates it downstream genes and initiates viral lytic reactivation through functional interaction with RBP-Jκ, the major downstream effector of the Notch signaling pathway. This indicates that RTA can usurp the conserved Notch signaling pathway and mimic the activities of intracellular Notch1 to modulate gene expression. In this report, we show that the activated intracellular domain of Notch1 (ICN) is aberrantly accumulated in KSHV latently infected pleural effusion lymphoma (PEL) cells. ICN activated the RTA promoter in a dose-dependent manner, and forced expression of ICN in latently infected KSHV-positive cells initiated full blown lytic replication with the production of infectious viral progeny. However, latency-associated nuclear antigen (LANA) which is predominantly expressed during latency can specifically down-modulate ICN-mediated transactivation of RTA and so control KSHV for lytic reactivation. These results demonstrate that LANA can inhibit viral lytic replication by antagonizing ICN function and suggest that LANA is a critical component of the regulatory control mechanism for switching between viral latent and lytic replication by directly interacting with effectors of the conserved cellular Notch1 pathway

  19. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis

    Science.gov (United States)

    Gomez-Ospina, Natalia; Potter, Carol J.; Xiao, Rui; Manickam, Kandamurugu; Kim, Mi-Sun; Kim, Kang Ho; Shneider, Benjamin L.; Picarsic, Jennifer L.; Jacobson, Theodora A.; Zhang, Jing; He, Weimin; Liu, Pengfei; Knisely, A. S.; Finegold, Milton J.; Muzny, Donna M.; Boerwinkle, Eric; Lupski, James R.; Plon, Sharon E.; Gibbs, Richard A.; Eng, Christine M.; Yang, Yaping; Washington, Gabriel C.; Porteus, Matthew H.; Berquist, William E.; Kambham, Neeraja; Singh, Ravinder J.; Xia, Fan; Enns, Gregory M.; Moore, David D.

    2016-01-01

    Neonatal cholestasis is a potentially life-threatening condition requiring prompt diagnosis. Mutations in several different genes can cause progressive familial intrahepatic cholestasis, but known genes cannot account for all familial cases. Here we report four individuals from two unrelated families with neonatal cholestasis and mutations in NR1H4, which encodes the farnesoid X receptor (FXR), a bile acid-activated nuclear hormone receptor that regulates bile acid metabolism. Clinical features of severe, persistent NR1H4-related cholestasis include neonatal onset with rapid progression to end-stage liver disease, vitamin K-independent coagulopathy, low-to-normal serum gamma-glutamyl transferase activity, elevated serum alpha-fetoprotein and undetectable liver bile salt export pump (ABCB11) expression. Our findings demonstrate a pivotal function for FXR in bile acid homeostasis and liver protection. PMID:26888176

  20. An ochre mutation in the vitamin D receptor gene causes hereditary 1,25-dihydroxyvitamin D sub 3 -resistant rickets in three families

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, H.H.; Hughes, M.R.; Thompson, E.T.; Pike, J.W.; O' Malley, B.W. (Baylor College of Medicine, Houston, TX (USA)); Malloy, P.J.; Feldman, D. (Stanford Univ. School of Medicine, CA (USA)); Hochberg, Z. (Rambam Medical Center, Haifa (Israel))

    1989-12-01

    Hereditary 1,25-dihydroxyvitamin D{sub 3}-resistant rickets is a rare autosomal-recessive disease resulting from target-organ resistance to the action of the active hormonal form of vitamin D. Four affected children from three related families with the classical syndrome of hereditary 1,25-dihydroxyvitamin D{sub 3}-resistant rickets and the absence of detectable binding to the vitamin D receptor (VDR) in cultured fibroblasts or lymphoblasts were examined for genetic abnormalities in the VDR gene. Genomic DNA from Epstein-Barr virus-transformed lymphoblasts of eight family members was isolated and amplified by polymerase chain reaction techniques. Amplified fragments containing the eight structural exons encoding the VDR protein were sequenced. The DNA from all affected children exhibited a single C {yields} A base substitution within exon 7 at nucleotide 970. Although the affected children were all homozygotic for the mutation, the four parents tested all exhibited both wild-type and mutant alleles, indicating a heterozygous state. Recreated mutant receptor exhibited no specific 1,25-({sup 3}H)dihydroxyvitamin D{sub 3} binding and failed to activate a cotransfected VDR promoter-reporter gene construct. Thus these findings identify an ochre mutation in a human steroid hormone receptor in patients with hereditary 1,25-dihydroxyvitamin D{sub 3}-resistant rickets.

  1. Mody-3: novel HNF1A mutation and the utility of glucagon-like peptide (GLP)-1 receptor agonist therapy.

    Science.gov (United States)

    Docena, Maricor K; Faiman, Charles; Stanley, Christine M; Pantalone, Kevin M

    2014-02-01

    An estimated 1 to 2% of cases of diabetes mellitus have a monogenic basis; however, delayed diagnosis and misdiagnosis as type 1 and 2 diabetes are common. Correctly identifying the molecular basis of an individual's diabetes may significantly alter the management approach to both the patient and his or her relatives. We describe a case of mature onset diabetes of the young (MODY) with sufficient evidence to support the classification of a novel HNF1A (hepatocyte nuclear factor-1-α) mutation as a cause of MODY-3. A 21-year-old Caucasian female presented to our office with a diagnosis of noninsulin-dependent diabetes mellitus (NIDDM) at age 10; glycemia was initially managed with oral antidiabetic (OAD) agents and insulin detemir. The patient reported a strong family history of early-onset NIDDM in both her mother and maternal grandmother, both of whom eventually required insulin therapy to control glycemia. The patient's medical and family history were highly suggestive of maturity-onset diabetes of the young (MODY), and genetic testing was performed. Genetic screening detected a mutation p. Arg200Trp in the HNF1A gene in the patient, her mother, and maternal grandmother, suggesting a diagnosis of MODY-3. This finding resulted in a change of antidiabetic therapy in all 3 patients, including the addition of once-daily liraglutide therapy, which helped improve their glycemic control. Our case report supports the classification of the p. Arg200Trp mutation as a cause of MODY-3. The findings also suggest that glucagon-like peptide-1 (GLP-1) receptor agonist therapy may be of value in managing glycemia in patients with MODY-3.

  2. Epidermal growth factor receptor mutation in gastric cancer.

    Science.gov (United States)

    Liu, Zhimin; Liu, Lina; Li, Mei; Wang, Zhaohui; Feng, Lu; Zhang, Qiuping; Cheng, Shihua; Lu, Shen

    2011-04-01

    Epidermal growth factor receptor (EGFR) and Kirsten-RAS (KRAS) mutations have been identified as predictors of response to EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer. We aimed to screen the mutations of both genes in gastric carcinoma to detect the suitability of EGFR TKIs for patients with gastric carcinoma. We screened EGFR mutation in exons 19-21 and KRAS mutation in exon 2 in 58 gastric adenocarcinomas from China using high resolution melting analysis (HRMA). Positive samples were confirmed by DNA sequencing. Three EGFR missense mutations (5.2%) and 22 single nucleotide polymorphisms (SNP, Q787Q, 37.9%) were identified. To our knowledge, we report for the first time three mutation patterns of EGFR, Y801C, L858R and G863D, in gastric carcinoma. Two samples with EGFR mutation were mucinous adenocarcinoma. These three samples were collected from male patients aged over 75 years old. The frequency of KRAS mutation was 10.3% (6/58). The exclusiveness of EGFR and KRAS mutations was proven for the first time in gastric cancer. Gastric carcinoma of the mucinous adenocarcinoma type collected from older male patients may harbour EGFR mutations. The small subset of gastric adenocarcinoma patients may respond to EGFR TKIs.

  3. The EGF receptor and notch signaling pathways control the initiation of the morphogenetic furrow during Drosophila eye development.

    Science.gov (United States)

    Kumar, J P; Moses, K

    2001-07-01

    The onset of pattern formation in the developing Drosophila retina begins with the initiation of the morphogenetic furrow, the leading edge of a wave of retinal development that transforms a uniform epithelium, the eye imaginal disc into a near crystalline array of ommatidial elements. The initiation of this wave of morphogenesis is under the control of the secreted morphogens Hedgehog (Hh), Decapentaplegic (Dpp) and Wingless (Wg). We show that the Epidermal Growth Factor Receptor and Notch signaling cascades are crucial components that are also required to initiate retinal development. We also show that the initiation of the morphogenetic furrow is the sum of two genetically separable processes: (1) the 'birth' of pattern formation at the posterior margin of the eye imaginal disc; and (2) the subsequent 'reincarnation' of retinal development across the epithelium.

  4. Clinical impact of de-regulated Notch-1 and Notch-3 in the development and progression of HPV-associated different histological subtypes of precancerous and cancerous lesions of human uterine cervix.

    Directory of Open Access Journals (Sweden)

    Richa Tripathi

    Full Text Available Cervical cancer is the leading cause of cancer related deaths among women in India. Limited reports are available for Notch-1 and Notch-3 protein in cervical carcinoma, which play crucial role in cell proliferation, differentiation, and apoptosis.This study was designed to evaluate the role of Notch-1 and Notch-3 with context to HPV infection in cervical carcinoma. A total of 168 tissue biopsy samples comprising of tumor specimens (n = 98, precancer (n = 30 and non-neoplastic cervical tissues (n = 40 were screened for HPV infection by PCR and expression of Notch-1 and Notch-3 protein by Immunohistochemistry and Immunoblotting.80% (24/30 were found to be positive for HPV in precancer and 86.7% (85/98 in cancer patients. Notch-1 expression of precancer and cancer cases was found to be significantly down-regulated with severity of disease in nuclear (3.43±0.29; 2.04±0.19, p = 0.0001, p = 0.0001 and cytoplasm (3.07±0.29; 2.29±0.17, p = 0.0001, p = 0.0001 obtained from different stages as compared to normal cervix tissue (5.40±0.19, 4.97±0.15; p<0.001; p<0.001. However, Notch-3 expression of above cases was significantly up-regulated with severity of disease and showed intense nuclear (4.17±0.39; 4.74±0.18, p = 0.0001, p = 0.0001 and cytoplasm (3.67±0.36; 4.48±0.18, p = 0.0001, p = 0.0001 of different stages as compared to normal cervix tissue (0.95±0.20, 0.70±0.20; p<0.001; p<0.001 respectively.These findings suggest that Notch-1 and Notch-3 may play an important role with synergistic effect of HPV in regulating development and proliferation of cervical cancer through the deregulation of Notch signalling. This study also shows the clinical utility of both proteins which may be used as predictable biomarkers in diagnosing different histological sub-types of HPV associated cervical cancer. Nevertheless, abnormal activation of this pathway may provide legitimate targets for cervical cancer therapy.

  5. GRIN1 Mutations in Early-Onset Epileptic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Wenjuan Chen

    2015-06-01

    Full Text Available Investigators from Yokohama City University and other medical centers in Israel and Japan reported mutations on N-methyl-D-aspartate (NMDA receptors subunit GRIN1 (GluN1 identified in patients with nonsyndromic intellectual disability and early-onset epileptic encephalopathy.

  6. Novel growth hormone receptor mutation in a Chinese patient with Laron syndrome.

    Science.gov (United States)

    Hui, Hamilton N T; Metherell, Louise A; Ng, K L; Savage, Martin O; Camacho-Hübner, Cecilia; Clark, Adrian J L

    2005-02-01

    Laron syndrome, growth hormone (GH) insensitivity syndrome, caused by a mutation of the GH receptor (GHR) gene, is extremely rare in the Chinese population. We report a Chinese girl diagnosed with Laron syndrome at age 1.9 years with height -4.9 SDS, basal GH 344 mIU/ml, IGF-I <12 ng/ml, IGFBP-3 <0.2 mg/ml, and undetectable GHBP. A novel mutation of the GHR, not previously described, was identified at the donor splice site of intron 6.

  7. Impaired embryonic haematopoiesis yet normal arterial development in the absence of the Notch ligand Jagged1

    DEFF Research Database (Denmark)

    Robert-Moreno, Àlex; Robert-Moreno, Àlex; Guiu, Jordi

    2008-01-01

    Specific deletion of Notch1 and RBPjκ in the mouse results in abrogation of definitive haematopoiesis concomitant with the loss of arterial identity at embryonic stage. As prior arterial determination is likely to be required for the generation of embryonic haematopoiesis, it is difficult...... to establish the specific haematopoietic role of Notch in these mutants. By analysing different Notch-ligand-null embryos, we now show that Jagged1 is not required for the establishment of the arterial fate but it is required for the correct execution of the definitive haematopoietic programme, including...... activation of Notch1 is responsible for regulating GATA2 expression in the AGM, which in turn is essential for definitive haematopoiesis in the mouse....

  8. Effects of an inhibitor of the γ-secretase complex on proliferation and apoptotic parameters in a FOXL2-mutated granulosa tumor cell line (KGN).

    Science.gov (United States)

    Irusta, Griselda; Pazos, Maria Camila; Maidana, Camila Pazos; Abramovich, Dalhia; De Zúñiga, Ignacio; Parborell, Fernanda; Tesone, Marta

    2013-07-01

    Ovarian granulosa cell tumors (GCTs) represent 3%-5% of all ovarian malignancies. Treatments have limited proven efficacy and biologically targeted treatment is lacking. The aim of this study was to investigate the role of Notch signaling in the proliferation, steroidogenesis, apoptosis, and phosphatidylinositol 3-kinase (PI3K)/AKT pathway in a FOXL2-mutated granulosa tumor cell line (KGN) representative of the adult form of GCTs. When Notch signaling is initiated, the receptors expose a cleavage site in the extracellular domain to the metalloproteinase TACE and, following this cleavage, Notch undergoes another cleavage mediated by the presenilin-gamma-secretase complex. To achieve our goal, DAPT, an inhibitor of the gamma-secretase complex, was used to investigate the role of the Notch system in parameters associated with cell growth and death, using a human granulosa cell tumor line (KGN) as an experimental model. We observed that JAGGED1, DLL4, NOTCH1, and NOTCH4 were highly expressed in KGN cells as compared to granulosa-lutein cells obtained from assisted reproductive techniques patients. The proliferation and viability of KGN cells, as well as progesterone and estradiol production, decreased in the presence of 20 μM DAPT. Apoptotic parameters like PARP and caspase 8 cleavages, BAX, and BCLXs increased in KGN cells cultured with DAPT, whereas others such as BCL2, BCLXl, FAS, and FAS ligand did not change. AKT phosphorylation decreased and PTEN protein increased when Notch signaling was inhibited in KGN cells. We conclude that the Notch system acts as a survival pathway in KGN cells, and might be interacting with the PI3K/AKT pathway.

  9. Gene expression profiling of the Notch-AhR-IL22 axis at homeostasis and in response to tissue injury.

    Science.gov (United States)

    Weidenbusch, Marc; Rodler, Severin; Song, Shangqing; Romoli, Simone; Marschner, Julian A; Kraft, Franziska; Holderied, Alexander; Kumar, Santosh; Mulay, Shrikant R; Honarpisheh, Mohsen; Kumar Devarapu, Satish; Lech, Maciej; Anders, Hans-Joachim

    2017-12-22

    Notch and interleukin-22 (IL-22) signaling are known to regulate tissue homeostasis and respond to injury in humans and mice, and the induction of endogenous aryl hydrocarbon receptor (Ahr) ligands through Notch links the two pathways in a hierarchical fashion. However in adults, the species-, organ- and injury-specific gene expression of the Notch-AhR-IL22 axis components is unknown. We therefore performed gene expression profiling of DLL1, DLL3, DLL4, DLK1, DLK2, JAG1, JAG2, Notch1, Notch2, Notch3, Notch4, ADAM17/TNF-α ADAM metalloprotease converting enzyme (TACE), PSEN1, basigin (BSG)/CD147, RBP-J, HES1, HES5, HEY1, HEYL, AHR, ARNT, ARNT2, CYP1A1, CYP24A1, IL-22, IL22RA1, IL22RA2, IL10RB, and STAT3 under homeostatic conditions in ten mature murine and human organs. Additionally, the expression of these genes was assessed in murine models of acute sterile inflammation and progressive fibrosis. We show that there are organ-specific gene expression profiles of the Notch-AhR-IL22 axis in humans and mice. Although there is an overall interspecies congruency, specific differences between human and murine expression signatures do exist. In murine tissues with AHR/ARNT expression CYP1A1 and IL-22 were correlated with HES5 and HEYL expression, while in human tissues no such correlation was found. Notch and AhR signaling are involved in renal inflammation and fibrosis with specific gene expression changes in each model. Despite the presence of all Notch pathway molecules in the kidney and a model-specific induction of Notch ligands, IL-22 was only up-regulated in acute inflammation, but rapidly down-regulated during regeneration. This implies that for targeting injury responses, e.g. via IL-22, species-specific differences, injury type and time points have to be considered. © 2017 The Author(s).

  10. Roles of Notch1 Signaling in Regulating Satellite Cell Fates Choices and Postnatal Skeletal Myogenesis.

    Science.gov (United States)

    Shan, Tizhong; Xu, Ziye; Wu, Weiche; Liu, Jiaqi; Wang, Yizhen

    2017-11-01

    Adult skeletal muscle stem cells, also called satellite cells, are indispensable for the growth, maintenance, and regeneration of the postnatal skeletal muscle. Satellite cells, predominantly quiescent in mature resting muscles, are activated after skeletal muscle injury or degeneration. Notch1 signaling is an evolutionarily conserved pathway that plays crucial roles in satellite cells homeostasis and postnatal skeletal myogenesis and regeneration. Activation of Notch1 signaling promotes the muscle satellite cells quiescence and proliferation, but inhibits differentiation of muscle satellite cells. Notably, the new roles of Notch1 signaling during late-stage of skeletal myogenesis including in post-differentiation myocytes and post-fusion myotubes have been recently reported. Here, we mainly review and discuss the regulatory roles of Notch1 in regulating satellite cell fates choices and skeletal myogenesis. J. Cell. Physiol. 232: 2964-2967, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Emodin suppresses TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells through Notch signaling pathway

    International Nuclear Information System (INIS)

    Gao, Rundi; Chen, Ruilin; Cao, Yu; Wang, Yuan; Song, Kang; Zhang, Ya; Yang, Junchao

    2017-01-01

    Pulmonary fibrosis is characterized by the destruction of lung tissue architecture and the formation of fibrous foci, currently has no satisfactory treatment. Emodin is a component of Chinese herb that has been reported to be medicament on pancreatic fibrosis and liver fibrosis. However, its role in pulmonary fibrosis has not been established yet. In the present study, we investigated the hypothesis that Emodin plays an inhibitory role in TGF-β1 induced epithelial-mesenchymal transition (EMT) of alveolar epithelial cell, and Emodin exerts its effect through the Notch signaling pathway. Emodin inhibits the proliferation of Rat alveolar type II epithelial cells RLE-6TN in a concentration-dependent manner; reduces the expression of Collagen I, α-SMA and Vimentin, promotes the expression of E-cadherin. Moreover, Emodin could regulate the expression patterns of the Notch signaling pathway-related factors and reduce the Notch-1 nucleus translocation. Knockdown of Notch-1 enhances the inhibitory effect of Emodin on TGF-β1-induced EMT in RLE-6TN cells. In conclusion, the data of the present study suggests that Emodin suppresses TGF-β1-induced EMT in alveolar epithelial cells through Notch signaling pathway and shows the potential to be effective in the treatment of pulmonary fibrosis. - Highlights: • Emodin inhibits TGF-β1-induced EMT in alveolar epithelial cells. • Emodin regulates the expression patterns of the Notch signaling pathway-related factors. • Emodin inhibits TGF-β1-induced Notch-1 nucleus translocation and activation.

  12. Emodin suppresses TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells through Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Rundi; Chen, Ruilin; Cao, Yu [Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medicine University, NO. 56, Youdian Road, Shangcheng District, Hangzhou, Zhejiang Province 310006 (China); Wang, Yuan [Department of Pulmonary Function, The First Affiliated Hospital of Zhejiang Chinese Medicine University, NO. 56, Youdian Road, Shangcheng District, Hangzhou, Zhejiang Province 310006 (China); Song, Kang [Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medicine University, NO. 56, Youdian Road, Shangcheng District, Hangzhou, Zhejiang Province 310006 (China); Zhang, Ya [Zhejiang Chinese Medicine University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang Province 310006 (China); Yang, Junchao, E-mail: yangjunchaozj@zcmu.edu.cn [Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medicine University, NO. 56, Youdian Road, Shangcheng District, Hangzhou, Zhejiang Province 310006 (China)

    2017-03-01

    Pulmonary fibrosis is characterized by the destruction of lung tissue architecture and the formation of fibrous foci, currently has no satisfactory treatment. Emodin is a component of Chinese herb that has been reported to be medicament on pancreatic fibrosis and liver fibrosis. However, its role in pulmonary fibrosis has not been established yet. In the present study, we investigated the hypothesis that Emodin plays an inhibitory role in TGF-β1 induced epithelial-mesenchymal transition (EMT) of alveolar epithelial cell, and Emodin exerts its effect through the Notch signaling pathway. Emodin inhibits the proliferation of Rat alveolar type II epithelial cells RLE-6TN in a concentration-dependent manner; reduces the expression of Collagen I, α-SMA and Vimentin, promotes the expression of E-cadherin. Moreover, Emodin could regulate the expression patterns of the Notch signaling pathway-related factors and reduce the Notch-1 nucleus translocation. Knockdown of Notch-1 enhances the inhibitory effect of Emodin on TGF-β1-induced EMT in RLE-6TN cells. In conclusion, the data of the present study suggests that Emodin suppresses TGF-β1-induced EMT in alveolar epithelial cells through Notch signaling pathway and shows the potential to be effective in the treatment of pulmonary fibrosis. - Highlights: • Emodin inhibits TGF-β1-induced EMT in alveolar epithelial cells. • Emodin regulates the expression patterns of the Notch signaling pathway-related factors. • Emodin inhibits TGF-β1-induced Notch-1 nucleus translocation and activation.

  13. Thyroid Hormone-Induced Activation of Notch Signaling is Required for Adult Intestinal Stem Cell Development During Xenopus Laevis Metamorphosis.

    Science.gov (United States)

    Hasebe, Takashi; Fujimoto, Kenta; Kajita, Mitsuko; Fu, Liezhen; Shi, Yun-Bo; Ishizuya-Oka, Atsuko

    2017-04-01

    In Xenopus laevis intestine during metamorphosis, the larval epithelial cells are removed by apoptosis, and the adult epithelial stem (AE) cells appear concomitantly. They proliferate and differentiate to form the adult epithelium (Ep). Thyroid hormone (TH) is well established to trigger this remodeling by regulating the expression of various genes including Notch receptor. To study the role of Notch signaling, we have analyzed the expression of its components, including the ligands (DLL and Jag), receptor (Notch), and targets (Hairy), in the metamorphosing intestine by real-time reverse transcription-polymerase chain reaction and in situ hybridization or immunohistochemistry. We show that they are up-regulated during both natural and TH-induced metamorphosis in a tissue-specific manner. Particularly, Hairy1 is specifically expressed in the AE cells. Moreover, up-regulation of Hairy1 and Hairy2b by TH was prevented by treating tadpoles with a γ-secretase inhibitor (GSI), which inhibits Notch signaling. More importantly, TH-induced up-regulation of LGR5, an adult intestinal stem cell marker, was suppressed by GSI treatment. Our results suggest that Notch signaling plays a role in stem cell development by regulating the expression of Hairy genes during intestinal remodeling. Furthermore, we show with organ culture experiments that prolonged exposure of tadpole intestine to TH plus GSI leads to hyperplasia of secretory cells and reduction of absorptive cells. Our findings here thus provide evidence for evolutionarily conserved role of Notch signaling in intestinal cell fate determination but more importantly reveal, for the first time, an important role of Notch pathway in the formation of adult intestinal stem cells during vertebrate development. Stem Cells 2017;35:1028-1039. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  14. O-linked-N-acetylglucosamine modification of mammalian Notch receptors by an atypical O-GlcNAc transferase Eogt1

    Energy Technology Data Exchange (ETDEWEB)

    Sakaidani, Yuta [Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Ichiyanagi, Naoki [Department of Applied Molecular Biosciences, Nagoya University Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Saito, Chika; Nomura, Tomoko [Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Ito, Makiko [Department of Applied Molecular Biosciences, Nagoya University Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Nishio, Yosuke [Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Nadano, Daita; Matsuda, Tsukasa [Department of Applied Molecular Biosciences, Nagoya University Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Furukawa, Koichi [Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Okajima, Tetsuya, E-mail: tokajima@med.nagoya-u.ac.jp [Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Department of Applied Molecular Biosciences, Nagoya University Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer We characterized A130022J15Rik (Eogt1)-a mouse gene homologous to Drosophila Eogt. Black-Right-Pointing-Pointer Eogt1 encodes EGF domain O-GlcNAc transferase. Black-Right-Pointing-Pointer Expression of Eogt1 in Drosophila rescued the cell-adhesion defect in the Eogt mutant. Black-Right-Pointing-Pointer O-GlcNAcylation reaction in the secretory pathway is conserved through evolution. -- Abstract: O-linked-{beta}-N-acetylglucosamine (O-GlcNAc) modification is a unique cytoplasmic and nuclear protein modification that is common in nearly all eukaryotes, including filamentous fungi, plants, and animals. We had recently reported that epidermal growth factor (EGF) repeats of Notch and Dumpy are O-GlcNAcylated by an atypical O-GlcNAc transferase, EOGT, in Drosophila. However, no study has yet shown whether O-GlcNAcylation of extracellular proteins is limited to insects such as Drosophila or whether it occurs in other organisms, including mammals. Here, we report the characterization of A130022J15Rik, a mouse gene homolog of Drosophila Eogt (Eogt 1). Enzymatic analysis revealed that Eogt1 has a substrate specificity similar to that of Drosophila EOGT, wherein the Thr residue located between the fifth and sixth conserved cysteines of the folded EGF-like domains is modified. This observation is supported by the fact that the expression of Eogt1 in Drosophila rescued the cell-adhesion defect caused by Eogt downregulation. In HEK293T cells, Eogt1 expression promoted modification of Notch1 EGF repeats by O-GlcNAc, which was further modified, at least in part, by galactose to generate a novel O-linked-N-acetyllactosamine structure. These results suggest that Eogt1 encodes EGF domain O-GlcNAc transferase and that O-GlcNAcylation reaction in the secretory pathway is a fundamental biochemical process conserved through evolution.

  15. O-linked-N-acetylglucosamine modification of mammalian Notch receptors by an atypical O-GlcNAc transferase Eogt1

    International Nuclear Information System (INIS)

    Sakaidani, Yuta; Ichiyanagi, Naoki; Saito, Chika; Nomura, Tomoko; Ito, Makiko; Nishio, Yosuke; Nadano, Daita; Matsuda, Tsukasa; Furukawa, Koichi; Okajima, Tetsuya

    2012-01-01

    Highlights: ► We characterized A130022J15Rik (Eogt1)—a mouse gene homologous to Drosophila Eogt. ► Eogt1 encodes EGF domain O-GlcNAc transferase. ► Expression of Eogt1 in Drosophila rescued the cell-adhesion defect in the Eogt mutant. ► O-GlcNAcylation reaction in the secretory pathway is conserved through evolution. -- Abstract: O-linked-β-N-acetylglucosamine (O-GlcNAc) modification is a unique cytoplasmic and nuclear protein modification that is common in nearly all eukaryotes, including filamentous fungi, plants, and animals. We had recently reported that epidermal growth factor (EGF) repeats of Notch and Dumpy are O-GlcNAcylated by an atypical O-GlcNAc transferase, EOGT, in Drosophila. However, no study has yet shown whether O-GlcNAcylation of extracellular proteins is limited to insects such as Drosophila or whether it occurs in other organisms, including mammals. Here, we report the characterization of A130022J15Rik, a mouse gene homolog of Drosophila Eogt (Eogt 1). Enzymatic analysis revealed that Eogt1 has a substrate specificity similar to that of Drosophila EOGT, wherein the Thr residue located between the fifth and sixth conserved cysteines of the folded EGF-like domains is modified. This observation is supported by the fact that the expression of Eogt1 in Drosophila rescued the cell-adhesion defect caused by Eogt downregulation. In HEK293T cells, Eogt1 expression promoted modification of Notch1 EGF repeats by O-GlcNAc, which was further modified, at least in part, by galactose to generate a novel O-linked-N-acetyllactosamine structure. These results suggest that Eogt1 encodes EGF domain O-GlcNAc transferase and that O-GlcNAcylation reaction in the secretory pathway is a fundamental biochemical process conserved through evolution.

  16. Expression of G(alpha)(s) proteins and TSH receptor signalling in hyperfunctioning thyroid nodules with TSH receptor mutations.

    Science.gov (United States)

    Holzapfel, Hans-Peter; Bergner, Beate; Wonerow, Peter; Paschke, Ralf

    2002-07-01

    Constitutively activating mutations of the thyrotrophin receptor (TSHR) are the main molecular cause of hyperfunctioning thyroid nodules (HTNs). The G protein coupling is an important and critical step in the TSHR signalling which mainly includes G(alpha)(s), G(alpha)(i) and G(alpha)(q)/11 proteins. We investigated the in vitro consequences of overexpressing G(alpha) proteins on signalling of the wild-type (WT) or mutated TSHR. Moreover, we investigated whether changes in G(alpha) protein expression are pathophysiologically relevant in HTNs or cold thyroid nodules (CTNs). Wild-type TSH receptor and mutated TSH receptors were coexpressed with G(alpha)(s), G(alpha)(i) or G(alpha)(q)/11, and cAMP and inositol phosphate (IP) production was measured after stimulation with TSH. The expression of G(alpha)(s), G(alpha)(i) and G(alpha)(q)/11 proteins was examined by Western blotting in 28 HTNs and 14 CTNs. Coexpression of G(alpha)(s) with the WT TSH receptor in COS 7 cells significantly increased the basal and TSH-stimulated cAMP accumulation while coexpression of the G(alpha)(q) or G(alpha)11 protein significantly increased the production of cAMP and inositol triphosphate (IP(3)). The coexpression of the TSH receptor mutants (I486F, DEL613-621), known to couple constitutively to G(alpha)(s) and G(alpha)(q) with G(alpha)(s) and G(alpha)(q)/11, significantly increased the basal and stimulated cAMP and IP(3) accumulation. Coexpression of the TSH receptor mutant V556F with G(alpha)(s) only increased the basal and stimulated cAMP production while its coexpression with G(alpha)(q)/11 increased the basal and stimulated IP(3) signalling. The expression of G(alpha)(s) protein subunits determined by Western blotting was significantly decreased in 14 HTNs with a constitutively activating TSH receptor mutation in comparison with the corresponding surrounding tissue, while in 14 HTNs without TSH receptor or G(alpha)(s) protein mutation and in 14 CTNs the expression of G

  17. The MAPK-dependent regulation of the Jagged/Notch gene expression by VEGF, bFGF or PPAR gamma mediated angiogenesis in HUVEC

    DEFF Research Database (Denmark)

    Kiec-Wilk, B; Grzybowska-Galuszka, J; Polus, A

    2010-01-01

    The Jagged-Notch signalling, plays a crucial role in cell differentiation. Angiogenesis, is regulated by VEGF, bFGF as well as by the free fatty acid metabolites , which are regulators of transcription factors such as peroxisome proliferation activating receptors (PPARs). The study analyzed...... the signalling pathways involved in the regulation of Jagged-1/Notch-4 expression in endothelial cells (HUVECs) in response to VEGF, bFGF and PPAR-gamma exogenous activator - ciglitazone. HUVECs were incubated with investigated substances for 24 hours, with or without the presence of the MAP-kinases inhibitors...... were used. Jagged-1 and Notch-4 gene expression was determined using quantitative Real-Time PCR. The Jagged-1/Notch-4 protein expression was compared by flow cytometry, when the phosphorylation-dependent activation of kinases was estimated by Western-blot method. The opposite effect of VEGF, b...

  18. Clinical impact of de-regulated Notch-1 and Notch-3 in the development and progression of HPV-associated different histological subtypes of precancerous and cancerous lesions of human uterine cervix.

    Science.gov (United States)

    Tripathi, Richa; Rath, Gayatri; Jawanjal, Poonam; Sharma, Shweta; Singhal, Pallavi; Bhambhani, Suresh; Hussain, Showket; Bharadwaj, Mausumi

    2014-01-01

    Cervical cancer is the leading cause of cancer related deaths among women in India. Limited reports are available for Notch-1 and Notch-3 protein in cervical carcinoma, which play crucial role in cell proliferation, differentiation, and apoptosis. This study was designed to evaluate the role of Notch-1 and Notch-3 with context to HPV infection in cervical carcinoma. A total of 168 tissue biopsy samples comprising of tumor specimens (n = 98), precancer (n = 30) and non-neoplastic cervical tissues (n = 40) were screened for HPV infection by PCR and expression of Notch-1 and Notch-3 protein by Immunohistochemistry and Immunoblotting. 80% (24/30) were found to be positive for HPV in precancer and 86.7% (85/98) in cancer patients. Notch-1 expression of precancer and cancer cases was found to be significantly down-regulated with severity of disease in nuclear (3.43±0.29; 2.04±0.19, p = 0.0001, p = 0.0001) and cytoplasm (3.07±0.29; 2.29±0.17, p = 0.0001, p = 0.0001) obtained from different stages as compared to normal cervix tissue (5.40±0.19, 4.97±0.15; pcervix tissue (0.95±0.20, 0.70±0.20; pcancer through the deregulation of Notch signalling. This study also shows the clinical utility of both proteins which may be used as predictable biomarkers in diagnosing different histological sub-types of HPV associated cervical cancer. Nevertheless, abnormal activation of this pathway may provide legitimate targets for cervical cancer therapy.

  19. Aspartyl-(asparaginyl β-Hydroxylase, Hypoxia-Inducible Factor-1α and Notch Cross-Talk in Regulating Neuronal Motility

    Directory of Open Access Journals (Sweden)

    Margot Lawton

    2010-01-01

    Full Text Available Aspartyl-(Asparaginyl-β-Hydroxylase (AAH promotes cell motility by hydroxylating Notch. Insulin and insulin-like growth factor, type 1 (IGF-I stimulate AAH through Erk MAP K and phosphoinositol-3-kinase-Akt (PI3K-Akt. However, hypoxia/oxidative stress may also regulate AAH . Hypoxia-inducible factor-1alpha (HIF-1α regulates cell migration, signals through Notch, and is regulated by hypoxia/oxidative stress, insulin/IGF signaling and factor inhibiting HIF-1α (FIH hydroxylation. To examine cross-talk between HIF-1α and AAH , we measured AAH , Notch-1, Jagged-1, FIH, HIF-1α, HIF-1β and the hairy and enhancer of split 1 (HE S-1 transcription factor expression and directional motility in primitive neuroectodermal tumor 2 (PNET2 human neuronal cells that were exposed to H2O2 or transfected with short interfering RNA duplexes (siRNA targeting AAH , Notch-1 or HIF-1α. We found that: (1 AAH , HIF-1α and neuronal migration were stimulated by H2O2; (2 si-HIF-1α reduced AAH expression and cell motility; (3 si-AAH inhibited Notch and cell migration, but not HIF-1α and (4 si-Notch-1 increased FIH and inhibited HIF-1α. These findings suggest that AAH and HIF-1α crosstalk within a hydroxylation-regulated signaling pathway that may be transiently driven by oxidative stress and chronically regulated by insulin/IGF signaling.

  20. Agonist-dependent effects of mutations in the sphingosine-1-phosphate type 1 receptor

    NARCIS (Netherlands)

    van Loenen, Pieter B.; de Graaf, Chris; Verzijl, Dennis; Leurs, Rob; Rognan, Didier; Peters, Stephan L. M.; Alewijnse, Astrid E.

    2011-01-01

    The sphingosine-1-phosphate type 1 (S1P(1)) receptor is a new target in the treatment of auto-immune diseases as evidenced by the recent approval of FTY720 (Fingolimod). The ligand-binding pocket of the S1P(1) receptor has been generally characterised but detailed insight into ligand-specific

  1. Mechanism of Notch Pathway Activation and Its Role in the Regulation of Olfactory Plasticity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Simon Kidd

    Full Text Available The neural plasticity of sensory systems is being increasingly recognized as playing a role in learning and memory. We have previously shown that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila melanogaster olfactory receptor neurons (ORNs for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. In this paper we address how long-term exposure to odor activates Notch and how Notch in conjunction with chronic odor mediates olfactory plasticity. We show that upon chronic odor exposure a non-canonical Notch pathway mediates an increase in the volume of glomeruli by a mechanism that is autonomous to ORNs. In addition to activating a pathway that is autonomous to ORNs, chronic odor exposure also activates the Notch ligand Delta in second order projection neurons (PNs, but this does not appear to require acetylcholine receptor activation in PNs. Delta on PNs then feeds back to activate canonical Notch signaling in ORNs, which restricts the extent of the odor induced increase in glomerular volume. Surprisingly, even though the pathway that mediates the increase in glomerular volume is autonomous to ORNs, nonproductive transsynaptic Delta/Notch interactions that do not activate the canonical pathway can block the increase in volume. In conjunction with chronic odor, the canonical Notch pathway also enhances cholinergic activation of PNs. We present evidence suggesting that this is due to increased acetylcholine release from ORNs. In regulating physiological plasticity, Notch functions solely by the canonical pathway, suggesting that there is no direct connection between morphological and physiological plasticity.

  2. Mutation screening of the Ectodysplasin-A receptor gene EDAR in hypohidrotic ectodermal dysplasia

    NARCIS (Netherlands)

    van der Hout, Annemarie H.; Oudesluijs, Gretel G.; Venema, Andrea; Verheij, Joke B. G. M.; Mol, Bart G. J.; Rump, Patrick; Brunner, Han G.; Vos, Yvonne J.; van Essen, Anthonie J.

    Hypohidrotic ectodermal dysplasia (HED) can be caused by mutations in the X-linked ectodysplasin A (ED1) gene or the autosomal ectodysplasin A-receptor (EDAR) and EDAR-associated death domain (EDARADD) genes. X-linked and autosomal forms are sometimes clinically indistinguishable. For genetic

  3. GluD1 is a common altered player in neuronal differentiation from both MECP2-mutated and CDKL5-mutated iPS cells.

    Science.gov (United States)

    Livide, Gabriella; Patriarchi, Tommaso; Amenduni, Mariangela; Amabile, Sonia; Yasui, Dag; Calcagno, Eleonora; Lo Rizzo, Caterina; De Falco, Giulia; Ulivieri, Cristina; Ariani, Francesca; Mari, Francesca; Mencarelli, Maria Antonietta; Hell, Johannes Wilhelm; Renieri, Alessandra; Meloni, Ilaria

    2015-02-01

    Rett syndrome is a monogenic disease due to de novo mutations in either MECP2 or CDKL5 genes. In spite of their involvement in the same disease, a functional interaction between the two genes has not been proven. MeCP2 is a transcriptional regulator; CDKL5 encodes for a kinase protein that might be involved in the regulation of gene expression. Therefore, we hypothesized that mutations affecting the two genes may lead to similar phenotypes by dysregulating the expression of common genes. To test this hypothesis we used induced pluripotent stem (iPS) cells derived from fibroblasts of one Rett patient with a MECP2 mutation (p.Arg306Cys) and two patients with mutations in CDKL5 (p.Gln347Ter and p.Thr288Ile). Expression profiling was performed in CDKL5-mutated cells and genes of interest were confirmed by real-time RT-PCR in both CDKL5- and MECP2-mutated cells. The only major change in gene expression common to MECP2- and CDKL5-mutated cells was for GRID1, encoding for glutamate D1 receptor (GluD1), a member of the δ-family of ionotropic glutamate receptors. GluD1 does not form AMPA or NMDA glutamate receptors. It acts like an adhesion molecule by linking the postsynaptic and presynaptic compartments, preferentially inducing the inhibitory presynaptic differentiation of cortical neurons. Our results demonstrate that GRID1 expression is downregulated in both MECP2- and CDKL5-mutated iPS cells and upregulated in neuronal precursors and mature neurons. These data provide novel insights into disease pathophysiology and identify possible new targets for therapeutic treatment of Rett syndrome.

  4. Antioxidant proteins TSA and PAG interact synergistically with Presenilin to modulate Notch signaling in Drosophila.

    Science.gov (United States)

    Wangler, Michael F; Reiter, Lawrence T; Zimm, Georgianna; Trimble-Morgan, Jennifer; Wu, Jane; Bier, Ethan

    2011-07-01

    Alzheimer's disease (AD) pathogenesis is characterized by senile plaques in the brain and evidence of oxidative damage. Oxidative stress may precede plaque formation in AD; however, the link between oxidative damage and plaque formation remains unknown. Presenilins are transmembrane proteins in which mutations lead to accelerated plaque formation and early-onset familial Alzheimer's disease. Presenilins physically interact with two antioxidant enzymes thiol-specific antioxidant (TSA) and proliferation-associated gene (PAG) of the peroxiredoxin family. The functional consequences of these interactions are unclear. In the current study we expressed a presenilin transgene in Drosophila wing and sensory organ precursors of the fly. This caused phenotypes typical of Notch signaling loss-of-function mutations. We found that while expression of TSA or PAG alone produced no phenotype, co-expression of TSA and PAG with presenilin led to an enhanced Notch loss-of-function phenotype. This phenotype was more severe and more penetrant than that caused by the expression of Psn alone. In order to determine whether these phenotypes were indeed affecting Notch signaling, this experiment was performed in a genetic background carrying an activated Notch (Abruptex) allele. The phenotypes were almost completely rescued by this activated Notch allele. These results link peroxiredoxins with the in vivo function of Presenilin, which ultimately connects two key pathogenetic mechanisms in AD, namely, antioxidant activity and plaque formation, and raises the possibility of a role for peroxiredoxin family members in Alzheimer's pathogenesis.

  5. NOR1 promotes hepatocellular carcinoma cell proliferation and migration through modulating the Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    You, Kun; Sun, Peisheng; Yue, Zhongyi; Li, Jian; Xiong, Wancheng; Wang, Jianguo, E-mail: jianguowangjgw@163.com

    2017-03-15

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Previous studies have reported that the oxidored-nitro domain containing protein 1 (NOR1) is a novel tumor suppressor in several tumors. Recent evidence suggests that NOR1 is strongly expressed in HCC cells. However, its role and mechanism in HCC are unclear. In the current study, Western blot and qPCR detected strong NOR1 mRNA and protein expression in HepG2 and Hep3B cells. After transfection with NOR1 siRNA or pcDNA3.1-myc-his-NOR1, the proliferation and migration of HepG2 and Hep3B cells were analyzed in vitro. HepG2 or Hep3B cells overexpressing NOR1 showed an increased proliferation and migration, whereas siRNA-mediated silencing of NOR1 showed the opposite effect. Furthermore, NOR1 activated the Notch signaling pathway, indicated by increased levels of Notch1, NICD, Hes1, and Hey1 in protein. Importantly, the Notch inhibitor DAPT downregulated Notch activation and further enhanced siNOR1-induced reduction of cell proliferation and migration in HepG2 and Hep3B cells, whereas DAPT reversed the effect of NOR1 overexpression on cell proliferation and migration. In conclusion, these results indicate that NOR1 may be involved in the progression of HCC and thus may be a potential target for the treatment of liver cancer. - Highlights: • NOR1 expression is up-regulated in HCC cells. • NOR1 promotes the proliferation and migration of HCC cells. • NOR1 promotes the progression of HCC cells by activating Notch pathway.

  6. The Notch ligand Delta-like 1 integrates inputs from TGFbeta/Activin and Wnt pathways

    Energy Technology Data Exchange (ETDEWEB)

    Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org; Tewari, Shruti, E-mail: stewari@tcmedc.org; Atamna, Wafa, E-mail: watamna@tcmedc.org; Lazarova, Darina L., E-mail: dlazarova@tcmedc.org

    2011-06-10

    Unlike the well-characterized nuclear function of the Notch intracellular domain, it has been difficult to identify a nuclear role for the ligands of Notch. Here we provide evidence for the nuclear function of the Notch ligand Delta-like 1 in colon cancer (CC) cells exposed to butyrate. We demonstrate that the intracellular domain of Delta-like 1 (Dll1icd) augments the activity of Wnt signaling-dependent reporters and that of the promoter of the connective tissue growth factor (CTGF) gene. Data suggest that Dll1icd upregulates CTGF promoter activity through both direct and indirect mechanisms. The direct mechanism is supported by co-immunoprecipitation of endogenous Smad2/3 proteins and Dll1 and by chromatin immunoprecipitation analyses that revealed the occupancy of Dll1icd on CTGF promoter sequences containing a Smad binding element. The indirect upregulation of CTGF expression by Dll1 is likely due to the ability of Dll1icd to increase Wnt signaling, a pathway that targets CTGF. CTGF expression is induced in butyrate-treated CC cells and results from clonal growth assays support a role for CTGF in the cell growth-suppressive role of butyrate. In conclusion, integration of the Notch, Wnt, and TGFbeta/Activin signaling pathways is in part mediated by the interactions of Dll1 with Smad2/3 and Tcf4.

  7. Fatigue-creep life prediction for a notched specimen of 2[1]/[4]Cr-1Mo steel at 600 C

    International Nuclear Information System (INIS)

    Inoue, Tatsuo; Sakane, Masao; Fukuda, Yoshio; Igari, Toshihide; Miyahara, Mitsuo; Okazaki, Masakazu

    1994-01-01

    This paper presents the life prediction of 2[1]/[4]Cr-1Mo notched specimens subjected to fast-fast, slow-slow and hold-time loadings at 600 C. The crack initiation lives of notched specimens were estimated based on the local stress-strain calculated by inelastic finite element analyses. For the life prediction, combinations of seven different constitutive models and five fatigue-creep damage laws were used. The applicability of the constitutive model and damage law is discussed. The constitutive models predict similar stress-strain relations at the notch root, leading to similar predicted lives. The damage model, however, has a much larger influence on the life prediction. ((orig.))

  8. Case Reports1. A Late Presentation of Loeys-Dietz Syndrome: Beware of TGFβ Receptor Mutations in Benign Joint Hypermobility

    OpenAIRE

    Mehta, Puja; Holder, Susan; Fisher, Benjamin; Vincent, Tonia; Nadesalingam, Kavitha; Maciver, Helen; Shingler, Wendy; Bakshi, Jyoti; Hassan, Sadon; D'Cruz, David; Chan, Antoni; Litwic, Anna E.; McCrae, Fiona; Seth, Rakhi; McCrae, Fiona

    2017-01-01

    Background: Thoracic aortic aneurysms (TAA) and dissections are not uncommon causes of sudden death in young adults. Loeys-Dietz syndrome (LDS) is a rare, recently described, autosomal dominant, connective tissue disease characterized by aggressive arterial aneurysms, resulting from mutations in the transforming growth factor beta (TGFβ) receptor genes TGFBR1 and TGFBR2. Mean age at death is 26.1 years, most often due to aortic dissection. We report an unusually late presentation of LDS, diag...

  9. Mu Opioid Receptor Gene: New Point Mutations in Opioid Addicts

    Directory of Open Access Journals (Sweden)

    Amin Dinarvand

    2014-02-01

    Full Text Available Introduction: Association between single-nucleotide polymorphisms (SNPs in mu opioid receptor gene and drug addiction has been shown in various studies. Here, we have evaluated the existence of polymorphisms in exon 3 of this gene in Iranian population and investigated the possible association between these mutations and opioid addiction.  Methods: 79 opioid-dependent subjects (55 males, 24 females and 134 non-addict or control individuals (74 males, 60 females participated in the study. Genomic DNA was extracted from volunteers’ peripheral blood and exon 3 of the mu opioid receptor gene was amplified by polymerase chain reaction (PCR whose products were then sequenced.  Results: Three different heterozygote polymorphisms were observed in 3 male individuals: 759T>C and 877G>A mutations were found in 2 control volunteers and 1043G>C substitution was observed in an opioid-addicted subject. Association between genotype and opioid addiction for each mutation was not statistically significant.  Discussion: It seems that the sample size used in our study is not enough to confirm or reject any association between 759T>C, 877G>A and 1043G>C substitutions in exon 3 of the mu opioid receptor gene and opioid addiction susceptibility in Iranian population.

  10. A missense mutation in melanocortin 1 receptor is associated with the red coat colour in donkeys.

    Science.gov (United States)

    Abitbol, M; Legrand, R; Tiret, L

    2014-12-01

    The seven donkey breeds recognised by the French studbook are characterised by few coat colours: black, bay and grey. Normand bay donkeys seldom give birth to red foals, a colour more commonly seen and recognised in American miniature donkeys. Red resembles the equine chestnut colour, previously attributed to a mutation in the melanocortin 1 receptor gene (MC1R). We used a panel of 124 donkeys to identify a recessive missense c.629T>C variant in MC1R that showed a perfect association with the red coat colour. This variant leads to a methionine to threonine substitution at position 210 in the protein. We showed that methionine 210 is highly conserved among vertebrate melanocortin receptors. Previous in silico and in vitro analyses predicted this residue to lie within a functional site. Our in vivo results emphasised the pivotal role played by this residue, the alteration of which yielded a phenotype fully compatible with a loss of function of MC1R. We thus propose to name the c.629T>C allele in donkeys the e allele, which further enlarges the panel of recessive MC1R loss-of-function alleles described in animals and humans. © 2014 Stichting International Foundation for Animal Genetics.

  11. A hotspot in the glucocorticoid receptor DNA-binding domain susceptible to loss of function mutation

    Science.gov (United States)

    Banuelos, Jesus; Shin, Soon Cheon; Lu, Nick Z.

    2015-01-01

    Glucocorticoids (GCs) are used to treat a variety of inflammatory disorders and certain cancers. However, GC resistance occurs in subsets of patients. We found that EL4 cells, a GC-resistant mouse thymoma cell line, harbored a point mutation in their GC receptor (GR) gene, resulting in the substitution of arginine 493 by a cysteine in the second zinc finger of the DNA-binding domain. Allelic discrimination analyses revealed that the R493C mutation occurred on both alleles. In the absence of GCs, the GR in EL4 cells localized predominantly in the cytoplasm and upon dexamethasone treatment underwent nuclear translocation, suggesting the ligand binding ability of the GR in EL4 cells was intact. In transient transfection assays, the R493C mutant could not transactivate the MMTV-luciferase reporter. Site-directed mutagenesis to revert the R493C mutation restored the transactivation activity. Cotransfection experiments showed that the R493C mutant did not inhibit the transcriptional activities of the wild-type GR. In addition, the R493C mutant did not repress either the AP-1 or NF-κB reporters as effectively as WT GR. Furthermore, stable expression of the WT GR in the EL4 cells enabled GC-mediated gene regulation, specifically upregulation of IκBα and downregulation of interferon γ and interleukin 17A. Arginine 493 is conserved among multiple species and all human nuclear receptors and its mutation has also been found in the human GR, androgen receptor, and mineralocorticoid receptor. Thus, R493 is necessary for the transcriptional activity of the GR and a hotspot for mutations that result in GC resistance. PMID:25676786

  12. [Valsartan inhibits angiotensin II-Notch signaling of mesangial cells induced by high glucose].

    Science.gov (United States)

    Yuan, Qin; Lyu, Chuan; Wu, Can; Lei, Sha; Shao, Ying; Wang, Qiuyue

    2016-01-01

    To explore the role of angiotensin II (Ang II)-Notch signaling in high glucose-induced secretion of extracellular matrix of rat mesangial cells (RMCs) and to further investigate the protective effect of valsartan (one of Ang II receptor blockers) on kidney. Subcultured RMCs were divided into groups as follows: normal glucose group (5.5 mmol/L glucose); high glucose group (30 mmol/L glucose); high concentration of mannitol as osmotic control group (5.5 mmol/L glucose and 24.5 mmol/L mannitol); normal glucose plus 1 μmol/L N-[N-(3, 5-difluorophenacetyl)-L-alanyl ]-S-phenylglycine t-butyl ester (DAPT) group; normal glucose plus (1, 5, 10) μmol/L valsartan group; high glucose plus 1 μmol/L DAPT group; high glucose plus (1, 5, 10) μmol/L valsartan group. Cells and supernatants were harvested after 12, 24 and 48 hours. Notch1 expression was examined by Western blotting. Secretion of transforming growth factor (TGF-β) and fibronectin (FN) were detected by ELISA. Compared to the normal glucose group, Notch1 expression was elevated in the high glucose group after 12 hours, and peaked at 24 hours. Besides, secretion of TGF-β and FN were much higher in the high glucose group than in the normal glucose group in a time-dependent manner. Compared to the untreated group, Notch1 expression decreased in a dose-dependent manner in the valsartan or DAPT treated group under high glucose after 24 hours. After pre-treatment by either valsartan or DAPT in the high glucose group, secretion of TGF-β and FN obviously decreased as compared to the untreated group. Hyperglycemia could stimulate activation of Notch signaling in cultured RMCs, which may increase secretion of downstream fibrotic factors such as TGF-β and FN. Valsartan may decrease the secretion of downstream FN in a dose-dependent manner via inhibiting AngII-Notch signaling.

  13. Acupuncture inhibits Notch1 and Hes1 protein expression in the basal ganglia of rats with cerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Wei Zou

    2015-01-01

    Full Text Available Notch pathway activation maintains neural stem cells in a proliferating state and increases nerve repair capacity. To date, studies have rarely focused on changes or damage to signal transduction pathways during cerebral hemorrhage. Here, we examined the effect of acupuncture in a rat model of cerebral hemorrhage. We examined four groups: in the control group, rats received no treatment. In the model group, cerebral hemorrhage models were established by infusing non-heparinized blood into the brain. In the acupuncture group, modeled rats had Baihui (DU20 and Qubin (GB7 acupoints treated once a day for 30 minutes. In the DAPT group, modeled rats had 0.15 μg/mL DAPT solution (10 mL infused into the brain. Immunohistochemistry and western blot results showed that acupuncture effectively inhibits Notch1 and Hes1 protein expression in rat basal ganglia. These inhibitory effects were identical to DAPT, a Notch signaling pathway inhibitor. Our results suggest that acupuncture has a neuroprotective effect on cerebral hemorrhage by inhibiting Notch-Hes signaling pathway transduction in rat basal ganglia after cerebral hemorrhage.

  14. Down-regulation of Notch-1 by γ-secretase inhibitor suppress the ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-30

    Nov 30, 2011 ... Notch-1 signaling is crucial for stem cell maintenance and in a variety of tissues. Previous ... family of transcription factors (CBF-1/RBP-Jk, Su (h) and. LAG-1) .... prostate stem cell renew and cell differentiation (Chhipa,. 2011).

  15. Evolution of a G protein-coupled receptor response by mutations in regulatory network interactions

    DEFF Research Database (Denmark)

    Di Roberto, Raphaël B; Chang, Belinda; Trusina, Ala

    2016-01-01

    All cellular functions depend on the concerted action of multiple proteins organized in complex networks. To understand how selection acts on protein networks, we used the yeast mating receptor Ste2, a pheromone-activated G protein-coupled receptor, as a model system. In Saccharomyces cerevisiae......, Ste2 is a hub in a network of interactions controlling both signal transduction and signal suppression. Through laboratory evolution, we obtained 21 mutant receptors sensitive to the pheromone of a related yeast species and investigated the molecular mechanisms behind this newfound sensitivity. While...... demonstrate that a new receptor-ligand pair can evolve through network-altering mutations independently of receptor-ligand binding, and suggest a potential role for such mutations in disease....

  16. Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch.

    Science.gov (United States)

    López-Arribillaga, Erika; Rodilla, Verónica; Pellegrinet, Luca; Guiu, Jordi; Iglesias, Mar; Roman, Angel Carlos; Gutarra, Susana; González, Susana; Muñoz-Cánoves, Pura; Fernández-Salguero, Pedro; Radtke, Freddy; Bigas, Anna; Espinosa, Lluís

    2015-01-01

    Genetic data indicate that abrogation of Notch-Rbpj or Wnt-β-catenin pathways results in the loss of the intestinal stem cells (ISCs). However, whether the effect of Notch is direct or due to the aberrant differentiation of the transit-amplifying cells into post-mitotic goblet cells is unknown. To address this issue, we have generated composite tamoxifen-inducible intestine-specific genetic mouse models and analyzed the expression of intestinal differentiation markers. Importantly, we found that activation of β-catenin partially rescues the differentiation phenotype of Rbpj deletion mutants, but not the loss of the ISC compartment. Moreover, we identified Bmi1, which is expressed in the ISC and progenitor compartments, as a gene that is co-regulated by Notch and β-catenin. Loss of Bmi1 resulted in reduced proliferation in the ISC compartment accompanied by p16(INK4a) and p19(ARF) (splice variants of Cdkn2a) accumulation, and increased differentiation to the post-mitotic goblet cell lineage that partially mimics Notch loss-of-function defects. Finally, we provide evidence that Bmi1 contributes to ISC self-renewal. © 2015. Published by The Company of Biologists Ltd.

  17. Liver sinusoidal endothelial cells induce immunosuppressive IL-10-producing Th1 cells via the Notch pathway.

    Science.gov (United States)

    Neumann, Katrin; Rudolph, Christine; Neumann, Christian; Janke, Marko; Amsen, Derk; Scheffold, Alexander

    2015-07-01

    Under homeostasis, liver sinusoidal endothelial cells (LSECs) shift intrahepatic T-cell responses towards tolerance. However, the role of LSECs in the regulation of T-cell-induced liver inflammation is less clear. Here, we studied the capacity of LSECs to modulate pro-inflammatory Th1-cell differentiation in mice. Using in vitro co-culture systems and subsequent cytokine analysis, we showed that LSECs induced high amounts of the anti-inflammatory cytokine IL-10 in developing Th1 cells. These LSEC-stimulated Th1 cells had no pro-inflammatory capacity in vivo but instead actively suppressed an inflammatory Th1-cell-induced delayed-type hypersensitivity reaction. Blockage of IL-10 signaling in vivo inhibited immunosuppressive activity of LSEC-stimulated Th1 cells. We identified the Notch pathway as a mechanism how LSECs trigger IL-10 expression in Th1 cells. LSECs expressed high levels of the Delta-like and Jagged family of Notch ligands and induced expression of the Notch target genes hes-1 and deltex-1 in Th1 cells. Blockade of Notch signaling selectively inhibited IL-10 induction in Th1 cells by LSECs. Our findings suggest that LSEC-induced IL-10 expression in Th1 cells via the Notch pathway may contribute to the control of hepatic inflammatory immune responses by induction of a self-regulatory mechanism in pro-inflammatory Th1 cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. HES1, a target of Notch signaling, is elevated in canine osteosarcoma, but reduced in the most aggressive tumors.

    Science.gov (United States)

    Dailey, Deanna D; Anfinsen, Kristin P; Pfaff, Liza E; Ehrhart, E J; Charles, J Brad; Bønsdorff, Tina B; Thamm, Douglas H; Powers, Barbara E; Jonasdottir, Thora J; Duval, Dawn L

    2013-07-01

    Hairy and enhancer of split 1 (HES1), a basic helix-loop-helix transcriptional repressor, is a downstream target of Notch signaling. Notch signaling and HES1 expression have been linked to growth and survival in a variety of human cancer types and have been associated with increased metastasis and invasiveness in human osteosarcoma cell lines. Osteosarcoma (OSA) is an aggressive cancer demonstrating both high metastatic rate and chemotherapeutic resistance. The current study examined expression of Notch signaling mediators in primary canine OSA tumors and canine and human osteosarcoma cell lines to assess their role in OSA development and progression. Reverse transcriptase - quantitative PCR (RT-qPCR) was utilized to quantify HES1, HEY1, NOTCH1 and NOTCH2 gene expression in matched tumor and normal metaphyseal bone samples taken from dogs treated for appendicular OSA at the Colorado State University Veterinary Teaching Hospital. Gene expression was also assessed in tumors from dogs with a disease free interval (DFI) of  300 days following treatment with surgical amputation followed by standard chemotherapy. Immunohistochemistry was performed to confirm expression of HES1. Data from RT-qPCR and immunohistochemical (IHC) experiments were analyzed using REST2009 software and survival analysis based on IHC expression employed the Kaplan-Meier method and log rank analysis. Unbiased clustered images were generated from gene array analysis data for Notch/HES1 associated genes. Gene array analysis of Notch/HES1 associated genes suggested alterations in the Notch signaling pathway may contribute to the development of canine OSA. HES1 mRNA expression was elevated in tumor samples relative to normal bone, but decreased in tumor samples from dogs with a DFI 300 days. NOTCH2 and HEY1 mRNA expression was also elevated in tumors relative to normal bone, but was not differentially expressed between the DFI tumor groups. Survival analysis confirmed an association between

  19. AMP is an adenosine A1 receptor agonist.

    Science.gov (United States)

    Rittiner, Joseph E; Korboukh, Ilia; Hull-Ryde, Emily A; Jin, Jian; Janzen, William P; Frye, Stephen V; Zylka, Mark J

    2012-02-17

    Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5'-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5'-monophosphonate, ACP) directly activated the adenosine A(1) receptor (A(1)R). In contrast, AMP only activated the adenosine A(2B) receptor (A(2B)R) after hydrolysis to adenosine by ecto-5'-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A(1)R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A(1)R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A(1)R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A(1)R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine.

  20. Refined histopathological predictors of BRCA1 and BRCA2 mutation status

    DEFF Research Database (Denmark)

    Spurdle, Amanda B; Couch, Fergus J; Parsons, Michael T

    2014-01-01

    INTRODUCTION: The distribution of histopathological features of invasive breast tumors in BRCA1 or BRCA2 germline mutation carriers differs from that of individuals with no known mutation. Histopathological features thus have utility for mutation prediction, including statistical modeling to assess...... pathogenicity of BRCA1 or BRCA2 variants of uncertain clinical significance. We analyzed large pathology datasets accrued by the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and the Breast Cancer Association Consortium (BCAC) to reassess histopathological predictors of BRCA1 and BRCA2 mutation...... status, and provide robust likelihood ratio (LR) estimates for statistical modeling. METHODS: Selection criteria for study/center inclusion were estrogen receptor (ER) status or grade data available for invasive breast cancer diagnosed younger than 70 years. The dataset included 4,477 BRCA1 mutation...

  1. Common mutations in the fibroblast growth factor receptor 3 (FGFR 3) gene account for achondroplasia, hypochondroplasia, and thanatophoric dwarfism

    Energy Technology Data Exchange (ETDEWEB)

    Bonaventure, J.; Rousseau, F.; Legeai-Mallet, L.; LeMerrer, M.; Munnich, A.; Maroteaux, P. [INSERM, Paris (France)

    1996-05-03

    The mapping of the achondroplasia locus to the short arm of chromosome 4 and the subsequent identification of a recurrent missense mutation (G380R) in the fibroblast growth factor receptor 3 (FGFR-3) gene has been followed by the detection of common FGFR-3 mutations in two clinically related disorders: thanatophoric dwarfism (types I and II) and hypochondroplasia. The relative clinical homogeneity of achondroplasia was substantiated by demonstration of its genetic homogeneity as more than 98% of all patients hitherto reported exhibit mutations in the transmembrane receptor domain. Although most hypochondroplasia cases were accounted for by a recurrent missense substitution (N540K) in the first tyrosine kinase (TK 1) domain of the receptor, a significant proportion (40%) of our patients did not harbor the N540K mutation and three hypochondroplasia families were not linked to the FGFR-3 locus, thus supporting clinical heterogeneity of this condition. In thanatophoric dwarfism (TD), a recurrent FGFR-3 mutation located in the second tyrosine kinase (TK 2) domain of the receptor was originally detected in 100% of TD II cases; in our series, seven distinct mutations in three different protein domains were identified in 25 of 26 TD I patients, suggesting that TD, like achondroplasia, is a genetically homogenous skeletal disorder. 31 refs., 4 figs., 2 tabs.

  2. Epidermal growth factor receptor mutations in lung adenocarcinoma in Malaysian patients.

    Science.gov (United States)

    Liam, Chong-Kin; Wahid, Mohamed Ibrahim A; Rajadurai, Pathmanathan; Cheah, Yoke-Kqueen; Ng, Tiffany Shi-Yeen

    2013-06-01

    Despite available data from other Asian countries, the prevalence of epidermal growth factor receptor (EGFR) mutations among lung adenocarcinoma patients has not been reported in Malaysia. This study sought to determine the frequency of EGFR mutations among multiethnic Malaysian patients diagnosed with lung adenocarcinoma. Demographic and clinical information of patients whose lung adenocarcinoma biopsy specimens were submitted for EGFR mutation testing at Sime Darby Medical Center from 2009 to 2011 were analyzed. EGFR mutations at exons 18, 19, 20, and 21 were detected either through bidirectional sequencing or real-time polymerase chain reaction. Among 812 patients in the study, 49% were female, 63.7% were ethnic Chinese, 29.4% Malay, 4.8% Indian, and 2.1% other ethnic groups. Mutations were present in the tumors of 321 patients (39.5%), with mutations at exons 19 (23.5%) and 21 (14.9%) being the most common. Mutations were significantly more frequent among women than in men (52.5% versus 27.8%, p < 0.001). Although mutations were more common among Chinese (40.8%) compared with Malay (37.2%) or Indian (33.3%) patients, the difference was not statistically significant (p = 0.591). Of 211 patients with smoking history records, never-smokers had a higher mutation rate compared with ever-smokers (54.8% versus 20.7%, p < 0.001). EGFR mutations were present in 39.5% of patients. Mutations were more common in women and never-smokers with no differences in mutation frequency between different ethnicities. Because of the high mutation rates, reflex testing for EGFR mutation should be a routine practice for advanced lung adenocarcinoma patients in Malaysia.

  3. Wnt and Notch signaling pathway involved in wound healing by targeting c-Myc and Hes1 separately.

    Science.gov (United States)

    Shi, Yan; Shu, Bin; Yang, Ronghua; Xu, Yingbin; Xing, Bangrong; Liu, Jian; Chen, Lei; Qi, Shaohai; Liu, Xusheng; Wang, Peng; Tang, Jinming; Xie, Julin

    2015-06-16

    Wnt and Notch signaling pathways are critically involved in relative cell fate decisions within the development of cutaneous tissues. Moreover, several studies identified the above two pathways as having a significant role during wound healing. However, their biological effects during cutaneous tissues repair are unclear. We employed a self-controlled model (Sprague-Dawley rats with full-thickness skin wounds) to observe the action and effect of Wnt/β-catenin and Notch signalings in vivo. The quality of wound repair relevant to the gain/loss-of-function Wnt/β-catenin and Notch activation was estimated by hematoxylin-and-eosin and Masson staining. Immunofluorescence analysis and Western blot analysis were used to elucidate the underlying mechanism of the regulation of Wnt and Notch signaling pathways in wound healing. Meanwhile, epidermal stem cells (ESCs) were cultured in keratinocyte serum-free medium with Jaggedl or in DAPT (N-[(3,5-difluorophenyl)acetyl]-L-alanyl-2-phenyl]glycine-1,1-dimethylethyl) to investigate whether the interruption of Notch signaling contributes to the expression of Wnt/β-catenin signaling. The results showed that in vivo the gain-of-function Wnt/β-catenin and Notch activation extended the ability to promote wound closure. We further determined that activation or inhibition of Wnt signaling and Notch signaling can affect the proliferation of ESCs, the differentiation and migration of keratinocytes, and follicle regeneration by targeting c-Myc and Hes1, which ultimately lead to enhanced or delayed wound healing. Furthermore, Western blot analysis suggested that the two pathways might interact in vivo and in vitro. These results suggest that Wnt and Notch signalings play important roles in cutaneous repair by targeting c-Myc and Hes1 separately. What's more, interaction between the above two pathways might act as a vital role in regulation of wound healing.

  4. Evidence of non-canonical NOTCH signaling

    DEFF Research Database (Denmark)

    Traustadóttir, Gunnhildur Ásta; Jensen, Charlotte H; Thomassen, Mads

    2016-01-01

    Dlk1(+/+) and Dlk1(-/-) mouse tissues at E16.5, we demonstrated that several NOTCH signaling pathways indeed are affected by DLK1 during tissue development, and this was supported by a lower activation of NOTCH1 protein in Dlk1(+/+) embryos. Likewise, but using a distinct Dlk1-manipulated (si...

  5. Novel mutations in the SCNN1A gene causing Pseudohypoaldosteronism type 1.

    Directory of Open Access Journals (Sweden)

    Jian Wang

    Full Text Available Pseudohypoaldosteronism type 1 (PHA1 is a rare inherited disease characterized by resistance to the actions of aldosterone. Mutations in the subunit genes (SCNN1A, SCNN1B, SCNN1G of the epithelial sodium channel (ENaC and the NR3C2 gene encoding the mineralocorticoid receptor, result in systemic PHA1 and renal PHA1 respectively. Common clinical manifestations of PHA1 include salt wasting, hyperkalaemia, metabolic acidosis and elevated plasma aldosterone levels in the neonatal period. In this study, we describe the clinical and biochemical manifestations in two Chinese patients with systemic PHA1. Sequence analysis of the SCNN1A gene revealed a compound heterozygous mutation (c.1311delG and c.1439+1G>C in one patient and a homozygous mutation (c.814_815insG in another patient, all three variants are novel. Further analysis of the splicing pattern in a minigene construct showed that the c.1439+1G>C mutation can lead to the retainment of intron 9 as the 5'-donor splice site disappears during post-transcriptional processing of mRNA. In conclusion, our study identified three novel SCNN1A gene mutations in two Chinese patients with systemic PHA1.

  6. Effect of notch dimension on the fatigue life of V-notched structure

    International Nuclear Information System (INIS)

    Cheng Changzheng; Naman, Recho; Niu Zhongrong; Zhou Huanlin

    2011-01-01

    Highlights: → A novel method is proposed to calculate the SIFs of crack at notch tip. → Effect of notch opening angle on the crack extension and propagation is studied. → Influence of notch depth on the crack extension and propagation is analyzed. → The fatigue life of a welded joint is analyzed by the present method. - Abstract: The stress singularity degree associated to a V-notch has a great influence on the fatigue life of V-notched structure. The growth rate of the crack initiated at the tip of a V-notch depends on the stress singularity of the V-notch. The fatigue life accompanying with this small crack will represent a large amount of the total fatigue life. In this work, boundary element method (BEM) is used to study the propagation of the crack emanating from a V-notch tip under fatigue loading. A comparison of the fatigue life between the crack initiated from V-notch tip and a lateral crack is done by a crack propagation law until these two cracks have the same stress intensity factors (SIFs). The effect of initial crack length, notch opening angle and notch depth on the crack extension and propagation is analyzed. As an example of engineering application, the fatigue life of a welded joint is investigated by the present method. The influence of weld toe angle and initial crack length on the fatigue life of the welded structure is studied. Some suggestions are given as an attempt to improve the fatigue life of welded structures at the end.

  7. A CADASIL-Like Case with a Novel Noncysteine Mutation of the NOTCH3 Gene and Granular Deposits in the Renal Arterioles

    Directory of Open Access Journals (Sweden)

    Kuniyuki Nakamura

    2015-01-01

    Full Text Available We herein report the finding of a 62-year-old male, who developed dysarthria and dysphagia, with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy- (CADASIL- like cerebral lesions. He also suffered from slowly progressive renal failure with the findings of granular deposits similar to electron-dense granular osmiophilic material in the renal arterioles. We found a novel heterozygous missense mutation of the NOTCH3 gene, c.4039G>C in exon 24, resulting in a p.Gly1347Arg substitution in its extracellular domain. The noncysteine substitution may underlie the pathogenesis of white matter lesions in the brain and of the chronic renal failure in the present case.

  8. Muscarinic Acetylcholine Receptor M3 Mutation Causes Urinary Bladder Disease and a Prune-Belly-like Syndrome.

    Science.gov (United States)

    Weber, Stefanie; Thiele, Holger; Mir, Sevgi; Toliat, Mohammad Reza; Sozeri, Betül; Reutter, Heiko; Draaken, Markus; Ludwig, Michael; Altmüller, Janine; Frommolt, Peter; Stuart, Helen M; Ranjzad, Parisa; Hanley, Neil A; Jennings, Rachel; Newman, William G; Wilcox, Duncan T; Thiel, Uwe; Schlingmann, Karl Peter; Beetz, Rolf; Hoyer, Peter F; Konrad, Martin; Schaefer, Franz; Nürnberg, Peter; Woolf, Adrian S

    2011-11-11

    Urinary bladder malformations associated with bladder outlet obstruction are a frequent cause of progressive renal failure in children. We here describe a muscarinic acetylcholine receptor M3 (CHRM3) (1q41-q44) homozygous frameshift mutation in familial congenital bladder malformation associated with a prune-belly-like syndrome, defining an isolated gene defect underlying this sometimes devastating disease. CHRM3 encodes the M3 muscarinic acetylcholine receptor, which we show is present in developing renal epithelia and bladder muscle. These observations may imply that M3 has a role beyond its known contribution to detrusor contractions. This Mendelian disease caused by a muscarinic acetylcholine receptor mutation strikingly phenocopies Chrm3 null mutant mice. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. β-Elemene-Attenuated Tumor Angiogenesis by Targeting Notch-1 in Gastric Cancer Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Bing Yan

    2013-01-01

    Full Text Available Emerging evidence suggests that cancer stem cells are involved in tumor angiogenesis. The Notch signaling pathway is one of the most important regulators of these processes. β-Elemene, a naturally occurring compound extracted from Curcumae Radix, has been used as an antitumor drug for various cancers in China. However, its underlying mechanism in the treatment of gastric cancer remains largely unknown. Here, we report that CD44+ gastric cancer stem-like cells (GCSCs showed enhanced proliferation capacity compared to their CD44− counterparts, and this proliferation was accompanied by the high expression of Notch-1 (in vitro. These cells were also more superior in spheroid colony formation (in vitro and tumorigenicity (in vivo and positively associated with microvessel density (in vivo. β-Elemene was demonstrated to effectively inhibit the viability of GCSCs in a dose-dependent manner, most likely by suppressing Notch-1 (in vitro. β-Elemene also contributed to growth suppression and attenuated the angiogenesis capacity of these cells (in vivo most likely by interfering with the expression of Notch-1 but not with Dll4. Our findings indicated that GCSCs play an important role in tumor angiogenesis, and Notch-1 is one of the most likely mediators involved in these processes. β-Elemene was effective at attenuating angiogenesis by targeting the GCSCs, which could be regarded as a potential mechanism for its efficacy in gastric cancer management in the future.

  10. Activation of Notch1 inhibits medial edge epithelium apoptosis in all-trans retinoic acid-induced cleft palate in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yadong; Dong, Shiyi; Wang, Weicai; Wang, Jianning [Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055 (China); Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055 (China); Wang, Miao [Department of Oral and Maxillofacial Surgery, Kiang Wu Hospital, Macao (China); Chen, Mu [Department of Stomatology, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen (China); Hou, Jinsong [Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055 (China); Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055 (China); Huang, Hongzhang, E-mail: drhuang52@163.com [Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055 (China); Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055 (China)

    2016-08-26

    Administration of all-trans retinoic acid (atRA) on E12.0 (embryonic day 12.0) leads to failure of medial edge epithelium (MEE) disappearance and cleft palate. However, the molecular mechanism underlying the relationship between atRA and MEE remains to be identified. In this study, atRA (200 mg/kg) administered by gavage induced a 75% incidence of cleft palate in C57BL/6 mice. Notch1 was up-regulated in MEE cells in the atRA-treated group compared with the controls at E15.0, together with reduced apoptosis and elevated proliferation. Next, we investigated the mechanisms underlying atRA, Notch1 and MEE degradation in palate organ culture. Our results revealed that down-regulation of Notch1 partially rescued the inhibition of atRA-induced palate fusion. Molecular analysis indicated that atRA increased the expression of Notch1 and Rbpj and decreased the expression of P21. In addition, depletion of Notch1 expression decreased the expression of Rbpj and increased the expression of P21. Moreover, inhibition of Rbpj expression partially reversed atRA-induced MEE persistence and increased P21 expression. These findings demonstrate that atRA inhibits MEE degradation, which in turn induces a cleft palate, possibly through the Notch1/RBPjk/P21 signaling pathway. - Highlights: • atRA exposure on E12.0 induced MEE persistence and cleft palate. • Notch1 was up-regulated in MEE cells in the atRA-treated embryos. • atRA inhibits MEE degradation, which in turn induces cleft palate, possibly through the Notch1/RBPjk/P21 signaling pathway.

  11. Activation of Notch1 inhibits medial edge epithelium apoptosis in all-trans retinoic acid-induced cleft palate in mice

    International Nuclear Information System (INIS)

    Zhang, Yadong; Dong, Shiyi; Wang, Weicai; Wang, Jianning; Wang, Miao; Chen, Mu; Hou, Jinsong; Huang, Hongzhang

    2016-01-01

    Administration of all-trans retinoic acid (atRA) on E12.0 (embryonic day 12.0) leads to failure of medial edge epithelium (MEE) disappearance and cleft palate. However, the molecular mechanism underlying the relationship between atRA and MEE remains to be identified. In this study, atRA (200 mg/kg) administered by gavage induced a 75% incidence of cleft palate in C57BL/6 mice. Notch1 was up-regulated in MEE cells in the atRA-treated group compared with the controls at E15.0, together with reduced apoptosis and elevated proliferation. Next, we investigated the mechanisms underlying atRA, Notch1 and MEE degradation in palate organ culture. Our results revealed that down-regulation of Notch1 partially rescued the inhibition of atRA-induced palate fusion. Molecular analysis indicated that atRA increased the expression of Notch1 and Rbpj and decreased the expression of P21. In addition, depletion of Notch1 expression decreased the expression of Rbpj and increased the expression of P21. Moreover, inhibition of Rbpj expression partially reversed atRA-induced MEE persistence and increased P21 expression. These findings demonstrate that atRA inhibits MEE degradation, which in turn induces a cleft palate, possibly through the Notch1/RBPjk/P21 signaling pathway. - Highlights: • atRA exposure on E12.0 induced MEE persistence and cleft palate. • Notch1 was up-regulated in MEE cells in the atRA-treated embryos. • atRA inhibits MEE degradation, which in turn induces cleft palate, possibly through the Notch1/RBPjk/P21 signaling pathway.

  12. lin-12 Notch functions in the adult nervous system of C. elegans

    Directory of Open Access Journals (Sweden)

    Tucey Tim M

    2005-07-01

    Full Text Available Abstract Background Notch signaling pathways are conserved across species and traditionally have been implicated in cell fate determination during embryonic development. Notch signaling components are also expressed postdevelopmentally in the brains of adult mice and Drosophila. Recent studies suggest that Notch signaling may play a role in the physiological, rather than developmental, regulation of neurons. Here, we investigate a new non-developmental role for Caenorhabditis elegans lin-12 Notch signaling in neurons regulating the spontaneous reversal rate during locomotion. Results The spontaneous reversal rate of C. elegans during normal locomotion is constant. Both lin-12 gain and loss of function mutant animals had significantly increased reversal rates compared to wild type controls. These defects were caused by lin-12 activity, because the loss of function defect could be rescued by a wild type lin-12 transgene. Furthermore, overexpression of lin-12 recapitulated the gain-of-function defect. Increasing or decreasing lin-12 activity in the postdevelopmental adult animal was sufficient to rapidly and reversibly increase reversals, thereby excluding a developmental role for lin-12. Although lin-12 is expressed in the vulval and somatic gonad lineages, we find that these tissues play no role in regulating reversal rates. In contrast, altering lin-12 activity specifically in the nervous system was sufficient to increase reversals. These behavioral changes require components of the canonical lin-12 signaling cascade, including the ligand lag-2 and the transcriptional effector lag-1. Finally, the C. elegans AMPA/kainate glutamate receptor homolog glr-1 shows strong genetic interactions with lin-12, suggesting that glr-1 and/or other glutamate gated channels may be targets of lin-12 regulation. Conclusion Our results demonstrate a neuronal role for lin-12 Notch in C. elegans and suggest that lin-12 acutely regulates neuronal physiology to

  13. Notch signal reception is required in vascular smooth muscle cells for ductus arteriosus closure

    Science.gov (United States)

    Krebs, Luke T.; Norton, Christine R.; Gridley, Thomas

    2017-01-01

    Summary The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus, and is one of the most common congenital heart defects. Our previous work demonstrated that vascular smooth muscle cell expression of the Jag1 gene, which encodes a ligand for Notch family receptors, is essential for postnatal closure of the ductus arteriosus in mice. However, it was not known what cell population was responsible for receiving the Jag1-mediated signal. Here we show, using smooth muscle cell-specific deletion of the Rbpj gene, which encodes a transcription factor that mediates all canonical Notch signaling, that Notch signal reception in the vascular smooth muscle cell compartment is required for ductus arteriosus closure. These data indicate that homotypic vascular smooth muscle cell interactions are required for proper contractile smooth muscle cell differentiation and postnatal closure of the ductus arteriosus in mice. PMID:26742650

  14. Chronic Lymphocytic Leukemia with Mutated IGHV4-34 Receptors

    DEFF Research Database (Denmark)

    Xochelli, Aliki; Baliakas, Panagiotis; Kavakiotis, Ioannis

    2017-01-01

    Purpose: We sought to investigate whether B cell receptor immunoglobulin (BcR IG) stereotypy is associated with particular clinicobiological features among chronic lymphocytic leukemia (CLL) patients expressing mutated BcR IG (M-CLL) encoded by the IGHV4-34 gene, and also ascertain whether...

  15. Mutational landscape of MCPyV-positive and MCPyV-negative Merkel cell carcinomas with implications for immunotherapy.

    Science.gov (United States)

    Goh, Gerald; Walradt, Trent; Markarov, Vladimir; Blom, Astrid; Riaz, Nadeem; Doumani, Ryan; Stafstrom, Krista; Moshiri, Ata; Yelistratova, Lola; Levinsohn, Jonathan; Chan, Timothy A; Nghiem, Paul; Lifton, Richard P; Choi, Jaehyuk

    2016-01-19

    Merkel cell carcinoma (MCC) is a rare but highly aggressive cutaneous neuroendocrine carcinoma, associated with the Merkel cell polyomavirus (MCPyV) in 80% of cases. To define the genetic basis of MCCs, we performed exome sequencing of 49 MCCs. We show that MCPyV-negative MCCs have a high mutation burden (median of 1121 somatic single nucleotide variants (SSNVs) per-exome with frequent mutations in RB1 and TP53 and additional damaging mutations in genes in the chromatin modification (ASXL1, MLL2, and MLL3), JNK (MAP3K1 and TRAF7), and DNA-damage pathways (ATM, MSH2, and BRCA1). In contrast, MCPyV-positive MCCs harbor few SSNVs (median of 12.5 SSNVs/tumor) with none in the genes listed above. In both subgroups, there are rare cancer-promoting mutations predicted to activate the PI3K pathway (HRAS, KRAS, PIK3CA, PTEN, and TSC1) and to inactivate the Notch pathway (Notch1 and Notch2). TP53 mutations appear to be clinically relevant in virus-negative MCCs as 37% of these tumors harbor potentially targetable gain-of-function mutations in TP53 at p.R248 and p.P278. Moreover, TP53 mutational status predicts death in early stage MCC (5-year survival in TP53 mutant vs wild-type stage I and II MCCs is 20% vs. 92%, respectively; P = 0.0036). Lastly, we identified the tumor neoantigens in MCPyV-negative and MCPyV-positive MCCs. We found that virus-negative MCCs harbor more tumor neoantigens than melanomas or non-small cell lung cancers (median of 173, 65, and 111 neoantigens/sample, respectively), two cancers for which immune checkpoint blockade can produce durable clinical responses. Collectively, these data support the use of immunotherapies for virus-negative MCCs.

  16. Sigma-1 receptor agonists directly inhibit Nav1.2/1.4 channels.

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Gao

    Full Text Available (+-SKF 10047 (N-allyl-normetazocine is a prototypic and specific sigma-1 receptor agonist that has been used extensively to study the function of sigma-1 receptors. (+-SKF 10047 inhibits K(+, Na(+ and Ca2+ channels via sigma-1 receptor activation. We found that (+-SKF 10047 inhibited Na(V1.2 and Na(V1.4 channels independently of sigma-1 receptor activation. (+-SKF 10047 equally inhibited Na(V1.2/1.4 channel currents in HEK293T cells with abundant sigma-1 receptor expression and in COS-7 cells, which barely express sigma-1 receptors. The sigma-1 receptor antagonists BD 1063,BD 1047 and NE-100 did not block the inhibitory effects of (+-SKF-10047. Blocking of the PKA, PKC and G-protein pathways did not affect (+-SKF 10047 inhibition of Na(V1.2 channel currents. The sigma-1 receptor agonists Dextromethorphan (DM and 1,3-di-o-tolyl-guanidine (DTG also inhibited Na(V1.2 currents through a sigma-1 receptor-independent pathway. The (+-SKF 10047 inhibition of Na(V1.2 currents was use- and frequency-dependent. Point mutations demonstrated the importance of Phe(1764 and Tyr(1771 in the IV-segment 6 domain of the Na(V1.2 channel and Phe(1579 in the Na(V1.4 channel for (+-SKF 10047 inhibition. In conclusion, our results suggest that sigma-1 receptor agonists directly inhibit Na(V1.2/1.4 channels and that these interactions should be given special attention for future sigma-1 receptor function studies.

  17. The origin of the p.E180 growth hormone receptor gene mutation.

    Science.gov (United States)

    Ostrer, Harry

    2016-06-01

    Laron syndrome, an autosomal recessive condition of extreme short stature, is caused by the absence or dysfunction of the growth hormone receptor. A recurrent mutation in the GHR gene, p.E180, did not alter the encoded amino acid, but activated a cryptic splice acceptor resulting in a receptor protein with an 8-amino acid deletion in the extracellular domain. This mutation has been observed among Sephardic Jews and among individuals in Ecuador, Brazil and Chile, most notably in a large genetic isolate in Loja, Ecuador. A common origin has been postulated based on a shared genetic background of markers flanking this mutation, suggesting that the Lojanos (and others) may have Sephardic (Converso) Jewish ancestry. Analysis of the population structure of Lojanos based on genome-wide analysis demonstrated European, Sephardic Jewish and Native American ancestry in this group. X-autosomal comparison and monoallelic Y chromosomal and mitochondrial genetic analysis demonstrated gender-biased admixture between Native American women and European and Sephardic Jewish men. These findings are compatible with the co-occurrence of the Inquisition and the colonization of the Americas, including Converso Jews escaping the Inquisition in the Iberian Peninsula. Although not found among Lojanos, Converso Jews also brought founder mutations to contemporary Hispanic and Latino populations in the BRCA1 (c.68_69delAG) and BLM (c.2207_2212delATCTGAinsTAGATTC) genes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. AMP Is an Adenosine A1 Receptor Agonist*

    Science.gov (United States)

    Rittiner, Joseph E.; Korboukh, Ilia; Hull-Ryde, Emily A.; Jin, Jian; Janzen, William P.; Frye, Stephen V.; Zylka, Mark J.

    2012-01-01

    Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5′-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5′-monophosphonate, ACP) directly activated the adenosine A1 receptor (A1R). In contrast, AMP only activated the adenosine A2B receptor (A2BR) after hydrolysis to adenosine by ecto-5′-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A1R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A1R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A1R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A1R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine. PMID:22215671

  19. Modulation of basal cell fate during productive and transforming HPV-16 infection is mediated by progressive E6-driven depletion of Notch.

    Science.gov (United States)

    Kranjec, Christian; Holleywood, Christina; Libert, Diane; Griffin, Heather; Mahmood, Radma; Isaacson, Erin; Doorbar, John

    2017-08-01

    In stratified epithelia such as the epidermis, homeostasis is maintained by the proliferation of cells in the lower epithelial layers and the concomitant loss of differentiated cells from the epithelial surface. These differentiating keratinocytes progressively stratify and form a self-regenerating multi-layered barrier that protects the underlying dermis. In such tissue, the continual loss and replacement of differentiated cells also limits the accumulation of oncogenic mutations within the tissue. Inactivating mutations in key driver genes, such as TP53 and NOTCH1, reduce the proportion of differentiating cells allowing for the long-term persistence of expanding mutant clones in the tissue. Here we show that through the expression of E6, HPV-16 prevents the early fate commitment of human keratinocytes towards differentiation and confers a strong growth advantage to human keratinocytes. When E6 is expressed either alone or with E7, it promotes keratinocyte proliferation at high cell densities, through the combined inactivation of p53 and Notch1. In organotypic raft culture, the activity of E6 is restricted to the basal layer of the epithelium and is enhanced during the progression from productive to abortive or transforming HPV-16 infection. Consistent with this, the expression of p53 and cleaved Notch1 becomes progressively more disrupted, and is associated with increased basal cell density and reduced commitment to differentiation. The expression of cleaved Notch1 is similarly disrupted also in HPV-16-positive cervical lesions, depending on neoplastic grade. When taken together, these data depict an important role of high-risk E6 in promoting the persistence of infected keratinocytes in the basal and parabasal layers through the inactivation of gene products that are commonly mutated in non-HPV-associated neoplastic squamous epithelia. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great

  20. Mutational analysis of the promoter and the coding region of the 5-HT1A gene

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, J.; Noethen, M.M.; Shimron-Abarbanell, D. [Univ. of Bonn (Germany)] [and others

    1994-09-01

    Disturbances of serotonergic pathways have been implicated in many neuropsychiatric disorders. Serotonin (5HT) receptors can be subdivided into at least three major families (5HT1, 5HT2, and 5HT3). Five human 5HT1 receptor subtypes have been cloned, namely 1A, 1D{alpha}, 1D{beta}, 1E, and 1F. Of these, the 5HT1A receptor is the best characterized subtype. In the present study we sought to identify genetic variation in the 5HT1A receptor gene which through alteration of protein function or level of expression might contribute to the genetics of neuropsychiatric diseases. The coding region and the 5{prime} promoter region of the 5HT1A gene from 159 unrelated subjects (45 schizophrenic, 46 bipolar affective, and 43 patients with Tourette`s syndrome, as well as 25 controls) were analyzed using SSCA. SSCA revealed the presence of two mutations both located in the coding region of the 5HT1A receptor gene. The first mutation is a rare silent C{r_arrow}T substitution at nucleotide position 549. The second mutation is characterized by a base pair substitution (A{r_arrow}G) at the first position of codon 28 and results in an amino acid exchange (Ile{r_arrow}Val). Since Val28 was found only in a single schizophrenic patient and in none of the other patients or controls, we decided to extend our samples and to use a restriction assay for screening a further 74 schizophrenic, 95 bipolar affective, and 49 patients with Tourette`s syndrome, as well as 185 controls, for the presence of the mutation. In total, the mutation was found in 2 schizophrenic patients, in 3 bipolars, in 1 Tourette patient, and in 5 controls. To our knowledge the Ile-28-Val substitution reported here is the first natural occuring molecular variant which has been identified for a serotonin receptor so far.

  1. Deletion of Notch1 converts pro-T cells to dendritic cells and promotes thymic B cells by cell-extrinsic and cell-intrinsic mechanisms.

    Science.gov (United States)

    Feyerabend, Thorsten B; Terszowski, Grzegorz; Tietz, Annette; Blum, Carmen; Luche, Hervé; Gossler, Achim; Gale, Nicholas W; Radtke, Freddy; Fehling, Hans Jörg; Rodewald, Hans-Reimer

    2009-01-16

    Notch1 signaling is required for T cell development and has been implicated in fate decisions in the thymus. We showed that Notch1 deletion in progenitor T cells (pro-T cells) revealed their latent developmental potential toward becoming conventional and plasmacytoid dendritic cells. In addition, Notch1 deletion in pro-T cells resulted in large numbers of thymic B cells, previously explained by T-to-B cell fate conversion. Single-cell genotyping showed, however, that the majority of these thymic B cells arose from Notch1-sufficient cells by a cell-extrinsic pathway. Fate switching nevertheless exists for a subset of thymic B cells originating from Notch1-deleted pro-T cells. Chimeric mice lacking the Notch ligand delta-like 4 (Dll4) in thymus epithelium revealed an essential role for Dll4 in T cell development. Thus, Notch1-Dll4 signaling fortifies T cell commitment by suppressing non-T cell lineage potential in pro-T cells, and normal Notch1-driven T cell development repels excessive B cells in the thymus.

  2. Advanced glycation end product-induced astrocytic differentiation of cultured neurospheres through inhibition of Notch-Hes1 pathway-mediated neurogenesis.

    Science.gov (United States)

    Guo, Yijing; Wang, Pin; Sun, Haixia; Cai, Rongrong; Xia, Wenqing; Wang, Shaohua

    2013-12-23

    This study aims to investigate the roles of the Notch-Hes1 pathway in the advanced glycation end product (AGE)-mediated differentiation of neural stem cells (NSCs). We prepared pLentiLox3.7 lentiviral vectors that express short hairpin RNA (shRNA) against Notch1 and transfected it into NSCs. Cell differentiation was analyzed under confocal laser-scanning microscopy. The percentage of neurons and astrocytes was quantified by normalizing the total number of TUJ1+ (Neuron-specific class III β-tubulin) and GFAP+ (Glial fibrillary acidic protein) cells to the total number of Hoechst 33342-labeled cell nuclei. The protein and gene expression of Notch-Hes1 pathway components was examined via western blot analysis and real-time PCR. After 1 week of incubation, we found that AGE-bovine serum albumin (BSA) (400 μg/mL) induced the astrocytic differentiation of cultured neurospheres and inhibited neuronal formation. The expression of Notch-Hes1 pathway components was upregulated in the cells in the AGE-BSA culture medium. Immunoblot analysis indicated that shRNA silencing of Notch1 expression in NSCs significantly increases neurogenesis and suppresses astrocytic differentiation in NSCs incubated with AGE-BSA. AGEs promote the astrocytic differentiation of cultured neurospheres by inhibiting neurogenesis through the Notch-Hes1 pathway, providing a potential therapeutic target for hyperglycemia-related cognitive deficits.

  3. Toll-like receptors and cancer: MYD88 mutation and inflammation

    Directory of Open Access Journals (Sweden)

    James Q Wang

    2014-07-01

    Full Text Available Pattern recognition receptors (PRRs expressed on immune cells are crucial for the early detection of invading pathogens, in initiating early innate immune response and in orchestrating the adaptive immune response. PRRs are activated by specific pathogen-associated molecular patterns (PAMPs that are present in pathogenic microbes or nucleic acids of viruses or bacteria. However, inappropriate activation of these PRRs, such as the Toll-like receptors (TLRs, due to genetic lesions or chronic inflammation has been demonstrated to be a major cause of many haematological malignancies. Gain-of-function mutations in the TLR adaptor protein MYD88 found in 39% of the activated B cell type of diffuse large B cell lymphomas (ABC-DLBCL and almost 100% of Waldenström’s macroglobulinemia (WM further highlight the involvement of TLRs in these malignancies. MYD88 mutations result in the chronic activation of TLR signalling pathways, thus the constitutive activation of the transcription factor NFκB to promote cell survival and proliferation. These recent insights into TLR pathway driven malignancies warrant the need for a better understanding of TLRs in cancers and the development of novel anti-cancer therapies targeting TLRs. This review focuses on Toll-like receptors function and signalling in normal or inflammatory conditions, and how mutations can also hijack the TLR signalling pathways to give rise to cancer. Lastly, we discuss how potential therapeutic agents could be used to restore normal responses to TLRs and have long lasting anti-tumour effects.

  4. Epidermal Growth Factor Receptor Activating Mutations in Squamous Histology of Lung Cancer Patients of Southern Bulgaria

    Directory of Open Access Journals (Sweden)

    Genova Silvia N.

    2015-12-01

    Full Text Available There is only limited data on the prevalence of epidermal growth factor receptor (EGFR activating mutations in squamous cell carcinomas and adenosquamous carcinomas of the lung in patients of the Southern Bulgarian region and the efficacy of EGFR tyrosine kinase inhibitors. AIM: Previous reports for Bulgarian population showed high incidence of EGFR mutations in the squamous cell carcinomas, so we set the goal to investigate their frequency in Southern Bulgaria, after precise immunohistochemical verification of lung cancers. MATERIALS AND METHODS: Two hundred and thirty-six lung carcinomas were included in this prospective study. All biopsies were initially analysed with p63, TTF1, Napsin A, CK7, CK34βE12, synaptophysin, CK20 and CDX2. Two hundred and twenty-five non-small cell lung carcinomas were studied with real-time PCR technology to assess the status of the EGFR gene. RESULTS: We detected 132 adenocarcinomas (58.7%, 89 squamous cell carcinomas (39.2%, 4 adenosquamous carcinomas (1.8%, 9 large cell neuroendocrine carcinomas (3.8% and 2 metastatic colorectal adenocarcinomas (0.8%. Activating mutations in the EGF receptor had 3 out of 89 squamous cell carcinomas (3.37%. We have established mutations in L858R, deletion in exon 19 and rare mutation in S7681. One out of four adenosquamous carcinomas had a point mutation in the L858R (25%. CONCLUSIONS: The frequency of EGFR mutations we found in lung squamous cell carcinomas in a Southern Bulgarian region is lower than that in European countries. Ethnic diversity in the region does not play role of an independent predictive factor in terms of mutation frequency.

  5. Reciprocal upregulation of Notch signaling molecules in hematopoietic progenitor and mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Kikuchi Y

    2011-01-01

    Full Text Available Although mesenchymal stem cells (MSCs play pivotal supportive roles in hematopoiesis, how they interact with hematopoietic stem cells (HSCs is not well understood. We investigated the interaction between HSCs and surrogate MSCs (C3H10T1/2 stromal cells, focusing on the molecular events induced by cell contact of these bipartite populations. C3H10T1/2 is a mesenchymal stromal cell line that can be induced to differentiate into preadipocytes (A54 and myoblasts (M1601. The stromal cell derivatives were cocultured with murine HSCs (Lineage-Sca1+, and gene expression profiles in stromal cells and HSCs were compared before and after the coculture. HSCs gave rise to cobblestone areas only on A54 cells, with ninefold more progenitors than on M1601 or undifferentiated C3H10T1/2 cells. Microarray-based screening and a quantitative reverse transcriptase directed-polymerase chain reaction showed that the levels of Notch ligands (Jagged1 and Delta-like 3 were increased in A54 cells upon interaction with HSCs. On the other hand, the expression of Notch1 and Hes1 was upregulated in the HSCs cocultured with A54 cells. A transwell assay revealed that the reciprocal upregulation was dependent on cell-to-cell contact. The result suggested that in the hematopoietic niche, HSCs help MSCs to produce Notch ligands, and in turn, MSCs help HSCs to express Notch receptor. Such a reciprocal upregulation would reinforce the downstream signaling to determine the fate of hematopoietic cell lineage. Clarification of the initiating events on cell contact should lead to the identification of specific molecular targets to facilitate HSC engraftment in transplantation therapy.

  6. Impact of mutations in Toll-like receptor pathway genes on esophageal carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Daffolyn Rachael Fels Elliott

    2017-05-01

    Full Text Available Esophageal adenocarcinoma (EAC develops in an inflammatory microenvironment with reduced microbial diversity, but mechanisms for these influences remain poorly characterized. We hypothesized that mutations targeting the Toll-like receptor (TLR pathway could disrupt innate immune signaling and promote a microenvironment that favors tumorigenesis. Through interrogating whole genome sequencing data from 171 EAC patients, we showed that non-synonymous mutations collectively affect the TLR pathway in 25/171 (14.6%, PathScan p = 8.7x10-5 tumors. TLR mutant cases were associated with more proximal tumors and metastatic disease, indicating possible clinical significance of these mutations. Only rare mutations were identified in adjacent Barrett's esophagus samples. We validated our findings in an external EAC dataset with non-synonymous TLR pathway mutations in 33/149 (22.1%, PathScan p = 0.05 tumors, and in other solid tumor types exposed to microbiomes in the COSMIC database (10,318 samples, including uterine endometrioid carcinoma (188/320, 58.8%, cutaneous melanoma (377/988, 38.2%, colorectal adenocarcinoma (402/1519, 26.5%, and stomach adenocarcinoma (151/579, 26.1%. TLR4 was the most frequently mutated gene with eleven mutations in 10/171 (5.8% of EAC tumors. The TLR4 mutants E439G, S570I, F703C and R787H were confirmed to have impaired reactivity to bacterial lipopolysaccharide with marked reductions in signaling by luciferase reporter assays. Overall, our findings show that TLR pathway genes are recurrently mutated in EAC, and TLR4 mutations have decreased responsiveness to bacterial lipopolysaccharide and may play a role in disease pathogenesis in a subset of patients.

  7. Progesterone receptor membrane component-1 (PGRMC1) is the mediator of progesterone's antiapoptotic action in spontaneously immortalized granulosa cells as revealed by PGRMC1 small interfering ribonucleic acid treatment and functional analysis of PGRMC1 mutations.

    Science.gov (United States)

    Peluso, John J; Romak, Jonathan; Liu, Xiufang

    2008-02-01

    Progesterone (P4) receptor membrane component-1 (PGRMC1) and its binding partner, plasminogen activator inhibitor 1 RNA binding protein (PAIRBP1) are thought to form a complex that functions as membrane receptor for P4. The present investigations confirm PGRMC1's role in this membrane receptor complex by demonstrating that depleting PGMRC1 with PGRMC1 small interfering RNA results in a 60% decline in [(3)H]P4 binding and the loss of P4's antiapoptotic action. Studies conducted on partially purified GFP-PGRMC1 fusion protein indicate that [(3)H]P4 specifically binds to PGRMC1 at a single site with an apparent K(d) of about 35 nm. In addition, experiments using various deletion mutations reveal that the entire PGRMC1 molecule is required for maximal [(3)H]P4 binding and P4 responsiveness. Analysis of the binding data also suggests that the P4 binding site is within a segment of PGRMC1 that is composed of the transmembrane domain and the initial segment of the C terminus. Interestingly, PAIRBP1 appears to bind to the C terminus between amino acids 70-130, which is distal to the putative P4 binding site. Taken together, these data provide compelling evidence that PGRMC1 is the P4 binding protein that mediates P4's antiapoptotic action. Moreover, the deletion mutation studies indicate that each domain of PGRMC1 plays an essential role in modulating PGRMC1's capacity to both bind and respond to P4. Additional studies are required to more precisely delineate the role of each PGRMC1 domain in transducing P4's antiapoptotic action.

  8. Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Yoshiko; Tokuhara, Daisuke [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States); Division of Mucosal Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639 (Japan); Sekine, Shinichi [Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Osaka 565-0871 (Japan); Kataoka, Kosuke [Department of Preventive Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Markham, Jonathan D.; Irwin, Allyson R.; Moon, Grace H.; Tokuhara, Yuka; Fujihashi, Keiko [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States); Davydova, Julia; Yamamoto, Masato [Department of Surgery, University of Minnesota, Minneapolis, MN 55455 (United States); Gilbert, Rebekah S. [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States); Fujihashi, Kohtaro, E-mail: kohtarof@uab.edu [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Nasal Ad-FL effectively up-regulates APC function by CD11c{sup +} DCs in mucosal tissues. Black-Right-Pointing-Pointer Nasal Ad-FL induces Notch ligand (L)-expressing CD11c{sup +} DCs. Black-Right-Pointing-Pointer Notch L-expressing DCs support the induction of Th1- and Th2-type cytokine responses. -- Abstract: Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c{sup +} dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c{sup +} DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c{sup +} DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c{sup +} DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4{sup +} T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-{gamma}, IL-2 and IL-4 producing CD4{sup +} T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c{sup +} DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.

  9. Role of Notch-1 signaling in ethanol induced PC12 apoptosis

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-04-17

    Apr 17, 2012 ... Key words: Neuronal PC12 cell, neurodegenerative disease, ethanol, Notch-1. INTRODUCTION. Neurodegenerative disorders (ND) such as Alzheimer's disease (AD) and Parkinson's disease (PD) are pro- gressive, age-dependent neurodegenerative disorder affecting the cortex and hippocampus, and ...

  10. Mediator 1 contributes to enamel mineralization as a coactivator for Notch1 signaling and stimulates transcription of the alkaline phosphatase gene.

    Science.gov (United States)

    Yoshizaki, Keigo; Hu, Lizhi; Nguyen, Thai; Sakai, Kiyoshi; Ishikawa, Masaki; Takahashi, Ichiro; Fukumoto, Satoshi; DenBesten, Pamela K; Bikle, Daniel D; Oda, Yuko; Yamada, Yoshihiko

    2017-08-18

    Tooth enamel is mineralized through the differentiation of multiple dental epithelia including ameloblasts and the stratum intermedium (SI), and this differentiation is controlled by several signaling pathways. Previously, we demonstrated that the transcriptional coactivator Mediator 1 (MED1) plays a critical role in enamel formation. For instance, conditional ablation of Med1 in dental epithelia causes functional changes in incisor-specific dental epithelial stem cells, resulting in mineralization defects in the adult incisors. However, the molecular mechanism by which Med1 deficiency causes these abnormalities is not clear. Here, we demonstrated that Med1 ablation causes early SI differentiation defects resulting in enamel hypoplasia of the Med1 -deficient molars. Med1 deletion prevented Notch1-mediated differentiation of the SI cells resulting in decreased alkaline phosphatase (ALPL), which is essential for mineralization. However, it does not affect the ability of ameloblasts to produce enamel matrix proteins. Using the dental epithelial SF2 cell line, we demonstrated that MED1 directly activates transcription of the Alpl gene through the stimulation of Notch1 signaling by forming a complex with cleaved Notch1-RBP-Jk on the Alpl promoter. These results suggest that MED1 may be essential for enamel matrix mineralization by serving as a coactivator for Notch1 signaling regulating transcription of the Alpl gene.

  11. Pancreatic α-cell hyperplasia and hyperglucagonemia due to a glucagon receptor splice mutation

    Directory of Open Access Journals (Sweden)

    Etienne Larger

    2016-11-01

    Full Text Available Glucagon stimulates hepatic glucose production by activating specific glucagon receptors in the liver, which in turn increase hepatic glycogenolysis as well as gluconeogenesis and ureagenesis from amino acids. Conversely, glucagon secretion is regulated by concentrations of glucose and amino acids. Disruption of glucagon signaling in rodents results in grossly elevated circulating glucagon levels but no hypoglycemia. Here, we describe a patient carrying a homozygous G to A substitution in the invariant AG dinucleotide found in a 3′ mRNA splice junction of the glucagon receptor gene. Loss of the splice site acceptor consensus sequence results in the deletion of 70 nucleotides encoded by exon 9, which introduces a frame shift and an early termination signal in the receptor mRNA sequence. The mutated receptor neither bound 125I-labeled glucagon nor induced cAMP production upon stimulation with up to 1 μM glucagon. Despite the mutation, the only obvious pathophysiological trait was hyperglucagonemia, hyperaminoacidemia and massive hyperplasia of the pancreatic α-cells assessed by histology. Our case supports the notion of a hepato–pancreatic feedback system, which upon disruption leads to hyperglucagonemia and α-cell hyperplasia, as well as elevated plasma amino acid levels. Together with the glucagon-induced hypoaminoacidemia in glucagonoma patients, our case supports recent suggestions that amino acids may provide the feedback link between the liver and the pancreatic α-cells.

  12. 1×4 Optical packet switching of variable length 640 Gbit/s data packets using in-band optical notch-filter labeling

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Kamchevska, Valerija; Galili, Michael

    2014-01-01

    We experimentally perform 1×4 optical packet switching of variable length 640 Gbit/s OTDM data packets using in-band notch-filter labeling with only 2.7-dB penalty. Up to 8 notches are employed to demonstrate scalability of the labeling scheme to 1×256 switching operation.......We experimentally perform 1×4 optical packet switching of variable length 640 Gbit/s OTDM data packets using in-band notch-filter labeling with only 2.7-dB penalty. Up to 8 notches are employed to demonstrate scalability of the labeling scheme to 1×256 switching operation....

  13. Notch3 is dispensable for thymocyte β-selection and Notch1-induced T cell leukemogenesis.

    Directory of Open Access Journals (Sweden)

    Sara Suliman

    Full Text Available Notch1 (N1 signaling induced by intrathymic Delta-like (DL ligands is required for T cell lineage commitment as well as self-renewal during "β-selection" of TCRβ⁺CD4⁻CD8⁻ double negative 3 (DN3 T cell progenitors. However, over-expression of the N1 intracellular domain (ICN1 renders N1 activation ligand-independent and drives leukemic transformation during β-selection. DN3 progenitors also express Notch3 (N3 mRNA, and over-expression of ligand-independent mutant N3 (ICN3 influences β-selection and drives T cell leukemogenesis. However, the importance of ligand-activated N3 in promoting β-selection and ICN1-induced T cell leukemogenesis has not been examined. To address these questions we generated mice lacking functional N3. We confirmed that DN3 progenitors express N3 protein using a N3-specific antibody. Surprisingly however, N3-deficient DN3 thymocytes were not defective in generating DP thymocytes under steady state conditions or in more stringent competition assays. To determine if N3 co-operates with N1 to regulate β-selection, we generated N1;N3 compound mutants. However, N3 deficiency did not exacerbate the competitive defect of N1⁺/⁻ DN3 progenitors, demonstrating that N3 does not compensate for limiting N1 during T cell development. Finally, N3 deficiency did not attenuate T cell leukemogenesis induced by conditional expression of ICN1 in DN3 thymocytes. Importantly, we showed that in contrast to N1, N3 has a low binding affinity for DL4, the most abundant intrathymic DL ligand. Thus, despite the profound effects of ectopic ligand-independent N3 activation on T cell development and leukemogenesis, physiologically activated N3 is dispensable for both processes, likely because N3 interacts poorly with intrathymic DL4.

  14. Notch1 Signaling Regulates the Th17/Treg Immune Imbalance in Patients with Psoriasis Vulgaris.

    Science.gov (United States)

    Ma, Lei; Xue, HaiBo; Gao, Tianqin; Gao, MeiLan; Zhang, YuJie

    2018-01-01

    To evaluate the regulating effect of Notch1 signaling on Th17/Treg immune imbalance in psoriasis vulgaris (PV). Notch1, Hes-1, ROR γ t, Foxp3, IL-17, and IL-10 mRNA expression, as well as Th17 and Treg cell percentages in peripheral CD4 + T cells, were detected by real-time quantitative RT-PCR and flow cytometry, and serum concentrations of IL-17 and IL-10 were detected by ELISA in 36 PV patients and 32 healthy controls. Additionally, CD4 + T cells from 12 PV patients were treated with γ -secretase inhibitor DAPT, and the above indexes were measured. PV patients presented distinct Th17/Treg immune imbalance and highly expressed Notch1 and Hes-1 mRNA levels, which were positively correlated with psoriasis area and severity index (PASI) and the ratios of Th17/Treg and ROR γ t/Foxp3. DAPT treatment resulted in the obvious downregulation of Th17 cell percentage in cocultured CD4 + T cells, ROR γ t and IL-17 mRNA levels, and IL-17 concentration in cell-free supernatant from cocultured CD4 + T cells of PV patients in a dose-dependent manner, while there was no significant influence on Treg cell percentage, Foxp3, and IL-10 expression, therefore leading to the recovery of Th17/Treg immune imbalance. Notch1 signaling may contribute to the pathogenesis of PV by regulating Th17/Treg immune imbalance.

  15. Hyper-activation of Notch3 amplifies the proliferative potential of rhabdomyosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Maria De Salvo

    Full Text Available Rhabdomyosarcoma (RMS is a pediatric myogenic-derived soft tissue sarcoma that includes two major histopathological subtypes: embryonal and alveolar. The majority of alveolar RMS expresses PAX3-FOXO1 fusion oncoprotein, associated with the worst prognosis. RMS cells show myogenic markers expression but are unable to terminally differentiate. The Notch signaling pathway is a master player during myogenesis, with Notch1 activation sustaining myoblast expansion and Notch3 activation inhibiting myoblast fusion and differentiation. Accordingly, Notch1 signaling is up-regulated and activated in embryonal RMS samples and supports the proliferation of tumor cells. However, it is unable to control their differentiation properties. We previously reported that Notch3 is activated in RMS cell lines, of both alveolar and embryonal subtype, and acts by inhibiting differentiation. Moreover, Notch3 depletion reduces PAX3-FOXO1 alveolar RMS tumor growth in vivo. However, whether Notch3 activation also sustains the proliferation of RMS cells remained unclear. To address this question, we forced the expression of the activated form of Notch3, Notch3IC, in the RH30 and RH41 PAX3-FOXO1-positive alveolar and in the RD embryonal RMS cell lines and studied the proliferation of these cells. We show that, in all three cell lines tested, Notch3IC over-expression stimulates in vitro cell proliferation and prevents the effects of pharmacological Notch inhibition. Furthermore, Notch3IC further increases RH30 cell growth in vivo. Interestingly, knockdown of Notch canonical ligands JAG1 or DLL1 in RMS cell lines decreases Notch3 activity and reduces cell proliferation. Finally, the expression of Notch3IC and its target gene HES1 correlates with that of the proliferative marker Ki67 in a small cohort of primary PAX-FOXO1 alveolar RMS samples. These results strongly suggest that high levels of Notch3 activation increase the proliferative potential of RMS cells.

  16. Phosphorylation of the dimeric cytoplasmic domain of the phytosulfokine receptor, PSKR1

    KAUST Repository

    Muleya, V.

    2016-08-04

    Phytosulfokines (PSKs) are plant peptide hormones that co-regulate plant growth, differentiation and defense responses. PSKs signal through a plasma membrane localized leucine-rich repeat receptor-like kinase (phytosulfokine receptor 1, PSKR1) that also contains a functional cytosolic guanylate cyclase with its cyclase catalytic center embedded within the kinase domain. To functionally characterize this novel type of overlapping dual catalytic function, we investigated the phosphorylation of PSKR1 in vitro Tandem mass spectrometry of the cytoplasmic domain of PSKR1 (PSKR1cd) revealed at least 11 phosphorylation sites (8 serines, 2 threonines and 1 tyrosine) within the PSKR1cd. Phosphomimetic mutations of three serine residues (Ser686, Ser696 and Ser698) in tandem at the juxta-membrane position resulted in enhanced kinase activity in the on-mutant that was suppressed in the off-mutant, but both mutations reduced guanylate cyclase activity. Both the on and off phosphomimetic mutations of the phosphotyrosine (Tyr888) residue in the activation loop suppressed kinase activity, while neither mutation affected guanylate cyclase activity. Size exclusion and analytical ultracentrifugation analysis of the PSKR1cd suggest that it is reversibly dimeric in solution, which was further confirmed by biflourescence complementation. Taken together, these data suggest that in this novel type of receptor domain architecture, specific phosphorylation and dimerization are possibly essential mechanisms for ligand-mediated catalysis and signaling.

  17. Phosphorylation of the dimeric cytoplasmic domain of the phytosulfokine receptor, PSKR1

    KAUST Repository

    Muleya, V.; Marondedze, Claudius; Wheeler, J. I.; Thomas, Ludivine; Mok, Y.-F.; Griffin, M. D. W.; Manallack, D. T.; Kwezi, L.; Lilley, K. S.; Gehring, Christoph A; Irving, H. R.

    2016-01-01

    Phytosulfokines (PSKs) are plant peptide hormones that co-regulate plant growth, differentiation and defense responses. PSKs signal through a plasma membrane localized leucine-rich repeat receptor-like kinase (phytosulfokine receptor 1, PSKR1) that also contains a functional cytosolic guanylate cyclase with its cyclase catalytic center embedded within the kinase domain. To functionally characterize this novel type of overlapping dual catalytic function, we investigated the phosphorylation of PSKR1 in vitro Tandem mass spectrometry of the cytoplasmic domain of PSKR1 (PSKR1cd) revealed at least 11 phosphorylation sites (8 serines, 2 threonines and 1 tyrosine) within the PSKR1cd. Phosphomimetic mutations of three serine residues (Ser686, Ser696 and Ser698) in tandem at the juxta-membrane position resulted in enhanced kinase activity in the on-mutant that was suppressed in the off-mutant, but both mutations reduced guanylate cyclase activity. Both the on and off phosphomimetic mutations of the phosphotyrosine (Tyr888) residue in the activation loop suppressed kinase activity, while neither mutation affected guanylate cyclase activity. Size exclusion and analytical ultracentrifugation analysis of the PSKR1cd suggest that it is reversibly dimeric in solution, which was further confirmed by biflourescence complementation. Taken together, these data suggest that in this novel type of receptor domain architecture, specific phosphorylation and dimerization are possibly essential mechanisms for ligand-mediated catalysis and signaling.

  18. Second generation γ-secretase modulators exhibit different modulation of Notch β and Aβ production.

    Science.gov (United States)

    Wanngren, Johanna; Ottervald, Jan; Parpal, Santiago; Portelius, Erik; Strömberg, Kia; Borgegård, Tomas; Klintenberg, Rebecka; Juréus, Anders; Blomqvist, Jenny; Blennow, Kaj; Zetterberg, Henrik; Lundkvist, Johan; Rosqvist, Susanne; Karlström, Helena

    2012-09-21

    The γ-secretase complex is an appealing drug target when the therapeutic strategy is to alter amyloid-β peptide (Aβ) aggregation in Alzheimer disease. γ-Secretase is directly involved in Aβ formation and determines the pathogenic potential of Aβ by generating the aggregation-prone Aβ42 peptide. Because γ-secretase mediates cleavage of many substrates involved in cell signaling, such as the Notch receptor, it is crucial to sustain these pathways while altering the Aβ secretion. A way of avoiding interference with the physiological function of γ-secretase is to use γ-secretase modulators (GSMs) instead of inhibitors of the enzyme. GSMs modify the Aβ formation from producing the amyloid-prone Aβ42 variant to shorter and less amyloidogenic Aβ species. The modes of action of GSMs are not fully understood, and even though the pharmacology of GSMs has been thoroughly studied regarding Aβ generation, knowledge is lacking about their effects on other substrates, such as Notch. Here, using immunoprecipitation followed by MALDI-TOF MS analysis, we found that two novel, second generation GSMs modulate both Notch β and Aβ production. Moreover, by correlating S3-specific Val-1744 cleavage of Notch intracellular domain (Notch intracellular domain) to total Notch intracellular domain levels using immunocytochemistry, we also demonstrated that Notch intracellular domain is not modulated by the compounds. Interestingly, two well characterized, nonsteroidal anti-inflammatory drugs (nonsteroidal anti-inflammatory drug), R-flurbiprofen and sulindac sulfide, affect only Aβ and not Notch β formation, indicating that second generation GSMs and nonsteroidal anti-inflammatory drug-based GSMs have different modes of action regarding Notch processing.

  19. Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of Notch signaling in the murine skin.

    Directory of Open Access Journals (Sweden)

    Alexis Dumortier

    2010-02-01

    Full Text Available The Notch pathway is essential for proper epidermal differentiation during embryonic skin development. Moreover, skin specific loss of Notch signaling in the embryo results in skin barrier defects accompanied by a B-lymphoproliferative disease. However, much less is known about the consequences of loss of Notch signaling after birth.To study the function of Notch signaling in the skin of adult mice, we made use of a series of conditional gene targeted mice that allow inactivation of several components of the Notch signaling pathway specifically in the skin. We demonstrate that skin-specific inactivation of Notch1 and Notch2 simultaneously, or RBP-J, induces the development of a severe form of atopic dermatitis (AD, characterized by acanthosis, spongiosis and hyperkeratosis, as well as a massive dermal infiltration of eosinophils and mast cells. Likewise, patients suffering from AD, but not psoriasis or lichen planus, have a marked reduction of Notch receptor expression in the skin. Loss of Notch in keratinocytes induces the production of thymic stromal lymphopoietin (TSLP, a cytokine deeply implicated in the pathogenesis of AD. The AD-like associated inflammation is accompanied by a myeloproliferative disorder (MPD characterized by an increase in immature myeloid populations in the bone marrow and spleen. Transplantation studies revealed that the MPD is cell non-autonomous and caused by dramatic microenvironmental alterations. Genetic studies demontrated that G-CSF mediates the MPD as well as changes in the bone marrow microenvironment leading to osteopenia.Our data demonstrate a critical role for Notch in repressing TSLP production in keratinocytes, thereby maintaining integrity of the skin and the hematopoietic system.

  20. High prevalence of BRCA1 founder mutations in Greek breast/ovarian families.

    Science.gov (United States)

    Konstantopoulou, I; Tsitlaidou, M; Fostira, F; Pertesi, M; Stavropoulou, A-V; Triantafyllidou, O; Tsotra, E; Tsiftsoglou, A P; Tsionou, C; Droufakou, S; Dimitrakakis, C; Fountzilas, G; Yannoukakos, D

    2014-01-01

    We have screened 473 breast/ovarian cancer patients with family history, aiming to define the prevalence and enrich the spectrum of BRCA1/2 pathogenic mutations occurring in the Greek population. An overall mutation prevalence of 32% was observed. Six BRCA1 recurrent/founder mutations dominate the observed spectrum (58.5% of all mutations found). These include three mutations in exon 20 and three large genomic deletions. Of the 44 different deleterious mutations found in both genes, 16 are novel and reported here for the first time. Correlation with available histopathology data showed that 80% of BRCA1 carriers presented a triple-negative breast cancer phenotype while 82% of BRCA2 carriers had oestrogen receptor positive tumours. This study provides a comprehensive view of the frequency, type and distribution of BRCA1/2 mutations in the Greek population as well as an insight of the screening strategy of choice for patients of Greek origin. We conclude that the Greek population has a diverse mutation spectrum influenced by strong founder effects. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    Science.gov (United States)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  2. NOTCH1 Inhibits Activation of ATM by Impairing the Formation of an ATM-FOXO3a-KAT5/Tip60 Complex.

    Science.gov (United States)

    Adamowicz, Marek; Vermezovic, Jelena; d'Adda di Fagagna, Fabrizio

    2016-08-23

    The DNA damage response (DDR) signal transduction pathway is responsible for sensing DNA damage and further relaying this signal into the cell. ATM is an apical DDR kinase that orchestrates the activation and the recruitment of downstream DDR factors to induce cell-cycle arrest and repair. We have previously shown that NOTCH1 inhibits ATM activation upon DNA damage, but the underlying mechanism remains unclear. Here, we show that NOTCH1 does not impair ATM recruitment to DNA double-strand breaks (DSBs). Rather, NOTCH1 prevents binding of FOXO3a and KAT5/Tip60 to ATM through a mechanism in which NOTCH1 competes with FOXO3a for ATM binding. Lack of FOXO3a binding to ATM leads to the loss of KAT5/Tip60 association with ATM. Moreover, expression of NOTCH1 or depletion of ATM impairs the formation of the FOXO3a-KAT5/Tip60 protein complex. Finally, we show that pharmacological induction of FOXO3a nuclear localization sensitizes NOTCH1-driven cancers to DNA-damage-induced cell death. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Growth hormone receptor gene mutations in two Italian patients with Laron Syndrome.

    Science.gov (United States)

    Fassone, L; Corneli, G; Bellone, S; Camacho-Hübner, C; Aimaretti, G; Cappa, M; Ubertini, G; Bona, G

    2007-05-01

    Laron Syndrome (LS) represents a condition characterized by GH insensitivity caused by molecular defects in the GH receptor (GHR) gene or in the post-receptor signalling pathway. We report the molecular characterization of two unrelated Italian girls from Sicily diagnosed with LS. The DNA sequencing of the GHR gene revealed the presence of different nonsense mutations, occurring in the same background haplotype. The molecular defects occurred in the extracellular domain of the GHR leading to a premature termination signal and to a truncated non-functional receptor. In one patient, a homozygous G to T transversion, in exon 6, led to the mutation GAA to TAA at codon 180 (E180X), while in the second patient a homozygous C to T transition in exon 7 was detected, causing the CGA to TAA substitution at codon 217 (R217X). Both probands presented the polymorphisms Gly168Gly and Ile544Leu in a homozygous state in exons 6 and 10, respectively. The E180X represents a novel defect of the GHR gene, while the R217X mutation has been previously reported in several patients from different ethnic backgrounds but all from countries located in the Mediterranean and Middle Eastern region.

  4. Novel mutations and mutation combinations of ryanodine receptor in a chlorantraniliprole resistant population of Plutella xylostella (L.)

    Science.gov (United States)

    Guo, Lei; Liang, Pei; Zhou, Xuguo; Gao, Xiwu

    2014-01-01

    A previous study documented a glycine to glutamic acid mutation (G4946E) in ryanodine receptor (RyR) was highly correlated to diamide insecticide resistance in field populations of Plutella xylostella (Lepidoptera: Plutellidae). In this study, a field population collected in Yunnan province, China, exhibited a 2128-fold resistance to chlorantraniliprole. Sequence comparison between resistant and susceptible P. xylostella revealed three novel mutations including a glutamic acid to valine substitution (E1338D), a glutamine to leucine substitution (Q4594L) and an isoleucine to methionine substitution (I4790M) in highly conserved regions of RyR. Frequency analysis of all four mutations in this field population showed that the three new mutations showed a high frequency of 100%, while the G4946E had a frequency of 20%. Furthermore, the florescent ligand binding assay revealed that the RyR containing multiple mutations displayed a significantly lower affinity to the chlorantraniliprole. The combined results suggested that the co-existence of different combinations of the four mutations was involved in the chlorantraniliprole resistance. An allele-specific PCR based method was developed for the diagnosis of the four mutations in the field populations of P. xylostella. PMID:25377064

  5. Loss of PTB or negative regulation of Notch mRNA reveals distinct zones of Notch and actin protein accumulation in Drosophila embryo.

    Directory of Open Access Journals (Sweden)

    Cedric S Wesley

    Full Text Available Polypyrimidine Tract Binding (PTB protein is a regulator of mRNA processing and translation. Genetic screens and studies of wing and bristle development during the post-embryonic stages of Drosophila suggest that it is a negative regulator of the Notch pathway. How PTB regulates the Notch pathway is unknown. Our studies of Drosophila embryogenesis indicate that (1 the Notch mRNA is a potential target of PTB, (2 PTB and Notch functions in the dorso-lateral regions of the Drosophila embryo are linked to actin regulation but not their functions in the ventral region, and (3 the actin-related Notch activity in the dorso-lateral regions might require a Notch activity at or near the cell surface that is different from the nuclear Notch activity involved in cell fate specification in the ventral region. These data raise the possibility that the Drosophila embryo is divided into zones of different PTB and Notch activities based on whether or not they are linked to actin regulation. They also provide clues to the almost forgotten role of Notch in cell adhesion and reveal a role for the Notch pathway in cell fusions.

  6. Loss of PTB or Negative Regulation of Notch mRNA Reveals Distinct Zones of Notch and Actin Protein Accumulation in Drosophila Embryo

    Science.gov (United States)

    Wesley, Cedric S.; Guo, Heng; Chaudhry, Kanita A.; Thali, Markus J.; Yin, Jerry C.; Clason, Todd; Wesley, Umadevi V.

    2011-01-01

    Polypyrimidine Tract Binding (PTB) protein is a regulator of mRNA processing and translation. Genetic screens and studies of wing and bristle development during the post-embryonic stages of Drosophila suggest that it is a negative regulator of the Notch pathway. How PTB regulates the Notch pathway is unknown. Our studies of Drosophila embryogenesis indicate that (1) the Notch mRNA is a potential target of PTB, (2) PTB and Notch functions in the dorso-lateral regions of the Drosophila embryo are linked to actin regulation but not their functions in the ventral region, and (3) the actin-related Notch activity in the dorso-lateral regions might require a Notch activity at or near the cell surface that is different from the nuclear Notch activity involved in cell fate specification in the ventral region. These data raise the possibility that the Drosophila embryo is divided into zones of different PTB and Notch activities based on whether or not they are linked to actin regulation. They also provide clues to the almost forgotten role of Notch in cell adhesion and reveal a role for the Notch pathway in cell fusions. PMID:21750738

  7. Three distinct roles for notch in Drosophila R7 photoreceptor specification.

    Directory of Open Access Journals (Sweden)

    Andrew Tomlinson

    2011-08-01

    Full Text Available Receptor tyrosine kinases (RTKs and Notch (N proteins are different types of transmembrane receptors that transduce extracellular signals and control cell fate. Here we examine cell fate specification in the Drosophila retina and ask how N acts together with the RTKs Sevenless (Sev and the EGF receptor (DER to specify the R7 photoreceptor. The retina is composed of many hundred ommatidia, each of which grows by recruiting surrounding, undifferentiated cells and directing them to particular fates. The R7 photoreceptor derives from a cohort of three cells that are incorporated together following specification of the R2-R5 and R8 photoreceptors. Two cells of the cohort are specified as the R1/6 photoreceptor type by DER activation. These cells then activate N in the third cell (the R7 precursor. By manipulation of N and RTK signaling in diverse combinations we establish three roles for N in specifying the R7 fate. The first role is to impose a block to photoreceptor differentiation; a block that DER activation cannot overcome. The second role, paradoxically, is to negate the first; Notch activation up-regulates Sev expression, enabling the presumptive R7 cell to receive an RTK signal from R8 that can override the block. The third role is to specify the cell as an R7 rather than an R1/6 once RTK signaling has specified the cells as a photoreceptor. We speculate why N acts both to block and to facilitate photoreceptor differentiation, and provide a model for how N and RTK signaling act combinatorially to specify the R1/6 and R7 photoreceptors as well as the surrounding non-neuronal cone cells.

  8. Cancer risk and clinicopathological characteristics of thyroid nodules harboring thyroid-stimulating hormone receptor gene mutations.

    Science.gov (United States)

    Mon, Sann Y; Riedlinger, Gregory; Abbott, Collette E; Seethala, Raja; Ohori, N Paul; Nikiforova, Marina N; Nikiforov, Yuri E; Hodak, Steven P

    2018-05-01

    Thyroid-stimulating hormone receptor (TSHR) gene mutations play a critical role in thyroid cell proliferation and function. They are found in 20%-82% of hyperfunctioning nodules, hyperfunctioning follicular thyroid cancers (FTC), and papillary thyroid cancers (PTC). The diagnostic importance of TSHR mutation testing in fine needle aspiration (FNA) specimens remains unstudied. To examine the association of TSHR mutations with the functional status and surgical outcomes of thyroid nodules, we evaluated 703 consecutive thyroid FNA samples with indeterminate cytology for TSHR mutations using next-generation sequencing. Testing for EZH1 mutations was performed in selected cases. The molecular diagnostic testing was done as part of standard of care treatment, and did not require informed consent. TSHR mutations were detected in 31 (4.4%) nodules and were located in exons 281-640, with codon 486 being the most common. Allelic frequency ranged from 3% to 45%. Of 16 cases (12 benign, 3 FTC, 1 PTC) with surgical correlation, 15 had solitary TSHR mutations and 1 PTC had comutation with BRAF V600E. Hyperthyroidism was confirmed in all 3 FTC (2 overt, 1 subclinical). Of 5 nodules with solitary TSHR mutations detected at high allelic frequency, 3 (60%) were FTC. Those at low allelic frequency (3%-22%) were benign. EZH1 mutations were detected in 2 of 4 TSHR-mutant malignant nodules and neither of 2 benign nodules. We report that TSHR mutations occur in ∼5% thyroid nodules in a large consecutive series with indeterminate cytology. TSHR mutations may be associated with an increased cancer risk when present at high allelic frequency, even when the nodule is hyperfunctioning. Benign nodules were however most strongly correlated with TSHR mutations at low allelic frequency. © 2018 Wiley Periodicals, Inc.

  9. Indian hedgehog mutations causing brachydactyly type A1 impair Hedgehog signal transduction at multiple levels

    Science.gov (United States)

    Ma, Gang; Yu, Jiang; Xiao, Yue; Chan, Danny; Gao, Bo; Hu, Jianxin; He, Yongxing; Guo, Shengzhen; Zhou, Jian; Zhang, Lingling; Gao, Linghan; Zhang, Wenjuan; Kang, Yan; Cheah, Kathryn SE; Feng, Guoyin; Guo, Xizhi; Wang, Yujiong; Zhou, Cong-zhao; He, Lin

    2011-01-01

    Brachydactyly type A1 (BDA1), the first recorded Mendelian autosomal dominant disorder in humans, is characterized by a shortening or absence of the middle phalanges. Heterozygous missense mutations in the Indian Hedgehog (IHH) gene have been identified as a cause of BDA1; however, the biochemical consequences of these mutations are unclear. In this paper, we analyzed three BDA1 mutations (E95K, D100E, and E131K) in the N-terminal fragment of Indian Hedgehog (IhhN). Structural analysis showed that the E95K mutation changes a negatively charged area to a positively charged area in a calcium-binding groove, and that the D100E mutation changes the local tertiary structure. Furthermore, we showed that the E95K and D100E mutations led to a temperature-sensitive and calcium-dependent instability of IhhN, which might contribute to an enhanced intracellular degradation of the mutant proteins via the lysosome. Notably, all three mutations affected Hh binding to the receptor Patched1 (PTC1), reducing its capacity to induce cellular differentiation. We propose that these are common features of the mutations that cause BDA1, affecting the Hh tertiary structure, intracellular fate, binding to the receptor/partners, and binding to extracellular components. The combination of these features alters signaling capacity and range, but the impact is likely to be variable and mutation-dependent. The potential variation in the signaling range is characterized by an enhanced interaction with heparan sulfate for IHH with the E95K mutation, but not the E131K mutation. Taken together, our results suggest that these IHH mutations affect Hh signaling at multiple levels, causing abnormal bone development and abnormal digit formation. PMID:21537345

  10. Receptor tyrosine kinase mutations in developmental syndromes and cancer: two sides of the same coin

    Science.gov (United States)

    McDonell, Laura M.; Kernohan, Kristin D.; Boycott, Kym M.; Sawyer, Sarah L.

    2015-01-01

    Receptor tyrosine kinases (RTKs) are a family of ligand-binding cell surface receptors that regulate a wide range of essential cellular activities, including proliferation, differentiation, cell-cycle progression, survival and apoptosis. As such, these proteins play an important role during development and throughout life; germline mutations in genes encoding RTKs cause several developmental syndromes, while somatic alterations contribute to the pathogenesis of many aggressive cancers. This creates an interesting paradigm in which mutation timing, type and location in a gene leads to different cell signaling and biological responses, and ultimately phenotypic outcomes. In this review, we highlight the roles of RTKs in developmental disorders and cancer. The multifaceted roles of these receptors, their genetic signatures and their signaling during developmental morphogenesis and oncogenesis are discussed. Additionally, we propose that comparative analysis of RTK mutations responsible for developmental syndromes may shed light on those driving tumorigenesis. PMID:26152202

  11. The importance of Notch signaling in peripheral T-cell lymphomas

    DEFF Research Database (Denmark)

    Kamstrup, Maria Rørbæk; Biskup, Edyta; Gjerdrum, Lise Mette Rahbek

    2014-01-01

    Peripheral T-cell lymphomas (PTLs) represent an area of high medical need. Previously, we demonstrated high expression of Notch, a known oncogene, in primary cutaneous anaplastic large cell lymphoma (ALCL). In this study, we performed immunohistochemical staining for Notch1 in lymph nodes from PTL...... cases) (p > 0.05). In the ALK+ ALCL cell line, Karpas-299, pharmacological inhibition of Notch with γ-secretase inhibitor (GSI) I was far more potent than with GSI IX, XX and XXI with regard to cell viability and apoptosis. In conclusion, PTL tumor cells have prominent Notch1 expression and treatment...... with Notch inhibitors has cytotoxic effects....

  12. Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses

    International Nuclear Information System (INIS)

    Fukuyama, Yoshiko; Tokuhara, Daisuke; Sekine, Shinichi; Kataoka, Kosuke; Markham, Jonathan D.; Irwin, Allyson R.; Moon, Grace H.; Tokuhara, Yuka; Fujihashi, Keiko; Davydova, Julia; Yamamoto, Masato; Gilbert, Rebekah S.; Fujihashi, Kohtaro

    2012-01-01

    Highlights: ► Nasal Ad-FL effectively up-regulates APC function by CD11c + DCs in mucosal tissues. ► Nasal Ad-FL induces Notch ligand (L)-expressing CD11c + DCs. ► Notch L-expressing DCs support the induction of Th1- and Th2-type cytokine responses. -- Abstract: Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c + dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c + DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c + DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c + DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4 + T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-γ, IL-2 and IL-4 producing CD4 + T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch–Notch-L pathway. These results show that Ad-FL induces CD11c + DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.

  13. The bHLH factors Dpn and members of the E(spl complex mediate the function of Notch signalling regulating cell proliferation during wing disc development

    Directory of Open Access Journals (Sweden)

    Beatriz P. San Juan

    2012-05-01

    The Notch signalling pathway plays an essential role in the intricate control of cell proliferation and pattern formation in many organs during animal development. In addition, mutations in most members of this pathway are well characterized and frequently lead to tumour formation. The Drosophila imaginal wing discs have provided a suitable model system for the genetic and molecular analysis of the different pathway functions. During disc development, Notch signalling at the presumptive wing margin is necessary for the restricted activation of genes required for pattern formation control and disc proliferation. Interestingly, in different cellular contexts within the wing disc, Notch can either promote cell proliferation or can block the G1-S transition by negatively regulating the expression of dmyc and bantam micro RNA. The target genes of Notch signalling that are required for these functions have not been identified. Here, we show that the Hes vertebrate homolog, deadpan (dpn, and the Enhancer-of-split complex (E(splC genes act redundantly and cooperatively to mediate the Notch signalling function regulating cell proliferation during wing disc development.

  14. Radiogenomic correlation in lung adenocarcinoma with epidermal growth factor receptor mutations: Imaging features and histological subtypes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Su Jin [Seoul National University Bundang Hospital, Department of Radiology, Seongnam-si, Gyeonggi-do (Korea, Republic of); Hanyang University, Department of Radiology, School of Medicine, Seoul (Korea, Republic of); Kim, Tae Jung [Seoul National University Bundang Hospital, Department of Radiology, Seongnam-si, Gyeonggi-do (Korea, Republic of); Samsung Medical Center, Department of Radiology, Seoul (Korea, Republic of); Choi, Yo Won [Hanyang University, Department of Radiology, School of Medicine, Seoul (Korea, Republic of); Park, Jeong-Soo [Dankook Universicity, Department of Biochemistry, College of Medicine, Cheonan (Korea, Republic of); Chung, Jin-Haeng [Seoul National University Bundang Hospital, Department of Pathology, Seongnam-si, Gyeonggi-do (Korea, Republic of); Lee, Kyung Won [Seoul National University Bundang Hospital, Department of Radiology, Seongnam-si, Gyeonggi-do (Korea, Republic of)

    2016-10-15

    To correlate imaging features of resected lung adenocarcinoma with epidermal growth factor receptor (EGFR) mutation and the IASLC/ATS/ERS classification histological subtypes. In 250 consecutive patients with resected lung adenocarcinoma, EGFR mutation status was correlated with demographics, imaging features including ground-glass opacity (GGO) proportion and the IASLC/ATS/ERS classification histological subtypes. EGFR mutations were significantly more frequent in women (54.5 % vs. 38.1 %, p = 0.011) and in never-smokers (54.7 % vs. 35.3 %, p = 0.003). GGO proportion was significantly higher in tumours with EGFR mutation than in those without (30.3 ± 33.8 % vs. 19.0 ± 29.3 %, p = 0.005). EGFR mutation was significantly more frequent in tumours with GGO ≥ 50 % and tumours with any GGO (p = 0.026 and 0.008, respectively). Adenocarcinomas with exon 19 or 21 mutation showed significantly higher GGO proportion than that in EGFR wild-type tumours (p = 0.009 and 0.029, respectively). Absence of GGO was an independent predictor of negative EGFR mutation (odds ratio, 1.81; 95 % confidence interval, 1.16-3.04; p = 0.018). GGO proportion in adenocarcinomas with EGFR mutation was significantly higher than that in EGFR wild-type tumours, and the absence of GGO on CT was an independent predictor of negative EGFR mutation. (orig.)

  15. Correction for Inhibition Leads to an Allosteric Co-Agonist Model for Pentobarbital Modulation and Activation of α1β3γ2L GABAA Receptors.

    Directory of Open Access Journals (Sweden)

    Alexis M Ziemba

    Full Text Available Pentobarbital, like propofol and etomidate, produces important general anesthetic effects through GABAA receptors. Photolabeling also indicates that pentobarbital binds to some of the same sites where propofol and etomidate act. Quantitative allosteric co-agonist models for propofol and etomidate account for modulatory and agonist effects in GABAA receptors and have proven valuable in establishing drug site characteristics and for functional analysis of mutants. We therefore sought to establish an allosteric co-agonist model for pentobarbital activation and modulation of α1β3γ2L receptors, using a novel approach to first correct pentobarbital activation data for inhibitory effects in the same concentration range.Using oocyte-expressed α1β3γ2L GABAA receptors and two-microelectrode voltage-clamp, we quantified modulation of GABA responses by a low pentobarbital concentration and direct effects of high pentobarbital concentrations, the latter displaying mixed agonist and inhibitory effects. We then isolated and quantified pentobarbital inhibition in activated receptors using a novel single-sweep "notch" approach, and used these results to correct steady-state direct activation for inhibition.Combining results for GABA modulation and corrected direct activation, we estimated receptor open probability and optimized parameters for a Monod-Wyman-Changeux allosteric co-agonist model. Inhibition by pentobarbital was consistent with two sites with IC50s near 1 mM, while co-agonist model parameters suggest two allosteric pentobarbital agonist sites characterized by KPB ≈ 5 mM and high efficacy. The results also indicate that pentobarbital may be a more efficacious agonist than GABA.Our novel approach to quantifying both inhibitory and co-agonist effects of pentobarbital provides a basis for future structure-function analyses of GABAA receptor mutations in putative pentobarbital binding sites.

  16. Fgf signaling controls pharyngeal taste bud formation through miR-200 and Delta-Notch activity.

    Science.gov (United States)

    Kapsimali, Marika; Kaushik, Anna-Lila; Gibon, Guillaume; Dirian, Lara; Ernest, Sylvain; Rosa, Frederic M

    2011-08-01

    Taste buds, the taste sensory organs, are conserved in vertebrates and composed of distinct cell types, including taste receptor, basal/presynaptic and support cells. Here, we characterize zebrafish taste bud development and show that compromised Fgf signaling in the larva results in taste bud reduction and disorganization. We determine that Fgf activity is required within pharyngeal endoderm for formation of Calb2b(+) cells and reveal miR-200 and Delta-Notch signaling as key factors in this process. miR-200 knock down shows that miR-200 activity is required for taste bud formation and in particular for Calb2b(+) cell formation. Compromised delta activity in mib(-/-) dramatically reduces the number of Calb2b(+) cells and increases the number of 5HT(+) cells. Conversely, larvae with increased Notch activity and ascl1a(-/-) mutants are devoid of 5HT(+) cells, but have maintained and increased Calb2b(+) cells, respectively. These results show that Delta-Notch signaling is required for intact taste bud organ formation. Consistent with this, Notch activity restores Calb2b(+) cell formation in pharyngeal endoderm with compromised Fgf signaling, but fails to restore the formation of these cells after miR-200 knock down. Altogether, this study provides genetic evidence that supports a novel model where Fgf regulates Delta-Notch signaling, and subsequently miR-200 activity, in order to promote taste bud cell type differentiation.

  17. A negative screen for mutations in calstabin 1 and 2 genes in patients with dilated cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Biagi Diogo G

    2012-01-01

    Full Text Available Abstract Background Calstabins 1 and 2 bind to Ryanodine receptors regulating muscle excitation-contraction coupling. Mutations in Ryanodine receptors affecting their interaction with calstabins lead to different cardiac pathologies. Animal studies suggest the involvement of calstabins with dilated cardiomyopathy. Results We tested the hypothesis that calstabins mutations may cause dilated cardiomyopathy in humans screening 186 patients with idiopathic dilated cardiomyopathy for genetic alterations in calstabins 1 and 2 genes (FKBP12 and FKBP12.6. No missense variant was found. Five no-coding variations were found but not related to the disease. Conclusions These data corroborate other studies suggesting that mutations in FKBP12 and FKBP12.6 genes are not commonly related to cardiac diseases.

  18. Specificity and autoregulation of Notch binding by tandem WW domains in suppressor of Deltex.

    Science.gov (United States)

    Jennings, Martin D; Blankley, Richard T; Baron, Martin; Golovanov, Alexander P; Avis, Johanna M

    2007-09-28

    WW domains target proline-tyrosine (PY) motifs and frequently function as tandem pairs. When studied in isolation, single WW domains are notably promiscuous and regulatory mechanisms are undoubtedly required to ensure selective interactions. Here, we show that the fourth WW domain (WW4) of Suppressor of Deltex, a modular Nedd4-like protein that down-regulates the Notch receptor, is the primary mediator of a direct interaction with a Notch-PY motif. A natural Trp to Phe substitution in WW4 reduces its affinity for general PY sequences and enhances selective interaction with the Notch-PY motif via compensatory specificity-determining interactions with PY-flanking residues. When WW4 is paired with WW3, domain-domain association, impeding proper folding, competes with Notch-PY binding to WW4. This novel mode of autoinhibition is relieved by binding of another ligand to WW3. Such cooperativity may facilitate the transient regulatory interactions observed in vivo between Su(dx) and Notch in the endocytic pathway. The highly conserved tandem arrangement of WW domains in Nedd4 proteins, and similar arrangements in more diverse proteins, suggests domain-domain communication may be integral to regulation of their associated cellular activities.

  19. Notched audiograms and noise exposure history in older adults.

    Science.gov (United States)

    Nondahl, David M; Shi, Xiaoyu; Cruickshanks, Karen J; Dalton, Dayna S; Tweed, Ted S; Wiley, Terry L; Carmichael, Lakeesha L

    2009-12-01

    Using data from a population-based cohort study, we compared four published algorithms for identifying notched audiograms and compared their resulting classifications with noise exposure history. Four algorithms: (1) , (2) , (3) , and (4) were used to identify notched audiograms. Audiometric evaluations were collected as a part of the 10-yr follow-up examinations of the Epidemiology of Hearing Loss Study, in Beaver Dam, WI (2003-2005, N = 2395). Detailed noise exposure histories were collected by interview at the baseline examination (1993-1995) and updated at subsequent visits. An extensive history of occupational noise exposure, participation in noisy hobbies, and firearm usage was used to evaluate consistency of the notch classifications with the history of noise exposure. The prevalence of notched audiograms varied greatly by definition (31.7, 25.9, 47.2, and 11.7% for methods 1, 2, 3, and 4, respectively). In this cohort, a history of noise exposure was common (56.2% for occupational noise, 71.7% for noisy hobbies, 13.4% for firearms, and 81.2% for any of these three sources). Among participants with a notched audiogram, almost one-third did not have a history of occupational noise exposure (31.4, 33.0, 32.5, and 28.1% for methods 1, 2, 3, and 4, respectively), and approximately 11% did not have a history of exposure to any of the three sources of noise (11.5, 13.6, 10.3, and 7.6%). Discordance was greater in women than in men. These results suggest that there is a poor agreement across existing algorithms for audiometric notches. In addition, notches can occur in the absence of a positive noise history. In the absence of an objective consensus definition of a notched audiogram and in light of the degree of discordance in women between noise history and notches by each of these algorithms, researchers should be cautious about classifying noise-induced hearing loss by notched audiograms.

  20. Molecular analysis of the androgen-receptor gene in a family with receptor-positive partial androgen insensitivity: an unusual type of intronic mutation

    NARCIS (Netherlands)

    H.T. Brüggenwirth (Hennie); A.L.M. Boehmer (Annemie); S. Ramnarain; M.C. Verleun-Mooijman; D.P.E. Satijn (David); J. Trapman (Jan); J.A. Grootegoed (Anton); A.O. Brinkmann (Albert)

    1997-01-01

    textabstractIn the coding part and the intron-exon boundaries of the androgen-receptor gene of a patient with partial androgen insensitivity, no mutation was found. The androgen receptor of this patient displayed normal ligand-binding parameters and migrated as a

  1. Engineering of Olfactory Receptor OlfCc1 for Directed Ligand Sensitivity

    OpenAIRE

    Berke, Allison Paige

    2013-01-01

    Abstract Engineering of Olfactory Receptor OlfCc1 for Directed Ligand Sensitivityby Allison Paige Berke Joint Doctor of Philosophywith the University of California San FranciscoUniversity of California, Berkeley Professor Song Li, ChairDue to structural similarity, OlfCc1and its mammalian analogue V2R2 are hypothesized to respond to amino acid ligands in a calcium-mediated fashion. By analyzing receptor structure and making targeted mutations, the specificity and sensitivity of the receptor s...

  2. The Impact of ESR1 Mutations on the Treatment of Metastatic Breast Cancer.

    Science.gov (United States)

    Pejerrey, Sasha M; Dustin, Derek; Kim, Jin-Ah; Gu, Guowei; Rechoum, Yassine; Fuqua, Suzanne A W

    2018-05-07

    After nearly 20 years of research, it is now established that mutations within the estrogen receptor (ER) gene, ESR1, frequently occur in metastatic breast cancer and influence response to hormone therapy. Though early studies presented differing results, sensitive sequencing techniques now show that ESR1 mutations occur at a frequency between 20 and 40% depending on the assay method. Recent studies have focused on several "hot spot mutations," a cluster of mutations found in the hormone-binding domain of the ESR1 gene. Throughout the course of treatment, tumor evolution can occur, and ESR1 mutations emerge and become enriched in the metastatic setting. Sensitive techniques to continually monitor mutant burden in vivo are needed to effectively treat patients with mutant ESR1. The full impact of these mutations on tumor response to different therapies remains to be determined. However, recent studies indicate that mutant-bearing tumors may be less responsive to specific hormonal therapies, and suggest that aromatase inhibitor (AI) therapy may select for the emergence of ESR1 mutations. Additionally, different mutations may respond discretely to targeted therapies. The need for more preclinical mechanistic studies on ESR1 mutations and the development of better agents to target these mutations are urgently needed. In the future, sequential monitoring of ESR1 mutational status will likely direct personalized therapeutic regimens appropriate to each tumor's unique mutational landscape.

  3. Fracture toughness evaluation of small notched specimen in consideration of notch effect and loading rate

    International Nuclear Information System (INIS)

    Lee, Baik Woo; Kwon, Dong Il; Jang, Jae Il

    2000-01-01

    Notch effect and loading rate dependency on fracture toughness were considered when evaluating fracture toughness of small notched specimens using the instrumented impact test. Notch effect was analyzed into stress redistribution effect and stress relaxation with a viewpoint of stress triaxiality. Stress redistribution effect was corrected by introducing effective crack length, which was the sum of actual crack length and plastic zone size. Stress relaxation effect was also corrected using elastic stress concentration factor, which would decrease if plastic deformation occurred. As a result, corrected fracture toughness of the notched specimen was very consistent with the reference fracture toughness obtained using precracked specimen. In addition, limiting notch root radius, below which fracture toughness was independent of notch radius, was observed and discussed. Loading rate dependency on fracture toughness, which was obtained from the static three point bending test and the instrumented impact test, was also discussed with stress field in plastic zone ahead of a notch and fracture based on stress control mechanism. (author)

  4. Hypervariable region 1 deletion and required adaptive envelope mutations confer decreased dependency on scavenger receptor class B type I and low-density lipoprotein receptor for hepatitis C virus

    DEFF Research Database (Denmark)

    Prentoe, Jannick; Serre, Stéphanie B N; Ramirez, Santseharay

    2014-01-01

    -deleted viruses. Apolipoprotein E (ApoE)-specific HCV neutralization was similar for H77, J6, and S52 viruses with and without HVR1. In conclusion, HVR1 and HVR1-related adaptive envelope mutations appeared to be involved in LDLr and SR-BI dependency, respectively. Also, LDLr served Apo....../S733F), S52(ΔHVR1/A369V), and S52(A369V), but not for J6(ΔHVR1). Low-density lipoprotein receptor (LDLr) dependency was decreased for HVR1-deleted viruses, but not for H77(N476D/S733F) and S52(A369V). Soluble LDLr neutralization revealed strong inhibition of parental HCV but limited effect against HVR1...

  5. Blockade of Notch Signaling in Tumor-Bearing Mice May Lead to Tumor Regression, Progression, or Metastasis, Depending on Tumor Cell Types

    Directory of Open Access Journals (Sweden)

    Xing-Bin Hu

    2009-01-01

    Full Text Available It has been reported that blocking Notch signaling in tumor-bearing mice results in abortive angiogenesis and tumor regression. However, given that Notch signaling influences numerous cellular processes in vivo, a comprehensive evaluation of the effect of Notch inactivation on tumor growth would be favorable. In this study, we inoculated four cancer cell lines in mice with the conditional inactivation of recombination signal-binding protein-Jκ (RBP-J, which mediates signaling from all four mammalian Notch receptors. We found that whereas three tumors including hepatocarcinoma, lung cancer, and osteogenic sarcoma grew slower in the RBP-J-deficient mice, at least a melanoma, B16, grew significantly faster in the RBP-J-deficient mice than in the controls, suggesting that the RBP-J-deficient hosts could provide permissive cues for tumor growth. All these tumors showed increased microvessels and up-regulated hypoxia-inducible factor 1α, suggesting that whereas defective angiogenesis resulted in hypoxia, different tumors might grow differentially in the RBP-J-deleted mice. Similarly, increased infiltration of Gr1+/Mac1+ cells were noticed in tumors grown in the RBP-J-inactivated mice. Moreover, we found that when inoculated in the RBP-J knockout hosts, the H22 hepatoma cells had a high frequency of metastasis and lethality, suggesting that at least for H22, deficiency of environmental Notch signaling favored tumor metastasis. Our findings suggested that the general blockade of Notch signaling in tumor-bearing mice could lead to defective angiogenesis in tumors, but depending on tumor cell types, general inhibition of Notch signaling might result in tumor regression, progression, or metastasis.

  6. Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia

    DEFF Research Database (Denmark)

    Strefford, J C; Sutton, L-A; Baliakas, P

    2013-01-01

    Recent studies have revealed recurrent mutations of the NOTCH1, SF3B1 and BIRC3 genes in chronic lymphocytic leukemia (CLL), especially among aggressive, chemorefractory cases. Nevertheless, it is currently unknown whether their presence may differ in subsets of patients carrying stereotyped B...

  7. Targeted resequencing for analysis of clonal composition of recurrent gene mutations in chronic lymphocytic leukaemia

    NARCIS (Netherlands)

    Jethwa, Alexander; Hüllein, Jennifer; Stolz, Tatjana; Blume, Carolin; Sellner, Leopold; Jauch, Anna; Sill, Martin; Kater, Arnon P.; te Raa, G. Doreen; Geisler, Christian; van Oers, Marinus; Dietrich, Sascha; Dreger, Peter; Ho, Anthony D.; Paruzynski, Anna; Schmidt, Manfred; von Kalle, Christof; Glimm, Hanno; Zenz, Thorsten

    2013-01-01

    Recurrent gene mutations contribute to the pathogenesis of chronic lymphocytic leukaemia (CLL). We developed a next-generation sequencing (NGS) platform to determine the genetic profile, intratumoural heterogeneity, and clonal structure of two independent CLL cohorts. TP53, SF3B1, and NOTCH1 were

  8. Targeted resequencing for analysis of clonal composition of recurrent gene mutations in chronic lymphocytic leukaemia

    DEFF Research Database (Denmark)

    Jethwa, Alexander; Hüllein, Jennifer; Stolz, Tatjana

    2013-01-01

    Recurrent gene mutations contribute to the pathogenesis of chronic lymphocytic leukaemia (CLL). We developed a next-generation sequencing (NGS) platform to determine the genetic profile, intratumoural heterogeneity, and clonal structure of two independent CLL cohorts. TP53, SF3B1, and NOTCH1 were...

  9. A nonsense mutation causing decreased levels of insulin receptor mRNA: Detection by a simplified technique for direct sequencing of genomic DNA amplified by the polymerase chain reaction

    International Nuclear Information System (INIS)

    Kadowaki, T.; Kadowaki, H.; Taylor, S.I.

    1990-01-01

    Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. The authors have studied a patient with leprechaunism (leprechaun/Minn-1), a genetic syndrome associated with intrauterine growth retardation and extreme insulin resistance. Genomic DNA from the patient was amplified by the polymerase chain reaction catalyzed by Thermus aquaticus (Taq) DNA polymerase, and the amplified DNA was directly sequenced. A nonsense mutations was identified at codon 897 in exon 14 in the paternal allele of the patient's insulin receptor gene. Levels of insulin receptor mRNA are decreased to <10% of normal in Epstein-Barr virus-transformed lymphoblasts and cultured skin fibroblasts from this patient. Thus, this nonsense mutation appears to cause a decrease in the levels of insulin receptor mRNA. In addition, they have obtained indirect evidence that the patient's maternal allele of the insulin receptor gene contains a cis-acting dominant mutation that also decreases the level of mRNA, but by a different mechanism. The nucleotide sequence of the entire protein-coding domain and the sequences of the intron-exon boundaries for all 22 exons of the maternal allele were normal. Presumably, the mutation in the maternal allele maps elsewhere in the insulin receptor gene. Thus, they conclude that the patient is a compound heterozygote for two cis-acting dominant mutations in the insulin receptor gene: (i) a nonsense mutation in the paternal allel that reduces the level of insulin receptor mRNA and (ii) an as yet unidentified mutation in the maternal allele that either decreases the rate of transcription or decreases the stability of the mRNA

  10. The Notch/Hes1 pathway sustains NF-κB activation through CYLD repression in T cell leukemia.

    Science.gov (United States)

    Espinosa, Lluis; Cathelin, Severine; D'Altri, Teresa; Trimarchi, Thomas; Statnikov, Alexander; Guiu, Jordi; Rodilla, Veronica; Inglés-Esteve, Julia; Nomdedeu, Josep; Bellosillo, Beatriz; Besses, Carles; Abdel-Wahab, Omar; Kucine, Nicole; Sun, Shao-Cong; Song, Guangchan; Mullighan, Charles C; Levine, Ross L; Rajewsky, Klaus; Aifantis, Iannis; Bigas, Anna

    2010-09-14

    It was previously shown that the NF-κB pathway is downstream of oncogenic Notch1 in T cell acute lymphoblastic leukemia (T-ALL). Here, we visualize Notch-induced NF-κB activation using both human T-ALL cell lines and animal models. We demonstrate that Hes1, a canonical Notch target and transcriptional repressor, is responsible for sustaining IKK activation in T-ALL. Hes1 exerts its effects by repressing the deubiquitinase CYLD, a negative IKK complex regulator. CYLD expression was found to be significantly suppressed in primary T-ALL. Finally, we demonstrate that IKK inhibition is a promising option for the targeted therapy of T-ALL as specific suppression of IKK expression and function affected both the survival of human T-ALL cells and the maintenance of the disease in vivo. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Gamma-glutamylcyclotransferase promotes the growth of human glioma cells by activating Notch-Akt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Shang-Hang; Yu, Ning; Liu, Xi-Yao; Tan, Guo-Wei; Wang, Zhan-Xiang, E-mail: md_wzx7189@163.com

    2016-03-18

    Glioma as an aggressive type tumor is rapidly growing and has become one of the leading cause of cancer-related death worldwide. γ-Glutamylcyclotransferase (GGCT) has been shown as a diagnostic marker in various cancers. To reveal whether there is a correlation between GGCT and human glioma, GGCT expression in human glioma tissues and cell lines was first determined. We found that GGCT expression was up-regulated in human glioma tissues and cell lines. Further, we demonstrate that GGCT knockdown inhibits glioma cell T98G and U251 proliferation and colony formation, whereas GGCT overexpression leads to oppose effects. GGCT overexpression promotes the expression of Notch receptors and activates Akt signaling in glioma cells, and Notch-Akt signaling is activated in glioma tissues with high expression of GGCT. Finally, we show that inhibition of Notch-Akt signaling with Notch inhibitor MK-0752 blocks the effects of GGCT on glioma proliferation and colony formation. In conclusion, GGCT plays a critical role in glioma cell proliferation and may be a potential cancer therapeutic target. - Highlights: • GGCT expression is up-regulated in human glioma tissues and cell lines. • GGCT promotes glioma cell growth and colony formation. • GGCT promotes the activation of Notch-Akt signaling in glioma cells and tissues. • Notch inhibition blocks the role of GGCT in human glioma cells.

  12. Missense and nonsense mutations in melanocortin 1 receptor (MC1R gene of different goat breeds: association with red and black coat colour phenotypes but with unexpected evidences

    Directory of Open Access Journals (Sweden)

    Davoli Roberta

    2009-08-01

    Full Text Available Abstract Background Agouti and Extension loci control the relative amount of eumelanin and pheomelanin production in melanocytes that, in turn, affects pigmentation of skin and hair. The Extension locus encodes the melanocortin 1 receptor (MC1R whose permanent activation, caused by functional mutations, results in black coat colour, whereas other inactivating mutations cause red coat colour in different mammals. Results The whole coding region of the MC1R gene was sequenced in goats of six different breeds showing different coat colours (Girgentana, white cream with usually small red spots in the face; Maltese, white with black cheeks and ears; Derivata di Siria, solid red; Murciano-Granadina, solid black or solid brown; Camosciata delle Alpi, brown with black stripes; Saanen, white; F1 goats and the parental animals. Five single nucleotide polymorphisms (SNPs were identified: one nonsense mutation (p.Q225X, three missense mutations (p.A81V, p.F250V, and p.C267W, and one silent mutation. The stop codon at position 225 should cause the production of a shorter MC1R protein whose functionality may be altered. These SNPs were investigated in a larger sample of animals belonging to the six breeds. The Girgentana breed was almost fixed for the p.225X allele. However, there was not complete association between the presence of red spots in the face and the presence of this allele in homozygous condition. The same allele was identified in the Derivata di Siria breed. However, its frequency was only 33%, despite the fact that these animals are completely red. The p.267W allele was present in all Murciano-Granadina black goats, whereas it was never identified in the brown ones. Moreover, the same substitution was present in almost all Maltese goats providing evidence of association between this mutation and black coat colour. Conclusion According to the results obtained in the investigated goat breeds, MC1R mutations may determine eumelanic and pheomelanic

  13. Founder effect in the Horn of Africa for an insulin receptor mutation that may impair receptor recycling

    DEFF Research Database (Denmark)

    Raffan, E; Soos, M A; Rocha, N

    2011-01-01

    Genetic insulin receptoropathies are a rare cause of severe insulin resistance. We identified the Ile119Met missense mutation in the insulin receptor INSR gene, previously reported in a Yemeni kindred, in four unrelated patients with Somali ancestry. We aimed to investigate a possible genetic...

  14. Two novel mutations in the sixth transmembrane segment of the thyrotropin receptor gene causing hyperfunctioning thyroid nodules.

    Science.gov (United States)

    Gozu, Hulya; Avsar, Melike; Bircan, Rifat; Claus, Maren; Sahin, Serap; Sezgin, Ozlem; Deyneli, Oguzhan; Paschke, Ralf; Cirakoglu, Beyazit; Akalin, Sema

    2005-04-01

    Autonomously functioning thyroid nodules (AFTNs) can present as hyperfunctioning adenomas or toxic multinodular goiters. In the last decade, a large number of activating mutations have been identified in the thyrotropin receptor (TSHR) gene in autonomously functioning thyroid nodules. Most have been situated close to, or within the sixth transmembrane segment and third intracellular loop of the TSHR where the receptor interacts with the Gs protein. In this study we describe two novel mutations in the sixth transmembrane segment of the TSHR causing hyperfunctioning thyroid nodules. Genomic DNAs were isolated from four hyperfunctioning thyroid nodules, normal tissues and peripheral leukocytes of two patients with toxic multinodular goiter. After amplifying the related regions, TSHR and G(s)alpha genes were analyzed by single-strand conformation polymorphism (SSCP) analysis. The precise localization of the mutations was identified by automatic DNA sequence analysis. Functional studies were done by site-directed mutagenesis and transfection of a mutant construct into COS-7 cells. We identified two novel TSHR mutations in two hyperfunctioning thyroid nodules: Phe631Val in the first patient and Iso630Met in the second patient. Both mutant receptors display an increase in constitutive stimulation of basal cyclic adenosine monophosphate (cAMP) levels compared to the wild-type receptor. This confirms that these mutant receptors cause hyperfunctioning thyroid nodules.

  15. Lack of hormone binding in COS-7 cells expressing a mutated growth hormone receptor found in Laron dwarfism.

    Science.gov (United States)

    Edery, M; Rozakis-Adcock, M; Goujon, L; Finidori, J; Lévi-Meyrueis, C; Paly, J; Djiane, J; Postel-Vinay, M C; Kelly, P A

    1993-01-01

    A single point mutation in the growth hormone (GH) receptor gene generating a Phe-->Ser substitution in the extracellular binding domain of the receptor has been identified in one family with Laron type dwarfism. The mutation was introduced by site-directed mutagenesis into cDNAs encoding the full-length rabbit GH receptor and the extracellular domain or binding protein (BP) of the human and rabbit GH receptor, and also in cDNAs encoding the full length and the extracellular domain of the related rabbit prolactin (PRL) receptor. All constructs were transiently expressed in COS-7 cells. Both wild type and mutant full-length rabbit GH and PRL receptors, as well as GH and prolactin BPs (wild type and mutant), were detected by Western blot in cell membranes and concentrated culture media, respectively. Immunofluorescence studies showed that wild type and mutant full-length GH receptors had the same cell surface and intracellular distribution and were expressed with comparable intensities. In contrast, all mutant forms (full-length receptors or BPs), completely lost their modify the synthesis ligand. These results clearly demonstrate that this point mutation (patients with Laron syndrome) does not modify the synthesis or the intracellular pathway of receptor proteins, but rather abolishes ability of the receptor or BP to bind GH and is thus responsible for the extreme GH resistance in these patients. Images PMID:8450064

  16. Role of Notch-1 signaling in ethanol induced PC12 apoptosis | Li ...

    African Journals Online (AJOL)

    Chronic alcoholic dementia has crucial role in progress of neurodegenerative disease and affects a large portion of our aging population. Neuronal cell apoptosis may be a contributing factor of neurodegenerative disease (ND) and Alzheimer's disease (AD). Previous researches have indicated that Notch-1 signaling ...

  17. Assessment of correlation between knee notch width index and the three-dimensional notch volume

    NARCIS (Netherlands)

    van Eck, C.F.; Martins, C.A.Q.; Lorenz, S.G.F.; Fu, F.H.; Smolinski, P.

    2010-01-01

    This study was done to determine whether there is a correlation between the notch volume and the notch width index (NWI) as measured on the three most frequently used radiographic views: the Holmblad 45A degrees, Holmblad 70A degrees, and Rosenberg view. The notch volume of 20 cadaveric knees was

  18. Notch2 Signaling Maintains NSC Quiescence in the Murine Ventricular-Subventricular Zone

    Directory of Open Access Journals (Sweden)

    Anna Engler

    2018-01-01

    Full Text Available Neurogenesis continues in the ventricular-subventricular zone (V-SVZ of the adult forebrain from quiescent neural stem cells (NSCs. V-SVZ NSCs are a reservoir for new olfactory bulb (OB neurons that migrate through the rostral migratory stream (RMS. To generate neurons, V-SVZ NSCs need to activate and enter the cell cycle. The mechanisms underlying NSC transition from quiescence to activity are poorly understood. We show that Notch2, but not Notch1, signaling conveys quiescence to V-SVZ NSCs by repressing cell-cycle-related genes and neurogenesis. Loss of Notch2 activates quiescent NSCs, which proliferate and generate new neurons of the OB lineage. Notch2 deficiency results in accelerated V-SVZ NSC exhaustion and an aging-like phenotype. Simultaneous loss of Notch1 and Notch2 resembled the total loss of Rbpj-mediated canonical Notch signaling; thus, Notch2 functions are not compensated in NSCs, and Notch2 is indispensable for the maintenance of NSC quiescence in the adult V-SVZ.

  19. Notch signaling inhibitor DAPT provides protection against acute craniocerebral injury.

    Directory of Open Access Journals (Sweden)

    Hong-Mei Zhang

    Full Text Available Notch signaling pathway is involved in many physiological and pathological processes. The γ-secretase inhibitor DAPT inhibits Notch signaling pathway and promotes nerve regeneration after cerebral ischemia. However, neuroprotective effects of DAPT against acute craniocerebral injury remain unclear. In this study, we established rat model of acute craniocerebral injury, and found that with the increase of damage grade, the expression of Notch and downstream protein Hes1 and Hes5 expression gradually increased. After the administration of DAPT, the expression of Notch, Hes1 and Hes5 was inhibited, apoptosis and oxidative stress decreased, neurological function and cognitive function improved. These results suggest that Notch signaling can be used as an indicator to assess the severity of post-traumatic brain injury. Notch inhibitor DAPT can reduce oxidative stress and apoptosis after acute craniocerebral injury, and is a potential drug for the treatment of acute craniocerebral injury.

  20. TRAIL receptor upregulation and the implication of KRAS/BRAF mutations in human colon cancer tumours

    Czech Academy of Sciences Publication Activity Database

    Oikonomou, E.; Kosmidou, V.; Katseli, A.; Kothonidis, K.; Mourtzoukou, D.; Kontogeorgos, G.; Anděra, Ladislav; Zografos, G.; Pintzas, A.

    2009-01-01

    Roč. 125, č. 9 (2009), s. 2127-2135 ISSN 0020-7136 R&D Projects: GA MŠk 1M0506 Grant - others:EC(XE) LSHC-CT-2006-037278 Institutional research plan: CEZ:AV0Z50520514 Keywords : colorectal tumours * TRAIL receptors expression * KRAS/ BRAF oncogenic mutations Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.722, year: 2009

  1. The hippo pathway promotes Notch signaling in regulation of cell differentiation, proliferation, and oocyte polarity.

    Directory of Open Access Journals (Sweden)

    Jianzhong Yu

    2008-03-01

    Full Text Available Specification of the anterior-posterior axis in Drosophila oocytes requires proper communication between the germ-line cells and the somatically derived follicular epithelial cells. Multiple signaling pathways, including Notch, contribute to oocyte polarity formation by controlling the temporal and spatial pattern of follicle cell differentiation and proliferation. Here we show that the newly identified Hippo tumor-suppressor pathway plays a crucial role in the posterior follicle cells in the regulation of oocyte polarity. Disruption of the Hippo pathway, including major components Hippo, Salvador, and Warts, results in aberrant follicle-cell differentiation and proliferation and dramatic disruption of the oocyte anterior-posterior axis. These phenotypes are related to defective Notch signaling in follicle cells, because misexpression of a constitutively active form of Notch alleviates the oocyte polarity defects. We also find that follicle cells defective in Hippo signaling accumulate the Notch receptor and display defects in endocytosis markers. Our findings suggest that the interaction between Hippo and classic developmental pathways such as Notch is critical to spatial and temporal regulation of differentiation and proliferation and is essential for development of the body axes in Drosophila.

  2. SOX1 links the function of neural patterning and Notch signalling in the ventral spinal cord during the neuron-glial fate switch

    Energy Technology Data Exchange (ETDEWEB)

    Genethliou, Nicholas; Panayiotou, Elena [The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios, 2370 Nicosia (Cyprus); Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus); Panayi, Helen; Orford, Michael; Mean, Richard; Lapathitis, George; Gill, Herman; Raoof, Sahir [The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios, 2370 Nicosia (Cyprus); Gasperi, Rita De; Elder, Gregory [James J. Peters VA Medical Center, Research and Development (3F22), 130 West Kingsbridge Road, Bronx, NY 10468 (United States); Kessaris, Nicoletta; Richardson, William D. [Wolfson Institute for Biomedical Research and Research Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT (United Kingdom); Malas, Stavros, E-mail: smalas@cing.ac.cy [The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios, 2370 Nicosia (Cyprus); Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus)

    2009-12-25

    During neural development the transition from neurogenesis to gliogenesis, known as the neuron-glial ({Nu}/G) fate switch, requires the coordinated function of patterning factors, pro-glial factors and Notch signalling. How this process is coordinated in the embryonic spinal cord is poorly understood. Here, we demonstrate that during the N/G fate switch in the ventral spinal cord (vSC) SOX1 links the function of neural patterning and Notch signalling. We show that, SOX1 expression in the vSC is regulated by PAX6, NKX2.2 and Notch signalling in a domain-specific manner. We further show that SOX1 regulates the expression of Hes1 and that loss of Sox1 leads to enhanced production of oligodendrocyte precursors from the pMN. Finally, we show that Notch signalling functions upstream of SOX1 during this fate switch and is independently required for the acquisition of the glial fate perse by regulating Nuclear Factor I A expression in a PAX6/SOX1/HES1/HES5-independent manner. These data integrate functional roles of neural patterning factors, Notch signalling and SOX1 during gliogenesis.

  3. Systematic Design of Trypsin Cleavage Site Mutated Exendin4-Cysteine 1, an Orally Bioavailable Glucagon-Like Peptide-1 Receptor Agonist

    Directory of Open Access Journals (Sweden)

    Wenbo Sai

    2017-03-01

    Full Text Available Exendin-4 is a strong therapeutic candidate for the treatment of metabolic syndrome. Related receptor agonist drugs have been on the market since 2005. However, technical limitations and the pain caused by subcutaneous injection have severely limited patient compliance. The goal of the study is to investigate a biologically active exendin-4 analog could be administered orally. Using intraperitoneal glucose tolerance tests, we discovered that exendin4-cysteine administered by oral gavage had a distinct hypoglycemic effect in C57BL/6J mice. Using Rosetta Design and Amber, we designed and screened a series of exendin4-cysteine analogs to identify those that retained biological activity while resisting trypsin digestion. Trypsin Cleavage Site Mutated Exendin4-cysteine 1 (TSME-1, an analog whose bioactivity was similar to exendin-4 and was almost completely resistant to trypsin, was screened out. In addition, TSME-1 significantly normalized the blood glucose levels and the availability of TSME-1 was significantly higher than that of exendin-4 and exendin4-cysteine. Collectively orally administered TSME-1, a trypsin-resistant exendin-4 analog obtained by the system, is a strong candidate for future treatments of type 2 diabetes.

  4. Uncommon EGFR mutations in cytological specimens of 1,874 newly diagnosed Indonesian lung cancer patients

    Science.gov (United States)

    Syahruddin, Elisna; Wulandari, Laksmi; Sri Muktiati, Nunuk; Rima, Ana; Soeroso, Noni; Ermayanti, Sabrina; Levi, Michael; Hidajat, Heriawaty; Widjajahakim, Grace; Utomo, Ahmad Rusdan Handoyo

    2018-01-01

    Purpose We aimed to evaluate the distribution of individual epidermal growth factor receptor (EGFR) mutation subtypes found in routine cytological specimens. Patients and methods A retrospective audit was performed on EGFR testing results of 1,874 consecutive cytological samples of newly diagnosed or treatment-naïve Indonesian lung cancer patients (years 2015–2016). Testing was performed by ISO15189 accredited central laboratory. Results Overall test failure rate was 5.1%, with the highest failure (7.1%) observed in pleural effusion and lowest (1.6%) in needle aspiration samples. EGFR mutation frequency was 44.4%. Tyrosine kinase inhibitor (TKI)-sensitive common EGFR mutations (ins/dels exon 19, L858R) and uncommon mutations (G719X, T790M, L861Q) contributed 57.1% and 29%, respectively. Approximately 13.9% of mutation-positive patients carried a mixture of common and uncommon mutations. Women had higher EGFR mutation rate (52.9%) vs men (39.1%; pcytological techniques yielded similar success rate to detect EGFR mutations. Uncommon EGFR mutations were frequent events in Indonesian lung cancer patients. PMID:29615847

  5. Two families with normosmic congenital hypogonadotropic hypogonadism and biallelic mutations in KISS1R (KISS1 receptor: clinical evaluation and molecular characterization of a novel mutation.

    Directory of Open Access Journals (Sweden)

    Frédéric Brioude

    Full Text Available CONTEXT: KISS1R mutations have been reported in few patients with normosmic congenital hypogonadotropic hypogonadism (nCHH (OMIM #146110. OBJECTIVE: To describe in detail nCHH patients with biallelic KISS1R mutations belonging to 2 unrelated families, and to functionally characterize a novel KISS1R mutation. RESULTS: An original mutant, p.Tyr313His, was found in the homozygous state in 3 affected kindred (2 females and 1 male from a consanguineous Portuguese family. This mutation, located in the seventh transmembrane domain, affects a highly conserved amino acid, perturbs the conformation of the transmembrane segment, and impairs MAP kinase signaling and intracellular calcium release. In the second family, a French Caucasian male patient with nCHH was found to carry two recurrent mutations in the compound heterozygous state (p.Leu102Pro/Stop399Arg. In this man, pulsatile GnRH (Gonadotropin Releasing Hormone administration restored pulsatile LH (Luteinizing Hormone secretion and testicular hormone secretion. Later, long-term combined gonadotropin therapy induced spermatogenesis, enabling 3 successive pregnancies that resulted in 2 miscarriages and the birth of a healthy boy. CONCLUSION: We show that a novel loss-of-function mutation (p.Tyr313His in the KISS1R gene can cause familial nCHH, revealing the crucial role of this amino acid in KISS1R function. The observed restoration of gonadotropin secretion by exogenous GnRH administration further supports, in humans, the hypothalamic origin of the gonadotropin deficiency in this genetic form of nCHH.

  6. [Mutations of ACVRL1 gene in a pedigree with hereditary hemorrhagic telangiectasia].

    Science.gov (United States)

    Luo, Jie-wei; Chen, Hui; Yang, Liu-qing; Zhu, Ai-lan; Wu, Yan-an; Li, Jian-wei

    2008-06-01

    To identify the activin A receptor type II-like 1 gene (ACVRL1) mutations in a Chinese family with hereditary hemorrhagic telangiectasia (HHT2). The exons 3, 7 and 8 of ACVRL1 gene of the proband and her five family members were amplified by polymerase chain reaction (PCR), and the PCR products were sequenced. The proband had obvious telangiectasis of gastric mucosa, and small arteriovenous fistula in the right kidney. All the patients in the HHT2 family had iterative epistaxis or bleeding in other sites, and had telangiectasis of nasal mucosa, tunica mucosa oris and finger tips. ACVRL1 gene analysis confirmed that there is frameshift mutation caused by deletion of G145 in exon 3 in the 4 patients, but the mutation is absent in 2 members without HHT2. The HHT2 family is caused by a 145delG mutation of ACVRL1 gene, resulting in frameshift and a new stop codon at codon 53.

  7. Down-regulation of Notch signaling pathway reverses the Th1/Th2 imbalance in tuberculosis patients.

    Science.gov (United States)

    Li, Qifeng; Zhang, Hui; Yu, Liang; Wu, Chao; Luo, Xinhui; Sun, He; Ding, Jianbing

    2018-01-01

    Th1/Th2 imbalance to Th2 is of significance in the peripheral immune responses in Tuberculosis (TB) development. However, the mechanisms for Th1/Th2 imbalance are still not well determined. Notch signaling pathway is involved in the peripheral T cell activation and effector cell differentiation. However, whether it affects Th1/Th2 imbalance in TB patients is still not known. Here, we used γ-secretase inhibitor (DAPT) to treat the peripheral blood mononuclear cells (PBMCs) from healthy people or individuals with latent or active TB infection in vitro, respectively. Then, the Th1/Th2 ratios were determined by flow cytometry, and cytokines of IFN-γ, IL-4, IL-10 in the culture supernatant were measured by CBA method. The Notch signal pathway associated proteins Hes1, GATA3 and T-bet were quantitated by real-time PCR or immunoblotting. Our results showed that DAPT effectively inhibited the protein level of Hes1. In TB patients, the Th2 ratio increased in the PBMCs, alone with the high expression of GATA3 and IL-4, resulting in the high ratios of Th2/Th1 and GATA3/T-bet in TB patients. However, Th2 cells ratio decreased after blocking the Notch signaling pathway by DAPT and the Th2/Th1 ratio in TB patients were DAPT dose-dependent, accompanied by the decrease of IL-4 and GATA3. But, its influence on Th1 ratio and Th1 related T-bet and IFN-γ levels were not significant. In conclusion, our results suggest that blocking Notch signaling by DAPT could inhibit Th2 responses and restore Th1/Th2 imbalance in TB patients. Copyright © 2017. Published by Elsevier B.V.

  8. Illegitimate V(D)J recombination-mediated deletions in Notch1 and Bcl11b are not sufficient for extensive clonal expansion and show minimal age or sex bias in frequency or junctional processing

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, Devin P., E-mail: devin.champagne@uvm.edu; Shockett, Penny E., E-mail: pshockett@selu.edu

    2014-03-15

    Highlights: • Examines illegitimate V(D)J deletion junctions in Notch1 and Bcl11b. • Suggests little influence of deletions alone on clonal outgrowth in wild-type mice. • No age or sex biases in frequency, clonality, or junctional processing observed. • Contrasts with previous results at TCRβ and HPRT1 loci. • Deletions in Bcl11b may be tolerated more easily than those in Notch1. - Abstract: Illegitimate V(D)J recombination at oncogenes and tumor suppressor genes is implicated in formation of several T cell malignancies. Notch1 and Bcl11b, genes involved in developing T cell specification, selection, proliferation, and survival, were previously shown to contain hotspots for deletional illegitimate V(D)J recombination associated with radiation-induced thymic lymphoma. Interestingly, these deletions were also observed in wild-type animals. In this study, we conducted frequency, clonality, and junctional processing analyses of Notch1 and Bcl11b deletions during mouse development and compared results to published analyses of authentic V(D)J rearrangements at the T cell receptor beta (TCRβ) locus and illegitimate V(D)J deletions observed at the human, nonimmune HPRT1 locus not involved in T cell malignancies. We detect deletions in Notch1 and Bcl11b in thymic and splenic T cell populations, consistent with cells bearing deletions in the circulating lymphocyte pool. Deletions in thymus can occur in utero, increase in frequency between fetal and postnatal stages, are detected at all ages examined between fetal and 7 months, exhibit only limited clonality (contrasting with previous results in radiation-sensitive mouse strains), and consistent with previous reports are more frequent in Bcl11b, partially explained by relatively high Recombination Signal Information Content (RIC) scores. Deletion junctions in Bcl11b exhibit greater germline nucleotide loss, while in Notch1 palindromic (P) nucleotides are more abundant, although average P nucleotide length is

  9. Endocardial to myocardial notch-wnt-bmp axis regulates early heart valve development.

    Directory of Open Access Journals (Sweden)

    Yidong Wang

    Full Text Available Endocardial to mesenchymal transformation (EMT is a fundamental cellular process required for heart valve formation. Notch, Wnt and Bmp pathways are known to regulate this process. To further address how these pathways coordinate in the process, we specifically disrupted Notch1 or Jagged1 in the endocardium of mouse embryonic hearts and showed that Jagged1-Notch1 signaling in the endocardium is essential for EMT and early valvular cushion formation. qPCR and RNA in situ hybridization assays reveal that endocardial Jagged1-Notch1 signaling regulates Wnt4 expression in the atrioventricular canal (AVC endocardium and Bmp2 in the AVC myocardium. Whole embryo cultures treated with Wnt4 or Wnt inhibitory factor 1 (Wif1 show that Bmp2 expression in the AVC myocardium is dependent on Wnt activity; Wnt4 also reinstates Bmp2 expression in the AVC myocardium of endocardial Notch1 null embryos. Furthermore, while both Wnt4 and Bmp2 rescue the defective EMT resulting from Notch inhibition, Wnt4 requires Bmp for its action. These results demonstrate that Jagged1-Notch1 signaling in endocardial cells induces the expression of Wnt4, which subsequently acts as a paracrine factor to upregulate Bmp2 expression in the adjacent AVC myocardium to signal EMT.

  10. [Novel nonsense mutation (p.Y113X) in the human growth hormone receptor gene in a Brazilian patient with Laron syndrome].

    Science.gov (United States)

    Diniz, Erik Trovão; Jorge, Alexander A L; Arnhold, Ivo J P; Rosenbloom, Arlan L; Bandeira, Francisco

    2008-11-01

    To date, about sixty different mutations within GH receptor (GHR) gene have been described in patients with GH insensitivity syndrome (GHI). In this report, we described a novel nonsense mutation of GHR. The patient was evaluated at the age of 6 yr, for short stature associated to clinical phenotype of GHI. GH, IGF-1, and GHBP levels were determined. The PCR products from exons 2-10 were sequenced. The patient had high GH (26 microg/L), low IGF-1 (22.5 ng/ml) and undetectable GHBP levels. The sequencing of GHR exon 5 disclosed adenine duplication at nucleotide 338 of GHR coding sequence (c.338dupA) in homozygous state. We described a novel mutation that causes a truncated GHR and a loss of receptor function due to the lack of amino acids comprising the transmembrane and intracellular regions of GHR protein, leading to GHI.

  11. Identification of a novel frameshift mutation in the ILDR1 gene in a UAE family, mutations review and phenotype genotype correlation.

    Directory of Open Access Journals (Sweden)

    Abdelaziz Tlili

    Full Text Available Autosomal recessive non-syndromic hearing loss is one of the most common monogenic diseases. It is characterized by high allelic and locus heterogeneities that make a precise diagnosis difficult. In this study, whole-exome sequencing was performed for an affected patient allowing us to identify a new frameshift mutation (c.804delG in the Immunoglobulin-Like Domain containing Receptor-1 (ILDR1 gene. Direct Sanger sequencing and segregation analysis were performed for the family pedigree. The mutation was homozygous in all affected siblings but heterozygous in the normal consanguineous parents. The present study reports a first ILDR1 gene mutation in the UAE population and confirms that the whole-exome sequencing approach is a robust tool for the diagnosis of monogenic diseases with high levels of allelic and locus heterogeneity. In addition, by reviewing all reported ILDR1 mutations, we attempt to establish a genotype phenotype correlation to explain the phenotypic variability observed at low frequencies.

  12. Quantification of mutation-derived bias for alternate mating functionalities of the Saccharomyces cerevisiae Ste2p pheromone receptor.

    Science.gov (United States)

    Choudhary, Pooja; Loewen, Michele C

    2016-01-01

    Although well documented for mammalian G-protein-coupled receptors, alternate functionalities and associated alternate signalling remain to be unequivocally established for the Saccharomyces cerevisiae pheromone Ste2p receptor. Here, evidence supporting alternate functionalities for Ste2p is re-evaluated, extended and quantified. In particular, strong mating and constitutive signalling mutations, focusing on residues S254, P258 and S259 in TM6 of Ste2p, are stacked and investigated in terms of their effects on classical G-protein-mediated signal transduction associated with cell cycle arrest, and alternatively, their impact on downstream mating projection and zygote formation events. In relative dose response experiments, accounting for systemic and observational bias, mutational-derived functional differences were observed, validating the S254L-derived bias for downstream mating responses and highlighting complex relationships between TM6-mutation derived constitutive signalling and ligand-induced functionalities. Mechanistically, localization studies suggest that alterations to receptor trafficking may contribute to mutational bias, in addition to expected receptor conformational stabilization effects. Overall, these results extend previous observations and quantify the contributions of Ste2p variants to mediating cell cycle arrest versus downstream mating functionalities. © Crown copyright 2015.

  13. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    Science.gov (United States)

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  14. Deep lateral notch sign and double notch sign in complete tears of the anterior cruciate ligament: MR imaging evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Grimberg, Alexandre [University of California, San Diego School of Medicine, Division of Musculoskeletal Radiology, Department of Radiology, San Diego, CA (United States); Universidade Federal de Sao Paulo, Department of Diagnostic Imaging, Sao Paulo, SP (Brazil); Shirazian, Hoda; Torshizy, Hamid; Smitaman, Edward; Resnick, Donald L. [University of California, San Diego School of Medicine, Division of Musculoskeletal Radiology, Department of Radiology, San Diego, CA (United States); Chang, Eric Y. [Veterans Administrations San Diego Healthcare Systems, Osteoradiology Section, Department of Radiology, San Diego, CA (United States); University of California, San Diego School of Medicine, Division of Musculoskeletal Radiology, Department of Radiology, San Diego, CA (United States)

    2014-11-20

    To systematically compare the notches of the lateral femoral condyle (LFC) in patients with and without complete tears of the anterior cruciate ligament (ACL) in MR studies by (1) evaluating the dimensions of the lateral condylopatellar sulcus; (2) evaluating the presence and appearance of an extra or a double notch and its association with such tears. This retrospective study was approved by our institutional review board, and informed written patient consent was waived. In 58 cases of complete ACL tears and 37 control cases with intact ACL, the number of notches on the LFC was determined, and the depth and anteroposterior (AP) length of each notch were measured in each third of the LFC. The chi-square test, t-test, and logistic regression model were used to analyze demographic data and image findings, as appropriate. Presence of more than one notch demonstrated a sensitivity of 17.2 %, specificity of 100 %, positive predictive value of 100 %, and negative predictive value of 43.5 % for detecting a complete ACL tear. Lateral third depth measurement (p = 0.028) was a significant associated finding with a complete ACL tear. A deep notch in the lateral third of the LFC is a significant associated finding with a complete ACL tear when compared with an ACL-intact control group, and the presence of more than one notch is a specific but insensitive sign of such a tear. (orig.)

  15. Crystal structure of type I ryanodine receptor amino-terminal [beta]-trefoil domain reveals a disease-associated mutation 'hot spot' loop

    Energy Technology Data Exchange (ETDEWEB)

    Amador, Fernando J.; Liu, Shuang; Ishiyama, Noboru; Plevin, Michael J.; Wilson, Aaron; MacLennan, David H.; Ikura, Mitsuhiko; (Toronto)

    2009-12-01

    Muscle contraction and relaxation is regulated by transient elevations of myoplasmic Ca{sup 2+}. Ca{sup 2+} is released from stores in the lumen of the sarco(endo)plasmic reticulum (SER) to initiate formation of the Ca{sup 2+} transient by activation of a class of Ca{sup 2+} release channels referred to as ryanodine receptors (RyRs) and is pumped back into the SER lumen by Ca{sup 2+}-ATPases (SERCAs) to terminate the Ca{sup 2+} transient. Mutations in the type 1 ryanodine receptor gene, RYR1, are associated with 2 skeletal muscle disorders, malignant hyperthermia (MH), and central core disease (CCD). The evaluation of proposed mechanisms by which RyR1 mutations cause MH and CCD is hindered by the lack of high-resolution structural information. Here, we report the crystal structure of the N-terminal 210 residues of RyR1 (RyR{sub NTD}) at 2.5 {angstrom}. The RyR{sub NTD} structure is similar to that of the suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor (IP3Rsup), but lacks most of the long helix-turn-helix segment of the 'arm' domain in IP3Rsup. The N-terminal {beta}-trefoil fold, found in both RyR and IP{sub 3}R, is likely to play a critical role in regulatory mechanisms in this channel family. A disease-associated mutation 'hot spot' loop was identified between strands 8 and 9 in a highly basic region of RyR1. Biophysical studies showed that 3 MH-associated mutations (C36R, R164C, and R178C) do not adversely affect the global stability or fold of RyRNTD, supporting previously described mechanisms whereby mutations perturb protein-protein interactions.

  16. Recurrent nonsense mutations in the growth hormone receptor from patients with Laron dwarfism.

    Science.gov (United States)

    Amselem, S; Sobrier, M L; Duquesnoy, P; Rappaport, R; Postel-Vinay, M C; Gourmelen, M; Dallapiccola, B; Goossens, M

    1991-01-01

    In addition to its classical effects on growth, growth hormone (GH) has been shown to have a number of other actions, all of which are initiated by an interaction with specific high affinity receptors present in a variety of tissues. Purification of a rabbit liver protein via its ability to bind GH has allowed the isolation of a cDNA encoding a putative human growth hormone receptor that belongs to a new class of transmembrane receptors. We have previously shown that this putative growth hormone receptor gene is genetically linked to Laron dwarfism, a rare autosomal recessive syndrome caused by target resistance to GH. Nevertheless, the inability to express the corresponding full-length coding sequence and the lack of a test for growth-promoting function have hampered a direct confirmation of its role in growth. We have now identified three nonsense mutations within this growth hormone receptor gene, lying at positions corresponding to the amino terminal extremity and causing a truncation of the molecule, thereby deleting a large portion of both the GH binding domain and the full transmembrane and intracellular domains. Three independent patients with Laron dwarfism born of consanguineous parents were homozygous for these defects. Two defects were identical and consisted of a CG to TG transition. Not only do these results confirm the growth-promoting activity of this receptor but they also suggest that CpG doublets may represent hot spots for mutations in the growth hormone receptor gene that are responsible for hereditary dwarfism. Images PMID:1999489

  17. Chemotherapeutic treatment is associated with Notch1 induction in cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Kamstrup, Maria R; Biskup, Edyta; Manfè, Valentina

    2017-01-01

    with doxorubicin, etoposide, or gemcitabine compared to chemotherapy alone decreased cell viability by 12, 20, and 26%, respectively (p UVA (PUVA) (in MyLa2000, Hut78, and SeAx) increased the expression of Notch1 family members. Our results...

  18. Subclinical hyperthyroidism due to a thyrotropin receptor (TSHR) gene mutation (S505R).

    Science.gov (United States)

    Pohlenz, Joachim; Pfarr, Nicole; Krüger, Silvia; Hesse, Volker

    2006-12-01

    To identify the molecular defect by which non-autoimmune subclinical hyperthyroidism was caused in a 6-mo-old infant who presented with weight loss. Congenital non-autoimmune hyperthyroidism is caused by activating germline mutations in the thyrotropin receptor (TSHR) gene. Therefore, the TSHR gene was sequenced directly from the patient's genomic DNA. Molecular analysis revealed a heterozygous point mutation (S505R) in the TSHR gene as the underlying defect. A constitutively activating mutation in the TSHR gene has to be considered not only in patients with severe congenital non-autoimmune hyperthyroidism, but also in children with subclinical non-autoimmune hyperthyroidism.

  19. Novel skeletal muscle ryanodine receptor mutation in a large Brazilian family with malignant hyperthermia.

    Science.gov (United States)

    McWilliams, S; Nelson, T; Sudo, R T; Zapata-Sudo, G; Batti, M; Sambuughin, N

    2002-07-01

    Malignant hyperthermia (MH) is an autosomal dominant disorder that predisposes susceptible individuals to a potentially life-threatening crisis when exposed to commonly used anesthetics. Mutations in the skeletal muscle calcium release channel, ryanodine receptor (RYR1) are associated with MH in over 50% of affected families. Linkage analysis of the RYR1 gene region at 19q13 was performed in a large Brazilian family and a distinct disease co-segregating haplotype was revealed in the majority of members with diagnosis of MH. Subsequent sequencing of RYR1 mutational hot spots revealed a nucleotide substitution of C to T at position 7062, causing a novel amino acid change from Arg2355 to Cys associated with MH in the family. Haplotype analysis of the RYR1 gene area at 19q13 in the family with multiple MH members is an important tool in identification of genetic cause underlying this disease.

  20. Progranulin promotes peripheral nerve regeneration and reinnervation: role of notch signaling.

    Science.gov (United States)

    Altmann, Christine; Vasic, Verica; Hardt, Stefanie; Heidler, Juliana; Häussler, Annett; Wittig, Ilka; Schmidt, Mirko H H; Tegeder, Irmgard

    2016-10-22

    Peripheral nerve injury is a frequent cause of lasting motor deficits and chronic pain. Although peripheral nerves are capable of regrowth they often fail to re-innervate target tissues. Using newly generated transgenic mice with inducible neuronal progranulin overexpression we show that progranulin accelerates axonal regrowth, restoration of neuromuscular synapses and recovery of sensory and motor functions after injury of the sciatic nerve. Oppositely, progranulin deficient mice have long-lasting deficits in motor function tests after nerve injury due to enhanced losses of motor neurons and stronger microglia activation in the ventral horn of the spinal cord. Deep proteome and gene ontology (GO) enrichment analysis revealed that the proteins upregulated in progranulin overexpressing mice were involved in 'regulation of transcription' and 'response to insulin' (GO terms). Transcription factor prediction pointed to activation of Notch signaling and indeed, co-immunoprecipitation studies revealed that progranulin bound to the extracellular domain of Notch receptors, and this was functionally associated with higher expression of Notch target genes in the dorsal root ganglia of transgenic mice with neuronal progranulin overexpression. Functionally, these transgenic mice recovered normal gait and running, which was not achieved by controls and was stronger impaired in progranulin deficient mice. We infer that progranulin activates Notch signaling pathways, enhancing thereby the regenerative capacity of partially injured neurons, which leads to improved motor function recovery.

  1. Tyrosine phosphorylation and proteolytic cleavage of Notch are required for non-canonical Notch/Abl signaling in Drosophila axon guidance.

    Science.gov (United States)

    Kannan, Ramakrishnan; Cox, Eric; Wang, Lei; Kuzina, Irina; Gu, Qun; Giniger, Edward

    2018-01-17

    Notch signaling is required for the development and physiology of nearly every tissue in metazoans. Much of Notch signaling is mediated by transcriptional regulation of downstream target genes, but Notch controls axon patterning in Drosophila by local modulation of Abl tyrosine kinase signaling, via direct interactions with the Abl co-factors Disabled and Trio. Here, we show that Notch-Abl axonal signaling requires both of the proteolytic cleavage events that initiate canonical Notch signaling. We further show that some Notch protein is tyrosine phosphorylated in Drosophila , that this form of the protein is selectively associated with Disabled and Trio, and that relevant tyrosines are essential for Notch-dependent axon patterning but not for canonical Notch-dependent regulation of cell fate. Based on these data, we propose a model for the molecular mechanism by which Notch controls Abl signaling in Drosophila axons. © 2018. Published by The Company of Biologists Ltd.

  2. Band-notched spiral antenna

    Science.gov (United States)

    Jeon, Jae; Chang, John

    2018-03-13

    A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.

  3. Pharmacogenetics and pathophysiology of CACNA1S mutations in malignant hyperthermia.

    Science.gov (United States)

    Beam, Teresa A; Loudermilk, Emily F; Kisor, David F

    2017-02-01

    A review of the pharmacogenetics (PGt) and pathophysiology of calcium voltage-gated channel subunit alpha1 S (CACNA1S) mutations in malignant hyperthermia susceptibility type 5 (MHS5; MIM #60188) is presented. Malignant hyperthermia (MH) is a life-threatening hypermetabolic state of skeletal muscle usually induced by volatile, halogenated anesthetics and/or the depolarizing neuromuscular blocker succinylcholine. In addition to ryanodine receptor 1 (RYR1) mutations, several CACNA1S mutations are known to be risk factors for increased susceptibility to MH (MHS). However, the presence of these pathogenic CACNA1S gene variations cannot be used to positively predict MH since the condition is genetically heterogeneous with variable expression and incomplete penetrance. At present, one or at most six CACNA1S mutations display significant linkage or association either to clinically diagnosed MH or to MHS as determined by contracture testing. Additional pathogenic variants in CACNA1S, either alone or in combination with genes affecting Ca 2+ homeostasis, are likely to be discovered in association to MH as whole exome sequencing becomes more commonplace. Copyright © 2017 the American Physiological Society.

  4. High frequency of potentially pathogenic SORL1 mutations in autosomal dominant early-onset Alzheimer disease.

    Science.gov (United States)

    Pottier, C; Hannequin, D; Coutant, S; Rovelet-Lecrux, A; Wallon, D; Rousseau, S; Legallic, S; Paquet, C; Bombois, S; Pariente, J; Thomas-Anterion, C; Michon, A; Croisile, B; Etcharry-Bouyx, F; Berr, C; Dartigues, J-F; Amouyel, P; Dauchel, H; Boutoleau-Bretonnière, C; Thauvin, C; Frebourg, T; Lambert, J-C; Campion, D

    2012-09-01

    Performing exome sequencing in 14 autosomal dominant early-onset Alzheimer disease (ADEOAD) index cases without mutation on known genes (amyloid precursor protein (APP), presenilin1 (PSEN1) and presenilin2 (PSEN2)), we found that in five patients, the SORL1 gene harbored unknown nonsense (n=1) or missense (n=4) mutations. These mutations were not retrieved in 1500 controls of same ethnic origin. In a replication sample, including 15 ADEOAD cases, 2 unknown non-synonymous mutations (1 missense, 1 nonsense) were retrieved, thus yielding to a total of 7/29 unknown mutations in the combined sample. Using in silico predictions, we conclude that these seven private mutations are likely to have a pathogenic effect. SORL1 encodes the Sortilin-related receptor LR11/SorLA, a protein involved in the control of amyloid beta peptide production. Our results suggest that besides the involvement of the APP and PSEN genes, further genetic heterogeneity, involving another gene of the same pathway is present in ADEOAD.

  5. Occurrence of mutations in the epidermal growth factor receptor gene in X-ray-induced rat lung tumors

    International Nuclear Information System (INIS)

    Kitahashi, Tsukasa; Takahashi, Mami; Yamada, Yutaka

    2008-01-01

    Epidermal growth factor receptor (EGFR) gene alterations have been found in human lung cancers. However, there is no information on the factors inducing EGFR mutations. In rodents, K-ras mutations are frequently found in many lung carcinogenesis models, but hitherto, Egfr mutations have not been reported. Their presence was therefore investigated in representative lung carcinogenesis models with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N-nitrosobis(2-hydroxypropyl)amine (BHP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MelQx) and ethyl carbamate (urethane), as well as X-ray irradiation. With the chemical carcinogenesis models, no mutations were detected in Egfr, which is in clear contrast to the high rates observed in either codon 12 or 61 of K-ras (21/23 of the lung tumors induced with NNK, 4/5 with MelQx, 1/4 with urethane and 7/18 with BHP). However, in the X-ray-induced lung tumors, Egfr mutations with amino acid substitution were observed in exons 18 and 21 (4/12, 33%), but no activating mutation of K-ras was detected. In addition, one and four silent mutations were identified in K-ras (exon 1) and Egfr (exons 18, 20 and 21), respectively. Most mutations in both Egfr and K-ras were G/C→A/T transitions (7/8, 88% and 31/34, 91%, respectively). Although, the mutational patterns in equivalent human lesions were not completely coincident, this first report of Egfr mutations in an experimental lung tumor model suggests that X-rays or other factors producing oxygen radicals could cause EGFR mutations in some proportion of lung cancers in humans. (author)

  6. Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors

    DEFF Research Database (Denmark)

    Sutton, Lesley-Ann; Young, Emma; Baliakas, Panagiotis

    2016-01-01

    We report on markedly different frequencies of genetic lesions within subsets of chronic lymphocytic leukemia patients carrying mutated or unmutated stereotyped B-cell receptor immunoglobulins in the largest cohort (n=565) studied for this purpose. By combining data on recurrent gene mutations...... subsets implies that the mechanisms underlying clinical aggressiveness are not uniform, but rather support the existence of distinct genetic pathways of clonal evolution governed by a particular stereotyped B-cell receptor selecting a certain molecular lesion(s)....

  7. Next-generation sequencing and FISH studies reveal the appearance of gene mutations and chromosomal abnormalities in hematopoietic progenitors in chronic lymphocytic leukemia

    Directory of Open Access Journals (Sweden)

    Miguel Quijada-Álamo

    2017-04-01

    Full Text Available Abstract Background Chronic lymphocytic leukemia (CLL is a highly genetically heterogeneous disease. Although CLL has been traditionally considered as a mature B cell leukemia, few independent studies have shown that the genetic alterations may appear in CD34+ hematopoietic progenitors. However, the presence of both chromosomal aberrations and gene mutations in CD34+ cells from the same patients has not been explored. Methods Amplicon-based deep next-generation sequencing (NGS studies were carried out in magnetically activated-cell-sorting separated CD19+ mature B lymphocytes and CD34+ hematopoietic progenitors (n = 56 to study the mutational status of TP53, NOTCH1, SF3B1, FBXW7, MYD88, and XPO1 genes. In addition, ultra-deep NGS was performed in a subset of seven patients to determine the presence of mutations in flow-sorted CD34+CD19− early hematopoietic progenitors. Fluorescence in situ hybridization (FISH studies were performed in the CD34+ cells from nine patients of the cohort to examine the presence of cytogenetic abnormalities. Results NGS studies revealed a total of 28 mutations in 24 CLL patients. Interestingly, 15 of them also showed the same mutations in their corresponding whole population of CD34+ progenitors. The majority of NOTCH1 (7/9 and XPO1 (4/4 mutations presented a similar mutational burden in both cell fractions; by contrast, mutations of TP53 (2/2, FBXW7 (2/2, and SF3B1 (3/4 showed lower mutational allele frequencies, or even none, in the CD34+ cells compared with the CD19+ population. Ultra-deep NGS confirmed the presence of FBXW7, MYD88, NOTCH1, and XPO1 mutations in the subpopulation of CD34+CD19− early hematopoietic progenitors (6/7. Furthermore, FISH studies showed the presence of 11q and 13q deletions (2/2 and 3/5, respectively in CD34+ progenitors but the absence of IGH cytogenetic alterations (0/2 in the CD34+ cells. Combining all the results from NGS and FISH, a model of the appearance and expansion of

  8. miR-148a-3p Mediates Notch Signaling to Promote the Differentiation and M1 Activation of Macrophages

    Directory of Open Access Journals (Sweden)

    Fei Huang

    2017-10-01

    Full Text Available The Notch pathway plays critical roles in the differentiation and polarized activation of macrophages; however, the downstream molecular mechanisms underlying Notch activity in macrophages remain elusive. Our previous study has identified a group of microRNAs that mediate Notch signaling to regulate macrophage activation and tumor-associated macrophages (TAMs. In this study, we demonstrated that miR-148a-3p functions as a novel downstream molecule of Notch signaling to promote the differentiation of monocytes into macrophages in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF. Meanwhile, miR-148a-3p promoted M1 and inhibited M2 polarization of macrophages upon Notch activation. Macrophages overexpressing miR-148a-3p exhibited enhanced ability to engulf and kill bacteria, which was mediated by excessive production of reactive oxygen species (ROS. Further studies using reporter assay and Western blotting identified Pten as a direct target gene of miR-148a-3p in macrophages. Macrophages overexpressing miR-148a-3p increased their ROS production through the PTEN/AKT pathway, likely to defend against bacterial invasion. Moreover, miR-148a-3p also enhanced M1 macrophage polarization and pro-inflammatory responses through PTEN/AKT-mediated upregulation of NF-κB signaling. In summary, our data establish a novel molecular mechanism by which Notch signaling promotes monocyte differentiation and M1 macrophage activation through miR-148a-3p, and suggest that miR-148a-3p-modified monocytes or macrophages are potential new tools for the treatment of inflammation-related diseases.

  9. Hereditary mixed polyposis syndrome due to a BMPR1A mutation.

    LENUS (Irish Health Repository)

    O'Riordan, J M

    2010-06-01

    The conditions Juvenile Polyposis Syndrome (JPS) and Hereditary Mixed Polyposis Syndrome (HMPS) are associated with an increased risk of colorectal carcinoma. The genetic mechanisms which explain these conditions have until recently been poorly understood. Recent interest has focused on the transforming growth factor (TGF)-beta signalling pathway and, in particular, on mutations in the SMAD4 gene. However, not all cases of JPS and HMPS have mutations in SMAD4 and focus has now shifted to other components of the TGF-beta pathway to clarify the genetic mechanisms involved in these conditions. In this report, we describe the significance of a bone morphogenetic protein receptor type 1A gene mutation in an Irish family.

  10. Activating thyrotropin receptor mutations in histologically heterogeneous hyperfunctioning nodules of multinodular goiter.

    Science.gov (United States)

    Tonacchera, M; Vitti, P; Agretti, P; Giulianetti, B; Mazzi, B; Cavaliere, R; Ceccarini, G; Fiore, E; Viacava, P; Naccarato, A; Pinchera, A; Chiovato, L

    1998-07-01

    Activating thyrotropin (TSH) receptor mutations have been found in toxic adenomas and in hot nodules contained in toxic multinodular goiter. The typical feature of multinodular goiter is the heterogeneity in morphology and function of different follicles within the same enlarged gland. In this report we describe a patient with a huge multinodular goiter, normal free triiodothyronine (FT3) and free thyroxine (FT4) serum values, and subnormal TSH serum concentration. Thyroid scintiscan showed two hot areas corresponding to the basal and apical nodules of the left lobe. The right lobe was poorly visualized by the radioisotope. The patient underwent thyroidectomy, and histological examination of the tissue was performed. Genomic DNA was extracted from the tissue specimen and direct sequencing of the TSH receptor and Gs alpha genes was done. At histology, one hyperfunctioning nodule had the typical microscopic structure of thyroid adenomas, and the other contained multiple macrofollicular areas not confined by a capsule. In spite of this histological difference, both hyperfunctioning nodules harbored a mutation of the thyrotropin receptor (TSHr) gene: an isoleucine instead of a threonine in position 632 (T632I) in the first nodule and a methionine instead of an isoleucine in position 486 (I486M) in the second nodule. In conclusion, our findings show for the first time that gain-of-function TSHr mutations are not only present in hyperfunctioning thyroid nodules with the histological features of the true thyroid adenomas, but also in hyperfunctioning hyperplastic nodules contained in the same multinodular goiter.

  11. MicroRNA-101 regulates T-cell acute lymphoblastic leukemia progression and chemotherapeutic sensitivity by targeting Notch1.

    Science.gov (United States)

    Qian, Lu; Zhang, Wanggang; Lei, Bo; He, Aili; Ye, Lianhong; Li, Xingzhou; Dong, Xin

    2016-11-01

    The present study aimed to investigate the role of microRNA (miR)-101 in acute lymphoblastic leukemia progression and chemoresistance. Furthermore, a novel target gene of miR-101 was identified. Here, we confirmed that miR-101 was significantly downregulated in the blood samples of patients with T-cell acute lymphoblastic leukemia (T-ALL) compared with the healthy controls, as determined by reverse transcription quantitative polymerase chain reaction (RTqPCR) analysis. The in vitro experiments demonstrated that miR-101 significantly repressed the proliferation and invasion, and induced potent apoptosis in Jurkat cells, as determined by CCK-8, flow cytometer and cell invasion assays. Luciferase assay confirmed that Notch1 was a target gene of miR-101, and western blotting showed that miR-101 suppressed the expression of Notch1 at the protein level. Moreover, functional restoration assays revealed that Notch1 mediates the effects of miR-101 on Jurkat cell proliferation, apoptosis and invasion. miR-101 enhanced the sensitivity of Jurkat cells to the chemotherapeutic agent adriamycin. Taken together, our results show for the first time that miR-101 acts as a tumor suppressor in T-cell acute lymphoblastic leukaemia and it could enhance chemotherapeutic sensitivity. Furthermore, Notch1 was identified to be a novel target of miR-101. This study indicates that miR-101 may represent a potential therapeutic target for T-cell acute lymphoblastic leukemia intervention.

  12. Notch signaling patterns neurogenic ectoderm and regulates the asymmetric division of neural progenitors in sea urchin embryos.

    Science.gov (United States)

    Mellott, Dan O; Thisdelle, Jordan; Burke, Robert D

    2017-10-01

    We have examined regulation of neurogenesis by Delta/Notch signaling in sea urchin embryos. At gastrulation, neural progenitors enter S phase coincident with expression of Sp-SoxC. We used a BAC containing GFP knocked into the Sp-SoxC locus to label neural progenitors. Live imaging and immunolocalizations indicate that Sp-SoxC-expressing cells divide to produce pairs of adjacent cells expressing GFP. Over an interval of about 6 h, one cell fragments, undergoes apoptosis and expresses high levels of activated Caspase3. A Notch reporter indicates that Notch signaling is activated in cells adjacent to cells expressing Sp-SoxC. Inhibition of γ-secretase, injection of Sp-Delta morpholinos or CRISPR/Cas9-induced mutation of Sp-Delta results in supernumerary neural progenitors and neurons. Interfering with Notch signaling increases neural progenitor recruitment and pairs of neural progenitors. Thus, Notch signaling restricts the number of neural progenitors recruited and regulates the fate of progeny of the asymmetric division. We propose a model in which localized signaling converts ectodermal and ciliary band cells to neural progenitors that divide asymmetrically to produce a neural precursor and an apoptotic cell. © 2017. Published by The Company of Biologists Ltd.

  13. A new point mutation in the deoxyribonuclic acid-binding domain of the vitamine D receptor in a kindred with hereditary 1,25-dihydroxyvitamin d-resistant rickets

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Hideki; Miyake, Hiroshi; Nagashima, Kanji; Kuroume, Takayoshi (Gunma Univ. School of Medicine (Japan)); Ozone, K.; Pike, J.W. (Baylor College of Medicine, Houston, TX (United States))

    1993-02-01

    Hereditary 1,25-dihydroxyvitamin D [1,25-(OH)[sub 2]D]-resistant rickets (HVDRR) is a rare disorder characterized by rickets, alopecia, hypocalcemia, secondary hyperparathyroidism, and normal or elevated serum 1,25-dihydroxyvitamin D levels. The authors describe a patient with typical clinical characteristics of HVDRR, except that elevated levels of serum phosphorus were present coincident with increased levels of serum intact PTH. The patient was treated with high dose calcium infusion after an ineffective treatment with 1[alpha]-hydroxyvitamin D[sub 3]; serum calcium and phosphorus as well as intact PTH and alkaline phosphatase levels were normalized. Evaluation of phytohemagglutinin-activated lymphocytes derived from this patient revealed that 1,25-(OH)[sub 2]D[sub 3] was unable to inhibit thymidine incooperation, a result that contrast with the capacity of 1,25-(OH)[sub 2]D[sub 3] to inhibit uptake into normal activated lymphocytes. 1,25-(OH)[sub 2]D[sub 3] did not induce human osteocalcin promoter activity after transfection of this DNA linked to a reporter gene into patient cells. Cointroduction of a human vitamin D receptor (VDR) cDNA expression vector with the reporter plasmid, however, restored the hormone response. Evaluation of extracts from the patient cells for VDR DNA binding revealed a defect in DNA binding. Analysis of genomic DNA from the patient's cells by PCR confirmed the presence of a point mutation in exon 2 of the VDR. This exon directs synthesis of a portion of the DNA-binding domain of the receptor. We conclude that the genetic basis for 1,25-(OH)[sub 2]D[sub 3] resistance in this kindred with VDR-positive HVDRR is due to a single base mutation in the VDR that leads to production of a receptor unable to interact appropriately with DNA. 20 refs., 3 figs., 1 tab.

  14. Impact of Spectral Notch Width on Neurophysiological Plasticity and Clinical Effectiveness of the Tailor-Made Notched Music Training.

    Directory of Open Access Journals (Sweden)

    Robert Wunderlich

    Full Text Available Tinnitus, the ringing in the ears that is unrelated to any external source, causes a significant loss in quality of life, involving sleep disturbance and depression for 1 to 3% of the general population. While in the first place tinnitus may be triggered by damage to the inner ear cells, the neural generators of subjective tinnitus are located in central regions of the nervous system. A loss of lateral inhibition, tonotopical reorganization and a gain-increase in response to the sensory deprivation result in hypersensitivity and hyperactivity in certain regions of the auditory cortex. In the tailor-made notched music training (TMNMT patients listen to music from which the frequency spectrum of the tinnitus has been removed. This evokes strong lateral inhibition from neurons tuned to adjacent frequencies onto the neurons involved in the tinnitus percept. A reduction of tinnitus loudness and tinnitus-related neural activity was achieved with TMNMT in previous studies. As the effect of lateral inhibition depends on the bandwidth of the notch, in the current study we altered the notch width to find the most effective notch width for TMNMT. We compared 1-octave notch width with ½-octave and ¼-octave. Participants chose their favorite music for the training that included three month of two hours daily listening. The outcome was measured by means of standardized questionnaires and magnetoencephalography. We found a general reduction of tinnitus distress in all administered tinnitus questionnaires after the training. Additionally, tinnitus-related neural activity was reduced after the training. Nevertheless, notch width did not have an influence on the behavioral or neural effects of TMNMT. This could be due to a non-linear resolution of lateral inhibition in high frequencies.

  15. Notched K-wire for low thermal damage bone drilling.

    Science.gov (United States)

    Liu, Yao; Belmont, Barry; Wang, Yiwen; Tai, Bruce; Holmes, James; Shih, Albert

    2017-07-01

    The Kirschner wire (K-wire) is a common bone drilling tool in orthopedic surgery to affix fractured bone. Significant heat is produced due to both the cutting and the friction between the K-wire and the bone debris during drilling. Such heat can result in high temperatures, leading to osteonecrosis and other secondary injuries. To reduce thermal injury and other high-temperature associated complications, a new K-wire design with three notches along the three-plane trocar tip fabricated using a thin micro-saw tool is studied. These notches evacuate bone debris and reduce the clogging and heat generation during bone drilling. A set of four K-wires, one without notches and three notched, with depths of 0.5, 0.75, and 1mm, are evaluated. Bone drilling experiments conducted on bovine cortical bone show that notched K-wires could effectively decrease the temperature, thrust force, and torque during bone drilling. K-wires with notches 1mm deep reduced the thrust force and torque by approximately 30%, reduced peak temperatures by 43%, and eliminated blackened burn marks in bone. This study demonstrates that a simple modification of the tip of K-wires can effectively reduce bone temperatures during drilling. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Plane-stress fields for sharp notches in pressure-sensitive materials

    International Nuclear Information System (INIS)

    Al-Abduljabbar, Abdulhamid

    2003-01-01

    The effect of pressure sensitive yield on materials toughness can be determined by investigating stress fields around cracks and notches. In this work, fully-developed plastic stress fields around sharp wedge-shaped notches of perfectly-plastic pressure-sensitive materials are investigated for plane-stress case and Mode 1 loading condition. The pressure-sensitive yielding behavior is represented using the Drucker-Prager criterion. Using equilibrium equations, boundary conditions, and the yield criterion, closed-form expressions for stress fields are derived. The analysis covers the gradual change in the notch angle and compares it with the limiting case of a pure horizontal crack. Effects of notch geometry and pressure sensitivity on stress fields are examined by considering different specimen geometries, as well as different levels of pressure sensitivity. Results indicate that while the stress values directly ahead of the notch-tip are not affected, the extent of stress sector at notch front is reduced, thereby causing increase in the radial stress value around the notch. As the pressure sensitivity increases the reduction of the stress sector directly ahead of the notch tip is more evident. Also, for high pressure sensitivity values, introduction of the notch angle reduces the variation of the stress levels. Results are useful for design of structural components. (author)

  17. The association of TP53 mutations with the resistance of colorectal carcinoma to the insulin-like growth factor-1 receptor inhibitor picropodophyllin

    International Nuclear Information System (INIS)

    Wang, Quan; Wei, Feng; Lv, Guoyue; Li, Chunsheng; Liu, Tongjun; Hadjipanayis, Costas G; Zhang, Guikai; Hao, Chunhai; Bellail, Anita C

    2013-01-01

    There is growing evidence indicating the insulin-like growth factor 1 receptor (IGF-1R) plays a critical role in the progression of human colorectal carcinomas. IGF-1R is an attractive drug target for the treatment of colon cancer. Picropodophyllin (PPP), of the cyclolignan family, has recently been identified as an IGF-1R inhibitor. The aim of this study is to determine the therapeutic response and mechanism after colorectal carcinoma treatment with PPP. Seven colorectal carcinoma cell lines were treated with PPP. Following treatment, cells were analyzed for growth by a cell viability assay, sub-G1 apoptosis by flow cytometry, caspase cleavage and activation of AKT and extracellular signal-regulated kinase (ERK) by western blot analysis. To examine the in vivo therapeutic efficacy of PPP, mice implanted with human colorectal carcinoma xenografts underwent PPP treatment. PPP treatment blocked the phosphorylation of IGF-1R, AKT and ERK and inhibited the growth of TP53 wild-type but not mutated colorectal carcinoma cell lines. The treatment of PPP also induced apoptosis in TP53 wild-type cells as evident by the presence of sub-G1 cells and the cleavage of caspase-9, caspase-3, DNA fragmentation factor-45 (DFF45), poly (ADP-ribose) polymerase (PARP), and X-linked inhibitor of apoptosis protein (XIAP). The loss of BAD phosphorylation in the PPP-treated TP53 wild type cells further suggested that the treatment induced apoptosis through the BAD-mediated mitochondrial pathway. In contrast, PPP treatment failed to induce the phosphorylation of AKT and ERK and caspase cleavage in TP53 mutated colorectal carcinoma cell lines. Finally, PPP treatment suppressed the growth of xenografts derived from TP53 wild type but not mutated colorectal carcinoma cells. We report the association of TP53 mutations with the resistance of treatment of colorectal carcinoma cells in culture and in a xenograft mouse model with the IGF-1R inhibitor PPP. TP53 mutations often occur in colorectal

  18. Control of endothelial cell tube formation by Notch ligand intracellular domain interactions with activator protein 1 (AP-1)

    DEFF Research Database (Denmark)

    Forghany, Zary; Robertson, Francesca; Lundby, Alicia

    2018-01-01

    Notch signaling is a ubiquitous signal transduction pathway found in most if not all metazoan cell types characterized to date. It is indispensable for cell differentiation as well as tissue growth, tissue remodelling and apoptosis. Although the canonical Notch signaling pathway is well character...

  19. Eight previously unidentified mutations found in the OA1 ocular albinism gene

    Directory of Open Access Journals (Sweden)

    Dufier Jean-Louis

    2006-04-01

    Full Text Available Abstract Background Ocular albinism type 1 (OA1 is an X-linked ocular disorder characterized by a severe reduction in visual acuity, nystagmus, hypopigmentation of the retinal pigmented epithelium, foveal hypoplasia, macromelanosomes in pigmented skin and eye cells, and misrouting of the optical tracts. This disease is primarily caused by mutations in the OA1 gene. Methods The ophthalmologic phenotype of the patients and their family members was characterized. We screened for mutations in the OA1 gene by direct sequencing of the nine PCR-amplified exons, and for genomic deletions by PCR-amplification of large DNA fragments. Results We sequenced the nine exons of the OA1 gene in 72 individuals and found ten different mutations in seven unrelated families and three sporadic cases. The ten mutations include an amino acid substitution and a premature stop codon previously reported by our team, and eight previously unidentified mutations: three amino acid substitutions, a duplication, a deletion, an insertion and two splice-site mutations. The use of a novel Taq polymerase enabled us to amplify large genomic fragments covering the OA1 gene. and to detect very likely six distinct large deletions. Furthermore, we were able to confirm that there was no deletion in twenty one patients where no mutation had been found. Conclusion The identified mutations affect highly conserved amino acids, cause frameshifts or alternative splicing, thus affecting folding of the OA1 G protein coupled receptor, interactions of OA1 with its G protein and/or binding with its ligand.

  20. The transcriptional corepressor SMRTER influences both Notch and ecdysone signaling during Drosophila development

    Directory of Open Access Journals (Sweden)

    Bryan W. Heck

    2011-12-01

    SMRTER (SMRT-related and ecdysone receptor interacting factor is the Drosophila homologue of the vertebrate proteins SMRT and N-CoR, and forms with them a well-conserved family of transcriptional corepressors. Molecular characterization of SMRT-family proteins in cultured cells has implicated them in a wide range of transcriptional regulatory pathways. However, little is currently known about how this conserved class of transcriptional corepressors regulates the development of particular tissues via specific pathways. In this study, through our characterization of multiple Smrter (Smr mutant lines, mosaic analysis of a loss-of-function Smr allele, and studies of two independent Smr RNAi fly lines, we report that SMRTER is required for the development of both ovarian follicle cells and the wing. In these two tissues, SMRTER inhibits not only the ecdysone pathway, but also the Notch pathway. We differentiate SMRTER's influence on these two signaling pathways by showing that SMRTER inhibits the Notch pathway, but not the ecdysone pathway, in a spatiotemporally restricted manner. We further confirm the likely involvement of SMRTER in the Notch pathway by demonstrating a direct interaction between SMRTER and Suppressor of Hairless [Su(H], a DNA-binding transcription factor pivotal in the Notch pathway, and the colocalization of both proteins at many chromosomal regions in salivary glands. Based on our results, we propose that SMRTER regulates the Notch pathway through its association with Su(H, and that overcoming a SMRTER-mediated transcriptional repression barrier may represent a key mechanism used by the Notch pathway to control the precise timing of events and the formation of sharp boundaries between cells in multiple tissues during development.

  1. Divergent epidermal growth factor receptor mutation patterns between smokers and non-smokers with lung adenocarcinoma.

    Science.gov (United States)

    Tseng, Jeng-Sen; Wang, Chih-Liang; Yang, Tsung-Ying; Chen, Chih-Yi; Yang, Cheng-Ta; Chen, Kun-Chieh; Hsu, Kuo-Hsuan; Tsai, Chi-Ren; Chang, Gee-Chen

    2015-12-01

    Smoking status is an important determinant of the prevalence of epidermal growth factor receptor (EGFR) mutations in lung cancer patients. However, it is unclear whether smoking status could also influence the spectrum of EGFR mutations. We enrolled patients with lung adenocarcinoma from three medical centers in Taiwan. EGFR mutations were assessed by Sanger direct sequencing. The objective of this study was to evaluate the influence of smoking status on both the frequency and patterns of EGFR mutations. From 2001 to 2013, a total of 1175 patients with lung adenocarcinoma were enrolled for EGFR mutation analysis. The overall EGFR mutation rate was 59.6%, which was significantly higher in females than males (69.1% vs. 49.8%) and in non-smokers than current/former smokers (73.8% vs. 29.8%) (both Psmokers expressed L858R mutation less frequently (35.2% vs. 50.2%, P=0.005) and exon 19 deletions more frequently (52.8% vs 38.8%, P=0.008) than non-smokers. Smokers and non-smokers also had divergent exon 19 deletions subtypes (Del E746-A750 82.5% vs. 57.6%, respectively, Psmokers were associated with a higher rate of complex mutations than non-smokers (34.2% vs. 8.4%, P<0.001). Our results suggested that smoking status could influence not only the frequency but also the spectrum of EGFR mutations. These findings provide a clue for further investigation of EGFR mutagenesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. [A compound heterozygosity mutation in the interleukin-7 receptor-alpha gene resulted in severe combined immunodeficiency in a Chinese patient].

    Science.gov (United States)

    Zhang, Zhi-yong; Zhao, Xiao-dong; Wang, Mo; Yu, Jie; An, Yun-fei; Yang, Xi-qiang

    2009-09-01

    Mutation in the interleukin-7 receptor-alpha (IL-7R alpha) chain causes a rare type of severe combined immunodeficiency (SCID) with presence of NK cells in the peripheral blood. Here we report the molecular and clinical characterization of a compound heterozygosity mutation in the interleukin-7 receptor-alpha gene that resulted in SCID in a patient firstly from China. A 5 month-old male patient and his parents were enrolled in this study. Since 15 days of age, the patient had had recurrent fever, persistent cough and diarrhea. He was in poor general condition with pyorrhea and ulceration of the BCG scar. His brother died of severe infection at 4 months of age. He was initially diagnosed as SCID according to clinical manifestation and immunological analysis. A panel of SCID candidate genes including IL-2RG, RAG1/RAG2 and IL-7R alpha of patient and his parents were amplified by polymerase chain reaction (PCR) from genomic DNA. Reverse transcription polymerase chain reaction (RT-PCR) was used to amplify the IL-7R alpha transcripts. Sequencing was performed directly on the PCR products forward and reversely. The serum immunoglobulin (Ig) profile was IgG 6867 mg/L (normal range, 3050 - 8870 mg/L); IgM 206 mg/L and IgA 249 mg/L, IgE 2.3 IU/ml (normal range microscope and by culture. The patient had a compound heterozygosity mutation in the IL-7R alpha gene:on one allele, there was a splice-junction mutation in intron 4 (intron 4(+1)G > A), for which his father was a carrier; whereas on the other allele, a nonsense mutation at position 638 in exon 5 with a premature stop codon (638 C > T, R206X) was identified, for which his mother was a carrier. The splice-junction mutation in intron 4 of IL-7R alpha was firstly reported. The IL-7R alpha mRNA expression of the patient was remarkably reduced whereas the parents had relatively normal IL-7R alpha mRNA expression. IL-7R alpha cDNA of the patient was amplified by nested PCR. The PCR products were purified, cloned with a TA

  3. F104S c-Mpl responds to a transmembrane domain-binding thrombopoietin receptor agonist: proof of concept that selected receptor mutations in congenital amegakaryocytic thrombocytopenia can be stimulated with alternative thrombopoietic agents.

    Science.gov (United States)

    Fox, Norma E; Lim, Jihyang; Chen, Rose; Geddis, Amy E

    2010-05-01

    To determine whether specific c-Mpl mutations might respond to thrombopoietin receptor agonists. We created cell line models of type II c-Mpl mutations identified in congenital amegakaryocytic thrombocytopenia. We selected F104S c-Mpl for further study because it exhibited surface expression of the receptor. We measured proliferation of cell lines expressing wild-type or F104S c-Mpl in response to thrombopoietin receptor agonists targeting the extracellular (m-AMP4) or transmembrane (LGD-4665) domains of the receptor by 1-methyltetrazole-5-thiol assay. We measured thrombopoietin binding to the mutant receptor using an in vitro thrombopoietin uptake assay and identified F104 as a potentially critical residue for the interaction between the receptor and its ligand by aligning thrombopoietin and erythropoietin receptors from multiple species. Cells expressing F104S c-Mpl proliferated in response to LGD-4665, but not thrombopoietin or m-AMP4. Compared to thrombopoietin, LGD-4665 stimulates signaling with delayed kinetics in both wild-type and F104S c-Mpl-expressing cells. Although F104S c-Mpl is expressed on the cell surface in our BaF3 cell line model, the mutant receptor does not bind thrombopoietin. Comparison to the erythropoietin receptor suggests that F104 engages in hydrogen-bonding interactions that are critical for binding to thrombopoietin. These findings suggest that a small subset of patients with congenital amegakaryocytic thrombocytopenia might respond to treatment with thrombopoietin receptor agonists, but that responsiveness will depend on the type of mutation and agonist used. We postulate that F104 is critical for thrombopoietin binding. The kinetics of signaling in response to a transmembrane domain-binding agonist are delayed in comparison to thrombopoietin. 2010 ISEH Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  4. Structural determinants for antagonist pharmacology that distinguish the rho1 GABAC receptor from GABAA receptors.

    Science.gov (United States)

    Zhang, Jianliang; Xue, Fenqin; Chang, Yongchang

    2008-10-01

    GABA receptor (GABAR) types C (GABACR) and A (GABAAR) are both GABA-gated chloride channels that are distinguished by their distinct competitive antagonist properties. The structural mechanism underlying these distinct properties is not well understood. In this study, using previously identified binding residues as a guide, we made individual or combined mutations of nine binding residues in the rho1 GABACR subunit to their counterparts in the alpha1beta2gamma2 GABAAR or reverse mutations in alpha1 or beta2 subunits. The mutants were expressed in Xenopus laevis oocytes and tested for sensitivities of GABA-induced currents to the GABAA and GABAC receptor antagonists. The results revealed that bicuculline insensitivity of the rho1 GABACR was mainly determined by Tyr106, Phe138 and Phe240 residues. Gabazine insensitivity of the rho1 GABACR was highly dependent on Tyr102, Tyr106, and Phe138. The sensitivity of the rho1 GABACR to 3-aminopropyl-phosphonic acid and its analog 3-aminopropyl-(methyl)phosphinic acid mainly depended on residues Tyr102, Val140, FYS240-242, and Phe138. Thus, the residues Tyr102, Tyr106, Phe138, and Phe240 in the rho1 GABACR are major determinants for its antagonist properties distinct from those in the GABAAR. In addition, Val140 in the GABACR contributes to 3-APA binding. In conclusion, we have identified the key structural elements underlying distinct antagonist properties for the GABACR. The mechanistic insights were further extended and discussed in the context of antagonists docking to the homology models of GABAA or GABAC receptors.

  5. The silent information regulator 1 (Sirt1) is a positive regulator of the Notch pathway in Drosophila

    Czech Academy of Sciences Publication Activity Database

    Horváth, Matěj; Mihajlović, Zorana; Slaninová, Věra; Perez-Gomez, Raquel; Moshkin, Y.; Krejčí, Alena

    2016-01-01

    Roč. 473, č. 22 (2016), s. 4129-4143 ISSN 0264-6021 R&D Projects: GA ČR(CZ) GA14-08583S Institutional support: RVO:60077344 Keywords : Drosophila * silent information regulator 1 * Notch pathway Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.797, year: 2016

  6. The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear.

    Directory of Open Access Journals (Sweden)

    Amy E Kiernan

    2006-01-01

    Full Text Available In mammals, six separate sensory regions in the inner ear are essential for hearing and balance function. Each sensory region is made up of hair cells, which are the sensory cells, and their associated supporting cells, both arising from a common progenitor. Little is known about the molecular mechanisms that govern the development of these sensory organs. Notch signaling plays a pivotal role in the differentiation of hair cells and supporting cells by mediating lateral inhibition via the ligands Delta-like 1 and Jagged (JAG 2. However, another Notch ligand, JAG1, is expressed early in the sensory patches prior to cell differentiation, indicating that there may be an earlier role for Notch signaling in sensory development in the ear. Here, using conditional gene targeting, we show that the Jag1 gene is required for the normal development of all six sensory organs within the inner ear. Cristae are completely lacking in Jag1-conditional knockout (cko mutant inner ears, whereas the cochlea and utricle show partial sensory development. The saccular macula is present but malformed. Using SOX2 and p27kip1 as molecular markers of the prosensory domain, we show that JAG1 is initially expressed in all the prosensory regions of the ear, but becomes down-regulated in the nascent organ of Corti by embryonic day 14.5, when the cells exit the cell cycle and differentiate. We also show that both SOX2 and p27kip1 are down-regulated in Jag1-cko inner ears. Taken together, these data demonstrate that JAG1 is expressed early in the prosensory domains of both the cochlear and vestibular regions, and is required to maintain the normal expression levels of both SOX2 and p27kip1. These data demonstrate that JAG1-mediated Notch signaling is essential during early development for establishing the prosensory regions of the inner ear.

  7. Efficient delivery of Notch1 siRNA to SKOV3 cells by cationic cholesterol derivative-based liposome

    Directory of Open Access Journals (Sweden)

    Zhao Y

    2016-10-01

    Full Text Available Yun-Chun Zhao,1 Li Zhang,2 Shi-Sen Feng,3 Lu Hong,3 Hai-Li Zheng,3 Li-Li Chen,4 Xiao-Ling Zheng,1 Yi-Qing Ye,1 Meng-Dan Zhao,1 Wen-Xi Wang,3 Cai-Hong Zheng1 1Pharmacy Department, Women’s Hospital, 2Pharmacy Department, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China; 3Department of Pharmaceutic Preparation, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 4Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China Abstract: A novel cationic cholesterol derivative-based small interfering RNA (siRNA interference strategy was suggested to inhibit Notch1 activation in SKOV3 cells for the gene therapy of ovarian cancer. The cationic cholesterol derivative, N-(cholesterylhemisuccinoyl-amino-3-propyl-N, N-dimethylamine (DMAPA-chems liposome, was incubated with siRNA at different nitrogen-to-phosphate ratios to form stabilized, near-spherical siRNA/DMAPA-chems nanoparticles with sizes of 100–200 nm and zeta potentials of 40–50 mV. The siRNA/DMAPA-chems nanoparticles protected siRNA from nuclease degradation in 25% fetal bovine serum. The nanoparticles exhibited high cell uptake and Notch1 gene knockdown efficiency in SKOV3 cells at an nitrogen-to-phosphate ratio of 100 and an siRNA concentration of 50 nM. They also inhibited the growth and promoted the apoptosis of SKOV3 cells. These results may provide the potential for using cationic cholesterol derivatives as efficient nonviral siRNA carriers for the suppression of Notch1 activation in ovarian cancer cells. Keywords: siRNA, cationic cholesterol derivative, Notch1, ovarian cancer cells

  8. Association of Exon 10A and 10B inactivating mutation of follicle stimulating hormone receptor gene (FSHR) and Polycystic Ovarian Syndrome in Vellore cohort

    Science.gov (United States)

    Sekar, Nishu; Kulkarni, Rucha; Ozalkar, Sharvari; Prabhu, Yogamaya D.; Renu, Kaviyarasi; Ramgir, Shalaka S.; Abilash, V. G.

    2017-11-01

    Polycystic ovarian syndrome is the most common heterogenous endocrine disorder in women. Follicle stimulating hormone receptor is associated with normal development as well as maturation of follicles and triggers estrogen production in granulosa cells of the ovary. Inactivating mutation in FSHR gene correlated with reduction of ovarian function in women is due to damage to receptor function. This study aims to investigate whether inactivating mutations, in follicle stimulating hormone receptor gene is related to polycystic ovarian morphology in women with PCOS. Genomic DNA isolated from 15 subjects from Sandhya Hospital, Vellore (10 patients with PCOS and 5 healthy controls) was taken for this study. Patient data included a clinical report, hormonal levels, and ovarian morphological details. DNA isolation was followed by DNA amplification by polymerase chain reaction using Exon 10 A and Exon 10 B primers. The PCR-RFLP analysis was performed using Dde1 restriction enzyme. Here we discuss inactivating mutation found in Exon 10 of FSHR gene in patients with PCOS.The absence of inactivating mutation was observed through PCR-RFLP study on Exon 10A and Exon 10B.

  9. Steroidogenic factor-1 (SF-1 gene mutation as a frequent cause of primary amenorrhea in 46,XY female adolescents with low testosterone concentration

    Directory of Open Access Journals (Sweden)

    Servant Nadège

    2010-03-01

    Full Text Available Abstract Background Primary amenorrhea due to 46,XY disorders of sex differentiation (DSD is a frequent reason for consultation in endocrine and gynecology clinics. Among the genetic causes of low-testosterone primary amenorrhea due to 46,XY DSD, SRY gene is reported to be frequently involved, but other genes, such as SF1 and WT1, have never been studied for their prevalence. Methods We directly sequenced SRY, SF1 and WT1 genes in 15 adolescent girls with primary amenorrhea, low testosterone concentration, and XY karyotype, to determine the prevalence of mutations. We also analyzed the LH receptor gene in patients with high LH and normal FSH concentrations. Results Among the 15 adolescents with primary amenorrhea and low testosterone concentration, we identified two new SRY mutations, five new SF1 mutations and one new LH receptor gene mutation. Our study confirms the 10-15% prevalence of SRY mutations and shows the high prevalence (33% of SF1 abnormalities in primary amenorrhea due to 46,XY DSD with low plasma testosterone concentration. Conclusions The genetic analysis of low-testosterone primary amenorrhea is complex as several factors may be involved. This work underlines the need to systematically analyze the SF1 sequence in girls with primary amenorrhea due to 46,XY DSD and low testosterone, as well as in newborns with 46,XY DSD.

  10. Complete Absence of Suprascapular Notch: A Case Report

    Directory of Open Access Journals (Sweden)

    Rohini Mohan Pawar

    2015-10-01

    Full Text Available Suprascapular Nerve Entrapment (SSNE is an acquired neuropathy secondary to compression of suprascapular nerve in the Suprascapular Notch (SSN. Complete ossification of superior transverse scapular ligament may be a cause for suprascapular nerve entrapment. The absence of suprascapular notch is not very common condition, though its prevalence was quoted by Indian authors to be varying from 1.36% to 32.46% in different parts of the country. It is considered to be a predisposing factor for suprascapular nerve entrapment neuropathy. We noticed a male scapula without suprascapular notch in osteology section of Forensic Medicine department. In this case we observed costal and dorsal surfaces of the left scapula of a male without suprascapular notch at its superior border. The details of the said scapula are discussed in this report.

  11. Notch-strengthening in two-dimensional foams

    NARCIS (Netherlands)

    Onck, P.R.

    Metallic foams show notch-strengthening behavior when analyzing double-edge notched specimen in compression and tension. A discrete microstructural model has been used to simulate the effect of notch depth and specimen size on the net-section-strength. The non-uniform deformation behavior is

  12. Notch pathway signaling in the skin antagonizes Merkel cell development.

    Science.gov (United States)

    Logan, Gregory J; Wright, Margaret C; Kubicki, Adam C; Maricich, Stephen M

    2018-02-15

    Merkel cells are mechanosensitive skin cells derived from the epidermal lineage whose development requires expression of the basic helix-loop-helix transcription factor Atoh1. The genes and pathways involved in regulating Merkel cell development during embryogenesis are poorly understood. Notch pathway signaling antagonizes Atoh1 expression in many developing body regions, so we hypothesized that Notch signaling might inhibit Merkel cell development. We found that conditional, constitutive overexpression of the Notch intracellular domain (NICD) in mouse epidermis significantly decreased Merkel cell numbers in whisker follicles and touch domes of hairy skin. Conversely, conditional deletion of the obligate NICD binding partner RBPj in the epidermis significantly increased Merkel cell numbers in whisker follicles, led to the development of ectopic Merkel cells outside of touch domes in hairy skin epidermis, and altered the distribution of Merkel cells in touch domes. Deletion of the downstream Notch effector gene Hes1 also significantly increased Merkel cell numbers in whisker follicles. Together, these data demonstrate that Notch signaling regulates Merkel cell production and patterning. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Novel nonsense mutation of the endothelin-B receptor gene in a family with Waardenburg-Hirschsprung disease.

    Science.gov (United States)

    Syrris, P; Carter, N D; Patton, M A

    1999-11-05

    Waardenburg syndrome (WS) comprises sensorineural hearing loss, hypopigmentation of skin and hair, and pigmentary disturbances of the irides. Four types of WS have been classified to date; in WS type IV (WS4), patients additionally have colonic aganglionosis (Hirschsprung disease, HSCR). Mutations in the endothelin-3 (EDN3), endothelin-B receptor (EDNRB), and Sox10 genes have been identified as causative for WS type IV. We screened a family with a combined WS-HSCR phenotype for mutations in the EDNRB locus using standard DNA mutation analysis and sequencing techniques. We have identified a novel nonsense mutation at codon 253 (CGA-->TGA, Arg-->STOP). This mutation leads to a premature end of the translation of EDNRB at exon 3, and it is predicted to produce a truncated and nonfunctional endothelin-B receptor. All affected relatives were heterozygous for the Arg(253)-->STOP mutation, whereas it was not observed in over 50 unrelated individuals used as controls. These data confirm the role of EDNRB in the cause of the Waardenburg-Hirschsprung syndrome and demonstrate that in WS-HSCR there is a lack of correlation between phenotype and genotype and a variable expression of disease even within the same family. Copyright 1999 Wiley-Liss, Inc.

  14. LDL receptor-GFP fusion proteins: new tools for the characterization of disease-causing mutations in the LDL receptor gene

    DEFF Research Database (Denmark)

    Holst, Henrik Uffe; Dagnæs-Hansen, Frederik; Corydon, Thomas Juhl

    2001-01-01

    . In cultured liver cells this mutation was found to inhibit the transport of LDL receptor GFP fusion protein to the cell surface, thus leading to impaired internalisation of fluorescent labelled LDL. Co-locallisation studies confirmed the retention of the mutant protein in the endoplasmic reticulum....

  15. Binding modes of dihydroquinoxalinones in a homology model of bradykinin receptor 1.

    Science.gov (United States)

    Ha, Sookhee N; Hey, Pat J; Ransom, Rick W; Harrell, C Meacham; Murphy, Kathryn L; Chang, Ray; Chen, Tsing-Bau; Su, Dai-Shi; Markowitz, M Kristine; Bock, Mark G; Freidinger, Roger M; Hess, Fred J

    2005-05-27

    We report the first homology model of human bradykinin receptor B1 generated from the crystal structure of bovine rhodopsin as a template. Using an automated docking procedure, two B1 receptor antagonists of the dihydroquinoxalinone structural class were docked into the receptor model. Site-directed mutagenesis data of the amino acid residues in TM1, TM3, TM6, and TM7 were incorporated to place the compounds in the binding site of the homology model of the human B1 bradykinin receptor. The best pose in agreement with the mutation data was selected for detailed study of the receptor-antagonist interaction. To test the model, the calculated antagonist-receptor binding energy was correlated with the experimentally measured binding affinity (K(i)) for nine dihydroquinoxalinone analogs. The model was used to gain insight into the molecular mechanism for receptor function and to optimize the dihydroquinoxalinone analogs.

  16. GRIN1 mutations cause encephalopathy with infantile-onset epilepsy, and hyperkinetic and stereotyped movement disorders.

    Science.gov (United States)

    Ohba, Chihiro; Shiina, Masaaki; Tohyama, Jun; Haginoya, Kazuhiro; Lerman-Sagie, Tally; Okamoto, Nobuhiko; Blumkin, Lubov; Lev, Dorit; Mukaida, Souichi; Nozaki, Fumihito; Uematsu, Mitsugu; Onuma, Akira; Kodera, Hirofumi; Nakashima, Mitsuko; Tsurusaki, Yoshinori; Miyake, Noriko; Tanaka, Fumiaki; Kato, Mitsuhiro; Ogata, Kazuhiro; Saitsu, Hirotomo; Matsumoto, Naomichi

    2015-06-01

    Recently, de novo mutations in GRIN1 have been identified in patients with nonsyndromic intellectual disability and epileptic encephalopathy. Whole exome sequencing (WES) analysis of patients with genetically unsolved epileptic encephalopathies identified four patients with GRIN1 mutations, allowing us to investigate the phenotypic spectrum of GRIN1 mutations. Eighty-eight patients with unclassified early onset epileptic encephalopathies (EOEEs) with an age of onset stereotypic hand movements were observed in two and three patients, respectively. All the four patients exhibited only nonspecific focal and diffuse epileptiform abnormality, and never showed suppression-burst or hypsarrhythmia during infancy. A de novo mosaic mutation (c.1923G>A) with a mutant allele frequency of 16% (in DNA of blood leukocytes) was detected in one patient. Three mutations were located in the transmembrane domain (3/4, 75%), and one in the extracellular loop near transmembrane helix 1. All the mutations were predicted to impair the function of the NMDA receptor. Clinical features of de novo GRIN1 mutations include infantile involuntary movements, seizures, and hand stereotypies, suggesting that GRIN1 mutations cause encephalopathy resulting in seizures and movement disorders. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  17. Notch1/3 and p53/p21 are a potential therapeutic target for APS-induced apoptosis in non-small cell lung carcinoma cell lines.

    Science.gov (United States)

    Zhang, Jing-Xi; Han, Yi-Ping; Bai, Chong; Li, Qiang

    2015-01-01

    Previous studies have shown that Astragalus polysaccharide (APS) can be applied to anti-cancer. However, the mechanism by which APS mediate this effect is unclear. In the present study, APS-mediated NSCLC cell apoptosis was investigated through the regulation of the notch signaling pathway. The cell viability was detected by the CCK8 assay. The mRNA and protein expression of notch1/3 and tumor suppressors were analyzed by RT-PCR and western blotting, respectively. The mRNA and protein of notch1 and notch3 were significantly up-regulated in tumor tissues as compared to non-tumor adjacent tissues. Treatment of human NSCLC cells with APS induced cell death in a dose-and time-dependent manner by using CCK8 assay. The mRNA and protein expression of notch1 and notch3 were significantly lower in NSCLC cells with APS treatment than that in control group. Moreover, western blotting analysis showed that treatment of H460 cells with APS significantly increased the pro-apoptotic Bax and caspase 8 levels, decreased the anti-apoptotic Bcl-2 level. Furthermore, p53, p21 and p16 were obviously up-regulated by APS treatment in H460 cell. This study demonstrated that APS-treated could inhibit proliferation and promote cell apoptosis, at least partially, through suppressing the expression of notch1 and notch3 and up-regulating the expression of tumor suppressors in H460 NSCLC cell lines.

  18. Novel calcium-sensing receptor cytoplasmic tail deletion mutation causing autosomal dominant hypocalcemia: molecular and clinical study.

    Science.gov (United States)

    Obermannova, Barbora; Sumnik, Zdenek; Dusatkova, Petra; Cinek, Ondrej; Grant, Michael; Lebl, Jan; Hendy, Geoffrey N

    2016-04-01

    Autosomal dominant hypocalcemia (ADH) is a rare disorder caused by activating mutations of the calcium-sensing receptor (CASR). The treatment of ADH patients with 1α-hydroxylated vitamin D derivatives can cause hypercalciuria leading to nephrocalcinosis. We studied a girl who presented with hypoparathyroidism and asymptomatic hypocalcemia at age 2.5 years. Mutations of CASR were investigated by DNA sequencing. Functional analyses of mutant and WT CASRs were done in transiently transfected human embryonic kidney (HEK293) cells. The proband and her father are heterozygous for an eight-nucleotide deletion c.2703_2710delCCTTGGAG in the CASR encoding the intracellular domain of the protein. Transient expression of CASR constructs in kidney cells in vitro suggested greater cell surface expression of the mutant receptor with a left-shifted extracellular calcium dose-response curve relative to that of the WT receptor consistent with gain of function. Initial treatment of the patient with calcitriol led to increased urinary calcium excretion. Evaluation for mosaicism in the paternal grandparents of the proband was negative. We describe a novel naturally occurring deletion mutation within the CASR that apparently arose de novo in the father of the ADH proband. Functional analysis suggests that the cytoplasmic tail of the CASR contains determinants that regulate the attenuation of signal transduction. Early molecular analysis of the CASR gene in patients with isolated idiopathic hypoparathyroidism is recommended because of its relevance to clinical outcome and treatment choice. In ADH patients, calcium supplementation and low-dose cholecalciferol avoids hypocalcemic symptoms without compromising renal function. © 2016 European Society of Endocrinology.

  19. Homozygous EDNRB mutation in a patient with Waardenburg syndrome type 1.

    Science.gov (United States)

    Morimoto, Noriko; Mutai, Hideki; Namba, Kazunori; Kaneko, Hiroki; Kosaki, Rika; Matsunaga, Tatsuo

    2018-04-01

    To examine and expand the genetic spectrum of Waardenburg syndrome type 1 (WS1). Clinical features related to Waardenburg syndrome (WS) were examined in a five-year old patient. Mutation analysis of genes related to WS was performed in the proband and her parents. Molecular modeling of EDNRB and the p.R319W mutant was conducted to predict the pathogenicity of the mutation. The proband showed sensorineural hearing loss, heterochromia iridis, and dystopia canthorum, fulfilling the clinical criteria of WS1. Genetic analyses revealed that the proband had no mutation in PAX3 which has been known as the cause of WS1, but had a homozygous missense mutation (p.R319W) in endothelin receptor type B (EDNRB) gene. The asymptomatic parents had the mutation in a heterozygote state. This mutation has been previously reported in a heterozygous state in a patient with Hirschsprung's disease unaccompanied by WS, but the patient and her parents did not show any symptoms in gastrointestinal tract. Molecular modeling of EDNRB with the p.R319W mutation demonstrated reduction of the positively charged surface area in this region, which might reduce binding ability of EDNRB to G protein and lead to abnormal signal transduction underlying the WS phenotype. Our findings suggested that autosomal recessive mutation in EDNRB may underlie a part of WS1 with the current diagnostic criteria, and supported that Hirschsprung's disease is a multifactorial genetic disease which requires additional factors. Further molecular analysis is necessary to elucidate the gene interaction and to reappraise the current WS classification. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Distinct pattern of TP53 mutations in human immunodeficiency virus-related head and neck squamous cell carcinoma.

    Science.gov (United States)

    Gleber-Netto, Frederico O; Zhao, Mei; Trivedi, Sanchit; Wang, Jiping; Jasser, Samar; McDowell, Christina; Kadara, Humam; Zhang, Jiexin; Wang, Jing; William, William N; Lee, J Jack; Nguyen, Minh Ly; Pai, Sara I; Walline, Heather M; Shin, Dong M; Ferris, Robert L; Carey, Thomas E; Myers, Jeffrey N; Pickering, Curtis R

    2018-01-01

    Human immunodeficiency virus-infected individuals (HIVIIs) have a higher incidence of head and neck squamous cell carcinoma (HNSCC), and clinical and histopathological differences have been observed in their tumors in comparison with those of HNSCC patients without a human immunodeficiency virus (HIV) infection. The reasons for these differences are not clear, and molecular differences between HIV-related HNSCC and non-HIV-related HNSCC may exist. This study compared the mutational patterns of HIV-related HNSCC and non-HIV-related HNSCC. The DNA of 20 samples of HIV-related HNSCCs and 32 samples of non-HIV-related HNSCCs was sequenced. DNA libraries covering exons of 18 genes frequently mutated in HNSCC (AJUBA, CASP8, CCND1, CDKN2A, EGFR, FAT1, FBXW7, HLA-A, HRAS, KEAP1, NFE2L2, NOTCH1, NOTCH2, NSD1, PIK3CA, TGFBR2, TP53, and TP63) were prepared and sequenced on an Ion Personal Genome Machine sequencer. DNA sequencing data were analyzed with Ion Reporter software. The human papillomavirus (HPV) status of the tumor samples was assessed with in situ hybridization, the MassARRAY HPV multiplex polymerase chain reaction assay, and p16 immunostaining. Mutation calls were compared among the studied groups. HIV-related HNSCC revealed a distinct pattern of mutations in comparison with non-HIV-related HNSCC. TP53 mutation frequencies were significantly lower in HIV-related HNSCC. Mutations in HIV+ patients tended to be TpC>T nucleotide changes for all mutated genes but especially for TP53. HNSCC in HIVIIs presents a distinct pattern of genetic mutations, particularly in the TP53 gene. HIV-related HNSCC may have a distinct biology, and an effect of the HIV virus on the pathogenesis of these tumors should not be ruled out. Cancer 2018;124:84-94. © 2017 American Cancer Society. © 2017 American Cancer Society.

  1. A Novel Missense Mutation in Oncostatin M Receptor Beta Causing Primary Localized Cutaneous Amyloidosis

    Directory of Open Access Journals (Sweden)

    Marjan Saeedi

    2014-01-01

    Full Text Available Primary localized cutaneous amyloidosis (PLCA is a chronic skin disorder, caused by amyloid material deposition in the upper dermis. Autosomal dominant PLCA has been mapped earlier to pathogenic missense mutations in the OSMR gene, which encodes the oncostatin M receptor ß subunit (OSMRß. OSMRß is interleukin-6 family cytokine receptors and possesses two ligands, oncostatin M and interleukin-31, which both have biologic roles in inflammation and keratinocyte cell proliferation, differentiation, and apoptosis. Here, we identified a new OSMR mutation in a Kurdish family for the first time. Blood samples were taken from all the affected individuals in the family. DNA extraction was performed using salting out technique. Primers were designed for intron flanking individual exons of OSMR gene which were subjected to direct sequencing after PCR amplification for each sample. Sequencing showed a C/T substitution at position 613 in the proband. This mutation results in an L613S (leucine 613 to serine amino acid change. The identified mutation was observed in all affected family members but not in 100 ethnically matched healthy controls. Elucidating the molecular basis of familial PLCA provides new insight into mechanisms of itch in human skin and may lead to new therapeutic targets for pruritus.

  2. Ehrlichia chaffeensis TRP120 Activates Canonical Notch Signaling To Downregulate TLR2/4 Expression and Promote Intracellular Survival

    OpenAIRE

    Lina, Taslima T.; Dunphy, Paige S.; Luo, Tian; McBride, Jere W.

    2016-01-01

    ABSTRACT Ehrlichia chaffeensis preferentially targets mononuclear phagocytes and survives through a strategy of subverting innate immune defenses, but the mechanisms are unknown. We have shown E.?chaffeensis type 1 secreted tandem repeat protein (TRP) effectors are involved in diverse molecular pathogen-host interactions, such as the TRP120 interaction with the Notch receptor-cleaving metalloprotease ADAM17. In the present study, we demonstrate E.?chaffeensis, via the TRP120 effector, activat...

  3. Notch filters for port-Hamiltonian systems

    NARCIS (Netherlands)

    Dirksz, D.A.; Scherpen, J.M.A.; van der Schaft, A.J.; Steinbuch, M.

    2012-01-01

    In this paper a standard notch filter is modeled in the port-Hamiltonian framework. By having such a port-Hamiltonian description it is proven that the notch filter is a passive system. The notch filter can then be interconnected with another (nonlinear) port-Hamiltonian system, while preserving the

  4. Constitutive activation of the thyroid-stimulating hormone receptor (TSHR by mutating Ile691 in the cytoplasmic tail segment.

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    Full Text Available BACKGROUND: Autosomal dominant non-autoimmune hyperthyroidism (ADNAH is a rare genetic disorder of the endocrine system. Molecular genetic studies in ADNAH have revealed heterozygous germline mutations in the TSHR. To data, mutations leading to an increase in the constitutive activation of the TSHR have been described in the transmembrane segments, exoloops and cytoplasmic loop of TSHR. These mutations result in constitutive activation of the G(αs/cAMP or G(αq/11/inositol phosphate (IP pathways, which stimulate thyroid hormone production and thyroid proliferation. METHODOLOGY/PRINCIPAL FINDINGS: In a previous study, we reported a new TSHR mutation located in the C-terminal domain of TSHR, which results in a substitution of the conserved Ile(691 for Phe. In this study, to address the question of whether the I691F mutated receptor could be responsible for G(αs/cAMP or G(αq/11/IP constitutive activity, wild-type and TSHR mutants were expressed in COS-7 cells to determine cAMP constitutive activity and IP formation. Compared to the cell surface with expression of the A623V mutated receptor as positive control, the I691F mutated receptor showed a slight increase of cAMP accumulation. Furthermore, I691F resulted in constitutive activation of the G(αq/11/IP signaling pathway. CONCLUSIONS/SIGNIFICANCE: Our results indicate that Ile(691 not only contributes to keeping TSHR inactive in the G(αs/cAMP pathways but also in the G(αq/11/IP cascade.

  5. A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype

    Science.gov (United States)

    Woeste, K. E.; Kieber, J. J.; Evans, M. L. (Principal Investigator)

    2000-01-01

    A recessive mutation was identified that constitutively activated the ethylene response pathway in Arabidopsis and resulted in a rosette-lethal phenotype. Positional cloning of the gene corresponding to this mutation revealed that it was allelic to responsive to antagonist1 (ran1), a mutation that causes seedlings to respond in a positive manner to what is normally a competitive inhibitor of ethylene binding. In contrast to the previously identified ran1-1 and ran1-2 alleles that are morphologically indistinguishable from wild-type plants, this ran1-3 allele results in a rosette-lethal phenotype. The predicted protein encoded by the RAN1 gene is similar to the Wilson and Menkes disease proteins and yeast Ccc2 protein, which are integral membrane cation-transporting P-type ATPases involved in copper trafficking. Genetic epistasis analysis indicated that RAN1 acts upstream of mutations in the ethylene receptor gene family. However, the rosette-lethal phenotype of ran1-3 was not suppressed by ethylene-insensitive mutants, suggesting that this mutation also affects a non-ethylene-dependent pathway regulating cell expansion. The phenotype of ran1-3 mutants is similar to loss-of-function ethylene receptor mutants, suggesting that RAN1 may be required to form functional ethylene receptors. Furthermore, these results suggest that copper is required not only for ethylene binding but also for the signaling function of the ethylene receptors.

  6. Patologia molecular do receptor de sulfoniluréia (SUR1)

    OpenAIRE

    Reis, André F.; Velho, Gilberto

    2000-01-01

    The sulfonylurea receptor is a subunit of the ATP-sensitive potassium channel, which is expressed in the pancreatic beta cell. The central role of this receptor in glucose-induced insulin secretion was confirmed by description that mutations in this gene might result in hyperinsulinemic hypoglycemia of infancy. The possible role of SUR1 gene variants in the genetic susceptibility for type 2 diabetes mellitus has been studied. In this review, we discuss the results concerning the genetic varia...

  7. OX1 and OX2 orexin/hypocretin receptor pharmacogenetics

    Directory of Open Access Journals (Sweden)

    Miles Douglas Thompson

    2014-05-01

    Full Text Available Orexin/hypocretin peptide mutations are rare in humans. Even though human narcolepsy is associated with orexin deficiency, this is only extremely rarely due to mutations in the gene coding prepro-orexin, the precursor for both orexin peptides. In contrast, coding and non-coding variants of the OX1 and OX2 orexin receptors have been identified in many human populations; sometimes, these have been associated with disease phenotype, although most confer a relatively low risk. In most cases, these studies have been based on a candidate gene hypothesis that predicts involvement of orexins in the relevant pathophysiological processes. In the current review, the known human OX1/HCRTR1 and OX2/HCRTR2 genetic variants/polymorphisms as well as studies concerning their involvement in disorders such as narcolepsy, excessive daytime sleepiness, cluster headache, polydipsia-hyponatremia in schizophrenia, and affective disorders are presented. In most cases, the functional cellular or pharmacological correlates of orexin variants have not been investigated  with the exception of the possible impact of an amino acid 10 Pro/Ser variant of OX2 on orexin potency  leaving conclusions on the nature of the receptor variant effects speculative. Nevertheless, we present perspectives that could shape the basis for further studies. The pharmacology and other properties of the orexin receptor variants are discussed in the context of GPCR signaling. Since orexinergic therapeutics are emerging, the impact of receptor variants on the affinity or potency of ligands deserves consideration. This perspective (pharmacogenetics is also discussed in the review.

  8. Hereditary 1,25-dihydroxyvitamin D-resistant rickets with alopecia resulting from a novel missense mutation in the DNA-binding domain of the vitamin D receptor

    Science.gov (United States)

    Malloy, Peter J.; Wang, Jining; Srivastava, Tarak; Feldman, David

    2009-01-01

    The rare genetic recessive disease, hereditary vitamin D resistant rickets (HVDRR), is caused by mutations in the vitamin D receptor (VDR) that result in resistance to the active hormone 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3 or calcitriol). In this study, we examined the VDR from a young boy with clinical features of HVDRR including severe rickets, hypocalcemia, hypophosphatemia and partial alopecia. The pattern of alopecia was very unusual with areas of total baldness, adjacent to normal hair and regions of scant hair. The child failed to improve on oral calcium and vitamin D therapy but his abnormal chemistries and his bone x-rays normalized with intravenous calcium therapy. We found that the child was homozygous for a unique missense mutation in the VDR gene that converted valine to methionine at amino acid 26 (V26M) in the VDR DNA-binding domain (DBD). The mutant VDR was studied in the patient’s cultured skin fibroblasts and found to exhibit normal [3H]1,25-(OH)2D3 binding and protein expression. However, the fibroblasts were unresponsive to treatment with high concentrations of 1,25(OH)2D3 as demonstrated by their failure to induce CYP24A1 gene expression, a marker of 1,25(OH)2D3 responsiveness. We recreated the V26M mutation in the WT VDR and showed that in transfected COS-7 cells the mutation abolished 1,25(OH)2D3-mediated transactivation. The mutant VDR exhibited normal ligand-induced binding to RXRα and to the coactivator DRIP205. However, the V26M mutation inhibited VDR binding to a consensus vitamin D response element (VDRE). In summary, we have identified a novel V26M mutation in the VDR DBD as the molecular defect in a patient with HVDRR and an unusual pattern of alopecia. PMID:19815438

  9. SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS.

    Science.gov (United States)

    Inoue, D; Kitaura, J; Matsui, H; Hou, H-A; Chou, W-C; Nagamachi, A; Kawabata, K C; Togami, K; Nagase, R; Horikawa, S; Saika, M; Micol, J-B; Hayashi, Y; Harada, Y; Harada, H; Inaba, T; Tien, H-F; Abdel-Wahab, O; Kitamura, T

    2015-04-01

    Mutations in ASXL1 are frequent in patients with myelodysplastic syndrome (MDS) and are associated with adverse survival, yet the molecular pathogenesis of ASXL1 mutations (ASXL1-MT) is not fully understood. Recently, it has been found that deletion of Asxl1 or expression of C-terminal-truncating ASXL1-MTs inhibit myeloid differentiation and induce MDS-like disease in mice. Here, we find that SET-binding protein 1 (SETBP1) mutations (SETBP1-MT) are enriched among ASXL1-mutated MDS patients and associated with increased incidence of leukemic transformation, as well as shorter survival, suggesting that SETBP1-MT play a critical role in leukemic transformation of MDS. We identify that SETBP1-MT inhibit ubiquitination and subsequent degradation of SETBP1, resulting in increased expression. Expression of SETBP1-MT, in turn, inhibited protein phosphatase 2A activity, leading to Akt activation and enhanced expression of posterior Hoxa genes in ASXL1-mutant cells. Biologically, SETBP1-MT augmented ASXL1-MT-induced differentiation block, inhibited apoptosis and enhanced myeloid colony output. SETBP1-MT collaborated with ASXL1-MT in inducing acute myeloid leukemia in vivo. The combination of ASXL1-MT and SETBP1-MT activated a stem cell signature and repressed the tumor growth factor-β signaling pathway, in contrast to the ASXL1-MT-induced MDS model. These data reveal that SETBP1-MT are critical drivers of ASXL1-mutated MDS and identify several deregulated pathways as potential therapeutic targets in high-risk MDS.

  10. GPR143 mutations in Chinese patients with ocular albinism type 1.

    Science.gov (United States)

    Jia, Xiuhua; Yuan, Jin; Jia, Xiaoyun; Ling, Shiqi; Li, Shiqiang; Guo, Xiangming

    2017-05-01

    The aim of the present study was to evaluate mutations of the G protein-coupled receptor 143 (GPR143) gene for ocular albinism type 1 (OA1) in Chinese patients. For the current study, 8 patients with OA1 were selected from the database of ocular genetic diseases. Genomic DNA of OA1 was prepared from venous leukocytes collected from the patients. Cycle sequencing was used to analyze the exons and adjacent introns of GPR143. The variation detected was analyzed by bidirectional DNA sequencing and further evaluated in 96 controls using heteroduplex‑single strand conformational polymorphism analysis. Additionally, slit lamp photography of anterior segment, fundus photography and optical coherence tomography (OCT) were performed to identify the clinical features of OA1. In five patients with OA1, 5 GPR143 gene mutations were identified and four of them there were novel mutations. The screening rate is 62.5%, including c.333G>A (p.W111X), c.353G>A (p.G118E) (known mutation), C.658+2T>G (splice mutation), c.215_216insCGCTGC (p.71‑72insAA) and c.17T>C (p. L6P). These mutations were absent in the 96 normal controls. Only one patient with OA1 in the present study was female. Patients with OA1 often have congenital nystagmus, refractive error, severe decline of visual acuity (from 0.1 to 0.4) and foveal hypoplasia. Different degrees of pigment loss were evident in the patients' iris and retina, whereas macular structure was not identified in the OCT examination. The findings of the present study expanded the gene mutation spectrum of GPR143 and investigated the clinical phenotype of patients with OA1 in the Chinese population. Additional evidence for clinical diagnosis was provided along with differential diagnosis and genetic counseling.

  11. A Compact Printed Quadruple Band-Notched UWB Antenna

    Directory of Open Access Journals (Sweden)

    Xiaoyin Li

    2013-01-01

    Full Text Available A novel compact coplanar waveguide- (CPW- fed ultrawideband (UWB printed planar volcano-smoke antenna (PVSA with four band-notches for various wireless applications is proposed and demonstrated. The low-profile antenna consists of a C-shaped parasitic strip to generate a notched band at 8.01~8.55 GHz for the ITU band, two C-shaped slots, and an inverted U-shaped slot etched in the radiator patch to create three notched bands at 5.15~5.35 GHz, 5.75~5.85 GHz, and 7.25~7.75 GHz for filtering the WLAN and X-band satellite signals. Simulated and measured results both confirm that the proposed antenna has a broad bandwidth of 3.1~12 GHz with VSWR < 2 and good omnidirectional radiation patterns with four notched-bands.

  12. Eddy current standards - Cracks versus notches

    Science.gov (United States)

    Hagemaier, D. J.; Collingwood, M. R.; Nguyen, K. H.

    1992-10-01

    Eddy current tests aimed at evaluating cracks and electron-discharge machined (EDM) notches in 7075-T6 aluminum specimens are described. A comparison of the shape and amplitude of recordings made from both transverse and longitudinal scans of small EDM notches and fatigue cracks showd almost identical results. The signal amplitude and phase angle increased with an increase of EDM notch and crak size. It is concluded that equivalent eddy current results obtained from similar-size surface cracks and notches in aluminum can be used to establish a desired sensitivity level for inspection.

  13. Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch

    DEFF Research Database (Denmark)

    López-Arribillaga, Erika; Rodilla, Verónica; Pellegrinet, Luca

    2015-01-01

    Genetic data indicate that abrogation of Notch-Rbpj or Wnt-β-catenin pathways results in the loss of the intestinal stem cells (ISCs). However, whether the effect of Notch is direct or due to the aberrant differentiation of the transit-amplifying cells into post-mitotic goblet cells is unknown. T...

  14. γ1-Containing GABA-A Receptors Cluster at Synapses Where they Mediate Slower Synaptic Currents than γ2-Containing GABA-A Receptors

    Directory of Open Access Journals (Sweden)

    Christine L. Dixon

    2017-06-01

    Full Text Available GABA-A receptors (GABAARs are pentameric ligand-gated ion channels that are assembled mainly from α (α1–6, β (β1–3 and γ (γ1–3 subunits. Although GABAARs containing γ2L subunits mediate most of the inhibitory neurotransmission in the brain, significant expression of γ1 subunits is seen in the amygdala, pallidum and substantia nigra. However, the location and function of γ1-containing GABAARs in these regions remains unclear. In “artificial” synapses, where the subunit composition of postsynaptic receptors is specifically controlled, γ1 incorporation slows the synaptic current decay rate without affecting channel deactivation, suggesting that γ1-containing receptors are not clustered and therefore activated by diffuse neurotransmitter. However, we show that γ1-containing receptors are localized at neuronal synapses and form clusters in both synaptic and extrasynaptic regions. In addition, they exhibit rapid membrane diffusion and a higher frequency of exchange between synaptic and perisynaptic populations compared to γ2L-containing GABAARs. A point mutation in the large intracellular domain and a pharmacological analysis reveal that when a single non-conserved γ2L residue is mutated to its γ1 counterpart (T349L, the synaptic current decay is slowed from γ2L- to γ1-like without changing the clustering or diffusion properties of the receptors. In addition, previous fast perfusion and single channel kinetic experiments revealed no difference in the intrinsic closing rates of γ2L- and γ1-containing receptors when expressed in HEK293 cells. These observations together with Monte Carlo simulations of synaptic function confirm that decreased clustering does not control γ1-containing GABAAR kinetics. Rather, they suggest that γ1- and γ2L-containing receptors exhibit differential synaptic current decay rates due to differential gating dynamics when localized at the synapse.

  15. Electroacupuncture pretreatment induces tolerance against focal cerebral ischemia through activation of canonical Notch pathway

    Directory of Open Access Journals (Sweden)

    Zhao Yu

    2012-09-01

    Full Text Available Abstract Background Electroacupuncture (EA pretreatment can induce the tolerance against focal cerebral ischemia. However, the underlying mechanisms have not been fully understood. Emerging evidences suggest that canonical Notch signaling may be involved in ischemic brain injury. In the present study, we tested the hypothesis that EA pretreatment-induced tolerance against focal cerebral ischemia is mediated by Notch signaling. Results EA pretreatment significantly enhanced Notch1, Notch4 and Jag1 gene transcriptions in the striatum, except Notch1 intracellular domain level, which could be increased evidently by ischemia. After ischemia and reperfusion, Hes1 mRNA and Notch1 intracellular domain level in ischemic striatum in EA pretreatment group were increased and reached the peak at 2 h and 24 h, respectively, which were both earlier than the peak achieved in control group. Intraventricular injection with the γ-secretase inhibitor MW167 attenuated the neuroprotective effect of EA pretreatment. Conclusions EA pretreatment induces the tolerance against focal cerebral ischemia through activation of canonical Notch pathway.

  16. BmpR1A is a major type 1 BMP receptor for BMP-Smad signaling during skull development.

    Science.gov (United States)

    Pan, Haichun; Zhang, Honghao; Abraham, Ponnu; Komatsu, Yoshihiro; Lyons, Karen; Kaartinen, Vesa; Mishina, Yuji

    2017-09-01

    Craniosynostosis is caused by premature fusion of one or more sutures in an infant skull, resulting in abnormal facial features. The molecular and cellular mechanisms by which genetic mutations cause craniosynostosis are incompletely characterized, and many of the causative genes for diverse types of syndromic craniosynostosis have not yet been identified. We previously demonstrated that augmentation of BMP signaling mediated by a constitutively active BMP type IA receptor (ca-BmpR1A) in neural crest cells (ca1A hereafter) causes craniosynostosis and superimposition of heterozygous null mutation of Bmpr1a rescues premature suture fusion (ca1A;1aH hereafter). In this study, we superimposed heterozygous null mutations of the other two BMP type I receptors, Bmpr1b and Acvr1 (ca1A;1bH and ca1A;AcH respectively hereafter) to further dissect involvement of BMP-Smad signaling. Unlike caA1;1aH, ca1A;1bH and ca1A;AcH did not restore the craniosynostosis phenotypes. In our in vivo study, Smad-dependent BMP signaling was decreased to normal levels in mut;1aH mice. However, BMP receptor-regulated Smads (R-Smads; pSmad1/5/9 hereafter) levels were comparable between ca1A, ca1A;1bH and ca1A;AcH mice, and elevated compared to control mice. Bmpr1a, Bmpr1b and Acvr1 null cells were used to examine potential mechanisms underlying the differences in ability of heterozygosity for Bmpr1a vs. Bmpr1b or Acvr1 to rescue the mut phenotype. pSmad1/5/9 level was undetectable in Bmpr1a homozygous null cells while pSmad1/5/9 levels did not decrease in Bmpr1b or Acvr1 homozygous null cells. Taken together, our study indicates that different levels of expression and subsequent activation of Smad signaling differentially contribute each BMP type I receptor to BMP-Smad signaling and craniofacial development. These results also suggest differential involvement of each type 1 receptor in pathogenesis of syndromic craniosynostoses. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Systematic screening for mutations in the 5{prime}-regulatory region of the human dopamine D{sub 1} receptor (DRD1) gene in patients with schizophrenia and bipolar affective disorder

    Energy Technology Data Exchange (ETDEWEB)

    Cichon, S.; Noethen, M.M.; Stoeber, G. [Univ. of Bonn (Germany)] [and others

    1996-07-26

    A possible dysregulation of dopaminergic neurotransmission has been implicated in a variety of neuropsychiatric diseases. In the present study we systematically searched for the presence of mutations in the 5{prime}-flanking region of the dopamine D{sub 1} receptor (DRD1) gene. This region has previously been shown to contain a functional promoter. We investigated 119 unrelated individuals (including 36 schizophrenic patients, 38 bipolar affective patients, and 45 healthy controls) using single-strand conformation analysis (SSCA). Eleven overlapping PCR fragments covered 2,189 bp of DNA sequence. We identified six single base substitutions: -2218T/C, -2102C/A, -2030T/C, -1992G/A, -1251G/C, and -800T/C. None of the mutations was found to be located in regions which have important influence on the level of transcriptional activity. Allele frequencies were similar in patients and controls, indicating that genetic variation in the 5{prime}-regulatory region of the DRD1 gene is unlikely to play a frequent, major role in the genetic predisposition to either schizophrenia or bipolar affective disorder. 31 refs., 3 tabs.

  18. The insulin receptor substrate (IRS)-1 pleckstrin homology domain functions in downstream signaling.

    Science.gov (United States)

    Vainshtein, I; Kovacina, K S; Roth, R A

    2001-03-16

    The pleckstrin homology (PH) domain of the insulin receptor substrate-1 (IRS-1) plays a role in directing this molecule to the insulin receptor, thereby regulating its tyrosine phosphorylation. In this work, the role of the PH domain in subsequent signaling was studied by constructing constitutively active forms of IRS-1 in which the inter-SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase was fused to portions of the IRS-1 molecule. Chimeric molecules containing the PH domain were found to activate the downstream response of stimulating the Ser/Thr kinase Akt. A chimera containing point mutations in the PH domain that abolished the ability of this domain to bind phosphatidylinositol 4,5-bisphosphate prevented these molecules from activating Akt. These mutations also decreased by about 70% the amount of the constructs present in a particulate fraction of the cells. These results indicate that the PH domain of IRS-1, in addition to directing this protein to the receptor for tyrosine phosphorylation, functions in the ability of this molecule to stimulate subsequent responses. Thus, compromising the function of the PH domain, e.g. in insulin-resistant states, could decrease both the ability of IRS-1 to be tyrosine phosphorylated by the insulin receptor and to link to subsequent downstream targets.

  19. Recessive mutations in PTHR1 cause contrasting skeletal dysplasias in Eiken and Blomstrand syndromes

    DEFF Research Database (Denmark)

    Duchatelet, Sabine; Ostergaard, Elsebet; Cortes, Dina

    2005-01-01

    Eiken syndrome is a rare autosomal recessive skeletal dysplasia. We identified a truncation mutation in the C-terminal cytoplasmic tail of the parathyroid hormone (PTH)/PTH-related peptide (PTHrP) type 1 receptor (PTHR1) gene as the cause of this syndrome. Eiken syndrome differs from Jansen...

  20. Notch and PKC are involved in formation of the lateral region of the dorso-ventral axis in Drosophila embryos.

    Science.gov (United States)

    Tremmel, Daniel M; Resad, Sedat; Little, Christopher J; Wesley, Cedric S

    2013-01-01

    The Notch gene encodes an evolutionarily conserved cell surface receptor that generates regulatory signals based on interactions between neighboring cells. In Drosophila embryos it is normally expressed at a low level due to strong negative regulation. When this negative regulation is abrogated neurogenesis in the ventral region is suppressed, the development of lateral epidermis is severely disrupted, and the dorsal aminoserosa is expanded. Of these phenotypes only the anti-neurogenic phenotype could be linked to excess canonical Notch signaling. The other phenotypes were linked to high levels of Notch protein expression at the surface of cells in the lateral regions indicating that a non-canonical Notch signaling activity normally functions in these regions. Results of our studies reported here provide evidence. They show that Notch activities are inextricably linked to that of Pkc98E, the homolog of mammalian PKCδ. Notch and Pkc98E up-regulate the levels of the phosphorylated form of IκBCactus, a negative regulator of Toll signaling, and Mothers against dpp (MAD), an effector of Dpp signaling. Our data suggest that in the lateral regions of the Drosophila embryos Notch activity, in conjunction with Pkc98E activity, is used to form the slopes of the opposing gradients of Toll and Dpp signaling that specify cell fates along the dorso-ventral axis.

  1. Notch and PKC are involved in formation of the lateral region of the dorso-ventral axis in Drosophila embryos.

    Directory of Open Access Journals (Sweden)

    Daniel M Tremmel

    Full Text Available The Notch gene encodes an evolutionarily conserved cell surface receptor that generates regulatory signals based on interactions between neighboring cells. In Drosophila embryos it is normally expressed at a low level due to strong negative regulation. When this negative regulation is abrogated neurogenesis in the ventral region is suppressed, the development of lateral epidermis is severely disrupted, and the dorsal aminoserosa is expanded. Of these phenotypes only the anti-neurogenic phenotype could be linked to excess canonical Notch signaling. The other phenotypes were linked to high levels of Notch protein expression at the surface of cells in the lateral regions indicating that a non-canonical Notch signaling activity normally functions in these regions. Results of our studies reported here provide evidence. They show that Notch activities are inextricably linked to that of Pkc98E, the homolog of mammalian PKCδ. Notch and Pkc98E up-regulate the levels of the phosphorylated form of IκBCactus, a negative regulator of Toll signaling, and Mothers against dpp (MAD, an effector of Dpp signaling. Our data suggest that in the lateral regions of the Drosophila embryos Notch activity, in conjunction with Pkc98E activity, is used to form the slopes of the opposing gradients of Toll and Dpp signaling that specify cell fates along the dorso-ventral axis.

  2. Mutations Affecting G-Protein Subunit α11 in Hypercalcemia and Hypocalcemia

    Science.gov (United States)

    Babinsky, Valerie N.; Head, Rosie A.; Cranston, Treena; Rust, Nigel; Hobbs, Maurine R.; Heath, Hunter; Thakker, Rajesh V.

    2013-01-01

    BACKGROUND Familial hypocalciuric hypercalcemia is a genetically heterogeneous disorder with three variants: types 1, 2, and 3. Type 1 is due to loss-of-function mutations of the calcium-sensing receptor, a guanine nucleotide–binding protein (G-protein)–coupled receptor that signals through the G-protein subunit α11 (Gα11). Type 3 is associated with adaptor-related protein complex 2, sigma 1 subunit (AP2S1) mutations, which result in altered calcium-sensing receptor endocytosis. We hypothesized that type 2 is due to mutations effecting Gα11 loss of function, since Gα11 is involved in calcium-sensing receptor signaling, and its gene (GNA11) and the type 2 locus are colocalized on chromosome 19p13.3. We also postulated that mutations effecting Gα11 gain of function, like the mutations effecting calcium-sensing receptor gain of function that cause autosomal dominant hypocalcemia type 1, may lead to hypocalcemia. METHODS We performed GNA11 mutational analysis in a kindred with familial hypocalciuric hypercalcemia type 2 and in nine unrelated patients with familial hypocalciuric hypercalcemia who did not have mutations in the gene encoding the calcium-sensing receptor (CASR) or AP2S1. We also performed this analysis in eight unrelated patients with hypocalcemia who did not have CASR mutations. In addition, we studied the effects of GNA11 mutations on Gα11 protein structure and calcium-sensing receptor signaling in human embryonic kidney 293 (HEK293) cells. RESULTS The kindred with familial hypocalciuric hypercalcemia type 2 had an in-frame deletion of a conserved Gα11 isoleucine (Ile200del), and one of the nine unrelated patients with familial hypocalciuric hypercalcemia had a missense GNA11 mutation (Leu135Gln). Missense GNA11 mutations (Arg181Gln and Phe341Leu) were detected in two unrelated patients with hypocalcemia; they were therefore identified as having autosomal dominant hypocalcemia type 2. All four GNA11 mutations predicted disrupted protein

  3. An Activin Receptor IA/Activin-Like Kinase-2 (R206H Mutation in Fibrodysplasia Ossificans Progressiva

    Directory of Open Access Journals (Sweden)

    Rafael Herrera-Esparza

    2013-01-01

    Full Text Available Fibrodysplasia ossificans progressiva (FOP is an exceptionally rare genetic disease that is characterised by congenital malformations of the great toes and progressive heterotopic ossification (HO in specific anatomical areas. This disease is caused by a mutation in activin receptor IA/activin-like kinase-2 (ACVR1/ALK2. A Mexican family with one member affected by FOP was studied. The patient is a 19-year-old female who first presented with symptoms of FOP at 8 years old; she developed spontaneous and painful swelling of the right scapular area accompanied by functional limitation of movement. Mutation analysis was performed in which genomic DNA as PCR amplified using primers flanking exons 4 and 6, and PCR products were digested with Cac8I and HphI restriction enzymes. The most informative results were obtained with the exon 4 flanking primers and the Cac8I restriction enzyme, which generated a 253 bp product that carries the ACVR1 617G>A mutation, which causes an amino acid substitution of histidine for arginine at position 206 of the glycine-serine (GS domain, and its mutation results in the dysregulation of bone morphogenetic protein (BMP signalling that causes FOP.

  4. Case Report: Exome sequencing reveals recurrent RETSAT mutations and a loss-of-function POLDIP2 mutation in a rare undifferentiated tongue sarcoma [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jason Y. K. Chan

    2018-04-01

    Full Text Available Soft tissue sarcoma of the tongue represents a very rare head and neck cancer with connective tissue features, and the genetics underlying this rare cancer are largely unknown. There are less than 20 cases reported in the literature thus far. Here, we reported the first whole-exome characterization (>×200 depth of an undifferentiated sarcoma of the tongue in a 31-year-old male. Even with a very good sequencing depth, only 19 nonsynonymous mutations were found, indicating a relatively low mutation rate of this rare cancer (lower than that of human papillomavirus (HPV-positive head and neck cancer. Yet, among the few genes that are somatically mutated in this HPV-negative undifferentiated tongue sarcoma, a noticeable deleterious frameshift mutation (with a very high allele frequency of >93% of a gene for DNA replication and repair, namely POLDIP2 (DNA polymerase delta interacting protein 2, and two recurrent mutations of the adipogenesis and adipocyte differentiation gene RETSAT (retinol saturase, were identified. Thus, somatic events likely affecting adipogenesis and differentiation, as well as potential stem mutations to POLDIP2, may be implicated in the formation of this rare cancer. This identified somatic whole-exome sequencing profile appears to be distinct from that of other reported adult sarcomas from The Cancer Genome Atlas, suggesting a potential unique genetic profile for this rare sarcoma of the tongue. Interestingly, this low somatic mutation rate is unexpectedly found to be accompanied by multiple tumor protein p53 and NOTCH1 germline mutations of the patient’s blood DNA. This may explain the very early age of onset of head and neck cancer, with likely hereditary predisposition. Our findings are, to our knowledge, the first to reveal a unique genetic profile of this very rare undifferentiated sarcoma of the tongue.

  5. Computer simulation of the Charpy V-notch toughness test

    International Nuclear Information System (INIS)

    Norris, D.M. Jr.

    1977-01-01

    The dynamic Charpy V-notch test was simulated on a computer. The calculational models (for A-533 Grade B class 1 steel) used both a rounded and a flat-tipped striker. The notch stress/strain state was found to be independent of the three-point loading type and was most strongly correlated with notch-opening displacement. The dynamic stress/strain state at the time of fracture initiation was obtained by comparing the calculated deformed shape with that obtained in interrupted Charpy V-notch tests where cracking had started. The calculation was also compared with stress/strain states calculated in other geometries at failure. The distribution and partition of specimen energy was calculated and adiabatic heating and strain rate are discussed

  6. DOL behaviour of end-notched beams

    DEFF Research Database (Denmark)

    Gustafsson, P.J.; Hoffmeyer, Preben; Valentin, G.

    1998-01-01

    The long-term loading strength of end-notched beams made of glulam and LVL was tested. The beams were of various sizes, with and without a moisture sealing at the notch. Tests were conducted in open shelter climates, and at constant and cyclic relative humidity. The short-term strength was tested...... beams with a moisture sealing at the notch...

  7. Hematopoietic stem cell-derived exosomes promote hematopoietic differentiation of mouse embryonic stem cells in vitro via inhibiting the miR126/Notch1 pathway.

    Science.gov (United States)

    Liao, Feng-Ling; Tan, Lin; Liu, Hua; Wang, Jin-Ju; Ma, Xiao-Tang; Zhao, Bin; Chen, Yanfang; Bihl, Ji; Yang, Yi; Chen, Ri-Ling

    2018-04-01

    Cell-derived exosomes (EXs) can modulate target cell differentiation via microRNAs (miRs) that they carried. Previous studies have shown that miR126 is highly expressed in hematopoietic stem cells (HSCs) and plays a role in hematopoiesis via modulating the Notch pathway that participates in progenitors' cell fate decisions. In this study we investigated whether HSC-derived EXs (HSC-EXs) could affect the differentiation of mouse embryonic stem cells (ESCs) into HSCs. We prepared HSC-EXs con , HSC-EXs sc and HSC-EXs miR126 from control HSCs and the HSCs transfected with scramble control or miR126 mimics, respectively. HSC-EXs were isolated by ultracentrifugation and analyzed using nanoparticle tracking analysis. We incubated the collected EXs with mouse ESCs over a 10-d differentiation induction period, during which HSC-EXs and a Notch pathway activator (Jagged1, 100 ng/mL) were added to the cultures every 3 d. After the 10-d differentiation period, the expression levels of miR126, SSEA1, CD117, Sca1, Notch1 and Hes1 in ESCs were assessed. The generated HSCs were validated by flow cytometry using antibodies against HSC markers (CD117, CD34 and Sca1). Our results revealed that: (1) transfection with miR126 mimics significantly increased miR126 levels in HSC-EXs miR126 . (2) HSC-EX co-culture promoted mouse ESCs differentiation into HSCs with the most prominent effect found in the HSC-EXs miR126 co-culture. (3) HSC differentiation was verified by reduced SSEA1 expression and increased CD117 and Sca1 expression. (4) All the effects caused by HSC-EXs were accompanied by significant reduction of Notch1 and Hes1 expression, thus inhibition of the Notch1/Hes1 pathway, whereas activation of Notch by Jagged1 abolished the effects of HSC-EXs miR126 . In conclusion, HSC-EXs promote hematopoietic differentiation of mouse ESCs in vitro by inhibiting the miR126/Notch1 pathway.

  8. A novel Arabidopsis CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) mutant with enhanced pathogen-induced cell death and altered receptor processing.

    Science.gov (United States)

    Petutschnig, Elena K; Stolze, Marnie; Lipka, Ulrike; Kopischke, Michaela; Horlacher, Juliane; Valerius, Oliver; Rozhon, Wilfried; Gust, Andrea A; Kemmerling, Birgit; Poppenberger, Brigitte; Braus, Gerhard H; Nürnberger, Thorsten; Lipka, Volker

    2014-12-01

    Plants detect pathogens by sensing microbe-associated molecular patterns (MAMPs) through pattern recognition receptors. Pattern recognition receptor complexes also have roles in cell death control, but the underlying mechanisms are poorly understood. Here, we report isolation of cerk1-4, a novel mutant allele of the Arabidopsis chitin receptor CERK1 with enhanced defense responses. We identified cerk1-4 in a forward genetic screen with barley powdery mildew and consequently characterized it by pathogen assays, mutant crosses and analysis of defense pathways. CERK1 and CERK1-4 proteins were analyzed biochemically. The cerk1-4 mutation causes an amino acid exchange in the CERK1 ectodomain. Mutant plants maintain chitin signaling capacity but exhibit hyper-inducible salicylic acid concentrations and deregulated cell death upon pathogen challenge. In contrast to chitin signaling, the cerk1-4 phenotype does not require kinase activity and is conferred by the N-terminal part of the receptor. CERK1 undergoes ectodomain shedding, a well-known process in animal cell surface proteins. Wild-type plants contain the full-length CERK1 receptor protein as well as a soluble form of the CERK1 ectodomain, whereas cerk1-4 plants lack the N-terminal shedding product. Our work suggests that CERK1 may have a chitin-independent role in cell death control and is the first report of ectodomain shedding in plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  9. Effects of Asn318 and Asp87Asn318 mutations on signal transduction by the gonadotropin-releasing hormone receptor and receptor regulation.

    Science.gov (United States)

    Awara, W M; Guo, C H; Conn, P M

    1996-02-01

    GnRH receptor (GnRH-R) contains Asn87 and Asp318 instead of the more frequently observed Asp87 and Asn318 found in other G protein-coupled receptors. In the present study, site-directed mutagenesis was used to introduce Asn318 and Asp87Asn318 into GnRH-R. The effect on coupling and regulation of GnRH-R was studied by stable expression of wild and mutant mouse GnRH-R in the lactotropic GH3 cells; these normally release PRL in response to TRH stimulation. The responses to Buserelin (a metabolically stable GnRH analog) in three different cell lines, M1, N8, and ND1 (expressing wild-type, Asn318 mutant, and Asp87Asn318 mutant mouse GnRH-R, respectively) were compared with that observed in the previously characterized GGH3-1' cells, which stably express rat GnRH-R. The Asn318 and Asp87Asn318 mutations had no measurable effect on ligand binding, but abolished the initial down-regulation of receptor that was observed in M1 and GGH3-1' cells, suggesting that the normal location of Asn87 and Asp318 in GnRH-R is involved in the regulation of GnRH-R. In N8 and ND1 cells, Buserelin-stimulated inositol phosphate (IP) production was attenuated, but the release of both cAMP and PRL was stimulated in a dose- and time-dependent manner. These mutations apparently impaired the coupling between GnRH-R and G proteins involved in IP production, but not those involved in cAMP release. In M1 cells, Buserelin stimulation produced a significant increase in IP production, but neither cAMP nor PRL release was significantly stimulated. These findings are consistent with the previous suggestion that GnRH-stimulated PRL release is mediated by a cAMP second messenger system in transfected GGH3 cells.

  10. Stereotypical architecture of the stem cell niche is spatiotemporally established by miR-125-dependent coordination of Notch and steroid signaling.

    Science.gov (United States)

    Yatsenko, Andriy S; Shcherbata, Halyna R

    2018-02-08

    Stem cell niches act as signaling platforms that regulate stem cell self-renewal and sustain stem cells throughout life; however, the specific developmental events controlling their assembly are not well understood. Here, we show that during Drosophila ovarian germline stem cell niche formation, the status of Notch signaling in the cell can be reprogrammed. This is controlled via steroid-induced miR-125 , which targets a negative regulator of Notch signaling, Tom. Thus, miR-125 acts as a spatiotemporal coordinator between paracrine Notch and endocrine steroid signaling. Moreover, a dual security mechanism for Notch signaling activation exists to ensure the robustness of niche assembly. Particularly, stem cell niche cells can be specified either via lateral inhibition, in which a niche cell precursor acquires Notch signal-sending status randomly, or via peripheral induction, whereby Delta is produced by a specific cell. When one mechanism is perturbed due to mutations, developmental defects or environmental stress, the remaining mechanism ensures that the niche is formed, perhaps abnormally, but still functional. This guarantees that the germline stem cells will have their residence, thereby securing progressive oogenesis and, thus, organism reproduction. © 2018. Published by The Company of Biologists Ltd.

  11. Mutations increasing exposure of a receptor binding site epitope in the soluble and oligomeric forms of the caprine arthritis-encephalitis lentivirus envelope glycoprotein

    International Nuclear Information System (INIS)

    Hoetzel, Isidro; Cheevers, William P.

    2005-01-01

    The caprine arthritis-encephalitis (CAEV) and ovine maedi-visna (MVV) viruses are resistant to antibody neutralization, a feature shared with all other lentiviruses. Whether the CAEV gp135 receptor binding site(s) (RBS) in the functional surface envelope glycoprotein (Env) is protected from antibody binding, allowing the virus to resist neutralization, is not known. Two CAEV gp135 regions were identified by extrapolating a gp135 structural model that could affect binding of antibodies to the RBS: the V1 region and a short sequence analogous in position to the human immunodeficiency virus type 1 gp120 loop B postulated to be located between two major domains of CAEV gp135. Mutation of isoleucine-166 to alanine in the putative loop B of gp135 increased the affinity of soluble gp135 for the CAEV receptor(s) and goat monoclonal antibody (Mab) F7-299 which recognizes an epitope overlapping the gp135 RBS. The I166A mutation also stabilized or exposed the F7-299 epitope in anionic detergent buffers, indicating that the I166A mutation induces conformational changes and stabilizes the RBS of soluble gp135 and enhances Mab F7-299 binding. In contrast, the affinity of a V1 deletion mutant of gp135 for the receptor and Mab F7-299 and its structural stability did not differ from that of the wild-type gp135. However, both the I166A mutation and the V1 deletion of gp135 increased cell-to-cell fusion activity and binding of Mab F7-299 to the oligomeric Env. Therefore, the CAEV gp135 RBS is protected from antibody binding by mechanisms both dependent and independent of Env oligomerization which are disrupted by the V1 deletion and the I166A mutation, respectively. In addition, we found a correlation between side-chain β-branching at amino acid position 166 and binding of Mab F7-299 to oligomeric Env and cell-to-cell fusion, suggesting local secondary structure constraints in the region around isoleucine-166 as one determinant of gp135 RBS exposure and antibody binding

  12. Coastal dune dynamics in response to excavated foredune notches

    Science.gov (United States)

    Ruessink, B. G.; Arens, S. M.; Kuipers, M.; Donker, J. J. A.

    2018-04-01

    Dune management along developed coasts has traditionally focussed on the suppression of the geomorphic dynamics of the foredune to improve its role in sea defence. Because a stabilized foredune acts as an almost total barrier to aeolian transport from the beach, the habitat diversity in the more landward dunes has degraded. With the overarching objective to mitigate this undesirable loss in biodiversity, dune management projects nowadays increasingly intend to restore aeolian dynamics by reconnecting the beach-dune system with notches excavated through the foredune. Here, we use repeat topographic survey data to examine the geomorphic response of a coastal dune system in the Dutch National Park Zuid-Kennemerland to five notches excavated in 2012-2013 within an 850-m stretch of the 20-m high established foredune. The notches were dug in a V-shape (viewed onshore), with a width between approximately 50 and 100 m at the top, a (cross-dune) length between 100 and 200 m, and excavation depths between 9 and 12.5 m. The 1 × 1 m digital terrain models, acquired with airborne Lidar and UAV photogrammetry, illustrate that during the 3-year survey period the notches developed into a U-shape because of wall deflation, and that up to 8-m thick and 150-m long depositional lobes formed landward of the notches. Sand budget computations showed that the sand volume of the entire study area increased by about 22,750 m3/year, which, given the 850-m width of the study area, corresponds to an aeolian input from the beach of approximately 26.5 m3/m/year. Between 2006 and 2012 all wind-blown beach sand deposited on the seaward side of the foredune; since 2013, the notches have caused 75% of the sand to be deposited landward of the foredune. This highlights that the notches are highly effective conduits for aeolian transport into the back dunes. Future monitoring is required to determine for how long the notches will stimulate aeolian dynamics and if (and when) vegetation eventually

  13. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Lee

    2006-12-01

    Full Text Available Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy.Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132 of glioblastomas and 12.5% (1/8 of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors.Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma.

  14. Quantification of gamma-secretase modulation differentiates inhibitor compound selectivity between two substrates Notch and amyloid precursor protein

    Directory of Open Access Journals (Sweden)

    Yang Ting

    2008-11-01

    Full Text Available Abstract Background Deposition of amyloid-β protein (Aβ is a major pathological hallmark of Alzheimer's disease (AD. Aβ is generated from γ-secretase cleavage of amyloid precursor protein (APP. In addition to APP, γ-secretase also cleaves other type I integral membrane proteins, including the Notch receptor, a key molecule involved in embryonic development. Results To explore selective γ-secretase inhibitors, a combination of five methods was used to systematically determine these inhibitors' profiles on the γ-secretase cleavage of APP and Notch. When two potent γ-secretase inhibitors, compound E (cpd E and DAPT, were used in a conventional in vitro γ-secretase activity assay, cpd E completely blocked Aβ generation from the cleavage of substrate APP C100, but only had a minor effect on Notch cleavage and NICD generation. Next, cpd E and DAPT were applied to HEK293 cells expressing a truncated Notch substrate NotchΔE. Both cpd E and DAPT were more potent in blocking Aβ generation than NICD generation. Third, a reporter construct was created that carried the NICD targeting promoter with three Su(H binding sequences followed by the luciferase gene. We found that the inhibition of NICD generation by cpd E and DAPT was consistent with the reduced expression of luciferase gene driven by this Notch targeting promoter. Fourth, levels of "Notch-Aβ-like" (Nβ* peptide derived from two previously reported chimeric APP with its transmembrane domain or the juxtamembrane portion replaced by the Notch sequence were quantified. Measurement of Nβ* peptides by ELISA confirmed that EC50's of cpd E were much higher for Nβ* than Aβ. Finally, the expression levels of Notch target gene her6 in cpd E or DAPT-treated zebrafish were correlated with the degree of tail curvature due to defective somitogenesis, a well characterized Notch phenotype in zebrafish. Conclusion Our ELISA-based quantification of Aβ and Nβ* in combination with the test in

  15. Expresión de los genes Serrate1 y Notch1 durante el desarrollo del tercio medio facial del embrión de pollo.

    Directory of Open Access Journals (Sweden)

    Daniel Mauricio Meza Lasso

    2016-01-01

    Full Text Available La vía de señalización Notch se caracteriza por mediar la comunicación célula-célula, regulando diferentes procesos celulares como proliferación, apoptosis y definición del destino celular. Esta vía ha sido implicada en el desarrollo de estructuras craneofaciales como paladar, diente y bóveda craneal. El objetivo de esta investigación fue identificar los patrones de expresión de los genes componentes de la vía Notch, Serrate1 y Notch1, durante el desarrollo del tercio medio facial. Se utilizaron embriones de pollo (Gallus gallus seleccionados de acuerdo a los criterios de Hamilton y Hamburger y sobre los cuales se realizó hibridación in situ con ribosondas marcadas con Digoxigenina (DIG, para luego ser detectadas con anticuerpos Anti-Dig. Los resultados mostraron expresión de los genes evaluados, en las prominencias maxilares (pmx y frontonasal (pfn durante el desarrollo del tercio medio facial. Estos resultados sugieren una probable participación de la vía Notch a través de estos genes, en los diferentes procesos celulares que determinan la morfogénesis y el desarrollo del tercio medio facial.

  16. Notch is required in adult Drosophila sensory neurons for morphological and functional plasticity of the olfactory circuit.

    Directory of Open Access Journals (Sweden)

    Simon Kidd

    2015-05-01

    Full Text Available Olfactory receptor neurons (ORNs convey odor information to the central brain, but like other sensory neurons were thought to play a passive role in memory formation and storage. Here we show that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila ORNs for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. Specifically, we show that Notch activity in ORNs is necessary for the odor specific increase in the volume of glomeruli that occurs as a consequence of prolonged odor exposure. Calcium imaging experiments indicate that Notch in ORNs is also required for the chronic odor induced changes in the physiology of ORNs and the ensuing changes in the physiological response of their second order projection neurons (PNs. We further show that Notch in ORNs acts by both canonical cleavage-dependent and non-canonical cleavage-independent pathways. The Notch ligand Delta (Dl in PNs switches the balance between the pathways. These data define a circuit whereby, in conjunction with odor, N activity in the periphery regulates the activity of neurons in the central brain and Dl in the central brain regulates N activity in the periphery. Our work highlights the importance of experience dependent plasticity at the first olfactory synapse.

  17. Trastuzumab Resistance: Role for Notch Signaling

    Directory of Open Access Journals (Sweden)

    Kinnari Mehta

    2009-01-01

    Full Text Available Epidermal growth factor receptor-2 (ErbB-2/HER2 is a potent breast oncogene that has been shown to be amplified in 20% of breast cancers. Overexpression of ErbB-2 predicts for aggressive tumor behavior, resistance to some cytotoxic and antihormonal therapies, and poor overall survival. Trastuzumab, the humanized, monoclonal antibody directed against ErbB-2 has shown tremendous efficacy and improved overall survival for women when combined with a taxane-based chemotherapy. However, resistance to trastuzumab remains a major concern, most notably in women with metastatic breast cancer. Numerous mechanisms that include overexpression of alternate receptor tyrosine kinases and/or loss of critical tumor suppressors have been proposed in the last several years to elucidate trastuzumab resistance. Here we review the many possible mechanisms of action that could contribute to resistance, and novel therapies to prevent or reverse the resistant phenotype. Moreover, we provide a critical role for Notch signaling cross-talk with overlapping or new signaling networks in trastuzumab-resistant breast.

  18. Co-targeting of Tiam1/Rac1 and Notch ameliorates chemoresistance against doxorubicin in a biomimetic 3D lymphoma model

    Science.gov (United States)

    Ikram, Muhammad; Lim, Yeseon; Baek, Sun-Yong; Jin, Songwan; Jeong, Young Hun; Kwak, Jong-Young; Yoon, Sik

    2018-01-01

    Lymphoma is a heterogeneous disease with a highly variable clinical course and prognosis. Improving the prognosis for patients with relapsed and treatment-resistant lymphoma remains challenging. Current in vitro drug testing models based on 2D cell culture lack natural tissue-like structural organization and result in disappointing clinical outcomes. The development of efficient drug testing models using 3D cell culture that more accurately reflects in vivo behaviors is vital. Our aim was to establish an in vitro 3D lymphoma model that can imitate the in vivo 3D lymphoma microenvironment. Using this model, we explored strategies to enhance chemosensitivity to doxorubicin, an important chemotherapeutic drug widely used for the treatment of hematological malignancies. Lymphoma cells grown in this model exhibited excellent biomimetic properties compared to conventional 2D culture including (1) enhanced chemotherapy resistance, (2) suppressed rate of apoptosis, (3) upregulated expression of drug resistance genes (MDR1, MRP1, BCRP and HIF-1α), (4) elevated levels of tumor aggressiveness factors including Notch (Notch-1, -2, -3, and -4) and its downstream molecules (Hes-1 and Hey-1), VEGF and MMPs (MMP-2 and MMP-9), and (5) enrichment of a lymphoma stem cell population. Tiam1, a potential biomarker of tumor progression, metastasis, and chemoresistance, was activated in our 3D lymphoma model. Remarkably, we identified two synergistic therapeutic oncotargets, Tiam1 and Notch, as a strategy to combat resistance against doxorubicin in EL4 T and A20 B lymphoma. Therefore, our data suggest that our 3D lymphoma model is a promising in vitro research platform for studying lymphoma biology and therapeutic approaches. PMID:29416753

  19. Hotspot mutations in KIT receptor differentially modulate its allosterically coupled conformational dynamics: impact on activation and drug sensitivity.

    Directory of Open Access Journals (Sweden)

    Isaure Chauvot de Beauchêne

    2014-07-01

    Full Text Available Receptor tyrosine kinase KIT controls many signal transduction pathways and represents a typical allosterically regulated protein. The mutation-induced deregulation of KIT activity impairs cellular physiological functions and causes serious human diseases. The impact of hotspots mutations (D816H/Y/N/V and V560G/D localized in crucial regulatory segments, the juxtamembrane region (JMR and the activation (A- loop, on KIT internal dynamics was systematically studied by molecular dynamics simulations. The mutational outcomes predicted in silico were correlated with in vitro and in vivo activation rates and drug sensitivities of KIT mutants. The allosteric regulation of KIT in the native and mutated forms is described in terms of communication between the two remote segments, JMR and A-loop. A strong correlation between the communication profile and the structural and dynamical features of KIT in the native and mutated forms was established. Our results provide new insight on the determinants of receptor KIT constitutive activation by mutations and resistance of KIT mutants to inhibitors. Depiction of an intra-molecular component of the communication network constitutes a first step towards an integrated description of vast communication pathways established by KIT in physiopathological contexts.

  20. Notch Signaling Activation Is Associated with Patient Mortality and Increased FGF1-Mediated Invasion in Squamous Cell Carcinoma of the Oral Cavity.

    Science.gov (United States)

    Weaver, Alice N; Burch, M Benjamin; Cooper, Tiffiny S; Della Manna, Deborah L; Wei, Shi; Ojesina, Akinyemi I; Rosenthal, Eben L; Yang, Eddy S

    2016-09-01

    Oral squamous cell carcinoma (OSCC) is a cancer subtype that lacks validated prognostic and therapeutic biomarkers, and human papillomavirus status has not proven beneficial in predicting patient outcomes. A gene expression pathway analysis was conducted using OSCC patient specimens to identify molecular targets that may improve management of this disease. RNA was isolated from 19 OSCCs treated surgically at the University of Alabama at Birmingham (UAB; Birmingham, AL) and evaluated using the NanoString nCounter system. Results were confirmed using the oral cavity subdivision of the Head and Neck Squamous Cell Carcinoma Cancer (HNSCC) study generated by The Cancer Genome Atlas (TCGA) Research Network. Further characterization of the in vitro phenotype produced by Notch pathway activation in HNSCC cell lines included gene expression, proliferation, cell cycle, migration, invasion, and radiosensitivity. In both UAB and TCGA samples, Notch pathway upregulation was significantly correlated with patient mortality status and with expression of the proinvasive gene FGF1 In vitro Notch activation in HNSCC cells increased transcription of FGF1 and induced a marked increase in cell migration and invasion, which was fully abrogated by FGF1 knockdown. These results reveal that increased Notch pathway signaling plays a role in cancer progression and patient outcomes in OSCC. Accordingly, the Notch-FGF interaction should be further studied as a prognostic biomarker and potential therapeutic target for OSCC. Patients with squamous cell carcinoma of the oral cavity who succumb to their disease are more likely to have upregulated Notch signaling, which may mediate a more invasive phenotype through increased FGF1 transcription. Mol Cancer Res; 14(9); 883-91. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. The significance of PTEN and AKT aberrations in pediatric T-cell acute lymphoblastic leukemia

    Science.gov (United States)

    Zuurbier, Linda; Petricoin, Emanuel F.; Vuerhard, Maartje J.; Calvert, Valerie; Kooi, Clarissa; Buijs-Gladdines, Jessica G.C.A.M.; Smits, Willem K.; Sonneveld, Edwin; Veerman, Anjo J.P.; Kamps, Willem A.; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.

    2012-01-01

    Background PI3K/AKT pathway mutations are found in T-cell acute lymphoblastic leukemia, but their overall impact and associations with other genetic aberrations is unknown. PTEN mutations have been proposed as secondary mutations that follow NOTCH1-activating mutations and cause cellular resistance to γ-secretase inhibitors. Design and Methods The impact of PTEN, PI3K and AKT aberrations was studied in a genetically well-characterized pediatric T-cell leukemia patient cohort (n=146) treated on DCOG or COALL protocols. Results PTEN and AKT E17K aberrations were detected in 13% and 2% of patients, respectively. Defective PTEN-splicing was identified in incidental cases. Patients without PTEN protein but lacking exon-, splice-, promoter mutations or promoter hypermethylation were present. PTEN/AKT mutations were especially abundant in TAL- or LMO-rearranged leukemia but nearly absent in TLX3-rearranged patients (P=0.03), the opposite to that observed for NOTCH1-activating mutations. Most PTEN/AKT mutant patients either lacked NOTCH1-activating mutations (P=0.006) or had weak NOTCH1-activating mutations (P=0.011), and consequently expressed low intracellular NOTCH1, cMYC and MUSASHI levels. T-cell leukemia patients without PTEN/AKT and NOTCH1-activating mutations fared well, with a cumulative incidence of relapse of only 8% versus 35% for PTEN/AKT and/or NOTCH1-activated patients (P=0.005). Conclusions PI3K/AKT pathway aberrations are present in 18% of pediatric T-cell acute lymphoblastic leukemia patients. Absence of strong NOTCH1-activating mutations in these cases may explain cellular insensitivity to γ-secretase inhibitors. PMID:22491738

  2. Convergent Evolution of Slick Coat in Cattle through Truncation Mutations in the Prolactin Receptor

    Directory of Open Access Journals (Sweden)

    Laercio R. Porto-Neto

    2018-02-01

    Full Text Available Evolutionary adaptations are occasionally convergent solutions to the same problem. A mutation contributing to a heat tolerance adaptation in Senepol cattle, a New World breed of mostly European descent, results in the distinct phenotype known as slick, where an animal has shorter hair and lower follicle density across its coat than wild type animals. The causal variant, located in the 11th exon of prolactin receptor, produces a frameshift that results in a truncated protein. However, this mutation does not explain all cases of slick coats found in criollo breeds. Here, we obtained genome sequences from slick cattle of a geographically distinct criollo breed, namely Limonero, whose ancestors were originally brought to the Americas by the Spanish. These data were used to identify new causal alleles in the 11th exon of the prolactin receptor, two of which also encode shortened proteins that remove a highly conserved tyrosine residue. These new mutations explained almost 90% of investigated cases of animals that had slick coats, but which also did not carry the Senepol slick allele. These results demonstrate convergent evolution at the molecular level in a trait important to the adaptation of an animal to its environment.

  3. Thyroid hyperfunctioning adenomas with and without Gsp/TSH receptor mutations show similar clinical features.

    Science.gov (United States)

    Arturi, F; Capula, C; Chiefari, E; Filetti, S; Russo, D

    1998-01-01

    Activating mutations of Gs alpha protein (gsp) and TSH receptor (TSH-R) identified in autonomously hyperfunctioning thyroid adenomas have been proposed as the primary event responsible for this disease. Since mutations have not been detected in 100% (ranging from less than 10% to 90%) of the patients, we evaluated whether the presence of gsp and TSH-R mutations cause differences in the clinical and biochemical parameters of the affected patients. Fifteen consecutive patients (11 women and 4 men) with autonomously hyperfunctioning thyroid adenomas who underwent thyroidectomy, previously examined for the presence of gsp or TSH-R mutations, were investigated. In all of the patients we examined plasma free T3, free T4, TSH levels and ultrasound volume of the nodules. The patients with mutations in gsp or TSH-R were similar to the patients without mutations for clinical presentation, sex distribution and mean age. Furthermore, basal serum FT3, TSH and tumor volume in the patients with mutations were not significantly different from the group without mutations. Our preliminary data demonstrate that no significant differences are present in the two groups of patients examined, suggesting that factors other than gsp or TSH-R mutations play a role in the clinical presentation of the disease.

  4. Effects of icotinib, a novel epidermal growth factor receptor tyrosine kinase inhibitor, in EGFR-mutated non-small cell lung cancer.

    Science.gov (United States)

    Yang, Guangdie; Yao, Yinan; Zhou, Jianya; Zhao, Qiong

    2012-06-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small cell lung cancer (NSCLC). Our study demonstrated the antitumor effects of icotinib hydrochloride, a highly selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in two EGFR-mutated lung cancer cell lines compared to A549, a cell line without EGFR mutations. We incubated PC-9 and HCC827 human lung cancer cell lines both with (E746-A750) mutations with various concentrations of icotinib and gefitinib for 48 h. Cell proliferation and migration were determined using a real-time cell invasion and migration assay and cytotoxicity assay. Apoptosis was assessed by measuring Annexin V staining using flow cytometry. The antitumor effects of icotinib compared to gefitinib were similar and were most effective in reducing the proliferation of EGFR-mutated cells compared to non-mutated controls. Our results suggest the possibility of icotinib as a new therapeutic agent of EGFR-mutated cancer cells, which has the potential to be used in the first-line treatment of EGFR-mutated NSCLC.

  5. Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression

    DEFF Research Database (Denmark)

    Hamdi, Yosr; Soucy, Penny; Kuchenbaeker, Karoline B

    2017-01-01

    and ovarian cancer risks in 15,252 BRCA1 and 8211 BRCA2 mutation carriers ascertained from 54 studies participating in the Consortium of Investigators of Modifiers of BRCA1/2. RESULTS: We identified a region on 11q22.3 that is significantly associated with breast cancer risk in BRCA1 mutation carriers (most...... studies using estrogen receptor (ER)-negative or triple-negative (i.e., ER-, progesterone receptor-, and HER2-negative) cases could therefore be helpful to confirm the association of this locus with breast cancer risk.......1 and BRCA2 mutation carriers, a list of 175 genes was developed based of their involvement in cancer-related pathways. METHODS: Using data from a genome-wide map of SNPs associated with allelic expression, we assessed the association of ~320 SNPs located in the vicinity of these genes with breast...

  6. Notch Signaling: Piercing a Harness of Simplicity

    NARCIS (Netherlands)

    Helbig, Christina; Amsen, Derk

    2015-01-01

    The Notch pathway is an attractive therapeutic target for treatment of cancer and T cell-mediated pathology, but Notch inhibition leads to many side effects. Pinnell et al. (2015) demonstrate that oncogenic functions can be separated biochemically from other functions of Notch, opening new options

  7. SAHA (Vorinostat Corrects Inhibitory Synaptic Deficits Caused by Missense Epilepsy Mutations to the GABAA Receptor γ2 Subunit

    Directory of Open Access Journals (Sweden)

    Nela Durisic

    2018-03-01

    Full Text Available The GABAA receptor (GABAAR α1 subunit A295D epilepsy mutation reduces the surface expression of α1A295Dβ2γ2 GABAARs via ER-associated protein degradation. Suberanilohydroxamic acid (SAHA, also known as Vorinostat was recently shown to correct the misfolding of α1A295D subunits and thereby enhance the functional surface expression of α1A295Dβ2γ2 GABAARs. Here we investigated whether SAHA can also restore the surface expression of γ2 GABAAR subunits that incorporate epilepsy mutations (N40S, R43Q, P44S, R138G known to reduce surface expression via ER-associated protein degradation. As a control, we also investigated the γ2K289M epilepsy mutation that impairs gating without reducing surface expression. Effects of mutations were evaluated on inhibitory postsynaptic currents (IPSCs mediated by the major synaptic α1β2γ2 GABAAR isoform. Recordings were performed in neuron-HEK293 cell artificial synapses to minimise contamination by GABAARs of undefined subunit composition. Transfection with α1β2γ2N40S, α1β2γ2R43Q, α1β2γ2P44S and α1β2γ2R138G subunits produced IPSCs with decay times slower than those of unmutated α1β2γ2 GABAARs due to the low expression of mutant γ2 subunits and the correspondingly high expression of slow-decaying α1β2 GABAARs. SAHA pre-treatment significantly accelerated the decay time constants of IPSCs consistent with the upregulation of mutant γ2 subunit expression. This increase in surface expression was confirmed by immunohistochemistry. SAHA had no effect on either the IPSC kinetics or surface expression levels of α1β2γ2K289M GABAARs, confirming its specificity for ER-retained mutant γ2 subunits. We also found that α1β2γ2K289M GABAARs and SAHA-treated α1β2γ2R43Q, α1β2γ2P44S and α1β2γ2R138G GABAARs all mediated IPSCs that decayed at significantly faster rates than wild type receptors as temperature was increased from 22 to 40°C. This may help explain why these mutations cause febrile

  8. Luteolin suppresses angiogenesis and vasculogenic mimicry formation through inhibiting Notch1-VEGF signaling in gastric cancer.

    Science.gov (United States)

    Zang, Mingde; Hu, Lei; Zhang, Baogui; Zhu, Zhenglun; Li, Jianfang; Zhu, Zhenggang; Yan, Min; Liu, Bingya

    2017-08-26

    Gastric cancer is a great threat to the health of the people worldwide and lacks effective therapeutic regimens. Luteolin is one of Chinese herbs and presents in many fruits and green plants. In our previous study, we observed that luteolin inhibited cell migration and promoted cell apoptosis in gastric cancer. In the present study, luteolin significantly inhibited tube formation of human umbilical vein endothelial cells (HUVECs) through decreasing cell migration and proliferation of HUVECs in a dose-dependent manner. Vasculogenic mimicry (VM) tubes formed by gastric cancer cells were also inhibited with luteolin treatment. To explore how luteolin inhibited tubes formation, ELISA assay for VEGF was performed. Both of the VEGF secretion from Hs-746T cells and HUVECs were significantly decreased subsequent to luteolin treatment. In addition, cell migration was increased with the interaction between gastric cancer cells and HUVECs in co-culture assays. However, the promoting effects were abolished subsequent to luteolin treatment. Furthermore, luteolin inhibited VEGF secretion through suppressing Notch1 expression in gastric cancer. Overexpression of Notch1 in gastric cancer cells partially rescued the effects on cell migration, proliferation, HUVECs tube formation, and VM formation induced by luteolin treatment. In conclusion, luteolin inhibits angiogenesis and VM formation in gastric cancer through suppressing VEGF secretion dependent on Notch1 expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Identification of a novel mutation in the human growth hormone receptor gene (GHR) in a patient with Laron syndrome.

    Science.gov (United States)

    Gennero, Isabelle; Edouard, Thomas; Rashad, Mona; Bieth, Eric; Conte-Aurio, Françoise; Marin, Françoise; Tauber, Maithé; Salles, Jean Pierre; El Kholy, Mohamed

    2007-07-01

    Deletions and mutations in the growth hormone receptor (GHR) gene are the underlying etiology of Laron syndrome (LS) or growth hormone (GH) insensitivity syndrome (GHIS), an autosomal recessive disease. Most patients are distributed in or originate from Mediterranean and Middle-Eastern countries. Sixty mutations have been described so far. We report a novel mutation in the GHR gene in a patient with LS. Genomic DNA sequencing of exon 5 revealed a TT insertion at nucleotide 422 after codon 122. The insertion resulted in a frameshift introducing a premature termination codon that led to a truncated receptor. We present clinical, biochemical and molecular evidence of LS as the result of this homozygous insertion.

  10. A Novel Notch-YAP Circuit Drives Stemness and Tumorigenesis in Embryonal Rhabdomyosarcoma.

    Science.gov (United States)

    Slemmons, Katherine K; Crose, Lisa E S; Riedel, Stefan; Sushnitha, Manuela; Belyea, Brian; Linardic, Corinne M

    2017-12-01

    Rhabdomyosarcoma (RMS), a cancer characterized by skeletal muscle features, is the most common soft-tissue sarcoma of childhood. While low- and intermediate-risk groups have seen improved outcomes, high-risk patients still face a 5-year survival rate of statistic that has not changed in over 40 years. Understanding the biologic underpinnings of RMS is critical. The developmental pathways of Notch and YAP have been identified as potent but independent oncogenic signals that support the embryonal variant of RMS (eRMS). Here, the cross-talk between these pathways and the impact on eRMS tumorigenesis is reported. Using human eRMS cells grown as three-dimensional (3D) rhabdospheres, which enriches in stem cells, it was found that Notch signaling transcriptionally upregulates YAP1 gene expression and YAP activity. Reciprocally, YAP transcriptionally upregulates the Notch ligand genes JAG1 and DLL1 and the core Notch transcription factor RBPJ This bidirectional circuit boosts expression of key stem cell genes, including SOX2 , which is functionally required for eRMS spheres. Silencing this circuit for therapeutic purposes may be challenging, because the inhibition of one node (e.g., pharmacologic Notch blockade) can be rescued by upregulation of another (constitutive YAP expression). Instead, dual inhibition of Notch and YAP is necessary. Finally, supporting the existence of this circuit beyond a model system, nuclear Notch and YAP protein expression are correlated in human eRMS tumors, and YAP suppression in vivo decreases Notch signaling and SOX2 expression. Implications: This study identifies a novel oncogenic signaling circuit driving eRMS stemness and tumorigenesis, and provides evidence and rationale for combination therapies co-targeting Notch and YAP. Mol Cancer Res; 15(12); 1777-91. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Passive notch circuit for pulsed-off compression fields

    International Nuclear Information System (INIS)

    Nunnally, W.C.

    1976-06-01

    The operation and simulated results of a passive notch circuit used to pulse off the field in a multiturn, fusion-power system, compression coil are presented. The notch circuit permits initial plasma preparation at field zero, adiabatic compression as the field returns to its initial value, and long field decay time for plasma confinement. The major advantages and disadvantages of the notch circuit are compared with those of a standard capacitor power supply system. The major advantages are that: (1) slow-rising fields can be used for adiabatic compression, (2) solid-state switches can be used because of the inherent current and voltage waveforms, and (3) long field decay times are easier to attain than with single-turn coils

  12. In-situ tensile testing of notched poly- and oligocrystalline 316L wires

    Energy Technology Data Exchange (ETDEWEB)

    Mitevski, Bojan [Materials Science and Engineering (ITM), Duisburg (Germany); Weiss, Sabine [Brandenburg Technical Univ., Cottbus-Senftenberg (Germany). Chair of Physical Metallurgy and Materials Science.; Fischer, Alfons [Duisburg-Essen Univ. (Germany). Materials Science and Engineering; Rush Univ. Medical Center, Chicago, IL (United States). Dept. of Orthopedics

    2017-03-01

    In-situ testing inside a scanning electron microscope is a helpful tool for detailed analyses of small sized specimens with respect to their mechanical properties and the correlated microstructural alterations. Thus, this test method is used to analyze the tensional properties of thin 316L (1.4441) wires used for microscale components, e.g., like coronary artery stents. Tensile tests were conducted on unnotched and circularly notched 316L wires (oe 0.95 mm) with a special focus on the number of grains within the cross section as well as the notch geometry. Four combinations of notch width (2 and 4 mm) and notch depth (diameter at notch root: 0.5 and 0.75 mm) were chosen. Notch depth and notch shape were adjusted by means of electrochemical polishing. Previous investigations showed, that oligocrystalline structures exhibit a different mechanical behavior compared to polycrystalline ones or single crystals. There are only a few data available on mechanical testing of oligocrystalline structures with respect to varying notch geometries. Depending on the notch geometry, grain size and, therefore, the number of grains within the notch cross section widely scattering yield- and tensile strength as well as failure elongation values were measured. However, the transition criterion between poly- and oligocrystalline behavior could be quantified to be 6 to 7 grains within the cross section.

  13. Stress concentration factors for an internally pressurized circular vessel containing a radial U-notch

    International Nuclear Information System (INIS)

    Carvalho, E.A. de

    2005-01-01

    This paper evaluates the stress concentration factors for an internally pressurized cylinder containing a radial U-notch along its length. This work studies the cases where the external to internal radius ratio (Ψ) is equal to 1.26, 1.52, 2.00, and 3.00 and the notch radius to internal radius ratio (Φ) is fixed and equal to 0.026. The U-notch depth varies from 0.1 to 0.6 of the wall thickness. Results are also presented for a fixed size semi-circular notch. Hoop stresses at the external wall are presented, showing regions where the stress matches the nominal one and the favourable places to install strain sensors. The finite element method is used to determine the stress concentration factors (K t ) for the above described situations and for a special case where a varying semi-circular notch is present with Ψ=3.00. This notch depth varies from 0.013 to 0.3 of the wall thickness. It is pointed out that even relatively small notches introduce large stress concentrations and disrupt the hoop stress distribution all over the cross section. Results are also compared to an example found in the literature for semi-circular notches and K t curves for both cases present the same shape

  14. Mutations and polymorphisms in FSH receptor: functional implications in human reproduction.

    Science.gov (United States)

    Desai, Swapna S; Roy, Binita Sur; Mahale, Smita D

    2013-12-01

    FSH brings about its physiological actions by activating a specific receptor located on target cells. Normal functioning of the FSH receptor (FSHR) is crucial for follicular development and estradiol production in females and for the regulation of Sertoli cell function and spermatogenesis in males. In the last two decades, the number of inactivating and activating mutations, single nucleotide polymorphisms, and spliced variants of FSHR gene has been identified in selected infertile cases. Information on genotype-phenotype correlation and in vitro functional characterization of the mutants has helped in understanding the possible genetic cause for female infertility in affected individuals. The information is also being used to dissect various extracellular and intracellular events involved in hormone-receptor interaction by studying the differences in the properties of the mutant receptor when compared with WT receptor. Studies on polymorphisms in the FSHR gene have shown variability in clinical outcome among women treated with FSH. These observations are being explored to develop molecular markers to predict the optimum dose of FSH required for controlled ovarian hyperstimulation. Pharmacogenetics is an emerging field in this area that aims at designing individual treatment protocols for reproductive abnormalities based on FSHR gene polymorphisms. The present review discusses the current knowledge of various genetic alterations in FSHR and their impact on receptor function in the female reproductive system.

  15. Arabidopsis ETR1 and ERS1 Differentially Repress the Ethylene Response in Combination with Other Ethylene Receptor Genes1[W

    Science.gov (United States)

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The ethylene response is negatively regulated by a family of five ethylene receptor genes in Arabidopsis (Arabidopsis thaliana). The five members of the ethylene receptor family can physically interact and form complexes, which implies that cooperativity for signaling may exist among the receptors. The ethylene receptor gene mutations etr1-1(C65Y)(for ethylene response1-1), ers1-1(I62P) (for ethylene response sensor1-1), and ers1C65Y are dominant, and each confers ethylene insensitivity. In this study, the repression of the ethylene response by these dominant mutant receptor genes was examined in receptor-defective mutants to investigate the functional significance of receptor cooperativity in ethylene signaling. We showed that etr1-1(C65Y), but not ers1-1(I62P), substantially repressed various ethylene responses independent of other receptor genes. In contrast, wild-type receptor genes differentially supported the repression of ethylene responses by ers1-1(I62P); ETR1 and ETHYLENE INSENSITIVE4 (EIN4) supported ers1-1(I62P) functions to a greater extent than did ERS2, ETR2, and ERS1. The lack of both ETR1 and EIN4 almost abolished the repression of ethylene responses by ers1C65Y, which implied that ETR1 and EIN4 have synergistic effects on ers1C65Y functions. Our data indicated that a dominant ethylene-insensitive receptor differentially repressed ethylene responses when coupled with a wild-type ethylene receptor, which supported the hypothesis that the formation of a variety of receptor complexes may facilitate differential receptor signal output, by which ethylene responses can be repressed to different extents. We hypothesize that plants can respond to a broad ethylene concentration range and exhibit tissue-specific ethylene responsiveness with differential cooperation of the multiple ethylene receptors. PMID:22227969

  16. Compact microstrip bandpass filter with tunable notch

    DEFF Research Database (Denmark)

    Christensen, Silas; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    Two different designs combining a bandpass and a notch filter are developed to operate in the receiving band from 350–470 MHz. The bandpass filter is designed from a simple structure, by use of only four short circuited stubs and a half wavelength transmission line connecting the stubs. The tunable...... notch filter ensures an attenuation level of 19.3 dB to 27.3 dB in the frequency range from 360–480 MHz. The measured passband ripple of the combined filter is less than 0.5 dB, while the insertion loss for the simplest design is less than 1.7 dB only 10 MHz from the notch frequency. Even though...... the wavelength on the selected substrate (εr = 3.55) is approximately 45 cm, the outer dimensions of the final filter only measure 10×10 cm2....

  17. The prevalence of BRCA1 mutations among young women with triple-negative breast cancer

    International Nuclear Information System (INIS)

    Young, SR; DeSai, Damini; Zandvakili, Inuk; Royer, Robert; Li, Song; Narod, Steven A; Pilarski, Robert T; Donenberg, Talia; Shapiro, Charles; Hammond, Lyn S; Miller, Judith; Brooks, Karen A; Cohen, Stephanie; Tenenholz, Beverly

    2009-01-01

    Molecular screening for BRCA1 and BRCA2 mutations is now an established component of risk evaluation and management of familial breast cancer. Features of hereditary breast cancer include an early age-of-onset and over-representation of the 'triple-negative' phenotype (negative for estrogen-receptor, progesterone-receptor and HER2). The decision to offer genetic testing to a breast cancer patient is usually based on her family history, but in the absence of a family history of cancer, some women may qualify for testing based on the age-of-onset and/or the pathologic features of the breast cancer. We studied 54 women who were diagnosed with high-grade, triple-negative invasive breast cancer at or before age 40. These women were selected for study because they had little or no family history of breast or ovarian cancer and they did not qualify for genetic testing using conventional family history criteria. BRCA1 screening was performed using a combination of fluorescent multiplexed-PCR analysis, BRCA1 exon-13 6 kb duplication screening, the protein truncation test (PTT) and fluorescent multiplexed denaturing gradient gel electrophoresis (DGGE). All coding exons of BRCA1 were screened. The two large exons of BRCA2 were also screened using PTT. All mutations were confirmed with direct sequencing. Five deleterious BRCA1 mutations and one deleterious BRCA2 mutation were identified in the 54 patients with early-onset, triple-negative breast cancer (11%). Women with early-onset triple-negative breast cancer are candidates for genetic testing for BRCA1, even in the absence of a family history of breast or ovarian cancer

  18. Correlation between 18F Fluorodeoxyglucose uptake and epidermal growth factor receptor mutations in advanced lung cancer

    International Nuclear Information System (INIS)

    Choi, Yun Jung; Cho, Byoung Chul; Jeong, Youg Hyu; Seo, Hyo Jung; Kim, Hyun Jeong; Cho, Arthur; Lee, Jae Hoon; Yun, Mi Jin; Jeon, Tae Joo; Lee, Jong Doo; Kang, Won Jun

    2012-01-01

    Mutations in the epidermal growth factor receptor (EGFR)gene have been identified as potential targets for the treatment and prognostic factors for non small cell lung cancer (NSCLC). We assessed the correlation between fluorodeoxyglucose (FDG) uptake and EGFR mutations, as well as their prognostic implications. A total of 163 patients with pathologically confirmed NSCLC were enrolled (99 males and 64 females; median age, 60 years). All patients underwent FDG positron emission tomography before treatment, and genetic studies of EGFR mutations were performed. The maximum standardized uptake value (SUVmax)of the primary lung cancer was measured and normalized with regard to liver uptake. The SUVmax between the wild type and EGFR mutant groups was compared. Survival was evaluated according to SUVmax and EGFR mutation status. EGFR mutations were found in 57 patients (60.8%). The SUVmax tended to be higher in wild type than mutant tumors, but was not significantly different (11.1±5.7 vs. 9.8±4.4, P=0.103). The SUVmax was significantly lower in patients with an exon 19 mutation than in those with either an exon 21 mutation or wild type (P=0.003 and 0.009, respectively). The EGFR mutation showed prolonged overall survival (OS) compared to wild type tumors (P=0.004). There was no significant difference in survival according to SUVmax. Both OS and progression free survival of patients with a mutation in exon 19 were significant longer than in patients with wild type tumors. In patients with NSCLC, a mutation in exon 19 was associated with a lower SUVmax and is a reliable predictor for good survival

  19. Rapid characterization of disease-causing mutations in the low density lipoprotein receptor (LDL-R) gene by overexpression in COS cells

    DEFF Research Database (Denmark)

    Jensen, T G; Andresen, B S; Jensen, H K

    1996-01-01

    To characterize disease-causing mutations in the low density lipoprotein receptor (LDL-R) gene, COS cells are transfected with the mutant gene in an EBV-based expression vector and characterized by flow cytometry. Using antibodies against the LDL-receptor the amount of receptor protein on the cel...

  20. Mutations in fibroblast growth-factor receptor 3 in sporadic cases of achondroplasia occur exclusively on the paternally derived chromosome.

    Science.gov (United States)

    Wilkin, D J; Szabo, J K; Cameron, R; Henderson, S; Bellus, G A; Mack, M L; Kaitila, I; Loughlin, J; Munnich, A; Sykes, B; Bonaventure, J; Francomano, C A

    1998-01-01

    More than 97% of achondroplasia cases are caused by one of two mutations (G1138A and G1138C) in the fibroblast growth factor receptor 3 (FGFR3) gene, which results in a specific amino acid substitution, G380R. Sporadic cases of achondroplasia have been associated with advanced paternal age, suggesting that these mutations occur preferentially during spermatogenesis. We have determined the parental origin of the achondroplasia mutation in 40 sporadic cases. Three distinct 1-bp polymorphisms were identified in the FGFR3 gene, within close proximity to the achondroplasia mutation site. Ninety-nine families, each with a sporadic case of achondroplasia in a child, were analyzed in this study. In this population, the achondroplasia mutation occurred on the paternal chromosome in all 40 cases in which parental origin was unambiguous. This observation is consistent with the clinical observation of advanced paternal age resulting in new cases of achondroplasia and suggests that factors influencing DNA replication or repair during spermatogenesis, but not during oogenesis, may predispose to the occurrence of the G1138 FGFR3 mutations. PMID:9718331

  1. JAK and MPL mutations in myeloid malignancies.

    Science.gov (United States)

    Tefferi, Ayalew

    2008-03-01

    The Janus family of non-receptor tyrosine kinases (JAK1, JAK2, JAK3 and tyrosine kinase 2) transduces signals downstream of type I and II cytokine receptors via signal transducers and activators of transcription (STATs). JAK3 is important in lymphoid and JAK2 in myeloid cell proliferation and differentiation. The thrombopoietin receptor MPL is one of several JAK2 cognate receptors and is essential for myelopoiesis in general and megakaryopoiesis in particular. Germline loss-of-function (LOF) JAK3 and MPL mutations cause severe combined immunodeficiency and congenital amegakaryocytic thrombocytopenia, respectively. Germline gain-of-function (GOF) MPL mutation (MPLS505N) causes familial thrombocytosis. Somatic JAK3 (e.g. JAK3A572V, JAK3V722I, JAK3P132T) and fusion JAK2 (e.g. ETV6-JAK2, PCM1-JAK2, BCR-JAK2) mutations have respectively been described in acute megakaryocytic leukemia and acute leukemia/chronic myeloid malignancies. However, current attention is focused on JAK2 (e.g. JAK2V617F, JAK2 exon 12 mutations) and MPL (e.g. MPLW515L/K/S, MPLS505N) mutations associated with myeloproliferative neoplasms (MPNs). A JAK2 mutation, primarily JAK2V617F, is invariably associated with polycythemia vera (PV). The latter mutation also occurs in the majority of patients with essential thrombocythemia (ET) or primary myelofibrosis (PMF). MPL mutational frequency in MPNs is substantially less (<10%). In general, despite a certain degree of genotype - phenotype correlations, the prognostic relevance of harbouring one of these mutations, or their allele burden when present, remains dubious. Regardless, based on the logical assumption that amplified JAK-STAT signalling is central to the pathogenesis of PV, ET and PMF, several anti-JAK2 tyrosine kinase inhibitors have been developed and are currently being tested in humans with these disorders.

  2. Functional characteristics of three new germline mutations of the thyrotropin receptor gene causing autosomal dominant toxic thyroid hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Tonacchera, M.; Van Sande, J.; Cetani, F. [Universite Libre de Bruxelles, Brussels (Belgium)] [and others

    1996-02-01

    We report three unrelated families in which hyperthyroidism associated with thyroid hyperplasia was transmitted in an autosomal dominant fashion, in the absence of signs of autoimmunity. Exon 10 of the TSH receptor gene was directly sequenced after PCR amplification from DNA of peripheral leukocytes. In one family, a C to A transversion resulted in an S505R substitution in the third transmembrane segment; in the second, an A to T transversion caused an N650Y substitution in the sixth transmembrane segment; and in the third family, an A to G transition resulted in an N670S substitution in the seventh transmembrane segment. When expressed by transfection in COS-7 cells, each mutated receptor displayed an increase in constitutive stimulation of cAMP production; no effect on basal accumulation of inositol phosphates (IP) could be detected. In binding studies, cells transfected with wild-type of mutated receptors showed similar levels of expression, with the mutated receptors displaying similar or slightly increased affinity for bovine TSH (bTSH) binding. Cells transfected with S505R and N650Y mutants showed a similar cAMP maximal TSH-stimulated accumulation over the cells transfected with the wild type, whereas N670S transfectants showed a blunted response with an increase in EC{sub 50}. A higher IP response to 100 mU/mL bTSH over that obtained with the wild-type receptor was obtained in cells transfected with N650Y; in contrast, cells transfected with S505R showed a blunted IP production (50% less), and the N670S mutant completely lost the ability to stimulate IP accumulation in response to bTSH. The differential effects of individual mutations on stimulation by bTSH of cAMP or IP accumulation suggest that individual mutant receptors may achieve different active conformations with selective abilities to couple to G{sub s}{alpha} and to G{sub q}{alpha}. 17 refs., 8 figs.

  3. Kynurenine promotes the goblet cell differentiation of HT-29 colon carcinoma cells by modulating Wnt, Notch and AhR signals.

    Science.gov (United States)

    Park, Joo-Hung; Lee, Jeong-Min; Lee, Eun-Jin; Kim, Da-Jeong; Hwang, Won-Bhin

    2018-04-01

    Various amino acids regulate cell growth and differentiation. In the present study, we examined the ability of HT-29 cells to differentiate into goblet cells in RPMI and DMEM which are largely different in the amounts of numerous amino acids. Most of the HT-29 cells differentiated into goblet cells downregulating the stem cell marker Lgr5 when cultured in DMEM, but remained undifferentiated in RPMI. The goblet cell differentiation in DMEM was inhibited by 1-methyl-tryptophan (1-MT), an inhibitor of indoleamine 2,3 dioxygenase-1 which is the initial enzyme in tryptophan metabolism along the kynurenine (KN) pathway, whereas tryptophan and KN induced goblet cell differentiation in RPMI. The levels of Notch1 and its activation product Notch intracytoplasmic domain in HT-29 cells were lower in DMEM than those in RPMI and were increased by 1-MT in both media. HT-29 cells grown in both media expressed β-catenin at the same level on day 2 when goblet cell differentiation was not observed. β-catenin expression, which was increased by 1-MT in both media, was decreased by KN. DMEM reduced Hes1 expression while enhancing Hath1 expression. Finally, aryl hydrocarbon receptor (AhR) activation moderately induced goblet cell differentiation. Our results suggest that KN promotes goblet cell differentiation by regulating Wnt, Notch, and AhR signals and expression of Hes1 and Hath1.

  4. C-terminal of human histamine H1 receptors regulates their agonist-induced clathrin-mediated internalization and G-protein signaling.

    Science.gov (United States)

    Hishinuma, Shigeru; Nozawa, Hiroki; Akatsu, Chizuru; Shoji, Masaru

    2016-11-01

    It has been suggested that the agonist-induced internalization of G-protein-coupled receptors from the cell surface into intracellular compartments regulates cellular responsiveness. We previously reported that G q/11 -protein-coupled human histamine H 1 receptors internalized via clathrin-dependent mechanisms upon stimulation with histamine. However, the molecular determinants of H 1 receptors responsible for agonist-induced internalization remain unclear. In this study, we evaluated the roles of the intracellular C-terminal of human histamine H 1 receptors tagged with hemagglutinin (HA) at the N-terminal in histamine-induced internalization in Chinese hamster ovary cells. The histamine-induced internalization was evaluated by the receptor binding assay with [ 3 H]mepyramine and confocal immunofluorescence microscopy with an anti-HA antibody. We found that histamine-induced internalization was inhibited under hypertonic conditions or by pitstop, a clathrin terminal domain inhibitor, but not by filipin or nystatin, disruptors of the caveolar structure and function. The histamine-induced internalization was also inhibited by truncation of a single amino acid, Ser487, located at the end of the intracellular C-terminal of H 1 receptors, but not by its mutation to alanine. In contrast, the receptor-G-protein coupling, which was evaluated by histamine-induced accumulation of [ 3 H]inositol phosphates, was potentiated by truncation of Ser487, but was lost by its mutation to alanine. These results suggest that the intracellular C-terminal of human H 1 receptors, which only comprises 17 amino acids (Cys471-Ser487), plays crucial roles in both clathrin-dependent internalization of H 1 receptors and G-protein signaling, in which truncation of Ser487 and its mutation to alanine are revealed to result in biased signaling toward activation of G-proteins and clathrin-mediated internalization, respectively. © 2016 International Society for Neurochemistry.

  5. Progress Report on Alloy 617 Notched Specimen Testing

    Energy Technology Data Exchange (ETDEWEB)

    McMurtrey, Michael David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Richard Neil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lillo, Thomas Martin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    Creep behavior of Alloy 617 has been extensively characterized to support the development of a draft Code Case to qualify Alloy 617 in Section III division 5 of the ASME Boiler and Pressure Vessel Code. This will allow use of Alloy 617 in construction of nuclear reactor components at elevated temperatures and longer periods of time (up to 950°C and 100,000 hours). Prior to actual use, additional concerns not considered in the ASME code need to be addressed. Code Cases are based largely on uniaxial testing of smooth gage specimens. In service conditions, components will generally be under multi axial loading. There is also the concern of the behavior at discontinuities, such as threaded components. To address the concerns of multi axial creep behavior and at geometric discontinuities, notched specimens have been designed to create conditions representative of the states that service components experience. Two general notch geometries have been used for these series of tests: U notch and V notch specimens. The notches produce a tri axial stress state, though not uniform across the specimen. Characterization of the creep behavior of the U notch specimens and the creep rupture behavior of the V notch specimens provides a good approximation of the behavior expected of actual components. Preliminary testing and analysis have been completed and are reported in this document. This includes results from V notch specimens tested at 900°C and 800°C. Failure occurred in the smooth gage section of the specimen rather than at the root of the notch, though some damage was present at the root of the notch, where initial stress was highest. This indicates notch strengthening behavior in this material at these temperatures.

  6. Identification and Functional Characterization of a Novel Mutation in the Human Calcium-Sensing Receptor That Co-Segregates With Autosomal-Dominant Hypocalcemia

    Directory of Open Access Journals (Sweden)

    Anne Qvist Rasmussen

    2018-04-01

    Full Text Available The human calcium-sensing receptor (CASR is the key controller of extracellular Cao2+ homeostasis, and different mutations in the CASR gene have been linked to different calcium diseases, such as familial hypocalciuric hypercalcemia, severe hyperparathyroidism, autosomal-dominant hypocalcemia (ADH, and Bartter’s syndrome type V. In this study, two generations of a family with biochemically and clinically confirmed ADH who suffered severe muscle pain, arthralgia, tetany, abdominal pain, and fatigue were evaluated for mutations in the CASR gene. The study comprises genotyping of all family members, functional characterization of a potential mutant receptor by in vitro analysis related to the wild-type receptor to reveal an association between the genotype and phenotype in the affected family members. The in vitro analysis of functional characteristics includes measurements of inositol trisphosphate accumulation, Ca2+ mobilization in response to [Ca2+]o-stimulation and receptor expression. The results reveal a significant leftward shift of inositol trisphosphate accumulation as a result of the “gain-of-function” mutant receptor and surprisingly a normalization of the response in (Ca2+i release in the downstream pathway and additionally the maximal response of (Ca2+i release was significantly decreased compared to the wild type. However, no gross differences were seen in D126V and the D126V/WT CASR dimeric >250 kDa band expression compared to the WT receptor, however, the D126V and D126V/WT CASR immature ~140 kDa species appear to have reduced expression compared to the WT receptor. In conclusion, in this study, a family with a clinical diagnosis of ADH in two generations was evaluated to identify a mutation in the CASR gene and reveal an association between genotype and phenotype in the affected family members. The clinical condition was caused by a novel, activating, missense mutation (D126V in the CASR gene and the in vitro functional

  7. Thyroid Hormone Receptor α Mutation Causes a Severe and Thyroxine-Resistant Skeletal Dysplasia in Female Mice

    Science.gov (United States)

    Bassett, J. H. Duncan; Boyde, Alan; Zikmund, Tomas; Evans, Holly; Croucher, Peter I.; Zhu, Xuguang; Park, Jeong Won

    2014-01-01

    A new genetic disorder has been identified that results from mutation of THRA, encoding thyroid hormone receptor α1 (TRα1). Affected children have a high serum T3:T4 ratio and variable degrees of intellectual deficit and constipation but exhibit a consistently severe skeletal dysplasia. In an attempt to improve developmental delay and alleviate symptoms of hypothyroidism, patients are receiving varying doses and durations of T4 treatment, but responses have been inconsistent so far. Thra1PV/+ mice express a similar potent dominant-negative mutant TRα1 to affected individuals, and thus represent an excellent disease model. We hypothesized that Thra1PV/+ mice could be used to predict the skeletal outcome of human THRA mutations and determine whether prolonged treatment with a supraphysiological dose of T4 ameliorates the skeletal abnormalities. Adult female Thra1PV/+ mice had short stature, grossly abnormal bone morphology but normal bone strength despite high bone mass. Although T4 treatment suppressed TSH secretion, it had no effect on skeletal maturation, linear growth, or bone mineralization, thus demonstrating profound tissue resistance to thyroid hormone. Despite this, prolonged T4 treatment abnormally increased bone stiffness and strength, suggesting the potential for detrimental consequences in the long term. Our studies establish that TRα1 has an essential role in the developing and adult skeleton and predict that patients with different THRA mutations will display variable responses to T4 treatment, which depend on the severity of the causative mutation. PMID:24914936

  8. Identification of Six Novel PTH1R Mutations in Families with a History of Primary Failure of Tooth Eruption

    DEFF Research Database (Denmark)

    Risom, Lotte; Christoffersen, Line Borck; Daugaard-Jensen, Jette

    2013-01-01

    Primary Failure of tooth Eruption (PFE) is a non-syndromic disorder which can be caused by mutations in the parathyroid hormone receptor 1 gene (PTH1R). Traditionally, the disorder has been identified clinically based on post-emergent failure of eruption of permanent molars. However, patients...... undergone surgical and/or orthodontic interventions, and identified novel PTH1R mutations in all. Four of the six mutations were predicted to abolish correct mRNA maturation either through introduction of premature stop codons (c.947C>A and c.1082G>A), or by altering correct mRNA splicing (c.544......-26_544-23del and c.989G>T). The latter was validated by transfection of minigenes. The six novel mutations expand the mutation spectrum for PFE from eight to 14 pathogenic mutations. Loss-of-function mutations in PTH1R are also associated with recessively inherited Blomstrand chondrodysplasia. We compiled all...

  9. All-trans-retinoic Acid Modulates the Plasticity and Inhibits the Motility of Breast Cancer Cells: ROLE OF NOTCH1 AND TRANSFORMING GROWTH FACTOR (TGFβ).

    Science.gov (United States)

    Zanetti, Adriana; Affatato, Roberta; Centritto, Floriana; Fratelli, Maddalena; Kurosaki, Mami; Barzago, Maria Monica; Bolis, Marco; Terao, Mineko; Garattini, Enrico; Paroni, Gabriela

    2015-07-17

    All-trans-retinoic acid (ATRA) is a natural compound proposed for the treatment/chemoprevention of breast cancer. Increasing evidence indicates that aberrant regulation of epithelial-to-mesenchymal transition (EMT) is a determinant of the cancer cell invasive and metastatic behavior. The effects of ATRA on EMT are largely unknown. In HER2-positive SKBR3 and UACC812 cells, showing co-amplification of the ERBB2 and RARA genes, ATRA activates a RARα-dependent epithelial differentiation program. In SKBR3 cells, this causes the formation/reorganization of adherens and tight junctions. Epithelial differentiation and augmented cell-cell contacts underlie the anti-migratory action exerted by the retinoid in cells exposed to the EMT-inducing factors EGF and heregulin-β1. Down-regulation of NOTCH1, an emerging EMT modulator, is involved in the inhibition of motility by ATRA. Indeed, the retinoid blocks NOTCH1 up-regulation by EGF and/or heregulin-β1. Pharmacological inhibition of γ-secretase and NOTCH1 processing also abrogates SKBR3 cell migration. Stimulation of TGFβ contributes to the anti-migratory effect of ATRA. The retinoid switches TGFβ from an EMT-inducing and pro-migratory determinant to an anti-migratory mediator. Inhibition of the NOTCH1 pathway not only plays a role in the anti-migratory action of ATRA; it is relevant also for the anti-proliferative activity of the retinoid in HCC1599 breast cancer cells, which are addicted to NOTCH1 for growth/viability. This effect is enhanced by the combination of ATRA and the γ-secretase inhibitor N-(N-(3,5-difluorophenacetyl)-l-alanyl)-S-phenylglycine t-butyl ester, supporting the concept that the two compounds act at the transcriptional and post-translational levels along the NOTCH1 pathway. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The Fifth Transmembrane Domain of Angiotensin II Type 1 Receptor Participates in the Formation of the Ligand-binding Pocket and Undergoes a Counterclockwise Rotation upon Receptor Activation*

    Science.gov (United States)

    Domazet, Ivana; Martin, Stéphane S.; Holleran, Brian J.; Morin, Marie-Ève; Lacasse, Patrick; Lavigne, Pierre; Escher, Emanuel; Leduc, Richard; Guillemette, Gaétan

    2009-01-01

    The octapeptide hormone angiotensin II exerts a wide variety of cardiovascular effects through the activation of the angiotensin II Type 1 (AT1) receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein- coupled receptors, the AT1 receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. The role of the fifth transmembrane domain (TMD5) was investigated using the substituted cysteine accessibility method. All of the residues within Thr-190 to Leu-217 region were mutated one at a time to cysteine, and after expression in COS-7 cells, the mutant receptors were treated with the sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA reacts selectively with water-accessible, free sulfhydryl groups of endogenous or introduced point mutation cysteines. If a cysteine is found in the binding pocket, the covalent modification will affect the binding kinetics of the ligand. MTSEA substantially decreased the binding affinity of L197C-AT1, N200C-AT1, I201C-AT1, G203C-AT1, and F204C-AT1 mutant receptors, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT1 receptor. Interestingly, this pattern of acquired MTSEA sensitivity was altered for TMD5 reporter cysteines engineered in a constitutively active N111G-AT1 receptor background. Indeed, mutant I201C-N111G-AT1 became more sensitive to MTSEA, whereas mutant G203C-N111G-AT1 lost some sensitivity. Our results suggest that constitutive activation of AT1 receptor causes an apparent counterclockwise rotation of TMD5 as viewed from the extracellular side. PMID:19773549

  11. The fifth transmembrane domain of angiotensin II Type 1 receptor participates in the formation of the ligand-binding pocket and undergoes a counterclockwise rotation upon receptor activation.

    Science.gov (United States)

    Domazet, Ivana; Martin, Stéphane S; Holleran, Brian J; Morin, Marie-Eve; Lacasse, Patrick; Lavigne, Pierre; Escher, Emanuel; Leduc, Richard; Guillemette, Gaétan

    2009-11-13

    The octapeptide hormone angiotensin II exerts a wide variety of cardiovascular effects through the activation of the angiotensin II Type 1 (AT(1)) receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein- coupled receptors, the AT(1) receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. The role of the fifth transmembrane domain (TMD5) was investigated using the substituted cysteine accessibility method. All of the residues within Thr-190 to Leu-217 region were mutated one at a time to cysteine, and after expression in COS-7 cells, the mutant receptors were treated with the sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA reacts selectively with water-accessible, free sulfhydryl groups of endogenous or introduced point mutation cysteines. If a cysteine is found in the binding pocket, the covalent modification will affect the binding kinetics of the ligand. MTSEA substantially decreased the binding affinity of L197C-AT(1), N200C-AT(1), I201C-AT(1), G203C-AT(1), and F204C-AT(1) mutant receptors, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT(1) receptor. Interestingly, this pattern of acquired MTSEA sensitivity was altered for TMD5 reporter cysteines engineered in a constitutively active N111G-AT(1) receptor background. Indeed, mutant I201C-N111G-AT(1) became more sensitive to MTSEA, whereas mutant G203C-N111G-AT(1) lost some sensitivity. Our results suggest that constitutive activation of AT(1) receptor causes an apparent counterclockwise rotation of TMD5 as viewed from the extracellular side.

  12. The role of the dopamine D1 receptor in social cognition: studies using a novel genetic rat model­

    Directory of Open Access Journals (Sweden)

    Judith R. Homberg

    2016-10-01

    Full Text Available Social cognition is an endophenotype that is impaired in schizophrenia and several other (comorbid psychiatric disorders. One of the modulators of social cognition is dopamine, but its role is not clear. The effects of dopamine are mediated through dopamine receptors, including the dopamine D1 receptor (Drd1. Because current Drd1 receptor agonists are not Drd1 selective, pharmacological tools are not sufficient to delineate the role of the Drd1. Here, we describe a novel rat model with a genetic mutation in Drd1 in which we measured basic behavioural phenotypes and social cognition. The I116S mutation was predicted to render the receptor less stable. In line with this computational prediction, this Drd1 mutation led to a decreased transmembrane insertion of Drd1, whereas Drd1 expression, as measured by Drd1 mRNA levels, remained unaffected. Owing to decreased transmembrane Drd1 insertion, the mutant rats displayed normal basic motoric and neurological parameters, as well as locomotor activity and anxiety-like behaviour. However, measures of social cognition like social interaction, scent marking, pup ultrasonic vocalizations and sociability, were strongly reduced in the mutant rats. This profile of the Drd1 mutant rat offers the field of neuroscience a novel genetic rat model to study a series of psychiatric disorders including schizophrenia, autism, depression, bipolar disorder and drug addiction.

  13. BRCA1 Mutations Associated With Increased Risk of Brain Metastases in Breast Cancer: A 1: 2 Matched-pair Analysis.

    Science.gov (United States)

    Zavitsanos, Peter J; Wazer, David E; Hepel, Jaroslaw T; Wang, Yihong; Singh, Kamaljeet; Leonard, Kara L

    2018-05-18

    Brain metastases (BM) occur in ∼5% of breast cancer patients. BRCA1-associated cancers are often basal-like and basal-like cancers are known to have a predilection for central nervous system metastases. We performed a matched-pair analysis of breast cancer patients with and without BRCA mutations and compared the frequency of BM in both groups. From a database of 1935 patients treated for localized breast cancer at our institution from 2009 to 2014 we identified 20 patients with BRCA1 or BRCA2 mutations and manually matched 40 patients without BRCA mutations accounting for age, stage, estrogen receptor expression, and human epidermal growth factor receptor 2 (HER2) expression. Comparisons of freedom from brain metastasis, brain metastasis-free survival, and overall survival were made using the log rank test. Testing for a basal-type phenotype using the immunohistochemistry definition (ER/PR/HER2 and either CK 5/6 or EGFR) was performed for BRCA patients who developed BM and their matched controls. We analyzed 60 patients: 20 BRCA and 40 were matched controls. Median follow-up was 37 and 49 months, respectively. Three years freedom from brain metastasis was 84% for BRCA patients and 97% for BRCA controls (P=0.049). Three years brain metastasis-free survival was 84% and 97% for the BRCA+ and controls, respectively (P=0.176). Mean time to brain failure was 11 months from diagnosis for the BRCA patients. All 3 BRCA1 patients who developed BM were of a basal-type triple negative phenotype. Breast cancer patients with germline BRCA1 mutations appear to have a shorter interval to brain progression while accounting for confounding factors.

  14. Void coalescence and fracture behavior of notched and un-notched tensile tested specimens in fine grain dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Saeidi, N., E-mail: navidsae@gmail.com [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Ashrafizadeh, F.; Niroumand, B. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Forouzan, M.R.; Mohseni mofidi, S. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Barlat, F. [Materials Mechanics Laboratory (MML), Graduate Institute of Ferrous Technology (GIFT), Pohang University of Science and Technology POSTECH, San 31 Hyoja-dong, Nam-gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of)

    2015-09-17

    Due to growing global concern about the environmental issues, steel developers have been forced by automobile makers to produce more efficient steel grades with high strength to weight ratios along with high crashworthiness performance. In order to find deficiencies of the existing steels and develop superior steel products, detailed understanding of deformation and damage behavior in the existing steels is needed. In the present research, deformation and damage evolution during room temperature uniaxial tensile test of a modern high strength Dual Phase Steel, i.e. DP780, were studied. Detailed scanning electron microscopy (SEM) examination of the microstructures of notched and un-notched tensile fractured specimens revealed that in notched specimen, plastic deformation was concentrated more within the notched region. Therefore, much higher reduction in thickness with a high reduction gradient occurred in this region, In the un-notched specimen, however, plastic deformation was more uniformly distributed in larger parts of the gauge length, and therefore, thickness reduction happened with a lower gradient. Although geometric notch on the specimen did not change the void nucleation and growth mechanisms, the kinetics of these phenomena was influenced. On the other hand, voids linkage mechanism tended to change from void coalescence in the un-notched specimen to void sheeting in the notched specimen. Moreover, three different models developed by Brown & Embury (BM), Thomason and Pardoen were employed to predict the final fracture strain. It was revealed that, BM model showed much more accurate predictions for the studied DP steel in comparison with those of Thomason and Pardoens’ models.

  15. Void coalescence and fracture behavior of notched and un-notched tensile tested specimens in fine grain dual phase steel

    International Nuclear Information System (INIS)

    Saeidi, N.; Ashrafizadeh, F.; Niroumand, B.; Forouzan, M.R.; Mohseni mofidi, S.; Barlat, F.

    2015-01-01

    Due to growing global concern about the environmental issues, steel developers have been forced by automobile makers to produce more efficient steel grades with high strength to weight ratios along with high crashworthiness performance. In order to find deficiencies of the existing steels and develop superior steel products, detailed understanding of deformation and damage behavior in the existing steels is needed. In the present research, deformation and damage evolution during room temperature uniaxial tensile test of a modern high strength Dual Phase Steel, i.e. DP780, were studied. Detailed scanning electron microscopy (SEM) examination of the microstructures of notched and un-notched tensile fractured specimens revealed that in notched specimen, plastic deformation was concentrated more within the notched region. Therefore, much higher reduction in thickness with a high reduction gradient occurred in this region, In the un-notched specimen, however, plastic deformation was more uniformly distributed in larger parts of the gauge length, and therefore, thickness reduction happened with a lower gradient. Although geometric notch on the specimen did not change the void nucleation and growth mechanisms, the kinetics of these phenomena was influenced. On the other hand, voids linkage mechanism tended to change from void coalescence in the un-notched specimen to void sheeting in the notched specimen. Moreover, three different models developed by Brown & Embury (BM), Thomason and Pardoen were employed to predict the final fracture strain. It was revealed that, BM model showed much more accurate predictions for the studied DP steel in comparison with those of Thomason and Pardoens’ models

  16. Characterization of a disease-causing Glu119-Lys mutation in the low-density lipoprotein receptor gene in two Danish families with heterozygous familial hypercholesterolemia

    DEFF Research Database (Denmark)

    Jensen, H K; Jensen, T G; Jensen, L G

    1994-01-01

    acid residue 119 in the third repeat of the cysteine-rich ligand binding domain of the mature LDL receptor. Disruption of LDL receptor function by the Glu119-Lys mutation was confirmed by site-directed mutagenesis and expression in COS-7 cells. By Western blotting the mutation was found to affect...

  17. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    International Nuclear Information System (INIS)

    Liu, Xin-Hua; Yao, Shen; Qiao, Rui-Fang; Levine, Alice C.; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Bauman, William A.; Cardozo, Christopher P.

    2011-01-01

    Highlights: → Nerve transection increased Notch signaling in paralyzed muscle. → Nandrolone prevented denervation-induced Notch signaling. → Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. → Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  18. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin-Hua [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Yao, Shen; Qiao, Rui-Fang; Levine, Alice C. [Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Kirschenbaum, Alexander [Department of Urology, Mount Sinai School of Medicine, New York, NY 10029 (United States); Pan, Jiangping; Wu, Yong [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Qin, Weiping [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Bauman, William A. [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Cardozo, Christopher P., E-mail: chris.cardozo@mssm.edu [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States)

    2011-10-14

    Highlights: {yields} Nerve transection increased Notch signaling in paralyzed muscle. {yields} Nandrolone prevented denervation-induced Notch signaling. {yields} Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. {yields} Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  19. Notch effects in uniaxial tension specimens

    International Nuclear Information System (INIS)

    Delph, T.J.

    1979-03-01

    Results of a literature survey on the effect of notches on the time-dependent failure of uniaxial tension specimens at elevated temperatures are presented. Particular attention is paid to the failure of notched specimens containing weldments

  20. Notch size effects on high cycle fatigue limit stress of Udimet 720

    International Nuclear Information System (INIS)

    Ren Weiju; Nicholas, Theodore

    2003-01-01

    Notch size effects on the high cycle fatigue (HCF) limit stress of Ni-base superalloy Udimet 720 were investigated on cylindrical specimens with three notch sizes of the same stress concentration factor K t =2.74. The HCF limit stress corresponding to a life of 10 6 cycles was experimentally determined at a stress ratio of 0.1 and a frequency of 25 Hz at room temperature. The stresses were calculated using finite element analysis (FEA) and the specimens analyzed using scanning electron microscopy (SEM). Test results show that at the same K t value, notch size can slightly affect the HCF limit stress of U720 when notch root plasticity occurs. FEA and SEM results reveal that the notch size effects are influenced by a complicated combination of the stress and plastic strain fields at the notch tip, the nominal stress, and the effects of prior plastic deformation on fatigue crack initiation