WorldWideScience

Sample records for mutant plants transformed

  1. Micro-Tom Tomato as an Alternative Plant Model System: Mutant Collection and Efficient Transformation.

    Science.gov (United States)

    Shikata, Masahito; Ezura, Hiroshi

    2016-01-01

    Tomato is a model plant for fruit development, a unique feature that classical model plants such as Arabidopsis and rice do not have. The tomato genome was sequenced in 2012 and tomato is becoming very popular as an alternative system for plant research. Among many varieties of tomato, Micro-Tom has been recognized as a model cultivar for tomato research because it shares some key advantages with Arabidopsis including its small size, short life cycle, and capacity to grow under fluorescent lights at a high density. Mutants and transgenic plants are essential materials for functional genomics research, and therefore, the availability of mutant resources and methods for genetic transformation are key tools to facilitate tomato research. Here, we introduce the Micro-Tom mutant database "TOMATOMA" and an efficient transformation protocol for Micro-Tom.

  2. Induction and isolation of DNA transformation mutants in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Hegerich, P.A.; Bruschi, C.V.

    1987-01-01

    The objective of this research was to induce and isolate mutants of the yeast Saccharomyces cerevisiae which have become transformable by purified plasmid DNA. Non-transformable yeast cells were mutagenized by ultraviolet light using a 65% lethal dose (480 ergs/mm 2 ). After a period of overnight liquid holding recovery, the irradiated cells were subjected to DNA transformation using our CaCl 2 protocol with the multi-marker shuttle plasmid pBB carrying the LEU 2 leucine gene. Following transformation the colonies that grew on selective leucineless medium were identified and subjected to further genetic analysis. From a total of 1 x 10 9 cells the authors have isolated 7 colonies deriving from putative mutants that have acquired the capability to uptake plasmid DNA. The transformants were cured from the plasmid by its mitotic loss on non-selective medium, then re-transformed to verify their genetic competence to give rise to a number of transformants comparable to transformable strains. We have identified and isolated one mutant, coded trs-1, which is able to reproduce a frequency of transformation comparable with the tranformable control. They, therefore, conclude that this mutant is specific for plasmid DNA transformation and that the mutation is mitotically stable

  3. SacB-SacR gene cassette as the negative selection marker to suppress Agrobacterium overgrowth in Agrobacterium-mediated plant transformation

    Directory of Open Access Journals (Sweden)

    Yiming Liu

    2016-10-01

    Full Text Available Agrobacterium overgrowth is a common problem in Agrobacterium-mediated plant transfor-mation. To suppress the Agrobacterium overgrowth, various antibiotics have been used during plant tissue culture steps. The antibiotics are expensive and may adversely affect plant cell differentiation and reduce plant transformation efficiency. The SacB-SacR proteins are toxic to most Agrobacterium tumefaciens strains when they are grown on culture medium sup¬plemented with sucrose. Therefore, SacB-SacR genes can be used as negative selection markers to suppress the overgrowth of Agrobacterium tumefaciens in the plant tissue culture process. We generated a mutant Agrobacterium tumefaciens strain GV2260 (recA-SacB/R that has the SacB-SacR cassette inserted into the bacterial genome at the recA gene locus. The mutant Agrobacterium strain is sensitive to sucrose but maintains its ability to transform plant cells in both transient and stable transformation assays. We demonstrated that the mutant strain GV2260 (recA-SacB/R can be inhibited by sucrose that reduces the overgrowth of Agrobacterium and therefore improves the plant transformation efficiency. We employed GV2260 (recA-SacB/R to generate stable transgenic N. benthamiana plants expressing a CRISPR-Cas9 for knocking out a WRKY transcrip¬tion factor.

  4. A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra

    International Nuclear Information System (INIS)

    Chen LiMei; Carpita, N.C.; Reiter, W.D.; Wilson, R.H.; Jeffries, C.; McCann, M.C.

    1998-01-01

    We have developed a rapid method to screen large numbers of mutant plants for a broad range of cell wall phenotypes using Fourier transform infrared (FTIR) microspectroscopy of leaves. We established and validated a model that can discriminate between the leaves of wild-type and a previously defined set of cell-wall mutants of Arabidopsis. Exploratory principal component analysis indicated that mutants deficient in different cell-wall sugars can be distinguished from each other. Discrimination of cell-wall mutants from wild-type was independent of variability in starch content or additional unrelated mutations that might be present in a heavily mutagenised population. We then developed an analysis of FTIR spectra of leaves obtained from over 1000 mutagenised flax plants, and selected 59 plants whose spectral variation from wild-type was significantly out of the range of a wild-type population, determined by Mahalanobis distance. Cell wall sugars from the leaves of selected putative mutants were assayed by gas chromatography-mass spectrometry and 42 showed significant differences in neutral sugar composition. The FTIR spectra indicated that six of the remaining 17 plants have altered ester or protein content. We conclude that linear discriminant analysis of FTIR spectra is a robust method to identify a broad range of structural and architectural alterations in cell walls, appearing as a consequence of developmental regulation, environmental adaptation or genetic modification. (author)

  5. Phenotypic characterization of adenovirus type 12 temperature-sensitive mutants in productive infection and transformation.

    Science.gov (United States)

    Hama, S; Kimura, G

    1980-01-01

    Eleven temperature-sensitive mutants of adenovirus type 12, capable of forming plaques in human cells at 33 C but not at 39.5 C, were isolated from a stock of a wild-type strain after treatment with either nitrous acid or hydroxylamine. Complementation tests in doubly infected human cells permitted a tentative assignment of eight of these mutants to six complementation groups. Temperature-shift experiments revealed that one mutant is affected early and most of the other mutants are affected late. Only the early mutant, H12ts505, was temperature sensitive in viral DNA replication. Infectious virions of all the mutants except H12ts505 and two of the late mutants produced at 33 C, appeared to be more heat labile than those of the wild type. Only H12ts505 was temperature sensitive for the establishment of transformation of rat 3Y1 cells. One of the late mutants (H12ts504) had an increased transforming ability at the permissive temperature. Results of temperature-shift transformation experiments suggest that a viral function affected in H12ts505 is required for "initiation" of transformation. Some of the growth properties of H12ts505-transformed cells were also temperature dependent, suggesting that a functional expression of a gene mutation in H12ts505 is required to maintain at least some aspects of the transformed state.

  6. Transformation of apple (Malus × domestica) using mutants of apple acetolactate synthase as a selectable marker and analysis of the T-DNA integration sites.

    Science.gov (United States)

    Yao, Jia-Long; Tomes, Sumathi; Gleave, Andrew P

    2013-05-01

    Apple acetolactate synthase mutants were generated by site-specific mutagenesis and successfully used as selection marker in tobacco and apple transformation. T-DNA/Apple genome junctions were analysed using genome-walking PCR and sequencing. An Agrobacterium-mediated genetic transformation system was developed for apple (Malus × domestica), using mutants of apple acetolactate synthase (ALS) as a selectable marker. Four apple ALS mutants were generated by site-specific mutagenesis and subsequently cloned under the transcriptional control of the CaMV 35S promoter and ocs 3' terminator, in a pART27-derived plant transformation vector. Three of the four mutations were found to confer resistance to the herbicide Glean(®), containing the active agent chlorsulfuron, in tobacco (Nicotiana tabacum) transformation. In apple transformation, leaf explants infected with Agrobacterium tumefaciens EHA105 containing one of the three ALS mutants resulted in the production of shoots on medium containing 2-8 μg L(-1) Glean(®), whilst uninfected wild-type explants failed to regenerate shoots or survive on medium containing 1 and 3 μg L(-1) Glean(®), respectively. Glean(®)-resistant, regenerated shoots were further multiplied and rooted on medium containing 10 μg L(-1) Glean(®). The T-DNA and apple genome-DNA junctions from eight rooted transgenic apple plants were analysed using genome-walking PCR amplification and sequencing. This analysis confirmed T-DNA integration into the apple genome, identified the genome integration sites and revealed the extent of any vector backbone integration, T-DNA rearrangements and deletions of apple genome DNA at the sites of integration.

  7. The research progress on plant mutant germplasm resources in China

    International Nuclear Information System (INIS)

    He Cexi; Ji Linzhen; Zhao Shirong

    1991-07-01

    Mutants induced by nuclear radiation or other mutagens are new artificial germplasm resources. Some mutants have been applied in plant breeding and great achievements have been reached. The status and progress on the collection, identification and utilization of mutants in China are introduced. A proposal for developing mutant germplasm resources with good agronomic characters is suggested

  8. Limits of transforming competence of SV40 nuclear and cytoplasmic large T mutants with altered Rb binding sequences.

    Science.gov (United States)

    Tedesco, D; Fischer-Fantuzzi, L; Vesco, C

    1993-03-01

    Multiple amino acid substitutions were introduced into the SV40 large T region that harbors the retinoblastoma protein (Rb) binding site and the nuclear transport signal, changing either one or both of these determinants. Mutant activities were examined in a set of assays allowing different levels of transforming potential to be distinguished; phenotypic changes in established and pre-crisis rat embryo fibroblasts (REFs) were detected under isogenic cell conditions, and comparisons made with other established rodent cells. The limit of the transforming ability of mutants with important substitutions in the Rb binding site fell between two transformation levels of the same established rat cells. Such cells could be induced to form dense foci but not agar colonies (their parental pre-crises REFs, as expected, were untransformed either way). Nonetheless, agar colony induction was possible in other cell lines, such as mouse NIH3T3 and (for one of the mutants) rat F2408. All these mutants efficiently immortalized pre-crisis REFs. The transforming ability of cytoplasmic mutants appeared to depend on the integrity of the Rb-binding sequence to approximately the same extent as that of the wild-type large T, although evidence of in vivo Rb-cytoplasmic large T complexes was not found. The presence or absence of small t was critical when the transforming task of mutants was near the limit of their abilities.

  9. Deletion mutants of region E1 a of AD12 E1 plasmids: Effect on oncogenic transformation

    NARCIS (Netherlands)

    Bos, J.L.; Jochemsen, A.G.; Bernards, R.A.; Schrier, P.I.; Ormondt, H. van; Eb, A.J. van der

    1983-01-01

    Plasmids containing the El region of Ad12 DNA can transform certain rodent cells into oncogenic cells. To study the role of the Ela subregion in the process of oncogenic transformation, Ad12 region El mutants carrying deletions in the Ela region were constructed. Deletion mutants pR7 and pR8 affect

  10. Molecular mechanisms associated with leukemic transformation of MPL-mutant myeloproliferative neoplasms

    DEFF Research Database (Denmark)

    Beer, Philip A; Ortmann, Christina A; Stegelmann, Frank

    2010-01-01

    Somatic activating mutations in MPL, the thrombopoietin receptor, occur in the myeloproliferative neoplasms, although virtually nothing is known about their role in evolution to acute myeloid leukemia. In this study, the MPL T487A mutation, identified in de novo acute myeloid leukemia......, was not detected in 172 patients with a myeloproliferative neoplasm. In patients with a prior MPL W515L-mutant myeloproliferative neoplasm, leukemic transformation was accompanied by MPL-mutant leukemic blasts, was seen in the absence of prior cytoreductive therapy and often involved loss of wild-type MPL...

  11. Induction and selection of mutants from in vitro cultured plant cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yung Il; Kim, Jae Sung; Shin, In Chul; Lee, Sang Jae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    Mutant cell lines are useful for biochemical, physiological and genetical material for marker in various genetic manipulation experiments and for the direct use in crop plant improvement. Mutant selection may lead to the production of plants showing resistance or tolerance to specific environmental stress, such as solinity, drought, toxed metals, herbicides, pathogens and low temperature. In this review, these included the production of the somatic variation, the selection process itself and stability of the selected characters in cell culture and regenerated plant. Which would seem to be useful for improving plants and securring genetic resources. 45 refs. (Author).

  12. Induction and selection of mutants from in vitro cultured plant cells

    International Nuclear Information System (INIS)

    Lee, Yung Il; Kim, Jae Sung; Shin, In Chul; Lee, Sang Jae

    1994-07-01

    Mutant cell lines are useful for biochemical, physiological and genetical material for marker in various genetic manipulation experiments and for the direct use in crop plant improvement. Mutant selection may lead to the production of plants showing resistance or tolerance to specific environmental stress, such as solinity, drought, toxed metals, herbicides, pathogens and low temperature. In this review, these included the production of the somatic variation, the selection process itself and stability of the selected characters in cell culture and regenerated plant. Which would seem to be useful for improving plants and securring genetic resources. 45 refs. (Author)

  13. Flowering responses to light-breaks in photomorphogenic mutants of Arabidopsis thaliana, a long-day plant

    International Nuclear Information System (INIS)

    Goto, N.; Kumagai, T.; Koornneef, M.

    1991-01-01

    Flowering response and plant form of photomorphogenic mutants (hy1, hy2, hy3, hy4 and hy5) of Arabidopsis thaliana (L.), a long-day plant, were examined in long and short days. There were only slight differences among genotypes including Landsberg wild type with respect to the flowering time under long days. The effect of 1 h light-(night)-breaks of far-red, red, blue and white light given in the middle of the dark period of plants grown under short days, was studied. Effects of far-red light applied at the end or the beginning of the main photoperiod on flowering and plant form were also examined. The light-breaks with all the above mentioned light qualities promoted floral initiation of all the genotypes including the wild type in terms of both the flowering time and the number of rosette leaves. In general, far-red light was most effective. It is possible to classify the hy-mutants into 3 groups by their responses to light-breaks under short day conditions: (a) Mutants hy2 and hy3, which have a reduced number of rosette leaves, and flower early. Red light is as effective as far-red light. The wavelength of light-breaks is relatively unimportant for flowering response. (b) Mutants hy4, hy5 and Landsberg wild type, which have a greater number of rosette leaves, and flower relatively late. The effectiveness of light-breaks is in the following order, far-red, blue, and red light, which is in reverse order to the transformation of phytochrome to the P fr form. (c) Mutant hy1, which behaves anomalously with respect to relations between flowering time and number of rosette leaves; late flowering with reduced number of rosette leaves. Red, blue and far-red light are effective, but white light is ineffective for reducing the number of rosette leaves. When far-red light was given in the middle of the night or at the end of the main photoperiod, it markedly reduced the number of rosette leaves compared to those grown under short days for all the genotypes, while when

  14. Plants Regeneration Derived From Various on Peanut on Mutant Lines

    International Nuclear Information System (INIS)

    Dewi, Kumala; Masrizal; Mugiono

    1998-01-01

    The study of calli, greenspot formation and shoot regeneration on peanut mutant lines has ben conducted by MS media. Three explants derived from shoot tips, embryo and seeding root of two mutant lines a/20/3 and D/25/3/2 were used in this experiment. the explants were cultured on modified MS media enriched by vitamins, growth regulation, amino acids for fourth teen calli were transferred on regeneration media. The ability of calli formation and plant regeneration of each explant and genotypes of plants was varied. Greenspot and shoot formation were observed seventh days after the calli transferred on regeneration media. It is shown that the ability of calli, greenspot and shoot formation of each explants and genotypes was varied. the high ability of calli, greenspot and shoot formation were found in explant derived from shoot tip and embryo. Seedling root explant has lower ability in calli formation, while greenspot and shoot was formatted. The ability of calli, greenspot and shoot formation on A/20/3 mutant line was better than D/25/3/2 mutant line. (author)

  15. Characterization of Foliage Mutants for Plant Variety Registration

    International Nuclear Information System (INIS)

    Affrida Abu Hassan; Shuhaimi Shamsuddin; Zaiton Ahmad

    2011-01-01

    Breeding for new plant varieties requires a substantial investment in terms of skill, labour, material resources and financing. Thus, registration of new plant variety is important to ensure return of revenue and protection of the breeder's right. Before a new variety is registered, it has to comply certain requirements under Plant Variety Protection Act. One of the most important requirements is, the new species/variety must be morphologically distinguishable from existing plant varieties. This paper discusses detailed leaf characteristics of 4 foliage mutants produced by Malaysian Nuclear Agency as part of the requirement for new variety registration. (author)

  16. Transformation of medicinal plants using Agrobacterium tumefaciens

    Directory of Open Access Journals (Sweden)

    Katarzyna Bandurska

    2016-12-01

    Full Text Available For many years attempts are made to develop efficient methods for transformation of medicinal plants via Agrobacterium tumefaciens. It is a soil bacteria which possess a natural ability to infect plants in places of injures which results in arise of cancerous growths (crown gall. This is possible thanks a transfer of fragment of Ti plasmid into plant cells and stable integration with a plant genome. Efficiency of medicinal plant transformation depends on many factors for example: Agrobacterium strain, methods and procedures of transformation as well as on plant species, type and age of the explants and regeneration conditions. The main goal of plant transformation is to increase the amount of naturally occurring bioactive compounds and the production of biopharmaceuticals. Genetic plant transformation via bacteria of the genus Agrobacterium is a complex process which requires detailed analysis of incorporated transgene expression and occurs only in the case when the plant cell acquires the ability to regenerate. In many cases, the regeneration efficiency observed in medicinal plants are inefficient after applied transformation procedures. To date there have been attempts of genetic transformation by using A. tumefaciens of medicinal plants belonging to the families: Apocynaceae, Araceae, Araliaceae, Asphodelaceae, Asteraceae, Begoniaceae, Crassulaceae, Fabaceae, Lamiaceae, Linaceae, Papaveraceae, Plantaginaceae, Scrophulariaceae and Solanaceae.

  17. Transformation of medicinal plants using Agrobacterium tumefaciens.

    Science.gov (United States)

    Bandurska, Katarzyna; Berdowska, Agnieszka; Król, Małgorzata

    2016-12-20

    For many years attempts are made to develop efficient methods for transformation of medicinal plants via Agrobacterium tumefaciens. It is a soil bacteria which possess a natural ability to infect plants in places of injures which results in arise of cancerous growths (crown gall). This is possible thanks a transfer of fragment of Ti plasmid into plant cells and stable integration with a plant genome. Efficiency of medicinal plant transformation depends on many factors for example: Agrobacterium strain, methods and procedures of transformation as well as on plant species, type and age of the explants and regeneration conditions. The main goal of plant transformation is to increase the amount of naturally occurring bioactive compounds and the production of biopharmaceuticals. Genetic plant transformation via bacteria of the genus Agrobacterium is a complex process which requires detailed analysis of incorporated transgene expression and occurs only in the case when the plant cell acquires the ability to regenerate. In many cases, the regeneration efficiency observed in medicinal plants are inefficient after applied transformation procedures. To date there have been attempts of genetic transformation by using A. tumefaciens of medicinal plants belonging to the families: Apocynaceae, Araceae, Araliaceae, Asphodelaceae, Asteraceae, Begoniaceae, Crassulaceae, Fabaceae, Lamiaceae, Linaceae, Papaveraceae, Plantaginaceae, Scrophulariaceae and Solanaceae.

  18. A novel two-step method for screening shade tolerant mutant plants via dwarfism

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-10-01

    Full Text Available When subjected to shade, plants undergo rapid shoot elongation, which often makes them more prone to disease and mechanical damage. Shade-tolerant plants can be difficult to breed; however, they offer a substantial benefit over other varieties in low-light areas. Although perennial ryegrass (Lolium perenne L. is a popular species of turf grasses because of their good appearance and fast establishment, the plant normally does not perform well under shade conditions. It has been reported that, in turfgrass, induced dwarfism can enhance shade tolerance. Here we describe a two-step procedure for isolating shade tolerant mutants of perennial ryegrass by first screening for dominant dwarf mutants, and then screening dwarf plants for shade tolerance. The two-step screening process to isolate shade tolerant mutants can be done efficiently with limited space at early seedling stages, which enables quick and efficient isolation of shade tolerant mutants, and thus facilitates development of shade tolerant new cultivars of turfgrasses. Using the method, we isolated 136 dwarf mutants from 300,000 mutagenized seeds, with 65 being shade tolerant (0.022%. When screened directly for shade tolerance, we recovered only four mutants from a population of 150,000 (0.003% mutagenized seeds. One shade tolerant mutant, shadow-1, was characterized in detail. In addition to dwarfism, shadow-1 and its sexual progeny displayed high degrees of tolerance to both natural and artificial shade. We showed that endogenous gibberellin (GA content in shadow-1 was higher than wild-type controls, and shadow-1 was also partially GA insensitive. Our novel, simple and effective two-step screening method should be applicable to breeding shade tolerant cultivars of turfgrasses, ground covers, and other economically important crop plants that can be used under canopies of existing vegetation to increase productivity per unit area of land.

  19. Agrobacterium tumefaciens T-DNA Integration and Gene Targeting in Arabidopsis thaliana Non-Homologous End-Joining Mutants

    Directory of Open Access Journals (Sweden)

    Qi Jia

    2012-01-01

    Full Text Available In order to study the role of AtKu70 and AtKu80 in Agrobacterium-mediated transformation and gene targeting, plant lines with a T-DNA insertion in AtKu80 or AtKu70 genes were functionally characterized. Such plant lines lacked both subunits, indicating that heterodimer formation between AtKu70 and AtKu80 is needed for the stability of the proteins. Homozygous mutants were phenotypically indistinguishable from wild-type plants and were fertile. However, they were hypersensitive to the genotoxic agent bleomycin, resulting in more DSBs as quantified in comet assays. They had lower end-joining efficiency, suggesting that NHEJ is a critical pathway for DSB repair in plants. Both Atku mutants and a previously isolated Atmre11 mutant were impaired in Agrobacterium T-DNA integration via floral dip transformation, indicating that AtKu70, AtKu80, and AtMre11 play an important role in T-DNA integration in Arabidopsis. The frequency of gene targeting was not significantly increased in the Atku80 and Atku70 mutants, but it was increased at least 10-fold in the Atmre11 mutant compared with the wild type.

  20. A new and efficient approach for construction of uridine/uracil auxotrophic mutants in the filamentous fungus Aspergillus oryzae using Agrobacterium tumefaciens-mediated transformation.

    Science.gov (United States)

    Nguyen, Khuyen Thi; Ho, Quynh Ngoc; Do, Loc Thi Binh Xuan; Mai, Linh Thi Dam; Pham, Duc-Ngoc; Tran, Huyen Thi Thanh; Le, Diep Hong; Nguyen, Huy Quang; Tran, Van-Tuan

    2017-06-01

    Aspergillus oryzae is a filamentous fungus widely used in food industry and as a microbial cell factory for recombinant protein production. Due to the inherent resistance of A. oryzae to common antifungal compounds, genetic transformation of this mold usually requires auxotrophic mutants. In this study, we show that Agrobacterium tumefaciens-mediated transformation (ATMT) method is very efficient for deletion of the pyrG gene in different Aspergillus oryzae wild-type strains to generate uridine/uracil auxotrophic mutants. Our data indicated that all the obtained uridine/uracil auxotrophic transformants, which are 5- fluoroorotic acid (5-FOA) resistant, exist as the pyrG deletion mutants. Using these auxotrophic mutants and the pyrG selectable marker for genetic transformation via A. tumefaciens, we could get about 1060 transformants per 10 6 fungal spores. In addition, these A. oryzae mutants were also used successfully for expression of the DsRed fluorescent reporter gene under control of the A. oryzae amyB promoter by the ATMT method, which resulted in obvious red transformants on agar plates. Our work provides a new and effective approach for constructing the uridine/uracil auxotrophic mutants in the importantly industrial fungus A. oryzae. This strategy appears to be applicable to other filamentous fungi to develop similar genetic transformation systems based on auxotrophic/nutritional markers for food-grade recombinant applications.

  1. Isolation of transformation-defective, replication-nondefective early region 1B mutants of adenovirus 12

    International Nuclear Information System (INIS)

    Fukui, Y.; Saito, I.; Shiroki, K.; Shimojo, H.

    1984-01-01

    The authors isolated three adenovirus 12 early region 1B mutants (in205B, in205C, and dl205) by ligation of the cleaved DNA-protein complex and transfection of human embryo kidney cells with the ligation products. These mutants could replicate efficiently in human embryo kidney or KB cells but showed markedly reduced transforming capacities both in vitro and in vivo. In cells infected with the mutants, the early region 1B gene was transcribed efficiently. In cells infected with in205B, the products corresponding to the early region 1B-coded 19,000-molecular-weight polypeptide was detected by in vitro translation but not immunoprecipitated extract of labeled cells. In cells infected with in205C or dl205, the products corresponding to the same polypeptide were not detected by either in vitro translation or immunoprecipitation of labeled cell extracts. The results suggest that the 19,000-molecular-weight polypeptide encoded by early region 1B is required for cell transformation but not for viral propagation

  2. Genetic transformation of mature citrus plants.

    Science.gov (United States)

    Cervera, Magdalena; Juárez, José; Navarro, Luis; Peña, Leandro

    2005-01-01

    Most woody fruit species have long juvenile periods that drastically prolong the time required to analyze mature traits. Evaluation of characteristics related to fruits is a requisite to release any new variety into the market. Because of a decline in regenerative and transformation potential, genetic transformation procedures usually employ juvenile material as the source of plant tissue, therefore resulting in the production of juvenile plants. Direct transformation of mature material could ensure the production of adult transgenic plants, bypassing in this way the juvenile phase. Invigoration of the source adult material, establishment of adequate transformation and regeneration conditions, and acceleration of plant development through grafting allowed us to produce transgenic mature sweet orange trees flowering and bearing fruits in a short time period.

  3. A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants.

    Science.gov (United States)

    Chen, Longzheng; Li, Wei; Katin-Grazzini, Lorenzo; Ding, Jing; Gu, Xianbin; Li, Yanjun; Gu, Tingting; Wang, Ren; Lin, Xinchun; Deng, Ziniu; McAvoy, Richard J; Gmitter, Frederick G; Deng, Zhanao; Zhao, Yunde; Li, Yi

    2018-01-01

    Developing CRISPR/Cas9-mediated non-transgenic mutants in asexually propagated perennial crop plants is challenging but highly desirable. Here, we report a highly useful method using an Agrobacterium -mediated transient CRISPR/Cas9 gene expression system to create non-transgenic mutant plants without the need for sexual segregation. We have also developed a rapid, cost-effective, and high-throughput mutant screening protocol based on Illumina sequencing followed by high-resolution melting (HRM) analysis. Using tetraploid tobacco as a model species and the phytoene desaturase ( PDS ) gene as a target, we successfully created and expediently identified mutant plants, which were verified as tetra-allelic mutants. We produced pds mutant shoots at a rate of 47.5% from tobacco leaf explants, without the use of antibiotic selection. Among these pds plants, 17.2% were confirmed to be non-transgenic, for an overall non-transgenic mutation rate of 8.2%. Our method is reliable and effective in creating non-transgenic mutant plants without the need to segregate out transgenes through sexual reproduction. This method should be applicable to many economically important, heterozygous, perennial crop species that are more difficult to regenerate.

  4. Reversion of autocrine transformation by a dominant negative platelet-derived growth factor mutant.

    Science.gov (United States)

    Vassbotn, F S; Andersson, M; Westermark, B; Heldin, C H; Ostman, A

    1993-07-01

    A non-receptor-binding mutant of the platelet-derived growth factor (PDGF) A chain, PDGF-0, was generated by exchanging 7 amino acids in the sequence. The mutant chains formed dimers that were similar to wild-type PDGF-AA with regard to stability and rate of processing to the mature 30-kDa secreted forms. Moreover, the mutant chains formed disulfide-bonded heterodimers with the PDGF B chain in NIH 3T3 cells heterodimer underwent the same processing and secretion as PDGF-AB. Transfection of c-sis-expressing 3T3 cells with PDGF-0 significantly inhibited the transformed phenotype of these cells, as determined by the following criteria. (i) Compared with PDGF-0-negative clones, PDGF-0-producing clones showed a reverted morphology. (ii) Clones producing PDGF-0 grew more slowly than PDGF-0-negative clones, with a fivefold difference in cell number after 14 days in culture. (iii) The expression of PDGF-0 completely inhibited the ability of the c-sis-expressing 3T3 cells to form colonies in soft agar; this inhibition was overcome by the addition of recombinant PDGF-BB to the culture medium, showing that the lack of colony formation of these cells was not due to a general unresponsiveness to PDGF. The specific expression of a PDGF-0/PDGF wild-type heterodimer in COS cells revealed that the affinity of the mutant heterodimer for the PDGF alpha receptor was decreased by approximately 50-fold compared with that of PDGF-AA. Thus, we show that a non-receptor-binding PDGF A-chain mutant neutralizes in a trans-dominant manner the autocrine transforming potential of the c-sis/PDGF B chain by forming low-affinity heterodimers with wild-type PDGF chains. This method of specifically antagonizing the effect of PDGF may be useful in investigations of the role of PDGF in normal and pathological conditions.

  5. Cellular responses during morphological transformation in Azospirillum brasilense and Its flcA knockout mutant.

    Directory of Open Access Journals (Sweden)

    Xingsheng Hou

    Full Text Available FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7 and a flcA deletion mutant (Sp7-flcAΔ revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot. The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase, nitrogen metabolism (Glutamine synthetase and nitric oxide synthase, stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit and morphological transformation (transducer coupling protein. The observed differences between Sp7 wild-type and flcA- strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome.

  6. Cellular responses during morphological transformation in Azospirillum brasilense and Its flcA knockout mutant.

    Science.gov (United States)

    Hou, Xingsheng; McMillan, Mary; Coumans, Joëlle V F; Poljak, Anne; Raftery, Mark J; Pereg, Lily

    2014-01-01

    FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7) and a flcA deletion mutant (Sp7-flcAΔ) revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot). The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase), nitrogen metabolism (Glutamine synthetase and nitric oxide synthase), stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit) and morphological transformation (transducer coupling protein). The observed differences between Sp7 wild-type and flcA- strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome.

  7. Mighty Dwarfs: Arabidopsis autoimmune mutants and their usages in genetic dissection of plant immunity

    Directory of Open Access Journals (Sweden)

    Rowan Wersch

    2016-11-01

    Full Text Available Plants lack the adaptive immune system possessed by mammals. Instead they rely on innate immunity to defend against pathogen attacks. Genomes of higher plants encode a large number of plant immune receptors belonging to different protein families, which are involved in the detection of pathogens and activation of downstream defense pathways. Plant immunity is tightly controlled to avoid activation of defense responses in the absence of pathogens, as failure to do so can lead to autoimmunity that compromises plant growth and development. Many autoimmune mutants have been reported, most of which are associated with dwarfism and often spontaneous cell death. In this review, we summarize previously reported Arabidopsis autoimmune mutants, categorizing them based on their functional groups. We also discuss how their obvious morphological phenotypes make them ideal tools for epistatic analysis and suppressor screens, and summarize genetic screens that have been carried out in various autoimmune mutant backgrounds.

  8. Genetic analysis of plant height in induced mutants of aromatic rice

    International Nuclear Information System (INIS)

    Kole, P.C.

    2005-01-01

    Inheritance of plant height in five gamma-ray induced mutants of aromatic rice cultivar Gobindabhog was studied through 6 x 6 diallel cross and segregation analyses. Diallel analysis revealed presence of additive and non-additive gene action with the preponderance of the latter. Proportion of dominant and recessive alleles was distributed unequally among the parents. The direction of dominance was towards tallness. The number of groups of genes was found to be three. The segregation analysis indicated the role of a single major recessive gene for height reduction in three mutants and, in another mutant, a single major recessive gene with negative modifiers. The other semi-dwarf mutant had two major recessive genes with almost equal effect in height reduction. The mutant allele(s) of the latter two mutants were non-allelic to sd sub(1) gene, which could be used as an alternative source of Dee Gee Woo Gen to widen the genetic diversity in semi-dwarfism [it

  9. Mitochondrial Porin Isoform AtVDAC1 Regulates the Competence of Arabidopsis thaliana to Agrobacterium-Mediated Genetic Transformation.

    Science.gov (United States)

    Kwon, Tackmin

    2016-09-01

    The efficiency of Agrobacterium-mediated transformation in plants depends on the virulence of Agrobacterium strains, the plant tissue culture conditions, and the susceptibility of host plants. Understanding the molecular interactions between Agrobacterium and host plant cells is crucial when manipulating the susceptibility of recalcitrant crop plants and protecting orchard trees from crown gall disease. It was discovered that Arabidopsis voltage-dependent anion channel 1 (atvdac1) mutant has drastic effects on Agrobacterium-mediated tumorigenesis and growth developmental phenotypes, and that these effects are dependent on a Ws-0 genetic background. Genetic complementation of Arabidopsis vdac1 mutants and yeast porin1-deficient strain with members of the AtVDAC gene family revealed that AtVDAC1 is required for Agrobacterium-mediated transformation, and there is weak functional redundancy between AtVDAC1 and AtVDAC3, which is independent of porin activity. Furthermore, atvdac1 mutants were deficient in transient and stable transformation by Agrobacterium, suggesting that AtVDAC1 is involved in the early stages of Agrobacterium infection prior to transferred-DNA (T-DNA) integration. Transgenic plants overexpressing AtVDAC1 not only complemented the phenotypes of the atvdac1 mutant, but also showed high efficiency of transient T-DNA gene expression; however, the efficiency of stable transformation was not affected. Moreover, the effect of phytohormone treatment on competence to Agrobacterium was compromised in atvdac1 mutants. These data indicate that AtVDAC1 regulates the competence of Arabidopsis to Agrobacterium infection.

  10. Development of Plant Mutant Resources with an useful characters by Radiation Fusion Technology

    International Nuclear Information System (INIS)

    Kang, Si Yong; Kim, Dong Sub; Lee, Geung Joo

    2009-02-01

    A mutation breeding is to use physical or chemical mutagens to induce mutagenesis, followed by individual selections with favorable traits. The mutation breeding has many advantages over other breeding methods, which include the usefulness for improving one or two inferior characteristics, applications to broad species with different reproductive systems or to diverse plant materials, native or plant introduction with narrow genetic background, time and cost-effectiveness, and valuable mutant resources for genomics researches. Recent applications of the radiation breeding techniques to developments of flowering plants or food crops with improved functional constituents heightened the public's interests in agriculture and in our genetic resources and seed industries. The goals of this project, therefore, include achieving advances in domestic seed industries and agricultural productivities by developing and using new radiation mutants with favored traits, protecting an intellectual property right of domestic seeds or germplasms, and sharing the valuable mutants and mutated gene information for the genomics and biotech researches that eventually leads to economic benefits

  11. Cell Transformation by PTP1B Truncated Mutants Found in Human Colon and Thyroid Tumors.

    Science.gov (United States)

    Mei, Wenhan; Wang, Kemin; Huang, Jian; Zheng, Xinmin

    2016-01-01

    Expression of wild-type protein tyrosine phosphatase (PTP) 1B may act either as a tumor suppressor by dysregulation of protein tyrosine kinases or a tumor promoter through Src dephosphorylation at Y527 in human breast cancer cells. To explore whether mutated PTP1B is involved in human carcinogenesis, we have sequenced PTP1B cDNAs from human tumors and found splice mutations in ~20% of colon and thyroid tumors. The PTP1BΔE6 mutant expressed in these two tumor types and another PTP1BΔE5 mutant expressed in colon tumor were studied in more detail. Although PTP1BΔE6 revealed no phosphatase activity compared with wild-type PTP1B and the PTP1BΔE5 mutant, its expression induced oncogenic transformation of rat fibroblasts without Src activation, indicating that it involved signaling pathways independent of Src. The transformed cells were tumourigenic in nude mice, suggesting that the PTP1BΔE6 affected other molecule(s) in the human tumors. These observations may provide a novel therapeutic target for colon and thyroid cancer.

  12. Genetical, cytological and physiological studies on the induced mutants with special regard to effective methods for obtaining useful mutants in perennial woody plant

    International Nuclear Information System (INIS)

    Kukimura, H.; Ikeda, F.; Fujita, H.; Maeta, T.; Nakajima, K.; Katagiri, K.; Nakahira, K.; Somegou, M.

    1976-01-01

    The plants studied included apple trees, cryptomeria (japanese cedar) and mulberry. In apple, dwarf and compact types of mutants from cv. Fuji were found to be graft incompatible on Maruba-kaido(Malus prunifolia) rootstock. In Sunki mandarin(Citrus sunki), the number of nucellar embryo per seed was affected by gamma-irradiation, and morphological mutants from nucellar seedlings were obtained at high rate by irradiation at floral bud stage with 2kR exposure. In Cryptomeria, re-irradiated waxless mutants by gamma-rays showed very high rate of somatic mutation when compared to other morphological mutants. Pollen sterility and pollen shaped PMC were found in the most of gamma-induced-mutants. Mutants forming pollen shaped PMC had a genetical tendency of continuous male flower bud formation for a longer term. With mulberry, time of sprouting of induced mutants differed from the originals. Ability of root initiation of semi-softwood cuttings in morphological mutants were tested. Cytochimera induction were found at considerably high rate when actively growing diploid plants were irradiated by gamma-rays. Eight kinds of cytochimeras were induced. Frequency of 2-4-4 was extremely high(approx. 50%), then 4-2-2 and 2-4-2 chimeras followed. Seven kinds were induced by semi-acute irradiation(200R/h), while 4 kinds by acute irradiation(5kR/h). By breeding test it was cleared that the elongate and entire leaf was sexually transmissible, whereas the 'dwarf' was not obvious and the 'marginally curledleaf' was not transmissible. Pyronin-methylgreen staining method proved to be useful in some morphological mutants to distinguish the histo-genetical differences which exist in the shoot apex.

  13. A comparative transcriptome analysis of a wild purple potato and its red mutant provides insight into the mechanism of anthocyanin transformation.

    Directory of Open Access Journals (Sweden)

    Fang Liu

    Full Text Available In this study, a red mutant was obtained through in vitro regeneration of a wild purple potato. High-performance liquid chromatography and Mass spectrometry analysis revealed that pelargonidin-3-O-glucoside and petunidin-3-O-glucoside were main anthocyanins in the mutant and wild type tubers, respectively. In order to thoroughly understand the mechanism of anthocyanin transformation in two materials, a comparative transcriptome analysis of the mutant and wild type was carried out through high-throughput RNA sequencing, and 295 differentially expressed genes (DEGs were obtained. Real-time qRT-PCR validation of DEGs was consistent with the transcriptome date. The DEGs mainly influenced biological and metabolic pathways, including phenylpropanoid biosynthesis and translation, and biosynthesis of flavone and flavonol. In anthocyanin biosynthetic pathway, the analysis of structural genes expressions showed that three genes, one encoding phenylalanine ammonia-lyase, one encoding 4-coumarate-CoA ligase and one encoding flavonoid 3',5'-hydroxylasem were significantly down-regulated in the mutant; one gene encoding phenylalanine ammonia-lyase was significantly up-regulated. Moreover, the transcription factors, such as bZIP family, MYB family, LOB family, MADS family, zf-HD family and C2H2 family, were significantly regulated in anthocyanin transformation. Response proteins of hormone, such as gibberellin, abscisic acid and brassinosteroid, were also significantly regulated in anthocyanin transformation. The information contributes to discovering the candidate genes in anthocyanin transformation, which can serve as a comprehensive resource for molecular mechanism research of anthocyanin transformation in potatoes.

  14. Plant cells without detectable plastids are generated in the crumpled leaf mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Chen, Yuling; Asano, Tomoya; Fujiwara, Makoto T; Yoshida, Shigeo; Machida, Yasunori; Yoshioka, Yasushi

    2009-05-01

    Plastids are maintained in cells by proliferating prior to cell division and being partitioned to each daughter cell during cell division. It is unclear, however, whether cells without plastids are generated when plastid division is suppressed. The crumpled leaf (crl) mutant of Arabidopsis thaliana is a plastid division mutant that displays severe abnormalities in plastid division and plant development. We show that the crl mutant contains cells lacking detectable plastids; this situation probably results from an unequal partitioning of plastids to each daughter cell. Our results suggest that crl has a partial defect in plastid expansion, which is suggested to be important in the partitioning of plastids to daughter cells when plastid division is suppressed. The absence of cells without detectable plastids in the accumulation and replication of chloroplasts 6 (arc6) mutant, another plastid division mutant of A. thaliana having no significant defects in plant morphology, suggests that the generation of cells without detectable plastids is one of the causes of the developmental abnormalities seen in crl plants. We also demonstrate that plastids with trace or undetectable amounts of chlorophyll are generated from enlarged plastids by a non-binary fission mode of plastid replication in both crl and arc6.

  15. Identification of auxotrophic mutants of the yeast Kluyveromyces marxianus by non-homologous end joining-mediated integrative transformation with genes from Saccharomyces cerevisiae.

    Science.gov (United States)

    Yarimizu, Tohru; Nonklang, Sanom; Nakamura, Junpei; Tokuda, Shuya; Nakagawa, Takaaki; Lorreungsil, Sasithorn; Sutthikhumpha, Surasit; Pukahuta, Charida; Kitagawa, Takao; Nakamura, Mikiko; Cha-Aim, Kamonchai; Limtong, Savitree; Hoshida, Hisashi; Akada, Rinji

    2013-12-01

    The isolation and application of auxotrophic mutants for gene manipulations, such as genetic transformation, mating selection and tetrad analysis, form the basis of yeast genetics. For the development of these genetic methods in the thermotolerant fermentative yeast Kluyveromyces marxianus, we isolated a series of auxotrophic mutants with defects in amino acid or nucleic acid metabolism. To identify the mutated genes, linear DNA fragments of nutrient biosynthetic pathway genes were amplified from Saccharomyces cerevisiae chromosomal DNA and used to directly transform the K. marxianus auxotrophic mutants by random integration into chromosomes through non-homologous end joining (NHEJ). The appearance of transformant colonies indicated that the specific S. cerevisiae gene complemented the K. marxianus mutant. Using this interspecific complementation approach with linear PCR-amplified DNA, we identified auxotrophic mutations of ADE2, ADE5,7, ADE6, HIS2, HIS3, HIS4, HIS5, HIS6, HIS7, LYS1, LYS2, LYS4, LYS9, LEU1, LEU2, MET2, MET6, MET17, TRP3, TRP4 and TRP5 without the labour-intensive requirement of plasmid construction. Mating, sporulation and tetrad analysis techniques for K. marxianus were also established. With the identified auxotrophic mutant strains and S. cerevisiae genes as selective markers, NHEJ-mediated integrative transformation with PCR-amplified DNA is an attractive system for facilitating genetic analyses in the yeast K. marxianus. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Construction of brewing-wine Aspergillus oryzae pyrG- mutant by pyrG gene deletion and its application in homology transformation.

    Science.gov (United States)

    Du, Yu; Xie, Guizhen; Yang, Chunfa; Fang, Baishan; Chen, Hongwen

    2014-06-01

    pyrG(-) host cells are indispensable for pyrG(-) based transformation system. Isolations of pyrG(-) host cells by random mutations are limited by time-consuming, unclear genetic background and potential interferences of homogenous recombination. The purpose of this study was to construct brewing-wine Aspergillus oryzae pyrG(-) mutant by site-directed mutation of pyrG gene deletion which would be used as a host for further transformation. pMD-pyrGAB, a vector carrying pyrG deletion cassette, was used to construct pyrG(-) mutant of A. oryzae. Three stable pyrG deletion mutants of A. oryzae were isolated by resistant to 5-fluoroorotic acid and confirmed by polymerase chain reaction analysis, indicating that pyrG was completely excised. The ΔpyrG mutants were applied as pyrG(-) host cells to disrupt xdh gene encoding xylitol dehydrogenase, which involves in xylitol production of A. oryzae. The xdh disruption mutants were efficiently constructed by transforming a pMD-pyrG-xdh disruption plasmid carrying pyrG, and the produced xylitol concentration of the Δxdh mutant was three times as much as that of the ΔpyrG recipient. Site-directed pyrG gene deletion is thus an effective way for the isolation of pyrG(-) host cells, and the established host-vector system could be applied in further functional genomics analysis and molecular breeding of A. oryzae. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  17. Power Transformer Application for Wind Plant Substations

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, M. R. [IEEE PES Wind Plant Collector System Design Working Group; Bloethe, W.G. [IEEE PES Wind Plant Collector System Design Working Group; Bradt, M. [IEEE PES Wind Plant Collector System Design Working Group; Brooks, C. [IEEE PES Wind Plant Collector System Design Working Group; Camm, E H [IEEE PES Wind Plant Collector System Design Working Group; Dilling, W. [IEEE PES Wind Plant Collector System Design Working Group; Goltz, B. [IEEE PES Wind Plant Collector System Design Working Group; Li, J. [IEEE PES Wind Plant Collector System Design Working Group; Niemira, J. [IEEE PES Wind Plant Collector System Design Working Group; Nuckles, K. [IEEE PES Wind Plant Collector System Design Working Group; Patino, J. [IEEE PES Wind Plant Collector System Design Working Group; Reza, M [IEEE PES Wind Plant Collector System Design Working Group; Richardson, B. [IEEE PES Wind Plant Collector System Design Working Group; Samaan, N. [IEEE PES Wind Plant Collector System Design Working Group; Schoene, Jens [IEEE PES Wind Plant Collector System Design Working Group; Smith, Travis M [ORNL; Snyder, Isabelle B [ORNL; Starke, Michael R [ORNL; Walling, R. [IEEE PES Wind Plant Collector System Design Working Group; Zahalka, G. [IEEE PES Wind Plant Collector System Design Working Group

    2010-01-01

    Wind power plants use power transformers to step plant output from the medium voltage of the collector system to the HV or EHV transmission system voltage. This paper discusses the application of these transformers with regard to the selection of winding configuration, MVA rating, impedance, loss evaluation, on-load tapchanger requirements, and redundancy.

  18. Primisulfuron herbicide-resistant tobacco plants: mutant selection in vitro by adventitious shoot formation from cultured leaf discs

    International Nuclear Information System (INIS)

    Harms, C.T.; DiMaio, J.J.; Jayne, S.M.; Middlesteadt, L.A.; Negrotto, D.V.; Thompson-Taylor, H.; Montoya, A.L.

    1991-01-01

    A simple procedure has been developed for the rapid and direct selection of herbicide-resistant mutant plants. The procedure uses adventitious shoot formation from suitable explants, such as leaf discs, on a shoot-inducing culture medium containing a toxic herbicide concentration. Resistant green shoots were thus isolated from tobacco (Nicotiana tabacum L.) leaf explants cultured on medium containing 100 μg 1−1 primisulfuron, a new sulfonylurea herbicide. Resistant shoots were recovered from both haploid and diploid explants after UV mutagenesis, as well as without mutagenic treatment. Three mutant plants of separate origin were further analyzed biochemically and genetically. Their acetohydroxyacid synthase (AHAS) enzyme activity was less inhibited by sulfonylurea herbicides than that of unselected, sensitive wild type plants. The extent of inhibition of the AHAS enzyme among the three mutants was different for different sulfonylurea and imidazolinone herbicides suggesting different sites were affected by each mutation. Herbicide tolerance was scored for germinating seedling populations and was found to be inherited as a single dominant nuclear gene. Adventitious shoot formation from cultured leaf discs was used to determine the cross tolerance of mutant plants to various herbicidal AHAS inhibitors. The usefulness of this rapid and direct scheme for mutant selection based on adventitious shoot formation or embryogenesis is discussed. (author)

  19. An extra early mutant of pigeonpea

    International Nuclear Information System (INIS)

    Ravikesavan, R.; Kalaimagal, T.; Rathnaswamy, R.

    2001-01-01

    The redgram (Cajanus cajan (L.) Huth) variety 'Prabhat DT' was gamma irradiated with 100, 200, 300 and 400 Gy doses. Several mutants have been identified viz., extra early mutants, monostem mutants, obcordifoliate mutants and bi-stigmatic mutants. The extra early mutant was obtained when treated with 100 Gy dose. The mutant was selfed and forwarded from M 2 to M 4 generation. In the M 4 generation the mutant line was raised along with the parental variety. Normal cultural practices were followed and the biometrical observations were recorded. It was observed that for the characters viz., total number of branches per plant, number of pods per plants, seeds per pod, 100 seed weight and seed yield per plant there was no difference between the mutant and parent variety. Whereas, regarding the days to flowering and maturity the mutants were earlier than the parents. The observation was recorded from two hundred plants each. The mutant gives the same yield in 90 days as that of the parent variety in 107 days, which make it an economic mutant

  20. Effects of Light Intensity on Development and Chlorophyll Content in the Arabidopsis Mutant Plants with Defects in Photosynthesis

    Directory of Open Access Journals (Sweden)

    E.Yu. Garnik

    2015-12-01

    Full Text Available The developmental stages and adaptability to different light intensity (150 µmol*m-2*s-1 and 100 µmol*m-2*s-1 in Arabidopsis mutant lines with defects of photosynthetic apparatus were analyzed. Plant development in the mutant lines depended on the light intensity to varying degrees. Lines ch1-1 (lack of the chlorophyllide a oxygenase and rtn16 (decreased chlorophyll a and b amounts were the most susceptible to the light decrease. No one of the investigated lines demonstrated chlorophyll a/b rate alteration under the different light conditions. The depleted chlorophyll content has had the major effect on the mutant plants development under the different light conditions. The different chlorophyll a/b rate correlated with the different adaptability of mutant plants to low light.

  1. Plant cultivars derived from mutation induction or the use of induced mutants in cross breeding

    International Nuclear Information System (INIS)

    Micke, A.; Maluszynski, M.; Donini, B.

    1985-01-01

    Since 1969 we have collected information on cultivated varieties of plants, developed by using induced mutations. Whenever we learn about a cultivar presumably derived from an induced mutant or from use of mutants in crosses. we mail a questionnaire to the breeder. The information gathered in this way is stored in our file on ''Mutant Varieties''. Excerpts are published regularly in the form of a list in the FAO/IAEA Mutation Breeding Newsletter. Our mutant variety list has repeatedly provided a basis for analyses on the value and prospects of mutation breeding

  2. Plant cultivars derived from mutation induction or the use of induced mutants in cross breeding

    Energy Technology Data Exchange (ETDEWEB)

    Micke, A; Maluszynski, M; Donini, B [Joint FAO/IAEA Division, Plant Breeding and Genetics Section, Vienna (Austria)

    1985-05-01

    Since 1969 we have collected information on cultivated varieties of plants, developed by using induced mutations. Whenever we learn about a cultivar presumably derived from an induced mutant or from use of mutants in crosses. we mail a questionnaire to the breeder. The information gathered in this way is stored in our file on ''Mutant Varieties''. Excerpts are published regularly in the form of a list in the FAO/IAEA Mutation Breeding Newsletter. Our mutant variety list has repeatedly provided a basis for analyses on the value and prospects of mutation breeding.

  3. Behavior of radionuclides and related elements in plants. Screening and characterization of cesium requirement mutants from mutagenized arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Yamagami, Mutsumi; Yanai, Masumi; Hisamatsu, Shunichi; Inaba, Jiro [Inst. for Environmental Sciences, Rokkasho, Aomori (Japan)

    2002-07-01

    We have investigated the effect of climate on the metabolic behavior of various elements in a specific plant. The following items have been examined: the effect of climate conditions including Yamase (prevailing windows from the Pacific Ocean side area of Aomori Prefecture) on the elemental transfer factor of rice, the effect of light conditions on metabolism of elements in a plant, the effect of environmental factors on elemental movements at a cell level, and establishment of a mutant plant strain to obtain elemental requirement. This paper describes the development of a method for screening and characterizing cesium resistance mutants from Arabidopsis thaliana. Arabidopsis is a small herbaceous plant which is used for experimental molecular botany. To isolate mutant in cesium uptake or accumulation, we have devised a screening method using energy-dispersive x-ray microanalysis (EDX) of mutagenized Arabidopsis leaves. The seeds for the selection were M{sub 2} seeds derived from ethyl methane sulfonate (EMS)-treated plants. A double screening method was used to isolate about 50 Cs-resistant mutants. In the first screening experiment, EMS-mutagenized seeds were grown in medium containing 3 mM Cs. The wild type Arabidopsis usually died, but Cs-resistant mutants survived. These were transferred into soil for harvest of first-screening-seeds. In the successive experiment, first-screening-seeds were grown in medium containing 1 mM Cs, and Cs of the leaves was analyzed by EDX. We identified about 50 mutants in Cs uptake or accumulation after screening over 100,000 seedlings. These mutants showed either excessive accumulation of Cs in leaves or an inability to accumulate Cs at a normal concentration. The uptake rates of Cs in those mutants were also examined by using {sup 134}Cs radioactive tracer. (author)

  4. Analysis of a brittle-culm mutant of rice (Oryza sativa) induced bay gamma rays

    International Nuclear Information System (INIS)

    Doat, Jacqueline; Marie, R.

    1977-01-01

    An unexpected ''brittle-culm'' mutant has been screened in the progeny of the rice cultivar ''Balilla 28'' after a seed treatment by gamma rays from a Cobalt-60 source. This property proved hereditable and true-breeding. It does not affect the high resistance to lodging of rice plants. Important difference were pointed out between control and mutant lines in cellulose content and 1 p. cent NaOH extracts: ''brittle-culm'' straw contains less cellulose and shows a degradation of glucid coupounds. The brittleness of plant tissues appears to be correlated with a partial depolymerization of cellulose, associated with a possible transformation from alpha- to beta- or gamma-cellulose [fr

  5. P01.29 Mutant (R132H) IDH1-driven cellular transformation makes cells dependent on continued wild type IDH1 expression in a model of in vitro gliomagenesis

    Science.gov (United States)

    Johannessen, T.; Mukherjee, J.; Wood, M.; Viswanath, P.; Ohba, S.; Ronen, S.; Berkvig, R.; Pieper, R.

    2017-01-01

    Abstract Introduction: Missense R132H mutations in the active site of isocitrate dehydrogenase 1 (IDH1) biologically and diagnostically distinguish low-grade gliomas and secondary glioblastomas from primary glioblastomas. IDH1 mutations lead to the formation of the oncometabolite 2-hydroxyglutarate (2-HG) from the reduction of α-ketoglutarate (α-KG), which in turn facilitates tumorigenesis by modifying DNA and histone methylation as well blocking differentiation processes. We recently showed (Mol Cancer Res 14: 976–983, 2016) that although mutant IDH1 expression in hTERT-immortalized, p53/pRb-deficient astrocytes can drive cellular transformation and gliomagenesis, selective pharmacologic inhibition and elimination of 2-HG by the mutant IDH1 inhibitor AGI-5198 has little effect on the growth or clonagenicity of these transformed cells. To address the possible role of WT IDH1 in the growth of mutant IDH-driven tumor cells, we used a slightly different gliomagenesis model in which the transformation of TERT-deficient, p53/pRb-deficient astrocytes (pre-crisis cells) occurs only after prolonged expression of mutant IDH and passage through cellular crisis (post-crisis cells, Cancer Res 76:6680–6689, 2016). METHODS AND MATERIALS: Using this system we introduced AGI-5198, or siRNA targeting both WT and mutant forms of IDH1 into p53/pRb-deficient, mutant IDH1-expressing human astrocytes prior to or following their transformation, and compared the effects on cell growth and clonagenicity. Results: AGI-5198 exposure decreased levels of 2HG by greater than 90%, and as previously reported had no effect on the growth of either the pre-or post-crisis cell populations. A one-day exposure to a pan IDH1 siRNA resulted in a similar, prolonged (greater than 6 day), 80% inhibition of both WT and mutant IDH1 protein levels and 2HG in both cell groups. While the growth of the mutant IDH-expressing, non-transformed cells was similar to that of scramble siRNA controls, the growth

  6. Transformation and regeneration of the holoparasitic plant Phelipanche aegyptiaca

    Directory of Open Access Journals (Sweden)

    Fernández-Aparicio Mónica

    2011-11-01

    Full Text Available Abstract Background Transformation and subsequent regeneration of holoparasitic plants has never been reported, in part due to challenges in developing transformation protocols, but also because regeneration of obligate parasites is difficult since their survival depends completely on successful haustorium penetration of a host and the formation of vascular connections. The recent completion of a massive transcriptome sequencing project (the Parasitic Plant Genome Project will fuel the use of genomic tools for studies on parasitic plants. A reliable system for holoparasite transformation is needed to realize the full value of this resource for reverse genetics and functional genomics studies. Results Here we demonstrate that transformation of Phelipanche aegyptiaca is achieved by infection of 3 month-old in vitro grown P. aegyptiaca calli with Agrobacterium rhizogenes harboring the yellow fluorescent protein (YFP. Four months later, YFP-positive regenerated calli were inoculated onto tomato plants growing in a minirhizotron system. Eight days after inoculation, transgenic parasite tissue formed lateral haustoria that penetrated the host and could be visualized under UV illumination through intact host root tissue. YFP-positive shoot buds were observed one month after inoculation. Conclusions This work constitutes a breakthrough in holoparasitic plant research methods. The method described here is a robust system for transformation and regeneration of a holoparasitic plant and will facilitate research on unique parasitic plant capabilities such as host plant recognition, haustorial formation, penetration and vascular connection.

  7. PCB transformer fires: the risk in nuclear power plants

    International Nuclear Information System (INIS)

    Blackmon, K.

    1988-01-01

    It is estimated that 1/2 of the present nuclear power plants operate with PCB-filled transformer equipment. In an attempt to obtain better estimates of clean-up costs in a nuclear power plant under reasonable-loss scenarios, a study was commissioned. This study was a joint venture between Blackmon-Mooring Steamatic Technologies, Inc., (BMS-TECH) and M and M Protection Consultants. This joint study was conducted at a typical pressurized-water reactor plant consisting of two 1000-MW units. Three specific scenarios were selected and analyzed for this typical power plant. These scenarios were: (1) an electrical failure of a transformer in an isolated switch gear room; (2) a transformer exposed to a 55-gallon transient combustion oil fire in the auxiliary building; and (3) a PCB transformer involved in a major turbine lube fire in the turbine building. Based on results of this study, the insurance carriers for this industry implemented an adjustment in their rate structures for nuclear power plants that have PCB equipment

  8. Agrobacterium tumefaciens-mediated transformation of biofuel plant ...

    African Journals Online (AJOL)

    Establishment of an efficient transformation system is a prerequisite for genetic improvement of Jatropha curcas, a promising biodiesel feedstock plant, by transgenic approach. In this study an efficient Agrobacterium-mediated transformation protocol using cotyledon explants from J. curcas seeds was developed.

  9. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications.

    Science.gov (United States)

    Krenek, Pavel; Samajova, Olga; Luptovciak, Ivan; Doskocilova, Anna; Komis, George; Samaj, Jozef

    2015-11-01

    Agrobacterium tumefaciens is widely used as a versatile tool for development of stably transformed model plants and crops. However, the development of Agrobacterium based transient plant transformation methods attracted substantial attention in recent years. Transient transformation methods offer several applications advancing stable transformations such as rapid and scalable recombinant protein production and in planta functional genomics studies. Herein, we highlight Agrobacterium and plant genetics factors affecting transfer of T-DNA from Agrobacterium into the plant cell nucleus and subsequent transient transgene expression. We also review recent methods concerning Agrobacterium mediated transient transformation of model plants and crops and outline key physical, physiological and genetic factors leading to their successful establishment. Of interest are especially Agrobacterium based reverse genetics studies in economically important crops relying on use of RNA interference (RNAi) or virus-induced gene silencing (VIGS) technology. The applications of Agrobacterium based transient plant transformation technology in biotech industry are presented in thorough detail. These involve production of recombinant proteins (plantibodies, vaccines and therapeutics) and effectoromics-assisted breeding of late blight resistance in potato. In addition, we also discuss biotechnological potential of recombinant GFP technology and present own examples of successful Agrobacterium mediated transient plant transformations. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Agronomic characters and lodging resistance of plant height mutants of rice

    International Nuclear Information System (INIS)

    Zhang Zhonggui; Wu Yuejin; Liu Binmei; Xu Xue; Zhang Lili; Wang Min

    2010-01-01

    Fourteen plant height mutants of Nipponbare were used to study the effect of plant height on the agronomic characters and lodging resistance. The results indicated that the plant height was positively correlated with spike length, third internode length, height of gravity center, fresh weight of main stem, dry weight of main stem, thousand-grain weight, grain-yield per plant and biological yield, and the second internode length. Meanwhile, plant height played an important role in lodging resistance, it was significantly positively correlated with lodging index and negatively correlated with bending moment and culm type index. The correlation between agronomic characters and lodging resistance showed that several agronomic characters had strong impact on the lodging resistance, such as spike length, height of gravity center, basal internode length ( first and second internode), fresh and dry weight of main stem, dry weight of basal internode, seed setting, thousand-grain weight, grain-weight per plant and biological yield. (authors)

  11. A sorghum (Sorghum bicolor mutant with altered carbon isotope ratio.

    Directory of Open Access Journals (Sweden)

    Govinda Rizal

    Full Text Available Recent efforts to engineer C4 photosynthetic traits into C3 plants such as rice demand an understanding of the genetic elements that enable C4 plants to outperform C3 plants. As a part of the C4 Rice Consortium's efforts to identify genes needed to support C4 photosynthesis, EMS mutagenized sorghum populations were generated and screened to identify genes that cause a loss of C4 function. Stable carbon isotope ratio (δ13C of leaf dry matter has been used to distinguishspecies with C3 and C4 photosynthetic pathways. Here, we report the identification of a sorghum (Sorghum bicolor mutant with a low δ13C characteristic. A mutant (named Mut33 with a pale phenotype and stunted growth was identified from an EMS treated sorghum M2 population. The stable carbon isotope analysis of the mutants showed a decrease of 13C uptake capacity. The noise of random mutation was reduced by crossing the mutant and its wildtype (WT. The back-cross (BC1F1 progenies were like the WT parent in terms of 13C values and plant phenotypes. All the BC1F2 plants with low δ13C died before they produced their 6th leaf. Gas exchange measurements of the low δ13C sorghum mutants showed a higher CO2 compensation point (25.24 μmol CO2.mol-1air and the maximum rate of photosynthesis was less than 5μmol.m-2.s-1. To identify the genetic determinant of this trait, four DNA pools were isolated; two each from normal and low δ13C BC1F2 mutant plants. These were sequenced using an Illumina platform. Comparison of allele frequency of the single nucleotide polymorphisms (SNPs between the pools with contrasting phenotype showed that a locus in Chromosome 10 between 57,941,104 and 59,985,708 bps had an allele frequency of 1. There were 211 mutations and 37 genes in the locus, out of which mutations in 9 genes showed non-synonymous changes. This finding is expected to contribute to future research on the identification of the causal factor differentiating C4 from C3 species that can be used

  12. Dwarf mutant of rice variety Seratus Malam

    International Nuclear Information System (INIS)

    Mugiono, P. S.; Soemanggono, A.M.R.

    1989-01-01

    Full text: Seeds of 'Seratus Malam', a local tall upland variety with long panicles and high yield potential were irradiated with 10-50 krad gamma rays in 1983. From 50,000 M 2 plants, 130 semidwarf mutants and 1 dwarf mutant were selected. The dwarf mutant M-362 was obtained from the 10 krad treatment. The mutant shows about 50% reduction in plant height, but also in number of productive tillers. Thus the yield per plant is also significantly less. However, the mutant gene is not allelic to DGWG and therefore may be useful in cross breeding. (author)

  13. An efficient in planta transformation of Jatropha curcas (L.) and multiplication of transformed plants through in vivo grafting.

    Science.gov (United States)

    Jaganath, Balusamy; Subramanyam, Kondeti; Mayavan, Subramanian; Karthik, Sivabalan; Elayaraja, Dhandapani; Udayakumar, Rajangam; Manickavasagam, Markandan; Ganapathi, Andy

    2014-05-01

    An efficient and reproducible Agrobacterium-mediated in planta transformation was developed in Jatropha curcas. The various factors affecting J. curcas in planta transformation were optimized, including decapitation, Agrobacterium strain, pin-pricking, vacuum infiltration duration and vacuum pressure. Simple vegetative in vivo cleft grafting method was adopted in the multiplication of transformants without the aid of tissue culture. Among the various parameters evaluated, decapitated plants on pin-pricking and vacuum infiltrated at 250 mmHg for 3 min with the Agrobacterium strain EHA 105 harbouring the binary vector pGA 492 was proved to be efficient in all terms with a transformation efficiency of 62.66%. Transgene integration was evinced by the GUS histochemical analysis, and the GUS positive plants were subjected to grafting. Putatively transformed J. curcas served as "Scion" and the wild type J. curcas plant severed as "Stock". There was no occurrence of graft rejection and the plants were then confirmed by GUS histochemical analysis, polymerase chain reaction (PCR) and Southern hybridization. Genetic stability of the grafted plants was evaluated by using randomly amplified polymorphic DNA (RAPD), marker which showed 100% genetic stability between mother and grafted plants. Thus, an efficient in planta transformation and grafting based multiplication of J. curcas was established.

  14. Root hair mutants of barley

    International Nuclear Information System (INIS)

    Engvild, K.C.; Rasmussen, K.

    2005-01-01

    Barley mutants without root hairs or with short or reduced root hairs were isolated among M 2 seeds of 'Lux' barley (Hordeum vulgare L.) after acidified sodium azide mutagenesis. Root hair mutants are investigated intensively in Arabidopsis where about 40 genes are known. A few root hair mutants are known in maize, rice, barley and tomato. Many plants without root hairs grow quite well with good plant nutrition, and mutants have been used for investigations of uptake of strongly bound nutrients like phosphorus, iron, zinc and silicon. Seed of 'Lux' barley (Sejet Plant Breeding, Denmark) were soaked overnight, and then treated with 1.5-millimolarsodium azide in 0.1 molar sodium phosphate buffer, pH 3, for 2.5 hours according to the IAEA Manual on Mutation Breeding (2nd Ed.). After rinsing in tap water and air-drying, the M 2 seeds were sown in the field the same day. Spikes, 4-6 per M 1 plant, were harvested. The mutation frequency was similar to that obtained with other barley cultivars from which low-phytate mutants were isolated [5]. Seeds were germinated on black filter paper in tap water for 3 or 4 days before scoring for root hair mutants

  15. Transcriptome changes associated wtih delayed flower senescence on transgenic petunia by inducing expression of etr1-1, a mutant ethylene receptor

    Science.gov (United States)

    Flowers of ethylene-sensitive ornamental plants transformed with ethylene-insensitive 1-1(etr 1-1), a mutant ethylene receptor first isolated from Arabidopsis, are known to have longer shelf lives. We have generated petunia plants in which the etr 1-1 gene was over-expressed under the control of a c...

  16. A novel two-step method for screening shade tolerant mutant plants via dwarfism

    Science.gov (United States)

    When subjected to shade, plants undergo rapid shoot elongation, which often makes them more prone to disease and mechanical damage. It has been reported that, in turfgrass, induced dwarfism can enhance shade tolerance. Here, we describe a two-step procedure for isolating shade tolerant mutants of ...

  17. Understanding the Biological Roles of Pectins in Plants through Physiological and Functional Characterizations of Plant and Fungal Mutants

    DEFF Research Database (Denmark)

    Stranne, Maria

    The plant cell wall is a dynamic structure and it is involved in regulating a number of physiological features of plants such as physical strength, growth, cell differentiation, intercellular communication, water movement and defense responses. Pectins constitute a major class of plant cell wall...... polysaccharides and consist of backbones rich in galacturonic acids, which are decorated with a range of functional groups including acetyl esters and arabinan sidechains. Although much effort has been made to uncover biological functions of pectins in plants and remarkable progresses have taken place, many...... aspects remain elusive. Studies described in this thesis aimed at gaining new insights into the biological roles of pectin acetylation and arabinosylation in the model plant Arabidopsis thaliana. The thesis consists of four chapters: physiological characterization of cell wall mutants affected in cell...

  18. Metabolic analysis of the increased adventitious rooting mutant of Artemisia annua reveals a role for the plant monoterpene borneol in adventitious root formation.

    Science.gov (United States)

    Tian, Na; Liu, Shuoqian; Li, Juan; Xu, Wenwen; Yuan, Lin; Huang, Jianan; Liu, Zhonghua

    2014-08-01

    Adventitious root (AR) formation is a critical process for plant clonal propagation. The role of plant secondary metabolites in AR formation is still poorly understood. Chemical and physical mutagenesis in combination with somatic variation were performed on Artemisia annua in order to obtain a mutant with changes in adventitious rooting and composition of plant secondary metabolites. Metabolic and morphological analyses of the iar (increased adventitious rooting) mutant coupled with in vitro assays were used to elucidate the relationship between plant secondary metabolites and AR formation. The only detected differences between the iar mutant and wild-type were rooting capacity and borneol/camphor content. Consistent with this, treatment with borneol in vitro promoted adventitious rooting in wild-type. The enhanced rooting did not continue upon removal of borneol. The iar mutant displayed no significant differences in AR formation upon treatment with camphor. Together, our results suggest that borneol promotes adventitious rooting whereas camphor has no effect on AR formation. © 2013 Scandinavian Plant Physiology Society.

  19. Gamma ray induced mutants in Coleus

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, K; Jos, J S [Central Tuber Crops Research Institute, Trivandrum, Kerala (India)

    1988-07-01

    The germplasm collection of Chinese potato (Coleus parviflorus Benth) contains almost no variation for yield contributing traits. The crop does not produce seeds. Treatment of underground tubers with 1 kR, 2 kR, 3 kR and 4 kR gamma rays resulted in 50 morphologically different mutants which are maintained as mutant clones. In the M{sub 1}V{sub 1} generation, suspected mutant sprouts, were carefully removed and grown separately. The most interesting mutant types are the following: (i) erect mutant with spoon shaped light green leaves, 30 cm long inflorescences against 20 cm in the control, cylindrical tubers measuring ca. 7.0 cm long and 3 cm girth against 4 cm and 2.5 cm in the control (ii) early mutants 1 and 2, one having less leaf serration, the other having light green small leaves and dwarf type (iii) fleshy leaf mutant, dark green, thick and smooth leaves. Control plants spread almost in 1 m{sup 2} area and bear tubers from the nodes of branches. In the early mutants tuber formation is mainly restricted to the base of the plant, which makes harvest easier. The crop usually matures within 150 - 160 days, the early mutants are ready for harvest 100 days after planting. As the mutants are less spreading, the yield could be increased by closer spacing.

  20. Gamma ray induced mutants in Coleus

    International Nuclear Information System (INIS)

    Vasudevan, K.; Jos, J.S.

    1988-01-01

    The germplasm collection of Chinese potato (Coleus parviflorus Benth) contains almost no variation for yield contributing traits. The crop does not produce seeds. Treatment of underground tubers with 1 kR, 2 kR, 3 kR and 4 kR gamma rays resulted in 50 morphologically different mutants which are maintained as mutant clones. In the M 1 V 1 generation, suspected mutant sprouts, were carefully removed and grown separately. The most interesting mutant types are the following: (i) erect mutant with spoon shaped light green leaves, 30 cm long inflorescences against 20 cm in the control, cylindrical tubers measuring ca. 7.0 cm long and 3 cm girth against 4 cm and 2.5 cm in the control (ii) early mutants 1 and 2, one having less leaf serration, the other having light green small leaves and dwarf type (iii) fleshy leaf mutant, dark green, thick and smooth leaves. Control plants spread almost in 1 m 2 area and bear tubers from the nodes of branches. In the early mutants tuber formation is mainly restricted to the base of the plant, which makes harvest easier. The crop usually matures within 150 - 160 days, the early mutants are ready for harvest 100 days after planting. As the mutants are less spreading, the yield could be increased by closer spacing

  1. Drought resistant rice mutants, characteristics and discussions on possibilities for planting them in some Arab Countries which import rice

    International Nuclear Information System (INIS)

    Abo-Hegazi, A.M.T.

    1994-01-01

    A number of drought resistant mutants of rice were produced from ordinary rice varieties being planted in several parts of Egypt through utilization of gamma rays as a mutagen. The mutants have water requirements less than one half of that of their mother varieties. According to official data, authorities in Egypt insure about 18000 M 3 of irrigation water for every hectare (10000 M 2 ) of rice and about 6700 M 3 , 6900 M 3 for every hectare of corn and ground nuts, respectively. Peanuts and corn are summer crops like the drought resistant rice mutants. The mentioned mutants can produce good yield under water requirements very near to that of corn and peanuts. The wide gap in agricultural food stuffs for the Arab Countries (more than 20000 million US $ annually) includes rice imports usually exceeds 700 million US $ per year> Rice imports of Arab Countries such as Saudi Arabia, Yemen, Syria, Libya and the Sudan, reached 180, 47, 21, 16 and 14 million US $ in 1988 as an example. Such countries could make use of the drought resistant rice mutants for plantation on water requirements very near to those of usual summer crops such as corn and peanuts which is significantly less than one half of water requirements of their mother varieties. Some characteristics of such mutants as well as discussions on possibilities for planting them in some of the nominated Arab Countries are presented. However, arrangements for ensuring the minimum water requirements during the growing period irrespective to rain which in many cases did not accord the growing period of the mutants should be taken if such countries wants to make use of the drought resistant rice mutants. The author believe that most if not all requirements of rice of such countries could locally be ensured through planting of the above mentioned rice mutants. In this case, maximizing the efficiency of utilizing the limited water resources of such countries could also be counted as another cause for presenting this

  2. Effect of iso-osmotic salt and water stress in relation to adjustment on mutant sugarcane (Saccharum officinarum L.) plant lines

    International Nuclear Information System (INIS)

    Ahuja, Akash V.; Kalwade, Sachin B.; Nikam, Ashok A.; Devarumath, R.M.; Chauvan, Viraj S.; Kanse, Sangram S.

    2014-01-01

    Gamma radiation induced mutagenesis followed by in vitro selection was employed for salt tolerance in popular sugarcane (Saccharum officinarum L.) cv.CoM0265. Assimilated regenerated mutant plantlets were planted on control as well as salt affected soil. Mutants which showed relatively good response with respect to its quantitative and qualitative parameters were selected for priming experiment. Nine mutants and its respective control and parent control which are known to vary in salt tolerance under field conditions were studied. In order to discriminate between the ionic and osmotic components of salt stress, mutant plants were treated with NaCl salt (100 mM) or polyethylene glycol-PEG 8000 solutions (20%) for 10 days. Both NaCI and PEG treatment significantly reduced leaf width, number of green leaves and chlorophyll stability index. Osmotic adjustment indicated that the NaCI and PEG stress lead to accumulation of osmolytes, however sugar level changes non significantly. The ion concentration was drastically affected upon NaCI treatment, whereas PEG stress accumulated relatively less amount of Na + ions in comparison to NaCl. However, there was an increase in K + concentration upon PEG treatment, whereas NaCI stress accumulated less K + concentration with respect to PEG and control. The NaCI and PEG treated mutant plants showed increased activities of superoxide dismutase (SOD) and Catalase (CAT) in comparison to its control and parent control. Among the mutant selected gamma rays irradiation in corporation with enhanced tolerance to abiotic stress is one of the important goals for the biotechnological improvement of crop plants. Enhanced salinity tolerance may prove beneficial to improve the competitiveness of the popular sugarcane cultivars and their commercial cultivation in saline areas. (author)

  3. Identification of a novel ga-related bush mutant in pumpkin (cucurbita moschata duchesne)

    International Nuclear Information System (INIS)

    Wu, T.; Cao, J.

    2015-01-01

    Pumpkin (Cucurbita moschata Duchesne) bush mutant plants were characterized by short stems. The sensitivity of pumpkin bush mutant plants to exogenous hormones was identified in this study. Results revealed that internode elongation of bush mutant plants could respond to gibberellins (GA4+7 and GA3), but not to indole acetic acid (IAA) and brassinosteroids (BR); by contrast, the mutant phenotype of bush mutant plants could not be fully rescued by GA4+7 and GA3. The internode of bush mutant plants yielded a lower KS expression level than that of vine plants. Therefore, pumpkin bush mutant plants were designated as GA-related mutant plants eliciting a partial response to GAs; the action of IAA and BR might not be involved in the internode growth of pumpkin bush mutant plants, specifically Cucurbita moschata Duch. (author)

  4. Comparison of Soybean Transformation Efficiency and Plant Factors Affecting Transformation during the Agrobacterium Infection Process.

    Science.gov (United States)

    Jia, Yuying; Yao, Xingdong; Zhao, Mingzhe; Zhao, Qiang; Du, Yanli; Yu, Cuimei; Xie, Futi

    2015-08-07

    The susceptibility of soybean genotype to Agrobacterium infection is a key factor for the high level of genetic transformation efficiency. The objective of this study is to evaluate the plant factors related to transformation in cotyledonary nodes during the Agrobacterium infection process. This study selected three genotypes (Williams 82, Shennong 9 and Bert) with high transformation efficiency, which presented better susceptibility to Agrobacterium infection, and three low transformation efficiency genotypes (General, Liaodou 16 and Kottman), which showed a relatively weak susceptibility. Gibberellin (GA) levels and soybean GA20ox2 and CYP707A2 transcripts of high-efficiency genotypes increased and were higher than those of low-efficiency genotypes; however, the opposite performance was shown in abscisic acid (ABA). Higher zeatin riboside (ZR) content and DNA quantity, and relatively higher expression of soybean IPT5, CYCD3 and CYCA3 were obtained in high-efficiency genotypes. High-efficiency genotypes had low methyl jasmonate (MeJA) content, polyphenol oxidase (PPO) and peroxidase (POD) activity, and relatively lower expression of soybean OPR3, PPO1 and PRX71. GA and ZR were positive plant factors for Agrobacterium-mediated soybean transformation by facilitating germination and growth, and increasing the number of cells in DNA synthesis cycle, respectively; MeJA, PPO, POD and ABA were negative plant factors by inducing defence reactions and repressing germination and growth, respectively.

  5. Comparison of Soybean Transformation Efficiency and Plant Factors Affecting Transformation during the Agrobacterium Infection Process

    Directory of Open Access Journals (Sweden)

    Yuying Jia

    2015-08-01

    Full Text Available The susceptibility of soybean genotype to Agrobacterium infection is a key factor for the high level of genetic transformation efficiency. The objective of this study is to evaluate the plant factors related to transformation in cotyledonary nodes during the Agrobacterium infection process. This study selected three genotypes (Williams 82, Shennong 9 and Bert with high transformation efficiency, which presented better susceptibility to Agrobacterium infection, and three low transformation efficiency genotypes (General, Liaodou 16 and Kottman, which showed a relatively weak susceptibility. Gibberellin (GA levels and soybean GA20ox2 and CYP707A2 transcripts of high-efficiency genotypes increased and were higher than those of low-efficiency genotypes; however, the opposite performance was shown in abscisic acid (ABA. Higher zeatin riboside (ZR content and DNA quantity, and relatively higher expression of soybean IPT5, CYCD3 and CYCA3 were obtained in high-efficiency genotypes. High-efficiency genotypes had low methyl jasmonate (MeJA content, polyphenol oxidase (PPO and peroxidase (POD activity, and relatively lower expression of soybean OPR3, PPO1 and PRX71. GA and ZR were positive plant factors for Agrobacterium-mediated soybean transformation by facilitating germination and growth, and increasing the number of cells in DNA synthesis cycle, respectively; MeJA, PPO, POD and ABA were negative plant factors by inducing defence reactions and repressing germination and growth, respectively.

  6. Agrobacterium-mediated transformation of grapefruit with the wild-type and mutant RNA-dependent RNA polymerase genes of Citrus tristeza virus

    Science.gov (United States)

    Citrus paradisi Macf. cv. Duncan was transformed with constructs coding for the wild-type and mutant RNA-dependent RNA polymerase (RdRp) of Citrus tristeza virus (CTV) for exploring replicase-mediated pathogen-derived resistance (RM-PDR). The RdRp gene was amplified from CTV genome and used to gener...

  7. Novel and potential application of cryopreservation to plant genetic transformation.

    Science.gov (United States)

    Wang, Biao; Zhang, Zhibo; Yin, Zhenfang; Feng, Chaohong; Wang, Qiaochun

    2012-01-01

    The world population now is 6.7 billion and is predicted to reach 9 billion by 2050. Such a rapid growing population has tremendously increased the challenge for food security. Obviously, it is impossible for traditional agriculture to ensure the food security, while plant biotechnology offers considerable potential to realize this goal. Over the last 15 years, great benefits have been brought to sustainable agriculture by commercial cultivation of genetically modified (GM) crops. Further development of new GM crops will with no doubt contribute to meeting the requirements for food by the increasing population. The present article provides updated comprehensive information on novel and potential application of cryopreservation to genetic transformation. The major progresses that have been achieved in this subject include (1), long-term storage of a large number of valuable plant genes, which offers a good potential for further development of novel cultivars by genetic transformation; (2), retention of regenerative capacity of embryogenic tissues and protoplasts, which ensures efficient plant regeneration system for genetic transformation; (3), improvement of transformation efficiency and plant regeneration of transformed cells; (4), long-term preservation of transgenic materials with stable expression of transgenes and productive ability of recombinant proteins, which allows transgenic materials to be stored in a safe manner before being analyzed and evaluated, and allows establishment of stable seed stocks for commercial production of homologous proteins. Data provided in this article clearly demonstrate that cryo-technique has an important role to play in the whole chain of genetic transformation. Further studies coupling cryotechnique and genetic transformation are expected to significantly improve development of new GM crops. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Photosystem II repair and plant immunity: Lessons learned from Arabidopsis mutant lacking the THYLAKOID LUMEN PROTEIN 18.3

    Directory of Open Access Journals (Sweden)

    Sari eJärvi

    2016-03-01

    Full Text Available Chloroplasts play an important role in the cellular sensing of abiotic and biotic stress. Signals originating from photosynthetic light reactions, in the form of redox and pH changes, accumulation of reactive oxygen and electrophile species or stromal metabolites are of key importance in chloroplast retrograde signaling. These signals initiate plant acclimation responses to both abiotic and biotic stresses. To reveal the molecular responses activated by rapid fluctuations in growth light intensity, gene expression analysis was performed with Arabidopsis thaliana wild type and the tlp18.3 mutant plants, the latter showing a stunted growth phenotype under fluctuating light conditions (Biochem. J, 406, 415-425. Expression pattern of genes encoding components of the photosynthetic electron transfer chain did not differ between fluctuating and constant light conditions, neither in wild type nor in tlp18.3 plants, and the composition of the thylakoid membrane protein complexes likewise remained unchanged. Nevertheless, the fluctuating light conditions repressed in wild-type plants a broad spectrum of genes involved in immune responses, which likely resulted from shade-avoidance responses and their intermixing with hormonal signaling. On the contrary, in the tlp18.3 mutant plants there was an imperfect repression of defense-related transcripts upon growth under fluctuating light, possibly by signals originating from minor malfunction of the photosystem II (PSII repair cycle, which directly or indirectly modulated the transcript abundances of genes related to light perception via phytochromes. Consequently, a strong allocation of resources to defense reactions in the tlp18.3 mutant plants presumably results in the stunted growth phenotype under fluctuating light.

  9. Calreticulin-mutant proteins induce megakaryocytic signaling to transform hematopoietic cells and undergo accelerated degradation and Golgi-mediated secretion

    Directory of Open Access Journals (Sweden)

    Lijuan Han

    2016-05-01

    Full Text Available Abstract Background Somatic calreticulin (CALR, Janus kinase 2 (JAK2, and thrombopoietin receptor (MPL mutations essentially show mutual exclusion in myeloproliferative neoplasms (MPN, suggesting that they activate common oncogenic pathways. Recent data have shown that MPL function is essential for CALR mutant-driven MPN. However, the exact role and the mechanisms of action of CALR mutants have not been fully elucidated. Methods The murine myeloid cell line 32D and human HL60 cells overexpressing the most frequent CALR type 1 and type 2 frameshift mutants were generated to analyze the first steps of cellular transformation, in the presence and absence of MPL expression. Furthermore, mutant CALR protein stability and secretion were examined using brefeldin A, MG132, spautin-1, and tunicamycin treatment. Results The present study demonstrates that the expression of endogenous Mpl, CD41, and the key megakaryocytic transcription factor NF-E2 is stimulated by type 1 and type 2 CALR mutants, even in the absence of exogenous MPL. Mutant CALR expressing 32D cells spontaneously acquired cytokine independence, and this was associated with increased Mpl mRNA expression, CD41, and NF-E2 protein as well as constitutive activation of downstream signaling and response to JAK inhibitor treatment. Exogenous expression of MPL led to constitutive activation of STAT3 and 5, ERK1/2, and AKT, cytokine-independent growth, and reduction of apoptosis similar to the effects seen in the spontaneously outgrown cells. We observed low CALR-mutant protein amounts in cellular lysates of stably transduced cells, and this was due to accelerated protein degradation that occurred independently from the ubiquitin-proteasome system as well as autophagy. CALR-mutant degradation was attenuated by MPL expression. Interestingly, we found high levels of mutated CALR and loss of downstream signaling after blockage of the secretory pathway and protein glycosylation. Conclusions These

  10. Calcium-Induced Activation of a Mutant G-Protein-Coupled Receptor Causes In Vitro Transformation of NIH/3T3 Cells

    Directory of Open Access Journals (Sweden)

    Ana O. Hoff

    1999-12-01

    Full Text Available The calcium-sensing receptor (CaR is a G-proteincoupled receptor that is widely expressed, has tissuespecific functions, regulates cell growth. Activating mutations of this receptor cause autosomal dominant hypocalcemia, a syndrome characterized by hypocalcemia and hypercalciuria. The identification of a family with an activating mutation of the CaR (Thr151 Met in which hypocalcemia cosegregates with several unusual neoplasms led us to examine the transforming effects of this mutant receptor. Transfection of NIH/3T3 cells with the mutant but not the normal receptor supported colony formation in soft agar at subphysiologic calcium concentrations. The mutant CaR causes a calcium-dependent activation of the extracellular signal-regulated protein kinase (ERK 1/2 and Jun-N-terminal kinase/stress-activated (JNK/ SAPK pathways, but not P38 MAP kinase. These findings contribute to a growing body of information suggesting that this receptor plays a role in the regulation of cellular proliferation, that aberrant activation of the mutant receptor in this family may play a role in the unusual neoplastic manifestations.

  11. Plant height revertants of Dominant Semidwarf mutant rice created by low-energy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu Binmei [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wu Yuejin [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)], E-mail: yjwu@ipp.ac.cn; Xu Xue; Song, M.; Zhao, M. [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Fu, X.D. [Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101 (China)

    2008-04-15

    Dominant Semidwarf mutant rice (Sdd) was obtained from its wild type (WT) by irradiation with a low-energy ion beam. Six tall revertants of Sdd were induced by irradiation. The revertants restored the plant height to that of WT plants. Investigation of the agronomic character and genetic analysis indicate that the revertants are similar to WT plants with putative different inherited mutations. The revertants were checked for DNA differences using the simple sequence repeat technique. Among 408 such primers used, only 2 primers detected mutation sites in the revertants, which provided the molecular evidence for the revertants induced from Sdd. This study indicates that ion irradiation may be used as a mutagen to create revertants for plant architecture studies and could be a new application.

  12. Applications of wavelet transforms for nuclear power plant signal analysis

    International Nuclear Information System (INIS)

    Seker, S.; Turkcan, E.; Upadhyaya, B.R.; Erbay, A.S.

    1998-01-01

    The safety of Nuclear Power Plants (NPPs) may be enhanced by the timely processing of information derived from multiple process signals from NPPs. The most widely used technique in signal analysis applications is the Fourier transform in the frequency domain to generate power spectral densities (PSD). However, the Fourier transform is global in nature and will obscure any non-stationary signal feature. Lately, a powerful technique called the Wavelet Transform, has been developed. This transform uses certain basis functions for representing the data in an effective manner, with capability for sub-band analysis and providing time-frequency localization as needed. This paper presents a brief overview of wavelets applied to the nuclear industry for signal processing and plant monitoring. The basic theory of Wavelets is also summarized. In order to illustrate the application of wavelet transforms data were acquired from the operating nuclear power plant Borssele in the Netherlands. The experimental data consist of various signals in the power plant and are selected from a stationary power operation. Their frequency characteristics and the mutual relations were investigated using MATLAB signal processing and wavelet toolbox for computing their PSDs and coherence functions by multi-resolution analysis. The results indicate that the sub-band PSD matches with the original signal PSD and enhances the estimation of coherence functions. The Wavelet analysis demonstrates the feasibility of application to stationary signals to provide better estimates in the frequency band of interest as compared to the classical FFT approach. (author)

  13. Transformation of ceria nanoparticles in cucumber plants is influenced by phosphate

    International Nuclear Information System (INIS)

    Rui, Yukui; Zhang, Peng; Zhang, Yanbei; Ma, Yuhui; He, Xiao; Gui, Xin; Li, Yuanyuan; Zhang, Jing; Zheng, Lirong; Chu, Shengqi; Guo, Zhi; Chai, Zhifang; Zhao, Yuliang; Zhang, Zhiyong

    2015-01-01

    Transformation is a critical factor that affects the fate and toxicity of manufactured nanoparticles (NPs) in the environment and living organisms. This paper aims to investigate the effect of phosphate on the transformation of CeO 2 NPs in hydroponic plants. Cucumber seedlings were treated with 2000 mg/L CeO 2 NPs in nutrient solutions with or without adding phosphate (+P or –P) for 3 weeks. Large quantities of needle-like CePO 4 was found outside the epidermis in the +P group. While in the –P group, CePO 4 only existed in the intercellular spaces and vacuole of root cells. X-ray absorption near edge spectroscopy (XANES) indicates that content and percentage of Ce-carboxylates in the shoots of –P group (418 mg/kg, 67.5%) were much higher than those in the +P group (30.1 mg/kg, 21%). The results suggest that phosphate might influence the transformation process of CeO 2 NPs in plants and subsequently their ultimate fate in the ecosystem. - Highlights: • We compared the transformation of CeO 2 NPs in cucumber plants with and without phosphate in nutrient solutions. • Results of TEM and STXM show that CePO 4 located differently in roots between +P and –P group. • The chemical species distributions of Ce in shoots were different between +P and –P group by XANES. • Phosphate significantly affected the transformation of CeO 2 NPs in plants. - CeO 2 NPs can be partially transformed to CePO 4 and Ce carboxylates in hydroponic plants. Phosphate significantly affected the transformation of CeO 2 NPs and subsequent translocation of Ce species

  14. Induction of Mutants in Durum Wheat

    International Nuclear Information System (INIS)

    AL-Ubaidi, M.; Ibrahim, I.; AL-Hadithi, A.

    2002-01-01

    This investigation presents a breeding program for induction and development of a new genotype of durum wheat, resistant to lodging with high yield, by irradiation durum wheat hybrids (F2) with gamma rays 100 Gy, during 1990-1997 cultivation seasons. This program involves: induction of variability, selection evaluation of the mutants at three locations: Twaitha (Baghdad) Latifya ( Babylon) and Swari (Kutt). All mutants showed resistance to lodging and there was a significant reduction in plant height. Mutant SIXIZ-22 surpassed other mutants and its origin in lodging resistance and plant height (83.5,82.8 and 89.4 cm) in the three locations at generation M5 and M6, respectively. Also, there were significant differences between mutant and their origin in the number of spikes/M 2 and grain yild during the two successive generation. On the other hand, mutant IZxCO-105 surpassed other mutants in the number of spikes/M 2 (231.8,242.3 and 292) and grain yield (4336,3376 and 5232 kg/ha) in all testing location, respectively . (authors) 14 refs., 4 tabs

  15. Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality.

    Science.gov (United States)

    Albrecht, Verónica; Ingenfeld, Anke; Apel, Klaus

    2006-03-01

    During seedling development chloroplast formation marks the transition from heterotrophic to autotrophic growth. The development and activity of chloroplasts may differ in cotyledons that initially serve as a storage organ and true leaves whose primary function is photosynthesis. A genetic screen was used for the identification of genes that affect selectively chloroplast function in cotyledons of Arabidopsis thaliana. Several mutants exhibiting pale cotyledons and green true leaves were isolated and dubbed snowy cotyledon (sco). One of the mutants, sco1, was characterized in more detail. The mutated gene was identified using map-based cloning. The mutant contains a point mutation in a gene encoding the chloroplast elongation factor G, leading to an amino acid exchange within the predicted 70S ribosome-binding domain. The mutation results in a delay in the onset of germination. At this early developmental stage embryos still contain undifferentiated proplastids, whose proper function seems necessary for seed germination. In light-grown sco1 seedlings the greening of cotyledons is severely impaired, whereas the following true leaves develop normally as in wild-type plants. Despite this apparent similarity of chloroplast development in true leaves of mutant and wild-type plants various aspects of mature plant development are also affected by the sco1 mutation such as the onset of flowering, the growth rate, and seed production. The onset of senescence in the mutant and the wild-type plants occurs, however, at the same time, suggesting that in the mutant this particular developmental step does not seem to suffer from reduced protein translation efficiency in chloroplasts.

  16. Productive mutants in lemongrass induced by gamma rays

    International Nuclear Information System (INIS)

    Gopinathan Nair, V.

    1980-01-01

    Seeds of the lemongrass variety O.D. 19 were irradiated with gamma rays at a dose range of 5 to 30 krad. M 1 plants with one or a few tillers differing from the standard plants of O.D. 19 were selected, split into single slips and planted as clonal progenies. Mutants were isolated in M 1 V 1 and carried forward. Forty two M 1 V 2 mutant clones differing from O.D. 19 in morphological characters such as vigour, plant height, growth habit, pigmentation and number of tillers have been established. These were evaluated for tiller number, grass yield and oil content. Six clones gave higher grass yield, the highest being 556 gm per plant per cutting as against 360 gm in the standard. Five clones gave higher oil yield, the highest being 0.42% as against 0.23% in the standard. Isolation of viable mutants with high grass yield and essential oil content indicate the scope for evolving productive mutant varieties in this perennial aromatic grass. The eleven M 1 V 2 mutant clones are being critically evaluated by estimating oil yield per hectare per year. (author)

  17. Mutation induction and evaluation of high yield rice mutants

    International Nuclear Information System (INIS)

    Abdul Rahim Harun; Sobri Husein; Rusli Ibrahim

    2006-01-01

    The successful use of plant breeding for improving crops requires the existence of genetic variation of useful traits. Unfortunately, the desired variation is often lacking. However, radiation has been used to induce mutations and thereby generate genetic variation from which desired mutants may be selected. Mutation induction has become a proven way of creating variation within a crop variety. It offers the possibility of inducing desired attributes that either cannot be expressed in nature or have been lost during evolution. Rice is security food crop in Malaysia. Efforts were undertaken to enhance rice yield from 4.0 tones per hectare in 1995 to 5.5 tones per hectare in 2010. Proper management and good varieties are two factors that require for enhancing yield of rice. In this research, purified seeds of MR211 and MR219 were gamma irradiated at 100 to 400 Gray and sown for planting as M1 generation at MARDI experimental plot. The M2 population was sown in bulk with population size around 15,000 to 20,000 plants. Individual plant selection was carried out at maturity and each selected plant became a mutant line of M3 generation. Agronomic trial of M3 mutants lines were conducted in Mardi, Tanjung Karang, Selangor. About 115 of selected mutant lines were evaluated. Each row of those mutant lines were planted in two rows at planting distance of 25cm within and between rows. These mutant lines were visually observed and data were recorded in each of every mutant line. (Author)

  18. Application of Carbon Nanotubes for Plant Genetic Transformation

    Science.gov (United States)

    Burlaka, Olga M.; Pirko, Yaroslav V.; Yemets, Alla I.; Blume, Yaroslav B.

    In this chapter, the current state of using carbon nanotubes (CNTs; single- and multi-walled) that have attracted great interdisciplinary interest in recent decades due to their peculiar properties for genetic transformation of prokaryotic and eukaryotic cells will be enlightened. The covalent and non-covalent surface chemistry for the CNT functionalization with focus on the potential applications of surface modifications in design of biocompatible CNTs will be discussed. The properties of CNTs that are favorable for biotechnological use and current status of technical approaches that allow the increase in biocompatibility and lower nanotoxicity of engineered CNTs will be described. Decisions proposed by non-covalent surface modification of CNTs will be discussed. Existing data concerning mechanisms of CNT cell entry and factors governing toxicity, cellular uptake, intracellular traffic, and biodegradation of CNTs along with bioavailability of molecular cargoes of loaded CNTs will be discussed. Eco-friendly production of water dispersions of biologically functionalized multi-walled and single-walled CNTs for use as nano-vehicles for the DNA delivery in plant genetic transformation of plants will be described. The background, advantages, and problems of using CNTs in developing of novel methods of genetic transformation, including plant genetic transformation, will be highlighted. Special attention will be paid to the limitations of conventional gene transfer techniques and promising features of CNT-based strategies having improved efficacy, reproducibility, and accuracy along with less time consumption. Issues impeding manipulation of CNTs such as entangled bundle formation, low water solubility, inert properties of pristine CNTs, etc., and ways to solve arising tasks will be overviewed.

  19. Plant Products for Pharmacology: Application of Enzymes in Their Transformations

    Directory of Open Access Journals (Sweden)

    Marie Zarevúcka

    2008-12-01

    Full Text Available Different plant products have been subjected to detailed investigations due to their increasing importance for improving human health. Plants are sources of many groups of natural products, of which large number of new compounds has already displayed their high impact in human medicine. This review deals with the natural products which may be found dissolved in lipid phase (phytosterols, vitamins etc.. Often subsequent convenient transformation of natural products may further improve the pharmacological properties of new potential medicaments based on natural products. To respect basic principles of sustainable and green procedures, enzymes are often employed as efficient natural catalysts in such plant product transformations. Transformations of lipids and other natural products under the conditions of enzyme catalysis show increasing importance in environmentally safe and sustainable production of pharmacologically important compounds. In this review, attention is focused on lipases, efficient and convenient biocatalysts for the enantio- and regioselective formation / hydrolysis of ester bond in a wide variety of both natural and unnatural substrates, including plant products, eg. plant oils and other natural lipid phase compounds. The application of enzymes for preparation of acylglycerols and transformation of other natural products provides big advantage in comparison with employing of conventional chemical methods: Increased selectivity, higher product purity and quality, energy conservation, elimination of heavy metal catalysts, and sustainability of the employed processes, which are catalyzed by enzymes. Two general procedures are used in the transformation of lipid-like natural products: (a Hydrolysis/alcoholysis of triacylglycerols and (b esterification of glycerol. The reactions can be performed under conventional conditions or in supercritical fluids/ionic liquids. Enzyme-catalyzed reactions in supercritical fluids combine the

  20. Biological Effects of Potato Plants Transformation with Glucose Oxidase Gene and their Resistance to Hyperthermia

    Directory of Open Access Journals (Sweden)

    O.I. Grabelnych

    2017-02-01

    Full Text Available It is known that regulation of plant tolerance to adverse environmental factors is connected with short term increase of the concentration of endogenous reactive oxygen species (ROS, which are signalling molecules for the induction of protective mechanisms. Introduction and expression of heterologous gox gene, which encodes glucose oxidase enzyme in plant genome, induce constantly higher content of hydrogen peroxide in plant tissues. It is not known how the introduction of native or modified gox gene affects the plant resistance to high-temperature stress, one of the most commonly used model for the study of stress response and thermal tolerance. In this study, we investigated biological effects of transformation and evaluated the resistance to temperature stress of potato plants with altered levels of glucose oxidase expression. Transformation of potato plants by gox gene led to the more early coming out from tuber dormancy of transformed plants and slower growth rate. Transformants containing the glucose oxidase gene were more sensitive to lethal thermal shock (50 °C, 90 min than the transformant with the empty vector (pBI or untransformed plants (CK. Pre-heating of plants at 37 °C significantly weakened the damaging effect of lethal thermal shock. This attenuation was more significant in the non-transformed plants.

  1. Semi-dwarf mutant lines of hexaploid triticale

    International Nuclear Information System (INIS)

    Pidra, M.

    1989-01-01

    A spring form of hexaploid secondary triticale ADD 143/71, bred by MOGILEVA at the Plant Breeding Station at Uhretice was used for the mutagen treatment. The mutation experiment started in 1979. Seeds were treated with a 0.8 mM water solution of N-methyl-N-nitrosourea (MNH) (CETL and RELICHOVA, unpublished). From 180 M 1 plants, one spike was harvested per plant. A random sample of these seeds was sown as M 2 in 1980 and several plants with shorter main culm were selected. Selfed progenies of eight mutant plants designated ADD 143-m1, ADD 143-m2, ADD 143-m3 etc. were further tested in M 3 and M 4 . There were significant differences in culm length and in some other characters between the original line and the mutant lines. Especially the line m8 looks like a promising source of semi-dwarfness for breeding programmes of hexaploid triticale. During 1985-1987 genetic analysis was performed on the ADD 143/71 and the mutant lines m2, m6, m7 and m8, which suggest that their mutant genes are allelic and recessive

  2. Assessment of transformability of bacteria associated with tomato and potato plants

    NARCIS (Netherlands)

    Overbeek, van L.S.; Ray, J.L.; Elsas, van J.D.

    2007-01-01

    Transformation of plant-associated bacteria by plant DNA has never been demonstrated in agricultural fields. In total 552 bacterial isolates from stems of Ralstonia solanacearum-infected and healthy tomato plants and from stems and leaves of healthy potato plants were tested for natural genetic

  3. Development of Database Software with Plant Mutant Resources

    International Nuclear Information System (INIS)

    Namgoong, Won; Lee, M. J.; Kim, J. D.; Ma, N. K.

    2007-03-01

    In this research, mutants induced by nuclear radiation are developed information computerised system. The status and progress on the collection, identification and utilization of mutants in Korea are introduced. And it was produced home page, manual, test record, construction of system

  4. Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants

    Directory of Open Access Journals (Sweden)

    Petersen Pia Damm

    2012-11-01

    Full Text Available Abstract Background Cost-efficient generation of second-generation biofuels requires plant biomass that can easily be degraded into sugars and further fermented into fuels. However, lignocellulosic biomass is inherently recalcitrant toward deconstruction technologies due to the abundant lignin and cross-linked hemicelluloses. Furthermore, lignocellulosic biomass has a high content of pentoses, which are more difficult to ferment into fuels than hexoses. Engineered plants with decreased amounts of xylan in their secondary walls have the potential to render plant biomass a more desirable feedstock for biofuel production. Results Xylan is the major non-cellulosic polysaccharide in secondary cell walls, and the xylan deficient irregular xylem (irx mutants irx7, irx8 and irx9 exhibit severe dwarf growth phenotypes. The main reason for the growth phenotype appears to be xylem vessel collapse and the resulting impaired transport of water and nutrients. We developed a xylan-engineering approach to reintroduce xylan biosynthesis specifically into the xylem vessels in the Arabidopsis irx7, irx8 and irx9 mutant backgrounds by driving the expression of the respective glycosyltransferases with the vessel-specific promoters of the VND6 and VND7 transcription factor genes. The growth phenotype, stem breaking strength, and irx morphology was recovered to varying degrees. Some of the plants even exhibited increased stem strength compared to the wild type. We obtained Arabidopsis plants with up to 23% reduction in xylose levels and 18% reduction in lignin content compared to wild-type plants, while exhibiting wild-type growth patterns and morphology, as well as normal xylem vessels. These plants showed a 42% increase in saccharification yield after hot water pretreatment. The VND7 promoter yielded a more complete complementation of the irx phenotype than the VND6 promoter. Conclusions Spatial and temporal deposition of xylan in the secondary cell wall of

  5. Simian virus 40 small t antigen is not required for the maintenance of transformation but may act as a promoter (cocarcinogen) during establishment of transformation in resting rat cells.

    Science.gov (United States)

    Seif, R; Martin, R G

    1979-12-01

    Simian virus 40 deletion mutants affecting the 20,000-dalton (20K) t antigen and tsA mutants rendering the 90K T antigen temperature sensitive, as well as double mutants containing both mutations, induced host DNA synthesis in resting rat cells at the restrictive temperature. Nonetheless, the deletion mutants and double mutants did not induce transformation in resting cells even at the permissive temperature. On the other hand, the deletion mutants did induce full transformants when actively growing rat cells were infected; the transformants grew efficiently in agar and to high saturation densities on platic. The double mutants did not induce T-antigen-independent (temperature-insensitive) transformants which were shown previously to arise preferentially from resting cells. Thus, small t antigen was dispensable for the maintenance of the transformed phenotype in T-antigen-dependent rat transformants (transformants derived from growing cells) and may play a role in the establishment of T-antigen-independent transformants. We attempt to establish a parallel between transformation induced by chemical carcinogens and simian virus 40-induced transformation.

  6. Is VIP1 important for Agrobacterium-mediated transformation?

    Science.gov (United States)

    Shi, Yong; Lee, Lan-Ying; Gelvin, Stanton B

    2014-09-01

    Agrobacterium genetically transforms plants by transferring and integrating T-(transferred) DNA into the host genome. This process requires both Agrobacterium and host proteins. VirE2 interacting protein 1 (VIP1), an Arabidopsis bZIP protein, has been suggested to mediate transformation through interaction with and targeting of VirE2 to nuclei. We examined the susceptibility of Arabidopsis vip1 mutant and VIP1 overexpressing plants to transformation by numerous Agrobacterium strains. In no instance could we detect altered transformation susceptibility. We also used confocal microscopy to examine the subcellular localization of Venus-tagged VirE2 or Venus-tagged VIP1, in the presence or absence of the other untagged protein, in different plant cell systems. We found that VIP1-Venus localized in both the cytoplasm and the nucleus of Arabidopsis roots, agroinfiltrated Nicotiana benthamiana leaves, Arabidopsis mesophyll protoplasts and tobacco BY-2 protoplasts, regardless of whether VirE2 was co-expressed. VirE2 localized exclusively to the cytoplasm of tobacco and Arabidopsis protoplasts, whether in the absence or presence of VIP1 overexpression. In transgenic Arabidopsis plants and agroinfiltrated N. benthamina leaves we could occasionally detect small aggregates of the Venus signal in nuclei, but these were likely to be imagining artifacts. The vast majority of VirE2 remained in the cytoplasm. We conclude that VIP1 is not important for Agrobacterium-mediated transformation or VirE2 subcellular localization. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  7. Arabidopsis thaliana ggt1 photorespiratory mutants maintain leaf carbon/nitrogen balance by reducing RuBisCO content and plant growth.

    Science.gov (United States)

    Dellero, Younès; Lamothe-Sibold, Marlène; Jossier, Mathieu; Hodges, Michael

    2015-09-01

    Metabolic and physiological analyses of glutamate:glyoxylate aminotransferase 1 (GGT1) mutants were performed at the global leaf scale to elucidate the mechanisms involved in their photorespiratory growth phenotype. Air-grown ggt1 mutants showed retarded growth and development, that was not observed at high CO2 (3000 μL L(-1) ). When compared to wild-type (WT) plants, air-grown ggt1 plants exhibited glyoxylate accumulation, global changes in amino acid amounts including a decrease in serine content, lower organic acid levels, and modified ATP/ADP and NADP(+) /NADPH ratios. When compared to WT plants, their net CO2 assimilation rates (An ) were 50% lower and this mirrored decreases in ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) contents. High CO2 -grown ggt1 plants transferred to air revealed a rapid decrease of An and photosynthetic electron transfer rate while maintaining a high energetic state. Short-term (a night period and 4 h of light) transferred ggt1 leaves accumulated glyoxylate and exhibited low serine contents, while other amino acid levels were not modified. RuBisCO content, activity and activation state were not altered after a short-term transfer while the ATP/ADP ratio was lowered in ggt1 rosettes. However, plant growth and RuBisCO levels were both reduced in ggt1 leaves after a long-term (12 days) acclimation to air from high CO2 when compared to WT plants. The data are discussed with respect to a reduced photorespiratory carbon recycling in the mutants. It is proposed that the low An limits nitrogen-assimilation, this decreases leaf RuBisCO content until plants attain a new homeostatic state that maintains a constant C/N balance and leads to smaller, slower growing plants. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  8. Complementation and recombination between alfalfa mosaic virus RNA3 mutants in tobacco plants

    NARCIS (Netherlands)

    van der Kuyl, A. C.; Neeleman, L.; Bol, J. F.

    1991-01-01

    Deletions were made in an infectious cDNA clone of alfalfa mosaic virus (AIMV) RNA3 and the replication of RNA transcripts of these cDNAs was studied in tobacco plants transformed with AIMV replicase genes (P12 plants). Previously, we found that deletions in the P3 gene did not affect accumulation

  9. Characteristics of mutant lines of sweet potato flour

    International Nuclear Information System (INIS)

    Aryanti

    2012-01-01

    Research on mutation induction of sweet potato Sari variety has been conducted. Flour mutant lines were obtained from selection of M1V5 tubers irradiated by gamma rays at the dose of 10 Gy. Flour was made by peeling of tubers, then dried, blended and sieved. The quality test of flour have been done by measuring degree of whiteness, proximate, amylose contents, water content, soluble water, swelling power, and flour characteristics. The result of this work showed that flour of C6.26.13 mutant line had higher protein content than the parent plant with concentration of 3.62 % and its amylose content was also higher than the other mutant lines. The soluble water value of mutant lines were significant different compared to the parent plant from 1.82 to 2.25 % and swelling power from 4.28 to 5.55 %. The flour granule of the mutant line was different compared to the parent plant. (author)

  10. Trend analyses of transformer problems in the U.S. nuclear power plants

    International Nuclear Information System (INIS)

    Shimada, Yoshio

    2009-01-01

    Up to 2007, the authors have conducted the trend analyses of trouble events related to main generators, emergency diesel generators, breakers and motors, which are more likely to cause problems than other electric equipments in nuclear power plants. The frequency of trouble events in transformers in domestic nuclear power plants at present is approximately one third of the publicly reported cases in the U.S. However, as the situation of maintenance in Japan in the future will become similar to those in the U.S. if the operating period is extended or the maintenance method is to be shifted from preventive maintenance to condition based maintenance, there is a concern that the frequency of transformer events in Japan will increase in Japan, also. Thus, trend analyses were conducted on transformers events which had not been subject to such analyses, from among electrical equipments which are likely to cause problems. The trend analyses were performed on 23 transformer events which had occurred in the U.S. nuclear power plants in five years from 2003 through 2007 among events reported in the Licensee Event Reports (LERs: event reports submitted to NRC by U.S. nuclear power plants) which have been registered in the nuclear information database of the Institute of Nuclear Safety System, Incorporated's (INSS), as well as 8 events registered in the Nuclear Information Archives (NUCIA), which had occurred in domestic nuclear power plants in five from 2003 through 2007. Lessons learned from the trend analyses of the transformer trouble events in the U.S. revealed that for transformers in general, the maintenance management of tap changers is important, while for the main transformers which are most likely to cause problems, it is vital to prevent the deterioration of insulation and insulating oil. (author)

  11. Commercialization Of Orchid Mutants For Floriculture Industry

    International Nuclear Information System (INIS)

    Sakinah Ariffin; Zaiton Ahmad

    2014-01-01

    Orchids are the main contributors to cut flower industry in Malaysia with an existing good market and a huge business potential. Orchid industry has been established in Malaysia since 1960s but only started to develop and expand since 1980s. Continuous development of new orchid varieties is essential to meet customers' demands. Orchid mutagenesis research using gamma irradiation at Malaysian Nuclear Agency has successfully generated a number of new orchid varieties with commercial potentials. Therefore, Nuclear Malaysia has collaborated with an industrial partner, Hexagon Green Sdn Bhd (HGSB), to carry out commercialization research on these mutants under a Technofund project entitled 'Pre-Commercialization of Mutant Orchids for Cut Flowers Industry' from July 2011 to July 2014. Through this collaboration, Dendrobium orchid mutant plants developed by Nuclear Malaysia were transferred to HGSB's commercial orchid nursery at Bukit Changgang Agrotechnology Park, Banting, Selangor, for mass-propagation. The activities include evaluations on plant growth performance, flower quality, post harvest and market potential of these mutants. Mutants with good field performance have been identified and filed for Plant Variety Protection (PVP) with Department of Agriculture Malaysia. This paper describes outputs from this collaboration and activities undertaken in commercializing these mutants. (author)

  12. Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium

    DEFF Research Database (Denmark)

    Trieu, A.T.; Burleigh, S.H.; Kardailsky, I.V.

    2000-01-01

    Two rapid and simple in planta transformation methods have been developed for the model legume Medicago truncatula. The first approach is based on a method developed for transformation of Arabidopsis thaliana and involves infiltration of flowering plants with a suspension of Agrobacterium....... The second method involves infiltration of young seedlings with Agrobacterium. In both cases a proportion of the progeny of the infiltrated plants is transformed. The transformation frequency ranges from 4.7 to 76% for the flower infiltration method, and from 2.9 to 27.6% for the seedling infiltration method....... Both procedures resulted in a mixture of independent transformants and sibling transformants. The transformants were genetically stable, and analysis of the T-2 generation indicates that the transgenes are inherited in a Mendelian fashion. These transformation systems will increase the utility of M...

  13. AGROBACTERIUM-MEDIATED TRANSFORMATION OF COMPOSITAE PLANTS. I. CONSTRUCTION OF TRANSGENIC PLANTS AND «HAIRY» ROOTS WITH NEW PROPERTIES

    Directory of Open Access Journals (Sweden)

    N. A.Matvieieva

    2013-02-01

    Full Text Available The review explores some of the recent advances and the author's own researchs concerning biotechnological approaches for Agrobacterium tumefaciens- and A. rhizogenes-mediated transformation of Compositae family plants. This paper reviews the results of genetic transformation of Compositae plants, including edible (Cichorium intybus, Lactuca sativa, oil (Helianthus annuus, decorative (Gerbera hybrida, medical (Bidens pilosa, Artemisia annua, Artemisia vulgaris, Calendula officinalis, Withania somnifera etc. plant species. Some Compositae genetic engineering areas are considered including creation of plants, resistant to pests, diseases and herbicides, to the effect of abiotic stress factors as well as plants with altered phenotype. The article also presents the data on the development of biotechnology for Compositae plants Cynara cardunculus, Arnica montana, Cichorium intybus, Artemisia annua "hairy" roots construction.

  14. Enhancement of plant metabolite fingerprinting by machine learning.

    Science.gov (United States)

    Scott, Ian M; Vermeer, Cornelia P; Liakata, Maria; Corol, Delia I; Ward, Jane L; Lin, Wanchang; Johnson, Helen E; Whitehead, Lynne; Kular, Baldeep; Baker, John M; Walsh, Sean; Dave, Anuja; Larson, Tony R; Graham, Ian A; Wang, Trevor L; King, Ross D; Draper, John; Beale, Michael H

    2010-08-01

    Metabolite fingerprinting of Arabidopsis (Arabidopsis thaliana) mutants with known or predicted metabolic lesions was performed by (1)H-nuclear magnetic resonance, Fourier transform infrared, and flow injection electrospray-mass spectrometry. Fingerprinting enabled processing of five times more plants than conventional chromatographic profiling and was competitive for discriminating mutants, other than those affected in only low-abundance metabolites. Despite their rapidity and complexity, fingerprints yielded metabolomic insights (e.g. that effects of single lesions were usually not confined to individual pathways). Among fingerprint techniques, (1)H-nuclear magnetic resonance discriminated the most mutant phenotypes from the wild type and Fourier transform infrared discriminated the fewest. To maximize information from fingerprints, data analysis was crucial. One-third of distinctive phenotypes might have been overlooked had data models been confined to principal component analysis score plots. Among several methods tested, machine learning (ML) algorithms, namely support vector machine or random forest (RF) classifiers, were unsurpassed for phenotype discrimination. Support vector machines were often the best performing classifiers, but RFs yielded some particularly informative measures. First, RFs estimated margins between mutant phenotypes, whose relations could then be visualized by Sammon mapping or hierarchical clustering. Second, RFs provided importance scores for the features within fingerprints that discriminated mutants. These scores correlated with analysis of variance F values (as did Kruskal-Wallis tests, true- and false-positive measures, mutual information, and the Relief feature selection algorithm). ML classifiers, as models trained on one data set to predict another, were ideal for focused metabolomic queries, such as the distinctiveness and consistency of mutant phenotypes. Accessible software for use of ML in plant physiology is highlighted.

  15. Natural transformation in plant breeding - a biotechnological platform for quality improvement of ornamental, agricultural and medicinal plants

    DEFF Research Database (Denmark)

    Lütken, Henrik Vlk; Hegelund, Josefine Nymark; Himmelboe, Martin

    2015-01-01

    Compactness is a desirable trait in ornamental plant breeding because it is preferred by producers, distributors and consumers. Presently, in ornamental plant production growth of many potted plants is regulated by application of chemical growth retardants, several of which are harmful to both...... (rol)-genes rolA, rolB, rolC and rolD among 18 ORFs, into the plant genome. Infection of plants by A. rhizogenes induces hairy roots, from which shoots containing rol-genes can be regenerated. Natural transformation with A. rhizogenes reveals very promising results in several plant species and can...... be useful in a broader range of application than ornamental breeding. One important aspect of this technology is that the hairy roots can be used directly in the selection proceß as a primary indicator of a succeßful transformation. Thus the technology avoids use of undesired antibiotic resistance marker...

  16. From one body mutant to one cell mutant. A progress of radiation breeding in crops

    International Nuclear Information System (INIS)

    Nagatomi, Shigeki

    1996-01-01

    An effective method was established to obtain non-chimeral mutants with wide spectrum of flower colors, regenerated from floral organs on which mutated sectors were come out on chronic irradiated plants. By this way, six mutant varieties of flower colors have been selected from one pink flower of chrysanthemum, and cultivated for cut-flower production. By the same method, 3 mutant varieties with small and spray type flowers were selected in Eustoma. Mutant varieties such as a rust disease resistant in sugarcane, 6 dwarfs in Cytisus and pure-white mushroom in velvet shank have been selected successively for short period. (J.P.N.)

  17. Assimilation and transformation of benzene by higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Durmishidze, S V; Ugrekhelidze, D Sh; Dzhikiya, A N

    1974-01-01

    Higher plants are capable of assimilating benzene, the molecules of which are subjected to deep chemical transformations; the products of its metabolism move along the plant. Taking part in total metabolism, carbon atoms of benzene molecules incorporate into composition of low-molecular compounds of the plant cell. The bulk of benzene carbon incorporates into composition of organic acids and a comparatively small part - into composition of amino acids. In the metabolism process benzene carbon localizes mainly in the chloroplasts. Phenol, muconic acid and CO/sub 2/ are isolated and identified from the products of benzene enzymatic oxidation. A range of benzene assimilation by higher plants is extremely wide. 9 references, 5 tables.

  18. Reef-coral proteins as visual, non-destructive reporters for plant transformation.

    Science.gov (United States)

    Wenck, A; Pugieux, C; Turner, M; Dunn, M; Stacy, C; Tiozzo, A; Dunder, E; van Grinsven, E; Khan, R; Sigareva, M; Wang, W C; Reed, J; Drayton, P; Oliver, D; Trafford, H; Legris, G; Rushton, H; Tayab, S; Launis, K; Chang, Y-F; Chen, D-F; Melchers, L

    2003-11-01

    Recently, five novel fluorescent proteins have been isolated from non-bioluminescent species of reef-coral organisms and have been made available through ClonTech. They are AmCyan, AsRed, DsRed, ZsGreen and ZsYellow. These proteins are valuable as reporters for transformation because they do not require a substrate or external co-factor to emit fluorescence and can be tested in vivo without destruction of the tissue under study. We have evaluated them in a large range of plants, both monocots and dicots, and our results indicate that they are valuable reporting tools for transformation in a wide variety of crops. We report here their successful expression in wheat, maize, barley, rice, banana, onion, soybean, cotton, tobacco, potato and tomato. Transient expression could be observed as early as 24 h after DNA delivery in some cases, allowing for very clear visualization of individually transformed cells. Stable transgenic events were generated, using mannose, kanamycin or hygromycin selection. Transgenic plants were phenotypically normal, showing a wide range of fluorescence levels, and were fertile. Expression of AmCyan, ZsGreen and AsRed was visible in maize T1 seeds, allowing visual segregation to more than 99% accuracy. The excitation and emission wavelengths of some of these proteins are significantly different; the difference is enough for the simultaneous visualization of cells transformed with more than one of the fluorescent proteins. These proteins will become useful tools for transformation optimization and other studies. The wide variety of plants successfully tested demonstrates that these proteins will potentially find broad use in plant biology.

  19. Grain product of 34 soya mutant lines;Rendimiento de grano de 34 lineas mutantes de soya

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron E, J.; Mastache L, A. A.; Valencia E, F.; Diaz V, G. E. [Colegio Superior Agropecuario del Estado de Guerrero, Vicente Guerrero No. 81, Col. Centro, 40000 Iguala, Guerrero (Mexico); Cervantes S, T. [Instituto de Recursos Geneticos y Productividad, Colegio de Posgraduados, Carretera Mexico-Texcoco Km. 36.5, Montecillo, 56230 Texcoco, Estado de Mexico (Mexico); De la Cruz T, E.; Garcia A, J. M.; Falcon B, T.; Gatica T, M. A. [ININ, Departamento de Biologia, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-07-01

    This work was development with the objective of obtaining information of the agronomic behavior of 34 soya mutant lines (R{sub 4}M{sub 18}) for human consumption and this way to select the 2 better lines. The genetic materials were obtained starting from the variety ISAAEG-B M2 by means of the application of recurrent radiation with Co{sup 60} gammas, to a dose of 350 Gray for the first two generations and both later to 200 Gray and selection during 17 cycles, being obtained the 34 better lines mutants with agronomic characteristic wanted and good flavor. The obtained results were that the mutant lines L{sub 25} and L{sub 32} produced the major quantity in branches/plant number with 7.5 and 7.25, pods/plant number with 171.25 and 167, grains/plant number with 350.89 and 333.07 and grain product (ton/ha) to 15% of humidity 5.15 and 4.68 ton/ha, respectively. (Author)

  20. Photosynthetic and nitrogen fixation capability in several soybean mutant lines

    International Nuclear Information System (INIS)

    Gandanegara, S.; Hendratno, K.

    1987-01-01

    Photosynthetic and nitrogen fixation capability in several soybean mutant lines. A greenhouse experiment has been carried out to study photosynthetic and nitrogen fixation capability of five mutant lines and two soybean varieties. An amount of 330 uCi of 14 CO 2 was fed to the plants including of the non-fixing reference crop (Chippewa non-nodulating isoline). Nitrogen fixation measurements was carried out using 15 N isotope dilution technique according to A-value concept. Results showed that beside variety/mutant lines, plant growth also has important role in photosynthetic and N fixing capability. Better growth and a higher photosynthetic capability in Orba, mutant lines nos. 63 and 65 resulted in a greater amount of N 2 fixed (mg N/plant) than other mutant lines. (author). 12 refs.; 5 figs

  1. Induction of short culm mutants for bread wheat by using gamma rays

    International Nuclear Information System (INIS)

    Sobieh, S.S.

    2002-01-01

    This investigation was conducted at the experimental farm of plant research department, nuclear research center, atomic energy authority, Inshas in order to select some short culm mutants from the local wheat varieties; Sid's-5, Sid's-6 and Sid's-7 after gamma irradiation. The obtained results indicated that: 1-M 4 mutants progenies retained the features of their M 3 selections. 2-Some short culm mutants exhibited high grain yield/plant as compared to their original varieties. 3-There were significant decreases in plant height varied from 21.4 to 35.4%. This reduction was due to the shorting of culm inter nods length. As well as, the reduction diameter/culm especially diameter of the inter nods/culm did not differed between original varieties and the mutants. 4-The correlation between grain yield/plant and number of spikes/plant was positive and highly significant for most mutants and the original varieties as well. Data also showed that there were positive relationship between grain yield/plant and number of grains/spike and and length of the inter nods/culm. Positive or negative association between grain yield/plant and plant height as well as diameters of inter nods/culm for mutants and original varieties were detected

  2. An oncogenic mutant of RHEB, RHEB Y35N, exhibits an altered interaction with BRAF resulting in cancer transformation.

    Science.gov (United States)

    Heard, Jeffrey J; Phung, Ivy; Potes, Mark I; Tamanoi, Fuyuhiko

    2018-01-10

    RHEB is a unique member of the RAS superfamily of small GTPases expressed in all tissues and conserved from yeast to humans. Early studies on RHEB indicated a possible RHEB-RAF interaction, but this has not been fully explored. Recent work on cancer genome databases has revealed a reoccurring mutation in RHEB at the Tyr35 position, and a recent study points to the oncogenic potential of this mutant that involves activation of RAF/MEK/ERK signaling. These developments prompted us to reassess the significance of RHEB effect on RAF, and to compare mutant and wild type RHEB. To study RHEB-RAF interaction, and the effect of the Y35N mutation on this interaction, we used transfection, immunoprecipitation, and Western blotting techniques. We generated cell lines stably expressing RHEB WT, RHEB Y35N, and KRAS G12V, and monitored cellular transforming properties through cell proliferation, anchorage independent growth, cell cycle analysis, and foci formation assays. We observe a strong interaction between RHEB and BRAF, but not with CRAF. This interaction is dependent on an intact RHEB effector domain and RHEB-GTP loading status. RHEB overexpression decreases RAF activation of the RAF/MEK/ERK pathway and RHEB knockdown results in an increase in RAF/MEK/ERK activation. RHEB Y35N mutation has decreased interaction with BRAF, and RHEB Y35N cells exhibit greater BRAF/CRAF heterodimerization resulting in increased RAF/MEK/ERK signaling. This leads to cancer transformation of RHEB Y35N stably expressing cell lines, similar to KRAS G12 V expressing cell lines. RHEB interaction with BRAF is crucial for inhibiting RAF/MEK/ERK signaling. The RHEB Y35N mutant sustains RAF/MEK/ERK signaling due to a decreased interaction with BRAF, leading to increased BRAF/CRAF heterodimerization. RHEB Y35N expressing cells undergo cancer transformation due to decreased interaction between RHEB and BRAF resulting in overactive RAF/MEK/ERK signaling. Taken together with the previously established

  3. Spectrum of mutant characters utilized in developing improved cultivars

    International Nuclear Information System (INIS)

    Donini, B.; Kawai, T.; Micke, A.

    1984-01-01

    Although about 500 cultivars are known to have been developed by using induced mutations, the range of mutant traits seems to be rather narrow. Mutant traits have mostly been used that can be detected visually on an individual plant basis. However, in the background of such mutants other valuable mutations have been found in later generations. In cross-breeding with mutants valuable characteristics occurred, which could not be predicted from the phenotypes of the parents. It is concluded that improved attributes in the released mutant varieties do not comprise the entire genetic variation that could derive from mutagenesis. Current selection techniques are inadequate to exploit the full potential of mutagenesis for plant breeding. (author)

  4. A novel approach to the generation of seamless constructs for plant transformation

    DEFF Research Database (Denmark)

    Kronbak, Remy; Ingvardsen, Christina R.; Madsen, Claus K.

    2014-01-01

    Background: When creating plant transformation vectors, full control of nucleotides flanking the insert in the final construct may be desirable. Modern ligase-independent methods for DNA-recombination are based on linearization by classical type II restriction endonucleases (REs) alone or in comb......Background: When creating plant transformation vectors, full control of nucleotides flanking the insert in the final construct may be desirable. Modern ligase-independent methods for DNA-recombination are based on linearization by classical type II restriction endonucleases (REs) alone...... on wheat and barley endosperm cells for transient gfp expression.Conclusions: All nucleotides flanking an insert in a biolistic plant transformation vector can be customized by means of SRL in combination with SLIC. Especially type IIS REs promote an efficient cloning result. Based on our findings, we...

  5. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with SV40 T-antigen mutants defective in RB and P53 binding domains

    International Nuclear Information System (INIS)

    LingNah Su; Little, J.B.

    1992-01-01

    A series of human diploid fibroblast cell clones were developed by DNA transfection with either wild-type SV40 T-antigen (SV40T) or T-antigen mutants defective in its various functional domains. Cell clones expressing the wild-type SV40 T were significantly radioresistant as compared with clones transfected with the neo gene only (D o 192 ± 13 vs 127 ± 19). This radioresistance persisted in post-crisis, immortalized cell lines. A series of mutants with point or deletion mutations within each functionally active domain of SV40 T were also examined for their ability to alter radiosensitivity and induce morphological transformation. Cell clones transfected with T-antigen mutants defective in nuclear localization or origin binding showed increased radioresistance similar to clones transfected with wild-type T-antigen, and expressed morphological changes characteristic of SV40 T-transfected cells. (author)

  6. Evaluation on selected dwarf and semidwarf mutants of upland rice

    International Nuclear Information System (INIS)

    Riyanti Sumanggono, A.M.

    1984-01-01

    Seratus malam local upland rice variety was irradiated with gamma-rays at doses of O.1, 0.2, 0.3, 0.4 and 0.5 kGy. Observation of radiation effect was carried out on root and shoot length of M 1 seedlings; plant height, panicle length and number of tiller and seed sterility in M 1 plants. Selection for dwarf and semi-dwarf characteristics were done in M 2 plants, and selected again in M 3 . Observation on radiation effect indicated that 'Seratus Malam' seems to be more resistant than the lowland rice varieties. Increasing doses of radiation caused increasing frequency of chlorophyll mutations as well as chlorophyll mutants. Whereas, selection of dwarf or semi-dwarf in M 2 plants seems that mutant and mutation frequencies decreased as the dose increased. Dose of 0.2 kGy was suitable for selection of dwarf or semi-dwarf plants. Plant height could be influenced by environmental condition. Many of the selected M 2 plants were not really dwarf or semi-dwarf mutants. M 3 evaluation of the selected M 2 plants was really beneficial in the mutant selection. (author)

  7. Atmospheric transformation of plant volatiles disrupts host plant finding

    Science.gov (United States)

    Li, Tao; Blande, James D.; Holopainen, Jarmo K.

    2016-09-01

    Plant-emitted volatile organic compounds (VOCs) play important roles in plant-insect interactions. Atmospheric pollutants such as ozone (O3) can react with VOCs and affect the dynamics and fidelity of these interactions. However, the effects of atmospheric degradation of plant VOCs on plant-insect interactions remains understudied. We used a system comprising Brassica oleracea subsp. capitata (cabbage) and the specialist herbivore Plutella xylostella to test whether O3-triggered VOC degradation disturbs larval host orientation, and to investigate the underlying mechanisms. Larvae oriented towards both constitutive and larva-induced cabbage VOC blends, the latter being the more attractive. Such behaviour was, however, dramatically reduced in O3-polluted environments. Mechanistically, O3 rapidly degraded VOCs with the magnitude of degradation increasing with O3 levels. Furthermore, we used Teflon filters to collect VOCs and their reaction products, which were used as odour sources in behavioural tests. Larvae avoided filters exposed to O3-transformed VOCs and spent less time searching on them compared to filters exposed to original VOCs, which suggests that some degradation products may have repellent properties. Our study clearly demonstrates that oxidizing pollutants in the atmosphere can interfere with insect host location, and highlights the need to address their broader impacts when evaluating the ecological significance of VOC-mediated interactions.

  8. Transgenic carnation plants obtained by Agrobacterium tumefaciens mediated transformation of petal explants

    NARCIS (Netherlands)

    Altvorst, van A.C.; Koehorst, H.; Jong, de J.; Dons, M.M.

    1996-01-01

    Transgenic carnation plants were obtained after infection of petal explants with the supervirulent Agrobacterium tumefaciens strain AGLO. Southern blot techniques confirmed the transgenic nature of four transformed plants. The expression of the gus gene was verified in these plants by histochemical

  9. Aging of safety class 1E transformers in safety systems of nuclear power plants

    International Nuclear Information System (INIS)

    Roberts, E.W.; Edson, J.L.; Udy, A.C.

    1996-02-01

    This report discusses aging effects on safety-related power transformers in nuclear power plants. It also evaluates maintenance, testing, and monitoring practices with respect to their effectiveness in detecting and mitigating the effects of aging. The study follows the US Nuclear Regulatory Commission's (NRC's) Nuclear Plant-Aging Research approach. It investigates the materials used in transformer construction, identifies stressors and aging mechanisms, presents operating and testing experience with aging effects, analyzes transformer failure events reported in various databases, and evaluates maintenance practices. Databases maintained by the nuclear industry were analyzed to evaluate the effects of aging on the operation of nuclear power plants

  10. Gamma rays induced bold seeded high yielding mutant in chickpea

    International Nuclear Information System (INIS)

    Wani, A.A.; Anis, M.

    2001-01-01

    In pulses especially in chickpea (Cicer arietinum L.), genetic variability has been exhausted due to natural selection and hence conventional breeding methods are not very fruitful. Mutation techniques are the best methods to enlarge the genetically conditioned variability of a species within a short time and have played a significant role in the development of many crop varieties. Investigations on the effects of ionizing radiations and chemical mutagens in induction of macro-mutations have received much attention owing to their utmost importance in plant breeding. The present study reports a bold seeded mutant in chickpea, the most dominating pulse crop on the Indian subcontinent. Fresh seeds of chickpea variety 'Pusa-212' were procured from IARI, New Delhi and treated with different doses/concentrations of gamma rays ( 60 Co source at NBRI, Lucknow) and ethyl methanesulphonate (EMS), individually as well as in combination, to raise the M1 generation. Seeds of M 1 plants were sown to raise M2 plant progenies. A bold seeded mutant was isolated from 400 Gy gamma ray treatments. The mutant was confirmed as true bred, all the mutant seeds gave rise to morphologically similar plants in M 3 , which were quite distinct from the control. The bold seeded mutant showed 'gigas' characteristics and vigorous growth. The plant remained initially straight but later on attained a trailing habit due to heavy secondary branching. The leaves, petioles, flowers, pods and seeds were almost double that of the parent variety, in size. The flowering occurred 10 days later than the parent and maturity was also delayed accordingly. Observations were recorded on various quantitative traits. Plant height and number of primary branches showed a significant improvement over the parent. It is interesting to note that the number of pods and number of seeds per pod significantly decreased. However, the hundred seed weight (31.73±0.59g) in the mutant plants was more than double in the parent

  11. Gamma ray induced male sterility mutant in lentil

    International Nuclear Information System (INIS)

    Srivastava, A.; Yadav, A.K.

    2001-01-01

    Full text: Male sterility refers to the failure of pollen grains to bring about effective fertilization, either due to structural default or physiological disfunctioning and has special significance in hybridization programmes. Male steriles have been produced in a number of crop plants like red gram, pigeon pea, mung bean, khesari and lentil. A completely male sterile mutant was isolated in Lens culinaris Medik, after seed treatment with 100 Gy dose of gamma rays. The male sterile mutant showed 100% pollen sterility but was morphologically more vigorous than the parent plants. It showed more branches and its leaves were bigger, more oblong and dark green. The number of flowers borne by the mutant was significantly higher than any other plant of the treatment. The size of the flowers was also increased but the anthers were smaller in size. Pollen grains were few in number, round in shape but empty and did not take up any stain, indicating that normal microsporogenesis had not taken place. This male sterile mutant was used as the female parent and pollinated with pollen of a parent. Four pods with one seed in each were formed indicating that the mutant was female fertile. The seeds were smaller than those of the parent variety and also dark coloured. The mutant showed increased vigour and flower number as compared to parental plants. Lentil is an important pulse crop and induction of variability in its germplasm is necessary for its improvement. Male steriles can be used conveniently in lentil hybridization programmes. (author)

  12. Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna

    Energy Technology Data Exchange (ETDEWEB)

    Redman, R.S.; Rodriguez, R.J. (Geological Survey, Seattle, WA (United States) Univ. of Washington, Seattle, WA (United States). Dept. of Botany); Clifton, D.R.; Morrel, J.; Brown, G. (Geological Survey, Seattle, WA (United States)); Freeman, S. (Volcani Center, Bet Dagan (Israel). Dept. of Plant Pathology)

    1999-02-01

    A nonpathogenic mutant of Colletotrichum magna (path-1) was previously shown to protect watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) seedlings from anthracnose disease elicited by wild-type C. magna. Disease protection was observed in stems of path-1-colonized cucurbits but not in cotyledons, indicating that path-1 conferred tissue-specific and/or localized protection. Plant biochemical indicators of a localized and systemic (peroxidase, phenylalanine ammonia-lyase, lignin, and salicylic acid) plant-defense response were investigated in anthracnose-resistant and-susceptible cultivars of cucurbit seedlings exposed to four treatments: (1) water (control), (2) path-1 conidia, (3) wild-type conidia, and (4) challenge conditions (inoculation into path-1 conidia for 48 h and then exposure to wild-type conidia). Collectively, these analyses indicated that disease protection in path-1-colonized plants was correlated with the ability of these plants to mount a defense response more rapidly and to equal or greater levels than plants exposed to wild-type C. magna alone. Watermelon plants colonized with path-1 were also protected against disease caused by Colletotrichum orbiculare and Fusarium oxysporum. A model based on the kinetics of plant-defense activation is presented to explain the mechanism of path-1-conferred disease protection.

  13. Gene editing by co-transformation of TALEN and chimeric RNA/DNA oligonucleotides on the rice OsEPSPS gene and the inheritance of mutations.

    Directory of Open Access Journals (Sweden)

    Mugui Wang

    Full Text Available Although several site-specific nucleases (SSNs, such as zinc-finger nucleases (ZFNs, transcription activator-like effector nucleases (TALENs, and the clustered regularly interspaced short palindromic repeat (CRISPR/Cas, have emerged as powerful tools for targeted gene editing in many organisms, to date, gene targeting (GT in plants remains a formidable challenge. In the present study, we attempted to substitute a single base in situ on the rice OsEPSPS gene by co-transformation of TALEN with chimeric RNA/DNA oligonucleotides (COs, including different strand composition such as RNA/DNA (C1 or DNA/RNA (C2 but contained the same target base to be substituted. In contrast to zero GT event obtained by the co-transformation of TALEN with homologous recombination plasmid (HRP, we obtained one mutant showing target base substitution although accompanied by undesired deletion of 12 bases downstream the target site from the co-transformation of TALEN and C1. In addition to this typical event, we also obtained 16 mutants with different length of base deletions around the target site among 105 calli lines derived from transformation of TALEN alone (4/19 as well as co-transformation of TELAN with either HRP (5/30 or C1 (2/25 or C2 (5/31. Further analysis demonstrated that the homozygous gene-edited mutants without foreign gene insertion could be obtained in one generation. The induced mutations in transgenic generation were also capable to pass to the next generation stably. However, the genotypes of mutants did not segregate normally in T1 population, probably due to lethal mutations. Phenotypic assessments in T1 generation showed that the heterozygous plants with either one or three bases deletion on target sequence, called d1 and d3, were more sensitive to glyphosate and the heterozygous d1 plants had significantly lower seed-setting rate than wild-type.

  14. Directed mutagenesis in Candida albicans: one-step gene disruption to isolate ura3 mutants

    International Nuclear Information System (INIS)

    Kelly, R.; Miller, S.M.; Kurtz, M.B.; Kirsch, D.R.

    1987-01-01

    A method for introducing specific mutations into the diploid Candida albicans by one-step gene disruption and subsequent UV-induced recombination was developed. The cloned C. albicans URA3 gene was disrupted with the C. albicans ADE2 gene, and the linearized DNA was used for transformation of two ade2 mutants, SGY-129 and A81-Pu. Both an insertional inactivation of the URA3 gene and a disruption which results in a 4.0-kilobase deletion were made. Southern hybridization analyses demonstrated that the URA3 gene was disrupted on one of the chromosomal homologs in 15 of the 18 transformants analyzed. These analyses also revealed restriction site dimorphism of EcoRI at the URA3 locus which provides a unique marker to distinguish between chromosomal homologs. This enabled us to show that either homolog could be disrupted and that disrupted transformants of SGY-129 contained more than two copies of the URA3 locus. The A81-Pu transformants heterozygous for the ura3 mutations were rendered homozygous and Ura- by UV-induced recombination. The homozygosity of a deletion mutant and an insertion mutant was confirmed by Southern hybridization. Both mutants were transformed to Ura+ with plasmids containing the URA3 gene and in addition, were resistant to 5-fluoro-orotic acid, a characteristic of Saccharomyces cerevisiae ura3 mutants as well as of orotidine-5'-phosphate decarboxylase mutants of other organisms

  15. Genetic diversity analysis in rice mutants using isozyme and Morphological markers

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, Jorge L; Alvarez, Alba [Centro de Estudios Aplicados al Desarrollo Nuclear, La Habana (Cuba); Deus, Juan E [Instituto de Investigaciones del Arroz. Bauta, La Habana (Cuba); Duque, Miriam C [Centro Internacional de Agricultura Tropical, Cali (Colombia); Cornide, Maria T [Centro Nacional de Investigaciones Cientificas, La Habana (Cuba)

    1999-07-01

    In this work, isozyme and agromorphologic variability of radiation-induced rice mutants with different cytoplasm base was surveyed. Agromorphologic data (plant type, lodging resistance, life cycle and yielding) were transformed into binary data. This markers, along with isozyme (Peroxidases, Esterases, Catalases, Alcohol Dehydrogenases and Polyphenoloxidase) data, were considered for genetic diversity analyses in order to estimate the extent of diversity generated by ionizing radiation. Genetic Similarity between individuals was obtained based on Dice's Coefficient. The UPGMA phenogram defined three main clusters that clearly corresponded to the different cytoplasm sources. However, further discrimination between control varieties and their mutants could be obtained. Bootstrapping analysis was performed to estimate the robustness of the group in the phenogram. According to their bootstrap P value (99.6%), Basmati-370 mutant lines could be considered statistically different from their control. This analysis is suggested as an useful supporting tool for an accurate varietal validation. A Multiple Correspondence Analysis (MCA) showed individuals dispersion around the three principal axis of variation. In general the UPGMA phenogram pattern was corroborated at MCA. Variables such as life cycle, presence of bands Est-a and Prx-m and the absence of Est-i, Prx-h and Prx-i accounted for the higher contribution to variation. The adequacy of morphological and isozyme descriptors for new mutant lines validation is also discussed.

  16. Genetic diversity analysis in rice mutants using isozyme and Morphological markers

    International Nuclear Information System (INIS)

    Fuentes, Jorge L.; Alvarez, Alba; Deus, Juan E.; Duque, Miriam C.; Cornide, Maria T.

    1999-01-01

    In this work, isozyme and agromorphologic variability of radiation-induced rice mutants with different cytoplasm base was surveyed. Agromorphologic data (plant type, lodging resistance, life cycle and yielding) were transformed into binary data. This markers, along with isozyme (Peroxidases, Esterases, Catalases, Alcohol Dehydrogenases and Polyphenoloxidase) data, were considered for genetic diversity analyses in order to estimate the extent of diversity generated by ionizing radiation. Genetic Similarity between individuals was obtained based on Dice's Coefficient. The UPGMA phenogram defined three main clusters that clearly corresponded to the different cytoplasm sources. However, further discrimination between control varieties and their mutants could be obtained. Bootstrapping analysis was performed to estimate the robustness of the group in the phenogram. According to their bootstrap P value (99.6%), Basmati-370 mutant lines could be considered statistically different from their control. This analysis is suggested as an useful supporting tool for an accurate varietal validation. A Multiple Correspondence Analysis (MCA) showed individuals dispersion around the three principal axis of variation. In general the UPGMA phenogram pattern was corroborated at MCA. Variables such as life cycle, presence of bands Est-a and Prx-m and the absence of Est-i, Prx-h and Prx-i accounted for the higher contribution to variation. The adequacy of morphological and isozyme descriptors for new mutant lines validation is also discussed

  17. Challenge towards plant recombinant protein expression: instability in nuclear and chloroplast transformation

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, M.; Jalali-Javaran, M.; Ehsani, P.; Haddad, R.

    2016-07-01

    It is crucial to maintain the stability of transgene and its expression level. It seems the transformation method and the target organ can influence this instability. To this aim, two transformation systems, Agrobacterium-mediated and particle bombardment systems which have been applied to introduce tissue plasminogen activator (tPA) into nuclear and chloroplast respectively, have been compared to determine transformation efficiency and tPA expression and stability. The presence of tPA gene in transformants has been confirmed by PCR analysis. The gene expression in nuclear transformants and homoplasmy in transplastomic plants have been assayed by ELISA and southern blot, respectively. Some of the Agrobacterium-derived transformants have shown the heritability and stability of the integrated T-DNA harboring the transgene which encodes the tissue plasminogen activator and instability of its expression in T1 generation. Using Southern blot analysis of bombardment-mediated transformants has surprisingly led to detecting the inheritability of tPA. There are several factors lead to silencing of transgene in transgenic plants which should be considered. Possible reasons for these silencing are like vector designing, methylation, copy number, and genome rearrangement.

  18. Challenge towards plant recombinant protein expression: instability in nuclear and chloroplast transformation

    International Nuclear Information System (INIS)

    Amiri, M.; Jalali-Javaran, M.; Ehsani, P.; Haddad, R.

    2016-01-01

    It is crucial to maintain the stability of transgene and its expression level. It seems the transformation method and the target organ can influence this instability. To this aim, two transformation systems, Agrobacterium-mediated and particle bombardment systems which have been applied to introduce tissue plasminogen activator (tPA) into nuclear and chloroplast respectively, have been compared to determine transformation efficiency and tPA expression and stability. The presence of tPA gene in transformants has been confirmed by PCR analysis. The gene expression in nuclear transformants and homoplasmy in transplastomic plants have been assayed by ELISA and southern blot, respectively. Some of the Agrobacterium-derived transformants have shown the heritability and stability of the integrated T-DNA harboring the transgene which encodes the tissue plasminogen activator and instability of its expression in T1 generation. Using Southern blot analysis of bombardment-mediated transformants has surprisingly led to detecting the inheritability of tPA. There are several factors lead to silencing of transgene in transgenic plants which should be considered. Possible reasons for these silencing are like vector designing, methylation, copy number, and genome rearrangement.

  19. Induction of mutagenized tomato populations for investigation on agronomic traits and mutant phenotyping

    Directory of Open Access Journals (Sweden)

    Rafiul Amin Laskar

    2018-01-01

    Full Text Available Global demand for tomato production increased tremendously due to its diverse utility in raw, cooked and processed form of food. This necessitates the continued supply of highly nutritious and better yielding improved cultivars to the producers, considering the rapid changing agro-climatic condition. In this study, induced mutant tomato populations of widely recommended tomato genotype Arka Vikas (Sel-22 were generated using chemical mutagen ethyl methane sulfonate (EMS, hydrazine hydrates (HZ and their combined treatments. In the in vitro study, a gradual reduction in germination percentage and seedling height occurred with the increasing concentrations of mutagens. Combination of EMS and HZ caused maximum biological inhibition followed by EMS and HZ treatments alone in M1 generation. The rate of survival and fertility in M1 plants of tomato was found highly affected due to mutagenic treatment, in which sensitivity toward combined treatment was found highest followed by EMS and HZ. Inspection on induced phenotypic variations in individual plants of M2 population resulted in identification and isolation of wide range of mutants with altered phenotypes. Highest mutation frequency was resulted by combined mutagens followed by the EMS and HZ treatment. Agronomic trait analyses showed intra and inter treatment variations in three quantitative traits (Plant height, fertile branch per plant and fruits per plant of M2 mutagenized population. Assessment on rate of mutant recovery in M2 population showed highest mutant recovery is possible with combination treatments and then 0.02% HZ followed by 0.02% EMS. In the present study, phenotyping of the mutants revealed that vegetative organs (‘plant size’, ‘plant habit’ and ‘leaf morphology’ was the most sensitive category (69.33% to which most of the mutant belongs, followed by ‘fruit color and size’ (20.27% and ‘germination’ (9.79%. Comparative investigation on number of mutants and

  20. Plant Cell Division Analyzed by Transient Agrobacterium-Mediated Transformation of Tobacco BY-2 Cells.

    Science.gov (United States)

    Buschmann, Henrik

    2016-01-01

    The continuing analysis of plant cell division will require additional protein localization studies. This is greatly aided by GFP-technology, but plant transformation and the maintenance of transgenic lines can present a significant technical bottleneck. In this chapter I describe a method for the Agrobacterium-mediated genetic transformation of tobacco BY-2 cells. The method allows for the microscopic analysis of fluorescence-tagged proteins in dividing cells in within 2 days after starting a coculture. This transient transformation procedure requires only standard laboratory equipment. It is hoped that this rapid method would aid researchers conducting live-cell localization studies in plant mitosis and cytokinesis.

  1. Aging of safety class 1E transformers in safety systems of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, E.W.; Edson, J.L.; Udy, A.C. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1996-02-01

    This report discusses aging effects on safety-related power transformers in nuclear power plants. It also evaluates maintenance, testing, and monitoring practices with respect to their effectiveness in detecting and mitigating the effects of aging. The study follows the US Nuclear Regulatory Commission`s (NRC`s) Nuclear Plant-Aging Research approach. It investigates the materials used in transformer construction, identifies stressors and aging mechanisms, presents operating and testing experience with aging effects, analyzes transformer failure events reported in various databases, and evaluates maintenance practices. Databases maintained by the nuclear industry were analyzed to evaluate the effects of aging on the operation of nuclear power plants.

  2. Induced mutants for the improvement of sesame and hybrid seed production

    International Nuclear Information System (INIS)

    Murty, G.S.S.

    2001-01-01

    With an overall objective to develop hybrids in sesame, induced mutants were used in cross breeding and five initial yield trials were conducted. For obtaining the mutant hybrids, recessive morphological mutants were used as female, and check varieties as male parents. In each trial, seed yields of mutant hybrids were compared with: i) the original parent in which the mutants were induced, ii) best check variety and iii) best cultivar hybrid. Among 138 mutant hybrids evaluated between 1994 and 1997, 18 showed superiority. In the development of hybrids, it is also desirable to have male sterile lines. By irradiating seeds with 400 Gy gamma rays, four genetic male sterile mutants were isolated. One of them, TMST-11 appears to be promising for breeding programme showing 100% male sterility and characterised by dark green foliage. To study the percent outcrossing, a monogenic chlorina mutant which can be identified from the seedling stage, was used in experiments conducted for two years. Among open pollinated plants, 92-98% plants were found outcrossed. Based on plant to row progenies, percent outcrossing ranged between 0.0 to 13.8%. (author)

  3. Gamma ray irradiation to roots of tea-plants and induced mutant system

    International Nuclear Information System (INIS)

    Takeda, Yoshiyuki; Nekaku, Koji; Wada, Mitsumasa

    1990-01-01

    In order to utilize the useful mutation which is induced by irradiation for the breeding of tea-plants, the gamma-ray irradiation to the roots of tea-plants was carried out. The samples were the roots of tea-plants of four varieties dug up in February, 1984, and were adjusted to about 20 cm, then, put in the cold storage at 5degC for 9 months till the time of irradiation in November, 1984. However, a part of them was taken out in August, and planted in a field for 76 days to germinate, thereafter, used as the samples. The gamma-ray from a Co-60 source was irradiated in the radiation breeding laboratory of Agriculture Bioresources Research Institute at the total dose of 1, 2 and 3 kR and the dose rate of 500 R/h. The irradiated roots were planted as they are or in the state of being cut, and the rate of germination, the number of buds and the induced mutation were examined. Clear difference was not observed in the rate of germination and the number of buds between the irradiated samples and those without irradiation. The long roots were superior to the short roots regarding these items. The types of the induced mutation were mostly thin leaves, and also yellowing, mottling, fascination and so on occurred. The mutant system lacking trichomes on the back of new leaves is considered to be strong against tea anthracnose, and is valuable. (K.I.)

  4. Gamma ray irradiation to roots of tea-plants and induced mutant system

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Yoshiyuki; Nekaku, Koji; Wada, Mitsumasa (National Research Inst. of Vegetables, Ornamental Plants and Tea, Ano, Mie (Japan))

    1990-11-01

    In order to utilize the useful mutation which is induced by irradiation for the breeding of tea-plants, the gamma-ray irradiation to the roots of tea-plants was carried out. The samples were the roots of tea-plants of four varieties dug up in February, 1984, and were adjusted to about 20 cm, then, put in the cold storage at 5degC for 9 months till the time of irradiation in November, 1984. However, a part of them was taken out in August, and planted in a field for 76 days to germinate, thereafter, used as the samples. The gamma-ray from a Co-60 source was irradiated in the radiation breeding laboratory of Agriculture Bioresources Research Institute at the total dose of 1, 2 and 3 kR and the dose rate of 500 R/h. The irradiated roots were planted as they are or in the state of being cut, and the rate of germination, the number of buds and the induced mutation were examined. Clear difference was not observed in the rate of germination and the number of buds between the irradiated samples and those without irradiation. The long roots were superior to the short roots regarding these items. The types of the induced mutation were mostly thin leaves, and also yellowing, mottling, fascination and so on occurred. The mutant system lacking trichomes on the back of new leaves is considered to be strong against tea anthracnose, and is valuable. (K.I.).

  5. Differential roles of glucosinolates and camalexin at different stages of Agrobacterium-mediated transformation.

    Science.gov (United States)

    Shih, Po-Yuan; Chou, Shu-Jen; Müller, Caroline; Halkier, Barbara Ann; Deeken, Rosalia; Lai, Erh-Min

    2018-03-02

    Agrobacterium tumefaciens is the causal agent of crown gall disease in a wide range of plants via a unique interkingdom DNA transfer from bacterial cells into the plant genome. Agrobacterium tumefaciens is capable of transferring its T-DNA into different plant parts at different developmental stages for transient and stable transformation. However, the plant genes and mechanisms involved in these transformation processes are not well understood. We used Arabidopsis thaliana Col-0 seedlings to reveal the gene expression profiles at early time points during Agrobacterium infection. Common and differentially expressed genes were found in shoots and roots. A gene ontology analysis showed that the glucosinolate (GS) biosynthesis pathway was an enriched common response. Strikingly, several genes involved in indole glucosinolate (iGS) modification and the camalexin biosynthesis pathway were up-regulated, whereas genes in aliphatic glucosinolate (aGS) biosynthesis were generally down-regulated, on Agrobacterium infection. Thus, we evaluated the impacts of GSs and camalexin during different stages of Agrobacterium-mediated transformation combining Arabidopsis mutant studies, metabolite profiling and exogenous applications of various GS hydrolysis products or camalexin. The results suggest that the iGS hydrolysis pathway plays an inhibitory role on transformation efficiency in Arabidopsis seedlings at the early infection stage. Later in the Agrobacterium infection process, the accumulation of camalexin is a key factor inhibiting tumour development on Arabidopsis inflorescence stalks. In conclusion, this study reveals the differential roles of GSs and camalexin at different stages of Agrobacterium-mediated transformation and provides new insights into crown gall disease control and improvement of plant transformation. © 2018 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  6. Genetically transformed tobacco plants expressing synthetic EPSPS gene confer tolerance against glyphosate herbicide.

    Science.gov (United States)

    Imran, Muhammad; Asad, Shaheen; Barboza, Andre Luiz; Galeano, Esteban; Carrer, Helaine; Mukhtar, Zahid

    2017-04-01

    Glyphosate quashes the synthesis of 5-enolpyruvylshikimate-3- phosphate synthase (EPSPS) enzyme which intercedes the functioning of shikimate pathway for the production of aromatic amino acids. Herbicide resistant crops are developed using glyphosate insensitive EPSPS gene isolated from Agrobacterium sp. strain CP4, which give farmers a sustainable weed control option. Intentions behind this study were to design and characterize the synthetic herbicide resistant CP4 - EPSPS gene in a model plant system and check the effectiveness of transformed tobacco against application of glyphosate. Putative transgenic plants were obtained from independent transformation events, and stable plant transformation, transgene expression and integration were demonstrated respectively by PCR, qRT-PCR and Southern hybridization. Gene transcript level and gene copy number (1-4) varied among the tested transgenic tobacco lines. Herbicide assays showed that transgenic plants were resistant to glyphosate after 12 days of spraying with glyphosate, and EPSPS activity remained at sufficient level to withstand the spray at 1000 ppm of the chemical. T 1 plants analyzed through immunoblot strips and PCR showed that the gene was being translated into protein and transmitted to the next generation successfully. This codon optimized synthetic CP4 - EPSPS gene is functionally equivalent to the gene for glyphosate resistance available in the commercial crops and hence we recommend this gene for transformation into commercial crops.

  7. Radiation induced mutants in cape-gooseberry (Physalis peruviana L.)

    International Nuclear Information System (INIS)

    Gupta, S.K.; Roy, S.K.

    1986-01-01

    Dry seeds of Physalis peruviana (n=24) were irradiated with different doses of gamma-rays. The M 1 plants were grown to maturity and their seeds collected and sown separately for M 2 generation. Mutants were isolated from M 2 seedlings and plants. Mutant characters obtained were virido-albino chlorophyllous, high yielding, small leaf and fruit, semi-sterile and curly leaf type etc. The high yielding and small leaf and fruit mutants bred true in M 3 and M 4 generation reproducing the characters of the M 2 generation. (author)

  8. Stability of transgene expression, field performance and recombination breeding of transformed barley lines

    DEFF Research Database (Denmark)

    Horvath, H.; Jensen, L.G.; Wong, O.T.

    2001-01-01

    in homozygous transgenic T-3 plants, and these remained constant over a 3-year period. In micro-malting experiments, the heat-stable enzyme reached levels of up to 1.4 mug.mg(-1) protein and survived kiln drying at levels of 70-100%. In the field trials of 1997 and 1998 the transgenic lines had a reduced 1000...... lines yielded approximately 6 t.ha(-1) and Golden Promise 7.7 t.ha(-1). Cross-breeding was carried out to transfer the transgene into a more suitable genetic background. Crosses of the semi-dwarf ari-e mutant Golden Promise gave rise to the four morphological phenotypes nutans, high erect, erect...... transformants were observed in some F-4 lines homozygous for the morphological phenotypes and for the transgene. In the case of a homozygous nutans line, the transgenic plants had a higher 1000-grain weight than those lacking the transgene. Like mutants providing useful output traits, transgenic plants...

  9. Primary study on lesion mimic mutants of rice (oryza sativa L.)

    International Nuclear Information System (INIS)

    Hao Zhongna; Zhang Hongzhi; Tao Rongixang

    2007-01-01

    Nineteen lesion mimic mutants (xsl1-19) of japonica rice Xiushui11 were obtained by γ-rays irradiation treatment. All mutants belonged to whole life lesion mimic. Lesion mimic of mutants didn't largen after tillering stage, leaves didn't wither, and no effect on the plants exsert spikes and seed. When the highest temperature in day exceeded 32 degree C in seedling stage, lesion mimic of all mutant expect xsl19 disappeared. Under 32 degree C, lesion mimic would appear gradually, and symptoms weren't inhibited by high temperature after 5 leaf stage. The plant heights of all lesion mimic mutants were 47.56-63.54 cm in the tillering stage, and that of CK was 83.75 cm; but the dwarf phenomenon of mutants only appeared before tillering stage, and didn't affect plant heights finally; the heading dates of mutants were the same to the CK, the ear length of all mutants were 9.43-15.19 cm, and that of CK was 16.41 cm; the total grain quantity per spike of all mutants were 88.17-165.33, and those of xsl19 and CK were 49.50 and 76.17. The results showed all lesion mimic mutants except xsl19 had short spikes and total grain quantity per spike increasing. All lesion mimic mutants were susceptible to Magnaporthe grisea, and they had no relationship with resistance. (authors)

  10. Grain product of 34 soya mutant lines

    International Nuclear Information System (INIS)

    Salmeron E, J.; Mastache L, A. A.; Valencia E, F.; Diaz V, G. E.; Cervantes S, T.; De la Cruz T, E.; Garcia A, J. M.; Falcon B, T.; Gatica T, M. A.

    2009-01-01

    This work was development with the objective of obtaining information of the agronomic behavior of 34 soya mutant lines (R 4 M 18 ) for human consumption and this way to select the 2 better lines. The genetic materials were obtained starting from the variety ISAAEG-B M2 by means of the application of recurrent radiation with Co 60 gammas, to a dose of 350 Gray for the first two generations and both later to 200 Gray and selection during 17 cycles, being obtained the 34 better lines mutants with agronomic characteristic wanted and good flavor. The obtained results were that the mutant lines L 25 and L 32 produced the major quantity in branches/plant number with 7.5 and 7.25, pods/plant number with 171.25 and 167, grains/plant number with 350.89 and 333.07 and grain product (ton/ha) to 15% of humidity 5.15 and 4.68 ton/ha, respectively. (Author)

  11. Isolation of new gravitropic mutants under hypergravity conditions

    OpenAIRE

    Akiko Mori; Masatsugu Toyota; Masatsugu Toyota; Masayoshi Shimada; Mika Mekata; Tetsuya Kurata; Masao Tasaka; Miyo Terao Morita

    2016-01-01

    Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upwards. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes). In the present study, we ...

  12. Mutants of GABA transaminase (POP2 suppress the severe phenotype of succinic semialdehyde dehydrogenase (ssadh mutants in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Frank Ludewig

    Full Text Available BACKGROUND: The gamma-aminubutyrate (GABA shunt bypasses two steps of the tricarboxylic acid cycle, and is present in both prokaryotes and eukaryotes. In plants, the pathway is composed of the calcium/calmodulin-regulated cytosolic enzyme glutamate decarboxylase (GAD, the mitochondrial enzymes GABA transaminase (GABA-T; POP2 and succinic semialdehyde dehydrogenase (SSADH. We have previously shown that compromising the function of the GABA-shunt, by disrupting the SSADH gene of Arabidopsis, causes enhanced accumulation of reactive oxygen intermediates (ROIs and cell death in response to light and heat stress. However, to date, genetic investigations of the relationships between enzymes of the GABA shunt have not been reported. PRINCIPAL FINDINGS: To elucidate the role of succinic semialdehyde (SSA, gamma-hydroxybutyrate (GHB and GABA in the accumulation of ROIs, we combined two genetic approaches to suppress the severe phenotype of ssadh mutants. Analysis of double pop2 ssadh mutants revealed that pop2 is epistatic to ssadh. Moreover, we isolated EMS-generated mutants suppressing the phenotype of ssadh revealing two new pop2 alleles. By measuring thermoluminescence at high temperature, the peroxide contents of ssadh and pop2 mutants were evaluated, showing that only ssadh plants accumulate peroxides. In addition, pop2 ssadh seedlings are more sensitive to exogenous SSA or GHB relative to wild type, because GHB and/or SSA accumulate in these plants. SIGNIFICANCE: We conclude that the lack of supply of succinate and NADH to the TCA cycle is not responsible for the oxidative stress and growth retardations of ssadh mutants. Rather, we suggest that the accumulation of SSA, GHB, or both, produced downstream of the GABA-T transamination step, is toxic to the plants, resulting in high ROI levels and impaired development.

  13. early maturing mutants in Indica rice and their traits

    International Nuclear Information System (INIS)

    Chen Xiulan; He Zhentian; Han Yuepeng; Liu Xueyu; Yang Hefeng; Xu Chenwu; Gu Shiliang

    1998-01-01

    The correlation and genetic parameters of eleven agronomic characters of 50 early mature lines induced from late mature cultivar, IR 1529-68-3-2 were studied by morphological classification and correlation and regression analysis. The results showed that: 1. The early mutants could be divided into two ecotype: early mature type and medium mature type of mid-maturity rice. 2. The 1000-grain weight of early mutants negatively correlated with the length of growing period. 3. According to direct path coefficients, the relation with heading period of early mutants was in order of 1000-grain-weight>plant height>seed sterility. 4.The higher heritability in broad sense were found in plant height, 1000 grain weight and heading period of the early mutants

  14. Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants

    DEFF Research Database (Denmark)

    Petersen, Pia; Lau, Jane; Ebert, Berit

    2012-01-01

    Background: Cost-efficient generation of second-generation biofuels requires plant biomass that can easily be degraded into sugars and further fermented into fuels. However, lignocellulosic biomass is inherently recalcitrant toward deconstruction technologies due to the abundant lignin and cross......-linked hemicelluloses. Furthermore, lignocellulosic biomass has a high content of pentoses, which are more difficult to ferment into fuels than hexoses. Engineered plants with decreased amounts of xylan in their secondary walls have the potential to render plant biomass a more desirable feedstock for biofuel production...... in the xylem vessels is sufficient to complement the irx phenotype of xylan deficient mutants, while maintaining low overall amounts of xylan and lignin in the cell wall. This engineering approach has the potential to yield bioenergy crop plants that are more easily deconstructed and fermented into biofuels....

  15. Mutants of alfalfa mosaic virus

    International Nuclear Information System (INIS)

    Roosien, J.

    1983-01-01

    In this thesis the isolation and characterization of a number of mutants of alfalfa mosaic virus, a plant virus with a coat protein dependent genome, is described. Thermo-sensitive (ts) mutants were selected since, at least theoretically, ts mutations can be present in all virus coded functions. It was found that a high percentage of spontaneous mutants, isolated because of their aberrant symptoms, were ts. The majority of these isolates could grow at the non-permissive temperature in the presence of a single wild type (wt) component. To increase the mutation rate virus preparations were treated with several mutagens. After nitrous acid treatment or irradiation with ultraviolet light, an increase in the level of mutations was observed. UV irradiation was preferred since it did not require large amounts of purified viral components. During the preliminary characterization of potential ts mutants the author also obtained one structural and several symptom mutants which were analysed further (chapter 7, 8 and 9). The properties of the ts mutants are described in chapter 3-7. (Auth.)

  16. Induced high yielding mutant in green gram (Vigna radiata (L.) Wilczek)

    International Nuclear Information System (INIS)

    Pulivarthi, H.R.; Mary, T.N.

    1987-01-01

    Green gram (mungbean) plays a significant role in meeting the protein requirements in India, with its predominantly vegetarian population. Therefore, an attempt was made to induce desirable mutants. Dry seed of cultivar 'Pusa 105' were irradiated with gamma rays ranging from 10 to 50 krad. A high yielding mutant (Hy I) identified in the M 4 generation from 40 krad dose, has shown significant increases in the number of pods/plants, number of branches/plant, and yield/plant. Further work is in progress. Comparison of the mutant HyI with the parent cultivar Pusa 105 is given

  17. Induction and characterization of Arabidopsis mutants by Ion beam

    International Nuclear Information System (INIS)

    Yoon, Y. H.; Choi, J. D.; Park, J. Y.; Lee, J. R.; Sohn, H. S.

    2008-03-01

    This study was conducted to search the proper conditions and times for irradiating proton beam to seeds generally used for induction of mutant. Arabidopsis as model plants has good characters that is a short generation time, producing a lot of seeds, sequenced genome, developed maker. This points were the best materials for plant breeding for this study. The data of inducing mutants of Arabidopsis is used to be applicate to crops have more longer generation that is the final goals of this study. The goals of this project were to inducing and characterizing arabidopsis mutants by the proton ion beam and γ-ray. As well as, the purpose of this study was securing more than 10 lines of arabidopsis mutants in this project and also to know the changed DNA structure of the mutants using the basic data for applying to the more study

  18. Induction and characterization of Arabidopsis mutants by Ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Y. H.; Choi, J. D.; Park, J. Y.; Lee, J. R.; Sohn, H. S. [Gyeongbuk Institute for Bio Industry, Andong (Korea, Republic of)

    2008-03-15

    This study was conducted to search the proper conditions and times for irradiating proton beam to seeds generally used for induction of mutant. Arabidopsis as model plants has good characters that is a short generation time, producing a lot of seeds, sequenced genome, developed maker. This points were the best materials for plant breeding for this study. The data of inducing mutants of Arabidopsis is used to be applicate to crops have more longer generation that is the final goals of this study. The goals of this project were to inducing and characterizing arabidopsis mutants by the proton ion beam and {gamma}-ray. As well as, the purpose of this study was securing more than 10 lines of arabidopsis mutants in this project and also to know the changed DNA structure of the mutants using the basic data for applying to the more study

  19. Inside out: high-efficiency plant regeneration and Agrobacterium-mediated transformation of upland and lowland switchgrass cultivars.

    Science.gov (United States)

    Liu, Yan-Rong; Cen, Hui-Fang; Yan, Jian-Ping; Zhang, Yun-Wei; Zhang, Wan-Jun

    2015-07-01

    Selection of pre-embryogenic callus from a core structure from mature seed-derived callus is the key for high-efficiency plant regeneration and transformation of switchgrass different cultivars. Switchgrass (Panicum virgatum L.) has been identified as a dedicated biofuel crop. For its trait improvement through biotechnological approaches, we have developed a highly efficient plant regeneration and genetic transformation protocol for both lowland and upland cultivars. We identified and separated a pre-embryogenic "core" structure from the seed-derived callus, which often leads to development of highly regenerative type II calluses. From the type II callus, plant regeneration rate of lowland cultivars Alamo and Performer reaches 95%, and upland cultivars Blackwell and Dacotah, 50 and 76%, respectively. The type II callus was also amenable for Agrobacterium-mediated transformation. Transformation efficiency of 72.8% was achieved for lowland cultivar Alamo, and 8.0% for upland cultivar Dacotah. PCR, Southern blot and GUS staining assays were performed to verify the transgenic events. High regenerative callus lines could be established in 3 months, and transgenic plants could be obtained in 2 months after Agrobacterium infection. To our knowledge, this is the first report on successful plant regeneration and recovery of transgenic plants from upland switchgrass cultivars by Agrobacterium-mediated transformation. The method presented here could be helpful in breaking through the bottleneck of regeneration and transformation of lowland and upland switchgrass cultivars and probably other recalcitrant grass crops.

  20. Semi-dwarf mutants for rice improvement

    International Nuclear Information System (INIS)

    Othman, Ramli; Osman, Mohammad; Ibrahim, Rusli

    1990-01-01

    Full text: MARDI and the National University of Malaysia embarked on a programme to induce resistance against blast in rice in 1978. MARDI also obtained semi dwarf mutants of cvs 'Mahsuri', 'Muda', 'Pongsu seribu' and 'Jarum Mas', which are under evaluation. The popular local rice variety 'Manik' was subjected to gamma irradiation (15-40 krad) and 101 promising semidwarf mutants have been obtained following selection in M 2 -M 6 . 29 of them show grain yields of 6.0-7.3 t/ha, compared with 5.7t for 'Manik'. Other valuable mutants were found showing long grain, less shattering, earlier maturity, and glutinous endosperm. One mutant, resistant to brown plant hopper yields 6.3t/ha. (author)

  1. Isolation of New Gravitropic Mutants under Hypergravity Conditions

    OpenAIRE

    Mori, Akiko; Toyota, Masatsugu; Shimada, Masayoshi; Mekata, Mika; Kurata, Tetsuya; Tasaka, Masao; Morita, Miyo T.

    2016-01-01

    Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upward. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes). In the present study, we r...

  2. Productive mutants of niger

    International Nuclear Information System (INIS)

    Misra, R.C.

    2001-01-01

    Seeds of six niger (Guizotia abyssinica Cass.) varieties ('GA-10', 'ONS-8', 'IGP-72', 'N-71', 'NB-9' and 'UN-4') were treated with 0.5, 0.75 and 1% ethyl methanesulphonate. After four generations of selection, 29 mutant lines were developed and those were evaluated from 1990-92 during Kharif (July to October) and Rabi (December to March) seasons. Average plant characteristics and yield data of four high yielding mutants along with 'IGP-76' (National Check), GA-10 (Zonal Check) and 'Semiliguda Local' (Local Check) are presented

  3. Pollen irradiation method to obtain mutants in cucumber

    International Nuclear Information System (INIS)

    Iida, S.; Amano, E.

    1988-01-01

    Seed irradiation for mutation induction in dioecious crops like cucumber is not very useful because chimerism of the mutated tissues makes the segregation of mutants in the M 2 generation nearly impossible. This problem does not exist with pollen irradiation. Cucumber (Cucumis sativus L. var. Nishikisuyo) was used for a model experiment. The petals of male and female flowers were closed by pinching with binding wire before flowering to prevent pollination by insects. On the flowering day, the male flowers were collected and irradiated with 1kR to 10 kR of acute gamma rays (137-Cs), then used to pollinate the female flowers. The M 1 seeds thus obtained are not chimeric but heterozygous for induced mutations. When planted, no mutant phenotype appeared. Selfing within a plant lead to segregation of mutants in the M 2 generation. Seedling examination revealed eight mutants. One mutant line, in which the shape of leaves changed from pentagonal to round heart shape, was found under field conditions. The optimal dose for pollen irradiation seems to be between 2 kR and 4kR

  4. Officially released mutant varieties - the FAO/IAEA Database

    International Nuclear Information System (INIS)

    Maluszynski, M.; Nichterlein, K.; Zanten, L. van; Ahloowalia, B.S.

    2000-01-01

    In the approximately 70 year-old history of induced mutations, there are many examples on the development of new and valuable alteration in plant characters significantly contributing to increased yield potential of specific crops. However, knowledge on the success of induced mutations in crop improvement among geneticists and breeders is usually limited to species of their interest. The present paper contains a comprehensive list of officially released mutant varieties, based on information from plant breeders. The number of mutant varieties officially released and recorded in the FAO/IAEA Mutant Varieties Database before the end of 2000 is 2,252. Almost half of these varieties have been released during the last 15 years. Considering a significant delay in the dissemination of information on newly released varieties and difficulties in the collection of such data, there has been a renaissance in the use of mutation techniques in crop improvement. At the demand of geneticists, plant breeders, and more recently molecular geneticists, for information on released mutant varieties of specific crops, the MVD was transferred to the web site of the FAO/IAEA Joint Division. The MVD will be available on our web pages early in 2001. (author)

  5. Monitoring systems online of oil for transformers of nuclear power plants

    International Nuclear Information System (INIS)

    Sarandeses, S.

    2014-01-01

    The nuclear power plants are showing their concern due to the existence of recent failures related to the bulky transformers of power. These transformers are not security, but are important for the production of power as its failure can cause transient on the floor, reactor scram or shooting, that can cause interruptions in the production of energy or might force us to reduce the power of production The analysis of gases dissolved in transformer oil is recognized as a trial key to identify a submerged transformer failure in oil. With this analysis it is not possible to ensure that there is no damage in the transformer, but the probability of risk of this type of failure can be reduced. The industry recommended to equip the new large power transformers with oil online monitoring systems and in some cases also be It recommended its use in existing transformers. (Author)

  6. Homologous Recombination Defective Arabidopsis Mutants Exhibit Enhanced Sensitivity to Abscisic Acid.

    Directory of Open Access Journals (Sweden)

    Sujit Roy

    Full Text Available Abscisic acid (ABA acts as an important plant hormone in regulating various aspects of plant growth and developmental processes particularly under abiotic stress conditions. An increased ABA level in plant cells inhibits DNA replication and cell division, causing plant growth retardation. In this study, we have investigated the effects of ABA on the growth responses of some major loss-of-function mutants of DNA double-stand break (DSB repair genes in Arabidopsis during seed germination and early stages of seedling growth for understanding the role of ABA in the induction of genome instability in plants. A comparative analysis of ABA sensitivity of wild-type Arabidopsis and the knockout mutant lines related to DSB sensors, including atatm, atatr, the non-homologous end joining (NHEJ pathway genes, and mutants related to homologous recombination (HR pathway genes showed relatively enhanced sensitivity of atatr and HR-related mutants to ABA treatment. The expression levels of HR-related genes were increased in wild-type Arabidopsis (Col-0 during seed germination and early stages of seedling growth. Immunoblotting experiments detected phosphorylation of histone H2AX in wild-type (Col-0 and DSB repair gene mutants after ABA treatment, indicating the activation of DNA damage response due to ABA treatment. Analyses of DSB repair kinetics using comet assay under neutral condition have revealed comparatively slower DSB repair activity in HR mutants. Overall, our results have provided comprehensive information on the possible effect of ABA on DNA repair machinery in plants and also indicated potential functional involvement of HR pathway in repairing ABA induced DNA damage in Arabidopsis.

  7. PNRI mutant variety: Cordyline 'Afable'

    International Nuclear Information System (INIS)

    Aurigue, Fernando B.

    2012-01-01

    Cordyline 'Afable', registered by the Philippine Nuclear Research Institute as NSIC 2009 Or-83, is an induced mutant developed from Cordyline 'Kiwi' by treating stem cuttings with acute gamma radiation from a Cobalt-60 source. The new mutant is identical to Cordyline 'Kiwi' in growth habit but differs in foliage color, and exhibits field resistance to Phytophthora sp., a fungus that causes leaf blight and rot in Ti plants. Results of this mutation breeding experiment showed that leaf color was altered by gamma irradiation and resistance to fungal diseases was improved. It also demonstrated how mutations that occur in nature may be generated artificially. Propagation of cordyline 'Afable' is true-to-type by vegetative propagation methods, such as separation of suckers and offshoots, shoot tip cutting, and top cutting. Aside from landscaping material, terrarium or dish-garden plant, it is ideal as containerized plant for indoor and outdoor use. The leaves or shoots may be harvested as cut foliage for flower arrangements. (author)

  8. Plant cell transformation with Agrobacterium tumefaciens under simulated microgravity

    Science.gov (United States)

    Sarnatska, Veresa; Gladun, Hanna; Padalko, Svetlana

    To investigate simulated microgravity (clinorotation) effect on plant cell transformation with Agrobacterium tumefaciens and crown gall formation, the culture of primary explants of potato and Jerusalem artichoke tubers was used. It is found that the efficiency of tumor formation and development in clinorotated explants are considerably reduced. When using the explants isolated from potato tubers clinorotated for 3, 5 and 19 days, drastic reduction of formation and development of crown gall tumors was observed. Conversely, the tumor number and their development increased when potato tubers were clinorotated for one day. As was estimated by us previously, cells of Jerusalem artichoke explants are the most sensitive to agrobacteria on 4-5 h of in vitro culturing and this time corresponds to the certain period of G1-stage of the cell cycle. We have also estimated that this period is characterized by the increase of binding of acridine orange by nuclear chromatin and increase in activity of RNA-polymerase I and II. Inoculation of explants with agrobacteria in this period was the most optimal for transformation and crown gall induction. We estimated that at four - hour clinorotation of explants the intensity of acridine orange binding to nuclei was considerably lower than on 4h in the control. At one-day clinorotation of potato tubers, a considerable increase in template accessibility of chromatin and in activity of RNA-polymerase I and II occurred. These results may serve as an evidence for the ability of plant dormant tissues to respond to microgravity. Another demonstration of dormant tissue response to changed gravity we obtained when investigating pathogenesis-related proteins (PR-proteins). PR-proteins were subjected to nondenaturing PAGE.and we have not found any effect of microgravity on PR-proteins of potato explants with normal or tumorous growth. We may suggest that such response derives from the common effects of two stress factors - wounding and changed

  9. Development of high yielding mutants in lentil

    International Nuclear Information System (INIS)

    Rajput, M.A.; Sarwar, G.; Siddiqui, K.A.

    2001-01-01

    Full text: Lentil (Lens culinaris Medik.) locally known as Masoor, is the second most important rabi pulse crop, after chickpea, in Pakistan. It is cultivated on an area of over 63,400 ha, which constitutes about 4.83% of the total area under pulses. The annual production of the crop is 28,200 tones with an average yield of 445 kg/ha. Yield at the national level is very low, about one-half of the world's yield, which is mainly due to non-availability of high yield potential genotypes. Keeping in view the importance of mutants in developing a large number of new varieties, an induced mutations programme was initiated at AEARC, Tandojam during 1987-88, to develop high yielding varieties in lentil. For this, seeds of two lentil varieties, 'Masoor-85' and 'ICARDA-8' had been irradiated with gamma-rays ranging from 100-600 Gy in NIAB, Faisalabad during 1990. Selections were made in M2 on the basis of earliness, plant height, branches/plant and 100 grain weight. After confirming these mutants in M3 they were promoted in station yield trials and studied continuously for three consecutive years (1993- 1995). Overall results revealed that these mutants have consistent improvement of earliness in flowering and maturity. Plant height also increased in all mutant lines except AEL 23/40/91 where reduction in this attribute was observed as compared to parent variety. Mutant lines AEL 49/20/91 and AEL 13/30/91 showed improvement in 100 grain weight. The improvement of some agronomic characters enhanced the yield of mutant lines in comparison to parent varieties (Masoor-85 and ICARDA-8). The diversity in yield over the respective parents was computed from 6.94 to 60.12%. From these encouraging results it is hoped that mutant lines like AEL 12/30/91 and AEL 49/20/91 may serve as potential lentil genotypes in future. (author)

  10. Isolation of New Gravitropic Mutants under Hypergravity Conditions.

    Science.gov (United States)

    Mori, Akiko; Toyota, Masatsugu; Shimada, Masayoshi; Mekata, Mika; Kurata, Tetsuya; Tasaka, Masao; Morita, Miyo T

    2016-01-01

    Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upward. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes). In the present study, we report a new screening system using hypergravity conditions to isolate enhancers of gravitropism mutants, and we also describe a rapid and efficient genome mapping method, using next-generation sequencing (NGS) and single nucleotide polymorphism (SNP)-based markers. Using the endodermal-amyloplast less 1 ( eal1 ) mutant, which exhibits defective development of endodermal cells and gravitropism, we found that hypergravity (10 g) restored the reduced gravity responsiveness in eal1 hypocotyls and could, therefore, be used to obtain mutants with further reduction in gravitropism in the eal1 background. Using the new screening system, we successfully isolated six ene ( enhancer of eal1 ) mutants that exhibited little or no gravitropism under hypergravity conditions, and using NGS and map-based cloning with SNP markers, we narrowed down the potential causative genes, which revealed a new genetic network for shoot gravitropism in Arabidopsis .

  11. Officially released mutant varieties in China

    International Nuclear Information System (INIS)

    Liu, L.; Van Zanten, L.; Shu, Q.Y.; Maluszynski, M.

    2004-01-01

    The use of mutation techniques for crop improvement in China has a long and well-established tradition of more than 50 years. As the result of intensive research in many institutes dealing with application of nuclear technologies more than 620 cultivars of 44 crop species have been released. Numerous mutant varieties have been grown on a large scale bringing significant economic impact, sustaining crop production and greatly contributing to increase of food production also in stress prone areas of the country. However, there is still missing information not only on the number of mutant varieties released in particular crop species but also on mutagens applied, selection approaches and on the use of mutants in cross breeding. Numerous Chinese scientists collected and systematized this information. Results of their work were often published in local scientific journals in the Chinese language and as such were unavailable to breeders from other countries. Having this in mind, we requested Dr. Liu Luxiang, the Director of the Department of Plant Mutation Breeding and Genetics, Institute for Application of Atomic Energy, Chinese Academy of Agricultural Sciences in Beijing to help us in finding as much information as possible on mutant varieties officially released in China. The data has been collected in close collaboration with his colleagues from various institutions all over the country and then evaluated, edited and prepared for publication by our team responsible for the FAO/IAEA Database of Officially Released Mutant Varieties. We would like to thank all Chinese colleagues who contributed to this list of Chinese mutant varieties. We hope that this publication will stimulate plant breeders in China to collect more information on released mutant varieties and especially on the use of mutated genes in cross breeding. (author)

  12. Application of gamma rays for induction of tolerance mutants to environmental stress conditions in canola

    International Nuclear Information System (INIS)

    Mansour, M.E.S.F.

    2013-01-01

    The present study aimed to induce useful mutations in canola possess high seed yield and oil content under new reclamation desert land at Ras-Suder-Sina (saline) and Inshas (harsh and poor fertility). Canola seeds of four varieties (Serow 4, Serow 6, Pactol as local cultivars and Evita as exotic variety) were treated with gamma rays at four doses (0, 100, 400 and 600 Gy). Thirty mutant plants for number of pods/plant and changes in morphological criteria were selected at M 2 generation. The mutants at M 3 generation confirmed that induction of mutant lines possessed higher number of pods and seed yield/plant than the mother varieties. The mutant lines possessed homogeneity at M 3 generation were 5, 8,10, 11, 18 and 22 at serow 4, 38 and 45 at serow 6, 63 and 66 at Pactol and mutant lines 74,75, 78,92 at Evita. Highest number of pods/plant (110) was recorded at line 74 derived from Evita variety. The results were appeared the same trend for seed yield/plant with number of pods/plant, the lines which possessed high number of pods/plant were had high seed yield/plant. The results at M 4 and M 5 generations for 13 homogeneity mutant lines selected from M 3 generation contained different response of mutant genotypes for different conditions on the bases of number of pods and seed yield/plant. Promising mutant lines were detected under both conditions possessed significant increases at both M 4 and M 5 generations. Oil percent as well as acid value at M 4 and M 5 were recorded the highest mean value was found at Inshas in line 75 and the lowest acid value was noticed at line 5. Finally nine mutant lines possessed promising traits of this study, lines 11, 66 and 87 under both conditions (Suder and Inshas), lines 8, 38 and 63 under Ras-Sudr and lines 74, 75 and 92 under Inshas condition.

  13. Biological changes in Barley mutants resistant to powdery mildew disease

    International Nuclear Information System (INIS)

    Amer, I. M.; Fahim, M. M.; Moustafa, N. A.

    2012-12-01

    physiological studies showed that all kinds of chlorophyll (a), (b) and (a + b) content in infected plant were decreased while, the carotenes pigment were increased. Infection generally reduced total sugars content of all resistant mutants. Infected resistant mutant showed more phenols content and peroxidase, polyphenoloxidase activities than healthy ones of the mutants. (Author)

  14. Strain improvement in dye decolourising mutants of Mucor mucedo ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... M. mucedo {MMM1-U.V. irradiated mutant and MMM2-EMS (ethyl methyl sulfonate) treated ... tions were induced and two positive mutants (MMM1, .... yeast biofilter for the treatment of a Nigerian fertilizer plant effluent. World J.

  15. Proteomic analysis of the flooding tolerance mechanism in mutant soybean.

    Science.gov (United States)

    Komatsu, Setsuko; Nanjo, Yohei; Nishimura, Minoru

    2013-02-21

    Flooding stress of soybean is a serious problem because it reduces growth; however, flooding-tolerant cultivars have not been identified. To analyze the flooding tolerance mechanism of soybean, the flooding-tolerant mutant was isolated and analyzed using a proteomic technique. Flooding-tolerance tests were repeated five times using gamma-ray irradiated soybeans, whose root growth (M6 stage) was not suppressed even under flooding stress. Two-day-old wild-type and mutant plants were subjected to flooding stress for 2days, and proteins were identified using a gel-based proteomic technique. In wild-type under flooding stress, levels of proteins related to development, protein synthesis/degradation, secondary metabolism, and the cell wall changed; however, these proteins did not markedly differ in the mutant. In contrast, an increased number of fermentation-related proteins were identified in the mutant under flooding stress. The root tips of mutant plants were not affected by flooding stress, even though the wild-type plants had damaged root. Alcohol dehydrogenase activity in the mutant increased at an early stage of flooding stress compared with that of the wild-type. Taken together, these results suggest that activation of the fermentation system in the early stages of flooding may be an important factor for the acquisition of flooding tolerance in soybean. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. PNRI mutant variety: sansevieria 'Sword of Ibe'

    International Nuclear Information System (INIS)

    Aurigue, Fernando B.

    2011-01-01

    Sansevieria 'Sword of Ibe,' registered by the Philippine Nuclear Research Institute as NSIC 2008 Or-66, is a chlorophyll mutant of Sansevieria trifasciata 'Moonshine' developed by treating its suckers or shoots arising from a rhizome with acute gamma radiation from a Cobalt-60 source. The new mutant is identical in growth habit and vigor to Sansevieria 'Moonshine,' also known as Moonglow. Results of this mutation breeding experiment showed that leaf color and flowering were altered by gamma irradiation without changing the other characteristics of the plant. Propagation is true-to-type by separation of sucker and top cutting. The plant is recommended for use as landscaping material and as pot plant for indoor and outdoor use. The leaves may be harvested as cut foliage for Japanese flower arrangements. (author)

  17. Agrobacterium rhizogenes-mediated transformation of Superroot-derived Lotus corniculatus plants: a valuable tool for functional genomics

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2009-06-01

    Full Text Available Abstract Background Transgenic approaches provide a powerful tool for gene function investigations in plants. However, some legumes are still recalcitrant to current transformation technologies, limiting the extent to which functional genomic studies can be performed on. Superroot of Lotus corniculatus is a continuous root cloning system allowing direct somatic embryogenesis and mass regeneration of plants. Recently, a technique to obtain transgenic L. corniculatus plants from Superroot-derived leaves through A. tumefaciens-mediated transformation was described. However, transformation efficiency was low and it took about six months from gene transfer to PCR identification. Results In the present study, we developed an A. rhizogenes-mediated transformation of Superroot-derived L. corniculatus for gene function investigation, combining the efficient A. rhizogenes-mediated transformation and the rapid regeneration system of Superroot. The transformation system using A. rhizogenes K599 harbouring pGFPGUSPlus was improved by validating some parameters which may influence the transformation frequency. Using stem sections with one node as explants, a 2-day pre-culture of explants, infection with K599 at OD600 = 0.6, and co-cultivation on medium (pH 5.4 at 22°C for 2 days enhanced the transformation frequency significantly. As proof of concept, Superroot-derived L. corniculatus was transformed with a gene from wheat encoding an Na+/H+ antiporter (TaNHX2 using the described system. Transgenic Superroot plants were obtained and had increased salt tolerance, as expected from the expression of TaNHX2. Conclusion A rapid and efficient tool for gene function investigation in L. corniculatus was developed, combining the simplicity and high efficiency of the Superroot regeneration system and the availability of A. rhizogenes-mediated transformation. This system was improved by validating some parameters influencing the transformation frequency, which could

  18. Agronomic performance of old soybean variety 'Altona' derived mutants

    International Nuclear Information System (INIS)

    Hodosne, K.G.; Heszky, L.E.

    2001-01-01

    An induced mutation program has been initiated at the Department of Genetics and Plant Breeding to develop early maturing cultivars with good yielding capacity. Some new mutants have been produced by irradiation of variety Altona with 60 Co gamma rays. Ten years of breeding resulted in two new mutant varieties named 'Noventa' and 'Gate 511'. The present study deals with agronomic performance of these mutants. Registered soybean varieties Altona and 'McCall' as well as Altona derived mutants (Gate 511 and Noventa) have been compared

  19. Isolation of new gravitropic mutants under hypergravity conditions

    Directory of Open Access Journals (Sweden)

    Akiko Mori

    2016-09-01

    Full Text Available Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upwards. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes. In the present study, we report a new screening system using hypergravity conditions to isolate enhancers of gravitropism mutants, and we also describe a rapid and efficient genome mapping method, using Next-Generation Sequencing (NGS and Single Nucleotide Polymorphism (SNP-based markers. Using the endodermal-amyloplast less 1 (eal1 mutant, which exhibits defective development of endodermal cells and gravitropism, we found that hypergravity (10 g restored the reduced gravity responsiveness in eal1 hypocotyls and could, therefore, be used to obtain mutants with further reduction in gravitropism in the eal1 background. Using the new screening system, we successfully isolated six ene (enhancer of eal1 mutants that exhibited little or no gravitropism under hypergravity conditions, and using NGS and map-based cloning with SNP markers, we narrowed down the potential causative genes, which revealed a new genetic network for shoot gravitropism in Arabidopsis.

  20. Optimization of Agrobacterium tumefaciens-Mediated Transformation Systems in Tea Plant (Camellia sinensis

    Directory of Open Access Journals (Sweden)

    Qianru LV

    2017-05-01

    Full Text Available In this study, an efficient plant regeneration protocol in vitro and transformation by Agrobacterium-mediated method of Camellia sinensis was achieved, which would lay the foundation for genetic improvement of tea plant by genetic engineering technology. The cotyledon callus of C. sinensis were used as the receptors for transformation by Agrobacterium tumefaciens EHA105 containing PS1aG-3. Some factors which affected the result of Agrobacterium-mediated transformation of C. sinensis were studied on the basis of GUS transient expression system. The optimum system of Agrobacterium-mediated transformation was that the cotyledon callus were pre-cultured for 3 d, and then infected by EHA105 for 15 min followed by 3 d co-culture in the dark on the YEB medium containing 150 µmol⋅L−1 acetosyringone (AS. The transient expression rate of GUS gene was 62.6%. After being delayed selective culture for 3 d, infected callus were transferred into the differentiation medium and the root induction medium both of which were supplemented with 100 mg⋅L−1 spectinomycin, and then resistant seedlings of C. sinensis were obtained. The conversion rate was 3.6%.

  1. High-efficiency Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) and regeneration of insect-resistant transgenic plants.

    Science.gov (United States)

    Mehrotra, Meenakshi; Sanyal, Indraneel; Amla, D V

    2011-09-01

    To develop an efficient genetic transformation system of chickpea (Cicer arietinum L.), callus derived from mature embryonic axes of variety P-362 was transformed with Agrobacterium tumefaciens strain LBA4404 harboring p35SGUS-INT plasmid containing the uidA gene encoding β-glucuronidase (GUS) and the nptII gene for kanamycin selection. Various factors affecting transformation efficiency were optimized; as Agrobacterium suspension at OD(600) 0.3 with 48 h of co-cultivation period at 20°C was found optimal for transforming 10-day-old MEA-derived callus. Inclusion of 200 μM acetosyringone, sonication for 4 s with vacuum infiltration for 6 min improved the number of GUS foci per responding explant from 1.0 to 38.6, as determined by histochemical GUS assay. For introducing the insect-resistant trait into chickpea, binary vector pRD400-cry1Ac was also transformed under optimized conditions and 18 T(0) transgenic plants were generated, representing 3.6% transformation frequency. T(0) transgenic plants reflected Mendelian inheritance pattern of transgene segregation in T(1) progeny. PCR, RT-PCR, and Southern hybridization analysis of T(0) and T(1) transgenic plants confirmed stable integration of transgenes into the chickpea genome. The expression level of Bt-Cry protein in T(0) and T(1) transgenic chickpea plants was achieved maximum up to 116 ng mg(-1) of soluble protein, which efficiently causes 100% mortality to second instar larvae of Helicoverpa armigera as analyzed by an insect mortality bioassay. Our results demonstrate an efficient and rapid transformation system of chickpea for producing non-chimeric transgenic plants with high frequency. These findings will certainly accelerate the development of chickpea plants with novel traits.

  2. Isolation of a novel mutant gene for soil-surface rooting in rice (Oryza sativa L.).

    Science.gov (United States)

    Hanzawa, Eiko; Sasaki, Kazuhiro; Nagai, Shinsei; Obara, Mitsuhiro; Fukuta, Yoshimichi; Uga, Yusaku; Miyao, Akio; Hirochika, Hirohiko; Higashitani, Atsushi; Maekawa, Masahiko; Sato, Tadashi

    2013-11-20

    Root system architecture is an important trait affecting the uptake of nutrients and water by crops. Shallower root systems preferentially take up nutrients from the topsoil and help avoid unfavorable environments in deeper soil layers. We have found a soil-surface rooting mutant from an M2 population that was regenerated from seed calli of a japonica rice cultivar, Nipponbare. In this study, we examined the genetic and physiological characteristics of this mutant. The primary roots of the mutant showed no gravitropic response from the seedling stage on, whereas the gravitropic response of the shoots was normal. Segregation analyses by using an F2 population derived from a cross between the soil-surface rooting mutant and wild-type Nipponbare indicated that the trait was controlled by a single recessive gene, designated as sor1. Fine mapping by using an F2 population derived from a cross between the mutant and an indica rice cultivar, Kasalath, revealed that sor1 was located within a 136-kb region between the simple sequence repeat markers RM16254 and 2935-6 on the terminal region of the short arm of chromosome 4, where 13 putative open reading frames (ORFs) were found. We sequenced these ORFs and detected a 33-bp deletion in one of them, Os04g0101800. Transgenic plants of the mutant transformed with the genomic fragment carrying the Os04g0101800 sequence from Nipponbare showed normal gravitropic responses and no soil-surface rooting. These results suggest that sor1, a rice mutant causing soil-surface rooting and altered root gravitropic response, is allelic to Os04g0101800, and that a 33-bp deletion in the coding region of this gene causes the mutant phenotypes.

  3. Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis.

    Science.gov (United States)

    Falbel, T G; Meehl, J B; Staehelin, L A

    1996-10-01

    Analyses of a series of allelic chlorina mutants of wheat (Triticum aestivum L.), which have partial blocks in chlorophyll (Chl) synthesis and, therefore, a limited Chl supply, reinforce the principle that Chl is required for the stable accumulation of Chl-binding proteins and that only reaction centers accumulate when the supply of Chl is severely limited. Depending on the rate of Chl accumulation (determined by the severity of the mutation) and on the rate of turnover of Chl and its precursors (determined by the environment in which the plant is grown), the mutants each reach an equilibrium of Chl synthesis and degradation. Together these mutants generate a spectrum of phenotypes. Under the harshest conditions (high illumination), plants with moderate blocks in Chl synthesis have membranes with very little Chl and Chl-proteins and membrane stacks resembling the thylakoids of the lethal xantha mutants of barely grown at low to medium light intensities (which have more severe blocks). In contrast, when grown under low-light conditions the same plants with moderate blocks have thylakoids resembling those of the wild type. The wide range of phenotypes of Chl b-deficient mutants has historically produced more confusion than enlightenment, but incomparable growth conditions can now explain the discrepancies reported in the literature.

  4. Application Of Database Program in selecting Sorghum (Sorghum bicolor L) Mutant Lines

    International Nuclear Information System (INIS)

    H, Soeranto

    2000-01-01

    Computer database software namely MSTAT and paradox have been exercised in the field of mutation breeding especially in the process of selecting plant mutant lines of sorghum. In MSTAT, selecting mutant lines can be done by activating the SELECTION function and then followed by entering mathematical formulas for the selection criterion. Another alternative is by defining the desired selection intensity to the analysis results of subprogram SORT. Including the selected plant mutant lines in BRSERIES program, it will make their progenies be easier to be traced in subsequent generations. In paradox, an application program for selecting mutant lines can be made by combining facilities of Table, form and report. Selecting mutant lines with defined selection criterion can easily be done through filtering data. As a relation database, paradox ensures that the application program for selecting mutant lines and progeny trachings, can be made easier, efficient and interactive

  5. An efficient Agrobacterium-mediated transformation method for aflatoxin generation fungus Aspergillus flavus.

    Science.gov (United States)

    Han, Guomin; Shao, Qian; Li, Cuiping; Zhao, Kai; Jiang, Li; Fan, Jun; Jiang, Haiyang; Tao, Fang

    2018-05-01

    Aspergillus flavus often invade many important corps and produce harmful aflatoxins both in preharvest and during storage stages. The regulation mechanism of aflatoxin biosynthesis in this fungus has not been well explored mainly due to the lack of an efficient transformation method for constructing a genome-wide gene mutant library. This challenge was resolved in this study, where a reliable and efficient Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for A. flavus NRRL 3357 was established. The results showed that removal of multinucleate conidia, to collect a homogenous sample of uninucleate conidia for use as the transformation material, is the key step in this procedure. A. tumefaciens strain AGL-1 harboring the ble gene for zeocin resistance under the control of the gpdA promoter from A. nidulans is suitable for genetic transformation of this fungus. We successfully generated A. flavus transformants with an efficiency of ∼ 60 positive transformants per 10 6 conidia using our protocol. A small-scale insertional mutant library (∼ 1,000 mutants) was constructed using this method and the resulting several mutants lacked both production of conidia and aflatoxin biosynthesis capacity. Southern blotting analysis demonstrated that the majority of the transformants contained a single T-DNA insert on the genome. To the best of our knowledge, this is the first report of genetic transformation of A. flavus via ATMT and our protocol provides an effective tool for construction of genome-wide gene mutant libraries for functional analysis of important genes in A. flavus.

  6. Optimization of mutant recovery from plants obtained from gamma-radiated seeds of winged bean (Psophocarpus tetragonolobus (L) DC)

    International Nuclear Information System (INIS)

    Klu, J. Y. P.; Harten, A. M. van

    2000-01-01

    Dry seeds of winged bean (Psophocarpus tetragonolobus (L.) DC) cvs UPS 122 and Kade 6/16 were treated with acute radiation doses of 150 Gy and 250 Gy at a dose rate of 737.32 Gy/hr from a Cobalt-60 gamma source for studies in optimisation of mutant selection in M 2 and M 3 populations. Mature dry pods were harvested at four different locations on each M 1 plant viz. 0.5, 1.0, 1.5 and 2.0 metres from the ground. M 2 seedlings were screened for different groups of chlorophyll deficiencies and their frequencies. Reduction in chlorophyll mutation frequency from the first formed seeds to the latest ones within the M 1 pods has been observed for both cultivars studied. The high degree of chimerism recorded in the M 2 seedlings present in the first-formed seeds in the M 1 pods provides a clear indication that these seeds constitute a zone from which seeds for the M 2 generation have to be harvested in order to give the highest probability for obtaining different types of mutants. On the other hand, significant differences in mutation frequency were not obtained in M 2 seedlings from pods harvested at the various positions on the M 1 plants. M 1 pods can be harvested at any height on the M 1 plants but is preferable to use the earliest mature ones to save time and labour. The zones identified on M 1 plants in this investigation coupled with the use of the 'spare' or 'remnant' seed selection method, should provide an improved method for mutation breeding in a viny legume like the winged bean. (au)

  7. Induced mutant for male sterility in niger

    International Nuclear Information System (INIS)

    Sujatha, M.

    2001-01-01

    Full text: Niger (Guizotia abyssinica Cass.), an important oilseed crop of the family Compositae is highly cross-pollinated due to the twin mechanisms of protandry and incompatibility. Studies revealed the functional nature of protandry and the breakdown of incompatibility with alteration in temperature. It has very small flowers (disc florets) arranged in a capitulum that open on 3-4 consecutive days which pose problems in emasculation for cross-breeding. To induce mutations, seeds of variety 'IGP-76' were irradiated with γ-rays 200 to 1000 Gy. All seeds of M 1 plants were sown separately in individual plant-to progeny rows. The results of screening of M 2 segregating material indicated that γ-ray treatment was effective in induction of male sterility. Frequency of visible mutations were higher in sibbed progeny as compared to open pollinated population and male sterile plants were observed only in sibbed population (1000 Gy). Male sterile plants could easily be identified at the flowering stage by their altered floral morphology (disc florets transformed into ligulate ray florets) and complete absence or presence of a rudimentary anther column. Seeds were collected following sib-mating with the fertile counterparts. Progeny segregated in a ration of 3 normal : 1 male sterile. Further work on the mechanism of sterility, maintenance and linkage relationships with associated characters is under progress. This is the first report of induction of male sterility in niger through the use of physical mutagens. The availability of this mutant will be of great value for exploitation of heterosis on commercial basis. (author)

  8. Natural plasmid transformation in a high-frequency-of transformation marine Vibrio strain

    International Nuclear Information System (INIS)

    Frischer, M.E.; Thurmond, J.M.; Paul, J.H.

    1990-01-01

    The estuarine bacterium Vibrio strain DI-9 has been shown to be naturally transformable with both broad host range plasmid multimers and homologous chromosomal DNA at average frequencies of 3.5 x 10 -9 and 3.4 x 10 -7 transformants per recipient, respectively. Growth of plasmid transformants in nonselective medium resulted in cured strains that transformed 6 to 42,857 times more frequently than the parental strain, depending on the type of transforming DNA. These high-frequency-of-transformation (HfT) strains were transformed at frequencies ranging from 1.1 x 10 -8 to 1.3 x 10 -4 transformants per recipient with plasmid DNA and at an average frequency of 8.3 x 10 -5 transformants per recipient with homologous chromosomal DNA. The highest transformation frequencies were observed by using multimers of an R1162 derivative carrying the transposon Tn5 (pQSR50). Probing of total DNA preparations from one of the cured strains demonstrated that no plasmid DNA remained in the cured strains which may have provided homology to the transforming DNA. All transformants and cured strains could be differentiated from the parental strains by colony morphology. DNA binding studies indicated that late-log-phase HfT strains bound [ 3 H]bacteriophage lambda DNA 2.1 times more rapidly than the parental strain. These results suggest that the original plasmid transformation event of strain DI-9 was the result of uptake and expression of plasmid DNA by a competent mutant (HfT strain). Additionally, it was found that a strain of Vibrio parahaemolyticus, USFS 3420, could be naturally transformed with plasmid DNA. Natural plasmid transformation by high-transforming mutants may be a means of plasmid acquisition by natural aquatic bacterial populations

  9. Development of efficient plant regeneration and transformation system for impatiens using Agrobacterium tumefaciens and multiple bud cultures as explants.

    Science.gov (United States)

    Dan, Yinghui; Baxter, Aaron; Zhang, Song; Pantazis, Christopher J; Veilleux, Richard E

    2010-08-09

    Impatiens (Impatiens walleriana) is a top selling floriculture crop. The potential for genetic transformation of Impatiens to introduce novel flower colors or virus resistance has been limited by its general recalcitrance to tissue culture and transformation manipulations. We have established a regeneration and transformation system for Impatiens that provides new alternatives to genetic improvement of this crop. In a first step towards the development of transgenic INSV-resistant Impatiens, we developed an efficient plant regeneration system using hypocotyl segments containing cotyledonary nodes as explants. With this regeneration system, 80% of explants produced an average of 32.3 elongated shoots per initial explant plated, with up to 167 elongated shoots produced per explant. Rooting efficiency was high, and 100% of shoots produced roots within 12 days under optimal conditions, allowing plant regeneration within approximately 8 weeks. Using this regeneration system, we developed an efficient Agrobacterium-mediated Impatiens transformation method using in vitro multiple bud cultures as explants and a binary plasmid (pHB2892) bearing gfp and nptII genes. Transgenic Impatiens plants, with a frequency up to 58.9%, were obtained within 12 to 16 weeks from inoculation to transfer of transgenic plants to soil. Transgenic plants were confirmed by Southern blot, phenotypic assays and T1 segregation analysis. Transgene expression was observed in leaves, stems, roots, flowers, and fruit. The transgenic plants were fertile and phenotypically normal. We report the development of a simple and efficient Agrobacterium-mediated transformation system for Impatiens. To the best of our knowledge, there have been no reports of Agrobacterium-mediated transformation of Impatiens with experimental evidence of stable integration of T-DNA and of Agrobacterium-mediated transformation method for plants using in vitro maintained multiple bud cultures as explants. This transformation system

  10. Development of Efficient Plant Regeneration and Transformation System for Impatiens Using Agrobacterium tumefaciens and Multiple Bud Cultures as Explants

    Directory of Open Access Journals (Sweden)

    Dan Yinghui

    2010-08-01

    Full Text Available Abstract Background Impatiens (Impatiens walleriana is a top selling floriculture crop. The potential for genetic transformation of Impatiens to introduce novel flower colors or virus resistance has been limited by its general recalcitrance to tissue culture and transformation manipulations. We have established a regeneration and transformation system for Impatiens that provides new alternatives to genetic improvement of this crop. Results In a first step towards the development of transgenic INSV-resistant Impatiens, we developed an efficient plant regeneration system using hypocotyl segments containing cotyledonary nodes as explants. With this regeneration system, 80% of explants produced an average of 32.3 elongated shoots per initial explant plated, with up to 167 elongated shoots produced per explant. Rooting efficiency was high, and 100% of shoots produced roots within 12 days under optimal conditions, allowing plant regeneration within approximately 8 weeks. Using this regeneration system, we developed an efficient Agrobacterium-mediated Impatiens transformation method using in vitro multiple bud cultures as explants and a binary plasmid (pHB2892 bearing gfp and nptII genes. Transgenic Impatiens plants, with a frequency up to 58.9%, were obtained within 12 to 16 weeks from inoculation to transfer of transgenic plants to soil. Transgenic plants were confirmed by Southern blot, phenotypic assays and T1 segregation analysis. Transgene expression was observed in leaves, stems, roots, flowers, and fruit. The transgenic plants were fertile and phenotypically normal. Conclusion We report the development of a simple and efficient Agrobacterium-mediated transformation system for Impatiens. To the best of our knowledge, there have been no reports of Agrobacterium-mediated transformation of Impatiens with experimental evidence of stable integration of T-DNA and of Agrobacterium-mediated transformation method for plants using in vitro maintained

  11. Transformation of highly toxic chemicals factory for Fuqing nuclear power plant

    International Nuclear Information System (INIS)

    Wang Hongkai; Gao Yuan; Li Hua

    2014-01-01

    For the iodine adsorption tests of current M310 nuclear power plant, dimethyl sulfate is one of highly toxic chemical of national strict standard management, and the nation make strict control over toxic chemicals procurement, transportation, storage, management requirements. Since the appropriate toxic chemicals storage place was not considered in the design of M310 nuclear power plant, Fuqing nuclear power sites for storage of dimethyl sulfate implement technical transformation to meet and regulate the storage requirements for highly toxic chemical. This will lay the foundation for carrying out smoothly the relevant tests of nuclear power plant, and provide the reference for the use and construction of toxic chemicals reactor in the same type nuclear power plant. (authors)

  12. Study on the early and late mutants of radiation induced rice

    International Nuclear Information System (INIS)

    Yang Hefeng; Chen Xiulan; He Zhentian; Gu Shiliang; Xu Chenwu

    1990-12-01

    After three years of consecutive experiments for the irradiated M 2 generations of 53 different varieties of rice, the following results have been obtained: (1) The average of early mutant plant rate is 1.4%. The rate in the early-maturing varieties is lower than that in the late-maturing varieties. It is in proportion to the length of growing period of these varieties tested. The shortened days of growing period of early mutants are 3 to 32 days (the average was 9.5 days), and it is increasing as the growing period increases. (2) In the irradiated M 2 generation of same variety, the early mutants and late mutants could be simultaneously happened, but the rate of the late mutants is 2.67%, which is higher than the rate of early mutants (1.39%). The shortened and prolonged days of growing period are 11.5 and 10.5 days respectively. These early and late mutants have some changes, both good and bad, in agronomical traits such as plant height, weight per kilo-grains and grains number per tassel. In some extent these changes are significant

  13. Ethanol production using engineered mutant E. coli

    Science.gov (United States)

    Ingram, Lonnie O.; Clark, David P.

    1991-01-01

    The subject invention concerns novel means and materials for producing ethanol as a fermentation product. Mutant E. coli are transformed with a gene coding for pyruvate decarboxylase activity. The resulting system is capable of producing relatively large amounts of ethanol from a variety of biomass sources.

  14. Development Of New Chrysanthemum Mutants For Malaysian Floriculture Industry

    International Nuclear Information System (INIS)

    Zaiton Ahmad; Affrida Abu Hassan; Shakinah Salleh; Nurul Hidayah Mahmud; Shuhaimi Shamsudin; Mohamed Najli Mohamed Yasin

    2014-01-01

    This five-year project was in collaboration with Japan Atomic Energy Agency (JAEA) under the Bilateral Cooperative Research Program and was partly funded by Ministry of Agriculture and Agro-Based Industry (MOA) under Agriculture R&D Fund. The main objective was to produce new chrysanthemum varieties with good horticultural traits especially for cut flower production. In this project, tissue culture samples of chrysanthemum (red and pink varieties) were sent to JAEA for ion beam irradiations. Plant regeneration and multiplication were carried out at Nuclear Malaysia whilst field screenings for morphological characteristics were done at MARDI Cameron Highlands. Through this project, a number of stable chrysanthemum mutants with various new features have been generated and of these, 8 mutants were selected based on their uniqueness and/or suitability for cut flower production. In preparation for future commercialization process, five of these mutants have been filed for plant variety protection with Department of Agriculture Malaysia and a similar process in Japan is also under consideration. In addition, molecular marker work to fingerprint these mutants has also been initiated and future research may also include development of markers for selected horticultural traits and isolation of unique mutant genes. (author)

  15. Mutant lines of currant tomato, valuable germplasm with multiple disease resistance

    International Nuclear Information System (INIS)

    Govorova, G.F.; Khrustaleva, V.V.; Shcherbakov, V.K.

    1987-01-01

    Studies were carried out for two years on eight mutant lines of currant tomato at the Krymsk Experimental Breeding Station of the N.I. Vavilov All-Union Scientific Research Institute of Plant-Growing (VIR). The station is situated in an area of commercial field tomato growing (Krasnodar region). The mutant lines of currant tomato (VIR specimen No. k-4053) were obtained through chronic gamma-irradiation. A disease resistance evaluation of the mutants was carried out for Verticillium wilt (Verticillium albo-atrum Rein. and Berth.), for black bacterial spotting (Xanthomonas vesicatoria Dows.), for tobacco mosaic virus Nicotiana 1 Smith), for streak virus (Nicotiana 1), for the combination TMV with X and Y potato viruses, for cucumber virus (Cucumis 1), and also for top rot. Fifty plants of each mutant line were evaluated and checks were made three times in each season. A comparison of the currant tomato mutants with the standard tomato varieties demonstrates the better resistance shown by the mutant germplasm to the main pathogens. The degree to which some currant tomato mutants were affected by Verticillium was lower than that of the most VerticiIlium-resistant samples of tomato evaluated between 1975 and 1981. The mutants of currant tomato should therefore be of interest as germplasm in breeding tomatoes for improved multiple disease resistance

  16. A chilling sensitive mutant of Arabidopsis with altered steryl-ester metabolism

    International Nuclear Information System (INIS)

    Hugly, S.; McCourt, P.; Somerville, C.; Browse, J.; Patterson, G.W.

    1990-01-01

    A chilling-sensitive mutant of Arabidopsis thaliana was isolated and subjected to genetic, physiological, and biochemical analysis. The chilling-sensitive nature of the mutant line is due to a single recessive nuclear mutation at a locus designated chs1. In contrast to wild-type plants, which are not adversely affected by low temperatures, the chs1 mutant is killed by several days of exposure to temperatures below 18 degree C. Following exposure to chilling temperatures, the mutant displays two common symptoms of chilling injury - leaf chlorosis and electrolyte leakage. In these respects, the physiological response of the mutant to low temperatures mimics the response observed in some naturally occurring chilling sensitive species. The biochemical basis of chilling sensitivity was explored by examining the pattern of incorporation of 14 CO 2 into soluble metabolites and lipids in wild-type and mutant plants. The only difference observed between the mutant and wild type was that following low temperature treatment, the mutant accumulated 10-fold more radioactivity in a specific class of neutral lipids which were identified by a variety of criteria to be steryl-esters. The accumulation of radioactivity in the steryl-ester fraction occurs 24 hours before there is any visible evidence of chilling injury

  17. Combining multivariate analysis and monosaccharide composition modeling to identify plant cell wall variations by Fourier Transform Near Infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Smith-Moritz Andreia M

    2011-08-01

    Full Text Available Abstract We outline a high throughput procedure that improves outlier detection in cell wall screens using FT-NIR spectroscopy of plant leaves. The improvement relies on generating a calibration set from a subset of a mutant population by taking advantage of the Mahalanobis distance outlier scheme to construct a monosaccharide range predictive model using PLS regression. This model was then used to identify specific monosaccharide outliers from the mutant population.

  18. Genetic Analysis and Mapping of TWH Gene in Rice Twisted Hull Mutant

    Directory of Open Access Journals (Sweden)

    Jin-bo LI

    2009-03-01

    Full Text Available A mutant with twisted hulls was found in a breeding population of rice (Oryza sativa L.. The mutant shows less grain weight and inferior grain quality in addition to twisted hulls. Genetic analysis indicated that the phenotype of mutant was controlled by a single recessive gene (temporarily designated as TWH. To map the TWH gene, an F2 population was generated by crossing the twh mutant to R725, an indica rice variety with normal hulls. For bulked segregant analysis, the bulk of mutant plants was prepared by mixing equal amount of plant tissue from 10 twisted-hull plants and the bulk of normal plants was obtained by pooling equal amount tissue of 10 normal-hull plants. Two hundred and seven pairs of simple sequence repeat (SSR primers, which are distributed on 12 rice chromosomes, were used for polymorphism analysis of the parents and the two bulks. The TWH locus was initially mapped close to the SSR marker RM526 on chromosome 2. Therefore, further mapping was performed using 50 pairs of SSR primers around the marker RM526. The TWH was delimited between the SSR markers RM14128 and RM208 on the long arm of chromosome 2 at the genetic distances of 1.4 cM and 2.7 cM, respectively. These results provide the foundation for further fine mapping, cloning and functional analysis of the TWH gene.

  19. Genetical, cytological and physiological studies on the induced mutants with special regard to effective methods for obtaining useful mutants in perennial woody plants

    International Nuclear Information System (INIS)

    Kukimura, H.; Ikeda, F.; Fujita, H.; Maeta, T.; Nakajima, K.; Katagiri, K.; Nakahira, K.; Somegou, M.

    1975-01-01

    The study was aimed at elucidating the biological aspects of artificially induced mutations in perennial tree crops and at promoting the utilization of such mutations in a practical breeding programme. A number of mutants obtained particularly in Cryptomeria and mulberry (Morus spp.) by means of gamma radiation were examined for their practical usefulness. Doses from 7.5 to 15.0 kR were used. In mulbery, some mutant strains showed increased shoot growth, and one mutant strain showed a remarkable increase also in rooting ability. Entire leaf mutants were investigated for their breeding behaviour. None of the mutant strains showed acquired disease resistance. Changes in the number of isozyme bands and different staining intensity was observed in all the mutant strains compared to the original strains

  20. Preliminary Study of the Characteristics of Several Glossy Cabbage (Brassica oleracea var. capitata L. Mutants

    Directory of Open Access Journals (Sweden)

    Tang Jun

    2015-09-01

    Full Text Available To determine the characteristics and potential practical applications of glossy cabbage (Brassica oleracea var. capitata L. mutants, five different glossy mutants were studied. The amount of epicuticular wax covering the mutant leaves was only approximately 30% that of the wild-type (WT leaves. The wax crystals of WT plants were columnar and linear, while they were granular and rod-shaped in the mutants. Additionally, in WT cabbage, the primary wax components were alkanes, alcohols, fatty acids, ketones, and aldehydes. There was a significant decrease in the abundance of alkanes and ketones in the wax of the mutants. The glossy-green trait of the mutants may be the result of an inhibited alkane-forming pathway. Higher rates of chlorophyll leaching and water loss demonstrate that the mutant leaves were more permeable and sensitive to drought stress than the WT leaves. Growth curve results indicated that the growth rate of mutant-1 and mutant-3 was slower than that of the corresponding WT cabbage, resulting in shorter plants. However, the growth rate of mutant-2 was not influenced by the lack of coating wax. An investigation of the agronomic traits and heterosis of the glossy cabbage mutants indicated that all five mutants had glossy-green leaves, which was a favorable characteristic. The F1 plants derived from crosses involving mutant-2 exhibited obvious heterosis, suggesting the observed glossy-green trait is controlled by a dominant gene. Therefore, mutant-2 may be useful as a source of genetic material for future cabbage breeding experiments.

  1. The Arabidopsis mutant iop1 exhibits induced over-expression of the plant defensin gene PDF1.2 and enhanced pathogen resistance

    NARCIS (Netherlands)

    Penninckx, I.A.M.A.; Eggermont, K.; Schenk, P.M.; Ackerveken, van den G.; Cammue, B.P.A.; Thomma, B.P.H.J.

    2003-01-01

    Jasmonate and ethylene are concomitantly involved in the induction of the Arabidopsis plant defensin gene PDF1.2. To define genes in the signal transduction pathway leading to the induction of PDF1.2, we screened for mutants with induced over-expression of a β-glucuronidase reporter, under the

  2. Key Components of Different Plant Defense Pathways Are Dispensable for Powdery Mildew Resistance of the Arabidopsis mlo2 mlo6 mlo12 Triple Mutant.

    Science.gov (United States)

    Kuhn, Hannah; Lorek, Justine; Kwaaitaal, Mark; Consonni, Chiara; Becker, Katia; Micali, Cristina; Ver Loren van Themaat, Emiel; Bednarek, Paweł; Raaymakers, Tom M; Appiano, Michela; Bai, Yuling; Meldau, Dorothea; Baum, Stephani; Conrath, Uwe; Feussner, Ivo; Panstruga, Ralph

    2017-01-01

    Loss of function mutations of particular plant MILDEW RESISTANCE LOCUS O ( MLO ) genes confer durable and broad-spectrum penetration resistance against powdery mildew fungi. Here, we combined genetic, transcriptomic and metabolomic analyses to explore the defense mechanisms in the fully resistant Arabidopsis thaliana mlo2 mlo6 mlo12 triple mutant. We found that this genotype unexpectedly overcomes the requirement for indolic antimicrobials and defense-related secretion, which are critical for incomplete resistance of mlo2 single mutants. Comparative microarray-based transcriptome analysis of mlo2 mlo6 mlo12 mutants and wild type plants upon Golovinomyces orontii inoculation revealed an increased and accelerated accumulation of many defense-related transcripts. Despite the biotrophic nature of the interaction, this included the non-canonical activation of a jasmonic acid/ethylene-dependent transcriptional program. In contrast to a non-adapted powdery mildew pathogen, the adapted powdery mildew fungus is able to defeat the accumulation of defense-relevant indolic metabolites in a MLO protein-dependent manner. We suggest that a broad and fast activation of immune responses in mlo2 mlo6 mlo12 plants can compensate for the lack of single or few defense pathways. In addition, our results point to a role of Arabidopsis MLO2, MLO6, and MLO12 in enabling defense suppression during invasion by adapted powdery mildew fungi.

  3. Gamma-ray induced mutants in castor (Ricinus communis L.)

    International Nuclear Information System (INIS)

    Janila, P.; Ashok Kumar, A.; Rajashekar Reddy, N.; Hemalatha, V.

    2007-01-01

    We report isolation of three recessive mutants in castor using dry seed irradiation with gamma rays. The crinkled leaf mutant (crf) was identified in K-55-112 M2 family and leafy mutant (lea) in H-55-577 M2 family; both are recessive lethal and thus maintained as heterozygotes. The cri mutant has highly wrinkled leaves resembling finger millet head and failed to enter reproductive phase, consequently did not produce seeds. The number of leaf lobes is reduced in lea mutant and though it produced spikes, the male and female flowers are converted to leafy appendages. The third mutant, fused (Ius) stem identified in H-55-617 M2 family is a recessive mutant. The branches of which are fused at the base and though each branch terminates in to monoceous spike like normal plant, the spike is highly condensed. The three mutants under report are valuable genetic stocks for development of linkage maps in castor, which is at infancy. (author)

  4. Recent progress with the DNA repair mutants of Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Thompson, L.H.; Salazar, E.P.; Brookman, K.W.; Collins, C.C.; Stewart, S.A.; Busch, D.B.; Weber, C.A.

    1986-01-01

    Repair deficient mutants of Chinese hamster ovary (CHO) cells are being used to identify human genes that correct the repair defects and to study mechanisms of DNA repair and mutagenesis. Five independent tertiary DNA transformants were obtained from the EM9 mutant. In these clones a human DNA sequence was identified that correlated with the resistance of the cells to CldUrd. After Eco RI digestion, Southern transfer, and hybridization of transformant DNAs with the BLUR-8 Alu family sequence, a common fragment of 25 to 30 kb was present. 37 refs., 4 figs., 3 tabs

  5. Bilirubin oxidase-like proteins from Podospora anserina: promising thermostable enzymes for application in transformation of plant biomass.

    Science.gov (United States)

    Xie, Ning; Ruprich-Robert, Gwenaël; Silar, Philippe; Chapeland-Leclerc, Florence

    2015-03-01

    Plant biomass degradation by fungi is a critical step for production of biofuels, and laccases are common ligninolytic enzymes envisioned for ligninolysis. Bilirubin oxidases (BODs)-like are related to laccases, but their roles during lignocellulose degradation have not yet been fully investigated. The two BODs of the ascomycete fungus Podospora anserina were characterized by targeted gene deletions. Enzymatic assay revealed that the bod1(Δ) and bod2(Δ) mutants lost partly a thermostable laccase activity. A triple mutant inactivated for bod1, bod2 and mco, a previously investigated multicopper oxidase gene distantly related to laccases, had no thermostable laccase activity. The pattern of fruiting body production in the bod1(Δ) bod2(Δ) double mutant was changed. The bod1(Δ) and bod2(Δ) mutants were reduced in their ability to grow on ligneous and cellulosic materials. Furthermore, bod1(Δ) and bod2(Δ) mutants were defective towards resistance to phenolic substrates and H2 O2 , which may also impact lignocellulose breakdown. Double and triple mutants were more affected than single mutants, evidencing redundancy of function among BODs and mco. Overall, the data show that bod1, bod2 and mco code for non-canonical thermostable laccases that participate in the degradation of lignocellulose. Thanks to their thermal stability, these enzymes may be more promising candidate for biotechnological application than canonical laccases. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Replication of an incomplete alfalfa mosaic virus genome in plants transformed with viral replicase genes

    NARCIS (Netherlands)

    Taschner, P. E.; van der Kuyl, A. C.; Neeleman, L.; Bol, J. F.

    1991-01-01

    RNAs 1 and 2 of alfalfa mosaic virus (AIMV) encode proteins P1 and P2, respectively, both of which have a putative role in viral RNA replication. Tobacco plants were transformed with DNA copies of RNA1 (P1-plants), RNA2 (P2-plants) or a combination of these two cDNAs (P12-plants). All transgenic

  7. Sodium azide mutagenesis in wheat: Mutants with golden glumes

    International Nuclear Information System (INIS)

    Siddiqui, K.A.; Jafri, K.A.; Arain, M.A.

    1989-01-01

    In bread wheat, Triticum aestivum L. (2n=6x=42, AABBDD), detection of induced mutations is hampered by the presence of duplicate and triplicate genes. Induced changes in spike characteristics are known, but mutants with changed glume colour do not seem to have been reported. Physical mutagens such as gamma rays, thermal neutrons and fast neutrons, and chemical mutagens like EMS, El, dES and NEH have been extensively used for induction of mutations in bread wheat but it seems as if these mutagens did not induce mutants with changed glume colour. We used sodium azide for inducing mutations in the widely adapted cultivar 'Sonalika', which is characterized by brown glume colour. Presoaked seeds were treated with 0.2M sodium azide for 3 hours. Three spikes were harvested from each M 1 plant. M 2 generation was space-planted as spike progeny. We were successful in identifying 3 mutants with golden glumes. The mutants resemble 'Sonalika' in other spike characteristics. The mutants glume colour was confirmed in M 3 . The mutants were also evaluated for agronomically important characteristics. Some characters were significantly different from the parent. Glume colours may be useful as genetic markers since such characters are less influenced by the environment. Our investigation confirms that also agronomically useful genetic variation may be readily induced in bread wheat through sodium azide

  8. The application of shortened upper leaf mutant in barley breeding

    International Nuclear Information System (INIS)

    Jin Hua

    2004-01-01

    The shortened upper leaf mutant was induced from Fuji Nigo by γ-ray irradiation. Fuji Nigo, the mutant, cross-cut F 1 , F 2 and back-cross F 1 , F 2 were used to analyze mutant heredity by comparative study. The yield, chlorophyll content, light intensity, dry matter of mutant were investigated. The results showed that (1) the mutant character was controlled by a couple of nuclear genes which were partial dominance; (2) the transmittance of the mutant colony was better than that of Fuji Nigo and bottom dry matter was much more than that of Fuji Nigo; (3) under the condition of high fertilizer and high plant population , the yield of mutant was higher than that of Fuji Nigo; (4) the content of chlorophyll a in the mutant was higher than that in Fuji Nigo

  9. Use of NAP gene to manipulate leaf senescence in plants

    Science.gov (United States)

    Gan, Susheng; Guo, Yongfeng

    2013-04-16

    The present invention discloses transgenic plants having an altered level of NAP protein compared to that of a non-transgenic plant, where the transgenic plants display an altered leaf senescence phenotype relative to a non-transgenic plant, as well as mutant plants comprising an inactivated NAP gene, where mutant plants display a delayed leaf senescence phenotype compared to that of a non-mutant plant. The present invention also discloses methods for delaying leaf senescence in a plant, as well as methods of making a mutant plant having a decreased level of NAP protein compared to that of a non-mutant plant, where the mutant plant displays a delayed leaf senescence phenotype relative to a non-mutant plant. Methods for causing precocious leaf senescence or promoting leaf senescence in a plant are also disclosed. Also disclosed are methods of identifying a candidate plant suitable for breeding that displays a delayed leaf senescence and/or enhanced yield phenotype.

  10. PedonnanceofE3rly MatUring MutantS Derived from ''SuPa'~ Rice ...

    African Journals Online (AJOL)

    Vienna, Austria in 1994. The dry seeds were in-adiated with gamma rays using three doses (170, 210. --iifid 24OC;Y).frOm C.obalt 60 (lCO) in order shorten the plant height and maturity period. From the resulting mutant. PoPulations ortgindtiriifroni modified single seed descent method, five Jery early maturing lines plus the ...

  11. Evaluation of Promising Mutant Lines of Canola Grown under New Reclamation Lands (Harsh Lands)

    International Nuclear Information System (INIS)

    Amer, I.M.; Farrag, M.E.; Soliman, S.S.; Hassan, A.A.

    2017-01-01

    Canola seed lots of four varieties (Serow4, Serow6, Pactol as local cultivars and Evita as exotic variety) were treated with gamma rays at four doses (0, 100, 400 and 600 Gy). The present study aims to evaluate useful mutations in canola which possess high seed yield and oil content under new reclamation desert land at Ras-Suder-Sinai (saline) and Inshas (harsh and poor fertility) in M 4 and M 5 generations. The results at M 4 and M 5 generations showed that the 13-selected mutant lines on the bases of number of pods and seed yield/plant differed in their yield response according to environmental conditions. Over the two locations, the highest number of pods plant and seed yield was found at line 75 (M4) and line 11 for seed yield and line 78 for number of pods in M5 compared to other genotypes. More over, all the mutant lines compared to their parents showed significant or insignificant increases for all studies traits during the two successive generations. Over the two generations, the highest mean value compared to all genotypes was found in line 22 for plant height at Sudr and line 11 at Inshas, for fruiting zone length, the highest value was noticed in line 18 at Sudr and line 75 at Inshas, for the highest number of pods, (125/plant) it was found in line 63 at Sudr and (193/plant) in line 75 at Inshas which reflected the highest seed yield ( 8 g/plant).The highest mean value compared to all genotypes was found for 100 seed-weight in line 8 at Sudr and line 11 at Inshas which appeared the highest seed yield at Suder. Over all studied conditions, the mutant line 75 derived from Evita variety was characterized by the highest mean values for fruiting zone length of plant and number of pods/plant, reflecting a high seed yield (6.47 g/plant ) or about 83.87% over its parent. The increase of seed yield/plant for mutant line 11 over its parent was about 68.8% followed by line 8 surpassed its parent for seed yield by about 60.2 %. The oil content of canola seeds in

  12. Dwarf mutant of Papaver somniferum with high morphine content

    International Nuclear Information System (INIS)

    Chauhan, S.P.; Patra, N.K.; Srivastava, H.K.

    1987-01-01

    Opium poppy, Papaver somniferum L. is an important medicinal plant known for its morphine, codeine, and thebaine alkaloids. This Institute had earlier released two latex opium yielding poppy varieties, Shyama and Shweta, which are now cultivated by the farmers under the supervision of the Narcotic Department of the Government of India. However, both these varieties became susceptible to downy mildew (Peronospora arborescens). Lodging due to heavy capsule weight is another problem affecting latex yield. With these problems in mind, we undertook mutation breeding on the above mentioned two varieties employing gamma rays (5 kR, 15 kR, 20 kR) and EMS (0.2%, 0.4%, 0.6%) and combined mutagens (5 kR + 0.2% EMS, 5 kR + 0.4% EMS and 5 kR + 0.6% EMS). M 1 from the treated seeds (405 plants) was raised in winter 1984-85. M 2 generation of 13,500 plants (i.e. 270 M 1 progenies x 50 plants) was raised in winter 1985/86. A dwarf mutant with high morphine content was identified in M 2 from the variety Shweta treated with 5 kR + 0.4% EMS. The mutant differs by its dwarf stature, compact leaf arrangements, multilocular capsules, increased capsule number, and small capsule size. The mutant is under testing for its superior morphine production. It may be used as dwarf gene source in hybridization for improving lodging resistance. This mutant is a novel type, which was not available in our germplasm collection

  13. High-Protein Soybean Mutants by Using Irradiation Technique

    International Nuclear Information System (INIS)

    Yathaputanon, C.; Kumsueb, B.; Srisombun, S.

    2009-07-01

    Full text: Soybean variety improvement for high seed protein using induced mutation was initiated. Approximately 5,000 seeds of soybean variety Chiang Mai 60 were irradiated with gamma rays at the dose of 200 Grays at Kasetsart University. High-protein seed mutants in M2 to M4 generations were selected at Nakhon Ratchasima Field Crops Research Center during 2004-2008. The Pedigree method of selection was used. Kjeldahl method was used to analyze seed protein percentages. The M2 seeds protein content of the M2 generation was 45.2% while that of the original parent was 43.0%. M3s were seeded plant to row. In each row, the best four plants were selected for protein analysis. The average protein content of selected mutant lines was 3.9% while the check variety had average protein content of 42.4%. In the M4 generation, the result showed that the average protein contents of the selected mutant lines and the check variety were 42.8% and 42.0%, respectively. In the 2007-2008 trials, four promising mutants had and average protein content of 428%, while the check variety had and average protein content of 41.1%. The four mutants produced the mean grain yield of 2.20-2.42 t/Ha, which was 10.21% higher than that of Chiang Mai 60. The mutant lines produced both a high grain protein content and a high grain yield. They will be further tested their adaptability in the research centers and farmer fields

  14. MALDI-TOF MS and CE-LIF Fingerprinting of Plant Cell Wall Polysaccharide Digests as a Screening Tool for Arabidopsis Cell Wall Mutants

    NARCIS (Netherlands)

    Westphal, Y.; Schols, H.A.; Voragen, A.G.J.; Gruppen, H.

    2010-01-01

    Cell wall materials derived from leaves and hypocotyls of Arabidopsis mutant and wild type plants have been incubated with a mixture of pure and well-defined pectinases, hemicellulases, and cellulases. The resulting oligosaccharides have been subjected to MALDI-TOF MS and CE-LIF analysis. MALDI-TOF

  15. Use of the "gl1" Mutant and the "CA-rop2" Transgenic Plants of "Arabidopsis thaliana" in the Biology Laboratory Course

    Science.gov (United States)

    Zheng, Zhi-Liang

    2006-01-01

    This article describes the use of the "glabrous1 (g11)" mutant and constitutively active "(CA)-rop2" transgenic plants of "Arabidopsis thaliana" in teaching genetics laboratory for both high school and undergraduate students. The experiments provide students with F[subscript 1] and F[subscript 2] generations within a semester for genetic and…

  16. Preferência de Bemisia tabaci biótipo B em linhagens mutantes de algodoeiro Bemisia tabaci biotype B preference in mutant cotton lines

    Directory of Open Access Journals (Sweden)

    Francisco das Chagas Vidal Neto

    2008-02-01

    Full Text Available Os efeitos de caracteres mutantes morfológicos do algodoeiro (Gossypium hirsutum L. r. latifolium Hutch.: folha okra, bráctea frego e planta vermelha, em relação à resistência à mosca-branca (Bemisia tabaci biótipo B Hemiptera: Aleyrodidae, foram avaliados em experimentos com ou sem chance de escolha. Os experimentos foram conduzidos em casa-de-vegetação, no delineamento de blocos ao acaso, em fatorial 23 + 1, com quatro repetições. O mutante com a característica planta vermelha foi menos atrativo e menos preferido para oviposição, em relação à planta verde, em ambos os ensaios, com ou sem escolha. Não houve preferência quanto à forma da folha e ao tipo de bráctea.The effects of cotton lines (Gossypium hirsutum L. r. latifolium Hutch. with mutants morphologic characteristics: okra leaf, frego bract and red plant in relation to host plant resistance to whitefly (Bemisia tabaci bioyipe B Hemiptera: Aleyrodidae, were evaluated in choice or no choice assays. The assays were carried out in the greenhouse conditions, according to a completely randomized block design, in a 23 + 1 in a factorial arrangement with four replications. The mutant with red plant characteristic was less attractive and less preferred for oviposition than the normal green plant does, in both, whit or without choice tests. It did not have preference in relation to the form of the leaf and bract type.

  17. Characterizing visible and invisible cell wall mutant phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Carpita, Nicholas C.; McCann, Maureen C.

    2015-04-06

    About 10% of a plant's genome is devoted to generating the protein machinery to synthesize, remodel, and deconstruct the cell wall. High-throughput genome sequencing technologies have enabled a reasonably complete inventory of wall-related genes that can be assembled into families of common evolutionary origin. Assigning function to each gene family member has been aided immensely by identification of mutants with visible phenotypes or by chemical and spectroscopic analysis of mutants with ‘invisible’ phenotypes of modified cell wall composition and architecture that do not otherwise affect plant growth or development. This review connects the inference of gene function on the basis of deviation from the wild type in genetic functional analyses to insights provided by modern analytical techniques that have brought us ever closer to elucidating the sequence structures of the major polysaccharide components of the plant cell wall.

  18. Characteristic, inheritance and breeding application of rice mutants with greenable albino leaf

    International Nuclear Information System (INIS)

    Fang Xiantao; Ma Hongli; Zhao Fuyuan; Zhang Qingqi; Zhang Shubiao

    2009-01-01

    Inheritance and main agronomic traits of photo-thermo-sensitive genic male sterile line with green-revertible albino leaf were investigated. The results indicated that the mutants might be divided into three types: albino regreening type (W2, W3, W4 and W10), albino to kelly type (W9) and abino-regreening-albino-regreening type (W1 and W7). Genetic study indicated that green-revertible albino leaf color trait of the mutants as controlled by a single recessive gene. These mutants had similar agronomic traits and fertility characteristics to the corresponding male sterile line 'Peiai 64S'. The hybrids of these mutants had similar characteristics with original-hybrids in plant type, developing of tillers and plant height. The yield components of the mutant hybrids were different depending on different mutants. The yield potential of hybrids of W1, W2 and W3 were similar to the original-hybrid. The results also indicated that W1, W2 and W3 had breeding application value. (authors)

  19. Genetic and Biochemical Analysis of Intragenic Complementation Events among Nitrate Reductase Apoenzyme-Deficient Mutants of Nicotiana Plumbaginifolia

    OpenAIRE

    Pelsy, F.; Gonneau, M.

    1991-01-01

    Intragenic complementation has been observed between apoenzyme nitrate reductase-deficient mutants (nia) of Nicotiana plumbaginifolia. In vivo as in vitro, the NADH-nitrate reductase (NR) activity in plants heterozygous for two different nia alleles was lower than in the wild type plant, but the plants were able to grow on nitrate as a sole nitrogen source. NR activity, absent in extracts of homozygous nia mutants was restored by mixing extracts from two complementing nia mutants. These obser...

  20. Development of an Agrobacterium-Mediated Stable Transformation Method for the Sensitive Plant Mimosa pudica

    Science.gov (United States)

    Mano, Hiroaki; Fujii, Tomomi; Sumikawa, Naomi; Hiwatashi, Yuji; Hasebe, Mitsuyasu

    2014-01-01

    The sensitive plant Mimosa pudica has long attracted the interest of researchers due to its spectacular leaf movements in response to touch or other external stimuli. Although various aspects of this seismonastic movement have been elucidated by histological, physiological, biochemical, and behavioral approaches, the lack of reverse genetic tools has hampered the investigation of molecular mechanisms involved in these processes. To overcome this obstacle, we developed an efficient genetic transformation method for M. pudica mediated by Agrobacterium tumefaciens (Agrobacterium). We found that the cotyledonary node explant is suitable for Agrobacterium-mediated transformation because of its high frequency of shoot formation, which was most efficiently induced on medium containing 0.5 µg/ml of a synthetic cytokinin, 6-benzylaminopurine (BAP). Transformation efficiency of cotyledonary node cells was improved from almost 0 to 30.8 positive signals arising from the intron-sGFP reporter gene by using Agrobacterium carrying a super-binary vector pSB111 and stabilizing the pH of the co-cultivation medium with 2-(N-morpholino)ethanesulfonic acid (MES) buffer. Furthermore, treatment of the explants with the detergent Silwet L-77 prior to co-cultivation led to a two-fold increase in the number of transformed shoot buds. Rooting of the regenerated shoots was efficiently induced by cultivation on irrigated vermiculite. The entire procedure for generating transgenic plants achieved a transformation frequency of 18.8%, which is comparable to frequencies obtained for other recalcitrant legumes, such as soybean (Glycine max) and pea (Pisum sativum). The transgene was stably integrated into the host genome and was inherited across generations, without affecting the seismonastic or nyctinastic movements of the plants. This transformation method thus provides an effective genetic tool for studying genes involved in M. pudica movements. PMID:24533121

  1. Development of an Agrobacterium-mediated stable transformation method for the sensitive plant Mimosa pudica.

    Directory of Open Access Journals (Sweden)

    Hiroaki Mano

    Full Text Available The sensitive plant Mimosa pudica has long attracted the interest of researchers due to its spectacular leaf movements in response to touch or other external stimuli. Although various aspects of this seismonastic movement have been elucidated by histological, physiological, biochemical, and behavioral approaches, the lack of reverse genetic tools has hampered the investigation of molecular mechanisms involved in these processes. To overcome this obstacle, we developed an efficient genetic transformation method for M. pudica mediated by Agrobacterium tumefaciens (Agrobacterium. We found that the cotyledonary node explant is suitable for Agrobacterium-mediated transformation because of its high frequency of shoot formation, which was most efficiently induced on medium containing 0.5 µg/ml of a synthetic cytokinin, 6-benzylaminopurine (BAP. Transformation efficiency of cotyledonary node cells was improved from almost 0 to 30.8 positive signals arising from the intron-sGFP reporter gene by using Agrobacterium carrying a super-binary vector pSB111 and stabilizing the pH of the co-cultivation medium with 2-(N-morpholinoethanesulfonic acid (MES buffer. Furthermore, treatment of the explants with the detergent Silwet L-77 prior to co-cultivation led to a two-fold increase in the number of transformed shoot buds. Rooting of the regenerated shoots was efficiently induced by cultivation on irrigated vermiculite. The entire procedure for generating transgenic plants achieved a transformation frequency of 18.8%, which is comparable to frequencies obtained for other recalcitrant legumes, such as soybean (Glycine max and pea (Pisum sativum. The transgene was stably integrated into the host genome and was inherited across generations, without affecting the seismonastic or nyctinastic movements of the plants. This transformation method thus provides an effective genetic tool for studying genes involved in M. pudica movements.

  2. Evaluation of artemisia mutant lines conducted from gamma irradiation treatment

    International Nuclear Information System (INIS)

    Ragapadmi Purnamaningsih; EG Lestari; M Syukur

    2010-01-01

    Cases of Malaria diseases attack in Indonesia has been increasing. Plasmodium falciparum the cause of malaria disease is now resistant to the usual medicine. One of malaria medicine which recommended by WHO is artemisinine compound extracted from Artemisia annua L plant. Low artemisinine content is one problem of Artemisia development in Indonesia. Increasing genetic variation using gamma irradiation is one alternative method to improve artemisinin content. In 2007, induce mutation had been done to artemisia seeds using gamma irradiation at dosage of 10-100 Gy. The good rooting planlet was regenerated and acclimatized in the green house, and then the seedling (M0 generation) was planted in the field at 1545 m asl. Plants derived from seeds without gamma irradiation treatment and cultured in vitro (in vitro control) were used as control. The result showed there were some morphological variations between the mutant lines (plant height, shape of the leaves and time of flowering). Ten mutant lines were selected based on biomass yield and analyzed for the artemisinine content.The result showed that artemisinine content of the mutant lines ranged from 0.44 - 1.41%, and it was significantly higher than that of in vitro control (0.43%). (author)

  3. Producing Conditional Mutants for Studying Plant Microtubule Function

    Energy Technology Data Exchange (ETDEWEB)

    Richard Cyr

    2009-09-29

    The cytoskeleton, and in particular its microtubule component, participates in several processes that directly affect growth and development in higher plants. Normal cytoskeletal function requires the precise and orderly arrangement of microtubules into several cell cycle and developmentally specific arrays. One of these, the cortical array, is notable for its role in directing the deposition of cellulose (the most prominent polymer in the biosphere). An understanding of how these arrays form, and the molecular interactions that contribute to their function, is incomplete. To gain a better understanding of how microtubules work, we have been working to characterize mutants in critical cytoskeletal genes. This characterization is being carried out at the subcellular level using vital microtubule gene constructs. In the last year of funding colleagues have discovered that gamma-tubulin complexes form along the lengths of cortical microtubules where they act to spawn new microtubules at a characteristic 40 deg angle. This finding complements nicely the finding from our lab (which was funded by the DOE) showing that microtubule encounters are angle dependent; high angles encounters results in catastrophic collisions while low angle encounters result in favorable zippering. The finding of a 40 deg spawn of new microtubules from extant microtubule, together with aforementioned rules of encounters, insures favorable co-alignment in the array. I was invited to write a New and Views essay on this topic and a PDF is attached (News and Views policy does not permit funding acknowledgments and so I was not allowed to acknowledge support from the DOE).

  4. TOMATOMA Update: Phenotypic and Metabolite Information in the Micro-Tom Mutant Resource.

    Science.gov (United States)

    Shikata, Masahito; Hoshikawa, Ken; Ariizumi, Tohru; Fukuda, Naoya; Yamazaki, Yukiko; Ezura, Hiroshi

    2016-01-01

    TOMATOMA (http://tomatoma.nbrp.jp/) is a tomato mutant database providing visible phenotypic data of tomato mutant lines generated by ethylmethane sulfonate (EMS) treatment or γ-ray irradiation in the genetic background of Micro-Tom, a small and rapidly growing variety. To increase mutation efficiency further, mutagenized M3 seeds were subjected to a second round of EMS treatment; M3M1 populations were generated. These plants were self-pollinated, and 4,952 lines of M3M2 mutagenized seeds were generated. We checked for visible phenotypes in the M3M2 plants, and 618 mutant lines with 1,194 phenotypic categories were identified. In addition to the phenotypic information, we investigated Brix values and carotenoid contents in the fruits of individual mutants. Of 466 samples from 171 mutant lines, Brix values and carotenoid contents were between 3.2% and 11.6% and 6.9 and 37.3 µg g(-1) FW, respectively. This metabolite information concerning the mutant fruits would be useful in breeding programs as well as for the elucidation of metabolic regulation. Researchers are able to browse and search this phenotypic and metabolite information and order seeds of individual mutants via TOMATOMA. Our new Micro-Tom double-mutagenized populations and the metabolic information could provide a valuable genetic toolkit to accelerate tomato research and potential breeding programs. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rock, C.D.; Zeevaart, J.A.D. (Michigan State Univ., East Lansing (United States))

    1991-09-01

    The three mutant alleles of the ABA locus of Arabidopsis thaliana result in plants that are deficient in the plant growth regulator abscisic acid (ABA). The authors have used {sup 18}O{sub 2} to label ABA in water-stressed leaves of mutant and wild-type Arabidopsis. Analysis by selected ion monitoring and tandem mass spectrometry of ({sup 18}O)ABA and its catabolites, phaseic acid and ABA-glucose ester ({beta}-D-glucopyranosyl abscisate), indicates that the aba genotypes are impaired in ABA biosynthesis and have a small ABA precursor pool of compounds that contain oxygens on the rings, presumably oxygenated carotenoids (xanthophylls). Quantitation of the carotenoids form mutant and wild-type leaves establishes that the aba alleles cause a deficiency of the epoxy-carotenoids violaxanthin and neoxanthin and an accumulation of their biosynthetic precursor, zeaxanthin. These results provide evidence that ABA is synthesized by oxidative cleavage of epoxy-carotenoids (the indirect pathway). Furthermore the carotenoid mutant they describe undergoes normal greening. Thus the aba alleles provide an opportunity to study the physiological roles of epoxy-carotenoids in photosynthesis in a higher plants.

  6. Radiation induced early maturing mutants in barley

    International Nuclear Information System (INIS)

    Kumar, R.; Chauhan, S.V.S.; Sharma, R.P.

    1978-01-01

    In M 2 generation, two early maturing plants were screened from a single spike progeny of a plant obtained from 20 kR of gamma-ray irradiation of a six-rowed barley (Hordeum vulgare L. var. Jyoti). Their true breeding nature was confirmed in M 3 generation. These mutants flower and mature 38 and 22 days earlier than those of control. (auth.)

  7. Homologous series of induced early mutants in indican rice. Pt.1. The production of homologous series of early mutants

    International Nuclear Information System (INIS)

    Chen Xiulan; Yang Hefeng; He Zhentian; Han Yuepeng; Liu Xueyu

    1999-01-01

    The percentage of homologous series of early mutants induced from the same Indican rice variety were almost the same (1.37%∼1.64%) in 1983∼1993, but the ones from the different eco-typical varieties were different. The early variety was 0.73%, the mid variety was 1.51%, and the late variety was 1.97%. The percentage of homologous series of early mutants from the varieties with the same pedigree and relationship were similar, but the one from the cog nation were lower than those from distant varieties. There are basic laws and characters in the homologous series of early mutants: 1. The inhibited phenotype is the basic of the homologous series of early mutants; 2. The production of the homologous series of early mutants is closely related with the growing period of the parent; 3. The parallel mutation of the stem and leaves are simultaneously happened with the variation of early or late maturing; 4. The occurrence of the homologous series of early mutants is in a state of imbalance. According to the law of parallel variability, the production of homologous series of early mutants can be predicted as long as the parents' classification of plant, pedigree and ecological type are identified. Therefore, the early breeding can be guided by the law of homologous series of early mutants

  8. The Mechanism Forming the Cell Surface of Tip-Growing Rooting Cells Is Conserved among Land Plants.

    Science.gov (United States)

    Honkanen, Suvi; Jones, Victor A S; Morieri, Giulia; Champion, Clement; Hetherington, Alexander J; Kelly, Steve; Proust, Hélène; Saint-Marcoux, Denis; Prescott, Helen; Dolan, Liam

    2016-12-05

    To discover mechanisms that controlled the growth of the rooting system in the earliest land plants, we identified genes that control the development of rhizoids in the liverwort Marchantia polymorpha. 336,000 T-DNA transformed lines were screened for mutants with defects in rhizoid growth, and a de novo genome assembly was generated to identify the mutant genes. We report the identification of 33 genes required for rhizoid growth, of which 6 had not previously been functionally characterized in green plants. We demonstrate that members of the same orthogroup are active in cell wall synthesis, cell wall integrity sensing, and vesicle trafficking during M. polymorpha rhizoid and Arabidopsis thaliana root hair growth. This indicates that the mechanism for constructing the cell surface of tip-growing rooting cells is conserved among land plants and was active in the earliest land plants that existed sometime more than 470 million years ago [1, 2]. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Isoenzymes performance of some rice varieties and their mutants

    International Nuclear Information System (INIS)

    Winarno, Ermin; Suliwarno, Ambyah; Ismachin, M.

    1992-01-01

    Isoenzymes performance of some rice varieties and their mutants. Genetics studies on alcohol dehydrogenase, malic enzyme, peroxidase, acid phosphase, and aminopeptidase isoenzymes were carried out on several groups of rice varieties and their mutant lines. The first groups consisted of Atomita I, Pelita I/1, A227/5, Mudgo, TN-1, and IR-26. The second group was Cisadane variety and its five mutants, namely OBS 18, OBS 208, OBS 297, OBS 306, and OBS 330. The third group was mutants line 627-10-3 and its mutants, namely 1063, 1066, 1067, 1076, and 1090. Isoenzymes extracts of the rice leaves were fractionated using polyacrylamide gel disc electrophoresis. The pattern of acid phosphate isoenzyme shows the specific character of rice mutants susceptible to brown plant hopper biotype 1. The gene(s) controlling malic enzyme in Cisadane's mutants is (are) estimated more resistant toward gamma irradiation than gene(s) responsible for controlling the other enzymes. Generally, the isoenzymes zymograms show that gene(s) controlling the mutants enzyme have undergone mutation. This case is shown by the changes of Rm value, as well as the amount and intensity of mutants bands. (authors). 7 refs., 7 figs

  10. Responses of Soybean Mutant Lines to Aluminium under In Vitro and In Vivo Condition

    International Nuclear Information System (INIS)

    Yuliasti; Sudarsono

    2011-01-01

    The main limited factors of soybean plants expansion in acid soil are Aluminium (Al) toxicity and low pH. The best approach to solve this problem is by using Al tolerance variety. In vitro or in vivo selections using selective media containing AlCl 3 and induced callus embryonic of mutant lines are reliable methods to develop a new variety. The objectives of this research are to evaluate response of soybean genotypes against AlCl 3 under in vitro and in vivo condition. Addition of 15 part per million (ppm) AlCl 3 into in vitro and in vivo media severely affected plant growth. G3 soybean mutant line was identified as more tolerant than the control soybean cultivar Tanggamus. This mutant line was able to survive under more severe AlCl 3 concentrations (15 ppm) under in vitro conditions. Under in vivo conditions, G1 and G4 mutants were also identified as more tolerant than Tanggamus since they produced more pods and higher dry seed weigh per plant. Moreover, G4 mutant line also produced more dry seed weight per plant than Tanggamus when they were grown on soil containing high Al concentration 8.1 me/100 gr = 81 ppm Al +3 . (author)

  11. Plant regeneration of bananas Ambon kuning and Barangan mutant lines were carried out by using female organ and shoot-tip as explants source

    International Nuclear Information System (INIS)

    Dewi, Azri K; Ishak

    1998-01-01

    Plant regeneration of bananas Ambon Kuning and Barangan mutant lines were carried out by using female organ and shoot-tip as explants source. Female organ was taken from heart of banana stem, while shoot-tip taken from sucker in banana plantation at Pasar Jumat, Jakarta. Those explants were cultured on MS medium containing 3 mg/l BAP, 0.5 mg/l IAA and supplemented by 100 tyrosin and 80 mg/l adenin hemisulphate. Observation showed that 180 and 42 buds were obtained from JBR 02 mutant lines respectively, while 84 and 79 buds for JAK 01 and JAK 02 respectively. The highest shoot formation was 1.013 shoots were obtained from BRC variety and lowest one was JBR 01 mutant line. statistical data analysis indicated that shoot formation between BRC variety and another mutant lines were significant difference using LSD test at level 0.05. Plantlet formation derived from female organ as well as shoot-tip showed that BRC variety produced number of plantlets per bottle was higher that another one. (author)

  12. Genetic and agronomic evaluation of induced semi-dwarf mutants of rice

    International Nuclear Information System (INIS)

    Rutger, J.N.

    1984-01-01

    Induced semi-dwarf mutants have played an important role in California's rapid shift from nearly all tall rice varieties in 1978 to nearly all semi-dwarf varieties at present. In 1981 over half of the California rice area was planted with semi-dwarf varieties carrying the induced mutant semi-dwarfing gene sd 1 , while much of the other half was planted to a variety deriving its semi-dwarfism from IR8. The sd 1 mutant is allelic to the major semi-dwarfing gene in DGWG and IR8. Current objectives are to determine the inheritance of new semi-dwarf mutants, including allelism tests with sd 1 , and to evaluate the agronomic potential of nonallelic sources and of double-dwarfs. To date semi-dwarf mutants from 10 varieties have been partially or completely evaluated. At least three nonallelic semi-dwarfing genes, sd 1 , sd 2 , and sd 4 , have been described. Rather than attempt to determine all possible allelic relationships of new mutants, crosses are being made only to the reference sd 1 source, since sd 1 , still seems to be the most productive semi-dwarfing gene source. However, nonallelic semi-dwarf mutants in the varieties M5 and Labelle may be useful if genetic vulnerability from widespread usage of the sd 1 source becomes a problem. (author)

  13. Induction of mutants in Durum Wheat by hybridization and irradiation techniques

    International Nuclear Information System (INIS)

    Al Ubaidi, M.O.; Ibrahim, I.F.

    2001-01-01

    This investigation presents a breeding program for induction and development a new genotypes of durum wheat, resistant to lodging with high yield, by irradiated seeds (F2) of durum wheat hybrid's (Sin Al-jemal X Izraa, Sin Al-Jemal X Cocorat and Izraa X Cocorat) with gamma rays 100 Gy dose. This program involves: Induction of variability, selection, evaluation of the best mutants at three different locations, Twaitha(Baghdad), Latifya (Babylon) and Swari (Kutt), for the period 1990-1999. Results revealed that the mutants ( Si X Iz-7, Si X Iz-22, Si X Co-43, Si X Co-48, Si X Co-50, Si X Co- 87, Iz X Co-95 and Iz X Co-105) showed resistance to lodging with a significant reduction in plant heigth, but mutant Si X Iz-22 surpassed the other mutants and it is origin in lodging resistance and reduction in plant heigth (84.8, 81.9 and 86.3 cm) at Twaitha, Latifya and Babylon respectively in M7 and M8 generations. Also there were a significant differences between the mutants and their origin in yield and yield components during the two successive generations, on the other hand mutant Iz X Co-105 surpassed the other mutants in spikes/m2 ( 278.8, 263.3 and 289) and grain yield (4950, 4820 and 5320 kg/ha) in the testing locations respectively

  14. Molecular analysis of mutant and wild type alcohol dehydrogenase alleles from Drosophila

    International Nuclear Information System (INIS)

    Batzer, M.A.

    1988-01-01

    Wild type alcohol dehydrogenase polypeptides (ADH) from Drosophila melanogaster transformants were examined using western blots and polyclonal antiserum specific for Drosophila melanogaster ADH. Mutants induced in Drosophila spermatozoa at the alcohol dehydrogenase (Adh) locus using X-rays, 1-ethyl-1-nitrosourea (ENU) or ethyl methanesulfonate (EMS) were characterized using genetic complementation tests, western blots, Southern blots, northern blots and enzymatic amplification of the Adh locus. Genetic complementation tests showed that 22/30 X-ray-induced mutants, and 3/13 ENU and EMS induced mutants were multi-locus deficiencies. Western blot analysis of the intragenic mutations showed that 4/7 X-ray-induced mutants produced detectable polypeptides, one of which was normal in molecular weight and charge. In contrast 8/10 intragenic ENU and EMS induced mutants produced normal polypeptides. Southern blot analysis showed that 5/7 intragenic X-ray induced mutants and all 10 of the intragenic ENU and EMS induced mutants were normal with respect to the alleles they were derived from

  15. Mutants with Enhanced Nitrogenase Activity in Hydroponic Azospirillum brasilense-Wheat Associations

    Science.gov (United States)

    Pereg Gerk, Lily; Gilchrist, Kate; Kennedy, Ivan R.

    2000-01-01

    The effect of a mutation affecting flocculation, differentiation into cyst-like forms, and root colonization on nitrogenase expression by Azospirillum brasilense is described. The gene flcA of strain Sp7 restored these phenotypes in spontaneous mutants of both strains Sp7 and Sp245. Employing both constitutive pLA-lacZ and nifH-lacZ reporter fusions expressed in situ, the colony morphology, colonization pattern, and potential for nitrogenase activity of spontaneous mutants and flcA Tn5-induced mutants were established. The results of this study show that the ability of Sp7 and Sp245 mutant strains to remain in a vegetative form improved their ability to express nitrogenase activity in association with wheat in a hydroponic system. Restoring the cyst formation and colonization pattern to the spontaneous mutant Sp7-S reduced nitrogenase activity rates in association with plants to that of the wild-type Sp7. Although Tn5-induced flcA mutants showed higher potentials for nitrogenase expression than Sp7, their potentials were lower than that of Sp7-S, indicating that other factors in this strain contribute to its exceptional nitrogenase activity rates on plants. The lack of lateral flagella is not one of these factors, as Sp7-PM23, a spontaneous mutant impaired in swarming and lateral-flagellum production but not in flocculation, showed wild-type nitrogenase activity and expression. The results also suggest factors of importance in evolving an effective symbiosis between Azospirillum and wheat, such as increasing the availability of microaerobic niches along the root, increased supply of carbon sources by the plant, and the retention of the bacterial cells in vegetative form for faster metabolism. PMID:10788397

  16. Some mutants in maize obtained by irradiation with thermal neutrons

    International Nuclear Information System (INIS)

    Diaconu, P.

    1993-01-01

    Irradiation was carried out at the Bucharest Institute of Atomic Physics and the National Laboratory Brookhaven, USA. A description is given of 22 genic mutants affecting leaf color, plant size, and branching capacity. Characteristics related to pollen fertility and the vegetative period were affected in all the mutants. Improvement of pollen fertility was attempted over four generations without success. The maize mutants obtained by irradiation may be considered as being without practical significance. (author). 7 figs., 1 tab. 11 ref

  17. Study on the generation technology of Li brocade pattern mutant genes based on the AI and Java technology

    Science.gov (United States)

    Zhou, Yuping; Zhang, Qi

    2018-04-01

    In the information environment, digital and information processing to Li brocade patterns reveals an important means of Li ethnic style and inheriting the national culture. Adobe Illustrator CS3 and Java language were used in the paper to make "variation" processing to Li brocade patterns, and generate "Li brocade pattern mutant genes". The generation of pattern mutant genes includes color mutation, shape mutation, adding and missing transform, and twisted transform, etc. Research shows that Li brocade pattern mutant genes can be generated by using the Adobe Illustrator CS3 and the image processing tools of Java language edit, etc.

  18. Whole-genome analysis of herbicide-tolerant mutant rice generated by Agrobacterium-mediated gene targeting.

    Science.gov (United States)

    Endo, Masaki; Kumagai, Masahiko; Motoyama, Ritsuko; Sasaki-Yamagata, Harumi; Mori-Hosokawa, Satomi; Hamada, Masao; Kanamori, Hiroyuki; Nagamura, Yoshiaki; Katayose, Yuichi; Itoh, Takeshi; Toki, Seiichi

    2015-01-01

    Gene targeting (GT) is a technique used to modify endogenous genes in target genomes precisely via homologous recombination (HR). Although GT plants are produced using genetic transformation techniques, if the difference between the endogenous and the modified gene is limited to point mutations, GT crops can be considered equivalent to non-genetically modified mutant crops generated by conventional mutagenesis techniques. However, it is difficult to guarantee the non-incorporation of DNA fragments from Agrobacterium in GT plants created by Agrobacterium-mediated GT despite screening with conventional Southern blot and/or PCR techniques. Here, we report a comprehensive analysis of herbicide-tolerant rice plants generated by inducing point mutations in the rice ALS gene via Agrobacterium-mediated GT. We performed genome comparative genomic hybridization (CGH) array analysis and whole-genome sequencing to evaluate the molecular composition of GT rice plants. Thus far, no integration of Agrobacterium-derived DNA fragments has been detected in GT rice plants. However, >1,000 single nucleotide polymorphisms (SNPs) and insertion/deletion (InDels) were found in GT plants. Among these mutations, 20-100 variants might have some effect on expression levels and/or protein function. Information about additive mutations should be useful in clearing out unwanted mutations by backcrossing. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  19. Induction of two mutants in birdsfoot trefoil (Lotus corniculatus) by x-rays and chemical mutagens

    International Nuclear Information System (INIS)

    Therrien, M.C.; Grant, W.F.

    1982-01-01

    The mutagenic effects of X-rays, ethyl methanesulfonate (EMS), 8-ethoxycaffeine (EOC), N-hydroxyurea (HU) and 2-aminopurine (2AP) on seed treatment of birdsfoot trefoil (Lotus corniculatus L. 'Mirabel') were assessed over four generations. Mutants were recovered in the M 2 , M 3 and M 4 generations from selfed lines, from crosses derived form selfed lines and from open pollination lines. Mutant plants exhibiting vestigial floret character were recovered from X-rays, EMS, EOC and HU treatments. Mutant chlorotica plants were obtained from EMS treatment only. No mutants were recovered from 2AP treatment, EMS, the most effective mutagen, produced nine vestigial floret and 12 chlorotica mutants. Mutants were obtained from only one exposure of X-rays (12 krad). There was evidence for preferential elimination of gametes. The chlorotica and vestigial floret mutants were inherited as tetrasomic recessives. Mutation frequencies of 0.4 - 3.1% in a tetrasomic background are indicative of the effectiveness of EMS in birdsfoot trefoil

  20. Induction of two mutants in birdsfoot trefoil (Lotus corniculatus) by x-rays and chemical mutagens

    Energy Technology Data Exchange (ETDEWEB)

    Therrien, M.C.; Grant, W.F. (McGill Univ., Ste. Anne de Bellevue, Quebec (Canada). Macdonald Coll.)

    1982-10-01

    The mutagenic effects of X-rays, ethyl methanesulfonate (EMS), 8-ethoxycaffeine (EOC), N-hydroxyurea (HU) and 2-aminopurine (2AP) on seed treatment of birdsfoot trefoil (Lotus corniculatus L. 'Mirabel') were assessed over four generations. Mutants were recovered in the M/sub 2/, M/sub 3/ and M/sub 4/ generations from selfed lines, from crosses derived form selfed lines and from open pollination lines. Mutant plants exhibiting vestigial floret character were recovered from X-rays, EMS, EOC and HU treatments. Mutant chlorotica plants were obtained from EMS treatment only. No mutants were recovered from 2AP treatment, EMS, the most effective mutagen, produced nine vestigial floret and 12 chlorotica mutants. Mutants were obtained from only one exposure of X-rays (12 krad). There was evidence for preferential elimination of gametes. The chlorotica and vestigial floret mutants were inherited as tetrasomic recessives. Mutation frequencies of 0.4 - 3.1% in a tetrasomic background are indicative of the effectiveness of EMS in birdsfoot trefoil.

  1. Flower morphology of Dendrobium Sonia mutants

    International Nuclear Information System (INIS)

    Sakinah Ariffin; Azhar Mohamad; Affrida Abu Hassan; Zaiton Ahmad; Mohd Nazir Basiran

    2010-01-01

    Dendrobium Sonia is a commercial hybrid which is popular as cut flower and potted plant in Malaysia. Variability in flower is important for new variety to generate more demands and choices in selection. Mutation induction is a tool in creating variability for new flower color and shape. In vitro cultures of protocorm-like bodies (PLBs) were exposed to gamma ray at dose 35 Gy. Phenotypic characteristics of the flower were observed at fully bloomed flower with emphasis on shape and color. Approximately 2000 regenerated irradiated plants were observed and after subsequent flowering, 100 plants were finally selected for further evaluation. Most of the color and shape changes are expressed in different combinations of petal, sepal and lip of the flower. In this work, 11 stable mutants were found different at flower phenotype as compared to control. Amongst these, four mutant varieties with commercial potential has been named as Dendrobium 'SoniaKeenaOval', Dendrobium 'SoniaKeenaRadiant', Dendrobium 'SoniaKeenaHiengDing' and Dendrobium 'Sonia KeenaAhmadSobri'. In this paper, variations in flower morphology and flower color were discussed, giving emphasis on variations in flower petal shape. (author)

  2. Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes.

    Science.gov (United States)

    Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich

    2012-02-01

    The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information.

  3. Phenotypic characterization and inheritance of two foliar mutants in pea (Pisum Sativum L.): 'Reduced leaf size' and 'Orange leaf'

    International Nuclear Information System (INIS)

    Naidenova, N.; Vassilevska-Ivanova, R.; Tcekova, Z.

    2003-01-01

    Two foliar pea (Pisum sativum L.) mutants characterized by reduced leaf size (2/978) and orange leaf (2/1409 M) were established. Both mutants were described morphologically and their productivity potential , pollen viability and inheritance of the mutant traits were evaluated. The mutant 2/978 was identified after irradiation of dry seeds from cv Borek with 15 Gy fast neutrons and was related to the leaf mutation 'rogue'. Reciprocal crosses between mutant 2/978 and cv Borel were executed, and F 1 and F 2 generations were analyzed. The altered leaf trait was presented in all F 1 plants suggesting a dominant character. F 2 segregation data indicated that the trait was controlled by a single dominant gene. The mutant 2/1409M originated from the mutant 2/978 after irradiation with 50 Gy γ-rays. The main mutant's phenotypic characteristic was the orange-yellow coloration of leaves and plants. After of series of crosses it was established that induced chlorophyll mutation is monogenic, recessive and both mutant traits are independently inherited. Two mutants could be used as appropriate plant material for genetic and biological investigations

  4. An intellectual property sharing initiative in agricultural biotechnology: development of broadly accessible technologies for plant transformation.

    Science.gov (United States)

    Chi-Ham, Cecilia L; Boettiger, Sara; Figueroa-Balderas, Rosa; Bird, Sara; Geoola, Josef N; Zamora, Pablo; Alandete-Saez, Monica; Bennett, Alan B

    2012-06-01

    The Public Intellectual Property Resource for Agriculture (PIPRA) was founded in 2004 by the Rockefeller Foundation in response to concerns that public investments in agricultural biotechnology benefiting developing countries were facing delays, high transaction costs and lack of access to important technologies due to intellectual property right (IPR) issues. From its inception, PIPRA has worked broadly to support a wide range of research in the public sector, in specialty and minor acreage crops as well as crops important to food security in developing countries. In this paper, we review PIPRA's work, discussing the failures, successes, and lessons learned during its years of operation. To address public sector's limited freedom-to-operate, or legal access to third-party rights, in the area of plant transformation, we describe PIPRA's patent 'pool' approach to develop open-access technologies for plant transformation which consolidate patent and tangible property rights in marker-free vector systems. The plant transformation system has been licensed and deployed for both commercial and humanitarian applications in the United States (US) and Africa, respectively. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  5. Transformation of pecan and regeneration of transgenic plants.

    Science.gov (United States)

    McGranahan, G H; Leslie, C A; Dandekar, A M; Uratsu, S L; Yates, I E

    1993-09-01

    A gene transfer system developed for walnut (Juglans regia L.) was successfully applied to pecan (Carya illinoensis [Wang] K. Koch). Repetitively embryogenic somatic embryos derived from open-pollinated seed of 'Elliott', 'Wichita', and 'Schley' were co-cultivated with Agrobacterium strain EHA 101/pCGN 7001, which contains marker genes for beta-glucuronidase activity and resistance to kanamycin. Several modifications of the standard walnut transformation techniques were tested, including a lower concentration of kanamycin and a modified induction medium, but these treatments had no measurable effect on efficiency of transformation. Nineteen of the 764 viable inoculated embryos produced transgenic subclones; 13 of these were from the line 'Elliott'6, 3 from 'Schley'5/3, and 3 from 'Wichita'9. Transgenic embryos of 'Wichita'9 germinated most readily and three subclones were successfully micropropagated. Three transgenic plants of one of these subclones were obtained by grafting the tissue cultured shoots to seedling pecan rootstock in the greenhouse. Gene insertion, initially detected by GUS activity, was confirmed by detection of integrated T-DNA sequences using Southern analysis.

  6. Genetic identification of a dwarf mutant in cucumber ( Cucumis ...

    African Journals Online (AJOL)

    The dwarf (compact) plant architecture is an important trait in cucumber (Cucumis sativus L.) breeding. A dwarf type mutant was selected from the cucumbers. The morphological and reproductive characteristics of the dwarf were compared with the vine plants. The dwarf type of cucumbers is characterized by its short ...

  7. Anatomia foliar de microtomateiros fitocromo-mutantes e ultra-estrutura de cloroplastos Leaf anatomy of micro-tomato phytochrome-mutants and chloroplast ultra-structure

    Directory of Open Access Journals (Sweden)

    Hyrandir Cabral de Melo

    2011-02-01

    Full Text Available Plantas fitocromo-mutantes têm sido utilizadas com o intuito de caracterizar isoladamente, dentre os demais fotorreceptores, a ação dos fitocromos sobre eventos ligados à fotomorfogênese. Raros são os estudos que relatam a ação dos fitocromos sobre aspectos estruturais, embora sejam fundamentais à compreensão do desenvolvimento das plantas. Neste trabalho, objetivou-se analisar características ultraestruturais de cloroplastos e aspectos anatômicos foliares dos microtomateiros (Solanum lycopersicum L. cv. Micro-Tom fitocromo-mutantes aurea (subexpressa fitocromos, hp1 e atroviolacea (ambos supra-responsivos a eventos mediados por fitocromo em plantas em estágio de floração. Observou-se que os fitocromos são responsáveis pela expressão de muitas características anatômicas da epiderme foliar, assim como do mesofilo e da ultraestrutura dos cloroplastos.Phytochrome-mutant plants have been used for phytochrome action characterization among all photoreceptors, in events of photomorphogenesis. Studies relating the phytochrome action on structural aspects, which are fundamental to the comprehension of plant development, are rare. The objective of this work was to analyze chloroplast ultra structure and leaf anatomical characteristics of micro-tomatos (Solanum lycopersicum L. cv. Micro-Tom phytochrome-mutants aurea (sub express phytochrome, hp1 and atroviolacea (both super express phytochrome events-mediated in plants in the flowering stage. The results show that phytochromes are responsible for the expression of many characteristics of leaf epidermis, mesophyll and chloroplast ultra-structure.

  8. An improved ternary vector system for Agrobacterium-mediated rapid maize transformation.

    Science.gov (United States)

    Anand, Ajith; Bass, Steven H; Wu, Emily; Wang, Ning; McBride, Kevin E; Annaluru, Narayana; Miller, Michael; Hua, Mo; Jones, Todd J

    2018-05-01

    A simple and versatile ternary vector system that utilizes improved accessory plasmids for rapid maize transformation is described. This system facilitates high-throughput vector construction and plant transformation. The super binary plasmid pSB1 is a mainstay of maize transformation. However, the large size of the base vector makes it challenging to clone, the process of co-integration is cumbersome and inefficient, and some Agrobacterium strains are known to give rise to spontaneous mutants resistant to tetracycline. These limitations present substantial barriers to high throughput vector construction. Here we describe a smaller, simpler and versatile ternary vector system for maize transformation that utilizes improved accessory plasmids requiring no co-integration step. In addition, the newly described accessory plasmids have restored virulence genes found to be defective in pSB1, as well as added virulence genes. Testing of different configurations of the accessory plasmids in combination with T-DNA binary vector as ternary vectors nearly doubles both the raw transformation frequency and the number of transformation events of usable quality in difficult-to-transform maize inbreds. The newly described ternary vectors enabled the development of a rapid maize transformation method for elite inbreds. This vector system facilitated screening different origins of replication on the accessory plasmid and T-DNA vector, and four combinations were identified that have high (86-103%) raw transformation frequency in an elite maize inbred.

  9. Activation of the JNK pathway is essential for transformation by the Met oncogene.

    Science.gov (United States)

    Rodrigues, G A; Park, M; Schlessinger, J

    1997-05-15

    The Met/Hepatocyte Growth Factor (HGF) receptor tyrosine kinase is oncogenically activated through a rearrangement that creates a hybrid gene Tpr-Met. The resultant chimeric p65(Tpr-Met) protein is constitutively phosphorylated on tyrosine residues in vivo and associates with a number of SH2-containing signaling molecules including the p85 subunit of PI-3 kinase and the Grb2 adaptor protein, which couples receptor tyrosine kinases to the Ras signaling pathway. Mutation of the binding site for Grb2 impairs the ability of Tpr-Met oncoprotein to transform fibroblasts, suggesting that the activation of the Ras/MAP kinase signaling pathway through Grb2 may be essential for cellular transformation. To test this hypothesis dominant-negative mutants of Grb2 with deletions of the SH3 domains were introduced into Tpr-Met transformed fibroblasts. Cells overexpressing the mutants were found to be morphologically reverted and exhibited reduced growth in soft agar. Surprisingly, the Grb2 mutants blocked activation of the JNK/SAPK but not MAP kinase activity induced by the Tpr-Met oncoprotein. Additionally, cells expressing dominant-negative Grb2 mutants had reduced PI-3-kinase activity and dominant-negative mutants of Rac1 blocked both Tpr-Met-induced transformation and activation of JNK. These experiments reveal a novel link between Met and the JNK pathway, which is essential for transformation by this oncogene.

  10. Generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation

    Directory of Open Access Journals (Sweden)

    Wang Genping

    2016-09-01

    Full Text Available Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154 and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154 were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation will be useful to facilitate the creation of ‘clean’ GM wheat containing only the foreign genes of agronomic importance.

  11. Generation of Marker- and/or Backbone-Free Transgenic Wheat Plants via Agrobacterium-Mediated Transformation.

    Science.gov (United States)

    Wang, Gen-Ping; Yu, Xiu-Dao; Sun, Yong-Wei; Jones, Huw D; Xia, Lan-Qin

    2016-01-01

    Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM) crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154, and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants, and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154) were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium -mediated transformation will be useful to facilitate the creation of "clean" GM wheat containing only the foreign genes of agronomic importance.

  12. A KAS2 cDNA complements the phenotypes of the Arabidopsis fab1 mutant that differs in a single residue bordering the substrate binding pocket

    DEFF Research Database (Denmark)

    Carlsson, A.S.; LaBrie, S.T.; Kinney, A.J.

    2002-01-01

    The fab1 mutant of Arabidopsis is partially deficient in activity of ß-ketoacyl-[acyl carrier protein] synthase II (KAS II). This defect results in increased levels of 16 : 0 fatty acid and is associated with damage and death of the mutants at low temperature. Transformation of fab1 plants with a c......DNA from Brassica napus encoding a KAS II enzyme resulted in complementation of both mutant phenotypes. The dual complementation by expression of the single gene proves that low-temperature damage is a consequence of altered membrane unsaturation. The fab1 mutation is a single nucleotide change...... chain to bend. For functional analysis the equivalent Leu207Phe mutation was introduced into the fabB gene encoding the E. coli KAS I enzyme. Compared to wild-type, the Leu207Phe protein showed a 10-fold decrease in binding affinity for the fatty acid substrate, exhibited a modified behavior during size...

  13. Elevated expression of ribosomal protein genes L37, RPP-1, and S2 in the presence of mutant p53.

    Science.gov (United States)

    Loging, W T; Reisman, D

    1999-11-01

    The wild-type p53 protein is a DNA-binding transcription factor that activates genes such as p21, MDM2, GADD45, and Bax that are required for the regulation of cell cycle progression or apoptosis in response to DNA damage. Mutant forms of p53, which are transforming oncogenes and are expressed at high levels in tumor cells, generally have a reduced binding affinity for the consensus DNA sequence. Interestingly, some p53 mutants that are no longer effective at binding to the consensus DNA sequence and transactivating promoters containing this target site have acquired the ability to transform cells in culture, in part through their ability to transactivate promoters of a number of genes that are not targets of the wild-type protein. Certain p53 mutants are therefore considered to be gain-of-function mutants and appear to be promoting proliferation or transforming cells through their ability to alter the expression of novel sets of genes. Our goal is to identify genes that have altered expression in the presence of a specific mutant p53 (Arg to Trp mutation at codon 248) protein. Through examining differential gene expression in cells devoid of p53 expression and in cells that express high levels of mutant p53 protein, we have identified three ribosomal protein genes that have elevated expression in response to mutant p53. Consistent with these findings, the overexpression of a number of ribosomal protein genes in human tumors and evidence for their contribution to oncogenic transformation have been reported previously, although the mechanism leading to this overexpression has remained elusive. We show results that indicate that expression of these specific ribosomal protein genes is increased in the presence of the R248W p53 mutant, which provides a mechanism for their overexpression in human tumors.

  14. Mutation techniques in sesame (Sesamum indicum L.) for intensive management: confirmed mutants

    International Nuclear Information System (INIS)

    Cagirgan, M.I.

    2001-01-01

    Seeds of four sesame cultivars, Muganli-57, Oezberk-82, Camdibi and Goelmarmara were irradiated in the range of 150-750 Gy doses of gamma rays in three different experiments. Irradiated seeds with their controls were sown in 1994, 1995 and 1997 to grow M 1 . Three different harvesting procedures were applied to the M 1 populations, i.e., plant harvesting, branch harvesting and bulk harvesting. M 2 generations, therefore, were both grown as progeny rows and bulk populations. Potential mutants fitting the breeding objectives were selected after careful screening during the growing period; there were mutations for closed capsule, determinate growth habit, wilting tolerance, chlorophyll deficiency, hairy capsule and multicarpelate, sterility as well as in quantitative traits such as flowering time, capsule size, plant height. In M 3 , the selected mutants with their normal looking sibs from the same progeny were grown again to confirm mutant traits in progeny rows of 2 meters length and 40 cm apart. After emergence, the plants within a row were thinned to 5 cm apart. Normal agronomic practices were applied to the nurseries. It was finally concluded that recovering unique induced mutants, such as closed capsules, is not a matter of ''luck'' but the result of growing large M 2 populations, preferably in plant progeny rows, and careful screening. (author)

  15. The agronomic characters of a high protein rice mutant

    International Nuclear Information System (INIS)

    Harn, C.; Won, J.L.; Choi, K.T.

    1975-01-01

    Mutant lines (M 5 -M 9 ) of macro-phenotypic traits from several varieties were screened for the protein content. Mutant 398 (M 9 ) is one of the high protein mutants selected from Hokwang. Three years' tests revealed that it has a high protein line under any condition of cultivation. Except for early maturity and short culmness, other agronomic and yield characters were similar to the original variety. There was no difference between the mutant 398 and its mother variety in grain shape and weight, and also the size and protein content of the embryo. The high protein content of the mutant is attributable to the increase of protein in the endosperm. About 150 normal-looking or a few days-earlier-maturing selections were made from Jinheung variety in the M 3 and screened for protein. Promising lines in terms of the plant type, yield and protein were obtained. (author)

  16. Genetics and physiology of the nuclearly inherited yellow foliar mutants in soybean

    Science.gov (United States)

    Plant photosynthetic pigments are important in harvesting the light energy and transfer of energy during photosynthesis. There are several yellow foliar mutants discovered in soybean and chromosomal locations for about half of them have been deduced. Viable-yellow mutants are capable of surviving wi...

  17. Novel enabling technologies of gene isolation and plant transformation for improved crop protection

    Energy Technology Data Exchange (ETDEWEB)

    Torok, Tamas

    2013-02-04

    Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

  18. Radiation induced mutants in cassava (Manihot esculenta Crantz)

    International Nuclear Information System (INIS)

    Nayar, G.G.; Rajendran, P.G.

    1987-01-01

    Full text: Stem cuttings and true seeds of three promising cultivars of cassava were exposed respectively to 1 to 5 kR and 10 to 50 kR acute gamma rays from a 60 Co source. Treatments of stem cuttings beyond 5 kR and seeds beyond 50 kR were lethal. One mutant each in the cultivars M4, H-165 and H-2304 was obtained from the stem irradiated populations. Another mutant was found in the seed irradiated progeny of H-2304. The mutant of M4 is characterised by light green (chlorina) leaves. The mutant of H-165 shows significantly shorter petiole (22,5 against 35.2 cm) and narrow leaf lobes, while the H-2304 mutant shows speckled leaves, branching and early flowering. The mutant found in the seed irradiated progeny of H-2304 is having yellow tuber flesh indicating the presence of carotene. The mutants may be useful in studies related to basic information as well as in practical breeding. The chlorina mutant in M4 showed slow growth and high HCN content in leaves. Late branching may be a useful trait in the traditionally non-branching clones of cassava to maintain the desirable leaf area index during high leaf fall period. Early flowering could be useful in a recombinant breeding programme. The tuber yield of the short petiole mutant in H-165 increased by 20% - 25% through closer planting. The narrow leaf lobes of this mutant permit better light penetration to lower leaves. (author)

  19. The types and genetic analysis of radiation induced early maturity mutants of rice

    International Nuclear Information System (INIS)

    Yang Hefeng; Chen Xiulan; He Zhengtian; Gu Shiliang; Xu Chenwu

    1989-01-01

    Observation and correlation analysis were made for 50 early mutant lines,The early mutant lines fall into late type of early-maturity rice, and early type of mid- maturity rice, some of which are valuable as materials of rice breeding.With shorter growing period, the mutants have less inter-nodes and leaf numbers on main culm, shorter leaf and panicle length, and less filled grains and yield per plant, but have higher Protein content.Among 20 traits observed, 7 were significantly correlated with the length of growing period.The genetic parameter analysis for the mutant lines indicates that the length of growing period, plant height, grain number per panicle, 1000-grain weight have high heritability, Non-filled grain rate, secondary branch, number of panicle, grain number per panicle have larger genetic coefficient of variation and larger gain of selection

  20. Soybean promising mutant lines super early maturity Q-298 and 4-Psj

    International Nuclear Information System (INIS)

    Arwin; Mulyana, H.I.; Tarmizi; Masrizal; Faozi, K.; Adie, M.

    2012-01-01

    One of the efforts to increase the national soybean (Glycine max L. Merr.) production is by growing super early maturity with high yielding varieties, so that the planting time can be shortened to fill out the cropping pattern of ''rice-rice-soybean''. Such varieties can be developed through mutation breeding method using γ ray irradiation. In this research the seeds of Tidar variety were irradiated by 200 Gy γ ray from 60 Co. Irradiated seeds were planted in the field and selections with emphasis on early maturing character were conducted in M 2 generation. Selected plants were purified to M 7 generation and selected pure mutant lines were subjected to preliminary and advanced yield trials. Based on these results 5 promising mutant lines were selected to continue in multi location yield trials. A set of lines for multi location yield trials consist of 14 lines included 5 mutant lines from this experiment, 5 lines from UNSUD, 3 national leading varieties, Argomulyo, Gorobogan, Burangrang, as national control varieties and Tidar as an original of mutant lines. Based on the result of multi location yield trials, 2 mutant lines, Q-298 dan 4-Psj, have significant high productivities compared to productivities of other lines and varieties. The growth duration of these lines were only 66 days and 68 days, respectively with average productivities were 2.41 tons / ha and 2.42 tons / ha, respectively. Index stability of Q-298 and 4-Psj mutant lines were 0.84 and 0.79, respectively, it means that the productivities of these two lines were stable in all tested locations. Based on the results, the Q-298 and 4-Psj mutant lines were proposed to be released as new varieties with the names of Gamasugen 1 and Gamasugen 2, respectively. (author)

  1. Targeted Modification of Homogalacturonan by Transgenic Expression of a Fungal Polygalacturonase Alters Plant Growth1

    Science.gov (United States)

    Capodicasa, Cristina; Vairo, Donatella; Zabotina, Olga; McCartney, Lesley; Caprari, Claudio; Mattei, Benedetta; Manfredini, Cinzia; Aracri, Benedetto; Benen, Jacques; Knox, J. Paul; De Lorenzo, Giulia; Cervone, Felice

    2004-01-01

    Pectins are a highly complex family of cell wall polysaccharides comprised of homogalacturonan (HGA), rhamnogalacturonan I and rhamnogalacturonan II. We have specifically modified HGA in both tobacco (Nicotiana tabacum) and Arabidopsis by expressing the endopolygalacturonase II of Aspergillus niger (AnPGII). Cell walls of transgenic tobacco plants showed a 25% reduction in GalUA content as compared with the wild type and a reduced content of deesterified HGA as detected by antibody labeling. Neutral sugars remained unchanged apart from a slight increase of Rha, Ara, and Gal. Both transgenic tobacco and Arabidopsis were dwarfed, indicating that unesterified HGA is a critical factor for plant cell growth. The dwarf phenotypes were associated with AnPGII activity as demonstrated by the observation that the mutant phenotype of tobacco was completely reverted by crossing the dwarfed plants with plants expressing PGIP2, a strong inhibitor of AnPGII. The mutant phenotype in Arabidopsis did not appear when transformation was performed with a gene encoding AnPGII inactivated by site directed mutagenesis. PMID:15247378

  2. Aging Management Guideline for commercial nuclear power plants: Power and distribution transformers

    International Nuclear Information System (INIS)

    Toman, G.; Gazdzinski, R.

    1994-05-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in power and distribution transformers important to license renewal in commercial nuclear power plants. The intent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein

  3. Arabidopsis thaliana plants expressing Rift Valley fever virus antigens: Mice exhibit systemic immune responses as the result of oral administration of the transgenic plants.

    Science.gov (United States)

    Kalbina, Irina; Lagerqvist, Nina; Moiane, Bélisario; Ahlm, Clas; Andersson, Sören; Strid, Åke; Falk, Kerstin I

    2016-11-01

    The zoonotic Rift Valley fever virus affects livestock and humans in Africa and on the Arabian Peninsula. The economic impact of this pathogen due to livestock losses, as well as its relevance to public health, underscores the importance of developing effective and easily distributed vaccines. Vaccines that can be delivered orally are of particular interest. Here, we report the expression in transformed plants (Arabidopsis thaliana) of Rift Valley fever virus antigens. The antigens used in this study were the N protein and a deletion mutant of the Gn glycoprotein. Transformed lines were analysed for specific mRNA and protein content by RT-PCR and Western blotting, respectively. Furthermore, the plant-expressed antigens were evaluated for their immunogenicity in mice fed the transgenic plants. After oral intake of fresh transgenic plant material, a proportion of the mice elicited specific IgG antibody responses, as compared to the control animals that were fed wild-type plants and of which none sero-converted. Thus, we show that transgenic plants can be readily used to express and produce Rift Valley Fever virus proteins, and that the plants are immunogenic when given orally to mice. These are promising findings and provide a basis for further studies on edible plant vaccines against the Rift Valley fever virus. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Yield potential of a radiation induced early-dwarf mutant in linseed

    International Nuclear Information System (INIS)

    Nayar, G.G.

    1975-01-01

    An early maturing dwarf mutant, TL-1 was isolated in the high yielding linseed (Linum usitatissimum L.) wariety Neelum following seed irradiation with 50 kR gamma rays. The yield components of the mutant have been evaluated for its productivity in the M 7 generation. TL-1 is compact and significantly short in height (41.8 +- 2.71 cm) as compared to Neelum (79.2 +- 3.08 cm). In flowering the mutant is 30 days earlier than the parent under Trombay conditions. TL-1 and Neelum did not differ significantly in their mean number of primary branches. Although the mean seed yield per plant is lower, in 1000 seed weight the mutant is markedly superior to the parent. The oil content in TL-1 is significantly higher by 3.5 percent points than Neelum and its oil is lighter in colour. By growing more plants per unit area with reduced spacing, the yield potential of TL-1 was considerably increased. The productivity of oil per hectare per day of TL-1 was higher than Neelum. (author)

  5. INFLUENCE OF BIOLOGICAL AND THERMAL TRANSFORMED SEWAGE SLUDGE APPLICATION ON MANGANESE CONTENT IN PLANTS AND SOIL

    Directory of Open Access Journals (Sweden)

    Małgorzata Koncewicz-Baran

    2014-10-01

    Full Text Available A great variety of sewage sludge treatment methods, due to the agent (chemical, biological, thermal leads to the formation of varying ‘products’ properties, including the content of heavy metals forms. The aim of the study was to determine the effects of biologically and thermally transformed sewage sludge on the manganese content in plants and form of this element in the soil. The study was based on a two-year pot experiment. In this study was used stabilized sewage sludge collected from Wastewater Treatment Plant Krakow – ”Płaszów” and its mixtures with wheat straw in the gravimetric ratio 1:1 in conversion to material dry matter, transformed biologically (composting by 117 days in a bioreactor and thermally (in the furnace chamber with no air access by the following procedure exposed to temperatures of 130 °C for 40 min → 200 °C for 30 min. In both years of the study biologically and thermally transformed mixtures of sewage sludge with wheat straw demonstrated similar impact on the amount of biomass plants to the pig manure. Bigger amounts of manganese were assessed in oat biomass than in spring rape biomass. The applied sewage sludge and its biologically and thermally converted mixtures did not significantly affect manganese content in plant biomass in comparison with the farmyard manure. The applied fertilization did not modify the values of translocation and bioaccumulation ratios of manganese in the above-ground parts and roots of spring rape and oat. No increase in the content of the available to plants forms of manganese in the soil after applying biologically and thermally transformed sewage sludge mixtures with straw was detected. In the second year, lower contents of these manganese forms were noted in the soil of all objects compared with the first year of the experiment.

  6. DNA repair in Haemophilus influenzae: isolation and characterization of an ultraviolet sensitive mutator mutant

    International Nuclear Information System (INIS)

    Walter, R.B.

    1985-01-01

    DNA repair in Haemophilus influenzae appears to be quite different from that seen in Escherichia coli in that H. influenzae shows neither SOS nor adaptation phenomena. Repair of DNA lesions in H. influenzae has been seen to occur via recombinational, excision, and mismatch repair pathways acting independently of one another. The author has isolated an ultraviolet (UV)-sensitive mutator mutant (mutB1) of H. influenzae Rd which shows deficiencies in both recombinational and mismatch repair pathways. This mutant is sensitive to a variety of DNA damaging agents as well as being hypermutable by alkylating agents and base analogues. MutB1 cells do not show post-UV DNA breakdown but do begin excision after UV irradiation. Genetic transformation with UV-irradiated DNA on mut B1 recipients shows that high (HE) and low (LE) efficiency markers are transformed at a ratio of 1.0 as in the mismatch repair deficient hex 1 mutant; however, kinetics of UV-inactivation experiments indicate that HE markers are sensitized and act as LE markers do on wild type recipients. Thus, the mutB gene product appears to play a role in both DNA repair and genetic transformation. A model is outlined which presents a role for a DNA helicase in both DNA repair and genetic transformation of H. influenzae

  7. Isolation and characterization of acyclovir-resistant mutants of herpes simplex virus.

    Science.gov (United States)

    Field, H J; Darby, G; Wildy, P

    1980-07-01

    Mutants of HSV which are resistant to acyclovir (acycloguanosine) have been isolated following serial passages of several herpes simplex virus (HSV) strains in the presence of the drug. The majority of the mutants isolated are defective in induction of thymidine kinase (TK) and this is consistent with the observation that independently isolated TK- viruses are naturally resistant to ACV. One mutant is described (SC16 R9C2) which is resistant in biochemically transformed cells which express HSV TK. This suggests that its resistance resides at a level other than TK. It is also resistant to phosphonoacetic acid, suggesting that the DNA polymerase locus may be involved. A further mutant is described [Cl (101) P2C5] which induces normal levels of TK, although the nature of resistance of this virus is not yet elucidated.

  8. A preliminary study on induction and identification of chlorophyll mutants of indica type temperature sensitive genie male-sterile rice

    International Nuclear Information System (INIS)

    Xia Yingwu; Liu Guifu; Shu Qingyao; Jiang Ronghua; Xie Jiahua

    1995-01-01

    Chlorophyll mutants of different type were obtained from indica type temperature sensitive genie male-sterile rice (cv. 2177s) by using 60 Co γ-rays irradiation. The total chlorophyll mutation frequency reached to 0.26% in M 2 generation. However only about 4.50% of these mutants could survived. Among them, 33 heritable chlorophyll mutant lines were easily distinguished, and were screened and studied. The mutants either showed chlorosis or yellowing or expressed only at seedling period or persisted all growth cycle. The expression of mutant character was stable under different environment. It is suggested that they are useful as the marker traits in two-line hybrid rice. Moreover, the agronomic traits of most of these lines changed in different levels compared with the parent line 2177S. Every mutation line seemed to be controlled by one recessive gene as the F 1 plants of reciprocal crosses between mutant and 2177S showed normal leaf color. And the ratio of green plants/mutant plants was 3:1 in the segregated F 2 population

  9. Variation of root system characters in collection of semi-dwarf spring barley mutants

    International Nuclear Information System (INIS)

    Nawrot, M.; Zbieszczyk, J.; Maluszynski, M.

    2000-01-01

    The collection of 371 semi-dwarf mutants, derived from 12 spring barley varieties has been used as material for analysis of root system. The mutants have been obtained after mutagenic treatment with N-methyl-N-nitroso urea (MNH), sodium azide (NaN3), gamma-rays and fast neutrons. The following analysis of root system were performed: seminal root growth of 8-day old seedlings, seminal and adventitious root growth of 6-week old plants and dynamics of root growth during first 6 weeks of plant growth. Seminal root length, root number and the length of the first leaf in barley mutants were investigated with the use of paper rollers. Root system analysis of 6-week old plants was performed on genotypes grown in PVC tubes filled with sand, supplemented with 1 mineral salts of MS medium. The following measurements were made: the length of the longest seminal root and the longest adventitious root, the number of adventitious roots and the number of tillers. Analysis of dynamics of root growth during the first six weeks of vegetation was performed at the end of each 7-day growth period in the PVC tubes filled with sand. Great variability in the seminal root length was found in analysed 8-day old seedling population. Almost half of the analysed mutants showed significant root length reduction, but about ten percent of semi-dwarf mutants developed roots with an increased length in comparison to parents. No significant differences were found between analysed mutants and corresponding parent varieties regarding the number of seminal roots. After six weeks of growth, the selected mutants showed differences in the reduction of root length in comparison to the 8-day old seedlings. The results of root growth dynamics indicated that analysed mutants had different patterns in comparison to the parent variety. Differences in the growth dynamics were also observed among the parent varieties. The observed differences in pattern of root growth between mutants and corresponding parents

  10. Floral-dip transformation of flax (Linum usitatissimum) to generate transgenic progenies with a high transformation rate.

    Science.gov (United States)

    Bastaki, Nasmah K; Cullis, Christopher A

    2014-12-19

    Agrobacterium-mediated plant transformation via floral-dip is a widely used technique in the field of plant transformation and has been reported to be successful for many plant species. However, flax (Linum usitatissimum) transformation by floral-dip has not been reported. The goal of this protocol is to establish that Agrobacterium and the floral-dip method can be used to generate transgenic flax. We show that this technique is simple, inexpensive, efficient, and more importantly, gives a higher transformation rate than the current available methods of flax transformation. In summary, inflorescences of flax were dipped in a solution of Agrobacterium carrying a binary vector plasmid (T-DNA fragment plus the Linum Insertion Sequence, LIS-1) for 1 - 2 min. The plants were laid flat on their side for 24 hr. Then, plants were maintained under normal growth conditions until the next treatment. The process of dipping was repeated 2 - 3 times, with approximately 10 - 14 day intervals between dipping. The T1 seeds were collected and germinated on soil. After approximately two weeks, treated progenies were tested by direct PCR; 2 - 3 leaves were used per plant plus the appropriate T-DNA primers. Positive transformants were selected and grown to maturity. The transformation rate was unexpectedly high, with 50 - 60% of the seeds from treated plants being positive transformants. This is a higher transformation rate than those reported for Arabidopsis thaliana and other plant species, using floral-dip transformation. It is also the highest, which has been reported so far, for flax transformation using other methods for transformation.

  11. Serrated leaf mutant in mungbean (Vigna radiata (L) Wilczek)

    International Nuclear Information System (INIS)

    Malik, I.A.; Ghulam, Sarwar; Yousaf, Ali; Saleem, M.

    1988-01-01

    Dry dormant seeds of mungbean (Vigna radiata (L) Wilczek) were treated with gamma rays (15, 30 and 60 kR). The serrated leaf mutation was noticed in M 2 of cultivar Pak 32 treated with 60 kR. Cf 14 plants, 3 showed the altered leaf structure and the others were normal. The feature of this mutant was the deep serration of leaflet margins. The mutant had large thick leaflets with prominent venation. The mutant bred true in the M 3 and successive generation. Details of the morphological characteristics of the mutant are presented. The mutant exhibited slower growth particularly during the early stages of development, flowered later and attained shorter height. There was an increase in the number of pods, in seed weight and in seed protein content, but number of seed per pod was considerably reduced. The seed coat colour showed a change from green to yellowish green. In the mutant's flowers the stamina were placed much below the stigma level and the stigma sometimes protruded the corolla. Outcrossing of 4% recorded in some of the mutant lines revealed a reduced cleistogamy. The low number of seeds per pod in the mutant could be due to reduced pollen fertility. The mutant behaved as monogenic recessive. The symbols SL/sl are proposed for this allelic pair. The mutant may have use as a green manure crop because of its large foliage and for the breeders as a genetic marker

  12. Plant breeding and genetics newsletter. No. 7

    International Nuclear Information System (INIS)

    2001-07-01

    This year seems to be very promising for the Plant Breeding and Genetic sub-Programme. At the demand of geneticists, plant breeders, and more recently molecular geneticists for information on released mutant varieties of specific crops, the FAO/IAEA Mutant Varieties Database (MVD) was transferred to the web site and is now available through Internet under the following URL: http://www-mvd.iaea.org. The idea to collect and transfer information on crop varieties developed with the use of mutation techniques to plant breeders ws conceived at almost the same time as the establishment of the Plant Breeding and Genetics Section (PBG), Joint FAO/IAEA Division. The first classified list of induced mutant varieties was presented by Sigurbjoernsson at the Pullman Symposium, and published in 1969. Since the first issue of the MBNL (May, 1972) information on newly released mutant varieties was published at the end of each issue under the title 'List of Mutant Varieties'. The full list of 2252 mutant varieties has been published in the Mutation Breeding Review No. 12 (December 2000) to close this period of collecting data on mutant varieties. Such condensed but full information on mutant varieties should help geneticists, molecular biologists and plant breeders to asses the value of mutation techniques in germplasm enhancement, and stimulate the use of induced variation

  13. Stress-tolerant mutants induced by heavy-ion beams

    International Nuclear Information System (INIS)

    Abe, Tomoko; Yoshida, Shigeo; Bae, Chang-Hyu; Ozaki, Takuo

    2000-01-01

    Comparative study was made on mutagenesis in tobacco embryo induced by exposure to EMS (ethyl methane-sulfonate) ion beams during the fertilization cycle. Tobacco embryo cells immediately after pollination were exposed to heavy ion beam and the sensitivity to the irradiation was assessed in each developmental stage and compared with the effects of EMS, a chemical mutagen. Morphologically abnormality such as chlorophyll deficiency was used as a marker. A total of 17 salt-tolerant plants were selected from 3447 M 1 seeds. A cell line showed salt resistance. The cell growth and chlorophyll content were each two times higher than that of WT cells in the medium containing 154 mM NaCl. Seven strains of M 3 progeny of 17 salt-tolerant plants, showed strong resistance, but no salt tolerant progeny were obtained from Xanthi or Ne-ion irradiation. This shows that the sensitivity of plant embryo to this irradiation technique may vary among species. When exposed to 14 N ion beam for 24-108 hours after pollination, various morphological mutants appeared at 18% in M 1 progeny and herbicide tolerant and salt tolerant mutants were obtained. A strong Co-tolerant strain was obtained in two of 17 salt-tolerant strains and a total of 46 tolerant strains (0.2%) were obtained from 22,272 grains of M 1 seeds. In these tolerant strains, the absorption of Co was slightly decreased, but those of Mg and Mn were increased. Mutants induced with ion-beam irradiation have potential not only for practical use in the breeding of stress-tolerant plants but also for gene analysis that will surely facilitate the molecular understanding of the tolerance mechanisms. (M.N.)

  14. Mutant genes in pea breeding

    International Nuclear Information System (INIS)

    Swiecicki, W.K.

    1990-01-01

    Full text: Mutations of genes Dpo (dehiscing pods) and A (anthocyanin synthesis) played a role in pea domestication. A number of other genes were important in cultivar development for 3 types of usage (dry seeds, green vegetable types, fodder), e.g. fn, fna, le, p, v, fas and af. New genes (induced and spontaneous), are important for present ideotypes and are registered by the Pisum Genetics Association (PGA). Comparison of a pea variety ideotype with the variation available in gene banks shows that breeders need 'new' features. In mutation induction experiments, genotype, mutagen and method of treatment (e.g. combined or fractionated doses) are varied for broadening the mutation spectrum and selecting more genes of agronomic value. New genes are genetically analysed. In Poland, some mutant varieties with the gene afila were registered, controlling lodging by a shorter stem and a higher number of internodes. Really non-lodging pea varieties could strongly increase seed yield. But the probability of detecting a major gene for lodging resistance is low. Therefore, mutant genes with smaller influence on plant architecture are sought, to combine their effect by crossing. Promising seem to be the genes rogue, reductus and arthritic as well as a number of mutant genes not yet genetically identified. The gene det for terminal inflorescence - similarly to Vicia faba - changes plant development. Utilisation of assimilates and ripening should be better. Improvement of harvest index should give higher seed yield. A number of genes controlling disease resistance are well known (eg. Fw, Fnw, En, mo and sbm). Important in mass screening of resistance are closely linked gene markers. Pea gene banks collect respective lines, but mutants induced in highly productive cultivars would be better. Inducing gene markers sometimes seems to be easier than transfer by crossing. Mutation induction in pea breeding is probably more important because a high number of monogenic features are

  15. Selection of mutants of capsicum annuum induced by gamma ray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. I.; Lee, Y. B. [Korea Atomic Energy Research Institute, Taejeon (Korea, Republic of); Lee, E. K. [Chungnam National Univ., Taejeon (Korea, Republic of)

    1998-06-01

    For induction and selection of mutations of Capsicum annuum L., dry seeds of pure lines No.1 and No.2 were irradiated with gamma ray of 150Gy, 200Gy and 250Gy. Various mutants were selected such as showing early maturity, short plant height, long fruit and chlorophyll mutations. Mutation frequency of No.1 line was 3.4% in the dose of 150Gy, while the frequency of No.2 line was 2.7% in the dose of 250Gy. For selection of resistant mutant to amino acid analog, the optimum concentration of 5-methyltryptophan (5-MT) and S-(2-aminoethyl)-L-cysteine were 25 ppm and 30 ppm, respectively. Four resistant mutant lines to 5-MT were selected among 400 mutant lines.

  16. Selection and agronomic evaluation of induced mutant lines of sesame

    International Nuclear Information System (INIS)

    Hoballah, A.A.

    2001-01-01

    Station yield trial: Three high yielding mutants (8, 48, and EFM92) with better and stable performance were developed in our breeding programme and submitted for registration to the Agricultural Research Center (ARC), Egyptian Ministry of Agriculture and Land Reclamation. Multi-location yield trials indicated that mutant line EFM92 ranked first in all locations; significant yield increases recorded for it ranged from 14.7 to 74.0% over the check variety. Moreover, it was 15-20 days earlier than the check and/or other mutants. Mutant lines 8 and 48 produced higher seed yields than the check at two different locations. These mutants can probably be grown and produce more yield than the check variety at the low yielding environments. Seed quality assay: During 1996 and 1997, 15 promising lines of sesame including mutants and hybrid populations as well as the local variety were evaluated for seed protein, oil content and fatty acid composition. The protein content varied from 20.6 to 26.7%; hybrid population EXM90 gave the highest value. About 85% of the total fatty acids in the oil are unsaturated (oleic and linoleic) and 15% saturated, mainly palmitic and stearic. Linoleic acid ranged from 41.8 to 47.9%. Mutant lines 6, 9, and EFM92, which gave high oil content (54-55.5%) together with high linoleic acid values (45.2-47.8%), are recommended for breeding for seed oil quality. Heterosis, combining ability and type of gene action in sesame: A half diallel set of crosses involving seven parents was used to study heterosis and combining ability in the F 1 generation as well as the nature of gene action controlling seed yield and its contributing traits in both F 1 and F 2 in order to identify the most efficient breeding methods leading to rapid genetic improvement. The expressions of heterosis varied with the crosses and characters investigated. The maximal significant positive useful heterosis was observed for branches/plant (52.9%) followed by seed yield/plant (38

  17. Analysis of AtCry1 and Mutants

    Science.gov (United States)

    Burdick, Derek; Purvis, Adam; Ahmad, Margaret; Link, Justin J.; Engle, Dorothy

    Cryptochrome is an incredibly versatile protein that influences numerous biological processes such as plant growth, bird migration, and sleep cycles. Due to the versatility of this protein, understanding the mechanism would allow for advances in numerous fields such as crop growth, animal behavior, and sleep disorders. It is known that cryptochrome requires blue light to function, but the exact processes in the regulation of biological activity are still not fully understood. It is believed that the c-terminal domain of the protein undergoes a conformational change when exposed to blue light which allows for biological function. Three different non-functioning mutants were tested during this study to gain insight on the mechanism of cryptochrome. Absorbance spectra showed a difference between two of the mutants and the wild type with one mutant showing little difference. Immunoprecipitation experiments were also conducted to identify the different c-terminal responses of the mutants. By studying non functioning mutants of this protein, the mechanism of the protein can be further characterized. This two-month research experience in Paris allowed us to experience international and interdisciplinary collaborations in science and immerse in a different culture. The Borcer Fund for Student Research, Xavier University, Cincinnati, OH, and John Hauck Foundation.

  18. Nicotiana plumbaginifolia hlg mutants have a mutation in a PHYB-type phytochrome gene: they have elongated hypocotyls in red light, but are not elongated as adult plants.

    Science.gov (United States)

    Hudson, M; Robson, P R; Kraepiel, Y; Caboche, M; Smith, H

    1997-11-01

    Two new allelic mutants of Nicotiana plumbaginifolia have been isolated which display a hypocotyl which is long (hlg) when seedlings are grown in continuous white light (W). This can be accounted for by the decreased response to red light (R) of the hypocotyl elongation rate in these mutants. Responses to other wavelengths are unaffected in the mutants. When grown in white light, mature hlg mutants are not elongated with respect to the wild-type; they also bolt and flower later. The shade-avoidance responses to red/far red ratio (R:FR) are intact in these mutants. Both mutants are deficient in phyB-like polypeptide that is immunodetectable in the wild-type; both have wild-type levels of a phyA-like polypeptide. These alleles are inherited in a partially dominant manner, and correspond to single-base missense mutations in a gene highly homologous to N. tabacum PHYB, which codes for a phytochrome B-type photoreceptor. One allele, hlg-1, has an introduced amino acid substitution; this may define a residue essential for phytochrome protein stability. The other allele, hlg-2, has a stop codon introduced C-terminal to the chromophore binding domain. As these phyB mutants are unaffected in shade-avoidance responses, but deficient in perception of R, it is concluded that the phyB absent in these mutants is responsible for R perception in the N. plumbaginifolia seedling, but is not a R:FR sensor in light-grown plants.

  19. Transformation of Saccharomyces cerevisiae with UV-irradiated single-stranded plasmid.

    Science.gov (United States)

    Zgaga, Z

    1991-08-01

    UV-irradiated single-stranded replicative plasmids were used to transform different yeast strains. The low doses of UV used in this study (10-75 J/m2) caused a significant decrease in the transforming efficiency of plasmid DNA in the Rad+ strain, while they had no effect on transformation with double-stranded plasmids of comparable size. Neither the rev3 mutation, nor the rad18 or rad52 mutations influenced the efficiency of transformation with irradiated single-stranded plasmid. However, it was found to be decreased in the double rev3 rad52 mutant. Extracellular irradiation of plasmid that contains both URA3 and LEU2 genes (psLU) gave rise to up to 5% Leu- transformants among selected Ura+ ones in the repair-proficient strain. Induction of Leu- transformants was dose-dependent and only partially depressed in the rev3 mutant. These results suggest that both mutagenic and recombinational repair processes operate on UV-damaged single-stranded DNA in yeast.

  20. Gamma radiation induced mutant for improved yield components in sunflower

    International Nuclear Information System (INIS)

    Elangovan, M.

    2001-01-01

    Sunflower has become an important oilseed in the Indian vegetable oil pool following its introduction from Russia in 1969. It can be used for all quality products useful to humans. The need for genetic variability and new useful gene sources has necessitated that sunflower breeders and geneticists utilize a wide range of germplasm in their breeding programmes. The induction of mutations in sunflower by physical and chemical mutagens has been practiced quite intensively in the last two decades. The results recorded to date suggest that utilization of mutagenesis could be a great advantage in improving the sunflower crop. An induced mutation programme was undertaken to generate variability in the variety 'Morden' using gamma rays. The certified and genetically pure seeds were irradiated with 50, 100, and 150 Gy gamma rays and used for further studies. Selection in M 2 generations, raised from different treatments, revealed the presence of an erectophylly leaf mutant from 50 Gy treatment. The isolated mutant showed improved yield components like head diameter, 100- seed weight and yield per plant. The mutant was a plant with short petiole length and erect leaves. This type of leaf get sunlight throughout the day. From morning to afternoon, the first half of the leaf gets sunlight, and from afternoon to evening the second half of the leaf gets sunlight. As a result of getting sunlight the whole day, the plant had more photosynthetic products and grew vigorously. Plant height, head diameter and 100-seed weight had direct effect on seed yield, and the number of leaves and stem diameter influenced the seed yield indirectly. In the M 3 generation, the mutant showed an almost two-fold increase over the parent variety for all investigated characters, except that of the yield per plant where there was a three-fold increase. The present investigation has shown that there are remarkable possibilities of increasing the yield components in sunflower by induced mutations

  1. Induction of mutants in durum wheat (triticum durum desf cv. samra) using gamma irradiation

    International Nuclear Information System (INIS)

    Albokari, M.

    2014-01-01

    A mutation breeding program was initiated in 2008 emphasizing the main constraints for sustainable production of durum wheat in Saudi Arabia. The aim of the program was to develop moderate or high yielding semi-dwarf/lodging tolerant, early maturing mutants with drought and disease tolerance from a local durum wheat cultivar (Triticum durum Desf. cv. Samra) which has the main defects of longer crop duration, lodging habit and low grain yield. Dry seeds of Samra were subjected to 150 and 200Gy doses of gamma irradiation and each treatment consisted of 2500 seeds. Irradiated seeds were grown as M1 population along with parental variety as control at Almuzahmiah Research Station of Riyadh, Saudi Arabia. Decrease in germination (%) and survival rate (%) of plants was observed. A wide variation in days to flowering and plant height was found in the M1 populations. Three seeds from each spike per plant of M1 plants were collected, bulked dose wise and grown separately as M2 in 2009 growing season. From these M2, 17 desirable putative mutant plants which varied significantly with the mother were visually selected. These putative mutants were found to be semi-dwarf and early maturing in nature with other improved agronomic traits including lodging reaction and grain yield. The selected plants, when grown in progeny lines as M3 in 2010, more or less maintained their superiority over the mother for many traits. Most of the mutant lines showed homogeneity for most of characters studied. Eleven of these 17 lines were found to be promising in respect of days to flower, plant height (for semi-dwarf) and other traits including grain yield. (author)

  2. Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN.

    Science.gov (United States)

    Elf, Shannon; Abdelfattah, Nouran S; Baral, April J; Beeson, Danielle; Rivera, Jeanne F; Ko, Amy; Florescu, Natalie; Birrane, Gabriel; Chen, Edwin; Mullally, Ann

    2018-02-15

    Mutations in calreticulin ( CALR ) are phenotypic drivers in the pathogenesis of myeloproliferative neoplasms. Mechanistic studies have demonstrated that mutant CALR binds to the thrombopoietin receptor MPL, and that the positive electrostatic charge of the mutant CALR C terminus is required for mutant CALR-mediated activation of JAK-STAT signaling. Here we demonstrate that although binding between mutant CALR and MPL is required for mutant CALR to transform hematopoietic cells; binding alone is insufficient for cytokine independent growth. We further show that the threshold of positive charge in the mutant CALR C terminus influences both binding of mutant CALR to MPL and activation of MPL signaling. We find that mutant CALR binds to the extracellular domain of MPL and that 3 tyrosine residues within the intracellular domain of MPL are required to activate signaling. With respect to mutant CALR function, we show that its lectin-dependent function is required for binding to MPL and for cytokine independent growth, whereas its chaperone and polypeptide-binding functionalities are dispensable. Together, our findings provide additional insights into the mechanism of the pathogenic mutant CALR-MPL interaction in myeloproliferative neoplasms. © 2018 by The American Society of Hematology.

  3. Cytoembryologic study of gamma-ray induced sterile Pisum sativum L. mutants

    International Nuclear Information System (INIS)

    Molkhova, E.; Vasileva, M.

    1977-01-01

    Three new pea mutant forms are described - 1878, Crampled petal Waxless type, and Lathyrus type - which were induced by different gamma-ray ( 60 Co) doses and rates. The flowers of the 1878 and Crampled petal Waxless type mutants were very much deformed, while those of the Lathyrus type had smaller flowers with normal morphology. The three mutant forms were entirely sterile and were propagated by segregation in the progeny of heterozygous sister plants. PMC meiosis and the development of the male gametophyte of the Lathyrus type mutant had a normal course, while in the mutant forms Crampled petal Waxless type and 1878 slight disturbances were observed, but the pollen of all three mutants was not functional. The development of the female gametophyte of the three mutants stops at an early phase and only in the Lathyrus type mutant in single cases embryosacks were formed with differentiated sex apparatus and early stages of embryo and endosperm development were scored, but they also soon degenerate. It is pointed out that sterility of the three pea mutant forms studied depends on factors, which stop at different stages the normal development of the generative organs, of the female gametophyte and of embryogenesis. (author)

  4. Functional analysis of cT-DNAs in naturally transformed plants, recent findings and general considerations

    Directory of Open Access Journals (Sweden)

    Léon Otten

    2016-12-01

    Full Text Available Several cases have been reported of naturally transformed plant species. These plants contain cellular T-DNAs (cT-DNAs derived from ancient infections by Agrobacterium. We have determined the structure of 4 different cT-DNAs in N. tomentosiformis, the paternal ancestor of N. tabacum, and found several intact open reading frames. Among these, TB-mas2’ and TA-rolC were tested for activity. TB-mas2’ encodes desoxyfructosylglutamine (DFG synthesis. Some N. tabacum cultivars show very high TB-mas2’ expression and produce DFG in their roots. The TA-rolC gene is biologically active and when expressed under strong constitutive promoter control, generates growth changes in N. tabacum. Based on these first data on the structure and function of cT-DNAs I present a theoretical model on the origin and evolution of naturally transformed plants, which may serve as a basis for further research in this field.

  5. Sharing mutants and experimental information prepublication using FgMutantDb (https://scabusa.org/FgMutantDb).

    Science.gov (United States)

    Baldwin, Thomas T; Basenko, Evelina; Harb, Omar; Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E; Bregitzer, Phil P

    2018-06-01

    There is no comprehensive storage for generated mutants of Fusarium graminearum or data associated with these mutants. Instead, researchers relied on several independent and non-integrated databases. FgMutantDb was designed as a simple spreadsheet that is accessible globally on the web that will function as a centralized source of information on F. graminearum mutants. FgMutantDb aids in the maintenance and sharing of mutants within a research community. It will serve also as a platform for disseminating prepublication results as well as negative results that often go unreported. Additionally, the highly curated information on mutants in FgMutantDb will be shared with other databases (FungiDB, Ensembl, PhytoPath, and PHI-base) through updating reports. Here we describe the creation and potential usefulness of FgMutantDb to the F. graminearum research community, and provide a tutorial on its use. This type of database could be easily emulated for other fungal species. Published by Elsevier Inc.

  6. Transformation of hydroxylated and methoxylated 2,2',4,4',5-brominated diphenyl ether (BDE-99) in plants

    Institute of Scientific and Technical Information of China (English)

    Lili Pan; Jianteng Sun; Xiaodan Wu; Zi Wei; Lizhong Zhu

    2016-01-01

    The occurrence and fate of hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and methoxylated polybrominated diphenyl ethers (MeO-PBDEs) have received significant attention.However,there is limited information on the metabolism relationship between OH-pentaBDEs and MeO-pentaBDEs that were frequently detected with relatively high concentrations in the environment.In this study,the biotransformation between OH-BDE-99 and MeO-BDE-99 was investigated in rice,wheat,and soybean plants.All the three plants can metabolize OH-BDE-99 to corresponding homologous methoxylated metabolites,while the transformation from MeO-BDE-99 to OH-BDE-99 could only be found in soybean.The conversion of parent compounds was the highest in soybean,followed by wheat and rice.Transformation products were found mainly in the roots,with few metabolites being translocated to the shoots and solution after exposure.The results of this study provide valuable information for a better understanding of the accumulation and transformation of OH-PBDEs and MeO-PBDEs in different plants.

  7. Deregulation of the arginine deiminase (arc) operon in penicillin-tolerant mutants of Streptococcus gordonii.

    Science.gov (United States)

    Caldelari, I; Loeliger, B; Langen, H; Glauser, M P; Moreillon, P

    2000-10-01

    Penicillin tolerance is an incompletely understood phenomenon that allows bacteria to resist drug-induced killing. Tolerance was studied with independent Streptococcus gordonii mutants generated by cyclic exposure to 500 times the MIC of penicillin. Parent cultures lost 4 to 5 log(10) CFU/ml of viable counts/24 h. In contrast, each of four independent mutant cultures lost bacteria and were encoded by an operon that was >80% similar to the arginine-deiminase (arc) operon of these organisms. Partial nucleotide sequencing and insertion inactivation of the S. gordonii arc locus indicated that tolerance was not a direct consequence of arc alteration. On the other hand, genetic transformation of tolerance by Tol1 DNA always conferred arc deregulation. In nontolerant recipients, arc was repressed during exponential growth and up-regulated during postexponential growth. In tolerant transformants, arc was constitutively expressed. Tol1 DNA transformed tolerance at the same rate as transformation of a point mutation (10(-2) to 10(-3)). The tolerance mutation mapped on a specific chromosomal fragment but was physically distant from arc. Importantly, arc deregulation was observed in most (6 of 10) of additional independent penicillin-tolerant mutants. Thus, although not exclusive, the association between arc deregulation and tolerance was not fortuitous. Since penicillin selection mimicked the antibiotic pressure operating in the clinical environment, arc deregulation might be an important correlate of naturally occurring tolerance and help in understanding the mechanism(s) underlying this clinically problematic phenotype.

  8. Biolistic transformation of the obligate plant pathogenic fungus, Erysiphe graminis f.sp. hordei

    DEFF Research Database (Denmark)

    Christiansen, S.K.; Knudsen, S.; Giese, H.

    1995-01-01

    Particle gun acceleration appears to be a possible way to transform mycelium cells of obligate plant parasites growing on host surfaces, GUS expression was obtained in E. graminis f.sp. hordei cells after bombardment with the GUS gene under the control of the E. graminis f.sp. hordei beta...

  9. The Arabidopsis thiamin-deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B1 biosynthesis pathway.

    Science.gov (United States)

    Hsieh, Wei-Yu; Liao, Jo-Chien; Wang, Hsin-Tzu; Hung, Tzu-Huan; Tseng, Ching-Chih; Chung, Tsui-Yun; Hsieh, Ming-Hsiun

    2017-07-01

    Thiamin diphosphate (TPP, vitamin B 1 ) is an essential coenzyme present in all organisms. Animals obtain TPP from their diets, but plants synthesize TPPde novo. We isolated and characterized an Arabidopsis pale green1 (pale1) mutant that contained higher concentrations of thiamin monophosphate (TMP) and less thiamin and TPP than the wild type. Supplementation with thiamin, but not the thiazole and pyrimidine precursors, rescued the mutant phenotype, indicating that the pale1 mutant is a thiamin-deficient mutant. Map-based cloning and whole-genome sequencing revealed that the pale1 mutant has a mutation in At5g32470 encoding a TMP phosphatase of the TPP biosynthesis pathway. We further confirmed that the mutation of At5g32470 is responsible for the mutant phenotypes by complementing the pale1 mutant with constructs overexpressing full-length At5g32470. Most plant TPP biosynthetic enzymes are located in the chloroplasts and cytosol, but At5g32470-GFP localized to the mitochondrion of the root, hypocotyl, mesophyll and guard cells of the 35S:At5g32470-GFP complemented plants. The subcellular localization of a functional TMP phosphatase suggests that the complete vitamin B1 biosynthesis pathway may involve the chloroplasts, mitochondria and cytosol in plants. Analysis of PALE1 promoter-uidA activity revealed that PALE1 is mainly expressed in vascular tissues of Arabidopsis seedlings. Quantitative RT-PCR analysis of TPP biosynthesis genes and genes encoding the TPP-dependent enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase revealed that the transcript levels of these genes were upregulated in the pale1 mutant. These results suggest that endogenous levels of TPP may affect the expression of genes involved in TPP biosynthesis and TPP-dependent enzymes. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  10. Promising mutant variety of rice evolved through gamma irradiation

    International Nuclear Information System (INIS)

    Prasad, S.C.; Sinha, S.K.

    1980-01-01

    Rice occupies a major share in crop production in the Chotanagpur plateau of Bihar State. Uplands are roughly 40% in area where traditional low yielding rice, known as ''gora'' is cultivated as directly sown crop. Despite introduction of high yielding rice varieties, gora group of rices continue to prevail. It is therefore desired to increase the productivity level of the gora rice by mutation breeding. One such mutant known as ''gora mutant'' was obtained through gamma irradiation (10 kR) of variety Brown gora. The maturity of both parent and mutant remaining constant (ie. 100 days), there is some improvement in other characteristics like plant height, tillering capacity and kernel character. The parent being tall, shy in tillering and red bold kernel, the mutant has dwarfish characteristics, profuse tillering habit and white kernel with fine grains. The yielding capacity of mutant derivative is 30-40% higher than the parent Brown gora. This variety is in pre-release stage, and the farmers have taken great liking for it. (author)

  11. Stress-tolerant mutants induced by heavy-ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Tomoko; Yoshida, Shigeo [Institute of Physical and Chemical Research, Wako, Saitama (Japan); Bae, Chang-Hyu [Sunchon National University, Sunchon (Korea); Ozaki, Takuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Wang, Jing Ming [Akita Prefectural Univ. (Japan)

    2000-07-01

    Comparative study was made on mutagenesis in tobacco embryo induced by exposure to EMS (ethyl methane-sulfonate) ion beams during the fertilization cycle. Tobacco embryo cells immediately after pollination were exposed to heavy ion beam and the sensitivity to the irradiation was assessed in each developmental stage and compared with the effects of EMS, a chemical mutagen. Morphologically abnormality such as chlorophyll deficiency was used as a marker. A total of 17 salt-tolerant plants were selected from 3447 M{sub 1} seeds. A cell line showed salt resistance. The cell growth and chlorophyll content were each two times higher than that of WT cells in the medium containing 154 mM NaCl. Seven strains of M{sub 3} progeny of 17 salt-tolerant plants, showed strong resistance, but no salt tolerant progeny were obtained from Xanthi or Ne-ion irradiation. This shows that the sensitivity of plant embryo to this irradiation technique may vary among species. When exposed to {sup 14}N ion beam for 24-108 hours after pollination, various morphological mutants appeared at 18% in M{sub 1} progeny and herbicide tolerant and salt tolerant mutants were obtained. A strong Co-tolerant strain was obtained in two of 17 salt-tolerant strains and a total of 46 tolerant strains (0.2%) were obtained from 22,272 grains of M{sub 1} seeds. In these tolerant strains, the absorption of Co was slightly decreased, but those of Mg and Mn were increased. Mutants induced with ion-beam irradiation have potential not only for practical use in the breeding of stress-tolerant plants but also for gene analysis that will surely facilitate the molecular understanding of the tolerance mechanisms. (M.N.)

  12. Tolerance of some potato mutants induced with gamma irradiation to drought in vitro

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Ayyoubi, Z.

    2006-04-01

    An in vitro selection program was conducted in order to improve potato (Solanum tuberosum) tolerance to drought. Potato mutant plants were obtained through a previously conducted mutation breeding program on three potato cultivars (Draga, Spunta, and Diamant) aimed at improving potato tolerance to salinity and resistance to late blight disease. In order to apply selection pressure, growth media (MS based) were prepared with the addition of 1%, 2%, 3% concentrations of Poly Ethylene Glycol (PEG). As a result, three mutants were selected that were tolerant to water stress (i.e. drought tolerant) two of which came from the cultivar Draga and one from Spunta. Physiological growth parameters (plant length, leaf number, branch number, roots number, leaf area, stomata number, and chlorophyll concentration content) were taken on the growing plantlets. The selected mutants were distinguished with some characteristics which can help in their tolerance to drought. Some of these characteristics were an increase in leaf number, root number, and a decrease in stomata number. However a reduction in chlorophyll content was observed as compared with the control. These mutant lines will need further selection in the field for plants with larger tubers before they can be considered as certified lines. (author)

  13. Tritium dispersion around the Angra Nuclear Power Plant: boundary simplification by Diffeomorph Conformal Transformations

    Energy Technology Data Exchange (ETDEWEB)

    Meneghetti, Andre; Bodmann, Bardo E.J.; Vilhena, Marco T. de, E-mail: andre.imef@gmail.com, E-mail: bardo.bodmann@ufrgs.br, E-mail: mtmbvilhena@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2017-07-01

    We present progress on research concerning dispersion of tritium around the Angra Nuclear Power Plant (Angra dos Reis, Rio de Janeiro state, Brazil). In particular, we are interested in studying how dispersion behaves in scenarios with complex orography. Our proposal is to transform a problem with curvilinear boundaries into an equivalent problem with plane parallel boundaries. We modify the coordinate system through a diffeomorph conformal transformation. Consequently, the operators of the dynamical equations change according to the additional terms from the affine connection. To de ne the transformation it is necessary to satisfy strong constraints, i.e., boundaries shall be 'smooth'. Our main purpose is to solve problems using a semi-analytical resolution. Currently, semi-analytic resolutions are applied only in problems that have domain with parallel planes. As a rst step into this direction in this work we present a numerical resolution. Even with restrictions, our model can be implemented in several situations. A at region is a particular case of a curvilinear domain and can be studied, where the height of the boundary layer above rivers, lakes, basins is typically smaller and thus implies a varying boundary layer height, for instance. Thus, even in at regions variations in the boundary layer occur, which characterizes a case of a curvilinear domain. Our specific interest is the region around the Angra Nuclear Power Plant that need a large source of water for their operation. There are several nuclear power plants worldwide, that are located in mountainous regions, as for example in Japan and Brazil. As one step into a new direction we focus in this work on complex relieves. We present a simulation of tritium dispersion specifically in the area where the Angra 2 Nuclear Power Plant of is located and where the relief is characterized by a considerable complexity. (author)

  14. Tritium dispersion around the Angra Nuclear Power Plant: boundary simplification by Diffeomorph Conformal Transformations

    International Nuclear Information System (INIS)

    Meneghetti, Andre; Bodmann, Bardo E.J.; Vilhena, Marco T. de

    2017-01-01

    We present progress on research concerning dispersion of tritium around the Angra Nuclear Power Plant (Angra dos Reis, Rio de Janeiro state, Brazil). In particular, we are interested in studying how dispersion behaves in scenarios with complex orography. Our proposal is to transform a problem with curvilinear boundaries into an equivalent problem with plane parallel boundaries. We modify the coordinate system through a diffeomorph conformal transformation. Consequently, the operators of the dynamical equations change according to the additional terms from the affine connection. To de ne the transformation it is necessary to satisfy strong constraints, i.e., boundaries shall be 'smooth'. Our main purpose is to solve problems using a semi-analytical resolution. Currently, semi-analytic resolutions are applied only in problems that have domain with parallel planes. As a rst step into this direction in this work we present a numerical resolution. Even with restrictions, our model can be implemented in several situations. A at region is a particular case of a curvilinear domain and can be studied, where the height of the boundary layer above rivers, lakes, basins is typically smaller and thus implies a varying boundary layer height, for instance. Thus, even in at regions variations in the boundary layer occur, which characterizes a case of a curvilinear domain. Our specific interest is the region around the Angra Nuclear Power Plant that need a large source of water for their operation. There are several nuclear power plants worldwide, that are located in mountainous regions, as for example in Japan and Brazil. As one step into a new direction we focus in this work on complex relieves. We present a simulation of tritium dispersion specifically in the area where the Angra 2 Nuclear Power Plant of is located and where the relief is characterized by a considerable complexity. (author)

  15. Seedling lethality in Nicotiana plumbaginifolia conferred by Ds transposable element insertion into a plant-specific gene.

    Science.gov (United States)

    Majira, Amel; Domin, Monique; Grandjean, Olivier; Gofron, Krystyna; Houba-Hérin, Nicole

    2002-10-01

    A seedling lethal mutant of Nicotiana plumbaginifolia (sdl-1) was isolated by transposon tagging using a maize Dissociation (Ds) element. The insertion mutation was produced by direct co-transformation of protoplasts with two plasmids: one containing Ds and a second with an Ac transposase gene. sdl-1 seedlings exhibit several phenotypes: swollen organs, short hypocotyls in light and dark conditions, and enlarged and multinucleated cells, that altogether suggest cell growth defects. Mutant cells are able to proliferate under in vitro culture conditions. Genomic DNA sequences bordering the transposon were used to recover cDNA from the normal allele. Complementation of the mutant phenotype with the cDNA confirmed that the transposon had caused the mutation. The Ds element was inserted into the first exon of the open reading frame and the homozygous mutant lacked detectable transcript. Phenocopies of the mutant were obtained by an antisense approach. SDL-1 encodes a novel protein found in several plant genomes but apparently missingfrom animal and fungal genomes; the protein is highly conserved and has a potential plastid targeting motif.

  16. Short-circuit tests of 1650 and 96 MVA transformers for 1300 MW french nuclear power plants

    International Nuclear Information System (INIS)

    Mailhot, M.

    1989-01-01

    Power evacuation and feeding of the auxiliaries directly from the 400 kV grid are sensitive points governing the security of 1300 MW PWR Nuclear Power Plants of the French Program. These two different functions are provided by two specific types of transformers. - Banks of 3 single-phase 550 MVA - 400 kV/20 kV transformers. - Three-phase 96 MVA - 400 kV / 3 x 6.8 kV transformers. These passive elements must have a never failing reliability and assure a continuous service in spite of electric, thermal and mechanical stresses that may occur during the lifetime of the power plant. Dielectric and thermal tests carried out in the manufacturers test floors insure these stresses withstand capabilities of transformers. In France, high short-circuit power for the 400 kV network added to often low impedance voltages for transformers impose on them very high stresses during short-circuits. Calculation and experimentation on scale or partial models are not sufficient to insure short-circuit currents withstand capabilities of transformers. The margin of uncertainty dependent on obligatory extrapolations for this kind of complex systems [steel, magnetic sheets, copper, oil, paper and transformerboard] can be reduced in a significant way only by real scale tests on prototypes. These tests that need both high power and voltage cannot be performed in manufacturers test floors. So, in France they are carried out at the EDF Les Renardieres Laboratory. Following paper deals with SHELL TYPE TRANSFORMERS which, particularly thanks to their interleaved rectangular windings display a great resistance to short-circuit stresses

  17. Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening.

    Science.gov (United States)

    Chialva, Matteo; Zouari, Inès; Salvioli, Alessandra; Novero, Mara; Vrebalov, Julia; Giovannoni, James J; Bonfante, Paola

    2016-07-01

    Systemic responses to an arbuscular mycorrhizal fungus reveal opposite phenological patterns in two tomato ripening mutants depending whether ethylene or light reception is involved. The availability of tomato ripening mutants has revealed many aspects of the genetics behind fleshy fruit ripening, plant hormones and light signal reception. Since previous analyses revealed that arbuscular mycorrhizal symbiosis influences tomato berry ripening, we wanted to test the hypothesis that an interplay might occur between root symbiosis and fruit ripening. With this aim, we screened seven tomato mutants affected in the ripening process for their responsiveness to the arbuscular mycorrhizal fungus Funneliformis mosseae. Following their phenological responses we selected two mutants for a deeper analysis: Green ripe (Gr), deficient in fruit ethylene perception and high-pigment-1 (hp-1), displaying enhanced light signal perception throughout the plant. We investigated the putative interactions between ripening processes, mycorrhizal establishment and systemic effects using biochemical and gene expression tools. Our experiments showed that both mutants, notwithstanding a normal mycorrhizal phenotype at root level, exhibit altered arbuscule functionality. Furthermore, in contrast to wild type, mycorrhization did not lead to a higher phosphate concentration in berries of both mutants. These results suggest that the mutations considered interfere with arbuscular mycorrhiza inducing systemic changes in plant phenology and fruits metabolism. We hypothesize a cross talk mechanism between AM and ripening processes that involves genes related to ethylene and light signaling.

  18. p21-ras effector domain mutants constructed by "cassette" mutagenesis

    DEFF Research Database (Denmark)

    Stone, J C; Vass, W C; Willumsen, B M

    1988-01-01

    A series of mutations encoding single-amino-acid substitutions within the v-rasH effector domain were constructed, and the ability of the mutants to induce focal transformation of NIH 3T3 cells was studied. The mutations, which spanned codons 32 to 40, were made by a "cassette" mutagenesis...

  19. Influence of ultraviolet light on arising of induced mutants in Cercospora beticola sacc

    Energy Technology Data Exchange (ETDEWEB)

    Brillova, D [Institute of Experimental Phytopathology and Entomology of the Slovak Academy of Sciences, Ivanka pri Dunaji (Czechoslovakia)

    1976-01-01

    Ultraviolet radiation of wavelengths of 254 and 350 nm respectively, applied for 30 to 480 seconds to the conidia of Cercospora beticola, induced a large number of mutants. According to their appearance, the occurring mutants can be considered as visible with effect on morphology and colour. A considerable part of the mutants lost its ability to form reproductive organs in in vitro conditions, as well as on the host plant; they became avirulent. Moreover, mutants occurred with decreased virulence, with a weak forming of conidia and prolonged incubation period. In few cases, also reverse mutations were induced characterized by increased virulence.

  20. Plant regeneration and genetic transformation in Jatropha

    KAUST Repository

    Sujatha, M.

    2012-07-01

    Jatropha curcas, a non-edible oil bearing species with multiple uses, and considerable economic potential is emerging as a potential biofuel plant. The limited knowledge of this species, low and inconsistent yields, the narrow genetic variability, and vulnerability to insects and diseases are major constraints in successful cultivation of Jatropha as a biofuel crop. Hence, genetic improvement of Jatropha is essential by conventional and modern biotechnological tools to use as a viable alternative source of bio-diesel. Realising its potential as a bio-energy crop, in vitro regeneration methods have been established to meet the demand of large scale supply of superior clones, and also as a prelude for genetic improvement of the species through transgenic approaches. In this chapter, an overview of in vitro tissue culture and genetic transformation of Jatropha is discussed. © 2013 Springer Science+Business Media Dordrecht. All rights are reserved.

  1. Regulatory Mechanisms of a Highly Pectinolytic Mutant of Penicillium occitanis and Functional Analysis of a Candidate Gene in the Plant Pathogen Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Gustavo Bravo-Ruiz

    2017-09-01

    Full Text Available Penicillium occitanis is a model system for enzymatic regulation. A mutant strain exhibiting constitutive overproduction of different pectinolytic enzymes both under inducing (pectin or repressing conditions (glucose was previously isolated after chemical mutagenesis. In order to identify the molecular basis of this regulatory mechanism, the genomes of the wild type and the derived mutant strain were sequenced and compared, providing the first reference genome for this species. We used a phylogenomic approach to compare P. occitanis with other pectinolytic fungi and to trace expansions of gene families involved in carbohydrate degradation. Genome comparison between wild type and mutant identified seven mutations associated with predicted proteins. The most likely candidate was a mutation in a highly conserved serine residue of a conserved fungal protein containing a GAL4-like Zn2Cys6 binuclear cluster DNA-binding domain and a fungus-specific transcription factor regulatory middle homology region. To functionally characterize the role of this candidate gene, the mutation was recapitulated in the predicted orthologue Fusarium oxysporum, a vascular wilt pathogen which secretes a wide array of plant cell wall degrading enzymes, including polygalacturonases, pectate lyases, xylanases and proteases, all of which contribute to infection. However, neither the null mutant nor a mutant carrying the analogous point mutation exhibited a deregulation of pectinolytic enzymes. The availability, annotation and phylogenomic analysis of the P. occitanis genome sequence represents an important resource for understanding the evolution and biology of this species, and sets the basis for the discovery of new genes of biotechnological interest for the degradation of complex polysaccharides.

  2. Evaluation of semi-dwarf mutants in triticale and wheat breeding programmes

    International Nuclear Information System (INIS)

    Driscoll, C.J.

    1982-01-01

    A number of short-statured triticale plants were selected in M 4 following gamma-ray or EMS treatment of seed of Beagle and DR-IRA triticales. Selection for homozygous mutants will be attempted in M 5 . The Cornerstone male sterility mutant mslc is being combined with the three GA-insensitive, reduced-height mutants Gai/Rht1, Gai/Rht2 and Gai/Rht3 in order to establish a composite cross based on homozygosity of a given Gai/Rht allele. This would allow selection for minor genes for increased height on a GA-insensitive, reduced-height background. (author)

  3. Promising semi-dwarf mutant in wheat variety K68

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, D [Banaras Hindu Univ. (India). Dept. of Genetics and Plant Breeding

    1977-04-01

    A semi-dwarf mutant (HUW-SDf 1) was induced from common wheat Var. K68 through the exposure of /sup 60/Co ..gamma..-rays at 15 kR. This mutant along with other induced mutants and control was assessed for yield components, yield and grain quality (M/sub 4/ generation); internode length reduction pattern and the yielding ability at three levels of nitrogen (M/sub 5/ generation). The mutant was significantly shorter in height and almost equal in tillers per plant and grains per spike to K68. However, it showed marked reduction in spike length and spikelets per spike. On the other hand, it possessed significantly higher (50.04 g) 1000-grain weight against control (41.15 g). The mutant gave 56.0% higher yield than the control. Grain quality studies indicated that the mutant possessed significantly higher (14.15%) total protein than K68. It was equally as good as K68 in lysine content. Pelshenke value (62.5 min) of the mutant indicated medium hard nature of gluten as compared to hard nature (198.0) of the control. The mutant showed 24.0% reduction in total culm length compared to K68. Reduction occurred due to maximum and almost equal reduction in 5th and 4th internodes (ca 34.0%) followed by 3rd, 2nd and 1st. The mutant showed similar yield and yield response to increasing nitrogen levels (80 to 160 kg per ha.) as for current commercial semi-dwarf varieties.

  4. Inherited phenotype instability of inflorescence and floral organ development in homeotic barley double mutants and its specific modification by auxin inhibitors and 2,4-D.

    Science.gov (United States)

    Šiukšta, Raimondas; Vaitkūnienė, Virginija; Kaselytė, Greta; Okockytė, Vaiva; Žukauskaitė, Justina; Žvingila, Donatas; Rančelis, Vytautas

    2015-03-01

    Barley (Hordeum vulgare) double mutants Hv-Hd/tw2, formed by hybridization, are characterized by inherited phenotypic instability and by several new features, such as bract/leaf-like structures, long naked gaps in the spike, and a wide spectrum of variations in the basic and ectopic flowers, which are absent in single mutants. Several of these features resemble those of mutations in auxin distribution, and thus the aim of this study was to determine whether auxin imbalances are related to phenotypic variations and instability. The effects of auxin inhibitors and 2,4-D (2,4-dichlorophenoxyacetic acid) on variation in basic and ectopic flowers were therefore examined, together with the effects of 2,4-D on spike structure. The character of phenotypic instability and the effects of auxin inhibitors and 2,4-D were compared in callus cultures and intact plants of single homeotic Hv-tw2 and Hv-Hooded/Kap (in the BKn3 gene) mutants and alternative double mutant lines: offspring from individual plants in distal hybrid generations (F9-F10) that all had the same BKn3 allele as determined by DNA sequencing. For intact plants, two auxin inhibitors, 9-hydroxyfluorene-9-carboxylic acid (HFCA) and p-chlorophenoxyisobutyric acid (PCIB), were used. Callus growth and flower/spike structures of the Hv-tw2 mutant differed in their responses to HFCA and PCIB. An increase in normal basic flowers after exposure to auxin inhibitors and a decrease in their frequencies caused by 2,4-D were observed, and there were also modifications in the spectra of ectopic flowers, especially those with sexual organs, but the effects depended on the genotype. Exposure to 2,4-D decreased the frequency of short gaps and lodicule transformations in Hv-tw2 and of long naked gaps in double mutants. The effects of auxin inhibitors and 2,4-D suggest that ectopic auxin maxima or deficiencies arise in various regions of the inflorescence/flower primordia. Based on the phenotypic instability observed, definite

  5. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses.

    Science.gov (United States)

    Ellis, Christine; Karafyllidis, Ioannis; Wasternack, Claus; Turner, John G

    2002-07-01

    Biotic and abiotic stresses stimulate the synthesis of jasmonates and ethylene, which, in turn, induce the expression of genes involved in stress response and enhance defense responses. The cev1 mutant has constitutive expression of stress response genes and has enhanced resistance to fungal pathogens. Here, we show that cev1 plants have increased production of jasmonate and ethylene and that its phenotype is suppressed by mutations that interrupt jasmonate and ethylene signaling. Genetic mapping, complementation analysis, and sequence analysis revealed that CEV1 is the cellulose synthase CeSA3. CEV1 was expressed predominantly in root tissues, and cev1 roots contained less cellulose than wild-type roots. Significantly, the cev1 mutant phenotype could be reproduced by treating wild-type plants with cellulose biosynthesis inhibitors, and the cellulose synthase mutant rsw1 also had constitutive expression of VSP. We propose that the cell wall can signal stress responses in plants.

  6. Role of xanthophylls in light harvesting in green plants: a spectroscopic investigation of mutant LHCII and Lhcb pigment-protein complexes.

    Science.gov (United States)

    Fuciman, Marcel; Enriquez, Miriam M; Polívka, Tomáš; Dall'Osto, Luca; Bassi, Roberto; Frank, Harry A

    2012-03-29

    The spectroscopic properties and energy transfer dynamics of the protein-bound chlorophylls and xanthophylls in monomeric, major LHCII complexes, and minor Lhcb complexes from genetically altered Arabidopsis thaliana plants have been investigated using both steady-state and time-resolved absorption and fluorescence spectroscopic methods. The pigment-protein complexes that were studied contain Chl a, Chl b, and variable amounts of the xanthophylls, zeaxanthin (Z), violaxanthin (V), neoxanthin (N), and lutein (L). The complexes were derived from mutants of plants denoted npq1 (NVL), npq2lut2 (Z), aba4npq1lut2 (V), aba4npq1 (VL), npq1lut2 (NV), and npq2 (LZ). The data reveal specific singlet energy transfer routes and excited state spectra and dynamics that depend on the xanthophyll present in the complex.

  7. Genetic study of Pea (Pisum sativum L.) mutants with changed shape and/or dentation of leaves

    International Nuclear Information System (INIS)

    Naidenova, N.

    2001-01-01

    The purpose of this study is to describe the morphological differences between normal plants and mutants (due to irradiation) with different shape and/or dentation of leaflets and to evaluate their productivity and genetic potential. Dry seeds have been submitted to gamma irradiation with doses 100 Gy, 150 Gy and 200 Gy.The mutants studies in this research introduce an important source for further investigation of genetics of the mutant traits - dentation of leaflets, shape and especially flowering time that is controlled by genetically determined responses to photo period and temperature. Due to the clear phenotypic expression of the shape and leaves in some plants it is considered that the development of the leaves mutants is and important finding for pea genetics making tham valuable morphological markers for genetic investigations

  8. Tyrosine 842 in the activation loop is required for full transformation by the oncogenic mutant FLT3-ITD.

    Science.gov (United States)

    Kazi, Julhash U; Chougule, Rohit A; Li, Tianfeng; Su, Xianwei; Moharram, Sausan A; Rupar, Kaja; Marhäll, Alissa; Gazi, Mohiuddin; Sun, Jianmin; Zhao, Hui; Rönnstrand, Lars

    2017-07-01

    The type III receptor tyrosine kinase FLT3 is frequently mutated in acute myeloid leukemia. Oncogenic FLT3 mutants display constitutive activity leading to aberrant cell proliferation and survival. Phosphorylation on several critical tyrosine residues is known to be essential for FLT3 signaling. Among these tyrosine residues, Y842 is located in the so-called activation loop. The position of this tyrosine residue is well conserved in all receptor tyrosine kinases. It has been reported that phosphorylation of the activation loop tyrosine is critical for catalytic activity for some but not all receptor tyrosine kinases. The role of Y842 residue in FLT3 signaling has not yet been studied. In this report, we show that Y842 is not important for FLT3 activation or ubiquitination but plays a critical role in regulating signaling downstream of the receptor as well as controlling receptor stability. We found that mutation of Y842 in the FLT3-ITD oncogenic mutant background reduced cell viability and increased apoptosis. Furthermore, the introduction of the Y842 mutation in the FLT3-ITD background led to a dramatic reduction in in vitro colony forming capacity. Additionally, mice injected with cells expressing FLT3-ITD/Y842F displayed a significant delay in tumor formation, compared to FLT3-ITD expressing cells. Microarray analysis comparing gene expression regulated by FLT3-ITD versus FLT3-ITD/Y842F demonstrated that mutation of Y842 causes suppression of anti-apoptotic genes. Furthermore, we showed that cells expressing FLT3-ITD/Y842F display impaired activity of the RAS/ERK pathway due to reduced interaction between FLT3 and SHP2 leading to reduced SHP2 activation. Thus, we suggest that Y842 is critical for FLT3-mediated RAS/ERK signaling and cellular transformation.

  9. Complete sterility studies in three mutants of cowpea (Vigna Unguiculata (L.) walp

    International Nuclear Information System (INIS)

    Adu-Dapaah, H. K.; Singh, B. B.; Fatokun, C. A.

    1999-01-01

    Three completely-sterile cowpea mutants IT85D-3625, IT85D-3628, IT85D-3641 obtained from spontaneous mutation and gamma irradiation were-characterized. Reciprocal crosses between them and fertile plants failed to set pods. These lines showed significant differences with respect to various traits such as number of pollen grain per anther, anther length and width, plant height, anther indehiscence,unopened flower buds, and premature abortion of pods and seeds. The major cause of sterility was chromosome aberrations. Complete sterility in each of the three lines was conditioned by a simple recessive gene pair. Sterility in each of the three mutants was associated with floral aberrations. The symbols cs 1 , cs 2 and cs 3 are being assigned to IT85D-3625, IT85D-2628 and IT85D-3641 respectively. The three mutants were homogeneous with reference to sterility inheritance. (au)

  10. Novel determinants of H-Ras plasma membrane localization and transformation

    DEFF Research Database (Denmark)

    Willumsen, B M; Cox, A D; Solski, P A

    1996-01-01

    cysteine did not abolish palmitoylation. However, despite continued lipid modification the mutant proteins failed to bind to plasma membranes and instead accumulated on internal membranes and, importantly, were not transforming. Addition of an N-terminal myristoylation signal to these defective mutants......, or to proteins entirely lacking the C-terminal 25 residues restored both plasma membrane association and transforming activity. Thus, H-Ras does not absolutely require prenylation or palmitoylation nor indeed its hypervariable domain in order to interact with effectors that ultimately cause transformation....... However, in this native state, the C-terminus appears to provide a combination of lipids and a previously unrecognized signal for specific plasma membrane targeting that are essential for the correct localization and biological function of H-Ras....

  11. In vitro neoplastic transformation of plant callus tissue by γ-radiation

    International Nuclear Information System (INIS)

    Pandey, K.N.; Sabharwal, P.S.

    1979-01-01

    Tumours have been induced by γ-radiation in callus tissue derived from a monocotyledonous flowering plant, Haworthia mirabilis Haw. The transformed tissue exhibited compact texture, excessive cell proliferation and loss of capacity for organogenesis. Tumors were characterized by their ability to undergo continuous autonomous growth on minimal media in the subsequent 4 generations of subculture. In contrast, the nonirradiated control tissue grew with friable texture, required inositol or growth hormones and showed prolific differentiation of vegetative buds. (Auth.)

  12. SacB-SacR gene cassette as the negative selection marker to suppress Agrobacterium overgrowth in Agrobacterium-mediated plant transformation

    Science.gov (United States)

    Agrobacterium overgrowth is a common problem in Agrobacterium-mediated plant transformation. To suppress the Agrobacterium overgrowth, various antibiotics have been used during plant tissue culture steps. The antibiotics are expensive and may adversely affect plant cell differentiation and reduce ...

  13. Genetic characterization of glossy-leafed mutant broccoli lines

    Science.gov (United States)

    Glossy mutants of Brassica oleracea L. have reduced or altered epicuticular wax on the surface of their leaves as compared to wild-type plants, conveying a shiny green appearance. Mutations conferring glossiness are common and have been found in most B. oleracea crop varieties, including cauliflower...

  14. Development of mutants of local barley bakur (T. Hordeum vulgare. c v Bakkur L.) with good quantitative and qualitative traits under rainfed condition

    International Nuclear Information System (INIS)

    Saif, A. A.; Al-Shamiri, A. A.

    2012-12-01

    Seeds of local barley bakur were exposed to 150 Gy of gamma rays from cobalt 60 source irradiated seeds were planted in rows as M1.From M1 magnetized population plants , the main spike of each plants were collected, threshed and planted head to row method in 2008 winter season as M2. Evaluation of mutants was done for the increase in long spike and level of resistance to loading in compare with mother variety (untreated) resulted in selecting fifty mutated plants. These plants were planted as plant/ row method along with the mother variety and evaluated for grain yield and level of resistance for lodging which consequent y resulted in selecting of twenty four mutant lines which were varied in plant height long spike and yield. These lines were planted in the research farm during 2009 and the research farm during 2009 and 2011 winter season as M4 and M5 for two consecutive season resulted in selecting eight mutant lines which were distinguished of others in respect of level of resistance and increase of yield. These mutant lines were planted in plots in Kawkban and Bani-Mater locations during 2010 and 2011 seasons along with mother variety and improved variety Kawkban-1 which dominated in the region. Data were collected from the trail analyzed them separate y over each location. Results showed that the mutant line Al-e rra-B-008-15 was the best in grain yield and early maturity followed by Al-erra-B-008-20 and Al-erra-B-008-20. In the meantime these mutant line showed resistance to loading compare with other including the mother variety. There fore it can be recommended to register these mutants as a new varieties for Kawkaban Bain-Mater regions as well as for similar areas in the central and northern regions. This research summarizing results obtained from the trail conducted in both research farm and in farmer fields at Kawkaban and Bani-Mater locations. (Author)

  15. Mutants induced in winter rye (Secale cereale L.): Short straw-mutant No. 2714 and late-senescence mutant

    Energy Technology Data Exchange (ETDEWEB)

    Muszynski, S; Darlewska, M [Department of Plant Breeding and Seed Science, Warsaw Agricultural University, Warsaw (Poland)

    1990-01-01

    Full text: Mutants were induced by treating dormant seeds with ionizing radiation (fast neutrons) or chemicals (N-nitroso-N-ethyl urea or sodium azide). Among several mutants obtained, of special value is the short-straw mutant No. 2714 and a late senescent mutant. (author)

  16. Biochemical characteristics of mutant lines of currant tomato

    International Nuclear Information System (INIS)

    Gorbatenko, I.Yu.; Khrustaleva, V.V.; Shcherbakov, V.K.

    1988-01-01

    The currant tomato is used in breeding for fruit quality. It contains up to 50 mg% ascorbic acid, a large quantity of sugar and 8-10% of dry matter. The weight of the fruit, however, does not exceed 1.2-1.5 g. The plants have long, spreading and very branchy stems. Gamma ray induced mutants of currant tomato were used, as initial material in breeding for fruit quality in varieties suitable for mechanized harvesting. The research was carried out mainly at the Department of Vegetable Growing Ukrainian Scientific Research Institute of Irrigation Farming. The regional variety Lebyazhinskij (suitable for mechanized harvesting) was adopted as the standard. Its fruits contain: 5.6% dry matter, 2.7% sugars, 0.543% titrated acidity, 26.6 mg/100 g ascorbic acid, 0.425 mg% carotene and 0.35% cellulose. The biochemical characteristics of the tomato mutants are shown. In terms of fruit dry matter, all mutants surpassed the standard. The acidity and the ascorbic acid content varied considerably. Most noteworthy in terms of carotene were the lines GP-5, GP-9 and GP-12. An important factor in the production of tomato paste is the fruit cellulose content. The lowest cellulose content is found in mutant GP-3. As shown, all of the mutants were early ripening. The mutants surpassed the standard in simultaneous fruit ripening. Mutant lines GP-3, GP-6, GP-9 and GP-12 will be used in the breeding programme for improving fruit quality of varieties suitable for mechanized harvesting

  17. In vitro induction, isolation and selection of potato mutants resistant to late blight

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Arabi, M.I.E.

    2003-01-01

    A mutation breeding program was conducted to improve potato resistance to late blight disease caused by Phytophthora infestans. In vitro cultured explants from cvs Draga, Diamant, Spunta were irradiated with gamma ray doses 25, 30, and 35 Gy. Growing shoots were cut and re-cultured every 2 weeks until the 4 th generation (MV 4 ) to make sure no chimeral tissues still existed in the mutant material. Plantlets were subsequently propagated to obtain enough explants for in vitro selection pressure. Around 3,000 plantlets from the 3 cultivars were subjected to selection pressure using co-culture technique. MV 4 explants were incubated in jars, containing MS medium, with mycelia of P. infestans. Surviving plantlets were propagated and re-incubated with the pathogen for 3 consecutive generations. Resistant plantlets were acclimatized and transferred to pots and grown under glasshouse conditions. Plants were later inoculated, at the adult stage, with sporangial suspension. Cv Draga produced the highest number of resistant plants. Ten plants of Draga appeared to be resistant to late blight, whereas only one plant from each of the other 2 cvs was resistant. Mutant plants varied in number of produced minitubers from 13 to 70. Also, weight of these minitubers varied from less than 1 to 35 grams. Selected mutant lines will undergo further testing under field conditions for P. infestans resistance and other agronomic characteristics

  18. Efficient genetic transformation of okra (Abelmoschus esculentus (L.) Moench) and generation of insect-resistant transgenic plants expressing the cry1Ac gene.

    Science.gov (United States)

    Narendran, M; Deole, Satish G; Harkude, Satish; Shirale, Dattatray; Nanote, Asaram; Bihani, Pankaj; Parimi, Srinivas; Char, Bharat R; Zehr, Usha B

    2013-08-01

    Agrobacterium -mediated transformation system for okra using embryos was devised and the transgenic Bt plants showed resistance to the target pest, okra shoot, and fruit borer ( Earias vittella ). Okra is an important vegetable crop and progress in genetic improvement via genetic transformation has been impeded by its recalcitrant nature. In this paper, we describe a procedure using embryo explants for Agrobacterium-mediated transformation and tissue culture-based plant regeneration for efficient genetic transformation of okra. Twenty-one transgenic okra lines expressing the Bacillus thuringiensis gene cry1Ac were generated from five transformation experiments. Molecular analysis (PCR and Southern) confirmed the presence of the transgene and double-antibody sandwich ELISA analysis revealed Cry1Ac protein expression in the transgenic plants. All 21 transgenic plants were phenotypically normal and fertile. T1 generation plants from these lines were used in segregation analysis of the transgene. Ten transgenic lines were selected randomly for Southern hybridization and the results confirmed the presence of transgene integration into the genome. Normal Mendelian inheritance (3:1) of cry1Ac gene was observed in 12 lines out of the 21 T0 lines. We selected 11 transgenic lines segregating in a 3:1 ratio for the presence of one transgene for insect bioassays using larvae of fruit and shoot borer (Earias vittella). Fruit from seven transgenic lines caused 100 % larval mortality. We demonstrate an efficient transformation system for okra which will accelerate the development of transgenic okra with novel agronomically useful traits.

  19. Expression of OsSPY and 14-3-3 genes involved in plant height variations of ion-beam-induced KDML 105 rice mutants

    Energy Technology Data Exchange (ETDEWEB)

    Phanchaisri, Boonrak [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Samsang, Nuananong [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, Liang Deng; Singkarat, Somsorn [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Anuntalabhochai, Somboon, E-mail: soanu.1@gmail.com [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2012-06-01

    The culm length of two semidwarf rice mutants (PKOS1, HyKOS1) obtained from low-energy N-ion beam bombardments of dehusked Thai jasmine rice (Oryza sativa L. cv. KDML 105) seeds showed 25.7% and 21.5% height reductions and one spindly rice mutant (TKOS4) showed 21.4% increase in comparison with that of the KDML 105 control. A cDNA-RAPD analysis identified differential gene expression in internode tissues of the rice mutants. Two genes identified from the cDNA-RAPD were OsSPY and 14-3-3, possibly associated with stem height variations of the semidwarf and spindly mutants, respectively. The OsSPY gene encoded the SPY protein which is considered to be a negative regulator of gibberellin (GA). On the other hand, the 14-3-3 encoded a signaling protein which can bind and prevent the RSG (repression of shoot growth) protein function as a transcriptional repressor of the kaurene oxidase (KO) gene in the GA biosynthetic pathway. Expression analysis of OsSPY, 14-3-3, RSG, KO, and SLR1 was confirmed in rice internode tissues during the reproductive stage of the plants by semi-quantitative RT-PCR technique. The expression analysis showed a clear increase of the levels of OsSPY transcripts in PKOS1 and HyKOS1 tissue samples compared to that of the KDML 105 and TKOS4 samples at the age of 50-60 days which were at the ages of internode elongation. The 14-3-3 expression had the highest increase in the TKOS4 samples compared to those in KDML 105, PKOS1 and HyKOS1 samples. The expression analysis of RSG and KO showed an increase in TKOS4 samples compared to that of the KDML 105 and that of the two semidwarf mutants. These results indicate that changes of OsSPY and 14-3-3 expression could affect internode elongation and cause the phenotypic changes of semidwarf and spindly rice mutants, respectively.

  20. Expression of OsSPY and 14-3-3 genes involved in plant height variations of ion-beam-induced KDML 105 rice mutants

    International Nuclear Information System (INIS)

    Phanchaisri, Boonrak; Samsang, Nuananong; Yu, Liang Deng; Singkarat, Somsorn; Anuntalabhochai, Somboon

    2012-01-01

    The culm length of two semidwarf rice mutants (PKOS1, HyKOS1) obtained from low-energy N-ion beam bombardments of dehusked Thai jasmine rice (Oryza sativa L. cv. KDML 105) seeds showed 25.7% and 21.5% height reductions and one spindly rice mutant (TKOS4) showed 21.4% increase in comparison with that of the KDML 105 control. A cDNA-RAPD analysis identified differential gene expression in internode tissues of the rice mutants. Two genes identified from the cDNA-RAPD were OsSPY and 14-3-3, possibly associated with stem height variations of the semidwarf and spindly mutants, respectively. The OsSPY gene encoded the SPY protein which is considered to be a negative regulator of gibberellin (GA). On the other hand, the 14-3-3 encoded a signaling protein which can bind and prevent the RSG (repression of shoot growth) protein function as a transcriptional repressor of the kaurene oxidase (KO) gene in the GA biosynthetic pathway. Expression analysis of OsSPY, 14-3-3, RSG, KO, and SLR1 was confirmed in rice internode tissues during the reproductive stage of the plants by semi-quantitative RT-PCR technique. The expression analysis showed a clear increase of the levels of OsSPY transcripts in PKOS1 and HyKOS1 tissue samples compared to that of the KDML 105 and TKOS4 samples at the age of 50–60 days which were at the ages of internode elongation. The 14-3-3 expression had the highest increase in the TKOS4 samples compared to those in KDML 105, PKOS1 and HyKOS1 samples. The expression analysis of RSG and KO showed an increase in TKOS4 samples compared to that of the KDML 105 and that of the two semidwarf mutants. These results indicate that changes of OsSPY and 14-3-3 expression could affect internode elongation and cause the phenotypic changes of semidwarf and spindly rice mutants, respectively.

  1. The effect of UVB on flavonoid biosynthesis in wild type and mutant petunia and arabidopsis

    International Nuclear Information System (INIS)

    Ryan, K.G.; Swinny, E.E.; Markham, K.R.; Winefield, C.

    2000-01-01

    Full text: Flavonoids may protect plants against damage by UVB radiation. Flavonoid composition and mRNA expression were determined following growth of plants under natural light, and under natural light with low UVB and with enhanced UVB. In wild-type Arabidopsis and Petunia, UVB induced an increase in total levels of flavonols and this was due to an up-regulation of, several genes coding for key enzymes in the phenylpropanoid pathway. In addition, UVB induced a higher rate of production of the di-hydroxylated si flavonol, quercetin glycoside than of the mono-hydroxylated equivalent, of kaempferol glycoside. Thus the ratio of quercetin to kaempferol increased with UVB treatment in wild type plants, and this suggests that the flavonoid r 3'hydroxylase (F3'H) enzyme, which converts dihydrokaempferol to dihydroquercetin, may play a key role in plant protection from UVB. Mutant plants of both species lacking this F3'H gene were grown under similar UV conditions. Leaves of the mutant Arabidopsis plant (tt7) did not contain quercetin, even under the enhanced UVB treatment. Under the low UVB treatment the total amount of flavonol was similar to the wild-type (Ler), but with increasing UVB, total flavonol (i.e. kaempferol) levels were significantly higher than in similarly treated wild type plants. In the Petunia F3'H mutant, low levels of quercetin were found even in the low UVB treatment, which indicates this variety may be producing some quercetin via an alternative pathway. Under UVB radiation, total flavonoids increased to levels significantly higher than in similarly treated wild type plants, and most of this material was kaempferol. These observations suggest that quercetin is the preferred protective flavonol in wild type plants, due perhaps to enhanced antioxidant or free radical scavenging activity. In mutant plants lacking the F3'H enzyme, the response is to produce a larger amount of a less effective photoprotectant

  2. Search for methylation-sensitive amplification polymorphisms in mutant figs

    OpenAIRE

    Rodrigues, M. G F; Martins, A. B G [UNESP; Bertoni, B. W.; Figueira, A.; Giuliatti, S.

    2013-01-01

    Fig (Ficus carica) breeding programs that use conventional approaches to develop new cultivars are rare, owing to limited genetic variability and the difficulty in obtaining plants via gamete fusion. Cytosine methylation in plants leads to gene repression, thereby affecting transcription without changing the DNA sequence. Previous studies using random amplification of polymorphic DNA and amplified fragment length polymorphism markers revealed no polymorphisms among select fig mutants that ori...

  3. A temperature-sensitive winter wheat chlorophyll mutant derived from space mutagenesis

    International Nuclear Information System (INIS)

    Zhao Hongbin; Guo Huijun; Zhao Linshu; Gu Jiayu; Zhao Shirong; Li Junhui; Liu Luxiang

    2010-01-01

    A temperature-sensitive winter wheat (Triticum aestivum L.) chlorophyll mutant Mt18, induced by spaceflight mutagenesis, was studied on agronomic traits, ultrastructure of chloroplast and photosynthesis characteristics. The leaf color of the mutant Mt18 showed changes from green to albino and back to green during the whole growth period. Plant height, productive tillers, spike length, grains and grain weight per plant, and 1000-grain weight of the mutant were lower than those of the wild type. The ultrastructural observation showed that no significant difference was found between the mutant and the wild type during prior albino stage, however, at the albino stage the number of granum-thylakoids and grana lamellae became fewer or completely disappeared, but the strom-thylakoid was obviously visible. After turning green,the structure of most chloroplasts recovered to normal, but number of chloroplast was still lower than that of the wild type. When exposed to photosynthetic active radiation (PAR) of 110 μmol·m -2 ·s -1 , the non-photochemical quenching (NPQ) of mutant was significantly lower than that of the wild type, and the non-regulated energy dissipation (Y NO ) was significantly higher than that of the wild type, while the change of the maximum photosystem II quantum yield (F v /F m ), potential activity of photosystem II (F v /F o ), photochemical quenching (q P ), effective quantum yield (Y PSI I) and regulated non-photochemical energy dissipation (Y NPQ ) were different at various stages. In addition, the differences of the electron transport rate (ETR), photochemical quenching (q P ), and effective quantum yield (Y PSI I) between mutant and wild type varied under different PAR conditions. It was concluded that with the change of chloroplast ultrastructure, the leaf color and photosynthesis of the wheat mutant Mt18 change correspondingly. The chloroplast ultrastructure was obviously different from that of wild type, and the photosynthetic efficiency

  4. Isolation and characterization of Tn917lac-generated competence mutants of Bacillus subtilis

    International Nuclear Information System (INIS)

    Hahn, J.; Albano, M.; Dubnau, D.

    1987-01-01

    The authors isolated 28 mutants of Bacillus subtilis deficient in the development of competence by using the transposon Tn917lacZ as a mutagen. The mutant strains were poorly transformable with plasmid and chromosomal DNAs but were normally transducible and exhibited wild-type resistance to DNA-damaging agents. The mutations were genetically mapped, and the mutants were characterized with respect to their abilities to bind and take up radiolabeled DNA. All were defective in uptake, and some failed to bind significantly amounts of DNA. The abilities of the mutant strains to resolve into two buoyant density classes on Renografin gradients were studied. Most resolved normally, but several banded in Renografin only at the buoyant density of noncompetent cells. The genetic mapping studies and the other analyses suggested that the mutations define a minimum of seven distinct com genes

  5. Evaluation of some field bean mutants induced by using gamma rays and Ethyl methane sulphonate in M9 and M10 generations

    International Nuclear Information System (INIS)

    Atia, Z.M.A.

    2008-01-01

    Selection was practices within and between, M2,M3 and M4 field been populations derived from gamma irradiation treatments (30 and 60 Gy) and EMS treatments (0.15-0.3%) ten mutants were isolated and evaluated for yield and yield components and chemical contents of seeds in M 5 generation. The evaluation was done until M 8 generation. In this generation (M 8 ) we isolated seven mutants, in M 9 and M 1 0 generations, a comparison was done between these mutants and some local varieties; Sakha1, Sakha2, Masr1 and Giza3 in addition the mother variety Giza 2. The results indicated that:1-All faba bean mutants increased significantly Number of branches / plant in Comparison with the local commercial varieties. 2-Mutant lines No 3,4,5,6 and 7 increased number of pods per plant weight pods per plant number and weight seeds per plant and protein percentage of seeds in comparison with the local varieties in the two generations only . 3-Mutant No. 8 increased significantly No. and weight of pods, No. and weight of seeds / plant in M 9 generation . 4-Mutants No 3,4,5,6,7 and 8 increased significantly number of seeds/ pod and shelling percentage in comparison with local varieties Sakha1 and Sakha2 in the two generations on the contrast decreased significantly seed index (100 seeds weight) and shedding percentages of followers and pods

  6. Release of a new lodging-resistant mutant cultivar produced by gamma-rays in glutinous rice

    International Nuclear Information System (INIS)

    Yamaguchi, Hikoyuki; Igarashi, Isao; Sato, Takeshi

    2001-01-01

    To obtain short culm mutants with lodging resistance, while retaining the other desirable traits, such as an excellent quality of the original variety, dry seeds of a glutinous rice cultivar Mezuru were exposed to gamma-rays. In M3, thirty plants were selected from 4020 plants, based on the short culm length. From the results of the subsequent yield and adaptability tests, a promising mutant line was called by the name of Sakata-Mezuru as a new cultivar in 1996. This mutant variety was mainly characterized by shortening of each internode, especially the lowest internode, and at harvest it was more adaptable to mechanical work due to the lodging resistance than its parent. It was demonstrated that the grain quality of the mutant equals to or slightly surpasses that of the parent. Sakata-Mezuru has been registered in February of 2001 and officially released. (author)

  7. Development and characterization of mutant winter wheat (Triticum aestivum L.) accessions resistant to the herbicide quizalofop.

    Science.gov (United States)

    Ostlie, Michael; Haley, Scott D; Anderson, Victoria; Shaner, Dale; Manmathan, Harish; Beil, Craig; Westra, Phillip

    2015-02-01

    New herbicide resistance traits in wheat were produced through the use of induced mutagenesis. While herbicide-resistant crops have become common in many agricultural systems, wheat has seen few introductions of herbicide resistance traits. A population of Hatcher winter wheat treated with ethyl methanesulfonate was screened with quizalofop to identify herbicide-resistant plants. Initial testing identified plants that survived multiple quizalofop applications. A series of experiments were designed to characterize this trait. In greenhouse studies the mutants exhibited high levels of quizalofop resistance compared to non-mutant wheat. Sequencing ACC1 revealed a novel missense mutation causing an alanine to valine change at position 2004 (Alopecurus myosuroides reference sequence). Plants carrying single mutations in wheat's three genomes (A, B, D) were identified. Acetyl co-enzyme A carboxylase in resistant plants was 4- to 10-fold more tolerant to quizalofop. Populations of segregating backcross progenies were developed by crossing each of the three individual mutants with wild-type wheat. Experiments conducted with these populations confirmed largely normal segregation, with each mutant allele conferring an additive level of resistance. Further tests showed that the A genome mutation conferred the greatest resistance and the B genome mutation conferred the least resistance to quizalofop. The non-transgenic herbicide resistance trait identified will enhance weed control strategies in wheat.

  8. Radio-sensitivity analysis and selection of useful mutants of rape (Brassica napus L.) by gamma irradiation

    International Nuclear Information System (INIS)

    Goh, Eun Jeong; Kim, Wook Jin; Kim, Jin Baek; Kim, Dong Sub; Kim, Sang Hoon; Kang, Si Yong

    2010-01-01

    Rape (Brassica napus L.) plants are one of the major oilseed crops. The main components of rapeseed are oil (35 to 47%) and protein (15 to 32%). For the biodiesel production, the development of a new variety of rape plant with high biomass and/or oleic acid contents is required. In order to determine the optimum dose of gamma-ray irradiation, the rape seeds of cvs. Hanra (Hr), Youngsan (Ys), Tammi (Tm), and Tamra (Tr) were irradiated with a 100 ∼ 4,000 Gy dose range of gamma-rays. Considering the growth factors, the optimum doses were determined to be within the range of 600 ∼ 1,000 Gy for the selection of useful mutant lines. Six-hundred and eighty eight (688) M 2 mutant lines were obtained from 600 ∼ 1,000 Gy gamma-ray-irradiated M 1 plants through selfing. The growth characteristics, leaf shape, early flowering, and flower color were all investigated. The selected mutant numbers of early flowering, leaf shape, and flower color were 34, 52, and 3 from the four cultivars, respectively. These mutant lines will be used for the development of a new variety of rape plant with high biomass and oleic acid contents

  9. Directly Transforming PCR-Amplified DNA Fragments into Plant Cells Is a Versatile System That Facilitates the Transient Expression Assay

    Science.gov (United States)

    Lu, Yuming; Chen, Xi; Wu, Yuxuan; Wang, Yanping; He, Yuqing; Wu, Yan

    2013-01-01

    A circular plasmid containing a gene coding sequence has been broadly used for studying gene regulation in cells. However, to accommodate a quick screen plasmid construction and preparation can be time consuming. Here we report a PCR amplified dsDNA fragments (PCR-fragments) based transient expression system (PCR-TES) for suiting in the study of gene regulation in plant cells. Instead of transforming plasmids into plant cells, transient expression of PCR-fragments can be applicable. The transformation efficiency and expression property of PCR-fragments are comparable to transformation using plasmids. We analyzed the transformation efficiency in PCR-TES at transcription and protein levels. Our results indicate that the PCR-TES is as versatile as the conventional transformation system using plasmid DNA. Through reconstituting PYR1-mediated ABA signaling pathway in Arabidopsis mesophyll protoplasts, we were not only validating the practicality of PCR-TES but also screening potential candidates of CDPK family members which might be involved in the ABA signaling. Moreover, we determined that phosphorylation of ABF2 by CPK4 could be mediated by ABA-induced PYR1 and ABI1, demonstrating a crucial role of CDPKs in the ABA signaling. In summary, PCR-TES can be applicable to facilitate analyzing gene regulation and for the screen of putative regulatory molecules at the high throughput level in plant cells. PMID:23468926

  10. Directly transforming PCR-amplified DNA fragments into plant cells is a versatile system that facilitates the transient expression assay.

    Directory of Open Access Journals (Sweden)

    Yuming Lu

    Full Text Available A circular plasmid containing a gene coding sequence has been broadly used for studying gene regulation in cells. However, to accommodate a quick screen plasmid construction and preparation can be time consuming. Here we report a PCR amplified dsDNA fragments (PCR-fragments based transient expression system (PCR-TES for suiting in the study of gene regulation in plant cells. Instead of transforming plasmids into plant cells, transient expression of PCR-fragments can be applicable. The transformation efficiency and expression property of PCR-fragments are comparable to transformation using plasmids. We analyzed the transformation efficiency in PCR-TES at transcription and protein levels. Our results indicate that the PCR-TES is as versatile as the conventional transformation system using plasmid DNA. Through reconstituting PYR1-mediated ABA signaling pathway in Arabidopsis mesophyll protoplasts, we were not only validating the practicality of PCR-TES but also screening potential candidates of CDPK family members which might be involved in the ABA signaling. Moreover, we determined that phosphorylation of ABF2 by CPK4 could be mediated by ABA-induced PYR1 and ABI1, demonstrating a crucial role of CDPKs in the ABA signaling. In summary, PCR-TES can be applicable to facilitate analyzing gene regulation and for the screen of putative regulatory molecules at the high throughput level in plant cells.

  11. Mutant of Japanese pear resistant to Black Spot Disease

    International Nuclear Information System (INIS)

    Sanada, T.; Nishida, T.; Ikeda, F.

    1987-01-01

    Full text: Nijisseike is one of the leading cultivars of Japanese pear (Pyrus serotinea Rehd.), but susceptible to black spot disease. Farmers try to prevent this disease by wrapping the fruit with a paper bag and by repeated spraying of fungicides. The disease is caused by a Japanese pear pathotype of Alternaria alternata (Fr.) Keissler. Susceptibility is controlled by a single dominant gene. In 1962, grafted trees of this cultivar were planted at a distance between 53 and 93 m from the 60 Co source in the gamma-field (daily dose 15-4 rad). One branch on a tree planted at 53 m was detected as resistant in 1981. Under field conditions, black spots were observed on many fruits and leaves of the original trees by natural infection in early July, however, they were not observed on the mutant. To examine the resistance of the mutant, artificial inoculations were made using spores of the pathogen and the host specific toxin produced by germinating spores. When some drops of the spore suspension are placed on leaves, the formation of black spots depends upon the leaf age. In a resistant cv. as Chojuro, black spot symptoms are formed only when inoculated on young leaves. An intermediate reaction was observed in the mutant, whereas the original Nijisseiki showed severe symptoms. When inoculation was made on matured fruit skins, no black spot was formed on the mutant just like on the resistant cv. Chojuro, while many small black spots were formed and grew into large spots overlapping each other on the susceptible cv. Nijisseiki. In case of the crude toxin inoculation (4-0.04 ppm) of cv. Nijisseiki black spots were formed on the surface of the susceptible fruit skin, and necrotic lesions at the cut end of detached small pieces of leaves, although reaction on fruit skins was weaker compared with inoculation by spores. However, no symptoms were observed from the toxin application on the mutant and the resistant cv. Chojuro. That the resistance of the mutant is classified as

  12. Mutation Breeding and Selection for Phenotypic Mutants in Standard Rice Varieties by Ion Beam

    International Nuclear Information System (INIS)

    Puddhanon, Prawit; Pintanon, Prateep; Chaithep, Waree; Songjuntuke, Ksan

    2009-07-01

    Full text: Effects of 80 keV ion beam (10 16 ion/cm 2 on mutations of RD6 and Sanpatong 1 rice varieties were studied in 2006. In order to obtain the phenotypic mutants, each variety was sown in the laboratory and under field conditions at Maejo University in 2007 dry season. Seed germination noticeably declined. For RD6, only 45.1% germinated in the laboratory, and 18.1% were established under the field condition. Similarly, 62.3% of Sanpatong 1 germinated in the laboratory and 31.4% established in the field. No phenotypic mutants were observed in the first generation (M 1 ). The M2 seeds were harvested separately from 3 panicles of each M plant in RD6 and Sanpatong1, totaling 810 and 1,878 lines, respectively. In 2007 rainy season, they were planted on a panicle to row basis. It was found that more phenotypic mutants were observed in the M 2 for Sanpatong 1 than for RD6. The mutant characters included dwarf plants, early maturity, male sterility and larger panicle sizes. As a result, about 420 within line selections were collected and the M 3 seeds were harvested for further field condition and gene markers evaluations

  13. Tolerance of some Potato Mutants Induced with Gamma Irradiation to Drought in Vitro

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Al-Ayyoubi, Z.

    2007-01-01

    An in vitro selection program was conducted in order to improve potato (Solanum tuberosum,L.) tolerance to drought. Potato mutant plants were obtained through a previously conducted mutation breeding program on three potato cultivars (Draga, Spunta, and Diamant) aimed to improve potato tolerance to salinity and resistance to late blight disease. In order to apply selection pressure, growth media (MS based) were prepared with the addition of 1%, 2%, 3% concentrations of Poly Ethylene Glycol (PEG). As a result, three mutants were selected that were tolerant to water stress (i.e. drought tolerant), two of them were derived from the cultivar Draga and one came from Spunta. Physiological growth parameters (plant length, leaf number, branch number, roots number, leaf area, stomata number, and chlorophyll concentration content) were determined on the growing plantlets. The selected mutants were distinguished based on some characteristics which being associated with in their tolerance to drought. Such as an increases in leaf number, root number, and a decrease in stomata number. However a reduction in chlorophyll content was observed as compared with the control. This is considered a negative parameter which may result in a decrease in number and size of tubers. Thus it is important to continue selection for higher chlorophyll content. Also, these mutant lines will need further selection in the field for plants with larger tubers before they can be considered as certified lines.

  14. Generation of gamma irradiation and EMS-induced mutant lines of the H7996 tomato (Solanum lycopersicum L.)

    International Nuclear Information System (INIS)

    Canama, Alma O.; Galvez, Hayde F.; Tongson, Eden Jane U.; Quilloy, Reynaldo B.; Hautea, Desiree M.

    2010-01-01

    Tomato (L.) is one of the most important vegetable crops grown worldwide for the fresh vegetable market and food processing industry. With the completion of the genome-sequencing projects in various crops, the major challenge will be determine the gene function. One approach is to generate and to analyze mutant phenotypes. The paper reports the generation of gamma-irradiated and ethy methane sulfonate (EMS)-treated mutant populations, identification and phenotypic characterization of dominant and visible mutations in tomato mutant lines. Mutant populations of tomato H7996 were created using physical (cobalt 60 gamma ray) and chemical EMS mutagens. Generally, based on high-throughput phenotypic characterization, mutations were observed on the plant habit, size, morphology, leaf and flower color and morphology and fruit characteristics. Specifically, the most common dominant and visible mutations noted in the M 1 generation were monopodial, compact, short internodes, multi-branch plant type, light yellow and ghost leaf coloration, tiny and long pedicel leaf morphology and small or short plant size. In the M2 generation, homogeneous and segregating M 2 families were selected to constitute the core set of visible tomato mutants. Initial bacterial wilt resistance (BWR) gene knockouts were also identified. The mutant lines will be used as a rich source of genetic materials for breeding and functional genomics of tomato. (author)

  15. High yielding and early maturing mutants in mungbean (Vigna radiata (L) Wilczek)

    International Nuclear Information System (INIS)

    Malik, I.A.

    1988-01-01

    Mungbean in Pakistan is grown on about 79 thousand hectares with an annual production of around 39600 t. The poor yield of cultivars may be largely due to their indeterminate excessive vegetative growth, low harvest index, and susceptibility to various diseases. Lack of synchrony in maturity and pod shattering are also limiting factors. Mutation breeding of mungbean at NIAB has the object of evolving early and uniform maturing high yielding mutants. Seeds of mungbean strains Pak-22 and RC71-27 were irradiated with 60 Co gamma rays (5 kR to 80 kR) in 1977. After selecting mutants in the M 2 , further selections were made in M 3 for earliness, uniform maturity, short plant stature and larger number of pods/plant. In the M 4 , 62 selections were subjected to micro plot yield trials and seed protein analysis. Selection was continued in the advanced generations and performance was studied in multilocational trials arranged through the Department of Agriculture. The important characteristics of two mutants namely NM19-19 (derivative of strain Pak 22 at 40 kR) and NM121-25 (derivative of strain RC71-27 at 20 kR) are listed and their field performance is summarized. Both the mutants are short statured and have erect determinate growth habit. They mature early by a margin of 16 days and yield higher. The high harvest index of the mutants indicates their efficiency in partitioning photosynthates towards grain formation. Because of their synchrony in maturity and top fruit bearing habit the mutants are amenable to mechanized harvesting. The early maturity in mutants also makes them more suitable for intercropping practices. The mutants possess greater degree of tolerance to yellow mosaic disease and have shown wide adaptability and stability when grown under different agroclimatic conditions. Both the mutants have been released in 1986, by the Punjab Seed Council as commercial varieties under the names of 'NIAB Mung 121-25' and 'NIAB Mung 19-19' respectively

  16. Selenium Content, Influential Factors Within the Plant and the Transformation of Different Selenium Specification

    Directory of Open Access Journals (Sweden)

    LIU Yuan-yuan

    2014-12-01

    Full Text Available The paper collected relevant literatures on selenium and explored the function to plant, selenium content, influential factors and selenium specification and transformation. We believed that there should be more deep researches on function of selenium to plant. Approaches of molecular, genetic engineering and isotope could be employed to breed selenium rich crops and possibilities in practice. More efforts should be spent on the technologies research for improving selenium level in crops under natural soil conditions to sustainably utilize the selenium resources.

  17. Construction and functional analysis of Trichoderma harzianum mutants that modulate maize resistance to the pathogen Curvularia lunata.

    Science.gov (United States)

    Fan, Lili; Fu, Kehe; Yu, Chuanjin; Ma, Jia; Li, Yaqian; Chen, Jie

    2014-01-01

    Agrobacterium tumefaciens-mediated transformation (ATMT) was used to generate an insertional mutant library of the mycelial fungus Trichoderma harzianum. From a total of 450 mutants, six mutants that showed significant influence on maize resistance to C. lunata were analyzed in detail. Maize coated with these mutants was more susceptible to C. lunata compared with those coated with a wild-type (WT) strain. Similar to other fungal ATMT libraries, all six mutants were single copy integrations, which occurred preferentially in noncoding regions (except two mutants) and were frequently accompanied by the loss of border sequences. Two mutants (T66 and T312) that were linked to resistance were characterized further. Maize seeds coated with T66 and T312 were more susceptible to C. lunata than those treated with WT. Moreover, the mutants affected the resistance of maize to C. lunata by enhancing jasmonate-responsive gene expression. T66 and T312 induced maize resistance to C. lunata infection through a jasmonic acid-dependent pathway.

  18. Synthesis of hydroxylated sterols in transgenic Arabidopsis plants alters growth and steroid metabolism.

    Science.gov (United States)

    Beste, Lisa; Nahar, Nurun; Dalman, Kerstin; Fujioka, Shozo; Jonsson, Lisbeth; Dutta, Paresh C; Sitbon, Folke

    2011-09-01

    To explore mechanisms in plant sterol homeostasis, we have here increased the turnover of sterols in Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum) plants by overexpressing four mouse cDNA encoding cholesterol hydroxylases (CHs), hydroxylating cholesterol at the C-7, C-24, C-25, or C-27 positions. Compared to the wild type, the four types of Arabidopsis transformant showed varying degrees of phenotypic alteration, the strongest one being in CH25 lines, which were dark-green dwarfs resembling brassinosteroid-related mutants. Gas chromatography-mass spectrometry analysis of extracts from wild-type Arabidopsis plants revealed trace levels of α and β forms of 7-hydroxycholesterol, 7-hydroxycampesterol, and 7-hydroxysitosterol. The expected hydroxycholesterol metabolites in CH7-, CH24-, and CH25 transformants were identified and quantified using gas chromatography-mass spectrometry. Additional hydroxysterol forms were also observed, particularly in CH25 plants. In CH24 and CH25 lines, but not in CH7 ones, the presence of hydroxysterols was correlated with a considerable alteration of the sterol profile and an increased sterol methyltransferase activity in microsomes. Moreover, CH25 lines contained clearly reduced levels of brassinosteroids, and displayed an enhanced drought tolerance. Equivalent transformations of potato plants with the CH25 construct increased hydroxysterol levels, but without the concomitant alteration of growth and sterol profiles observed in Arabidopsis. The results suggest that an increased hydroxylation of cholesterol and/or other sterols in Arabidopsis triggers compensatory processes, acting to maintain sterols at adequate levels.

  19. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system

    Science.gov (United States)

    Ellouzi, Hasna; Hamed, Karim Ben; Cela, Jana; Müller, Maren; Abdelly, Chedly; Munné-Bosch, Sergi

    2013-01-01

    Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na+, (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na+/K+ homeostasis and hormonal balance. PMID:23299430

  20. A higher yielding mutant of black gram with improved nodule formation

    International Nuclear Information System (INIS)

    Singh, R.K.; Raghuvanshi, S.S.

    1987-01-01

    Dry seeds of black gram (Vigna mungo (L) Hopper) var. T 9 with 12.2% moisture content were irradiated at 10, 20 and 30 krad of gamma rays. This was followed by combined treatment of one set in each dose with freshly prepared 0. 25% EMS in phosphate buffer at 7.0 pH at 30± deg. C for 6 hours. In M 2 population of 20 krad two mutants with pentafoliate instead of trifoliate leaves were found. This character was true breeding in M 3 M 6 generation. Crosses revealed monogenic recessive inheritance of this character. The proposed gene symbol is p5. This mutant has normal maturity period and the plant height is the same as T 9 (ca. 50 cm). Preliminary yield trials indicate superiority of the mutant line over control. The mutant line also shows a significant improvement in number and weight of root nodules, potentially improving green manuring value. Improvement of root nodulation in mungbean mutants was reported before by others

  1. Study of the plant COPII vesicle coat subunits by functional complementation of yeast Saccharomyces cerevisiae mutants.

    Directory of Open Access Journals (Sweden)

    Johan-Owen De Craene

    Full Text Available The formation and budding of endoplasmic reticulum ER-derived vesicles depends on the COPII coat protein complex that was first identified in yeast Saccharomyces cerevisiae. The ER-associated Sec12 and the Sar1 GTPase initiate the COPII coat formation by recruiting the Sec23-Sec24 heterodimer following the subsequent recruitment of the Sec13-Sec31 heterotetramer. In yeast, there is usually one gene encoding each COPII protein and these proteins are essential for yeast viability, whereas the plant genome encodes multiple isoforms of all COPII subunits. Here, we used a systematic yeast complementation assay to assess the functionality of Arabidopsis thaliana COPII proteins. In this study, the different plant COPII subunits were expressed in their corresponding temperature-sensitive yeast mutant strain to complement their thermosensitivity and secretion phenotypes. Secretion was assessed using two different yeast cargos: the soluble α-factor pheromone and the membranous v-SNARE (vesicle-soluble NSF (N-ethylmaleimide-sensitive factor attachment protein receptor Snc1 involved in the fusion of the secretory vesicles with the plasma membrane. This complementation study allowed the identification of functional A. thaliana COPII proteins for the Sec12, Sar1, Sec24 and Sec13 subunits that could represent an active COPII complex in plant cells. Moreover, we found that AtSec12 and AtSec23 were co-immunoprecipitated with AtSar1 in total cell extract of 15 day-old seedlings of A. thaliana. This demonstrates that AtSar1, AtSec12 and AtSec23 can form a protein complex that might represent an active COPII complex in plant cells.

  2. RAPD analysis of mutants obtained by ion beam irradiation to hinoki cypress shoot primordia

    International Nuclear Information System (INIS)

    Ishii, K.; Yamada, Y.; Hase, Y.; Shikazono, N.; Tanaka, A.

    2003-01-01

    Mutants were induced by irradiation of the shoot primordia of Hinoki cypress with 50 MeV 4 He 2+ heavy ion beam. Fresh shoot primordia on the CD medium in the plastic Petri dish (35 x 10 mm) were irradiated. Xanta mutants were induced from 38 to 266 Gy irradiation. Waxy mutants were induced from 76 to 266 Gy irradiation. Xanta, waxy and control type of regenerated Hinoki cypress in vitro were checked for their DNA level difference using RAPD analysis. Among 81 primers used, 23 primers produced the 68 bands. Among them stable 44 bands produced by 15 primers were compared between mutants and control plant. So far, there is no variation among the RAPD analysis band patterns of those mutants. Bigger test size may detect the gene variation specific for mutants

  3. MUTANTES DE LARANJA - 'PÊRA' COM NÚMERO REDUZIDO DE SEMENTES, OBTIDOS ATRAVÉS DE MUTAÇÕES INDUZIDAS SWEET ORANGE 'PÊRA' MUTANTS WITH LOW NUMBER OF SEEDS OBTAINED THROUGH MUTATION INDUCTION

    Directory of Open Access Journals (Sweden)

    RODRIGO ROCHA LATADO

    2001-08-01

    Full Text Available A obtenção de cultivares de citros com pequeno número de sementes é importante quando o objetivo é a produção de frutas para o consumo in natura. O objetivo deste trabalho foi o de avaliar, por três anos (1997, 1998 e 1999, o número médio de sementes e 15 outras características agronômicas, de 127 mutantes putativos de laranja-'Pêra', selecionados após irradiação de borbulhas com raios-gama e 8 plantas selecionadas do controle não irradiado. Os mutantes foram divididos em 16 grupos baseados nos tipos de mutações observados e em cada grupo, como controle comum, foram incluídas plantas de laranja-'Pêra' comercial. Observou-se que 46 mutantes putativos e uma planta do controle não irradiado (PSC apresentaram redução significativa no número de sementes por fruto, nos três anos consecutivos, sendo que 15 mutantes apresentaram frutos com média entre uma e duas sementes e 9 mutantes, frutos com média inferior a uma semente. Dentre estes 9 mutantes, os de número 27, 28 e 58, que apresentaram também alterações significativas no diâmetro de copa ou na altura de planta, além do 59 e 101, que não apresentaram alterações nas outras 15 características avaliadas, possuem um maior potencial para serem lançados como novos mutantes de laranja-'Pêra' com pequeno número de sementes.Citrus varieties with low number of seeds are important for in natura fruit market. The objective of the present work was to evaluate, for three years (1997, 1998 and 1999, the average number of seeds per fruit and 15 other agronomic characteristics of 127 putative mutated clones of sweet orange 'Pêra', selected after gamma-irradiation of budwood and 8 non irradiated control clones. Mutants were divided in 16 groups based on the type of mutation observed 'Pêra' commercial control plants (PCC were included. It was observed that 46 putative mutants and one non-irradiated plant (PSC showed significant reduction in seed number per fruit. Fifteen

  4. Improved phytoaccumulation of cadmium by genetically modified tobacco plants (Nicotiana tabacum L.). Physiological and biochemical response of the transformants to cadmium toxicity

    International Nuclear Information System (INIS)

    Gorinova, N.; Nedkovska, M.; Todorovska, E.; Simova-Stoilova, L.; Stoyanova, Z.; Georgieva, K.; Demirevska-Kepova, K.; Atanassov, A.; Herzig, R.

    2007-01-01

    The response of tobacco plants (Nicotiana tabacum L.)-non-transformed and transformed with a metallothionein gene MThis from Silene vulgaris L. - to increase cadmium supply in the nutrient solution was compared. The transgenic plants accumulated significantly more Cd both in the roots and the leaves. Visual toxicity symptoms and disturbance in water balance were correlated with Cd tissue content. Treatment with 300 μM CdCl 2 resulted in inhibition of photosynthesis and mobilization of the ascorbate-glutathione cycle. Treatment with 500 μM CdCl 2 led to irreversible damage of photosynthesis and oxidative stress. An appearance of a new peroxidase isoform and changes in the leaf polypeptide pattern were observed at the highest Cd concentration. The level of non-protein thiols gradually increased following the Cd treatment both in transgenic and non-transformed plants. - Genetic transformation of Nicotiana tabacum L. by metallothionein gene improved phytoaccumulation of cadmium

  5. Cotton transformation via pollen tube pathway.

    Science.gov (United States)

    Wang, Min; Zhang, Baohong; Wang, Qinglian

    2013-01-01

    Although many gene transfer methods have been employed for successfully obtaining transgenic cotton, the major constraint in cotton improvement is the limitation of genotype because the majority of transgenic methods require plant regeneration from a single transformed cell which is limited by cotton tissue culture. Comparing with other plant species, it is difficult to induce plant regeneration from cotton; currently, only a limited number of cotton cultivars can be cultured for obtaining regenerated plants. Thus, development of a simple and genotype-independent genetic transformation method is particularly important for cotton community. In this chapter, we present a simple, cost-efficient, and genotype-independent cotton transformation method-pollen tube pathway-mediated transformation. This method uses pollen tube pathway to deliver transgene into cotton embryo sacs and then insert foreign genes into cotton genome. There are three major steps for pollen tube pathway-mediated genetic transformation, which include injection of -foreign genes into pollen tube, integration of foreign genes into plant genome, and selection of transgenic plants.

  6. Studies of Genetic Differences between KDML 105 and its Photo period-insensitive Mutants using DNA techniques

    International Nuclear Information System (INIS)

    Boonsirichai, Kanokporn; Klakhaeng, Kanchana; Phadvibulya, Valailak

    2007-08-01

    Full text: Photo period-insensitive mutants of KDML 105 could be planted for grains during and outside the regular cropping season. From genetic studies, the mutant characteristics appeared recessive. A DNA-fingerprinting technique was used to compare gene expression profiles in the leaves of mutants and KDML 105. Differences in the level of expression were found for several loci. Examination of the essential part of the gene for fragrance showed no differences between the mutants and the parental KDML 105

  7. Search for methylation-sensitive amplification polymorphisms in mutant figs.

    Science.gov (United States)

    Rodrigues, M G F; Martins, A B G; Bertoni, B W; Figueira, A; Giuliatti, S

    2013-07-08

    Fig (Ficus carica) breeding programs that use conventional approaches to develop new cultivars are rare, owing to limited genetic variability and the difficulty in obtaining plants via gamete fusion. Cytosine methylation in plants leads to gene repression, thereby affecting transcription without changing the DNA sequence. Previous studies using random amplification of polymorphic DNA and amplified fragment length polymorphism markers revealed no polymorphisms among select fig mutants that originated from gamma-irradiated buds. Therefore, we conducted methylation-sensitive amplified polymorphism analysis to verify the existence of variability due to epigenetic DNA methylation among these mutant selections compared to the main cultivar 'Roxo-de-Valinhos'. Samples of genomic DNA were double-digested with either HpaII (methylation sensitive) or MspI (methylation insensitive) and with EcoRI. Fourteen primer combinations were tested, and on an average, non-methylated CCGG, symmetrically methylated CmCGG, and hemimethylated hmCCGG sites accounted for 87.9, 10.1, and 2.0%, respectively. MSAP analysis was effective in detecting differentially methylated sites in the genomic DNA of fig mutants, and methylation may be responsible for the phenotypic variation between treatments. Further analyses such as polymorphic DNA sequencing are necessary to validate these differences, standardize the regions of methylation, and analyze reads using bioinformatic tools.

  8. Potential complications when developing gene deletion clones in Xylella fastidiosa.

    Science.gov (United States)

    Johnson, Kameka L; Cursino, Luciana; Athinuwat, Dusit; Burr, Thomas J; Mowery, Patricia

    2015-04-16

    The Gram-negative xylem-limited bacterium, Xylella fastidiosa, is an important plant pathogen that infects a number of high value crops. The Temecula 1 strain infects grapevines and induces Pierce's disease, which causes symptoms such as scorching on leaves, cluster collapse, and eventual plant death. In order to understand the pathogenesis of X. fastidiosa, researchers routinely perform gene deletion studies and select mutants via antibiotic markers. Site-directed pilJ mutant of X. fastidiosa were generated and selected on antibiotic media. Mutant cultures were assessed by PCR to determine if they were composed of purely transformant cells or included mixtures of non-transformants cells. Then pure pilJ mutant and wildtype cells were mixed in PD2 medium and following incubation and exposure to kanamycin were assessed by PCR for presence of mutant and wildtype populations. We have discovered that when creating clones of targeted mutants of X. fastidiosa Temecula 1 with selection on antibiotic plates, X. fastidiosa lacking the gene deletion often persist in association with targeted mutant cells. We believe this phenomenon is due to spontaneous antibiotic resistance and/or X. fastidiosa characteristically forming aggregates that can be comprised of transformed and non-transformed cells. A combined population was confirmed by PCR, which showed that targeted mutant clones were mixed with non-transformed cells. After repeated transfer and storage the non-transformed cells became the dominant clone present. We have discovered that special precautions are warranted when developing a targeted gene mutation in X. fastidiosa because colonies that arise following transformation and selection are often comprised of transformed and non-transformed cells. Following transfer and storage the cells can consist primarily of the non-transformed strain. As a result, careful monitoring of targeted mutant strains must be performed to avoid mixed populations and confounding results.

  9. Genetic defects in DNA repair system and enhancement of intergenote transformation efficiency in Bacillus subtilis Marburg

    International Nuclear Information System (INIS)

    Matsumoto, K.; Takahashi, H.; Saito, H.; Ikeda, Y.

    1978-01-01

    Mechanisms of inefficiency in heterospecies transformation were studied with a transformation system consisting of Bacillus subtilis 168TI (trpC2thy) as recipient and of DNA prepared from partially hybrid strains of B. subtilis which had incorporated trp + DNA of B. amyloliquefaciens 203 (formerly, B. megaterium 203) in the chromosome (termed intergenote). The intergenote transformation was not so efficient as the corresponding homospecies transformation and the efficiency appeared to relate inversely with the length of heterologous portion in the intergenote. When a variety of ultraviolet light (UV) sensitive mutants, deficient in host-cell reactivation capacity, were used as recipients for the intergenote transformation, 2 out of 16 mutants exhibited significantly enhanced transformation efficiency of the trpC marker. Genetic studies by transformation showed that the trait relating to the enhancement of intergenote-transformation efficiency was always associated with the UV sensitivity, suggesting that these two traits are determined by a single gene. The efficiency of intergenote transformation was highly affected also by DNA concentration; the lower the concentration, the less the efficiency. When, however, the UV sensitive mutant was used as recipient, the effect of DNA concentration was largely diminished, suggesting the reduction of DNA-inactivating activity in the UV sensitive recipient. These results were discussed in relation to a possible excision-repair system selectively correcting the mismatched DNA in the course of intergenote transformation. (orig.) [de

  10. Genetics of leaf rust-resistant mutant WH 147-LM-1 in hexaploid wheat variety WH 147

    International Nuclear Information System (INIS)

    Reddy, V.R.K.; Viswanathan, P.

    1999-01-01

    By applying gamma rays, EMS and their combination in hexaploid wheat variety WH 147, a total of 20 mutants (0.0226%) exhibiting complete leaf rust resistance were isolated from segregating M2 rows.When one of the rust-resistant mutants, WH 147-LM-1 was crossed with the universally susceptible, suggesting that the mutant character is controlled by one dominant gene and one recessive gene.The F2 plants derived by crossing the mutant WH 147-LM with seven near-isogenic wheat lines showed segregation for susceptibility, indicating that the mutant character was indeed generated through induced mutations

  11. Evaluation of Some Chemical Characteristics of barley Mutants induced by Gamma Irradiation

    International Nuclear Information System (INIS)

    Abdeldaiem, M.H.; Ali, H.G.M.

    2011-01-01

    This study aims to evaluate the antioxidant activity of acetonic extract from some barley mutations (P1, P2 and P3 varieties) induced by gamma irradiation as compared with local barley variety (Hordeum vulgare L.) as control. Barley samples were obtained from Plant Breeding Unit, Plant Research Department, Nuclear Research Centre, Atomic Energy Authority, Egypt. The measurements of the antioxidant activity using a radical scavenging capacity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ?-carotene bleaching assay were assessed in the barley acetonic extract. Furthermore, amino acids composition of barley mutant samples was determined. The results indicated that the acetonic extract of barley varieties under investigation possess marked antioxidant and anti radical capacities. The data showed that the acetonic extract of barley mutant P1 possessed the higher antioxidant activity as compared with the antioxidant activities of acetonic extract from control and other barley mutant samples. Meanwhile, the flour of barley mutations under investigation contained trace elements of iron, copper and manganese. GC and mass analyses were used to identify the active compound of extract of control and mutant barley samples. The results illustrated that the main components of the control sample of barely extract was pentane, 3 methyl (47.73%) while gamma irradiation caused noticeable change in the relative percentage of some components of acetonic extract from barley mutant samples. Moreover, the results presented that changes were disappeared, and some compounds of the acetonic extract from mutant barley samples were appeared. Furthermore, the results exhibited that barley flour supplemented with wheat flour at 30% level produced acceptable cookies. Accordingly, the phenolic constituents of barley acetonic extract induced by gamma irradiation, especially samples of P1 mutant, may have a future role as ingredients in the development of functional foods.

  12. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene

    NARCIS (Netherlands)

    Soppe, W.J.J.; Jacobsen, S.E.; Alonso-Blanco, C.; Jackson, J.P.; Kakutani, T.; Koornneef, M.; Peeters, A.J.M.

    2000-01-01

    The transition to flowering in Arabidopsis thaliana is delayed in fwa mutant plants. FWA was identified by loss-of-function mutations in normally flowering revertants of the fwa mutant, and it encodes a homeodomain-containing transcription factor. The DNA sequence of wild-type and fwa mutant alleles

  13. Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants

    Directory of Open Access Journals (Sweden)

    de Montaigu Amaury

    2011-07-01

    Full Text Available Abstract A method was developed to identify insertional mutants of Chlamydomonas reinhardtii disrupted for selected target genes. The approach relies on the generation of thousands of transformants followed by PCR-based screenings that allow for identification of strains harboring the introduced marker gene within specific genes of interest. Our results highlight the strengths and limitations of two independent screens that differed in the nature of the marker DNA used (PCR-amplified fragment containing the plasmid-free marker versus entire linearized plasmid with the marker and in the strategies used to maintain and store transformants.

  14. Increased riboflavin production from activated bleaching earth by a mutant strain of Ashbya gossypii.

    Science.gov (United States)

    Tajima, Satoshi; Itoh, Yoko; Sugimoto, Takashi; Kato, Tatsuya; Park, Enoch Y

    2009-10-01

    The production of riboflavin from vegetable oil was increased using a mutant strain of Ashbya gossypii. This mutant was generated by treating the wild-type strain with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Riboflavin production was 10-fold higher in the mutant compared to the wild-type strain. The specific intracellular catalase activity after 3 d of culture was 6-fold higher in the mutant than in the wild-type strain. For the mutant, riboflavin production in the presence of 40 mM hydrogen peroxide was 16% less than that in the absence of hydrogen peroxide, whereas it was 56% less for the wild-type strain. The isocitrate lyase (ICL) activity of the mutant was 0.26 mU/mg of protein during the active riboflavin production phase, which was 2.6-fold higher than the wild-type strain. These data indicate that the mutant utilizes the carbon flux from the TCA cycle to the glyoxylate cycle more efficiently than the wild-type strain, resulting in enhanced riboflavin production. This novel mutant has the potential to be of use for industrial-scale riboflavin production from waste-activated bleaching earth (ABE), thereby transforming a useless material into a valuable bioproduct.

  15. Studies on cytological, physiological and genetic characteristics in somatic mutant strains of Sugi (Cryptomeria japonica D. Don)

    International Nuclear Information System (INIS)

    Maeta, T.; Somegou, M.; Nakahira, K.; Miyazaki, Y.; Kondo, T.

    1982-01-01

    From microscopic observation of the pollen of induced mutant strains in Sugi (Cryptomeria japonica D. Don), it was found that there were large differences in pollen fertility among the mutant strains, and that it deviated year to year from the mother plants. The large differences in frequency of sterile pollen among mutant strains depended on the genetic characteristics of each mutant strain. Higher frequencies of sterile pollen were observed at the terminal part of branchlets in some mutant strains, and this was considered to be induced by the lateness of flower-bud formation at low temperature conditions in late summer. Delayed formation and gibberellic acid treatment applied for flower induction resulted in low fertility and abnormality of pollen in mutant strains. Chromosome aberration in mutant strains was caused either by gamma irradiation or by some mutational events that responded to environmental conditions. In the former case, aberration might have been maintained for a long period through vegetative propagation. Some of the irregularities were due to mitotic cell division, because cells with micronuclei at the pacytene stage in pollen mother cells and with fragments at MI were observed. Somatic mutability of Kuma-sugi mutants after re-irradiation was investigated. From waxless mutants morphological somatic mutations, which have fat or stout stems and thick and short needles, were frequently produced, whereas from morphological mutants the lowest somatic mutation frequency was induced. In some mutant strains higher rooting ability than the mother plants was found, and the possibility of character improvement was pointed out. (author)

  16. Characterization Of Laccase T-DNA Mutants In Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Andersen, Jeppe Reitan; Asp, Torben; Mansfield, Shawn

    2009-01-01

    Laccases (P-diphenol:O2 oxidoreductase; EC 1.10.3.2), also termed laccase-like multicopper oxidases, are blue copper-containing oxidases which comprise multigene families in plants. In the Arabidopsis thaliana genome, 17 laccase genes (LAC1 to LAC17) have been annotated. To identify laccases...... for LAC15 T-DNA mutant seeds and an approximate 24 hour delay in germination was observed for these seeds. An approximate 20% reduction in glucose, galactose, and xylose was observed in primary stem cell walls of the LAC2 T-DNA mutants while similar relative increases in xylose were observed for LAC8...

  17. denV gene of bacteriophage T4 restores DNA excision repair to mei-9 and mus201 mutants of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Banga, S.S.; Boyd, J.B.; Valerie, K.; Harris, P.V.; Kurz, E.M.; de Riel, J.K.

    1989-01-01

    The denV gene of bacteriophage T4 was fused to a Drosophila hsp70 (70-kDa heat shock protein) promoter and introduced into the germ line of Drosophila by P-element-mediated transformation. The protein product of that gene (endonuclease V) was detected in extracts of heat-shocked transformants with both enzymological and immunoblotting procedures. That protein restores both excision repair and UV resistance to mei-9 and mus201 mutants of this organism. These results reveal that the denV gene can compensate for excision-repair defects in two very different eukayotic mutants, in that the mus201 mutants are typical of excision-deficient mutants in other organisms, whereas the mei-9 mutants exhibit a broad pleiotropism that includes a strong meiotic deficiency. This study permits an extension of the molecular analysis of DNA repair to the germ line of higher eukaryotes. It also provides a model system for future investigations of other well-characterized microbial repair genes on DNA damage in the germ line of this metazoan organism

  18. Development of a forward genetic screen to isolate oil mutants in the green microalga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Cagnon, Caroline; Mirabella, Boris; Nguyen, Hoa Mai; Beyly-Adriano, Audrey; Bouvet, Séverine; Cuiné, Stéphan; Beisson, Fred; Peltier, Gilles; Li-Beisson, Yonghua

    2013-12-02

    Oils produced by microalgae are precursors to biodiesel. To achieve a profitable production of biodiesel from microalgae, identification of factors governing oil synthesis and turnover is desirable. The green microalga Chlamydomonas reinhardtii is amenable to genetic analyses and has recently emerged as a model to study oil metabolism. However, a detailed method to isolate various types of oil mutants that is adapted to Chlamydomonas has not been reported. We describe here a forward genetic approach to isolate mutants altered in oil synthesis and turnover from C. reinhardtii. It consists of a three-step screening procedure: a primary screen by flow cytometry of Nile red stained transformants grown in 96-deep-well plates under three sequential conditions (presence of nitrogen, then absence of nitrogen, followed by oil remobilization); a confirmation step using Nile red stained biological triplicates; and a validation step consisting of the quantification by thin layer chromatography of oil content of selected strains. Thirty-one mutants were isolated by screening 1,800 transformants generated by random insertional mutagenesis (1.7%). Five showed increased oil accumulation under the nitrogen-replete condition and 13 had altered oil content under nitrogen-depletion. All mutants were affected in oil remobilization. This study demonstrates that various types of oil mutants can be isolated in Chlamydomonas based on the method set-up here, including mutants accumulating oil under optimal biomass growth. The strategy conceived and the protocol set-up should be applicable to other microalgal species such as Nannochloropsis and Chlorella, thus serving as a useful tool in Chlamydomonas oil research and algal biotechnology.

  19. Range of cell-wall alterations enhance saccharification in Brachypodium distachyon mutants

    DEFF Research Database (Denmark)

    Marriott, Poppy E; Sibout, Richard; Lapierre, Catherine

    2014-01-01

    saccharification with an industrial polysaccharide-degrading enzyme mixture. From an initial screen of 2,400 M2 plants, we selected 12 lines that showed heritable improvements in saccharification, mostly with no significant reduction in plant size or stem strength. Characterization of these putative mutants...

  20. Bioactive compounds of fourth generation gamma-irradiated Typhoniumflagelliforme Lodd. mutants based on gas chromatography-mass spectrometry

    Science.gov (United States)

    Sianipar, N. F.; Purnamaningsih, R.; Rosaria

    2016-08-01

    Rodent tuber (Typhonium flagelliforme Lodd.) is an Indonesian anticancer medicinal plant. The natural genetic diversity of rodent tuber is low due to vegetative propagation. Plant's genetic diversity has to be increased for obtaining clones which contain a high amount of anticancer compounds. In vitro calli were irradiated with 6 Gy of gamma ray to produce in vitro mutant plantlets. Mutant plantlets were acclimated and propagated in a greenhouse. This research was aimed to identify the chemical compounds in the leaves and tubers ofthe fourth generation of rodent tuber's vegetative mutant clones (MV4) and control plantsby using GC- MS method. Leaves and tubers of MV4 each contained 2 and 5 anticancer compounds which quantities were higher compared to control plants. MV4 leaves contained 5 new anticancer compounds while its tubers contained 3 new anticancer compounds which were not found in control. The new anticancer compounds in leaves were hexadecanoic acid, stigmast-5-en-3-ol, ergost-5-en-3-ol, farnesol isomer a, and oleic acid while the new anticancer compounds in tubers were alpha tocopherol, ergost-5-en-3-ol, and beta-elemene. Rodent tuber mutant clones are very potential to be developed into anticancer drugs.

  1. Cloning of the PYR3 gene of Ustilago maydis and its use in DNA transformation

    Energy Technology Data Exchange (ETDEWEB)

    Banks, G.R.; Taylor, S.Y. (National Institute for Medical Research, London (England))

    1988-12-01

    The Ustilago maydis PYR3 gene encoding dihydroorotase activity was cloned by direct complementation of Escherichia coli pyrC mutations. PYR3 transformants of E. coli pyrC mutants expressed homologous transcripts of a variety of sizes and regained dihydroorotase activity. PYR3 also complemented Saccharomyces cerevisiae ura4 mutations, and again multiple transcripts were expressed in transformants, and enzyme activity was regained. A 1.25-kilobase poly(rA)+ PYR3 transcript was detected in U. maydis itself. Linear DNA carrying the PYR3 gene transformed a U. maydis pyr3-1 pyrimidine auxotroph to prototrophy. Hybridization analysis revealed that three different types of transformants could be generated, depending on the structure of the transforming DNA used. The first type involved exchange of chromosomal mutant gene sequences with the cloned wild-type plasmid sequences. A second type had integrated linear transforming DNA at the chromosomal PYR3 locus, probably via a single crossover event. The third type had integrated transforming DNA sequences at multiple sites in the U. maydis genome. In the last two types, tandemly reiterated copies of the transforming DNA were found to have been integrated. All three types had lost the sensitivity of the parental pyr3-1 mutant to UV irradiation. They had also regained dihydroorotase activity, although its level did not correlate with the PYR3 gene copy number.

  2. Symbiotic N fixation of several soybean varieties and mutants

    International Nuclear Information System (INIS)

    Soertini, G.; Hendratno

    1988-01-01

    Symbiotic N fixation of several soybean varieties and mutants. Research activities comprising of three experiments were carried out to screen several soybean varieties and mutants for symbiotic N fixation potential. The first two experiments involved screening of seven rhizobium strains/isolate for effective N fixation. Depending on the medium used, plant response to strains was different. In sterile medium, rhizobium strain USDA 136, 142 and TAL 102 showed a high nitrogen fixation potential. In soil only rhizobium strain USDA 110 had better performance and proved to be competitive to the native strains. Nitrogen-15 dilution method was used to screen nitrogen fixing ability of several soybean varieties and mutants. Guntur variety showed a better response to high dose of N fertilizer without disturbance in its fixing ability. This variety then was considered good to be introduced in the cropping system. (author). 8 refs

  3. Repair of UV-irradiated plasmid DNA in excision repair deficient mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ikai, K.; Tano, K.; Ohnishi, T.; Nozu, K.

    1985-01-01

    The repair of UV-irradiated DNA of plasmid YEp13 was studied in the incision defective strains by measurement of cell transformation frequency. In Saccharomyces cerevisiae, rad1,2,3 and 4 mutants could repair UV-damaged plasmid DNA. In Escherichia coli, uvrA mutant was unable to repair UV-damaged plasmid DNA; however, pretreatment of the plasmid with Micrococcus luteus endonuclease increased repair. It was concluded that all the mutations of yeast were probably limited only to the nuclear DNA. (author)

  4. A large-scale mutant panel in wheat developed using heavy-ion beam mutagenesis and its application to genetic research

    Energy Technology Data Exchange (ETDEWEB)

    Murai, Koji, E-mail: murai@fpu.ac.jp [Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195 (Japan); Nishiura, Aiko [Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195 (Japan); Kazama, Yusuke [RIKEN, Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Abe, Tomoko [RIKEN, Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); RIKEN, Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2013-11-01

    Mutation analysis is a powerful tool for studying gene function. Heavy-ion beam mutagenesis is a comparatively new approach to inducing mutations in plants and is particularly efficient because of its high linear energy transfer (LET). High LET radiation induces a higher rate of DNA double-strand breaks than other mutagenic methods. Over the last 12 years, we have constructed a large-scale mutant panel in diploid einkorn wheat (Triticum monococcum) using heavy-ion beam mutagenesis. Einkorn wheat seeds were exposed to a heavy-ion beam and then sown in the field. Selfed seeds from each spike of M{sub 1} plants were used to generate M{sub 2} lines. Every year, we obtained approximately 1000 M{sub 2} lines and eventually developed a mutant panel with 10,000 M{sub 2} lines in total. This mutant panel is being systematically screened for mutations affecting reproductive growth, and especially for flowering-time mutants. To date, we have identified several flowering-time mutants of great interest: non-flowering mutants (mvp: maintained vegetative phase), late-flowering mutants, and early-flowering mutants. These novel mutations will be of value for investigations of the genetic mechanism of flowering in wheat.

  5. Rac1 and Cdc42 are regulators of HRasV12-transformation and angiogenic factors in human fibroblasts

    International Nuclear Information System (INIS)

    Appledorn, Daniel M; Dao, Kim-Hien T; O'Reilly, Sandra; Maher, Veronica M; McCormick, J Justin

    2010-01-01

    The activities of Rac1 and Cdc42 are essential for HRas-induced transformation of rodent fibroblasts. What is more, expression of constitutively activated mutants of Rac1 and/or Cdc42 is sufficient for their malignant transformation. The role for these two Rho GTPases in HRas-mediated transformation of human fibroblasts has not been studied. Here we evaluated the contribution of Rac1 and Cdc42 to maintaining HRas-induced transformation of human fibroblasts, and determined the ability of constitutively activated mutants of Rac1 or Cdc42 to induce malignant transformation of a human fibroblast cell strain. Under the control of a tetracycline regulatable promoter, dominant negative mutants of Rac1 and Cdc42 were expressed in a human HRas-transformed, tumor derived fibroblast cell line. These cells were used to determine the roles of Rac1 and/or Cdc42 proteins in maintaining HRas-induced transformed phenotypes. Similarly, constitutively active mutants were expressed in a non-transformed human fibroblast cell strain to evaluate their potential to induce malignant transformation. Affymetrix GeneChip arrays were used for transcriptome analyses, and observed expression differences were subsequently validated using protein assays. Expression of dominant negative Rac1 and/or Cdc42 significantly altered transformed phenotypes of HRas malignantly transformed human fibroblasts. In contrast, expression of constitutively active mutants of Rac1 or Cdc42 was not sufficient to induce malignant transformation. Microarray analysis revealed that the expression of 29 genes was dependent on Rac1 and Cdc42, many of which are known to play a role in cancer. The dependence of two such genes, uPA and VEGF was further validated in both normoxic and hypoxic conditions. The results presented here indicate that expression of both Rac1 and Cdc42 is necessary for maintaining several transformed phenotypes in oncogenic HRas transformed human cells, including their ability to form tumors in athymic

  6. Rac1 and Cdc42 are regulators of HRasV12-transformation and angiogenic factors in human fibroblasts

    Directory of Open Access Journals (Sweden)

    Dao Kim-Hien T

    2010-01-01

    Full Text Available Abstract Background The activities of Rac1 and Cdc42 are essential for HRas-induced transformation of rodent fibroblasts. What is more, expression of constitutively activated mutants of Rac1 and/or Cdc42 is sufficient for their malignant transformation. The role for these two Rho GTPases in HRas-mediated transformation of human fibroblasts has not been studied. Here we evaluated the contribution of Rac1 and Cdc42 to maintaining HRas-induced transformation of human fibroblasts, and determined the ability of constitutively activated mutants of Rac1 or Cdc42 to induce malignant transformation of a human fibroblast cell strain. Methods Under the control of a tetracycline regulatable promoter, dominant negative mutants of Rac1 and Cdc42 were expressed in a human HRas-transformed, tumor derived fibroblast cell line. These cells were used to determine the roles of Rac1 and/or Cdc42 proteins in maintaining HRas-induced transformed phenotypes. Similarly, constitutively active mutants were expressed in a non-transformed human fibroblast cell strain to evaluate their potential to induce malignant transformation. Affymetrix GeneChip arrays were used for transcriptome analyses, and observed expression differences were subsequently validated using protein assays. Results Expression of dominant negative Rac1 and/or Cdc42 significantly altered transformed phenotypes of HRas malignantly transformed human fibroblasts. In contrast, expression of constitutively active mutants of Rac1 or Cdc42 was not sufficient to induce malignant transformation. Microarray analysis revealed that the expression of 29 genes was dependent on Rac1 and Cdc42, many of which are known to play a role in cancer. The dependence of two such genes, uPA and VEGF was further validated in both normoxic and hypoxic conditions. Conclusion(s The results presented here indicate that expression of both Rac1 and Cdc42 is necessary for maintaining several transformed phenotypes in oncogenic HRas

  7. Effects of ion beam irradiation on size of mutant sector and genetic damage in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Hase, Yoshihiro, E-mail: hase.yoshihiro@qst.go.jp [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Nozawa, Shigeki [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Narumi, Issay [Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193 (Japan); Oono, Yutaka [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2017-01-15

    Size of mutant sector and genetic damage were evaluated in Arabidopsis to further our understanding of effective ion beam use in plant mutation breeding. Arabidopsis seeds, heterozygous for the GLABRA1 (GL1) gene (GL1/gl1-1), were irradiated with 15.8 MeV/u neon ions (mean linear energy transfer (LET): 352 keV/μm), 17.3 MeV/u carbon ions (113 keV/μm), or {sup 60}Co gamma rays. The frequency and size of glabrous sectors generated because of inactivation of the GL1 allele were examined. The frequency and overall size of large deletions were evaluated based on the loss of heterozygosity of DNA markers using DNA isolated from glabrous tissue. Irrespective of the radiation properties, plants with mutant sectors were obtained at similar frequencies at the same effective dosage necessary for survival reduction. Ion beams tended to induce larger mutant sectors than gamma rays. The frequency of large deletions (>several kbp) increased as the LET value increased, with chromosome regions larger than 100 kbp lost in most large deletions. The distorted segregation ratio of glabrous plants in the progenies of irradiated GL1/gl1-1 plants suggested frequent occurrence of chromosome rearrangement, especially those subjected to neon ions. Exposure to ion beams with moderate LET values (30–110 keV/μm) is thought effective for inducing mutant sectors without causing extensive genetic damage.

  8. High lysine and high yielding mutants in wheat (Triticum aestivum) L

    International Nuclear Information System (INIS)

    Mohammad, T.; Mahmood, F.; Ahmad, A.; Sattar, A.; Khan, I.

    1988-01-01

    The dry seeds of the variety Lu-26 were irradiated with 20 krad of gamma rays. In M 2 about 300 mutant plants were selected for short stature, rust resistance and other desirable traits. As a result of further selection, in M 6 , eight superior lines were finally identified. The agronomic characteristics of these mutants, the parent variety (Lu-26) and a standard check variety (Pak-81) are shown. The selected mutants and commercially grown cultivars (Lu-26 and Pak-81) were studied for total protein content and amino acid pattern. The mutants WM-89-1, WM-6-17 and WM-81-2 showing high yield also contained comparatively high amounts of methionine and lysine. The lysine contents were 565, 410, and 370 mg/100g in the mutants WM-89-1, WM-6-17 and WM-81-2, respectively against a range value of 210-370 mg/100g in other mutants and 250-320 in the commercial cultivars. The mutant WM-81-2 was comparable to WM-56-1-5 in lysine content. The results of these experiments show a possibility of developing varieties having high yield and high amounts of essential amino acids such as lysine and methionine

  9. Characterization and genetic mapping of eceriferum-ym (cer-ym), a cutin deficient barley mutant with impaired leaf water retention capacity.

    Science.gov (United States)

    Li, Chao; Liu, Cheng; Ma, Xiaoying; Wang, Aidong; Duan, Ruijun; Nawrath, Christiane; Komatsuda, Takao; Chen, Guoxiong

    2015-09-01

    The cuticle covers the aerial parts of land plants, where it serves many important functions, including water retention. Here, a recessive cuticle mutant, eceriferum-ym (cer-ym), of Hordeum vulgare L. (barley) showed abnormally glossy spikes, sheaths, and leaves. The cer-ym mutant plant detached from its root system was hypersensitive to desiccation treatment compared with wild type plants, and detached leaves of mutant lost 41.8% of their initial weight after 1 h of dehydration under laboratory conditions, while that of the wild type plants lost only 7.1%. Stomata function was not affected by the mutation, but the mutant leaves showed increased cuticular permeability to water, suggesting a defective leaf cuticle, which was confirmed by toluidine blue staining. The mutant leaves showed a substantial reduction in the amounts of the major cutin monomers and a slight increase in the main wax component, suggesting that the enhanced cuticle permeability was a consequence of cutin deficiency. cer-ym was mapped within a 0.8 cM interval between EST marker AK370363 and AK251484, a pericentromeric region on chromosome 4H. The results indicate that the desiccation sensitivity of cer-ym is caused by a defect in leaf cutin, and that cer-ym is located in a chromosome 4H pericentromeric region.

  10. [Carcinogenesis and its mechanism of mutant-type[12Asp]K-ras4B gene].

    Science.gov (United States)

    Gui, Li-ming; Wei, Li-hui; Zhang, Ying-mei; Wang, Jian-liu; Wang, Ying; Chen, Ying; Ma, Da-long

    2002-01-01

    Ras gene plays an important role in the extra- and intra-cellular signal transduction pathway. It mediates series cascade reactions, and eventually actives transcriptional factors in nucleus. It is unknown on the mechanism of carcinogenesis of Ras gene in endometrial carcinoma, though K-ras mutant is very common in endometrial atypical hyperplasia and carcinoma. On basis of discovering the mutation in 12th codon of K-ras in endometrial carcinoma cell line, HEC-1A, we explored the carcinogenesis and molecular mechanism of mutant-type [12Asp] K-ras4B gene. (1) Full-length [12Asp]K-ras4B cDNA was amplified with RT-PCR, then inserted into pcDI eukaryotic expressive vector. (2) Morphological change, growth kinetics in vitro and tumorigencity in nude mice in vivo after-before transfection were observed. (3) To test the cell growth kinetics by methyl thiazolium tetrazolium (MTT) and [3H]thymidine incorporation method. (1) The authors have successfully constructed eukaryotic expression plasmid pcDI-[12Asp] K-ras4B; (2) To confirm that [12Asp] K-ras4B mutant can trigger the neoplastic transformation of NIH3T3 cells by test in vitro and in vivo. (3) After pMCV-RasN17 plasmid, a Ras mutant were transfected into pcDI-[12Asp] K-ras4B cells, the growth of this cell were restrained significantly in comparison with control group. (4) These findings indicate the expression of RafS621A resulted in remarkable inhibition in proliferation of pcDI-[12Asp]K-ras4B cell (P ras4B cell growth (P ras4B gene alone is able to cause neoplastic transformation in NIH3T3 cells in vitro and in vivo. (2) [12Asp]K-ras4B-induced NIH3T3 cells neoplastic transformation required Raf signaling pathway.

  11. Studies on the process of attachment of diazotroph alcaligenes faecalis and its Tn5 mutants to rice roots using 15N-labelling technique

    International Nuclear Information System (INIS)

    Fang Xuanjun; Lin Min; You Chongbiao

    1993-09-01

    By using 15 N-labelling technique and Tn5-induced mutants the attachment of associative diazotroph Alcaligenes faecalis to intact rice plants was examined in vitro. Three distinguished modes of attachment of Alcaligenes faecalis: adsorption, anchoring and colonization were proposed by using 15 N-labelling bacterial cells and Tn5-induced mutants. Che - mutants affected on adsorption, but not on anchoring. Exo - Che - mutant is defective in both adsorption and anchoring. Exo - or exo ++ mutants are only defective in anchoring. Effective colonization is benefit for establishment on the associative system. The data also indicated that EPS (exopolysaccharide) play rather important roles in the association between the host plant and bacteria

  12. Studies on leaf mutants of Pea. (Part) I. Morphology, performance and somatic chromosomes

    International Nuclear Information System (INIS)

    Kaul, M.L.H.; Anjali, A.

    1988-01-01

    Three recessive non-allelic mutant genes alter foliar morphology of pea when present singly and in combination. Gene acacia replaces tendrils by a terminal leaflet, afila replaces leaflets by tendrils and cochleata replaces stipules by spoon shaped appendages. In combination, these genes drastically alter leaf morphology; plants can be identified only after flowering. The mutant genes influence shoot height, floral organ number, maturity period, grain yield and seed protein production; inter- and intra-genotypic variability in certain metric traits is significant. Influence of cochleata gene over floral form and function is considerable. In terms of seed yield and protein content, breeding value of all the mutants except of acacia is low because these mutant genes represent foreign untuned genes in pea genome. Segregation deficit is maximum in triple gene mutant with highly impaired fertility and low seed production. Somatic chromosome number in all the mutants and recombinants is 14; in morphology the chromosomes do not differ from the initial line, Bonneville. (author). 9 refs., 4 tabs

  13. clustering common bean mutants based on heterotic groupings

    African Journals Online (AJOL)

    ACSS

    2015-02-19

    Feb 19, 2015 ... Blair, W.M., Porch, T., Cichy, K., Galeano, H. C,. Lariguet, P., Pankhurst, C. and Broughton, W. 2007a. Induced mutants in common bean. (Phaseolus vulgaris) and their potential use in nutrition quality, breeding and gene discovery. Israel Journal of Plant Sciences. 55:191 - 200. Blair, W.M., Fregene, A.M., ...

  14. Short communication. A spontaneous mutant of L-202 rice

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Yzaguire, A.; Padrones, T.

    2009-07-01

    A new spontaneous phenotype of the rice cultivar L-202 was found. Mendelian analysis indicates that it is a monogenic, recessive mutant. Its distinguishing features are: dark blue-green colour, short and narrow leaves, high tillering and relatively short height. The objectives of this study were: to characterize it, to determine if it is heritable and if so, its genetic basis. Its distinguishing features are: dark blue-green colour, short and narrow leaves, high tillering and relatively short height. Selfing the new phenotype resulted in a uniform progeny, with the traits of the parent plant (wild type). Crossing the new phenotype with the normal L-202 cultivar resulted in a uniform F1 hybrid generation, with the wild type. The F2 generation showed a mendelian segregation which did not depart significantly from three normal plants : one new phenotype. It is concluded that it is a monogenic, recessive mutant. (Author) 3 refs.

  15. physical, chemical, technological and biological properties of some mutant oil seeds induced by gamma radiation

    International Nuclear Information System (INIS)

    Ali, H.G.M.

    2003-01-01

    The present study has been undertaken to evaluated sesame, sunflower and safflower seeds induced by gamma rays, as plant breeding unit, plant research department, radioisotope application division, nuclear research center, atomic energy authority Inshas. the obtained results indicate the following : chemical composition of mutant seeds: the radiation mutation caused a significant increase in both oil and ash content total carbohydrates showed a significant decreased in sesame seeds. radiation mutation induced significant increase in oil and protein content of sunflower and safflower seeds. while the total carbohydrate showed a significant decrease. physiochemical properties of oils extracted mutant seeds: the radiation mutation had no real effect on the refractive index and A.V of oils extracted from control and mutant sesame, sunflower and safflower seeds. while it caused a slight increase in red color and P.V. of sesame oil, the thiobarbituric acid (TBA) value of mutant sesame oil was not alter upon radiation mutation, but it induced a slight decrease in TBA of mutant sunflower and safflower oils. the unsaponifiable matter percentage of oils extracted from mutant sesame, sunflower and safflower seeds were slightly increased by radiation mutation .radiation mutation of seeds had no real effect on the total SFA and USFA of sesame oil. however, radiation mutation induced a remarkable changes in fatty acid profiles of sunflower and safflower oil as total SFA decreased, while USFA increased. Uric acid was only detected in oil extracted from mutant sunflower seeds

  16. Efficient transformation of Kalanchoe blossfeldiana and production of male-sterile plants by engineered anther ablation.

    Science.gov (United States)

    García-Sogo, Begoña; Pineda, Benito; Castelblanque, Lourdes; Antón, Teresa; Medina, Mónica; Roque, Edelín; Torresi, Claudia; Beltrán, José Pío; Moreno, Vicente; Cañas, Luis Antonio

    2010-01-01

    Engineered male sterility in ornamental plants has many applications such as facilitate hybrid seed production, eliminate pollen allergens, reduce the need for deadheading to extend the flowering period, redirect resources from seeds to vegetative growth, increase flower longevity and prevent gene flow between genetically modified and related native plants. We have developed a reliable and efficient Agrobacterium-mediated protocol for the genetic transformation of different Kalanchoe blossfeldiana commercial cultivars. Transformation efficiency for cv. 'Hillary' was 55.3% whereas that of cv. 'Tenorio' reached 75.8%. Selection was carried out with the nptII gene and increasing the kanamycin concentration from 25 to 100 mg l(-1) allowed to reduced escapes from 50 to 60% to virtually 0%. This method was used to produce male-sterile plants through engineered anther ablation. In our approach, we tested a male sterility chimaeric gene construct (PsEND1::barnase) to evaluate its effectiveness and effect on phenotype. No significant differences were found in the growth patterns between the transgenic lines and the wild-type plants. No viable pollen grains were observed in the ablated anthers of any of the lines carrying the PsEND1::barnase construct, indicating that the male sterility was complete. In addition, seed set was completely abolished in all the transgenic plants obtained. Our engineered male-sterile approach could be used, alone or in combination with a female-sterility system, to reduce the invasive potential of new ornamentals, which has become an important environmental problem in many countries.

  17. In vitro induction, isolation, and selection of potato mutants tolerant to salinity

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Arabi, M. I. E.

    2008-01-01

    A mutation breeding program was conducted to improve potato (Solanum tuberosum) tolerance to salinity. In vitro cultured explants from potato cvs. Draga, Diamant, and Spunta were irradiated with gamma ray doses of 25, 30, and 35 Gy. Growing plantlets were subsequently propagated to obtain enough explants for in vitro selection of plants tolerant to salinity. Around 1300 MV 4 plantlets from the three cultivars were subjected to selection pressure. MV 4 explants were cultured on an MS medium supplemented with NaCl in varying concentrations ranging from 50 to 200 mM. Surviving plantlets were propagated and re-cultured on a similar medium to insure their tolerance to salinity. Salt tolerant plantlets were acclimatized and transferred to pots and grown under greenhouse conditions. Mutant and control plants were later subjected to a second selection pressure by irrigating them with water containing NaCl in concentrations ranging from 50 to 250 mM. Cultivar Spunta produced the highest number of tolerant plants. Four plants of Spunta appeared to be tolerant to salinity whereas only one plant from Diamant was tolerant and no plants from cultivar Draga were tolerant. The average number of produced minitubers per plant varied in the mutant plants from eight to 14. Also, weight of these minitubers varied from less than 1 to 31 grams. (author)

  18. Tolerance of photoperiod insensitive mutant of Sesbania rostrata to salinity and pH

    International Nuclear Information System (INIS)

    Ramani, Saradha; Joshua, D.C.; Shaikh, M.S.; Athalye, V.V.

    1998-01-01

    The photoperiod insensitive mutant, TSR-1 of Sesbania rostrata was compared with the parent variety for its response to soil salinity and different levels of pH in hydroponics. The plant growth and stem nodulation were not significantly affected by salinity. However, salinity in soil without farmyard manure stimulated plant growth. Radiotracer studies showed that the translocation of Na to stem and leaves was much less compared to uptake in both parent and mutant. The growth of TSR-1 was comparable to or marginally better than that of the parent variety in the pH range of 3.5-8.0. Root nodulation was less with low pH. The nitrogen content was not adversely affected by pH, but it was reduced with 200 mM NaCl. This mutant in addition to being short-day insensitive, is tolerant to low to moderate salinity levels and pH like its parent. (author)

  19. Generation of a glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis.

    Science.gov (United States)

    Iwakuma, Hidekazu; Koyama, Yoshiyuki; Miyachi, Ayako; Nasukawa, Masashi; Matsumoto, Hitoshi; Yano, Shuntaro; Ogihara, Jun; Kasumi, Takafumi

    2016-01-01

    We obtained a novel glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis. A plasmid containing DNA polymerase δ lacking proofreading activity, and AMAI, an autonomously replicating sequence was introduced into T. reesei ATCC66589. The rate of mutation evaluated with 5-fluoroorotic acid resistance was approximately 30-fold higher than that obtained by UV irradiation. The transformants harboring incompetent DNA polymerase δ were then selected on 2-deoxyglucose agar plates with hygromycin B. The pNP-lactoside hydrolyzing activities of mutants were 2 to 5-fold higher than the parent in liquid medium containing glucose. Notably, the amino acid sequence of cre1, a key gene involved in glucose repression, was identical in the mutant and parent strains, and further, the cre1 expression levels was not abolished in the mutant. Taken together, these results demonstrate that the strains of T. reesei generated by disparity mutagenesis are glucose de-repressed variants that contain mutations in yet-unidentified factors other than cre1.

  20. Comparison of arabidopsis stomatal density mutants indicates variation in water stress responses and potential epistatic effects

    Science.gov (United States)

    Shaneka S. Lawson; Paula M. Pijut; Charles H. Michler

    2014-01-01

    Recent physiological analysis of Arabidopsis stomatal density (SD) mutants indicated that SD was not the major factor controlling aboveground biomass accumulation. Despite the general theory that plants with fewer stomata have limited biomass acquisition capabilities, epf1 and several other Arabidopsis mutants varied significantly in leaf fresh...

  1. A higher yielding mutant of black gram with improved nodule formation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R K; Raghuvanshi, S S [Plant Genetic Unit, Department of Botany, University of Lucknow (India)

    1987-07-01

    Dry seeds of black gram (Vigna mungo (L) Hopper) var. T{sub 9} with 12.2% moisture content were irradiated at 10, 20 and 30 krad of gamma rays. This was followed by combined treatment of one set in each dose with freshly prepared 0. 25% EMS in phosphate buffer at 7.0 pH at 30{+-} deg. C for 6 hours. In M{sub 2} population of 20 krad two mutants with pentafoliate instead of trifoliate leaves were found. This character was true breeding in M{sub 3} M{sub 6} generation. Crosses revealed monogenic recessive inheritance of this character. The proposed gene symbol is p5. This mutant has normal maturity period and the plant height is the same as T{sub 9} (ca. 50 cm). Preliminary yield trials indicate superiority of the mutant line over control. The mutant line also shows a significant improvement in number and weight of root nodules, potentially improving green manuring value. Improvement of root nodulation in mungbean mutants was reported before by others.

  2. Mis-specified cells die by an active gene-directed process, and inhibition of this death results in cell fate transformation in Drosophila

    Science.gov (United States)

    Werz, Christian; Lee, Tom V.; Lee, Peter L.; Lackey, Melinda; Bolduc, Clare; Stein, David S.; Bergmann, Andreas

    2009-01-01

    Summary Incorrectly specified or mis-specified cells often undergo cell death or are transformed to adopt a different cell fate during development. The underlying cause for this distinction is largely unknown. In many developmental mutants in Drosophila, large numbers of mis-specified cells die synchronously, providing a convenient model for analysis of this phenomenon. The maternal mutant bicoid is particularly useful model with which to address this issue because its mutant phenotype is a combination of both transformation of tissue (acron to telson) and cell death in the presumptive head and thorax regions. We show that a subset of these mis-specified cells die through an active gene-directed process involving transcriptional upregulation of the cell death inducer hid. Upregulation of hid also occurs in oskar mutants and other segmentation mutants. In hid bicoid double mutants, mis-specified cells in the presumptive head and thorax survive and continue to develop, but they are transformed to adopt a different cell fate. We provide evidence that the terminal torso signaling pathway protects the mis-specified telson tissue in bicoid mutants from hid-induced cell death, whereas mis-specified cells in the head and thorax die, presumably because equivalent survival signals are lacking. These data support a model whereby mis-specification can be tolerated if a survival pathway is provided, resulting in cellular transformation. PMID:16280349

  3. The Activity of Nodules of the Supernodulating Mutant Mtsunn Is not Limited by Photosynthesis under Optimal Growth Conditions

    Science.gov (United States)

    Cabeza, Ricardo A.; Lingner, Annika; Liese, Rebecca; Sulieman, Saad; Senbayram, Mehmet; Tränkner, Merle; Dittert, Klaus; Schulze, Joachim

    2014-01-01

    Legumes match the nodule number to the N demand of the plant. When a mutation in the regulatory mechanism deprives the plant of that ability, an excessive number of nodules are formed. These mutants show low productivity in the fields, mainly due to the high carbon burden caused through the necessity to supply numerous nodules. The objective of this study was to clarify whether through optimal conditions for growth and CO2 assimilation a higher nodule activity of a supernodulating mutant of Medicago truncatula (M. truncatula) can be induced. Several experimental approaches reveal that under the conditions of our experiments, the nitrogen fixation of the supernodulating mutant, designated as sunn (super numeric nodules), was not limited by photosynthesis. Higher specific nitrogen fixation activity could not be induced through short- or long-term increases in CO2 assimilation around shoots. Furthermore, a whole plant P depletion induced a decline in nitrogen fixation, however this decline did not occur significantly earlier in sunn plants, nor was it more intense compared to the wild-type. However, a distinctly different pattern of nitrogen fixation during the day/night cycles of the experiment indicates that the control of N2 fixing activity of the large number of nodules is an additional problem for the productivity of supernodulating mutants. PMID:24727372

  4. Identification and genetic assay of a high-chlorophyll-content mutant in Rice

    International Nuclear Information System (INIS)

    Liu Baofu; Chen Xifeng; Jin Yang; Gu Zhimin; Ma Bojun; Zhu Xudong

    2011-01-01

    A deep rice mutant ZM1120 was screened from the γ-rays irradiation mutation library of Zhonghua 11. Compared to the wild-type control, this mutant were darker (greener) in shoots and leaves, and after sowing 60 and 90 d, the content of chlorophyll were increased by 16.0% and 7.2%, respectively, and the content of carotenoid also increased by 23.1% and 24.2%, respectively. After sowing 90 d the net photosynthetic rate and transpiration rate were increased by 16.3% and 11.4%, respectively. The agronomical traits of this mutant significantly changed, and the traits of plant height, flag-leaf length, flag-leaf width, tiller number per plant, panicle length and setting rate decreased, but the grain length and 1000-grain weight increased by 7.9% and 2.6%. Genetic analysis revealed that the mutation phenotype was controlled by a single recessive nuclear gene, and further cloning and function assay will be useful for understanding the mechanism of photosynthesis and for rice breeding in future. (authors)

  5. Effect of abscisic acid on stomatal opening in isolated epidermal strips of abi mutants of Arabidopsis thaliana

    NARCIS (Netherlands)

    Roelfsema, MRG; Prins, HBA

    Abscisic acid-insensitive mutants of Arabidopsis thaliana L. var. Landsberg erecta were selected for their decreased sensitivity to ABA during germination. Two of these mutants, abi-1 and abi-2, display a wilty phenotype as adult plants, indicating disturbed water relations. Experiments were

  6. Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241)

    DEFF Research Database (Denmark)

    Pilu, R.; Panzeri, D.; Gavazzi, G.

    2003-01-01

    -nutritional factor for animals, and isolation of maize low phytic acid (lpa) mutants provides a novel approach to study its biochemical pathway and to tackle the nutritional problems associated with it. Following chemical mutagenesis of pollen, we have isolated a viable recessive mutant named lpa 241 showing about...... 90% reduction of phytic acid and about a tenfold increase in seed-free phosphate content. Although germination rate was decreased by about 30% compared to wild-type, developement of mutant plants was apparentely unaffected. The results of the genetic, biochemical and molecular characterization...

  7. Photorepair mutants of Arabidopsis

    International Nuclear Information System (INIS)

    Jiang, C.Z.; Yee, J.; Mitchell, D.L.; Britt, A.B.

    1997-01-01

    UV radiation induces two major DNA damage products, the cyclobutane pyrimidine dimer (CPD) and, at a lower frequency, the pyrimidine (6-4) pyrimidinone dimer (6-4 product). Although Escherichia coli and Saccharomyces cerevisiae produce a CPD-specific photolyase that eliminates only this class of dimer, Arabidopsis thaliana, Drosophila melanogaster, Crotalus atrox, and Xenopus laevis have recently been shown to photoreactivate both CPDs and 6-4 products. We describe the isolation and characterization of two new classes of mutants of Arabidopsis, termed uvr2 and uvr3, that are defective in the photoreactivation of CPDs and 6-4 products, respectively. We demonstrate that the CPD photolyase mutation is genetically linked to a DNA sequence encoding a type II (metazoan) CPD photolyase. In addition, we are able to generate plants in which only CPDs or 6-4 products are photoreactivated in the nuclear genome by exposing these mutants to UV light and then allowing them to repair one or the other class of dimers. This provides us with a unique opportunity to study the biological consequences of each of these two major UV-induced photoproducts in an intact living system

  8. Identification of symbiotically defective mutants of Lotus japonicus affected in infection thread growth

    DEFF Research Database (Denmark)

    Lombardo, Fabien; Heckmann, Anne Birgitte Lau; Miwa, Hiroki

    2006-01-01

    During the symbiotic interaction between legumes and rhizobia, the host cell plasma membrane and associated plant cell wall invaginate to form a tunnel-like infection thread, a structure in which bacteria divide to reach the plant root cortex. We isolated four Lotus japonicus mutants that make...... infection pockets in root hairs but form very few infection threads after inoculation with Mesorhizobium loti. The few infection threads that did initiate in the mutants usually did not progress further than the root hair cell. These infection-thread deficient (itd) mutants were unaffected for early...... symbiotic responses such as calcium spiking, root hair deformation, and curling, as well as for the induction of cortical cell division and the arbuscular mycorrhizal symbiosis. Complementation tests and genetic mapping indicate that itd2 is allelic to Ljsym7, whereas the itd1, itd3, and itd4 mutations...

  9. Evaluating Genetic Variability of Sorghum Mutant Lines Tolerant to Acid Soil

    International Nuclear Information System (INIS)

    Puspitasari, W.; Human, S.; Wirnas, D.; Trikoesoemaningtyas

    2012-01-01

    High rainfall in some parts in Indonesia causes soil become acidic. The main constraint of acid soil is phosphor (P) deficiency and aluminum (Al) toxicity which decrease plant productivity. To overcome this problem, it is important to develop a crop variety tolerant to such conditions. Sorghum is probably one of the potential crops to meet that objective. Sorghum has been reported to have wide adaptability to various agro-ecology and can be used as food and animal feed. Unfortunately, sorghum is not Indonesian origin so its genetic variability is still low. From previous breeding works with induced mutation, some promising mutant lines have been developed. These mutant lines were included in the experiment carried out in Tenjo with soil condition was classified as acid soil with pH 4.8 and exchangeable-Al content 2.43 me/100 g. The objectives of this experiment were to study the magnitude of genetic variability of agronomy and grain quality characters in sorghum in order to facilitate the breeding improvement of the species. Plant materials used in this study were ten genotypes, including 6 mutant lines and 4 control varieties. The randomized block design with three replications was used in the experiment. The genetic variabilities of agronomic and grain quality characters existed among genotypes, such as plant height, number of leaves, stalk diameter, biomass weight, panicle length, grain yield per plant, 100 seed weight and tannin content in the grain. The broad sense heritabilities of agronomic characters were estimated ranging from medium to high. Grain yield showed significantly positive correlation with agronomic characters observed, but it was negatively correlated with protein content (author)

  10. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant

    KAUST Repository

    Hudik, Elodie

    2014-07-18

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  11. Isolation of a novel UVB-tolerant rice mutant obtained by exposure to carbon-ion beams.

    Science.gov (United States)

    Takano, Nao; Takahashi, Yuko; Yamamoto, Mitsuru; Teranishi, Mika; Yamaguchi, Hiroko; Sakamoto, Ayako N; Hase, Yoshihiro; Fujisawa, Hiroko; Wu, Jianzhong; Matsumoto, Takashi; Toki, Seiichi; Hidema, Jun

    2013-07-01

    UVB radiation suppresses photosynthesis and protein biosynthesis in plants, which in turn decreases growth and productivity. Here, an ultraviolet-B (UVB)-tolerant rice mutant, utr319 (UV Tolerant Rice 319), was isolated from a mutagenized population derived from 2500 M1 seeds (of the UVB-resistant cultivar 'Sasanishiki') that were exposed to carbon ions. The utr319 mutant was more tolerant to UVB than the wild type. Neither the levels of UVB-induced cyclobutane pyrimidine dimers (CPDs) or (6-4) pyrimidine-pyrimidone photodimers [(6-4) photoproducts], nor the repair of CPDs or (6-4) photoproducts, was altered in the utr319 mutant. Thus, the utr319 mutant may be impaired in the production of a previously unidentified factor that confers UVB tolerance. To identify the mutated region in the utr319 mutant, microarray-based comparative genomic hybridization analysis was performed. Two adjacent genes on chromosome 7, Os07g0264900 and Os07g0265100, were predicted to represent the mutant allele. Sequence analysis of the chromosome region in utr319 revealed a deletion of 45 419 bp. RNAi analysis indicated that Os07g0265100 is most likely the mutated gene. Database analysis indicated that the Os07g0265100 gene, UTR319, encodes a putative protein with unknown characteristics or function. In addition, the homologs of UTR319 are conserved only among land plants. Therefore, utr319 is a novel UVB-tolerant rice mutant and UTR319 may be crucial for the determination of UVB sensitivity in rice, although the function of UTR319 has not yet been determined.

  12. Isolation of a novel UVB-tolerant rice mutant obtained by exposure to carbon-ion beams

    International Nuclear Information System (INIS)

    Takano, Nao; Takahashi, Yuko; Yamamoto, Mitsuru; Teranishi, Mika; Yamaguchi, Hiroko; Sakamoto, Ayako N.; Hase, Yoshihiro; Fujisawa, Hiroko; Wu, Jianzhong; Matsumoto, Takashi; Toki, Seiichi; Hidema, Jun

    2013-01-01

    UVB radiation suppresses photosynthesis and protein biosynthesis in plants, which in turn decreases growth and productivity. Here, an ultraviolet-B (UVB)-tolerant rice mutant, utr319 (UVTolerantRice319), was isolated from a mutagenized population derived from 2500 M 1 seeds (of the UVB-resistant cultivar ‘Sasanishiki’) that were exposed to carbon ions. The utr319 mutant was more tolerant to UVB than the wild type. Neither the levels of UVB-induced cyclobutane pyrimidine dimers (CPDs) or (6-4) pyrimidine-pyrimidone photodimers [(6-4) photoproducts], nor the repair of CPDs or (6-4) photoproducts, was altered in the utr319 mutant. Thus, the utr319 mutant may be impaired in the production of a previously unidentified factor that confers UVB tolerance. To identify the mutated region in the utr319 mutant, microarray-based comparative genomic hybridization analysis was performed. Two adjacent genes on chromosome 7, Os07g0264900 and Os07g0265100, were predicted to represent the mutant allele. Sequence analysis of the chromosome region in utr319 revealed a deletion of 45 419 bp. RNAi analysis indicated that Os07g0265100 is most likely the mutated gene. Database analysis indicated that the Os07g0265100 gene, UTR319, encodes a putative protein with unknown characteristics or function. In addition, the homologs of UTR319 are conserved only among land plants. Therefore, utr319 is a novel UVB-tolerant rice mutant and UTR319 may be crucial for the determination of UVB sensitivity in rice, although the function of UTR319 has not yet been determined

  13. Plants having modified response to ethylene

    Science.gov (United States)

    Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.

    1997-11-18

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 31 figs.

  14. Evaluation of some garlic (Allium Sativum L.) mutants resistant to white rot disease by RAPD analysis

    International Nuclear Information System (INIS)

    Nabulsi, I.; Al-Safadi, B.; Mir ali, N.; Arabi, M.I.E.

    2002-01-01

    Random amplified polymorphic DNA (RAPD) analysis was used to evaluate genetic diversity among eight garlic mutants resistant to white rot disease (Sclerotium cepivorum) and two controls. Twelve of 13 synthetic random primers were found to identify polymorphism in amplification products. Mutants characterised with moderate resistance to white rot were closely related to the control using cluster and correlation analyses. On the other hand, highly resistant mutants were quite distant from the control with low correlation coefficients. The banding patterns produced by primer OPB-15 (GGAAGGGTGTT) with highly resistant mutants may be used as genetic markers for early selection of resistant plants. (author)

  15. Search for C4 developmental mutants in Panicum maximum Jacq

    International Nuclear Information System (INIS)

    Fladung, M.

    2001-01-01

    Full text: Mutant plants are useful tools for studying developmental processes in defined genetic backgrounds by comparing them with their respective wild type forms. In this sense, developmental mutants or mutations involved in the establishment of certain leaf or flower specific traits are of special interest. In particular, the evolution of C 4 photosynthesis from C 3 precursors was accompanied by severe developmental changes in leaf morphology and anatomy. Our search of such mutants was followed by the idea to approach the evolution of the C 4 syndrome from a mutagenic point of view. Variants affecting normal development of the C 4 leaf anatomy may, in fact, represent possible regressive steps in C4 photosynthesis. Seeds of the C4 grass Panicum maximum Jacq. were mutagenized using ethylmethanesulfonate (EMS) and putative variants were isolated in the M2 generation by visual inspection. Main selection characteristics were whole plant, leaf morphology and pigmentation, and growth characteristics. The choice of a polyploid species for mutagenesis experiments was based on the need of detecting rare mutants, which are possibly lethal when using a diploid plant species. These variants could be of regulatory nature, affecting both morphology and physiology of C 4 photosynthesis early in leaf development. In total, nearly 100 variants were isolated and grown to maturity. Main isolated variants, which conforms to the prediction mentioned above, were as following: large interveinal space-1 and -3 (lis1, lis3), abnormal bundle sheath (abs), midribless (mbl) and variegated leaf -1 (var1). The variant lis1 was a short plant with leaves smaller than the wild type, and had a leaf lamina with a crinkly surface. Photosynthetically, lis1 indicates a clear regression from the C 4 to the C 3 photosynthesis type, which was correlated in the leaf lamina with an increase in the distance between small veins. The variant lis3 was not similar phenotypically to lis1, but it also had very

  16. Genetic analysis of the induced mutants of rice resistant to bacterial leaf blight

    International Nuclear Information System (INIS)

    Nakai, H.

    1990-01-01

    Full text: Seeds of the rice cultivar 'Harebare', which is susceptible to bacterial leaf blight (BLB), were treated with thermal neutrons, gamma-rays, ethyleneimine and ethylmethane-sulfonate. In the M2, plants with better resistance to BLB were identified through inoculation at the seedling and the flag leaf stages with an isolate (T7174) of the Japanese differential race I. Several mutant lines resistant to BLB were selected through tests of the M 3 or M 4 lines derived from selected resistant M 2 plants. The frequency of resistant mutants was significantly higher after the thermal neutron treatment than after treatments with other mutagens. Two mutants, which originated from the neutron treatment, showing a highly quantitative resistance to multiple BLB races were analysed for gene(s) for resistance. The resistance of one of them (M41) to the Japanese races I, II, III, IV, and V was found to be conditioned by a single recessive gene. Three other recessive genes for resistance are known, but their reaction to differential races is different. Therefore, this gene was thought to be new and was tentatively designated as xa-nm(t). The resistance of another mutant (M57) was found to be polygenically inherited. (author)

  17. Hyperactive mutant of a wheat plasma membrane Na+/H+ antiporter improves the growth and salt tolerance of transgenic tobacco.

    Science.gov (United States)

    Zhou, Yang; Lai, Zesen; Yin, Xiaochang; Yu, Shan; Xu, Yuanyuan; Wang, Xiaoxiao; Cong, Xinli; Luo, Yuehua; Xu, Haixia; Jiang, Xingyu

    2016-12-01

    Wheat SOS1 (TaSOS1) activity could be relieved upon deletion of the C-terminal 168 residues (the auto-inhibitory domain). This truncated form of wheat SOS1 (TaSOS1-974) was shown to increase compensation (compared to wild-type TaSOS1) for the salt sensitivity of a yeast mutant strain, AXT3K, via increased Na + transportation out of cells during salinity stress. Expression of the plasma membrane proteins TaSOS1-974 or TaSOS1 improved the growth of transgenic tobacco plants compared with wild-type plants under normal conditions. However, plants expressing TaSOS1-974 grew better than TaSOS1-transformed plants. Upon salinity stress, Na + efflux and K + influx rates in the roots of transgenic plants expressing TaSOS1-974 or TaSOS1 were greater than those of wild-type plants. Furthermore, compared to TaSOS1-transgenic plants, TaSOS1-974-expressing roots showed faster Na + efflux and K + influx, resulting in less Na + and more K + accumulation in TaSOS1-974-transgenic plants compared to TaSOS1-transgenic and wild-type plants. TaSOS1-974-expressing plants had the lowest MDA content and electrolyte leakage among all tested plants, indicating that TaSOS1-974 might protect the plasma membrane against oxidative damage generated by salt stress. Overall, TaSOS1-974 conferred higher salt tolerance in transgenic plants compared to TaSOS1. Consistent with this result, transgenic plants expressing TaSOS1-974 showed a better growth performance than TaSOS1-expressing and wild-type plants under saline conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Molecular markers to assess genetic diversity and mutant identifications in Jatropha curcas

    International Nuclear Information System (INIS)

    Azhar Mohamad; Yie Min Kwan; Fatin Mastura Derani; Abdul Rahim Harun

    2010-01-01

    Jatropha curcas (Linnaeus) belongs to the Euphorbiaceae family, is a multipurpose use, drought resistant and perennial plant. It is an economic important crop, which generates wide interest in understanding the genetic diversity of the species towards selection and breeding of superior genotypes. Jatropha accessions are closely related family species. Thus, better understanding of the effectiveness of the different DNA-based markers is an important step towards plant germplasm characterization and evaluation. It is becoming a prerequisite for more effective application of marker techniques in breeding programs. Inter-simple sequence repeats (ISSRs) has shown rapid, simple, reproducible and inexpensive means in molecular taxonomy, conservation breeding and genetic diversity analysis. These markers were used to understand diversity and differentiate amongst accessions of Jatropha population and mutant lines generated by acute gamma radiation. The ISSR for marker applications are essential to facilitate management, conservation and genetic improvement programs towards improvement of bio-diesel production and medication substances. A total of 62 ISSR primers were optimized for polymorphism evaluations on five foreign accessions (Africa, India, Myanmar, Indonesia, Thailand), nine local accessions and two mutants of Jatropha. Optimization was resulted 54 ISSR primers affirmative for the polymorphism evaluation study, which encountered 12 ISSR primers, showed significance polymorphism amongst the accessions and mutants. Marker derived from ISSR profiling is a powerful method for identification and molecular classification of Jatropha from accession to generated mutant varieties. (author)

  19. Evaluation of Induced Mutants Using Irradiation and Chemical Mutagen in Lupin (Lupinus albus L.) for Earliness and Yield and Its Components

    International Nuclear Information System (INIS)

    Ragsb, A.I.; Boshra, S. A.; Mehany, A. L.; Darwish, A. A.; Khattab, M. M.

    2007-01-01

    This study was conducted in 2001 / 2002, 2002 /2003 and 2003/ 2004 seasons at the Experimental Farm of Nuclear Res. Center, Inshas. The objectives were to evaluate 23 induced mutants with gamma rays and EMS and two local cultivars Giza 1 and Giza 2 in the three generations (M3, M4, and M5) for earliness and seed yield and its components. The results were: It was found that earliness was observed for mutants 5, 11, 17, 21 and 22 as compared with Giza 1 and Giza 2 in the three generations with a maximum value of 19 days earlier than Giza 2. Highly significant increase for number of pods / plant was found for mutants 8, 15 and 19 as compared with the two local cultivars in the three generations. A considerable increase for no of seeds/plant was noticed only for mutant lines 8 and 15 as compared with the two local cultivars. A remarkable increase for seed index was only found for mutant lines 6, 12 and 21 as compared with the two local cultivars in the three generations. A considerable increase for seed yield / plant was revealed for mutant lines 1, 4, 7, 8, 15 and 19 as compared with the two local cultivars in the three generations.

  20. Inducement and identification of an endosperm mutant in maize

    African Journals Online (AJOL)

    ajl yemi

    2011-11-30

    Nov 30, 2011 ... Drummond EP, Ausubel FM (2000). Three unique mutants of. Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen. Plant J. 24(2): 205-218. Dinges JR, Colleoni C, Myers AM, James MG (2001). Molecular structure of three mutations at the maize sugary1 locus and their.

  1. Evaluation of Yield and Chemical Characteristics of some Peanut Mutants Induced by Gamma Irradiation

    International Nuclear Information System (INIS)

    Abd El-daem, G.A.; Anwar, M.M.

    2013-01-01

    This study was conducted to evaluate some promising mutants in peanut for yielding ability over three generation (M5, M6 and M7) and to evaluate yield attributes as will as chemical characteristics of these mutants in M7 generation induced by 100 Gy gamma radiation. The obtained results showed that the increase of yield / plot over three generation as a percentage of control was 5% for mutant 7, 10.2 % for mutant 10; 22% for mutant 9 and 22.9% for mutant 8. This increase in yield may be due to increase of one or more of yield attributes for most mutant lines. The significant increase for. No .of pods and seeds/ plant, weight of pods and seeds/ plant and 100- seed weight in M7 as compared to the control. For saturated fatty acid composition, results revealed that total saturated fatty acids ranged from 17.79% for mutant 8 to 21.75 for mutant 2 compared to 24.21% for control. Reduction of total saturated fatty acid was noticed for different mutants compared to that of the original variety. However, for total unsaturated fatty acids, results indicated that total unsaturated fatty acid composition ranged from 77.95% for mutant 9 to 82.09% for mutant 8 compared to 75.49% for control. Higher total unsaturated fatty acids for all mutant lines were obtained than that of the control, however, total saturated (TS)/ total unsaturated (TU) ratio was decreased for all mutants compared to control. The physical and chemical contents of Peanut oils showed that the refractive indices were ranged from 1.4620 to 1.4718 specific gravity were in range of 0.9146 to 0.9177. Acid value was range from 0.54 to 0.89% lodine value was ranged from 94.56 to 101.85. Saponification value was ranged from 185.2 to 190.7 and unsaponifiable matter was ranged from 0.98 to 1.33. The peroxide values ranged from 1.15 to 2.33 meq/kg oil. Also, fortified yoghurt made with replaced mutant peanut oil by 50% as milk fat substitute. Data showed that chemical composition and organolyptic properties had the

  2. Advancing Crop Transformation in the Era of Genome Editing[OPEN

    Science.gov (United States)

    Blechl, Ann E.; Brutnell, Thomas P.; Conrad, Liza J.; Gelvin, Stanton B.; Jackson, David P.; Kausch, Albert P.; Lemaux, Peggy G.; Medford, June I.; Orozco-Cárdenas, Martha L.; Tricoli, David M.; Van Eck, Joyce; Voytas, Daniel F.

    2016-01-01

    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized. PMID:27335450

  3. Evaluation of some mutant lines of rice induced by gamma radiation treatment 1. mean performance of rice mutants in M4 generation

    International Nuclear Information System (INIS)

    El-Banna, M.N.; El-Wakil, H.M.F.; Ebaid, R.A.; Sallam, R.A.

    2009-01-01

    Grains of eight rice mutants; SC 1, SC 6, RTY 1, RTY 3, HY 14, HYI 17, EH 4 and HYPI 22 were secured from Botany Department Faculty of Agriculture Cairo university. The procedures and the methodology for induction these mutants as well as the original mean performance of such mutants are presented else where; Sabbour, (1989) and Sabbour etal. (2002). Grains were sown (M4 generation) at the experimental farm in Itai EI-Baroud Agricultural Research Station Behaira Governorate Agricultural Research Center (ARC) in the summer season (2007). The mean performance of such mutants was studied during M4 generation. The most exciting results were as follows: the selected line SC 1 showed in M4 generation superior agronomic and yield traits. Sc 1 mutant line is not bred truly and it need more generations to reach stability. SC 6 in M4 generation showed considerable number of individuals scored low mean values toward the negative direction and lowering the overall trait mean performance. The rice lines RTY 1 and RTY 3 proved that, the average number of fertile tillers per plant of the selected lines maintained previously recorded mean values of M3 generation in M4. The traits showed significant differences among their progeny that recorded high CV% values as compared with those showed no significant differences. The rice lines HY 14 and HYI 17 showed a true breeding signs and no more breeding generations are required. Rice lines EH 4, showed a considerable reduction in number of days elapsed from date of cultivation till harvest. As, this mutant maintained 86.58 days till heading. Rice mutant line HYPI 22 did not bred truly for the original selected traits (high yield and high protein content) and it still need more generations of selection to reach considerable stability

  4. Meiosis in gamma-ray induced tomato mutants of line XXIV-a

    International Nuclear Information System (INIS)

    Zagorcheva, L.; Jordanov, M.

    1976-01-01

    Results are reported of investigations on meiosis in tomato mutants obtained by gamma-irradiation ( 60 Co) of seeds from line XXIV-a with doses of 20 and 30 krad. Two genome mutants (one a triploid and the other a tetraploid form) as well as a chromosome aberration of the translocation type, were selected in the course of the investigations and their meiosis is described. Meiosis in the initial form (line XXIV-a) was also studied. About 16% of the initial line XXIV-a plants proved to be trisomic forms. (author)

  5. Heterozygous inactivation of tsc2 enhances tumorigenesis in p53 mutant zebrafish

    Directory of Open Access Journals (Sweden)

    Seok-Hyung Kim

    2013-07-01

    Tuberous sclerosis complex (TSC is a multi-organ disorder caused by mutations of the TSC1 or TSC2 genes. A key function of these genes is to inhibit mTORC1 (mechanistic target of rapamycin complex 1 kinase signaling. Cells deficient for TSC1 or TSC2 have increased mTORC1 signaling and give rise to benign tumors, although, as a rule, true malignancies are rarely seen. In contrast, other disorders with increased mTOR signaling typically have overt malignancies. A better understanding of genetic mechanisms that govern the transformation of benign cells to malignant ones is crucial to understand cancer pathogenesis. We generated a zebrafish model of TSC and cancer progression by placing a heterozygous mutation of the tsc2 gene in a p53 mutant background. Unlike tsc2 heterozygous mutant zebrafish, which never exhibited cancers, compound tsc2;p53 mutants had malignant tumors in multiple organs. Tumorigenesis was enhanced compared with p53 mutant zebrafish. p53 mutants also had increased mTORC1 signaling that was further enhanced in tsc2;p53 compound mutants. We found increased expression of Hif1-α, Hif2-α and Vegf-c in tsc2;p53 compound mutant zebrafish compared with p53 mutant zebrafish. Expression of these proteins probably underlies the increased angiogenesis seen in compound mutant zebrafish compared with p53 mutants and might further drive cancer progression. Treatment of p53 and compound mutant zebrafish with the mTORC1 inhibitor rapamycin caused rapid shrinkage of tumor size and decreased caliber of tumor-associated blood vessels. This is the first report using an animal model to show interactions between tsc2, mTORC1 and p53 during tumorigenesis. These results might explain why individuals with TSC rarely have malignant tumors, but also suggest that cancer arising in individuals without TSC might be influenced by the status of TSC1 and/or TSC2 mutations and be potentially treatable with mTORC1 inhibitors.

  6. Selection of gamma-ray induced salt tolerant rice mutants by in vitro mutagenesis

    International Nuclear Information System (INIS)

    Kim, Dong Sub; Chun, Jae Beom; Lee, Kyung Jun; Kim, Jin Baek; Kim, Sang Hoon; Yun, Song Jong; Kang, Si Yong

    2010-01-01

    The present study had been performed to select the salt tolerant rice mutant lines through an in vivo and in vitro mutagenesis with a gamma-ray. The physiological responses such as MDA and chlorophyll of the selected salt mutant lines were investigated under salt stress. For the selection of the salt tolerant rice mutants by in vitro mutagenesis with gamma-ray, we conducted a second selection procedure with 1,500 mutant lines induced from the original cv. Dongan (wild-type, WT): Ist, selection under a nutrient solution with 171 mM NaCI: 2nd, selection under in vitro conditions. Based on a growth comparison of the entries, out of mutant lines, the putative 2 salt tolerant rice mutant lines, ST-495 and ST-532, were selected. The 2 ST-lines had a lower malonaldehyde (MDA) contents than wild-type (WT) during salt stress. The survival rate of the WT, ST-495 and ST-532 were 36.6%, 70% and 50% in 171 mM NaCI, respectively. The chlorophyll and carotenoid contents were decreased more in a WT plant than the two selected mutant lines. These rice mutant lines will be released for cultivation at the reclaimed land and used as a control plot for genetic research about salt tolerance

  7. Selection of gamma-ray induced salt tolerant rice mutants by in vitro mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sub; Chun, Jae Beom; Lee, Kyung Jun; Kim, Jin Baek; Kim, Sang Hoon; Yun, Song Jong; Kang, Si Yong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-06-15

    The present study had been performed to select the salt tolerant rice mutant lines through an in vivo and in vitro mutagenesis with a gamma-ray. The physiological responses such as MDA and chlorophyll of the selected salt mutant lines were investigated under salt stress. For the selection of the salt tolerant rice mutants by in vitro mutagenesis with gamma-ray, we conducted a second selection procedure with 1,500 mutant lines induced from the original cv. Dongan (wild-type, WT): Ist, selection under a nutrient solution with 171 mM NaCI: 2nd, selection under in vitro conditions. Based on a growth comparison of the entries, out of mutant lines, the putative 2 salt tolerant rice mutant lines, ST-495 and ST-532, were selected. The 2 ST-lines had a lower malonaldehyde (MDA) contents than wild-type (WT) during salt stress. The survival rate of the WT, ST-495 and ST-532 were 36.6%, 70% and 50% in 171 mM NaCI, respectively. The chlorophyll and carotenoid contents were decreased more in a WT plant than the two selected mutant lines. These rice mutant lines will be released for cultivation at the reclaimed land and used as a control plot for genetic research about salt tolerance.

  8. Selectable genes for transformation of the fungal plant pathogen Glomerella cingulata f. sp. phaseoli (Colletotrichum lindemuthianum).

    Science.gov (United States)

    Rodriguez, R J; Yoder, O C

    1987-01-01

    Glomerella cingulata f. sp. phaseoli (Gcp) was transformed using either of two selectable markers: the amdS + gene of Aspergillus nidulans, which encodes acetamidase and permits growth on acetamide as the sole nitrogen source and the hygBR gene of Escherichia coli which encodes hygromycin B (Hy) phosphotransferase and permits growth in the presence of the antibiotic Hy. The amdS+ gene functioned in Gcp under control of A. nidulans regulatory signals and hygBR was expressed after fusion to a promoter from Cochliobolus heterostrophus, another filamentous ascomycete. Protoplasts to be transformed were generated with the digestive enzyme complex Novozym 234 and then were exposed to plasmid DNA in the presence of 10 mM CaCl2 and polyethylene glycol. Transformation occurred by integration of single or multiple copies of either the amdS+ or hygBR plasmid into the fungal genome. There was no evidence of autonomous plasmid replication. Transformants were mitotically stable on selective and nonselective media. However, transforming DNA in hygBR transformants was observed to occasionally rearrange during nonselective growth, resulting in fewer copies of the plasmid per genome. These transformants were capable of infecting bean (Phaseolus vulgaris), the Gcp host plant, and after recovery from infected tissue were found to have retained both the transforming DNA unrearranged in their genomes and the Hy resistance phenotype. All single-conidial cultures derived from both amdS+ and hygBR transformants had the transplanted phenotype, suggesting that transformants were homokaryons.

  9. Plants, plant pathogens, and microgravity--a deadly trio

    Science.gov (United States)

    Leach, J. E.; Ryba-White, M.; Sun, Q.; Wu, C. J.; Hilaire, E.; Gartner, C.; Nedukha, O.; Kordyum, E.; Keck, M.; Leung, H.; hide

    2001-01-01

    Plants grown in spaceflight conditions are more susceptible to colonization by plant pathogens. The underlying causes for this enhanced susceptibility are not known. Possibly the formation of structural barriers and the activation of plant defense response components are impaired in spaceflight conditions. Either condition would result from altered gene expression of the plant. Because of the tools available, past studies focused on a few physiological responses or biochemical pathways. With recent advances in genomics research, new tools, including microarray technologies, are available to examine the global impact of growth in the spacecraft on the plant's gene expression profile. In ground-based studies, we have developed cDNA subtraction libraries of rice that are enriched for genes induced during pathogen infection and the defense response. Arrays of these genes are being used to dissect plant defense response pathways in a model system involving wild-type rice plants and lesion mimic mutants. The lesion mimic mutants are ideal experimental tools because they erratically develop defense response-like lesions in the absence of pathogens. The gene expression profiles from these ground-based studies will provide the molecular basis for understanding the biochemical and physiological impacts of spaceflight on plant growth, development and disease defense responses. This, in turn, will allow the development of strategies to manage plant disease for life in the space environment.

  10. Forward and reverse genetics: The LORE1 retrotransposon insertion mutants

    DEFF Research Database (Denmark)

    Fukai, Eigo; Malolepszy, Anna; Sandal, Niels Nørgaard

    2014-01-01

    The endogenous Lotus retrotransposon 1 (LORE1) transposes in the germ line of Lotus japonicus plants that carry an active element. This feature of LORE1 has been exploited for generation of a large non-transgenic insertion mutant population, where insertions have been annotated using next-generat...

  11. Engineering of the aspartate family biosynthetic pathway in barley (Hordeum vulgare L.) by transformation with heterologous genes encoding feed-back-insensitive aspartate kinase and dihydrodipicolinate synthase

    DEFF Research Database (Denmark)

    Brinch-Pedersen, H.; Galili, G.; Sørensen, K.

    1996-01-01

    In prokaryotes and plants the synthesis of the essential amino acids lysine and threonine is predominantly regulated by feed-back inhibition of aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS). In order to modify the flux through the aspartate family pathway in barley and enhance...... the accumulation of the corresponding amino acids, we have generated transgenic barley plants that constitutively express mutant Escherichia coli genes encoding lysine feed-back insensitive forms of AK and DHPS. As a result, leaves of primary transformants (T0) exhibited a 14-fold increase of free lysine and an 8......, no differences were observed in the composition of total amino acids. The introduced genes were inherited in the T1 generation where enzymic activities revealed a 2.3-fold increase of AK activity and a 4.0-9.5-fold increase for DHPS. T1 seeds of DHPS transformants showed the same changes in free amino acids...

  12. Gateway binary vectors with the bialaphos resistance gene, bar, as a selection marker for plant transformation.

    Science.gov (United States)

    Nakamura, Shinya; Mano, Shoji; Tanaka, Yuji; Ohnishi, Masato; Nakamori, Chihiro; Araki, Masami; Niwa, Tomoko; Nishimura, Mikio; Kaminaka, Hironori; Nakagawa, Tsuyoshi; Sato, Yutaka; Ishiguro, Sumie

    2010-01-01

    We constructed two series of Gateway binary vectors, pGWBs and R4pGWBs, possessing the bialaphos resistance gene (bar) as a selection marker for plant transformation. The reporters and tags employed in this system are sGFP, GUS, LUC, EYFP, ECFP, G3GFP, mRFP, TagRFP, 6xHis, FLAG, 3xHA, 4xMyc, 10xMyc, GST, T7 and TAP. Selection of Arabidopsis transformants with BASTA was successfully carried out using both plate-grown and soil-grown seedlings. Transformed rice calli and suspension-cultured tobacco cells were selected on plates containing BASTA or glufosinate-ammonium. These vectors are compatible with existing pGWB and R4pGWB vectors carrying kanamycin and hygromycin B resistance.

  13. Development of compact mutants in apple and sour cherry

    International Nuclear Information System (INIS)

    Zagaja, S.W.; Przybyla, A.; Machnik, B.

    1982-01-01

    During the period 1973 - 79 studies were conducted with the aim of developing compact mutants in apple and cherry cultivars and in apple vegetative rootstocks. During the investigations the effect of the dose of gamma rays on frequency of the mutants was studied. Attempts were also made to evolve a micropropagation technique adapted to propagate P 2 and P 22 apple rootstocks, as an aid in mutation breeding. Several mutants were produced in all the material studied, but none of them have yet reached a sufficient developmental stage to enable their complete assessment. On the basis of the results obtained so far the following conclusions can be drawn: higher doses of irradiation resulted in higher frequency of mutants in most apple cultivars and apple rootstocks; in sour cherries the effect of dose depended on the cultivars. Among V 1 shoots developed from sleeping buds on irradiated scion wood, compact mutants were found; their frequency, however, was about 60% lower than among V 1 shoots developed directly from irradiated dormant buds. In apple rootstocks A 2 and M 26 several dwarfed mutants were found; some of these produced thorny plants and some had lower rooting ability; both these characteristics are inferior from the practical point of view. Multiplication and rooting media for in vitro propagation of apple rootstocks, worked out for M 26, were found unsuitable for the rootstocks P 2 and P 22; modifications made in the growth substance composition of the above media enabled satisfactory propagation to be obtained. (author)

  14. Microbial community dynamics and transformation of vascular plant detritus in two wetland ecosystems

    International Nuclear Information System (INIS)

    Moran, M.A.

    1987-01-01

    The microbial ecology of two wetland ecosystems in southeastern Georgia, USA, was studied with respect to microbial community dynamics and microbially-mediated transformations of vascular plant detritus. In the Okefenokee Swamp, biomass of microorganisms in the water column and sediments was generally lower in winter months and higher during spring and summer. Biomass and activity (measured as 14 C-lignocellulose mineralization) differed significantly among five habitats within the Okefenokee, and also among locations within each habitat. Significant heterogeneity in the structure of Okefenokee microbial communities was found at scales from 30 cm to 150 m. In field and laboratory studies of vascular plant decomposition in the Okefenokee and a salt marsh on Sapelo Island, the mathematical model which best describes decomposition kinetics is the decaying coefficient model

  15. Transformation of UV-hypersensitive Chinese hamster ovary cell mutants with UV-irradiated plasmids

    International Nuclear Information System (INIS)

    Nairn, R.S.; Humphrey, R.M.; Adair, G.M.

    1988-01-01

    Transfection of UV-hypersensitive, DNA repair-deficient Chinese hamster ovary (CHO) cell lines and parental, repair-proficient CHO cells with UV-irradiated pHaprt-1 or pSV2gpt plasmids resulted in different responses by recipient cell lines to UV damage in transfected DNA. Unlike results reported for human cells, UV irradiation of transfecting DNA did not stimulate genetic transformation of CHO recipient cells. In repair-deficient CHO cells, proportionally fewer transformants were produced with increasing UV damage than in repair-proficient cells in transfections with UV-irradiated hamster adenine phosphoribosyltransferase (APRT) gene contained in plasmid pHaprt-1. Transfection of CHO cells with UV-irradiated pSV2gpt resulted in neither decline in transformation frequencies in repair-deficient cell lines relative to repair-proficient cells nor stimulation of genetic transformation by UV damage in the plasmid. Blot hybridization analysis of DNA samples isolated from transformed cells showed no dramatic changes in copy number or arrangement of transfected plasmid DNA with increasing UV dose. The authors conclude responses of recipient cells to UV-damaged transfecting plasmids depend on type of recipient cell and characteristics of the genetic sequence used for transfection. (author)

  16. Biolistics Transformation of Wheat

    Science.gov (United States)

    Sparks, Caroline A.; Jones, Huw D.

    We present a complete, step-by-step guide to the production of transformed wheat plants using a particle bombardment device to deliver plasmid DNA into immature embryos and the regeneration of transgenic plants via somatic embryogenesis. Currently, this is the most commonly used method for transforming wheat and it offers some advantages. However, it will be interesting to see whether this position is challenged as facile methods are developed for delivering DNA by Agrobacterium tumefaciens or by the production of transformants via a germ-line process (see other chapters in this book).

  17. Studies on mutant breeding of Hibiscus syriacus

    International Nuclear Information System (INIS)

    Song, Hi Sup; Kim, Jin Kyu; Lee, Ki Un; Kim, Young Taik.

    1997-01-01

    Hibiscus has been known as a national flower of Korea. Hibiscus has such a characteristic of self-incompatibility that all the plant exist as natural hybrids and have heterogeneous genes. Many domestic 91 varieties of Hibiscus syriacus were collected. Radiosensitivity of H. Syriacus irradiated with γ-ray was investigated in plant cuttings. The plant height was reduced by 45% in 5KR irradiated group, compared to control group. The radiation dose of 5KR could be recommended for mutation breeding of Hibiscus cuttings. Radiosensitivity of γ-ray irradiated Hibiscus seed were investigated. The germination rate, survival rate and plant height was better in the 4KR irradiation plot than control. The radiation dose of 10∼12KR are recommended for mutation breeding of Hibiscus. Promising mutant lines were selected form the varieties of Hwarang, Wolsan no. 176, Ilpyondansim, Emille, Hanol, Yongkwang, Saeyongkwang, Chungmu, Imjinhong, Arang, Hungdansim-1 and Hongdansim-2. (author). 66 refs., 16 tabs., 13 figs

  18. Studies on mutant breeding of Hibiscus syriacus

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hi Sup; Kim, Jin Kyu; Lee, Ki Un; Kim, Young Taik

    1997-01-01

    Hibiscus has been known as a national flower of Korea. Hibiscus has such a characteristic of self-incompatibility that all the plant exist as natural hybrids and have heterogeneous genes. Many domestic 91 varieties of Hibiscus syriacus were collected. Radiosensitivity of H. Syriacus irradiated with {gamma}-ray was investigated in plant cuttings. The plant height was reduced by 45% in 5KR irradiated group, compared to control group. The radiation dose of 5KR could be recommended for mutation breeding of Hibiscus cuttings. Radiosensitivity of {gamma}-ray irradiated Hibiscus seed were investigated. The germination rate, survival rate and plant height was better in the 4KR irradiation plot than control. The radiation dose of 10{approx}12KR are recommended for mutation breeding of Hibiscus. Promising mutant lines were selected form the varieties of Hwarang, Wolsan no. 176, Ilpyondansim, Emille, Hanol, Yongkwang, Saeyongkwang, Chungmu, Imjinhong, Arang, Hungdansim-1 and Hongdansim-2. (author). 66 refs., 16 tabs., 13 figs.

  19. The Activity of Nodules of the Supernodulating Mutant Mtsunn Is not Limited by Photosynthesis under Optimal Growth Conditions

    Directory of Open Access Journals (Sweden)

    Ricardo A. Cabeza

    2014-04-01

    Full Text Available Legumes match the nodule number to the N demand of the plant. When a mutation in the regulatory mechanism deprives the plant of that ability, an excessive number of nodules are formed. These mutants show low productivity in the fields, mainly due to the high carbon burden caused through the necessity to supply numerous nodules. The objective of this study was to clarify whether through optimal conditions for growth and CO2 assimilation a higher nodule activity of a supernodulating mutant of Medicago truncatula (M. truncatula can be induced. Several experimental approaches reveal that under the conditions of our experiments, the nitrogen fixation of the supernodulating mutant, designated as sunn (super numeric nodules, was not limited by photosynthesis. Higher specific nitrogen fixation activity could not be induced through short- or long-term increases in CO2 assimilation around shoots. Furthermore, a whole plant P depletion induced a decline in nitrogen fixation, however this decline did not occur significantly earlier in sunn plants, nor was it more intense compared to the wild-type. However, a distinctly different pattern of nitrogen fixation during the day/night cycles of the experiment indicates that the control of N2 fixing activity of the large number of nodules is an additional problem for the productivity of supernodulating mutants.

  20. Radiation mutagenesis of subtropic plants

    International Nuclear Information System (INIS)

    Kerkadze, I.G.

    1987-01-01

    Possibilities of expansion of subtropic plant changeability and development of new gene bank for future selection-genetic studies are detected. New trends of radiation mutagenesis of subtropic plants are formulated as results of studies during many years. A lot of mutants is subjected to sufficient tests, and concrete results are obtained with the help of these tests for definite species. Summing genetic and selection estimations of the results, it is possible to make the conclusion that mutant selection represents one of the powerful methods of preparation of productive and qualitative species of subtropic plants, which are successfully introduced into practice

  1. Efficient Identification of Causal Mutations through Sequencing of Bulked F2 from Two Allelic Bloomless Mutants of Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    Yinping Jiao

    2018-01-01

    Full Text Available Sorghum (Sorghum bicolor Moench, L. plant accumulates copious layers of epi-cuticular wax (EW on its aerial surfaces, to a greater extent than most other crops. EW provides a vapor barrier that reduces water loss, and is therefore considered to be a major determinant of sorghum's drought tolerance. However, little is known about the genes responsible for wax accumulation in sorghum. We isolated two allelic mutants, bloomless40-1 (bm40-1 and bm40-2, from a mutant library constructed from ethyl methane sulfonate (EMS treated seeds of an inbred, BTx623. Both mutants were nearly devoid of the EW layer. Each bm mutant was crossed to the un-mutated BTx623 to generated F2 populations that segregated for the bm phenotype. Genomic DNA from 20 bm F2 plants from each population was bulked for whole genome sequencing. A single gene, Sobic.001G228100, encoding a GDSL-like lipase/acylhydrolase, had unique homozygous mutations in each bulked F2 population. Mutant bm40-1 harbored a missense mutation in the gene, whereas bm40-2 had a splice donor site mutation. Our findings thus provide strong evidence that mutation in this GDSL-like lipase gene causes the bm phenotype, and further demonstrate that this approach of sequencing two independent allelic mutant populations is an efficient method for identifying causal mutations. Combined with allelic mutants, MutMap provides powerful method to identify all causal genes for the large collection of bm mutants in sorghum, which will provide insight into how sorghum plants accumulate such abundant EW on their aerial surface. This knowledge may facilitate the development of tools for engineering drought-tolerant crops with reduced water loss.

  2. Induction and assay of pure soyabean mutants obtained from gamma irradiation

    International Nuclear Information System (INIS)

    Nasseri Tafti, M.; Rezazadeh, M.; Yousefi, F.; Sabzi, H.

    2002-01-01

    Gamma ray is an electromagnetic type of radiation and produces ions when passing through biological matter. It can be applied in plant breeding to induce variation. The most important character of this ray is to produce changes in DNA structure existing in cell. Mutants induced by irradiation of soybean seeds were assayed for their agronomic traits. Two locations were used for this purpose, Alishtar and Karaj. There were significant differences between soybean mutant lines and their check cv. Williams at 1% level and cv.Clark at 5% level. Line No. 47 with 4782 kg/hect. Possessed the top of the list and next to it line No.38 with 4722 kg/hect. Some mutant lines reached maturity 10 to 12 days earlier than commercial cv s used as check cultivars

  3. In planta Transformed Cumin (Cuminum cyminum L.) Plants, Overexpressing the SbNHX1 Gene Showed Enhanced Salt Endurance.

    Science.gov (United States)

    Pandey, Sonika; Patel, Manish Kumar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Cumin is an annual, herbaceous, medicinal, aromatic, spice glycophyte that contains diverse applications as a food and flavoring additive, and therapeutic agents. An efficient, less time consuming, Agrobacterium-mediated, a tissue culture-independent in planta genetic transformation method was established for the first time using cumin seeds. The SbNHX1 gene, cloned from an extreme halophyte Salicornia brachiata was transformed in cumin using optimized in planta transformation method. The SbNHX1 gene encodes a vacuolar Na+/H+ antiporter and is involved in the compartmentalization of excess Na+ ions into the vacuole and maintenance of ion homeostasis Transgenic cumin plants were confirmed by PCR using gene (SbNHX1, uidA and hptII) specific primers. The single gene integration event and overexpression of the gene were confirmed by Southern hybridization and competitive RT-PCR, respectively. Transgenic lines L3 and L13 showed high expression of the SbNHX1 gene compared to L6 whereas moderate expression was detected in L5 and L10 transgenic lines. Transgenic lines (L3, L5, L10 and L13), overexpressing the SbNHX1 gene, showed higher photosynthetic pigments (chlorophyll a, b and carotenoid), and lower electrolytic leakage, lipid peroxidation (MDA content) and proline content as compared to wild type plants under salinity stress. Though transgenic lines were also affected by salinity stress but performed better compared to WT plants. The ectopic expression of the SbNHX1 gene confirmed enhanced salinity stress tolerance in cumin as compared to wild type plants under stress condition. The present study is the first report of engineering salt tolerance in cumin, so far and the plant may be utilized for the cultivation in saline areas.

  4. In planta Transformed Cumin (Cuminum cyminum L. Plants, Overexpressing the SbNHX1 Gene Showed Enhanced Salt Endurance.

    Directory of Open Access Journals (Sweden)

    Sonika Pandey

    Full Text Available Cumin is an annual, herbaceous, medicinal, aromatic, spice glycophyte that contains diverse applications as a food and flavoring additive, and therapeutic agents. An efficient, less time consuming, Agrobacterium-mediated, a tissue culture-independent in planta genetic transformation method was established for the first time using cumin seeds. The SbNHX1 gene, cloned from an extreme halophyte Salicornia brachiata was transformed in cumin using optimized in planta transformation method. The SbNHX1 gene encodes a vacuolar Na+/H+ antiporter and is involved in the compartmentalization of excess Na+ ions into the vacuole and maintenance of ion homeostasis Transgenic cumin plants were confirmed by PCR using gene (SbNHX1, uidA and hptII specific primers. The single gene integration event and overexpression of the gene were confirmed by Southern hybridization and competitive RT-PCR, respectively. Transgenic lines L3 and L13 showed high expression of the SbNHX1 gene compared to L6 whereas moderate expression was detected in L5 and L10 transgenic lines. Transgenic lines (L3, L5, L10 and L13, overexpressing the SbNHX1 gene, showed higher photosynthetic pigments (chlorophyll a, b and carotenoid, and lower electrolytic leakage, lipid peroxidation (MDA content and proline content as compared to wild type plants under salinity stress. Though transgenic lines were also affected by salinity stress but performed better compared to WT plants. The ectopic expression of the SbNHX1 gene confirmed enhanced salinity stress tolerance in cumin as compared to wild type plants under stress condition. The present study is the first report of engineering salt tolerance in cumin, so far and the plant may be utilized for the cultivation in saline areas.

  5. Synthesis of Hydroxylated Sterols in Transgenic Arabidopsis Plants Alters Growth and Steroid Metabolism1[C][W][OA

    Science.gov (United States)

    Beste, Lisa; Nahar, Nurun; Dalman, Kerstin; Fujioka, Shozo; Jonsson, Lisbeth; Dutta, Paresh C.; Sitbon, Folke

    2011-01-01

    To explore mechanisms in plant sterol homeostasis, we have here increased the turnover of sterols in Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum) plants by overexpressing four mouse cDNA encoding cholesterol hydroxylases (CHs), hydroxylating cholesterol at the C-7, C-24, C-25, or C-27 positions. Compared to the wild type, the four types of Arabidopsis transformant showed varying degrees of phenotypic alteration, the strongest one being in CH25 lines, which were dark-green dwarfs resembling brassinosteroid-related mutants. Gas chromatography-mass spectrometry analysis of extracts from wild-type Arabidopsis plants revealed trace levels of α and β forms of 7-hydroxycholesterol, 7-hydroxycampesterol, and 7-hydroxysitosterol. The expected hydroxycholesterol metabolites in CH7-, CH24-, and CH25 transformants were identified and quantified using gas chromatography-mass spectrometry. Additional hydroxysterol forms were also observed, particularly in CH25 plants. In CH24 and CH25 lines, but not in CH7 ones, the presence of hydroxysterols was correlated with a considerable alteration of the sterol profile and an increased sterol methyltransferase activity in microsomes. Moreover, CH25 lines contained clearly reduced levels of brassinosteroids, and displayed an enhanced drought tolerance. Equivalent transformations of potato plants with the CH25 construct increased hydroxysterol levels, but without the concomitant alteration of growth and sterol profiles observed in Arabidopsis. The results suggest that an increased hydroxylation of cholesterol and/or other sterols in Arabidopsis triggers compensatory processes, acting to maintain sterols at adequate levels. PMID:21746809

  6. Description of some characteristics of flowers and seeds of Arabidopsis thaliana - ecotype landsberg erecta and mutant NW4

    Directory of Open Access Journals (Sweden)

    Leszek Trząski

    2014-01-01

    Full Text Available Flowers and seeds of Landsberg erecta (Ler ecotype and NW4 mutant were studied by light microscopy and scanning electron microscopy to reveal characteristic features of their structure. The NW4 mutant flowers differ from Ler mainly in presence of two bract-like sepals with complicated vasculature and a variable number of secondary flowers. In the two outer whorls of NW4 flower, variable number of transformed stamen-, petal-, sepal- and style-like elements also occur. The NW4 mutant seeds are characterized by the absence of mucilage around the surface and a deviating seed coat morphology.

  7. Methylammonium-resistant mutants of Nicotiana plumbaginifolia are affected in nitrate transport.

    Science.gov (United States)

    Godon, C; Krapp, A; Leydecker, M T; Daniel-Vedele, F; Caboche, M

    1996-02-25

    This work reports the isolation and preliminary characterization of Nicotiana plumbaginifolia mutants resistant to methylammonium. Nicotiana plumbaginifolia plants cannot grow on low levels of nitrate in the presence of methylammonium. Methylammonium is not used as a nitrogen source, although it can be efficiently taken up by Nicotiana plumbaginifolia cells and converted into methylglutamine, an analog of glutamine. Glutamine is known to repress the expression of the enzymes that mediate the first two steps in the nitrate assimilatory pathway, nitrate reductase (NR) and nitrite reductase (NiR). Methylammonium has therefore been used, in combination with low concentrations of nitrate, as a selective agent in order to screen for mutants in which the nitrate pathway is de-repressed. Eleven semi-dominant mutants, all belonging to the same complementation group, were identified. The mutant showing the highest resistance to methylammonium was not affected either in the utilization of ammonium, accumulation of methylammonium or in glutamine synthase activity. A series of experiments showed that utilization of nitrite by the wild-type and the mutant was comparable, in the presence or the absence of methylammonium, thus suggesting that the mutation specifically affected nitrate transport or reduction. Although NR mRNA levels were less repressed by methylammonium treatment of the wild-type than the mutant, NR activities of the mutant remained comparable with or without methylammonium, leading to the hypothesis that modified expression of NR is probably not responsible for resistance to methylammonium. Methylammonium inhibited nitrate uptake in the wild-type but had only a limited effect in the mutant. The implications of these results are discussed.

  8. Rice mutants obtained through sodium azide (NaN3) treatment

    International Nuclear Information System (INIS)

    Silva, E.F.; Ando, A.; Tulmann Neto, A.

    2001-01-01

    The successful utilization of sodium azide to generate genetic variability in plant breeding has been reported in barley, rice, and other crops. Rice seeds of 'Dourado Precoce', Brazilian upland cultivar, were treated with 5x10 -3 M of sodium azide, prepared in buffer solution of pH 3,0, for 8 hours at laboratory temperature. Ten short culm mutant lines were selected in the M 2 , M 3 and M 4 generations. In the M 5 generation, the mutant lines were evaluated for flowering and maturing cycles, tiller number per plant, plant height, panicle number per m 2 , panicle length, fertility of panicle, weight of 1.000 grains, productivity, percentage of intact grains after milling, width and thickness of peeled and polished grains and length/width grain ratio. The experiment was conducted in the Centro Experimental of Instituto Agronomico, Campinas, Sao Paulo, Brazil, during the period of 1993/94, utilizing randomized block design with four replications. Each experimental plot consisted of five rows of four meters in length, 50 cm between rows, with 75 seeds sown per meter. The cultivar 'IAC 201' and the original Dourado Precoce were planted as checks. All observations were made on the three central rows of each experimental plot. The data was analysed by the SANEST statistical program and the mean values were discriminated by the Tukey's test at the level 5% of probability

  9. Genetic transformation of rare Verbascum eriophorum Godr. plants and metabolic alterations revealed by NMR-based metabolomics.

    Science.gov (United States)

    Marchev, Andrey; Yordanova, Zhenya; Alipieva, Kalina; Zahmanov, Georgi; Rusinova-Videva, Snezhana; Kapchina-Toteva, Veneta; Simova, Svetlana; Popova, Milena; Georgiev, Milen I

    2016-09-01

    To develop a protocol to transform Verbascum eriophorum and to study the metabolic differences between mother plants and hairy root culture by applying NMR and processing the datasets with chemometric tools. Verbascum eriophorum is a rare species with restricted distribution, which is poorly studied. Agrobacterium rhizogenes-mediated genetic transformation of V. eriophorum and hairy root culture induction are reported for the first time. To determine metabolic alterations, V. eriophorum mother plants and relevant hairy root culture were subjected to comprehensive metabolomic analyses, using NMR (1D and 2D). Metabolomics data, processed using chemometric tools (and principal component analysis in particular) allowed exploration of V. eriophorum metabolome and have enabled identification of verbascoside (by means of 2D-TOCSY NMR) as the most abundant compound in hairy root culture. Metabolomics data contribute to the elucidation of metabolic alterations after T-DNA transfer to the host V. eriophorum genome and the development of hairy root culture for sustainable bioproduction of high value verbascoside.

  10. Analysis of Yellow Striped Mutants of Zea mays Reveals Novel Loci Contributing to Iron Deficiency Chlorosis

    Directory of Open Access Journals (Sweden)

    David Chan-Rodriguez

    2018-02-01

    Full Text Available The micronutrient iron (Fe is essential for photosynthesis, respiration, and many other processes, but it is only sparingly soluble in aqueous solution, making adequate acquisition by plants a serious challenge. Fe is a limiting factor for plant growth on approximately 30% of the world’s arable lands. Moreover, Fe deficiency in humans is a global health issue, affecting 1.62 billion people, or about 25% of the world’s population. It is imperative that we gain a better understanding of the mechanisms that plants use to regulate iron homeostasis, since these will be important targets for future biofortification and crop improvement strategies. Grasses and non-grasses have evolved independent mechanisms for primary iron uptake from the soil. The grasses, which include most of the world’s staple grains, have evolved a distinct ‘chelation’ mechanism to acquire iron from the soil. Strong iron chelators called phytosiderophores (PSs are synthesized by grasses and secreted into the rhizosphere where they bind and solubilize Fe(III. The Fe(III-PS complex is then taken up into root cells via transporters specific for the Fe(III-PS complex. In this study, 31 novel, uncharacterized striped maize mutants available through the Maize Genetics Cooperation Stock Center (MGCSC were analyzed to determine whether their mutant phenotypes are caused by decreased iron. Many of these proved to be either pale yellow or white striped mutants. Complementation tests were performed by crossing the MGCSC mutants to ys1 and ys3 reference mutants. This allowed assignment of 10 ys1 alleles and 4 ys3 alleles among the novel mutants. In addition, four ys∗ mutant lines were identified that are not allelic to either ys1 or ys3. Three of these were characterized as being non-allelic to each other and as having low iron in leaves. These represent new genes involved in iron acquisition by maize, and future cloning of these genes may reveal novel aspects of the grass iron

  11. ALS-causing profilin-1-mutant forms a non-native helical structure in membrane environments.

    Science.gov (United States)

    Lim, Liangzhong; Kang, Jian; Song, Jianxing

    2017-11-01

    Despite having physiological functions completely different from superoxide dismutase 1 (SOD1), profilin 1 (PFN1) also carries mutations causing amyotrophic lateral sclerosis (ALS) with a striking similarity to that triggered by SOD1 mutants. Very recently, the C71G-PFN1 has been demonstrated to cause ALS by a gain of toxicity and the acceleration of motor neuron degeneration preceded the accumulation of its aggregates. Here by atomic-resolution NMR determination of conformations and dynamics of WT-PFN1 and C71G-PFN1 in aqueous buffers and in membrane mimetics DMPC/DHPC bicelle and DPC micelle, we deciphered that: 1) the thermodynamic destabilization by C71G transforms PFN1 into coexistence with the unfolded state, which is lacking of any stable tertiary/secondary structures as well as restricted ps-ns backbone motions, thus fundamentally indistinguishable from ALS-causing SOD1 mutants. 2) Most strikingly, while WT-PFN1 only weakly interacts with DMPC/DHPC bicelle without altering the native structure, C71G-PFN1 acquires abnormal capacity in strongly interacting with DMPC/DHPC bicelle and DPC micelle, energetically driven by transforming the highly disordered unfolded state into a non-native helical structure, similar to what has been previously observed on ALS-causing SOD1 mutants. Our results imply that one potential mechanism for C71G-PFN1 to initiate ALS might be the abnormal interaction with membranes as recently established for SOD1 mutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. High yielding and disease resistant mutants of sorghum in Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Reinoso, A; Murty, B R; Taborda, F [Faculty of Agronomy, University of Zulia, Maracaibo (Venezuela)

    1987-07-01

    The programme was assisted by IAEA under project VEN/5/005 since 1978. It aims at improvement of plant type, earliness and resistance to Macrophomina in the locally adapted varieties Criollo Rojo Pequeno (CRP) and Criollo Blanco Alto (CBA). The mutagenic treatment consisted of seed irradiation at 20, 30 and 40 kR of gamma rays and chemical mutagenesis using sodium azide followed by 5000 kR gamma radiation. The 16 best mutants were evaluated in multilocation trials during M{sub 6}-M{sub 9} 1981-1984: Mutants from CRP namely 1279, 1543, 1265, 2085, 1251 and 1359 and four mutant from CBA, 109, 467, 469 and 81-1227 were found to be superior to their parents and the existing commercial hybrids. CRP 1279, 1543 and 2085 are already under large scale cultivation by farmers and under process for cultivar certification by the Ministry of Agriculture.

  13. High yielding and disease resistant mutants of sorghum in Venezuela

    International Nuclear Information System (INIS)

    Reinoso, A.; Murty, B.R.; Taborda, F.

    1987-01-01

    The programme was assisted by IAEA under project VEN/5/005 since 1978. It aims at improvement of plant type, earliness and resistance to Macrophomina in the locally adapted varieties Criollo Rojo Pequeno (CRP) and Criollo Blanco Alto (CBA). The mutagenic treatment consisted of seed irradiation at 20, 30 and 40 kR of gamma rays and chemical mutagenesis using sodium azide followed by 5000 kR gamma radiation. The 16 best mutants were evaluated in multilocation trials during M 6 -M 9 1981-1984: Mutants from CRP namely 1279, 1543, 1265, 2085, 1251 and 1359 and four mutant from CBA, 109, 467, 469 and 81-1227 were found to be superior to their parents and the existing commercial hybrids. CRP 1279, 1543 and 2085 are already under large scale cultivation by farmers and under process for cultivar certification by the Ministry of Agriculture

  14. Mutation breedings in ornamental plants

    International Nuclear Information System (INIS)

    Matsubara, Hisao

    1984-01-01

    Several methods of obtaining somatic mutant plants by γ-ray irradiation on pieces of tissues as in vitro adventitious bud technique or small cutting methods with repeated pruning are described. 1) The irradiation to the adventitious buds in the small pieces of organ cultured in vitro and to the small cuttings are employed. Culture beds of agar or of Japanese Kanuma soil were used in vitro culture. In these experiments, Japanese Kanuma soil bed in in vitro culture worked well for root development and transplant of the induced mutants. 2) Combination with in vitro culture and repeated pruning technique were used for isolation and fixation of solid somatic mutant from small sectorial mutation induced by irradiation. This method was successful for begonia, chrysanthemum, aberia and winter daphne. 3) These data indicates that most of the induced mutant plants were non-chimeric, while a few others were chimeric. Among the new varieties, ''Gin-Sei'', ''Ryoku-Ha'', ''Big-Cross'', ''Kaede-Iron'', ''Mei-Fu-Hana-Tsukubane-Utsugi'' and ''Daphne-γ-3'' are non-chimeric, and ''Mini-Mini-Iron'' and ''Orange-Iron'' are chimeric. Moreover, these new varieties have remarkably differed in size and in color pattern from original variety. From the experimental results of somatic mutation, it is indicated that plant tissue culture have enormous potential in radiation breeding and in rapid propagation of the somatic mutant. (author)

  15. Isolation of uvh1, an Arabidopsis mutant hypersensitive to ultraviolet light and ionizing radiation

    International Nuclear Information System (INIS)

    Harlow, G.R.; Jenkins, M.E.; Pittalwala, T.S.; Mount, D.W.

    1994-01-01

    A genetic screen for mutants of Arabidopsis that are hypersensitive to UV light was developed and used to isolate a new mutant designated uvh1. UV hypersensitivity in uvh1 was due to a single recessive trait that is probably located on chromosome 3. Although isolated as hypersensitive to an acute exposure to UV-C light, uvh1 was also hypersensitive to UV-B wavelengths, which are present in sunlight that reaches the earth's surface. UV-B damage to both wild-type and uvh1 plants could be significantly reduced by subsequent exposure of UV-irradiated plants to photoreactivating light, showing that photoreactivation of UV-B damage is important for plant viability and that uvh1 plants are not defective in photoreactivation. A new assay for DNA damage, the Dral assay, was developed and used to show that exposure of wild-type and uvh1 plants to a given dose of UV light induces the same amount of damage in chloroplast and nuclear DNA. Thus, uvh1 is not defective in a UV protective mechanism. uvh1 plants were also found to be hypersensitive to ionizing radiation. These results suggest that uvh1 is defective in a repair or tolerance mechanism that normally provides plants with resistance to several types of DNA damage

  16. Isolation of uvh1, an Arabidopsis mutant hypersensitive to ultraviolet light and ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Harlow, G. R.; Jenkins, M. E.; Pittalwala, T. S.; Mount, D. W.

    1994-02-15

    A genetic screen for mutants of Arabidopsis that are hypersensitive to UV light was developed and used to isolate a new mutant designated uvh1. UV hypersensitivity in uvh1 was due to a single recessive trait that is probably located on chromosome 3. Although isolated as hypersensitive to an acute exposure to UV-C light, uvh1 was also hypersensitive to UV-B wavelengths, which are present in sunlight that reaches the earth's surface. UV-B damage to both wild-type and uvh1 plants could be significantly reduced by subsequent exposure of UV-irradiated plants to photoreactivating light, showing that photoreactivation of UV-B damage is important for plant viability and that uvh1 plants are not defective in photoreactivation. A new assay for DNA damage, the Dral assay, was developed and used to show that exposure of wild-type and uvh1 plants to a given dose of UV light induces the same amount of damage in chloroplast and nuclear DNA. Thus, uvh1 is not defective in a UV protective mechanism. uvh1 plants were also found to be hypersensitive to ionizing radiation. These results suggest that uvh1 is defective in a repair or tolerance mechanism that normally provides plants with resistance to several types of DNA damage.

  17. Spirogyra varians mutant generated by high dose gamma-irradiation shows increased antioxidant properties

    International Nuclear Information System (INIS)

    Lee, Hak-Jyung; Yoon, Minchul; Sung, Nak-Yun; Choi, Jong-il

    2012-01-01

    The aim of this study was to evaluate the antioxidant properties of a Spirogyra varians mutant (Mut) produced by gamma irradiation. Methanol extracts were prepared from Spirogyra varians wild-type and Mut plants, and their antioxidant activities and total phenolic content (TPC) were determined. Antioxidant parameters, including the 2-diphenyl-1-picrylhydrazyl radical-scavenging activity and ferric-reducing/antioxidant power, were higher in the Mut extract. Moreover, the TPC level was higher (P<0.05) in the Mut methanol extract. Therefore, these results suggest that gamma irradiation-induced S. varians Mut has superior antioxidant properties. - Highlights: ► The antioxidative properties of a Spirogyra varians mutant produced by gamma-irradiation was investiated. ► The antioxidant activities and total phenolic content levels were higher in mutant strain. ► These results suggest that gamma-irradiation induced algae mutant with superior antioxidant properties.

  18. A comprehensive dataset of genes with a loss-of-function mutant phenotype in Arabidopsis.

    Science.gov (United States)

    Lloyd, Johnny; Meinke, David

    2012-03-01

    Despite the widespread use of Arabidopsis (Arabidopsis thaliana) as a model plant, a curated dataset of Arabidopsis genes with mutant phenotypes remains to be established. A preliminary list published nine years ago in Plant Physiology is outdated, and genome-wide phenotype information remains difficult to obtain. We describe here a comprehensive dataset of 2,400 genes with a loss-of-function mutant phenotype in Arabidopsis. Phenotype descriptions were gathered primarily from manual curation of the scientific literature. Genes were placed into prioritized groups (essential, morphological, cellular-biochemical, and conditional) based on the documented phenotypes of putative knockout alleles. Phenotype classes (e.g. vegetative, reproductive, and timing, for the morphological group) and subsets (e.g. flowering time, senescence, circadian rhythms, and miscellaneous, for the timing class) were also established. Gene identities were classified as confirmed (through molecular complementation or multiple alleles) or not confirmed. Relationships between mutant phenotype and protein function, genetic redundancy, protein connectivity, and subcellular protein localization were explored. A complementary dataset of 401 genes that exhibit a mutant phenotype only when disrupted in combination with a putative paralog was also compiled. The importance of these genes in confirming functional redundancy and enhancing the value of single gene datasets is discussed. With further input and curation from the Arabidopsis community, these datasets should help to address a variety of important biological questions, provide a foundation for exploring the relationship between genotype and phenotype in angiosperms, enhance the utility of Arabidopsis as a reference plant, and facilitate comparative studies with model genetic organisms.

  19. Selection of mutants resistant to black spot disease by chronic irradiation of gamma-rays in Japanese pear 'Osanijisseiki'

    International Nuclear Information System (INIS)

    Masuda, Tetsuo; Yoshioka, Toji; Kotobuki, Kazuo; Sanada, Tetsuro; Inoue, Kosuke; Murata, Kenji; Kitagawa, Kenichi; Tabira, Hiroki; Yoshida, Akira

    1997-01-01

    'Osanijisseiki', a self-compatible, spontaneous bud sport of the Japanese pear 'Nijisseiki' is an excellent cultivar with a smooth skin. However, this cultivar is susceptible to Japanese pear black spot disease caused by Alternaria alternata Japanese pear pathotype. To obtain resistant mutants from 'Osanijisseiki', nursery plants of 'Osanijisseiki' have been irradiated chronically with gamma-rays in the Gamma Field of the Institute of Radiation Breeding, NAR, MAFF, since 1986. Screening tests using AK toxin, a host-specific toxin produced by A. alternata Japanese pear pathotype, were performed form 1988 to 1993. Four branches of young trees planted at a distance of 40 m from the 60 Co source were selected as being resistant mutants in 1991 (IRB 502-13T and IRB 502-14T) and 1993 (IRB 502-17T and IRB 502-18T). Sensitivity of the four resistant mutants to AK-toxin and susceptibility to the pathogen were compared with other of susceptible and resistant cultivars. The results showed that these four mutants possessed intermediate resistance. Furthermore, a mutant, IRB 502-13T, had the same characteristics as the original 'Osanijisseiki', except for the difference in toxin sensitivity. The characteristics of the other mutants, IRB 502 14-T, IRB 502-17T, and IRB 502-18T, care being examined. (author)

  20. A mutant of a mutant of a mutant of a ...: Irradiation of progressive radiation-induced mutants in a mutation-breeding programme with Chrysanthenum morifolium RAM

    International Nuclear Information System (INIS)

    Broertjes, C.; Koene, P.; Veen, J.W.H. van.

    1980-01-01

    Radiation-induced sports in Chrysanthemum morifolium RAM. have been reported for several years. It has become an everyday practice to produce flower-colour mutants from outstanding cross-breeding products, even before they are distributed for the commercial production of cut flowers. One of the most successful and recent examples is that of cv. Horim, of which hundreds of mutants were produced by successive use of radiation-induced mutants in the mutation-breeding programme. Over about 4 years a variety of flower-colour mutants was obtained, not only largely including the outstanding characteristics of the original cultivar but sometimes even with an appreciable improvement in quality and yield. It is expected that the latter types, the Miros group, will soon completely supersede the spontaneous or raditation-induced Horim sports and mutants and take over the leading position of the Horim group in the production of all-year-round (AYR) cut-flowers. (orig.)

  1. The Dynamics of Embolism Refilling in Abscisic Acid (ABA-Deficient Tomato Plants

    Directory of Open Access Journals (Sweden)

    Francesca Secchi

    2012-12-01

    Full Text Available Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant’s refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant’s capacity for refilling.

  2. [Construction of plant expression vectors with PMI gene as selection marker and their utilization in transformation of Salvia miltiorrhiza f. alba].

    Science.gov (United States)

    Tao, Ru; Zhang, You-Can; Fang, Qian; Shi, Ren-Jiu; Li, Yan-Ling; Huang, Lu-Qi; Hao, Gang-Ping

    2014-04-01

    To construct plant expression pCAMBIA1301-PMI by substituting PMI for hygromycin resistance gene in pCAMBIA1301 and obtain transgenic Salvia miltiorrhiza f. alba using PMI-mannose selection system. The 6-phosphomannose isomerase gene (PMI) of Escherichia coli was amplified by PCR. Sequence analysis showed that it shared 100% amino acids identities with the sequences of PMI genes isolates reported in the NCBI. Based on pCAMBIA1305, the plant expression pCAMBIA1305-PMI was constructed successfully by substituting PMI for hygromycin resistance gene in pCAMBIA1305. pCAMBIA1305-PMI was transformed into Agrobacterium tumefaciens LBA4404, and then the leaves of S. miltiorrhiza f. alba were inoculated in LBA4404 with pCAMBIA1305-PMI. Plant expression pCAMBIA1301-PMI was successfully constructed and the leaves of S. miltiorrhiza f. alba inoculated in LBA4404 with pCAMBIA1305-PMI were selected on medium supplemented with a combination of 20 g x L(-1) mannose and 10 g x L(-1) sucrose as a carbon source. The transformation efficiency rate was 23.7%. Genetic transformation was confirmed by PCR, indicating that a new method for obtaining transgenic S. miltiorrhiza f. alba plants was developed using PMI-mannose selection system.

  3. Structural changes of DNA in heavy ion-induced mutants on Arabidopsis

    International Nuclear Information System (INIS)

    Tano, S.; Shikazono, N.; Tanaka, A.; Yokota, Y.; Watanabe, H.

    1997-01-01

    In order to investigate the frequency of structural changes induced by high LET radiation in plants, a comparison was made between DNA fragments amplified by the polymerase chain reaction (PCR) from C ion- and electron-induced Arabidopsis mutants at GL and TT loci. (orig./MG)

  4. Multi-source and ontology-based retrieval engine for maize mutant phenotypes

    Science.gov (United States)

    In the midst of this genomics era, major plant genome databases are collecting massive amounts of heterogeneous information, including sequence data, gene product information, images of mutant phenotypes, etc., as well as textual descriptions of many of these entities. While basic browsing and sear...

  5. Structural changes of DNA in heavy ion-induced mutants on Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Tano, S; Shikazono, N; Tanaka, A; Yokota, Y; Watanabe, H [Japan Atomic Research Research Inst., Watanuki, Takasaki (Japan). Advanced Science Research Center

    1997-09-01

    In order to investigate the frequency of structural changes induced by high LET radiation in plants, a comparison was made between DNA fragments amplified by the polymerase chain reaction (PCR) from C ion- and electron-induced Arabidopsis mutants at GL and TT loci. (orig./MG)

  6. Studies on the application of radiation for genetic transformation in higher plants

    International Nuclear Information System (INIS)

    Lee, Young Il; Song, Hi Sup; Kim, Jae Sung; Shin, In Chul; Lee, Sang Jae; Lee, Ki Woon; Lim, Yong Taek

    1992-02-01

    Present research carried out to develop the radiation application on the mutation research of genetic engineering. Some variants selected in M1 generation derived from the plantlet by the nodal stem culture of three potato cultivars irradiated with gamma rays, and the optimum dosage for mutation induction was revealed the range of 30 - 50 Gy of gamma ray. In the rice anther culture of the plant irradiated with gamma rays at different developmental stage of microspore, the haploidy callus formation rates were much higher in gamma ray irradiated anthers than those of non-irradiated, and the occurrence of a typical pollen was significantly increased up to 47% in the anthers irradiated with 30 Gy of gamma ray compared with 11% of non-irradiated anthers at the stage of pollen mother cell. A lot of variants were selected in rice, soybean, perilla and red pepper irradiated with gamma rays for breeding of earliness, short culm, high yielding and disease resistant mutant. (Author)

  7. Effect of postirradiation storage of seeds on the structural chromosomal mutations in chlorophyll mutants of sunflower (Helianthus annuus L)

    International Nuclear Information System (INIS)

    Sizova, L.I.

    1976-01-01

    The paper comprises the results of the investigation of the storage effect in irradiated seeds on the frequency and the spectrum of structural mutations of chromosomes in normal green plants and in spontaneous chlorophyll mutants of sunflower. The seeds of chlorophyll mutants lutescens and xantha and those of green plants stored for 3 years have been 60 Co gamma-irradiated with doses of 0.5; 1.0; 2.0; 3.0; 5.0 and 10 kr. After the irradiation the seeds have been stored for a year under conventional laboratory conditions. As a result of the post-irradiation storage of seeds for a year the decrease in the proportion of aberrant cells by 3 to 6% at the expense of cells with paired fragments has been observed in green plants. In chlorophyll mutants the storage of seeds after the irradiation results in the 9 to 37% increase of the proportion of aberrant cells at the expense of cells with single and paired bridges and with paired fragments. This gives evidence in favour of the assumption that in spontaneous chlorophyll mutants the processes of the post-irradiation recovery either fail altogether, or proceed at a very low level

  8. New early-ripening wheat mutant lines from the varieties Norman and Avalon

    International Nuclear Information System (INIS)

    Djelepov, K.

    1988-01-01

    The English wheat varieties Norman and Avalon are high-productive, resistant to lodging and to diseases but late-ripening in Bulgaria. They are 10-15 days later than the variety Sadovo 1 and therefore suffer often from dry and hot weather, causing premature ripening and shrivelled seed. Dry seeds from the two varieties were irradiated with 10 and 15 kR 60 Co gamma rays. In M 2 , several earlier ripening forms were selected and they were studied also in M 3 in 1987. In the Table, four early ripening mutant lines and the respective initial varieties are compared. They vary significantly in plant height and grain size. The mutant lines of Norman produce smaller grain but all mutants show a higher hectoliter weight. The mutant lines head and mature 4 to 10 days earlier than the respective initial varieties. Some of them are as productive as the standard and other cultivated varieties. We shall continue testing their productivity and possibilities for their use in the breeding

  9. Recombination-deficient mutants of Bacillus subtilis

    International Nuclear Information System (INIS)

    Sadaie, Y.; Kada, T.

    1976-01-01

    Two mutant strains of Bacillus subtilis Marburg, NIG43 and NIG45, were isolated. They showed high sensitivities to gamma rays, ultraviolet light (uv), and chemicals. Deficiencies in genetic recombination of these two mutants were shown by the experiments on their capacity in transformation, SPO2 transfection, and PBS1 phage transduction, as well as on their radiation and drug sensitivities and their Hcr + capacity for uv-exposed phage M2. Some of these characteristics were compared with those of the known strains possessing the recA1 or recB2 alleles. Mapping studies revealed that the mutation rec-43 of strain NIG43 lies in the region of chromosome replication origin. The order was purA dna-8132 rec-43. Another mutation, rec-45, of strain NIG45 was found to be tightly linked to recA1. The mutation rec-43 reduced mainly the frequency of PBS1 transduction. On the other hand, the mutation rec-45 reduced the frequency of recombination involved both in transformation and PBS1 tranduction. The mutation rec-43 of strain NIG43 is conditional, but rec-45 of strain NIG45 is not. The uv impairment in cellular survival of strain NIG43 was gradually reverted at higher salt or sucrose concentrations, suggesting cellular possession of a mutated gene product whose function is conditional. In contrast to several other recombination-deficient strains, SPO2 lysogens of strains NIG43 and NIG45 were not inducible, indicating involvement of rec-43 + or rec-45 + gene product in the development of SPO2 prophage to a vegetative form. The uv-induced deoxyribonucleic acid degradation in vegetative cells was higher in rec-43 and rec-45 strains

  10. ''Fushi'' - excellent mutant germplasm for peanut improvement

    International Nuclear Information System (INIS)

    Jiang, X.; Zhou, Y.

    1989-01-01

    Full text: The mutant line ''Fushi'' was selected following seed treatment of the variety ''Shi Xuan 64'' in 1960 with 32 P. Many good peanut varieties were developed using ''Fushi'' in cross-breeding (ref. Mutation Breeding Newsletter No. 30 (July 1987) p. 2-3). In the past 10 years, planting areas of these varieties added up to 3,3 million ha in South China, peanut production was increased by more than 500 000 t valued 500 million Yuan. (author)

  11. A Comparative Study of Sample Preparation for Staining and Immunodetection of Plant Cell Walls by Light Microscopy

    Science.gov (United States)

    Verhertbruggen, Yves; Walker, Jesse L.; Guillon, Fabienne; Scheller, Henrik V.

    2017-01-01

    Staining and immunodetection by light microscopy are methods widely used to investigate plant cell walls. The two techniques have been crucial to study the cell wall architecture in planta, its deconstruction by chemicals or cell wall-degrading enzymes. They have been instrumental in detecting the presence of cell types, in deciphering plant cell wall evolution and in characterizing plant mutants and transformants. The success of immunolabeling relies on how plant materials are embedded and sectioned. Agarose coating, wax and resin embedding are, respectively, associated with vibratome, microtome and ultramicrotome sectioning. Here, we have systematically carried out a comparative analysis of these three methods of sample preparation when they are applied for cell wall staining and cell wall immunomicroscopy. In order to help the plant community in understanding and selecting adequate methods of embedding and sectioning for cell wall immunodetection, we review in this article the advantages and limitations of these three methods. Moreover, we offer detailed protocols of embedding for studying plant materials through microscopy. PMID:28900439

  12. Genetic control of some morphological mutants in sunflower [Helianthus annuus L.

    International Nuclear Information System (INIS)

    Nabipour, A.; Sarrafi, A.; Yazdi-Samadi, B.

    2004-01-01

    Inheritance study of induced mutants is an important tool in genetic and breeding programs. Sunflower is one of the most important oil crops for which mutant collection is meager. Seeds of sunflower line AS-613 were irradiated with gamma rays and mutant phenotypes were traced until M4 generation. In M5 generation, the following traits were studied: dwarfing, branching, leaf shape, albinism, rosette, lack of apex and alternative leaves. In most cases, the mutated characters were controlled by a single recessive gene, while in two cases they were controlled by two recessive genes. In M5 progenies, segregation for two albino, one alternative leaves, one dwarfism, 5 branching, one rosette, 2 lacks of apex and 5 leaf shape mutants was recorded. Amongst five cases of branching, one was controlled by two recessive genes, where at least one homozygote recessive locus was necessary for branching. In one case, the lack of apex was controlled by two recessive genes and even only one dominant allele could provoke the normal plant [it

  13. Potential of multiseeded mutant (msd) to boost sorghum grain yield

    Science.gov (United States)

    Seed number per plant is an important determinant of the grain yield in cereal and other crops. We have isolated a class of multiseeded (msd) sorghum (Sorghum bicolor L. Moench) mutants that are capable of producing three times the seed number and twice the seed weight per panicle as compared with t...

  14. Is auxin involved in the induction of genetic instability in barley homeotic double mutants?

    Science.gov (United States)

    Šiukšta, Raimondas; Vaitkūnienė, Virginija; Rančelis, Vytautas

    2018-02-01

    The triggers of genetic instability in barley homeotic double mutants are tweaky spike -type mutations associated with an auxin imbalance in separate spike phytomeres. Barley homeotic tweaky spike;Hooded (tw;Hd) double mutants are characterized by an inherited instability of spike and flower development, which is absent in the single parental constituents. The aim of the present study was to show that the trigger of genetic instability in the double mutants is the tw mutations, which are associated with an auxin imbalance in the developing spikes. Their pleiotropic effects on genes related to spike/flower development may cause the genetic instability of double mutants. The study of four double-mutant groups composed of different mutant alleles showed that the instability arose only if the mutant allele tw was a constituent of the double mutants. Application of auxin inhibitors and 2,4-dichlorophenoxyacetic acid (2,4-D) demonstrated the relationship of the instability of the double mutants and the phenotype of the tw mutants to auxin imbalance. 2,4-D induced phenocopies of the tw mutation in wild-type plants and rescued the phenotypes of three allelic tw mutants. The differential display (dd-PCR) method allowed the identification of several putative candidate genes in tw that may be responsible for the initiation of instability in the double mutants by pleiotropic variations of their expression in the tw mutant associated with auxin imbalance in the developing spikes. The results of the present study linked the genetic instability of homeotic double mutants with an auxin imbalance caused by one of the constituents (tw). The genetic instability of the double mutants in relation to auxin imbalance was studied for the first time. A matrocliny on instability expression was also observed.

  15. The signal peptide-like segment of hpaXm is required for its association to the cell wall in transgenic tobacco plants.

    Science.gov (United States)

    Li, Le; Miao, Weiguo; Liu, Wenbo; Zhang, Shujian

    2017-01-01

    Harpins, encoded by hrp (hypersensitive response and pathogenicity) genes of Gram-negative plant pathogens, are elicitors of hypersensitive response (HR). HpaXm is a novel harpin-like protein described from cotton leaf blight bacteria, Xanthomonas citri subsp. malvacearum-a synonym of X. campestris pv. malvacearum (Smith 1901-1978). A putative signal peptide (1-MNSLNTQIGANSSFL-15) of hpaXm was predicted in the nitroxyl-terminal (N-terminal)by SignalP (SignalP 3.0 server). Here, we explored the function of the N-terminal leader peptide like segment of hpaXm using transgenic tobacco (Nicotiana tabacum cv. Xanthi nc.). Transgenic tobacco lines expressing the full-length hpaXm and the signal peptide-like segment-deleted mutant hpaXmΔLP were developed using transformation mediated by Agrobacterium tumefaciens. The target genes were confirmed integrated into the tobacco genomes and expressed normally. Using immune colloidal-gold detection technique, hpaXm protein was found to be transferred to the cytoplasm, the cell membrane, and organelles such as chloroplasts, mitochondria, and nucleus, as well as the cell wall. However, the deletion mutant hpaXmΔLP expressed in transgenic tobacco was found unable to cross the membrane to reach the cell wall. Additionally, soluble proteins extracted from plants transformed with hpaXm and hpaXmΔLP were bio-active. Defensive micro-HR induced by the transgene expression of hpaXm and hpaXmΔLP were observed on transgenic tobacco leaves. Disease resistance bioassays to tobacco mosaic virus (TMV) showed that tobacco plants transformed with hpaXm and with hpaXmΔLP exhibited enhanced resistance to TMV. In summary, the N-terminal signal peptide-like segment (1-45 bp) in hpaXm sequence is not necessary for transgene expression, bioactivity of hpaXm and resistance to TMV in transgenic tobacco, but is required for the protein to be translocated to the cell wall.

  16. Gamma-radiation Mutagenesis in Genetically Unstable Barley Mutants. Pt. 3. Effects of Aging in Various Genotypes

    International Nuclear Information System (INIS)

    Balchiuniene, L.

    1995-01-01

    Gamma-irradiation effect was tested on the grain material of normal-initial barley c. 'Auksiniai II' and allelic mutants tw 1 and tw 2 . Dependence of the aging effects on genotype was obvious, especially in survival test. Differences were observed even on allelic mutants. These observations are important for the preservation strategy of plant genetical resources. (author). 11 refs., 3 tabs

  17. Constitutive expression of nitrate reductase allows normal growth and development of Nicotiana plumbaginifolia plants.

    Science.gov (United States)

    Vincentz, M; Caboche, M

    1991-01-01

    A nitrate reductase (NR) deficient mutant of Nicotiana plumbaginifolia totally impaired in the production of NR transcript and protein was restored for NR activity by transformation with a chimaeric NR gene. This gene was composed of a full-length tobacco NR cDNA fused to the CaMV 35S promoter and to termination signals from the tobacco NR gene. The transgenic plants we obtained were viable and fertile and expressed from one-fifth to three times the wild-type NR activity in their leaves. The analysis of chimeric NR gene expression in these plants showed, by comparison with wild-type plants, that the regulation of NR gene expression by light, nitrate and circadian rhythm takes place at the transcriptional level. However, unlike nitrate, light was required for the accumulation of NR protein in transgenic plants, suggesting that NR expression is also controlled at the translational and/or post-translational level. Images PMID:2022181

  18. Nutrient Changes and in Vitro Digestibility in Generative Stage of M10-BMR Sorghum Mutant Lines

    Directory of Open Access Journals (Sweden)

    R. Sriagtula

    2017-08-01

    Full Text Available The objective of this research was to investigate the influences of generative stage on crude protein, crude fiber, ash, and crude fat contents as well as in-vitro dry matter and organic matter digestibilities of M-10 BMR sorghum mutant lines. This research was arranged into a randomized block design with 2 factors. The first factor was M-10 BMR sorghum mutant lines (Patir 3.1, Patir 3.2 and Patir 3.7 and the second factor was generative stages (flowering, soft dough and hard dough phase. The observed variables were proximate contents of stem, leaves and panicle of sorghum plant and in-vitro digestibility of whole plant. The results showed that leaves crude protein (CP was more influenced by M-10 BMR sorghum mutant lines. Stems and panicles CP were influenced by the interaction between M-10 BMR sorghum mutant lines and generative stages. Further generative stage reduced stems CP but increased panicles CP. Crude fiber (CF, ash, and ether extract (EE in leaves were not influenced by generative stages. Stems CF was influenced by M-10 BMR sorghum mutant lines and generative stages, while stems EE was more influenced by generative stages. Stems ash content was influenced by the interaction between M-10 BMR sorghum mutant lines and generative stages while panicles ash content was more influenced by generative stages. M-10 BMR sorghum mutant lines and hard dough phase increased in-vitro dry matter and organic matter digestibilities. Based on those findings, it can be concluded that the increased maturity reduces CP and CF contents so it increases in-vitro digestibilities.

  19. Application of generalized Hough transform for detecting sugar beet plant from weed using machine vision method

    Directory of Open Access Journals (Sweden)

    A Bakhshipour Ziaratgahi

    2017-05-01

    Full Text Available Introduction Sugar beet (Beta vulgaris L. as the second most important world’s sugar source after sugarcane is one of the major industrial crops. The presence of weeds in sugar beet fields, especially at early growth stages, results in a substantial decrease in the crop yield. It is very important to efficiently eliminate weeds at early growing stages. The first step of precision weed control is accurate detection of weeds location in the field. This operation can be performed by machine vision techniques. Hough transform is one of the shape feature extraction methods for object tracking in image processing which is basically used to identify lines or other geometrical shapes in an image. Generalized Hough transform (GHT is a modified version of the Hough transform used not only for geometrical forms, but also for detecting any arbitrary shape. This method is based on a pattern matching principle that uses a set of vectors of feature points (usually object edge points to a reference point to construct a pattern. By comparing this pattern with a set pattern, the desired shape is detected. The aim of this study was to identify the sugar beet plant from some common weeds in a field using the GHT. Materials and Methods Images required for this study were taken at the four-leaf stage of sugar beet as the beginning of the critical period of weed control. A shelter was used to avoid direct sunlight and prevent leaf shadows on each other. The obtained images were then introduced to the Image Processing Toolbox of MATLAB programming software for further processing. Green and Red color components were extracted from primary RGB images. In the first step, binary images were obtained by applying the optimal threshold on the G-R images. A comprehensive study of several sugar beet images revealed that there is a unique feature in sugar beet leaves which makes them differentiable from the weeds. The feature observed in all sugar beet plants at the four

  20. Regulation of chloroplast biogenesis: the immutans mutant of Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Rodermel, Steven

    2015-11-16

    The immutans (im) variegation mutant of Arabidopsis is an ideal model to gain insight into factors that control chloroplast biogenesis. im defines the gene for PTOX, a plastoquinol terminal oxidase that participates in control of thylakoid redox. Here, we report that the im defect can be suppressed during the late stages of plant development by gigantea (gi2), which defines the gene for GIGANTEA (GI), a central component of the circadian clock that plays a poorly-understood role in diverse plant developmental processes. imgi2 mutants are late-flowering and display other well-known phenotypes associated with gi2, such as starch accumulation and resistance to oxidative stress. We show that the restoration of chloroplast biogenesis in imgi2 is caused by a developmental-specific de-repression of cytokinin signaling that involves crosstalk with signaling pathways mediated by gibberellin (GA) and SPINDLY (SPY), a GA response inhibitor. Suppression of the plastid defect in imgi2 is likely caused by a relaxation of excitation pressures in developing plastids by factors contributed by gi2, including enhanced rates of photosynthesis and increased resistance to oxidative stress. Interestingly, the suppression phenotype of imgi can be mimicked by crossing im with the starch accumulation mutant, sex1, perhaps because sex1 utilizes pathways similar to gi. We conclude that our studies provide a direct genetic linkage between GIGANTEA and chloroplast biogenesis, and we construct a model of interactions between signaling pathways mediated by gi, GA, SPY, cytokinins, and sex1 that are required for chloroplast biogenesis.

  1. Antibodies with higher bactericidal activity induced by a Neisseria gonorrhoeae Rmp deletion mutant strain.

    Directory of Open Access Journals (Sweden)

    Guocai Li

    Full Text Available Neisseria gonorrhoeae (N. gonorrhoeae outer membrane protein reduction modifiable protein (Rmp has strong immunogenicity. However, anti-Rmp antibodies block rather than preserve the antibacterial effects of protective antibodies, which hampers the development of vaccines for gonococcal infections. We herein constructed an Rmp deletion mutant strain of N. gonorrhoeae by gene homologous recombination. The 261-460 nucleotide residues of Rmp gene amplified from N. gonorrhoeae WHO-A strain were replaced with a kanamycin-resistant Kan gene amplified from pET-28a. The resultant hybridized DNA was transformed into N. gonorrhoeae WHO-A strain. PCR was used to screen the colonies in which wild-type Rmp gene was replaced with a mutant gene fragment. Western blotting revealed that the Rmp deletion mutant strain did not express Rmp protein. Rmp deletion did not alter the morphological and Gram staining properties of the mutant strain that grew slightly more slowly than the wild-type one. Rmp gene mutated stably throughout 25 generations of passage. Antibody-mediated complement-dependent cytotoxicity assay indicated that the antibodies induced by the mutant strain had evidently higher bactericidal activities than those induced by the wild-type strain. Further modification of the Rmp deletion mutant strain is still required in the development of novel live attenuated vaccines for gonorrhea by Opa genes deletion or screening of phenotypic variant strains that do not express Opa proteins.

  2. Microbial transformations of radionuclides released from nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Francis, A.J.

    2007-01-01

    Microorganisms can affect the stability and mobility of the actinides U, Pu, Cm, Am, Np, and the fission products Tc, I, Cs, Sr, released from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been investigated, we have only limited information on the effects of microbial processes. The mechanisms of microbial transformations of the major and minor actinides and the fission products under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed. (author)

  3. Mechanical touch responses of Arabidopsis TCH1-3 mutant roots on inclined hard-agar surface

    Science.gov (United States)

    Zha, Guodong; Wang, Bochu; Liu, Junyu; Yan, Jie; Zhu, Liqing; Yang, Xingyan

    2016-01-01

    The gravity-induced mechanical touch stimulus can affect plant root architecture. Mechanical touch responses of plant roots are an important aspect of plant root growth and development. Previous studies have reported that Arabidopsis TCH1-3 genes are involved in mechano-related events, how-ever, the physiological functions of TCH1-3 genes in Arabidopsis root mechanoresponses remain unclear. In the present study, we applied an inclined hard agar plate method to produce mechanical touch stimulus, and provided evidence that altered mechanical environment could influence root growth. Furthermore, tch1-3 Arabidopsis mutants were investigated on inclined agar surfaces to explore the functions of TCH1-3 genes on Arabidopsis root mechanoresponses. The results showed that two tch2 mutants, cml24-2 and cml24-4, exhibited significantly reduced root length, biased skewing, and decreased density of lateral root. In addition, primary root length and density of lateral root of tch3 (cml12-2) was significantly decreased on inclined agar surfaces. This study indicates that the tch2 and tch3 mutants are hypersensitive to mechanical touch stimulus, and TCH2 (CML24-2 and CML24-4) and TCH3 (CML12-2) genes may participate in the mechanical touch response of Arabidopsis roots.

  4. An early maturing rice mutant released as a variety

    International Nuclear Information System (INIS)

    Azam, M.A.; Imtiaz Uddin, Md.

    2001-01-01

    In the content of food grain production deficiency (about 1.0-1.5 million tons of rice per year according to the Bangladesh Bureau of Statistics, 1998) an induced mutation programme was undertaken in 1985. One moderate early maturing and high yielding rice mutant line (BINA6-84-4-115) has been developed by irradiating F 2 seeds of the cross 'BR4' x 'Iratom 38'. Three treatments viz., 250, 300 and 350 Gy were given to the F 2 seeds. Finally, this line was selected in M 6 generation for advanced yield trial. The line was evaluated in comparative trials with another mutant line BINA6-84-4-163. These two mutant lines had been selected earlier from 300 Gy originated lines. The two check varieties, 'BR 11' and 'BR 22' were also included in the trial, which was conducted in two consecutive T. aman seasons (July to December) during 1994 and 1995 at five locations in Bangladesh. From the results, it was evident that the mutant BINA6-84-4-115 did not differ much with the other mutant lines or check varieties in respect to plant height, number of effective tillers and panicle length but it was 10-18 days earlier than the other 3 entries. It produced a similar yield as the check BR 11 in 1994 and a higher yield than the check BR 11 and BR 22 in 1995. This mutant line gave the highest yield per day among all the entries. In addition to this, the grains are long, fine and possess a high L/B ratio, which are of high commercial value. This line has been released by the National Seed Board of Bangladesh in 1998 as a commercial variety under the name 'BINADHAN-4' for cultivation throughout Bangladesh

  5. Detection of genetic variability in Basmati and non-Basmati rice varieties and their radiation induced mutants through random amplified polymorphic DNA (RAPD)

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, S; Iqbal, N; Arif, M [Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad (Pakistan)

    1998-03-01

    Random Amplified Polymorphic DNA (RAPDs) markers were utilized to detect polymorphism between pure lines and commercially available Basmati rice varieties to assess variation which may be helpful in quality control and varietal identification (Basmati-370 and derived radiation induced mutants), differentiation of mutants and parents, and identification of RAPD markers co-segregating with important agronomic traits including plant height, days to flower and grain quality. Basmati varieties were distinguished from non-Basmati varieties with the help of five diagnostic markers which will be useful for detecting mixing of non-Basmati and Basmati rices, currently a serious marketing problem. Different Basmati cultivars were identified with the help of diagnostic RAPD markers which can be used in quality control as well as for ``fingerprinting`` of cultivars. Different radiation induced mutants were also successfully distinguished from the parents on the basis of variety specific and mutant specific markers which will be useful for varietal identification. In addition to this, other markers were also identified which can differentiate mutants from each other and are being, used for the fingerprinting of different mutants, particularly the dwarf mutants having similar appearance but different parentage. For identification of RAPD markers co-segregating with plant height and days to flower, 50 F{sub 2} plants and four F{sub 3} families were studied from a reciprocal cross made between Kashmir Basmati (tall and early) and Basmati-198 (dwarf and late). Segregating bands were observed within these populations, and indicating the possible use of RAPD markers for tagging gene(s) of agronomic importance in rice. (author). 38 refs, 6 figs, 3 tabs.

  6. Detection of genetic variability in Basmati and non-Basmati rice varieties and their radiation induced mutants through random amplified polymorphic DNA (RAPD)

    International Nuclear Information System (INIS)

    Farooq, S.; Iqbal, N.; Arif, M.

    1998-01-01

    Random Amplified Polymorphic DNA (RAPDs) markers were utilized to detect polymorphism between pure lines and commercially available Basmati rice varieties to assess variation which may be helpful in quality control and varietal identification (Basmati-370 and derived radiation induced mutants), differentiation of mutants and parents, and identification of RAPD markers co-segregating with important agronomic traits including plant height, days to flower and grain quality. Basmati varieties were distinguished from non-Basmati varieties with the help of five diagnostic markers which will be useful for detecting mixing of non-Basmati and Basmati rices, currently a serious marketing problem. Different Basmati cultivars were identified with the help of diagnostic RAPD markers which can be used in quality control as well as for ''fingerprinting'' of cultivars. Different radiation induced mutants were also successfully distinguished from the parents on the basis of variety specific and mutant specific markers which will be useful for varietal identification. In addition to this, other markers were also identified which can differentiate mutants from each other and are being, used for the fingerprinting of different mutants, particularly the dwarf mutants having similar appearance but different parentage. For identification of RAPD markers co-segregating with plant height and days to flower, 50 F 2 plants and four F 3 families were studied from a reciprocal cross made between Kashmir Basmati (tall and early) and Basmati-198 (dwarf and late). Segregating bands were observed within these populations, and indicating the possible use of RAPD markers for tagging gene(s) of agronomic importance in rice. (author)

  7. Susceptibility of the tomato mutant high pigment-2dg (hp-2dg) to Orobanche spp. infection.

    Science.gov (United States)

    López-Ráez, Juan Antonio; Charnikhova, Tatsiana; Mulder, Patrick; Kohlen, Wouter; Bino, Raoul; Levin, Ilan; Bouwmeester, Harro

    2008-08-13

    The consumption of natural products with potential health benefits has been continuously growing, and enhanced pigmentation is of major economic importance in fruits and vegetables. The tomato hp-2 ( dg ) is an important mutant line that has been introgressed into commercial tomato cultivars marketed as lycopene rich tomatoes (LRT) because of their enhanced fruit pigmentation, attributed to higher levels of carotenoids, including lycopene. Strigolactones are signaling compounds that mediate host finding in root parasitic plants and are biosynthetically derived from carotenoids. Considering the high carotenoid content of the hp-2 ( dg ) mutant, we studied its susceptibility to the root parasite Orobanche. In a field experiment, the average number of Orobanche aegyptiaca plants growing on hp-2 ( dg ) was surprisingly significantly reduced compared with its isogenic wild-type counterpart. In vitro assays and LC-MS/MS analysis showed that this reduction was associated with a lower production of strigolactones, which apparently renders the high-carotenoid hp-2 ( dg ) mutant less susceptible to Orobanche.

  8. High linolenic acid mutant in soybean induced by X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Y. [Saga Univ. (Japan); Hossain, A. B.M.M.; Yanagita, T.; Kusaba, S.

    1989-12-15

    Soybean [Glycine max (L.) Merr. cv. Bay] seeds were irradiated with X-rays (25kR) and the M{sub 2} progeny was screened for changes in the fatty acid composition of seed oil. X-ray irradiation remarkably increased the variability of the fatty acid composition in the oil of the Bay cultivar. A mutant in which linolenic acid accounted for 18.4 per cent of the total oil cornpared with 9.4 per cent in the Bay cultivar was identified among 2006 M{sub 2} plants. The M{sub 3} generation of the mutant also showed a linolenic acid content approximately two times higher than that of the original variety.

  9. High linolenic acid mutant in soybean induced by X-ray irradiation

    International Nuclear Information System (INIS)

    Takagi, Y.; Hossain, A.B.M.M.; Yanagita, T.; Kusaba, S.

    1989-01-01

    Soybean [Glycine max (L.) Merr. cv. Bay] seeds were irradiated with X-rays (25kR) and the M 2 progeny was screened for changes in the fatty acid composition of seed oil. X-ray irradiation remarkably increased the variability of the fatty acid composition in the oil of the Bay cultivar. A mutant in which linolenic acid accounted for 18.4 per cent of the total oil cornpared with 9.4 per cent in the Bay cultivar was identified among 2006 M 2 plants. The M 3 generation of the mutant also showed a linolenic acid content approximately two times higher than that of the original variety

  10. Characterization of Boerhavia diffusa L. mutant lines by RAPD and isozyme, selected for agronomically valuable traits

    International Nuclear Information System (INIS)

    Shukla, N.; Sangwan, N.S.; Misra, H.O.; Sangwan, R.S.

    2004-01-01

    Boerhavia diffusa is a medicinally important plant and finds extensive uses in traditional herbal drug preparations. For the development of improved varieties in terms of superior yield and quality of herb/root of B. diffusa, mutation breeding was attempted. Mutants generated by physical and chemical mutagenic treatments were screened for yield and quality parameters of the root/herb up to three consecutive generations. The selected-screened lines generated by physical and chemical mutagenic treatments on two selected genotypes I and II were molecularly analyzed using eight isozymes and eleven RAPD primers producing good amplification. Mutants from BD10 (selected genotype I) were distinct, while, in case of BD22 (selected genotype II), only one mutant BDMu7 was recorded distinct by isozyme analysis. The wild mutant (BDMu16, with maximum height and mouve coloured flower) was distinct in RAPD banding pattern. Isozymes differentiated the mutants from their respective controls, whereas RAPD differentiated the mutants and controls and also distinguished the mutants. The RAPD analysis was found to be better suited than isozymes for detecting genetic differences among controls and their mutants. However, both RAPD and isozyme analyses gave similar patterns of genetic relationships [it

  11. Mutant PIK3CA Induces EMT in a Cell Type Specific Manner.

    Directory of Open Access Journals (Sweden)

    Divya Bhagirath

    Full Text Available Breast cancer is characterized into different molecular subtypes, and each subtype is characterized by differential gene expression that are associated with distinct survival outcomes in patients. PIK3CA mutations are commonly associated with most breast cancer subtypes. More recently PIK3CA mutations have been shown to induce tumor heterogeneity and are associated with activation of EGFR-signaling and reduced relapse free survival in basal subtype of breast cancer. Thus, understanding what determines PIK3CA induced heterogeneity and oncogenesis, is an important area of investigation. In this study, we assessed the effect of mutant PIK3CA together with mutant Ras plus mutant p53 on oncogenic behavior of two distinct stem/progenitor breast cell lines, designated as K5+/K19- and K5+/K19+. Constructs were ectopically overexpressed in K5+/K19- and K5+/K19+ stem/progenitor cells, followed by various in-vitro and in-vivo analyses. Oncogene combination m-Ras/m-p53/m-PIK3CA efficiently transformed both K5+/K19- and K5+/K19+ cell lines in-vitro, as assessed by anchorage-independent soft agar colony formation assay. Significantly, while this oncogene combination induced a complete epithelial-to-mesenchymal transition (EMT in K5+/K19- cell line, mostly epithelial phenotype with minor EMT component was seen in K5+/K19+ cell line. However, both K5+/K19- and K5+/K19+ transformed cells exhibited increased invasion and migration abilities. Analyses of CD44 and CD24 expression showed both cell lines had tumor-initiating CD44+/CD24low cell population, however transformed K5+/K19- cells had more proportion of these cells. Significantly, both cell types exhibited in-vivo tumorigenesis, and maintained their EMT and epithelial nature in-vivo in mice tumors. Notably, while both cell types exhibited increase in tumor-initiating cell population, differential EMT phenotype was observed in these cell lines. These results suggest that EMT is a cell type dependent

  12. A chitinase is required for Xylella fastidiosa colonization of its insect and plant hosts.

    Science.gov (United States)

    Labroussaa, Fabien; Ionescu, Michael; Zeilinger, Adam R; Lindow, Steven E; Almeida, Rodrigo P P

    2017-04-01

    Xylella fastidiosa colonizes the xylem network of host plant species as well as the foregut of its required insect vectors to ensure efficient propagation. Disease management strategies remain inefficient due to a limited comprehension of the mechanisms governing both insect and plant colonization. It was previously shown that X. fastidiosa has a functional chitinase (ChiA), and that chitin likely serves as a carbon source for this bacterium. We expand on that research, showing that a chiA mutant strain is unable to grow on chitin as the sole carbon source. Quantitative PCR assays allowed us to detect bacterial cells in the foregut of vectors after pathogen acquisition; populations of the wild-type and complemented mutant strain were both significantly larger than the chiA mutant strain 10 days, but not 3 days, post acquisition. These results indicate that adhesion of the chiA mutant strain to vectors may not be impaired, but that cell multiplication is limited. The mutant was also affected in its transmission by vectors to plants. In addition, the chiA mutant strain was unable to colonize host plants, suggesting that the enzyme has other substrates associated with plant colonization. Lastly, ChiA requires other X. fastidiosa protein(s) for its in vitro chitinolytic activity. The observation that the chiA mutant strain is not able to colonize plants warrants future attention to be paid to the substrates for this enzyme.

  13. Drastic anthocyanin increase in response to PAP1 overexpression in fls1 knockout mutant confers enhanced osmotic stress tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Lee, Won Je; Jeong, Chan Young; Kwon, Jaeyoung; Van Kien, Vu; Lee, Dongho; Hong, Suk-Whan; Lee, Hojoung

    2016-11-01

    KEY MESSAGE : pap1 - D/fls1ko double mutant plants that produce substantial amounts of anthocyanin show tolerance to abiotic stress. Anthocyanins are flavonoids that are abundant in various plants and have beneficial effects on both plants and humans. Many genes in flavonoid biosynthetic pathways have been identified, including those in the MYB-bHLH-WD40 (MBW) complex. The MYB gene Production of Anthocyanin Pigment 1 (PAP1) plays a particularly important role in anthocyanin accumulation. PAP1 expression in many plant systems strongly increases anthocyanin levels, resulting in a dark purple color in many plant organs. In this study, we generated double mutant plants that harbor fls1ko in the pap1-D background (i.e., pap1-D/fls1ko plants), to examine whether anthocyanins can be further enhanced by blocking flavonol biosynthesis under PAP1 overexpression. We also wanted to examine whether the increased anthocyanin levels contribute to defense against osmotic stresses. The pap1-D/fls1ko mutants accumulated higher anthocyanin levels than pap1-D plants in both control and sucrose-treated conditions. However, flavonoid biosynthesis genes were slightly down-regulated in the pap1-D/fls1ko seedlings as compared to their expression in pap1-D seedlings. We also report the performance of pap1-D/fls1ko seedlings in response to plant osmotic stresses.

  14. Study on the mechanism of wheat mutants resistance to bi-polaris sorokiniana

    International Nuclear Information System (INIS)

    Sun Guangzu; Wang Guangjin; Tang Fenglan; Liu Lijun; Li Zhongjie

    1992-01-01

    The activities and band number of peroxidase (POD), superoxide dismutase (SOD) and phenylalanine aminolyase (PAL) in plant tissue have been studied after treatment with phytotoxin produced from Bi polaris sorokiniana. The results showed that the activity and band number of these enzymes have been changed markedly. The change in degree of activity for mutants was more than that of the parent, and coincident with the ability of resistance to disease. The authors considered that the toxin tolerance ability and inducibility of SOD and POD by toxin might be one of resistance mechanism of wheat mutant against Bipolaris sorokiniana

  15. N-glycan maturation mutants in Lotus japonicus for basic and applied glycoprotein research

    DEFF Research Database (Denmark)

    Pedersen, Carina T.; Loke, Ian; Lorentzen, Andrea

    2017-01-01

    Studies of protein N-glycosylation are important for answering fundamental questions on the diverse functions of glycoproteins in plant growth and development. Here we generated and characterised a comprehensive collection of Lotus japonicusLORE1 insertion mutants, each lacking the activity of one...... in the target glyco-genes. For example, both mass spectrometry and immunoblotting experiments suggest that proteins derived from the α1,3-fucosyltransferase (Lj3fuct) mutant completely lacked α1,3-core fucosylation. Mass spectrometry also suggested that the Lotus japonicus convicilin 2 was one of the main...

  16. Trehalose biosynthesis promotes Pseudomonas aeruginosa pathogenicity in plants.

    Science.gov (United States)

    Djonović, Slavica; Urbach, Jonathan M; Drenkard, Eliana; Bush, Jenifer; Feinbaum, Rhonda; Ausubel, Jonathan L; Traficante, David; Risech, Martina; Kocks, Christine; Fischbach, Michael A; Priebe, Gregory P; Ausubel, Frederick M

    2013-03-01

    Pseudomonas aeruginosa strain PA14 is a multi-host pathogen that infects plants, nematodes, insects, and vertebrates. Many PA14 factors are required for virulence in more than one of these hosts. Noting that plants have a fundamentally different cellular architecture from animals, we sought to identify PA14 factors that are specifically required for plant pathogenesis. We show that synthesis by PA14 of the disaccharide trehalose is required for pathogenesis in Arabidopsis, but not in nematodes, insects, or mice. In-frame deletion of two closely-linked predicted trehalose biosynthetic operons, treYZ and treS, decreased growth in Arabidopsis leaves about 50 fold. Exogenously co-inoculated trehalose, ammonium, or nitrate, but not glucose, sulfate, or phosphate suppressed the phenotype of the double ΔtreYZΔtreS mutant. Exogenous trehalose or ammonium nitrate does not suppress the growth defect of the double ΔtreYZΔtreS mutant by suppressing the plant defense response. Trehalose also does not function intracellularly in P. aeruginosa to ameliorate a variety of stresses, but most likely functions extracellularly, because wild-type PA14 rescued the in vivo growth defect of the ΔtreYZΔtreS in trans. Surprisingly, the growth defect of the double ΔtreYZΔtreS double mutant was suppressed by various Arabidopsis cell wall mutants that affect xyloglucan synthesis, including an xxt1xxt2 double mutant that completely lacks xyloglucan, even though xyloglucan mutants are not more susceptible to pathogens and respond like wild-type plants to immune elicitors. An explanation of our data is that trehalose functions to promote the acquisition of nitrogen-containing nutrients in a process that involves the xyloglucan component of the plant cell wall, thereby allowing P. aeruginosa to replicate in the intercellular spaces in a leaf. This work shows how P. aeruginosa, a multi-host opportunistic pathogen, has repurposed a highly conserved "house-keeping" anabolic pathway (trehalose

  17. Trehalose biosynthesis promotes Pseudomonas aeruginosa pathogenicity in plants.

    Directory of Open Access Journals (Sweden)

    Slavica Djonović

    2013-03-01

    Full Text Available Pseudomonas aeruginosa strain PA14 is a multi-host pathogen that infects plants, nematodes, insects, and vertebrates. Many PA14 factors are required for virulence in more than one of these hosts. Noting that plants have a fundamentally different cellular architecture from animals, we sought to identify PA14 factors that are specifically required for plant pathogenesis. We show that synthesis by PA14 of the disaccharide trehalose is required for pathogenesis in Arabidopsis, but not in nematodes, insects, or mice. In-frame deletion of two closely-linked predicted trehalose biosynthetic operons, treYZ and treS, decreased growth in Arabidopsis leaves about 50 fold. Exogenously co-inoculated trehalose, ammonium, or nitrate, but not glucose, sulfate, or phosphate suppressed the phenotype of the double ΔtreYZΔtreS mutant. Exogenous trehalose or ammonium nitrate does not suppress the growth defect of the double ΔtreYZΔtreS mutant by suppressing the plant defense response. Trehalose also does not function intracellularly in P. aeruginosa to ameliorate a variety of stresses, but most likely functions extracellularly, because wild-type PA14 rescued the in vivo growth defect of the ΔtreYZΔtreS in trans. Surprisingly, the growth defect of the double ΔtreYZΔtreS double mutant was suppressed by various Arabidopsis cell wall mutants that affect xyloglucan synthesis, including an xxt1xxt2 double mutant that completely lacks xyloglucan, even though xyloglucan mutants are not more susceptible to pathogens and respond like wild-type plants to immune elicitors. An explanation of our data is that trehalose functions to promote the acquisition of nitrogen-containing nutrients in a process that involves the xyloglucan component of the plant cell wall, thereby allowing P. aeruginosa to replicate in the intercellular spaces in a leaf. This work shows how P. aeruginosa, a multi-host opportunistic pathogen, has repurposed a highly conserved "house-keeping" anabolic

  18. Seed coat color, weight and eye pattern inheritance in gamma-rays induced cowpea M2-mutant line

    Directory of Open Access Journals (Sweden)

    Reda M. Gaafar

    2016-06-01

    Full Text Available Gamma radiation is a very effective tool for inducing genetic variation in characters of many plants. Black seeds of M2 mutant were obtained after exposure of an Egyptian cowpea cultivar (Kaha 1 to a low dose of gamma rays. Segregation of seed coat color, weight of 100 seeds and seed eye pattern of the black seeds of this mutant line were further examined in this study. Four colors were observed for seed coat in the M3 plants ranging from cream to reddish brown and three eye patterns were distinguished from each other. SDS–PAGE of the seed storage proteins showed 18 protein bands; five of these bands disappeared in the seeds of M3 plants compared to M2 and M0 controls while other 5 protein bands were specifically observed in seeds of M3 plants. PCR analysis using twelve ISSR primers showed 47 polymorphic and 8 unique amplicons. The eight unique amplicons were characteristic of the cream coat color and brown wide eye pattern (M03-G10 while the polymorphic bands were shared by 6 coat-color groups. A PCR fragment of 850 bp was amplified, using primer HB-12, in M3-G04 which showed high-100 seed weight. These results demonstrated the mutagenic effects of gamma rays on seed coat color, weight of 100 seeds and eye pattern of cowpea M3 mutant plants.

  19. Genetic transformation of carnation (Dianthus caryophylus L.).

    Science.gov (United States)

    Nontaswatsri, Chalermsri; Fukai, Seiichi

    2010-01-01

    This chapter describes a rapid and efficient protocol for explant preparation and genetic transformation of carnation. Node explants from greenhouse-grown plants and leaf explants from in vitro plants are infected with Agrobacterium tumefaciens AGL0 harboring pKT3 plasmid, consisting of GUS and NPTII genes. Explant preparation is an important factor to obtain the transformed plants. The GUS-staining area was located only on the cut end of explants and only explants with a cut end close to the connecting area between node and leaf, produced transformed shoots. The cocultivation medium is also an important factor for the successful genetic transformation of carnation node and leaf explants. High genetic transformation efficiency of node and leaf explants cocultured with Agrobacterium tumefaciens was achieved when the explants were cocultivated on a filter paper soaked with water or water and acetosyringone mixture (AS).

  20. PlantSize Offers an Affordable, Non-destructive Method to Measure Plant Size and Color in Vitro

    Directory of Open Access Journals (Sweden)

    Dóra Faragó

    2018-02-01

    Full Text Available Plant size, shape and color are important parameters of plants, which have traditionally been measured by destructive and time-consuming methods. Non-destructive image analysis is an increasingly popular technology to characterize plant development in time. High throughput automatic phenotyping platforms can simultaneously analyze multiple morphological and physiological parameters of hundreds or thousands of plants. Such platforms are, however, expensive and are not affordable for many laboratories. Moreover, determination of basic parameters is sufficient for most studies. Here we describe a non-invasive method, which simultaneously measures basic morphological and physiological parameters of in vitro cultured plants. Changes of plant size, shape and color is monitored by repeated photography with a commercial digital camera using neutral white background. Images are analyzed with the MatLab-based computer application PlantSize, which simultaneously calculates several parameters including rosette size, convex area, convex ratio, chlorophyll and anthocyanin contents of all plants identified on the image. Numerical data are exported in MS Excel-compatible format. Subsequent data processing provides information on growth rates, chlorophyll and anthocyanin contents. Proof-of-concept validation of the imaging technology was demonstrated by revealing small but significant differences between wild type and transgenic Arabidopsis plants overexpressing the HSFA4A transcription factor or the hsfa4a knockout mutant, subjected to different stress conditions. While HSFA4A overexpression was associated with better growth, higher chlorophyll and lower anthocyanin content in saline conditions, the knockout hsfa4a mutant showed hypersensitivity to various stresses. Morphological differences were revealed by comparing rosette size, shape and color of wild type plants with phytochrome B (phyB-9 mutant. While the technology was developed with Arabidopsis plants

  1. Plant Breeding by Using Radiation Mutation

    International Nuclear Information System (INIS)

    Kang, Si Yong; Kim, Dong Sub; Lee, Geung Joo

    2007-06-01

    A mutation breeding is to use physical or chemical mutagens to induce mutagenesis, followed by individual selections with favorable traits. The mutation breeding has many advantages over other breeding methods, which include the usefulness for improving one or two inferior characteristics, applications to broad species with different reproductive systems or to diverse plant materials, native or plant introduction with narrow genetic background, time and cost-effectiveness, and valuable mutant resources for genomic researches. Recent applications of the radiation breeding techniques to developments of flowering plants or food crops with improved functional constituents heightened the public's interests in agriculture and in our genetic resources and seed industries. The goals of this project, therefore, include achieving advances in domestic seed industries and agricultural productivities by developing and using new radiation mutants with favored traits, protecting an intellectual property right of domestic seeds or germplasm, and sharing the valuable mutants and mutated gene information for the genomic and biotech researches that eventually leads to economic benefits

  2. Plant Breeding by Using Radiation Mutation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Si Yong; Kim, Dong Sub; Lee, Geung Joo (and others)

    2007-06-15

    A mutation breeding is to use physical or chemical mutagens to induce mutagenesis, followed by individual selections with favorable traits. The mutation breeding has many advantages over other breeding methods, which include the usefulness for improving one or two inferior characteristics, applications to broad species with different reproductive systems or to diverse plant materials, native or plant introduction with narrow genetic background, time and cost-effectiveness, and valuable mutant resources for genomic researches. Recent applications of the radiation breeding techniques to developments of flowering plants or food crops with improved functional constituents heightened the public's interests in agriculture and in our genetic resources and seed industries. The goals of this project, therefore, include achieving advances in domestic seed industries and agricultural productivities by developing and using new radiation mutants with favored traits, protecting an intellectual property right of domestic seeds or germplasm, and sharing the valuable mutants and mutated gene information for the genomic and biotech researches that eventually leads to economic benefits.

  3. Biochemical responses and ultrastructural changes in ethylene insensitive mutants of Arabidopsis thialiana subjected to bisphenol A exposure.

    Science.gov (United States)

    Ali, Imran; Jan, Mehmood; Wakeel, Abdul; Azizullah, Azizullah; Liu, Bohan; Islam, Faisal; Ali, Abid; Daud, M K; Liu, Yihua; Gan, Yinbo

    2017-10-01

    Bisphenol A (BPA), an important raw material in plastic industry, has become a serious environmental contaminant due to its wide spread use in different products and increasing release into the environment. BPA is known to cause adverse effects in living organisms including plants. Several studies reported that BPA affects growth and development in plants, mainly through oxidative stress. Plants are known to generally cope with stress mainly through hormonal regulation and adaptation, but little is known about the role of plant hormones in plants under BPA stress. The present study was conducted to investigate the role of ethylene in BPA induced oxidative stress in plants using Arabidopsis thaliana as a test plant. The response of ethylene insensitive mutants of Arabidopsis (ein2-1 and etr1-3) to BPA exposure was studied in comparison to the wild type Arabidopsis (WT). In all three genotypes, exposure to BPA adversely affected cellular structures, stomata and light-harvesting pigments. An increase in reactive oxygen species (ROS) lipid peroxidation and other oxidative stress markers indicated that BPA induced toxicity through oxidative stress. However, the overall results revealed that WT Arabidopsis had more pronounced BPA induced damages while ein2-1 and etr1-3 mutants withstood the BPA induced stress more efficiently. The activity of antioxidant enzymes and expression of antioxidants related genes revealed that the antioxidant defense system in both mutants was more efficiently activated than in WT against BPA induced oxidative stress, which further evidenced the involvement of ethylene in regulating BPA induced oxidative stress. It is concluded that ethylene perception and signaling may be involved in BPA induced oxidative stress responses in plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Radiation induced desynaptic mutants in barley

    International Nuclear Information System (INIS)

    Srivastava, H.M.

    1974-01-01

    Spontaneous occurrence of asynapsis and desynapsis has been frequently reported in a number of crop plants (Beadle 1930, 1933; Beasley and Brown 1942; Li et al. 1945; Magoon et al. 1961; Miller 1963) and other angiospermic texa (Calarier 1955; Chennaveraiah and Krisnappa 1968; Ehrenberg 1949; Johnson 1941, 1944; Roy and Jha 1958). However, there are only a few reports of induced asynapsis or desynapsis (Gottschalk and Baquar 1971; Martini and Bozzini 1966). The present paper deals with the morphology and meiotic behavior of gamma-ray induced barley mutants showing high degree of desynapsis resulting in partial to complete sterility. (author)

  5. Development of One mutant line with Improved Quantitative and Qualitative Traits through Induced Mutation

    International Nuclear Information System (INIS)

    Saif, A. A.; Al-kibssi, M; Al-Shamiri, A; Kassem, R

    2008-01-01

    A field experiment was conducted in three consecutive seasons 2005, 2006 and 2007 for evaluating five mutant lines derived from Gemiza-9 variety. Gemiza-9 and Shibam-8 were used as a checks for yellow rust resistance and some agronomic characters. The mutant lines were planted in Al-erra research farm and farmer's field under rainfed condition, in particularly at Shibam and Bani-Mater regions. Results showed that the MS-5 and MS-9 mutant lines were earlier than the others and the checks. They matured on 102 - 105 days compared with 111 - 118 days for the other lines including the original variety and the Shibam-8 variety. These two mutant lines showed not only early maturing but also resistance to yellow rust disease, they scored R20% -R30%, while the all material were medium resistance including the checks. With respect to yield, the MS -5 mutant had a significant high yield (3963 kg/ha) compared with the others including the Gemiza-9 and Shibam-8 variety amounting to 35.5 % and 32.2 % for the two checks respectively. (author)

  6. Agrobacterium-Mediated Transformation of Leaf Base Segments.

    Science.gov (United States)

    Gasparis, Sebastian

    2017-01-01

    Agrobacterium-mediated transformation has become a routine method of genetic engineering of cereals, gradually replacing the biolistic protocols. Simple integration patterns of transgenic loci, decent transformation efficiency, and technical simplicity are the main advantages offered by this method. Here we present a detailed protocol for the production of transgenic oat plants by Agrobacterium-mediated transformation of leaf base segments. The use of leaf explants as target tissues for transformation and in vitro regeneration of transgenic plants may be a good alternative for genotypes which are not susceptible to regeneration from immature or mature embryos. We also describe the biochemical and molecular analysis procedures of the transgenic plants including a GUS histochemical assay, and Southern blot, both of which are optimized for application in oat.

  7. Localisation Of Plant Control And Automation System (A Transformation - My View)

    International Nuclear Information System (INIS)

    Mohd Arif Hamzah; Azhar Shamsudin; Fadil Ismail; Muhamad Nor Atan; Anwar Abdul Rahman

    2013-01-01

    Malaysian Nuclear Agency has more than 5 main facilities in handling processes based on nuclear technology. All these facilities can operate on semi-continuous or fully continuous mode. The facilities discussed in this paper are Mintec-Sinagama, Raymintex, Electron Beam (Alurtron), Gamma Green House and Isotope Production Plant. These facilities have been in operation for 15 to 20 years with the control and automation system imported from overseas such as USA, UK, Canada and Japan. This dependency on the foreign products has resulted in high cost of maintenance and upgrading. Therefore, measures should be implemented to build our own capabilities by transforming the control system from one that is based on foreign technology to one that is based on local technology. (author)

  8. Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4 locus

    International Nuclear Information System (INIS)

    Bruggemann, E.; Handwerger, K.; Essex, C.; Storz, G.

    1996-01-01

    Ionizing radiation is expected to produce mutants with deletions or other chromosomal rearrangements. These mutants are useful for a variety of purposes, such as creating null alleles and cloning genes whose existence is known only from their mutant phenotype; however, only a few mutations generated by ionizing radiation have been characterized at the molecular level in Arabidopsis thaliana. Twenty fast neutron-generated alleles of the Arabidopsis HY4 locus, which encodes a blue light receptor, CRY1, were isolated and characterized. Nine of the mutant alleles displayed normal genetic behavior. The other 11 mutant alleles were poorly transmitted through the male gametophyte and were lethal in homozygous plants. Southern blot analysis demonstrated that alleles of the first group generally contain small or moderate-sized deletions at HY4, while alleles of the second group contain large deletions at this locus. These results demonstrate that fast neutrons can produce a range of deletions at a single locus in Arabidopsis. Many of these deletions would be suitable for cloning by genomic subtraction or representational difference analysis. The results also suggest the presence of an essential locus adjacent to HY4. (author)

  9. Agrobacterium-mediated transformation: state of the art and future prospect

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Great progress has been made in recent years in studies on the mechanism of Agrobacterium-mediated transformation and its application. Many details of the key molecular events within the bacterial cells involved in T-DNA transfer have been elucidated, and it is notable that some plant factors which were elusive before are purified and characterized. Vast kinds of species, which were either recalcitrant to or not included in the host range of Agrobacterium, can now be transformed by this bacterium, and they include the very important cereal species, gymnosperms, yeast and many filamentous fungi. The simple in vivo transformation of tissue in intact plants and the "agrolistic" methods to transform recalcitrant plants are the two novel technical achievements. Combined with other powerful techniques such as bacterial artificial chromosome, very large DNA fragment can be transformed into the plant genome by Agrobacterium. Further studies will elucidate more plant-encoded factors involved in T-DNA transformation and there is a need to develop more powerful Agrobacterium-based transformation systems to meet different needs in basic research and crop improvement practice.

  10. Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105).

    Science.gov (United States)

    Rungin, Siriwan; Indananda, Chantra; Suttiviriya, Pavinee; Kruasuwan, Worarat; Jaemsaeng, Ratchaniwan; Thamchaipenet, Arinthip

    2012-10-01

    An endophytic Streptomyces sp. GMKU 3100 isolated from roots of a Thai jasmine rice plant (Oryza sativa L. cv. KDML105) showed the highest siderophore production on CAS agar while phosphate solubilization and IAA production were not detected. A mutant of Streptomyces sp. GMKU 3100 deficient in just one of the plant growth promoting traits, siderophore production, was generated by inactivation of a desD-like gene encoding a key enzyme controlling the final step of siderophore biosynthesis. Pot culture experiments revealed that rice and mungbean plants inoculated with the wild type gave the best enhancement of plant growth and significantly increased root and shoot biomass and lengths compared with untreated controls and siderophore-deficient mutant treatments. Application of the wild type in the presence or absence of ferric citrate significantly promoted plant growth of both plants. The siderophore-deficient mutant clearly showed the effect of this important trait involved in plant-microbe interaction in enhancement of growth in rice and mungbean plants supplied with sequestered iron. Our results highlight the value of a substantial understanding of the relationship of the plant growth promoting properties of endophytic actinomycetes to the plants. Endophytic actinomycetes, therefore, can be applied as potentially safe and environmentally friendly biofertilizers in agriculture.

  11. Resistance to Phytophthora in mutant lines of currant tomato and in their original forms

    International Nuclear Information System (INIS)

    Khrustaleva, V.V.; Shcherbakov, V.K.

    1987-01-01

    Information on the production of currant tomato mutants is contained in a previous report. Evaluation of fruit resistance against Phytophthora infestans (Mont.) de Bary was carried out with pathotypes T 0 and T 1 . For artificial infection we used mainly a culture of T 1 (isolate 275), supplied by the Byelorussian Scientific Research Institute of Potato, Fruit and Vegetable Growing at Samokhvalovich. As inoculum for T 0 , a local population of the potato pathotype from the village of Shebantsevo, Moscow province was used. The standard variety 'Gruntovyj gribovskij 1180' was used as the control. Green fruits were taken from the first or second raceme of 20 plants. They were inoculated by spraying in plastic cuvettes with moist filter paper. The cuvettes were covered with glass and maintained at temperature of 18-20 deg. C. The results were checked 5, 9 and 12 days after inoculation. Under natural conditions, each of the 20 plants was also evaluated. As result, three lines with increased resistance to Phytophthora were selected from the original wild-type of currant tomato. Induced mutant forms were tested in the same way for resistance to Phytophthora. Data is presented from 4 years study. Of 26 mutant lines studied, we identified seven whose fruit displayed a stable and enhanced resistance to Phytophthora under both laboratory and field conditions. With regard to leaf infection of these lines, positive results were not obtained. There appears to be no direct relationship between resistance to Phytophthora of the fruit and the leaves. The mutant lines are of determinate type with early and medium ripening time. The average fruit weight is 5-33 g; in the case of the original specimen, it is only 0.9-1.7 g. The fruits have a pleasant sour-sweet taste and a thick skin. It is noteworthy that the mutant lines selected on the basis of their suitability for cultivation not only showed the resistance selected from the wild-type, but in a number of cases even turned out to

  12. Evaluation and genetic analysis of semi-dwarf mutants in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Awan, M.A.; Cheema, A.A.; Tahir, G.R.

    1984-01-01

    Four semi-dwarf mutants namely DM16-5-1, DM16-5-2, DM-2 and DM107-4 were derived from the local tall basmati cultivar. The mode of reduction of internode length was studied in DM107-4. The reduction in culm length was due to a corresponding but disproportionate reduction in all the internodes. It was inferred that reduction in internode length contributes more towards reduction in height as compared to the reduction in the total number of internodes. The effect of semi-dwarfism on some yield components (panicle characters) was studied in two semi-dwarf mutants viz. DM16-5-1 and DM107-4 compared to Basmati 370. A marginal reduction in the panicle axis, primary branches per panicle, secondary branches per primary branch per panicle, spikelets borne on secondary branches and total number of spikelets per panicle was observed in DM16-5-1, whereas, a significant reduction of these characters was observed in DM107-4. Evaluation of the semi-dwarf mutants with respect to grain yield and harvest index showed that all the mutants possess high yield potential with higher harvest index values compared to the parent cultivar. Genetic analysis for plant height in 4x4 diallel involving semi-dwarf mutants revealed that mutant DM107-4 carries mainly recessive alleles while mutant DM16-5-1 showed some dominance effects as assessed through the estimates of genetic components of variation and Vr,Wr graph analysis. The semi-dwarf mutants have good potential for use as parents in cross-breeding programmes. (author)

  13. Transformation reactions in TOXSWA : transformation reactions of plant protection products in surface water

    NARCIS (Netherlands)

    Deneer, J.W.; Beltman, W.H.J.; Adriaanse, P.I.

    2010-01-01

    This report aims to give a general description of transformation processes for future use in the TOXSWA model. Hydrolysis, photolysis and biotic transformation are described as distinct processes, employing separate rate constants. Additionally, a way to introduce into TOXSWA the daily variation of

  14. Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signalling from growth defects.

    Science.gov (United States)

    Swain, Swadhin; Roy, Shweta; Shah, Jyoti; Van Wees, Saskia; Pieterse, Corné M; Nandi, Ashis K

    2011-12-01

    Arabidopsis genotypes with a hyperactive salicylic acid-mediated signalling pathway exhibit enhanced disease resistance, which is often coupled with growth and developmental defects, such as dwarfing and spontaneous necrotic lesions on the leaves, resulting in reduced biomass yield. In this article, we report a novel recessive mutant of Arabidopsis, cdd1 (constitutive defence without defect in growth and development1), that exhibits enhanced disease resistance associated with constitutive salicylic acid signalling, but without any observable pleiotropic phenotype. Both NPR1 (NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1)-dependent and NPR1-independent salicylic acid-regulated defence pathways are hyperactivated in cdd1 mutant plants, conferring enhanced resistance against bacterial pathogens. However, a functional NPR1 allele is required for the cdd1-conferred heightened resistance against the oomycete pathogen Hyaloperonospora arabidopsidis. Salicylic acid accumulates at elevated levels in cdd1 and cdd1 npr1 mutant plants and is necessary for cdd1-mediated PR1 expression and disease resistance phenotypes. In addition, we provide data which indicate that the cdd1 mutation negatively regulates the npr1 mutation-induced hyperactivation of ethylene/jasmonic acid signalling. © 2011 The Authors. Molecular Plant Pathology © 2011 BSPP and Blackwell Publishing Ltd.

  15. Evaluation of Mungbean Mutant Lines to Drought Stress and Their Genetic Relationships Using SSR Markers

    Directory of Open Access Journals (Sweden)

    Yuliasti

    2015-12-01

    Full Text Available Development of mungbean cultivarstolerant to drought stress through mutation breeding approach would enable us to anticipate the crop yield-reducing effects of climate changes. The objective of this research was to evaluate the yield performance of mungbean mutant lines that showed tolerance to drought stress, and to analyze their genetic diversity and relationship among mutant lines using SSR markers. The study was conducted during the dry season of 2012 in the Muneng experimental farm, Probolinggo, East Java. The experiment was laid out in a randomized block design with four replications. Five mutant lines and two parental lines as control were tested for evaluation of yield and drought tolerance under twoenvironments of two irrigation systems as treatment. The two environmental conditions consisted of optimal irrigation (at least three times: at planting, flowering and during pod filling and suboptimal irrigation (two times at planting and flowering. To evaluate genetic variation among selected mutant lines and their discrimination from parental lines in molecular level, a cluster analysis was performed using Unweighted Pair Group Method with Arithmetic Mean (UPGMA in the NTSYS software. The results showed that three mutant lines, including PsJ30, PsJ31, PsJ32 produced the highest grain yields of 1.17, 1.01, and 1.04 ton/ha, respectively, compared to the other mutant lines and the parents Gelatik (0.85 ton/ha and Perkutut (0.87 ton/ha as control check. Of those mutant lines, PSJ31 was the most tolerant to drought with sensitivity index value of 0.47. The PSJ31 has now been officially released as a new variety ( 2013, named as Muri which was identified to have high yield and tolerant to drought. Based on 23 SSR markers used for clustering analysis of those 3 selected mutant lines,9SSR markers (MBSS R033; satt137; MBSSR008; MBSSR203; MBSSR013; MBSSR021; MBSSR016; MBSSR136; and DMBSSR013 were successfully identified the three mungbean mutant

  16. Assessment of Genetic diversity in mutant cowpea lines using ...

    African Journals Online (AJOL)

    FKOLADE

    2016-11-09

    Nov 9, 2016 ... DNA extraction. The seeds of the mutants and their parents were planted out in pots in the screen house, and young leaves were harvested from them ... The PCR was done using a modified touch down progam as follows: 94°C for 2 min, 12 cycles of 2 min at 94°C, one min at 65°C. (-0.7°C per cycle) and 1 ...

  17. Mutant matrix metalloproteinase-9 reduces postoperative peritoneal adhesions in rats.

    Science.gov (United States)

    Atta, Hussein; El-Rehany, Mahmoud; Roeb, Elke; Abdel-Ghany, Hend; Ramzy, Maggie; Gaber, Shereen

    2016-02-01

    Postoperative peritoneal adhesions continue to be a major source of morbidity and occasional mortality. Studies have shown that matrix metalloproteinase-9 (MMP-9) levels are decreased postoperatively which may limits matrix degradation and participate in the development of peritoneal adhesions. In this proof-of-principle study, we evaluated the effect of gene therapy with catalytically inactive mutant MMP-9 on postoperative peritoneal adhesions in rats. Adenovirus encoding mutant MMP-9 (Ad-mMMP-9) or saline was instilled in the peritoneal cavity after cecal and parietal peritoneal injury in rats. Expression of mutant MMP-9 transcript was verified by sequencing. Adenovirus E4 gene expression, adhesion scores, MMP-9, tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) and transforming growth factor-β1 (TGF-β1) expression were evaluated at sacrifice one week after treatment. Both mutant MMP-9 transcripts and adenovirus E4 gene were expressed in Ad-mMMP-9 treated adhesions. Adhesions severity decreased significantly (p = 0.036) in the Ad-mMMP-9-treated compared with saline-treated adhesions. Expression of MMP-9 mRNA and protein were elevated (p = 0.001 and p = 0.029, respectively) in the Ad-mMMP-9-treated adhesions compared with saline-treated adhesions. While tPA levels were increased (p = 0.02) in Ad-mMMP-9 treated adhesions compared with saline-treated adhesions, TGF-β1 and PAI-1 levels were decreased (p = 0.017 and p = 0.042, respectively). No difference in mortality were found between groups (p = 0.64). Mutant MMP-9 gene therapy effectively transduced peritoneal adhesions resulting in reduction of severity of primary peritoneal adhesions. Copyright © 2016 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  18. Analysis of drought-tolerant sugar beet (Beta vulgaris L.) mutants induced with gamma radiation using SDS-PAGE and ISSR markers.

    Science.gov (United States)

    Sen, Ayse; Alikamanoglu, Sema

    2012-01-01

    Drought is one of the major environmental stresses which greatly affect the plant growth and productivity. In the present study, various doses (0-75Gy) of gamma rays were applied to investigate the effect of radiation on shoot tip explants. It was observed that the regeneration rates and plant fresh weights decreased significantly with an increase in radiation dose. The optimal irradiation doses for mutation induction were determined at 15 and 20Gy. Afterwards, the induction of somatic mutation in sugar beet (Beta vulgaris L.) was investigated by irradiation of shoot tips with 15 and 20Gy gamma rays. Irradiated shoot tips were sub-cultured and M(1)V(1)-M(1)V(3) generations were obtained. Mutants tolerant to drought stress were selected on MS medium, supplemented with 10 and 20gl(-1) PEG6000. Of the M(1)V(3) plantlets, drought-tolerant mutants were selected. Leaf soluble proteins obtained from the control and drought-tolerant mutants were analyzed by SDS-PAGE. A total of 22 protein bands were determined and 2 of them were observed to be drought-tolerant mutants except the control. Polymorphism was also detected among the control and drought-tolerant mutants by DNA fingerprinting using ISSR markers. A total of 106 PCR fragments were amplified with 19 ISSR primers and 91 of them were polymorphic. The dendrograms were separated into two main clusters. First cluster included M8 mutant plant, which was applied 20Gy gamma radiation and regenerated on selective culture media containing 10gl(-1) PEG6000 concentration, and the second cluster was further divided into five sub-clusters. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Analysis of drought-tolerant sugar beet (Beta vulgaris L.) mutants induced with gamma radiation using SDS-PAGE and ISSR markers

    International Nuclear Information System (INIS)

    Sen, Ayse; Alikamanoglu, Sema

    2012-01-01

    Drought is one of the major environmental stresses which greatly affect the plant growth and productivity. In the present study, various doses (0–75 Gy) of gamma rays were applied to investigate the effect of radiation on shoot tip explants. It was observed that the regeneration rates and plant fresh weights decreased significantly with an increase in radiation dose. The optimal irradiation doses for mutation induction were determined at 15 and 20 Gy. Afterwards, the induction of somatic mutation in sugar beet (Beta vulgaris L.) was investigated by irradiation of shoot tips with 15 and 20 Gy gamma rays. Irradiated shoot tips were sub-cultured and M 1 V 1 –M 1 V 3 generations were obtained. Mutants tolerant to drought stress were selected on MS medium, supplemented with 10 and 20 gl −1 PEG6000. Of the M 1 V 3 plantlets, drought-tolerant mutants were selected. Leaf soluble proteins obtained from the control and drought-tolerant mutants were analyzed by SDS-PAGE. A total of 22 protein bands were determined and 2 of them were observed to be drought-tolerant mutants except the control. Polymorphism was also detected among the control and drought-tolerant mutants by DNA fingerprinting using ISSR markers. A total of 106 PCR fragments were amplified with 19 ISSR primers and 91 of them were polymorphic. The dendrograms were separated into two main clusters. First cluster included M8 mutant plant, which was applied 20 Gy gamma radiation and regenerated on selective culture media containing 10 g l −1 PEG6000 concentration, and the second cluster was further divided into five sub-clusters.

  20. Analysis of drought-tolerant sugar beet (Beta vulgaris L.) mutants induced with gamma radiation using SDS-PAGE and ISSR markers

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ayse, E-mail: senayse@istanbul.edu.tr [Istanbul University, Faculty of Science, Department of Biology, 34459 Vezneciler, Istanbul (Turkey); Alikamanoglu, Sema [Istanbul University, Faculty of Science, Department of Biology, 34459 Vezneciler, Istanbul (Turkey)

    2012-10-15

    Drought is one of the major environmental stresses which greatly affect the plant growth and productivity. In the present study, various doses (0-75 Gy) of gamma rays were applied to investigate the effect of radiation on shoot tip explants. It was observed that the regeneration rates and plant fresh weights decreased significantly with an increase in radiation dose. The optimal irradiation doses for mutation induction were determined at 15 and 20 Gy. Afterwards, the induction of somatic mutation in sugar beet (Beta vulgaris L.) was investigated by irradiation of shoot tips with 15 and 20 Gy gamma rays. Irradiated shoot tips were sub-cultured and M{sub 1}V{sub 1}-M{sub 1}V{sub 3} generations were obtained. Mutants tolerant to drought stress were selected on MS medium, supplemented with 10 and 20 gl{sup -1} PEG6000. Of the M{sub 1}V{sub 3} plantlets, drought-tolerant mutants were selected. Leaf soluble proteins obtained from the control and drought-tolerant mutants were analyzed by SDS-PAGE. A total of 22 protein bands were determined and 2 of them were observed to be drought-tolerant mutants except the control. Polymorphism was also detected among the control and drought-tolerant mutants by DNA fingerprinting using ISSR markers. A total of 106 PCR fragments were amplified with 19 ISSR primers and 91 of them were polymorphic. The dendrograms were separated into two main clusters. First cluster included M8 mutant plant, which was applied 20 Gy gamma radiation and regenerated on selective culture media containing 10 g l{sup -1} PEG6000 concentration, and the second cluster was further divided into five sub-clusters.

  1. Multiple RNA processing defects and impaired chloroplast function in plants deficient in the organellar protein-only RNase P enzyme.

    Directory of Open Access Journals (Sweden)

    Wenbin Zhou

    Full Text Available Transfer RNA (tRNA precursors undergo endoribonucleolytic processing of their 5' and 3' ends. 5' cleavage of the precursor transcript is performed by ribonuclease P (RNase P. While in most organisms RNase P is a ribonucleoprotein that harbors a catalytically active RNA component, human mitochondria and the chloroplasts (plastids and mitochondria of seed plants possess protein-only RNase P enzymes (PRORPs. The plant organellar PRORP (PRORP1 has been characterized to some extent in vitro and by transient gene silencing, but the molecular, phenotypic and physiological consequences of its down-regulation in stable transgenic plants have not been assessed. Here we have addressed the function of the dually targeted organellar PRORP enzyme in vivo by generating stably transformed Arabidopsis plants in which expression of the PRORP1 gene was suppressed by RNA interference (RNAi. PRORP1 knock-down lines show defects in photosynthesis, while mitochondrial respiration is not appreciably affected. In both plastids and mitochondria, the effects of PRORP1 knock-down on the processing of individual tRNA species are highly variable. The drastic reduction in the levels of mature plastid tRNA-Phe(GAA and tRNA-Arg(ACG suggests that these two tRNA species limit plastid gene expression in the PRORP1 mutants and, hence, are causally responsible for the mutant phenotype.

  2. Transforming the organization - a systems approach: One nuclear power plant's journey

    International Nuclear Information System (INIS)

    Ashbridge, G.A.

    2002-01-01

    continuous improvement recommendations designed to build upon the existing change management strategy. The implementation of these recommendations can help the plant sustain the changes introduced through a major transformation initiative implemented in 1998. (author)

  3. Transforming the organization - a systems approach: One nuclear power plant's journey

    Energy Technology Data Exchange (ETDEWEB)

    Ashbridge, G A [DTE Energy, Detroit, MI (United States)

    2002-07-01

    continuous improvement recommendations designed to build upon the existing change management strategy. The implementation of these recommendations can help the plant sustain the changes introduced through a major transformation initiative implemented in 1998. (author)

  4. Role of RpoS in virulence and stress tolerance of the plant pathogen Erwinia carotovora subsp. carotovora.

    Science.gov (United States)

    Andersson, R A; Kõiv, V; Norman-Setterblad, C; Pirhonen, M

    1999-12-01

    The plant-pathogenic bacterium Erwinia carotovora subsp. carotovora causes plant disease mainly through a number of extracellular plant-cell-wall-degrading enzymes. In this study, the ability of an rpoS mutant of the Er. carotovora subsp. carotovora strain SCC3193 to infect plants and withstand environmental stress was characterized. This mutant was found to be sensitive to osmotic and oxidative stresses in vitro and to be deficient in glycogen accumulation. The production of extracellular enzymes in vitro was similar in the mutant and in the wild-type strains. However, the rpoS mutant caused more severe symptoms than the wild-type strain on tobacco plants and also produced more extracellular enzymes in planta, but did not grow to higher cell density in planta compared to the wild-type strain. When tested on plants with reduced catalase activities, which show higher levels of reactive oxygen species, the rpoS mutant was found to cause lower symptom levels and to have impaired growth. In addition, the mutant was unable to compete with the wild-type strain in planta and in vitro. These results suggest that a functional rpoS gene is needed mainly for survival in a competitive environment and during stress conditions, and not for effective infection of plants.

  5. Genetic variability and inter-character associations in the mutants of Indian mustard

    International Nuclear Information System (INIS)

    Labana, K.S.; Chaurasia, B.D.; Singh, Balwant

    1980-01-01

    To study the genetic variability and the inter-character associations in Indian mustard [Brassica juncea (Linn.)Czern. and Coss. subsp. juncea Linn.], 104 radiation-induced mutants (including 'RLM 198') and 'RL 18' were grown during winter season of 1976-77 at the experimental farm of the Punjab Agricultural University. Analysis of variance revealed significant differences between the mutant genotypes for all the characters under study except for the primary branch number and siliqua number of main shoot, which were non-significant. High estimates of phenotypic coefficients of variation (pcv) and genetic coefficients of variation (gcv) were observed for secondary branch number, seed yield/plant, main shoot length and seed number/siliqua. In general, pcv estimates were higher than gcv estimates. The high estimates of both heritability and genetic advance were recorded in similar order for the plant height, seed number/siliqua, main shoot length and seed yield, in which the genetic progress could be achieved through mass selection. Seed yield was positively correlated with the primary branch number, the secondary branch number and the siliqua number of main shoot and negatively with the plant height. Shorter plant height w;.th more number of primary and secondary branches and more siliquae on main shoot were found to be good selection criteria for isolating high-yielding strains. (auth.)

  6. Identification, cloning and characterization of sis7 and sis10 sugar-insensitive mutants of Arabidopsis

    Directory of Open Access Journals (Sweden)

    Biddle Kelly D

    2008-10-01

    Full Text Available Abstract Background The levels of soluble sugars, such as glucose and sucrose, help regulate many plant metabolic, physiological and developmental processes. Genetic screens are helping identify some of the loci involved in plant sugar response and reveal extensive cross-talk between sugar and phytohormone response pathways. Results A forward genetic screen was performed to identify mutants with increased resistance to the inhibitory effects of high levels of exogenous sugars on early Arabidopsis seedling development. The positional cloning and characterization of two of these sugar insensitive (sis mutants, both of which are also involved in abscisic acid (ABA biosynthesis or response, are reported. Plants carrying mutations in SIS7/NCED3/STO1 or SIS10/ABI3 are resistant to the inhibitory effects of high levels of exogenous Glc and Suc. Quantitative RT-PCR analyses indicate transcriptional upregulation of ABA biosynthesis genes by high concentrations of Glc in wild-type germinating seeds. Gene expression profiling revealed that a significant number of genes that are expressed at lower levels in germinating sis7-1/nced3-4/sto1-4 seeds than in wild-type seeds are implicated in auxin biosynthesis or transport, suggesting cross-talk between ABA and auxin response pathways. The degree of sugar insensitivity of different sis10/abi3 mutant seedlings shows a strong positive correlation with their level of ABA insensitivity during seed germination. Conclusion Mutations in the SIS7/NCED3/STO1 gene, which is primarily required for ABA biosynthesis under drought conditions, confer a sugar-insensitive phenotype, indicating that a constitutive role in ABA biosynthesis is not necessary to confer sugar insensitivity. Findings presented here clearly demonstrate that mutations in ABI3 can confer a sugar-insensitive phenotype and help explain previous, mixed reports on this topic by showing that ABA and sugar insensitivity exhibit a strong positive correlation in

  7. Novel mutations in β-tubulin gene in Trichoderma harzianum mutants resistant to methyl benzimidazol-2-yl carbamate.

    Science.gov (United States)

    Li, M; Zhang, H Y; Liang, B

    2013-01-01

    Twelve-low resistant (LR) mutants of Trichoderma harzianum with the capability of grow fast at 0.8 μg/mL methyl benzimidazol-2-yl carbamate (MBC) were obtained using UV mutagenesis. MR and HR mutants which could grow fast at 10 and 100 μg/mL MBC, respectively, were isolated by step-up selection protocols in which UV-treated mutants were induced and mycelial sector screening was made in plates with growth medium. Subsequently, β-tubulin genes of 14 mutants were cloned to describe-the molecular lesion likely to be responsible-for MBC resistance. Comparison of the β-tubulin sequences of the mutant and sensitive strains of T. harzianum revealed 2 new MBC-binding sites differed from those in other plant pathogens. A single mutation at-amino acid 168, having Phe (TTC) instead of Ser (TCC)', was demonstrated for the HR mutant; a double mutation in amino acid 13 resulting in the substitution of Gly (GGC) by Val (GTG) was observed in β-tubulin gene of MR mutant. On the other hand, no substitutions were identified in the β-tubulin gene and its 5'-flanking regions in 12 LR mutants of T. harzianum.

  8. Cloning a T-DNA-Linked Phosphate Gene that mediates Salt Tolerance on Mutant of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Njoroge, N.C; Tremblay, L.; Lefebvre, D.D.

    2006-01-01

    T-DNA insertionally mutagenized seeds of Arabidopsis thaliana were used to unravel genetic mechanisms underlying salt tolerance in plants. Over a period of two weeks, kanamycin homozygous (KK) seeds of the mutant NN143 attain germination levels of 65% and 77% on 175mM Nacl and 300mM mannitol respectively. Under these conditions of osmotic stress, the wild type seeds were incapable of germination. The mutant was also capable of germination on a medium containing 2μM abscisic acid (ABA). After two weeks on 2μM ABA, it attained 100% germination and the wild type did not germinate. The ABA level in the mutant was 40% higher than the wild type. Segregation analysis indicated that salt tolerance in the mutant is T-DNA linked. Genetic analysis of the F1 and F2 generations indicated that the salt tolerance trait in the mutant is dominant. The putative salt tolerance gene of mutant NN143 was cloned by plasmid rescue and sequence data indicated involvement of a protein phosphatase. The possible mechanism underlying salt tolerance in the mutant is discussed.(author)

  9. Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage

    International Nuclear Information System (INIS)

    Landry, L.G.; Last, R.L.; Chapple, C.C.S.

    1995-01-01

    We have assessed ultraviolet-B (UV-B)-induced injury in wild-type Arabidopsis thaliana and two mutants with altered aromatic secondary product biosynthesis. Arabidopsis mutants defective in the ability to synthesize UV-B-absorbing compounds (flavonoids in transparent testa 5 [tt5] and sinapate esters in ferulic acid hydroxylase 1 [fah 1]) are more sensitive to UV-B than is the wild-type Landsberg erecta. Despite its ability to accumulate UV-absorptive flavonoid compounds, the ferulic acid hydroxylase mutant fah1 exhibits more physiological injury (growth inhibition and foliar lesions) than either wild type or tt5. The extreme UV-B sensitivity of fah1 demonstrates the importance of hydroxycinnamate esters as UV-B protectants. Consistent with the whole-plant response, the highest levels of lipid and protein oxidation products were seen in fah1. Ascorbate peroxidase enzyme activity was also increased in the leaves of UV-B-treated plants in a dose- and genotype-dependent manner. These results demonstrate that, in A. thaliana, hydryoxycinnamates are more effective UV-B protectants than flavonoids. The data also indicate that A. thaliana responds to UV-B as an oxidative stress, and sunscreen compounds reduce the oxidative damage caused by UV-B. 36 refs., 6 figs

  10. Mutant heterosis in rice

    International Nuclear Information System (INIS)

    1987-01-01

    In the variety TKM6 a high yielding semidwarf mutant has been induced. This TKM6 mutant was used in test crosses with a number of other varieties and mutants to examine the extent of heterosis of dwarfs in rice and to select superior crosses. An excerpt of the published data is given. It appears from the backcross of the mutant with its original variety, that an increase in number of productive tillers occurs in the hybrid, leading to a striking grain yield increase, while the semi-dwarf culm length (the main mutant character) reverts to the normal phenotype. In the cross with IR8 on the other hand, there is only a minimal increase in tiller number but a substantial increase in TGW leading to more than 30% yield increase over the better parent

  11. Reduced starch granule number per chloroplast in the dpe2/phs1 mutant is dependent on initiation of starch degradation.

    Science.gov (United States)

    Malinova, Irina; Fettke, Joerg

    2017-01-01

    An Arabidopsis double knock-out mutant lacking cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) revealed a dwarf-growth phenotype, reduced starch content, an uneven distribution of starch within the plant rosette, and a reduced number of starch granules per chloroplast under standard growth conditions. In contrast, the wild type contained 5-7 starch granules per chloroplast. Mature and old leaves of the double mutant were essentially starch free and showed plastidial disintegration. Several analyses revealed that the number of starch granules per chloroplast was affected by the dark phase. So far, it was unclear if it was the dark phase per se or starch degradation in the dark that was connected to the observed decrease in the number of starch granules per chloroplast. Therefore, in the background of the double mutant dpe2/phs1, a triple mutant was generated lacking the initial starch degrading enzyme glucan, water dikinase (GWD). The triple mutant showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to wild type. However, starch granule morphology was only slightly affected by the lack of GWD as in the triple mutant and, like in dpe2/phs1, more spherical starch granules were observed. The characterized triple mutant was discussed in the context of the generation of starch granules and the formation of starch granule morphology.

  12. Traits and meiosis in mutant of impatiens balsamina induced by space treatment

    International Nuclear Information System (INIS)

    Tang Zesheng; Yang Jun; Zhao Yan; Yuan Haiyun

    2004-01-01

    A mutant of Impatiens balsamina was obtained after space induction, and its traits and meiosis were investigated. Characters such as color and form of the mutant expressed great variation. Observation of meiosis showed that most of pollen mother cells were normal in meiosis phase I, except the disproportion of chromosomal segregation, lagging chromosome and dispersal chromosome in anaphase I. Most pollen mother cells developed into microspores tetrad after meiosis, but paraspores also appeared. The number of chromosome in microspore varied from 1 to 21, even more than 30. The shape and size of the microspores fluctuated apparently, and the size of the microspores was in positive correlation to chromosome number. When staining with iodic solution, most of the pollens showed sterility, which was in consistence with the low setting percentage of the mutant plant. It was thought that space induction caused the variation of size, fertility and the abnormal meiosis

  13. Analysis of Stomatal Patterning in Selected Mutants of MAPK Pathways

    KAUST Repository

    Felemban, Abrar

    2016-05-01

    Stomata are cellular valves in plants that play an essential role in the regulation of gas exchange and are distributed in the epidermis of aerial organs. In Arabidopsis thaliana, stomatal production and development are coordinated by the mitogen-activated protein kinase (MAPK) signalling pathway, which modulates a variety of other processes, including cell proliferation, regulation of cytokinesis, programed cell death, and response to abiotic and biotic stress. The environment also plays a role in stomatal development, by influencing the frequency at which stomata develop in leaves. This thesis presents an analysis of stomatal development in Arabidopsis mutants in two MAPK pathways: MEKK1-MKK1/MKK2-MPK4, and MAP3K17/18-MKK3. Obtained results demonstrate the effect of stress conditions on stomatal development and specify the involvement of analysed MAPK in stomatal patterning. First, both analysed pathways modulate stomatal patterning in Arabidopsis cotyledons. Second, plant growth-promoting bacteria tested enhance stomatal density and affect guard cell morphology. Third, the sucrose or mannitol treatment increases defects in stomatal patterning. Finally, salt stress or high temperature can suppress stomatal defects in mutants of the MEKK1-MKK1/MKK2-MPK4 pathway.

  14. Epstein-Barr virus (EBV) recombinants: use of positive selection markers to rescue mutants in EBV-negative B-lymphoma cells.

    OpenAIRE

    Wang, F; Marchini, A; Kieff, E

    1991-01-01

    The objective of these experiments was to develop strategies for creation and identification of recombinant mutant Epstein-Barr viruses (EBV). EBV recombinant molecular genetics has been limited to mutations within a short DNA segment deleted from a nontransforming EBV and an underlying strategy which relies on growth transformation of primary B lymphocytes for identification of recombinants. Thus, mutations outside the deletion or mutations which affect transformation cannot be easily recove...

  15. A double-mutant collection targeting MAP kinase related genes in Arabidopsis for studying genetic interactions.

    Science.gov (United States)

    Su, Shih-Heng; Krysan, Patrick J

    2016-12-01

    Mitogen-activated protein kinase cascades are conserved in all eukaryotes. In Arabidopsis thaliana there are approximately 80 genes encoding MAP kinase kinase kinases (MAP3K), 10 genes encoding MAP kinase kinases (MAP2K), and 20 genes encoding MAP kinases (MAPK). Reverse genetic analysis has failed to reveal abnormal phenotypes for a majority of these genes. One strategy for uncovering gene function when single-mutant lines do not produce an informative phenotype is to perform a systematic genetic interaction screen whereby double-mutants are created from a large library of single-mutant lines. Here we describe a new collection of 275 double-mutant lines derived from a library of single-mutants targeting genes related to MAP kinase signaling. To facilitate this study, we developed a high-throughput double-mutant generating pipeline using a system for growing Arabidopsis seedlings in 96-well plates. A quantitative root growth assay was used to screen for evidence of genetic interactions in this double-mutant collection. Our screen revealed four genetic interactions, all of which caused synthetic enhancement of the root growth defects observed in a MAP kinase 4 (MPK4) single-mutant line. Seeds for this double-mutant collection are publicly available through the Arabidopsis Biological Resource Center. Scientists interested in diverse biological processes can now screen this double-mutant collection under a wide range of growth conditions in order to search for additional genetic interactions that may provide new insights into MAP kinase signaling. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  16. Recombinant lines for less-spininess in steroid-bearing Solanum viarum using induced mutants as parents

    International Nuclear Information System (INIS)

    Krishnan, R.; Nanda Kumar, D.; Subhas Chander, M.

    1988-01-01

    In the domestication of the wild, spinous and steroid-bearing Solanum viarum (syn. S. khasianum var. chatterjeeanum) induced mutations play a major role. The development of Glaxo and BARC mutants catalysed commercial cultivation of this species for its berries containing solasodine, used in steroid industries. The commercially more popular Glaxo mutant population consists predominantly of plants that are totally free of spines in aerial parts except lamina where few straight spines develop. The BARC mutant still possesses spines on aerial parts including the persistent calyx. However, the laminary spines of the BARC mutant are curved and vestigial. Comparative studies on morphology, growth behaviour and agronomic characters of the two mutants, their wild progenitor and their hybrid progenies showed that the three types differ only for spine character. In F 2 generation of a cross involving the Glaxo and BARC mutants, a double mutant recombinant was recovered. The recombinant is devoid of spines in aerial parts like its Glaxo mutant parent, but possesses laminary curved vestigial spines like the BARC parent. The spine characters of the recombinant are inherited double recessive. Three advanced lines of this recombinant type (IIHR 2n - 1,2 and 3) were tested in replicated trials 1985 and 1986. They showed parity in berry yield and solasodine content with the Glaxo mutant and three promising lines evolved elsewhere viz. 'RRL (Bhuhaneswar) Y-14', 'RRL (Jorhat)' and 'Pusa'. The results indicate gainful use of induced mutants in hybridization leading to development of superior less-spiny lines of steroid bearing Solanum viarum

  17. Genetic Analysis and Molecular Mapping of a Novel Chlorophyll-Deficit Mutant Gene in Rice

    Directory of Open Access Journals (Sweden)

    Xiao-qun HUANG

    2008-03-01

    Full Text Available A rice etiolation mutant 824ys featured with chlorophyll deficiency was identified from a normal green rice variety 824B. It showed whole green-yellow plant from the seedling stage, reduced number of tillers and longer growth duration. The contents of chlorophyll, chlorophyll a, chlorophyll b and net photosynthetic rate in leaves of the mutant obviously decreased, as well as the number of spikelets per panicle, seed setting rate and 1000-grain weight compared with its wild-type parent. Genetic analyses on F1 and F2 generations of 824ys crossed with three normal green varieties showed that the chlorophyll-deficit mutant character was controlled by a pair of recessive nuclear gene. Genetic mapping of the mutant gene was conducted by using microsatellite markers and F2 mapping population of 495R/824ys, and the mutant gene of 824ys was mapped on the short arm of rice chromosome 3. The genetic distances from the target gene to the markers RM218, RM282 and RM6959 were 25.6 cM, 5.2 cM and 21.8 cM, respectively. It was considered to be a new chlorophyll-deficit mutant gene and tentatively named as chl11(t.

  18. DNA binding properties of dioxin receptors in wild-type and mutant mouse hepatoma cells

    International Nuclear Information System (INIS)

    Cuthill, S.; Poellinger, L.

    1988-01-01

    The current model of action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) entails stimulation of target gene transcription via the formation of dioxin-receptor complexes and subsequent accumulation of the complexes within the cell nucleus. Here, the authors have analyzed the DNA binding properties of the dioxin receptor in wild-type mouse hepatoma (Hepa 1c1c7) cells and a class of nonresponsive mutant cells which fail to accumulate dioxin-receptor complexes within the nucleus in vivo. In vitro, both the wild-type and mutant [ 3 H]dioxin-receptor complexes exhibited low affinity for DNA-cellulose (5-8% and around 4% retention, respectively) in the absence of prior biochemical manipulations. However, following chromatography on heparin-Sepharose, the wild-type but not the mutant dioxin receptor was transformed to a species with an increased affinity for DNA (40-50% retention on DNA-cellulose). The gross molecular structure of the mutant, non DNA binding dioxin receptor did not appear to be altered as compared to that of the wild-type receptor. These results imply that the primary deficiency in the mutant dioxin receptor form may reside at the DNA binding level and that, in analogy to steroid hormone receptors, DNA binding of the receptor may be an essential step in the regulation of target gene transcription by dioxin

  19. Characterization of a Thermo-Inducible Chlorophyll-Deficient Mutant in Barley

    Directory of Open Access Journals (Sweden)

    Rong Wang

    2017-11-01

    Full Text Available Leaf color is an important trait for not only controlling crop yield but also monitoring plant status under temperature stress. In this study, a thermo-inducible chlorophyll-deficient mutant, named V-V-Y, was identified from a gamma-radiated population of the barley variety Vlamingh. The leaves of the mutant were green under normal growing temperature but turned yellowish under high temperature in the glasshouse experiment. The ratio of chlorophyll a and chlorophyll b in the mutant declined much faster in the first 7–9 days under heat treatment. The leaves of V-V-Y turned yellowish but took longer to senesce under heat stress in the field experiment. Genetic analysis indicated that a single nuclear gene controlled the mutant trait. The mutant gene (vvy was mapped to the long arm of chromosome 4H between SNP markers 1_0269 and 1_1531 with a genetic distance of 2.2 cM and a physical interval of 9.85 Mb. A QTL for grain yield was mapped to the same interval and explained 10.4% of the yield variation with a LOD score of 4. This QTL is coincident with the vvy gene interval that is responsible for the thermo-inducible chlorophyll-deficient trait. Fine mapping, based on the barley reference genome sequence, further narrowed the vvy gene to a physical interval of 0.428 Mb with 11 annotated genes. This is the first report of fine mapping a thermo-inducible chlorophyll-deficient gene in barley.

  20. Modernization of the Electric Power Systems (transformers, rods and switches) in the Laguna Verde Nuclear Power Plant (Mexico)

    International Nuclear Information System (INIS)

    Gonzalez Solarzano, J. J.; Gabaldon Martin, M. A.; Pallisa Nunez, J.; Florez Ordeonez, A.; Fernandez Corbeira, A.; Prieto Diez, I.

    2010-01-01

    Description of the changes made in the Electric Power Systems as a part of the power increase project in the Laguna Verde Nuclear Power Plant (Mexico). The main electrical changes to make, besides the turbo group, are the main generation transformers, the isolated rods and the generation switch.