WorldWideScience

Sample records for mutant mouse strains

  1. Temperature-Sensitive Mutants of Mouse Hepatitis Virus Strain A59: Isolation, Characterization and Neuropathogenic Properties.

    NARCIS (Netherlands)

    M.J.M. Koolen (Marck); A.D.M.E. Osterhaus (Albert); G. van Steenis (Bert); M.C. Horzinek; B.A.M. van der Zeijst (Ben)

    1983-01-01

    textabstractTwenty 5-fluorouracil-induced temperature-sensitive (ts) mutants of mouse hepatitis virus strain A59 were isolated from 1284 virus clones. Mutants were preselected on the basis of their inability to induce syncytia in infected cells at the restrictive temperature (40 degrees) vs the

  2. Establishment and characterization of a hypocatalasemic mouse cell strain

    International Nuclear Information System (INIS)

    Utsumi, Hiroshi; Tano, Keizo; Hashimoto, Mitsumasa W.; Kodama, Seiji; Watanabe, Hiromitsu

    1998-01-01

    Contact-inhibited catalase-deficient fibroblast cell strain has been established from the homozygous hypocatalasemic C3H/Cs b mutant mouse. This cell strain has low level of catalase enzyme activity and has normal level of enzyme activities of both glutathione peroxidase and superoxide dismutase. Catalase-deficient C3H/Cs b mutant cell strain is markedly more sensitive to the toxicity of hydrogen peroxide compared to wild-type C3H/Cs a cell strain. In addition, mutant cell strain is sensitive to X-rays and near-UV compared to wild-type cell strain, but shows the same sensitivities to topoisomerase II inhibitors, adriamycin and 4'-(9-acridinylamino) methanesulfon-m-anisidide (m-AMSA), and the DNA cross-linking agents, cis-diamminedichloroplatinum (II) (cis-Pt) and trans-diamminedichloroplatinum (II) (trans-Pt). These cell strains will be of use in the study of the roles which catalase plays in the intracellular prevention of DNA damage induced by oxidative stress. (author)

  3. The impact of mouse passaging of Mycobacterium tuberculosis strains prior to virulence testing in the mouse and guinea pig aerosol models.

    Directory of Open Access Journals (Sweden)

    Paul J Converse

    2010-04-01

    Full Text Available It has been hypothesized that the virulence of lab-passaged Mycobacterium tuberculosis and recombinant M. tuberculosis mutants might be reduced due to multiple in vitro passages, and that virulence might be augmented by passage of these strains through mice before quantitative virulence testing in the mouse or guinea pig aerosol models.By testing three M. tuberculosis H37Rv samples, one deletion mutant, and one recent clinical isolate for survival by the quantitative organ CFU counting method in mouse or guinea pig aerosol or intravenous infection models, we could discern no increase in bacterial fitness as a result of passaging of M. tuberculosis strains in mice prior to quantitative virulence testing in two animal models. Surface lipid expression as assessed by neutral red staining and thin-layer chromatography for PDIM analysis also failed to identify virulence correlates.These results indicate that animal passaging of M. tuberculosis strains prior to quantitative virulence testing in mouse or guinea pig models does not enhance or restore potency to strains that may have lost virulence due to in vitro passaging. It is critical to verify virulence of parental strains before genetic manipulations are undertaken and comparisons are made.

  4. Identification of 17 hearing impaired mouse strains in the TMGC ENU-mutagenesis screen

    Energy Technology Data Exchange (ETDEWEB)

    Kermany, Mohammad [St. Jude Children' s Research Hospital; Parker, Lisan [St. Jude Children' s Research Hospital; Guo, Yun-Kai [St. Jude Children' s Research Hospital; Miller, Darla R [ORNL; Swanson, Douglas J [ORNL; Yoo, Tai-June [Neuroscience Institute, Memphis, TN; Goldowitz, Daniel [University of Tennessee Health Science Center, Memphis; Zuo, Jian [St. Jude Children' s Research Hospital

    2006-01-01

    The Tennessee Mouse Genome Consortium (TMGC) employed an N-ethyl-N-nitrosourea (ENU)-mutagenesis scheme to identify mouse recessive mutants with hearing phenotypes. We employed auditory brainstem responses (ABR) to click and 8, 16, and 32 kHz stimuli and screened 285 pedigrees (1819 mice of 8-11 weeks old in various mixed genetic backgrounds) each bred to carry a homozygous ENU-induced mutation. To define mutant pedigrees, we measured P12 mice per pedigree in P2 generations and used a criterion where the mean ABR threshold per pedigree was two standard deviations above the mean of all offspring from the same parental strain. We thus identified 17 mutant pedigrees (6%), all exhibiting hearing loss at high frequencies (P16 kHz) with an average threshold elevation of 30-35 dB SPL. Interestingly, four mutants showed sex-biased hearing loss and six mutants displayed wide range frequency hearing loss. Temporal bone histology revealed that six of the first nine mutants displayed cochlear morphological defects: degeneration of spiral ganglia, spiral ligament fibrocytes or inner hair cells (but not outer hair cells) mostly in basal turns. In contrast to other ENU-mutagenesis auditory screens, our screen identified high-frequency, mild and sex-biased hearing defects. Further characterization of these 17 mouse models will advance our understanding of presbycusis and noise-induced hearing loss in humans.

  5. Characterization of mitomycin-C-sensitive mouse lymphoma L5178Y cell mutants

    International Nuclear Information System (INIS)

    Inaba, Hiroko; Shiomi, Naoko; Shiomi, Tadahiro; Sato, Koki; Yoshida, Michihiro.

    1985-01-01

    Twenty-six mutants showing high sensitivity to mytomicin-C (MMC) were isolated from mouse lymphoma L5178Y cells by a replica-plating technique. Twenty-five of the mutants were 5 - 10 times more sensitive to MMC than were parental cells, and showed normal sensitivity to U.V. light and x-rays. From a complementation analysis, 5 mutants (MC s ) isolated from independently mutagenized cell populations were classified into two groups. These mutants possessed recessive character for MMC-sensitivity and there were at least two genes involved in the MMC-sensitivity. As for DNA-damaging factors, such as photoadducts of 8-methoxypsoralen (8-MOP) and 3-carbethoxysoralen (3-CPs), MC s mutants showed higher sensitivity to photoadducts of 8-MOP than to (3-CPs). MC s mutants were also highly sensitive to a DNA cross-linking agent, cisplatin. Characterization of the sensitivity of mouse MC s mutants was analogous to that of Fanconi's anemia (FA)-derived cells. Low concentrations (10 ng/ml) of MMC induced chromosome aberration in a high incidence in mouse MC s cells, as well as in FA cells. The frequency of MMC-induced chromosome aberrations was normal in hybrid cells between normal human diploid somatic cells and mouse mutants and between FA cells and mouse wild cells, and hereditary deficiency became normal by hybrization. (Namekawa, K.)

  6. Revealing differences in metabolic flux distributions between a mutant strain and its parent strain Gluconacetobacter xylinus CGMCC 2955.

    Directory of Open Access Journals (Sweden)

    Cheng Zhong

    Full Text Available A better understanding of metabolic fluxes is important for manipulating microbial metabolism toward desired end products, or away from undesirable by-products. A mutant strain, Gluconacetobacter xylinus AX2-16, was obtained by combined chemical mutation of the parent strain (G. xylinus CGMCC 2955 using DEC (diethyl sulfate and LiCl. The highest bacterial cellulose production for this mutant was obtained at about 11.75 g/L, which was an increase of 62% compared with that by the parent strain. In contrast, gluconic acid (the main byproduct concentration was only 5.71 g/L for mutant strain, which was 55.7% lower than that of parent strain. Metabolic flux analysis indicated that 40.1% of the carbon source was transformed to bacterial cellulose in mutant strain, compared with 24.2% for parent strain. Only 32.7% and 4.0% of the carbon source were converted into gluconic acid and acetic acid in mutant strain, compared with 58.5% and 9.5% of that in parent strain. In addition, a higher flux of tricarboxylic acid (TCA cycle was obtained in mutant strain (57.0% compared with parent strain (17.0%. It was also indicated from the flux analysis that more ATP was produced in mutant strain from pentose phosphate pathway (PPP and TCA cycle. The enzymatic activity of succinate dehydrogenase (SDH, which is one of the key enzymes in TCA cycle, was 1.65-fold higher in mutant strain than that in parent strain at the end of culture. It was further validated by the measurement of ATPase that 3.53-6.41 fold higher enzymatic activity was obtained from mutant strain compared with parent strain.

  7. Inactivation of carbenicillin by some radioresistant mutant strains

    International Nuclear Information System (INIS)

    Zahiera, T.S.; Mahmoud, M.I.; Bashandy, A.A.

    1990-01-01

    Sensitivity test of five bacterial species to carbenicillin was performed microbiologically. The bacterial species were previously isolated from high level radiation environment. All the studied species could either highly decrease the antibiotic activity or even inactivate it completely. Detailed study of the inactivation of carbenicillin by the radioresistant mutant strains B. Laterosporus, B. firmus and M. roseus was performed, in the present study. Using high performace liquid chromatography technique. The gram-positive m. roseus mutant strain seemed to be the most active mutant in degrading the antibiotic. The left over of the antibiotic attained a value of 9% of the original amount after 14 day incubation of the antibiotic with this mutant strain, while the value of the left over reached 36% and 32% after the same period of incubation with the mutants B. laterosporus and B. firmus respectively. In the case of bacillus species, the degradation of the antibiotic started at the same moment when it was added to the bacterial cultures. This fact may indicate that the inactivation of the studied antibiotic by these bacillus species was due to extracellular enzymes extracted rapidly in the surrounding medium. In the case of M. roseus the inactivation process started later. after the addition of the antibiotic to the mutant culture

  8. Probiotic features of Lactobacillus plantarum mutant strains.

    Science.gov (United States)

    Bove, Pasquale; Gallone, Anna; Russo, Pasquale; Capozzi, Vittorio; Albenzio, Marzia; Spano, Giuseppe; Fiocco, Daniela

    2012-10-01

    In this study, the probiotic potential of Lactobacillus plantarum wild-type and derivative mutant strains was investigated. Bacterial survival was evaluated in an in vitro system, simulating the transit along the human oro-gastro-intestinal tract. Interaction with human gut epithelial cells was studied by assessing bacterial adhesive ability to Caco-2 cells and induction of genes involved in innate immunity. L. plantarum strains were resistant to the combined stress at the various steps of the simulated gastrointestinal tract. Major decreases in the viability of L. plantarum cells were observed mainly under drastic acidic conditions (pH ≤ 2.0) of the gastric compartment. Abiotic stresses associated to small intestine poorly affected bacterial viability. All the bacterial strains significantly adhered to Caco-2 cells, with the ΔctsR mutant strain exhibiting the highest adhesion. Induction of immune-related genes resulted higher upon incubation with heat-inactivated bacteria rather than with live ones. For specific genes, a differential transcriptional pattern was observed upon stimulation with different L. plantarum strains, evidencing a possible role of the knocked out bacterial genes in the modulation of host cell response. In particular, cells from Δhsp18.55 and ΔftsH mutants strongly triggered immune defence genes. Our study highlights the relevance of microbial genetic background in host-probiotic interaction and might contribute to identify candidate bacterial genes and molecules involved in probiosis.

  9. Penicillin production by mutant strains of penicillium chrysogenum

    International Nuclear Information System (INIS)

    Tawfik, Z.S.; Ashour, M.S.; Shihab, A.

    1986-01-01

    The mutagenic agent 8-rays was used to initiate the penicillium chrysogenum isolated from local spices. After irradiation, colonies invariably differing from the parent strain in their morphological and cultural characteristics were tested for antibiotic production on fermentation agar medium. Twenty two isolates were found to be penicillin producing mutant strains. Mutant strain M 24 forming small colonies with white conidia was found to be a high yielding penicillin producer (9550 i.u/ml). All of the 22 isolates obtained lost their ability to produce the antibiotic after 11 months storage at 4 0 with subsequent subculturing

  10. Characterization of Brucella abortus mutant strain Δ22915, a potential vaccine candidate.

    Science.gov (United States)

    Bao, Yanqing; Tian, Mingxing; Li, Peng; Liu, Jiameng; Ding, Chan; Yu, Shengqing

    2017-04-04

    Brucellosis, caused by Brucella spp., is an important zoonosis worldwide. Vaccination is an effective strategy for protection against Brucella infection in livestock in developing countries and in wildlife in developed countries. However, current vaccine strains including S19 and RB51 are pathogenic to humans and pregnant animals, limiting their use. In this study, we constructed the Brucella abortus (B. abortus) S2308 mutant strain Δ22915, in which the putative lytic transglycosylase gene BAB_RS22915 was deleted. The biological properties of mutant strain Δ22915 were characterized and protection of mice against virulent S2308 challenge was evaluated. The mutant strain Δ22915 showed reduced survival within RAW264.7 cells and survival in vivo in mice. In addition, the mutant strain Δ22915 failed to escape fusion with lysosomes within host cells, and caused no observable pathological damage. RNA-seq analysis indicated that four genes associated with amino acid/nucleotide transport and metabolism were significantly upregulated in mutant strain Δ22915. Furthermore, inoculation of ∆22915 at 10 5 colony forming units induced effective host immune responses and long-term protection of BALB/c mice. Therefore, mutant strain ∆22915 could be used as a novel vaccine candidate in the future to protect animals against B. abortus infection.

  11. Benomyl-resistant mutant strain of Trichoderma sp. with increased mycoparasitic activity.

    Science.gov (United States)

    Olejníková, P; Ondrusová, Z; Krystofová, S; Hudecová, D

    2010-01-01

    Application of UV radiation to the strain Trichoderma sp. T-bt (isolated from lignite) resulted in the T-brm mutant which was resistant to the systemic fungicide benomyl. The tub2 gene sequence in the T-brm mutant differed from the parent as well as the collection strain (replacing tyrosine with histidine in the TUB2 protein). Under in vitro conditions this mutant exhibited a higher mycoparasitic activity toward phytopathogenic fungi.

  12. Increased riboflavin production from activated bleaching earth by a mutant strain of Ashbya gossypii.

    Science.gov (United States)

    Tajima, Satoshi; Itoh, Yoko; Sugimoto, Takashi; Kato, Tatsuya; Park, Enoch Y

    2009-10-01

    The production of riboflavin from vegetable oil was increased using a mutant strain of Ashbya gossypii. This mutant was generated by treating the wild-type strain with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Riboflavin production was 10-fold higher in the mutant compared to the wild-type strain. The specific intracellular catalase activity after 3 d of culture was 6-fold higher in the mutant than in the wild-type strain. For the mutant, riboflavin production in the presence of 40 mM hydrogen peroxide was 16% less than that in the absence of hydrogen peroxide, whereas it was 56% less for the wild-type strain. The isocitrate lyase (ICL) activity of the mutant was 0.26 mU/mg of protein during the active riboflavin production phase, which was 2.6-fold higher than the wild-type strain. These data indicate that the mutant utilizes the carbon flux from the TCA cycle to the glyoxylate cycle more efficiently than the wild-type strain, resulting in enhanced riboflavin production. This novel mutant has the potential to be of use for industrial-scale riboflavin production from waste-activated bleaching earth (ABE), thereby transforming a useless material into a valuable bioproduct.

  13. Mutation induction in a mouse lymphoma cell mutant sensitive to 4-nitroquinoline 1-oxide and ultraviolet radiation

    International Nuclear Information System (INIS)

    Sato, K.; Hieda, N.

    1980-01-01

    The mutant mouse lymphoma cell Q31, which is sensitive to 4-nitroquinoline 1-oxide and ultraviolet radiation (UV), was compared with the parental L5178Y cell for the effect of caffeine and mutation induction after UV irradiation. Caffeine potentiated the lethal effect of UV in both cell strains to a similar extent, indicating that the defective process in Q31 cells was caffeine-insensitive. UV-induced mutation to 6-thioguanine resistance was determined in L5178Y and Q31 cells. The maximal yield of mutants was obtained 7 days post-irradiation in L5178Y cells and 14 days in Q31 cells for higher UV doses. It appears that a much longer time is required for the mutant cells than for the parental cells for full expression of the resistance phenotype even at equitoxic UV doses. A substantially higher frequency in induced mutations was observed in Q31 cells than in L5178Y cells at a given dose of UV. A plot of induced mutation frequency as a function of logarithm of surviving fraction again indicates hypermutability of Q31 cells as compared with the parental strain. In contrast, X-rays induced a similar frequency of mutations to 6-thioguanine resistance in L5178Y and Q31 cells. (orig.)

  14. Characteristics of the repair - deficient mutants 1435 plague microbe strain

    International Nuclear Information System (INIS)

    Temiralieva, G.A.

    1977-01-01

    Repair-deficient mutants 1435 A uvr - hcr - , 1435-17 uvr - hcr + and 1435-35 lon have been obtained from 1435 plague microbe strain, isolated from a large gerbil living in the Central Asian desert region. The mutants have the same cultural-morphological and enzymatic characteristics, the same need in growth factors and similar virulence determinants as the original strain, but they do not cause death of the experimental animals

  15. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations.

    Science.gov (United States)

    Fuchs, Helmut; Sabrautzki, Sibylle; Przemeck, Gerhard K H; Leuchtenberger, Stefanie; Lorenz-Depiereux, Bettina; Becker, Lore; Rathkolb, Birgit; Horsch, Marion; Garrett, Lillian; Östereicher, Manuela A; Hans, Wolfgang; Abe, Koichiro; Sagawa, Nobuho; Rozman, Jan; Vargas-Panesso, Ingrid L; Sandholzer, Michael; Lisse, Thomas S; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Calzada-Wack, Julia; Ehrhard, Nicole; Elvert, Ralf; Gau, Christine; Hölter, Sabine M; Micklich, Katja; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Racz, Ildiko; Stoeger, Claudia; Vernaleken, Alexandra; Michel, Dian; Diener, Susanne; Wieland, Thomas; Adamski, Jerzy; Bekeredjian, Raffi; Busch, Dirk H; Favor, John; Graw, Jochen; Klingenspor, Martin; Lengger, Christoph; Maier, Holger; Neff, Frauke; Ollert, Markus; Stoeger, Tobias; Yildirim, Ali Önder; Strom, Tim M; Zimmer, Andreas; Wolf, Eckhard; Wurst, Wolfgang; Klopstock, Thomas; Beckers, Johannes; Gailus-Durner, Valerie; Hrabé de Angelis, Martin

    2016-12-07

    The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein) family consists of three independent members, Scube1-3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3 N294K/N294K ), which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC). Scube3 N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB), associated with the chromosomal region of human SCUBE3 In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3 N294K/N294K mice. The Scube3 N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function. Copyright © 2016 Fuchs et al.

  16. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations

    Directory of Open Access Journals (Sweden)

    Helmut Fuchs

    2016-12-01

    Full Text Available The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein family consists of three independent members, Scube1–3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3N294K/N294K, which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC. Scube3N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB, associated with the chromosomal region of human SCUBE3. In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3N294K/N294K mice. The Scube3N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function.

  17. Antibodies with higher bactericidal activity induced by a Neisseria gonorrhoeae Rmp deletion mutant strain.

    Directory of Open Access Journals (Sweden)

    Guocai Li

    Full Text Available Neisseria gonorrhoeae (N. gonorrhoeae outer membrane protein reduction modifiable protein (Rmp has strong immunogenicity. However, anti-Rmp antibodies block rather than preserve the antibacterial effects of protective antibodies, which hampers the development of vaccines for gonococcal infections. We herein constructed an Rmp deletion mutant strain of N. gonorrhoeae by gene homologous recombination. The 261-460 nucleotide residues of Rmp gene amplified from N. gonorrhoeae WHO-A strain were replaced with a kanamycin-resistant Kan gene amplified from pET-28a. The resultant hybridized DNA was transformed into N. gonorrhoeae WHO-A strain. PCR was used to screen the colonies in which wild-type Rmp gene was replaced with a mutant gene fragment. Western blotting revealed that the Rmp deletion mutant strain did not express Rmp protein. Rmp deletion did not alter the morphological and Gram staining properties of the mutant strain that grew slightly more slowly than the wild-type one. Rmp gene mutated stably throughout 25 generations of passage. Antibody-mediated complement-dependent cytotoxicity assay indicated that the antibodies induced by the mutant strain had evidently higher bactericidal activities than those induced by the wild-type strain. Further modification of the Rmp deletion mutant strain is still required in the development of novel live attenuated vaccines for gonorrhea by Opa genes deletion or screening of phenotypic variant strains that do not express Opa proteins.

  18. Purkinje Cell Compartmentation in the Cerebellum of the Lysosomal Acid Phosphatase 2 Mutant Mouse (Nax - Naked-Ataxia Mutant Mouse)

    Science.gov (United States)

    Bailey, Karen; Rahimi Balaei, Maryam; Mannan, Ashraf; Del Bigio, Marc R.; Marzban, Hassan

    2014-01-01

    The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation. PMID:24722417

  19. Strain preservation of experimental animals: vitrification of two-cell stage embryos for multiple mouse strains.

    Science.gov (United States)

    Eto, Tomoo; Takahashi, Riichi; Kamisako, Tsutomu

    2015-04-01

    Strain preservation of experimental animals is crucial for experimental reproducibility. Maintaining complete animal strains, however, is costly and there is a risk for genetic mutations as well as complete loss due to disasters or illness. Therefore, the development of effective vitrification techniques for cryopreservation of multiple experimental animal strains is important. We examined whether a vitrification method using cryoprotectant solutions, P10 and PEPeS, is suitable for preservation of multiple inbred and outbred mouse strains. First, we investigated whether our vitrification method using cryoprotectant solutions was suitable for two-cell stage mouse embryos. In vitro development of embryos exposed to the cryoprotectant solutions was similar to that of fresh controls. Further, the survival rate of the vitrified embryos was extremely high (98.1%). Next, we collected and vitrified two-cell stage embryos of 14 mouse strains. The average number of embryos obtained from one female was 7.3-33.3. The survival rate of vitrified embryos ranged from 92.8% to 99.1%, with no significant differences among mouse strains. In vivo development did not differ significantly between fresh controls and vitrified embryos of each strain. For strain preservation using cryopreserved embryos, two offspring for inbred lines and one offspring for outbred lines must be produced from two-cell stage embryos collected from one female. The expected number of surviving fetuses obtained from embryos collected from one female of either the inbred or outbred strains ranged from 2.9 to 19.5. The findings of the present study indicated that this vitrification method is suitable for strain preservation of multiple mouse strains. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Locus specificity in the mutability of mouse lymphoma strain LY-S

    International Nuclear Information System (INIS)

    Evans, H.H.; Mencl, J.; Horng, M.F.

    1985-01-01

    Mouse lymphoma L5178Y strains, LY-R and LY-S, are closely related but differ in their sensitivity to the lethal effects of radiation and various chemicals. Strain LY-S was originally isolated in 1961 following a spontaneous change in the sensitivity of cultured LY-R cells to ionizing radiation. The authors previously reported that, although strain LY-S is more sensitive to the lethal effects of ionizing radiation and alkylating agents than strain LY-R, it is markedly less mutable than strain LY-R at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus. The isolated sublines of strains LY-R and LY-S which are heterozygous at the thymidine kinase (TK) locus. The LY-S TK+/- heterozygote, like its TK+/+ parent, is more sensitive to the lethal effects of ionizing radiation and alkylating agents and less mutable at the HGPRT locus by these agents than the LY-R TK+/- heterozygote. However, the LY-S heterozygote is 100 times more mutable by these agents at the TK locus than at the HGRT locus. In contrast to LY-R, the majority of the spontaneous and induced LY-S TK-/- mutants form small colonies in the presence of trifluorothymidine, indicating that in the LY-S heterozygote, the inactivation of the TK gene is accompanied by damage to, or rearrangement of neighboring genes

  1. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects

    NARCIS (Netherlands)

    Korstanje, Ron; Desai, Jigar; Lazar, Gloria; King, Benjamin; Rollins, Jarod; Spurr, Melissa; Joseph, Jamie; Kadambi, Sindhuja; Li, Yang; Cherry, Allison; Matteson, Paul G.; Paigen, Beverly; Millonig, James H.

    Korstanje R, Desai J, Lazar G, King B, Rollins J, Spurr M, Joseph J, Kadambi S, Li Y, Cherry A, Matteson PG, Paigen B, Millonig JH. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects. Physiol Genomics 35:

  2. Studies on cytological, physiological and genetic characteristics in somatic mutant strains of Sugi (Cryptomeria japonica D. Don)

    International Nuclear Information System (INIS)

    Maeta, T.; Somegou, M.; Nakahira, K.; Miyazaki, Y.; Kondo, T.

    1982-01-01

    From microscopic observation of the pollen of induced mutant strains in Sugi (Cryptomeria japonica D. Don), it was found that there were large differences in pollen fertility among the mutant strains, and that it deviated year to year from the mother plants. The large differences in frequency of sterile pollen among mutant strains depended on the genetic characteristics of each mutant strain. Higher frequencies of sterile pollen were observed at the terminal part of branchlets in some mutant strains, and this was considered to be induced by the lateness of flower-bud formation at low temperature conditions in late summer. Delayed formation and gibberellic acid treatment applied for flower induction resulted in low fertility and abnormality of pollen in mutant strains. Chromosome aberration in mutant strains was caused either by gamma irradiation or by some mutational events that responded to environmental conditions. In the former case, aberration might have been maintained for a long period through vegetative propagation. Some of the irregularities were due to mitotic cell division, because cells with micronuclei at the pacytene stage in pollen mother cells and with fragments at MI were observed. Somatic mutability of Kuma-sugi mutants after re-irradiation was investigated. From waxless mutants morphological somatic mutations, which have fat or stout stems and thick and short needles, were frequently produced, whereas from morphological mutants the lowest somatic mutation frequency was induced. In some mutant strains higher rooting ability than the mother plants was found, and the possibility of character improvement was pointed out. (author)

  3. Mutant strain of C. acetobutylicum and process for making butanol

    Science.gov (United States)

    Jain, Mahendra K.; Beacom, Daniel; Datta, Rathin

    1993-01-01

    A biologically pure asporogenic mutant of Clostridium acetobutylicum is produced by growing sporogenic C. acetobutylicum ATCC 4259 and treating the parent strain with ethane methane sulfonate. The mutant which as been designated C. acetobutylicum ATCC 55025 is useful in an improved ABE fermentation process, and produces high concentrations of butanol and total solvents.

  4. Enhanced mucosal delivery of antigen with cell wall mutants of lactic acid bacteria.

    Science.gov (United States)

    Grangette, Corinne; Müller-Alouf, Heide; Hols, Pascal; Goudercourt, Denise; Delcour, Jean; Turneer, Mireille; Mercenier, Annick

    2004-05-01

    The potential of recombinant lactic acid bacteria (LAB) to deliver heterologous antigens to the immune system and to induce protective immunity has been best demonstrated by using the C subunit of tetanus toxin (TTFC) as a model antigen. Two types of LAB carriers have mainly been used, Lactobacillus plantarum and Lactococcus lactis, which differ substantially in their abilities to resist passage through the stomach and to persist in the mouse gastrointestinal tract. Here we analyzed the effect of a deficiency in alanine racemase, an enzyme that participates in cell wall synthesis, in each of these bacterial carriers. Recombinant wild-type and mutant strains of L. plantarum NCIMB8826 and L. lactis MG1363 producing TTFC intracellularly were constructed and used in mouse immunization experiments. Remarkably, we observed that the two cell wall mutant strains were far more immunogenic than their wild-type counterparts when the intragastric route was used. However, intestinal TTFC-specific immunoglobulin A was induced only after immunization with the recombinant L. plantarum mutant strain. Moreover, the alanine racemase mutant of either LAB strain allowed induction of a much stronger serum TTFC-specific immune response after immunization via the vagina, which is a quite different ecosystem than the gastrointestinal tract. The design and use of these mutants thus resulted in a major improvement in the mucosal delivery of antigens exhibiting vaccine properties.

  5. Isolation and characterization of mutant strains of Escherichia coli altered in H2 metabolism

    International Nuclear Information System (INIS)

    Lee, J.H.; Patel, P.; Sankar, P.; Shanmugam, K.T.

    1985-01-01

    A positive selection procedure is described for the isolation of hydrogenase-defective mutant strains of Escherichia coli. Mutant strains isolated by this procedure can be divided into two major classes. Class II mutants produced hydrogenase activity (determined by using a tritium-exchange assay) and formate hydrogenlyase activity but lacked the ability to reduce benzyl viologen or fumarate with H 2 as the electron donor. Class I mutants failed to produce active hydrogenase and hydrogenase-dependent activities. All the mutant strains produced detectable levels of formate dehydrogenase-1 and -2 and fumarate reductase. The mutation in class I mutants mapped near 65 min of the E. coli chromosome, whereas the mutation in class II mutants mapped between srl and cys operons (58 and 59 min, respectively) in the genome. The class II Hyd mutants can be further subdivided into two groups (hydA and hydB) based on the cotransduction characteristics with cys and srl. These results indicate that there are two hyd operons and one hup operon in the E. coli chromosome. The two hyd operons are needed for the production of active hydrogenase, and all three are essential for hydrogen-dependent growth of the cell

  6. A novel mouse Fgfr2 mutant, hobbyhorse (hob, exhibits complete XY gonadal sex reversal.

    Directory of Open Access Journals (Sweden)

    Pam Siggers

    Full Text Available The secreted molecule fibroblast growth factor 9 (FGF9 plays a critical role in testis determination in the mouse. In embryonic gonadal somatic cells it is required for maintenance of SOX9 expression, a key determinant of Sertoli cell fate. Conditional gene targeting studies have identified FGFR2 as the main gonadal receptor for FGF9 during sex determination. However, such studies can be complicated by inefficient and variable deletion of floxed alleles, depending on the choice of Cre deleter strain. Here, we report a novel, constitutive allele of Fgfr2, hobbyhorse (hob, which was identified in an ENU-based forward genetic screen for novel testis-determining loci. Fgr2hob is caused by a C to T mutation in the invariant exon 7, resulting in a polypeptide with a mis-sense mutation at position 263 (Pro263Ser in the third extracellular immunoglobulin-like domain of FGFR2. Mutant homozygous embryos show severe limb and lung defects and, when on the sensitised C57BL/6J (B6 genetic background, undergo complete XY gonadal sex reversal associated with failure to maintain expression of Sox9. Genetic crosses employing a null mutant of Fgfr2 suggest that Fgr2hob is a hypomorphic allele, affecting both the FGFR2b and FGFR2c splice isoforms of the receptor. We exploited the consistent phenotype of this constitutive mutant by analysing MAPK signalling at the sex-determining stage of gonad development, but no significant abnormalities in mutant embryos were detected.

  7. Cerebellar Expression of the Neurotrophin Receptor p75 in Naked-Ataxia Mutant Mouse

    Directory of Open Access Journals (Sweden)

    Maryam Rahimi Balaei

    2016-01-01

    Full Text Available Spontaneous mutation in the lysosomal acid phosphatase 2 (Acp2 mouse (nax—naked-ataxia mutant mouse correlates with severe cerebellar defects including ataxia, reduced size and abnormal lobulation as well as Purkinje cell (Pc degeneration. Loss of Pcs in the nax cerebellum is compartmentalized and harmonized to the classic pattern of gene expression of the cerebellum in the wild type mouse. Usually, degeneration starts in the anterior and posterior zones and continues to the central and nodular zones of cerebellum. Studies have suggested that the p75 neurotrophin receptor (NTR plays a role in Pc degeneration; thus, in this study, we investigated the p75NTR pattern and protein expression in the cerebellum of the nax mutant mouse. Despite massive Pc degeneration that was observed in the nax mouse cerebellum, p75NTR pattern expression was similar to the HSP25 pattern in nax mice and comparable with wild type sibling cerebellum. In addition, immunoblot analysis of p75NTR protein expression did not show any significant difference between nax and wild type sibling (p > 0.5. In comparison with wild type counterparts, p75NTR pattern expression is aligned with the fundamental cytoarchitecture organization of the cerebellum and is unchanged in the nax mouse cerebellum despite the severe neurodevelopmental disorder accompanied with Pc degeneration.

  8. Comparison of three mouse strains by radiosensitivity of hemato-immune system

    International Nuclear Information System (INIS)

    Li, Deguan; Wu, Hongying; Wang, Yong; Zhang, Junling; Wang, Yueying; Lu, Lu; Meng, Aimin

    2008-01-01

    IRM-2, developed in our Lab, is an inbred strain mouse created by cross of a ICR/JCL female and 615 male mouse. Compared to the parent strains, the IRM-2 mouse exhibit increased resistance to radiation. We examine the damage of hemato-immune system induced by radiation in IRM-2, ICR and 615 mice in order to elucidate the radiation resistant mechanism of IRM-2 mouse. The hemato-immune function and radiosensitivities of three mouse strains (IRM-2, ICR/JCL, 615) have been compared using the following parameters: the white blood cells (WBC) in peripheral blood (PB), the bone marrow nucleated cells (BMC) per femur. Percent of phagocytosis of peritoneal macrophage (PM) was checked by chicken red blood cells. Lymphocyte phenotype in PB were analyzed by flow cytometry. Damage induced by radiation were analysed in the bone marrows cells, splenocytes and thymocyte exposed to irradiation in vitro by cell viability assay (ATP Bioluminescence assay) and apoptosis assay (Annexin V/PI). The WBC and BMC of IRM-2 mice were significantly higher than those in ICR mice and 615 mice, respectively (P<0.01). The ratio of CD4/CD8 in PB of IRM-2 mouse was lower than those in ICR and 615, P<0.01. Cell viability showed difference after 18 hs incubation post radiation in three mouse strains. The results of our primary study suggest that the hemato-immune function in IRM-2 mouse is different to its parent strains. The IRM-2 mouse provides an animal model to conducted further investigation to explore the role of hemato-immune system in radiation resistance. (author)

  9. The circling mutant Pcdh15roda is a new mouse model for hearing loss.

    Science.gov (United States)

    Torres, Adriana Amorim; Rzadzinska, Agnieszka K; Ribeiro, Andrea Frozino; Silva, Daniel Almeida da Silva E; Guénet, Jean-Louis; Massironi, Sílvia Maria Gomes; Godard, Ana Lúcia Brunialti

    2013-01-01

    Mouse mutagenesis is a key tool for studying gene function and several mutant alleles have been described and constitute mouse models for human hereditary diseases. Genetic hearing loss represents over 50% of all hearing loss cases in children and, due to the heterogeneity of the disorder, there is still a demand for the isolation and characterization of new genes and alleles. Here we report phenotypic and molecular characterization of a new mouse model for hereditary hearing loss. The mutant rodador, isolated by Massironi and colleagues in 2006, presents an autosomal recessive disorder characterized by deafness and balance dysfunction associated with abnormal stereocilia in the inner ear. The mutation was mapped to mouse chromosome 10, and characterization of the gene Pcdh15 revealed an AT-to-GC transition in intron 23 of mutant animals. The alteration led to the switch of a dinucleotide ApA for ApG, creating a novel intronic acceptor splice site, which leads to incorporation of eight intronic bases into the processed mRNA and alteration of the downstream reading frame. In silico analysis indicated that the mutated protein is truncated and lacks two cadherin domains, and the transmembrane and cytoplasmic domains. Real Time PCR analyses revealed a significantly reduced Pcdh15 mRNA level in the brain of mutant mice, which might be due to the mechanism of non-sense mediated decay. In man, mutations in the orthologue PCDH15 cause non-syndromic deafness and Usher Syndrome Type 1F, a genetic disorder characterized by hearing loss and retinitis pigmentosa. Rodador mouse constitutes a new model for studying deafness in these conditions and may help in the comprehension of the pathogeneses of the disease, as well as of the mechanisms involved in the morphogenesis and function of inner ear stereocilia. This is a new ENU-induced allele and the first isolated in a BALB/c background. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Analysis of the albino-locus region of the mouse. II. Mosaic mutants

    International Nuclear Information System (INIS)

    Russell, L.B.

    1979-01-01

    Among 119 mutations involving the c locus that were recovered in the course of mouse specific-locus experiments with external radiations, 16 were found in mosaic, or fractional, mutants. The number of additional c-locus fractionals that could have occurred in these experiments and, for a variety of reasons, might not have been clearly identified, probably does not exceed the present number. There was no evidence for radiation induction of the fractionals, and even those occurring in the irradiated groups may thus be assumed to be of spontaneous origin. Since only two mutations in the control groups were found in whole-body mutants, it appears that the bulk of spontaneous c-locus mutations are fractionals. None of the mutations recovered in fractional mutants was homozygous lethal; 25% were viable intermediate alleles, and the remainder were albino-like mutants, all viable except for one subvital and one not tested. Genetic tests of the fractionals indicated no major selection against the new mutations, either gametically or in the progeny. For the group of fractionals as a whole, about one-half of the germinal tissue carried the mutation, indicating that the fractionals came from an overall blastomere population that was one-half mutant. Such a population could result from mutation in one strand of the gamete DNA, in a daughter chromosome derived from pronuclear DNA synthesis of the zygote, or in one of the first two blastomeres prior to replication. Since the mouse embryo does not stem from all of the cleavage products of the zygote, the frequency of fractionals observeed underestimates the frequency of mutational events that result in two types of blastomeres

  11. Radiation-sensitive mutant of hypertoxinogenic strain 569B of Vibro cholerae

    International Nuclear Information System (INIS)

    Das, G.; Das, J.

    1983-01-01

    A radiation-sensitive mutant of the hypertoxinogenic strain 569B of Vibrio cholerae was isolated and characterized. The mutant, designated V. cholerae 569Bsub(s), lacks both excision- and medium-dependent dark-repair mechanisms of UV-induced DNA damage while retaining the wild-type photoreactivating capability. Analysis of the UV-irradiated cell DNA by velocity sedimentation in alkaline sucrose gradient suggests that UV-induced pyrimidine dimers may not be incised in these cells. In contrast to the wild-type cells, the mutant cell DNA was degraded after treatment with nalidixic acid. The mutant cells failed to produce any detectable amount of cholera toxin as measured by ileal-loop assay. (orig.)

  12. Overexpression of mutant ataxin-3 in mouse cerebellum induces ataxia and cerebellar neuropathology.

    Science.gov (United States)

    Nóbrega, Clévio; Nascimento-Ferreira, Isabel; Onofre, Isabel; Albuquerque, David; Conceição, Mariana; Déglon, Nicole; de Almeida, Luís Pereira

    2013-08-01

    Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is a fatal, dominant neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Clinical manifestations include cerebellar ataxia and pyramidal signs culminating in severe neuronal degeneration. Currently, there is no therapy able to modify disease progression. In the present study, we aimed at investigating one of the most severely affected brain regions in the disorder--the cerebellum--and the behavioral defects associated with the neuropathology in this region. For this purpose, we injected lentiviral vectors encoding full-length human mutant ataxin-3 in the mouse cerebellum of 3-week-old C57/BL6 mice. We show that circumscribed expression of human mutant ataxin-3 in the cerebellum mediates within a short time frame--6 weeks, the development of a behavioral phenotype including reduced motor coordination, wide-based ataxic gait, and hyperactivity. Furthermore, the expression of mutant ataxin-3 resulted in the accumulation of intranuclear inclusions, neuropathological abnormalities, and neuronal death. These data show that lentiviral-based expression of mutant ataxin-3 in the mouse cerebellum induces localized neuropathology, which is sufficient to generate a behavioral ataxic phenotype. Moreover, this approach provides a physiologically relevant, cost-effective and time-effective animal model to gain further insights into the pathogenesis of MJD and for the evaluation of experimental therapeutics of MJD.

  13. Strain screen and haplotype association mapping of wheel running in inbred mouse strains.

    Science.gov (United States)

    Lightfoot, J Timothy; Leamy, Larry; Pomp, Daniel; Turner, Michael J; Fodor, Anthony A; Knab, Amy; Bowen, Robert S; Ferguson, David; Moore-Harrison, Trudy; Hamilton, Alicia

    2010-09-01

    Previous genetic association studies of physical activity, in both animal and human models, have been limited in number of subjects and genetically homozygous strains used as well as number of genomic markers available for analysis. Expansion of the available mouse physical activity strain screens and the recently published dense single-nucleotide polymorphism (SNP) map of the mouse genome (approximately 8.3 million SNPs) and associated statistical methods allowed us to construct a more generalizable map of the quantitative trait loci (QTL) associated with physical activity. Specifically, we measured wheel running activity in male and female mice (average age 9 wk) in 41 inbred strains and used activity data from 38 of these strains in a haplotype association mapping analysis to determine QTL associated with activity. As seen previously, there was a large range of activity patterns among the strains, with the highest and lowest strains differing significantly in daily distance run (27.4-fold), duration of activity (23.6-fold), and speed (2.9-fold). On a daily basis, female mice ran further (24%), longer (13%), and faster (11%). Twelve QTL were identified, with three (on Chr. 12, 18, and 19) in both male and female mice, five specific to males, and four specific to females. Eight of the 12 QTL, including the 3 general QTL found for both sexes, fell into intergenic areas. The results of this study further support the findings of a moderate to high heritability of physical activity and add general genomic areas applicable to a large number of mouse strains that can be further mined for candidate genes associated with regulation of physical activity. Additionally, results suggest that potential genetic mechanisms arising from traditional noncoding regions of the genome may be involved in regulation of physical activity.

  14. Screening of mutant strains producing phytase from A. niger by 60Co γ-ray irradiation

    International Nuclear Information System (INIS)

    Yang Pingping; Wang Yan; Tao Wenyi

    2004-01-01

    60 Co γ-ray was used to irradiate Aspergillus niger 447-92 for screening the mutant strain of producing phytase, and the effects of mutation induction were determined and analyzed. A mutant strain A. niger 496-1 with high level of phytase was selected, the phytase properties of A. niger 496-1 were analyzed

  15. Enhanced astrocytic nitric oxide production and neuronal modifications in the neocortex of a NOS2 mutant mouse.

    Directory of Open Access Journals (Sweden)

    Yossi Buskila

    Full Text Available BACKGROUND: It has been well accepted that glial cells in the central nervous system (CNS produce nitric oxide (NO through the induction of a nitric oxide synthase isoform (NOS2 only in response to various insults. Recently we described rapid astroglial, NOS2-dependent, NO production in the neocortex of healthy mice on a time scale relevant to neuronal activity. To explore a possible role for astroglial NOS2 in normal brain function we investigated a NOS2 knockout mouse (B6;129P2-Nos2(tm1Lau/J, Jackson Laboratory. Previous studies of this mouse strain revealed mainly altered immune responses, but no compensatory pathways and no CNS abnormalities have been reported. METHODOLOGY/PRINCIPAL FINDINGS: To our surprise, using NO imaging in brain slices in combination with biochemical methods we uncovered robust NO production by neocortical astrocytes of the NOS2 mutant. These findings indicate the existence of an alternative pathway that increases basal NOS activity. In addition, the astroglial mutation instigated modifications of neuronal attributes, shown by changes in the membrane properties of pyramidal neurons, and revealed in distinct behavioral abnormalities characterized by an increase in stress-related parameters. CONCLUSIONS/SIGNIFICANCE: The results strongly indicate the involvement of astrocytic-derived NO in modifying the activity of neuronal networks. In addition, the findings corroborate data linking NO signaling with stress-related behavior, and highlight the potential use of this genetic model for studies of stress-susceptibility. Lastly, our results beg re-examination of previous studies that used this mouse strain to examine the pathophysiology of brain insults, assuming lack of astrocytic nitrosative reaction.

  16. Incorrect strain information for mouse cell lines: sequential influence of misidentification on sublines.

    Science.gov (United States)

    Uchio-Yamada, Kozue; Kasai, Fumio; Ozawa, Midori; Kohara, Arihiro

    2017-03-01

    Misidentification or cross-contamination of cell lines can cause serious issues. Human cell lines have been authenticated by short tandem repeat profiling; however, mouse cell lines have not been adequately assessed. In this study, mouse cell lines registered with the JCRB cell bank were examined by simple sequence length polymorphism (SSLP) analysis to identify their strains. Based on comparisons with 7 major inbred strains, our results revealed their strains in 80 of 90 cell lines. However, 12 of the 80 cell lines (15%) were found to differ from registered information. Of them, 4 cell lines originated from the same mouse, which had been generated through mating between two different inbred strains. The genotype of the mouse sample had not been examined after the backcross, leading to strain misidentification in those cell lines. Although 8 other cell lines had been established as sublines of a BALB/c cell line, their SSLP profiles are similar to a Swiss cell line. This affects differences in genotypes between inbred and outbred strains. Because the use of inbred samples and interbreeding between strains are not involved in human materials, our results suggest that the cause and influence of misidentification in mouse cell lines are different from those in human.

  17. Induction of pure and sectored mutant clones in excision-proficient and deficient strains of yeast.

    Science.gov (United States)

    Eckardt, F; Haynes, R H

    1977-06-01

    We have found that UV-induced mutation frequency in a forward non-selective assay system (scoring white adex ade2 double auxotroph mutants among the red pigmented ade2 clones) increases linearly with dose up to a maximum frequency of about 3 X 10(-3) mutants per survivor and then declines in both RAD wild-type and rad2 excision deficient strains of Saccharomyces cerevisiae. Mutation frequencies of the RAD and the rad2 strains plotted against survival are nearly identical over the entire survival range. On this basis we conclude that unexcised pyrimidine dimers are the predominant type of pre-mutational lesions in both strains. In the RAD wild-type strain pure mutant clones outnumber sectors in a 10:1 ratio at all doses used; in rad2 this ratio varies from 1:1 at low doses up to 10:1 at high doses. As others have concluded for wild-type strains we find also in the rad2 strain that pure clone formation cannot be accounted for quantitatively by lethal sectoring events alone. We conclude that heteroduplex repair is a crucial step in pure mutant clone formation and we examine the plausibility of certain macromolecular mechanisms according to which heteroduplex repair may be coupled with replication, repair and sister strand exchange in yeast mutagenesis.

  18. Induction of pure and sectored mutant clones in excision-proficient and deficient strains of yeast

    International Nuclear Information System (INIS)

    Eckardt, F.; Haynes, R.H.

    1977-01-01

    It was found that UV-induced mutation frequency in a forward non-selective assay system (scoring white adex ade2 double auxotroph mutants among the red pigmented ade2 clones) increases linearly with dose up to a maximum frequency of about 3 x 10 -3 mutants per survivor and then declines in both RAD wild-type and rad2 excision deficient strains of Saccharomyces cerevisiae. Mutation frequencies of the RAD and the rad2 strains plotted against survival are nearly identical over the entire survival range. On this basis it is concluded that unexcised pyrimidine dimers are the predominant type of pre-mutational lesions in both strains. In the RAD wild-type strain pure mutant clones outnumber sectors in a 10:1 ratio at all doses used; in rad2 this ratio varies from 1:1 at low doses up to 10:1 at high doses. In agreement with conclusions of others, it was also found that for wild-type strains in the rad2 strain pure clone formation cannot be accounted for quantitatively by lethal sectoring events alone. It is concluded that heteroduplex repair is a crucial step in pure mutant clone formation and the plausibility of certain macromolecular mechanisms according to which heteroduplex repair may be coupled with replication, repair and sister strand exchange in yeast mutagenesis is examined

  19. The Breeding of a Pigment Mutant Strain of Steroid Hydroxylation Aspergillus Flavus by Low Energy Ion Implantation

    International Nuclear Information System (INIS)

    Ye Hui; Ma Jingming; Feng Chun; Cheng Ying; Zhu Suwen; Cheng Beijiu

    2009-01-01

    In the process of the fermentation of steroid C 11 α-hydroxylgenation strain Aspergillus flavus AF-ANo208, a red pigment is derived, which will affect the isolation and purification of the target product. Low energy ion beam implantation is a new tool for breeding excellent mutant strains. In this study, the ion beam implantation experiments were performed by infusing two different ions: argon ion (Ar + ) and nitrogen ion (N + ). The results showed that the optimal ion implantation was N + with an optimum dose of 2.08 x 10 15 ions/cm 2 , with which the mutant strain AF-ANm16 that produced no red pigment was obtained. The strain had high genetic stability and kept the strong capacity of C11α-hydroxylgenation, which could be utilized in industrial fermentation. The differences between the original strain and the mutant strain at a molecular level were analyzed by randomly amplified polymorphic DNA (RAPD). The results indicated that the frequency of variation was 7.00%, which would establish the basis of application investigation into the breeding of pigment mutant strains by low energy ion implantation. (ion beam bioengineering)

  20. The phenotype of FancB-mutant mouse embryonic stem cells

    OpenAIRE

    Kim, Tae Moon; Ko, Jun Ho; Choi, Yong Jun; Hu, Lingchuan; Hasty, Paul

    2011-01-01

    Fanconi anemia (FA) is a rare autosomal recessive disease characterized by bone marrow failure, developmental defects and cancer. There are multiple FA genes that enable the repair of interstrand crosslinks (ICLs) in coordination with a variety of other DNA repair pathways in a way that is poorly understood. Here we present the phenotype of mouse embryonic stem (ES) cells mutated for FancB. We found FancB-mutant cells exhibited reduced cellular proliferation, hypersensitivity to the crosslink...

  1. Genetic Dissection of Trabecular Bone Structure with Mouse Intersubspecific Consomic Strains

    Directory of Open Access Journals (Sweden)

    Taro Kataoka

    2017-10-01

    Full Text Available Trabecular bone structure has an important influence on bone strength, but little is known about its genetic regulation. To elucidate the genetic factor(s regulating trabecular bone structure, we compared the trabecular bone structures of two genetically remote mouse strains, C57BL/6J and Japanese wild mouse-derived MSM/Ms. Phenotyping by X-ray micro-CT revealed that MSM/Ms has structurally more fragile trabecular bone than C57BL/6J. Toward identification of genetic determinants for the difference in fragility of trabecular bone between the two mouse strains, we employed phenotype screening of consomic mouse strains in which each C57BL/6J chromosome is substituted by its counterpart from MSM/Ms. The results showed that many chromosomes affect trabecular bone structure, and that the consomic strain B6-Chr15MSM, carrying MSM/Ms-derived chromosome 15 (Chr15, has the lowest values for the parameters BV/TV, Tb.N, and Conn.D, and the highest values for the parameters Tb.Sp and SMI. Subsequent phenotyping of subconsomic strains for Chr15 mapped four novel trabecular bone structure-related QTL (Tbsq1-4 on mouse Chr15. These results collectively indicate that genetic regulation of trabecular bone structure is highly complex, and that even in the single Chr15, the combined action of the four Tbsqs controls the fragility of trabecular bone. Given that Tbsq4 is syntenic to human Chr 12q12-13.3, where several bone-related SNPs are assigned, further study of Tbsq4 should facilitate our understanding of the genetic regulation of bone formation in humans.

  2. Tryptophan provision by dietary supplementation of a Bacillus subtilis mutant strain in piglets

    DEFF Research Database (Denmark)

    Torres-Pitarch, A; Nielsen, B.; Canibe, Nuria

    2015-01-01

    Supplementing Bacillus (B.) subtilis mutants selected to overproduce a specific amino acid (AA) may be an alternative method to provide essential AA in pig diets. Two experiments on a B. subtilis strain selected to overproduce Trp were conducted using 8-kg pigs fed Trp-deficient diets for 20 d. B....... subtilis were supplied in a low or high dose in Experiments 1 and 2, respectively. The Trp-deficient diet (0.15 SID Trp:Lys) reduced (p subtilis strain was not able...... to counterbalance the Trp deficiency in any of the two experiments. No effect of B. subtilis supplementation to piglet diets was observed on the plasma AA profile. In conclusion, this mutant strain of B. subtilis was not able to compensate a Trp deficiency in the tested doses....

  3. Strain improvement and metabolic flux analysis in the wild-type and a mutant Lactobacillus lactis strain for L(+)-lactic acid production.

    Science.gov (United States)

    Bai, Dong-Mei; Zhao, Xue-Ming; Li, Xin-Gang; Xu, Shi-Min

    2004-12-20

    The effects of initial glucose concentration and calcium lactate concentration on the lactic acid production by the parent strain, Lactobacillus lactis BME5-18, were studied. The results of the experiments indicated that glucose and lactate repressed the cell growth and the lactic acid production by Lactobacillus lactis BME5-18. A L(+)-lactic acid overproducing strain, Lactobacillus lactis BME5-18M, was screened by mutagenizing the parent strain with ultraviolet (UV) light irradiation and selecting the high glucose and lactate calcium concentration repression resistant mutant. Starting with a concentration of 100g L(-1) glucose, the mutant produced 98.6 g L(-1) lactic acid after 60 h in flasks, 73.9% higher than that of the parent strain. The L(+)-lactic acid purity was 98.1% by weight based on the amount of total lactic acid. The culture of the parent strain could not be analyzed well by conventional metabolic flux analysis techniques, since some pyruvate were accumulated intracellularly. Therefore, a revised flux analysis method was proposed by introducing intracellular pyruvate pool. Further studies demonstrate that there is a high level of NADH oxidase activity (12.11 mmol mg(-1) min(-1)) in the parent strain. The molecular mechanisms of the strain improvement were proposed, i.e., the high level of NADH oxidase activity was eliminated and the uptake rate of glucose was increased from 82.1 C-mmol (g DW h)(-1) to 98.9 C-mmol (g DW h)(-1) by mutagenizing the parent strain with UV, and therefore the mutant strain converts mostly pyruvate to lactic acid with a higher productivity (1.76 g L(-1) h(-1)) than the parent strain (0.95 g L(-1) h(-1)).

  4. Altered Regulation of Escherichia coli Biotin Biosynthesis in BirA Superrepressor Mutant Strains

    Science.gov (United States)

    Chakravartty, Vandana

    2012-01-01

    Transcription of the Escherichia coli biotin (bio) operon is directly regulated by the biotin protein ligase BirA, the enzyme that covalently attaches biotin to its cognate acceptor proteins. Binding of BirA to the bio operator requires dimerization of the protein, which is triggered by BirA-catalyzed synthesis of biotinoyl-adenylate (biotinoyl-5′-AMP), the obligatory intermediate of the ligation reaction. Although several aspects of this regulatory system are well understood, no BirA superrepressor mutant strains had been isolated. Such superrepressor BirA proteins would repress the biotin operon transcription in vivo at biotin concentrations well below those needed for repression by wild-type BirA. We isolated mutant strains having this phenotype by a combined selection-screening approach and resolved multiple mutations to give several birA superrepressor alleles, each having a single mutation, all of which showed repression dominant over that of the wild-type allele. All of these mutant strains repressed bio operon transcription in vivo at biotin concentrations that gave derepression of the wild-type strain and retained sufficient ligation activity for growth when overexpressed. All of the strains except that encoding G154D BirA showed derepression of bio operon transcription upon overproduction of a biotin-accepting protein. In BirA, G154D was a lethal mutation in single copy, and the purified protein was unable to transfer biotin from enzyme-bound biotinoyl-adenylate either to the natural acceptor protein or to a biotin-accepting peptide sequence. Consistent with the transcriptional repression data, each of the purified mutant proteins showed increased affinity for the biotin operator DNA in electrophoretic mobility shift assays. Surprisingly, although most of the mutations were located in the catalytic domain, all of those tested, except G154D BirA, had normal ligase activity. Most of the mutations that gave superrepressor phenotypes altered residues

  5. Biotransformation of L-tyrosine to Dopamine by a Calcium Alginate Immobilized Mutant Strain of Aspergillus oryzae.

    Science.gov (United States)

    Ali, Sikander; Nawaz, Wajeeha

    2016-08-01

    The present research work is concerned with the biotransformation of L-tyrosine to dopamine (DA) by calcium alginate entrapped conidiospores of a mutant strain of Aspergillus oryzae. Different strains of A. oryzae were isolated from soil. Out of 13 isolated strains, isolate-2 (I-2) was found to be a better DA producer. The wild-type I-2 was chemically improved by treating it with different concentrations of ethyl methyl sulfonate (EMS). Among seven mutant variants, EMS-6 exhibiting maximal DA activity of 43 μg/ml was selected. The strain was further exposed with L-cysteine HCl to make it resistant against diversion and environmental stress. The conidiospores of selected mutant variant A. oryzae EMS-6 strain were entrapped in calcium alginate beads. Different parameters for immobilization were investigated. The activity was further improved from 44 to 62 μg/ml under optimized conditions (1.5 % sodium alginate, 2 ml inoculum, and 2 mm bead size). The best resistant mutant variable exhibited over threefold increase in DA activity (62 μg/ml) than did wild-type I-2 (21 μg/ml) in the reaction mixture. From the results presented in the study, it was observed that high titers of DA activity in vitro could effectively be achieved by the EMS-induced mutagenesis of filamentous fungus culture used.

  6. Proteomic Analysis of Anti-Cancerous Scopularide Production by a Marine Microascus brevicaulis Strain and Its UV Mutant

    DEFF Research Database (Denmark)

    Kramer, Annemarie; Beck, Hans Christian; Kumar, Abhishek

    2015-01-01

    The marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularides A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing faster...... for optimisation on strain and process level. The linkage between nutrient limitation and pellet formation in the non-model fungus M. brevicaulis is in consensus with the knowledge on model organisms like Aspergillus niger and Penicillium chrysogenum....... growth and differences in pellet formation besides higher production levels. Here, we show the first proteome study of a marine fungus. Comparative proteomics were applied to gain deeper understanding of the regulation of production and of the physiology of the wild type strain and its mutant...... in the mutant strain: 189 were down- and 129 upregulated. Proteomics are a powerful tool for the understanding of regulatory aspects: The differences on proteome level could be attributed to limited nutrient availability in the wild type strain due to a strong pellet formation. This information can be applied...

  7. Incorrect strain information for mouse cell lines: sequential influence of misidentification on sublines

    OpenAIRE

    Uchio-Yamada, Kozue; Kasai, Fumio; Ozawa, Midori; Kohara, Arihiro

    2016-01-01

    Misidentification or cross-contamination of cell lines can cause serious issues. Human cell lines have been authenticated by short tandem repeat profiling; however, mouse cell lines have not been adequately assessed. In this study, mouse cell lines registered with the JCRB cell bank were examined by simple sequence length polymorphism (SSLP) analysis to identify their strains. Based on comparisons with 7 major inbred strains, our results revealed their strains in 80 of 90 cell lines. However,...

  8. Autophagy and UPR in alpha-crystallin mutant knock-in mouse models of hereditary cataracts.

    Science.gov (United States)

    Andley, Usha P; Goldman, Joshua W

    2016-01-01

    Knock-in mice provide useful models of congenital and age-related cataracts caused by α-crystallin mutations. R49C αA-crystallin and R120G αB-crystallin mutations are linked with hereditary cataracts. Knock-in αA-R49C+/- heterozygotes develop cataracts by 1-2months, whereas homozygote mice have cataracts at birth. The R49C mutation drastically reduces lens protein water solubility and causes cell death in knock-in mouse lenses. Mutant crystallin cannot function as a chaperone, which leads to protein aggregation and lens opacity. Protein aggregation disrupts the lens fiber cell structure and normal development and causes cell death in epithelial and fiber cells. We determined what aspects of the wild-type phenotype are age-dependently altered in the mutant lens. Wild-type, heterozygote (αA-R49C+/-), and homozygote (αA-R49C+/+) mouse lenses were assessed pre- and postnatally for lens morphology (electron microscopy, immunohistochemistry), and autophagy or unfolded protein response markers (immunoblotting). Morphology was altered by embryonic day 17 in R49C+/+ lenses; R49C+/- lens morphology was unaffected at this stage. Active autophagy in the lens epithelium of mutant lenses was indicated by the presence of autophagosomes using electron microscopy. Protein p62 levels, which are degraded specifically by autophagy, increased in αA-R49C mutant versus wild-type lenses, suggesting autophagy inhibition in the mutant lenses. The unfolded protein response marker XBP-1 was upregulated in adult lenses of αB-R120G+/+ mice, suggesting its role in lens opacification. Mutated crystallins alter lens morphology, autophagy, and stress responses. Therapeutic modulation of autophagic pathways may improve protein degradation in cataractous lenses and reduce lens opacity. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Staphylococcus aureus Colonization of the Mouse Gastrointestinal Tract Is Modulated by Wall Teichoic Acid, Capsule, and Surface Proteins.

    Directory of Open Access Journals (Sweden)

    Yoshiki Misawa

    2015-07-01

    Full Text Available Staphylococcus aureus colonizes the nose, throat, skin, and gastrointestinal (GI tract of humans. GI carriage of S. aureus is difficult to eradicate and has been shown to facilitate the transmission of the bacterium among individuals. Although staphylococcal colonization of the GI tract is asymptomatic, it increases the likelihood of infection, particularly skin and soft tissue infections caused by USA300 isolates. We established a mouse model of persistent S. aureus GI colonization and characterized the impact of selected surface antigens on colonization. In competition experiments, an acapsular mutant colonized better than the parental strain Newman, whereas mutants defective in sortase A and clumping factor A showed impaired ability to colonize the GI tract. Mutants lacking protein A, clumping factor B, poly-N-acetyl glucosamine, or SdrCDE showed no defect in colonization. An S. aureus wall teichoic acid (WTA mutant (ΔtagO failed to colonize the mouse nose or GI tract, and the tagO and clfA mutants showed reduced adherence in vitro to intestinal epithelial cells. The tagO mutant was recovered in lower numbers than the wild type strain in the murine stomach and duodenum 1 h after inoculation. This reduced fitness correlated with the in vitro susceptibility of the tagO mutant to bile salts, proteases, and a gut-associated defensin. Newman ΔtagO showed enhanced susceptibility to autolysis, and an autolysin (atl tagO double mutant abrogated this phenotype. However, the atl tagO mutant did not survive better in the mouse GI tract than the tagO mutant. Our results indicate that the failure of the tagO mutant to colonize the GI tract correlates with its poor adherence and susceptibility to bactericidal factors within the mouse gut, but not to enhanced activity of its major autolysin.

  10. Adaptive response in Drosophila melanogaster heat shock proteins mutant strains

    International Nuclear Information System (INIS)

    Shaposhnikov, M.V.; Moskalev, A.A.; Turysheva, E.V.

    2007-01-01

    Complete text of publication follows. The members of the heat shock proteins (Hsp) family function as molecular chaperones and assist intracellular folding of newly synthesized proteins. Also it is possible that molecular chaperones are induced during adaptive response to oxidative stress and radiation. The aim of our research was to exam the role of heat shock proteins in adaptive response to oxidative stress after low dose rate gamma-irradiation in Drosophila melanogaster. Drosophilamelanogaster strains were kindly provided by Bloomington Drosophila Stock Center (University of state of Indiana, Bloomington, USA). We used wild type strain (CS), heat shock protein mutant strains (Hsp22, Hsp70, Hsp83), and heat shock factor mutant strain (Hsf). Strains were chronically exposured to adaptive dose of gamma-irradiation in dose rate of 0.17 cGy/h during all stages of life history (from the embrional stage to the stage of matured imago). The rate of absorbed dose was 60 cGy. For oxidative-stress challenge twodays old flies were starved in empty vials for 6 h and then transferred to vials containing only filter paper soaked with 20 mM paraquat in 5% sucrose solution. Survival data were collected after 26 h of treatment. Dead flies were counted daily. The obtained data were subjected to survival analysis by Kaplan and Meier method and presented as survival curves. Statistical analysis was held by non-parametric methods. To test the significance of the difference between the two age distributions Kolmogorov-Smirnov test was applied. Gehan-Braslow- Wilcoxon and Cox-Mantel tests were used for estimation of median life span differences. In addition the minimal and maximal life span, time of 90% death, and mortality rate doubling time (MRDT) were estimated. The obtained results will be discussed in presentation.

  11. Lethal and mutagenic effects of radiation and alkylating agents on two strains of mouse L5178Y cells

    International Nuclear Information System (INIS)

    Evans, H.H.; Horng, M.; Beer, J.Z.

    1986-01-01

    The two closely related strains of L5178Y (LY) mouse lymphoma cells, LY-R and LY-S, have been shown to differ in their sensitivity to UV and ionizing radiation. In the present work, the lethal and mutagenic effects of ethyl methanesulfonate (EMS), methyl nitrosourea (MNU) and UV radiation (254 nm) were compared in the two strains. Mutability at the Na + /K + -ATPase locus as well as the HGPRT locus was determined. The authors found strain LY-S to be more resistant than strain LY-R to the lethal effects of UV radiation. In contrast, strain LY-S was more sensitive to the cytotoxic effects of the two alkylating agents. In spite of these differences in sensitivity, the authors found strain LY-S to be less mutable than strain LY-R by all 3 agents at the HGPRT locus. At the Na + /K + -ATPase locus, strain LY-S was also less mutable than strain LY-R by equal concentrations of EMS and UV radiation and by equitoxic concentrations of MNU. However, the difference between the strains was much more pronounced at the HGPRT locus than at the Na + /K + -ATPase locus. The authors have suggested that the interaction of unrepaired lesions in strain LY-S tends to cause an excess of deletions and multilocus effects, which in turn result in a locus-dependent decrease in the recovery of viable LY-S mutant cells. (Auth.)

  12. The morphogenesis of herpes simplex virus type 1 in infected parental mouse L fibroblasts and mutant gro29 cells

    DEFF Research Database (Denmark)

    Jensen, Helle Lone; Norrild, Bodil

    2003-01-01

    Mutants of cell lines and viruses are important biological tools. The pathway of herpesvirus particle maturation and egress are contentious issues. The mutant gro29 line of mouse L cells is defective for egress of herpes simplex virus type 1 (HSV-1) virions, and a candidate for studies of virus...

  13. Silencing neuronal mutant androgen receptor in a mouse model of spinal and bulbar muscular atrophy.

    Science.gov (United States)

    Sahashi, Kentaro; Katsuno, Masahisa; Hung, Gene; Adachi, Hiroaki; Kondo, Naohide; Nakatsuji, Hideaki; Tohnai, Genki; Iida, Madoka; Bennett, C Frank; Sobue, Gen

    2015-11-01

    Spinal and bulbar muscular atrophy (SBMA), an adult-onset neurodegenerative disease that affects males, results from a CAG triplet repeat/polyglutamine expansions in the androgen receptor (AR) gene. Patients develop progressive muscular weakness and atrophy, and no effective therapy is currently available. The tissue-specific pathogenesis, especially relative pathological contributions between degenerative motor neurons and muscles, remains inconclusive. Though peripheral pathology in skeletal muscle caused by toxic AR protein has been recently reported to play a pivotal role in the pathogenesis of SBMA using mouse models, the role of motor neuron degeneration in SBMA has not been rigorously investigated. Here, we exploited synthetic antisense oligonucleotides to inhibit the RNA levels of mutant AR in the central nervous system (CNS) and explore its therapeutic effects in our SBMA mouse model that harbors a mutant AR gene with 97 CAG expansions and characteristic SBMA-like neurogenic phenotypes. A single intracerebroventricular administration of the antisense oligonucleotides in the presymptomatic phase efficiently suppressed the mutant gene expression in the CNS, and delayed the onset and progression of motor dysfunction, improved body weight gain and survival with the amelioration of neuronal histopathology in motor units such as spinal motor neurons, neuromuscular junctions and skeletal muscle. These findings highlight the importance of the neurotoxicity of mutant AR protein in motor neurons as a therapeutic target. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Characterization of a mouse-adapted Staphylococcus aureus strain.

    Directory of Open Access Journals (Sweden)

    Silva Holtfreter

    Full Text Available More effective antibiotics and a protective vaccine are desperately needed to combat the 'superbug' Staphylococcus aureus. While in vivo pathogenicity studies routinely involve infection of mice with human S. aureus isolates, recent genetic studies have demonstrated that S. aureus lineages are largely host-specific. The use of such animal-adapted S. aureus strains may therefore be a promising approach for developing more clinically relevant animal infection models. We have isolated a mouse-adapted S. aureus strain (JSNZ which caused a severe outbreak of preputial gland abscesses among male C57BL/6J mice. We aimed to extensively characterize this strain on a genomic level and determine its virulence potential in murine colonization and infection models. JSNZ belongs to the MLST type ST88, rare among human isolates, and lacks an hlb-converting phage encoding human-specific immune evasion factors. Naive mice were found to be more susceptible to nasal and gastrointestinal colonization with JSNZ than with the human-derived Newman strain. Furthermore, naïve mice required antibiotic pre-treatment to become colonized with Newman. In contrast, JSNZ was able to colonize mice in the absence of antibiotic treatment suggesting that this strain can compete with the natural flora for space and nutrients. In a renal abscess model, JSNZ caused more severe disease than Newman with greater weight loss and bacterial burden. In contrast to most other clinical isolates, JSNZ can also be readily genetically modified by phage transduction and electroporation. In conclusion, the mouse-adapted strain JSNZ may represent a valuable tool for studying aspects of mucosal colonization and for screening novel vaccines and therapies directed at preventing colonization.

  15. STRAIN-SPECIFIC BEHAVIORAL-RESPONSE TO ENVIRONMENTAL ENRICHMENT IN THE MOUSE

    NARCIS (Netherlands)

    VANDEWEERD, HA; BAUMANS, [No Value; KOOLHAAS, JM; VANZUTPHEN, LFM

    The influence of environmental enrichment on the behaviour of the mouse has been studied in two inbred strains (C57BL and BALB/c). Male mice of each of the two strains were subjected to behavioural tests after being housed for two months either under standard housing conditions or in an enriched

  16. The streptomycin-treated mouse intestine selects Escherichia coli envZ missense mutants that interact with dense and diverse intestinal microbiota.

    Science.gov (United States)

    Leatham-Jensen, Mary P; Frimodt-Møller, Jakob; Adediran, Jimmy; Mokszycki, Matthew E; Banner, Megan E; Caughron, Joyce E; Krogfelt, Karen A; Conway, Tyrrell; Cohen, Paul S

    2012-05-01

    Previously, we reported that the streptomycin-treated mouse intestine selected nonmotile Escherichia coli MG1655 flhDC deletion mutants of E. coli MG1655 with improved colonizing ability that grow 15% faster in vitro in mouse cecal mucus and 15 to 30% faster on sugars present in mucus (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). Here, we report that the 10 to 20% remaining motile E. coli MG1655 are envZ missense mutants that are also better colonizers of the mouse intestine than E. coli MG1655. One of the flhDC mutants, E. coli MG1655 ΔflhD, and one of the envZ missense mutants, E. coli MG1655 mot-1, were studied further. E. coli MG1655 mot-1 is more resistant to bile salts and colicin V than E. coli MG1655 ΔflhD and grows ca. 15% slower in vitro in mouse cecal mucus and on several sugars present in mucus compared to E. coli MG1655 ΔflhD but grows 30% faster on galactose. Moreover, E. coli MG1655 mot-1 and E. coli MG1655 ΔflhD appear to colonize equally well in one intestinal niche, but E. coli MG1655 mot-1 appears to use galactose to colonize a second, smaller intestinal niche either not colonized or colonized poorly by E. coli MG1655 ΔflhD. Evidence is also presented that E. coli MG1655 is a minority member of mixed bacterial biofilms in the mucus layer of the streptomycin-treated mouse intestine. We offer a hypothesis, which we call the "Restaurant" hypothesis, that explains how nutrient acquisition in different biofilms comprised of different anaerobes can account for our results.

  17. Blocking antibodies induced by immunization with a hypoallergenic parvalbumin mutant reduce allergic symptoms in a mouse model of fish allergy.

    Science.gov (United States)

    Freidl, Raphaela; Gstoettner, Antonia; Baranyi, Ulrike; Swoboda, Ines; Stolz, Frank; Focke-Tejkl, Margarete; Wekerle, Thomas; van Ree, Ronald; Valenta, Rudolf; Linhart, Birgit

    2017-06-01

    Fish is a frequent elicitor of severe IgE-mediated allergic reactions. Beside avoidance, there is currently no allergen-specific therapy available. Hypoallergenic variants of the major fish allergen, parvalbumin, for specific immunotherapy based on mutation of the 2 calcium-binding sites have been developed. This study sought to establish a mouse model of fish allergy resembling human disease and to investigate whether mouse and rabbit IgG antibodies induced by immunization with a hypoallergenic mutant of the major carp allergen protect against allergic symptoms in sensitized mice. C3H/HeJ mice were sensitized with recombinant wildtype Cyp c 1 or carp extract by intragastric gavage. Antibody, cellular immune responses, and epitope specificity in sensitized mice were investigated by ELISA, rat basophil leukemia assay, T-cell proliferation experiments using recombinant wildtype Cyp c 1, and overlapping peptides spanning the Cyp c 1 sequence. Anti-hypoallergenic Cyp c 1 mutant mouse and rabbit sera were tested for their ability to inhibit IgE recognition of Cyp c 1, Cyp c 1-specific basophil degranulation, and Cyp c 1-induced allergic symptoms in the mouse model. A mouse model of fish allergy mimicking human disease regarding IgE epitope recognition and symptoms as close as possible was established. Administration of antisera generated in mice and rabbits by immunization with a hypoallergenic Cyp c 1 mutant inhibited IgE binding to Cyp c 1, Cyp c 1-induced basophil degranulation, and allergic symptoms caused by allergen challenge in sensitized mice. Antibodies induced by immunization with a hypoallergenic Cyp c 1 mutant protect against allergic reactions in a murine model of fish allergy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Mutant strains of Spirulina (Arthrospira) platensis to increase the efficiency of micro-ecological life support systems

    Science.gov (United States)

    Brown, Igor

    The European Micro-Ecological Life Support System Alternative (MELiSSA) is an advanced idea for organizing a bioregenerative system for long term space flights and extraterrestrial settlements (Hendrickx, De Wever et al., 2005). Despite the hostility of both lunar and Martian environments to unprotected life, it seems possible to cultivate photosynthetic bacteria using closed bioreactors illuminated and heated by solar energy. Such reactors might be employed in critical processes, e.g. air revitalization, foodcaloric and protein source, as well as an immunomodulators production. The MELiSSA team suggested cyanobacterium Spirulina as most appropriate agent to revitalize air and produce a simple "fast" food. This is right suggestion because Spirulina was recently shown to be an oxygenic organism with the highest level of O2 production per unit mass (Ananyev et al., 2005). Chemical composition of Spirulina includes proteins (55Aiming to make Spirulina cultivation in life support systems like MELiSSA more efficient, we selected Spirulina mutant strains with increased fraction of methionine in the biomass of this cyanobacterium and compared the effect of parental wild strain of Spirulina and its mutants on the tendency of such experimental illnesses as radiationinduced lesions and hemolythic anemia. Results: It was found that mutant strains 198B and 27G contain higher quantities of total protein, essential amino acids, c-phycocyanin, allophycocyanin and chlorophyll a than parental wild strain of S. platensis. The strain 198B is also characterized with increased content of carotenoids. Revealed biochemical peculiarities of mutant strains suggest that these strains can serve as an additional source of essential amino acids as well as phycobiliproteins and carotenoids for the astronauts. Feeding animals suffering from radiation-induced lesions, c-phycocyanin, extracted from strain 27G, led to a correction in deficient dehydrogenase activity and energy-rich phosphate levels

  19. Examining the virulence of Candida albicans transcription factor mutants using Galleria mellonella and mouse infection models

    Directory of Open Access Journals (Sweden)

    Sara eAmorim-Vaz

    2015-05-01

    Full Text Available The aim of the present study was to identify C. albicans transcription factors (TF involved in virulence. Although mice are considered the gold-standard model to study fungal virulence, mini-host infection models have been increasingly used. Here, barcoded TF mutants were first screened in mice by pools of strains and fungal burdens quantified in kidneys. Mutants of unannotated genes which generated a kidney fungal burden significantly different from that of wild-type were selected and individually examined in G. mellonella. In addition, mutants that could not be detected in mice were also tested in G. mellonella. Only 25 % of these mutants displayed matching phenotypes in both hosts, highlighting a significant discrepancy between the two models. To address the basis of this difference (pool or host effects, a set of 19 mutants tested in G. mellonella were also injected individually into mice. Matching fungal burden phenotypes were observed in 50 % of the cases, highlighting the bias due to host effects. In contrast, 33.4 % concordance was observed between pool and single strain infections in mice, thereby highlighting the bias introduced by the pool effect. After filtering the results obtained from the two infection models, mutants for MBF1 and ZCF6 were selected. Independent marker-free mutants were subsequently tested in both hosts to validate previous results. The MBF1 mutant showed impaired infection in both models, while the ZCF6 mutant was only significant in mice infections. The two mutants showed no obvious in vitro phenotypes compared with the wild-type, indicating that these genes might be specifically involved in in vivo adaptation.

  20. Proteomic Analysis of Anti-Cancerous Scopularide Production by a Marine Microascus brevicaulis Strain and Its UV Mutant

    Science.gov (United States)

    Kramer, Annemarie; Beck, Hans Christian; Kumar, Abhishek; Kristensen, Lars Peter; Imhoff, Johannes F.; Labes, Antje

    2015-01-01

    The marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularides A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing faster growth and differences in pellet formation besides higher production levels. Here, we show the first proteome study of a marine fungus. Comparative proteomics were applied to gain deeper understanding of the regulation of production and of the physiology of the wild type strain and its mutant. For this purpose, an optimised protein extraction protocol was established. In total, 4759 proteins were identified. The central metabolic pathway of strain LF580 was mapped using the KEGG pathway analysis and GO annotation. Employing iTRAQ labelling, 318 proteins were shown to be significantly regulated in the mutant strain: 189 were down- and 129 upregulated. Proteomics are a powerful tool for the understanding of regulatory aspects: The differences on proteome level could be attributed to limited nutrient availability in the wild type strain due to a strong pellet formation. This information can be applied for optimisation on strain and process level. The linkage between nutrient limitation and pellet formation in the non-model fungus M. brevicaulis is in consensus with the knowledge on model organisms like Aspergillus niger and Penicillium chrysogenum. PMID:26460745

  1. Proteomic Analysis of Anti-Cancerous Scopularide Production by a Marine Microascus brevicaulis Strain and Its UV Mutant.

    Directory of Open Access Journals (Sweden)

    Annemarie Kramer

    Full Text Available The marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularides A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing faster growth and differences in pellet formation besides higher production levels. Here, we show the first proteome study of a marine fungus. Comparative proteomics were applied to gain deeper understanding of the regulation of production and of the physiology of the wild type strain and its mutant. For this purpose, an optimised protein extraction protocol was established. In total, 4759 proteins were identified. The central metabolic pathway of strain LF580 was mapped using the KEGG pathway analysis and GO annotation. Employing iTRAQ labelling, 318 proteins were shown to be significantly regulated in the mutant strain: 189 were down- and 129 upregulated. Proteomics are a powerful tool for the understanding of regulatory aspects: The differences on proteome level could be attributed to limited nutrient availability in the wild type strain due to a strong pellet formation. This information can be applied for optimisation on strain and process level. The linkage between nutrient limitation and pellet formation in the non-model fungus M. brevicaulis is in consensus with the knowledge on model organisms like Aspergillus niger and Penicillium chrysogenum.

  2. Proteomic Analysis of Anti-Cancerous Scopularide Production by a Marine Microascus brevicaulis Strain and Its UV Mutant.

    Science.gov (United States)

    Kramer, Annemarie; Beck, Hans Christian; Kumar, Abhishek; Kristensen, Lars Peter; Imhoff, Johannes F; Labes, Antje

    2015-01-01

    The marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularides A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing faster growth and differences in pellet formation besides higher production levels. Here, we show the first proteome study of a marine fungus. Comparative proteomics were applied to gain deeper understanding of the regulation of production and of the physiology of the wild type strain and its mutant. For this purpose, an optimised protein extraction protocol was established. In total, 4759 proteins were identified. The central metabolic pathway of strain LF580 was mapped using the KEGG pathway analysis and GO annotation. Employing iTRAQ labelling, 318 proteins were shown to be significantly regulated in the mutant strain: 189 were down- and 129 upregulated. Proteomics are a powerful tool for the understanding of regulatory aspects: The differences on proteome level could be attributed to limited nutrient availability in the wild type strain due to a strong pellet formation. This information can be applied for optimisation on strain and process level. The linkage between nutrient limitation and pellet formation in the non-model fungus M. brevicaulis is in consensus with the knowledge on model organisms like Aspergillus niger and Penicillium chrysogenum.

  3. Comparative analysis on inactivation kinetics of between piezotolerant and piezosensitive mutant strains of Saccharomyces cerevisiae under combinations of high hydrostatic pressure and temperature.

    Science.gov (United States)

    Nomura, Kazuki; Kuwabara, Yuki; Kuwabara, Wataru; Takahashi, Hiroyuki; Nakajima, Kanako; Hayashi, Mayumi; Iguchi, Akinori; Shigematsu, Toru

    2017-12-01

    We previously obtained a pressure-tolerant (piezotolerant) and a pressure sensitive (piezosensitive) mutant strain, under ambient temperature, from Saccharomyces cerevisiae strain KA31a. The inactivation kinetics of these mutants were analyzed at 150 to 250MPa with 4 to 40°C. By a multiple regression analysis, the pressure and temperature dependency of the inactivation rate constants k values of both mutants, as well as the parent strain KA31a, were well approximated with high correlation coefficients (0.92 to 0.95). For both mutants, as well as strain KA31a, the lowest k value was shown at a low pressure levels with around ambient temperature. The k value approximately increased with increase in pressure level, and with increase and decrease in temperature. The piezosensitive mutant strain a924E1 showed piezosensitivity at all pressure and temperature levels, compared with the parent strain KA31a. In contrast, the piezotolerant mutant strain a2568D8 showed piezotolerance at 4 to 20°C, but did not show significant piezotolerance at 40°C. These results of the variable influence of temperature on pressure inactivation of these strains would be important for better understanding of piezosensitive and piezotolerant mechanisms, as well as the pressure inactivation mechanism of S. cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Isolation and characterization of the E. coli membrane protein production strain Mutant56(DE3)

    DEFF Research Database (Denmark)

    Baumgarten, Thomas; Schlegel, Susan; Wagner, Samuel

    2017-01-01

    Membrane protein production is usually toxic to E. coli. However, using genetic screens strains can be isolated in which the toxicity of membrane protein production is reduced, thereby improving production yields. Best known examples are the C41(DE3) and C43(DE3) strains, which are both derived...... from the T7 RNA polymerase (P)-based BL21(DE3) protein production strain. In C41(DE3) and C43(DE3) mutations lowering t7rnap expression levels result in strongly reduced T7 RNAP accumulation levels. As a consequence membrane protein production stress is alleviated in the C41(DE3) and C43(DE3) strains......, thereby increasing membrane protein yields. Here, we isolated Mutant56(DE3) from BL21(DE3) using a genetic screen designed to isolate BL21(DE3)-derived strains with mutations alleviating membrane protein production stress other than the ones in C41(DE3) and C43(DE3). The defining mutation of Mutant56(DE3...

  5. Impaired Eye-Blink Conditioning in waggler, a Mutant Mouse With Cerebellar BDNF Deficiency

    OpenAIRE

    Bao, Shaowen; Chen, Lu; Qiao, Xiaoxi; Knusel, Beat; Thompson, Richard F.

    1998-01-01

    In addition to their trophic functions, neurotrophins are also implicated in synaptic modulation and learning and memory. Although gene knockout techniques have been used widely in studying the roles of neurotrophins at molecular and cellular levels, behavioral studies using neurotrophin knockouts are limited by the early-onset lethality and various sensory deficits associated with the gene knockout mice. In the present study, we found that in a spontaneous mutant mouse, waggler, the expressi...

  6. Improvement of heavy metal stress and toxicity assays by coupling a transgenic reporter in a mutant nematode strain

    Energy Technology Data Exchange (ETDEWEB)

    Chu, K.-W. [Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Chan, Shirley K.W. [Atmospheric, Marine and Coastal Environment Program, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Chow, King L. [Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China) and Atmospheric, Marine and Coastal Environment Program, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)]. E-mail: bokchow@ust.hk

    2005-09-30

    Previous studies have demonstrated that wild type Caenorhabditis elegans displays high sensitivity to heavy metals in a lethality test at a level comparable to that of other bioindicator organisms. Taking advantage of the genetics of this model organism, we have tested a number of mutant strains for enhanced sensitivity in heavy metal induced lethality and stress response. These mutants are defective in genes controlling dauer formation, longevity or response to reactive oxygen species (ROS). Among the tested mutants, a double mutant daf-16 unc-75 strain was identified to have superior sensitivity. It has a 6-, 3- and 2-fold increase in sensitivity to cadmium, copper and zinc, respectively, as compared with that of wild type animals. When a fluorescent reporter transgene was coupled with this double mutant for stress detection, a 10-fold enhancement of sensitivity to cadmium over the wild type strain was observed. These transgenic animals, superior to most of the model organisms currently used in bioassays for environmental pollutants, offer a fast and economic approach to reveal the bioavailability of toxic substance in field samples. This study also demonstrates that combination of genetic mutations and transgenesis is a viable approach to identify sensitive indicator animals for environmental monitoring.

  7. Improvement of heavy metal stress and toxicity assays by coupling a transgenic reporter in a mutant nematode strain

    International Nuclear Information System (INIS)

    Chu, K.-W.; Chan, Shirley K.W.; Chow, King L.

    2005-01-01

    Previous studies have demonstrated that wild type Caenorhabditis elegans displays high sensitivity to heavy metals in a lethality test at a level comparable to that of other bioindicator organisms. Taking advantage of the genetics of this model organism, we have tested a number of mutant strains for enhanced sensitivity in heavy metal induced lethality and stress response. These mutants are defective in genes controlling dauer formation, longevity or response to reactive oxygen species (ROS). Among the tested mutants, a double mutant daf-16 unc-75 strain was identified to have superior sensitivity. It has a 6-, 3- and 2-fold increase in sensitivity to cadmium, copper and zinc, respectively, as compared with that of wild type animals. When a fluorescent reporter transgene was coupled with this double mutant for stress detection, a 10-fold enhancement of sensitivity to cadmium over the wild type strain was observed. These transgenic animals, superior to most of the model organisms currently used in bioassays for environmental pollutants, offer a fast and economic approach to reveal the bioavailability of toxic substance in field samples. This study also demonstrates that combination of genetic mutations and transgenesis is a viable approach to identify sensitive indicator animals for environmental monitoring

  8. Lipase production from a wild (LPF-5) and a mutant (HN1) strain of ...

    African Journals Online (AJOL)

    Lipase production from a wild (LPF-5) and a mutant (HN1) strain of Aspergillus niger. ... Several physical parameters (carbon source, nitrogen source, pH, ... for the development of industrial biotechnology for production of extracellular lipase.

  9. Isolation of UV-sensitive mutants of mouse L5178Y cells by a cell suspension spotting method

    International Nuclear Information System (INIS)

    Shiomi, T.; Hieda-Shiomi, N.; Sato, K.

    1982-01-01

    We have isolated 56 UV-sensitive mutant clones from a mouse L51 T/t line of L5178Y cells by a cell suspension spotting method. Five mutants have also been isolated from L51 T/t and L5178Y cells by the method reported by Thompson and coworkers. We divided the mutants into two groups, highly sensitive and moderately sensitive mutants, according to their sensitivity to UV irradiation. Fifty-eight mutants were highly sensitive and three were moderately sensitive to UV. The reconstruction experiments indicate that more than 90% of highly sensitive mutants were recovered by the cell suspension spotting method. Frequencies of recovered mutants highly sensitive to UV increased with increasing dose of mutagens. Recovered mutant frequency reached 10(-2) after treatment with 1.5 micrograms/ml of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) (survival 0.2%). Eight UV-sensitive mutants were divided into four complementation groups. These mutants were 2-6 times more sensitive to UV than parental L51 T/t cells in terms of D37 (dose required to reduce survival to 37%). Four representative UV-sensitive mutants which are classified into different complementation groups were examined for their sensitivity to killing by UV, 4-nitroquinoline-1-oxide (4NQO), mitomycin C (MMC), X-rays, and MNNG. All four classes of mutants were found to be cross-sensitive to UV, 4NQO, and MMC, but not sensitive to X-rays and MNNG

  10. DNA binding properties of dioxin receptors in wild-type and mutant mouse hepatoma cells

    International Nuclear Information System (INIS)

    Cuthill, S.; Poellinger, L.

    1988-01-01

    The current model of action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) entails stimulation of target gene transcription via the formation of dioxin-receptor complexes and subsequent accumulation of the complexes within the cell nucleus. Here, the authors have analyzed the DNA binding properties of the dioxin receptor in wild-type mouse hepatoma (Hepa 1c1c7) cells and a class of nonresponsive mutant cells which fail to accumulate dioxin-receptor complexes within the nucleus in vivo. In vitro, both the wild-type and mutant [ 3 H]dioxin-receptor complexes exhibited low affinity for DNA-cellulose (5-8% and around 4% retention, respectively) in the absence of prior biochemical manipulations. However, following chromatography on heparin-Sepharose, the wild-type but not the mutant dioxin receptor was transformed to a species with an increased affinity for DNA (40-50% retention on DNA-cellulose). The gross molecular structure of the mutant, non DNA binding dioxin receptor did not appear to be altered as compared to that of the wild-type receptor. These results imply that the primary deficiency in the mutant dioxin receptor form may reside at the DNA binding level and that, in analogy to steroid hormone receptors, DNA binding of the receptor may be an essential step in the regulation of target gene transcription by dioxin

  11. Characterization of a cold-adapted esterase and mutants from a psychotolerant Pseudomonas sp. strain.

    Science.gov (United States)

    Dong, Juan; Gasmalla, Mohammed A A; Zhao, Wei; Sun, Jingtao; Liu, Wenyu; Wang, Mingming; Han, Liang; Yang, Ruijin

    2017-09-01

    A cold-adapted esterase-producing strain named T1-39 was isolated from Glacier No. 1, Tianshan, People's Republic of China and identified as Pseudomonas sp. from 16S rRNA sequence analysis. The esterase (EstT1-39) secreted by this strain preferentially hydrolyzed esters of glycerol with short- and medium-chain fatty acids. Mutants of T1-39 were generated by the atmospheric and room temperature plasma method and screened for enhanced esterase activity. Among all the mutants, strain TB11 had 4.45-fold higher esterase productivity than T1-39, with high genetic stability over 10 generations of continuous cultivation. Maximum activity of EstT1-39 and EstTB11 was observed at 30 ℃, pH 9.0 and 25 ℃, pH 8.5, respectively. EstTB11 was thermally more stable (50 ℃ for 1 H) and active over a broader pH range than EstT1-39. EstTB11 also retained 38% of its maximal activity at 0 ℃ and was found to be able to hydrolyze milk fats into short- and medium-chain fatty acids at 4 ℃. The characteristics of EstT1-39 made it a cold-adapted enzyme and the EstTB11 from the mutant, with its higher activity at lower temperatures, may be suitable for the production of aromas and flavors in the dairy industry. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  12. Booster vaccination with safe, modified, live-attenuated mutants of Brucella abortus strain RB51 vaccine confers protective immunity against virulent strains of B. abortus and Brucella canis in BALB/c mice.

    Science.gov (United States)

    Truong, Quang Lam; Cho, Youngjae; Kim, Kiju; Park, Bo-Kyoung; Hahn, Tae-Wook

    2015-11-01

    Brucella abortus attenuated strain RB51 vaccine (RB51) is widely used in prevention of bovine brucellosis. Although vaccination with this strain has been shown to be effective in conferring protection against bovine brucellosis, RB51 has several drawbacks, including residual virulence for animals and humans. Therefore, a safe and efficacious vaccine is needed to overcome these disadvantages. In this study, we constructed several gene deletion mutants (ΔcydC, ΔcydD and ΔpurD single mutants, and ΔcydCΔcydD and ΔcydCΔpurD double mutants) of RB51 with the aim of increasing the safety of the possible use of these mutants as vaccine candidates. The RB51ΔcydC, RB51ΔcydD, RB51ΔpurD, RB51ΔcydCΔcydD and RB51ΔcydCΔpurD mutants exhibited significant attenuation of virulence when assayed in murine macrophages in vitro or in BALB/c mice. A single intraperitoneal immunization with RB51ΔcydC, RB51ΔcydD, RB51ΔcydCΔcydD or RB51ΔcydCΔpurD mutants was rapidly cleared from mice within 3 weeks, whereas the RB51ΔpurD mutant and RB51 were detectable in spleens until 4 and 7 weeks, respectively. Vaccination with a single dose of RB51 mutants induced lower protective immunity in mice than did parental RB51. However, a booster dose of these mutants provided significant levels of protection in mice against challenge with either the virulent homologous B. abortus strain 2308 or the heterologous Brucella canis strain 26. In addition, these mutants were found to induce a mixed but T-helper-1-biased humoral and cellular immune response in immunized mice. These data suggest that immunization with a booster dose of attenuated RB51 mutants provides an attractive strategy to protect against either bovine or canine brucellosis.

  13. Impaired cholesterol esterification in primary brain cultures of the lysosomal cholesterol storage disorder (LCSD) mouse mutant

    International Nuclear Information System (INIS)

    Patel, S.C.; Suresh, S.; Weintroub, H.; Brady, R.O.; Pentchev, P.G.

    1987-01-01

    Esterification of cholesterol was investigated in primary neuroglial cultures obtained from newborn lysosomal cholesterol storage disorder (LCSD) mouse mutants. An impairment in 3 H-oleic acid incorporation into cholesteryl esters was demonstrated in cultures of homozygous LCSD brain. Primary cultures derived from other phenotypically normal pups of the carrier breeders esterified cholesterol at normal levels or at levels which were intermediary between normal and deficient indicating a phenotypic expression of the LCSD heterozygote genotype. These observations on LCSD mutant brain cells indicate that the defect in cholesterol esterification is closely related to the primary genetic defect and is expressed in neuroglial cells in culture

  14. Induction of Aspergillus oryzae mutant strains producing increased levels of α-amylase by gamma-irradiation

    International Nuclear Information System (INIS)

    Ito, Hitoshi; Nessa, Azizun

    1996-01-01

    Spores of Aspergillus oryzae IAM 2630 were suspended in 0.067 m phosphate buffer and irradiated with gamma rays. Spores were incubated for 7 days and colony mutants counted by observing colour change compared to normal colours. α-amylase activities of the normal and mutant colonies were assayed. DNA assay of the spores was also carried out, after culture on different plating media. Enzyme production increased 2-5 times with increasing radiation dose. Increased spore size and DNA content was also observed in mutant strains with higher enzyme production suggesting that enzyme production is genetically controlled. Ultraviolet radiation did not appear to induce higher frequency of mutation. (UK)

  15. Induction of Aspergillus oryzae mutant strains producing increased levels of {alpha}-amylase by gamma-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hitoshi; Nessa, Azizun [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-12-01

    Spores of Aspergillus oryzae IAM 2630 were suspended in 0.067 m phosphate buffer and irradiated with gamma rays. Spores were incubated for 7 days and colony mutants counted by observing colour change compared to normal colours. {alpha}-amylase activities of the normal and mutant colonies were assayed. DNA assay of the spores was also carried out, after culture on different plating media. Enzyme production increased 2-5 times with increasing radiation dose. Increased spore size and DNA content was also observed in mutant strains with higher enzyme production suggesting that enzyme production is genetically controlled. Ultraviolet radiation did not appear to induce higher frequency of mutation. (UK).

  16. A γA-Crystallin Mouse Mutant Secc with Small Eye, Cataract and Closed Eyelid.

    Directory of Open Access Journals (Sweden)

    Man Hei Cheng

    Full Text Available Cataract is the most common cause of visual loss in humans. A spontaneously occurred, autosomal dominant mouse mutant Secc, which displayed combined features of small eye, cataract and closed eyelid was discovered in our laboratory. In this study, we identified the mutation and characterized the cataract phenotype of this novel Secc mutant. The Secc mutant mice have eyelids that remain half-closed throughout their life. The mutant lens has a significant reduction in size and with opaque spots clustered in the centre. Histological analysis showed that in the core region of the mutant lens, the fiber cells were disorganized and clefts and vacuoles were observed. The cataract phenotype was evident from new born stage. We identified the Secc mutation by linkage analysis using whole genome microsatellite markers and SNP markers. The Secc locus was mapped at chromosome 1 flanked by SNPs rs3158129 and rs13475900. Based on the chromosomal position, the candidate cataract locus γ-crystallin gene cluster (Cryg was investigated by sequencing. A single base deletion (299delG in exon 3 of Cryga which led to a frame-shift of amino acid sequence from position 91 was identified. As a result of this mutation, the sequences of the 3rd and 4th Greek-key motifs of the γA-crystallin are replaced with an unrelated C-terminal peptide of 75 residues long. Coincidentally, the point mutation generated a HindIII restriction site, allowing the identification of the CrygaSecc mutant allele by RFLP. Western blot analysis of 3-week old lenses showed that the expression of γ-crystallins was reduced in the CrygaSecc mutant. Furthermore, in cell transfection assays using CrygaSecc mutant cDNA expression constructs in 293T, COS-7 and human lens epithelial B3 cell lines, the mutant γA-crystallins were enriched in the insoluble fractions and appeared as insoluble aggregates in the transfected cells. In conclusion, we have demonstrated that the Secc mutation leads to the

  17. Initial locomotor sensitivity to cocaine varies widely among inbred mouse strains.

    Science.gov (United States)

    Wiltshire, T; Ervin, R B; Duan, H; Bogue, M A; Zamboni, W C; Cook, S; Chung, W; Zou, F; Tarantino, L M

    2015-03-01

    Initial sensitivity to psychostimulants can predict subsequent use and abuse in humans. Acute locomotor activation in response to psychostimulants is commonly used as an animal model of initial drug sensitivity and has been shown to have a substantial genetic component. Identifying the specific genetic differences that lead to phenotypic differences in initial drug sensitivity can advance our understanding of the processes that lead to addiction. Phenotyping inbred mouse strain panels are frequently used as a first step for studying the genetic architecture of complex traits. We assessed locomotor activation following a single, acute 20 mg/kg dose of cocaine (COC) in males from 45 inbred mouse strains and observed significant phenotypic variation across strains indicating a substantial genetic component. We also measured levels of COC, the active metabolite, norcocaine and the major inactive metabolite, benzoylecgonine, in plasma and brain in the same set of inbred strains. Pharmacokinetic (PK) and behavioral data were significantly correlated, but at a level that indicates that PK alone does not account for the behavioral differences observed across strains. Phenotypic data from this reference population of inbred strains can be utilized in studies aimed at examining the role of psychostimulant-induced locomotor activation on drug reward and reinforcement and to test theories about addiction processes. Moreover, these data serve as a starting point for identifying genes that alter sensitivity to the locomotor stimulatory effects of COC. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  18. The mutant strain of ZHJ6 degrading organophosphorous pesticide by 60Co-γ irradiation

    International Nuclear Information System (INIS)

    Zhao Renbang; Chi Jian; He Yi

    2013-01-01

    The strain of Penicillium oxalicum ZHJ6 that can degrade methamidophos was employed to obtain the mutant stain which has higher degradation rate than original strain by 60 Co-γ irradiation. Results showed that the Penicillium oxalicum ZHJ6 was sensitive to 60 Co-γ irradiation, and was easy to be killed by 60 Co-γ irradiation. Under the absorbed dose of 2.1 kGy, the survival rate of the strain was 0.04%. Two strains of A17 and A18 were obtained from the irradiated strains after first- and second- screening and the degradation rate of methamidophos of A17 and A18 strains were 10% higher than that of A0 strain (original stain). Moreover, the abilities to degrade folimat, phoxim and glyphosate were improved. Through 5 generations, the variation coefficient in degradation rate of methamidophos in the 6th day was 1.2%, showing that the new strains had hereditary stability. (authors)

  19. Genomic Locus Modulating IOP in the BXD RI Mouse Strains

    Directory of Open Access Journals (Sweden)

    Rebecca King

    2018-05-01

    Full Text Available Intraocular pressure (IOP is the primary risk factor for developing glaucoma, yet little is known about the contribution of genomic background to IOP regulation. The present study leverages an array of systems genetics tools to study genomic factors modulating normal IOP in the mouse. The BXD recombinant inbred (RI strain set was used to identify genomic loci modulating IOP. We measured the IOP in a total of 506 eyes from 38 different strains. Strain averages were subjected to conventional quantitative trait analysis by means of composite interval mapping. Candidate genes were defined, and immunohistochemistry and quantitative PCR (qPCR were used for validation. Of the 38 BXD strains examined the mean IOP ranged from a low of 13.2mmHg to a high of 17.1mmHg. The means for each strain were used to calculate a genome wide interval map. One significant quantitative trait locus (QTL was found on Chr.8 (96 to 103 Mb. Within this 7 Mb region only 4 annotated genes were found: Gm15679, Cdh8, Cdh11 and Gm8730. Only two genes (Cdh8 and Cdh11 were candidates for modulating IOP based on the presence of non-synonymous SNPs. Further examination using SIFT (Sorting Intolerant From Tolerant analysis revealed that the SNPs in Cdh8 (Cadherin 8 were predicted to not change protein function; while the SNPs in Cdh11 (Cadherin 11 would not be tolerated, affecting protein function. Furthermore, immunohistochemistry demonstrated that CDH11 is expressed in the trabecular meshwork of the mouse. We have examined the genomic regulation of IOP in the BXD RI strain set and found one significant QTL on Chr. 8. Within this QTL, there is one good candidate gene, Cdh11.

  20. Preliminary research on morphological differentiation of avilamycin high-yield mutant strain H15

    International Nuclear Information System (INIS)

    Liang Xinle; Jin Yingyan; Chen Ming; Zhang Hong

    2010-01-01

    Morphological differentiation characters such as colony, sporotrichial, and conidiophores of mutant H15, which was derived from Streptomyces viridochromogenes 4.1119 treated with 60 Co γ-rays irradiation, were investigated by scanning electron microscope and fluorescence microscope. The results showed that mutant H15 was remarkable variation from the strain 4.1119. Cultured on agar surface, H15 had a grayish-whitish-green colony, linear sporotrichial, smooth and round conidiophore without any spike, whereas strain 4.1119 had spiral sporotrichial and round conidiophore with spike on the surface. In the submerged cultures, differentiation process of mycelia pellet of H15 was also different. Spores germinated as a compartmentalized mycelium, the young compartmentalized mycelium started to form pellets which grew in a radial pattern. After apoptosis took place in the center of the pellets, the pellet diameter growth arrested. Compared with the strain 4.1119, H15 required a long developing course for hyphae clustering and pellets formation (at 48 h, φ 245 μm). The stage of pellet arrest or apoptosis in the pellet centre were extended, which would benefit the avilamycin accumulation since the antibiotic was mainly produced at the same time. These suggested that pellet formation kinetics, relational balance between pellet diameter enlargement and mycelia apoptosis in the pellet arrest stage were key factors to avilamyin accumulation in submerged cultures of Streptomyces viridoehrongenes H15. (authors)

  1. The phenotype of FancB-mutant mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Kim, Tae Moon; Ko, Jun Ho; Choi, Yong Jun; Hu Lingchuan; Hasty, Paul

    2011-01-01

    Fanconi anemia (FA) is a rare autosomal recessive disease characterized by bone marrow failure, developmental defects and cancer. There are multiple FA genes that enable the repair of interstrand crosslinks (ICLs) in coordination with a variety of other DNA repair pathways in a way that is poorly understood. Here we present the phenotype of mouse embryonic stem (ES) cells mutated for FancB. We found FancB-mutant cells exhibited reduced cellular proliferation, hypersensitivity to the crosslinking agent mitomycin C (MMC), increased spontaneous and MMC-induced chromosomal abnormalities, reduced spontaneous sister chromatid exchanges (SCEs), reduced gene targeting, reduced MMC-induced Rad51 foci and absent MMC-induced FancD2 foci. Since FancB is on the X chromosome and since ES cells are typically XY, FancB is an excellent target for an epistatic analysis to elucidate FA's role in ICL repair.

  2. Evaluation of symbiotic performance of some mutant lines of soybean inoculated with two bradyrhizobium japonicum strains using 15N technique

    International Nuclear Information System (INIS)

    Kurdali, F.; Mir-Ali, N.; Al-Nabulsi, I.

    2002-11-01

    A pot experiment was conducted to study the symbiotic performance of two soybean varieties and some of their mutants (that were obtained as a result of a previous mutation breeding program) with two bradyrhizobium japonicum strains (RG and FA3) using 15 N isotopic dilution method. Random amplified polymorphic DNA technique (RAPD) was used to study the genetic relationships among the soybean genotypes and to make sure that the two rhizobial strains are different. The 25 random primers used discriminated the different soybean genotypes and the dendrogram resultants from shared polymorphic fragments put each variety and its mutants in two separate clusters asserting that the mutants and their mother lines are different. Both strains of B. japonicum were able to form effective nodules on all soybean plants. However, number of nodules, dry matter yield and N-uptake from the available sources by soybeans were affected by both plant genotype and rhizobial strains. N 2 -fixation was affected to a large extent by different strain and plant genotype combinations. Percentage of fixed N 2 (N dfa) ranged between 35 and 49%; whereas, the actual amounts of fixed N 2 were between 105 and 210 mg N/pot. Amounts of N 2 -fixed by FA3 strain were higher than of RG in both soybean varieties, whereas, the latter strain showed higher performance in the mutant lines. The results showed that total plant N estimation may not be a sufficient indicator for high N 2 -fixation. the results also showed that it is very important to determine both the amount of nitrogen derived from N 2 -fixation and N derived from soil for evaluating the symbiotic performance ability. Moreover, the performance of symbiotic N 2 -fixation in soybean was shown to depend on both plant genotype and rhizobial strain and the amount of N 2 -fixation can be increased by combining the best plant genotypes and the most adapted strain. (author)

  3. Simultaneous analysis of multiple Mycobacterium tuberculosis knockdown mutants in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Antje Blumenthal

    2010-12-01

    Full Text Available Mycobacterium tuberculosis (Mtb represents one of the most persistent bacterial threats to human health and new drugs are needed to limit its impact. Conditional knockdown mutants can help validate new drug targets, but the analysis of individual mutants is laborious and time consuming. Here, we describe quantitative DNA tags (qTags and their use to simultaneously analyze conditional Mtb knockdown mutants that allowed silencing the glyoxylate and methylcitrate cycles (via depletion of isocitrate lyase, ICL, the serine protease Rv3671c, and the core subunits of the mycobacterial proteasome, PrcB and PrcA. The impact of gene silencing in multi-strain cultures was determined by measuring the relative abundance of mutant-specific qTags with real-time PCR. This achieved accurate quantification over a broad range of qTag abundances and depletion of ICL, Rv3671c, or PrcBA resulted in the expected impairment of growth of Mtb with butyrate as the primary carbon source, survival during oxidative stress, acid stress and starvation. The impact of depleting ICL, Rv3671c, or PrcBA in multi-strain mouse infections was analyzed with two approaches. We first measured the relative abundance of mutant-specific qTags in total chromosomal DNA isolated from bacteria that were recovered from infected lungs on agar plates. We then developed a two-step amplification procedure, which allowed us to measure the abundances of individual mutants directly in infected lung tissue. Both strategies confirmed that inactivation of Rv3671c and PrcBA severely reduced persistence of Mtb in mice. The multi-strain infections furthermore suggested that silencing ICL not only prevented growth of Mtb during acute infections but also prevented survival of Mtb during chronic infections. Analyses of the ICL knockdown mutant in single-strain infections confirmed this and demonstrated that silencing of ICL during chronic infections impaired persistence of Mtb to the extent that the pathogen

  4. The first mouse mutants of D14Abb1e (Fam208a) show that it is critical for early development

    Czech Academy of Sciences Publication Activity Database

    Harten, S.K.; Bruxner, T.J.; Bharti, V.; Blewitt, M.; Nguyen, T.M.T.; Whitelaw, E.; Epp, Trevor

    2014-01-01

    Roč. 25, 7-8 (2014), s. 293-303 ISSN 0938-8990 Institutional support: RVO:68378050 Keywords : embryogenesis * forward genetics * mouse mutant Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.068, year: 2014

  5. Combinational deletion of three membrane protein-encoding genes highly attenuates yersinia pestis while retaining immunogenicity in a mouse model of pneumonic plague.

    Science.gov (United States)

    Tiner, Bethany L; Sha, Jian; Kirtley, Michelle L; Erova, Tatiana E; Popov, Vsevolod L; Baze, Wallace B; van Lier, Christina J; Ponnusamy, Duraisamy; Andersson, Jourdan A; Motin, Vladimir L; Chauhan, Sadhana; Chopra, Ashok K

    2015-04-01

    Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants. While the Δail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the Δlpp Δail double mutant and the Δlpp ΔmsbB Δail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD50) equivalent to 6,800 LD50s of WT CO92. The mutant-infected animals developed balanced TH1- and TH2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD50s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the Δlpp ΔmsbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a

  6. A New Bacillus licheniformis Mutant Strain Producing Serine Protease Efficient for Hvdrolvqis of Sov Meal Proteins.

    Science.gov (United States)

    Kostyleva, E V; Sereda, A S; Velikoretskaya, I A; Nefedova, L I; Sharikov, A Yu; Tsurikova, N V; Lobanov, N S; Semenova, M V; Sinitsyn, A P

    2016-07-01

    Induced mutagenesis with y-irradiation of the industrial strain Bacillus licheniformis-60 VKM B-2366,D was used to obtain a new highly active producer of an extracellular serine protease, Bacillus licheni- formis7 145. Samples of dry.concentrated preparations of serine protease produced by the original and mutant strains were obtained, and identity of their protein composition was'established. Alkaline serine protease sub- tilisin DY was the main component of the preparations. The biochemical and physicochemical properties of the Protolkheterm-145 enzyme preparation obtained from the mutant strain were studied. It exhibited pro- teolytic activity (1.5 times higher than the preparation from the initial strain) within broad ranges of pH (5- 11) and temperature (30-70'C).-Efficient hydrolysis of extruded soy meal protein at high concentrations (2 to 50%) in-the reaction mixture was.the main advantage of the Protolikheterm 145 preparation. Compared to,. the preparation obtained using the initial strain, the new preparation with increased proteolytic-activity pro- vided for more complete hydrolysis of the main non-nutritious soy,proteins.(glycinin and 0-conglycinin) with the yield of soluble protein increased by 19-28%, which decreased the cost of bioconversion of the protein- aceous material and indicated promise of the new preparation in resource-saving technologies for processing soy meals and cakes.

  7. The phenotype of FancB-mutant mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Moon; Ko, Jun Ho; Choi, Yong Jun; Hu Lingchuan [Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245 (United States)

    2011-07-01

    Fanconi anemia (FA) is a rare autosomal recessive disease characterized by bone marrow failure, developmental defects and cancer. There are multiple FA genes that enable the repair of interstrand crosslinks (ICLs) in coordination with a variety of other DNA repair pathways in a way that is poorly understood. Here we present the phenotype of mouse embryonic stem (ES) cells mutated for FancB. We found FancB-mutant cells exhibited reduced cellular proliferation, hypersensitivity to the crosslinking agent mitomycin C (MMC), increased spontaneous and MMC-induced chromosomal abnormalities, reduced spontaneous sister chromatid exchanges (SCEs), reduced gene targeting, reduced MMC-induced Rad51 foci and absent MMC-induced FancD2 foci. Since FancB is on the X chromosome and since ES cells are typically XY, FancB is an excellent target for an epistatic analysis to elucidate FA's role in ICL repair.

  8. Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet

    OpenAIRE

    Vanderperre, Beno?t; Herzig, S?bastien; Krznar, Petra; H?rl, Manuel; Ammar, Zeinab; Montessuit, Sylvie; Pierredon, Sandra; Zamboni, Nicola; Martinou, Jean-Claude

    2016-01-01

    Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic p...

  9. An attenuated Shigella mutant lacking the RNA-binding protein Hfq provides cross-protection against Shigella strains of broad serotype.

    Science.gov (United States)

    Mitobe, Jiro; Sinha, Ritam; Mitra, Soma; Nag, Dhrubajyoti; Saito, Noriko; Shimuta, Ken; Koizumi, Nobuo; Koley, Hemanta

    2017-07-01

    Few live attenuated vaccines protect against multiple serotypes of bacterial pathogen because host serotype-specific immune responses are limited to the serotype present in the vaccine strain. Here, immunization with a mutant of Shigella flexneri 2a protected guinea pigs against subsequent infection by S. dysenteriae type 1 and S. sonnei strains. This deletion mutant lacked the RNA-binding protein Hfq leading to increased expression of the type III secretion system via loss of regulation, resulting in attenuation of cell viability through repression of stress response sigma factors. Such increased antigen production and simultaneous attenuation were expected to elicit protective immunity against Shigella strains of heterologous serotypes. Thus, the vaccine potential of this mutant was tested in two guinea pig models of shigellosis. Animals vaccinated in the left eye showed fewer symptoms upon subsequent challenge via the right eye, and even survived subsequent intestinal challenge. In addition, oral vaccination effectively induced production of immunoglobulins without severe side effects, again protecting all animals against subsequent intestinal challenge with S. dysenteriae type 1 or S. sonnei strains. Antibodies against common virulence proteins and the O-antigen of S. flexneri 2a were detected by immunofluorescence microscopy. Reaction of antibodies with various strains, including enteroinvasive Escherichia coli, suggested that common virulence proteins induced protective immunity against a range of serotypes. Therefore, vaccination is expected to cover not only the most prevalent serotypes of S. sonnei and S. flexneri 2a, but also various Shigella strains, including S. dysenteriae type 1, which produces Shiga toxin.

  10. An attenuated Shigella mutant lacking the RNA-binding protein Hfq provides cross-protection against Shigella strains of broad serotype.

    Directory of Open Access Journals (Sweden)

    Jiro Mitobe

    2017-07-01

    Full Text Available Few live attenuated vaccines protect against multiple serotypes of bacterial pathogen because host serotype-specific immune responses are limited to the serotype present in the vaccine strain. Here, immunization with a mutant of Shigella flexneri 2a protected guinea pigs against subsequent infection by S. dysenteriae type 1 and S. sonnei strains. This deletion mutant lacked the RNA-binding protein Hfq leading to increased expression of the type III secretion system via loss of regulation, resulting in attenuation of cell viability through repression of stress response sigma factors. Such increased antigen production and simultaneous attenuation were expected to elicit protective immunity against Shigella strains of heterologous serotypes. Thus, the vaccine potential of this mutant was tested in two guinea pig models of shigellosis. Animals vaccinated in the left eye showed fewer symptoms upon subsequent challenge via the right eye, and even survived subsequent intestinal challenge. In addition, oral vaccination effectively induced production of immunoglobulins without severe side effects, again protecting all animals against subsequent intestinal challenge with S. dysenteriae type 1 or S. sonnei strains. Antibodies against common virulence proteins and the O-antigen of S. flexneri 2a were detected by immunofluorescence microscopy. Reaction of antibodies with various strains, including enteroinvasive Escherichia coli, suggested that common virulence proteins induced protective immunity against a range of serotypes. Therefore, vaccination is expected to cover not only the most prevalent serotypes of S. sonnei and S. flexneri 2a, but also various Shigella strains, including S. dysenteriae type 1, which produces Shiga toxin.

  11. Characterization and increment of amylase production in mutant strains of Iranian native Bacillus licheniformis

    Directory of Open Access Journals (Sweden)

    Mohsen Mobini-Dehkordi

    2017-03-01

    Results: In this study, two interesting mutant strains were isolated and named B.L.2.M.1 and B.L.2.M.2. Mutations caused many changes in bacteria such as cell growth speed and enzyme production content. Differences in cell growth, production of amylase and other characters were significant at 0.05 level (Pvalue

  12. MUTANT STRAIN of Bacillus subtilis IFBG MC-1 WITH INCREASED TRYPTOPHAN SYNTHESIS

    Directory of Open Access Journals (Sweden)

    A. F. Tkachenko

    2013-12-01

    Full Text Available Scientific research of essential amino acids biotechnology is directed both to create optimum conditions for producer’s cultivation and economically viable raw materials selection for these technologies, so as breeding the more productive microorganisms strains capable of extracellular producing amino acids. For successful microbial synthesis it is necessary to have an excellent crop’s metabolism knowledge and ensure that the composition of growth medium have no repressing substances. Bacterial cultures from «Collection microorganism’s stains and plants line for food and agriculture biotechnology» from Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine have been studied. Tryptophan producer Bacillus subtilis have been selected, which accumulated the greatest amount of this amino acid in the cultivation liquid. The optimal culture producer conditions were selected. Using selection methods, namely mutagenesis with UV irradiation and sequential stepwise selection, mutant strain Bacillus subtilis IFBG MC-1 were obtained which produced nearly 50% more tryptophan (13.9 g/l than the parent strain.

  13. Effect of varying temperature on growth, morphology and soluble protein content of div I and div II mutant strains of bacillus sub tills

    International Nuclear Information System (INIS)

    Ahmed, A.; Sabri, A.N.

    2004-01-01

    In B.subtilis, cell division is controlled by div-genes which have been mapped on its circular chromosome. In the present work, div-mutant strains 1A316(div II), 1A317 and 1A318 (div I) were studied. These strains exhibited temperature sensitive cell division mutations. Colony morphology, cell morphology, staining behavior, growth rate and protein content of PY79 (wild type) and div-mutant strains (1A316, 1A317, 1A318) was studied at different temperatures ( 25 deg. Centi grade and 42 deg. with varying incubation periods(4, 16, 24, 48, 72,96 hrs). div-mutants differ from wild type (PY79) in colony morphology. Colony margin in PY79 was entire while in the div strains it is undulate. Staining behavior of cells as well as cell morphology i.e., cell size, cell types, formation of filaments/minicells were affected by high temperature. At higher temperature (42 deg. Centi grade), div-mutants undergo more severe lysis and degeneration as compare to wild type (PY79). Defective spores were produced by div-mutants at 25 deg. Centi grade and 42 deg. Centi grade. Tetrazolium overlay test was performed at 37 deg. Centi grade and 42 deg. Centi grade to check the spore germination ability of wild type and div-mutants. In 1A318, defective spores were produced at 37 deg. Centi grade, div-mutant was checked after 24 and 96 hrs at different temperatures (25, 37 and 42 deg. Centi grade). At all temperatures protein content were more in PY79 as compare to div-mutants. Also at 25 and 42 deg. Centi grade, protein content was more as compare to 37 deg. Centi grade. Protein contents was reduced at sporulation stages. Thus cell division mutations affect cell morphology, sporulation and germination processes in B.subtilis and thus are multifaceted mutations. (author)

  14. Improved hydrogen production by uptake hydrogenase deficient mutant strain of Rhodobacter sphaeroides O.U.001

    Energy Technology Data Exchange (ETDEWEB)

    Kars, Goekhan; Guenduez, Ufuk; Yuecel, Meral [Department of Biological Sciences, Middle East Technical University, 06531 Ankara (Turkey); Rakhely, Gabor; Kovacs, Kornel L. [Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged (Hungary); Eroglu, Inci [Department of Chemical Engineering, Middle East Technical University, 06531 Ankara (Turkey)

    2008-06-15

    Rhodobacter sphaeroides O.U.001 is a purple non-sulfur bacterium producing hydrogen under photoheterotrophic conditions. Hydrogen is produced by Mo-nitrogenase enzyme and substantial amount of H{sub 2} is reoxidized by a membrane-bound uptake hydrogenase in the wild type strain. To improve the hydrogen producing capacity of the cells, a suicide vector containing a gentamicin cassette in the hupSL genes was introduced into R. sphaeroiodes O.U.001 and the uptake hydrogenase genes were destroyed by site directed mutagenesis. The correct integration of the construct was confirmed by uptake hydrogenase activity measurement, PCR and subsequent sequence analysis. The wild type and the mutant cells showed similar growth patterns but the total volume of hydrogen gas evolved by the mutant was 20% higher than that of the wild type strain. This result demonstrated that the hydrogen produced by the nitrogenase was not consumed by uptake hydrogenase leading to higher hydrogen production. (author)

  15. Genetic mapping of xenotropic murine leukemia virus-inducing loci in five mouse strains.

    Science.gov (United States)

    Kozak, C A; Rowe, W P

    1980-07-01

    A single mendelian gene was identified for induction of the endogenous xenotropic murine leukemia virus in five mouse strains (C57BL/10, C57L, C57BR, AKR, and BALB/c). This locus, designated Bxv-1, mapped to the same site on chromosome 1 in all strains: Id-1-Pep-3-[Bxv-1-Lp]. Thus, inducibility loci for xenotropic virus are more limited in number and chromosomal distribution than ecotropic inducibility loci. Virus expression in mice with Bxv-1 was induced by treatment of fibroblasts with 5-iododeoxyuridine or by exposure of spleen cells to a B cell mitogen, bacterial lipopolysaccharide. An analysis of the hamster X mouse somatic cell hybrids indicated that chromosome 1, alone, was sufficient for virus induction.

  16. Comparison of three methods of calculating strain in the mouse ulna in exogenous loading studies.

    Science.gov (United States)

    Norman, Stephanie C; Wagner, David W; Beaupre, Gary S; Castillo, Alesha B

    2015-01-02

    Axial compression of mouse limbs is commonly used to induce bone formation in a controlled, non-invasive manner. Determination of peak strains caused by loading is central to interpreting results. Load-strain calibration is typically performed using uniaxial strain gauges attached to the diaphyseal, periosteal surface of a small number of sacrificed animals. Strain is measured as the limb is loaded to a range of physiological loads known to be anabolic to bone. The load-strain relationship determined by this subgroup is then extrapolated to a larger group of experimental mice. This method of strain calculation requires the challenging process of strain gauging very small bones which is subject to variability in placement of the strain gauge. We previously developed a method to estimate animal-specific periosteal strain during axial ulnar loading using an image-based computational approach that does not require strain gauges. The purpose of this study was to compare the relationship between load-induced bone formation rates and periosteal strain at ulnar midshaft using three different methods to estimate strain: (A) Nominal strain values based solely on load-strain calibration; (B) Strains calculated from load-strain calibration, but scaled for differences in mid-shaft cross-sectional geometry among animals; and (C) An alternative image-based computational method for calculating strains based on beam theory and animal-specific bone geometry. Our results show that the alternative method (C) provides comparable correlation between strain and bone formation rates in the mouse ulna relative to the strain gauge-dependent methods (A and B), while avoiding the need to use strain gauges. Published by Elsevier Ltd.

  17. Genetical, cytological and physiological studies on the induced mutants with special regard to effective methods for obtaining useful mutants in perennial woody plants

    International Nuclear Information System (INIS)

    Kukimura, H.; Ikeda, F.; Fujita, H.; Maeta, T.; Nakajima, K.; Katagiri, K.; Nakahira, K.; Somegou, M.

    1975-01-01

    The study was aimed at elucidating the biological aspects of artificially induced mutations in perennial tree crops and at promoting the utilization of such mutations in a practical breeding programme. A number of mutants obtained particularly in Cryptomeria and mulberry (Morus spp.) by means of gamma radiation were examined for their practical usefulness. Doses from 7.5 to 15.0 kR were used. In mulbery, some mutant strains showed increased shoot growth, and one mutant strain showed a remarkable increase also in rooting ability. Entire leaf mutants were investigated for their breeding behaviour. None of the mutant strains showed acquired disease resistance. Changes in the number of isozyme bands and different staining intensity was observed in all the mutant strains compared to the original strains

  18. Strain-dependent Damage in Mouse Lung After Carbon Ion Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Moritake, Takashi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Proton Medical Research Center, University of Tsukuba, Tsukuba (Japan); Fujita, Hidetoshi; Yanagisawa, Mitsuru; Nakawatari, Miyako; Imadome, Kaori; Nakamura, Etsuko; Iwakawa, Mayumi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Imai, Takashi, E-mail: imait@nirs.go.jp [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2012-09-01

    Purpose: To examine whether inherent factors produce differences in lung morbidity in response to carbon ion (C-ion) irradiation, and to identify the molecules that have a key role in strain-dependent adverse effects in the lung. Methods and Materials: Three strains of female mice (C3H/He Slc, C57BL/6J Jms Slc, and A/J Jms Slc) were locally irradiated in the thorax with either C-ion beams (290 MeV/n, in 6 cm spread-out Bragg peak) or with {sup 137}Cs {gamma}-rays as a reference beam. We performed survival assays and histologic examination of the lung with hematoxylin-eosin and Masson's trichrome staining. In addition, we performed immunohistochemical staining for hyaluronic acid (HA), CD44, and Mac3 and assayed for gene expression. Results: The survival data in mice showed a between-strain variance after C-ion irradiation with 10 Gy. The median survival time of C3H/He was significantly shortened after C-ion irradiation at the higher dose of 12.5 Gy. Histologic examination revealed early-phase hemorrhagic pneumonitis in C3H/He and late-phase focal fibrotic lesions in C57BL/6J after C-ion irradiation with 10 Gy. Pleural effusion was apparent in C57BL/6J and A/J mice, 168 days after C-ion irradiation with 10 Gy. Microarray analysis of irradiated lung tissue in the three mouse strains identified differential expression changes in growth differentiation factor 15 (Gdf15), which regulates macrophage function, and hyaluronan synthase 1 (Has1), which plays a role in HA metabolism. Immunohistochemistry showed that the number of CD44-positive cells, a surrogate marker for HA accumulation, and Mac3-positive cells, a marker for macrophage infiltration in irradiated lung, varied significantly among the three mouse strains during the early phase. Conclusions: This study demonstrated a strain-dependent differential response in mice to C-ion thoracic irradiation. Our findings identified candidate molecules that could be implicated in the between-strain variance to early

  19. Methods of producing protoporphyrin IX and bacterial mutants therefor

    Science.gov (United States)

    Zhou, Jizhong; Qiu, Dongru; He, Zhili; Xie, Ming

    2016-03-01

    The presently disclosed inventive concepts are directed in certain embodiments to a method of producing protoporphyrin IX by (1) cultivating a strain of Shewanella bacteria in a culture medium under conditions suitable for growth thereof, and (2) recovering the protoporphyrin IX from the culture medium. The strain of Shewanella bacteria comprises at least one mutant hemH gene which is incapable of normal expression, thereby causing an accumulation of protoporphyrin IX. In certain embodiments of the method, the strain of Shewanella bacteria is a strain of S. loihica, and more specifically may be S. loihica PV-4. In certain embodiments, the mutant hemH gene of the strain of Shewanella bacteria may be a mutant of shew_2229 and/or of shew_1140. In other embodiments, the presently disclosed inventive concepts are directed to mutant strains of Shewanella bacteria having at least one mutant hemH gene which is incapable of normal expression, thereby causing an accumulation of protoporphyrin IX during cultivation of the bacteria. In certain embodiments the strain of Shewanella bacteria is a strain of S. loihica, and more specifically may be S. loihica PV-4. In certain embodiments, the mutant hemH gene of the strain of Shewanella bacteria may be a mutant of shew_2229 and/or shew_1140.

  20. Primary Cilia in the Murine Cerebellum and in Mutant Models of Medulloblastoma.

    Science.gov (United States)

    Di Pietro, Chiara; Marazziti, Daniela; La Sala, Gina; Abbaszadeh, Zeinab; Golini, Elisabetta; Matteoni, Rafaele; Tocchini-Valentini, Glauco P

    2017-01-01

    Cellular primary cilia crucially sense and transduce extracellular physicochemical stimuli. Cilium-mediated developmental signaling is tissue and cell type specific. Primary cilia are required for cerebellar differentiation and sonic hedgehog (Shh)-dependent proliferation of neuronal granule precursors. The mammalian G-protein-coupled receptor 37-like 1 is specifically expressed in cerebellar Bergmann glia astrocytes and participates in regulating postnatal cerebellar granule neuron proliferation/differentiation and Bergmann glia and Purkinje neuron maturation. The mouse receptor protein interacts with the patched 1 component of the cilium-associated Shh receptor complex. Mice heterozygous for patched homolog 1 mutations, like heterozygous patched 1 humans, have a higher incidence of Shh subgroup medulloblastoma (MB) and other tumors. Cerebellar cells bearing primary cilia were identified during postnatal development and in adulthood in two mouse strains with altered Shh signaling: a G-protein-coupled receptor 37-like 1 null mutant and an MB-susceptible, heterozygous patched homolog 1 mutant. In addition to granule and Purkinje neurons, primary cilia were also expressed by Bergmann glia astrocytes in both wild-type and mutant animals, from birth to adulthood. Variations in ciliary number and length were related to the different levels of neuronal and glial cell proliferation and maturation, during postnatal cerebellar development. Primary cilia were also detected in pre-neoplastic MB lesions in heterozygous patched homolog 1 mutant mice and they could represent specific markers for the development and analysis of novel cerebellar oncogenic models.

  1. Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line

    OpenAIRE

    Kumagai, Ayako; Fujita, Akira; Yokoyama, Tomoki; Nonobe, Yuki; Hasaba, Yasuhiro; Sasaki, Tsutomu; Itoh, Yumi; Koura, Minako; Suzuki, Osamu; Adachi, Shigeki; Ryo, Haruko; Kohara, Arihiro; Tripathi, Lokesh; Sanosaka, Masato; Fukushima, Toshiki

    2014-01-01

    Memantine is a non-competitive antagonist of the N-methyl-D-aspartate (NMDA) receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg) disrupted the sense of balance in the mutants. Moreover, the mu...

  2. Tauopathic changes in the striatum of A53T α-synuclein mutant mouse model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Jonathan Wills

    2011-03-01

    Full Text Available Tauopathic pathways lead to degenerative changes in Alzheimer's disease and there is evidence that they are also involved in the neurodegenerative pathology of Parkinson's disease [PD]. We have examined tauopathic changes in striatum of the α-synuclein (α-Syn A53T mutant mouse. Elevated levels of α-Syn were observed in striatum of the adult A53T α-Syn mice. This was accompanied by increases in hyperphosphorylated Tau [p-Tau], phosphorylated at Ser202, Ser262 and Ser396/404, which are the same toxic sites also seen in Alzheimer's disease. There was an increase in active p-GSK-3β, hyperphosphorylated at Tyr216, a major and primary kinase known to phosphorylate Tau at multiple sites. The sites of hyperphosphorylation of Tau in the A53T mutant mice were similar to those seen in post-mortem striata from PD patients, attesting to their pathophysiological relevance. Increases in p-Tau were not due to alterations on protein phosphatases in either A53T mice or in human PD, suggesting lack of involvement of these proteins in tauopathy. Extraction of striata with Triton X-100 showed large increases in oligomeric forms of α-Syn suggesting that α-Syn had formed aggregates the mutant mice. In addition, increased levels of p-GSK-3β and pSer396/404 were also found associated with aggregated α-Syn. Differential solubilization to measure protein binding to cytoskeletal proteins demonstrated that p-Tau in the A53T mutant mouse were unbound to cytoskeletal proteins, consistent with dissociation of p-Tau from the microtubules upon hyperphosphorylation. Interestingly, α-Syn remained tightly bound to the cytoskeleton, while p-GSK-3β was seen in the cytoskeleton-free fractions. Immunohistochemical studies showed that α-Syn, pSer396/404 Tau and p-GSK-3β co-localized with one another and was aggregated and accumulated into large inclusion bodies, leading to cell death of Substantia nigral neurons. Together, these data demonstrate an elevated state of

  3. Binding of purified and radioiodinated capsular polysaccharides from Cryptococcus neoformans serotype A strains to capsule-free mutants

    International Nuclear Information System (INIS)

    Small, J.M.; Mitchell, T.G.

    1986-01-01

    Strains 6, 15, 98, 110, and 145 of Cryptococcus neoformans serotype A vary in capsule size, animal virulence, and susceptibility to in vitro phagocytosis. The isolated capsular polysaccharides (CPSs) differ in monosaccharide composition ratios and molecular size, as determined by gel filtration. The purpose of this investigation was to characterize the binding of CPSs to capsule-free mutants of C. neoformans and to examine CPSs from these strains for differences in their ability to bind, to determine whether such differences might explain the variation in the pathobiology of these strains. CPSs were partially periodate oxidized, tyraminated, iodinated with 125 I, and used in binding studies with two capsule-free mutants of C. neoformans, strain 602 and Cap59. Binding was specific for yeast species and for polysaccharide and was saturable, which is consistent with a receptor-mediated mechanism of attachment. Binding occurred rapidly and was only slowly reversible. Binding was also independent of pH from pH 5.5 to 8, of cation concentrations, and of competition by sugars up to 1.0 M concentrations. Only a portion of CPS was capable of binding, and strains varied in the extent to which their CPS bound. CPS-15-IV (peak IV was the major polysaccharide peak on DEAE-cellulose chromatography of CPS from strain 15) had the highest proportion of binding (40%), followed by CPS from strains 98, 6, 145, 110, and 15-III (peak III was an earlier eluting fraction of CPS from strain 15). The CPSs differed similarly in their ability to competitively inhibit binding. Treatment of CPS, but not yeast cells, with proteinase XIV abolished binding without altering the CPS gross structure. Treatment of yeast cells with proteases, heat, or formaldehyde did not alter binding, and both strain 602 and Cap59 bound CPS similarly. Binding to encapsulated yeast cells was minimal

  4. Endocochlear potential generation is associated with intercellular communication in the stria vascularis: structural analysis in the viable dominant spotting mouse mutant.

    Science.gov (United States)

    Carlisle, L; Steel, K; Forge, A

    1990-11-01

    Deafness in the viable dominant spotting mouse mutant is due to a primary defect of the stria vascularis which results in absence of the positive endocochlear potential in scala media. Endocochlear potentials were measured and the structure of stria vascularis of mutants with potentials close to zero was compared with that in normal littermate controls by use of morphometric methods. The stria vascularis was significantly thinner in mutants. Marginal cells were not significantly different from controls in terms of volume density or intramembrane particle density but the network density of tight junctions was significantly reduced in the mutants. A virtual absence of gap junctions between basal cells and marginal or intermediate cells was observed, but intramembrane particle density and junctional complexes between adjacent basal cells were not different from controls. The volume density of basal cells was significantly greater in mutants. Intermediate cells accounted for a significantly smaller volume density of the stria vascularis in mutants and had a lower density of intramembrane particles than controls. Melanocytes were not identified in the stria vascularis of mutants. These results suggest that communication between marginal, intermediate and basal cells might be important to the normal function of the stria vascularis.

  5. Using the Textpresso Site-Specific Recombinases Web server to identify Cre expressing mouse strains and floxed alleles.

    Science.gov (United States)

    Condie, Brian G; Urbanski, William M

    2014-01-01

    Effective tools for searching the biomedical literature are essential for identifying reagents or mouse strains as well as for effective experimental design and informed interpretation of experimental results. We have built the Textpresso Site Specific Recombinases (Textpresso SSR) Web server to enable researchers who use mice to perform in-depth searches of a rapidly growing and complex part of the mouse literature. Our Textpresso Web server provides an interface for searching the full text of most of the peer-reviewed publications that report the characterization or use of mouse strains that express Cre or Flp recombinase. The database also contains most of the publications that describe the characterization or analysis of strains carrying conditional alleles or transgenes that can be inactivated or activated by site-specific recombinases such as Cre or Flp. Textpresso SSR complements the existing online databases that catalog Cre and Flp expression patterns by providing a unique online interface for the in-depth text mining of the site specific recombinase literature.

  6. Restoration of growth by manganese in a mutant strain of Escherichia coli lacking most known iron and manganese uptake systems

    DEFF Research Database (Denmark)

    Taudte, Nadine; German, Nadezhda; Zhu, Yong-Guan

    2016-01-01

    The interplay of manganese and iron homeostasis and oxidative stress in Escherichia coli can give important insights into survival of bacteria in the phagosome and under differing iron or manganese bioavailabilities. Here, we characterized a mutant strain devoid of all know iron/manganese-uptake ......The interplay of manganese and iron homeostasis and oxidative stress in Escherichia coli can give important insights into survival of bacteria in the phagosome and under differing iron or manganese bioavailabilities. Here, we characterized a mutant strain devoid of all know iron...

  7. The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data

    Science.gov (United States)

    Koscielny, Gautier; Yaikhom, Gagarine; Iyer, Vivek; Meehan, Terrence F.; Morgan, Hugh; Atienza-Herrero, Julian; Blake, Andrew; Chen, Chao-Kung; Easty, Richard; Di Fenza, Armida; Fiegel, Tanja; Grifiths, Mark; Horne, Alan; Karp, Natasha A.; Kurbatova, Natalja; Mason, Jeremy C.; Matthews, Peter; Oakley, Darren J.; Qazi, Asfand; Regnart, Jack; Retha, Ahmad; Santos, Luis A.; Sneddon, Duncan J.; Warren, Jonathan; Westerberg, Henrik; Wilson, Robert J.; Melvin, David G.; Smedley, Damian; Brown, Steve D. M.; Flicek, Paul; Skarnes, William C.; Mallon, Ann-Marie; Parkinson, Helen

    2014-01-01

    The International Mouse Phenotyping Consortium (IMPC) web portal (http://www.mousephenotype.org) provides the biomedical community with a unified point of access to mutant mice and rich collection of related emerging and existing mouse phenotype data. IMPC mouse clinics worldwide follow rigorous highly structured and standardized protocols for the experimentation, collection and dissemination of data. Dedicated ‘data wranglers’ work with each phenotyping center to collate data and perform quality control of data. An automated statistical analysis pipeline has been developed to identify knockout strains with a significant change in the phenotype parameters. Annotation with biomedical ontologies allows biologists and clinicians to easily find mouse strains with phenotypic traits relevant to their research. Data integration with other resources will provide insights into mammalian gene function and human disease. As phenotype data become available for every gene in the mouse, the IMPC web portal will become an invaluable tool for researchers studying the genetic contributions of genes to human diseases. PMID:24194600

  8. Transgenerational developmental effects and genomic instability after X-irradiation of preimplantation embryos: Studies on two mouse strains

    International Nuclear Information System (INIS)

    Jacquet, P.; Buset, J.; Neefs, M.; Vankerkom, J.; Benotmane, M.A.; Derradji, H.; Hildebrandt, G.; Baatout, S.

    2010-01-01

    Recent results have shown that irradiation of a single cell, the zygote or 1-cell embryo of various mouse strains, could lead to congenital anomalies in the fetuses. In the Heiligenberger strain, a link between the radiation-induced congenital anomalies and the development of a genomic instability was also suggested. Moreover, further studies showed that in that strain, both congenital anomalies and genomic instability could be transmitted to the next generation. The aim of the experiments described in this paper was to investigate whether such non-targeted transgenerational effects could also be observed in two other radiosensitive mouse strains (CF1 and ICR), using lower radiation doses. Irradiation of the CF1 and ICR female zygotes with 0.2 or 0.4 Gy did not result in a decrease of their fertility after birth, when they had reached sexual maturity. Moreover, females of both strains that had been X-irradiated with 0.2 Gy exhibited higher rates of pregnancy, less resorptions and more living fetuses. Additionally, the mean weight of living fetuses in these groups had significantly increased. Exencephaly and dwarfism were observed in CF1 fetuses issued from control and X-irradiated females. In the control group of that strain, polydactyly and limb deformity were also found. The yields of abnormal fetuses did not differ significantly between the control and X-irradiated groups. Polydactyly, exencephaly and dwarfism were observed in fetuses issued from ICR control females. In addition to these anomalies, gastroschisis, curly tail and open eye were observed at low frequencies in ICR fetuses issued from X-irradiated females. Again, the frequencies of abnormal fetuses found in the different groups did not differ significantly. In both CF1 and ICR mouse strains, irradiation of female zygotes did not result in the development of a genomic instability in the next generation embryos. Overall, our results suggest that, at the moderate doses used, developmental defects

  9. Transgenerational developmental effects and genomic instability after X-irradiation of preimplantation embryos: Studies on two mouse strains

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, P., E-mail: pjacquet@sckcen.be [Molecular and Cellular Biology, Institute for Environment, Health and Safety, SCK.CEN, Boeretang 200, B-2400 Mol (Belgium); Buset, J.; Neefs, M. [Molecular and Cellular Biology, Institute for Environment, Health and Safety, SCK.CEN, Boeretang 200, B-2400 Mol (Belgium); Vankerkom, J. [Division of Environmental Research, VITO, Boeretang 200, B-2400 Mol (Belgium); Benotmane, M.A.; Derradji, H. [Molecular and Cellular Biology, Institute for Environment, Health and Safety, SCK.CEN, Boeretang 200, B-2400 Mol (Belgium); Hildebrandt, G. [Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 9a, D-04103 Leipzig (Germany); Department of Radiotherapy, University of Rostock, Suedring 75, D-18059 Rostock (Germany); Baatout, S. [Molecular and Cellular Biology, Institute for Environment, Health and Safety, SCK.CEN, Boeretang 200, B-2400 Mol (Belgium)

    2010-05-01

    Recent results have shown that irradiation of a single cell, the zygote or 1-cell embryo of various mouse strains, could lead to congenital anomalies in the fetuses. In the Heiligenberger strain, a link between the radiation-induced congenital anomalies and the development of a genomic instability was also suggested. Moreover, further studies showed that in that strain, both congenital anomalies and genomic instability could be transmitted to the next generation. The aim of the experiments described in this paper was to investigate whether such non-targeted transgenerational effects could also be observed in two other radiosensitive mouse strains (CF1 and ICR), using lower radiation doses. Irradiation of the CF1 and ICR female zygotes with 0.2 or 0.4 Gy did not result in a decrease of their fertility after birth, when they had reached sexual maturity. Moreover, females of both strains that had been X-irradiated with 0.2 Gy exhibited higher rates of pregnancy, less resorptions and more living fetuses. Additionally, the mean weight of living fetuses in these groups had significantly increased. Exencephaly and dwarfism were observed in CF1 fetuses issued from control and X-irradiated females. In the control group of that strain, polydactyly and limb deformity were also found. The yields of abnormal fetuses did not differ significantly between the control and X-irradiated groups. Polydactyly, exencephaly and dwarfism were observed in fetuses issued from ICR control females. In addition to these anomalies, gastroschisis, curly tail and open eye were observed at low frequencies in ICR fetuses issued from X-irradiated females. Again, the frequencies of abnormal fetuses found in the different groups did not differ significantly. In both CF1 and ICR mouse strains, irradiation of female zygotes did not result in the development of a genomic instability in the next generation embryos. Overall, our results suggest that, at the moderate doses used, developmental defects

  10. Centralized mouse repositories.

    Science.gov (United States)

    Donahue, Leah Rae; Hrabe de Angelis, Martin; Hagn, Michael; Franklin, Craig; Lloyd, K C Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T

    2012-10-01

    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world.

  11. Reorganization of circuits underlying cerebellar modulation of prefrontal cortical dopamine in mouse models of autism spectrum disorder.

    Science.gov (United States)

    Rogers, Tiffany D; Dickson, Price E; McKimm, Eric; Heck, Detlef H; Goldowitz, Dan; Blaha, Charles D; Mittleman, Guy

    2013-08-01

    Imaging, clinical, and pre-clinical studies have provided ample evidence for a cerebellar involvement in cognitive brain function including cognitive brain disorders, such as autism and schizophrenia. We previously reported that cerebellar activity modulates dopamine release in the mouse medial prefrontal cortex (mPFC) via two distinct pathways: (1) cerebellum to mPFC via dopaminergic projections from the ventral tegmental area (VTA) and (2) cerebellum to mPFC via glutamatergic projections from the mediodorsal and ventrolateral thalamus (ThN md and vl). The present study compared functional adaptations of cerebello-cortical circuitry following developmental cerebellar pathology in a mouse model of developmental loss of Purkinje cells (Lurcher) and a mouse model of fragile X syndrome (Fmr1 KO mice). Fixed potential amperometry was used to measure mPFC dopamine release in response to cerebellar electrical stimulation. Mutant mice of both strains showed an attenuation in cerebellar-evoked mPFC dopamine release compared to respective wildtype mice. This was accompanied by a functional reorganization of the VTA and thalamic pathways mediating cerebellar modulation of mPFC dopamine release. Inactivation of the VTA pathway by intra-VTA lidocaine or kynurenate infusions decreased dopamine release by 50 % in wildtype and 20-30 % in mutant mice of both strains. Intra-ThN vl infusions of either drug decreased dopamine release by 15 % in wildtype and 40 % in mutant mice of both strains, while dopamine release remained relatively unchanged following intra-ThN md drug infusions. These results indicate a shift in strength towards the thalamic vl projection, away from the VTA. Thus, cerebellar neuropathologies associated with autism spectrum disorders may cause a reduction in cerebellar modulation of mPFC dopamine release that is related to a reorganization of the mediating neuronal pathways.

  12. A novel podoplanin-GFPCre mouse strain for gene deletion in lymphatic endothelial cells.

    Science.gov (United States)

    Gil, Hyea Jin; Ma, Wanshu; Oliver, Guillermo

    2018-04-01

    The lymphatic vascular system is a one-direction network of thin-walled capillaries and larger vessels covered by a continuous layer of endothelial cells responsible for maintaining fluid homeostasis. Some of the main functions of the lymphatic vasculature are to drain fluid from the extracellular spaces and return it back to the blood circulation, lipid absorption from the intestinal tract, and transport of immune cells to lymphoid organs. A number of genes controlling the development of the mammalian lymphatic vasculature have been identified in the last few years, and their functional roles started to be characterized using gene inactivation approaches in mice. Unfortunately, only few mouse Cre strains relatively specific for lymphatic endothelial cells (LECs) are currently available. In this article, we report the generation of a novel Podoplanin (Pdpn) GFPCre transgenic mouse strain using its 5' regulatory region. Pdpn encodes a transmembrane mucin-type O-glycoprotein that is expressed on the surface of embryonic and postnatal LECs, in addition to few other cell types. Our detailed characterization of this novel strain indicates that it will be a valuable additional genetic tool for the analysis of gene function in LECs. © 2018 Wiley Periodicals, Inc.

  13. Attenuation of the goose parvovirus strain B. Laboratory and field trials of the attenuated mutant for vaccination against Derzsy's disease.

    Science.gov (United States)

    Kisary, J; Derzsy, D; Meszaros, J

    1978-07-01

    Serial transfer of the goose parvovirus strain B, causal agent of Derzsy's gosling disease, in cultured goose-embryo fibroblast (GEF) resulted in a mutant (designated as Bav) apathogenic for both goose embryos and susceptible goslings. Goose embryos inoculated with the 38th or higher passages of strain B survived the infection, although the virus replicated in their organs. Susceptible goslings survived challenge with the Bav strain without showing symptoms, and developed normally. Only 4.2% of gosling progeny of parents vaccinated twice with strain Bav died after challenge with the virulent strain B goose parvovirus compared with 95% of gosling progeny of unvaccinated parents. Progeny of vaccinated and unvaccinated geese were placed on a farm on which Derzsy's disease was present. During the first month of life mortality was 7.7% in the progeny of vaccinated geese compared with 59.8% in the progeny of the unvaccinated geese. At 8 weeks of age the mean weight of the vaccinated goslings was 20% greater than for the unvaccinated goslings. These results indicate that the attenuated apathogenic Bav mutant is suitable for the immunisation of layers to protect their progeny by passive immunisation against Derzsy's disease.

  14. The genomic landscape shaped by selection on transposable elements across 18 mouse strains.

    Science.gov (United States)

    Nellåker, Christoffer; Keane, Thomas M; Yalcin, Binnaz; Wong, Kim; Agam, Avigail; Belgard, T Grant; Flint, Jonathan; Adams, David J; Frankel, Wayne N; Ponting, Chris P

    2012-06-15

    Transposable element (TE)-derived sequence dominates the landscape of mammalian genomes and can modulate gene function by dysregulating transcription and translation. Our current knowledge of TEs in laboratory mouse strains is limited primarily to those present in the C57BL/6J reference genome, with most mouse TEs being drawn from three distinct classes, namely short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs) and the endogenous retrovirus (ERV) superfamily. Despite their high prevalence, the different genomic and gene properties controlling whether TEs are preferentially purged from, or are retained by, genetic drift or positive selection in mammalian genomes remain poorly defined. Using whole genome sequencing data from 13 classical laboratory and 4 wild-derived mouse inbred strains, we developed a comprehensive catalogue of 103,798 polymorphic TE variants. We employ this extensive data set to characterize TE variants across the Mus lineage, and to infer neutral and selective processes that have acted over 2 million years. Our results indicate that the majority of TE variants are introduced though the male germline and that only a minority of TE variants exert detectable changes in gene expression. However, among genes with differential expression across the strains there are twice as many TE variants identified as being putative causal variants as expected. Most TE variants that cause gene expression changes appear to be purged rapidly by purifying selection. Our findings demonstrate that past TE insertions have often been highly deleterious, and help to prioritize TE variants according to their likely contribution to gene expression or phenotype variation.

  15. Biochemical studies of the macromolecular matrix of long bones in the Op/Orl mutant rat strain

    Energy Technology Data Exchange (ETDEWEB)

    Moczar, E; Berenholc, S; Phan-Dinh-Tuy, B; Robert, A M

    1978-01-01

    The long bones of normal and Op/Orl mutant rats were incubated with /sup 14/C-glucose and fractionated by EDTA and urea extraction. The analytical results of the various extracts suggested an increase in structural glycoprotein content and a decrease in collagen solubility in the long bones of mutants. Significant differences were found in the organic matrix composition of male and female bones of the two strains. /sup 14/C-glucose incorporation was stronger in males than in females. The presence of a glycosaminoglycan different from the chondroitinesulfate was shown in males. Basic amino acid content (lysine, arginine, histidine) was clearly higher in the insoluble residue of male bones .

  16. Biochemical studies of the macromolecular matrix of long bones in the Op/Orl mutant rat strain

    International Nuclear Information System (INIS)

    Moczar, E.; Berenholc, S.; Phan-Dinh-Tuy, B.; Robert, A.M.

    1978-01-01

    The long bones of normal and Op/Orl mutant rats were incubated with 14 C-glucose and fractionated by EDTA and urea extraction. The analytical results of the various extracts suggested an increase in structural glycoprotein content and a decrease in collagen solubility in the long bones of mutants. Significant differences were found in the organic matrix composition of male and female bones of the two strains. 14 C-glucose incorporation was stronger in males than in females. The presence of a glycosaminoglycan different from the chondroitinesulfate was shown in males. Basic amino acid content (lysine, arginine, histidine) was clearly higher in the insoluble residue of male bones

  17. Strains and Stressors: An Analysis of Touchscreen Learning in Genetically Diverse Mouse Strains

    Science.gov (United States)

    Graybeal, Carolyn; Bachu, Munisa; Mozhui, Khyobeni; Saksida, Lisa M.; Bussey, Timothy J.; Sagalyn, Erica; Williams, Robert W.; Holmes, Andrew

    2014-01-01

    Touchscreen-based systems are growing in popularity as a tractable, translational approach for studying learning and cognition in rodents. However, while mouse strains are well known to differ in learning across various settings, performance variation between strains in touchscreen learning has not been well described. The selection of appropriate genetic strains and backgrounds is critical to the design of touchscreen-based studies and provides a basis for elucidating genetic factors moderating behavior. Here we provide a quantitative foundation for visual discrimination and reversal learning using touchscreen assays across a total of 35 genotypes. We found significant differences in operant performance and learning, including faster reversal learning in DBA/2J compared to C57BL/6J mice. We then assessed DBA/2J and C57BL/6J for differential sensitivity to an environmental insult by testing for alterations in reversal learning following exposure to repeated swim stress. Stress facilitated reversal learning (selectively during the late stage of reversal) in C57BL/6J, but did not affect learning in DBA/2J. To dissect genetic factors underlying these differences, we phenotyped a family of 27 BXD strains generated by crossing C57BL/6J and DBA/2J. There was marked variation in discrimination, reversal and extinction learning across the BXD strains, suggesting this task may be useful for identifying underlying genetic differences. Moreover, different measures of touchscreen learning were only modestly correlated in the BXD strains, indicating that these processes are comparatively independent at both genetic and phenotypic levels. Finally, we examined the behavioral structure of learning via principal component analysis of the current data, plus an archival dataset, totaling 765 mice. This revealed 5 independent factors suggestive of “reversal learning,” “motivation-related late reversal learning,” “discrimination learning,” “speed to respond,” and

  18. Conditional reverse tet-transactivator mouse strains for the efficient induction of TRE-regulated transgenes in mice.

    Directory of Open Access Journals (Sweden)

    Lukas E Dow

    Full Text Available Tetracycline or doxycycline (dox-regulated control of genetic elements allows inducible, reversible and tissue specific regulation of gene expression in mice. This approach provides a means to investigate protein function in specific cell lineages and at defined periods of development and disease. Efficient and stable regulation of cDNAs or non-coding elements (e.g. shRNAs downstream of the tetracycline-regulated element (TRE requires the robust expression of a tet-transactivator protein, commonly the reverse tet-transactivator, rtTA. Most rtTA strains rely on tissue specific promoters that often do not provide sufficient rtTA levels for optimal inducible expression. Here we describe the generation of two mouse strains that enable Cre-dependent, robust expression of rtTA3, providing tissue-restricted and consistent induction of TRE-controlled transgenes. We show that these transgenic strains can be effectively combined with established mouse models of disease, including both Cre/LoxP-based approaches and non Cre-dependent disease models. The integration of these new tools with established mouse models promises the development of more flexible genetic systems to uncover the mechanisms of development and disease pathogenesis.

  19. Construction of a nontoxigenic Clostridium botulinum strain for food challenge studies.

    Science.gov (United States)

    Bradshaw, Marite; Marshall, Kristin M; Heap, John T; Tepp, William H; Minton, Nigel P; Johnson, Eric A

    2010-01-01

    Clostridium botulinum produces the most poisonous natural toxin known and is a perennial concern to the food industry and to regulatory agencies due to the potential threat of food-borne botulism. To ensure the botulinal safety of foods, rigorous food challenge testing to validate food-processing conditions and food formulations has been routinely performed. Detection of the botulinum neurotoxin is performed by using a mouse bioassay and/or in vitro assays. There has been considerable interest by the food industry and regulatory agencies in minimizing or even replacing the use of animals in these challenge studies. In addition, due to stringent select-agent regulations, the testing of various foods using toxigenic C. botulinum strains requires facilities and personnel that are certified for work with this organism. For this purpose we propose to generate sets of nontoxigenic C. botulinum strains from proteolytic and nonproteolytic groups that differ from the wild-type strains only by their inability to produce botulinum neurotoxin. In this initial study we describe the generation of a nontoxigenic mutant of C. botulinum strain 62A using the ClosTron mutagenesis system by inserting a group II intron into the botulinum neurotoxin type A gene (bont/A). The mutant clones were nontoxigenic as determined by Western blots and mouse bioassays but showed physiological characteristics, including growth properties and sporulation, that were similar to those of the parent strain in laboratory media. Additional studies will be required to evaluate comparable characteristics in various food matrices. The availability of suitable nontoxigenic C. botulinum strains for food challenge studies will be beneficial for enhancing the botulinal safety of foods as well as increasing the biosafety of workers and may eliminate the use of laboratory animals.

  20. Anaerobic respiration of Escherichia coli in the mouse intestine.

    Science.gov (United States)

    Jones, Shari A; Gibson, Terri; Maltby, Rosalie C; Chowdhury, Fatema Z; Stewart, Valley; Cohen, Paul S; Conway, Tyrrell

    2011-10-01

    The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in

  1. Pre-crisis mouse cells show strain-specific covariation in the amount of 54-kilodalton phosphoprotein and in susceptibility to transformation by simian virus 40.

    Science.gov (United States)

    Chen, S; Blanck, G; Pollack, R E

    1983-09-01

    We have used several inbred mouse strains to examine the role of the 54-kilodalton (kDa) cellular phosphoprotein in transformation by the papovavirus simian virus 40. We have measured the endogenous 54-kDa phosphoprotein in cells obtained from these inbred mouse strains. To study the effect of passage, cell cultures were measured for amount of the 54-kDa phosphoprotein at the 2nd and 12th passages. In the absence of any transforming agent, the amount of endogenous 54-kDa phosphoprotein in early pre-crisis mouse cells varied in a strain-specific way. Transformation frequency varied coordinately with endogenous 54-kDa expression. Mouse strains whose cells produced a high level of endogenous 54-kDa phosphoprotein on passage did not further increase its expression after simian virus 40 transformation.

  2. Inherently variable responses to glucocorticoid stress among endogenous retroviruses isolated from 23 mouse strains.

    Science.gov (United States)

    Hsu, Karen; Lee, Young-Kwan; Chew, Alex; Chiu, Sophia; Lim, Debora; Greenhalgh, David G; Cho, Kiho

    2017-10-01

    Active participation of endogenous retroviruses (ERVs) in disease processes has been exemplified by the finding that the HERV (human ERV)-W envelope protein is involved in the pathogenesis of multiple sclerosis, an autoimmune disease. We also demonstrated that injury-elicited stressors alter the expression of murine ERVs (MuERVs), both murine leukemia virus-type and mouse mammary tumor virus (MMTV)-type (MMTV-MuERV). In this study, to evaluate MMTV-MuERVs' responses to stress (e.g., injury, infection)-elicited systemic glucocorticoid (GC) levels, we examined the GC-stress response of 64 MMTV-MuERV promoters isolated from the genomes of 23 mouse strains. All 64 promoters responded to treatment with a synthetic GC, dexamethasone (DEX), at a wide range from a 0.6- to 85.7-fold increase in reporter activity compared to no treatment. An analysis of the 10 lowest and 10 highest DEX responders revealed specific promoter elements exclusively present in either the three lowest or the two highest responders. Each promoter had a unique profile of transcription regulatory elements and the glucocorticoid response element (GRE) was identified in all promoters with the number of GREs ranging from 2 to 7. The three lowest DEX responders were the only promoters with two GREs. The findings from this study suggest that certain MMTV-MuERVs are more responsive to stress-elicited systemic GC elevation compared to the others. The mouse strain-specific genomic MMTV-MuERV profiles and individual MMTV-MuERVs' differential responses to GC-stress might explain, at least in part, the variable inflammatory responses to injury and/or infection, often observed among different mouse strains. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers.

    Science.gov (United States)

    Fisher, Cynthia L; Marks, Hendrik; Cho, Lily Ting-Yin; Andrews, Robert; Wormald, Sam; Carroll, Thomas; Iyer, Vivek; Tate, Peri; Rosen, Barry; Stunnenberg, Hendrik G; Fisher, Amanda G; Skarnes, William C

    2017-12-01

    Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Recovery from ultraviolet light-induced inhibition of DNA synthesis requires umuDC gene products in recA718 mutant strains but not in recA+ strains of Escherichia coli

    International Nuclear Information System (INIS)

    Witkin, E.M.; Roegner-Maniscalco, V.; Sweasy, J.B.; McCall, J.O.

    1987-01-01

    Ultraviolet light (UV) inhibits DNA replication in Eschericia coli and induces the SOS response, a set of survival-enhancing phenotypes due to derepression of DNA damage-inducible genes, including recA and umuDC. Recovery of DNA synthesis after UV irradiation (induced replisome reactivation, or IRR) is an SOS function requiring RecA protein and postirradiation synthesis of additional protein(s), but this recovery does not require UmuDC protein. IRR occurs in strains carrying either recA718 (which does not reduce recombination, SOS inducibility, or UV mutagenesis) or umuC36 (which eliminates UV mutability), but not in recA718 umuC36 double mutants. In recA430 mutant strains, IRR does not occur whether or not functional UmuDC protein is present. IRR occurs in lexA-(Ind-) (SOS noninducible) strains if they carry an operator-constitutive recA allele and are allowed to synthesize proteins after irradiation. We conclude the following: (i) that UmuDC protein corrects or complements a defect in the ability of RecA718 protein (but not of RecA430 protein) to promote IRR and (ii) that in lexA(Ind-) mutant strains, IRR requires amplification of RecA+ protein (but not of any other LexA-repressed protein) plus post-UV synthesis of at least one other protein not controlled by LexA protein. We discuss the results in relation to the essential, but unidentified, roles of RecA and UmuDC proteins in UV mutagenesis

  5. A Lactobacillus mutant capable of accumulating long-chain polyphosphates that enhance intestinal barrier function.

    Science.gov (United States)

    Saiki, Asako; Ishida, Yasuaki; Segawa, Shuichi; Hirota, Ryuichi; Nakamura, Takeshi; Kuroda, Akio

    2016-05-01

    Inorganic polyphosphate (polyP) was previously identified as a probiotic-derived substance that enhances intestinal barrier function. PolyP-accumulating bacteria are expected to have beneficial effects on the human gastrointestinal tract. In this study, we selected Lactobacillus paracasei JCM 1163 as a strain with the potential to accumulate polyP, because among the probiotic bacteria stored in our laboratory, it had the largest amount of polyP. The chain length of polyP accumulated in L. paracasei JCM 1163 was approximately 700 phosphate (Pi) residues. L. paracasei JCM 1163 accumulated polyP when Pi was added to Pi-starved cells. We further improved the ability of L. paracasei JCM 1163 to accumulate polyP by nitrosoguanidine mutagenesis. The mutant accumulated polyP at a level of 1500 nmol/mg protein-approximately 190 times that of the wild-type strain. PolyP extracted from the L. paracasei JCM 1163 significantly suppressed the oxidant-induced intestinal permeability in mouse small intestine. In conclusion, we have succeeded in breeding the polyP-accumulating Lactobacillus mutant that is expected to enhance intestinal barrier function.

  6. Enhancing cellulase production by overexpression of xylanase regulator protein gene, xlnR, in Talaromyces cellulolyticus cellulase hyperproducing mutant strain.

    Science.gov (United States)

    Okuda, Naoyuki; Fujii, Tatsuya; Inoue, Hiroyuki; Ishikawa, Kazuhiko; Hoshino, Tamotsu

    2016-10-01

    We obtained strains with the xylanase regulator gene, xlnR, overexpressed (HXlnR) and disrupted (DXlnR) derived from Talaromyces cellulolyticus strain C-1, which is a cellulase hyperproducing mutant. Filter paper degrading enzyme activity and cellobiohydrolase I gene expression was the highest in HXlnR, followed by C-1 and DXlnR. These results indicate that the enhancement of cellulase productivity was succeeded by xlnR overexpression.

  7. Rat Strain Ontology: structured controlled vocabulary designed to facilitate access to strain data at RGD.

    Science.gov (United States)

    Nigam, Rajni; Munzenmaier, Diane H; Worthey, Elizabeth A; Dwinell, Melinda R; Shimoyama, Mary; Jacob, Howard J

    2013-11-22

    The Rat Genome Database (RGD) ( http://rgd.mcw.edu/) is the premier site for comprehensive data on the different strains of the laboratory rat (Rattus norvegicus). The strain data are collected from various publications, direct submissions from individual researchers, and rat providers worldwide. Rat strain, substrain designation and nomenclature follow the Guidelines for Nomenclature of Mouse and Rat Strains, instituted by the International Committee on Standardized Genetic Nomenclature for Mice. While symbols and names aid in identifying strains correctly, the flat nature of this information prohibits easy search and retrieval, as well as other data mining functions. In order to improve these functionalities, particularly in ontology-based tools, the Rat Strain Ontology (RS) was developed. The Rat Strain Ontology (RS) reflects the breeding history, parental background, and genetic manipulation of rat strains. This controlled vocabulary organizes strains by type: inbred, outbred, chromosome altered, congenic, mutant and so on. In addition, under the chromosome altered category, strains are organized by chromosome, and further by type of manipulations, such as mutant or congenic. This allows users to easily retrieve strains of interest with modifications in specific genomic regions. The ontology was developed using the Open Biological and Biomedical Ontology (OBO) file format, and is organized on the Directed Acyclic Graph (DAG) structure. Rat Strain Ontology IDs are included as part of the strain report (RS: ######). As rat researchers are often unaware of the number of substrains or altered strains within a breeding line, this vocabulary now provides an easy way to retrieve all substrains and accompanying information. Its usefulness is particularly evident in tools such as the PhenoMiner at RGD, where users can now easily retrieve phenotype measurement data for related strains, strains with similar backgrounds or those with similar introgressed regions. This

  8. Identification of a mouse Lactobacillus johnsonii strain with deconjugase activity against the FXR antagonist T-β-MCA.

    Directory of Open Access Journals (Sweden)

    Michael DiMarzio

    Full Text Available Bile salt hydrolase (BSH activity against the bile acid tauro-beta-muricholic acid (T-β-MCA was recently reported to mediate host bile acid, glucose, and lipid homeostasis via the farnesoid X receptor (FXR signaling pathway. An earlier study correlated decreased Lactobacillus abundance in the cecum with increased concentrations of intestinal T-β-MCA, an FXR antagonist. While several studies have characterized BSHs in lactobacilli, deconjugation of T-β-MCA remains poorly characterized among members of this genus, and therefore it was unclear what strain(s were responsible for this activity. Here, a strain of L. johnsonii with robust BSH activity against T-β-MCA in vitro was isolated from the cecum of a C57BL/6J mouse. A screening assay performed on a collection of 14 Lactobacillus strains from nine different species identified BSH substrate specificity for T-β-MCA only in two of three L. johnsonii strains. Genomic analysis of the two strains with this BSH activity revealed the presence of three bsh genes that are homologous to bsh genes in the previously sequenced human-associated strain L. johnsonii NCC533. Heterologous expression of several bsh genes in E. coli followed by enzymatic assays revealed broad differences in substrate specificity even among closely related bsh homologs, and suggests that the phylogeny of these enzymes does not closely correlate with substrate specificity. Predictive modeling allowed us to propose a potential mechanism driving differences in BSH activity for T-β-MCA in these homologs. Our data suggests that L. johnsonii regulates T-β-MCA levels in the mouse intestinal environment, and that this species may play a central role in FXR signaling in the mouse.

  9. Comparative metabolic profiling of mce1 operon mutant vs wild-type Mycobacterium tuberculosis strains.

    Science.gov (United States)

    Queiroz, Adriano; Medina-Cleghorn, Daniel; Marjanovic, Olivera; Nomura, Daniel K; Riley, Lee W

    2015-11-01

    Mycobacterium tuberculosis disrupted in a 13-gene operon (mce1) accumulates free mycolic acids (FM) in its cell wall and causes accelerated death in mice. Here, to more comprehensively analyze differences in their cell wall lipid composition, we used an untargeted metabolomics approach to compare the lipid profiles of wild-type and mce1 operon mutant strains. By liquid chromatography-mass spectrometry, we identified >400 distinct lipids significantly altered in the mce1 mutant compared to wild type. These lipids included decreased levels of saccharolipids and glycerophospholipids, and increased levels of alpha-, methoxy- and keto mycolic acids (MA), and hydroxyphthioceranic acid. The mutant showed reduced expression of mmpL8, mmpL10, stf0, pks2 and papA2 genes involved in transport and metabolism of lipids recognized to induce proinflammatory response; these lipids were found to be decreased in the mutant. In contrast, the transcripts of mmpL3, fasI, kasA, kasB, acpM and RV3451 involved in MA transport and metabolism increased; MA inhibits inflammatory response in macrophages. Since the mce1 operon is known to be regulated in intracellular M. tuberculosis, we speculate that the differences we observed in cell wall lipid metabolism and composition may affect host response to M. tuberculosis infection and determine the clinical outcome of such an infection. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Simulated space radiation-induced mutants in the mouse kidney display widespread genomic change.

    Directory of Open Access Journals (Sweden)

    Mitchell S Turker

    Full Text Available Exposure to a small number of high-energy heavy charged particles (HZE ions, as found in the deep space environment, could significantly affect astronaut health following prolonged periods of space travel if these ions induce mutations and related cancers. In this study, we used an in vivo mutagenesis assay to define the mutagenic effects of accelerated 56Fe ions (1 GeV/amu, 151 keV/μm in the mouse kidney epithelium exposed to doses ranging from 0.25 to 2.0 Gy. These doses represent fluences ranging from 1 to 8 particle traversals per cell nucleus. The Aprt locus, located on chromosome 8, was used to select induced and spontaneous mutants. To fully define the mutagenic effects, we used multiple endpoints including mutant frequencies, mutation spectrum for chromosome 8, translocations involving chromosome 8, and mutations affecting non-selected chromosomes. The results demonstrate mutagenic effects that often affect multiple chromosomes for all Fe ion doses tested. For comparison with the most abundant sparsely ionizing particle found in space, we also examined the mutagenic effects of high-energy protons (1 GeV, 0.24 keV/μm at 0.5 and 1.0 Gy. Similar doses of protons were not as mutagenic as Fe ions for many assays, though genomic effects were detected in Aprt mutants at these doses. Considered as a whole, the data demonstrate that Fe ions are highly mutagenic at the low doses and fluences of relevance to human spaceflight, and that cells with considerable genomic mutations are readily induced by these exposures and persist in the kidney epithelium. The level of genomic change produced by low fluence exposure to heavy ions is reminiscent of the extensive rearrangements seen in tumor genomes suggesting a potential initiation step in radiation carcinogenesis.

  11. Simulated space radiation-induced mutants in the mouse kidney display widespread genomic change.

    Science.gov (United States)

    Turker, Mitchell S; Grygoryev, Dmytro; Lasarev, Michael; Ohlrich, Anna; Rwatambuga, Furaha A; Johnson, Sorrel; Dan, Cristian; Eckelmann, Bradley; Hryciw, Gwen; Mao, Jian-Hua; Snijders, Antoine M; Gauny, Stacey; Kronenberg, Amy

    2017-01-01

    Exposure to a small number of high-energy heavy charged particles (HZE ions), as found in the deep space environment, could significantly affect astronaut health following prolonged periods of space travel if these ions induce mutations and related cancers. In this study, we used an in vivo mutagenesis assay to define the mutagenic effects of accelerated 56Fe ions (1 GeV/amu, 151 keV/μm) in the mouse kidney epithelium exposed to doses ranging from 0.25 to 2.0 Gy. These doses represent fluences ranging from 1 to 8 particle traversals per cell nucleus. The Aprt locus, located on chromosome 8, was used to select induced and spontaneous mutants. To fully define the mutagenic effects, we used multiple endpoints including mutant frequencies, mutation spectrum for chromosome 8, translocations involving chromosome 8, and mutations affecting non-selected chromosomes. The results demonstrate mutagenic effects that often affect multiple chromosomes for all Fe ion doses tested. For comparison with the most abundant sparsely ionizing particle found in space, we also examined the mutagenic effects of high-energy protons (1 GeV, 0.24 keV/μm) at 0.5 and 1.0 Gy. Similar doses of protons were not as mutagenic as Fe ions for many assays, though genomic effects were detected in Aprt mutants at these doses. Considered as a whole, the data demonstrate that Fe ions are highly mutagenic at the low doses and fluences of relevance to human spaceflight, and that cells with considerable genomic mutations are readily induced by these exposures and persist in the kidney epithelium. The level of genomic change produced by low fluence exposure to heavy ions is reminiscent of the extensive rearrangements seen in tumor genomes suggesting a potential initiation step in radiation carcinogenesis.

  12. Gene expression profiling in the striatum of inbred mouse strains with distinct opioid-related phenotypes

    Directory of Open Access Journals (Sweden)

    Piechota Marcin

    2006-06-01

    Full Text Available Abstract Background Mouse strains with a contrasting response to morphine provide a unique model for studying the genetically determined diversity of sensitivity to opioid reward, tolerance and dependence. Four inbred strains selected for this study exhibit the most distinct opioid-related phenotypes. C57BL/6J and DBA/2J mice show remarkable differences in morphine-induced antinociception, self-administration and locomotor activity. 129P3/J mice display low morphine tolerance and dependence in contrast to high sensitivity to precipitated withdrawal observed in SWR/J and C57BL/6J strains. In this study, we attempted to investigate the relationships between genetic background and basal gene expression profile in the striatum, a brain region involved in the mechanism of opioid action. Results Gene expression was studied by Affymetrix Mouse Genome 430v2.0 arrays with probes for over 39.000 transcripts. Analysis of variance with the control for false discovery rate (q Khdrbs1 and ATPase Na+/K+ alpha2 subunit (Atp1a2 with morphine self-administration and analgesic effects, respectively. Finally, the examination of transcript structure demonstrated a possible inter-strain variability of expressed mRNA forms as for example the catechol-O-methyltransferase (Comt gene. Conclusion The presented study led to the recognition of differences in the gene expression that may account for distinct phenotypes. Moreover, results indicate strong contribution of genetic background to differences in gene transcription in the mouse striatum. The genes identified in this work constitute promising candidates for further animal studies and for translational genetic studies in the field of addictive and analgesic properties of opioids.

  13. Protein nutrient value evaluation of mutant strain J5 fruitbody Agaricus bazei murrill by 60Co γ-irradiation

    International Nuclear Information System (INIS)

    Weng Boqi; Huang Tingjun

    2004-01-01

    Protein nutrient value evaluation of mutant strain J 5 fruitbody Agaricus bazei Murrill by 60 Co γ-irradiation was studied. The results showed its total content of amino acids Agaricus bazei murrill was 48.20%; chemical score 58.10; amino acids score 88.60; necessary amino acids index 89.94; biologic value 86.29; nutrient index 29.15. All the index above were higher than that in original strain J 1 , but the ratio score of amino acids of J 5 fruitbody (39.48) was lower than strain J 1 . The results indicated that nutrient value of protein in J 5 was higher than in J 1 . (authors)

  14. Structural characterization of bioengineered α-D-glucans produced by mutant glucansucrase GTF180 enzymes of lactobacillus reuteri strain 180

    NARCIS (Netherlands)

    Leeuwen, S.S. van; Kralj, S.; Eeuwema, W.; Gerwig, G.J.; Dijkhuizen, L.; Kamerling, J.P.

    2009-01-01

    Mutagenesis of specific amino acid residues of the glucansucrase (GTF180) enzyme from Lactobacillus reuteri strain 180 yielded 12 mutant enzymes that produced modified exopolysaccharides (mEPSs) from sucrose. Ethanol-precipitated and purified mEPSs were subjected to linkage analysis, Smith

  15. Structural Characterization of Bioengineered alpha-D-Glucans Produced by Mutant Glucansucrase GTF180 Enzymes of Lactobacillus reuteri Strain 180

    NARCIS (Netherlands)

    van Leeuwen, Sander S.; Kralj, Slavko; Eeuwema, Wieger; Gerwig, Gerrit J.; Dijkhuizen, Lubbert; Kamerling, Johannis P.

    Mutagenesis of specific amino acid residues of the glucansucrase (GTF180) enzyme from Lactobacillus reuteri strain 180 yielded 12 mutant enzymes that produced modified exopolysaccharides (mEPSs) from sucrose. Ethanol-precipitated and purified mEPSs were subjected to linkage analysis, Smith

  16. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    Science.gov (United States)

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  17. Behavioral and other phenotypes in a cytoplasmic Dynein light intermediate chain 1 mutant mouse.

    Science.gov (United States)

    Banks, Gareth T; Haas, Matilda A; Line, Samantha; Shepherd, Hazel L; Alqatari, Mona; Stewart, Sammy; Rishal, Ida; Philpott, Amelia; Kalmar, Bernadett; Kuta, Anna; Groves, Michael; Parkinson, Nicholas; Acevedo-Arozena, Abraham; Brandner, Sebastian; Bannerman, David; Greensmith, Linda; Hafezparast, Majid; Koltzenburg, Martin; Deacon, Robert; Fainzilber, Mike; Fisher, Elizabeth M C

    2011-04-06

    The cytoplasmic dynein complex is fundamentally important to all eukaryotic cells for transporting a variety of essential cargoes along microtubules within the cell. This complex also plays more specialized roles in neurons. The complex consists of 11 types of protein that interact with each other and with external adaptors, regulators and cargoes. Despite the importance of the cytoplasmic dynein complex, we know comparatively little of the roles of each component protein, and in mammals few mutants exist that allow us to explore the effects of defects in dynein-controlled processes in the context of the whole organism. Here we have taken a genotype-driven approach in mouse (Mus musculus) to analyze the role of one subunit, the dynein light intermediate chain 1 (Dync1li1). We find that, surprisingly, an N235Y point mutation in this protein results in altered neuronal development, as shown from in vivo studies in the developing cortex, and analyses of electrophysiological function. Moreover, mutant mice display increased anxiety, thus linking dynein functions to a behavioral phenotype in mammals for the first time. These results demonstrate the important role that dynein-controlled processes play in the correct development and function of the mammalian nervous system.

  18. Discovery of candidate disease genes in ENU-induced mouse mutants by large-scale sequencing, including a splice-site mutation in nucleoredoxin.

    Directory of Open Access Journals (Sweden)

    Melissa K Boles

    2009-12-01

    Full Text Available An accurate and precisely annotated genome assembly is a fundamental requirement for functional genomic analysis. Here, the complete DNA sequence and gene annotation of mouse Chromosome 11 was used to test the efficacy of large-scale sequencing for mutation identification. We re-sequenced the 14,000 annotated exons and boundaries from over 900 genes in 41 recessive mutant mouse lines that were isolated in an N-ethyl-N-nitrosourea (ENU mutation screen targeted to mouse Chromosome 11. Fifty-nine sequence variants were identified in 55 genes from 31 mutant lines. 39% of the lesions lie in coding sequences and create primarily missense mutations. The other 61% lie in noncoding regions, many of them in highly conserved sequences. A lesion in the perinatal lethal line l11Jus13 alters a consensus splice site of nucleoredoxin (Nxn, inserting 10 amino acids into the resulting protein. We conclude that point mutations can be accurately and sensitively recovered by large-scale sequencing, and that conserved noncoding regions should be included for disease mutation identification. Only seven of the candidate genes we report have been previously targeted by mutation in mice or rats, showing that despite ongoing efforts to functionally annotate genes in the mammalian genome, an enormous gap remains between phenotype and function. Our data show that the classical positional mapping approach of disease mutation identification can be extended to large target regions using high-throughput sequencing.

  19. Correlation between DNA repair of embryonic fibroblasts and different life span of 3 inbred mouse strains

    Energy Technology Data Exchange (ETDEWEB)

    Paffenholz, V.

    1978-02-01

    Primary mouse fibroblast cultures were established from 10 day old embryos of 3 inbred strains with a genetically determined different life expectancy. The capacity for unscheduled DNA synthesis following uv irradiation was studied in these cells at various passage levels of the in vitro ageing process. The mouse fibroblasts show considerable repair synthesis corresponding to the duration of exposure time. The capacity for induction of unscheduled DNA synthesis was different in the cells of each strain and correlated to the natural life span of the animal. In each case, however, the ability to perform repair synthesis was subjected to an age-associated decline, although semiconservative DNA synthesis and proliferative potential of the cell was not changed until the cultures entered phase III passages.

  20. Brain immune cell composition and functional outcome after cerebral ischemia: Comparison of two mouse strains

    Directory of Open Access Journals (Sweden)

    Hyun Ah eKim

    2014-11-01

    Full Text Available Inflammatory cells may contribute to secondary brain injury following cerebral ischemia. The C57Bl/6 mouse strain is known to exhibit a T helper 1-prone, pro-inflammatory type response to injury, whereas the FVB strain is relatively T helper 2-prone, or anti-inflammatory, in its immune response. We tested whether stroke outcome is more severe in C57Bl/6 than FVB mice. Male mice of each strain underwent sham surgery or 1 h occlusion of the middle cerebral artery followed by 23 h of reperfusion. Despite no difference in infarct size, C57Bl/6 mice displayed markedly greater functional deficits than FVB mice after stroke, as assessed by neurological scoring and hanging wire test. Total numbers of CD45+ leukocytes tended to be larger in the brains of C57Bl/6 than FVB mice after stroke, but there were marked differences in leukocyte composition between the two mouse strains. The inflammatory response in C57Bl/6 mice primarily involved T and B lymphocytes, whereas neutrophils, monocytes and macrophages were more prominent in FVB mice. Our data are consistent with the concept that functional outcome after stroke is dependent on the immune cell composition which develops following ischemic brain injury.

  1. TL transgenic mouse strains

    International Nuclear Information System (INIS)

    Obata, Y.; Matsudaira, Y.; Hasegawa, H.; Tamaki, H.; Takahashi, T.; Morita, A.; Kasai, K.

    1993-01-01

    As a result of abnormal development of the thymus of these mice, TCR αβ lineage of the T cell differentiation is disturbed and cells belonging to the TCR γδ CD4 - CD8 - double negative (DN) lineage become preponderant. The γδ DN cells migrate into peripheral lymphoid organs and constitute nearly 50% of peripheral T cells. Immune function of the transgenic mice is severely impaired, indicating that the γδ cells are incapable of participating in these reactions. Molecular and serological analyses of T-cell lymphomas reveal that they belong to the γδ lineage. Tg.Tla a -3-1 mice should be useful in defining the role of TL in normal and abnormal T cell differentiation as well as in the development of T-cell lymphomas, and further they should facilitate studies on the differentiation and function of γδ T cells. We isolated T3 b -TL gene from B6 mice and constructed a chimeric gene in which T3 b -TL is driven by the promoter of H-2K b . With the chimeric gene, two transgenic mouse strains, Tg. Con.3-1 and -2 have been derived in C3H background. Both strains express TL antigen in various tissues including skin. The skin graft of transgenic mice on C3H and (B6 X C3H)F 1 mice were rejected. In the mice which rejected the grafts, CD8 + TCRαβ cytotoxic T cells (CTL) against TL antigens were recognized. The recognition of TL by CTL did not require the antigen presentation by H-2 molecules. The results indicated that TL antigen in the skin becomes a transplantation antigen and behaves like a typical allogeneic MHC class I antigen. The facts that (B6 X C3H)F 1 mice rejected the skin expressing T3 b -TL antigen and induced CTL that killed TL + lymphomas of B6 origin revealed that TL antigen encoded by T3 b -TL is recognized as non-self in B6 mice. Experiments are now extended to analyze immune responses to TL antigen expressed on autochthonous T cell lymphomas. (J.P.N.)

  2. Behavioural analysis of four mouse strains in an anxiety test battery.

    Science.gov (United States)

    van Gaalen, M M; Steckler, T

    2000-10-01

    Differences in locomotor activity, exploratory activity and anxiety-like behaviour of C57BL/6ChR,C57BL/6J, Swiss Webster/J and A/J strain were investigated in an anxiety battery. The battery consisted of paradigms studying spontaneous behaviour after a mild stressor, tasks of innate anxiety (light-dark box, elevated plus maze, novel object exploration), response to a conflict situation (Vogel conflict), conditioned fear and response to inescapable swim stress. Locomotor activity was studied in an open field and compared with locomotion in the other tests. Exploratory behaviour was studied in a 16-hole board task. The data confirm previous studies suggesting that A/J mice are a relatively anxious strain. Also, the data indicated that locomotor activity was independent of the paradigm employed, while the rank order of strain-dependent effects on anxiety-related behaviour changed as a function of the task under study. Our data provide further support for the notion that choice of strain is essential in studies of anxiety-related behaviour. Influence of strain should be considered in pharmacological and lesion studies, as well as in studies with mutant mice. In addition, the data indicate that different anxiety paradigms tax different aspects of anxiety, suggesting that a battery of different tests should be used in studies of anxiety-related behaviour.

  3. An Azole-Tolerant Endosomal Trafficking Mutant of Candida albicans Is Susceptible to Azole Treatment in a Mouse Model of Vaginal Candidiasis.

    Science.gov (United States)

    Peters, Brian M; Luna-Tapia, Arturo; Tournu, Hélène; Rybak, Jeffrey M; Rogers, P David; Palmer, Glen E

    2017-06-01

    We recently reported that a Candida albicans endosomal trafficking mutant continues to grow after treatment with the azole antifungals. Herein, we report that the vps21 Δ/Δ mutant does not have a survival advantage over wild-type isolates after fluconazole treatment in a mouse model of vaginal candidiasis. Furthermore, loss of VPS21 does not synergize with established mechanisms of azole resistance, such as overexpression of efflux pumps or of Erg11p, the target enzyme of the azoles. In summary, although loss of VPS21 function enhances C. albicans survival after azole treatment in vitro , it does not seem to affect azole susceptibility in vivo . Copyright © 2017 American Society for Microbiology.

  4. Dopamine synthesis in alcohol drinking-prone and -resistant mouse strains

    Science.gov (United States)

    Siciliano, Cody A.; Locke, Jason L.; Mathews, Tiffany A.; Lopez, Marcelo F.; Becker, Howard C.; Jones, Sara R.

    2017-01-01

    Alcoholism is a prevalent and debilitating neuropsychiatric disease, and much effort has been aimed at elucidating the neurobiological mechanisms underlying maladaptive alcohol drinking in an effort to design rational treatment strategies. In preclinical literature, the use of inbred mouse lines has allowed for the examination of ethanol effects across vulnerable and resistant phenotypes. C57BL/6J mice consistently show higher rates of ethanol drinking compared to most mouse strains. Conversely, DBA/2J mice display low rates of ethanol consumption. Given that the reinforcing and rewarding effects of ethanol are thought to be in part mediated by its actions on dopamine neurotransmission, we hypothesized that alcohol-preferring C57BL/6J and alcohol-avoiding DBA/2J mice would display basal differences in dopamine system function. By administering an L-aromatic acid decarboxylase inhibitor and measuring L-Dopa accumulation via high-performance liquid chromatography as a measure of tyrosine hydroxylase activity, we found no difference in dopamine synthesis between mouse strains in the midbrain, dorsal striatum, or ventral striatum. However, we did find that quinpirole-induced inhibition of dopamine synthesis was greater in the ventral striatum of C57BL/6J mice, suggesting increased presynaptic D2-type dopamine autoreceptor sensitivity. To determine whether dopamine synthesis or autoreceptor sensitivity was altered by a history of ethanol, we exposed C57BL/6J mice to one or two weekly cycles of chronic intermittent ethanol (CIE) exposure and withdrawal. We found that there was an attenuation of baseline dopamine synthesis in the ventral striatum after two cycles of CIE. Finally, we examined tissue content of dopamine and dopamine metabolites across recombinant inbred mice bred from a C57BL/6J × DBA/2J cross (BXD). We found that low dopaminergic activity, as indicated by high dopamine/metabolite ratios, was positively correlated with drinking. Together, these findings

  5. Experimental mouse lethality of Escherichia coli strains isolated from free ranging Tibetan yaks.

    Science.gov (United States)

    Rehman, Mujeeb Ur; Zhang, Hui; Wang, Yajing; Mehmood, Khalid; Huang, Shucheng; Iqbal, Muhammad Kashif; Li, Jiakui

    2017-08-01

    The present study has examined the virulence potential of Escherichia coli isolates harboring at least one virulence gene (associated with ExPEC or InPEC pathotype and belonging to different phylogenetic groups: A, B1, B2 or D), isolated from free ranging Tibetan yak feces. The E. coli isolates (n = 87) were characterized for different serogroups and a mouse model of subcutaneous-infection was used to envisage the virulence within these E. coli strains. Of the 87 E. coli isolates examined, 23% of the E. coli isolates caused lethal infections in a mouse model of subcutaneous infection and were classified as killer. Moreover, the majority of the killer strains belonged to phylogroup A (65%) and serogroup O 60 or O 101 (35%). Phylogroup B1, serogroups O 60 and O 101 were statistically associated with the killer status (P 1) were observed between the killer status isolates and all other bacterial virulence traits. This study comprises the first report on the virulence potential of E. coli strains isolated from free-ranging Tibetan yaks feces. Our findings suggest that pathogenic E. coli of free ranging yaks is highly worrisome, as these feces are used as manures by farmers and therewith pose a health risk to humans upon exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Genes and Alcohol Consumption: Studies with Mutant Mice

    Science.gov (United States)

    Mayfield, Jody; Arends, Michael A.; Harris, R. Adron; Blednov, Yuri A.

    2017-01-01

    In this chapter, we review the effects of global null mutant and overexpressing transgenic mouse lines on voluntary self-administration of alcohol. We examine approximately 200 publications pertaining to the effects of 155 mouse genes on alcohol consumption in different drinking models. The targeted genes vary in function and include neurotransmitter, ion channel, neuroimmune, and neuropeptide signaling systems. The alcohol self-administration models include operant conditioning, two- and four-bottle choice continuous and intermittent access, drinking in the dark limited access, chronic intermittent ethanol, and scheduled high alcohol consumption tests. Comparisons of different drinking models using the same mutant mice are potentially the most informative, and we will highlight those examples. More mutants have been tested for continuous two-bottle choice consumption than any other test; of the 137 mouse genes examined using this model, 97 (72%) altered drinking in at least one sex. Overall, the effects of genetic manipulations on alcohol drinking often depend on the sex of the mice, alcohol concentration and time of access, genetic background, as well as the drinking test. PMID:27055617

  7. Systematic strain construction and process development: Xylitol production by Saccharomyces cerevisiae expressing Candida tenuis xylose reductase in wild-type or mutant form.

    Science.gov (United States)

    Pratter, S M; Eixelsberger, T; Nidetzky, B

    2015-12-01

    A novel Saccharomyces cerevisiae whole-cell biocatalyst for xylitol production based on Candida tenuis xylose reductase (CtXR) is presented. Six recombinant strains expressing wild-type CtXR or an NADH-specific mutant were constructed and evaluated regarding effects of expression mode, promoter strength, biocatalyst concentration and medium composition. Intracellular XR activities ranged from 0.09 U mgProt(-1) to 1.05 U mgProt(-1) but did not correlate with the strains' xylitol productivities, indicating that other factors limited xylose conversion in the high-activity strains. The CtXR mutant decreased the biocatalyst's performance, suggesting use of the NADPH-preferring wild-type enzyme when (semi-)aerobic conditions are applied. In a bioreactor process, the best-performing strain converted 40 g L(-1) xylose with an initial productivity of 1.16 g L(-1)h(-1) and a xylitol yield of 100%. The obtained results underline the potential of CtXR wild-type for xylose reduction and point out parameters to improve "green" xylitol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Genetic characterization and improved genotyping of the dysferlin-deficient mouse strain Dysf (tm1Kcam).

    Science.gov (United States)

    Wiktorowicz, Tatiana; Kinter, Jochen; Kobuke, Kazuhiro; Campbell, Kevin P; Sinnreich, Michael

    2015-01-01

    Mouse models of dysferlinopathies are valuable tools with which to investigate the pathomechanisms underlying these diseases and to test novel therapeutic strategies. One such mouse model is the Dysf (tm1Kcam) strain, which was generated using a targeting vector to replace a 12-kb region of the dysferlin gene and which features a progressive muscular dystrophy. A prerequisite for successful animal studies using genetic mouse models is an accurate genotyping protocol. Unfortunately, the lack of robustness of currently available genotyping protocols for the Dysf (tm1Kcam) mouse has prevented efficient colony management. Initial attempts to improve the genotyping protocol based on the published genomic structure failed. These difficulties led us to analyze the targeted locus of the dysferlin gene of the Dysf (tm1Kcam) mouse in greater detail. In this study we resequenced and analyzed the targeted locus of the Dysf (tm1Kcam) mouse and developed a novel PCR protocol for genotyping. We found that instead of a deletion, the dysferlin locus in the Dysf (tm1Kcam) mouse carries a targeted insertion. This genetic characterization enabled us to establish a reliable method for genotyping of the Dysf (tm1Kcam) mouse, and thus has made efficient colony management possible. Our work will make the Dysf (tm1Kcam) mouse model more attractive for animal studies of dysferlinopathies.

  9. Enhanced production of bacitracin by a mutant strain bacillus licheniformis UV-MN-HN-8 (enhanced bacitracin production by mutagenesis)

    International Nuclear Information System (INIS)

    Aftab, M.N.; Ikram-ul-Haq; Baig, S.

    2010-01-01

    The present study is focused on the improvement of Bacillus licheniformis through random mutagenesis to obtain mutant having enhanced production of bacitracin. Many isolates of Bacillus licheniformis were isolated and the isolate GP-40 produced maximum bacitracin production (16 +- 0.72 IU/mL). Treatment of Bacillus licheniformis GP-40 with ultraviolet (UV) radiations increased bacitracin production to 29 +- 0.69 IU/mL. Similarly, treatment of vegetative cells of GP-40 with chemicals like N-methyl N'-nitro N-nitroso guanidine (MNNG) and Nitrous acid (HNO/sub 2/) increased bacitracin production to 35 +- 1.35 IU/mL and 29 +- 0.89 IU/mL respectively. Studies regarding the combined effect of UV and chemical treatment on parental cells exhibited significantly higher titers of bacitracin with maximum bacitracin production reached to 47.6 +- 0.92 IU/mL. An increase of 2.97 fold production of bacitracin in comparison to wild type was observed. Mutant strain was highly stable and produced consistent yield of bacitracin even after 15 generations. On the basis of kinetic variables, notably mu (h-/sup 1/)max, Yp/x, qp, Qp and Qx mutant strain B. licheniformis UV-MN-HN-8 was found to be a hyper producer of bacitracin. (author)

  10. Cyclic mechanical strain maintains Nanog expression through PI3K/Akt signaling in mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Horiuchi, Rie; Akimoto, Takayuki; Hong, Zhang; Ushida, Takashi

    2012-01-01

    Mechanical strain has been reported to affect the proliferation/differentiation of many cell types; however, the effects of mechanotransduction on self-renewal as well as pluripotency of embryonic stem (ES) cells remains unknown. To investigate the effects of mechanical strain on mouse ES cell fate, we examined the expression of Nanog, which is an essential regulator of self-renewal and pluripotency as well as Nanog-associated intracellular signaling during uniaxial cyclic mechanical strain. The mouse ES cell line, CCE was plated onto elastic membranes, and we applied 10% strain at 0.17 Hz. The expression of Nanog was reduced during ES cell differentiation in response to the withdrawal of leukemia inhibitory factor (LIF); however, two days of cyclic mechanical strain attenuated this reduction of Nanog expression. On the other hand, the cyclic mechanical strain promoted PI3K-Akt signaling, which is reported as an upstream of Nanog transcription. The cyclic mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor wortmannin. Furthermore, cytochalasin D, an inhibitor of actin polymerization, also inhibited the mechanical strain-induced increase in phospho-Akt. These findings imply that mechanical force plays a role in regulating Nanog expression in ES cells through the actin cytoskeleton-PI3K-Akt signaling. -- Highlights: ► The expression of Nanog, which is an essential regulator of “stemness” was reduced during embryonic stem (ES) cell differentiation. ► Cyclic mechanical strain attenuated the reduction of Nanog expression. ► Cyclic mechanical strain promoted PI3K-Akt signaling and mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor and an inhibitor of actin polymerization.

  11. UDP-N-acetylmuramic acid l-alanine ligase (MurC) inhibition in a tolC mutant Escherichia coli strain leads to cell death.

    Science.gov (United States)

    Humnabadkar, Vaishali; Prabhakar, K R; Narayan, Ashwini; Sharma, Sreevalli; Guptha, Supreeth; Manjrekar, Praveena; Chinnapattu, Murugan; Ramachandran, Vasanthi; Hameed, Shahul P; Ravishankar, Sudha; Chatterji, Monalisa

    2014-10-01

    The Mur ligases play an essential role in the biosynthesis of bacterial peptidoglycan and hence are attractive antibacterial targets. A screen of the AstraZeneca compound library led to the identification of compound A, a pyrazolopyrimidine, as a potent inhibitor of Escherichia coli and Pseudomonas aeruginosa MurC. However, cellular activity against E. coli or P. aeruginosa was not observed. Compound A was active against efflux pump mutants of both strains. Experiments using an E. coli tolC mutant revealed accumulation of the MurC substrate and a decrease in the level of product upon treatment with compound A ,: indicating inhibition of MurC enzyme in these cells. Such a modulation was not observed in the E. coli wild-type cells. Further, overexpression of MurC in the E. coli tolC mutant led to an increase in the compound A MIC by ≥16-fold, establishing a correlation between MurC inhibition and cellular activity. In addition, estimation of the intracellular compound A level showed an accumulation of the compound over time in the tolC mutant strain. A significant compound A level was not detected in the wild-type E. coli strain even upon treatment with high concentrations of the compound. Therefore, the lack of MIC and absence of MurC inhibition in wild-type E. coli were possibly due to suboptimal compound concentration as a consequence of a high efflux level and/or poor permeativity of compound A. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Several classical mouse inbred strains, including DBA/2, NOD/Lt, FVB/N, and SJL/J, carry a putative loss-of-function allele of Gpr84.

    Science.gov (United States)

    Perez, Carlos J; Dumas, Aline; Vallières, Luc; Guénet, Jean-Louis; Benavides, Fernando

    2013-01-01

    G protein-coupled receptor 84 (GPR84) is a 7-transmembrane protein expressed on myeloid cells that can bind to medium-chain free fatty acids in vitro. Here, we report the discovery of a 2-bp frameshift deletion in the second exon of the Gpr84 gene in several classical mouse inbred strains. This deletion generates a premature stop codon predicted to result in a truncated protein lacking the transmembrane domains 4-7. We sequenced Gpr84 exon 2 from 58 strains representing different groups in the mouse family tree and found that 14 strains are homozygous for the deletion. Some of these strains are DBA/1J, DBA/2J, FVB/NJ, LG/J, MRL/MpJ, NOD/LtJ, and SJL/J. However, the deletion was not found in any of the wild-derived inbred strains analyzed. Haplotype analysis suggested that the deletion originates from a unique mutation event that occurred more than 100 years ago, preceding the development of the first inbred strain (DBA), from a Mus musculus domesticus source. As GPR84 ostensibly plays a role in the biology of myeloid cells, it could be relevant 1) to consider the existence of this Gpr84 nonsense mutation in several mouse strains when choosing a mouse model to study immune processes and 2) to consider reevaluating data obtained using such strains.

  13. Systematic screening for skin, hair, and nail abnormalities in a large-scale knockout mouse program.

    Directory of Open Access Journals (Sweden)

    John P Sundberg

    Full Text Available The International Knockout Mouse Consortium was formed in 2007 to inactivate ("knockout" all protein-coding genes in the mouse genome in embryonic stem cells. Production and characterization of these mice, now underway, has generated and phenotyped 3,100 strains with knockout alleles. Skin and adnexa diseases are best defined at the gross clinical level and by histopathology. Representative retired breeders had skin collected from the back, abdomen, eyelids, muzzle, ears, tail, and lower limbs including the nails. To date, 169 novel mutant lines were reviewed and of these, only one was found to have a relatively minor sebaceous gland abnormality associated with follicular dystrophy. The B6N(Cg-Far2tm2b(KOMPWtsi/2J strain, had lesions affecting sebaceous glands with what appeared to be a secondary follicular dystrophy. A second line, B6N(Cg-Ppp1r9btm1.1(KOMPVlcg/J, had follicular dystrophy limited to many but not all mystacial vibrissae in heterozygous but not homozygous mutant mice, suggesting that this was a nonspecific background lesion. We discuss potential reasons for the low frequency of skin and adnexal phenotypes in mice from this project in comparison to those seen in human Mendelian diseases, and suggest alternative approaches to identification of human disease-relevant models.

  14. Acquisition of nonspecific Bartonella strains by the northern grasshopper mouse (Onychomys leucogaster)

    Science.gov (United States)

    Bai, Y.; Kosoy, M.Y.; Cully, J.F.; Bala, T.; Ray, C.; Collinge, S.K.

    2007-01-01

    Rodent-associated Bartonella species are generally host-specific parasites in North America. Here evidence that Bartonella species can 'jump' between host species is presented. Northern grasshopper mice and other rodents were trapped in the western USA. A study of Bartonella infection in grasshopper mice demonstrated a high prevalence that varied from 25% to 90% by location. Bartonella infection was detected in other rodent species with a high prevalence as well. Sequence analyses of gltA identified 29 Bartonella variants in rodents, 10 of which were obtained from grasshopper mice. Among these 10, only six variants were specific to grasshopper mice, whereas four were identical to variants specific to deer mice or 13-lined ground squirrels. Fourteen of 90 sequenced isolates obtained from grasshopper mice were strains found more commonly in other rodent species and were apparently acquired from these animals. The ecological behavior of grasshopper mice may explain the occurrence of Bartonella strains in occasional hosts. The observed rate at which Bartonella jumps from a donor host species to the grasshopper mouse was directly proportional to a metric of donor host density and to the prevalence of Bartonella in the donor host, and inversely proportional to the same parameters for the grasshopper mouse. ?? 2007 Federation of European Microbiological Societies.

  15. Pleiotropy of Glycogen Synthase Kinase-3 Inhibition by CHIR99021 Promotes Self-Renewal of Embryonic Stem Cells from Refractory Mouse Strains

    Science.gov (United States)

    Ye, Shoudong; Tan, Li; Yang, Rongqing; Fang, Bo; Qu, Su; Schulze, Eric N.; Song, Houyan; Ying, Qilong; Li, Ping

    2012-01-01

    Background Inhibition of glycogen synthase kinase-3 (GSK-3) improves the efficiency of embryonic stem (ES) cell derivation from various strains of mice and rats, as well as dramatically promotes ES cell self-renewal potential. β-catenin has been reported to be involved in the maintenance of self-renewal of ES cells through TCF dependent and independent pathway. But the intrinsic difference between ES cell lines from different species and strains has not been characterized. Here, we dissect the mechanism of GSK-3 inhibition by CHIR99021 in mouse ES cells from refractory mouse strains. Methodology/Principal Findings We found that CHIR99021, a GSK-3 specific inhibitor, promotes self-renewal of ES cells from recalcitrant C57BL/6 (B6) and BALB/c mouse strains through stabilization of β-catenin and c-Myc protein levels. Stabilized β-catenin promoted ES self-renewal through two mechanisms. First, β-catenin translocated into the nucleus to maintain stem cell pluripotency in a lymphoid-enhancing factor/T-cell factor–independent manner. Second, β-catenin binds plasma membrane-localized E-cadherin, which ensures a compact, spherical morphology, a hallmark of ES cells. Further, elevated c-Myc protein levels did not contribute significantly to CH-mediated ES cell self-renewal. Instead, the role of c-Myc is dependent on its transformation activity and can be replaced by N-Myc but not L-Myc. β-catenin and c-Myc have similar effects on ES cells derived from both B6 and BALB/c mice. Conclusions/Significance Our data demonstrated that GSK-3 inhibition by CH promotes self-renewal of mouse ES cells with non-permissive genetic backgrounds by regulation of multiple signaling pathways. These findings would be useful to improve the availability of normally non-permissive mouse strains as research tools. PMID:22540008

  16. Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors.

    Science.gov (United States)

    Regales, Lucia; Balak, Marissa N; Gong, Yixuan; Politi, Katerina; Sawai, Ayana; Le, Carl; Koutcher, Jason A; Solit, David B; Rosen, Neal; Zakowski, Maureen F; Pao, William

    2007-08-29

    The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer. To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFR(T790M) alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFR(L858R+T790M)-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFR(T790M)-expressing animals develop tumors with longer latency than EGFR(L858R+T790M)-bearing mice and in the absence of additional kinase domain mutations. These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFR(T790M) alone or in conjunction with drug-sensitive EGFR kinase domain mutations.

  17. Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors.

    Directory of Open Access Journals (Sweden)

    Lucia Regales

    2007-08-01

    Full Text Available The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer.To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFR(T790M alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFR(L858R+T790M-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFR(T790M-expressing animals develop tumors with longer latency than EGFR(L858R+T790M-bearing mice and in the absence of additional kinase domain mutations.These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFR(T790M alone or in conjunction with drug-sensitive EGFR kinase domain mutations.

  18. Tuberculosis vaccine strain Mycobacterium bovis BCG Russia is a natural recA mutant

    Directory of Open Access Journals (Sweden)

    Böttger Erik C

    2008-07-01

    Full Text Available Abstract Background The current tuberculosis vaccine is a live vaccine derived from Mycobacterium bovis and attenuated by serial in vitro passaging. All vaccine substrains in use stem from one source, strain Bacille Calmette-Guérin. However, they differ in regions of genomic deletions, antigen expression levels, immunogenicity, and protective efficacy. Results As a RecA phenotype increases genetic stability and may contribute restricting the ongoing evolution of the various BCG substrains while maintaining their protective efficacy, we aimed to inactivate recA by allelic replacement in BCG vaccine strains representing different phylogenetic lineages (Pasteur, Frappier, Denmark, Russia. Homologous gene replacement was achieved successfully in three out of four strains. However, only illegitimate recombination was observed in BCG substrain Russia. Sequence analyses of recA revealed that a single nucleotide insertion in the 5' part of recA led to a translational frameshift with an early stop codon making BCG Russia a natural recA mutant. At the protein level BCG Russia failed to express RecA. Conclusion According to phylogenetic analyses BCG Russia is an ancient vaccine strain most closely related to the parental M. bovis. We hypothesize that recA inactivation in BCG Russia occurred early and is in part responsible for its high degree of genomic stability, resulting in a substrain that has less genetic alterations than other vaccine substrains with respect to M. bovis AF2122/97 wild-type.

  19. Establishment of an immortalized mouse dermal papilla cell strain with optimized culture strategy

    Directory of Open Access Journals (Sweden)

    Haiying Guo

    2018-01-01

    Full Text Available Dermal papilla (DP plays important roles in hair follicle regeneration. Long-term culture of mouse DP cells can provide enough cells for research and application of DP cells. We optimized the culture strategy for DP cells from three dimensions: stepwise dissection, collagen I coating, and optimized culture medium. Based on the optimized culture strategy, we immortalized primary DP cells with SV40 large T antigen, and established several immortalized DP cell strains. By comparing molecular expression and morphologic characteristics with primary DP cells, we found one cell strain named iDP6 was similar with primary DP cells. Further identifications illustrate that iDP6 expresses FGF7 and α-SMA, and has activity of alkaline phosphatase. During the process of characterization of immortalized DP cell strains, we also found that cells in DP were heterogeneous. We successfully optimized culture strategy for DP cells, and established an immortalized DP cell strain suitable for research and application of DP cells.

  20. Production and characterization of radiation-sensitive meiotic mutants of Coprinus cinereus

    International Nuclear Information System (INIS)

    Zolan, M.E.; Tremel, C.J.; Pukkila, P.J.

    1988-01-01

    We have isolated four gamma-sensitive mutants of the basidiomycete Coprinus cinereus. When homozygous, two of these (rad 3-1 and rad 9-1) produce fruiting bodies with very few viable basidiospores, the products of meiosis in this organism. A less radiation-sensitive allele of RAD 3, rad 3-2, causes no apparent meiotic defect in homozygous strains. Quantitative measurements of oidial survival of rad 3-1;rad 9-1 double mutants compared to the single mutants indicated that rad 3-1 and rad 9-1 mutants are defective in the same DNA repair pathway. In the pew viable basidiospores that are produced by these two strains, essentially normal levels of meiotic recombination can be detected. None of the mutants exhibits increased sensitivity to UV radiation. Cytological examination of meiotic chromosomes from mutant and wild-type fruiting bodies showed that rad 3-1 homozygous strains fail to condense and pair homologous chromosomes during prophase I. Although rad 9-1 strains are successful at chromosome pairing, meiosis is usually not completed in these mutants

  1. Isolation of L-methionine-enriched mutant of a methylotrophic yeast, Candida boidinii No.2201

    International Nuclear Information System (INIS)

    Tani, Y.; Lim, W.J.; Yang, H.C.

    1988-01-01

    Six strains of methylotrophic yeast were examined for production of L-methionine-enriched cells. Candida boidinii (kloeckera sp.) No. 2201,which accumulated 0.54 mg/g-dry cell weight (DCW) of free L-methionine (pool methionine), was selected as the parental strain for breeding L-methionine-rich mutants. Ethionine-resistant mutants were derived from the strain by UV irradiation. A mutant strain, E500-78,which was resistant to 500 μg/ml of DL-ethionine, accumulated 6.02 mg/g-DCW of pool methionine. The culture conditions for mutant strain E500-78 to increase pool methionine accumulation were optimized. As a result, the mutant strain accumulated 8.80 mg/g-DCW of pool methionine and contained 16.02 mg/g-DCW total methionine

  2. Cyclic mechanical strain maintains Nanog expression through PI3K/Akt signaling in mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Rie [Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Akimoto, Takayuki, E-mail: akimoto@m.u-tokyo.ac.jp [Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Institute for Biomedical Engineering, Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Hong, Zhang [Institute for Biomedical Engineering, Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Ushida, Takashi [Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan)

    2012-08-15

    Mechanical strain has been reported to affect the proliferation/differentiation of many cell types; however, the effects of mechanotransduction on self-renewal as well as pluripotency of embryonic stem (ES) cells remains unknown. To investigate the effects of mechanical strain on mouse ES cell fate, we examined the expression of Nanog, which is an essential regulator of self-renewal and pluripotency as well as Nanog-associated intracellular signaling during uniaxial cyclic mechanical strain. The mouse ES cell line, CCE was plated onto elastic membranes, and we applied 10% strain at 0.17 Hz. The expression of Nanog was reduced during ES cell differentiation in response to the withdrawal of leukemia inhibitory factor (LIF); however, two days of cyclic mechanical strain attenuated this reduction of Nanog expression. On the other hand, the cyclic mechanical strain promoted PI3K-Akt signaling, which is reported as an upstream of Nanog transcription. The cyclic mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor wortmannin. Furthermore, cytochalasin D, an inhibitor of actin polymerization, also inhibited the mechanical strain-induced increase in phospho-Akt. These findings imply that mechanical force plays a role in regulating Nanog expression in ES cells through the actin cytoskeleton-PI3K-Akt signaling. -- Highlights: Black-Right-Pointing-Pointer The expression of Nanog, which is an essential regulator of 'stemness' was reduced during embryonic stem (ES) cell differentiation. Black-Right-Pointing-Pointer Cyclic mechanical strain attenuated the reduction of Nanog expression. Black-Right-Pointing-Pointer Cyclic mechanical strain promoted PI3K-Akt signaling and mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor and an inhibitor of actin polymerization.

  3. Restriction of phage T4 internal protein I mutants by a strain of Escherichia coli

    International Nuclear Information System (INIS)

    Black, L.W.; Abremski, K.

    1974-01-01

    Phage T4 internal protein I(IPI), a small (ca, 10,000 MW), basic protein injected into the host with the phage DNA, is not required for infection of most hosts, but mutants defective in IPI are restricted by at least one naturally occurring strain of Escherichia coli, CT 596 (CT). Phages lacking IPI (IPI - ) appear to inject their DNA and bind it to the membrane of CT cells as well as wild-type phage T4 does, but shutoff of host protein synthesis, initiation of T4 protein synthesis, and cell killing are abnormal in the IPI - mutant infected CT host. The injection of IPI appears to be important in allowing T4 DNA to carry out early steps involved in takeover of this host. Restriction of IPI - phage growth by CT cells appears to be due, at least in part, to a defective prophage it harbors which renders the host resistant to successful infection by phage T4 which lack IPI or rII functions. Bacteria cured of this prophage can be infected by mutants defective in these functions. The resistance of CT cells to other coliphages, and the question of T-even phage internal protein diversity are discussed. (U.S.)

  4. A series of N-terminal epitope tagged Hdh knock-in alleles expressing normal and mutant huntingtin: their application to understanding the effect of increasing the length of normal huntingtin’s polyglutamine stretch on CAG140 mouse model pathogenesis

    Directory of Open Access Journals (Sweden)

    Zheng Shuqiu

    2012-08-01

    Full Text Available Abstract Background Huntington’s disease (HD is an autosomal dominant neurodegenerative disease that is caused by the expansion of a polyglutamine (polyQ stretch within Huntingtin (htt, the protein product of the HD gene. Although studies in vitro have suggested that the mutant htt can act in a potentially dominant negative fashion by sequestering wild-type htt into insoluble protein aggregates, the role of the length of the normal htt polyQ stretch, and the adjacent proline-rich region (PRR in modulating HD mouse model pathogenesis is currently unknown. Results We describe the generation and characterization of a series of knock-in HD mouse models that express versions of the mouse HD gene (Hdh encoding N-terminal hemaglutinin (HA or 3xFlag epitope tagged full-length htt with different polyQ lengths (HA7Q-, 3xFlag7Q-, 3xFlag20Q-, and 3xFlag140Q-htt and substitution of the adjacent mouse PRR with the human PRR (3xFlag20Q- and 3xFlag140Q-htt. Using co-immunoprecipitation and immunohistochemistry analyses, we detect no significant interaction between soluble full-length normal 7Q- htt and mutant (140Q htt, but we do observe N-terminal fragments of epitope-tagged normal htt in mutant htt aggregates. When the sequences encoding normal mouse htt’s polyQ stretch and PRR are replaced with non-pathogenic human sequence in mice also expressing 140Q-htt, aggregation foci within the striatum, and the mean size of htt inclusions are increased, along with an increase in striatal lipofuscin and gliosis. Conclusion In mice, soluble full-length normal and mutant htt are predominantly monomeric. In heterozygous knock-in HD mouse models, substituting the normal mouse polyQ and PRR with normal human sequence can exacerbate some neuropathological phenotypes.

  5. Reward-related behavioral paradigms for addiction research in the mouse: performance of common inbred strains.

    Directory of Open Access Journals (Sweden)

    Lauren Lederle

    2011-01-01

    Full Text Available The mouse has emerged as a uniquely valuable species for studying the molecular and genetic basis of complex behaviors and modeling neuropsychiatric disease states. While valid and reliable preclinical assays for reward-related behaviors are critical to understanding addiction-related processes, and various behavioral procedures have been developed and characterized in rats and primates, there have been relatively few studies using operant-based addiction-relevant behavioral paradigms in the mouse. Here we describe the performance of the C57BL/6J inbred mouse strain on three major reward-related paradigms, and replicate the same procedures in two other commonly used inbred strains (DBA/2J, BALB/cJ. We examined Pavlovian-instrumental transfer (PIT by measuring the ability of an auditory cue associated with food reward to promote an instrumental (lever press response. In a separate experiment, we assessed the acquisition and extinction of a simple stimulus-reward instrumental behavior on a touch screen based task. Reinstatement of this behavior was then examined following either continuous exposure to cues (conditioned reinforcers, CRs associated with reward, brief reward and CR exposure, or brief reward exposure followed by continuous CR exposure. The third paradigm examined sensitivity of an instrumental (lever press response to devaluation of food reward (a probe for outcome insensitive, habitual behavior by repeated pairing with malaise. Results showed that C57BL/6J mice displayed robust PIT, as well as clear extinction and reinstatement, but were insensitive to reinforcer devaluation. DBA/2J mice showed good PIT and (rewarded reinstatement, but were slow to extinguish and did not show reinforcer devaluation or significant CR-reinstatement. BALB/cJ mice also displayed good PIT, extinction and reinstatement, and retained instrumental responding following devaluation, but, unlike the other strains, demonstrated reduced Pavlovian approach

  6. Reward-related behavioral paradigms for addiction research in the mouse: performance of common inbred strains.

    Science.gov (United States)

    Lederle, Lauren; Weber, Susanna; Wright, Tara; Feyder, Michael; Brigman, Jonathan L; Crombag, Hans S; Saksida, Lisa M; Bussey, Timothy J; Holmes, Andrew

    2011-01-10

    The mouse has emerged as a uniquely valuable species for studying the molecular and genetic basis of complex behaviors and modeling neuropsychiatric disease states. While valid and reliable preclinical assays for reward-related behaviors are critical to understanding addiction-related processes, and various behavioral procedures have been developed and characterized in rats and primates, there have been relatively few studies using operant-based addiction-relevant behavioral paradigms in the mouse. Here we describe the performance of the C57BL/6J inbred mouse strain on three major reward-related paradigms, and replicate the same procedures in two other commonly used inbred strains (DBA/2J, BALB/cJ). We examined Pavlovian-instrumental transfer (PIT) by measuring the ability of an auditory cue associated with food reward to promote an instrumental (lever press) response. In a separate experiment, we assessed the acquisition and extinction of a simple stimulus-reward instrumental behavior on a touch screen based task. Reinstatement of this behavior was then examined following either continuous exposure to cues (conditioned reinforcers, CRs) associated with reward, brief reward and CR exposure, or brief reward exposure followed by continuous CR exposure. The third paradigm examined sensitivity of an instrumental (lever press) response to devaluation of food reward (a probe for outcome insensitive, habitual behavior) by repeated pairing with malaise. Results showed that C57BL/6J mice displayed robust PIT, as well as clear extinction and reinstatement, but were insensitive to reinforcer devaluation. DBA/2J mice showed good PIT and (rewarded) reinstatement, but were slow to extinguish and did not show reinforcer devaluation or significant CR-reinstatement. BALB/cJ mice also displayed good PIT, extinction and reinstatement, and retained instrumental responding following devaluation, but, unlike the other strains, demonstrated reduced Pavlovian approach behavior (food

  7. Replicable in vivo physiological and behavioral phenotypes of the Shank3B null mutant mouse model of autism.

    Science.gov (United States)

    Dhamne, Sameer C; Silverman, Jill L; Super, Chloe E; Lammers, Stephen H T; Hameed, Mustafa Q; Modi, Meera E; Copping, Nycole A; Pride, Michael C; Smith, Daniel G; Rotenberg, Alexander; Crawley, Jacqueline N; Sahin, Mustafa

    2017-01-01

    Autism spectrum disorder (ASD) is a clinically and biologically heterogeneous condition characterized by social, repetitive, and sensory behavioral abnormalities. No treatments are approved for the core diagnostic symptoms of ASD. To enable the earliest stages of therapeutic discovery and development for ASD, robust and reproducible behavioral phenotypes and biological markers are essential to establish in preclinical animal models. The goal of this study was to identify electroencephalographic (EEG) and behavioral phenotypes that are replicable between independent cohorts in a mouse model of ASD. The larger goal of our strategy is to empower the preclinical biomedical ASD research field by generating robust and reproducible behavioral and physiological phenotypes in animal models of ASD, for the characterization of mechanistic underpinnings of ASD-relevant phenotypes, and to ensure reliability for the discovery of novel therapeutics. Genetic disruption of the SHANK3 gene, a scaffolding protein involved in the stability of the postsynaptic density in excitatory synapses, is thought to be responsible for a relatively large number of cases of ASD. Therefore, we have thoroughly characterized the robustness of ASD-relevant behavioral phenotypes in two cohorts, and for the first time quantified translational EEG activity in Shank3B null mutant mice. In vivo physiology and behavioral assays were conducted in two independently bred and tested full cohorts of Shank3B null mutant ( Shank3B KO) and wildtype littermate control (WT) mice. EEG was recorded via wireless implanted telemeters for 7 days of baseline followed by 20 min of recording following pentylenetetrazol (PTZ) challenge. Behaviors relevant to the diagnostic and associated symptoms of ASD were tested on a battery of established behavioral tests. Assays were designed to reproduce and expand on the original behavioral characterization of Shank3B KO mice. Two or more corroborative tests were conducted within each

  8. Impaired fear extinction learning and cortico-amygdala circuit abnormalities in a common genetic mouse strain

    OpenAIRE

    Hefner, Kathryn; Whittle, Nigel; Juhasz, Jaynann; Norcross, Maxine; Karlsson, Rose-Marie; Saksida, Lisa M.; Bussey, Timothy J.; Singewald, Nicolas; Holmes, Andrew

    2008-01-01

    Fear extinction is a form of new learning that results in the inhibition of conditioned fear. Trait deficits in fear extinction are a risk factor for anxiety disorders. There are few examples of naturally-occurring animal models of impaired extinction. The present study compared fear extinction in a panel of inbred mouse strains. This strain survey revealed an impairment in fear extinction in 129/SvImJ (129S1). The phenotypic specificity of this deficit was evaluated by comparing 129S1 and C5...

  9. Evaluation of the G145R Mutant of the Hepatitis B Virus as a Minor Strain in Mother-to-Child Transmission.

    Directory of Open Access Journals (Sweden)

    Haruki Komatsu

    Full Text Available The role of the hepatitis B virus (HBV mutant G145R, with a single change in amino acid 145 of the surface protein, as a minor population remains unknown in mother-to-child transmission. The minor strain as well as the major strain of the G145R mutant were evaluated in three cohorts using a locked nucleic acid probe-based real-time PCR. The breakthrough cohort consisted of children who were born to HBV carrier mothers and became HBV carriers despite immnoprophylaxis (n = 25. The control cohort consisted of HBV carriers who had no history of receiving the hepatitis B vaccine, hepatitis B immunoglobulin or antiviral treatment (n = 126. The pregnant cohort comprised pregnant women with chronic HBV infection (n = 31. In the breakthrough cohort, 6 showed positive PCR results (major, 2; minor, 4. In the control cohort, 13 showed positive PCR results (major, 0; minor, 13. HBeAg-positive patients were prone to have the G145R mutant as a minor population. Deep sequencing was performed in a total of 32 children (PCR positive, n = 13; negative, n = 19. In the breakthrough cohort, the frequency of the G145R mutant ranged from 0.54% to 6.58%. In the control cohort, the frequency of the G145R mutant ranged from 0.42% to 4.1%. Of the 31 pregnant women, 4 showed positive PCR results (major, n = 0; minor, n = 4. All of the pregnant women were positive for HBeAg and showed a high viral load. Three babies born to 3 pregnant women with the G145R mutant were evaluated. After the completion of immunoprophylaxis, 2 infants became negative for HBsAg. The remaining infant became negative for HBsAg after the first dose of HB vaccine. G145R was detected in one-fourth of the children with immunoprophylaxis failure. However, the pre-existence of the G145R mutant as a minor population in pregnant women does not always cause breakthrough infection in infants.

  10. Strain improvement in dye decolourising mutants of Mucor mucedo ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... M. mucedo {MMM1-U.V. irradiated mutant and MMM2-EMS (ethyl methyl sulfonate) treated ... tions were induced and two positive mutants (MMM1, .... yeast biofilter for the treatment of a Nigerian fertilizer plant effluent. World J.

  11. EXTRACTION AND PURIFICATION OF EXTRACELLULAR LACCASE FROM WILD, MUTANTS AND HYBRID STRAINS OF TWO WHITE-ROT FUNGUS AND ITS APPLICATIONS IN DECOLOURIZATION AND LIGNINOLYSIS

    Directory of Open Access Journals (Sweden)

    Olusola Majolagbe

    2012-12-01

    Full Text Available Extracellular laccases were extracted from a 5-day old submerge cultures of the wild, mutants and hybrid of Lentinus subnudus. Mutants were generated by exposure of the wild strain of L. subnudus to ultraviolet radiation (ג = 280 nm at specific time intervals while the hybrid was produced by cross-breeding L. subnudus with L. edodes. The crude enzyme was fractionated with 80% ammonium sulphate and further purified on DEAE column. The laccase has a molecular weight of about 45 KDa. Purification yield on DEAE column gave the highest purification yield of 23.25% in SWT and least in SHT (5.29%. Its potentials in decolourization of 2, 6-dichlorophenol-indophenol dye at different pH conditions were investigated. Five out of the six fungal strains tested gave significant (P<0.05 percentage decolourization (≥43.94% at pH 8. The fungus was further studied for their ability in degrading wheat and paddy straws. The solid substrate fermentation was inoculated with two pieces (0.6cm diameter mycelial agar blocks of each of the fungal strains, supplemented with 30mg/100g sucrose, 24mg/100g KNO3 and 60mg/100g CaCO3. The periodic reduction in weight of the solid substrate medium and enzymatic activity of laccase for each of the fungal strains was assessed. Therefore, the ability of the wild, mutants and hybrid of L subnudus strains to produce laccase enzyme shows their significant potential in textile industry, especially in decolourization of dye and bioconversion of lignocellulosic wastes.

  12. Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice.

    Science.gov (United States)

    Turner, Bradley J; Alfazema, Neza; Sheean, Rebecca K; Sleigh, James N; Davies, Kay E; Horne, Malcolm K; Talbot, Kevin

    2014-04-01

    Spinal muscular atrophy results from diminished levels of survival motor neuron (SMN) protein in spinal motor neurons. Low levels of SMN also occur in models of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1) and genetic reduction of SMN levels exacerbates the phenotype of transgenic SOD1(G93A) mice. Here, we demonstrate that SMN protein is significantly reduced in the spinal cords of patients with sporadic ALS. To test the potential of SMN as a modifier of ALS, we overexpressed SMN in 2 different strains of SOD1(G93A) mice. Neuronal overexpression of SMN significantly preserved locomotor function, rescued motor neurons, and attenuated astrogliosis in spinal cords of SOD1(G93A) mice. Despite this, survival was not prolonged, most likely resulting from SMN mislocalization and depletion of gems in motor neurons of symptomatic mice. Our results reveal that SMN upregulation slows locomotor deficit onset and motor neuron loss in this mouse model of ALS. However, disruption of SMN nuclear complexes by high levels of mutant SOD1, even in the presence of SMN overexpression, might limit its survival promoting effects in this specific mouse model. Studies in emerging mouse models of ALS are therefore warranted to further explore the potential of SMN as a modifier of ALS. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Symbiotic N fixation of several soybean varieties and mutants

    International Nuclear Information System (INIS)

    Soertini, G.; Hendratno

    1988-01-01

    Symbiotic N fixation of several soybean varieties and mutants. Research activities comprising of three experiments were carried out to screen several soybean varieties and mutants for symbiotic N fixation potential. The first two experiments involved screening of seven rhizobium strains/isolate for effective N fixation. Depending on the medium used, plant response to strains was different. In sterile medium, rhizobium strain USDA 136, 142 and TAL 102 showed a high nitrogen fixation potential. In soil only rhizobium strain USDA 110 had better performance and proved to be competitive to the native strains. Nitrogen-15 dilution method was used to screen nitrogen fixing ability of several soybean varieties and mutants. Guntur variety showed a better response to high dose of N fertilizer without disturbance in its fixing ability. This variety then was considered good to be introduced in the cropping system. (author). 8 refs

  14. Glycine receptor mutants of the mouse: what are possible routes of inhibitory compensation?

    Directory of Open Access Journals (Sweden)

    Natascha eSchaefer

    2012-10-01

    Full Text Available Defects in glycinergic inhibition result in a complex neuromotor disorder in humans known as hyperekplexia (OMIM 149400 with similar phenotypes in rodents characterized by an exaggerated startle reflex and hypertonia. Analogous to genetic defects in humans, single point mutations, microdeletions, or insertions in the Glra1 gene but also in the Glrb gene underlie the pathology in mice. The mutations either localized in the α (spasmodic, oscillator, cincinnati, Nmf11 or the β (spastic subunit of the GlyR are much less tolerated in mice than in humans, leaving the question for the existence of different regulatory elements of the pathomechanisms in humans and rodents. In addition to the spontaneous mutations, new insights into understanding of the regulatory pathways in hyperekplexia or glycine encephalopathy arose from the constantly increasing number of knock-out as well as knock-in mutants of GlyRs. Over the last five years, various efforts using in vivo whole cell recordings provided a detailed analysis of the kinetic parameters underlying glycinergic dysfunction. Presynaptic compensation as well as postsynaptic compensatory mechanisms in these mice by other GlyR subunits or GABAA receptors, and the role of extra-synaptic GlyRs is still a matter of debate. A recent study on the mouse mutant oscillator, displayed a novel aspect for compensation of functionality by complementation of receptor domains that fold independently. This review focuses on defects in glycinergic neurotransmission in mice discussed with the background of human hyperekplexia en route to strategies of compensation.

  15. Brucella abortusΔcydCΔcydD and ΔcydCΔpurD double-mutants are highly attenuated and confer long-term protective immunity against virulent Brucella abortus.

    Science.gov (United States)

    Truong, Quang Lam; Cho, Youngjae; Park, Soyeon; Kim, Kiju; Hahn, Tae-Wook

    2016-01-04

    We constructed double deletion (ΔcydCΔcydD and ΔcydCΔpurD) mutants from virulent Brucella abortus biovar 1 field isolate (BA15) by deleting the genes encoding an ATP-binding cassette-type transporter (cydC and cydD genes) and a phosphoribosylamine-glycine ligase (purD). Both BA15ΔcydCΔcydD and BA15ΔcydCΔpurD double-mutants exhibited significant attenuation of virulence when assayed in murine macrophages or in BALB/c mice. Both double-mutants were readily cleared from spleens by 4 weeks post-inoculation even when inoculated at the dose of 10(8) CFU per mouse. Moreover, the inoculated mice showed no splenomegaly, which indicates that the mutants are highly attenuated. Importantly, the attenuation of in vitro and in vivo growth did not impair the ability of these mutants to confer long-term protective immunity in mice against challenge with B. abortus strain 2308. Vaccination of mice with either mutant induced humoral and cell-mediated immune responses, and provided significantly better protection than commercial B. abortus strain RB51 vaccine. These results suggest that highly attenuated BA15ΔcydCΔcydD and BA15ΔcydCΔpurD mutants can be used effectively as potential live vaccine candidates against bovine brucellosis. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. A surgical approach appropriate for targeted cochlear gene therapy in the mouse.

    Science.gov (United States)

    Jero, J; Tseng, C J; Mhatre, A N; Lalwani, A K

    2001-01-01

    Therapeutic manipulations of the mammalian cochlea, including cochlear gene transfer, have been predominantly studied using the guinea pig as the experimental model. With the significant developments in mouse genomics and the availability of mutant strains of mice with well-characterized hearing loss, the mouse justifiably will be the preferred animal model for therapeutic manipulations. However, the potential advantages of the mouse model have not been fully realized due to the surgical difficulty of accessing its small cochlea. This study describes a ventral approach, instead of the routinely used postauricular approach in other rodents, for accessing the mouse middle and inner ear, and its application in cochlear gene transfer. This ventral approach enabled rapid and direct delivery of liposome-transgene complex to the mouse inner ear while avoiding blood loss, facial nerve morbidity, and mortality. Transgene expression at 3 days was detected in Reissner's membrane, spiral limbus, spiral ligament, and spiral ganglion cells, in a pattern similar to that previously described in the guinea pig. The successful access and delivery of material to the mouse cochlea and the replication of gene expression seen in the guinea pig demonstrated in this study should promote the use of the mouse in future studies investigating targeted cochlear therapy.

  17. Substrate specificity of glucose dehydrogenase and carbon source utilization pattern of pantoea dispersa strain P2 and its radiation induced mutants

    International Nuclear Information System (INIS)

    Lee, Young Keun; Murugesan, Senthilkumar

    2009-01-01

    Mineral phosphate solubilizing pantoea dispersa strain P2 produced 5.5 mM and 42.6 mM of gluconic acid on 24 h and 72 h incubation, respectively. Strain P2 exhibited glucose dehydrogenase (GDH) specific activity of 0.32 IU mg -1 protein. We have studied the substrate specificity of GDH as well as carbon source utilization pattern of strain P2. GDH of strain P2 did not use ribose as substrate. Utilization of lactose with specific activity of 0.65 IU mg -1 protein indicated that the enzyme belongs to GDH type B isozyme. Arabinose, galactose, ribose, sucrose and xylose did not induce the synthesis of GDH enzyme while mannose induced the synthesis of GDH with highest specific activity of 0.58 IU mg -1 protein. Through radiation mutagenesis, the substrate specificity of GDH was modified in order to utilize side range of sugars available in root exudates. Ribose, originally not a substrate for GDH of strain P2 was utilized as substrate by mutants P2-M5 with specific activity of 0.44 and 0.57 IU mg -1 protein, respectively. Specific activity of GDH on the media containing lactose and galactose was also improved to 1.2 and 0.52 IU mg -1 protein in P2-M5 and P2-M6 respectively. Based on the carbon source availability in root exudate, the mutants can be selected and utilized as efficient biofertilizer under P-deficient soil conditions

  18. Absence-like and tonic seizures in aspartoacylase/attractin double-mutant mice.

    Science.gov (United States)

    Gohma, Hiroshi; Kuramoto, Takashi; Matalon, Reuben; Surendran, Sankar; Tyring, Stephen; Kitada, Kazuhiro; Sasa, Masashi; Serikawa, Tadao

    2007-04-01

    The Spontaneously Epileptic Rat (SER), a double-mutant for tremor and zitter mutations, shows spontaneous occurrences of absence-like and tonic seizures. Several lines of evidence suggest that the combined effect of Aspa and Atrn mutations is the most likely cause of the epileptic phenotype of the SER. To address this issue, we produced a new double-mutant mouse line carrying both homozygous Aspa-knockout and Atrn(mg-3J) mutant alleles. The Aspa/Atrn double-mutant mice exhibited absence-like and tonic seizures that were characterized by the appearance of 5-7 Hz spike-wave-like complexes and low voltage fast waves on EEGs. These results demonstrate directly that the simultaneous loss of the Aspa and Atrn gene functions causes epileptic seizures in the mouse and suggest that both Aspa and Atrn deficiencies might be responsible for epileptic seizures in the SER.

  19. Radiation susceptibility of the mouse smalleye mutants, Del(2)Sey3Hpax6 and Del(2)Sey4Hpax6, which delete the chromosome 2 middle regions

    International Nuclear Information System (INIS)

    Nitta, Y.; Hoshi, M.; Yoshida, K.; Yamate, J.; Peters, J.; Cattanach, B.M.

    2003-01-01

    Full text: LOH at the chromosome 2 middle regions is common in the radiation-induced mouse acute myeloid leukemia (AML). To identify the suppressor or the modifier gene of AML at this region, the mouse deletion mutants, Del(2)Sey3H pax6 and Del(2)Sey3H pax6 could be the good models, as they deleted the chromosome 2 middle regions hemizygously. The allele of the partially deleted chromosome 2 was paternally generated and maintained hemizygously. The exact deleted regions of the two mutants were mapped by the PCR-based detection of polymorphism of the STS markers. The length of the deletions was 3.01Mb and 10.11MB for Del(2)Sey3H pax6 and Del(2)Sey3H pax6 , respectively. For the induction of tumors, a radiation, 3.0Gy of Co-60 and a chemical carcinogen, N-methyl-N-nitrosourea were applied to the mutants. Their tumorigenicity was compared with those of control as well as normal sibs by the Kaplan-Meier analysis. Both mutants were found to predispose to small intestinal tumors. Intestinal tumors developed spontaneously with the incidence of 30%. The radiation and the chemical accelerated the malignancy and increased the incidence of the intestinal tumors. Radiation shortened the latency of AML development in the Del(2)Sey3H pax6 mutant but not in the Del(2)Sey3H pax6 . Spontaneous AML has not been observed, nor any increase in the incidence of induced AMLs. The commonly deleted region of the two mutants, the 3.01Mb region, must be critical for the development of tumors and the high susceptibility to radiation. The role of Pax6 gene should be considered in the intestinal tumorigenesis, as the Pax6 gene plays an important role in the pancreas development during the embryogenesis. The Wt1, a tumor suppressor gene, which is deleted hemizygously in these mutants as well. The screening of homozygous deletion has been started using the induced as well as spontaneously developed tumors

  20. Analysis of the presence of cell proliferation-related molecules in the Tgf-β3 null mutant mouse palate reveals misexpression of EGF and Msx-1.

    Science.gov (United States)

    del Río, A; Barrio, M C; Murillo, J; Maldonado, E; López-Gordillo, Y; Martínez-Sanz, E; Martínez, M L; Martínez-Álvarez, C

    2011-01-01

    The Tgf-β(3) null mutant mouse palate presents several cellular anomalies that lead to the appearance of cleft palate. One of them concerns the cell proliferation of both the palatal medial edge epithelium and mesenchyme. In this work, our aim was to determine whether there was any variation in the presence/distribution of several cell proliferation-related molecules that could be responsible for the cell proliferation defects observed in these palates. Our results showed no difference in the presence of EGF-R, PDGF-A, TGF-β(2), Bmp-2, and Bmp-4, and differences were minimal for FGF-10 and Shh. However, the expression of EGF and Msx-1 changed substantially. The shift of the EGF protein expression was the one that most correlated with that of cell proliferation. This molecule is regulated by TGF-β(3), and experiments blocking its activity in culture suggest that EGF misexpression in the Tgf-β(3) null mutant mouse palate plays a role in the cell proliferation defect observed. Copyright © 2010 S. Karger AG, Basel.

  1. Inhibition of citric acid accumulation by manganese ions in Aspergillus niger mutants with reduced citrate control of phosphofructokinase

    Energy Technology Data Exchange (ETDEWEB)

    Schreferl, G.; Kubicek, C.P.; Roehr, M.

    1986-03-01

    Mutant strains of Aspergillus niger with reduced citrate control of carbohydrate catabolism (cic mutants) grow faster than the parent strain on media containing 5% (wt/vol) citrate. The mutants tolerated a higher intracellular citrate concentration than the parent strain. One mutant (cic-7/3) contained phosphofructokinase activity significantly less sensitive towards citrate than the enzyme from the parent strain. When this mutant was grown under citrate accumulating conditions, acidogenesis was far less sensitive to inhibition by Mn/sup 2 +/ than in the parent strain. Some of the cic mutants also showed altered citrate inhibition of NADP-specific isocitrate dehydrogenase.

  2. Stress Tolerance in Doughs of Saccharomyces cerevisiae Trehalase Mutants Derived from Commercial Baker’s Yeast

    Science.gov (United States)

    Shima, Jun; Hino, Akihiro; Yamada-Iyo, Chie; Suzuki, Yasuo; Nakajima, Ryouichi; Watanabe, Hajime; Mori, Katsumi; Takano, Hiroyuki

    1999-01-01

    Accumulation of trehalose is widely believed to be a critical determinant in improving the stress tolerance of the yeast Saccharomyces cerevisiae, which is commonly used in commercial bread dough. To retain the accumulation of trehalose in yeast cells, we constructed, for the first time, diploid homozygous neutral trehalase mutants (Δnth1), acid trehalase mutants (Δath1), and double mutants (Δnth1 ath1) by using commercial baker’s yeast strains as the parent strains and the gene disruption method. During fermentation in a liquid fermentation medium, degradation of intracellular trehalose was inhibited with all of the trehalase mutants. The gassing power of frozen doughs made with these mutants was greater than the gassing power of doughs made with the parent strains. The Δnth1 and Δath1 strains also exhibited higher levels of tolerance of dry conditions than the parent strains exhibited; however, the Δnth1 ath1 strain exhibited lower tolerance of dry conditions than the parent strain exhibited. The improved freeze tolerance exhibited by all of the trehalase mutants may make these strains useful in frozen dough. PMID:10388673

  3. Isolation and characterization of radioresistant mutants in Bacillus subtilis and Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Kalinin, V.L.; Petrov, V.N.; Petrova, T.M.

    1981-01-01

    Vegetative cells of Bac. thuringiensis var. galleriae (the wild-type strain 351) are much more sensitive to lethal effects of UV light and 60 Co-γ-rays than those of Bac. subtilis (the wild-type strain 168). This difference is less pronounced for spores of these strains. By means of repeated γ-irradiation-regrowth cycles radioresistant mutants Bac. thuringiensis Gamsup(r) 14 and Bac. subtilis Gamsup(r) 9 were selected. The vegetative cells of these mutants are correspondingly 19 times and 3.9 times more resistant to lethal effects of γ-radiation than the cells of the parental strains. The resistance of the Gamsup(r) mutant cells to lethal effects of UV light and H 2 O 2 is also increased. The spores of the Gamsup(r) 14 mutant are 1.5-1.7 times more resistant to γ-radiation and UV light than the wild-type spores. The radioresistant mutants and the parental strains do not vary in their capacity for host-cell reactivation of UV- or γ-irradiated phages Tg13 and 105

  4. Optimisation of nutritional requirements for dopamine synthesis by calcium alginate-entrapped mutant strain of Aspergillus oryzae EMS-6.

    Science.gov (United States)

    Ali, Sikander; Nawaz, Wajeeha

    2017-02-01

    The optimisation of nutritional requirements for dopamine (DA) synthesis by calcium alginate-entrapped mutant variant of Aspergillus oryzae EMS-6 using submerged fermentation technique was investigated. A total of 13 strains were isolated from soil. Isolate I-2 was selected as a better producer of DA and improved by exposing with ethyl methylsulphonate (EMS). EMS-6 was selected as it exhibited 43 μg/mL DA activity. The mutant variable was further treated with low levels of l-cysteine HCl to make it resistant against diversion and environmental stress. The conidiospores of mutant variant were entrapped in calcium alginate beads for stable product formation. EMS-6 gave maximum DA activity (124 μg/mL) when supplemented with 0.1% peptone and 0.2% sucrose, under optimised parameters viz. pH 3, temperature of 55 °C and incubation time of 70 min. The study involves the high profile of DA activity and is needed, as DA is capable to control numerous neurogenic disorders.

  5. High-throughput, signature-tagged mutagenic approach to identify novel virulence factors of Yersinia pestis CO92 in a mouse model of infection.

    Science.gov (United States)

    Ponnusamy, Duraisamy; Fitts, Eric C; Sha, Jian; Erova, Tatiana E; Kozlova, Elena V; Kirtley, Michelle L; Tiner, Bethany L; Andersson, Jourdan A; Chopra, Ashok K

    2015-05-01

    The identification of new virulence factors in Yersinia pestis and understanding their molecular mechanisms during an infection process are necessary in designing a better vaccine or to formulate an appropriate therapeutic intervention. By using a high-throughput, signature-tagged mutagenic approach, we created 5,088 mutants of Y. pestis strain CO92 and screened them in a mouse model of pneumonic plague at a dose equivalent to 5 50% lethal doses (LD50) of wild-type (WT) CO92. From this screen, we obtained 118 clones showing impairment in disseminating to the spleen, based on hybridization of input versus output DNA from mutant pools with 53 unique signature tags. In the subsequent screen, 20/118 mutants exhibited attenuation at 8 LD50 when tested in a mouse model of bubonic plague, with infection by 10/20 of the aforementioned mutants resulting in 40% or higher survival rates at an infectious dose of 40 LD50. Upon sequencing, six of the attenuated mutants were found to carry interruptions in genes encoding hypothetical proteins or proteins with putative functions. Mutants with in-frame deletion mutations of two of the genes identified from the screen, namely, rbsA, which codes for a putative sugar transport system ATP-binding protein, and vasK, a component of the type VI secretion system, were also found to exhibit some attenuation at 11 or 12 LD50 in a mouse model of pneumonic plague. Likewise, among the remaining 18 signature-tagged mutants, 9 were also attenuated (40 to 100%) at 12 LD50 in a pneumonic plague mouse model. Previously, we found that deleting genes encoding Braun lipoprotein (Lpp) and acyltransferase (MsbB), the latter of which modifies lipopolysaccharide function, reduced the virulence of Y. pestis CO92 in mouse models of bubonic and pneumonic plague. Deletion of rbsA and vasK genes from either the Δlpp single or the Δlpp ΔmsbB double mutant augmented the attenuation to provide 90 to 100% survivability to mice in a pneumonic plague model at 20

  6. Substrate specificity of glucose dehydrogenase and carbon source utilization pattern of pantoea dispersa strain P2 and its radiation induced mutants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Keun; Murugesan, Senthilkumar [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-06-15

    Mineral phosphate solubilizing pantoea dispersa strain P2 produced 5.5 mM and 42.6 mM of gluconic acid on 24 h and 72 h incubation, respectively. Strain P2 exhibited glucose dehydrogenase (GDH) specific activity of 0.32 IU mg{sup -1} protein. We have studied the substrate specificity of GDH as well as carbon source utilization pattern of strain P2. GDH of strain P2 did not use ribose as substrate. Utilization of lactose with specific activity of 0.65 IU mg{sup -1} protein indicated that the enzyme belongs to GDH type B isozyme. Arabinose, galactose, ribose, sucrose and xylose did not induce the synthesis of GDH enzyme while mannose induced the synthesis of GDH with highest specific activity of 0.58 IU mg{sup -1} protein. Through radiation mutagenesis, the substrate specificity of GDH was modified in order to utilize side range of sugars available in root exudates. Ribose, originally not a substrate for GDH of strain P2 was utilized as substrate by mutants P2-M5 with specific activity of 0.44 and 0.57 IU mg{sup -1} protein, respectively. Specific activity of GDH on the media containing lactose and galactose was also improved to 1.2 and 0.52 IU mg{sup -1} protein in P2-M5 and P2-M6 respectively. Based on the carbon source availability in root exudate, the mutants can be selected and utilized as efficient biofertilizer under P-deficient soil conditions.

  7. Morphological and physiological investigations on mutants of Fusarium monoliforme IM

    International Nuclear Information System (INIS)

    Gancheva, V.

    1996-01-01

    High-producing mutants of Fusarium moniliforme IM are obtained as a result of gamma irradiation. The cultural characteristics of mutant strains 3284, 3211 and 76 following incubation of the producers for 14 days on potato-glucose agar are described. The colour of the aerial and substrate mycelium and the ability of the mutant strains to form conidiae and pigments are discussed in detail. The differences in the ability of mutants to assimilate different carbon and nitrogen sources are of specific importance for modelling nutrient media for submerged cultivation of F. moniliforme. 2 tabs., 2 figs. 7 refs

  8. Mutant strain screening by 60Co γ-rays irradiation and its cellulase enzyme produce condition

    International Nuclear Information System (INIS)

    Song Andong; Su Lijuan; Xie Hui; Qu Yinbo; Yang Ming

    2008-01-01

    A mutant strain A50 with high cellulase activity was induced and isolated by using 60 Co γ-rays irradiation from the initial Penicillium decumbens A10. The optimum fermentation conditions of A50 were investigated through orthogonal designing experiment, the major carbon resource 5%, the ratio between wheat bran and corn straw 1:1, the concentration of glucose as supplemental carbon 0.1%, the concentration of (NH 4 ) 2 HPO 4 as supplemental nitrogen resource 0.2%, the initial pH of liquid medium 5.0, the inoculated amount for fermentation 10% and the concentration of Tween-80 0.1%, 30 ml initial media filled in the 300 ml flask with culture condition of 32 degree C and 200 r/min. Under the optimum conditions mentioned above, the highest activities of cellulase and filter paper enzyme were 27.28 and 1.98IU/ml at 60 h fermentation, respectively, which was 33.2% and 45.59% higher than those of the initial strain. (authors)

  9. Glycosaminoglycan sulphation affects the seeded misfolding of a mutant prion protein.

    Directory of Open Access Journals (Sweden)

    Victoria A Lawson

    Full Text Available BACKGROUND: The accumulation of protease resistant conformers of the prion protein (PrP(res is a key pathological feature of prion diseases. Polyanions, including RNA and glycosaminoglycans have been identified as factors that contribute to the propagation, transmission and pathogenesis of prion disease. Recent studies have suggested that the contribution of these cofactors to prion propagation may be species specific. METHODOLOGY/PRINCIPAL FINDING: In this study a cell-free assay was used to investigate the molecular basis of polyanion stimulated PrP(res formation using brain tissue or cell line derived murine PrP. Enzymatic depletion of endogenous nucleic acids or heparan sulphate (HS from the PrP(C substrate was found to specifically prevent PrP(res formation seeded by mouse derived PrP(Sc. Modification of the negative charge afforded by the sulphation of glycosaminoglycans increased the ability of a familial PrP mutant to act as a substrate for PrP(res formation, while having no effect on PrP(res formed by wildtype PrP. This difference may be due to the observed differences in the binding of wild type and mutant PrP for glycosaminoglycans. CONCLUSIONS/SIGNIFICANCE: Cofactor requirements for PrP(res formation are host species and prion strain specific and affected by disease associated mutations of the prion protein. This may explain both species and strain dependent propagation characteristics and provide insights into the underlying mechanisms of familial prion disease. It further highlights the challenge of designing effective therapeutics against a disease which effects a range of mammalian species, caused by range of aetiologies and prion strains.

  10. Gliopathy of Demyelinating And Non-Demyelinating Strains Of Mouse Hepatitis Virus.

    Directory of Open Access Journals (Sweden)

    Lawrence Charles Kenyon

    2015-12-01

    Full Text Available Demyelination in the central nervous system induced by neurovirulent strains of Mouse Hepatitis Virus (MHV is mediated by the viral spike glycoprotein, but it is not clear whether the mechanism of this disease pathology involves direct viral infection of oligodendrocytes. Detailed studies of glial cell tropism of MHV are presented, demonstrating that direct MHV infection of oligodendrocytes differs between demyelinating (RSA59 and non-demyelinating (RSMHV2 viral strains both in vitro and in vivo. Our results indicate that direct injury of mature oligodendrocytes is an important mechanism of virus-induced demyelination. In vivo, RSA59 infection was identified in spinal cord gray and white matter, but infected oligodendrocytes were restricted to white matter. In contrast, RSMHV2 infection was restricted to gray matter neurons and was not localized to oligodendrocytes. In vitro, RSA59 can infect both oligodendrocyte precursors and differentiated oligodendrocytes, whereas RSMHV2 can infect oligodendrocyte precursors but not differentiated oligodendrocytes. Viral spreading through axonal means to white matter and release of the demyelinating strain MHV at the nerve end is critical for oligodendrocytes infection and subsequent demyelination. Understanding the mechanisms by which known viruses effect demyelination in this animal model has important therapeutic implications in the treatment of human demyelinating disease.

  11. Lack of chemically induced mutation in repair-deficient mutants of yeast

    International Nuclear Information System (INIS)

    Prakash, L.

    1974-01-01

    Two genes, rad6 and rad9, that confer radiation sensitivity in the yeast Saccharomyces cerevisiae also greatly reduce the frequency of chemically-induced reversions of a tester mutant cyc1-131, which is a chain initiation mutant in the structural gene determining iso-1-cytochrome c. Mutations induced by ethyl methanesulfonate (EMS), diethyl sulfate (DES), methyl methanesulfonate (MMS), dimethyl sulfate (DMS), nitroquinoline oxide (NQO), nitrosoguanidine (NTG), nitrogen mustard (HN2), β-propiolactone, and tritiated uridine, as well as mutations induced by ultraviolet light (UV) and ionizing radiation were greatly diminished in strains homozygous for either the rad6 or rad9 gene. Nitrous acid and nitrosoimidazolidone (NIL), on the other hand, were highly mutagenic in these repair-deficient mutants, and at low doses, these mutagens acted with about the same efficiency as in the normal RAD strain. At high doses of either nitrous acid or NIL, however, reversion frequencies were significantly reduced in the two rad mutants compared to normal strains. Although both rad mutants are immutable to about the same extent, the rad9 strains tend to be less sensitive to the lethal effect of chemical mutagens than rad6 strains. It is concluded that yeast requires a functional repair system for mutation induction by chemical agents. (auth)

  12. Lack of chemically induced mutation in repair-deficient mutants of yeast.

    Science.gov (United States)

    Prakash, L

    1974-12-01

    Two genes, rad6 and rad9, that confer radiation sensitivity in the yeast Saccharomyces cerevisiae also greatly reduce the frequency of chemically-induced reversions of a tester mutant cyc1-131, which is a chain initiation mutant in the structural gene determining iso-1-cytochrome c. Mutations induced by ethyl methanesulfonate (EMS), diethyl sulfate (DES), methyl methanesulfonate (MMS), dimethyl sulfate (DMS), nitroquinoline oxide (NQO), nitrosoguanidine (NTG), nitrogen mustard (HN2), beta-propiolactone, and tritiated uridine, as well as mutations induced by ultraviolet light (UV) and ionizing radiation were greatly diminished in strains homozygous for either the rad6 or rad9 gene. Nitrous acid and nitrosoimidazolidone (NIL), on the other hand, were highly mutagenic in these repair-deficient mutants, and at low doses, these mutagens acted with about the same efficiency as in the normal RAD strain. At high doses of either nitrous acid or NIL, however, reversion frequencies were significantly reduced in the two rad mutants compared to normal strains. Although both rad mutants are immutable to about the same extent, the rad9 strains tend to be less sensitive to the lethal effect of chemical mutagens than rad6 strains. It is concluded that yeast requires a functional repair system for mutation induction by chemical agents.

  13. A spontaneous and novel Pax3 mutant mouse that models Waardenburg syndrome and neural tube defects.

    Science.gov (United States)

    Ohnishi, Tetsuo; Miura, Ikuo; Ohba, Hisako; Shimamoto, Chie; Iwayama, Yoshimi; Wakana, Shigeharu; Yoshikawa, Takeo

    2017-04-05

    Genes responsible for reduced pigmentation phenotypes in rodents are associated with human developmental defects, such as Waardenburg syndrome, where patients display congenital deafness along with various abnormalities mostly related to neural crest development deficiency. In this study, we identified a spontaneous mutant mouse line Rwa, which displays variable white spots on mouse bellies and white digits and tail, on a C57BL/6N genetic background. Curly tail and spina bifida were also observed, although at a lower penetrance. These phenotypes were dominantly inherited by offspring. We searched for the genetic mechanism of the observed phenotypes. We harnessed a rapid mouse gene mapping system newly developed in our laboratories to identify a responsible gene. We detected a region within chromosome 1 as a probable locus for the causal mutation. Dense mapping using interval markers narrowed the locus down to a 670-kbp region, containing four genes including Pax3, a gene known to be implicated in the types I and III Waardenburg syndrome. Extensive mutation screening of Pax3 detected an 841-bp deletion, spanning the promoter region and intron 1 of the gene. The defective allele of Pax3, named Pax3 Rwa , lacked the first coding exon and co-segregated perfectly with the phenotypes, confirming its causal nature. The genetic background of Rwa mice is almost identical to that of inbred C57BL/6N. These results highlight Pax3 Rwa mice as a beneficial tool for analyzing biological processes involving Pax3, in particular the development and migration of neural crest cells and melanocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Detection of quantitative trait loci causing abnormal spermatogenesis and reduced testis weight in the small testis (Smt) mutant mouse.

    Science.gov (United States)

    Bolor, Hasbaira; Wakasugi, Noboru; Zhao, Wei Dong; Ishikawa, Akira

    2006-04-01

    The small testis (Smt) mutant mouse is characterized by a small testis of one third to one half the size of a normal testis, and its spermatogenesis is mostly arrested at early stages of meiosis, although a small number of spermatocytes at the late prophase of meiosis and a few spermatids can sometimes be seen. We performed quantitative trait locus (QTL) analysis of these spermatogenic traits and testis weight using 221 F2 males obtained from a cross between Smt and MOM (Mus musculus molossinus) mice. At the genome-wide 5% level, we detected two QTLs affecting meiosis on chromosomes 4 and 13, and two QTLs for paired testis weight as a percentage of body weight on chromosomes 4 and X. In addition, we found several QTLs for degenerated germ cells and multinuclear giant cells on chromosomes 4, 7 and 13. Interestingly, for cell degeneration, the QTL on chromosome 13 interacted epistatically with the QTL on chromosome 4. These results reveal polygenic participation in the abnormal spermatogenesis and small testis size in the Smt mutant.

  15. Mouse strain-dependent differences in estrogen sensitivity during vaginal candidiasis.

    Science.gov (United States)

    Mosci, Paolo; Pietrella, Donatella; Ricci, Giovanni; Pandey, Neelam; Monari, Claudia; Pericolini, Eva; Gabrielli, Elena; Perito, Stefano; Bistoni, Francesco; Vecchiarelli, Anna

    2013-02-01

    The animal models available for studying the immune response to genital tract infection require induction of a pseudo estrous state, usually achieved by administration of 17-β-estradiol. In our experimental model of vaginal candidiasis, under pseudo estrus, different strains of mice were used. We observed major differences in the clearance of Candida albicans infection among the different strains, ascribable to differing susceptibility to estradiol treatment. In the early phase of infection CD1, BALB/c, C57BL/6 albino and C57BL/6 mice were colonized to similar levels, while in the late phase of infection, BALB/c mice, which are considered genetically resistant to C. albicans infection, exhibited greater susceptibility to vaginal candidiasis than CD1 and C57BL/6 albino strains of mice. This was because estradiol induced "per se" enlarged and fluid-filled uteri, more pronounced in infected mice and consistently more evident in BALB/c and C57BL/6 mice than in CD1 mice. Unlike CD1, BALB/c and C57BL/6 mice showed a heavy fungal colonization of the uterus, even though C57BL/6 mice apparently cleared C. albicans from the vagina. The presence of C. albicans in the vagina and uterus was accompanied by a heavy bacterial load. Collectively these observations prompted us to carry out a careful analysis of estradiol effects in a mouse model of vaginal infection.

  16. A Transgenic Mouse Model of Poliomyelitis.

    Science.gov (United States)

    Koike, Satoshi; Nagata, Noriyo

    2016-01-01

    Transgenic mice (tg mice) that express the human poliovirus receptor (PVR), CD155, are susceptible to poliovirus and develop a neurological disease that resembles human poliomyelitis. Assessment of the neurovirulence levels of poliovirus strains, including mutant viruses produced by reverse genetics, circulating vaccine-derived poliovirus, and vaccine candidates, is useful for basic research of poliovirus pathogenicity, the surveillance of circulating polioviruses, and the quality control of oral live poliovirus vaccines, and does not require the use of monkeys. Furthermore, PVR-tg mice are useful for studying poliovirus tissue tropism and host immune responses. PVR-tg mice can be bred with mice deficient in the genes involved in viral pathogenicity. This report describes the methods used to analyze the pathogenicity and immune responses of poliovirus using the PVR-tg mouse model.

  17. Assessing mouse behaviour throughout the light/dark cycle using automated in-cage analysis tools.

    Science.gov (United States)

    Bains, Rasneer S; Wells, Sara; Sillito, Rowland R; Armstrong, J Douglas; Cater, Heather L; Banks, Gareth; Nolan, Patrick M

    2018-04-15

    An important factor in reducing variability in mouse test outcomes has been to develop assays that can be used for continuous automated home cage assessment. Our experience has shown that this has been most evidenced in long-term assessment of wheel-running activity in mice. Historically, wheel-running in mice and other rodents have been used as a robust assay to determine, with precision, the inherent period of circadian rhythms in mice. Furthermore, this assay has been instrumental in dissecting the molecular genetic basis of mammalian circadian rhythms. In teasing out the elements of this test that have determined its robustness - automated assessment of an unforced behaviour in the home cage over long time intervals - we and others have been investigating whether similar test apparatus could be used to accurately discriminate differences in distinct behavioural parameters in mice. Firstly, using these systems, we explored behaviours in a number of mouse inbred strains to determine whether we could extract biologically meaningful differences. Secondly, we tested a number of relevant mutant lines to determine how discriminative these parameters were. Our findings show that, when compared to conventional out-of-cage phenotyping, a far deeper understanding of mouse mutant phenotype can be established by monitoring behaviour in the home cage over one or more light:dark cycles. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  18. Ascertainment of the effect of differential growth rates of mutants on observed mutant frequencies in X-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Knaap, A.G.A.C.; Simons, J.W.I.M.

    1983-01-01

    As it is not known to what extent differential growth rates of induced mutants lead to over- and under-representation of mutants in treated populations and thereby affect the determination of mutant frequencies, the mutation induction in X-irradiated L5178Y mouse lymphoma cells was determined via two methods. The first method involves the standard protocol which may suffer from the effect of differential growth rates, while the second method is based upon the fluctuation test in which the differential growth rates can be actually measured. It appeared that the standard protocol led to a mutant frequency that was similar to the mutant frequency determined in the fluctuation test. Therefore, the standard protocol appears to lead to only a minor under-estimation if any. Substantial heterogeneity in growth rates of induced mutants was observed, but the mutants with a selective advantage appear largely to compensate for the mutants that are lost because of selective disadvantage. It was calculated that the chance for isolating the same mutant twice from a treated population had been increased 2.2-fold because of the observed differential growth rates. (orig./AJ)

  19. Alterations in grooming activity and syntax in heterozygous SERT and BDNF knockout mice: the utility of behavior-recognition tools to characterize mutant mouse phenotypes.

    Science.gov (United States)

    Kyzar, Evan J; Pham, Mimi; Roth, Andrew; Cachat, Jonathan; Green, Jeremy; Gaikwad, Siddharth; Kalueff, Allan V

    2012-12-01

    Serotonin transporter (SERT) and brain-derived neurotrophic factor (BDNF) are key modulators of molecular signaling, cognition and behavior. Although SERT and BDNF mutant mouse phenotypes have been extensively characterized, little is known about their self-grooming behavior. Grooming represents an important behavioral domain sensitive to environmental stimuli and is increasingly used as a model for repetitive behavioral syndromes, such as autism and attention deficit/hyperactivity disorder. The present study used heterozygous ((+/-)) SERT and BDNF male mutant mice on a C57BL/6J background and assessed their spontaneous self-grooming behavior applying both manual and automated techniques. Overall, SERT(+/-) mice displayed a general increase in grooming behavior, as indicated by more grooming bouts and more transitions between specific grooming stages. SERT(+/-) mice also aborted more grooming bouts, but showed generally unaltered activity levels in the observation chamber. In contrast, BDNF(+/-) mice displayed a global reduction in grooming activity, with fewer bouts and transitions between specific grooming stages, altered grooming syntax, as well as hypolocomotion and increased turning behavior. Finally, grooming data collected by manual and automated methods (HomeCageScan) significantly correlated in our experiments, confirming the utility of automated high-throughput quantification of grooming behaviors in various genetic mouse models with increased or decreased grooming phenotypes. Taken together, these findings indicate that mouse self-grooming behavior is a reliable behavioral biomarker of genetic deficits in SERT and BDNF pathways, and can be reliably measured using automated behavior-recognition technology. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Cox4i2, Ifit2, and Prdm11 Mutant Mice

    DEFF Research Database (Denmark)

    Horsch, Marion; Aguilar-Pimentel, Juan Antonio; Bönisch, Clemens

    2015-01-01

    We established a selection strategy to identify new models for an altered airway inflammatory response from a large compendium of mutant mouse lines that were systemically phenotyped in the German Mouse Clinic (GMC). As selection criteria we included published gene functional data, as well as imm...

  1. Genetics of Ustilago violacea. I. Carotenoid mutants and carotenogenesis

    International Nuclear Information System (INIS)

    Garber, E.D.; Baird, M.L.; Chapman, D.J.

    1975-01-01

    Wild-type strains of Ustilago violacea produce pink colonies on laboratory medium and yield white, orange, pumpkin, and yellow colonies after uv mutagenesis. The wild-type strains contain neurosporene and lycopene; one orange mutant, γ-carotene; and one yellow mutant, β-carotene. One white mutant had no detectable carotenoids. Diploid colonies heterozygous for wild type and orange, pumpkin, yellow, or white are phenotypically wild type. Diploid colonies heterozygous for yellow and orange are also phenotypically wild type. Diploid colonies heterozygous for white and orange; white and yellow; and white, yellow, and orange are phenotypically light orange, light yellow, and orange-yellow, respectively. The white mutants give a circular complementation map; the color mutants fit a linear complementation map. We propose a multienzyme of four identical dehydrogenases and one or two identical cyclases for carotenogenesis in this species. The white and color mutants represent structural mutations altering the conformation of the dehydrogenase or cyclase, respectively. Furthermore, cyclases may or may not aggregate in association with the dehydrogenase aggregate to form the multienzyme aggregate responsible for the color mutants

  2. Study of the UV-sensitivity of the morphological Salmonella typhimurium mutant

    Energy Technology Data Exchange (ETDEWEB)

    Sakanyan, V A; Dombrovskii, A M; Belokrysenko, S S; Levashev, V S [Vtoroj Moskovskij Gosudarstvennyj Meditsinskij Inst. (USSR)

    1975-05-01

    As regards sensitivity to ultraviolet radiation, the morphological mutant S. typhimurium LT2 WT ED 143 is similar to the ion-mutants E. coli K12. Data are presented on the sensitivity of the mutant and initial strains to ultraviolet radiation at various phases of growth, on the capacity for restoring the bacteriophages P22 and Felix O after irradiation and on the influence of various treatments after ultraviolet irradiation (incubation in minimum media and at 42/sup 0/ C) on the irradiated strains. The results of densitometry of the membrane proteins of the initial and mutant strains point to a connection between unusual morphology, the disruption of division and the enhanced sensitivity to ultraviolet radiation on one hand and the state of the membrane components of the bacterial cell on the other.

  3. Cellulase production by two mutant strain of Trichoderma longibrachiatum Qm9414 and Rut C30

    International Nuclear Information System (INIS)

    Blanco, M.J.

    1991-01-01

    Native or pretreated biomass from Onopordum nervosum boiss, has been examined as candidate feedstock for cellulase production by two mutant strain of trichoderma longibrachiatum QM9414 and Rut C30. Batch cultivation methods were evaluated and compared with previous experiments using ball-milled, crystalline cellulose (Solka floc). Batch cultivation of T. longibrachiatum Rut C30 on 55% (W/V) acid pretreated O. nervosum biomass yielded enzyme productivities and activities comparable to those obtained on Solka floc. However, the overall enzyme production performance was lower than on Solka floc at comparable cellulose concentrations. This fact may be due to the accumulation of pretreated by products and lignin in the fermentor.(author)

  4. Studies on reduced height mutants in rice

    International Nuclear Information System (INIS)

    Narahari, P.; Bhagwat, S.G.

    1984-01-01

    Two cross-bred derivatives of the mutant TR5xTR17 and TR21 continued to show promise and were advanced to wider scale testing. TR5 was found to carry a semi-dwarfing gene different from that in IR8. New semi-dwarf mutants were screened from M 2 through M 4 from two separate radiation experiments. The gibberellin response of seedlings of mutant and tester strains was evaluated and crosses of tester stocks and mutant semi-dwarfs were made for genetic analyses. (author)

  5. Comparative Analysis of the Relationship between Trichloroethylene Metabolism and Tissue-Specific Toxicity among Inbred Mouse Strains: Liver Effects

    Science.gov (United States)

    Yoo, Hong Sik; Bradford, Blair U.; Kosyk, Oksana; Shymonyak, Svitlana; Uehara, Takeki; Collins, Leonard B.; Bodnar, Wanda M.; Ball, Louise M.; Gold, Avram; Rusyn, Ivan

    2014-01-01

    Trichloroethylene (TCE) is a widely used organic solvent. Although TCE is classified as carcinogenic to humans, substantial gaps remain in our understanding of inter-individual variability in TCE metabolism and toxicity, especially in the liver. We tested a hypothesis that amounts of oxidative metabolites of TCE in mouse liver are associated with liver-specific toxicity. Oral dosing with TCE was conducted in sub-acute (600 mg/kg/d; 5 days; 7 inbred mouse strains) and sub-chronic (100 or 400 mg/kg/d; 1, 2, or 4 weeks; 2 inbred mouse strains) designs. We evaluated the quantitative relationship between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P450-mediated oxidation [trichloroacetic acid (TCA), dichloroacetic acid (DCA), and trichloroethanol] and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione] in serum and liver, and various liver toxicity phenotypes. In sub-acute study, inter-strain variability in TCE metabolite amounts was observed in serum and liver. No induction of Cyp2e1 protein levels in liver was detected. Serum and liver levels of TCA and DCA were correlated with increased transcription of peroxisome proliferator-marker genes Cyp4a10 and Acox1, but not with degree of induction in hepatocellular proliferation. In sub-chronic study, serum and liver levels of oxidative metabolites gradually decreased over time despite continuous dosing. Liver protein levels of Cyp2e1, Adh and Aldh2 were unaffected by treatment with TCE. While the magnitude of induction of peroxisome proliferator-marker genes also declined, hepatocellular proliferation increased. This study offers a unique opportunity to provide a scientific data-driven rationale for some of the major assumptions in human health assessment of TCE. PMID:25424544

  6. Mycothiol-Deficient Mycobacterium smegmatis Mutants Are Hypersensitive to Alkylating Agents, Free Radicals, and Antibiotics

    Science.gov (United States)

    Rawat, Mamta; Newton, Gerald L.; Ko, Mary; Martinez, Gladys J.; Fahey, Robert C.; Av-Gay, Yossef

    2002-01-01

    Mycothiol (MSH; 1d-myo-inosityl 2-[N-acetyl-l-cysteinyl]amido-2-deoxy-α-d-glucopyranoside) is the major low-molecular-weight thiol produced by mycobacteria. Mutants of Mycobacterium smegmatis mc2155 deficient in MSH production were produced by chemical mutagenesis as well as by transposon mutagenesis. One chemical mutant (mutant I64) and two transposon mutants (mutants Tn1 and Tn2) stably deficient in MSH production were isolated by screening for reduced levels of MSH content. The MSH contents of transposon mutants Tn1 and Tn2 were found to be less than 0.1% that of the parent strain, and the MSH content of I64 was found to be 1 to 5% that of the parent strain. All three strains accumulated 1d-myo-inosityl 2-deoxy-α-d-glucopyranoside to levels 20- to 25-fold the level found in the parent strain. The cysteine:1d-myo-inosityl 2-amino-2-deoxy-α-d-glucopyranoside ligase (MshC) activities of the three mutant strains were ≤2% that of the parent strain. Phenotypic analysis revealed that these MSH-deficient mutants possess increased susceptibilities to free radicals and alkylating agents and to a wide range of antibiotics including erythromycin, azithromycin, vancomycin, penicillin G, rifamycin, and rifampin. Conversely, the mutants possess at least 200-fold higher levels of resistance to isoniazid than the wild type. We mapped the mutation in the chemical mutant by sequencing the mshC gene and showed that a single amino acid substitution (L205P) is responsible for reduced MSH production and its associated phenotype. Our results demonstrate that there is a direct correlation between MSH depletion and enhanced sensitivity to toxins and antibiotics. PMID:12384335

  7. Isolation and characterization of xylitol-assimilating mutants of recombinant Saccharomyces cerevisiae.

    Science.gov (United States)

    Tani, Tatsunori; Taguchi, Hisataka; Fujimori, Kazuhiro E; Sahara, Takehiko; Ohgiya, Satoru; Kamagata, Yoichi; Akamatsu, Takashi

    2016-10-01

    To clarify the mechanisms of xylitol utilization, three xylitol-assimilating mutants were isolated from recombinant Saccharomyces cerevisiae strains showing highly efficient xylose-utilization. The nucleotide sequences of the mutant genomes were analyzed and compared with those of the wild-type strains and the mutation sites were identified. gal80 mutations were common to all the mutants, and recessive to the wild-type allele. Hence we constructed a gal80Δ mutant and confirmed that the gal80Δ mutant showed a xylitol-assimilation phenotype. When the constructed gal80Δ mutant was crossed with the three isolated mutants, all diploid hybrids showed xylitol assimilation, indicating that the mutations were all located in the GAL80. We analyzed the role of the galactose permease Gal2, controlled by the regulatory protein Gal80, in assimilating xylitol. A gal2Δ gal80Δ double mutant did not show xylitol assimilation, whereas expression of GAL2 under the control of the TDH3 promoter in the GAL80 strain did result in assimilation. These data indicate that Gal2 was needed for xylitol assimilation in the wild-type strain. When the gal80 mutant with an initial cell concentration of A660 = 20 was used for batch fermentation in a complex medium containing 20 g/L xylose or 20 g/L xylitol at pH 5.0 and 30°C under oxygen limitation, the gal80 mutant consumed 100% of the xylose within 12 h, but xylitol within 100 h, indicating that xylose reductase is required for xylitol consumption in oxygen-limited conditions. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Mutant Brucella abortus membrane fusogenic protein induces protection against challenge infection in mice.

    Science.gov (United States)

    de Souza Filho, Job Alves; de Paulo Martins, Vicente; Campos, Priscila Carneiro; Alves-Silva, Juliana; Santos, Nathalia V; de Oliveira, Fernanda Souza; Menezes, Gustavo B; Azevedo, Vasco; Cravero, Silvio Lorenzo; Oliveira, Sergio Costa

    2015-04-01

    Brucella species can cause brucellosis, a zoonotic disease that causes serious livestock economic losses and represents a public health threat. The mechanism of virulence of Brucella spp. is not yet fully understood. Therefore, it is crucial to identify new molecules that serve as virulence factors to better understand this host-pathogen interplay. Here, we evaluated the role of the Brucella membrane fusogenic protein (Mfp) and outer membrane protein 19 (Omp19) in bacterial pathogenesis. In this study, we showed that B. abortus Δmfp::kan and Δomp19::kan deletion mutant strains have reduced persistence in vivo in C57BL/6 and interferon regulatory factor 1 (IRF-1) knockout (KO) mice. Additionally, 24 h after macrophage infection with a Δmfp::kan or Δomp19::kan strain expressing green fluorescent protein (GFP) approximately 80% or 65% of Brucella-containing vacuoles (BCVs) retained the late endosomal/lysosomal marker LAMP-1, respectively, whereas around 60% of BCVs containing wild-type S2308 were found in LAMP-1-negative compartments. B. abortus Δomp19::kan was attenuated in vivo but had a residual virulence in C57BL/6 and IRF-1 KO mice, whereas the Δmfp::kan strain had a lower virulence in these same mouse models. Furthermore, Δmfp::kan and Δomp19::kan strains were used as live vaccines. Challenge experiments revealed that in C57BL/6 and IRF-1 KO mice, the Δmfp::kan strain induced greater protection than the vaccine RB51 and protection similar that of vaccine S19. However, a Δomp19::kan strain induced protection similar to that of RB51. Thus, these results demonstrate that Brucella Mfp and Omp19 are critical for full bacterial virulence and that the Δmfp::kan mutant may serve as a potential vaccine candidate in future studies. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. The gene for the alpha 1 subunit of the skeletal muscle dihydropyridine-sensitive calcium channel (Cchl1a3) maps to mouse chromosome 1.

    Science.gov (United States)

    Chin, H; Krall, M; Kim, H L; Kozak, C A; Mock, B

    1992-12-01

    Cchl1a3 encodes the dihydropyridine-sensitive calcium channel alpha 1 subunit isoform predominantly expressed in skeletal muscle. mdg (muscular dysgenesis) has previously been implicated as a mutant allele of this gene. Hybridization of a rat brain cDNA probe for Cchl1a3 to Southern blots of DNAs from a panel of Chinese hamster x mouse somatic cell hybrids suggested that this gene maps to mouse Chromosome 1. Analysis of the progeny of an inbred strain cross-positioned Cchl1a3 1.3 cM proximal to the Pep-3 locus on Chr 1.

  10. Number and location of mouse mammary tumor virus proviral DNA in mouse DNA of normal tissue and of mammary tumors.

    Science.gov (United States)

    Groner, B; Hynes, N E

    1980-01-01

    The Southern DNA filter transfer technique was used to characterize the genomic location of the mouse mammary tumor proviral DNA in different inbred strains of mice. Two of the strains (C3H and CBA) arose from a cross of a Bagg albino (BALB/c) mouse and a DBA mouse. The mouse mammary tumor virus-containing restriction enzyme DNA fragments of these strains had similar patterns, suggesting that the proviruses of these mice are in similar genomic locations. Conversely, the pattern arising from the DNA of the GR mouse, a strain genetically unrelated to the others, appeared different, suggesting that its mouse mammary tumor proviruses are located in different genomic sites. The structure of another gene, that coding for beta-globin, was also compared. The mice strains which we studied can be categorized into two classes, expressing either one or two beta-globin proteins. The macroenvironment of the beta-globin gene appeared similar among the mice strains belonging to one genetic class. Female mice of the C3H strain exogenously transmit mouse mammary tumor virus via the milk, and their offspring have a high incidence of mammary tumor occurrence. DNA isolated from individual mammary tumors taken from C3H mice or from BALB/c mice foster nursed on C3H mothers was analyzed by the DNA filter transfer technique. Additional mouse mammary tumor virus-containing fragments were found in the DNA isolated from each mammary tumor. These proviral sequences were integrated into different genomic sites in each tumor. Images PMID:6245257

  11. Mice lacking Ras-GRF1 show contextual fear conditioning but not spatial memory impairments: convergent evidence from two independently generated mouse mutant lines

    Directory of Open Access Journals (Sweden)

    Raffaele ed'Isa

    2011-12-01

    Full Text Available Ras-GRF1 is a neuronal specific guanine exchange factor that, once activated by both ionotropic and metabotropic neurotransmitter receptors, can stimulate Ras proteins, leading to long-term phosphorylation of downstream signaling. The two available reports on the behavior of two independently generated Ras-GRF1 deficient mouse lines provide contrasting evidence on the role of Ras-GRF1 in spatial memory and contextual fear conditioning. These discrepancies may be due to the distinct alterations introduced in the mouse genome by gene targeting in the two lines that could differentially affect expression of nearby genes located in the imprinted region containing the Ras-grf1 locus. In order to determine the real contribution of Ras-GRF1 to spatial memory we compared in Morris Water Maze learning the Brambilla’s mice with a third mouse line (GENA53 in which a nonsense mutation was introduced in the Ras-GRF1 coding region without additional changes in the genome and we found that memory in this task is normal. Also, we measured both contextual and cued fear conditioning, which were previously reported to be affected in the Brambilla’s mice, and we confirmed that contextual learning but not cued conditioning is impaired in both mouse lines. In addition, we also tested both lines for the first time in conditioned place aversion in the Intellicage, an ecological and remotely controlled behavioral test, and we observed normal learning. Finally, based on previous reports of other mutant lines suggesting that Ras-GRF1 may control body weight, we also measured this non-cognitive phenotype and we confirmed that both Ras-GRF1 deficient mutants are smaller than their control littermates. In conclusion, we demonstrate that Ras-GRF1 has no unique role in spatial memory while its function in contextual fear conditioning is likely to be due not only to its involvement in amygdalar functions but possibly to some distinct hippocampal connections specific to

  12. Comparative Analyses of Transcriptional Profiles in Mouse Organs Using a Pneumonic Plague Model after Infection with Wild-Type Yersinia pestis CO92 and Its Braun Lipoprotein Mutant

    Directory of Open Access Journals (Sweden)

    Cristi L. Galindo

    2009-01-01

    Full Text Available We employed Murine GeneChips to delineate the global transcriptional profiles of the livers, lungs, and spleens in a mouse pneumonic plague infection model with wild-type (WT Y. pestis CO92 and its Braun lipoprotein (Δlpp mutant with reduced virulence. These organs showed differential transcriptional responses to infection with WT Y. pestis, but the overall host functional processes affected were similar across all three tissues. Gene expression alterations were found in inflammation, cytokine signaling, and apoptotic cell death-associated genes. Comparison of WT and Δlpp mutant-infected mice indicated significant overlap in lipopolysaccharide- (LPS- associated gene expression, but the absence of Lpp perturbed host cell signaling at critical regulatory junctions resulting in altered immune response and possibly host cell apoptosis. We generated a putative signaling pathway including major inflammatory components that could account for the synergistic action of LPS and Lpp and provided the mechanistic basis of attenuation caused by deletion of the lpp gene from Y. pestis in a mouse model of pneumonic plague.

  13. Diabetes and exocrine pancreatic insufficiency in E2F1/E2F2 double-mutant mice.

    Science.gov (United States)

    Iglesias, Ainhoa; Murga, Matilde; Laresgoiti, Usua; Skoudy, Anouchka; Bernales, Irantzu; Fullaondo, Asier; Moreno, Bernardino; Lloreta, José; Field, Seth J; Real, Francisco X; Zubiaga, Ana M

    2004-05-01

    E2F transcription factors are thought to be key regulators of cell growth control. Here we use mutant mouse strains to investigate the function of E2F1 and E2F2 in vivo. E2F1/E2F2 compound-mutant mice develop nonautoimmune insulin-deficient diabetes and exocrine pancreatic dysfunction characterized by endocrine and exocrine cell dysplasia, a reduction in the number and size of acini and islets, and their replacement by ductal structures and adipose tissue. Mutant pancreatic cells exhibit increased rates of DNA replication but also of apoptosis, resulting in severe pancreatic atrophy. The expression of genes involved in DNA replication and cell cycle control was upregulated in the E2F1/E2F2 compound-mutant pancreas, suggesting that their expression is repressed by E2F1/E2F2 activities and that the inappropriate cell cycle found in the mutant pancreas is likely the result of the deregulated expression of these genes. Interestingly, the expression of ductal cell and adipocyte differentiation marker genes was also upregulated, whereas expression of pancreatic cell marker genes were downregulated. These results suggest that E2F1/E2F2 activity negatively controls growth of mature pancreatic cells and is necessary for the maintenance of differentiated pancreatic phenotypes in the adult.

  14. Competitive Interactions Between Incompatible Mutants of the Social Bacterium Myxococcus xanthus DK1622

    Directory of Open Access Journals (Sweden)

    Ya Gong

    2018-06-01

    Full Text Available Due to the high similarity in their requirements for space and food, close bacterial relatives may be each other's strongest competitors. Close bacterial relatives often form visible boundaries to separate their swarming colonies, a phenomenon termed colony-merger incompatibility. While bacterial species are known to have many incompatible strains, it is largely unclear which traits lead to multiple incompatibilities and the interactions between multiple incompatible siblings. To investigate the competitive interactions of closely related incompatible strains, we mutated Myxococcus xanthus DK1622, a predatory bacterium with complex social behavior. From 3392 random transposon mutations, we obtained 11 self-identification (SI deficient mutants that formed unmerged colony boundaries with the ancestral strain. The mutations were at nine loci with unknown functions and formed nine independent SI mutants. Compared with their ancestral strain, most of the SI mutants showed reduced growth, swarming and development abilities, but some remained unchanged from their monocultures. When pairwise mixed with their ancestral strain for co-cultivation, these mutants exhibited improved, reduced or unchanged competitive abilities compared with the ancestral strain. The sporulation efficiencies were affected by the DK1622 partner, ranging from almost complete inhibition to 360% stimulation. The differences in competitive growth between the SI mutants and DK1622 were highly correlated with the differences in their sporulation efficiencies. However, the competitive efficiencies of the mutants in mixture were inconsistent with their growth or sporulation abilities in monocultures. We propose that the colony-merger incompatibility in M. xanthus is associated with multiple independent genetic loci, and the incompatible strains hold competitive interaction abilities, which probably determine the complex relationships between multiple incompatible M. xanthus strains and

  15. UV and gamma-ray sensitivity of meiosis-deficient mutants in Podospora anserina

    International Nuclear Information System (INIS)

    Simonet, J.M.

    1976-01-01

    Two mutants, mei1 and mei2, were isolated by screening for deficiencies occurring in the meiotic process. The sensitivity of mei1 and mei2 mutant strains to UV irradiation showed a significant increase as compared with that of the wild-type stock, hwhereas the sensitivity to γ-rays remained unchanged. The double-mutant strains were no more sensitive than each single mutant. The data indicate that both mei1 and mei2 loci are probably involved in the same pathway of excision-repair of UV-induced lesions

  16. Calcium, potassium, iron, copper and zinc concentrations in the white and gray matter of the cerebellum and corpus callosum in brain of four genetic mouse strains

    International Nuclear Information System (INIS)

    Sergeant, C.; Vesvres, M.H.; Deves, G.; Guillou, F.

    2005-01-01

    In the central nervous system, metallic cations are involved in oligodendrocyte maturation and myelinogenesis. Moreover, the metallic cations have been associated with pathogenesis, particularly multiple sclerosis and malignant gliomas. The brain is vulnerable to either a deficit or an excess of available trace elements. Relationship between trace metals and myelinogenesis is important in understanding a severe human pathology : the multiple sclerosis, which remains without efficient treatment. One approach to understand this disease has used mutant or transgenic mice presenting myelin deficiency or excess. But to date, the concentration of trace metals and mineral elements in white and gray matter areas in wild type brain is unknown. The aim of this study is to establish the reference concentrations of trace metals (iron, copper and zinc) and minerals (potassium and calcium) in the white and gray matter of the mouse cerebellum and corpus callosum. The brains of four different genetic mouse strains (C57Black6/SJL, C57Black6/D2, SJL and C3H) were analyzed. The freeze-dried samples were prepared to allow PIXE (Proton-induced X-ray emission) and RBS (Rutherford backscattering spectrometry) analyses with the nuclear microprobe in Bordeaux. The results obtained give the first reference values. Furthermore, one species out of the fours testes exhibited differences in calcium, iron and zinc concentrations in the white matter

  17. Calcium, potassium, iron, copper and zinc concentrations in the white and gray matter of the cerebellum and corpus callosum in brain of four genetic mouse strains

    Energy Technology Data Exchange (ETDEWEB)

    Sergeant, C. [CNRS-Universite de Bordeaux I, UMR 5084, Chimie Nucleaire Analytique et Bio environnementale, Le Haut Vigneau, BP120, 33175 Bordeaux-Gradignan (France)]. E-mail: sergeant@cenbg.in2p3.fr; Vesvres, M.H. [CNRS-Universite de Bordeaux I, UMR 5084, Chimie Nucleaire Analytique et Bio environnementale, Le Haut Vigneau, BP120, 33175 Bordeaux-Gradignan (France); Deves, G. [CNRS-Universite de Bordeaux I, UMR 5084, Chimie Nucleaire Analytique et Bio environnementale, Le Haut Vigneau, BP120, 33175 Bordeaux-Gradignan (France); Guillou, F. [INRA-CNRS-Universite de Tours-Haras nationaux, UMR 6175, Physiologie de la Reproduction et des Comportements, 37380 Nouzilly (France)

    2005-04-01

    In the central nervous system, metallic cations are involved in oligodendrocyte maturation and myelinogenesis. Moreover, the metallic cations have been associated with pathogenesis, particularly multiple sclerosis and malignant gliomas. The brain is vulnerable to either a deficit or an excess of available trace elements. Relationship between trace metals and myelinogenesis is important in understanding a severe human pathology : the multiple sclerosis, which remains without efficient treatment. One approach to understand this disease has used mutant or transgenic mice presenting myelin deficiency or excess. But to date, the concentration of trace metals and mineral elements in white and gray matter areas in wild type brain is unknown. The aim of this study is to establish the reference concentrations of trace metals (iron, copper and zinc) and minerals (potassium and calcium) in the white and gray matter of the mouse cerebellum and corpus callosum. The brains of four different genetic mouse strains (C57Black6/SJL, C57Black6/D2, SJL and C3H) were analyzed. The freeze-dried samples were prepared to allow PIXE (Proton-induced X-ray emission) and RBS (Rutherford backscattering spectrometry) analyses with the nuclear microprobe in Bordeaux. The results obtained give the first reference values. Furthermore, one species out of the fours testes exhibited differences in calcium, iron and zinc concentrations in the white matter.

  18. Differences in susceptibility among mouse strains to infection with Plasmodium berghei (ANKA clone) sporozoites and its relationship to protection by gamma-irradiated sporozoites

    International Nuclear Information System (INIS)

    Jaffe, R.I.; Lowell, G.H.; Gordon, D.M.

    1990-01-01

    Three inbred mouse strains, C57BL/6 (H-2b), A/J (H-2a), and BALB/c (H-2d), and 1 outbred strain, CD-1, demonstrated differences in susceptibility to iv challenge with the ANKA clone of Plasmodium berghei. Mice were challenged with 100, 1,000, or 10,000 sporozoites, then evaluated daily beginning on day 4 for patency. CD-1 mice were further evaluated at challenge doses of 12,500, 25,000, and 50,000 sporozoites. C57BL/6 mice were the easiest to infect, with 90% becoming infected with 100 sporozoites. The outbred strain CD-1 was the most difficult to infect, requiring a challenge dose of 25,000 sporozoites/mouse in order to achieve a 100% infection rate. Mouse strains also demonstrated differences in their ability to be protected by intravenous immunization with gamma-irradiated sporozoites. A/J mice needed a minimum of 3 doses of irradiated sporozoites for protection against a challenge with 10,000 sporozoites. In contrast, BALB/c mice immunized with a single dose of 1,000 irradiated sporozoites are protected against a 10,000 sporozoite challenge. These data suggest that both infectivity and protection are genetically restricted and that susceptibility to infection may be inversely related to protection

  19. Mutant E. coli strain with increased succinic acid production

    Science.gov (United States)

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2001-09-25

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  20. Mutant E. coli strain with increased succinic acid production

    Science.gov (United States)

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1998-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  1. aroA-Deficient Salmonella enterica Serovar Typhimurium Is More Than a Metabolically Attenuated Mutant

    Science.gov (United States)

    Frahm, Michael; Kocijancic, Dino; Rohde, Manfred; Eckweiler, Denitsa; Bielecka, Agata; Bueno, Emilio; Cava, Felipe; Abraham, Wolf-Rainer; Curtiss, Roy; Häussler, Susanne; Erhardt, Marc; Weiss, Siegfried

    2016-01-01

    ABSTRACT Recombinant attenuated Salmonella enterica serovar Typhimurium strains are believed to act as powerful live vaccine carriers that are able to elicit protection against various pathogens. Auxotrophic mutations, such as a deletion of aroA, are commonly introduced into such bacteria for attenuation without incapacitating immunostimulation. In this study, we describe the surprising finding that deletion of aroA dramatically increased the virulence of attenuated Salmonella in mouse models. Mutant bacteria lacking aroA elicited increased levels of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) after systemic application. A detailed genetic and phenotypic characterization in combination with transcriptomic and metabolic profiling demonstrated that ΔaroA mutants display pleiotropic alterations in cellular physiology and lipid and amino acid metabolism, as well as increased sensitivity to penicillin, complement, and phagocytic uptake. In concert with other immunomodulating mutations, deletion of aroA affected flagellin phase variation and gene expression of the virulence-associated genes arnT and ansB. Finally, ΔaroA strains displayed significantly improved tumor therapeutic activity. These results highlight the importance of a functional shikimate pathway to control homeostatic bacterial physiology. They further highlight the great potential of ΔaroA-attenuated Salmonella for the development of vaccines and cancer therapies with important implications for host-pathogen interactions and translational medicine. PMID:27601574

  2. Construction of upp deletion mutant strains of Lactobacillus casei and Lactococcus lactis based on counterselective system using temperature-sensitive plasmid.

    Science.gov (United States)

    Song, Li; Cui, Hongyu; Tang, Lijie; Qiao, Xinyuan; Liu, Min; Jiang, Yanping; Cui, Wen; Li, Yijing

    2014-07-01

    Integration plasmids are often used in constructing chromosomal mutations, as it enables the alternation of genes at any location by integration or replacement. Food-grade integration vectors can integrate into the host genome without introducing any selectable markers or residual bases, and the recombination often happens in non-coding region. In this study we used the temperature-sensitive pWV01 replicon to construct 2 chloramphenicol-resistant integration plasmids (pGBHC32-upp) containing the uracil phosphoribosyl transferase (upp) gene as a counterselective marker for Lactobacillus casei (L. casei) ATCC393 and Lactococcus lactis (L. lactis) MG1363. We then ligated the designed homologous arms to the pGBHC32-upp plasmids to allow their integration to the bacterial chromosome, and selected upp deletion mutants of L. casei ATCC393 and L. lactis MG1363 in the presence of 5-fluorouracil (5-FU). Analysis of genetic stability, growth curve, carbon utilization and scanning electronic microscopy showed that, except for 5-FU resistance, there were no significant differences between the wild type and mutant lactic acid bacteria. The integration system and the upp deletion strains could be used in the insertion or deletion of genes at any location of the chromosome of both L. casei ATCC 393 and L. lactis MG1363, and the homologous recombination would not introduce any selectable markers or residual bases. These mutant strains can be further investigated for heterologous protein expression and construction of a live mucosal vaccine carrier. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Inbred mouse strains C57BL/6J and DBA/2J vary in sensitivity to a subset of bitter stimuli

    Directory of Open Access Journals (Sweden)

    Nelson Theodore M

    2005-06-01

    Full Text Available Abstract Background Common inbred mouse strains are genotypically diverse, but it is still poorly understood how this diversity relates to specific differences in behavior. To identify quantitative trait genes that influence taste behavior differences, it is critical to utilize assays that exclusively measure the contribution of orosensory cues. With a few exceptions, previous characterizations of behavioral taste sensitivity in inbred mouse strains have generally measured consumption, which can be confounded by post-ingestive effects. Here, we used a taste-salient brief-access procedure to measure taste sensitivity to eight stimuli characterized as bitter or aversive in C57BL/6J (B6 and DBA/2J (D2 mice. Results B6 mice were more sensitive than D2 mice to a subset of bitter stimuli, including quinine hydrochloride (QHCl, 6-n-propylthiouracil (PROP, and MgCl2. D2 mice were more sensitive than B6 mice to the bitter stimulus raffinose undecaacetate (RUA. These strains did not differ in sensitivity to cycloheximide (CYX, denatonium benzoate (DB, KCl or HCl. Conclusion B6-D2 taste sensitivity differences indicate that differences in consumption of QHCl, PROP, MgCl2 and RUA are based on immediate orosensory cues, not post-ingestive effects. The absence of a strain difference for CYX suggests that polymorphisms in a T2R-type taste receptor shown to be differentially sensitive to CYX in vitro are unlikely to differentially contribute to the CYX behavioral response in vivo. The results of these studies point to the utility of these common mouse strains and their associated resources for investigation into the genetic mechanisms of taste.

  4. The mouse as a model organism in aging research: usefulness, pitfalls and possibilities.

    Science.gov (United States)

    Vanhooren, Valerie; Libert, Claude

    2013-01-01

    The mouse has become the favorite mammalian model. Among the many reasons for this privileged position of mice is their genetic proximity to humans, the possibilities of genetically manipulating their genomes and the availability of many tools, mutants and inbred strains. Also in the field of aging, mice have become very robust and reliable research tools. Since laboratory mice have a life expectancy of only a few years, genetic approaches and other strategies for intervening in aging can be tested by examining their effects on life span and aging parameters during the relatively short period of, for example, a PhD project. Moreover, experiments on mice with an extended life span as well as on mice demonstrating signs of (segmental) premature aging, together with genetic mapping strategies, have provided novel insights into the fundamental processes that drive aging. Finally, the results of studies on caloric restriction and pharmacological anti-aging treatments in mice have a high degree of relevance to humans. In this paper, we review a number of recent genetic mapping studies that have yielded novel insights into the aging process. We discuss the value of the mouse as a model for testing interventions in aging, such as caloric restriction, and we critically discuss mouse strains with an extended or a shortened life span as models of aging. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Characterization of a bacteriophage T4 mutant lacking DNA-dependent ATPase

    International Nuclear Information System (INIS)

    Behme, M.T.; Ebisuzaki, K.

    1975-01-01

    A DNA-dependent ATPase has previously been purified from bacteriophage T4-infected Escherichia coli. A mutant phage strain lacking this enzyme has been isolated and characterized. Although the mutant strain produced no detectable DNA-dependent ATPase, growth properties were not affected. Burst sizes were similar for the mutant phage and T4D in polAl, recB, recC, uvrA, uvrB, uvrC, and various DNA-negative E. coli. UV sensitivity and genetic recombination were normal in a variety of E. coli hosts. Mapping data indicate that the genetic locus controlling the mutant occurs near gene 56. The nonessential nature of this gene is discussed

  6. A mutation in synaptojanin 2 causes progressive hearing loss in the ENU-mutagenised mouse strain Mozart.

    Science.gov (United States)

    Manji, Shehnaaz S M; Williams, Louise H; Miller, Kerry A; Ooms, Lisa M; Bahlo, Melanie; Mitchell, Christina A; Dahl, Hans-Henrik M

    2011-03-15

    Hearing impairment is the most common sensory impairment in humans, affecting 1:1,000 births. We have identified an ENU generated mouse mutant, Mozart, with recessively inherited, non-syndromic progressive hearing loss caused by a mutation in the synaptojanin 2 (Synj2), a central regulatory enzyme in the phosphoinositide-signaling cascade. The hearing loss in Mozart is caused by a p.Asn538Lys mutation in the catalytic domain of the inositol polyphosphate 5-phosphatase synaptojanin 2. Within the cochlea, Synj2 mRNA expression was detected in the inner and outer hair cells but not in the spiral ganglion. Synj2(N538K) mutant protein showed loss of lipid phosphatase activity, and was unable to degrade phosphoinositide signaling molecules. Mutant Mozart mice (Synj2(N538K/N538K)) exhibited progressive hearing loss and showed signs of hair cell degeneration as early as two weeks of age, with fusion of stereocilia followed by complete loss of hair bundles and ultimately loss of hair cells. No changes in vestibular or neurological function, or other clinical or behavioral manifestations were apparent. Phosphoinositides are membrane associated signaling molecules that regulate many cellular processes including cell death, proliferation, actin polymerization and ion channel activity. These results reveal Synj2 as a critical regulator of hair cell survival that is essential for hair cell maintenance and hearing function.

  7. Endogenous retroviral insertion in Cryge in the mouse No3 cataract mutant

    Science.gov (United States)

    Nag, Nabanita; Peterson, Katherine; Wyatt, Keith; Hess, Sonja; Ray, Sugata; Favor, Jack; Bogani, Debora; Lyon, Mary; Wistow, Graeme

    2007-01-01

    No3 (nuclear opacity 3) is a novel congenital nuclear cataract in mice. Microsatellite mapping placed the No3 locus on chromosome 1 between D1Mit480 (32cM) and D1Mit7 (41cM), a region containing seven crystallin genes; Cryba2 and the Cryga-Crygf cluster. Although polymorphic variants were observed, no candidate mutations were found for six of the genes. However, DNA walking identified a murine endogenous retrovirus (IAPLTR1: ERVK) insertion in exon 3 of Cryge, disrupting the coding sequence for γE-crystallin. Recombinant protein for the mutant γE was completely insoluble. The No3 cataract is mild compared with the effects of similar mutations of γE. Quantitative RT-PCR showed that γE/F mRNA levels are reduced in No3, suggesting that the relatively mild phenotype results from suppression of γE levels due to ERVK insertion. However, the severity of cataract is also strain dependent suggesting that genetic background modifiers also play a role in the development of opacity. PMID:17223009

  8. Strain-specific outcomes of repeated social defeat and chronic fluoxetine treatment in the mouse.

    Science.gov (United States)

    Razzoli, Maria; Carboni, Lucia; Andreoli, Michela; Michielin, Francesca; Ballottari, Alice; Arban, Roberto

    2011-01-01

    Social stress is a risk factor for affective disorders in vulnerable individuals. Although the biological nature of stress susceptibility/resilience remains to be elucidated, genetic variation is considered amongst the principal contributors to brain disorders. Furthermore, genetic predisposition may be determinant for the therapeutic outcome, as proposed for antidepressant treatments. In the present studies we compared the inherently diverse genetic backgrounds of 2 mouse strains by assessing the efficacy of a chronic antidepressant treatment in a repeated social stress procedure. C57BL/6J and BalbC mice underwent 10-day social defeats followed by 28-day fluoxetine treatment (10 mg/kg/mL, p.o.). In C57BL/6J, most of the social defeat-induced changes were of metabolic nature including persistently altered feed efficiency and decreased abdominal fat stores that were ameliorated by fluoxetine. BalbC mouse behavior was persistently affected by social defeat both in the social avoidance and the forced swim tests, and in either procedure it was restored by chronic fluoxetine, whereas their endocrine parameters were mostly unaffected. The highlighted strain-specific responsivity to the metabolic and behavioral consequences of social defeat and to the chronic antidepressant treatment offers a promising research tool to further explore the underlying neural mechanisms and genetic basis of stress susceptibility and treatment response. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Construction, characterization and evaluation of the protective efficacy of the Streptococcus suis double mutant strain ΔSsPep/ΔSsPspC as a live vaccine candidate in mice.

    Science.gov (United States)

    Hu, Jin; You, Wujin; Wang, Bin; Hu, Xueying; Tan, Chen; Liu, Jinlin; Chen, Huanchun; Bei, Weicheng

    2015-01-01

    Streptococcus suis serotype 2 (S. suis 2) causes sepsis and meningitis in piglets and humans, and results in one of the most serious bacterial diseases affecting the production of commercial pigs around the world. Due to the failure of the current inactivated vaccine to protect against the disease, development of a new attenuated live vaccine against S. suis 2 by deleting essential virulence factors is urgently needed. We have previously reported the construction and characterization of an SsPep single gene deletion mutant strain ΔSsPep based on S. suis 2. Our previous results have shown that SsPep plays a critical role in the pathogenesis of S. suis 2. In this study, a precisely defined double-deletion mutant ΔSsPep/ΔSsPspC of S. suis 2 without antibiotic-resistance markers was constructed based on ΔSsPep, and the levels of virulence of the wild-type (WT) and ΔSsPep/ΔSsPspC were compared in a mouse experimental infection model. We demonstrated that the double mutant ΔSsPep/ΔSsPspC was less virulent than the WT, and could induce a noticeable antibody response. Analysis of IgG subclasses (IgG1 and IgG2a) indicated that both Th1 and Th2 responses were induced by ΔSsPep/ΔSsPspC, although the IgG2a (Th1) response predominated over the IgG1 (Th2) response. Moreover, ΔSsPep/ΔSsPspC could confer 90% protective efficacy against challenge with a lethal dose of fully virulent S. suis 2. Taken together, these data demonstrate that ΔSsPep/ΔSsPspC can be used as an effective live vaccine and provide a novel strategy against infection of S. suis 2. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Cellulase production by two mutant strain of Trichoderma longibranchiatum QM 9414 and Rut C30

    International Nuclear Information System (INIS)

    Blanco, M. J.

    1991-01-01

    Native or pretreated biomass from Onopordum nervosum Boiss, has been examined as candidate feedstock for cellulase production by two mutant strain of Trichoderma Ionqibrachiatum QM9414 and Rut C30. Batch cultivation methods were evaluated and compared with previous experiments using ball-milled, crystalline cellulose (Solka floc). Batch cultivation of T. Ionqibrachiatum Rut C30 on 5% (w/v) acid pretreated O. nervosum biomass yielded enzyme productivities and activities comparable to those obtained on Solka floc. However, the overall enzyme production performance was lower than on Solka floc at comparable cellulose concentrations. This fact may be due to the accumulation of pretreated by products and lignin in the ferment. (Author) 40 refs

  11. Differential expression of isoproterenol-induced salivary polypeptides in two mouse strains that are congenic for the H-2 histocompatibility gene complex.

    Science.gov (United States)

    López Solís, Remigio O; Weis, Ulrike Kemmerling; Ceballos, Alicia Ramos; Salas, Gustavo Hoecker

    2003-12-01

    Two inbred mouse strains, A/Snell and A.Swiss, which were produced as congenic with regard to the H-2 histocompatibility gene complex, are homozygous for two different groups of isoproterenol-induced salivary polypeptides (IISP). These polypeptides, which have been considered as markers of the hypertrophic growth of the parotid acinar cells, are members of the complex family of salivary proline-rich proteins (PRP) on the basis of both their massive accumulation in the parotid acinar cells in response to chronic isoproterenol, secretory character, high solubility in trichloroacetic acid and metachromatic staining by Coomassie blue. IISP expressed in both mouse strains were identified by unidimensional SDS-polyacrylamide electrophoresis and Coomassie blue staining both in parotid gland homogenates and in whole salivas obtained from mice repeatedly stimulated at 24-h intervals with isoproterenol. Parotid glands from 40 mice (20 A/Snell and 20 A.Swiss) and salivas from 270 mice (200 A/Snell and 70 A.Swiss) were analyzed. One of the congenic strains (A/Snell) expressed five IISP (Mr 65, 61, 51.5, 38, and 37 kDa) and the other strain (A.Swiss) expressed six IISP (Mr 59, 57, 54.5, 46, 36, and 34 kDa). No inter-individual intra-strain variations were observed, thus defining strain-associated patterns of IISP (PRP). Copyright 2003 Wiley-Liss, Inc.

  12. Brucella pinnipedialis hooded seal (Cystophora cristata) strain in the mouse model with concurrent exposure to PCB 153.

    Science.gov (United States)

    Nymo, Ingebjørg H; das Neves, Carlos G; Tryland, Morten; Bårdsen, Bård-Jørgen; Santos, Renato Lima; Turchetti, Andreia Pereira; Janczak, Andrew M; Djønne, Berit; Lie, Elisabeth; Berg, Vidar; Godfroid, Jacques

    2014-05-01

    Brucellosis, a worldwide zoonosis, is linked to reproductive problems in primary hosts. A high proportion of Brucella-positive hooded seals (Cystophora cristata) have been detected in the declined Northeast Atlantic stock. High concentrations of polychlorinated biphenyls (PCBs) have also been discovered in top predators in the Arctic, including the hooded seal, PCB 153 being most abundant. The aim of this study was to assess the pathogenicity of Brucella pinnipedialis hooded seal strain in the mouse model and to evaluate the outcome of Brucella spp. infection after exposure of mice to PCB 153. BALB/c mice were infected with B. pinnipedialis hooded seal strain or Brucella suis 1330, and half from each group was exposed to PCB 153 through the diet. B. pinnipedialis showed a reduced pathogenicity in the mouse model as compared to B. suis 1330. Exposure to PCB 153 affected neither the immunological parameters, nor the outcome of the infection. Altogether this indicates that it is unlikely that B. pinnipedialis contribute to the decline of hooded seals in the Northeast Atlantic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer

    Science.gov (United States)

    McFadden, David G.; Vernon, Amanda; Santiago, Philip M.; Martinez-McFaline, Raul; Bhutkar, Arjun; Crowley, Denise M.; McMahon, Martin; Sadow, Peter M.; Jacks, Tyler

    2014-01-01

    Anaplastic thyroid carcinoma (ATC) has among the worst prognoses of any solid malignancy. The low incidence of the disease has in part precluded systematic clinical trials and tissue collection, and there has been little progress in developing effective therapies. v-raf murine sarcoma viral oncogene homolog B (BRAF) and tumor protein p53 (TP53) mutations cooccur in a high proportion of ATCs, particularly those associated with a precursor papillary thyroid carcinoma (PTC). To develop an adult-onset model of BRAF-mutant ATC, we generated a thyroid-specific CreER transgenic mouse. We used a Cre-regulated BrafV600E mouse and a conditional Trp53 allelic series to demonstrate that p53 constrains progression from PTC to ATC. Gene expression and immunohistochemical analyses of murine tumors identified the cardinal features of human ATC including loss of differentiation, local invasion, distant metastasis, and rapid lethality. We used small-animal ultrasound imaging to monitor autochthonous tumors and showed that treatment with the selective BRAF inhibitor PLX4720 improved survival but did not lead to tumor regression or suppress signaling through the MAPK pathway. The combination of PLX4720 and the mapk/Erk kinase (MEK) inhibitor PD0325901 more completely suppressed MAPK pathway activation in mouse and human ATC cell lines and improved the structural response and survival of ATC-bearing animals. This model expands the limited repertoire of autochthonous models of clinically aggressive thyroid cancer, and these data suggest that small-molecule MAPK pathway inhibitors hold clinical promise in the treatment of advanced thyroid carcinoma. PMID:24711431

  14. Breeding L(+)-lactic acid high productive mutant from xylose by nitrogen ions

    International Nuclear Information System (INIS)

    Yang Yingge; Li Wen; Liu Dan; Fan Yonghong; Wang Dongmei; Zheng Zhiming; Yu Zengliang

    2007-01-01

    In order to obtain higher L(+)-lactic acid yield strain fermentating from xylose, the original strain Rhizopus oryzae RLC41-6 was mutated by 10keV N + ion implantation. A mutant strain RQ4012 was obtained. After 72h shake-flask cultivation, the concentration of L(+)-lactic acid reached 74.37g/L, and the productivity was 1.03g/(L.h). Its lactic acid yield was 160% higher than that of the original one, and the mutant strain has high genetic stability. (authors)

  15. Vaccination with Recombinant Cryptococcus Proteins in Glucan Particles Protects Mice against Cryptococcosis in a Manner Dependent upon Mouse Strain and Cryptococcal Species

    Directory of Open Access Journals (Sweden)

    Charles A. Specht

    2017-11-01

    Full Text Available Development of a vaccine to protect against cryptococcosis is a priority given the enormous global burden of disease in at-risk individuals. Using glucan particles (GPs as a delivery system, we previously demonstrated that mice vaccinated with crude Cryptococcus-derived alkaline extracts were protected against lethal challenge with Cryptococcus neoformans and Cryptococcus gattii. The goal of the present study was to identify protective protein antigens that could be used in a subunit vaccine. Using biased and unbiased approaches, six candidate antigens (Cda1, Cda2, Cda3, Fpd1, MP88, and Sod1 were selected, recombinantly expressed in Escherichia coli, purified, and loaded into GPs. Three mouse strains (C57BL/6, BALB/c, and DR4 were then vaccinated with the antigen-laden GPs, following which they received a pulmonary challenge with virulent C. neoformans and C. gattii strains. Four candidate vaccines (GP-Cda1, GP-Cda2, GP-Cda3, and GP-Sod1 afforded a significant survival advantage in at least one mouse model; some vaccine combinations provided added protection over that seen with either antigen alone. Vaccine-mediated protection against C. neoformans did not necessarily predict protection against C. gattii. Vaccinated mice developed pulmonary inflammatory responses that effectively contained the infection; many surviving mice developed sterilizing immunity. Predicted T helper cell epitopes differed between mouse strains and in the degree to which they matched epitopes predicted in humans. Thus, we have discovered cryptococcal proteins that make promising candidate vaccine antigens. Protection varied depending on the mouse strain and cryptococcal species, suggesting that a successful human subunit vaccine will need to contain multiple antigens, including ones that are species specific.

  16. Pseudomonas aeruginosa mutants resistant to urea inhibition of growth on acetanilide.

    Science.gov (United States)

    Gregoriou, M; Brown, P R; Tata, R

    1977-11-01

    Pseudomonas aeruginosa AI 3 was able to grow in medium containing acetanilide (N-phenylacetamide) as a carbon source when NH4+ was the nitrogen source but not when urea was the nitrogen source. AIU mutants isolated from strain AI 3 grew on either medium. Urease levels in bacteria grown in the presence of urea were 10-fold lower when NH4+ or acetanilide was also in the medium, but there were no apparent differences in urease or its synthesis between strain AI 3 and mutant AIU 1N. The first metabolic step in the acetanilide utlization is catalyzed by an amidase. Amidases in several AIU strains showed altered physiochemical properties. Urea inhibited amidase in a time-dependent reaction, but the rates of the inhibitory reaction with amidases from the AIU mutants were slower than with AI 3 amidase. The purified amidase from AIU 1N showed a marked difference in its pH/activity profile from that obtained with purified AI 3 amidase. These observations indicate that the ability of strain AIU 1N and the other mutants to grow on acetanilide/urea medium is associated with a mutation in the amidase structural gene; this was confirmed for strain AIU 1N by transduction.

  17. Comparative Analysis of the Relationship between Trichloroethylene Metabolism and Tissue-Specific Toxicity among Inbred Mouse Strains: Kidney Effects

    Science.gov (United States)

    Yoo, Hong Sik; Bradford, Blair U.; Kosyk, Oksana; Uehara, Takeki; Shymonyak, Svitlana; Collins, Leonard B.; Bodnar, Wanda M.; Ball, Louise M.; Gold, Avram; Rusyn, Ivan

    2014-01-01

    Trichloroethylene (TCE) is a well-known environmental and occupational toxicant that is classified as carcinogenic to humans based on the epidemiological evidence of an association with higher risk of renal cell carcinoma. A number of scientific issues critical for assessing human health risks from TCE remain unresolved, such as the amount of kidney-toxic glutathione conjugation metabolites formed, inter-species and -individual differences, and the mode of action for kidney carcinogenicity. We hypothesized that TCE metabolite levels in the kidney are associated with kidney-specific toxicity. Oral dosing with TCE was conducted in sub-acute (600 mg/kg/d; 5 days; 7 inbred mouse strains) and sub-chronic (100 or 400 mg/kg/d; 1, 2, or 4 weeks; 2 inbred mouse strains) designs. We evaluated the quantitative relationship between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P450-mediated oxidation [trichloroacetic acid (TCA), dichloroacetic acid (DCA), and trichloroethanol] and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione], and various kidney toxicity phenotypes. In sub-acute study, we observed inter-strain differences in TCE metabolite levels in the kidney. In addition, we found that in several strains kidney-specific effects of TCE included induction of peroxisome proliferator-marker genes Cyp4a10 and Acox1, increased cell proliferation, and expression of KIM-1, a marker of tubular damage and regeneration. In sub-chronic study, peroxisome proliferator-marker gene induction and kidney toxicity diminished while cell proliferative response was elevated in a dose-dependent manner in NZW/LacJ, but not C57BL/6J mice. Overall, we show that TCE metabolite levels in the kidney are associated with kidney-specific toxicity and that these effects are strain-dependent. PMID:25424545

  18. Comparative production of cellulases by mutants of Trichoderma parceramosume PTCC5140

    Directory of Open Access Journals (Sweden)

    Hoda Nouri

    2017-06-01

    Discussion and conclusion: Evaluation of cellulase production in mutant strains of Trichoderma parceramosume PTCC 5140 showed that use of chemical mutagenesis with 2 to 11 fold increasing in enzyme activity is a potent method to improve cellulase complex activity. In the current study, obtained mutant strains could be introduced as a potent cellulase producer for further studies in bioconversion processes.

  19. Genetic analysis of DNA repair in Aspergillus: evidence for different types of MMS-sensitive hyperrec mutants

    International Nuclear Information System (INIS)

    Kaefer, E.; Mayor, O.

    1986-01-01

    To identify genes which affect DNA repair and possibly recombination in Aspergillus nidulans, mutants hypersensitive to methyl methanesulphonate (MMS) were induced with ultraviolet light (UV) or γ-rays. To identify functional and epistatic groups, mutants from each uvs gene were tested for effects on recombination and mutation, and double mutant uvs strains were compared for UV survival to their component single mutant strains. (Auth.)

  20. Behaviour of UV-sensitive mutants of Proteus mirabilis to repair incision breaks

    International Nuclear Information System (INIS)

    Stoerl, K.; Mund, C.

    1977-01-01

    In U.V.-sensitive mutants of P. mirabilis with the phenotype HCR, REC and EXR single-strand breaks appeared immediately after UV-irradiation. The behaviour of REC- and EXR-mutants was similar to the wildtype. The number of incision breaks observed by sedimentation analysis in these strains was very low. They could be joined during the excision repair process. From the ability of REC- and EXR-strains to rejoin most of the induced single-strand breaks it can be concluded that these strains have approximately the same capacity for excision repair as the wildtype. HCR-mutants of P. mirabilis produced single-strand breaks after UV-irradiation in contrast to HCR-mutants of E. coli. Therefore we suggest that HCR-mutants of P. mirabilis are not completely inhibited in the incision step. The single-strand breaks introduced in the DNA at the beginning of the repair process were not rejoined during further incubation. Experiments with toluenized cells led to the same results. The newly synthesized daughter DNA-strands of UV-irradiated HCR-mutants were of low molecular weight in comparison with those from unirradiated control cells during the repair period. This result is in agreement with the incapability of HCR-mutants to remove the pyrimidine dimers from the parental template strand. (author)

  1. Studies on auxotrophic mutants of Auricularia auricula and Auricularia fuscosucinea induced by irradiation

    International Nuclear Information System (INIS)

    Han Xincai; Yang Xinmei

    1991-01-01

    The induction of auxotrophic mutants of Auricularia auricula and Auricularia fuscosucinea from monokaryotic basidiospore by means of 60 Co-γ ray irradiation was reported. Under the irradiations of 10 krad-200 krad, 9 auxotrophic mutant strains were obtained, including 8 strains of A. auricula and 1 strain of A. fuscosucinea. The frequency of mutagenesis was 2.38 x 10 -3 -44.4 x 10 -3 . It was found that the optimum irradiation dose for A. auricula was 200 krad and for A. fuscosucinea was 10 krad. Biochemical and physiological researches indicated that the colony morphology, the hyphae growth speed, the contents of amino acid and the pattern of esterase isozyme of the mutants were different from those of the prototrophic strains

  2. Incremental Contributions of FbaA and Other Impetigo-Associated Surface Proteins to Fitness and Virulence of a Classical Group A Streptococcal Skin Strain.

    Science.gov (United States)

    Rouchon, Candace N; Ly, Anhphan T; Noto, John P; Luo, Feng; Lizano, Sergio; Bessen, Debra E

    2017-11-01

    Group A streptococci (GAS) are highly prevalent human pathogens whose primary ecological niche is the superficial epithelial layers of the throat and/or skin. Many GAS strains with a strong tendency to cause pharyngitis are distinct from strains that tend to cause impetigo; thus, genetic differences between them may confer host tissue-specific virulence. In this study, the FbaA surface protein gene was found to be present in most skin specialist strains but largely absent from a genetically related subset of pharyngitis isolates. In an Δ fbaA mutant constructed in the impetigo strain Alab49, loss of FbaA resulted in a slight but significant decrease in GAS fitness in a humanized mouse model of impetigo; the Δ fbaA mutant also exhibited decreased survival in whole human blood due to phagocytosis. In assays with highly sensitive outcome measures, Alab49ΔfbaA was compared to other isogenic mutants lacking virulence genes known to be disproportionately associated with classical skin strains. FbaA and PAM (i.e., the M53 protein) had additive effects in promoting GAS survival in whole blood. The pilus adhesin tip protein Cpa promoted Alab49 survival in whole blood and appears to fully account for the antiphagocytic effect attributable to pili. The finding that numerous skin strain-associated virulence factors make slight but significant contributions to virulence underscores the incremental contributions to fitness of individual surface protein genes and the multifactorial nature of GAS-host interactions. Copyright © 2017 American Society for Microbiology.

  3. Construction of acetoin high-producing Bacillus subtilis strain

    Directory of Open Access Journals (Sweden)

    Yanjun Tian

    2016-07-01

    Full Text Available This paper describes the construction and selection of a high-producing mutant, Bacillus subtilis HB-32, with enhanced acetoin yield and productivity. The mutant was obtained by the protoplast fusion of a Bacillus subtilis mutant TH-49 (Val− producing acetoin and Bacillus licheniformis AD-30 producing α-acetolactate decarboxylase, with the fusogen polyethylene glycol and after the regeneration and selection, etc. of the fusant. The acetoin production reached 49.64 g/L, which is an increase of 61.8% compared to that of B. subtilis strain TH-49. Random amplified polymorphic DNA analysis was performed to determine the mutagenic and protoplast fusion effects and the genomic changes in the acetoin high-producing strain compared to the parent strains at the molecular level. The constructed strain was shown to be promising for large-scale acetoin production. Future studies should focus on the application of the mutant strain in practice.

  4. Mutant prevention concentrations of four carbapenems against gram-negative rods.

    Science.gov (United States)

    Credito, Kim; Kosowska-Shick, Klaudia; Appelbaum, Peter C

    2010-06-01

    We tested the propensities of four carbapenems to select for resistant Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii mutants by determining the mutant prevention concentrations (MPCs) for 100 clinical strains with various ss-lactam phenotypes. Among the members of the Enterobacteriaceae family and A. baumannii strains, the MPC/MIC ratios were mostly 2 to 4. In contrast, for P. aeruginosa the MPC/MIC ratios were 4 to > or =16. The MPC/MIC ratios for beta-lactamase-positive K. pneumoniae and E. coli isolates were much higher (range, 4 to >16 microg/ml) than those for ss-lactamase-negative strains.

  5. Development of the mouse cochlea database (MCD).

    Science.gov (United States)

    Santi, Peter A; Rapson, Ian; Voie, Arne

    2008-09-01

    The mouse cochlea database (MCD) provides an interactive, image database of the mouse cochlea for learning its anatomy and data mining of its resources. The MCD website is hosted on a centrally maintained, high-speed server at the following URL: (http://mousecochlea.umn.edu). The MCD contains two types of image resources, serial 2D image stacks and 3D reconstructions of cochlear structures. Complete image stacks of the cochlea from two different mouse strains were obtained using orthogonal plane fluorescence optical microscopy (OPFOS). 2D images of the cochlea are presented on the MCD website as: viewable images within a stack, 2D atlas of the cochlea, orthogonal sections, and direct volume renderings combined with isosurface reconstructions. In order to assess cochlear structures quantitatively, "true" cross-sections of the scala media along the length of the basilar membrane were generated by virtual resectioning of a cochlea orthogonal to a cochlear structure, such as the centroid of the basilar membrane or the scala media. 3D images are presented on the MCD website as: direct volume renderings, movies, interactive QuickTime VRs, flythrough, and isosurface 3D reconstructions of different cochlear structures. 3D computer models can also be used for solid model fabrication by rapid prototyping and models from different cochleas can be combined to produce an average 3D model. The MCD is the first comprehensive image resource on the mouse cochlea and is a new paradigm for understanding the anatomy of the cochlea, and establishing morphometric parameters of cochlear structures in normal and mutant mice.

  6. Kinetic modeling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum.

    Science.gov (United States)

    Linville, Jessica L; Rodriguez, Miguel; Mielenz, Jonathan R; Cox, Chris D

    2013-11-01

    The extent of inhibition of two strains of Clostridium thermocellum by a Populus hydrolysate was investigated. A Monod-based model of wild type (WT) and Populus hydrolysate tolerant mutant (PM) strains of the cellulolytic bacterium C. thermocellum was developed to quantify growth kinetics in standard media and the extent of inhibition to a Populus hydrolysate. The PM was characterized by a higher growth rate (μmax=1.223 vs. 0.571 h(-1)) and less inhibition (KI,gen=0.991 vs. 0.757) in 10% v/v Populus hydrolysate compared to the WT. In 17.5% v/v Populus hydrolysate inhibition of PM increased slightly (KI,gen=0.888), whereas the WT was strongly inhibited and did not grow in a reproducible manner. Of the individual inhibitors tested, 4-hydroxybenzoic acid was the most inhibitory, followed by galacturonic acid. The PM did not have a greater ability to detoxify the hydrolysate than the WT. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Enhancement of yellow pigment production by intraspecific protoplast fusion of Monascus spp. yellow mutant (ade(-)) and white mutant (prototroph).

    Science.gov (United States)

    Klinsupa, Worawan; Phansiri, Salak; Thongpradis, Panida; Yongsmith, Busaba; Pothiratana, Chetsada

    2016-01-10

    To breed industrially useful strains of a slow-growing, yellow pigment producing strain of Monascus sp., protoplasts of Monascus purpureus yellow mutant (ade(-)) and rapid-growing M. purpureus white mutant (prototroph) were fused and fusants were selected on minimal medium (MM). Preliminary conventional protoplast fusion of the two strains was performed and the result showed that only white colonies were detected on MM. It was not able to differentiate the fusants from the white parental prototroph. To solve this problem, the white parental prototroph was thus pretreated with 20mM iodoacetamide (IOA) for cytoplasm inactivation and subsequently taken into protoplast fusion with slow-growing Monascus yellow mutant. Under this development technique, only the fusants, with viable cytoplasm from Monascus yellow mutant (ade(-)), could thus grow on MM, whereas neither IOA pretreated white parental prototroph nor yellow auxotroph (ade(-)) could survive. Fifty-three fusants isolated from yellow colonies obtained through this developed technique were subsequently inoculated on complete medium (MY agar). Fifteen distinguished yellow colonies from their parental yellow mutant were then selected for biochemical, morphological and fermentative properties in cassava starch and soybean flour (SS) broth. Finally, three most stable fusants (F7, F10 and F43) were then selected and compared in rice solid culture. Enhancement of yellow pigment production over the parental yellow auxotroph was found in F7 and F10, while enhanced glucoamylase activity was found in F43. The formation of fusants was further confirmed by monacolin K content, which was intermediate between the two parents (monacolin K-producing yellow auxotroph and non-monacolin K producing white prototroph). Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Growth of catalase A and catalase T deficient mutant strains of Saccharomyces cerevisiae on ethanol and oleic acid: Growth profiles and catalase activities in relation to microbody proliferation

    OpenAIRE

    Klei, Ida J. van der; Rytka, Joanna; Kunau, Wolf H.; Veenhuis, Marten

    1990-01-01

    The parental strain (A+T+) of Saccharomyces cerevisiae and mutants, deficient in catalase T (A+T-), catalase A (A-T+) or both catalases (A-T-), grew on ethanol and oleic acid with comparable doubling times. Specific activities of catalase were low in glucose- and ethanol-grown cells. In the two oleic acid-grown A+-strains (A+T+ and A+T-) high catalase activities were found; catalase activity invariably remained low in the A-T+ strain and was never detected in the A-T- strain. The levels of β-...

  9. Enhancing the Production of D-Mannitol by an Artificial Mutant of Penicillium sp. T2-M10.

    Science.gov (United States)

    Duan, Rongting; Li, Hongtao; Li, Hongyu; Tang, Linhuan; Zhou, Hao; Yang, Xueqiong; Yang, Yabin; Ding, Zhongtao

    2018-05-26

    D-Mannitol belongs to a linear polyol with six-carbon and has indispensable usage in medicine and industry. In order to obtain more efficient D-mannitol producer, this study has screened out a stable mutant Penicillium sp. T2-M10 that was isolated from the initial D-mannitol-produced strain Penicillium sp.T2-8 via UV irradiation as well as nitrosoguanidine (NTG) induction. The mutant had a considerable enhancement in yield of D-mannitol based on optimizing fermentation. The production condition was optimized as the PDB medium with 24 g/L glucose for 9 days. The results showed that the production of D-mannitol from the mutant strain T2-M10 increased 125% in contrast with the parental strain. Meanwhile, the fact that D-mannitol is the main product in the mutant simplified the process of purification. Our finding revealed the potential value of the mutant strain Penicillium sp. T2-M10 to be a D-mannitol-producing strain.

  10. Comparative Study of Nonautolytic Mutant and Wild-Type Strains of Coprinopsis cinerea Supports an Important Role of Glucanases in Fruiting Body Autolysis.

    Science.gov (United States)

    Liu, Zhonghua; Niu, Xin; Wang, Jun; Zhang, Wenming; Yang, Mingmei; Liu, Cuicui; Xiong, Yuanjing; Zhao, Yan; Pei, Siyu; Qin, Qin; Zhang, Yu; Yu, Yuan; Yuan, Sheng

    2015-11-04

    Autolysis of Coprinopsis cinerea fruiting bodies affects its commercial value. In this study, a mutant of C. cinerea that exhibits pileus expansion without pileus autolysis was obtained using ultraviolet mutagenesis. This suggests that pileus expansion and pileus autolysis involve different enzymes or proteins. Among the detected hydrolytic enzymes, only β-1,3-glucanase activity increased with expansion and autolysis of pilei in the wild-type strain, but the increase was abolished in the mutant. This suggests that β-1,3-glucanases plays a major role in the autolysis. Although there are 43 possible β-1,3-glucoside hydrolases genes, only 4 known genes, which have products that are thought to act synergistically to degrade the β-1,3-glucan backbone of cell walls during fruiting body autolysis, and an unreported gene were upregulated during pileus expansion and autolysis in the wild-type stain but were suppressed in the mutant. This suggests that expression of these β-1,3-glucanases is potentially controlled by a single regulatory mechanism.

  11. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection.

    Science.gov (United States)

    Guo, Yuanyuan; Xun, Zhe; Coffman, Stephanie R; Chen, Feng

    2017-01-01

    The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host-virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 ( ne219 ) strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 ( ne219 ) mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 ( ne219 ) mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response.

  12. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection

    Directory of Open Access Journals (Sweden)

    Yuanyuan Guo

    2017-05-01

    Full Text Available The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host–virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 (ne219 strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 (ne219 mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 (ne219 mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response.

  13. Temperature-sensitive mutants of fowl plague virus: isolation and genetic characterization

    International Nuclear Information System (INIS)

    Almond, J.W.; McGeoch, D.; Barry, R.D.

    1979-01-01

    Forty-nine temperature-sensitive mutants of fowl plague virus (FPV) strain Rostock and four ts mutants of FPV-strain Dobson were isolated by utilizing two methods of plaque screening, after either spontaneous or chemically induced mutagenesis. Twenty-nine of the FPV-Rostock mutants were further characterized by genetic recombination studies and were found to fall into six high frequency recombination groups. The genome segment carrying the ts mutation in each group was identified by analyzing the gene composition of ts + recombinants generated from crosses between representatives of each group and ts mutants of FPV-Dobson. It was concluded that the six groups correspond to mutations in six different genome segments, namely, those coding for the P 1 , P 2 , P 3 , HA, NP, and NS proteins

  14. Effect of brain-derived neurotrophic factor on behavior and key members of the brain serotonin system in genetically predisposed to behavioral disorders mouse strains.

    Science.gov (United States)

    Naumenko, V S; Kondaurova, E M; Bazovkina, D V; Tsybko, A S; Tikhonova, M A; Kulikov, A V; Popova, N K

    2012-07-12

    The effect of brain-derived neurotrophic factor (BDNF) on depressive-like behavior and serotonin (5-HT) system in the brain of antidepressant sensitive cataleptics (ASC)/Icg mouse strain, characterized by depressive-like behavior, in comparison with the parental nondepressive CBA/Lac mouse strain was examined. Significant decrease of catalepsy and tail suspension test (TST) immobility was shown 17days after acute central BDNF administration (300ng i.c.v.) in ASC mice. In CBA mouse strain, BDNF moderately decreased catalepsy without any effect on TST immobility time. Significant difference between ASC and CBA mice in the effect of BDNF on 5-HT system was revealed. It was shown that central administration of BDNF led to increase of 5-HT(1A) receptor gene expression but not 5-HT(1A) functional activity in ASC mice. Increased tryptophan hydroxylase-2 (Tph-2) and 5-HT(2A) receptor genes expression accompanied by 5-HT(2A) receptor sensitization was shown in BDNF-treated ASC but not in CBA mouse strain, suggesting BDNF-induced increase of the brain 5-HT system functional activity and activation of neurogenesis in "depressive" ASC mice. There were no changes found in the 5-HT transporter mRNA level in BDNF-treated ASC and CBA mice. In conclusion, central administration of BDNF produced prolonged ameliorative effect on depressive-like behavior accompanied by increase of the Tph-2, 5-HT(1A) and 5-HT(2A) genes expression and 5-HT(2A) receptor functional activity in animal model of hereditary behavior disorders. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Codominant expression of genes coding for different sets of inducible salivary polypeptides associated with parotid hypertrophy in two inbred mouse strains.

    Science.gov (United States)

    López-Solís, Remigio O; Kemmerling, Ulrike

    2005-05-01

    Experimental mouse parotid hypertrophy has been associated with the expression of a number of isoproterenol-induced salivary proline-rich polypeptides (IISPs). Mouse salivary proline-rich proteins (PRPs) have been mapped both to chromosomes 6 and 8. Recently, mice of two inbred strains (A/Snell and A. Swiss) have been found to differ drastically in the IISPs. In this study, mice of both strains were used for cross-breeding experiments addressed to define the pattern of inheritance of the IISP phenotype and to establish whether the IISPs are coded on a single or on several chromosomes. The IISP phenotype of individual mice was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of whole saliva collected after three daily stimulations by isoproterenol. Parental A/Snell and A. Swiss mice were homogeneous for distinctive strain-associated IISP-patterns. First filial generation (F1) mice obtained from the cross of A/Snell with A. Swiss mice expressed with no exception both the A/Snell and A. Swiss IISPs (coexpression). In the second filial generation (F2) both parental IISP phenotypes reappeared together with a majority of mice expressing the F1-hybrid phenotype (1:2:1 ratio). Backcrosses of F1 x A/Snell and F1 x A. Swiss produced offsprings displaying the F1 and the corresponding parental phenotypes with a 1:1 ratio. No recombinants were observed among F2 mice or among mice resulting from backcrosses. Thus, genes coding for the IISPs that are expressed differentially in both mouse strains are located on the same chromosome, probably at the same locus (alleles) or at quite closely linked loci (nonalleles). 2005 Wiley-Liss, Inc

  16. Cooperative effect of the attenuation determinants derived from poliovirus sabin 1 strain is essential for attenuation of enterovirus 71 in the NOD/SCID mouse infection model.

    Science.gov (United States)

    Arita, Minetaro; Ami, Yasushi; Wakita, Takaji; Shimizu, Hiroyuki

    2008-02-01

    Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and is also associated with serious neurological disorders. An attenuated EV71 strain [EV71(S1-3')] has been established in the cynomolgus monkey infection model; this strain contains the attenuation determinants derived from the type 1 poliovirus vaccine strain, Sabin 1 [PV1(Sabin)], in the 5' nontranslated region (NTR), 3D polymerase, and 3' NTR. In this study, we analyzed the effect of the attenuation determinants of PV1(Sabin) on EV71 infection in a NOD/SCID mouse infection model. We isolated a mouse-adapted EV71 strain [EV71(NOD/SCID)] that causes paralysis of the hind limbs in 3- to 4-week-old NOD/SCID mice by adaptation of the virulent EV71(Nagoya) strain in the brains of NOD/SCID mice. A single mutation at nucleotide 2876 that caused an amino acid change in capsid protein VP1 (change of the glycine at position 145 to glutamic acid) was essential for the mouse-adapted phenotype in NOD/SCID mice. Next, we introduced attenuation determinants derived from PV1(Sabin) along with the mouse adaptation mutation into the EV71(Nagoya) genome. In 4-week-old mice, the determinants in the 3D polymerase and 3' NTR, which are the major temperature-sensitive determinants, had a strong effect on attenuation. In contrast, the effect of individual determinants was weak in 3-week-old NOD/SCID mice, and all the determinants were required for substantial attenuation. These results suggest that a cooperative effect of the attenuation determinants of PV1(Sabin) is essential for attenuated neurovirulence of EV71.

  17. Mutants with Enhanced Nitrogenase Activity in Hydroponic Azospirillum brasilense-Wheat Associations

    Science.gov (United States)

    Pereg Gerk, Lily; Gilchrist, Kate; Kennedy, Ivan R.

    2000-01-01

    The effect of a mutation affecting flocculation, differentiation into cyst-like forms, and root colonization on nitrogenase expression by Azospirillum brasilense is described. The gene flcA of strain Sp7 restored these phenotypes in spontaneous mutants of both strains Sp7 and Sp245. Employing both constitutive pLA-lacZ and nifH-lacZ reporter fusions expressed in situ, the colony morphology, colonization pattern, and potential for nitrogenase activity of spontaneous mutants and flcA Tn5-induced mutants were established. The results of this study show that the ability of Sp7 and Sp245 mutant strains to remain in a vegetative form improved their ability to express nitrogenase activity in association with wheat in a hydroponic system. Restoring the cyst formation and colonization pattern to the spontaneous mutant Sp7-S reduced nitrogenase activity rates in association with plants to that of the wild-type Sp7. Although Tn5-induced flcA mutants showed higher potentials for nitrogenase expression than Sp7, their potentials were lower than that of Sp7-S, indicating that other factors in this strain contribute to its exceptional nitrogenase activity rates on plants. The lack of lateral flagella is not one of these factors, as Sp7-PM23, a spontaneous mutant impaired in swarming and lateral-flagellum production but not in flocculation, showed wild-type nitrogenase activity and expression. The results also suggest factors of importance in evolving an effective symbiosis between Azospirillum and wheat, such as increasing the availability of microaerobic niches along the root, increased supply of carbon sources by the plant, and the retention of the bacterial cells in vegetative form for faster metabolism. PMID:10788397

  18. The genetic basis of strain-dependent differences in the early phase of radiation injury in mouse lung

    International Nuclear Information System (INIS)

    Franko, A.J.; Sharplin, J.; Ward, W.F.; Hinz, J.M.

    1991-01-01

    Substantial differences between mouse strains have been reported in the lesions present in the lung during the early phase of radiation injury. Some strains show only classical pneumonitis, while other strains develop substantial fibrosis and hyaline membranes which contribute appreciably to respiratory insufficiency, in addition to pneumonitis. Other strains are intermediate between these extremes. These differences correlate with intrinsic differences in activities of lung plasminogen activator and angiotensin converting enzyme. The genetic basis of these differences was assessed by examining histologically the early reaction in lungs of seven murine hybrids available commercially after whole-thorax irradiation. Crosses between fibrosing and nonfibrosing parents were uniformly nonfibrosing, and crosses between fibrosing and intermediate parents were uniformly intermediate. No evidence of sex linkage was seen. Thus the phenotype in which fibrosis is found is controlled by autosomal recessive determinants. Strains prone to radiation-induced pulmonary fibrosis and hyaline membranes exhibited intrinsically lower activities of lung plasminogen activator and angiotensin converting enzyme than either the nonfibrosing strains or the nonfibrosing hybrid crosses. The median time of death of the hybrids was genetically determined primarily by the longest-lived parent regardless of the types of lesions expressed

  19. Toll-like receptor 4 mutant and null mice retain morphine-induced tolerance, hyperalgesia, and physical dependence.

    Directory of Open Access Journals (Sweden)

    Theresa Alexandra Mattioli

    Full Text Available The innate immune system modulates opioid-induced effects within the central nervous system and one target that has received considerable attention is the toll-like receptor 4 (TLR4. Here, we examined the contribution of TLR4 in the development of morphine tolerance, hyperalgesia, and physical dependence in two inbred mouse strains: C3H/HeJ mice which have a dominant negative point mutation in the Tlr4 gene rendering the receptor non-functional, and B10ScNJ mice which are TLR4 null mutants. We found that neither acute antinociceptive response to a single dose of morphine, nor the development of analgesic tolerance to repeated morphine treatment, was affected by TLR4 genotype. Likewise, opioid induced hyperalgesia and opioid physical dependence (assessed by naloxone precipitated withdrawal were not altered in TLR4 mutant or null mice. We also examined the behavioural consequence of two stereoisomers of naloxone: (- naloxone, an opioid receptor antagonist, and (+ naloxone, a purported antagonist of TLR4. Both stereoisomers of naloxone suppressed opioid induced hyperalgesia in wild-type control, TLR4 mutant, and TLR4 null mice. Collectively, our data suggest that TLR4 is not required for opioid-induced analgesic tolerance, hyperalgesia, or physical dependence.

  20. Low dose vaccination with attenuated Francisella tularensis strain SchuS4 mutants protects against tularemia independent of the route of vaccination.

    Directory of Open Access Journals (Sweden)

    Dedeke Rockx-Brouwer

    Full Text Available Tularemia, caused by the gram-negative bacterium Francisella tularensis, is a severe, sometimes fatal disease. Interest in tularemia has increased over the last decade due to its history as a biological weapon. In particular, development of novel vaccines directed at protecting against pneumonic tularemia has been an important goal. Previous work has demonstrated that, when delivered at very high inoculums, administration of live, highly attenuated strains of virulent F. tularensis can protect against tularemia. However, lower vaccinating inoculums did not offer similar immunity. One concern of using live vaccines is that the host may develop mild tularemia in response to infection and use of high inoculums may contribute to this issue. Thus, generation of a live vaccine that can efficiently protect against tularemia when delivered in low numbers, e.g. <100 organisms, may address this concern. Herein we describe the ability of three defined, attenuated mutants of F. tularensis SchuS4, deleted for FTT0369c, FTT1676, or FTT0369c and FTT1676, respectively, to engender protective immunity against tularemia when delivered at concentrations of approximately 50 or fewer bacteria. Attenuated strains for use as vaccines were selected by their inability to efficiently replicate in macrophages in vitro and impaired replication and dissemination in vivo. Although all strains were defective for replication in vitro within macrophages, protective efficacy of each attenuated mutant was correlated with their ability to modestly replicate and disseminate in the host. Finally, we demonstrate the parenteral vaccination with these strains offered superior protection against pneumonic tularemia than intranasal vaccination. Together our data provides proof of principle that low dose attenuated vaccines may be a viable goal in development of novel vaccines directed against tularemia.

  1. Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes.

    Science.gov (United States)

    Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich

    2012-02-01

    The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information.

  2. Isolation and analysis of lipase-overproducing mutants of Serratia marcescens.

    Science.gov (United States)

    Kawai, E; Akatsuka, H; Sakurai, N; Idei, A; Matsumae, H; Shibatani, T; Komatsubara, S; Omori, K

    2001-01-01

    We have isolated a lipase-overproducing mutant, GE14, from Serratia marcescens 8000 after three rounds of N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. The mutant GE14 produced 95 kU/ml of extracellular lipase in the lipase medium, which was about threefold higher than that of produced by the original strain 8000. Enzymatic characteristics including specific activity of purified lipases from culture supernatants of GE14 and 8000 were almost same. The lipase gene (lipA) of GE14 contained two base substitutions; one in the promoter region and another in the N-terminal region of the lipA gene without an amino acid substitution. Promoter analysis using lipA-lacZ fusion plasmids revealed that these substitutions were responsible for the increase in the lipA expression level, independently. In contrast, no base substitution was found in the genes encoding the lipase secretion device, the Lip system. In addition, the genes coding for metalloprotease and the cell surface layer protein which are both secreted through the Lip system and associated with extracellular lipase production, also contained no base substitution. The strain GE14 carrying a high-copy-number lipA plasmid produced a larger amount of the extracellular lipase than the recombinant strains of 8000 and other mutants also did, indicating that GE14 was not only a lipase-overproducing strain, but also an advantageous host strain for overproducing the lipase by a recombinant DNA technique. These results suggest that the lipase-overproducing mutant GE14 and its recombinant strains are promising candidates for the industrial production of the S. marcescens lipase.

  3. Systematic mutagenesis method for enhanced production of bacitracin by Bacillus licheniformis mutant strain UV-MN-HN-6

    Directory of Open Access Journals (Sweden)

    Muhammad Nauman Aftab

    2012-03-01

    Full Text Available The purpose of the current study was intended to obtain the enhanced production of bacitracin by Bacillus licheniformis through random mutagenesis and optimization of various parameters. Several isolates of Bacillus licheniformis were isolated from local habitat and isolate designated as GP-35 produced maximum bacitracin production (14±0.72 IU ml-1. Bacitracin production of Bacillus licheniformis GP-35 was increased to 23±0.69 IU ml-1 after treatment with ultraviolet (UV radiations. Similarly, treatment of vegetative cells of GP-35 with chemicals like N-methyl N'-nitro N-nitroso guanidine (MNNG and Nitrous acid (HNO2 increased the bacitracin production to a level of 31±1.35 IU ml-1 and 27±0.89 IU ml-1 respectively. Treatment of isolate GP-35 with combined effect of UV and chemical treatment yield significantly higher titers of bacitracin with maximum bacitracin production of 41.6±0.92 IU ml-1. Production of bacitracin was further enhanced (59.1±1.35 IU ml-1 by optimization of different parameters like phosphate sources, organic acids as well as temperature and pH. An increase of 4.22 fold in the production of bacitracin after mutagenesis and optimization of various parameters was achieved in comparison to wild type. Mutant strain was highly stable and produced consistent yield of bacitracin even after 15 generations. On the basis of kinetic variables, notably Yp/s (IU/g substrate, Yp/x (IU/g cells, Yx/s (g/g, Yp/s, mutant strain B. licheniformis UV-MN-HN-6 was found to be a hyperproducer of bacitracin.

  4. Mutant breeding of Aspergillus niger irradiated by 12C6+ for hyper citric acid

    International Nuclear Information System (INIS)

    Hu Wei; Li Wenjian; Chen Jihong; Liu Jing; Wang Shuyang; Wang Jufang; Lu Dong

    2014-01-01

    In this study, strains of Aspergillus niger No.4 for hyper citric acid were irradiated to different doses by 80 MeV/u 12 C 6+ ion beams. Seven mutant strains showed marked citric acid over-production records and faster productivity than initial Aspergillus niger No.4 by shaking flash fermentation. The maximum product yield was 132.8 gL -1 (the H4002 strain) being a 8.8% increase to the initial strain. The scale-up experiment was carried out in a 100 L bioreactor. The mutant H4002 can accumulate 187gL -1 product yield of citric acid from starch liquefying supernatant. The productivity of citric acid was 2.75 g L -1 h -1 . So, the mutant H4002 possesses rapid sugar katabolism for producing citric acid. Meanwhile, the pellet morphology kept compact and round during the whole submerged fermentation, which was suited to produce citric acid. The results indicate that mutant H4002 has potential ability to produce citric acid rapidly. (authors)

  5. A behavioural test battery to investigate tic-like symptoms, stereotypies, attentional capabilities, and spontaneous locomotion in different mouse strains.

    Science.gov (United States)

    Proietti Onori, Martina; Ceci, Chiara; Laviola, Giovanni; Macrì, Simone

    2014-07-01

    The preclinical study of human disorders associated with comorbidities and for which the aetiology is still unclear may substantially benefit from multi-strain studies conducted in mice. The latter can help isolating experimental populations (strains) exhibiting distinct facets in the parameters isomorphic to the symptoms of a given disorder. Through a reverse-translation approach, multi-strain studies can inform both natural predisposing factors and environmental modulators. Thus, mouse strains selected for a particular trait may be leveraged to generate hypothesis-driven studies aimed at clarifying the potential role played by the environment in modulating the exhibition of the symptoms of interest. Tourette's syndrome (TS) constitutes a paradigmatic example whereby: it is characterized by a core symptom (tics) often associated with comorbidities (attention-deficit-hyperactivity and obsessive-compulsive symptoms); it has a clear genetic origin though specific genes are, as yet, unidentified; its course (exacerbations and remissions) is under the influence of environmental factors. Based on these considerations, we tested four mouse strains (ABH, C57, CD1, and SJL) - varying along a plethora of behavioural, neurochemical, and immunological parameters - on a test battery tailored to address the following domains: tics (through the i.p. administration of the selective 5-HT2 receptor agonist DOI, 5mg/kg); locomotion (spontaneous locomotion in the home-cage); perseverative responding in an attentional set shifting task; and behavioural stereotypies in response to a single amphetamine (10mg/kg, i.p.) injection. Present data demonstrate that while ABH and SJL mice respectively exhibit selective increments in amphetamine-induced sniffing behaviour and DOI-induced tic-like behaviours, C57 and CD1 mice show a distinct phenotype, compared to other strains, in several parameters. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Evaluation of Lama5 as a candidate for the mouse ragged (Ra) mutation

    DEFF Research Database (Denmark)

    Durkin, M E; Albrechtsen, R; Chambers, D M

    1998-01-01

    The laminin alpha5 chain is a component of the basement membranes of many developing and adult tissues. The mouse laminin alpha5 chain gene (Lama5) has been mapped close to the locus of the semidominant ragged (Ra) mutation on distal chromosome 2. The cause of the Ra mutation, which is usually...... lethal in the homozygous state, has not been determined. We have investigated whether a defect in Lama5 is responsible for the ragged mutation, using the RaJ strain. No differences in the level of the laminin alpha5 chain transcript were found in placental RNA from homozygous RaJ mutant embryos compared...... to normal littermates. Antiserum raised against a recombinant laminin alpha5 chain polypeptide stained the basement membranes of both normal and homozygous mutant embryos to a similar extent. More precise mapping of Lama5 on an interspecific Ra backcross indicated that Lama5 is proximal to the Ra locus...

  7. TDP-43 causes differential pathology in neuronal versus glial cells in the mouse brain.

    Science.gov (United States)

    Yan, Sen; Wang, Chuan-En; Wei, Wenjie; Gaertig, Marta A; Lai, Liangxue; Li, Shihua; Li, Xiao-Jiang

    2014-05-15

    Mutations in TAR DNA-binding protein 43 (TDP-43) are associated with familial forms of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Although recent studies have revealed that mutant TDP-43 in neuronal and glial cells is toxic, how mutant TDP-43 causes primarily neuronal degeneration in an age-dependent manner remains unclear. Using adeno-associated virus (AAV) that expresses mutant TDP-43 (M337V) ubiquitously, we found that mutant TDP-43 accumulates preferentially in neuronal cells in the postnatal mouse brain. We then ubiquitously or selectively expressed mutant TDP-43 in neuronal and glial cells in the striatum of adult mouse brains via stereotaxic injection of AAV vectors and found that it also preferentially accumulates in neuronal cells. Expression of mutant TDP-43 in neurons in the striatum causes more severe degeneration, earlier death and more robust symptoms in mice than expression of mutant TDP-43 in glial cells; however, aging increases the expression of mutant TDP-43 in glial cells, and expression of mutant TDP-43 in older mice caused earlier onset of phenotypes and more severe neuropathology than that in younger mice. Although expression of mutant TDP-43 in glial cells via stereotaxic injection does not lead to robust neurological phenotypes, systemic inhibition of the proteasome activity via MG132 in postnatal mice could exacerbate glial TDP-43-mediated toxicity and cause mice to die earlier. Consistently, this inhibition increases the expression of mutant TDP-43 in glial cells in mouse brains. Thus, the differential accumulation of mutant TDP-43 in neuronal versus glial cells contributes to the preferential toxicity of mutant TDP-43 in neuronal cells and age-dependent pathology.

  8. Comparisons of radiosensitivity and damage repair potential between mutants from the Saccharomyces cerevisiae strain of yeast and laboratory-bred wild yeasts with particular attention being given to giant cell formation after X-radiation

    International Nuclear Information System (INIS)

    Heinen, A.

    1988-01-01

    Yeast cells were exposed to X-rays at dose levels up to 10 kGy to induce damage to the DNA and investigate its effects on cellular growth patterns. For this purpose, comparisons were carried out between one diploid strain and six haploid strains of the Saccharomyces uvarum and Saccharomyces cerevisiae species, which permitted the individual recovery and damage repair pathways to be described in more detail. The laboratory-bred wild strains ATCC 9080, 211 and 706 were judged to have unimpaired repair mechanisms as compared to the auxotrophs, which fact was evident from the higher radiosensitivity of the latter. A further parameter in this evaluation of growth behaviours was giant cell formation. The results here provided evidence in confirmation of deviations between wild strains and mutants. Even though the ceiling values for the formation of giant cells were similarly high in all strains, impairments of cell division and initial development were observed for the mutants already at considerably lower dose levels. (orig./MG) [de

  9. Brucella ovis PA mutants for outer membrane proteins Omp10, Omp19, SP41, and BepC are not altered in their virulence and outer membrane properties.

    Science.gov (United States)

    Sidhu-Muñoz, Rebeca S; Sancho, Pilar; Vizcaíno, Nieves

    2016-04-15

    Mutants in several genes have been obtained on the genetic background of virulent rough (lacking O-polysaccharide) Brucella ovis PA. The target genes encode outer membrane proteins previously associated with the virulence of smooth (bearing O-polysaccharide chains in the lipopolysaccharide) Brucella strains. Multiple attempts to delete omp16, coding for a homologue to peptidoglycan-associated lipoproteins, were unsuccessful, which suggests that Omp16 is probably essential for in vitro survival of B. ovis PA. Single deletion of omp10 or omp19-that encode two other outer membrane lipoproteins--was achieved, but the simultaneous removal of both genes failed, suggesting an essential complementary function between both proteins. Two other deletion mutants, defective in the Tol-C-homologue BepC or in the SP41 adhesin, were also obtained. Surprisingly when compared to previous results obtained with smooth Brucella, none of the B. ovis mutants showed attenuation in the virulence, either in the mouse model or in cellular models of professional and non-professional phagocytes. Additionally, and in contrast to the observations reported with smooth Brucella strains, several properties related to the outer membrane remained almost unaltered. These results evidence new distinctive traits between naturally rough B. ovis and smooth brucellae. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The Effect of Vitamin E on the Survival Rate of unc-13 Caenorhabditis elegans mutants under Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Jessica Porcelan

    2012-01-01

    Full Text Available Caenorhabditis elegans unc-13 mutants express decreased neuronal activity and thus are a good model strain for examining defective nervous systems. These unc-13 mutants as well as wild type N2 strains, show rapid mortality when under oxidative stress. However, the antioxidant vitamin E may prolong survival in unc-13 mutant and N2 strains under oxidative stress. The addition of vitamin E to organisms under oxidative stress has a protective effect in both N2 and unc-13 C. elegans strains. Interestingly, vitamin E resulted in a greater increase in survival rate in N2 worms than with unc-13 mutant worms. While both strains displayed lower mortality rates with the addition of vitamin E, this finding suggests that vitamin E more efficiently increases survival rates of C. elegans with typical nervous system function. The efficacy of vitamin E implies that use of antioxidants may lessen the damage caused by oxidative stress in both N2 and mutant worms.

  11. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice.

    Science.gov (United States)

    Field, H J; Wildy, P

    1978-10-01

    The pathogenicity for mice of two mutants of herpes simplex virus (type 1 and type 2), which fail to induce thymidine kinase, were compared with their respective parent strains. The mutants were much less virulent than the parents following either intracerebral or peripheral inoculation. The replication of the virus at the site of inoculation and its progression into the nervous system were studied. Following a very large inoculum in the ear, the type 1 mutant was found to establish a latent infection in the cervical dorsal root ganglia. Mice inoculated intracerebrally with small doses of the mutant viruses were solidly immune to challenge with lethal doses of the parent strain.

  12. Distinct CCR2(+) Gr1(+) cells control growth of the Yersinia pestis ΔyopM mutant in liver and spleen during systemic plague.

    Science.gov (United States)

    Ye, Zhan; Uittenbogaard, Annette M; Cohen, Donald A; Kaplan, Alan M; Ambati, Jayakrishna; Straley, Susan C

    2011-02-01

    We are using a systemic plague model to identify the cells and pathways that are undermined by the virulence protein YopM of the plague bacterium Yersinia pestis. In this study, we pursued previous findings that Gr1(+) cells are required to selectively limit growth of ΔyopM Y. pestis and that CD11b(+) cells other than polymorphonuclear leukocytes (PMNs) are selectively lost in spleens infected with parent Y. pestis. When PMNs were ablated from mice, ΔyopM Y. pestis grew as well as the parent strain in liver but not in spleen, showing that these cells are critical for controlling growth of the mutant in liver but not spleen. In mice lacking expression of the chemokine receptor CCR2, wild-type growth was restored to ΔyopM Y. pestis in both organs. In spleen, the Gr1(+) cells differentially recruited by parent and ΔyopM Y. pestis infections were CCR2(+) Gr1(+) CD11b(+) CD11c(Lo-Int) MAC3(+) iNOS(+) (inducible nitric oxide synthase-positive) inflammatory dendritic cells (iDCs), and their recruitment to spleen from blood was blocked when YopM was present in the infecting strain. Consistent with influx of iDCs being affected by YopM in spleen, the growth defect of the ΔyopM mutant was relieved by the parent Y. pestis strain in a coinfection assay in which the parent strain could affect the fate of the mutant in trans. In a mouse model of bubonic plague, CCR2 also was shown to be required for ΔyopM Y. pestis to show wild-type growth in skin. The data imply that YopM's pathogenic effect indirectly undermines signaling through CCR2. We propose a model for how YopM exerts its different effects in liver and spleen.

  13. Maternal Supply of Cas9 to Zygotes Facilitates the Efficient Generation of Site-Specific Mutant Mouse Models

    Science.gov (United States)

    Cebrian-Serrano, Alberto; Zha, Shijun; Hanssen, Lars; Biggs, Daniel; Preece, Christopher

    2017-01-01

    Genome manipulation in the mouse via microinjection of CRISPR/Cas9 site-specific nucleases has allowed the production time for genetically modified mouse models to be significantly reduced. Successful genome manipulation in the mouse has already been reported using Cas9 supplied by microinjection of a DNA construct, in vitro transcribed mRNA and recombinant protein. Recently the use of transgenic strains of mice overexpressing Cas9 has been shown to facilitate site-specific mutagenesis via maternal supply to zygotes and this route may provide an alternative to exogenous supply. We have investigated the feasibility of supplying Cas9 genetically in more detail and for this purpose we report the generation of a transgenic mice which overexpress Cas9 ubiquitously, via a CAG-Cas9 transgene targeted to the Gt(ROSA26)Sor locus. We show that zygotes prepared from female mice harbouring this transgene are sufficiently loaded with maternally contributed Cas9 for efficient production of embryos and mice harbouring indel, genomic deletion and knock-in alleles by microinjection of guide RNAs and templates alone. We compare the mutagenesis rates and efficacy of mutagenesis using this genetic supply with exogenous Cas9 supply by either mRNA or protein microinjection. In general, we report increased generation rates of knock-in alleles and show that the levels of mutagenesis at certain genome target sites are significantly higher and more consistent when Cas9 is supplied genetically relative to exogenous supply. PMID:28081254

  14. Recombination-deficient mutants of Bacillus subtilis

    International Nuclear Information System (INIS)

    Sadaie, Y.; Kada, T.

    1976-01-01

    Two mutant strains of Bacillus subtilis Marburg, NIG43 and NIG45, were isolated. They showed high sensitivities to gamma rays, ultraviolet light (uv), and chemicals. Deficiencies in genetic recombination of these two mutants were shown by the experiments on their capacity in transformation, SPO2 transfection, and PBS1 phage transduction, as well as on their radiation and drug sensitivities and their Hcr + capacity for uv-exposed phage M2. Some of these characteristics were compared with those of the known strains possessing the recA1 or recB2 alleles. Mapping studies revealed that the mutation rec-43 of strain NIG43 lies in the region of chromosome replication origin. The order was purA dna-8132 rec-43. Another mutation, rec-45, of strain NIG45 was found to be tightly linked to recA1. The mutation rec-43 reduced mainly the frequency of PBS1 transduction. On the other hand, the mutation rec-45 reduced the frequency of recombination involved both in transformation and PBS1 tranduction. The mutation rec-43 of strain NIG43 is conditional, but rec-45 of strain NIG45 is not. The uv impairment in cellular survival of strain NIG43 was gradually reverted at higher salt or sucrose concentrations, suggesting cellular possession of a mutated gene product whose function is conditional. In contrast to several other recombination-deficient strains, SPO2 lysogens of strains NIG43 and NIG45 were not inducible, indicating involvement of rec-43 + or rec-45 + gene product in the development of SPO2 prophage to a vegetative form. The uv-induced deoxyribonucleic acid degradation in vegetative cells was higher in rec-43 and rec-45 strains

  15. Immunization by intrabronchial administration to 1-week-old foals of an unmarked double gene disruption strain of Rhodococcus equi strain 103+.

    Science.gov (United States)

    Pei, Yanlong; Nicholson, Vivian; Woods, Katharine; Prescott, John F

    2007-11-15

    Rhodococcus equi causes fatal granulomatous pneumonia in foals and immunocompromised animals and humans. However, there is no effective vaccine against this infection. In this study, the chromosomal genes isocitrate lyase (icl) and cholesterol oxidase (choE) were chosen as targets for mutation and assessment of the double mutant as an intrabronchial vaccine in 1-week-old foals. Using a modification of a suicide plasmid previously developed in this laboratory, we developed a choE-icl unmarked deletion mutant of R. equi strain 103+. Five 1-week-old foals were infected intrabronchially with the mutant and challenged intrabronchially with the parent, virulent, strain 2 weeks later. Three of the foals were protected against pneumonia caused by the virulent strain, but the other two foals developed pneumonia caused by the mutant strain during the post-challenge period. Since infection of 3-week-old foals by an icl mutant in an earlier study had shown complete attenuation of the strain, we conclude that a proportion of foals in the 1st week or so of life are predisposed to developing R. equi pneumonia because of an inability to mount an effective immune response. This has been suspected previously but this is the first time that this has been demonstrated experimentally.

  16. The Aβ6w302 gene and molecular mechanisms of resistance to the spread of lymphoma in a mouse mutant, Survivor-27

    International Nuclear Information System (INIS)

    Liu, Y.; Savinov, A.Yu.; McMinimy, D.L.; Kremlev, S.G.; Chapoval, A.I.; Egorov, I.K.

    2000-01-01

    The Aβ6 w302 gene and molecular mechanisms of resistance to the spread of lymphoma induced by γ-radiation ( 60 Co) in a mouse mutant, survivor-27 were studied. Metastatic tumors escape from immune response and spread in the body; survivors are very rare. Novel single exon genes Aβ4-7 and a pseudogene Aβ8Ψ have been cloned from survivors. Their protein coding sequences are similar major histocompatibility complex (MHC) class II β H2-Ab cDNA while their promoter is different from MHC promoters. The Aβ4 protein was demonstrated on macrophages (antigen presenting cells). The Aβ gene family is genetically unstable in germ line and somatic cells of survivors. Mutants S-27 and S-87/1 lost the Aβ5 s5 and acquired the Aβ6 w302 gene; the Ab gene mutated in S-27. The proposed mechanism of resistance is molecular instability of the Aβ gene family resulting in somatic mutations and wandering immune responses that destroy the tumor in the survivor [ru

  17. Phanerochaete mutants with enhanced ligninolytic activity

    International Nuclear Information System (INIS)

    Kakar, S.N.; Perez, A.; Gonzales, J.

    1994-01-01

    In addition to lignin, the white rot fungus Phanerochaete chrysosporium has the ability to degrade a wide spectrum of recalcitrant organo pollutants in soils and aqueous media. Most of the organic compounds are degraded under ligninolytic conditions with the involvement of the extracellular enzymes, lignin peroxidases, and manganese-dependent peroxidases, which are produced as secondary metabolites triggered by conditions of nutrient starvation (e.g., nitrogen limitation). The fungus and its enzymes can thus provide alternative technologies for bioremediation, bio pulping, bio bleaching, and other industrial applications. The efficiency and effectiveness of the fungus can be enhanced by increasing production and secretion of the important enzymes in large quantities and as primary metabolites under enriched conditions. One way this can be achieved is through isolation of mutants that are deregulated, or are hyper producers or super secretors of key enzymes under enriched conditions. Through UV-light and γ-ray mutagenesis, we have isolated a variety of mutants, some of which produce key enzymes of the ligninolytic system under high-nitrogen growth conditions. One of the mutants, 76UV, produced 272 U of lignin peroxidases enzyme activity/L after 9 d under high nitrogen (although the parent strain does not produce this enzyme under these conditions). The mutant and the parent strains produced up to 54 and 62 U/L, respectively, of the enzyme activity under low nitrogen growth conditions during this period. In some experiments, the mutant showed 281 U/L of enzyme activity under high nitrogen after 17 d

  18. Oxygen Association-Dissociation and Stability Analysis on Mouse Hemoglobins with Mutant α- and β-Globins

    Science.gov (United States)

    D'Surney, S. J.; Popp, R. A.

    1992-01-01

    Oxygen association-dissociation and hemoglobin stability analysis were performed on mouse hemoglobins with amino acid substitutions in an α-globin (α89, His to Leu) and a β-globin (β59, Lys to Ile). The variant α-globin, designated chain 5(m) in the Hba(g2) haplotype, had a high oxygen affinity and was stable. The variant β-globin, (β(s2)) of the Hbb(s2) haplotype, also had an elevated oxygen affinity and in addition was moderately unstable in 19% isopropanol. Hemoglobins from the expected nine (Hba(g2)/Hba(g2);Hbb(s)/Hbb(s) X Hba(a)/Hba(a);Hbb(s2)/Hbb(s2)) F(2) genotypes can be grouped into five classes of P(50) values characterized by strict additivity and dependency on mutant globin gene dosage; physiologically, both globin variants gave indistinguishable effects on oxygen affinity. The hemoglobin of normal mice (Hba(a)/Hba(a);Hbb(s)/Hbb(s)) had a P(50) = 40 mm Hg and the hemoglobin of Hba(g2)/Hba(g2);Hbb(s2)/Hbb(s2) F(2) mice had a P(50) = 25 mm Hg (human P(50) = 26 mm Hg). Peripheral blood from Hba(g2)/Hba(g2);Hbb(s)/Hbb(s), Hba(a)/Hba(a);Hbb(s2)/Hbb(s2) and Hba(g2)/Hba(g2);Hbb(s2)/Hbb(s2) mice exhibited normal hematological values except for a slightly higher hematocrit for Hba(g2)/Hba(g2);Hbb(s)/Hbb(s) and Hba(g2)/Hba(g2);Hbb(s2)/Hbb(s2) mice, slightly elevated red cell counts for mice of the three mutant genotypes, and significantly lower values for the mean corpuscular volume and mean corpuscular hemoglobin for Hba(g2)/Hba(g2);Hbb(s2)/Hbb(s2) mice. PMID:1427042

  19. Inactivation of cephapirin sodium by the radiation-resistant strain micrococcus roseus

    International Nuclear Information System (INIS)

    Tawfik, Z.S.

    1991-01-01

    The susceptibility of the radioresistant mutants B. firmus, B.megaterium, B, laterosporus, M. roseus and M. luteus to the betalactam antibiotic cephapirin sodium was estimated using the microbiological assay technique. All the studied species were found to be sensitive to the concerned antibiotic except the radioresistant mutant M. rosues. Accordingly, the inactivation of betalactam, antibiotic cephapirin sodium, by this mutant strain was interesting to be investigated. A microbiological assay was used to determine the potency of the studied antibiotic and its degraded compound produced after its incubation with the above mentioned mutant strain for different periods of time in basal salt mineral medium.Results obtained for antibiotic samples extracted after 7-day incubation with the mutant strain indicated that the antibiotic was metabolized by this mutant strain to inactive products. These results were confirmed by chromatograms of the antibiotic samples, extracted from cultures with the mutant incubated for zero, 7 and 14 days. Degraded products were eluted at retention time values different from those observed for the noninucubated antibiotic samples. The inactivation of the antibiotic by the studied mutant starin seems to be due to extracellular enzymes in the surrounding medium.1 tab

  20. Distinct roles of autophagy-dependent and -independent functions of FIP200 revealed by generation and analysis of a mutant knock-in mouse model

    Science.gov (United States)

    Chen, Song; Wang, Chenran; Yeo, Syn; Liang, Chun-Chi; Okamoto, Takako; Sun, Shaogang; Wen, Jian; Guan, Jun-Lin

    2016-01-01

    Autophagy is an evolutionarily conserved cellular process controlled through a set of essential autophagy genes (Atgs). However, there is increasing evidence that most, if not all, Atgs also possess functions independent of their requirement in canonical autophagy, making it difficult to distinguish the contributions of autophagy-dependent or -independent functions of a particular Atg to various biological processes. To distinguish these functions for FIP200 (FAK family-interacting protein of 200 kDa), an Atg in autophagy induction, we examined FIP200 interaction with its autophagy partner, Atg13. We found that residues 582–585 (LQFL) in FIP200 are required for interaction with Atg13, and mutation of these residues to AAAA (designated the FIP200-4A mutant) abolished its canonical autophagy function in vitro. Furthermore, we created a FIP200-4A mutant knock-in mouse model and found that specifically blocking FIP200 interaction with Atg13 abolishes autophagy in vivo, providing direct support for the essential role of the ULK1/Atg13/FIP200/Atg101 complex in the process beyond previous studies relying on the complete knockout of individual components. Analysis of the new mouse model showed that nonautophagic functions of FIP200 are sufficient to fully support embryogenesis by maintaining a protective role in TNFα-induced apoptosis. However, FIP200-mediated canonical autophagy is required to support neonatal survival and tumor cell growth. These studies provide the first genetic evidence linking an Atg's autophagy and nonautophagic functions to different biological processes in vivo. PMID:27013233

  1. Sensorimotor learning in Dab1(scm) (scrambler) mutant mice.

    Science.gov (United States)

    Lalonde, R; Strazielle, C

    2011-04-15

    Homozygous Dab1(scm) mouse mutants with cell ectopias in cerebellar cortex and neocortex were compared with non-ataxic controls on two tests of motor coordination: rotorod and grid climbing. Even at the minimal speed of 4 rpm and unlike controls, none of the Dab1(scm) mutants reached criterion on the constant speed rotorod. In contrast, Dab1(scm) mutants improved their performances on the vertical grid over the course of the same number of trials. Thus, despite massive cerebellar degeneration, sensorimotor learning for equilibrium is still possible, indicating the potential usefulness of the grid-climbing test in determining residual functions in mice with massive cerebellar damage. Copyright © 2010. Published by Elsevier B.V.

  2. Un Nuevo Enfoque en el Estudio de la Esporotricosis: Mutantes de Sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    Haydee Torres-Guerrero

    2012-02-01

    Full Text Available Una cepa silvestre y cepas mutantes de Sporothrix schenckii, se han estudiado como un modelo experimental de los procesos de diferenciación y desarrollo que se presentan al ser invadidas las células huésped y causar la esporotricosis. Las cepas mutantes de S. schenckii fueron obtenidas por exposición a la luz ultravioleta y Nitrosoguanidina. Las mutantes morfológicas M-III y M-V fueron seleccionadas. Estas mutantes muestran una alteración colonial y un mayor desarrollo que las cepas silvestres. Además, las mutantes presentan mayor adhesión al sustrato. El análisis de componentes de la pared celular y la distribución de núcleos, indican que no existen diferencias significativas que implique un daño por la mutación. Los resultados indican que en las mutantes morfológicas existe una alteración en el patrón de crecimiento y su regulación. Son necesarios, estudios bioquímicos e inmunológicos, relacionados con la virulencia S. schenckii que puedan ser útiles en el diagnóstico y en un futuro contribuyan a medidas preventivas para la esporotricosis. A wild-type strain and mutant strain of Sporothrix schenckii were studied as an experimental model in the process of differentiation and development which occurs when the host cell is invaded causing sporotrichosis. The mutant strains of S. schenckii were obtained by exposure to ultraviolet light and Nitrosoguanidine. The morphological mutants M-III and M-V were selected. These mutants showed a colonial alteration and a higher growth rate than the wild-type strains. Moreover, the mutants showed greater adhesion to the substratum. An analysis of the components of the cell wall and the distribution of nuclei indicate that significant differences do not exist which involve damage by mutation. The results suggest that in morphological mutants there is an alteration of growth and its regulation in the host cell. Biochemical and immunological studies related to the virulence of S. schenkii are

  3. Radiation and thermal characteristics of mouse lymphoma cells and their radiation-sensitive mutant

    International Nuclear Information System (INIS)

    Baba, Yuji; Yasunaga, Tadamasa; Uozumi, Hideaki; Takahashi, Mutsumasa; Sawada, Shozo.

    1988-01-01

    Radiation and thermal characteristics of L5178Y cells and their radiation-sensitive mutant M10 cells were studied by the colony-forming method and the dye-exclusion method using eosin-Y. Although M10 cells were remarkably radiation-sensitive compared with L5178Y cells, it was diffcult to cause interphase death of M10 after a large dose of irradiation. After heat treatments, L5178Y cells revealed more cell destruction and were stained well by eosin-Y, but it was relatively difficult to produce cell destruction of M10 cells, which showed poor staining by eosin-Y. When assayed by the colony-forming method, M10 cells were also heat-resistant compared to L5178Y. The dye-exclusion rate was closely correlated with cell survival after hyperthermia of L5178Y cells, suggesting that this is a simple method of detecting the thermosensitivity and thermotolerance of cancer cells. The difference in survival of L5178Y cells and M10 cells after combined treatment with gamma irradiation and hyperthermia was smaller than with gamma irradiation alone. It was also found that there was a relationship between radiation-induced interphase death and hyperthermia-induced interphase death, and that interphase death accounted for a major part of cell death caused by hyperthermia in mouse leukemia cells. (author)

  4. Mouse SNP Miner: an annotated database of mouse functional single nucleotide polymorphisms

    Directory of Open Access Journals (Sweden)

    Ramensky Vasily E

    2007-01-01

    Full Text Available Abstract Background The mapping of quantitative trait loci in rat and mouse has been extremely successful in identifying chromosomal regions associated with human disease-related phenotypes. However, identifying the specific phenotype-causing DNA sequence variations within a quantitative trait locus has been much more difficult. The recent availability of genomic sequence from several mouse inbred strains (including C57BL/6J, 129X1/SvJ, 129S1/SvImJ, A/J, and DBA/2J has made it possible to catalog DNA sequence differences within a quantitative trait locus derived from crosses between these strains. However, even for well-defined quantitative trait loci ( Description To help identify functional DNA sequence variations within quantitative trait loci we have used the Ensembl annotated genome sequence to compile a database of mouse single nucleotide polymorphisms (SNPs that are predicted to cause missense, nonsense, frameshift, or splice site mutations (available at http://bioinfo.embl.it/SnpApplet/. For missense mutations we have used the PolyPhen and PANTHER algorithms to predict whether amino acid changes are likely to disrupt protein function. Conclusion We have developed a database of mouse SNPs predicted to cause missense, nonsense, frameshift, and splice-site mutations. Our analysis revealed that 20% and 14% of missense SNPs are likely to be deleterious according to PolyPhen and PANTHER, respectively, and 6% are considered deleterious by both algorithms. The database also provides gene expression and functional annotations from the Symatlas, Gene Ontology, and OMIM databases to further assess candidate phenotype-causing mutations. To demonstrate its utility, we show that Mouse SNP Miner successfully finds a previously identified candidate SNP in the taste receptor, Tas1r3, that underlies sucrose preference in the C57BL/6J strain. We also use Mouse SNP Miner to derive a list of candidate phenotype-causing mutations within a previously

  5. Microbial Fe (III) reduction and hydrogen production by a transposon-mutagenized strain of Pantoea agglomerans BH18

    International Nuclear Information System (INIS)

    Liu, Hongyan; Wang, Guangce

    2015-01-01

    Based on the transposon-mutagenized library of Pantoea agglomerans BH18, mutant screens were conducted to obtain the strain with the highest Fe (III) reduction and hydrogen production. Of these transposon-mutagenized mutants, the mutant strain TB230 was screened for high Fe (III)-reducing efficiency and hydrogen production. The PCR amplification and kanamycin resistance selection results indicated that the transposon insertion of the mutant strain TB230 was stable. Hydrogen production of the mutant strain TB230 was (2.21 ± 0.34) mol H 2 /mol glucose, which increased hydrogen production by over 40% compared with that of the wild type strain. The accumulation concentration of Fe (II) in the medium of the mutant strain TB230 with Fe (OH) 3 as the sole electron acceptor was (7.39 ± 0.49) mmol/l, which was approximately 3-fold greater than that of the wild type strain. The mutant strain TB230 showed high Fe (III)-reducing activity and hydrogen production by adopting glucose and pyruvate as the carbon source. In addition, the mutant strain TB230 was capable of Fe (III) reduction and hydrogen production under fresh or marine conditions. This result indicates that the mutant strain with high microbial Fe (III) reduction and hydrogen production is beneficial for the improvement of anaerobic performance. - Highlights: • The mutant strain TB230 was a transposon-mutagenized strain of Pantoea agglomerans BH18. • Strain TB230 was screened for high Fe (III)-reducing efficiency and hydrogen production. • H 2 yield and Fe (III)-reducing activity were 2.21 ± 0.34 and 7.39 ± 0.49 in marine condition. • Strain TB230 was capable of Fe (III) reduction and hydrogen production in fresh or marine condition

  6. Strain differences in mouse skin carcinogenesis experiments using ionizing radiation and the tumor promoter TPA

    International Nuclear Information System (INIS)

    Jaffe, D.R.; Bowden, G.T.

    1985-01-01

    Ionizing radiation has been shown to be a complete carcinogen in rodent skin when administered repeatedly. The initiating potential of ionizing radiation in mouse skin was tested in a classical two-stage protocol in both CD-1 and Sencar mice. Beta radiation (0.5, 1.5, 3.0 and 5.0 Gy) was administered by a strontium 90 applicator followed two weeks later by twice weekly application of 5 μg TPA. A statistical difference in the papilloma incidence between radiation initiated, TPA promoted versus non-initiated TPA promoted groups was not found (25-35% animals with papillomas and 0.35-0.45 papillomas per mouse at 65 weeks of promotion for both initiated and non-initiated mice). There appeared to be no strain differences between the CD-1 and Sencar in response to the initiating effects if ionizing radiation. This is in direct contrast to the studies showing Sencar mice to be much more sensitive than CD-1 to the initiating effects of chemical carcinogens

  7. Comparative study of the mutant prevention concentrations of moxifloxacin, levofloxacin, and gemifloxacin against pneumococci.

    Science.gov (United States)

    Credito, Kim; Kosowska-Shick, Klaudia; McGhee, Pamela; Pankuch, Glenn A; Appelbaum, Peter C

    2010-02-01

    We tested the propensity of three quinolones to select for resistant Streptococcus pneumoniae mutants by determining the mutant prevention concentration (MPC) against 100 clinical strains, some of which harbored mutations in type II topoisomerases. Compared with levofloxacin and gemifloxacin, moxifloxacin had the lowest number of strains with MPCs above the susceptibility breakpoint (P<0.001), thus representing a lower selective pressure for proliferation of resistant mutants. Only moxifloxacin gave a 50% MPC (MPC50) value (1 microg/ml) within the susceptible range.

  8. Phosphoribosylpyrophosphate synthetase of Escherichia coli, Identification of a mutant enzyme

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Nygaard, Per

    1982-01-01

    , stimulated the mutant enzyme. The activity of PRib-PP synthetase in crude extract was higher in the mutant than in the parent. When starved for purines an accumulation of PRib-PP was observed in the parent strain, while the pool decreased in the mutant. During pyrimidine starvation derepression of PRib...

  9. Nonspecific airway reactivity in a mouse model of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Collie, D.D.; Wilder, J.A.; Bice, D.E.

    1995-12-01

    Animal models are indispensable for studies requiring an intact immune system, especially for studying the pathogenic mechanisms in atopic diseases, regulation of IgE production, and related biologic effects. Mice are particularly suitable and have been used extensively for such studies because their immune system is well characterized. Further, large numbers of mutants or inbred strains of mice are available that express deficiencies of individual immunologic processes, inflammatory cells, or mediator systems. By comparing reactions in such mice with appropriate control animals, the unique roles of individual cells or mediators may be characterized more precisely in the pathogenesis of atopic respiratory diseases including asthma. However, given that asthma in humans is characterized by the presence of airway hyperresponsiveness to specific and nonspecific stimuli, it is important that animal models of this disease exhibit similar physiologic abnormalities. In the past, the size of the mouse has limited its versatility in this regard. However, recent studies indicate the feasibility of measuring pulmonary responses in living mice, thus facilitating the physiologic evaluation of putative mouse models of human asthma that have been well charcterized at the immunologic and patholigic level. Future work will provide details of the morphometry of the methacholine-induced bronchoconstriction and will further seek to determine the relationship between cigarette smoke exposure and the development of NS-AHR in the transgenic mouse model.

  10. Proteostasis and ageing: insights from long-lived mutant mice.

    Science.gov (United States)

    Sands, William A; Page, Melissa M; Selman, Colin

    2017-10-15

    The global increase in life expectancy is creating significant medical, social and economic challenges to current and future generations. Consequently, there is a need to identify the fundamental mechanisms underlying the ageing process. This knowledge should help develop realistic interventions capable of combatting age-related disease, and thus improving late-life health and vitality. While several mechanisms have been proposed as conserved lifespan determinants, the loss of proteostasis - where proteostasis is defined here as the maintenance of the proteome - appears highly relevant to both ageing and disease. Several studies have shown that multiple proteostatic mechanisms, including the endoplasmic reticulum (ER)-induced unfolded protein response (UPR), the ubiquitin-proteasome system (UPS) and autophagy, appear indispensable for longevity in many long-lived invertebrate mutants. Similarly, interspecific comparisons suggest that proteostasis may be an important lifespan determinant in vertebrates. Over the last 20 years a number of long-lived mouse mutants have been described, many of which carry single-gene mutations within the growth-hormone, insulin/IGF-1 or mTOR signalling pathways. However, we still do not know how these mutations act mechanistically to increase lifespan and healthspan, and accordingly whether mechanistic commonality occurs between different mutants. Recent evidence supports the premise that the successful maintenance of the proteome during ageing may be linked to the increased lifespan and healthspan of long-lived mouse mutants. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  11. Pathbase: A new reference resource and database for laboratory mouse pathology

    International Nuclear Information System (INIS)

    Schofield, P. N.; Bard, J. B. L.; Boniver, J.; Covelli, V.; Delvenne, P.; Ellender, M.; Engstrom, W.; Goessner, W.; Gruenberger, M.; Hoefler, H.; Hopewell, J. W.; Mancuso, M.; Mothersill, C.; Quintanilla-Martinez, L.; Rozell, B.; Sariola, H.; Sundberg, J. P.; Ward, A.

    2004-01-01

    Pathbase (http:/www.pathbase.net) is a web accessible database of histopathological images of laboratory mice, developed as a resource for the coding and archiving of data derived from the analysis of mutant or genetically engineered mice and their background strains. The metadata for the images, which allows retrieval and inter-operability with other databases, is derived from a series of orthogonal ontologies, and controlled vocabularies. One of these controlled vocabularies, MPATH, was developed by the Pathbase Consortium as a formal description of the content of mouse histopathological images. The database currently has over 1000 images on-line with 2000 more under curation and presents a paradigm for the development of future databases dedicated to aspects of experimental biology. (authors)

  12. Biocontrol potential of salinity tolerant mutants of Trichoderma harzianum against Fusarium oxysporum Potencial de biocontrole de mutantes sal-tolerantes de Trichoderma harzianum contra Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Hassan Abdel-Latif A. Mohamed

    2006-06-01

    Full Text Available Exposing a wild-type culture of Trichoderma harzianum to gamma irradiation induced two stable salt-tolerant mutants (Th50M6 and Th50M11. Under saline conditions, both mutants greatly surpassed their wild type strain in growth rate, sporulation and biological proficiency against Fusarium oxysporum, the causal agent of tomato wilt disease. Tolerant T. harzianum mutants detained a capability to grow and convinced sporulation in growth media containing up to 69 mM NaCl. In comparison with their parent strain, characterization of both mutants confirmed that they have reinforced contents of proline and hydroxyproline, relatively higher sodium content compared to potassium, calcium or magnesium contents, higher level of total phenols. Electrophoretic analysis of total soluble proteins in the salt tolerance mutant Th50M6 showed different bands accumulated in response to 69 mM NaCl. Data also showed that mutants produce certain active metabolites, such as chitinases, cellulases, beta-galactosidases, as well as, some antibiotics i.e., trichodermin, gliotoxin and gliovirin. Trichoderma mutants significantly reduced wilt disease incidence and improved yield and mineral contents of tomato plants under both saline and non-saline soil conditions, as well as, under infested and natural conditions. T. harzianum mutants were also more efficient in dropping the F. oxysporum growth in rhizosphere compared to the wild type strain. Population density of both mutants in rhizosphere far exceeded that of T. harzianum wild type strain.A exposição de uma cepa selvagem de Trichoderma harzianum à irradiação gama induziu dois mutantes tolerantes a sal (Th50M6 e Th50M11. Em condições salinas, os dois mutantes foram muito superiores à cepa selvagem em relação à velocidade de multiplicação, esporulação e eficiência contra Fusarium oxysporum, o agente causador da doença wilt do tomate. Os mutantes tolerantes foram capazes de multiplicação e esporulação em

  13. Mutants of Streptomyces coeruleorubidus impaired in the biosynthesis of daunomycinone glycosides and related metabolites

    International Nuclear Information System (INIS)

    Blumauerova, M.; Stajner, K.; Pokorny, V.; Hostalek, Z.; Vanek, Z.

    1978-01-01

    Mutants of Streptomyces coeruleorubidus, blocked in the biosynthesis of anthracycline antibiotics of the daunomycine complex, were isolated from the production strains after treatment with UV light, γ-radiation, nitrous acid, and after natural selection; according to their different biosynthetic activity the mutants were divided into five phenotypic groups. Mutants of two of these groups produced compounds that had not yet been described in Streptomyces coeruleorubidus (aklavinone, 7-deoxyaklavinone, zeta-rhodomycinone and glycosides of epsilon-rhodomycinone). The mutants differed from the parent strains and also mutually in morphological characteristics but no direct correlation between these changes and the biosynthetic activity could be observed in most cases. (author)

  14. Establishment of pseudomonas putida strains for sensitive detection of heavy metals in effluents

    International Nuclear Information System (INIS)

    Genthe, B.

    1987-09-01

    The objective of this study was to isolate a mutant of Pseudomonas putida that is more sensitive to heavy metal toxicants in water than the wild type. P. putida was the organism chosen in this study as it occurs naturally in unpolluted waters, is nonpathogenic, aerobic and because it is commonly applied in bacterial toxicity assays due to its sensitivity to toxicants. Three methods of mutagenesis were employed, which included N-methyl-N'-nitro-N-nitrosoguanidine (NG) ; ultraviolet light and transposon-mediated mutagenesis in order to generate as wide a range of mutants as possible. Four mutants, which were more sensitive to mercury, copper, lead, zinc, cadmium and silver were isolated using the NG method of mutagenesis. These mutants were designated strains 53, 56, 60 and 61 and were characterized as P. putida strains on the basis of Gram staining, biochemical reactions and immunological properties. The sensitivity of the mutants to a variety of industrial effluents was compared to that of the parent strain using a bacterial growth test. Using industrial effluents, one of the mutants, namely strain 56 was found to be more sensitive than the parent strain on 71.4% of the tests. Strains 60 and 61 were also both more sensitive than the parent strain on 42.9% of the occasions using industrial effluents. The uptake rates of radioactive mercury were measured for the parent strain of P. putida and the mutants that were found to be more sensitive to mercury

  15. Mutant Prevention Concentrations of Four Carbapenems against Gram-Negative Rods▿ †

    Science.gov (United States)

    Credito, Kim; Kosowska-Shick, Klaudia; Appelbaum, Peter C.

    2010-01-01

    We tested the propensities of four carbapenems to select for resistant Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii mutants by determining the mutant prevention concentrations (MPCs) for 100 clinical strains with various ß-lactam phenotypes. Among the members of the Enterobacteriaceae family and A. baumannii strains, the MPC/MIC ratios were mostly 2 to 4. In contrast, for P. aeruginosa the MPC/MIC ratios were 4 to ≥16. The MPC/MIC ratios for β-lactamase-positive K. pneumoniae and E. coli isolates were much higher (range, 4 to >16 μg/ml) than those for ß-lactamase-negative strains. PMID:20308376

  16. Generation and characterization of pigment mutants of ...

    African Journals Online (AJOL)

    acer

    2014-01-08

    Jan 8, 2014 ... aquatic ecosystems were studied. In the present ... logy and photosynthesis research (Stolbov, 1995;. Pedersen ... Microalgal strain and cultivation conditions ..... evaluated for their ecotoxicological effects using 124y-1 mutant.

  17. Male-like sexual behavior of female mouse lacking fucose mutarotase

    Directory of Open Access Journals (Sweden)

    Lim Dae-sik

    2010-07-01

    Full Text Available Abstract Background Mutarotases are recently characterized family of enzymes that are involved in the anomeric conversions of monosaccharides. The mammalian fucose mutarotase (FucM was reported in cultured cells to facilitate fucose utilization and incorporation into protein by glycosylation. However, the role of this enzyme in animal has not been elucidated. Results We generated a mutant mouse specifically lacking the fucose mutarotase (FucM gene. The FucM knockout mice displayed an abnormal sexual receptivity with a drastic reduction in lordosis score, although the animals were fertile due to a rare and forced intromission by a typical male. We examined the anteroventral periventricular nucleus (AVPv of the preoptic region in brain and found that the mutant females showed a reduction in tyrosine hydoxylase positive neurons compared to that of a normal female. Furthermore, the mutant females exhibited a masculine behavior, such as mounting to a normal female partner as well as showing a preference to female urine. We found a reduction of fucosylated serum alpha-fetoprotein (AFP in a mutant embryo relative to that of a wild-type embryo. Conclusions The observation that FucM-/- female mouse exhibits a phenotypic similarity to a wild-type male in terms of its sexual behavior appears to be due to the neurodevelopmental changes in preoptic area of mutant brain resembling a wild-type male. Since the previous studies indicate that AFP plays a role in titrating estradiol that are required to consolidate sexual preference of female mice, we speculate that the reduced level of AFP in FucM-/- mouse, presumably resulting from the reduced fucosylation, is responsible for the male-like sexual behavior observed in the FucM knock-out mouse.

  18. The effects of modeled microgravity on growth kinetics, antibiotic susceptibility, cold growth, and the virulence potential of a Yersinia pestis ymoA-deficient mutant and its isogenic parental strain.

    Science.gov (United States)

    Lawal, Abidat; Kirtley, Michelle L; van Lier, Christina J; Erova, Tatiana E; Kozlova, Elena V; Sha, Jian; Chopra, Ashok K; Rosenzweig, Jason A

    2013-09-01

    Previously, we reported that there was no enhancement in the virulence potential (as measured by cell culture infections) of the bacterial pathogen Yersinia pestis (YP) following modeled microgravity/clinorotation growth. We have now further characterized the effects of clinorotation (CR) on YP growth kinetics, antibiotic sensitivity, cold growth, and YP's virulence potential in a murine model of infection. Surprisingly, none of the aforementioned phenotypes were altered. To better understand why CR did not enhance YP's virulence potential as it did for other bacterial pathogens, a YP ΔymoA isogenic mutant in the KIM/D27 background strain that is unable to produce the histone-like YmoA protein and influences DNA topography was used in both cell culture and murine models of infection. YmoA represses type three secretion system (T3SS) virulence gene expression in the yersiniae. Similar to our CR-grown parental YP strain data, the CR-grown ΔymoA mutant induced reduced HeLa cell cytotoxicity with concomitantly decreased Yersinia outer protein E (YopE) and low calcium response V (LcrV) antigen production and secretion. Important, however, were our findings that, although no significant differences were observed in survival of mice infected intraperitoneally with either normal gravity (NG)- or CR-grown parental YP, the ΔymoA mutant induced significantly more mortality in infected mice than did the parental strain following CR growth. Taken together, our data demonstrate that CR did enhance the virulence potential of the YP ΔymoA mutant in a murine infection model (relative to the CR-grown parental strain), despite inducing less HeLa cell rounding in our cell culture infection assay due to reduced T3SS activity. Therefore, CR, which induces a unique type of bacterial stress, might be enhancing YP's virulence potential in vivo through a T3SS-independent mechanism when the histone-like YmoA protein is absent.

  19. Metabolism of the chemo antibiotic combination sulphamethoxazol and trimethoprim by some radioresistant strains

    International Nuclear Information System (INIS)

    Zahiera, T.S.

    1990-01-01

    The radioresistant mutants B. Firmus, B. Laterosporus, B. Megaterium, M. Roseus and M. Luteus were tested microbiologically for their sensitivity to a drug consisting of the chemo antibiotic combination of sulphamethoxazole (SMZ) and trimethoprim (TMP) in a ratio of 20:1. All the studied mutant strains were found to be insensitive to this combination of antibiotics except the radioresistant mutant strain of M.roseus. The mechanism of the inactivation of both SMZ and TMP by the radioresistant mutants of B. Laterosporus, B. Firmus, and M.Luteus was studied. The drug was incubated with each of these mutants for different periods of time to study its degradation. High performance liquid chromatography and microbiological assay techniques were used to determine the activity and the pathway of the consumption of the drug after its incubation with these three mutants for time. The results indicated that the drug acts in a synergistic effect on all the studied mutants. Only a part of both molecules of SMZ and TMP was utilized by the studied mutant strains. The ratio of the left over of SMZ/TMP were found to be 6,6 and 8 after seven days incubation periods and 12, 7.5 and 19 after two weeks incubation periods with B. Laterosporus, B. Firmus, and M. Luteus mutants respectively. The microbial activity of the extracted drug for bacilli strains isolated from clean environment had not changed significantly due to incubation with the mutants, but it was decreased for M. Luteus strain. The drug inactivation by the studied mutant strains seemed to be due to decreased affinities to SMZ and TMP, and to formation of an altered 7,8 dihydropteroate synthetase and dihydrofolate reductase

  20. Reduction of FR900525 using an S-(2-aminoethyl) l-cysteine-resistant mutant.

    Science.gov (United States)

    Shimizu, Shiho; Futase, Ayako; Yokoyama, Tatsuya; Ueda, Satoshi; Honda, Hiroyuki

    2017-06-01

    FK506 (tacrolimus), a macrolide compound with immunosuppressant activity, has been proven to have clinical importance and has been manufactured industrially since 1993 by using mutants with high FK506-production ability; these mutants have been developed from the wild strain Streptomyces tsukubaensis No. 9993. FR900525 is one of the by-products of FK506 production. However, there was no effective industrial method to separate FR900525 from FK506 due to the structural similarity between the two compounds. Therefore, reducing the level of FR900525 was a serious problem in the industrial strain A. In this study, we aimed to reduce the FR900525 production. We first determined that pipecolic acid level was a critical parameter for controlling FR900525 production in strain A. S-(2-Aminoethyl) l-cysteine (AEC)-resistant mutants has been reported to increase lysine productivity successfully in a variety of lysine-producing microorganisms. Therefore, next, we applied a selection of AEC-resistant mutants to enhance pipecolic acid biosynthesis. Finally, four AEC-resistant mutants were obtained from strain A using ultraviolet irradiation, and three of them showed less FR900525 productivity compared to the parental strain A. Our findings indicated that AEC resistance was effective phenotype marker for increasing pipecolic acid productivity and for reducing FR900525 production in S. tsukubaensis. Thus, our study provides an efficient method for reducing FR90025 level during FK506 biosynthesis. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Mutagenesis of Xanthomonas campestris and selection of strains with enhanced Xanthan production

    International Nuclear Information System (INIS)

    Kamal, F.; Mehrgan, H.; Mazaheri, M.; Mortazavi, A. R.

    2003-01-01

    Xanthan gum is microbial polysaccharide of great commercial importance as it has been unusual rheological properties in solution and consequent range of applications. In this study, a series of mutants were isolated from Xanthomonas PTSS 1473 by ethyl methanesulfonate mutagenesis. The polysaccharide yield of one mutant, XC1473E 2 , was 30% better than that of the parent strain. It also showed higher xanthan formation of glucose consumption rates compared to the parent strain. xanthan produced by the mutant and enhanced viscosity, higher pseudo plasticity and larger molecular weight. Since mutant XC1473E 2 appeared white on agar plates, it underwent pigment extraction with methanol. Contrary to the parent strain, the mutant showed no absorption at 443 nm, i.e. the wavelength related to yellow pigment. This finding suggested that yellow pigmentation and normal xanthan biosynthesis are not necessarily concurrent. In general, mutant ZC1473e 2 seems to be a strain with interesting characteristics for use in commercial production of Xanthan

  2. Transmission Properties of Human PrP 102L Prions Challenge the Relevance of Mouse Models of GSS.

    Science.gov (United States)

    Asante, Emmanuel A; Grimshaw, Andrew; Smidak, Michelle; Jakubcova, Tatiana; Tomlinson, Andrew; Jeelani, Asif; Hamdan, Shyma; Powell, Caroline; Joiner, Susan; Linehan, Jacqueline M; Brandner, Sebastian; Wadsworth, Jonathan D F; Collinge, John

    2015-07-01

    Inherited prion disease (IPD) is caused by autosomal-dominant pathogenic mutations in the human prion protein (PrP) gene (PRNP). A proline to leucine substitution at PrP residue 102 (P102L) is classically associated with Gerstmann-Sträussler-Scheinker (GSS) disease but shows marked clinical and neuropathological variability within kindreds that may be caused by variable propagation of distinct prion strains generated from either PrP 102L or wild type PrP. To-date the transmission properties of prions propagated in P102L patients remain ill-defined. Multiple mouse models of GSS have focused on mutating the corresponding residue of murine PrP (P101L), however murine PrP 101L, a novel PrP primary structure, may not have the repertoire of pathogenic prion conformations necessary to accurately model the human disease. Here we describe the transmission properties of prions generated in human PrP 102L expressing transgenic mice that were generated after primary challenge with ex vivo human GSS P102L or classical CJD prions. We show that distinct strains of prions were generated in these mice dependent upon source of the inoculum (either GSS P102L or CJD brain) and have designated these GSS-102L and CJD-102L prions, respectively. GSS-102L prions have transmission properties distinct from all prion strains seen in sporadic and acquired human prion disease. Significantly, GSS-102L prions appear incapable of transmitting disease to conventional mice expressing wild type mouse PrP, which contrasts strikingly with the reported transmission properties of prions generated in GSS P102L-challenged mice expressing mouse PrP 101L. We conclude that future transgenic modeling of IPDs should focus exclusively on expression of mutant human PrP, as other approaches may generate novel experimental prion strains that are unrelated to human disease.

  3. Comparative pathogenicity of Coxsackievirus A16 circulating and noncirculating strains in vitro and in a neonatal mouse model

    International Nuclear Information System (INIS)

    Huang, L.; Liu, X.; Li, J.L.; Chang, J.L.; Liu, G.C.; Yu, X.F.; Zhang, W.Y.

    2015-01-01

    An enterovirus 71 (EV71) vaccine for the prevention of hand, foot, and mouth disease (HMFD) is available, but it is not known whether the EV71 vaccine cross-protects against Coxsackievirus (CV) infection. Furthermore, although an inactivated circulating CVA16 Changchun 024 (CC024) strain vaccine candidate is effective in newborn mice, the CC024 strain causes severe lesions in muscle and lung tissues. Therefore, an effective CV vaccine with improved pathogenic safety is needed. The aim of this study was to evaluate the in vivo safety and in vitro replication capability of a noncirculating CVA16 SHZH05 strain. The replication capacity of circulating CVA16 strains CC024, CC045, CC090 and CC163 and the noncirculating SHZH05 strain was evaluated by cytopathic effect in different cell lines. The replication capacity and pathogenicity of the CC024 and SHZH05 strains were also evaluated in a neonatal mouse model. Histopathological and viral load analyses demonstrated that the SHZH05 strain had an in vitro replication capacity comparable to the four CC strains. The CC024, but not the SHZH05 strain, became distributed in a variety of tissues and caused severe lesions and mortality in neonatal mice. The differences in replication capacity and in vivo pathogenicity of the CC024 and SHZH05 strains may result from differences in the nucleotide and amino acid sequences of viral functional polyproteins P1, P2 and P3. Our findings suggest that the noncirculating SHZH05 strain may be a safer CV vaccine candidate than the CC024 strain

  4. Comparative pathogenicity of Coxsackievirus A16 circulating and noncirculating strains in vitro and in a neonatal mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Huang, L. [Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun (China); The 208th Hospital of PLA, Changchun (China); Liu, X.; Li, J.L.; Chang, J.L.; Liu, G.C. [Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun (China); Yu, X.F. [Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun (China); Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States); Zhang, W.Y. [Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun (China)

    2015-03-27

    An enterovirus 71 (EV71) vaccine for the prevention of hand, foot, and mouth disease (HMFD) is available, but it is not known whether the EV71 vaccine cross-protects against Coxsackievirus (CV) infection. Furthermore, although an inactivated circulating CVA16 Changchun 024 (CC024) strain vaccine candidate is effective in newborn mice, the CC024 strain causes severe lesions in muscle and lung tissues. Therefore, an effective CV vaccine with improved pathogenic safety is needed. The aim of this study was to evaluate the in vivo safety and in vitro replication capability of a noncirculating CVA16 SHZH05 strain. The replication capacity of circulating CVA16 strains CC024, CC045, CC090 and CC163 and the noncirculating SHZH05 strain was evaluated by cytopathic effect in different cell lines. The replication capacity and pathogenicity of the CC024 and SHZH05 strains were also evaluated in a neonatal mouse model. Histopathological and viral load analyses demonstrated that the SHZH05 strain had an in vitro replication capacity comparable to the four CC strains. The CC024, but not the SHZH05 strain, became distributed in a variety of tissues and caused severe lesions and mortality in neonatal mice. The differences in replication capacity and in vivo pathogenicity of the CC024 and SHZH05 strains may result from differences in the nucleotide and amino acid sequences of viral functional polyproteins P1, P2 and P3. Our findings suggest that the noncirculating SHZH05 strain may be a safer CV vaccine candidate than the CC024 strain.

  5. Bacillus subtilis mutants deficient in the adaptive response to simple alkylating agents

    Energy Technology Data Exchange (ETDEWEB)

    Morohoshi, F.; Munakata, N.

    1985-03-01

    Three mutant strains exhibiting hyper-sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine, but not to methyl methanesulfonate, were selected by a replica method from mutagenized spores of Bacillus subtilis. All three were totally deficient in the adaptive response to N-methyl-N'-nitro-N-nitrosoguanidine with regard to both lethality and mutagenesis. The activity to destroy O/sup 6/-methylguanine residues in the methylated DNA was not elevated in the mutant cells by the pretreatment with sublethal concentrations of N-methyl-N-nitro-N-nitrosoguanidine. This deficiency corresponded to the persistance of O/sup 6/-methylguanine residues in the DNA of both control and pretreated mutant cells challenged with the drug. The lethal and mutagenic sensitivity of the mutant strains were observed only for methyl- or ethyl-nitroso compounds that are thought to be active as inducers and are also active in O-alkylation. Except for the insensitivity to methyl methanesulfonate, the phenotypes of these mutants look very similar to those of ada mutants isolated previously in Escherichia coli.

  6. Mutation induction of pleurotus ferulae by low-energy N+ ion implantation and characters of the selected mutant

    International Nuclear Information System (INIS)

    Chen Henglei; Wan Honggui; Zhang Jun; Zeng Xianxian

    2008-01-01

    In order to obtain Pleurotus ferulae with high temperature tolerance, mycelium mono-cells of wild type strain ACK was treated by nitrogen ion (5-30 keV, 1.5x10 15 -1.5x10 16 cm -2 ) implantation, and mutant CGMCC1762 was selected through auxotrophy screening method, which was Lys, VB6 auxotrophy stress with high temperature. We found that during riper period the surface layer mycelium of the mutant was not aging neither grew tegument even above 30 degree C. The mycelium endurable temperature of the mutant was increased 7 degree C compared with that of the wild type strain. The fruiting bodies growth temperature of the mutant was 16-20 degree C in daytime and was 6-12 degree C at night. The highest growth temperature of fruiting bodies of the mutant was increased by 5 degree C than that of original strain. Through three generation investigation, we found that the mutant CGMCC1762 was stable with high temperature tolerance. (authors)

  7. Saccharomyces cerevisiae mutants with enhanced induced mutation and altered mitotic gene conversion.

    Science.gov (United States)

    Ivanov, E L; Kovaltzova, S V; Korolev, V G

    1989-08-01

    We have developed a method to isolate yeast (Saccharomyces cerevisiae) mutants with enhanced induced mutagenesis based on nitrous acid-induced reversion of the ade2-42 allele. Six mutants have been isolated and designated him (high induced mutagenesis), and 4 of them were studied in more detail. The him mutants displayed enhanced reversion of the ade2-42 allele, either spontaneous or induced by nitrous acid, UV light, and the base analog 6-N-hydroxylaminopurine, but not by gamma-irradiation. It is worth noting that the him mutants turned out not to be sensitive to the lethal effects of the mutagens used. The enhancement in mutation induced by nitrous acid, UV light, and 6-N-hydroxylaminopurine has been confirmed in a forward-mutation assay (induction of mutations in the ADE1, ADE2 genes). The latter agent revealed the most apparent differences between the him mutants and the wild-type strain and was, therefore, chosen for the genetic analysis of mutants, him mutations analyzed behaved as a single Mendelian trait; complementation tests indicated 3 complementation groups (HIM1, HIM2, and HIM3), each containing 1 mutant allele. Uracil-DNA glycosylase activity was determined in crude cell extracts, and no significant differences between the wild-type and him strains were detected. Spontaneous mitotic gene conversion at the ADE2 locus is altered in him1 strains, either increased or decreased, depending on the particular heteroallelic combination. Genetic evidence strongly suggests him mutations to be involved in a process of mismatch correction of molecular heteroduplexes.

  8. Isolation and Characterization of a Catabolite Repression-Insensitive Mutant of a Methanol Yeast, Candida boidinii A5, Producing Alcohol Oxidase in Glucose-Containing Medium

    OpenAIRE

    Sakai, Yasuyoshi; Sawai, Tohru; Tani, Yoshiki

    1987-01-01

    Mutants exhibiting alcohol oxidase (EC 1.1.3.13) activity when grown on glucose in the presence of methanol were found among 2-deoxyglucose-resistant mutants derived from a methanol yeast, Candida boidinii A5. One of these mutants, strain ADU-15, showed the highest alcohol oxidase activity in glucose-containing medium. The growth characteristics and also the induction and degradation of alcohol oxidase were compared with the parent strain and mutant strain ADU-15. In the parent strain, initia...

  9. Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Eliette Riboulet-Bisson

    Full Text Available Lactobacilli are gram-positive bacteria that are a subdominant element in the human gastrointestinal microbiota, and which are commonly used in the food industry. Some lactobacilli are considered probiotic, and have been associated with health benefits. However, there is very little culture-independent information on how consumed probiotic microorganisms might affect the entire intestinal microbiota. We therefore studied the impact of the administration of Lactobacillus salivarius UCC118, a microorganism well characterized for its probiotic properties, on the composition of the intestinal microbiota in two model animals. UCC118 has anti-infective activity due to production of the bacteriocin Abp118, a broad-spectrum class IIb bacteriocin, which we hypothesized could impact the microbiota. Mice and pigs were administered wild-type (WT L. salivarius UCC118 cells, or a mutant lacking bacteriocin production. The microbiota composition was determined by pyrosequencing of 16S rRNA gene amplicons from faeces. The data show that L. salivarius UCC118 administration had no significant effect on proportions of major phyla comprising the mouse microbiota, whether the strain was producing bacteriocin or not. However, L. salivarius UCC118 WT administration led to a significant decrease in Spirochaetes levels, the third major phylum in the untreated pig microbiota. In both pigs and mice, L. salivarius UCC118 administration had an effect on Firmicutes genus members. This effect was not observed when the mutant strain was administered, and was thus associated with bacteriocin production. Surprisingly, in both models, L. salivarius UCC118 administration and production of Abp118 had an effect on gram-negative microorganisms, even though Abp118 is normally not active in vitro against this group of microorganisms. Thus L. salivarius UCC118 administration has a significant but subtle impact on mouse and pig microbiota, by a mechanism that seems at least partially

  10. Fibre qualities of bolls developed under different day and night temperatures in various Pakistani cotton varieties and mutant strains

    International Nuclear Information System (INIS)

    Bandesha, A.A.; Aslam, M.; Ishaque, W.; Haq, M.A.

    2004-01-01

    Four commercial cotton varieties NIAB-78, B-557, SLH-41, MNH-93 and four advanced mutants strains N-82, L-21, L-25 and M-626 were used to study the effect of temperature on fibre quality during boll developing stage. The results showed that varieties differed significantly in all fibre quality parameters. There was significant increase in fibre length under medium temperature range while significant increase in fibre strength and highly significant increase in Micronaire values and maturity index under high temperature conditions. The medium temperature range (24.5 to 30.6 C) seemed to be ideal for cotton fibre development. (author)

  11. Stress-tolerant mutants induced by heavy-ion beams

    International Nuclear Information System (INIS)

    Abe, Tomoko; Yoshida, Shigeo; Bae, Chang-Hyu; Ozaki, Takuo

    2000-01-01

    Comparative study was made on mutagenesis in tobacco embryo induced by exposure to EMS (ethyl methane-sulfonate) ion beams during the fertilization cycle. Tobacco embryo cells immediately after pollination were exposed to heavy ion beam and the sensitivity to the irradiation was assessed in each developmental stage and compared with the effects of EMS, a chemical mutagen. Morphologically abnormality such as chlorophyll deficiency was used as a marker. A total of 17 salt-tolerant plants were selected from 3447 M 1 seeds. A cell line showed salt resistance. The cell growth and chlorophyll content were each two times higher than that of WT cells in the medium containing 154 mM NaCl. Seven strains of M 3 progeny of 17 salt-tolerant plants, showed strong resistance, but no salt tolerant progeny were obtained from Xanthi or Ne-ion irradiation. This shows that the sensitivity of plant embryo to this irradiation technique may vary among species. When exposed to 14 N ion beam for 24-108 hours after pollination, various morphological mutants appeared at 18% in M 1 progeny and herbicide tolerant and salt tolerant mutants were obtained. A strong Co-tolerant strain was obtained in two of 17 salt-tolerant strains and a total of 46 tolerant strains (0.2%) were obtained from 22,272 grains of M 1 seeds. In these tolerant strains, the absorption of Co was slightly decreased, but those of Mg and Mn were increased. Mutants induced with ion-beam irradiation have potential not only for practical use in the breeding of stress-tolerant plants but also for gene analysis that will surely facilitate the molecular understanding of the tolerance mechanisms. (M.N.)

  12. 2-deoxyglucose as a selective agent for derepressed mutants of Pichia stipitis

    Science.gov (United States)

    Hassan K. Sreenath; Thomas W. Jeffries

    1998-01-01

    The glucose analog 2-deoxyglucose (2-DOG) has been used to obtain mutants derepressed for pentose metabolism. Some researchers have used 2-DOG alone whereas others have used it in the presence of a glucoserepressible carbon source. We examined both methods and screened mutant strains for improved use of xylose in the presence of glucose. Pichia stipitis mutants...

  13. Prevention of GABA reduction during dough fermentation using a baker's yeast dal81 mutant.

    Science.gov (United States)

    Ando, Akira; Nakamura, Toshihide

    2016-10-01

    γ-Aminobutyric acid (GABA) is consumed by yeasts during fermentation. To prevent GABA reduction in bread dough, a baker's yeast mutant AY77 deficient in GABA assimilation was characterized and utilized for wheat dough fermentation. An amber mutation in the DAL81 gene, which codes for a positive regulator of multiple nitrogen degradation pathways, was found in the AY77 strain. The qPCR analyses of genes involved in nitrogen utilization showed that transcriptional levels of the UGA1 and DUR3 genes encoding GABA transaminase and urea transporter, respectively, are severely decreased in the AY77 cells. The AY77 strain cultivated by fed-batch culture using cane molasses exhibited inferior gas production during dough fermentation compared to that of wild-type strain AY13. However, when fed with molasses containing 0.5% ammonium sulfate, the mutant strain exhibited gas production comparable to that of the AY13 strain. In contrast to the AY13 strain, which completely consumed GABA in dough within 5 h, the AY77 strain consumed no GABA under either culture condition. Dough fermentation with the dal81 mutant strain should be useful for suppression of GABA reduction in breads. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Analysis on the DNA Fingerprinting of Aspergillus Oryzae Mutant Induced by High Hydrostatic Pressure

    International Nuclear Information System (INIS)

    Wang Hua; Zhang Jian; Wang Kai; Liu Bing-Bing; Zou Bo; Zou Guang-Tian; Yang Fan; Shen Si-Le

    2011-01-01

    The mutant strains of aspergillus oryzae (HP300a) are screened under 300 MPa for 20 min. Compared with the control strains, the screened mutant strains have unique properties such as genetic stability, rapid growth, lots of spores, and high protease activity. Random amplified polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR) are used to analyze the DNA fingerprinting of HP300a and the control strains. There are 67.9% and 51.3% polymorphic bands obtained by these two markers, respectively, indicating significant genetic variations between HP300a and the control strains. In addition, comparison of HP300a and the control strains, the genetic distances of random sequence and simple sequence repeat of DNA are 0.51 and 0.34, respectively. (general)

  15. Analysis on the DNA Fingerprinting of Aspergillus Oryzae Mutant Induced by High Hydrostatic Pressure

    Science.gov (United States)

    Wang, Hua; Zhang, Jian; Yang, Fan; Wang, Kai; Shen, Si-Le; Liu, Bing-Bing; Zou, Bo; Zou, Guang-Tian

    2011-01-01

    The mutant strains of aspergillus oryzae (HP300a) are screened under 300 MPa for 20 min. Compared with the control strains, the screened mutant strains have unique properties such as genetic stability, rapid growth, lots of spores, and high protease activity. Random amplified polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR) are used to analyze the DNA fingerprinting of HP300a and the control strains. There are 67.9% and 51.3% polymorphic bands obtained by these two markers, respectively, indicating significant genetic variations between HP300a and the control strains. In addition, comparison of HP300a and the control strains, the genetic distances of random sequence and simple sequence repeat of DNA are 0.51 and 0.34, respectively.

  16. Characterization of three Agrobacterium tumefaciens avirulent mutants with chromosomal mutations that affect induction of vir genes.

    Science.gov (United States)

    Metts, J; West, J; Doares, S H; Matthysse, A G

    1991-02-01

    Three Agrobacterium tumefaciens mutants with chromosomal mutations that affect bacterial virulence were isolated by transposon mutagenesis. Two of the mutants were avirulent on all hosts tested. The third mutant, Ivr-211, was a host range mutant which was avirulent on Bryophyllum diagremontiana, Nicotiana tabacum, N. debneyi, N. glauca, and Daucus carota but was virulent on Zinnia elegans and Lycopersicon esculentum (tomato). That the mutant phenotype was due to the transposon insertion was determined by cloning the DNA containing the transposon insertion and using the cloned DNA to replace the wild-type DNA in the parent bacterial strain by marker exchange. The transposon insertions in the three mutants mapped at three widely separated locations on the bacterial chromosome. The effects of the mutations on various steps in tumor formation were examined. All three mutants showed no alteration in binding to carrot cells. However, none of the mutants showed any induction of vir genes by acetosyringone under conditions in which the parent strain showed vir gene induction. When the mutant bacteria were examined for changes in surface components, it was found that all three of the mutants showed a similar alteration in lipopolysaccharide (LPS). LPS from the mutants was larger in size and more heavily saccharide substituted than LPS from the parent strain. Two of the mutants showed no detectable alteration in outer membrane and periplasmic space proteins. The third mutant, Ivr-225, was missing a 79-kDa surface peptide. The reason(s) for the failure of vir gene induction in these mutants and its relationship, if any, to the observed alteration in LPS are unknown.

  17. Vitamin K epoxide reductase complex subunit 1 (Vkorc1 haplotype diversity in mouse priority strains

    Directory of Open Access Journals (Sweden)

    Kohn Michael H

    2008-12-01

    Full Text Available Abstract Background Polymorphisms in the vitamin K-epoxide reductase complex subunit 1 gene, Vkorc1, could affect blood coagulation and other vitamin K-dependent proteins, such as osteocalcin (bone Gla protein, BGP. Here we sequenced the Vkorc1 gene in 40 mouse priority strains. We analyzed Vkorc1 haplotypes with respect to prothrombin time (PT and bone mineral density and composition (BMD and BMC; phenotypes expected to be vitamin K-dependent and represented by data in the Mouse Phenome Database (MPD. Findings In the commonly used laboratory strains of Mus musculus domesticus we identified only four haplotypes differing in the intron or 5' region sequence of the Vkorc1. Six haplotypes differing by coding and non-coding polymorphisms were identified in the other subspecies of Mus. We detected no significant association of Vkorc1 haplotypes with PT, BMD and BMC within each subspecies of Mus. Vkorc1 haplotype sequences divergence between subspecies was associated with PT, BMD and BMC. Conclusion Phenotypic variation in PT, BMD and BMC within subspecies of Mus, while substantial, appears to be dominated by genetic variation in genes other than the Vkorc1. This was particularly evident for M. m. domesticus, where a single haplotype was observed in conjunction with virtually the entire range of PT, BMD and BMC values of all 5 subspecies of Mus included in this study. Differences in these phenotypes between subspecies also should not be attributed to Vkorc1 variants, but should be viewed as a result of genome wide genetic divergence.

  18. Subunit-specific phenotypes of Salmonella typhimurium HU mutants.

    OpenAIRE

    Hillyard, D R; Edlund, M; Hughes, K T; Marsh, M; Higgins, N P

    1990-01-01

    Salmonella hupA and hupB mutants were studied to determine the reasons for the high degree of conservation in HU structure in bacteria. We found one HU-1-specific effect; the F'128 plasmid was 25-fold less stable in hupB compared with hupA or wild-type cells. F' plasmids were 120-fold more unstable in hupA hupB double mutants compared with wild-type cells, and the double mutant also had a significant alteration in plasmid DNA structure. pBR322 DNA isolated from hupA hupB strains was deficient...

  19. Isolation and partial characterization of carotenoid underproducing and overproducing mutants from an extremely thermophilic Thermus thermophilus HB27

    International Nuclear Information System (INIS)

    Hoshino, T.; Yoshino, Y.; Guevarra, E.D.; Ishida, S.; Hiruta, T.; Fujii, R.; Nakahara, T.

    1994-01-01

    Twenty-two carotenoid underproducing and thirteen overproducing mutants were obtained from Thermus thermophilus HB27. The strain HB27 was found to produce at least seven colored carotenoids, believed to be identical to those produced by Thermus aquaticus YT1. Based on the results of the genetic analyses performed on twelve carotenoid underproducing mutants, they were classified into three groups; groups 1, 2 and 3. No colored carotenoid was extracted from the cells of mutants belonging to groups 2 and 3, although the accumulation of phytoene, a colorless carotenoid, was observed in group 2 strains. Group 1 was subdivided into groups 1-a and 1-b, where 1-a stains produced neither colored carotenoids nor phytoene and 1-b strains produced two polar colored carotenoids. All of the overproducing mutants produced about twelve times as much seven colored carotenoid mixtures as the parental strain. The mutation loci among all the overproducing mutants were very close to one another, possibly in the same gene. Carotenoid overproducing mutants showed an extensive resistance to UV-irradiation and showed poorer growth at higher temperatures. Carotenoid underproducing mutants were slightly more UV-sensitive but they grew almost normally at higher temperatures. These results suggest that carotenoids are secondary metabolites which are not essential for growth of T. thermophilus

  20. Microbial production of squalene by a nicotinic acid-resistant mutant derived from Fusarium sp. No.5-128B

    International Nuclear Information System (INIS)

    Ogawa, T.; Kojima, I.; Takeda, N.; Fukuda, H.

    1994-01-01

    A nicotinic acid-resistant mutant, designated NA201, was obtained from Fusarium sp. no.5-128B by treatment with ultraviolet light. This mutant strain could grow in the presence of up to 500mM nicotinic acid in the culture medium, although the parent strain could not grow at concentrations of nicotinic acid above 200 mM. The Na201 strain exhibited morphological mutations, neither forming aerial hyphae nor secreting a red-brown pigment. However, it retained the resistance to kabicidin at 25 mg-l(-1) of the parent strain. The mutant NA201 cells contained high levels of squalene and low levels of ergosterol, about 53 times higher and five to six times lower, respectively, than those of the parent strain under standard culture conditions. The volumetric oxygen transfer coefficient (Kd) affected the level of squalene in the mutant cells. The Kd for the maximum production of squalene by the mutant was 24 mmol O2 l(-1)h(-1)atm(-1) and the level of squalene in the mutant cells was 26 mg (g cell)(-1) on a dry weight basis. The greatest accumulation of squalene by the Na201 strain, corresponding to 323 mg per liter of culture medium and 35 mg (g cell)(-1) on a dry weight basis, was achieved in a culture in which the Kd was changed from a high to a low value on the third day, with the simultaneous addition of 3% glucose (w/v)

  1. Isolation of glutathione-deficient mutants of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kistler, M.; Eckardt, F.; Summer, K.-H.

    1986-01-01

    Glutathione-deficient (gsh - ) mutants of the yeast Saccharomyces cerevisiae were isolated after UV treatment using MNNG as selective agent. For genetic and biochemical characterization 5 mutant strains were chosen which exhibited considerably decreased residual GSH contents varying from 2 to 6% of the wild-type levels. All 5 isolates showed a 2:2 segregation of the gsh - :GSH + phenotypes alluding to a monogenic recessive mutation. Complementation analysis indicates that all gsh - mutants belong to one complementation group. (Auth.)

  2. Study on breeding of daptomycin-producing strains by nitrogen ion implantation

    International Nuclear Information System (INIS)

    Zhou Jian; Liu Ying; Fang Dongsheng; Jiang Hong; Zhang Yin; Gao Wuyan

    2008-01-01

    Streptomyces roseosporus C20, the bacteria used in production of daptomycin, were implanted with (15-200)x10 13 /cm 2 of 20keV N + ions. Survival rate of the bacteria at different absorbed doses was investigated, and mutagenic effects of the microbe were studied. After breeding under the selection pressure of resistance to streptomycin (the lethal concentration is 1.2μg/mL), several mutant strains with higher yields of daptomycin have been obtained. One of mutant strains, N3-36, can increase up to 126% compared to the original strain. It also shows that the mutant strains have high genetic stability. (authors)

  3. Comparative Study of the Mutant Prevention Concentrations of Moxifloxacin, Levofloxacin, and Gemifloxacin against Pneumococci▿ †

    Science.gov (United States)

    Credito, Kim; Kosowska-Shick, Klaudia; McGhee, Pamela; Pankuch, Glenn A.; Appelbaum, Peter C.

    2010-01-01

    We tested the propensity of three quinolones to select for resistant Streptococcus pneumoniae mutants by determining the mutant prevention concentration (MPC) against 100 clinical strains, some of which harbored mutations in type II topoisomerases. Compared with levofloxacin and gemifloxacin, moxifloxacin had the lowest number of strains with MPCs above the susceptibility breakpoint (P < 0.001), thus representing a lower selective pressure for proliferation of resistant mutants. Only moxifloxacin gave a 50% MPC (MPC50) value (1 μg/ml) within the susceptible range. PMID:20008781

  4. Distinct Rayleigh scattering from hot spot mutant p53 proteins reveals cancer cells.

    Science.gov (United States)

    Jun, Ho Joon; Nguyen, Anh H; Kim, Yeul Hong; Park, Kyong Hwa; Kim, Doyoun; Kim, Kyeong Kyu; Sim, Sang Jun

    2014-07-23

    The scattering of light redirects and resonances when an electromagnetic wave interacts with electrons orbits in the hot spot core protein and oscillated electron of the gold nanoparticles (AuNP). This report demonstrates convincingly that resonant Rayleigh scattering generated from hot spot mutant p53 proteins is correspondence to cancer cells. Hot spot mutants have unique local electron density changes that affect specificity of DNA binding affinity compared with wild types. Rayleigh scattering changes introduced by hot-spot mutations were monitored by localized surface plasmon resonance (LSPR) shift changes. The LSPR λmax shift for hot-spot mutants ranged from 1.7 to 4.2 nm for mouse samples and from 0.64 nm to 2.66 nm for human samples, compared to 9.6 nm and 15 nm for wild type and mouse and human proteins, respectively with a detection sensitivity of p53 concentration at 17.9 nM. It is interesting that hot-spot mutants, which affect only interaction with DNA, launches affinitive changes as considerable as wild types. These changes propose that hot-spot mutants p53 proteins can be easily detected by local electron density alterations that disturbs the specificity of DNA binding of p53 core domain on the surface of the DNA probed-nanoplasmonic sensor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Identification and Characterization of Spontaneous Auxotrophic Mutants in Fusarium langsethiae

    Directory of Open Access Journals (Sweden)

    Olga Gavrilova

    2017-03-01

    Full Text Available Analysis of 49 strains of Fusarium langsethiae originating from northern Europe (Russia, Finland, Sweden, UK, Norway, and Latvia revealed the presence of spontaneous auxotrophic mutants that reflect natural intraspecific diversity. Our investigations detected that 49.0% of F. langsethiae strains were auxotrophic mutants for biotin, and 8.2% of the strains required thiamine as a growth factor. They failed to grow on vitamin-free media. For both prototrophic and auxotrophic strains, no growth defect was observed in rich organic media. Without essential vitamins, a significant reduction in the growth of the auxotrophic strains results in a decrease of the formation of T-2 toxin and diacetoxyscirpenol. In addition, all analysed F. langsethiae strains were distinguished into two subgroups based on PCR product sizes. According to our results, 26 and 23 strains of F. langsethiae belong to subgroups I and II respectively. We determined that the deletion in the intergenic spacer (IGS region of the rDNA of F. langsethiae belonging to subgroup II is linked with temperature sensitivity and causes a decrease in strain growth at 30 °C. Four thiamine auxotrophic strains were found in subgroup I, while 21 biotin auxotrophic strains were detected in subgroups II. To the best of our knowledge, the spontaneous mutations in F. langsethiae observed in the present work have not been previously reported.

  6. Genetic studies with morphological mutants of Aspergillus niger

    International Nuclear Information System (INIS)

    Roy, Ponty; Das, Arati

    1979-01-01

    Three classes of coloured mutations, viz., fawn, yellow and green, occurred recurrently among the population following UV- and γ-radiation from Co 60 of a wild Aspergillus niger strain 350. Ten mutants were picked up and complementation tests were performed by growing them in pairwise combinations. In two cases, allelic mutants of the same colour were observed. All these mutants were again grown in pairwise crosses with a brown A. niger mutant of different lineage. A poor heterokaryotic growth was, however, observed in one combination which later produced a diploid heterozygous nucleus. It segregated spontaneously to develop a large variety of colonies ranging from haploidy to diploidy including aneuploids. These have been analysed genetically and the possible explanations have been given. (auth.)

  7. UDP-N-Acetylmuramic Acid l-Alanine Ligase (MurC) Inhibition in a tolC Mutant Escherichia coli Strain Leads to Cell Death

    OpenAIRE

    Humnabadkar, Vaishali; Prabhakar, K. R.; Narayan, Ashwini; Sharma, Sreevalli; Guptha, Supreeth; Manjrekar, Praveena; Chinnapattu, Murugan; Ramachandran, Vasanthi; Hameed, Shahul P.; Ravishankar, Sudha; Chatterji, Monalisa

    2014-01-01

    The Mur ligases play an essential role in the biosynthesis of bacterial peptidoglycan and hence are attractive antibacterial targets. A screen of the AstraZeneca compound library led to the identification of compound A, a pyrazolopyrimidine, as a potent inhibitor of Escherichia coli and Pseudomonas aeruginosa MurC. However, cellular activity against E. coli or P. aeruginosa was not observed. Compound A was active against efflux pump mutants of both strains. Experiments using an E. coli tol...

  8. Isolation and partial characterization of a mutant of Bacillus thuringiensis producing melanin Isolamento e caracterização parcial de um mutante de Bacillus thuringiensis produtor de melanina

    Directory of Open Access Journals (Sweden)

    Gislayne T. Vilas-Bôas

    2005-09-01

    Full Text Available A mutant (407-P of Bacillus thuringiensis subsp. thuringiensis strain 407 producing a melanin was obtained after treatment with the mutagenic agent ethyl-methane-sulfonate. Several microbiological and biochemical properties of the two strains were analyzed and the results were similar. The mutant 407-P was also incorporated into non-sterilized soil samples, recovered, easily identified, and quantified, what enables its use in ecology of B. thuringiensis.Um mutante (407-P da linhagem Bacillus thuringiensis subsp. thuringiensis 407 produtor de melanina foi obtido após tratamento com o agente mutagênico etil-metano-sulfonato. Diversas propriedades microbiológicas e bioquímicas das duas linhagens foram analisadas e os resultados foram similares. O mutante 407-P foi incorporado em amostras de solo não esterilizado, recuperado, facilmente identificado e quantificado, possibilitando seu uso em estudos de ecologia de B. thuringiensis.

  9. Pseudomonas aeruginosa alginate is refractory to Th1 immune response and impedes host immune clearance in a mouse model of acute lung infection

    DEFF Research Database (Denmark)

    Song, Zhijun; Wu, Hong; Ciofu, Oana

    2003-01-01

    . The effect of alginate production on pathogenicity was investigated by using an acute lung infection mouse model that compared a non-mucoid P. aeruginosa strain, PAO1, to its constitutive alginate-overproducing derivative, Alg(+) PAOmucA22, and an alginate-defective strain, Alg(-) PAOalgD. Bacterial......Pseudomonas aeruginosa is an opportunistic respiratory pathogen that accounts for most of the morbidity and mortality in cystic fibrosis (CF) patients. In CF-affected lungs, the bacteria undergo conversion from a non-mucoid to a non-tractable mucoid phenotype, due to overproduction of alginate...... suspensions were instilled into the left bronchus and examined 24 and 48 h post-infection. The highest bacterial loads and the most severe lung pathology were observed with strain Alg(-) PAOalgD at 24 h post-infection, which may have been due to an increase in expression of bacterial elastase by the mutant...

  10. Identification of concomitant infection with Chlamydia trachomatis IncA-negative mutant and wild-type strains by genomic, transcriptional, and biological characterizations.

    Science.gov (United States)

    Suchland, Robert J; Jeffrey, Brendan M; Xia, Minsheng; Bhatia, Ajay; Chu, Hencelyn G; Rockey, Daniel D; Stamm, Walter E

    2008-12-01

    Clinical isolates of Chlamydia trachomatis that lack IncA on their inclusion membrane form nonfusogenic inclusions and have been associated with milder, subclinical infections in patients. The molecular events associated with the generation of IncA-negative strains and their roles in chlamydial sexually transmitted infections are not clear. We explored the biology of the IncA-negative strains by analyzing their genomic structure, transcription, and growth characteristics in vitro and in vivo in comparison with IncA-positive C. trachomatis strains. Three clinical samples were identified that contained a mixture of IncA-positive and -negative same-serovar C. trachomatis populations, and two more such pairs were found in serial isolates from persistently infected individuals. Genomic sequence analysis of individual strains from each of two serovar-matched pairs showed that these pairs were very similar genetically. In contrast, the genome sequence of an unmatched IncA-negative strain contained over 5,000 nucleotide polymorphisms relative to the genome sequence of a serovar-matched but otherwise unlinked strain. Transcriptional analysis, in vitro culture kinetics, and animal modeling demonstrated that IncA-negative strains isolated in the presence of a serovar-matched wild-type strain are phenotypically more similar to the wild-type strain than are IncA-negative strains isolated in the absence of a serovar-matched wild-type strain. These studies support a model suggesting that a change from an IncA-positive strain to the previously described IncA-negative phenotype may involve multiple steps, the first of which involves a translational inactivation of incA, associated with subsequent unidentified steps that lead to the observed decrease in transcript level, differences in growth rate, and differences in mouse infectivity.

  11. Establishment of c-myc-immortalized Kupffer cell line from a C57BL/6 mouse strain

    Directory of Open Access Journals (Sweden)

    Hiroshi Kitani

    2014-01-01

    Full Text Available We recently demonstrated in several mammalian species, a novel procedure to obtain liver-macrophages (Kupffer cells in sufficient numbers and purity using a mixed primary culture of hepatocytes. In this study, we applied this method to the C57BL/6 mouse liver and established an immortalized Kupffer cell line from this mouse strain. The hepatocytes from the C57BL/6 adult mouse liver were isolated by a two-step collagenase perfusion method and cultured in T25 culture flasks. Similar to our previous studies, the mouse hepatocytes progressively changed their morphology into a fibroblastic appearance after a few days of culture. After 7–10 days of culture, Kupffer-like cells, which were contaminants in the hepatocyte fraction at the start of the culture, actively proliferated on the mixed fibroblastic cell sheet. At this stage, a retroviral vector containing the human c-myc oncogene and neomycin resistance gene was introduced into the mixed culture. Gentle shaking of the culture flask, followed by the transfer and brief incubation of the culture supernatant, resulted in a quick and selective adhesion of Kupffer cells to a plastic dish surface. After selection with G418 and cloning by limiting dilutions, a clonal cell line (KUP5 was established. KUP5 cells displayed typical macrophage morphology and were stably passaged at 4–5 days intervals for more than 5 months, with a population doubling time of 19 h. KUP5 cells are immunocytochemically positive for mouse macrophage markers, such as Mac-1, F4/80. KUP5 cells exhibited substantial phagocytosis of polystyrene microbeads and the release of inflammatory cytokines upon lipopolysaccharide stimulation. Taken together, KUP5 cells provide a useful means to study the function of Kupffer cells in vitro.

  12. Characterization of a mutant of Escherichia coli B/R defective in mutation frequency decline

    International Nuclear Information System (INIS)

    George, D.L.

    1974-01-01

    A mutant of Escherichia coli B/r designated mfd is very deficient in the ability to exhibit mutation frequency decline (MFD), the characteristic loss of potential suppressor mutations which occurs when protein synthesis is briefly inhibited after irradiation with ultraviolet light (uv). This mutant is known to excise pyrimidine dimers very slowly, although it is as uv-resistant as its mfd + B/r parent strain. We have found that the mfd mutant performs the initial incision step of excision repair normally, but repairs the resulting single-strand breaks much more slowly than the mfd + strain. In spite of the slow dimer excision in the mfd mutant, single-strand DNA breaks do not accumulate during postirradiation incubation, implying that incision and excision are well corrdinated. the prolonged postirradiation lag in cell division and DNA synthesis which accompany slow excision in the mfd strain indicates that resumption of these processes of optimal rates is linked to the timing of excision repair. The normal uv-resistance of the mfd mutant also suggests such coordination and shows that the rate of excision repair is independent of its ultimate efficiency in the removal of potentially lethal uv-induced damage. (U.S.)

  13. Tbc1d1 mutation in lean mouse strain confers leanness and protects from diet-induced obesity

    DEFF Research Database (Denmark)

    Chadt, Alexandra; Leicht, Katja; Deshmukh, Atul

    2008-01-01

    We previously identified Nob1 as a quantitative trait locus for high-fat diet-induced obesity and diabetes in genome-wide scans of outcross populations of obese and lean mouse strains. Additional crossbreeding experiments indicated that Nob1 represents an obesity suppressor from the lean Swiss Jim...... Lambert (SJL) strain. Here we identify a SJL-specific mutation in the Tbc1d1 gene that results in a truncated protein lacking the TBC Rab-GTPase-activating protein domain. TBC1D1, which has been recently linked to human obesity, is related to the insulin signaling protein AS160 and is predominantly...... and reduced glucose uptake in isolated skeletal muscle. Our data strongly suggest that mutation of Tbc1d1 suppresses high-fat diet-induced obesity by increasing lipid use in skeletal muscle....

  14. Evaluation of 60Co radiation effect in the survival of different mouse strains. Radiomodifiers and celular response

    International Nuclear Information System (INIS)

    Villavicencio, A.L.C.H.

    1988-01-01

    The radiomodifier capacity of proteose-peptone (PP), imidazole derivatives such as azomycin and levamisole against an 8 or 9 Gy single dose of 60 Co irradiation of mice from IPEN animal house was evaluated, being the biological responses compared with other mouse strains. It is concluded that PP, azomycin and PP + azomycin behaved as radioprotectors, while lavamisole appeared as a radiossensitizer. The various strains showed differences in their survival indexes. The changes in body weight curves of mice from all the experiments were followed during 30 days. Qualitative and quantitative analysis 2 hours, 3 and 6 days after irradiation of typical macrophages, mononuclear cells (monocytes and lymphocytes), polimorphonuclear and mast cells from peritonium of test animals showed that radiation interfered in a differential way in the kinetics of peritoneal cells. (author) [pt

  15. The mutagenesis and breeding of high productive strains of streptomyces jingyangensis '5406'

    International Nuclear Information System (INIS)

    Qi Hongyan; Yin Xinyun

    1988-03-01

    The purpose of these experiments is to explore the mutagenesis rhythm and breed high productive strains of actinomycete '5406'. The single colony agar pieces of strain F 358 were treated with fast neutron and 60 Co-γ ray irradiation Two mutants have been selected from 20025 treated single colonies. The output of cytokinins from them is higher than from strain F 358 . The original strain 'Mu-Tan-al' rejuvenated by freezing was treated with several physical and chemical mutagens. The mutagenesis rhythm has been summed up tentatively. Eight mutants obtained from 93014 treated single colonies produced more '5406' antibiotics than that of strain 'Mu-Tan-al,. The effect of mutant 'N2-10-Ra3' was the best

  16. Development mutants of anabaena doliolum defective in repair of UV-damage

    International Nuclear Information System (INIS)

    Tiwari, D.N.; Singh, C.B.

    1980-01-01

    Nitrosoguanidine induced 'blue' pigment mutants of the blue-green alga anabaena doliolum were isolated. The blue-mutants on further characterization were grouped into three developmental phenotypes - (i) those forming doli-form blue-spores of heterogenous size i.e., Ad 011, (ii) those forming spheroidal cells in the stationary phase, some of which behave like spores on transfer to fresh medium i.e., Ad 012, and (iii) those showing no sporulation and conditionally producing abnormal cells in the presence of combined nitrogen only i.e., Ad 007. The former two classes of mutants showed the formation of abnormal cells irrespective of the presence or absence of combined nitrogen sources in the medium. The formation of abnormal cells in the filaments of the above mutants were distinguished by their larger size and irregular mode of division leading to true-branch formation. The comparative characterization of these mutant strains with the parental one showed sluggish growth, increased UV-sensitivity, almost unchanged photorepair capacity, a marked change in the pigment composition and relative resistance to nitrosoguanidine. Irregular cell division in both space and time in the mutant strains and their increased sensitivity to ultraviolet irradiation indicate the possible involvement of dark repair system in maintaining the precision of cell cylce in this alga. (orig.) 891 AJ/orig. 892 HIS

  17. HIF-VEGF pathways are critical for chronic otitis media in Junbo and Jeff mouse mutants.

    Directory of Open Access Journals (Sweden)

    Michael T Cheeseman

    2011-10-01

    Full Text Available Otitis media with effusion (OME is the commonest cause of hearing loss in children, yet the underlying genetic pathways and mechanisms involved are incompletely understood. Ventilation of the middle ear with tympanostomy tubes is the commonest surgical procedure in children and the best treatment for chronic OME, but the mechanism by which they work remains uncertain. As hypoxia is a common feature of inflamed microenvironments, moderation of hypoxia may be a significant contributory mechanism. We have investigated the occurrence of hypoxia and hypoxia-inducible factor (HIF mediated responses in Junbo and Jeff mouse mutant models, which develop spontaneous chronic otitis media. We found that Jeff and Junbo mice labeled in vivo with pimonidazole showed cellular hypoxia in inflammatory cells in the bulla lumen, and in Junbo the middle ear mucosa was also hypoxic. The bulla fluid inflammatory cell numbers were greater and the upregulation of inflammatory gene networks were more pronounced in Junbo than Jeff. Hif-1α gene expression was elevated in bulla fluid inflammatory cells, and there was upregulation of its target genes including Vegfa in Junbo and Jeff. We therefore investigated the effects in Junbo of small-molecule inhibitors of VEGFR signaling (PTK787, SU-11248, and BAY 43-9006 and destabilizing HIF by inhibiting its chaperone HSP90 with 17-DMAG. We found that both classes of inhibitor significantly reduced hearing loss and the occurrence of bulla fluid and that VEGFR inhibitors moderated angiogenesis and lymphangiogenesis in the inflamed middle ear mucosa. The effectiveness of HSP90 and VEGFR signaling inhibitors in suppressing OM in the Junbo model implicates HIF-mediated VEGF as playing a pivotal role in OM pathogenesis. Our analysis of the Junbo and Jeff mutants highlights the role of hypoxia and HIF-mediated pathways, and we conclude that targeting molecules in HIF-VEGF signaling pathways has therapeutic potential in the treatment of

  18. Mouse Genome Informatics (MGI) Is the International Resource for Information on the Laboratory Mouse.

    Science.gov (United States)

    Law, MeiYee; Shaw, David R

    2018-01-01

    Mouse Genome Informatics (MGI, http://www.informatics.jax.org/ ) web resources provide free access to meticulously curated information about the laboratory mouse. MGI's primary goal is to help researchers investigate the genetic foundations of human diseases by translating information from mouse phenotypes and disease models studies to human systems. MGI provides comprehensive phenotypes for over 50,000 mutant alleles in mice and provides experimental model descriptions for over 1500 human diseases. Curated data from scientific publications are integrated with those from high-throughput phenotyping and gene expression centers. Data are standardized using defined, hierarchical vocabularies such as the Mammalian Phenotype (MP) Ontology, Mouse Developmental Anatomy and the Gene Ontologies (GO). This chapter introduces you to Gene and Allele Detail pages and provides step-by-step instructions for simple searches and those that take advantage of the breadth of MGI data integration.

  19. Stress-tolerant mutants induced by heavy-ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Tomoko; Yoshida, Shigeo [Institute of Physical and Chemical Research, Wako, Saitama (Japan); Bae, Chang-Hyu [Sunchon National University, Sunchon (Korea); Ozaki, Takuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Wang, Jing Ming [Akita Prefectural Univ. (Japan)

    2000-07-01

    Comparative study was made on mutagenesis in tobacco embryo induced by exposure to EMS (ethyl methane-sulfonate) ion beams during the fertilization cycle. Tobacco embryo cells immediately after pollination were exposed to heavy ion beam and the sensitivity to the irradiation was assessed in each developmental stage and compared with the effects of EMS, a chemical mutagen. Morphologically abnormality such as chlorophyll deficiency was used as a marker. A total of 17 salt-tolerant plants were selected from 3447 M{sub 1} seeds. A cell line showed salt resistance. The cell growth and chlorophyll content were each two times higher than that of WT cells in the medium containing 154 mM NaCl. Seven strains of M{sub 3} progeny of 17 salt-tolerant plants, showed strong resistance, but no salt tolerant progeny were obtained from Xanthi or Ne-ion irradiation. This shows that the sensitivity of plant embryo to this irradiation technique may vary among species. When exposed to {sup 14}N ion beam for 24-108 hours after pollination, various morphological mutants appeared at 18% in M{sub 1} progeny and herbicide tolerant and salt tolerant mutants were obtained. A strong Co-tolerant strain was obtained in two of 17 salt-tolerant strains and a total of 46 tolerant strains (0.2%) were obtained from 22,272 grains of M{sub 1} seeds. In these tolerant strains, the absorption of Co was slightly decreased, but those of Mg and Mn were increased. Mutants induced with ion-beam irradiation have potential not only for practical use in the breeding of stress-tolerant plants but also for gene analysis that will surely facilitate the molecular understanding of the tolerance mechanisms. (M.N.)

  20. Sialic Acid Catabolism Confers a Competitive Advantage to Pathogenic Vibrio cholerae in the Mouse Intestine▿

    Science.gov (United States)

    Almagro-Moreno, Salvador; Boyd, E. Fidelma

    2009-01-01

    Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of Escherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae ΔnanA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment. PMID:19564383

  1. Sialic acid catabolism confers a competitive advantage to pathogenic vibrio cholerae in the mouse intestine.

    Science.gov (United States)

    Almagro-Moreno, Salvador; Boyd, E Fidelma

    2009-09-01

    Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of Escherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae DeltananA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment.

  2. Bending patterns of chlamydomonas flagella: III. A radial spoke head deficient mutant and a central pair deficient mutant.

    Science.gov (United States)

    Brokaw, C J; Luck, D J

    1985-01-01

    Flash photomicrography at frequencies up to 300 Hz and computer-assisted image analysis have been used to obtain parameters describing the flagellar bending patterns of mutants of Chlamydomonas reinhardtii. All strains contained the uni1 mutation, to facilitate photography. The radial spoke head deficient mutant pf17, and the central pair deficient mutant, pf15, in combination with suppressor mutations that restore motility without restoring the ultrastructural or biochemical deficiencies, both generate forward mode bending patterns with increased shear amplitude and decreased asymmetry relative to the "wild-type" uni1 flagella described previously. In the reverse beating mode, the suppressed pf17 mutants generate reverse bending patterns with large shear amplitudes. Reverse beating of the suppressed pf15 mutants is rare. There is a reciprocal relationship between increased shear amplitude and decreased beat frequency, so that the velocity of sliding between flagellar microtubules is not increased by an increase in shear amplitude. The suppressor mutations alone cause decreased frequency and sliding velocity in both forward and reverse mode beating, with little change in shear amplitude or symmetry.

  3. Marine Mammal Brucella Reference Strains Are Attenuated in a BALB/c Mouse Model.

    Science.gov (United States)

    Nymo, Ingebjørg H; Arias, Maykel A; Pardo, Julián; Álvarez, María Pilar; Alcaraz, Ana; Godfroid, Jacques; Jiménez de Bagüés, María Pilar

    2016-01-01

    Brucellosis is a zoonosis of worldwide distribution with numerous animal host species. Since the novel isolation of Brucella spp. from marine mammals in 1994 the bacteria have been isolated from various marine mammal hosts. The marine mammal reference strains Brucella pinnipedialis 12890 (harbour seal, Phoca vitulina) and Brucella ceti 12891 (harbour porpoise, Phocoena phocoena) were included in genus Brucella in 2007, however, their pathogenicity in the mouse model is pending. Herein this is evaluated in BALB/c mice with Brucella suis 1330 as a control. Both marine mammal strains were attenuated, however, B. ceti was present at higher levels than B. pinnipedialis in blood, spleen and liver throughout the infection, in addition B. suis and B. ceti were isolated from brains and faeces at times with high levels of bacteraemia. In B. suis-infected mice serum cytokines peaked at day 7. In B. pinnipedialis-infected mice, levels were similar, but peaked predominantly at day 3 and an earlier peak in spleen weight likewise implied an earlier response. The inflammatory response induced pathology in the spleen and liver. In B. ceti-infected mice, most serum cytokine levels were comparable to those in uninfected mice, consistent with a limited inflammatory response, which also was indicated by restricted spleen and liver pathology. Specific immune responses against all three strains were detected in vitro after stimulation of splenocytes from infected mice with the homologous heat-killed brucellae. Antibody responses in vivo were also induced by the three brucellae. The immunological pattern of B. ceti in combination with persistence in organs and limited pathology has heretofore not been described for other brucellae. These two marine mammal wildtype strains show an attenuated pattern in BALB/c mice only previously described for Brucella neotomea.

  4. Marine Mammal Brucella Reference Strains Are Attenuated in a BALB/c Mouse Model.

    Directory of Open Access Journals (Sweden)

    Ingebjørg H Nymo

    Full Text Available Brucellosis is a zoonosis of worldwide distribution with numerous animal host species. Since the novel isolation of Brucella spp. from marine mammals in 1994 the bacteria have been isolated from various marine mammal hosts. The marine mammal reference strains Brucella pinnipedialis 12890 (harbour seal, Phoca vitulina and Brucella ceti 12891 (harbour porpoise, Phocoena phocoena were included in genus Brucella in 2007, however, their pathogenicity in the mouse model is pending. Herein this is evaluated in BALB/c mice with Brucella suis 1330 as a control. Both marine mammal strains were attenuated, however, B. ceti was present at higher levels than B. pinnipedialis in blood, spleen and liver throughout the infection, in addition B. suis and B. ceti were isolated from brains and faeces at times with high levels of bacteraemia. In B. suis-infected mice serum cytokines peaked at day 7. In B. pinnipedialis-infected mice, levels were similar, but peaked predominantly at day 3 and an earlier peak in spleen weight likewise implied an earlier response. The inflammatory response induced pathology in the spleen and liver. In B. ceti-infected mice, most serum cytokine levels were comparable to those in uninfected mice, consistent with a limited inflammatory response, which also was indicated by restricted spleen and liver pathology. Specific immune responses against all three strains were detected in vitro after stimulation of splenocytes from infected mice with the homologous heat-killed brucellae. Antibody responses in vivo were also induced by the three brucellae. The immunological pattern of B. ceti in combination with persistence in organs and limited pathology has heretofore not been described for other brucellae. These two marine mammal wildtype strains show an attenuated pattern in BALB/c mice only previously described for Brucella neotomea.

  5. Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet

    Science.gov (United States)

    Krznar, Petra; Hörl, Manuel; Ammar, Zeinab; Montessuit, Sylvie; Pierredon, Sandra; Zamboni, Nicola; Martinou, Jean-Claude

    2016-01-01

    Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival. PMID:27176894

  6. Selection of the Mutants with High Hydroquinone Degradation Ability of Serratia Marcesscen by Plasma Mutation

    International Nuclear Information System (INIS)

    Yao Risheng; You Qidong; He Weijing; Zhu Huixia

    2009-01-01

    In this study, an efficient way by plasma induced mutation was applied to improve the hydroquinone degradation capacity of Serratia marcescens AB 90027 (SM27). The results showed that combined with the selection of hydroquinone tolerance, the mutant with high hydroquinone degradation ability induced by plasma could be achieved. The best dose for plasma mutation was 15 s, which showed a 47.0% higher positive mutation ratio. Besides, the aimed mutant was markedly different from the parent strain (SM27) in colonial traits while cultivated on Kings media. Finally, the hydroquinone degradation ratio reached 70.5% using the induced mutant strain with 1500 mg/L hydroquinone (HQ) after 15 days of cultivation as the selective conditions; however, it was only 46.7% for SM27. The improvement of the degradation capacity by the induced mutant with a high concentration of HQ selection was attributed to its faster growth and higher hydroquinone tolerance compared with that of the parent strain.

  7. High yielding and early maturing mutants in mungbean (Vigna radiata (L) Wilczek)

    International Nuclear Information System (INIS)

    Malik, I.A.

    1988-01-01

    Mungbean in Pakistan is grown on about 79 thousand hectares with an annual production of around 39600 t. The poor yield of cultivars may be largely due to their indeterminate excessive vegetative growth, low harvest index, and susceptibility to various diseases. Lack of synchrony in maturity and pod shattering are also limiting factors. Mutation breeding of mungbean at NIAB has the object of evolving early and uniform maturing high yielding mutants. Seeds of mungbean strains Pak-22 and RC71-27 were irradiated with 60 Co gamma rays (5 kR to 80 kR) in 1977. After selecting mutants in the M 2 , further selections were made in M 3 for earliness, uniform maturity, short plant stature and larger number of pods/plant. In the M 4 , 62 selections were subjected to micro plot yield trials and seed protein analysis. Selection was continued in the advanced generations and performance was studied in multilocational trials arranged through the Department of Agriculture. The important characteristics of two mutants namely NM19-19 (derivative of strain Pak 22 at 40 kR) and NM121-25 (derivative of strain RC71-27 at 20 kR) are listed and their field performance is summarized. Both the mutants are short statured and have erect determinate growth habit. They mature early by a margin of 16 days and yield higher. The high harvest index of the mutants indicates their efficiency in partitioning photosynthates towards grain formation. Because of their synchrony in maturity and top fruit bearing habit the mutants are amenable to mechanized harvesting. The early maturity in mutants also makes them more suitable for intercropping practices. The mutants possess greater degree of tolerance to yellow mosaic disease and have shown wide adaptability and stability when grown under different agroclimatic conditions. Both the mutants have been released in 1986, by the Punjab Seed Council as commercial varieties under the names of 'NIAB Mung 121-25' and 'NIAB Mung 19-19' respectively

  8. Behavioral Actions of Alcohol: Phenotypic Relations from Multivariate Analysis of Mutant Mouse Data

    Science.gov (United States)

    Blednov, Yuri A.; Mayfield, R. Dayne; Belknap, John; Harris, R. Adron

    2012-01-01

    Behavioral studies of genetically diverse mice have proven powerful for determining relationships between phenotypes and have been widely used in alcohol research. Most of these studies rely on naturally occurring genetic polymorphisms among inbred strains and selected lines. Another approach is to introduce variation by engineering single gene mutations in mice. We have tested 37 different mutant mice and their wild type controls for a variety (31) of behaviors and have mined this dataset by K-means clustering and analysis of correlations. We found a correlation between a stress-related response (activity in a novel environment) and alcohol consumption and preference for saccharin. We confirmed several relationships detected in earlier genetic studies including positive correlation of alcohol consumption with saccharin consumption, and negative correlations with conditioned taste aversion and alcohol withdrawal severity. Introduction of single gene mutations either eliminated or greatly diminished these correlations. The three tests of alcohol consumption used (continuous two bottle choice, and two limited access tests: Drinking In the Dark and Sustained High Alcohol Consumption) share a relationship with saccharin consumption, but differ from each other in their correlation networks. We suggest that alcohol consumption is controlled by multiple physiological systems where single gene mutations can disrupt the networks of such systems. PMID:22405477

  9. A mutation in the envelope protein fusion loop attenuates mouse neuroinvasiveness of the NY99 strain of West Nile virus

    International Nuclear Information System (INIS)

    Zhang Shuliu; Li Li; Woodson, Sara E.; Huang, Claire Y.-H.; Kinney, Richard M.; Barrett, Alan D.T.; Beasley, David W.C.

    2006-01-01

    Substitutions were engineered individually and in combinations at the fusion loop, receptor-binding domain and a stem-helix structure of the envelope protein of a West Nile virus strain, NY99, and their effects on mouse virulence and presentation of epitopes recognized by monoclonal antibodies (MAbs) were assessed. A single substitution within the fusion loop (L107F) attenuated mouse neuroinvasiveness of NY99. No substitutions attenuated NY99 neurovirulence. The L107F mutation also abolished binding of a non-neutralizing MAb, 3D9, whose epitope had not been previously identified. MAb 3D9 was subsequently shown to be broadly cross-reactive with other flaviviruses, consistent with binding near the highly conserved fusion loop

  10. Mutation Induction In White Oyster Mushroom (Pleurotus Ostreatus) Using GAMMA Irradiation And Analyzing Genetic Diversity Of Induced Mutants By RAPD.PCR

    International Nuclear Information System (INIS)

    Mohammed, H.M; Soliman, S.S.A; Shawky, A.S.H; Mahgoub, E.M.I

    2013-01-01

    The present study aimed to understand the effect of gamma rays on three strains of white oyster mushroom Pleurotus ostreatus and induction of new benefit mutants. Five different doses, i.e., 0.25,0.5,0.75, and 1.00 KGy of gamma rays were used. Twelve morphological criteria were measured. The result confirmed the existence of different response of three strains to different doses of radiation. The 21 strain as a control, the first flush was misshapen, but the second flush gave normal fruit, while mutant Po 21-3 gave excellent growth performance for the shape, colour, fruit diameter and stem length, while slightly decrease in wet and dry total matter per bag and flushes numbers were found.The po 21-2 mutant considered as important mutant because slightly increased in wet and dry total matter than the control, and had short stem length. This mutant Po 21 -2 gave spores, while the control was sporeless. Control of strain 22 possessed good performance for fruit characterization but it forms fruits less than its primordial it formed (semi maturation less strain) per bag, While po 22-l and Po 22-2 appeared good performance, in addition high yielding as wet and dry total matter and faster flushing. The control of strain 66 had a good growth performance, and the four mutants for this strain is very good too they had excellent growth performance; Po 66-1 and Po 66-3 mutants had significant and highly significant values for wet matter than the control (21.04, 21.64 and 12.27) for (Po 66-1, Po 66-4, control). As well as more important criteria there were taken as short fruit stem length and fruit number/bag. These results confirmed the important of Po 66-4 followed by po 66-1 in next breeding and production programs for white oyster mushroom (Pleurotus ostreatus).the RAPD PCR results showed the oligonucleotide OPB-10, OPA-05 and OPC-02 presented the highest percentage of RAPD polymorphism (80⁒, 80⁒, 66.6⁒). The pattern obtained with OPB-10 oligonucleotide for strains

  11. Quantitative measures of mutagenicity and multability based on mutant yield data

    International Nuclear Information System (INIS)

    Eckhardt, F.; Haynes, R.H.

    1980-01-01

    We describe, how mutant yield data (mutants per cell treated) can be used both to compare the mutagenenicity of different mutagens, and to characterize the mutability of different cell types. Yield curves reveal the net effect of the lethal and genetic actions of mutagens on cells. Normally, yields are the quantities measured in assays for mutagenesis, and rectilinear plots of such data baldly reveal the amount of experimental error and the extent of actual mutant induction above the background level. Plots of yield versus lethal hits can be used to quantify the relative mutagenenic efficiency (RME) of agents whose physical exposure doses otherwise would be incommensurable, as well as the relative mutability (Rmt) of different strains to the same mutagen. Plots of yield versus log dose provide an unambiguous way of assessing the relative mutational sensitivities (Rms) and mutational resolutions (Rmr) of different strains against a given mutagen. Such analysis is important for evaluation of the relative merits of excision-proficient and excision-deficient strains of the same organism as mutagen-testing systems. The mathematical approach outlined here is applied, by way of example, to measurements of UV and 4-NQO induced mutagenesis in both repair-deficient and repair-proficient haploid strains of the yeast Sacccharomyces cerevsiae. (orig.)

  12. Occurrence of toxicity among protease, amylase, and color mutants of a nontoxic soy sauce koji mold

    International Nuclear Information System (INIS)

    Kalayanamitr, A.; Bhumiratana, A.; Flegel, T.W.; Glinsukon, T.; Shinmyo, A.

    1987-01-01

    A soy sauce koji mold, Aspergillus flavus var. columnaris Raper and Fennel (ATCC 44310), was treated with UV irradiation to obtain mutant strains possessing high protease activities, high amylase activities, and light-colored conidia. Selected mutant strains were tested for toxicity, and some were found acutely toxic to weanling rats, although all were negative for aflatoxin production

  13. Isolation and characterization of Tn917lac-generated competence mutants of Bacillus subtilis

    International Nuclear Information System (INIS)

    Hahn, J.; Albano, M.; Dubnau, D.

    1987-01-01

    The authors isolated 28 mutants of Bacillus subtilis deficient in the development of competence by using the transposon Tn917lacZ as a mutagen. The mutant strains were poorly transformable with plasmid and chromosomal DNAs but were normally transducible and exhibited wild-type resistance to DNA-damaging agents. The mutations were genetically mapped, and the mutants were characterized with respect to their abilities to bind and take up radiolabeled DNA. All were defective in uptake, and some failed to bind significantly amounts of DNA. The abilities of the mutant strains to resolve into two buoyant density classes on Renografin gradients were studied. Most resolved normally, but several banded in Renografin only at the buoyant density of noncompetent cells. The genetic mapping studies and the other analyses suggested that the mutations define a minimum of seven distinct com genes

  14. Synthesis and biological properties of novel 2-aminopyrimidin-4(3H)-ones highly potent against HIV-1 mutant strains.

    Science.gov (United States)

    Mai, Antonello; Artico, Marino; Rotili, Dante; Tarantino, Domenico; Clotet-Codina, Imma; Armand-Ugón, Mercedes; Ragno, Rino; Simeoni, Silvia; Sbardella, Gianluca; Nawrozkij, Maxim B; Samuele, Alberta; Maga, Giovanni; Esté, José A

    2007-11-01

    Following the disclosure of dihydro-alkoxy-, dihydro-alkylthio-, and dihydro-alkylamino-benzyl-oxopyrimidines (DABOs, S-DABOs, and NH-DABOs) as potent and selective anti-HIV-1 agents belonging to the non-nucleoside reverse transcriptase inhibitor (NNRTI) class, we report here the synthesis and biological evaluation of a novel series of DABOs bearing a N,N-disubstituted amino group or a cyclic amine at the pyrimidine-C2 position, a hydrogen atom or a small alkyl group at C5 and/or at the benzylic position, and the favorable 2,6-difluorobenzyl moiety at the C6 position (F2-N,N-DABOs). The new compounds were highly active up to the subnanomolar level against both wt HIV-1 and the Y181C mutant and at the submicromolar to nanomolar range against the K103N and Y188L mutant strains. Such derivatives were more potent than S-DABOs, NH-DABOs, and nevirapine and efavirenz were chosen as reference drugs. The higher inhibitor adaptability to the HIV-1 RT non-nucleoside binding site (NNBS) may account for the higher inhibitory effect exerted by the new molecules against the mutated RTs.

  15. E2-EPF UCP regulates stability and functions of missense mutant pVHL via ubiquitin mediated proteolysis.

    Science.gov (United States)

    Park, Kyeong-Su; Kim, Ju Hee; Shin, Hee Won; Chung, Kyung-Sook; Im, Dong-Soo; Lim, Jung Hwa; Jung, Cho-Rok

    2015-10-26

    Missense mutation of VHL gene is frequently detected in type 2 VHL diseases and linked to a wide range of pVHL functions and stability. Certain mutant pVHLs retain ability to regulate HIFs but lose their function by instability. In this case, regulating of degradation of mutant pVHLs, can be postulated as therapeutic method. The stability and cellular function of missense mutant pVHLs were determine in HEK293T transient expressing cell and 786-O stable cell line. Ubiquitination assay of mutant VHL proteins was performed in vitro system. Anticancer effect of adenovirus mediated shUCP expressing was evaluated using ex vivo mouse xenograft assay. Three VHL missense mutants (V155A, L158Q, and Q164R) are directly ubiquitinated by E2-EPF UCP (UCP) in vitro. Mutant pVHLs are more unstable than wild type in cell. Missense mutant pVHLs interact with UCP directly in both in vitro and cellular systems. Lacking all of lysine residues of pVHL result in resistance to ubiquitination thereby increase its stability. Missense mutant pVHLs maintained the function of E3 ligase to ubiquitinate HIF-1α in vitro. In cells expressing mutant pVHLs, Glut-1 and VEGF were relatively upregulated compared to their levels in cells expressing wild-type. Depletion of UCP restored missense mutant pVHLs levels and inhibited cell growth. Adenovirus-mediated shUCP RNA delivery inhibited tumor growth in ex vivo mouse xenograft model. These data suggest that targeting of UCP can be one of therapeutic method in type 2 VHL disease caused by unstable but functional missense mutant pVHL.

  16. [Biofilm Formation by the Nonflagellated flhB1 Mutant of Azospirillum brasilense Sp245].

    Science.gov (United States)

    Shelud'ko, A V; Filip'echeva, Yu A; Shumiliva, E M; Khlebtsov, B N; Burov, A M; Petrova, L P; Katsy, E I

    2015-01-01

    Azospirillum brasilense Sp245 with mixed flagellation are able to form biofilms on various surfaces. A nonflagellated mutant of this strain with inactivated chromosomal copy of the flhB gene (flhB1) was shown to exhibit specific traits at the later stages of biofilm formation on a hydrophilic (glass) surface. Mature biofilms of the flhB1::Omegon-Km mutant Sp245.1063 were considerably thinner than those of the parent strain Sp245. The biofilms of the mutant were more susceptible to the forces of hydrodynamic shear. A. brasilense Sp245 cells in biofilms were not found to possess lateral flagella. Cells with polar flagella were, however, revealed by atomic force microscopy of mature native biofilms of strain Sp245. Preservation of a polar flagellum (probably nonmotile) on the cells of A. brasilense Sp245 may enhance the biofilm stability.

  17. Phenotypic and genomic comparisons of highly vancomycin-resistant Staphylococcus aureus strains developed from multiple clinical MRSA strains by in vitro mutagenesis.

    Science.gov (United States)

    Ishii, Kenichi; Tabuchi, Fumiaki; Matsuo, Miki; Tatsuno, Keita; Sato, Tomoaki; Okazaki, Mitsuhiro; Hamamoto, Hiroshi; Matsumoto, Yasuhiko; Kaito, Chikara; Aoyagi, Tetsuji; Hiramatsu, Keiichi; Kaku, Mitsuo; Moriya, Kyoji; Sekimizu, Kazuhisa

    2015-11-25

    The development of vancomycin (VCM) resistance in Staphylococcus aureus threatens global health. Studies of the VCM-resistance mechanism and alternative therapeutic strategies are urgently needed. We mutagenized S. aureus laboratory strains and methicillin-resistant S. aureus (MRSA) with ethyl methanesulfonate, and isolated mutants that exhibited high resistance to VCM (minimum inhibitory concentration = 32 μg/ml). These VCM-resistant strains were sensitive to linezolid and rifampicin, and partly to arbekacin and daptomycin. Beta-lactams had synergistic effects with VCM against these mutants. VCM-resistant strains exhibited a 2-fold increase in the cell wall thickness. Several genes were commonly mutated among the highly VCM-resistant mutants. These findings suggest that MRSA has a potential to develop high VCM resistance with cell wall thickening by the accumulation of mutations.

  18. Unpredictable chronic mild stress differentially impairs social and contextual discrimination learning in two inbred mouse strains.

    Science.gov (United States)

    van Boxelaere, Michiel; Clements, Jason; Callaerts, Patrick; D'Hooge, Rudi; Callaerts-Vegh, Zsuzsanna

    2017-01-01

    Alterations in the social and cognitive domain are considered important indicators for increased disability in many stress-related disorders. Similar impairments have been observed in rodents chronically exposed to stress, mimicking potential endophenotypes of stress-related psychopathologies such as major depression disorder (MDD), anxiety, conduct disorder, and posttraumatic stress disorder (PTSD). Data from numerous studies suggest that deficient plasticity mechanisms in hippocampus (HC) and prefrontal cortex (PFC) might underlie these social and cognitive deficits. Specifically, stress-induced deficiencies in neural plasticity have been associated with a hypodopaminergic state and reduced neural plasticity persistence. Here we assessed the effects of unpredictable chronic mild stress (UCMS) on exploratory, social and cognitive behavior of females of two inbred mouse strains (C57BL/6J and DBA/2J) that differ in their dopaminergic profile. Exposure to chronic stress resulted in impaired circadian rhythmicity, sociability and social cognition in both inbred strains, but differentially affected activity patterns and contextual discrimination performance. These stress-induced behavioral impairments were accompanied by reduced expression levels of brain derived neurotrophic factor (BDNF) in the prefrontal cortex. The strain-specific cognitive impairment was coexistent with enhanced plasma corticosterone levels and reduced expression of genes related to dopamine signaling in hippocampus. These results underline the importance of assessing different strains with multiple test batteries to elucidate the neural and genetic basis of social and cognitive impairments related to chronic stress.

  19. The novel mouse mutant, chuzhoi, has disruption of Ptk7 protein and exhibits defects in neural tube, heart and lung development and abnormal planar cell polarity in the ear

    Directory of Open Access Journals (Sweden)

    Paudyal Anju

    2010-08-01

    Full Text Available Abstract Background The planar cell polarity (PCP signalling pathway is fundamental to a number of key developmental events, including initiation of neural tube closure. Disruption of the PCP pathway causes the severe neural tube defect of craniorachischisis, in which almost the entire brain and spinal cord fails to close. Identification of mouse mutants with craniorachischisis has proven a powerful way of identifying molecules that are components or regulators of the PCP pathway. In addition, identification of an allelic series of mutants, including hypomorphs and neomorphs in addition to complete nulls, can provide novel genetic tools to help elucidate the function of the PCP proteins. Results We report the identification of a new N-ethyl-N-nitrosourea (ENU-induced mutant with craniorachischisis, which we have named chuzhoi (chz. We demonstrate that chuzhoi mutant embryos fail to undergo initiation of neural tube closure, and have characteristics consistent with defective convergent extension. These characteristics include a broadened midline and reduced rate of increase of their length-to-width ratio. In addition, we demonstrate disruption in the orientation of outer hair cells in the inner ear, and defects in heart and lung development in chuzhoi mutants. We demonstrate a genetic interaction between chuzhoi mutants and both Vangl2Lp and Celsr1Crsh mutants, strengthening the hypothesis that chuzhoi is involved in regulating the PCP pathway. We demonstrate that chuzhoi maps to Chromosome 17 and carries a splice site mutation in Ptk7. This mutation results in the insertion of three amino acids into the Ptk7 protein and causes disruption of Ptk7 protein expression in chuzhoi mutants. Conclusions The chuzhoi mutant provides an additional genetic resource to help investigate the developmental basis of several congenital abnormalities including neural tube, heart and lung defects and their relationship to disruption of PCP. The chuzhoi mutation

  20. Enhanced production of alkaline protease by a mutant of Bacillus licheniformis N-2 for dehairing

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem

    2010-10-01

    Full Text Available The purpose of the present investigations was to improve the yield of alkaline protease for leather dehairing by subjecting the indigenous proteolytic strain Bacillus licheniformis N-2 to various mutagenic treatments viz. UV irradiations, NTG (N-methyl-N-nitro-N-nitrosoguinidine and MMS (methyl methane sulfonate. After screening on skim milk agar plates, a total of nine positive mutants were selected for shake flask experiments. Among these, the best proteolytic mutant designated as UV-9 showed 1.4 fold higher alkaline protease activity in preoptimized growth medium than the parent strain. The fermentation profile and kinetic parameters such u(h-1, Yp/s, Yp/x, Yx/s, q s, Qs, q p and Qp also indicated the superiority of the selected mutant UV-9 for alkaline protease production over the parent strain and rest of the mutants. The dehairing capability of mutant UV-9 alkaline protease was analyzed by soaking goat skin pieces for different time intervals (3-15 h at 40 º C. A complete dehairing without degradation of collagen was achieved after 12 h, indicating its commercial exploitation in leather industry.

  1. Phosphoribosylpyrophosphate (PRPP)-less mutants of Escherichia coli

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    1989-01-01

    A DNA fragment encoding kanamycin resistance was inserted in vitro into a plasmid-borne prs gene encoding phosphoribosylpyrophosphate synthetase of Escherichia coli. The resulting plasmids were subsequently transferred to the chromosome by homologous recombination and the haploid strains prs-3::Kan......R and prs-4::KanR were obtained. These strains were fully viable, but required guanosine, uridine, histidine, tryptophan and nicotinamide mononucleotide. There was no phosphoribosylpyrophosphate synthetase activity or phosphoribosylpyrophosphate pool in the mutant strains. These results show...

  2. Sweet and bitter taste of ethanol in C57BL/6J and DBA2/J mouse strains.

    Science.gov (United States)

    Blizard, David A

    2007-01-01

    Studies of inbred strains of rats and mice have suggested a positive association between strain variations in sweet taste and ethanol intake. However, strain associations by themselves are insufficient to support a functional link between taste and ethanol intake. We used conditioned taste aversion (CTA) to explore the sweet and bitter taste of ethanol and ability to detect sucrose, quinine and ethanol in C57BL/6J (B6) and DBA/2J (D2) mouse strains that are frequently used in alcohol research. The present study showed that C57BL/6J mice generalized taste aversions from sucrose and quinine solutions to 10% ethanol and, reciprocally, aversions to 10% ethanol generalized to each of these solutions presented separately. Only conditioned aversions to quinine generalized to ethanol in the DBA/2J strain but an aversion conditioned to ethanol did not generalize reciprocally to quinine. Thus, considering these two gustatory qualities, 10% ethanol tastes both sweet and bitter to B6 mice but only bitter to D2. Both strains were able to generalize taste aversions across different concentrations of the same compound. B6 were able to detect lower concentrations of quinine than D2 but both strains were able to detect sucrose and (in contrast to previous findings) ethanol at similar concentrations. The strain-dependent gustatory profiles for ethanol may make an important contribution to the understanding of the undoubtedly complex mechanisms influencing high ethanol preference of B6 and pronounced ethanol avoidance of D2 mice.

  3. Investigation of heart proteome of different consomic mouse strains. Testing the effect of polymorphisms on the proteome-wide trans-variation of proteins

    Directory of Open Access Journals (Sweden)

    Stefanie Forler

    2015-06-01

    Full Text Available We investigated to which extent polymorphisms of an individual affect the proteomic network. Consomic mouse strains (CS were used to study the trans-effect of the cis-variant (polymorphic proteins of the strain PWD/Ph on the proteins of the host strain C57BL/6J. The cardiac proteome of ten CSs was analyzed by 2-DE and MS. Cis-variant PWD proteins altered a high number of C57BL/6J proteins, but the number of trans-variant proteins differed considerably between different CSs. Cardiac hypertrophy was induced in CSs. We found that high variability of the proteome, as induced by polymorphisms in CS14, acts protective against the complex disease.

  4. Sequence relationships between the genome and the intracellular RNA species 1,3,6 and 7 of mouse hepatitis virus strain A59

    NARCIS (Netherlands)

    Horzinek, M.C.; Spaan, W.J.M.; Rottier, P.J.M.; Zeijst, B.A.M. van der

    1982-01-01

    We have shown by T1 oligonucleotide fingerprinting that the genome of mouse hepatitis virus strain A59 and its intracellular RNA 1 have identical fingerprints and that RNA 1 and the subgenomic RNAs 3, 6, and 7 contain common sequences. To localize the homologous region between the RNAs, we compared

  5. Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line

    Directory of Open Access Journals (Sweden)

    Ayako Kumagai

    2014-12-01

    Full Text Available Memantine is a non-competitive antagonist of the N-methyl-D-aspartate (NMDA receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds.

  6. Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line

    Science.gov (United States)

    Kumagai, Ayako; Fujita, Akira; Yokoyama, Tomoki; Nonobe, Yuki; Hasaba, Yasuhiro; Sasaki, Tsutomu; Itoh, Yumi; Koura, Minako; Suzuki, Osamu; Adachi, Shigeki; Ryo, Haruko; Kohara, Arihiro; Tripathi, Lokesh P.; Sanosaka, Masato; Fukushima, Toshiki; Takahashi, Hiroyuki; Kitagawa, Kazuo; Nagaoka, Yasuo; Kawahara, Hidehisa; Mizuguchi, Kenji; Nomura, Taisei; Matsuda, Junichiro; Tabata, Toshihide; Takemori, Hiroshi

    2014-01-01

    Memantine is a non-competitive antagonist of the N-methyl-d-aspartate (NMDA) receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg) disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR) and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds. PMID:25513882

  7. Comparison of expression of key sporulation, solventogenic and acetogenic genes in C. beijerinckii NRRL B-598 and its mutant strain overexpressing spo0A.

    Science.gov (United States)

    Kolek, J; Diallo, M; Vasylkivska, M; Branska, B; Sedlar, K; López-Contreras, A M; Patakova, P

    2017-11-01

    The production of acetone, butanol and ethanol by fermentation of renewable biomass has potential to become a valuable industrial process. Mechanisms of solvent production and sporulation involve some common regulators in some ABE-producing clostridia, although details of the links between the pathways are not clear. In this study, we compare a wild-type (WT) Clostridium beijerinckii NRRL B-598 with its mutant strain OESpo0A, in which the gene encoding Spo0A, an important regulator of both sporulation and solventogenesis, is overexpressed in terms of solvent and acid production. We also compare morphologies during growth on two different media: TYA broth, where the WT culture sporulates, and RCM, where the WT culture does not. In addition, RT-qPCR-based analysis of expression profiles of spo0A, spoIIE, sigG, spoVD, ald and buk1 genes involved in sporulation or solvent production in these strains, were compared. The OESpo0A mutant did not produce spores and butanol titre was lower compared to the WT, but increased amounts of butyric acid and ethanol were produced. The gene spo0A had high levels of expression in the WT under non-sporulating culture conditions while other selected genes for sporulation factors were downregulated significantly. Similar observations were obtained for OESpo0A where spo0A overexpression and downregulation of other sporulation genes were demonstrated. Higher expression of spo0A led to higher expression of buk1 and ald, which could confirm the role of spo0A in activation of the solventogenic pathway, although solvent production was not affected significantly in the WT and was weakened in the OESpo0A mutant.

  8. Intramuscular Immunization of Mice with a Live-Attenuated Triple Mutant of Yersinia pestis CO92 Induces Robust Humoral and Cell-Mediated Immunity To Completely Protect Animals against Pneumonic Plague.

    Science.gov (United States)

    Tiner, Bethany L; Sha, Jian; Ponnusamy, Duraisamy; Baze, Wallace B; Fitts, Eric C; Popov, Vsevolod L; van Lier, Christina J; Erova, Tatiana E; Chopra, Ashok K

    2015-12-01

    Earlier, we showed that the Δlpp ΔmsbB Δail triple mutant of Yersinia pestis CO92 with deleted genes encoding Braun lipoprotein (Lpp), an acyltransferase (MsbB), and the attachment invasion locus (Ail), respectively, was avirulent in a mouse model of pneumonic plague. In this study, we further evaluated the immunogenic potential of the Δlpp ΔmsbB Δail triple mutant and its derivative by different routes of vaccination. Mice were immunized via the subcutaneous (s.c.) or the intramuscular (i.m.) route with two doses (2 × 10(6) CFU/dose) of the above-mentioned triple mutant with 100% survivability of the animals. Upon subsequent pneumonic challenge with 70 to 92 50% lethal doses (LD(50)) of wild-type (WT) strain CO92, all of the mice survived when immunization occurred by the i.m. route. Since Ail has virulence and immunogenic potential, a mutated version of Ail devoid of its virulence properties was created, and the genetically modified ail replaced the native ail gene on the chromosome of the Δlpp ΔmsbB double mutant, creating a Δlpp ΔmsbB::ailL2 vaccine strain. This newly generated mutant was attenuated similarly to the Δlpp ΔmsbB Δail triple mutant when administered by the i.m. route and provided 100% protection to animals against subsequent pneumonic challenge. Not only were the two above-mentioned mutants cleared rapidly from the initial i.m. site of injection in animals with no histopathological lesions, the immunized mice did not exhibit any disease symptoms during immunization or after subsequent exposure to WT CO92. These two mutants triggered balanced Th1- and Th2-based antibody responses and cell-mediated immunity. A substantial increase in interleukin-17 (IL-17) from the T cells of vaccinated mice, a cytokine of the Th17 cells, further augmented their vaccine potential. Thus, the Δlpp ΔmsbB Δail and Δlpp ΔmsbB::ailL2 mutants represent excellent vaccine candidates for plague, with the latter mutant still retaining Ail immunogenicity but

  9. Studies on Drosophila radiosensitivity strains

    International Nuclear Information System (INIS)

    Varentsova, E.R.; Sharygin, V.I.; Khromykh, Yu.U.

    1985-01-01

    Fertility of radiosensitive mutant drosophila female strain rad (2) 201 61 after irradiation and frequency of dominant lethal mutations (DLM), induced by γ-radiation for 0-5 h and 5-7 days, are investigated. It is shown, that oocytes of the mutant strain are more radiosensitive as compared with cells of mongrel flies as to criterion of DLM appearance over the period of maturing. Early oocytes of stages 2-7 are the most sensitive, i.e. at the stages, corresponding to the manifestation of previously established recombination-defective properties of mutations rad (2) 201 61 . It is also sown, that doses of γ-rays, exceeding 10 Gy produce a strong sterilizing effect on mutant females due to destruction and resorption of egg chambers, irradiated at the stages of previtellogenetic growth of oocytes. In females, carrying mutation of radiosensitivity there is no direct correlation betwen sensitivity of oocytes proper to DLM induction and sensitivity of egg folleicles to resorbing effect of γ-rays. The ways of possible involvement of mutant locus studied into genetic processes in various specialized cells of drosophila

  10. Growth and sporulation defects in Bacillus subtilis mutants with a single rrn operon can be suppressed by amplification of the rrn operon.

    Science.gov (United States)

    Yano, Koichi; Masuda, Kenta; Akanuma, Genki; Wada, Tetsuya; Matsumoto, Takashi; Shiwa, Yuh; Ishige, Taichiro; Yoshikawa, Hirofumi; Niki, Hironori; Inaoka, Takashi; Kawamura, Fujio

    2016-01-01

    The genome of Bacillus subtilis strain 168 encodes ten rRNA (rrn) operons. We previously reported that strains with only a single rrn operon had a decreased growth and sporulation frequency. We report here the isolation and characterization of suppressor mutants from seven strains that each have a single rrn operon (rrnO, A, J, I, E, D or B). The suppressor mutants for strain RIK656 with a single rrnO operon had a higher frequency of larger colonies. These suppressor mutants had not only increased growth rates, but also increased sporulation frequencies and ribosome levels compared to the parental mutant strain RIK656. Quantitative PCR analyses showed that all these suppressor mutants had an increased number of copies of the rrnO operon. Suppressor mutants were also isolated from the six other strains with single rrn operons (rrnA, J, I, E, D or B). Next generation and capillary sequencing showed that all of the suppressor mutants had tandem repeats of the chromosomal locus containing the remaining rrn operon (amplicon). These amplicons varied in size from approximately 9 to 179 kb. The amplifications were likely to be initiated by illegitimate recombination between non- or micro-homologous sequences, followed by unequal crossing-over during DNA replication. These results are consistent with our previous report that rrn operon copy number has a major role in cellular processes such as cell growth and sporulation.

  11. Growth of catalase A and catalase T deficient mutant strains of Saccharomyces cerevisiae on ethanol and oleic acid : Growth profiles and catalase activities in relation to microbody proliferation

    NARCIS (Netherlands)

    Klei, Ida J. van der; Rytka, Joanna; Kunau, Wolf H.; Veenhuis, Marten

    The parental strain (A+T+) of Saccharomyces cerevisiae and mutants, deficient in catalase T (A+T-), catalase A (A-T+) or both catalases (A-T-), grew on ethanol and oleic acid with comparable doubling times. Specific activities of catalase were low in glucose- and ethanol-grown cells. In the two

  12. Behavioral phenotypes of genetic mouse models of autism.

    Science.gov (United States)

    Kazdoba, T M; Leach, P T; Crawley, J N

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  13. Trehalose, glycogen and ethanol metabolism in the gcr1 mutant of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Seker, Tamay; Hamamci, H.

    2003-01-01

    Since Gcr1p is pivotal in controlling the transcription of glycolytic enzymes and trehalose metabolism seems to be one of the control points of glycolysis, we examined trehalose and glycogen synthesis in response to 2 % glucose pulse during batch growth in gcr1 (glucose regulation-1) mutant lacking...... fully functional glycolytic pathway and in the wild-type strain. An increase in both trehalose and glycogen stores was observed 1 and 2 h after the pulse followed by a steady decrease in both the wild-type and the gcr1 mutant. The accumulation was faster while the following degradation was slower in gcr......1 cells compared to wild-type ones. Although there was no distinct glucose consumption in the mutant cells it seemed that the glucose repression mechanism is similar in gcr1 mutant and in wild-type strain at least with respect to trehalose and glycogen metabolism....

  14. A mouse strain less responsive to dioxin-induced prostaglandin E2 synthesis is resistant to the onset of neonatal hydronephrosis.

    Science.gov (United States)

    Aida-Yasuoka, Keiko; Yoshioka, Wataru; Kawaguchi, Tatsuya; Ohsako, Seiichiroh; Tohyama, Chiharu

    2014-10-01

    Dioxin is a ubiquitous environmental pollutant that induces toxicity when bound to the aryl hydrocarbon receptor (AhR). Significant differences in susceptibility of mouse strains to dioxin toxicity are largely accounted for by the dissociation constant of binding to dioxins of AhR subtypes encoded by different alleles. We showed that cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1), components of a prostanoid synthesis pathway, play essential roles in the onset of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced hydronephrosis of neonatal mice. Although C57BL/6J and BALB/cA mice harbor AhR receptors highly responsive to TCDD, they were found by chance to differ significantly in the incidence of TCDD-induced hydronephrosis. Therefore, the goal of the present study was to determine the molecular basis of this difference in susceptibility to TCDD toxicity. For this purpose, we administered C57BL/6J and BALB/cA dams' TCDD at an oral dose of 15 or 80 μg/kg on postnatal day (PND) 1 to expose pups to TCDD via lactation, and the pups' kidneys were collected on PND 7. The incidence of hydronephrosis in C57BL/6J pups (64%) was greater than in BALB/cA pups (0%, p hydronephrosis in these mouse strains paralleled the levels of renal mPGES-1 mRNA and early growth response 1 (Egr-1) that modulates mPGES-1 gene expression, as well as PGE2 concentrations in urine. Although these mouse strains possess AhR alleles tightly bound to TCDD, their difference in incidence and severity of hydronephrosis can be explained, in part, by differences in the expression of mPGES-1 and Egr-1. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. The mTOR kinase inhibitor Everolimus decreases S6 kinase phosphorylation but fails to reduce mutant huntingtin levels in brain and is not neuroprotective in the R6/2 mouse model of Huntington's disease

    Directory of Open Access Journals (Sweden)

    Frentzel Stefan

    2010-06-01

    Full Text Available Abstract Background Huntington's disease (HD is a progressive neurodegenerative disorder caused by a CAG repeat expansion within the huntingtin gene. Mutant huntingtin protein misfolds and accumulates within neurons where it mediates its toxic effects. Promoting mutant huntingtin clearance by activating macroautophagy is one approach for treating Huntington's disease (HD. In this study, we evaluated the mTOR kinase inhibitor and macroautophagy promoting drug everolimus in the R6/2 mouse model of HD. Results Everolimus decreased phosphorylation of the mTOR target protein S6 kinase indicating brain penetration. However, everolimus did not activate brain macroautophagy as measured by LC3B Western blot analysis. Everolimus protected against early declines in motor performance; however, we found no evidence for neuroprotection as determined by brain pathology. In muscle but not brain, everolimus significantly decreased soluble mutant huntingtin levels. Conclusions Our data suggests that beneficial behavioral effects of everolimus in R6/2 mice result primarily from effects on muscle. Even though everolimus significantly modulated its target brain S6 kinase, this did not decrease mutant huntingtin levels or provide neuroprotection.

  16. A comparison of the survival (LD/sub 50/30/) of a number of inbred mouse strains after X and 60Co gamma irradiation

    International Nuclear Information System (INIS)

    Vacha, J.; Znojil, V.; Hola, J.; Sikulova, J.

    1984-01-01

    The value of LD/sub 50/30/ for X and 60 Co gamma radiation was ascertained for several inbred mouse strains and the significance of interstrain differences in these parameters determined. The rank order of strains according to LD/sub 50/30/ differs as between the two types of radiation with the exception of the strains BALB/c and B10.LP/Ph, which are the least resistant to radiation-induced lethality with both types of radiation. The strain C57BL/10ScSnPh is highly resistant to X irradiation. The relative biological effectiveness of 60 Co gamma radiation as compared with X-radiation from the point of view of lethality fluctuates between 0.748 and 0.952 in individual strains, with a mean value of 0.866 +- 0.033. The RBE values do not correlate with the radiosensitivity of the strain, but they do correlate with the relative contribution to erythropoiesis of the spleen. (author)

  17. Comparison of the survival (LD/sub 50/30/) of a number of inbred mouse strains after X and /sup 60/Co gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Vacha, J.; Znojil, V.; Hola, J.; Sikulova, J. (Ceskoslovenska Akademie Ved, Brno. Biofysikalni Ustav)

    1984-01-01

    The value of LD/sub 50/30/ for X and /sup 60/Co gamma radiation was ascertained for several inbred mouse strains and the significance of interstrain differences in these parameters determined. The rank order of strains according to LD/sub 50/30/ differs as between the two types of radiation with the exception of the strains BALB/c and B10.LP/Ph, which are the least resistant to radiation-induced lethality with both types of radiation. The strain C57BL/10ScSnPh is highly resistant to X irradiation. The relative biological effectiveness of /sup 60/Co gamma radiation as compared with X-radiation from the point of view of lethality fluctuates between 0.748 and 0.952 in individual strains, with a mean value of 0.866 +- 0.033. The RBE values do not correlate with the radiosensitivity of the strain, but they do correlate with the relative contribution to erythropoiesis of the spleen.

  18. Mutant Huntingtin Gene-Dose Impacts on Aggregate Deposition, DARPP32 Expression and Neuroinflammation in HdhQ150 Mice

    Science.gov (United States)

    Young, Douglas; Mayer, Franziska; Vidotto, Nella; Schweizer, Tatjana; Berth, Ramon; Abramowski, Dorothee; Shimshek, Derya R.; van der Putten, P. Herman; Schmid, Peter

    2013-01-01

    Huntington's disease (HD) is an autosomal dominant, progressive and fatal neurological disorder caused by an expansion of CAG repeats in exon-1 of the huntingtin gene. The encoded poly-glutamine stretch renders mutant huntingtin prone to aggregation. HdhQ150 mice genocopy a pathogenic repeat (∼150 CAGs) in the endogenous mouse huntingtin gene and model predominantly pre-manifest HD. Treating early is likely important to prevent or delay HD, and HdhQ150 mice may be useful to assess therapeutic strategies targeting pre-manifest HD. This requires appropriate markers and here we demonstrate, that pre-symptomatic HdhQ150 mice show several dramatic mutant huntingtin gene-dose dependent pathological changes including: (i) an increase of neuronal intra-nuclear inclusions (NIIs) in brain, (ii) an increase of extra-nuclear aggregates in dentate gyrus, (iii) a decrease of DARPP32 protein and (iv) an increase in glial markers of neuroinflammation, which curiously did not correlate with local neuronal mutant huntingtin inclusion-burden. HdhQ150 mice developed NIIs also in all retinal neuron cell-types, demonstrating that retinal NIIs are not specific to human exon-1 R6 HD mouse models. Taken together, the striking and robust mutant huntingtin gene-dose related changes in aggregate-load, DARPP32 levels and glial activation markers should greatly facilitate future testing of therapeutic strategies in the HdhQ150 HD mouse model. PMID:24086450

  19. N-Formyl-Perosamine Surface Homopolysaccharides Hinder the Recognition of Brucella abortus by Mouse Neutrophils.

    Science.gov (United States)

    Mora-Cartín, Ricardo; Chacón-Díaz, Carlos; Gutiérrez-Jiménez, Cristina; Gurdián-Murillo, Stephany; Lomonte, Bruno; Chaves-Olarte, Esteban; Barquero-Calvo, Elías; Moreno, Edgardo

    2016-06-01

    Brucella abortus is an intracellular pathogen of monocytes, macrophages, dendritic cells, and placental trophoblasts. This bacterium causes a chronic disease in bovines and in humans. In these hosts, the bacterium also invades neutrophils; however, it fails to replicate and just resists the killing action of these leukocytes without inducing significant activation or neutrophilia. Moreover, B. abortus causes the premature cell death of human neutrophils. In the murine model, the bacterium is found within macrophages and dendritic cells at early times of infection but seldom in neutrophils. Based on this observation, we explored the interaction of mouse neutrophils with B. abortus In contrast to human, dog, and bovine neutrophils, naive mouse neutrophils fail to recognize smooth B. abortus bacteria at early stages of infection. Murine normal serum components do not opsonize smooth Brucella strains, and neutrophil phagocytosis is achieved only after the appearance of antibodies. Alternatively, mouse normal serum is capable of opsonizing rough Brucella mutants. Despite this, neutrophils still fail to kill Brucella, and the bacterium induces cell death of murine leukocytes. In addition, mouse serum does not opsonize Yersinia enterocolitica O:9, a bacterium displaying the same surface polysaccharide antigen as smooth B. abortus Therefore, the lack of murine serum opsonization and absence of murine neutrophil recognition are specific, and the molecules responsible for the Brucella camouflage are N-formyl-perosamine surface homopolysaccharides. Although the mouse is a valuable model for understanding the immunobiology of brucellosis, direct extrapolation from one animal system to another has to be undertaken with caution. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. A mouse model for inherited renal fibrosis associated with endoplasmic reticulum stress

    Directory of Open Access Journals (Sweden)

    Sian E. Piret

    2017-06-01

    Full Text Available Renal fibrosis is a common feature of renal failure resulting from multiple etiologies, including diabetic nephropathy, hypertension and inherited renal disorders. However, the mechanisms of renal fibrosis are incompletely understood and we therefore explored these by establishing a mouse model for a renal tubular disorder, referred to as autosomal dominant tubulointerstitial kidney disease (ADTKD due to missense uromodulin (UMOD mutations (ADTKD-UMOD. ADTKD-UMOD, which is associated with retention of mutant uromodulin in the endoplasmic reticulum (ER of renal thick ascending limb cells, is characterized by hyperuricemia, interstitial fibrosis, inflammation and renal failure, and we used targeted homologous recombination to generate a knock-in mouse model with an ADTKD-causing missense cysteine to arginine uromodulin mutation (C125R. Heterozygous and homozygous mutant mice developed reduced uric acid excretion, renal fibrosis, immune cell infiltration and progressive renal failure, with decreased maturation and excretion of uromodulin, due to its retention in the ER. The ER stress marker 78 kDa glucose-regulated protein (GRP78 was elevated in cells expressing mutant uromodulin in heterozygous and homozygous mutant mice, and this was accompanied, both in vivo and ex vivo, by upregulation of two unfolded protein response pathways in primary thick ascending limb cells from homozygous mutant mice. However, this did not lead to an increase in apoptosis in vivo. Thus, we have developed a novel mouse model for renal fibrosis, which will be a valuable resource to decipher the mechanisms linking uromodulin mutations with ER stress and renal fibrosis.

  1. Protein nutrient value of Agaricus bazei murrill mutant J3 induced by 60Co γ-irradiation in different generations

    International Nuclear Information System (INIS)

    Jiang Zhihe; Lin Yong; Xiao Shuxia

    2004-01-01

    Protein nutritional values of Agaricus bazei Murrill mutant J 3 and original strain J 1 were compared by non-biological evaluation methods. The results showed that five protein indexes in the fruitbodies of M 1 and M 6 generations of Agaricus bazei Murrill mutant J 3 were higher than that of original strain J 1 ; four protein indexes in M 4 and M 5 generations were higher than that of original strain J 1 ; and six protein indexes in M 2 and M 3 generations were higher than that of original strain J 1 . It was concluded that the protein nutritional values of Agaricus bazei Murrill mutant J 3 was better than that of original strain J 1 . Except the ratio scores of amino acids had little change in the different generations, the other indexes in strain J 3 Agaricus bazei Murrill showed that the heredity efficiencies of the proteins was rather stable. (authors)

  2. Enhancing the value of psychiatric mouse models; differential expression of developmental behavioral and cognitive profiles in four inbred strains of mice.

    Science.gov (United States)

    Molenhuis, Remco T; de Visser, Leonie; Bruining, Hilgo; Kas, Martien J

    2014-06-01

    The behavioral characterization of animal models of psychiatric disorders is often based upon independent traits measured at adult age. To model the neurodevelopmental aspects of psychiatric pathogenesis, we introduce a novel approach for a developmental behavioral analysis in mice. C57BL/6J (C57) mice were used as a reference strain and compared with 129S1/SvImJ (129Sv), BTBR T+tf/J (BTBR) and A/J (AJ) strains as marker strains for aberrant development. Mice were assessed at pre-adolescence (4 weeks), adolescence (6 weeks), early adulthood (8 weeks) and in adulthood (10-12 weeks) on a series of behavioral tasks measuring general health, neurological reflexes, locomotor activity, anxiety, short- and long-term memory and cognitive flexibility. Developmental delays in short-term object memory were associated with either a hypo-reactive profile in 129Sv mice or a hyper-reactive profile in BTBR mice. Furthermore, BTBR mice showed persistent high levels of repetitive grooming behavior during all developmental stages that was associated with the adult expression of cognitive rigidity. In addition, strain differences in development were observed in puberty onset, touch escape, and body position. These data showed that this longitudinal testing battery provides sufficient behavioral and cognitive resolution during different development stages and offers the opportunity to address the behavioral developmental trajectory in genetic mouse models for neurodevelopmental disorders. Furthermore, the data revealed that the assessment of multiple behavioral and cognitive domains at different developmental stages is critical to determine confounding factors (e.g., impaired motor behavior) that may interfere with the behavioral testing performance in mouse models for brain disorders. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  3. Mouse Model Resources for Vision Research

    Directory of Open Access Journals (Sweden)

    Jungyeon Won

    2011-01-01

    Full Text Available The need for mouse models, with their well-developed genetics and similarity to human physiology and anatomy, is clear and their central role in furthering our understanding of human disease is readily apparent in the literature. Mice carrying mutations that alter developmental pathways or cellular function provide model systems for analyzing defects in comparable human disorders and for testing therapeutic strategies. Mutant mice also provide reproducible, experimental systems for elucidating pathways of normal development and function. Two programs, the Eye Mutant Resource and the Translational Vision Research Models, focused on providing such models to the vision research community are described herein. Over 100 mutant lines from the Eye Mutant Resource and 60 mutant lines from the Translational Vision Research Models have been developed. The ocular diseases of the mutant lines include a wide range of phenotypes, including cataracts, retinal dysplasia and degeneration, and abnormal blood vessel formation. The mutations in disease genes have been mapped and in some cases identified by direct sequencing. Here, we report 3 novel alleles of Crxtvrm65, Rp1tvrm64, and Rpe65tvrm148 as successful examples of the TVRM program, that closely resemble previously reported knockout models.

  4. Myelination competent conditionally immortalized mouse Schwann cells

    NARCIS (Netherlands)

    Saavedra, José T.; Wolterman, Ruud A.; Baas, Frank; ten Asbroek, Anneloor L. M. A.

    2008-01-01

    Numerous mouse myelin mutants are available to analyze the biology of the peripheral nervous system related to health and disease in vivo. However, robust in vitro biochemical characterizations of players in peripheral nerve processes are still not possible due to the limited growth capacities of

  5. Unpredictable chronic mild stress differentially impairs social and contextual discrimination learning in two inbred mouse strains.

    Directory of Open Access Journals (Sweden)

    Michiel van Boxelaere

    Full Text Available Alterations in the social and cognitive domain are considered important indicators for increased disability in many stress-related disorders. Similar impairments have been observed in rodents chronically exposed to stress, mimicking potential endophenotypes of stress-related psychopathologies such as major depression disorder (MDD, anxiety, conduct disorder, and posttraumatic stress disorder (PTSD. Data from numerous studies suggest that deficient plasticity mechanisms in hippocampus (HC and prefrontal cortex (PFC might underlie these social and cognitive deficits. Specifically, stress-induced deficiencies in neural plasticity have been associated with a hypodopaminergic state and reduced neural plasticity persistence. Here we assessed the effects of unpredictable chronic mild stress (UCMS on exploratory, social and cognitive behavior of females of two inbred mouse strains (C57BL/6J and DBA/2J that differ in their dopaminergic profile. Exposure to chronic stress resulted in impaired circadian rhythmicity, sociability and social cognition in both inbred strains, but differentially affected activity patterns and contextual discrimination performance. These stress-induced behavioral impairments were accompanied by reduced expression levels of brain derived neurotrophic factor (BDNF in the prefrontal cortex. The strain-specific cognitive impairment was coexistent with enhanced plasma corticosterone levels and reduced expression of genes related to dopamine signaling in hippocampus. These results underline the importance of assessing different strains with multiple test batteries to elucidate the neural and genetic basis of social and cognitive impairments related to chronic stress.

  6. Investigation of pre-pubertal sex differences in wheel running and social behavior in three mouse strains.

    Science.gov (United States)

    Gordon, Elizabeth A; Corbitt, Cynthia

    2015-08-01

    Sex differences in social behaviors exist in mammals during adulthood, and further evidence suggests that sex differences in behavior are present before sexual maturity. In order to model behavioral disorders in animals, it is important to assess baseline sex-related behavioral differences, especially when studying disorders for which sex-related behavioral effects are expected. We investigated the effect of sex on behavior in 3 strains of pre-pubertal mice (C57BL/6, CFW, and CF1) using a wheel-running assay. We found no significant sex differences in latency to run on the wheel or total duration of wheel running within each strain. During the social interaction test, there were no differences between sexes in latency or total duration of contact or following between a subject and novel mouse. We also evaluated behavioral patterns of wheel running and stereotypical behaviors, such as burrowing and grooming. Both sexes showed characteristic wheel running behavior, spending the majority of each trial interacting with the wheel when it was free and more time performing other activities ( e.g. , stereotypical behaviors, general locomotion) when it was jammed. These results provide evidence that, among various strains of pre-pubertal mice, baseline sex-related behavioral differences are not strong enough to influence the measured behaviors.

  7. Generation of a glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis.

    Science.gov (United States)

    Iwakuma, Hidekazu; Koyama, Yoshiyuki; Miyachi, Ayako; Nasukawa, Masashi; Matsumoto, Hitoshi; Yano, Shuntaro; Ogihara, Jun; Kasumi, Takafumi

    2016-01-01

    We obtained a novel glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis. A plasmid containing DNA polymerase δ lacking proofreading activity, and AMAI, an autonomously replicating sequence was introduced into T. reesei ATCC66589. The rate of mutation evaluated with 5-fluoroorotic acid resistance was approximately 30-fold higher than that obtained by UV irradiation. The transformants harboring incompetent DNA polymerase δ were then selected on 2-deoxyglucose agar plates with hygromycin B. The pNP-lactoside hydrolyzing activities of mutants were 2 to 5-fold higher than the parent in liquid medium containing glucose. Notably, the amino acid sequence of cre1, a key gene involved in glucose repression, was identical in the mutant and parent strains, and further, the cre1 expression levels was not abolished in the mutant. Taken together, these results demonstrate that the strains of T. reesei generated by disparity mutagenesis are glucose de-repressed variants that contain mutations in yet-unidentified factors other than cre1.

  8. Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice

    Directory of Open Access Journals (Sweden)

    Postina Rolf

    2009-02-01

    Full Text Available Abstract Background In a transgenic mouse model of Alzheimer disease (AD, cleavage of the amyloid precursor protein (APP by the α-secretase ADAM10 prevented amyloid plaque formation, and alleviated cognitive deficits. Furthermore, ADAM10 overexpression increased the cortical synaptogenesis. These results suggest that upregulation of ADAM10 in the brain has beneficial effects on AD pathology. Results To assess the influence of ADAM10 on the gene expression profile in the brain, we performed a microarray analysis using RNA isolated from brains of five months old mice overexpressing either the α-secretase ADAM10, or a dominant-negative mutant (dn of this enzyme. As compared to non-transgenic wild-type mice, in ADAM10 transgenic mice 355 genes, and in dnADAM10 mice 143 genes were found to be differentially expressed. A higher number of genes was differentially regulated in double-transgenic mouse strains additionally expressing the human APP[V717I] mutant. Overexpression of proteolytically active ADAM10 affected several physiological pathways, such as cell communication, nervous system development, neuron projection as well as synaptic transmission. Although ADAM10 has been implicated in Notch and β-catenin signaling, no significant changes in the respective target genes were observed in adult ADAM10 transgenic mice. Real-time RT-PCR confirmed a downregulation of genes coding for the inflammation-associated proteins S100a8 and S100a9 induced by moderate ADAM10 overexpression. Overexpression of the dominant-negative form dnADAM10 led to a significant increase in the expression of the fatty acid-binding protein Fabp7, which also has been found in higher amounts in brains of Down syndrome patients. Conclusion In general, there was only a moderate alteration of gene expression in ADAM10 overexpressing mice. Genes coding for pro-inflammatory or pro-apoptotic proteins were not over-represented among differentially regulated genes. Even a decrease of

  9. Use of X-ray and gamma-induced mutants of lactic acid bacteria in the manufacture of dairy products

    Energy Technology Data Exchange (ETDEWEB)

    Dilanian, Z; Makarian, K; Chuprina, D [Erevan Zootechnical and Veterinary Inst. (USSR). Chair of Dairying

    1976-04-01

    With the aid of X-ray and gamma irradiation were got mutants of lactic acid bacteria, which steadily retain acquired properties. Use of proteolytically active mutant strains in the production of armianski and sovetski cheeses shortened the time of their ripening and increased their quality. Gamma-mutant strain L. lactis 1621/I-M with high phenolstability was received and antibiotic activity with respect to some representatives of pathogenic microflora of the bowels. Use of this mutant in starters for sour milk products will raise their therapeutic effect against intestinal diseases. Deep morphological changes are taking place in lactic acid bacteria under the influence of ionizing radiation.

  10. Use of X-ray and gamma-induced mutants of lactic acid bacteria in the manufacture of dairy products

    International Nuclear Information System (INIS)

    Dilanian, Z.; Makarian, K.; Chuprina, D.

    1976-01-01

    With the aid of X-ray and gamma irradiation were got mutants of lactic acid bacteria, which steadily retain acquired properties. Use of proteolytically active mutant strains in the production of armianski and sovetski cheeses shortened the time of their ripening and increased their quality. Gamma-mutant strain L. lactis 1621/I-M with high phenolstability was received and antibiotic activity with respect to some representatives of pathogenic microflora of the bowels. Use of this mutant in starters for sour milk products will raise their therapeutic effect against intestinal diseases. Deep morphological changes are taking place in lactic acid bacteria under the influence of ionizing radiation. (orig.) [de

  11. Connexin mutants and cataracts

    Directory of Open Access Journals (Sweden)

    Eric C Beyer

    2013-04-01

    Full Text Available The lens is a multicellular, but avascular tissue that must stay transparent to allow normal transmission of light and focusing of it on the retina. Damage to lens cells and/or proteins can cause cataracts, opacities that disrupt these processes. The normal survival of the lens is facilitated by an extensive network of gap junctions formed predominantly of connexin46 and connexin50. Mutations of the genes that encode these connexins (GJA3 and GJA8 have been identified and linked to inheritance of cataracts in human families and mouse lines. In vitro expression studies of several of these mutants have shown that they exhibit abnormalities that may lead to disease. Many of the mutants reduce or modify intercellular communication due to channel alterations (including loss of function or altered gating or due to impaired cellular trafficking which reduces the number of gap junction channels within the plasma membrane. However, the abnormalities detected in studies of other mutants suggest that they cause cataracts through other mechanisms including gain of hemichannel function (leading to cell injury and death and formation of cytoplasmic accumulations (that may act as light scattering particles. These observations and the anticipated results of ongoing studies should elucidate the mechanisms of cataract development due to mutations of lens connexins and abnormalities of other lens proteins. They may also contribute to our understanding of the mechanisms of disease due to connexin mutations in other tissues.

  12. Clavulanic acid production by the MMS 150 mutant obtained from wild type Streptomyces clavuligerus ATCC 27064

    Directory of Open Access Journals (Sweden)

    Eliton da Silva Vasconcelos

    2013-12-01

    Full Text Available Clavulanic acid (CA is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064. The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant.

  13. Clavulanic acid production by the MMS 150 mutant obtained from wild type Streptomyces clavuligerus ATCC 27064.

    Science.gov (United States)

    da Silva Vasconcelos, Eliton; de Lima, Vanderlei Aparecido; Goto, Leandro Seiji; Cruz-Hernández, Isara Lourdes; Hokka, Carlos Osamu

    2013-12-01

    Clavulanic acid (CA) is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064). The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant.

  14. Mechanical strain modulates age-related changes in the proliferation and differentiation of mouse adipose-derived stromal cells

    Directory of Open Access Journals (Sweden)

    Chiang Wen-Sheng

    2010-03-01

    Full Text Available Abstract Background Previous studies on the effects of aging in human and mouse mesenchymal stem cells suggest that a decline in the number and differentiation potential of stem cells may contribute to aging and aging-related diseases. In this report, we used stromal cells isolated from adipose tissue (ADSCs of young (8-10 weeks, adult (5 months, and old (21 months mice to test the hypothesis that mechanical loading modifies aging-related changes in the self-renewal and osteogenic and adipogenic differentiation potential of these cells. Results We show that aging significantly reduced the proliferation and increased the adipogenesis of ADSCs, while the osteogenic potential is not significantly reduced by aging. Mechanical loading (10% cyclic stretching, 0.5 Hz, 48 h increased the subsequent proliferation of ADSCs from mice of all ages. Although the number of osteogenic colonies with calcium deposition was increased in ADSCs subjected to pre-strain, it resulted from an increase in colony number rather than from an increase in osteogenic potential after strain. Pre-strain significantly reduced the number of oil droplets and the expression of adipogenic marker genes in adult and old ADSCs. Simultaneously subjecting ADSCs to mechanical loading and adipogenic induction resulted in a stronger inhibition of adipogenesis than that caused by pre-strain. The reduction of adipogenesis by mechanical strain was loading-magnitude dependent: loading with 2% strain only resulted in a partial inhibition, and loading with 0.5% strain could not inhibit adipogenesis in ADSCs. Conclusions We demonstrate that mechanical stretching counteracts the loss of self-renewal in aging ADSCs by enhancing their proliferation and, at the same time, reduces the heightened adipogenesis of old cells. These findings are important for the further study of stem cell control and treatment for a variety of aging related diseases.

  15. Preventive and therapeutic administration of an indigenous Lactobacillus sp. strain against Proteus mirabilis ascending urinary tract infection in a mouse model.

    Science.gov (United States)

    Fraga, Martín; Scavone, Paola; Zunino, Pablo

    2005-07-01

    Probiotics are increasingly being considered as non-pharmaceutical and safe potential alternatives for the treatment and prevention of a variety of pathologies including urinary tract infections. These are the most common infections in medical practice and are frequently treated with antibiotics, which have generated an intense selective pressure over bacterial populations. Proteus mirabilis is a common cause of urinary tract infections in catheterised patients and people with abnormalities of the urinary tract. In this work we isolated, identified and characterised an indigenous Lactobacillus murinus strain (LbO2) from the vaginal tract of a female mouse. In vitro characterisation of LbO2 included acid and bile salts tolerance, growth in urine, adherence to uroepithelial cells and in vitro antimicrobial activity. The selected strain showed interesting properties, suitable for its use as a probiotic. The ability of LbO2 to prevent and even treat ascending P. mirabilis urinary tract infection was assessed using an experimental model in the mouse. Kidney and bladder P. mirabilis counts were significantly lower in mice preventively treated with the probiotic than in non-treated mice. When LbO2 was used for therapeutic treatment, bladder counts of treated mice were significantly lower although no significant differences were detected in P. mirabilis kidney colonisation of treated and non-treated animals. These results are encouraging and prompt further research related to probiotic strains and the basis of their effects for their use in human and animal health.

  16. Neurotropism In Vitro and Mouse Models of Severe and Mild Infection with Clinical Strains of Enterovirus 71

    Directory of Open Access Journals (Sweden)

    Pin Yu

    2017-11-01

    Full Text Available Enterovirus 71 (EV71 is a common etiological agent of hand, foot, and mouth disease and fatal neurological diseases in children. The neuropathogenicity of severe EV71 infection has been documented, but studies comparing mouse models of severe and mild EV71 infection are lacking. The aim of the study was to investigate the neurovirulence of EV71 strains and the differences in serum cytokine and chemokine levels in mouse models of severe and mild EV71 infection. Nine EV71 isolates belonging to the C4 subgenogroup (proposed as genotype D displayed infectivity in human neuroblastoma SK-N-SH cells; moreover, ultrastructural observation confirmed viral particle replication. The survival rate of the severe model was 71.43% (5/7, and 60% (3/5 of the surviving severe model mice displayed sequelae of paralysis, whereas the only symptom in mild model mice was ruffled fur. Dynamic detection of serum cytokine and chemokine levels demonstrated that interleukin (IL-5, IL-13, IL-6, monocyte chemotactic protein 1 (MCP-1, and chemokine (C-C motif ligand 5 (also called Regulated upon Activation, Normal T-cell Expressed, and Secreted (CCL5/RANTES were significantly up-regulated at the early period of infection, indicating that these factors might herald a severe outcome. Our findings suggest that elevated cytokines and chemokines may have potential value as prognostic markers in mouse models.

  17. Differential chromosomal and mitochondrial DNA synthesis in temperature-sensitive mutants of Ustilago maydis

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.

    1977-01-01

    The amount and type of residual DNA synthesis was determined in eight temperature-sensitive mutants of the smut fungus Ustilago maydis after incubation at the restrictive temperature (32/sup 0/C) for eight hours. Mutants ts-220, ts-207, ts-432 and ts-346 were found to have an overall reduction in the synthesis of both nuclear and mitochondrial DNA in comparison to the wild-type. In mutants ts-20, tsd 1-1, ts-84 and pol 1-1 nuclear DNA synthesis was depressed relative to mitochondrial synthesis. The DNA-polymerase mutant pol 1-1 had persistent nuclear synthesis at about 50% of the rate of synthesis of mitochondrial DNA and similar behavior was observed in a diploid homozygous strain. Mutant ts-84 had an initial burst of DNA synthesis which was reduced for nuclear but not mitochondrial synthesis after three hours preincubation at 32/sup 0/C. tsd 1-1 and ts-20 had nuclear residual synthesis amounting to about 25% of the relative rate of mitochondrial synthesis which correlates to increasing UV sensitivity of these strains on incubation at 32/sup 0/C. A pol 1-1 ts-84 double mutant had an additive loss of nuclear DNA synthesis which indicates that the steps of replication involved may be sequential.

  18. Mouse Phenome Database (MPD)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mouse Phenome Database (MPD) has characterizations of hundreds of strains of laboratory mice to facilitate translational discoveries and to assist in selection...

  19. Mutants of Cercospora kikuchii altered in cercosporin synthesis and pathogenicity

    International Nuclear Information System (INIS)

    Upchurch, R.G.; Walker, D.C.; Rollins, J.A.; Ehrenshaft, M.; Daub, M.E.

    1991-01-01

    The authors have obtained spontaneous and UV-induced stable mutants, altered in the synthesis of cercosporin, of the fungal soybean pathogen Cercospora kikuchii. The mutants were isolated on the basis of colony color on minimal medium. The UV-induced mutants accumulated, at most, 2% of wild-type cercosporin levels on all media tested. In contrast, cercosporin accumulation by the spontaneous mutants was strongly medium regulated, occurring only on potato dextrose medium but at concentrations comparable to those produced by the wild-type strain. UV-induced mutants unable to synthesize cercosporin on any medium were unable to incite lesions when inoculated onto the soybean host. Cercosporin was reproducibly isolated from all inoculated leaves showing lesions. Although cercosporin involvement in disease has been indirectly suggested by many previous studies, this is the first report in which mutants blocked in cercosporin synthesis have been used to demonstrate that cercosporin is a crucial pathogenicity factor for this fungal genus

  20. Trade-off between bile resistance and nutritional competence drives Escherichia coli diversification in the mouse gut.

    Directory of Open Access Journals (Sweden)

    Marianne De Paepe

    2011-06-01

    Full Text Available Bacterial diversification is often observed, but underlying mechanisms are difficult to disentangle and remain generally unknown. Moreover, controlled diversification experiments in ecologically relevant environments are lacking. We studied bacterial diversification in the mammalian gut, one of the most complex bacterial environments, where usually hundreds of species and thousands of bacterial strains stably coexist. Herein we show rapid genetic diversification of an Escherichia coli strain upon colonisation of previously germ-free mice. In addition to the previously described mutations in the EnvZ/OmpR operon, we describe the rapid and systematic selection of mutations in the flagellar flhDC operon and in malT, the transcriptional activator of the maltose regulon. Moreover, within each mouse, the three mutant types coexisted at different levels after one month of colonisation. By combining in vivo studies and determination of the fitness advantages of the selected mutations in controlled in vitro experiments, we provide evidence that the selective forces that drive E. coli diversification in the mouse gut are the presence of bile salts and competition for nutrients. Altogether our results indicate that a trade-off between stress resistance and nutritional competence generates sympatric diversification of the gut microbiota. These results illustrate how experimental evolution in natural environments enables identification of both the selective pressures that organisms face in their natural environment and the diversification mechanisms.

  1. Enhancement of mouse sperm motility by trophinin-binding peptide

    Directory of Open Access Journals (Sweden)

    Park Seong

    2012-11-01

    Full Text Available Abstract Background Trophinin is an intrinsic membrane protein that forms a complex in the cytoplasm with bystin and tastin, linking it microtubule-associated motor dynein (ATPase in some cell types. Previously, we found that human sperm tails contain trophinin, bystin and tastin proteins, and that trophinin-binding GWRQ (glycine, tryptophan, arginine, glutamine peptide enhanced motility of human sperm. Methods Immunohistochemistry was employed to determine trophinin protein in mouse spermatozoa from wild type mouse, by using spermatozoa from trophinin null mutant mice as a negative control. Multivalent 8-branched GWRQ (glycine, tryptophan, arginine, glutamine peptide or GWRQ-MAPS, was chemically synthesized, purified by HPLC and its structure was confirmed by MALDI-TOF mass spectrometry. Effect of GWRQ-MAPS on mouse spermatozoa from wild type and trophinin null mutant was assessed by a computer-assisted semen analyzer (CASA. Results Anti-trophinin antibody stained the principal (central piece of the tail of wild type mouse sperm, whereas the antibody showed no staining on trophinin null sperm. Phage particles displaying GWRQ bound to the principal piece of sperm tail from wild type but not trophinin null mice. GWRQ-MAPS enhanced motility of spermatozoa from wild type but not trophinin null mice. CASA showed that GWRQ-MAPS enhanced both progressive motility and rapid motility in wild type mouse sperm. Conclusions Present study established the expression of trophinin in the mouse sperm tail and trophinin-dependent effect of GWRQ-MAPS on sperm motility. GWRQ causes a significant increase in sperm motility.

  2. A Mutant of Bacillus Subtilis with High-Producing Surfactin by Ion Beam Implantation

    International Nuclear Information System (INIS)

    Liu Qingmei; Yuan Hang; Wang Jun; Gong Guohong; Zhou Wei; Fan Yonghong; Wang Li; Yao Jianming; Yu Zengliang

    2006-01-01

    In order to generate a mutant of Bacillus subtilis with enhanced surface activity through low energy nitrogen ion beam implantation, the effects of energy and dose of ions implanted were studied. The morphological changes in the bacteria were observed by scanning electron microscope (SEM). The optimum condition of ions implantation, 20 keV of energy and 2.6x10 15 N + /cm 2 in dose, was determined. A mutant, B.s-E-8 was obtained, whose surface activity of 50-fold and 100-fold diluted cell-free Landy medium was as 5.6-fold and 17.4-fold as the wild strain. The microbial growth and biosurfactant production of both the mutant and the wild strain were compared. After purified by ultrafiltration and SOURCE 15PHE, the biosurfactant was determined to be a complex of surfactin family through analysis of electrospray ionization mass spectrum (ESI/MS) and there was an interesting finding that after the ion beam implantation the intensities of the components were different from the wild type strain

  3. Characterization of the Burkholderia mallei tonB Mutant and Its Potential as a Backbone Strain for Vaccine Development.

    Directory of Open Access Journals (Sweden)

    Tiffany M Mott

    Full Text Available In this study, a Burkholderia mallei tonB mutant (TMM001 deficient in iron acquisition was constructed, characterized, and evaluated for its protective properties in acute inhalational infection models of murine glanders and melioidosis.Compared to the wild-type, TMM001 exhibits slower growth kinetics, siderophore hyper-secretion and the inability to utilize heme-containing proteins as iron sources. A series of animal challenge studies showed an inverse correlation between the percentage of survival in BALB/c mice and iron-dependent TMM001 growth. Upon evaluation of TMM001 as a potential protective strain against infection, we found 100% survival following B. mallei CSM001 challenge of mice previously receiving 1.5 x 10(4 CFU of TMM001. At 21 days post-immunization, TMM001-treated animals showed significantly higher levels of B. mallei-specific IgG1, IgG2a and IgM when compared to PBS-treated controls. At 48 h post-challenge, PBS-treated controls exhibited higher levels of serum inflammatory cytokines and more severe pathological damage to target organs compared to animals receiving TMM001. In a cross-protection study of acute inhalational melioidosis with B. pseudomallei, TMM001-treated mice were significantly protected. While wild type was cleared in all B. mallei challenge studies, mice failed to clear TMM001.Although further work is needed to prevent chronic infection by TMM001 while maintaining immunogenicity, our attenuated strain demonstrates great potential as a backbone strain for future vaccine development against both glanders and melioidosis.

  4. Resistance of novel mouse strains different in MHC class I and the NKC domain to the development of experimental tumors

    Czech Academy of Sciences Publication Activity Database

    Fišerová, A.; Richter, J.; Čapková, K.; Bieblová, Jana; Mikyšková, Romana; Reiniš, Milan; Indrová, Marie

    2016-01-01

    Roč. 49, č. 2 (2016), s. 763-772 ISSN 1019-6439 R&D Projects: GA ČR(CZ) GA14-10100S; GA MŠk(CZ) LM2011032; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : novel mouse strains * NKC domain * TC-1/A9 * B16F10 * MCB8 * colorectal cancer * cancer development Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.079, year: 2016

  5. Lifetime Dependent Variation of Stress Hormone Metabolites in Feces of Two Laboratory Mouse Strains.

    Directory of Open Access Journals (Sweden)

    Thomas Kolbe

    Full Text Available Non-invasive measurement of stress hormone metabolites in feces has become routine practice for the evaluation of distress and pain in animal experiments. Since metabolism and excretion of glucocorticoids may be variable, awareness and adequate consideration of influencing factors are essential for accurate monitoring of adrenocortical activity. Reference values are usually provided by baselines compiled prior to the experiment and by age matched controls. The comparison of stress hormone levels between animals of different ages or between studies looking at hormone levels at the beginning and at the end of a long term study might be biased by age-related effects. In this study we analyzed fecal corticosterone metabolites (FCM during the lifetime of untreated female mice of the strains C57BL/6NCrl and Crl:CD1. For this purpose feces for each individual mouse were collected every two months over a period of 24 hours, at intervals of four hours, until the age of 26 months. Results of the study revealed that age of the animals had a significant impact on the level and circadian rhythm of stress hormone metabolites. Furthermore, long-term observation of mice revealed a strain specific excretion profile of FCM influenced by strong seasonal variability.

  6. Production of the bioactive compounds violacein and indolmycin is conditional in a maeA mutant of Pseudoalteromonas luteoviolacea S4054 lacking the malic enzyme

    Directory of Open Access Journals (Sweden)

    Mariane S. Thøgersen

    2016-09-01

    Full Text Available It has previously been reported that some strains of the marine bacterium Pseudoalteromonas luteoviolacea produce the purple bioactive pigment violacein as well as the antibiotic compound indolmycin, hitherto only found in Streptomyces. The purpose of the present study was to determine the relative role of each of these two compounds as antibacterial compounds in P. luteoviolacea S4054. Using Tn10 transposon mutagenesis, a mutant strain that was significantly reduced in violacein production in mannose-containing substrates was created. Full genome analyses revealed that the vio-biosynthetic gene cluster was not interrupted by the transposon; instead the insertion was located to the maeA gene encoding the malic enzyme. Supernatant of the mutant strain inhibited Vibrio anguillarum and Staphylococcus aureus in well diffusion assays and in MIC assays at the same level or even more pronounced as the wild type strain. The mutant strain killed V. anguillarum in co-culture experiments as efficiently as the wild type. Using UHPLC-UV/Vis analyses, we quantified violacein and indolmycin, and the mutant strain only produced 7-10% the amount of violacein compared to the wildtype strain. In contrast, the amount of indolmycin produced by the mutant strain was about 300% that of the wildtype. Since inhibition of V. anguillarum and S. aureus by the mutant strain was similar to that of the wild type, it is concluded that violacein is not the major antibacterial compound in P. luteoviolacea. We furthermore propose that production of violacein and indolmycin may be metabolically linked and that yet unidentified antibacterial compound(s may be play a role in the antibacterial activity of P. luteoviolacea.

  7. Absence of linkage of apparently single gene mediated ADHD with the human syntenic region of the mouse mutant coloboma

    Energy Technology Data Exchange (ETDEWEB)

    Hess, E.J.; Rogan, P.K.; Domoto, M. [Pennsylvania State Univ. College of Medicine, Hershey, PA (United States)] [and others

    1995-12-18

    Attention deficit disorder (ADHD) is a complex biobehavioral phenotype which affects up to 8% of the general population and often impairs social, academic, and job performance. Its origins are heterogeneous, but a significant genetic component is suggested by family and twin studies. The murine strain, coloboma, displays a spontaneously hyperactive phenotype that is responsive to dextroamphetamine and has been proposed as a genetic model for ADHD. Coloboma is a semi-dominant mutation that is caused by a hemizygous deletion of the SNAP-25 and other genes on mouse chromosome 2q. To test the possibility that the human homolog of the mouse coloboma gene(s) could be responsible for ADHD, we have carried out linkage studies with polymorphic markers in the region syntenic to coloboma (20p11-p12). Five families in which the pattern of inheritance of ADHD appears to be autosomal dominant were studied. Segregation analysis of the traits studied suggested that the best fitting model was a sex-influenced, single gene, Mendelian pattern. Several genetic models were evaluated based on estimates of penetrance, phenocopy rate, and allele frequency derived from our patient population and those of other investigators. No significant linkage was detected between the disease locus and markers spanning this chromosome 20 interval. 39 refs., 2 figs., 1 tab.

  8. Molecular Analysis of Asymptomatic Bacteriuria Escherichia coli Strain VR50 Reveals Adaptation to the Urinary Tract by Gene Acquisition

    DEFF Research Database (Denmark)

    Beatson, Scott A.; Ben Zakour, Nouri L.; Totsika, Makrina

    2015-01-01

    the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has...... a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50...... mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability...

  9. Expression of Caytaxin protein in Cayman Ataxia mouse models correlates with phenotype severity.

    Directory of Open Access Journals (Sweden)

    Kristine M Sikora

    Full Text Available Caytaxin is a highly-conserved protein, which is encoded by the Atcay/ATCAY gene. Mutations in Atcay/ATCAY have been identified as causative of cerebellar disorders such as the rare hereditary disease Cayman ataxia in humans, generalized dystonia in the dystonic (dt rat, and marked motor defects in three ataxic mouse lines. While several lines of evidence suggest that Caytaxin plays a critical role in maintaining nervous system processes, the physiological function of Caytaxin has not been fully characterized. In the study presented here, we generated novel specific monoclonal antibodies against full-length Caytaxin to examine endogenous Caytaxin expression in wild type and Atcay mutant mouse lines. Caytaxin protein is absent from brain tissues in the two severely ataxic Atcay(jit (jittery and Atcay(swd (sidewinder mutant lines, and markedly decreased in the mildly ataxic/dystonic Atcay(ji-hes (hesitant line, indicating a correlation between Caytaxin expression and disease severity. As the expression of wild type human Caytaxin in mutant sidewinder and jittery mice rescues the ataxic phenotype, Caytaxin's physiological function appears to be conserved between the human and mouse orthologs. Across multiple species and in several neuronal cell lines Caytaxin is expressed as several protein isoforms, the two largest of which are caused by the usage of conserved methionine translation start sites. The work described in this manuscript presents an initial characterization of the Caytaxin protein and its expression in wild type and several mutant mouse models. Utilizing these animal models of human Cayman Ataxia will now allow an in-depth analysis to elucidate Caytaxin's role in maintaining normal neuronal function.

  10. Mutant IDH1 Promotes Glioma Formation In Vivo

    Directory of Open Access Journals (Sweden)

    Beatrice Philip

    2018-05-01

    Full Text Available Summary: Isocitrate dehydrogenase 1 (IDH1 is the most commonly mutated gene in grade II–III glioma and secondary glioblastoma (GBM. A causal role for IDH1R132H in gliomagenesis has been proposed, but functional validation in vivo has not been demonstrated. In this study, we assessed the role of IDH1R132H in glioma development in the context of clinically relevant cooperating genetic alterations in vitro and in vivo. Immortal astrocytes expressing IDH1R132H exhibited elevated (R-2-hydroxyglutarate levels, reduced NADPH, increased proliferation, and anchorage-independent growth. Although not sufficient on its own, IDH1R132H cooperated with PDGFA and loss of Cdkn2a, Atrx, and Pten to promote glioma development in vivo. These tumors resembled proneural human mutant IDH1 GBM genetically, histologically, and functionally. Our findings support the hypothesis that IDH1R132H promotes glioma development. This model enhances our understanding of the biology of IDH1R132H-driven gliomas and facilitates testing of therapeutic strategies designed to combat this deadly disease. : Philip et al. show that mutant IDH1 cooperates with PDGFA and loss of Cdkn2a, Atrx, and Pten to promote gliomagenesis in vivo in a mouse model of glioma. These tumors resemble proneural human mutant IDH1 glioblastoma and exhibit enhanced sensitivity to PARP inhibition in combination with chemotherapy. Keywords: IDH1, Cdkn2a, Atrx, Pten, glioma, mouse model, RCAS/TVA

  11. Analysis of an ordered, comprehensive STM mutant library in infectious Borrelia burgdorferi: insights into the genes required for mouse infectivity.

    Directory of Open Access Journals (Sweden)

    Tao Lin

    Full Text Available The identification of genes important in the pathogenesis of Lyme disease Borrelia has been hampered by exceedingly low transformation rates in low-passage, infectious organisms. Using the infectious, moderately transformable B. burgdorferi derivative 5A18NP1 and signature-tagged versions of the Himar1 transposon vector pGKT, we have constructed a defined transposon library for the efficient genome-wide investigation of genes required for wild-type pathogenesis, in vitro growth, physiology, morphology, and plasmid replication. To facilitate analysis, the insertion sites of 4,479 transposon mutants were determined by sequencing. The transposon insertions were widely distributed across the entire B. burgdorferi genome, with an average of 2.68 unique insertion sites per kb DNA. The 10 linear plasmids and 9 circular plasmids had insertions in 33 to 100 percent of their predicted genes. In contrast, only 35% of genes in the 910 kb linear chromosome had incapacitating insertions; therefore, the remaining 601 chromosomal genes may represent essential gene candidates. In initial signature-tagged mutagenesis (STM analyses, 434 mutants were examined at multiple tissue sites for infectivity in mice using a semi-quantitative, Luminex-based DNA detection method. Examples of genes found to be important in mouse infectivity included those involved in motility, chemotaxis, the phosphoenolpyruvate phosphotransferase system, and other transporters, as well as putative plasmid maintenance genes. Availability of this ordered STM library and a high-throughput screening method is expected to lead to efficient assessment of the roles of B. burgdorferi genes in the infectious cycle and pathogenesis of Lyme disease.

  12. Unusual Δ7,12,19 C35:3 Alkenone Produced by the Mutant Emiliania huxleyi strain CCMP2758 in Culture

    Science.gov (United States)

    Zheng, Y.; Huang, Y.; Zhang, Y.; Dillon, J. T.

    2015-12-01

    Alkenones with chain length ranging from C37 to C40 are highly specific biomarkers for certain haptophyte algae in ocean and lake sediments and have been widely used for paleoclimate studies. Short chain alkenones (e.g., C35 and C36) have been found in environmental and culture samples but the origin and structures of these compounds are not fully understood. The benchmark marine alkenone producer, Emiliania huxleyi CCMP2758 strain (the mutant of strain CCMP1742, NEPCC55a) was reported to make 35:2 alkenone when cultured at 15 °C (Prahl et al., 2006). Here we show, when this strain is cultured at lower temperatures (e.g., 4°C), CCMP2758 produces large amount of 35:3 alkenone with unusual double bond positions of Δ7,12,19. We determined the double bond positions of the C35:3 methyl ketonee based on GC-MS analysis of cyclobutylimine derivatives and dimethyl disulfide derivatives respectively, and provide the first temperature calibrations based on the unsaturation ratios of C35 alkenones. Previous studies have found 35:2 alkenone with three methylene interruption in the Black Sea sediment, but it is the first time that an alkenone with a mixed three and five methylene interruption is found. The discovery of short chain alkenones with unusual double bond positions may shed new light to alkenone biosynthesis.

  13. Low Dose Vaccination with Attenuated Francisella tularensis Strain SchuS4 Mutants Protects against Tularemia Independent of the Route of Vaccination

    Science.gov (United States)

    Rockx-Brouwer, Dedeke; Chong, Audrey; Wehrly, Tara D.; Child, Robert; Crane, Deborah D.

    2012-01-01

    Tularemia, caused by the Gram-negative bacterium Francisella tularensis, is a severe, sometimes fatal disease. Interest in tularemia has increased over the last decade due to its history as a biological weapon. In particular, development of novel vaccines directed at protecting against pneumonic tularemia has been an important goal. Previous work has demonstrated that, when delivered at very high inoculums, administration of live, highly attenuated strains of virulent F. tularensis can protect against tularemia. However, lower vaccinating inoculums did not offer similar immunity. One concern of using live vaccines is that the host may develop mild tularemia in response to infection and use of high inoculums may contribute to this issue. Thus, generation of a live vaccine that can efficiently protect against tularemia when delivered in low numbers, e.g. tularemia when delivered at concentrations of approximately 50 or fewer bacteria. Attenuated strains for use as vaccines were selected by their inability to efficiently replicate in macrophages in vitro and impaired replication and dissemination in vivo. Although all strains were defective for replication in vitro within macrophages, protective efficacy of each attenuated mutant was correlated with their ability to modestly replicate and disseminate in the host. Finally, we demonstrate the parenteral vaccination with these strains offered superior protection against pneumonic tularemia than intranasal vaccination. Together our data provides proof of principle that low dose attenuated vaccines may be a viable goal in development of novel vaccines directed against tularemia. PMID:22662210

  14. Tissue-specific metabolic activation and mutagenicity of 3-nitrobenzanthrone in MutaMouse.

    Science.gov (United States)

    Chen, Guosheng; Gingerich, John; Soper, Lynda; Douglas, George R; White, Paul A

    2008-10-01

    3-Nitrobenzanthrone (3-NBA) is a mutagen and suspected human carcinogen detected in diesel exhaust, airborne particulate matter, and urban soil. We investigated the tissue specific mutagenicity of 3-NBA at the lacZ locus of transgenic MutaMouse following acute single dose or 28-day repeated-dose oral administration. In the acute high dose (50 mg/kg) exposure, increased lacZ mutant frequency was observed in bone marrow and colonic epithelium, but not in liver and bladder. In the repeated-dose study, a dose-dependent increase in lacZ mutant frequency was observed in bone marrow and liver (2- and 4-fold increase above control), but not in lung or intestinal epithelium. In addition, a concentration-dependent increase in mutant frequency (8.5-fold above control) was observed for MutaMouse FE1 lung epithelial cells exposed in vitro. 1-Nitropyrene reductase, 3-NBA reductase, and acetyltransferase activities were measured in a variety of MutaMouse specimens in an effort to link metabolic activation and mutagenicity. High 3-NBA nitroreductase activities were observed in lung, liver, colon and bladder, and detectable N-acetyltransferase activities were found in all tissues except bone marrow. The relatively high 3-NBA nitroreductase activity in MutaMouse tissues, as compared with those in Salmonella TA98 and TA100, suggests that 3-NBA is readily reduced and activated in vivo. High 3-NBA nitroreductase levels in liver and colon are consistent with the elevated lacZ mutant frequency values, and previously noted inductions of hepatic DNA adducts. Despite an absence of induced lacZ mutations, the highest 3-NBA reductase activity was detected in lung. Further studies are warranted, especially following inhalation or intratracheal exposures. Published 2008 Wiley-Liss, Inc.

  15. Uptake of 51Cr-SRBC in low- and high-responder mouse strains (C57BL/10ScSn/A/J mouse strains)

    International Nuclear Information System (INIS)

    Rihova, B.; Vetvicka, V.

    1984-01-01

    51 Cr-SRBC (sheep red blood cells) antigen clearance was studied in two strains of mice differing in the capacity to react with IgG antibody formation. In the B10 strain which is a poor IgG anti SRBC producer, before immunization 80.3% of the injected radioactivity was taken up by the liver, whereas after primary stimulation the uptake was only 31.1%. This value further decreases to 22.8% after secondary stimulation. The well IgG antibody producing A/J strain accumulated less antigen in the liver before immunization than the poorly responding strain (69.8%). On the 10th day after primary immunization a higher uptake of the radioactivity in the liver was shown than in the poor responder strain (53.8%) and this difference was even more pronounced after the secondary stimulation (49.6%). Interaction between peritoneal macrophages of the B10 and A/J strains before and after immunization with SRBC antigen was assessed from the formation of rosettes. Before immunization the low-responder strain B10 exhibited a three times higher level of rosette-forming macrophages (RFM), i.e. 6.1% than the high-responder strain A/J (2.0%). However, after immunization the RFM level in the A/J strain increased sevenfold (13.5%) whereas that in the low-responder strain B10 remained unaffected. These results suggested a role of macrophage population in the control of IgG antibody response. (author)

  16. Weaver mutant mouse cerebellar granule cells respond normally to chronic depolarization

    DEFF Research Database (Denmark)

    Bjerregaard, Annette; Mogensen, Helle Smidt; Hack, N

    1997-01-01

    We studied the effects of chronic K(+)-induced membrane depolarization and treatment with N-methyl-D-aspartate (NMDA) on cerebellar granule cells (CGCs) from weaver mutant mice and non-weaver litter-mates. The weaver mutation is a Gly-to-Ser substitution in a conserved region of the Girk2 G prote...

  17. Ultraviolet light-induced mutants of Streptococcus lactis subspecies diacetylactis with enhanced acid- or flavor-producing abilities

    International Nuclear Information System (INIS)

    Kuila, R.K.; Ranganathan, B.

    1978-01-01

    A strain of Streptococcus lactis subspecies diacetylactis S 1 isolated from fresh milk was exposed to 7200 ergs/mm 2 of ultraviolet radiation. Over 8100 colonies surviving from 7.4 x 10 6 cells exposed to radiation were screened on citrate agar for detection and isolation of mutants with increased flavor and/or acid production. Of the survivors, 960 were type-I mutants that exhibited clear zone on citrate agar after 18 h (presumed to be high diacetyl producers), and 288 were type-II mutants which did not exhibit clear zones on citrate agar for up to 72 h (high acid producers). Type-II mutants produced an average .93 percent titratable acidity which was 34 percent more than the .69 percent of the parent. Reduction in titratable acidity (56 percent less) was considerable in type-I mutants, compared with the parent culture. Diacetyl + acetoin production by type-I mutants was 137.9 ppM which has 4.5 times more than that of the parental strain. Acetaldehyde production in the mutants varied from 1.5 to 34.5 ppM (parent culture 3.0 ppM). The mutants with increased acid and high acetoin plus diacetyl production were stable after 50 subcultures in milk

  18. Production of Trichoderma strains with pesticide-polyresistance by mutagenesis and protoplast fusion.

    Science.gov (United States)

    Hatvani, Lóránt; Manczinger, László; Kredics, László; Szekeres, András; Antal, Zsuzsanna; Vágvölgyi, Csaba

    2006-01-01

    The sensitivity of two cold-tolerant Trichoderma strains belonging to the species T. harzianum and T. atroviride was determined to a series of pesticides widely used in agriculture. From the 16 pesticides tested, seven fungicides: copper sulfate, carbendazim, mancozeb, tebuconazole, imazalil, captan and thiram inhibited colony growth of the test strains significantly with minimal inhibitory concentrations of 300, 0.4, 50, 100, 100, 100 and 50 microg/ml, respectively. Mutants resistant to carbendazim and tebuconazole were produced from both wild type strains by means of UV-mutagenesis. The cross-resistance capabilities and in vitro antagonistic properties of the mutants were determined. Carbendazim-resistant mutants showed total cross-resistance to benomyl and thiabendazole at a concentration of 20 microg/ml. Intraspecific protoplast fusion was carried out between carbendazim- and tebuconazole-resistant mutants of both parental strains, and putative haploid recombinants with stable resistance to both pesticides were produced in the case of T. atroviride. These pesticide-polyresistant progenies are potential candidates for application in an integrated pest management system.

  19. Strain improvement of Gluconacetobacter xylinus NCIM 2526 for ...

    African Journals Online (AJOL)

    The present investigation demonstrates the effectiveness of ultraviolet (UV) radiation and ethyl methanesulfonate (EMS) in strain improvement for enhanced cellulose production by Gluconacetobacter xylinus NCIM 2526. The mutants were compared with wild type for cellulose production. UV mutants GHUV3, GHUV4, and ...

  20. A knock-in/knock-out mouse model of HSPB8-associated distal hereditary motor neuropathy and myopathy reveals toxic gain-of-function of mutant Hspb8.

    Science.gov (United States)

    Bouhy, Delphine; Juneja, Manisha; Katona, Istvan; Holmgren, Anne; Asselbergh, Bob; De Winter, Vicky; Hochepied, Tino; Goossens, Steven; Haigh, Jody J; Libert, Claude; Ceuterick-de Groote, Chantal; Irobi, Joy; Weis, Joachim; Timmerman, Vincent

    2018-01-01

    Mutations in the small heat shock protein B8 gene (HSPB8/HSP22) have been associated with distal hereditary motor neuropathy, Charcot-Marie-Tooth disease, and recently distal myopathy. It is so far not clear how mutant HSPB8 induces the neuronal and muscular phenotypes and if a common pathogenesis lies behind these diseases. Growing evidence points towards a role of HSPB8 in chaperone-associated autophagy, which has been shown to be a determinant for the clearance of poly-glutamine aggregates in neurodegenerative diseases but also for the maintenance of skeletal muscle myofibrils. To test this hypothesis and better dissect the pathomechanism of mutant HSPB8, we generated a new transgenic mouse model leading to the expression of the mutant protein (knock-in lines) or the loss-of-function (functional knock-out lines) of the endogenous protein Hspb8. While the homozygous knock-in mice developed motor deficits associated with degeneration of peripheral nerves and severe muscle atrophy corroborating patient data, homozygous knock-out mice had locomotor performances equivalent to those of wild-type animals. The distal skeletal muscles of the post-symptomatic homozygous knock-in displayed Z-disk disorganisation, granulofilamentous material accumulation along with Hspb8, αB-crystallin (HSPB5/CRYAB), and desmin aggregates. The presence of the aggregates correlated with reduced markers of effective autophagy. The sciatic nerve of the homozygous knock-in mice was characterized by low autophagy potential in pre-symptomatic and Hspb8 aggregates in post-symptomatic animals. On the other hand, the sciatic nerve of the homozygous knock-out mice presented a normal morphology and their distal muscle displayed accumulation of abnormal mitochondria but intact myofiber and Z-line organisation. Our data, therefore, suggest that toxic gain-of-function of mutant Hspb8 aggregates is a major contributor to the peripheral neuropathy and the myopathy. In addition, mutant Hspb8 induces

  1. ISOELECTRIC FOCUSING OF MEMBRANE PROTEINS OF PROBIOTIC B. COAGULANS AND ITS BACTERIOPHAGE RESISTANT MUTANTS

    Directory of Open Access Journals (Sweden)

    Kavita Rajesh Pandey

    2016-09-01

    Full Text Available Bacteriophages are the most notorious type of infection in the probiotic and dairy fermentations. Two phage resistant mutants viz. B. co PIII and B. co MIII (B. coagulans mutants PIII and MIII obtained in previous studies (Dubey and Vakil, 2010, were further characterized for their protein profile in comparison with the parental probiotic strain –B. coagulans. The cell lysates were subjected to ultra-centrifugation and the purified membrane fractions were resolved using 2D gel electrophoresis. The Isoelectric focussing showed 187, 202 and 154 protein spots for the parental strain, mutant B. co PIII and mutant B. co MIII, respectively. Ten and 18 protein spots were missing as compared to parent for mutants B.co PIII and B.co MIII whereas there were 21 and 14 new spots noticed for these two mutants. Eight membrane proteins present only in the phage sensitive parental culture could be tentatively identified by comparison with the complete proteome of B. coagulans by use of UniprotKB and then CELLO database It is quite likely that some of these identified membrane proteins may be also functioning as receptors for phage adsorption followed by entry of nucleic acid into the phage sensitive host cell.

  2. Improved ethanol fermentation of a yeast mutant by C-12 ion beam irradiation

    International Nuclear Information System (INIS)

    Lu Dong; Liu Qingfang; Wu Xin; Wang Ying; Wang Jufang; Ma Shuang; Li Wenjian

    2010-01-01

    The yeast Saccharomyces cerevisiae YY was irradiated with 100 MeV/u 12 C 6+ ion beams. After screening,we obtained the mutant strain C03A of high ethanol yield. The influence of fermentation temperature, pH and concentration of sugar on ethanol fermentation were studied. The range analysis and analysis of variance were applied for the result of orthogonal experiments. The optimal ethanol fermentation conditions are: fermentation temperature 35 degree C, pH value 5.0, and sugar concentration 24%. The results of fermentation in the 10 L bioreactor showed that the ethanol fermentation of the mutant strain could be completed in 36 hours, the production of ethanol was to 13.2%(V/V), which means 12 hours faster and 1.6%(V /V) ethanol yield higher than original strain. (authors)

  3. [Mutant prevention concentrations of antibacterial agents to ocular pathogenic bacteria].

    Science.gov (United States)

    Liang, Qing-Feng; Wang, Zhi-Qun; Li, Ran; Luo, Shi-Yun; Deng, Shi-Jing; Sun, Xu-Guang

    2009-01-01

    To establish a method to measure mutant prevention concentration (MPC) in vitro, and to measure MPC of antibacterial agents for ocular bacteria caused keratitis. It was an experimental study. Forty strains of ocular bacteria were separated from cornea in Beijing Institute of Ophthalmology, which included 8 strains of Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Pseudomonas aeruginosa and Klebsiella pneumoniae respectively. The minimal inhibitory concentration (MIC) of the levofloxacin (LVF), ofloxacin (OFL), ciprofloxacin (CIP), norfloxacin (NFL), tobramycin (TOB) and chloromycetin (CHL) were determined by agar dilution method from National Committee of Clinical Laboratory Standard (NCCLS). The MPC were measured by accumulate-bacterial methods with bacterial population inoculated more than 1.2 x 10(10) colony forming units per milliliter with Mueller-Hinton broth and tryptic soy agar plate. With the software of SPSS 11.0, the datum such as the range of MIC, MPC, MIC90 and MPC90 were calculated, and the selection index (MPC90/ MI90) and mutant selection window (MSW) were obtained. The MI90 of LVF and TOB (4 mg/L) to Staphylococcus aureus strains were the lowest. CIP showed the lowest MIC90 (0.25 mg/L) to Pseudomonas aeruginosa among six kinds of antibacterial agents. The MIC90 of LVF to Staphylococcus epidermidis (256 mg/L), Streptococcus pneumoniae (1 mg/L) and Klebsiella pneumoniae (0.25 mg/L) were lower than other antibacterial agents. The MPC90, MSW and the MPC90/MIC90 of levofloxacin showed lower values compared with other antibacterial medicines. From all the datum, the MIC90 of CHL was the highest and the activity was the weakest. Although the activity of LVF was higher to every kind of bacteria, CIP had the highest activity antibacterial to Pseudomonas aeruginosa. The capacity of CHL and TOB was weaker than Quinolones for restricting resistant mutants on ocular bacteria. LVF had the strongest capacity for restricting resistant

  4. A yeast mutant specifically sensitive to bifunctional alkylation

    International Nuclear Information System (INIS)

    Ruhland, A.; Kircher, M.; Wilborn, F.; Brendel, M.

    1981-01-01

    A mutation that specifically confers sensitivity to bi- and tri-functional alkylating agents is presented. No or little cross-sensitivity to radiation or monofunctional agents could be detected. Sensitivity does not seem to be due to preferential alkylation of mutant DNA as parent and mutant strain exhibit the same amount of DNA alkylation and the same pattern of DNA lesions including interstrand crosslinks. The mutation is due to a defect in a nuclear gene which has been designated SNM1 (sensitive to nitrogen mustard); it may control an important step in the repair of DNA interstrand crosslinks (orig.(AJ)

  5. Several Classical Mouse Inbred Strains, Including DBA/2, NOD/Lt, FVB/N, and SJL/J, Carry a Putative Loss-of-Function Allele of Gpr84

    OpenAIRE

    Perez, Carlos J.; Dumas, Aline; Vallières, Luc; Guénet, Jean-Louis; Benavides, Fernando

    2013-01-01

    G protein–coupled receptor 84 (GPR84) is a 7-transmembrane protein expressed on myeloid cells that can bind to medium-chain free fatty acids in vitro. Here, we report the discovery of a 2-bp frameshift deletion in the second exon of the Gpr84 gene in several classical mouse inbred strains. This deletion generates a premature stop codon predicted to result in a truncated protein lacking the transmembrane domains 4-7. We sequenced Gpr84 exon 2 from 58 strains representing different groups in th...

  6. A Yersinia pestis tat mutant is attenuated in bubonic and small-aerosol pneumonic challenge models of infection but not as attenuated by intranasal challenge.

    Directory of Open Access Journals (Sweden)

    Joel Bozue

    Full Text Available Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge.

  7. Deoxyribonucleic acid repair in Escherichia coli mutants deficient in the 5'----3' exonuclease activity of deoxyribonucleic acid polymerase I and exonuclease VII

    International Nuclear Information System (INIS)

    Chase, J.W.; Masker, W.E.

    1977-01-01

    A series of Escherichia coli strains deficient in the 5'----3' exonuclease activity associated with deoxyribonucleic acid (DNA) polymerase I (exonuclease VI) and exonuclease VII has been constructed. Both of these enzymes are capable of pyrimidine dimer excision in vitro. These strains were examined for conditional lethality, sensitivity to ultraviolet (UV) and X-irradiation, postirradiation DNA degradation, and ability to excise pyrimidine dimers. It was found that strains deficient in both exonuclease VI (polAex-) and exonuclease VII (xseA-) are significantly reduced in their ability to survive incubation at elevated temperature (43 degrees C) beyond the reduction previously observed for the polAex single mutants. The UV and X-ray sensitivity of the exonuclease VI-deficient strains was not increased by the addition of the xseA7 mutation. Mutants deficient in both enzymes are about as efficient as wild-type strains at excising dimers produced by up to 40 J/m2 UV. At higher doses strains containing only polAex- mutations show reduced ability to excise dimers; however, the interpretation of dimer excision data at these doses is complicated by extreme postirradiation DNA degradation in these strains. The additional deficiency in the polAex xseA7 double-mutant strains has no significant effect on either postirradiation DNA degradation or the apparent deficiency in dimer excision at high UV doses observed in polAex single mutants

  8. Characterization of MMS-sensitive mutants of Neurospora crassa

    Energy Technology Data Exchange (ETDEWEB)

    DeLange, A.M.; Mishra, N.C.

    1982-01-01

    Several MMS-sensitive mutants of Neurospora crassa were compared with the wild-type strain for their relative sensitivities to UV, X-ray, and histidine. They were also compared for the frequency of spontaneous mutation at the loci which confer resistance to p-fluorophenylalanine. The mutants were also examined for possible defects in meiotic behavior in homozygous crosses and for any change in the inducible DNA salvage pathways. On the basis of these characterizations, the present MMS-sensitive mutants of Neurospora can be placed into three groups. On the basis of data presented, the MMS sensitivity of the first group mutants cannot be ascertained to arise from a defect in the DNA repair pathways; instead, it may stem from altered cell permeability or other pleotropic effects of the mus mutations. However, it can be suggested that the second and third group of mus mutants may indeed result from a defect in the DNA repair pathways controlled by the mus genes; this conclusion is based on their cross-sensitivity to a number of DNA-damaging agents such as MMS, UV and/or X-rays, high frequencies of spontaneous mutation and defects in meiotic behavior.

  9. The Role of Epithelial Stat3 in Amelogenesis during Mouse Incisor Renewal.

    Science.gov (United States)

    Zhang, Bin; Meng, Bo; Viloria, Edward; Naveau, Adrien; Ganss, Bernhard; Jheon, Andrew H

    2018-03-16

    The aim of this study was to evaluate the role of epithelial signal transducer and activator of transcription 3 (STAT3) in mouse incisor amelogenesis. Since Stat3 is expressed in the epithelial component of developing and adult mouse teeth, we generated and analyzed Krt14Cre/+;Stat3fl/fl mutant mice in which Stat3 was inactivated in epithelia including ameloblast progenitors and ameloblasts, the cells responsible for enamel formation. Histological analysis showed little enamel matrix in mutant incisors compared to controls. Delayed incisor enamel mineralization was demonstrated using micro-computed X-ray tomography analysis and was supported by an increase in the pre-expression distance of enamel-enriched proteins such as amelogenin, ameloblastin, and kallikrein-4. Lastly, scanning electron microscopy analysis showed little enamel mineralization in mutant incisors underneath the mesial root of the 1st molar; however, the micro-architecture of enamel mineralization was similar in the erupted portion of control and mutant incisors. Taken together, our findings demonstrate for the first time that the absence of epithelial Stat3 in mice leads to delayed incisor amelogenesis. © 2018 S. Karger AG, Basel.

  10. Temporal factors in the extinction of fear in inbred mouse strains differing in extinction efficacy.

    Science.gov (United States)

    MacPherson, Kathryn; Whittle, Nigel; Camp, Marguerite; Gunduz-Cinar, Ozge; Singewald, Nicolas; Holmes, Andrew

    2013-07-05

    Various neuropsychiatric conditions, including posttraumatic stress disorder (PTSD), are characterized by deficient fear extinction, but individuals differ greatly in risk for these. While there is growing evidence that fear extinction is influenced by certain procedural variables, it is unclear how these influences might vary across individuals and subpopulations. To model individual differences in fear extinction, prior studies identified a strain of inbred mouse, 129S1/SvImJ (S1), which exhibits a profound deficit in fear extinction, as compared to other inbred strains, such as C57BL/6J (B6). Here, we assessed the effects of procedural variables on the impaired extinction phenotype of the S1 strain and, by comparison, the extinction-intact B6 strain. The variables studied were 1) the interval between conditioning and extinction, 2) the interval between cues during extinction training, 3) single-cue exposure before extinction training, and 4) extinction of a second-order conditioned cue. Conducting extinction training soon after ('immediately') conditioning attenuated fear retrieval in S1 mice and impaired extinction in B6 mice. Spacing cue presentations with long inter-trial intervals during extinction training augmented fear in S1 and B6 mice. The effect of spacing was lost with one-trial fear conditioning in B6, but not S1 mice. A single exposure to a conditioned cue before extinction training did not alter extinction retrieval, either in B6 or S1 mice. Both the S1 and B6 strains exhibited robust second-order fear conditioning, in which a cue associated with footshock was sufficient to serve as a conditioned exciter to condition a fear association to a second cue. B6 mice extinguished the fear response to the second-order conditioned cue, but S1 mice failed to do so. These data provide further evidence that fear extinction is strongly influenced by multiple procedural variables and is so in a highly strain-dependent manner. This suggests that the efficacy of

  11. Continuous ethanol production from sugar beet molasses using an osmotolerant mutant strain of zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.C.; Baratti, J.C. (Univ. de Provence, Marseille (France). Centre National de la Recherche Scientifique)

    1992-01-25

    In conventional alcohol fermentation processes using yeast species, the substrate cost represents a major fraction of the total production cost. Therefore, it may be very attractive to use the bacterium Zymomonas mobilis, since it has shown higher ethanol yields than yeasts when grown on a glucose-based medium. A report is made on the use of mutant strain of Zymomonas mobilis for ethanol production from hydrolyzed sugar beet molasses in a two-stage continuous culture which showed high ethanol yield and an ethanol concentration sufficiently high for economical recovery. A single stage continuous culture was first operated in an attempt to reduce the formation of sorbitol. Further on, a second fermentor was added with additional substrate feeding to increase the effluent ethanol concentration. An ethanol concentration of 59.9g/l was obtained at 97% sugar conversion and at high ethanol yield. The volumetric ethanol productivity was superior to that of batch fermentation but inferior to that of a single-stage continuous system with the same medium. However, the ethanol concentration was increased to a level acceptable for economical recovery. 18 refs., 3 figs., 5 tabs.

  12. Characterisation of a radiation-resistant strain of bacillus thuringiensis subsp. Aizawai with improved toxicity to larval plutella xylostella

    International Nuclear Information System (INIS)

    Mahadi, N.M.; Boo, J.M.L.; Jangi, M.S.

    1989-01-01

    A radiation-resistant strain of Bacillus thuringiensis subsp. Aizawai which was previously shown to be more toxic against larval Plutell xylostella was further characterized. Some of the growth characteristics of the mutant strain were quite different from those of the parent strain. In shake flask culture, its lag period was shorter and its cell yield was lower. The growth rate, however, was the same as that of the parent. Electron microscope studies show that the insecticidal parasporal crystals from the mutant strain are significantly bigger than those produced by the parent strain. The average length and width of the crystals were 1.25 and 0.53 um respectively whereas those of the parent were 0.87 and 0.35 um, respectively. The crystals from the mutant strain were also more toxic. The LC 50 was 0.30 ug crystal protein per ml as against 0.66 ug crystal protein per ml for those from the parent strain. Protein profile of the crystals obtained with SDS-PA gel electrophoresis showed that the mutant strain produced an additional polypeptide of 143 KDa polypeptide. The mutant strain also has an additional high molecular weight plasmid. The improved toxicity may have been brought about by a number of factors including an alteration in the regulatory mechanism that control the synthesis of the polypeptides that make up the crystals. (Auth.). 5 figs.; 21 refs.; 2 tabs

  13. Ultra-violet-resistant mutants of Bacillus thuringiensis

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D R; Karunakaran, V [Polytechnic of Central London (UK). Faculty of Engineering and Science, School of Biological and Health Sciences; Burges, H D [Institute of Horticultural Research, Littlehampton (UK); Hacking, A J [Reading Univ. (UK). Dextra Labs.Ltd.

    1991-06-01

    One of the main disadvantages of using Bacillus thuringiensis as an insecticide is that the spore and crystal preparations applied to foliage are readily washed away by rain and are inactivated by sunlight. Spores from some strains of B. thuringiensis have been shown to be highly sensitive to u.v. light. This study has demonstrated how mutants with increased resistance to u.v., isolated by successive rounds of u.v. irradiation, and additionally with increased specific pathogenicity can be isolated. These techniques should be applied to strains that are frequently used in the industrial production of B.thuringiensis toxin. (author).

  14. Ultra-violet-resistant mutants of Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Jones, D.R.; Karunakaran, V.; Hacking, A.J.

    1991-01-01

    One of the main disadvantages of using Bacillus thuringiensis as an insecticide is that the spore and crystal preparations applied to foliage are readily washed away by rain and are inactivated by sunlight. Spores from some strains of B. thuringiensis have been shown to be highly sensitive to u.v. light. This study has demonstrated how mutants with increased resistance to u.v., isolated by successive rounds of u.v. irradiation, and additionally with increased specific pathogenicity can be isolated. These techniques should be applied to strains that are frequently used in the industrial production of B.thuringiensis toxin. (author)

  15. Genetic mouse models of brain ageing and Alzheimer's disease.

    Science.gov (United States)

    Bilkei-Gorzo, Andras

    2014-05-01

    Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Isolation and characterization of Candida albicans morphological mutants derepressed for the formation of filamentous hypha-type structures

    International Nuclear Information System (INIS)

    Gil, C.; Pomes, R.; Nombela, C.

    1990-01-01

    Several Candida albicans morphological mutants were obtained by a procedure based on a combined treatment with nitrous acid plus UV irradiation and a double-enrichment step to increase the proportion of mutants growing as long filamentous structures. Altered cell morphogenesis in these mutants correlated with an altered colonial phenotype. Two of these mutants, C. albicans NEL102 and NEL103, were selected and characterized. Mutant blastoconidia initiated budding but eventually gave rise to filamentous hypha-type formations. These filaments were long and septate, and they branched very regularly at positions near septa. Calcofluor white (which is known to bind chitin-rich areas) stained septa, branching zones, and filament tips very intensely, as observed under the fluorescence microscope. Wild-type hybrids were obtained by fusing protoplasts of strain NEL102 with B14, another morphological mutant previously described as being permanently pseudomycelial, indicating that genetic determinants responsible for the two altered phenotypes are different. The mutants characterized in this work seemed to sequentially express the morphogenic characteristics of C. albicans, from blastoconidia to hyphae, in the absence of any inducer. Further characterization of these strains could be relevant to gain understanding of the genetic control of dimorphism in this species

  17. [Mutant alleles associated to chloroquine and sulfadoxine-pyrimethanime resistance in Plasmodium falciparum of the Ecuador-Peru and Ecuador-Colombia borders].

    Science.gov (United States)

    Arróspide, Nancy; Hijar-Guerra, Gisely; de Mora, Doménica; Diaz-Cortéz, César Eduardo; Veloz-Perez, Raúl; Gutierrez, Sonia; Cabezas-Sánchez, César

    2014-04-01

    The frequency of mutations in pfCRT and DHFR/DHPS genes of Plasmodium falciparum associated with resistance to chloroquine and sulfadoxine-pyrimethamine was evaluated in 83 strains from the districts of Esmeralda and Machala, located on the borders of Ecuador-Peru and Ecuador-Colombia in 2002. Polymerase chain reaction (PCR), conventional and its variants, was used. Mutations in the pfCRT gene were found in more than 90% of the samples from Esmeralda and Machala. For the DHFR gene, 90% of the strains were mutant samples from Esmeralda, 3 were double mutations and 1 was a triple mutation. In Machala, 25% were simple mutant forms and 75% mixed mutant forms (wild forms/mutant). In conclusion, resistance to chloroquine has been fixed in strains carrying K76T pfCRT mutation, whereas genetic imprinting for resistance to pyrimethamine is evolving, particularly in the district of Esmeralda.

  18. Development and Function of the Mouse Vestibular System in the Absence of Gravity Perception

    Science.gov (United States)

    Wolgemuth, Debra J.

    2005-01-01

    The hypothesis that was tested in this research was that the absence of gravity perception, such as would occur in space, would affect the development and function of the vestibular and central nervous systems. Further, we postulated that these effects would be more significant at specific stages of post-natal development of the animal. We also proposed the use of molecular genetic approaches that would provide important information as to the hierarchy of gene function during the development and subsequent function of the vestibular system. The tilted (tlt) mutant mouse has been characterized as lacking the ability to provide sensory input to the gravity receptors. The tlt/tlt mutant mice were a particularly attractive model for the study of vestibular function since the primary defect was limited to the receptor part of the vestibular system, and there were no detectable abnormal phenotypes in other organ systems. The goal of the proposed studies was to assess immediate and delayed effects of the lack of gravity perception on the vestibular system. Particular attention was paid to characterizing primarily affected periods of vestibular morphogenesis, and to identifying downstream genetic pathways that are altered in the CNS of the tlt/tlt mutant mouse. The specific aims were: (1) to characterize the postnatal morphogenesis of the CNS in the tlt mutant mouse, using detailed morphometric analysis of isolated vestibular ganglia and brain tissue at different stages of postnatal development and assessment of apoptotic cell death; (2) to examine the expression of selected genes implicated by mutational analysis to be important in vestibular development or function by in situ hybridization or immunohistochemistry in the mutant mice; and (3) to identify other genes involved in vestibular development and function, using differential cloning strategies to isolate genes whose expression is changed in the mutant versus normal vestibular system.

  19. X-ray-sensitive mutants of Chinese hamster ovary cell line

    International Nuclear Information System (INIS)

    Jeggo, P.A.; Kemp, L.M.

    1983-01-01

    A standard technique of microbial genetics, which involves the transfer of cells from single colonies by means of sterile toothpicks, has been adapted to somatic cell genetics. Its use has been demonstrated in the isolation of X-ray-sensitive mutants of CHO cells. 9000 colonies have been tested and 6 appreciably X-ray-sensitive mutants were isolated. (D 10 values 5-10-fold of wild-type D 10 value.) A further 6 mutants were obtained which showed a slight level of sensitivity (D 10 values less than 2-fold of wild-type D 10 value). The 6 more sensitive mutants were also sensitive to bleomycin, a chemotherapeutic agent inducing X-ray-like damage. Cross-sensitivity to UV-irradiation and treatment with the alkylating agents, MMS, EMS and MNNG, was investigated for these mutants. Some sensitivity to these other agents was observed, but in all cases it was less severe than the level of sensitivity to X-irradiation. Each mutant showed a different overall response to the spectrum of agents examined and these appear to represent new mutant phenotypes derived from cultured mammalian cell lines. One mutant strain, xrs-7, was cross-sensitive to all the DNA-damaging agents, but was proficient in the repair of single-strand breaks. (Auth.)

  20. Chinese hamster ovary cell mutants defective in heparan sulfate biosynthesis

    International Nuclear Information System (INIS)

    Bame, K.J.; Kiser, C.S.; Esko, J.D.

    1987-01-01

    The authors have isolated Chinese hamster ovary cell mutants defective in proteoglycan synthesis by radiographic screening for cells unable to incorporate 35 SO 4 into acid-precipitable material. Some mutants did not incorporate 35 SO 4 into acid-precipitable material, whereas others incorporated about 3-fold less radioactivity. HPLC anion exchange chromatographic analysis of radiolabelled glycosaminoglycans isolated from these mutants revealed many are defective in heparan sulfate biosynthesis. Mutants 803 and 677 do not synthesize heparan sulfate, although they produce chondroitin sulfate: strain 803 makes chondroitin sulfate normally, whereas 677 overaccumulates chondroitin sulfate by a factor of three. These mutants fall into the same complementation group, suggesting that the mutations are allelic. A second group of heparan sulfate biosynthetic mutants, consisting of cell lines 625, 668 and 679, produce undersulfated heparan sulfate and normal chondroitin sulfate. Treatment of the chains with nitrous acid should determine the position of the sulfate groups along the chain. These mutants may define a complementation group that is defective in the enzymes which modify the heparan sulfate chain. To increase the authors repertoire of heparan sulfate mutants, they are presently developing an in situ enzyme assay to screen colonies replica plated on filter discs for sulfotransferase defects

  1. Evaluation of an in vitro toxicogenetic mouse model for hepatotoxicity

    International Nuclear Information System (INIS)

    Martinez, Stephanie M.; Bradford, Blair U.; Soldatow, Valerie Y.; Kosyk, Oksana; Sandot, Amelia; Witek, Rafal; Kaiser, Robert; Stewart, Todd; Amaral, Kirsten; Freeman, Kimberly; Black, Chris; LeCluyse, Edward L.; Ferguson, Stephen S.; Rusyn, Ivan

    2010-01-01

    Numerous studies support the fact that a genetically diverse mouse population may be useful as an animal model to understand and predict toxicity in humans. We hypothesized that cultures of hepatocytes obtained from a large panel of inbred mouse strains can produce data indicative of inter-individual differences in in vivo responses to hepato-toxicants. In order to test this hypothesis and establish whether in vitro studies using cultured hepatocytes from genetically distinct mouse strains are feasible, we aimed to determine whether viable cells may be isolated from different mouse inbred strains, evaluate the reproducibility of cell yield, viability and functionality over subsequent isolations, and assess the utility of the model for toxicity screening. Hepatocytes were isolated from 15 strains of mice (A/J, B6C3F1, BALB/cJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, BALB/cByJ, AKR/J, MRL/MpJ, NOD/LtJ, NZW/LacJ, PWD/PhJ and WSB/EiJ males) and cultured for up to 7 days in traditional 2-dimensional culture. Cells from B6C3F1, C57BL/6J, and NOD/LtJ strains were treated with acetaminophen, WY-14,643 or rifampin and concentration-response effects on viability and function were established. Our data suggest that high yield and viability can be achieved across a panel of strains. Cell function and expression of key liver-specific genes of hepatocytes isolated from different strains and cultured under standardized conditions are comparable. Strain-specific responses to toxicant exposure have been observed in cultured hepatocytes and these experiments open new opportunities for further developments of in vitro models of hepatotoxicity in a genetically diverse population.

  2. A novel p53 mutational hotspot in skin tumors from UV-irradiated Xpc mutant mice alters transactivation functions.

    Science.gov (United States)

    Inga, Alberto; Nahari, Dorit; Velasco-Miguel, Susana; Friedberg, Errol C; Resnick, Michael A

    2002-08-22

    A mutation in codon 122 of the mouse p53 gene resulting in a T to L amino acid substitution (T122-->L) is frequently associated with skin cancer in UV-irradiated mice that are both homozygous mutant for the nucleotide excision repair (NER) gene Xpc (Xpc(-/-)) and hemizygous mutant for the p53 gene. We investigated the functional consequences of the mouse T122-->L mutation when expressed either in mammalian cells or in the yeast Saccharomyces cerevisiae. Similar to a non-functional allele, high expression of the T122-->L allele in p53(-/-) mouse embryo fibroblasts and human Saos-2 cells failed to suppress growth. However, the T122-->L mutant p53 showed wild-type transactivation levels with Bax and MDM2 promoters when expressed in either cell type and retained transactivation of the p21 and the c-Fos promoters in one cell line. Using a recently developed rheostatable p53 induction system in yeast we assessed the T122-->L transactivation capacity at low levels of protein expression using 12 different p53 response elements (REs). Compared to wild-type p53 the T122-->L protein manifested an unusual transactivation pattern comprising reduced and enhanced activity with specific REs. The high incidence of the T122-->L mutant allele in the Xpc(-/-) background suggests that both genetic and epigenetic conditions may facilitate the emergence of particular functional p53 mutations. Furthermore, the approach that we have taken also provides for the dissection of functions that may be retained in many p53 tumor alleles.

  3. mouseTube – a database to collaboratively unravel mouse ultrasonic communication [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Nicolas Torquet

    2016-09-01

    Full Text Available Ultrasonic vocalisation is a broadly used proxy to evaluate social communication in mouse models of neuropsychiatric disorders. The efficacy and robustness of testing these models suffer from limited knowledge of the structure and functions of these vocalisations as well as of the way to analyse the data. We created mouseTube, an open database with a web interface, to facilitate sharing and comparison of ultrasonic vocalisations data and metadata attached to a recording file. Metadata describe 1 the acquisition procedure, e.g., hardware, software, sampling frequency, bit depth; 2 the biological protocol used to elicit ultrasonic vocalisations; 3 the characteristics of the individual emitting ultrasonic vocalisations (e.g., strain, sex, age. To promote open science and enable reproducibility, data are made freely available. The website provides searching functions to facilitate the retrieval of recording files of interest. It is designed to enable comparisons of ultrasonic vocalisation emission between strains, protocols or laboratories, as well as to test different analysis algorithms and to search for protocols established to elicit mouse ultrasonic vocalisations. Over the long term, users will be able to download and compare different analysis results for each data file. Such application will boost the knowledge on mouse ultrasonic communication and stimulate sharing and comparison of automatic analysis methods to refine phenotyping techniques in mouse models of neuropsychiatric disorders.

  4. Association of methionine requirement with methyl mercury resistant mutants of yeast

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Sherman, F.

    1974-01-25

    It has been known for several years that strains resistant to mercury can be obtained in several bacterial species. Soon after the correlation between resistance to antibiotics and to mercury was recognized, it was established that genetic elements conferring resistance to antibiotics, mercury and other heavy metals in Escherichia coli and Samonella typhimurium and Staphylococcus aureus reside on extrachromosomal resistance transfer factors or plasmids. Among fungi, mercury resistant strains of Botrytis cinerea, Penicillium notatum, Sclerotinia fructicola, Stemphylium sarcinaeforme, and Saccharomyces cerevisiae have been reported. In most cases, this was accomplished by training the normal strains for growth on media supplemented with successively increasing concentrations of mercury compounds, and in some cases the resistance was lost when subcultured on mercury-free media. It is noteworthy that in none of the mercury-adapted strains of fungi has the genetic basis of resistance been determined. In this report we describe a method of isolation and characterization of methyl mercury resistant mutants of S. cerevisiae. This study was undertaken with the view that the examination of physiological changes associated with genetically defined resistant mutants will be useful in studying the mechanisms of cellular detoxification of organic mercurials.

  5. Olfaction in three genetic and two MPTP-induced Parkinson's disease mouse models.

    Directory of Open Access Journals (Sweden)

    Stefan Kurtenbach

    Full Text Available Various genetic or toxin-induced mouse models are frequently used for investigation of early PD pathology. Although olfactory impairment is known to precede motor symptoms by years, it is not known whether it is caused by impairments in the brain, the olfactory epithelium, or both. In this study, we investigated the olfactory function in three genetic Parkinson's disease (PD mouse models and mice treated with MPTP intraperitoneally and intranasally. To investigate olfactory function, we performed electro-olfactogram recordings (EOGs and an olfactory behavior test (cookie-finding test. We show that neither a parkin knockout mouse strain, nor intraperitoneal MPTP treated animals display any olfactory impairment in EOG recordings and the applied behavior test. We also found no difference in the responses of the olfactory epithelium to odorants in a mouse strain over-expressing doubly mutated α-synuclein, while this mouse strain was not suitable to test olfaction in a cookie-finding test as it displays a mobility impairment. A transgenic mouse expressing mutated α-synuclein in dopaminergic neurons performed equal to control animals in the cookie-finding test. Further we show that intranasal MPTP application can cause functional damage of the olfactory epithelium.

  6. Kinetics, improved activity and thermostability of endoglucanase and beta glucosidase from a mutant-derivative of aspergillus niger ms82

    International Nuclear Information System (INIS)

    Sohail, M.; Ahmad, A.; Khan, S.A.; Uddin, F.

    2013-01-01

    A mutant MS301 of Aspergillus niger MS82 showed 1.5 to 2.5-fold improved endoglucanase and beta-glucosidase activity when grown on crude lignocellulosic substrates under solid-state and submerged conditions. Indicators of thermal stability of enzymes (Tm and T1/2) showed that the wild type and mutant endoglucanase was more heat-resistant compared to beta-glucosidase. However, mutant and parent enzymes shared almost the same values for melting temperatures and half-lives. Endoglucanase and beta-glucosidase from both the strains showed optimum activity under acidic pH. Energy of activation (Ea) of mutant beta-glucosidase was substantially lower than the parent enzyme while Ea of mutant endoglucanase was slightly less than the parent. The lowered Ea values can be attributed to the improved beta-glucosidase activity of the mutant strain. Moreover, the MS301 enzymes were better in hydrolyzing purified and crude cellulosic materials than the parent MS82. (author)

  7. Ion permeabilities in mouse sperm reveal an external trigger for SLO3-dependent hyperpolarization.

    Directory of Open Access Journals (Sweden)

    Julio C Chávez

    Full Text Available Unlike most cells of the body which function in an ionic environment controlled within narrow limits, spermatozoa must function in a less controlled external environment. In order to better understand how sperm control their membrane potential in different ionic conditions, we measured mouse sperm membrane potentials under a variety of conditions and at different external K(+ concentrations, both before and after capacitation. Experiments were undertaken using both wild-type, and mutant mouse sperm from the knock-out strain of the sperm-specific, pH-sensitive, SLO3 K(+ channel. Membrane voltage data were fit to the Goldman-Hodgkin-Katz equation. Our study revealed a significant membrane permeability to both K(+ and Cl(- before capacitation, as well as Na(+. The permeability to both K(+ and Cl(- has the effect of preventing large changes in membrane potential when the extracellular concentration of either ion is changed. Such a mechanism may protect against undesired shifts in membrane potential in changing ionic environments. We found that a significant portion of resting membrane potassium permeability in wild-type sperm was contributed by SLO3 K(+ channels. We also found that further activation of SLO3 channels was the essential mechanism producing membrane hyperpolarization under two separate conditions, 1 elevation of external pH prior to capacitation and 2 capacitating conditions. Both conditions produced a significant membrane hyperpolarization in wild-type which was absent in SLO3 mutant sperm. Hyperpolarization in both conditions may result from activation of SLO3 channels by raising intracellular pH; however, demonstrating that SLO3-dependent hyperpolarization is achieved by an alkaline environment alone shows that SLO3 channel activation might occur independently of other events associated with capacitation. For example sperm may undergo stages of membrane hyperpolarization when reaching alkaline regions of the female genital tract

  8. Characterization and protective property of Brucella abortus cydC and looP mutants.

    Science.gov (United States)

    Truong, Quang Lam; Cho, Youngjae; Barate, Abhijit Kashinath; Kim, Suk; Hahn, Tae-Wook

    2014-11-01

    Brucella abortus readily multiplies in professional or nonprofessional phagocytes in vitro and is highly virulent in mice. Isogenic mutants of B. abortus biovar 1 strain IVKB9007 lacking the ATP/GDP-binding protein motif A (P-loop) (named looP; designated here the IVKB9007 looP::Tn5 mutant) and the ATP-binding/permease protein (cydC; designated here the IVKB9007 cydC::Tn5 mutant) were identified and characterized by transposon mutagenesis using the mini-Tn5Km2 transposon. Both mutants were found to be virtually incapable of intracellular replication in both murine macrophages (RAW264.7) and the HeLa cell line, and their virulence was significantly impaired in BALB/c mice. Respective complementation of the IVKB9007 looP::Tn5 and IVKB9007 cydC::Tn5 mutants restored their ability to survive in vitro and in vivo to a level comparable with that of the wild type. These findings indicate that the cydC and looP genes play important roles in the virulence of B. abortus. In addition, intraperitoneal immunization of mice with a dose of the live IVKB9007 looP::Tn5 and IVKB9007 cydC::Tn5 mutants provided a high degree of protection against challenge with pathogenic B. abortus strain 544. Both mutants should be evaluated further as a live attenuated vaccine against bovine brucellosis for their ability to stimulate a protective immune response. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. The mouse small eye mutant, Del(2)Sey3H, which deletes the putative tumor suppressor region of the radiation-induced acute myeloid leukemia is susceptible to radiation

    International Nuclear Information System (INIS)

    Nitta, Yumiko; Yoshida, Kazuko; Tanaka, Kimio; Peters, Jo; Cattanach, Bruce M.

    2003-01-01

    Radiation-induced murine acute myeloid leukemia (AML) is characterized by the chromosome 2 deletions. Standing on the hypothesis that an AML suppressor gene would locate on the chromosome 2, a deletion-wide screen was performed on radiation-induced AMLs by the fluorescence in situ hybridization (FISH) method. The hemizugous deletion of the D2Mit15, a marker DNA at the 49.0cM region from the centromere, associated with the AMLs in 97 out of the 105 cases (92.4%). As the deletion region was close to the region of human WAGR syndrome (MIM194072), the mouse small eye mutants could be the animal model for radiation-induced AMLs. The mutant, Del(2)Sey3H (Sey3H) was found to delete around the 49.0cM region by the allelic loss mapping. The Sey3H showed high susceptibility to radiation to develop tumors including the myeloid leukemia with shorter latency. These finding support the existence of a putative tumor suppressor gene responsible for the radiation-leukemogenesis near the D2Mit15 region. (author)

  10. Characterization of a Salmonella typhimurium mutant defective in phosphoribosylpyrophosphate synthetase

    DEFF Research Database (Denmark)

    Jochimsen, Bjarne; Hove-Jensen, Bjarne; Garber, Bruce B.

    1985-01-01

    This study describes the isolation and characterization of a mutant (strain GP122) of Salmonella typhimurium with a partial deficiency of phosphoribosylpyrophosphate (PRPP) synthetase activity. This strain was isolated in a purE deoD gpt purine auxotroph by a procedure designed to select guanosin...

  11. Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2.

    Directory of Open Access Journals (Sweden)

    Loredana Leo

    2011-06-01

    Full Text Available Familial hemiplegic migraine type 2 (FHM2 is an autosomal dominant form of migraine with aura that is caused by mutations of the α2-subunit of the Na,K-ATPase, an isoform almost exclusively expressed in astrocytes in the adult brain. We generated the first FHM2 knock-in mouse model carrying the human W887R mutation in the Atp1a2 orthologous gene. Homozygous Atp1a2(R887/R887 mutants died just after birth, while heterozygous Atp1a2(+/R887 mice showed no apparent clinical phenotype. The mutant α2 Na,K-ATPase protein was barely detectable in the brain of homozygous mutants and strongly reduced in the brain of heterozygous mutants, likely as a consequence of endoplasmic reticulum retention and subsequent proteasomal degradation, as we demonstrate in transfected cells. In vivo analysis of cortical spreading depression (CSD, the phenomenon underlying migraine aura, revealed a decreased induction threshold and an increased velocity of propagation in the heterozygous FHM2 mouse. Since several lines of evidence involve a specific role of the glial α2 Na,K pump in active reuptake of glutamate from the synaptic cleft, we hypothesize that CSD facilitation in the FHM2 mouse model is sustained by inefficient glutamate clearance by astrocytes and consequent increased cortical excitatory neurotransmission. The demonstration that FHM2 and FHM1 mutations share the ability to facilitate induction and propagation of CSD in mouse models further support the role of CSD as a key migraine trigger.

  12. Radio-sensitivity of the cells from amyotrophic lateral sclerosis model mice transfected with human mutant SOD1

    International Nuclear Information System (INIS)

    Wate, Reika; Ito, Hidefumi; Kusaka, Hirofumi; Takahashi, Sentaro; Kubota, Yoshihisa; Suetomi, Katsutoshi; Sato, Hiroshi; Okayasu, Ryuichi

    2005-01-01

    In order to clarify the possible involvement of oxidative damage induced by ionizing radiation in the onset and/or progression of familial amyotrophic lateral sclerosis (ALS), we studied radio-sensitivity in primary cells derived from ALS model mice expressing human mutant Cu/Zn superoxide dismutase (SOD1). The primary mouse cells expressed both mouse and the mutant human SOD1. The cell survival of the transgenic mice (with mutant SOD1), determined by counting cell numbers at a scheduled time after X-irradiation, is very similar to that of cells from wild type animals. The induction and repair of DNA damage in the transgenic cells, measured by single cell gel electrophoresis and pulsed field gel electrophoresis, are also similar to those of wild type cells. These results indicate that the human mutant SOD1 gene does not seem to contribute to the alteration of radio-sensitivity, at least in the fibroblastic cells used here. Although it is necessary to consider the difference in cell types between fibroblastic and neuronal cells, the present results may suggest that ionizing radiation is not primarily responsible for the onset of familial ALS with the SOD1 mutation, and that the excess risks are probably not a concern for radiation diagnosis and therapy in familial ALS patients. (author)

  13. 10. international mouse genome conference

    Energy Technology Data Exchange (ETDEWEB)

    Meisler, M.H.

    1996-12-31

    Ten years after hosting the First International Mammalian Genome Conference in Paris in 1986, Dr. Jean-Louis Guenet presided over the Tenth Conference at the Pasteur Institute, October 7--10, 1996. The 1986 conference was a satellite to the Human Gene Mapping Workshop and had approximately 50 attendees. The 1996 meeting was attended by 300 scientists from around the world. In the interim, the number of mapped loci in the mouse increased from 1,000 to over 20,000. This report contains a listing of the program and its participants, and two articles that review the meeting and the role of the laboratory mouse in the Human Genome project. More than 200 papers were presented at the conference covering the following topics: International mouse chromosome committee meetings; Mutant generation and identification; Physical and genetic maps; New technology and resources; Chromatin structure and gene regulation; Rate and hamster genetic maps; Informatics and databases; and Quantitative trait analysis.

  14. vph6 mutants of Saccharomyces cerevisiae require calcineurin for growth and are defective in vacuolar H(+)-ATPase assembly.

    Science.gov (United States)

    Hemenway, C S; Dolinski, K; Cardenas, M E; Hiller, M A; Jones, E W; Heitman, J

    1995-11-01

    We have characterized a Saccharomyces cerevisiae mutant strain that is hypersensitive to cyclosporin A (CsA) and FK506, immunosuppressants that inhibit calcineurin, a serine-threonine-specific phosphatase (PP2B). A single nuclear mutation, designated cev1 for calcineurin essential for viability, is responsible for the CsA-FK506-sensitive phenotype. The peptidyl-prolyl cis-trans isomerases cyclophilin A and FKBP12, respectively, mediate CsA and FK506 toxicity in the cev1 mutant strain. We demonstrate that cev1 is an allele of the VPH6 gene and that vph6 mutant strains fail to assemble the vacuolar H(+)-ATPase (V-ATPase). The VPH6 gene was mapped on chromosome VIII and is predicted to encode a 181-amino acid (21 kD) protein with no identity to other known proteins. We find that calcineurin is essential for viability in many mutant strains with defects in V-ATPase function or vacuolar acidification. In addition, we find that calcineurin modulates extracellular acidification in response to glucose, which we propose occurs via calcineurin regulation of the plasma membrane H(+)-ATPase PMA1. Taken together, our findings suggest calcineurin plays a general role in the regulation of cation transport and homeostasis.

  15. Restricted replication of coronavirus MHV-A59 in primary mouse brain astrocytes correlates with reduced pathogenicity

    NARCIS (Netherlands)

    Horzinek, M.C.; Berlo, M.F. van; Wolswijk, G.; Calafat, G.; Zeijst, B.A.M. van der

    1986-01-01

    Temperature-sensitive (ts) mutants of mouse hepatitis virus A59 (MHV-A59) are drastically attenuated in their pathogenic properties. Intracerebral inoculation of mice with 10(5) PFU of mutant ts342 results in prolonged infection of the central nervous system, whereas 100 PFU of wild-type virus are

  16. Differential radioprotective effects of misoprostol in DNA repair-proficient and -deficient or radiosensitive cell systems

    NARCIS (Netherlands)

    van Buul, P. P.; van Duyn-Goedhart, A.; de rooij, D. G.; Sankaranarayanan, K.

    1997-01-01

    The protective effects of misoprostol (MP), an analogue of prostaglandin E1, on X-ray-induced chromosomal aberrations, were studied in normal or mutant Chinese hamster cell lines grown as spheroids in vitro and on cell-killing in stem-cell spermatogonia of a mutant (acid) mouse strain or its

  17. Mutagenesis at the ad-3A and ad-3B loci in haploid UV-sensitive strains of Neurospora crassa. Pt. 3

    International Nuclear Information System (INIS)

    Schuepbach, M.E.; Serres, F.J. de

    1981-01-01

    γ-ray-induced inactivation and induction of mutations at the ad-3A and ad-3B loci of Neurospora crassa have been compared among 6 different UV- sensitive strains and a standard wild-type strain. The 6 strains show varying degrees of sensitivy to γ-ray-induced inactivation, with the relative sensitivy at 37% survival being uvs-6 > upr-1 > uvs-2 UE uvs-3 > wild-type > uvs-5 > uvs-4. Studies on the induction of ad-3 mutants by γ-rays show that when the dose-response curves (expressed in terms of ad-3 mutants among the surving colonies) of the UV-sensitive strains are compared with wild-type, the excision-repair-deficient mutants uvs-2 and upr-1 exhibit enhanced ad-3 mutant frequencies, uvs-3 exibits reduced ad-3 mutant frequencies whereas both uvs-4 and uvs-5 show lower mutant frequencies than wild-type. (orig.)

  18. Characterization of new radiation-sensitive mutant, Escherichia coli K-12 radC102

    International Nuclear Information System (INIS)

    Felzenszwalb, I.; Sargentini, N.J.; Smith, K.C.

    1984-01-01

    A new radiation-sensitive mutant, radC, has been isolated. The radC gene is located at 81.0 min on the Escherichia coli K-12 linkage map. The radC mutation sensitized cells to uv radiation, but unlike most DNA repair mutations, sensitization to X rays was observed only for rich medium-grown cells. For cells grown in rich medium, the radC mutant was normal for γ radiation mutagenesis, but showed less uv-radiation mutagenesis than the wild-type strain; it showed normal amount of X- and uv-radiation-induced DNA degradation, and it wasapprox. =60% deficient in recombination ability. The radC strain was normal for host cell reactivation of γ and uv-irradiated bacteriophage the radC mutation did not sensitize a recA strain, but did sensitize a radA and a polA strain to X and uv radiation and a uvrA strain to uv radiation. Therefore, it is suggested that the radC gene product plays a role in the growth medium-dependent, recA gene-dependent repair of DNA single-strand breaks after X irradiation, and in postreplication repair after uv irradiation

  19. Comparative Evaluation of Agroindustrial Byproducts for the Production of Alkaline Protease by Wild and Mutant Strains of Bacillus subtilis in Submerged and Solid State Fermentation

    Science.gov (United States)

    Haq, Ikramul

    2013-01-01

    The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain of Bacillus subtilis IH-72EMS8. During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine) of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh) was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease by Bacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions. PMID:24294129

  20. Comparative Evaluation of Agroindustrial Byproducts for the Production of Alkaline Protease by Wild and Mutant Strains of Bacillus subtilis in Submerged and Solid State Fermentation

    Directory of Open Access Journals (Sweden)

    Hamid Mukhtar

    2013-01-01

    Full Text Available The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain of Bacillus subtilis IH-72EMS8. During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease by Bacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions.

  1. Mutant strain screening and its enzyme production conditions of cellulase

    International Nuclear Information System (INIS)

    Dong Zhiyang; Zhu Lingxiang; Yu Wei

    2001-01-01

    Trichoderma koeningii T-801, which can produce relatively high cellulase, was isolated. The ability of producing cellulase of mutant T-801 had increased 1.77 times after treated with nitrous guanide and γ-ray and was higher than that of Trichoderma QM9414. The medium with straw powder as carbon source and peptone as nitrogen source is optimal and the maximum cellulase activity is reached at 30 degree C and pH 5.0 when cultured for 5 days

  2. Global Phenotypic Characterization of Effects of Fluoroquinolone Resistance Selection on the Metabolic Activities and Drug Susceptibilities of Clostridium perfringens Strains

    Directory of Open Access Journals (Sweden)

    Miseon Park

    2014-01-01

    Full Text Available Fluoroquinolone resistance affects toxin production of Clostridium perfringens strains differently. To investigate the effect of fluoroquinolone resistance selection on global changes in metabolic activities and drug susceptibilities, four C. perfringens strains and their norfloxacin-, ciprofloxacin-, and gatifloxacin-resistant mutants were compared in nearly 2000 assays, using phenotype microarray plates. Variations among mutant strains resulting from resistance selection were observed in all aspects of metabolism. Carbon utilization, pH range, osmotic tolerance, and chemical sensitivity of resistant strains were affected differently in the resistant mutants depending on both the bacterial genotype and the fluoroquinolone to which the bacterium was resistant. The susceptibilities to gentamicin and erythromycin of all resistant mutants except one increased, but some resistant strains were less susceptible to amoxicillin, cefoxitin, ceftriaxone, chloramphenicol, and metronidazole than their wild types. Sensitivity to ethidium bromide decreased in some resistant mutants and increased in others. Microarray analysis of two gatifloxacin-resistant mutants showed changes in metabolic activities that were correlated with altered expression of various genes. Both the chemical structures of fluoroquinolones and the genomic makeup of the wild types influenced the changes found in resistant mutants, which may explain some inconsistent reports of the effects of therapeutic use of fluoroquinolones on clinical isolates of bacteria.

  3. A detailed study of gerJ mutants of Bacillus subtilis.

    Science.gov (United States)

    Warburg, R J; Buchanan, C E; Parent, K; Halvorson, H O

    1986-08-01

    A total of nine gerJ mutants have now been isolated in Bacillus subtilis. All are defective in their spore germination properties, being blocked at an intermediate (phase grey) stage. The dormant spores are sensitive to heating at 90 degrees C and two of the mutants (generated by transposon insertion) produce spores sensitive at 80 degrees C. The spores of these two more extreme mutants had a visibly defective cortex when studied by electron microscopy, as did some of the other mutants. During sporulation, the acquisition of spore resistance properties and the appearance of the sporulation-specific penicillin-binding protein PBP5* were delayed. A strain probably carrying a lacZ fusion to the gerJ promoter demonstrated increased expression between t2 and t4. We propose that the gerJ locus is involved in the control of one or more sporulation-specific genes.

  4. Visible laser and UV-A radiation impact on a PNP degrading Moraxella strain and its rpoS mutant.

    Science.gov (United States)

    Nandakumar, Kanavillil; Keeler, Werden; Schraft, Heidi; Leung, Kam T

    2006-07-05

    The role of stationary phase sigma factor gene (rpoS) in the stress response of Moraxella strain when exposed to radiation was determined by comparing the stress responses of the wild-type (WT) and its rpoS knockout (KO) mutant. The rpoS was turned on by starving the WT cultures for 24 h in minimal salt medium. Under non-starved condition, both WT and KO planktonic Moraxella cells showed an increase in mortality with the increase in duration of irradiation. In the planktonic non-starved Moraxella, for the power intensity tested, UV radiation caused a substantially higher mortality rate than did by the visible laser light (the mortality rate observed for 15-min laser radiation was 53.4 +/- 10.5 and 48.7 +/- 8.9 for WT and KO, respectively, and 97.6 +/- 0 and 98.5 +/- 0 for 25 s of UV irradiation in WT and KO, respectively). However, the mortality rate decreased significantly in the starved WT when exposed to these two radiations. In comparison, rpoS protected the WT against the visible laser light more effectively than it did for the UV radiation. The WT and KO strains of Moraxella formed distinctly different types of biofilms on stainless steel coupons. The KO strain formed a denser biofilm than did the WT. Visible laser light removed biofilms from the surfaces more effectively than did the UV. This was true when comparing the mortality of bacteria in the biofilms as well. The inability of UV radiation to penetrate biofilms due to greater rates of surface absorption is considered to be the major reason for the weaker removal of biofilms in comparison to that of the visible laser light. This result suggests that high power visible laser light might be an effective tool for the removal of biofilms. (c) 2006 Wiley Periodicals, Inc.

  5. Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice.

    Science.gov (United States)

    Ichise, Hirotake; Hori, Akiko; Shiozawa, Seiji; Kondo, Saki; Kanegae, Yumi; Saito, Izumu; Ichise, Taeko; Yoshida, Nobuaki

    2016-07-29

    Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes.

  6. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function.

    Science.gov (United States)

    Sharma, Aarti; Lyashchenko, Alexander K; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z; Shneider, Neil A

    2016-02-04

    Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations.

  7. The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer.

    Science.gov (United States)

    Krupke, Debra M; Begley, Dale A; Sundberg, John P; Richardson, Joel E; Neuhauser, Steven B; Bult, Carol J

    2017-11-01

    Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. A hydrogen-producing, hydrogenase-free mutant strain of Nostoc punctiforme ATCC 29133

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, P.; Lindblad, P. [Uppsala Univ. (Sweden). Dept. of Physiological Botany; Schuetz, K.; Happe, T. [Universitaet Bonn (Germany). Botanisches Inst.

    2002-12-01

    The hupL gene, encoding the uptake hydrogenase large subunit, in Nostoc sp. strain ATCC 29133, a strain lacking a bidirectional hydrogenase, was inactivated by insertional mutagenesis. Recombinant strains were isolated and analysed, and one hupL{sup -} strain, NHM5, was selected for further study. Cultures of NHM5 were grown under nitrogen-fixing conditions and H{sub 2} evolution under air was observed using an H{sub 2} electrode. (Author)

  9. UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic development.

    Directory of Open Access Journals (Sweden)

    Karl B Shpargel

    2012-09-01

    Full Text Available UTX (KDM6A and UTY are homologous X and Y chromosome members of the Histone H3 Lysine 27 (H3K27 demethylase gene family. UTX can demethylate H3K27; however, in vitro assays suggest that human UTY has lost enzymatic activity due to sequence divergence. We produced mouse mutations in both Utx and Uty. Homozygous Utx mutant female embryos are mid-gestational lethal with defects in neural tube, yolk sac, and cardiac development. We demonstrate that mouse UTY is devoid of in vivo demethylase activity, so hemizygous X(Utx- Y(+ mutant male embryos should phenocopy homozygous X(Utx- X(Utx- females. However, X(Utx- Y(+ mutant male embryos develop to term; although runted, approximately 25% survive postnatally reaching adulthood. Hemizygous X(+ Y(Uty- mutant males are viable. In contrast, compound hemizygous X(Utx- Y(Uty- males phenocopy homozygous X(Utx- X(Utx- females. Therefore, despite divergence of UTX and UTY in catalyzing H3K27 demethylation, they maintain functional redundancy during embryonic development. Our data suggest that UTX and UTY are able to regulate gene activity through demethylase independent mechanisms. We conclude that UTX H3K27 demethylation is non-essential for embryonic viability.

  10. The Clock mutant mouse is a novel experimental model for nocturia and nocturnal polyuria.

    Science.gov (United States)

    Ihara, Tatsuya; Mitsui, Takahiko; Nakamura, Yuki; Kira, Satoru; Miyamoto, Tatsuya; Nakagomi, Hiroshi; Sawada, Norifumi; Hirayama, Yuri; Shibata, Keisuke; Shigetomi, Eiji; Shinozaki, Yoichi; Yoshiyama, Mitsuharu; Andersson, Karl-Erik; Nakao, Atsuhito; Takeda, Masayuki; Koizumi, Schuichi

    2017-04-01

    The pathophysiologies of nocturia (NOC) and nocturnal polyuria (NP) are multifactorial and their etiologies remain unclear in a large number of patients. Clock genes exist in most cells and organs, and the products of Clock regulate circadian rhythms as representative clock genes. Clock genes regulate lower urinary tract function, and a newly suggested concept is that abnormalities in clock genes cause lower urinary tract symptoms. In the present study, we investigated the voiding behavior of Clock mutant (Clock Δ19/Δ19 ) mice in order to determine the effects of clock genes on NOC/NP. Male C57BL/6 mice aged 8-12 weeks (WT) and male C57BL/6 Clock Δ19/Δ19 mice aged 8 weeks were used. They were bred under 12 hr light/dark conditions for 2 weeks and voiding behavior was investigated by measuring water intake volume, urine volume, urine volume/void, and voiding frequency in metabolic cages in the dark and light periods. No significant differences were observed in behavior patterns between Clock Δ19/Δ19 and WT mice. Clock Δ19/Δ19 mice showed greater voiding frequencies and urine volumes during the sleep phase than WT mice. The diurnal change in urine volume/void between the dark and light periods in WT mice was absent in Clock Δ19/Δ19 mice. Additionally, functional bladder capacity was significantly lower in Clock Δ19/Δ19 mice than in WT mice. We demonstrated that Clock Δ19/Δ19 mice showed the phenotype of NOC/NP. The Clock Δ19/Δ19 mouse may be used as an animal model of NOC and NP. Neurourol. Urodynam. 36:1034-1038, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. TCDD-induced transcriptional profiles in different mouse strains that have an identical AhR genotype

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qing; Suzuki, Junko S.; Tohyama, Chiharu; Ohsako, Seiichiroh [Environmental Health Sciences Division, National Institute for Environmental Studies, Onogawa, Tsukuba (Japan); Takei, Teiji [Environmental Health and Safety Division, Ministry of the Environment, Kasumigaseki, Tokyo (Japan); Lin, Tinmin; Peterson, R.E. [Wisconsin Univ., Wisconsin, MA (United States). School of Pharmacy and Molecular and Environmental Toxicology Center

    2004-09-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant that is known to cause hepatotoxicity, teratogenicity and carcinogenicity. A characteristic feature in the toxicity of TCDD is exceptionally large differences in susceptibility among animal species or even strains belonging to the same species. These strain differences in susceptibility to TCDD have now been elucidated to be due to the difference in ligand binding affinity or transcriptional activity of the aryl hydrocarbon receptor (AhR). Actually the C57BL/6 type AhR (AhR{sup b}) showed 6-fold higher ligand binding affinity than the DBA/2 type AhR (AhR{sup d}). The H/W rat AhR has a C-terminal truncation of the transactivating domain compared to the L-E rat AhR. On the other hand, there is considerable species variability in response sensitivity to TCDD that cannot be ascribed simply to polymorphisms of the AhR gene. A non-AhR gene susceptibility loci for hepatic porphyria has been observed in mice treated with iron compounds prior to TCDD injection by using a quantitative trait locus analysis of an F2 intercross between susceptible C57BL/6 and resistant DBA/2 stains. In the rat, a gene B with Han/Wistar type AhR is likely to be involved in resistance to TCDD lethality. These observations suggest that other modulating genes, so-called ''modifier genes'', have profound effects on the AhR-mediated gene expression phenotype. Based on the nucleotide sequence of the AhR coding region, the BALB/c, CBA/J, and C3H/He mouse strains are clustered together on a single branch. In the present study, we try to confirm the existence of modifiers by using microarray analysis to examine hepatic gene expression after TCDD exposure in BALB/c, CBA/J, and C3H/He mice. To recognize the existence of a modifier besides the AhR, it is a prerequisite experimental condition that the analyzed strains have an identical AhR genotype. Therefore, we selected BALB/c, CBA/J, and C3H/He mice as the model

  12. Study on yeast mutant with high alcohol yield fermented in sweet sorghum juice using carbon ion irradiation

    International Nuclear Information System (INIS)

    Yan Yaping; Lu Dong; Wang Jufang; Dong Xicun; Gao Feng; Ma Liang; Li Wenjian

    2009-01-01

    Five mutants with high ability of producing alcohol were selected out by using TTC as an indicator after irradiation of the alcohol yeast with 100 MeV/u carbon ions. The fermentation experiment in sweet sorghum juice showed that the alcohol production ability of mutant T4 strain increased 18.6% compared to the control strain. The residual sugar content in the juice was decreased too. After that,the optimum fermentation conditions of the T4 strain in sweet sorghum juice were investigated. The results showed that the optimum temperature and pH value for fermentation were 30 degree C and 4.5, respectively. The verification experiment was fermented in a 10 l bio-reactor and the obtained data indicated that the fermentative rate and the ability of producing alcohol in T4 strain was higher than that in the control strain under the same fermentation condition. (authors)

  13. The slaty mutation affects the morphology and maturation of melanosomes in the mouse melanocytes.

    Science.gov (United States)

    Hirobe, Tomohisa; Abe, Hiroyuki

    2006-10-01

    The slaty (Dct(slt)) mutation is known to reduce the activity of dopachrome tautomerase in melanocytes and to reduce the melanin content in skin, hairs and eyes. Although the melanosomes in slaty melanocytes are reported to be eumelanosome-like, detailed melanosome biogenesis is not well studied. To address this point, melanosomes in neonatal epidermal melanocytes from wild-type (Dct+/Dct+) mice at the slaty locus as well as its congenic mouse mutant (Dct(slt)/Dct(slt)) in serum-free primary culture were observed under the electron microscope. Wild-type melanocytes possessed exclusively elliptical melanosomes with internal longitudinal structures, whereas in mutant melanocytes, numerous spherical melanosomes with globular depositions of pigment and elliptical melanosomes as well as mixed type of the two melanosomes were observed. Mature stage IV melanosomes were greatly decreased in mutant melanocytes, whereas immature stage III melanosomes were more numerous than in wild-type melanocytes. These results suggest that the slaty mutation affects the morphology and maturation of melanosomes in mouse melanocytes.

  14. Strain improvement in Streptomyces galilaeus, a producer of anthracycline antibiotics galirubins

    International Nuclear Information System (INIS)

    Kralovcova, E.; Blumauerova, M.; Vanek, Z.

    1977-01-01

    The production of epsilon-pyrromycinone glycosides in Streptomyces galilaeus increased 12-fold, with respect to the wild strain, as a result of a sequential procedure including both natural selection and treatment with mutagens (nitrous acid, UV light and γ irradiation). Nitrous acid exhibited the highest mutagenic effect, both in increasing the productivity and in inducing blocked mutants. A mutant strain blocked in the biosynthesis of glycosides and accumulating free epsilon-pyrromycinone as the principal metabolite was obtained. (author)

  15. Lethal effect of short-wave (254 nm) UV-radiation on cells of Chlamidomonas reinhardii strains with different carotenoid content

    International Nuclear Information System (INIS)

    Kamchatova, I.E.; Chunaev, A.S.; Bronnikov, V.A.

    1987-01-01

    In experiments on related Chlamidomonas reinhardii strains of similar mating type a study was made of sensitivity of cells with different carotenoid content to UV-radiation of 254 nm. Mutants having a lower, as opposed to the wild type strain, content of carotenoids exhibited an increased radiosensitivity. A carotenoid-free mutant was found to possess a higher sensitivity to UV-radiation which was typical of the strain with the impaired excision repair system. The studied subclone of the UV-radiosensitive strain CC-888 was unable to photoreactivate the UV-induced damages which was typical of the wild-type strain. The content of carotenoids in cells of this subnuclone exceeded that in cells of mutants with the reduced pigmentation

  16. Isolation and characterization of acyclovir-resistant mutants of herpes simplex virus.

    Science.gov (United States)

    Field, H J; Darby, G; Wildy, P

    1980-07-01

    Mutants of HSV which are resistant to acyclovir (acycloguanosine) have been isolated following serial passages of several herpes simplex virus (HSV) strains in the presence of the drug. The majority of the mutants isolated are defective in induction of thymidine kinase (TK) and this is consistent with the observation that independently isolated TK- viruses are naturally resistant to ACV. One mutant is described (SC16 R9C2) which is resistant in biochemically transformed cells which express HSV TK. This suggests that its resistance resides at a level other than TK. It is also resistant to phosphonoacetic acid, suggesting that the DNA polymerase locus may be involved. A further mutant is described [Cl (101) P2C5] which induces normal levels of TK, although the nature of resistance of this virus is not yet elucidated.

  17. Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant.

    Directory of Open Access Journals (Sweden)

    Anja Wartenberg

    2014-12-01

    Full Text Available Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Δ/efg1Δ mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Δ/efg1Δ strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure.

  18. Excision-repair in mutants of Escherichia coli deficient in DNA polymerase I and/or its associated 5'. -->. 3' exonuclease

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, P [Stanford Univ., Calif. (USA). Dept. of Biological Sciences

    1977-01-01

    The UV sensitivity of E.coli mutants deficient in the 5'..-->..3' exonuclease activity of DNA polymerase I is intermediate between that of pol/sup +/ strains and mutants which are deficient in the polymerizing activity of pol I (polA1). Like polA1 mutants, the 5'-econuclease deficient mutants exhibit increased UV-induced DNA degradation and increased repair synthesis compared to a pol/sup +/ strain, although the increase is not as great as in polA1 or in the conditionally lethal mutant BT4113ts deficient in both polymerase I activities. When dimer excision was measured at UV doses low enough to avoid interference from extensive DNA degradation, all three classes of polymerase I deficient mutants were found to remove dimers efficiently from their DNA. We conclude that enzymes alternative to polymerase I can operate in both the excision and resynthesis steps of excision repair and that substitution for either of the polymerase I functions results in longer patches of repair. A model is proposed detailing the possible events in the alternative pathways.

  19. Mutagenesis at the ad-3A and ad-3B loci in haploid UV-sensitive strains of Neurospora crassa. Pt. 6

    International Nuclear Information System (INIS)

    De Serres, F.J.; Inoue, H.; Schuepbach, M.E.

    1983-01-01

    Genetic characterization of ad-3B mutants induced in wild-type and UV-sensitive strains has revealed qualitative differences between the spectra of genetic alterations at the molecular level. Ad-3B mutants induced in the two nucleotide excision-repair-deficient strains upr-1 and uvs-2 had significantly lower frequencies of nonpolarized complementation patterns and higher frequencies of noncomplementing mutants than ad-3B mutants induced in the wild-type strain in samples induced by either UV, #betta#-rays, 4NQO or MNNG. In these same samples ad-3B mutants induced in uvs-4, uvs-5 or uvs-6 did not differ significantly from those induced in the wild-type strain. After ICR-170 treatment, ad-3B mutants induced in the UV-sensitive strains did not differ significantly from those induced in wild-type. The comparisons in the present and previous studies demonstrate that the process of mutation-induction in the ad-3 region is under the control of other loci that not only alter mutant recovery quantitatively but also qualitatively. These data have important implications for comparative chemical mutagenesis, since the spectrum of genetic alterations produced by a given agent can be modified markedly as a result of defects in DNA repair. (orig./AJ)

  20. Vph6 Mutants of Saccharomyces Cerevisiae Require Calcineurin for Growth and Are Defective in Vacuolar H(+)-Atpase Assembly

    OpenAIRE

    Hemenway, C. S.; Dolinski, K.; Cardenas, M. E.; Hiller, M. A.; Jones, E. W.; Heitman, J.

    1995-01-01

    We have characterized a Saccharomyces cerevisiae mutant strain that is hypersensitive to cyclosporin A (CsA) and FK506, immunosuppressants that inhibit calcineurin, a serine-threonine-specific phosphatase (PP2B). A single nuclear mutation, designated cev1 for calcineurin essential for viability, is responsible for the CsA-FK506-sensitive phenotype. The peptidyl-prolyl cis-trans isomerases cyclophilin A and FKBP12, respectively, mediate CsA and FK506 toxicity in the cev1 mutant strain. We demo...

  1. Improvement of selected strains through gamma irradiation for enhanced lipolytic potential

    International Nuclear Information System (INIS)

    Iftikhar, T.; Mubashir, N.; Hussain, Y.; Abbas, S.Q.; Ashraf, I.

    2010-01-01

    The purpose of the present investigation was to enhance the production of industrially important enzyme lipase by subjecting the wild lipase producing fungal strains i.e. Aspergillus niger, Rhizopus microsporus and Penicillium atrovenetum to various doses of gamma irradiation (20, 40, 60, 80, 100, 120, 140 and 160 Gy). The isolation and lipolytic activity of selected mutant derived strains is described in this paper. Among all the mutants tested, MBL-5 obtained at 140Gy of Aspergillus niger strain showed highest extracellular lipase activity (13.75 +- 0.15 U mL/sup -1/) while MBL-1 Rhizopus microsporus at the rate 20Gy showed the lowest activity i.e., 1.06 +- 0.11 U mL/sup -1/. A range of pH 3, 5, 7, 9 and 11 was used to check the lipolytic potential of various mutants along with their wild type. It was observed that MBL-5 (Aspergillus niger) and MBL-2 (Rhizopus microsporus) showed enhanced extracellular lipase activity at pH 11 while MBL-3 (Penicillium atrovenetum) showed the highest extracellular lipase activity 22.53 +- 0.21 U mL/sup -1/ at pH 9. It indicates a possible role for the MBL-2, MBL-3 and MBL-5 mutant strains in the detergent industry for the development of eco-friendly technologies. (author)

  2. Deletion of Braun lipoprotein and plasminogen-activating protease-encoding genes attenuates Yersinia pestis in mouse models of bubonic and pneumonic plague.

    Science.gov (United States)

    van Lier, Christina J; Sha, Jian; Kirtley, Michelle L; Cao, Anthony; Tiner, Bethany L; Erova, Tatiana E; Cong, Yingzi; Kozlova, Elena V; Popov, Vsevolod L; Baze, Wallace B; Chopra, Ashok K

    2014-06-01

    Currently, there is no FDA-approved vaccine against Yersinia pestis, the causative agent of bubonic and pneumonic plague. Since both humoral immunity and cell-mediated immunity are essential in providing the host with protection against plague, we developed a live-attenuated vaccine strain by deleting the Braun lipoprotein (lpp) and plasminogen-activating protease (pla) genes from Y. pestis CO92. The Δlpp Δpla double isogenic mutant was highly attenuated in evoking both bubonic and pneumonic plague in a mouse model. Further, animals immunized with the mutant by either the intranasal or the subcutaneous route were significantly protected from developing subsequent pneumonic plague. In mice, the mutant poorly disseminated to peripheral organs and the production of proinflammatory cytokines concurrently decreased. Histopathologically, reduced damage to the lungs and livers of mice infected with the Δlpp Δpla double mutant compared to the level of damage in wild-type (WT) CO92-challenged animals was observed. The Δlpp Δpla mutant-immunized mice elicited a humoral immune response to the WT bacterium, as well as to CO92-specific antigens. Moreover, T cells from mutant-immunized animals exhibited significantly higher proliferative responses, when stimulated ex vivo with heat-killed WT CO92 antigens, than mice immunized with the same sublethal dose of WT CO92. Likewise, T cells from the mutant-immunized mice produced more gamma interferon (IFN-γ) and interleukin-4. These animals had an increasing number of tumor necrosis factor alpha (TNF-α)-producing CD4(+) and CD8(+) T cells than WT CO92-infected mice. These data emphasize the role of TNF-α and IFN-γ in protecting mice against pneumonic plague. Overall, our studies provide evidence that deletion of the lpp and pla genes acts synergistically in protecting animals against pneumonic plague, and we have demonstrated an immunological basis for this protection.

  3. BIOUTILIZATION OF GRAPE WASTE FOR EXOPOLYSACCHARIDE PRODUCTION USING ALTERNARIA ALTERNATA NON-PIGMENT STRAIN

    International Nuclear Information System (INIS)

    MELEIGY, S.A.

    2009-01-01

    In the present investigation, five mutant strains from A. alternate were isolated after exposure to gamma irradiation at dose level 8 kGy. The mutant isolated strains (MIS) were non-producing dark pigment and producing polysaccharide. The mutant isolated strain (MIS) belong to the Alternaria alternata MIS (1-5). In shake flask experiments, the exopolysaccharide (EPS) production was 2.90-5.24 g/l and biomass 5.8-8.31g/l. The effect of some fermentation conditions on grape wastes by A. alternata were investigated to produce EPS using gamma irradiation and non-pigment strain. The economical optimum fermentation condition for the highest EPS production by MIS4 when grown on grape waste containing 150 g/l sugar, incubation temperature 28 o C, pH 7 with addition of both 2 % yeast extract and 1.5 % surfactant triton x-100 achieved 14.68 g/l EPS and 6.22 g/l biomass

  4. Comprehensive behavioral analysis of ENU-induced Disc1-Q31L and -L100P mutant mice

    Directory of Open Access Journals (Sweden)

    Shoji Hirotaka

    2012-02-01

    Full Text Available Abstract Background Disrupted-in-Schizophrenia 1 (DISC1 is considered to be a candidate susceptibility gene for psychiatric disorders, including schizophrenia, bipolar disorder, and major depression. A recent study reported that N-ethyl-N-nitrosourea (ENU-induced mutations in exon 2 of the mouse Disc1 gene, which resulted in the amino acid exchange of Q31L and L100P, caused an increase in depression-like behavior in 31 L mutant mice and schizophrenia-like behavior in 100P mutant mice; thus, these are potential animal models of psychiatric disorders. However, remaining heterozygous mutations that possibly occur in flanking genes other than Disc1 itself might induce behavioral abnormalities in the mutant mice. Here, to confirm the effects of Disc1-Q31L and Disc1-L100P mutations on behavioral phenotypes and to investigate the behaviors of the mutant mice in more detail, the mutant lines were backcrossed to C57BL/6JJcl through an additional two generations and the behaviors were analyzed using a comprehensive behavioral test battery. Results Contrary to expectations, 31 L mutant mice showed no significant behavioral differences when compared with wild-type control mice in any of the behavioral tests, including the Porsolt forced swim and tail suspension tests, commonly used tests for depression-like behavior. Also, 100P mutant mice exhibited no differences in almost all of the behavioral tests, including the prepulse inhibition test for measuring sensorimotor gating, which is known to be impaired in schizophrenia patients; however, 100P mutant mice showed higher locomotor activity compared with wild-type control mice in the light/dark transition test. Conclusions Although these results are partially consistent with the previous study in that there was hyperactivity in 100P mutant mice, the vast majority of the results are inconsistent with those of the previous study; this discrepancy may be explained by differences in the genetic background of the

  5. Reduced host cell invasiveness and oxidative stress tolerance in double and triple csp gene family deletion mutants of Listeria monocytogenes.

    Science.gov (United States)

    Loepfe, Chantal; Raimann, Eveline; Stephan, Roger; Tasara, Taurai

    2010-07-01

    The cold shock protein (Csp) family comprises small, highly conserved proteins that bind nucleic acids to modulate various bacterial gene expressions. In addition to cold adaptation functions, this group of proteins is thought to facilitate various cellular processes to promote normal growth and stress adaptation responses. Three proteins making up the Listeria monocytogenes Csp family (CspA, CspB, and CspD) promote both cold and osmotic stress adaptation functions in this bacterium. The contribution of these three Csps in the host cell invasion processes of L. monocytogenes was investigated based on human Caco-2 and murine macrophage in vitro cell infection models. The DeltacspB, DeltacspD, DeltacspAB, DeltacspAD, DeltacspBD, and DeltacspABD strains were all significantly impaired in Caco-2 cell invasion compared with the wild-type strain, whereas in the murine macrophage infection assay only, the double (DeltacspBD) and triple (DeltacspABD) csp mutants were also significantly impaired in cell invasion compared with the wild-type strain. The DeltacspBD and DeltacspABD mutants displayed the most severely impaired invasion phenotypes. The invasion ability of these two mutant strains was also further analyzed using cold-stress-exposed organisms. In both cell infection models a significant reduction in invasiveness was observed after cold stress exposure of Listeria organisms. The negative impact of cold stress on subsequent cell invasion ability was, however, more severe in cold-sensitive csp mutants (DeltacspBD and DeltacspABD) compared with the wild type. The impaired macrophage invasion and intracellular growth of DeltacspBD and DeltacspABD also led us to examine oxidative stress resistance capacity in these two mutant strains. Both strains also displayed higher oxidative stress sensitivity relative to the wild-type strain. Our data indicate that besides cold and osmotic stress adaptation roles, Csp family proteins also promote efficient host cell invasion and

  6. Hydrogen production by using Rhodobacter capsulatus mutants with genetically modified electron transfer chains

    Energy Technology Data Exchange (ETDEWEB)

    OEztuerk, Yavuz; Yuecel, Meral; Guenduez, Ufuk [Department of Biology, Middle East Technical University, Ankara (Turkey); Daldal, Fevzi [Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, PA 19104-6018 (United States); Mandaci, Sevnur [TUEBITAK Research Institute for Genetic Engineering and Biotechnology, Gebze Kocaeli 41470 (Turkey); Tuerker, Lemi [Department of Chemistry, Middle East Technical University, Ankara (Turkey); Eroglu, Inci [Department of Chemical Engineering, Middle East Technical University, Ankara (Turkey)

    2006-09-15

    In Rhodobacter capsulatus excess reducing equivalents generated by organic acid oxidation is consumed to reduce protons into hydrogen by the activity of nitrogenase. Nitrogenase serves as a redox-balancing tool and is activated by the RegB/RegA global regulatory system during photosynthetic growth. The terminal cytochrome cbb{sub 3} oxidase and the redox state of the cyclic photosynthetic electron transfer chain serve redox signaling to the RegB/RegA regulatory systems in Rhodobacter. In this study, hydrogen production of various R. capsulatus strains harboring the genetically modified electron carrier cytochromes or lacking the cyt cbb{sub 3} oxidase or the quinol oxidase were compared with the wild type. The results indicated that hydrogen production of mutant strains with modified electron carrier cytochromes decreased 3- to 4-fold, but the rate of hydrogen production increased significantly in a cbb{sub 3}{sup -} mutant. Moreover, hydrogen production efficiency of various R. capsulatus strains further increased by inactivation of uptake hydrogenase genes. (author)

  7. Dictyostelium discoideum: mutants in the biosynthesis of the lipid-linked precursor of N-linked oligosaccharides

    International Nuclear Information System (INIS)

    Freeze, H.; Willies, L.; Hamilton, S.

    1986-01-01

    The lysosomal enzymes of Dictyostelium discoideum share highly immunogenic oligosaccharides which contain multiple Man-6-SO 4 residues. Two mutant strains which lack the shared antigenic determinant were analyzed in an attempt to identify the primary defect in each. [ 3 H]Man labelled N-linked oligosaccharides of secreted glycoproteins were released by Endo/PNGaseF digestion and analyzed. Both of the mutant strains produced smaller, less sulfated oligosaccharides compared to the wild-type, yet both still contained considerable amounts of Man-6-SO 4 . The size of the precursor lipid-linked oligosaccharide from the wild-type is consistent with a Glc 3 Man 9 GlcNAc 2 structure, while those from both of the mutants have an oligosaccharide the size of Man 5 GlcNAc 2 . The authors conclude that both of the mutants are defective in the biosynthesis of the precursor oligosaccharide. Both oligosaccharides from the mutants contain a tri-mannosyl core and are not glucosylated. Two of the five Man residues are released by a 1,2 specific α mannosidase. Based on the size and mannosidase digestions the authors conclude that 4/5 of the Man residues on the α1,6 branch of the β-linked Man residues are missing. Thus, these residues must be required to define the shared antigenic determinant

  8. A monoallelic deletion of the TcCRT gene increases the attenuation of a cultured Trypanosoma cruzi strain, protecting against an in vivo virulent challenge.

    Directory of Open Access Journals (Sweden)

    Fernando J Sánchez-Valdéz

    2014-02-01

    Full Text Available Trypanosoma cruzi calreticulin (TcCRT is a virulence factor that binds complement C1, thus inhibiting the activation of the classical complement pathway and generating pro-phagocytic signals that increase parasite infectivity. In a previous work, we characterized a clonal cell line lacking one TcCRT allele (TcCRT+/- and another overexpressing it (TcCRT+, both derived from the attenuated TCC T. cruzi strain. The TcCRT+/- mutant was highly susceptible to killing by the complement machinery and presented a remarkable reduced propagation and differentiation rate both in vitro and in vivo. In this report, we have extended these studies to assess, in a mouse model of disease, the virulence, immunogenicity and safety of the mutant as an experimental vaccine. Balb/c mice were inoculated with TcCRT+/- parasites and followed-up during a 6-month period. Mutant parasites were not detected by sensitive techniques, even after mice immune suppression. Total anti-T. cruzi IgG levels were undetectable in TcCRT+/- inoculated mice and the genetic alteration was stable after long-term infection and it did not revert back to wild type form. Most importantly, immunization with TcCRT+/- parasites induces a highly protective response after challenge with a virulent T. cruzi strain, as evidenced by lower parasite density, mortality, spleen index and tissue inflammatory response. TcCRT+/- clones are restricted in two important properties conferred by TcCRT and indirectly by C1q: their ability to evade the host immune response and their virulence. Therefore, deletion of one copy of the TcCRT gene in the attenuated TCC strain generated a safe and irreversibly gene-deleted live attenuated parasite with high immunoprotective properties. Our results also contribute to endorse the important role of TcCRT as a T. cruzi virulence factor.

  9. Morphological and genetic characterization of group I Clostridium botulinum type B strain 111 and the transcriptional regulator spoIIID gene knockout mutant in sporulation.

    Science.gov (United States)

    Hosomi, Koji; Kuwana, Ritsuko; Takamatsu, Hiromu; Kohda, Tomoko; Kozaki, Shunji; Mukamoto, Masafumi

    2015-06-01

    Clostridium botulinum is a heat-resistant spore-forming bacterium that causes the serious paralytic illness botulism. Heat-resistant spores may cause food sanitation hazards and sporulation plays a central role in the survival of C. botulinum. We observed morphological changes and investigated the role of the transcriptional regulator SpoIIID in the sporulation of C. botulinum type B strain 111 in order to elucidate the molecular mechanism in C. botulinum. C. botulinum type B formed heat-resistant spores through successive morphological changes corresponding to those of Bacillus subtilis, a spore-forming model organism. An analysis of the spoIIID gene knockout mutant revealed that the transcriptional regulator SpoIIID contributed to heat-resistant spore formation by C. botulinum type B and activated the transcription of the sigK gene later during sporulation. Transcription of the spoIIID gene, which differed from that in B. subtilis and Clostridium difficile, was observed in the sigE gene knockout mutant of C. botulinum type B. An analysis of the sigF gene knockout mutant showed that the sporulation-specific sigma factor SigF was essential for transcription of the spoIIID gene in C. botulinum type B. These results suggest that the regulation of sporulation in C. botulinum is not similar to that in B. subtilis and other clostridia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Anti-H-Y responses of H-2b mutant mice.

    Science.gov (United States)

    Simpson, E; Gordon, R D; Chandler, P R; Bailey, D

    1978-10-01

    Two strains of H-2b mutant mice, H-2ba and H-2bf, in which the mutational event took place at H-2K, make anti-H-Y cytotoxic T cell responses which are H-2-restricted, Db-associated and indistinguishable in target cell specificity from those of H-2b mice. Thus, alteration of the H-2K molecule affects neither the Ir gene controlling the response, nor the associative antigen. On the other hand, one H-2Db mutant strain, H-2bo, although it makes a good anti-H-Y cytotoxic response, shows target cell specificity restricted to its own Dbo antigen(s), and neither H-2b, H-2ba or H-2bf anti-H-Y cytotoxic cells kill H-2bo male target cells. Thus, the alteration of the H-2Db molecule does not affect the Ir gene of H-2b mice, but it does alter the H-2Db-associative antigen.

  11. Embryonic death, dwarfism and fetal malformations after irradiation of embryos at the zygote stage. Studies on two mouse strains

    International Nuclear Information System (INIS)

    Jacquet, P.; Saint-Georges, L. de; Baugnet-Mahieu, L.; Vankerkom, J.

    1995-01-01

    Female mice of the BALB/c and CF1 strains were mated and irradiated with various doses of X-rays 7 h after presumed fertilization. 18 days later, females were killed and their uteri examined for prenatal mortality at the different stages of development. Living fetuses were weighed and examined for the presence of external malformations. A number of them were also examined for skeletal anomalies. Radiation induced mainly a dose-dependent increase of the preimplantation loss in the BALB/c strain and of the early postimplantation loss in the CF1 strain. Embryos of the BALB/c strain were refractory to the induction of teratogenic effects after such preimplantation irradiation. In CF1 mice, the frequency of malformed fetuses increased regularly after irradiation, the difference with controls being significant for the doses of 10, 50 and 100 cGy. Dwarfism occurrence also appeared to be increased by irradiation in this strain, although the importance of this effect varied depending on the criterion chosen for the assessment of dwarfs. With the definition proposed in the present paper, the increase in the frequency of dwarfs paralleled that of malformed fetuses, being significant after doses of 50 and 100 cGy. Irradiation did not increase the frequency of skeletal anomalies. A careful examination of the various data obtained to date led us to conclude that radiation may possibly be teratogenic in several mouse strains, when administered as early as during the one-cell stage and, to a lesser extent, during the following preimplantation stages. However, early prenatal mortality will remain by far the greatest risk associated with an exposure to radiation during this period. Moreover, the relativity of the risk of abnormality due to such irradiation should be considered in the context of the high prevalence of developmental defects spontaneously occurring during human pregnancy

  12. Embryonic death, dwarfism and fetal malformations after irradiation of embryos at the zygote stage. Studies on two mouse strains

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, P.; Saint-Georges, L. de; Baugnet-Mahieu, L. [Laboratory of Radiobiology, Department of Radioprotection, CEN/SCK, Mol (Belgium); Vankerkom, J. [Division of Environmental Research, VITO, Mol (Belgium)

    1995-11-01

    Female mice of the BALB/c and CF1 strains were mated and irradiated with various doses of X-rays 7 h after presumed fertilization. 18 days later, females were killed and their uteri examined for prenatal mortality at the different stages of development. Living fetuses were weighed and examined for the presence of external malformations. A number of them were also examined for skeletal anomalies. Radiation induced mainly a dose-dependent increase of the preimplantation loss in the BALB/c strain and of the early postimplantation loss in the CF1 strain. Embryos of the BALB/c strain were refractory to the induction of teratogenic effects after such preimplantation irradiation. In CF1 mice, the frequency of malformed fetuses increased regularly after irradiation, the difference with controls being significant for the doses of 10, 50 and 100 cGy. Dwarfism occurrence also appeared to be increased by irradiation in this strain, although the importance of this effect varied depending on the criterion chosen for the assessment of dwarfs. With the definition proposed in the present paper, the increase in the frequency of dwarfs paralleled that of malformed fetuses, being significant after doses of 50 and 100 cGy. Irradiation did not increase the frequency of skeletal anomalies. A careful examination of the various data obtained to date led us to conclude that radiation may possibly be teratogenic in several mouse strains, when administered as early as during the one-cell stage and, to a lesser extent, during the following preimplantation stages. However, early prenatal mortality will remain by far the greatest risk associated with an exposure to radiation during this period. Moreover, the relativity of the risk of abnormality due to such irradiation should be considered in the context of the high prevalence of developmental defects spontaneously occurring during human pregnancy.

  13. Genetic labelling and application of the isoproturon-mineralizing Sphingomonas sp. strain SRS2 in soil and rhizosphere

    DEFF Research Database (Denmark)

    Kristensen, K.E.; Jacobsen, C.S.; Hansen, L.H.

    2006-01-01

    AIMS: To construct a luxAB-labelled Sphingomonas sp. strain SRS2 maintaining the ability to mineralize the herbicide isoproturon and usable for monitoring the survival and distribution of strain SRS2 on plant roots in laboratory systems. METHODS AND RESULTS: We inserted the mini-Tn5-luxAB marker...... into strain SRS2 using conjugational mating. In the transconjugant mutants luciferase was produced in varying levels. The mutants showed significant differences in their ability to degrade isoproturon. One luxAB-labelled mutant maintained the ability to mineralize isoproturon and was therefore selected...... for monitoring colonization of barley roots. CONCLUSIONS: We successfully constructed a genetically labelled isoproturon-mineralizing-strain SRS2 and demonstrated its ability to survive in soil and its colonization of rhizosphere. SIGNIFICANCE AND IMPACT OF THE STUDY: The construction of a luxAB-labelled strain...

  14. Mutation of purD and purF genes further attenuates Brucella abortus strain RB51.

    Science.gov (United States)

    Truong, Quang Lam; Cho, Youngjae; Barate, Abhijit Kashinath; Kim, Suk; Watarai, Masahisa; Hahn, Tae-Wook

    2015-02-01

    In the present study, transposon mutagenesis was used to further attenuate Brucella abortus RB51 vaccine strain. Two purD and purF mutants were constructed, characterized and evaluated for attenuation via intracellular survival in murine macrophage-like RAW264.7 and HeLa cells, and by clearance in BALB/c mice. The purD and purF mutants showed significantly decreased intracellular survival, and complementation of these mutants with intact copies of purD or purF genes of RB51 strain was able to restore these defects. In addition, the pur mutants presented significantly lowered persistence in mice. Immunization with purD and purF mutants protected mice against a challenge with the virulent B. abortus strain 544 at a level similar to that of the parent RB51. These data suggest that genes encoding the early stages of purine biosynthesis (purD and purF) are required for intracellular survival and virulence of B. abortus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Intestinimonas butyriciproducens gen. nov., sp. nov., a novel butyrate-producing bacterium from the mouse intestine

    NARCIS (Netherlands)

    Kläring, K.; Hanske, L.; Bui, T.P.N.; Charrier, C.; Blaut, M.; Haller, D.; Plugge, C.M.; Clavel, T.

    2013-01-01

    Whilst creating a bacterial collection of strains from the mouse intestine, we isolated a Gram-negative, spore-forming, non-motile and strictly anaerobic rod-shaped bacterium from the caecal content of a TNFdeltaARE mouse. The isolate, referred to as strain SRB-521-5-IT, was originally cultured on a

  16. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants

    Science.gov (United States)

    Davenport, K. D.; Williams, K. E.; Ullmann, B. D.; Gustin, M. C.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.

  17. Strain- and sex-dependent circadian changes in abcc2 transporter expression: implications for irinotecan chronotolerance in mouse ileum.

    Directory of Open Access Journals (Sweden)

    Alper Okyar

    Full Text Available ATP-binding cassette transporter abcc2 is involved in the cellular efflux of irinotecan. The drug is toxic for mouse ileum, where abcc2 is highly expressed. Here, we investigate whether circadian changes in local abcc2 expression participate in the circadian rhythm of irinotecan toxicity for ileum mucosa, and further assess whether genetic background or sex modify this relation.Ileum mucosa was obtained every 3-4 h for 24 h in male and female B6D2F(1 and B6CBAF(1 mice synchronized with light from Zeitgeber Time (ZT0 to ZT12 alternating with 12 h of darkness. Irinotecan (50 mg/kg i.v. daily for 4 days was administered at the sex- and strain-specific times corresponding to least (ZT11-15 or largest drug-induced body weight loss (ZT23-03-07. Abcc2 expression was determined with qRT-PCR for mRNA and with immunohistochemistry and confocal microscopy for protein. Histopathologic lesions were graded in ileum tissues obtained 2, 4 or 6 days after treatment. Two- to six-fold circadian changes were demonstrated for mRNA and protein mean expressions of abcc2 in mouse ileum (p<0.05. ZT12 corresponded to high mRNA and protein expressions, with circadian waveforms differing according to genetic background and sex. The proportion of mice spared from ileum lesions varied three-fold according to irinotecan timing, with best tolerability at ZT11-15 (p = 0.00003. Irinotecan was also best tolerated in males (p = 0.05 and in B6CBAF(1 (p = 0.0006.Strain- and sex-dependent circadian patterns in abcc2 expressions displayed robust relations with the chronotolerance of ileum mucosa for irinotecan. This finding has strong potential implications for improving the intestinal tolerability of anticancer drugs through circadian delivery.

  18. Genomes of the Mouse Collaborative Cross.

    Science.gov (United States)

    Srivastava, Anuj; Morgan, Andrew P; Najarian, Maya L; Sarsani, Vishal Kumar; Sigmon, J Sebastian; Shorter, John R; Kashfeen, Anwica; McMullan, Rachel C; Williams, Lucy H; Giusti-Rodríguez, Paola; Ferris, Martin T; Sullivan, Patrick; Hock, Pablo; Miller, Darla R; Bell, Timothy A; McMillan, Leonard; Churchill, Gary A; de Villena, Fernando Pardo-Manuel

    2017-06-01

    The Collaborative Cross (CC) is a multiparent panel of recombinant inbred (RI) mouse strains derived from eight founder laboratory strains. RI panels are popular because of their long-term genetic stability, which enhances reproducibility and integration of data collected across time and conditions. Characterization of their genomes can be a community effort, reducing the burden on individual users. Here we present the genomes of the CC strains using two complementary approaches as a resource to improve power and interpretation of genetic experiments. Our study also provides a cautionary tale regarding the limitations imposed by such basic biological processes as mutation and selection. A distinct advantage of inbred panels is that genotyping only needs to be performed on the panel, not on each individual mouse. The initial CC genome data were haplotype reconstructions based on dense genotyping of the most recent common ancestors (MRCAs) of each strain followed by imputation from the genome sequence of the corresponding founder inbred strain. The MRCA resource captured segregating regions in strains that were not fully inbred, but it had limited resolution in the transition regions between founder haplotypes, and there was uncertainty about founder assignment in regions of limited diversity. Here we report the whole genome sequence of 69 CC strains generated by paired-end short reads at 30× coverage of a single male per strain. Sequencing leads to a substantial improvement in the fine structure and completeness of the genomes of the CC. Both MRCAs and sequenced samples show a significant reduction in the genome-wide haplotype frequencies from two wild-derived strains, CAST/EiJ and PWK/PhJ. In addition, analysis of the evolution of the patterns of heterozygosity indicates that selection against three wild-derived founder strains played a significant role in shaping the genomes of the CC. The sequencing resource provides the first description of tens of thousands of

  19. Kinetics Studies on citric acid production by gamma ray induced mutant of Aspergillus niger

    International Nuclear Information System (INIS)

    Begum, A.A.; Choudhury, N.; Islam, M.S.

    1991-01-01

    Effect of cultural pH and incubation temperature on citric acid yield and kinetic patterns of citric acid fermentation by a natural isolate of aspergillus niger as CA16 and one of its gamma ray induced mutants were studied using cane molasses as growth and fermentation substrate. Mutant strain, 277/30 gave maximum citric acid yield of 85 g/l at pH 3.5 and 28 degree centigrade in molasses medium adjusted to 16% sugar and 25% prescott salt in the medium. Parent strain, CA16 gave a maximum yield of 34 g/l at pH 4.0 and 26 degree centigrade in molasses medium adjusted to 16% sugar and 100% prescott salt in the medium. In kinetic studies, strains showed combination kinetics of citric acid fermentation where product formation is directly related to growth and cell mass and indirectly related to carbohydrate uptake

  20. Phenotypic and genotypic characteristics of novel mouse cell line (NIH/3T3-adapted human enterovirus 71 strains (EV71:TLLm and EV71:TLLmv.

    Directory of Open Access Journals (Sweden)

    Carla Bianca Luena Victorio

    Full Text Available Since its identification in 1969, Enterovirus 71 (EV71 has been causing periodic outbreaks of infection in children worldwide and most prominently in the Asia-Pacific Region. Understanding the pathogenesis of Enterovirus 71 (EV71 is hampered by the virus's inability to infect small animals and replicate in their derived in vitro cultured cells. This manuscript describes the phenotypic and genotypic characteristics of two selected EV71 strains (EV71:TLLm and EV71:TLLmv, which have been adapted to replicate in mouse-derived NIH/3T3 cells, in contrast to the original parental virus which is only able to replicate in primate cell lines. The EV71:TLLm strain exhibited productive infection in all primate and rodent cell lines tested, while EV71:TLLmv exhibited greater preference for mouse cell lines. EV71:TLLmv displayed higher degree of adaptation and temperature adaptability in NIH/3T3 cells than in Vero cells, suggesting much higher fitness in NIH/3T3 cells. In comparison with the parental EV71:BS strain, the adapted strains accumulated multiple adaptive mutations in the genome resulting in amino acid substitutions, most notably in the capsid-encoding region (P1 and viral RNA-dependent RNA polymerase (3D. Two mutations, E167D and L169F, were mapped to the VP1 canyon that binds the SCARB2 receptor on host cells. Another two mutations, S135T and K140I, were located in the VP2 neutralization epitope spanning amino acids 136-150. This is the first report of human EV71 with the ability to productively infect rodent cell lines in vitro.